Sample records for seal test disk

  1. Continued Investigation of Leakage and Power Loss Test Results for Competing Turbine Engine Seals

    NASA Technical Reports Server (NTRS)

    Delgado, Irebert R.; Proctor, Margaret P.

    2007-01-01

    Seal leakage decreases with increasing surface speed due to reduced clearances from disk centrifugal growth. Annular and labyrinth seal leakage are 2-3 times greater than brush and finger seal leakage. Seal leakage rates increase with increasing temperature because of seal clearance growth due to different coefficients of thermal expansion between the seal and test disk. Seal power loss is not strongly affected by inlet temperature. Seal power loss increases with increasing surface speed, seal pressure differential, mass flow rate or flow factor, and radial clearance. The brush and finger seals had nearly the same power loss. Annular and labyrinth seal power loss were higher than finger or brush seal power loss. The brush seal power loss was the lowest and 15-30% lower than annular and labyrinth seal power loss.

  2. Nonlinear Whirl Response of a High-Speed Seal Test Rotor With Marginal and Extended Squeeze-Film Dampers

    NASA Technical Reports Server (NTRS)

    Proctor, Margaret P.; Gunter, Edgar J.

    2005-01-01

    Synchronous and nonsynchronous whirl response analysis of a double overhung, high-speed seal test rotor with ball bearings supported in 5.84- and 12.7-mm-long, un-centered squeeze-film oil dampers is presented. Test performance with the original damper of length 5.84 mm was marginal, with nonsynchronous whirling at the overhung seal test disk and high amplitude synchronous response above 32,000 rpm near the drive spline section occurring. A system critical speed analysis of the drive system and the high-speed seal test rotor indicated that the first two critical speeds are associated with the seal test rotor. Nonlinear synchronous unbalance and time transient whirl studies were conducted on the seal test rotor with the original and extended damper lengths. With the original damper design, the nonlinear synchronous response showed that unbalance could cause damper lockup at 33,000 rpm. Alford cross-coupling forces were also included at the overhung seal test disk for the whirl analysis. Sub-synchronous whirling at the seal test disk was observed in the nonlinear time transient analysis. With the extended damper length of 12.7 mm, the sub-synchronous motion was eliminated and the rotor unbalance response was acceptable to 45,000 rpm with moderate rotor unbalance. However, with high rotor unbalance, damper lockup could still occur at 33,000 rpm, even with the extended squeeze-film dampers. Therefore, the test rotor must be reasonably balanced in order for the un-centered dampers to be effective.

  3. Stability Analysis of a High-Speed Seal Test Rotor With Marginal and Extended Squeeze-Film Dampers: Theoretical and Experimental Results

    NASA Technical Reports Server (NTRS)

    Proctor, Margaret P.; Gunter, Edgar J.

    2007-01-01

    A case study of a high-speed seal test rotor shows how rotor dynamic analysis can be used to diagnose the source of high vibrations and evaluate a proposed remedy. Experimental results are compared with the synchronous and non-synchronous whirl response analysis of a double overhung, high-speed seal test rotor with ball bearings supported in 5.84- and 12.7-mm-long, un-centered squeeze-film oil dampers. Test performance with the original damper of length 5.84 mm was marginal. Non-synchronous whirling occurred at the overhung seal test disk and there was a high amplitude synchronous response near the drive spline above 32,000 rpm. Nonlinear synchronous unbalance and time transient whirl studies were conducted on the seal test rotor with the original and extended damper lengths. With the original damper design, the nonlinear synchronous response showed that unbalance could cause damper lockup at 33,000 rpm. Alford cross-coupling forces were also included at the overhung seal test disk for the whirl analysis. Sub-synchronous whirling at the seal test disk was observed in the nonlinear time transient analysis. With the extended damper length of 12.7 mm, the sub-synchronous motion was eliminated and the rotor unbalance response was acceptable to 45,000 rpm with moderate rotor unbalance. Seal test rotor orbits and vibration levels with the extended squeeze film dampers showed smooth operation to 40,444 rpm.

  4. Fatigue Crack Growth Behavior Evaluation of Grainex Mar-M 247 for NASA's High Temperature, High Speed Turbine Seal Test Rig

    NASA Technical Reports Server (NTRS)

    Delgado, Irebert R.; Steinetz, Bruce M.; Rimnac, Clare M.; Lewandowski, John J.

    2008-01-01

    The fatigue crack growth behavior of Grainex Mar-M 247 is evaluated for NASA s Turbine Seal Test Facility. The facility is used to test air-to-air seals primarily for use in advanced jet engine applications. Because of extreme seal test conditions of temperature, pressure, and surface speeds, surface cracks may develop over time in the disk bolt holes. An inspection interval is developed to preclude catastrophic disk failure by using experimental fatigue crack growth data. By combining current fatigue crack growth results with previous fatigue strain-life experimental work, an inspection interval is determined for the test disk. The fatigue crack growth life of the NASA disk bolt holes is found to be 367 cycles at a crack depth of 0.501 mm using a factor of 2 on life at maximum operating conditions. Combining this result with previous fatigue strain-life experimental work gives a total fatigue life of 1032 cycles at a crack depth of 0.501 mm. Eddy-current inspections are suggested starting at 665 cycles since eddy current detection thresholds are currently at 0.381 mm. Inspection intervals are recommended every 50 cycles when operated at maximum operating conditions.

  5. Strain-Life Assessment of Grainex Mar-M 247 for NASA's Turbine Seal Test Facility

    NASA Technical Reports Server (NTRS)

    Delgado, Irebert R.; Halford, Gary R.; Steinetz, Bruce M.; Rimnac, Clare M.

    2004-01-01

    NASA s Turbine Seal Test Facility is used to test air-to-air seals for use primarily in advanced jet engine applications. Combinations of high temperature, high speed, and high pressure limit the disk life, due to the concern of crack initiation in the bolt holes of the Grainex Mar-M 247 disk. The primary purpose of this current work is to determine an inspection interval to ensure safe operation. The current work presents high temperature fatigue strain-life data for test specimens cut from an actual Grainex Mar-M 247 disk. Several different strain-life models were compared to the experimental data including the Manson-Hirschberg Method of Universal Slopes, the Halford-Nachtigall Mean Stress Method, and the Modified Morrow Method. The Halford-Nachtigall Method resulted in only an 18 percent difference between predicted and experimental results. Using the experimental data at a 99.95 percent prediction level and the presence of 6 bolt holes it was found that the disk should be inspected after 665 cycles based on a total strain of 0.5 percent at 649 C.

  6. Hot isostatically pressed manufacture of high strength MERL 76 disk and seal shapes

    NASA Technical Reports Server (NTRS)

    Evans, D. J.

    1982-01-01

    The performance of a HIP MERL 76 disk installed in an experimental engine and exposed to realistic operating conditions in a 150 hour, 1500 cycle endurance test is examined. Post test analysis, based on visual, fluorescence penetrant and dimensional inspection, indicates that the disk performs satisfactorily.

  7. Energy Efficient High-Pressure Turbine Leakage Technology Report

    NASA Technical Reports Server (NTRS)

    Gardner, W. B.

    1980-01-01

    The leakage test program was one of such supporting technology programs structured to provide guidance to the Energy Efficient Engine High Pressure Turbine Component Design Effort. Leakage reduction techniques were identified and evaluated. Test models were used to simulate component leak paths and to evaluate leakage reduction techniques. These models simulated the blade/disk attachment, the vane inner platform attachment, and the vane outer platform attachment combined with the blade outer airseal. Disk blade attachment testing indicated that leakage in this area could be reduced to very low levels by paying careful attention to the tolerances along the contact surface between the blade vibration damper and the blade platform contact surface. The aim of feather seal testing was to achieve a goal for an effective leakage gap of one mil (.001 inch) per inch of feather seal length. Results indicated that effective gaps even below the goal level were achievable by (1) maintaining close tolerances between feather seals and their slots to minimize end gaps and limit seal rotation, (2) avoiding feather seal overlap, and (3) minimizing feather seal intersections. W seals were shown to be effective leakage control devices. Wire rope, in its present state of development, was shown not to be an effective sealing concept for application to the component design.

  8. SLM Produced Hermetically Sealed Isolation Valve

    NASA Technical Reports Server (NTRS)

    Richard, James

    2014-01-01

    Marshall Space Flight Center (MSFC) has developed a valve concept to replace traditional pyrotechnic-driven isolation valves. This paper will describe the valve design and development process. The valve design uses a stem/wedge to support a disk inside the valve. That disk hermetically seals the pressurized fluids. A release mechanism holds the stem/wedge and a large spring in place. When required to open, a solenoid is energized and pulls the release mechanism allowing the spring to pull the stem/wedge away from the disk. Now the disk is unsupported and the pressure ruptures the disk allowing flow to the outlet of the valve. This paper will provide details of this design, describe the development testing, and show the results from the valve level tests performed. Also, a trade study is presented to show the advantages of this design to a conventional pyrotechnic-based valve.

  9. SLM Produced Hermetically Sealed Isolation Valve

    NASA Technical Reports Server (NTRS)

    Richard, James A.

    2014-01-01

    Marshall Space Flight Center (MSFC) has developed a valve concept to replace traditional pyrotechnic driven isolation valves. This paper will describe the valve design and development process. The valve design uses a stem/wedge to support a disk inside the valve. That disk hermetically seals the pressurized fluids. A release mechanism holds the stem/wedge and a large spring in place. When required to open, a solenoid is energized and pulls the release mechanism allowing the spring to pull the stem/wedge away from the disk. Now the disk is unsupported and the pressure ruptures the disk allowing flow to the outlet of the valve. This paper will provide details of this design, describe the development testing, and show the results from the valve level tests performed. Also, a trade study is presented to show the advantages of this design to a conventional pyrotechnic based valve.

  10. Stress Mapping in Glass-to-Metal Seals using Indentation Crack Lengths.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Strong, Kevin; Buchheit, Thomas E.; Diebold, Thomas Wayne

    Predicting the residual stress which develops during fabrication of a glass-to-metal compression seal requires material models that can accurately predict the effects of processing on the sealing glass. Validation of the predictions requires measurements on representative test geometries to accurately capture the interaction between the seal materials during a processing cycle required to form the seal, which consists of a temperature excursion through the glass transition temperature of the sealing glass. To this end, a concentric seal test geometry, referred to as a short cylinder seal, consisting of a stainless steel shell enveloping a commercial sealing glass disk has beenmore » designed, fabricated, and characterized as a model validation test geometry. To obtain data to test/validate finite element (FE) stress model predictions of this geometry, spatially-resolved residual stress was calculated from the measured lengths of the cracks emanating from radially positioned Vickers indents in the glass disk portion of the seal. The indentation crack length method is described, and the spatially-resolved residual stress determined experimentally are compared to FE stress predictions made using a nonlinear viscoelastic material model adapted to inorganic sealing glasses and an updated rate dependent material model for 304L stainless steel. The measurement method is a first to achieve a degree of success for measuring spatially resolved residual stress in a glass-bearing geometry and a favorable comparison between measurements and simulation was observed.« less

  11. Stress Mapping in Glass-to-Metal Seals using Indentation Crack Lengths

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buchheit, Thomas E.; Strong, Kevin; Newton, Clay S.

    Predicting the residual stress which develops during fabrication of a glass-to-metal compression seal requires material models that can accurately predict the effects of processing on the sealing glass. Validation of the predictions requires measurements on representative test geometries to accurately capture the interaction between the seal materials during a processing cycle required to form the seal, which consists of a temperature excursion through the glass transition temperature of the sealing glass. To this end, a concentric seal test geometry, referred to as a short cylinder seal, consisting of a stainless steel shell enveloping a commercial sealing glass disk has beenmore » designed, fabricated, and characterized as a model validation test geometry. To obtain data to test/validate finite element (FE) stress model predictions of this geometry, spatially-resolved residual stress was calculated from the measured lengths of the cracks emanating from radially positioned Vickers indents in the glass disk portion of the seal. The indentation crack length method is described, and the spatially-resolved residual stress determined experimentally are compared to FE stress predictions made using a nonlinear viscoelastic material model adapted to inorganic sealing glasses and an updated rate dependent material model for 304L stainless steel. The measurement method is a first to achieve a degree of success for measuring spatially resolved residual stress in a glass-bearing geometry and a favorable comparison between measurements and simulation was observed.« less

  12. SEAL FOR ROTATING SHAFT

    DOEpatents

    Coffman, R.T.

    1957-12-10

    A seal is described for a rotatable shaft that must highly effective when the shaft is not rotating but may be less effective while the shaft is rotating. Weights distributed about a sealing disk secured to the shaft press the sealing disk against a tubular section into which the shiilt extends, and whem the shaft rotates, the centrifugal forces on the weights relieve the pressurc of the sealing disk against the tubular section. This action has the very desirible result of minimizing the wear of the rotating disk due to contact with the tubular section, while affording maximum sealing action when it is needed.

  13. Grainex Mar-M 247 Turbine Disk Life Study for NASA's High Temperature High Speed Turbine Seal Test Facility

    NASA Technical Reports Server (NTRS)

    Delgado, Irebert R.

    2015-01-01

    An experimental and analytical fatigue life study was performed on the Grainex Mar-M 247 disk used in NASA s Turbine Seal Test Facility. To preclude fatigue cracks from growing to critical size in the NASA disk bolt holes due to cyclic loading at severe test conditions, a retirement-for-cause methodology was adopted to detect and monitor cracks within the bolt holes using eddy-current inspection. For the NASA disk material that was tested, the fatigue strain-life to crack initiation at a total strain of 0.5 percent, a minimum to maximum strain ratio of 0, and a bolt hole temperature of 649 C was calculated to be 665 cycles using -99.95 percent prediction intervals. The fatigue crack propagation life was calculated to be 367 cycles after implementing a safety factor of 2 on life. Thus, the NASA disk bolt hole total life or retirement life was determined to be 1032 cycles at a crack depth of 0.501 mm. An initial NASA disk bolt hole inspection at 665 cycles is suggested with 50 cycle inspection intervals thereafter to monitor fatigue crack growth.

  14. Tribological evaluation of an Al2O3-SiO2 ceramic fiber candidate for high temperature sliding seals

    NASA Technical Reports Server (NTRS)

    Dellacorte, Christopher; Steinetz, Bruce

    1994-01-01

    A test program to determine the relative sliding durability of an alumina-silica candidate ceramic fiber for high temperature sliding seal applications is described. Pin-on-disk tests were used to evaluate the potential seal material by sliding a tow or bundle of the candidate ceramic fiber against a superalloy test disk. Friction was measured during the tests and fiber wear, indicated by the extent of fibers broken in the tow or bundle, was measured at the end of each test. Test variables studied included ambient temperatures from 25 to 900 C, loads from 1.3 to 21.2 N, and sliding velocities from 0.025 to 0.25 m/sec. In addition, the effects of fiber diameter and elastic modulus on friction and wear were measured. Thin gold films deposited on the superalloy disk surface were evaluated in an effort to reduce friction and wear of the fibers. In most cases, wear increased with test temperature. Friction ranged from 0.36 at 500 C and low velocity (0.025 m/sec) to over 1.1 at 900 C and high velocity (0.25 m/sec). The gold films resulted in satisfactory lubrication of the fibers at 25 C. At elevated temperatures diffusion of substrate elements degraded the films. These results indicate that the alumina-silica (Al2O3-SiO2) fiber is a good candidate material system for high temperature sliding seal applications. More work is needed to reduce friction.

  15. Rim seal for turbine wheel

    DOEpatents

    Glezer, Boris; Boyd, Gary L.; Norton, Paul F.

    1996-01-01

    A turbine wheel assembly includes a disk having a plurality of blades therearound. A ceramic ring is mounted to the housing of the turbine wheel assembly. A labyrinth rim seal mounted on the disk cooperates with the ceramic ring to seal the hot gases acting on the blades from the disk. The ceramic ring permits a tighter clearance between the labyrinth rim seal and the ceramic ring.

  16. Sliding durability of candidate seal fiber materials in hydrogen from 25 to 900 C

    NASA Technical Reports Server (NTRS)

    Dellacorte, Christopher; Steinetz, Bruce M.

    1992-01-01

    Sliding durability studies of candidate ceramic fibers were conducted in hydrogen to support the high temperature seal development program at NASA LeRC. Pin-on-disk tests were used to measure the friction and durability of a tow or bundle of ceramic fibers in sliding against a superalloy disk. This procedure was used previously to test candidate fibers in an air environment. The fibers based upon mullite (Al2O3-SiO2) chemistry (Nextel 550, 440, and 312) exhibited better durability in hydrogen than in air. HPZ, a complex silicon carboxynitride fiber which showed good durabilty in air, however, showed a significant loss of durability in hot hydrogen. These results are consistent with recent thermodynamic and experimental studies of ceramic compatibility with hydrogen at elevated temperatures. These research results indicate that only oxide fibers display good durability in both air and hydrogen environments. Also, simple, low cost testing in air can provide an adequate data base for initial seal material screening and selection, especially for oxide fiber candidates. The findings of this research provide critical input to the seal design team.

  17. Influence of disk leakage path on labyrinth seal inlet swirl ratio

    NASA Technical Reports Server (NTRS)

    Kirk, R. Gordon

    1987-01-01

    The results of numerous investigators have shown the importance of labyrinth seal inlet swirl on the calculated dynamic stiffness of labyrinth seals. These results have not included any calculation of inlet leakage swirl as a function of geometry and sealing conditions of the given seal. This paper outlines a method of calculating the inlet swirl at a given seal by introducing a radial chamber to predict the gas swirl as it goes from the stage tip down to the seal location. For a centrifugal compressor, this amounts to including the flow path from the impeller discharge, down the back of the disk or front of the cover, then into the shaft seal or eye packing, respectively. The solution includes the friction factors of both the disk and stationary wall with account for mass flow rate and calculation of radial pressure gradients by a free vortex solution. The results of various configurations are discussed and comparisons made to other published results of disk swirl.

  18. Concept designs of nonrotating-type centrifugal blood pump and basic study on output characteristics of the oscillating disk-type centrifugal pump.

    PubMed

    Kabei, N; Tuichiya, K; Sakurai, Y

    1994-09-01

    When designing a turbo-type blood pump as an artificial heart, the gap between a rotating shaft and a pump housing should be perfectly sealed to prevent any leakage or contamination through a seal. In addition, blood coagulation in a blood chamber must be avoided. To overcome these problems, we proposed five different nonrotating-type turbo pumps: a caudal-fin-type axial-flow pump, a caudal-fin-type centrifugal pump, a nutating-column-type centrifugal pump, a nutating-collapsible-tube-type centrifugal pump, and an oscillating-disk-type centrifugal pump. We selected and developed the oscillating-disk-type centrifugal pump that consists of a disk, a driving rod, a seal, an oscillation mechanism, and a pump housing. The disk is mounted on the end of the rod, which is connected to a high-speed DC motor through an oscillation mechanism. The rod and the disk do not rotate, but they oscillate in the pump housing. This movement of the disk generates forward fluid flow around the axis (i.e., the rotational fluid flow). Centrifugal force due to fluid rotation supports the pressure difference between the outlet and the inlet. The diameter of the disk is 39 mm, the maximum inner diameter of the pump housing is 40 mm, and the volume of the blood chamber for 25 degrees' oscillation is 16.9 ml. The performance of the pump was tested in a mock circulatory system.(ABSTRACT TRUNCATED AT 250 WORDS)

  19. Device for testing closure disks at high rates of change of pressure

    DOEpatents

    Merten, Jr., Charles W.

    1993-11-09

    A device for testing the burst pressure of closure disks which provides high pressure to both sides of a disk and rapidly releases pressure from one side thereof causing a high rate of change of pressure. A hollow notched plug allows the rapid release of pressure upon rupturing. A means is also disclosed for transmitting a tensile load from a piston to a hollow notched plug and for sealing the means for transmitting load within a hole in a piston.

  20. Device for testing closure disks at high rates of change of pressure

    DOEpatents

    Merten, C.W. Jr.

    1993-11-09

    A device is described for testing the burst pressure of closure disks which provides high pressure to both sides of a disk and rapidly releases pressure from one side thereof causing a high rate of change of pressure. A hollow notched plug allows the rapid release of pressure upon rupturing. A means is also disclosed for transmitting a tensile load from a piston to a hollow notched plug and for sealing the means for transmitting load within a hole in a piston. 5 figures.

  1. Relative sliding durability of candidate high temperature fiber seal materials

    NASA Technical Reports Server (NTRS)

    Dellacorte, Christopher; Steinetz, Bruce M.

    1992-01-01

    The relative sliding durability behavior of six candidate ceramic fibers for high temperature sliding seal applications is reviewed and compared. Pin on disk tests were used to evaluate potential seal materials by sliding a tow or bundle of the candidate ceramic fiber against a superalloy test disk. Tests were conducted in air under a 2.65 N load, at a sliding velocity of 0.025 m/sec and at temperatures from 25 to 900 C. Friction was measured during the tests and fiber wear, indicated by the extent of fibers broken in the tow or bundle, was measured at the end of each test. For most of the fibers, friction and wear increase with test temperature. The relative fiber durability ranking correlates with tensile strength, indicating that tensile data, which is more readily available than sliding durability data, may be useful in predicting fiber wear behavior under various conditions. A dimensional analysis of the wear data shows that the fiber durability is related to a dimensionless durability ratio which represents the ratio of the fiber strength to the fiber stresses imposed by sliding. The analysis is applicable to fibers with similar diameters and elastic moduli. Based upon the results of the research program, three fiber candidates are recommended for further study as potential seal materials. They are a silicon based complex carbide-oxide fiber, an alumina-boria-silica and an aluminosilicate fiber.

  2. Sliding durability of two carbide-oxide candidate high temperature fiber seal materials in air to 900 C

    NASA Technical Reports Server (NTRS)

    Dellacorte, Christopher; Steinetz, Bruce M.

    1992-01-01

    A test program to determine the friction and wear properties of two complex carbide oxide ceramic fibers for high temperature sliding seal applications is described. The fibers are based on Si, C, O, and Ti or Si, C, N, and O ceramic systems. Pin on disk tests using ceramic fiber covered pins and Inconel 718 disks, were conducted in air from 25 to 900 C to evaluate potential seal materials. This testing procedure was used in a previous study of oxide ceramic fibers which were found to exhibit wear behavior based predominantly on their mechanical properties. Like the oxide fibers tested previously, these carbide oxide ceramic fibers, show an increase in friction and wear with increased test temperature. At room temperature, the wear behavior seems to be based upon mechanical properties, namely tensile strength. At 500 and especially 900 C, the fibers wear by both mechanical fracture and by oxidative type wear. Based upon post test microscopic and x ray analyses, interaction between the fiber constituents and elements transferred from the counterface, namely Ni and Cr, may have occurred enhancing the tribochemical wear process. These results are interpreted.

  3. Tribological evaluation of an Al2O3-SiO2 ceramic fiber candidate for high temperature sliding seals

    NASA Technical Reports Server (NTRS)

    Dellacorte, Christopher; Steinetz, Bruce

    1992-01-01

    A test program to determine the relative sliding durability of an alumina-silica candidate ceramic fiber for high temperature sliding seal applications as described. This work represents the first reporting of the sliding durability of this material system. Pin-on-disk tests were used to evaluate the potential seal material by sliding a tow or bundle of the candidate ceramic fiber against a superalloy test disk. Friction was measured during the tests and fiber wear, indicated by the extent of fibers broken in the tow or bundle, was measured at the end of each test. Test variables studied included ambient temperatures from 25 C to 900 C, loads from 1.3 to 21.2 Newtons, and sliding velocities from 0.025 to 0.25 m/sec. In addition, the effects of fiber diameter, elastic modulus, and a pretest fiber heat treatment on friction and wear were measured. In most cases, wear increased with temperature. Friction ranged from about 0.36 at 500 C and low velocity (0.025 m/s) to over 1.1 at 900 C and high velocity (0.25 m/s). The pretest fiber heat treatment, which caused significant durability reductions for alumina-boria-silica ceramic fibers tested previously, had little effect on the alumina-silica fibers tested here. These results indicate that the alumina-silica (Al2O3-SiO2) fiber is a good candidate material system for high temperature sliding seal applications.

  4. A radio frequency coaxial feedthrough

    DOEpatents

    Owens, T.L.

    1987-12-07

    An improved radio frequency coaxial transmission line vacuum feedthrough is provided based on the use of a half-wavelength annular dielectric pressure barrier disk, or multiple disks comprising an effective half wavelength structure to eliminate reflection from the barrier surfaces. Gas-tight seals are formed about the outer and inner diameter surfaces of the barrier disk using a sealing technique which generates radial forces sufficient to form seals by forcing the conductor walls against the surfaces of the barrier disks in a manner which does not deform the radii of the inner and outer conductors, thereby preventing enhancement of the electric field at the barrier faces which limits the voltage and power handling capabilities of a feedthrough.

  5. Radio frequency coaxial feedthrough

    DOEpatents

    Owens, Thomas L.

    1989-01-17

    An improved radio frequency coaxial transmission line vacuum feed-through provided based on the use of a half-wavelength annular dielectric pressure barrier disk, or multiple disks comprising an effective half wavelength structure to eliminate reflections from the barrier surfaces. Gas-tight seals are formed about the outer and inner diameter surfaces of the barrier disk using a sealing technique which generates radial forces sufficient to form seals by forcing the conductor walls against the surfaces of the barrier disks in a manner which does not deform the radii of the inner and outer conductors, thereby preventing enhancement of the electric field at the barrier faces which limits voltage and power handling capabilities of a feedthrough.

  6. Tribological evaluation of an Al2O3-SiO2 ceramic fiber candidate for high-temperature sliding seals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dellacorte, C.; Steinetz, B.

    A test program to determine the relative sliding durability of an alumina-silica candidate ceramic fiber for high temperature sliding seal applications as described. This work represents the first reporting of the sliding durability of this material system. Pin-on-disk tests were used to evaluate the potential seal material by sliding a tow or bundle of the candidate ceramic fiber against a superalloy test disk. Friction was measured during the tests and fiber wear, indicated by the extent of fibers broken in the tow or bundle, was measured at the end of each test. Test variables studied included ambient temperatures from 25more » C to 900 C, loads from 1.3 to 21.2 Newtons, and sliding velocities from 0.025 to 0.25 m/sec. In addition, the effects of fiber diameter, elastic modulus, and a pretest fiber heat treatment on friction and wear were measured. In most cases, wear increased with temperature. Friction ranged from about 0.36 at 500 C and low velocity (0.025 m/s) to over 1.1 at 900 C and high velocity (0.25 m/s). The pretest fiber heat treatment, which caused significant durability reductions for alumina-boria-silica ceramic fibers tested previously, had little effect on the alumina-silica fibers tested here. These results indicate that the alumina-silica (Al2O3-SiO2) fiber is a good candidate material system for high temperature sliding seal applications.« less

  7. Compressor seal rub energetics study

    NASA Technical Reports Server (NTRS)

    Laverty, W. F.

    1978-01-01

    The rub mechanics of compressor abradable blade tip seals at simulated engine conditions were investigated. Twelve statistically planned, instrumented rub tests were conducted with titanium blades and Feltmetal fibermetal rubstrips. The tests were conducted with single stationary blades rubbing against seal material bonded to rotating test disks. The instantaneous rub torque, speed, incursion rate and blade temperatures were continuously measured and recorded. Basic rub parameters (incursion rate, rub depth, abradable density, blade thickness and rub velocity) were varied to determine the effects on rub energy and heat split between the blade, rubstrip surface and rub debris. The test data was reduced, energies were determined and statistical analyses were completed to determine the primary and interactive effects. Wear surface morphology, profile measurements and metallographic analysis were used to determine wear, glazing, melting and material transfer. The rub energies for these tests were most significantly affected by the incursion rate while rub velocity and blade thickness were of secondary importance. The ratios of blade wear to seal wear were representative of those experienced in engine operation of these seal system materials.

  8. Vibrissal touch sensing in the harbor seal (Phoca vitulina): how do seals judge size?

    PubMed

    Grant, Robyn; Wieskotten, Sven; Wengst, Nina; Prescott, Tony; Dehnhardt, Guido

    2013-06-01

    "Whisker specialists" such as rats, shrews, and seals actively employ their whiskers to explore their environments and extract object properties such as size, shape, and texture. It has been suggested that whiskers could be used to discriminate between different sized objects in one of two ways: (i) to use whisker positions, such as angular position, spread or amplitude to approximate size; or (ii) to calculate the number of whiskers that contact an object. This study describes in detail how two adult harbor seals use their whiskers to differentiate between three sizes of disk. The seals judged size very fast, taking <400 ms. In addition, they oriented their smaller, most rostral, ventral whiskers to the disks, so that more whiskers contacted the surface, complying to a maximal contact sensing strategy. Data from this study supports the suggestion that it is the number of whisker contacts that predict disk size, rather than how the whiskers are positioned (angular position), the degree to which they are moved (amplitude) or how spread out they are (angular spread).

  9. STS-48 ESC image of the MODE-01 Fluid Test Article (FTA) on OV-103's middeck

    NASA Technical Reports Server (NTRS)

    1991-01-01

    An electronic still camera (ESC) closeup shows the STS-48 Middeck Zero ('0') Gravity Dynamics Experiment 01 (MODE-01) Fluid Test Article (FTA) attached to an experimental support module (ESM) located in a forward middeck locker onboard the earth-orbiting Discovery, Orbiter Vehicle (OV) 103. The FTA is a 3.1-cm diameter cylindrical sealed Lexan tank. The FTA electromagnetic actuator has excited the test article sinusoidally, which causes the fluid inside the tank to slosh. These slosh forces, along with other data such as acceleration levels of the entire assembly, are measured by the force balance and recorded in digital form on an optical disk for later ground analysis. Crewmembers were testing the ESC as part of Development Test Objective (DTO) 648, Electronic Still Photography. The digital image was stored on a removable hard disk or small optical disk, and could be converted to a format suitable for downlink transmission. The ESC is making its initial appearance on this Space Shutt

  10. Swivel Joint For Liquid Nitrogen

    NASA Technical Reports Server (NTRS)

    Milner, James F.

    1988-01-01

    Swivel joint allows liquid-nitrogen pipe to rotate through angle of 100 degree with respect to mating pipe. Functions without cracking hard foam insulation on lines. Pipe joint rotates on disks so mechanical stress not transmitted to thick insulation on pipes. Inner disks ride on fixed outer disks. Disks help to seal pressurized liquid nitrogen flowing through joint.

  11. Relative sliding durability of two candidate high temperature oxide fiber seal materials

    NASA Technical Reports Server (NTRS)

    Dellacorte, Christopher; Steinetz, Bruce M.

    1991-01-01

    A test program to determine the relative sliding durability of two candidate ceramic fibers for high temperature sliding seal applications is described. Pin on disk tests were used to evaluate potential seal materials. Friction during the tests and fiber wear, indicated by the extent of fibers broken in a test bundle or yarn, was measured at the end of a test. In general, friction and wear increase with test temperature. This may be due to a reduction in fiber strength, a change in the surface chemistry at the fiber/counterface interface due to oxidation, adsorption and/or desorption of surface species and, to a lesser extent, an increase in counterface surface roughness due to oxidation at elevated temperatures. The relative fiber durability correlates with tensile strength indicating that tensile data, which is more readily available than sliding durability data, may be useful in predicting fiber wear behavior under various conditions. A simple model developed using dimensional analysis shows that the fiber durability is related to a dimensionless parameter which represents the ratio of the fiber strength to the fiber stresses imposed by sliding.

  12. Solenoid Valve With Self-Compensation

    NASA Technical Reports Server (NTRS)

    Woeller, Fritz H.; Matsumoto, Yutaka

    1987-01-01

    New solenoid-operated miniature shutoff valve provides self-compensation of differential pressure forces that cause jamming or insufficient valve closure as in single-seal valves. Dual-seal valve is bidirectional. Valve simultaneously seals both inlet and outlet tubes by pressing single disk of silicone rubber against ends of both.

  13. An implantable seal-less centrifugal pump with integrated double-disk motor.

    PubMed

    Schima, H; Schmallegger, H; Huber, L; Birgmann, I; Reindl, C; Schmidt, C; Roschal, K; Wieselthaler, G; Trubel, W; Losert, U

    1995-07-01

    Thrombus formation and sealing problems at the shaft as well as the compact and efficient design of the driving unit have been major difficulties in the construction of a long-term implantable centrifugal pump. To eliminate the problems of the seal, motor size, and efficiency, two major steps were taken by modifying the Vienna implantable centrifugal pump. First, a special driving unit was developed, in which the permanent magnets of the motor themselves are used for coupling the force into the rotor. Second, the rotor shaft in the pumping chamber was eliminated by adopting a concept recently presented by Ohara. The rotor is supported by 3 pins, which run on a carbon disk, whose concave shape leads to stabilization. The device has the following specifications: size: 65 mm (diameter) by 35 mm (height), 101 cm3; priming volume 30 cm3, 240 g; and a 6-pole brushless double disk DC motor. The required input power of the described prototype is 15 W at 150 mm Hg, 5 L/min (overall eta = 11%), and has an in vitro index of hemolysis (IH) of 0.0046 g/100 L. The test for in vitro thrombus growth exhibited far less thrombus formation in the new design than in designs with axles. In conclusion, the design of a special driving unit and the elimination of the axle led to the construction of a small pump with very low blood traumatization.

  14. Turbine disk cavity aerodynamics and heat transfer

    NASA Technical Reports Server (NTRS)

    Johnson, B. V.; Daniels, W. A.

    1992-01-01

    Experiments were conducted to define the nature of the aerodynamics and heat transfer for the flow within the disk cavities and blade attachments of a large-scale model, simulating the Space Shuttle Main Engine (SSME) turbopump drive turbines. These experiments of the aerodynamic driving mechanisms explored the following: (1) flow between the main gas path and the disk cavities; (2) coolant flow injected into the disk cavities; (3) coolant density; (4) leakage flows through the seal between blades; and (5) the role that each of these various flows has in determining the adiabatic recovery temperature at all of the critical locations within the cavities. The model and the test apparatus provide close geometrical and aerodynamic simulation of all the two-stage cavity flow regions for the SSME High Pressure Fuel Turbopump and the ability to simulate the sources and sinks for each cavity flow.

  15. DEVICE FOR CHARGING OR DISCHARGING

    DOEpatents

    Untemeyer, S.; Hutter, E.

    1959-01-13

    A loading and unloading device is presented for loading objects into and unloading them from an apparatus in which fluid under pressure is employed, such as a heterogeneous rcactor wherein the fuel elements are in the form of slugs. This device is comprised essentially of a cylindrical member disposed coaxially with and as an accessible extension of an internal tube member of the apparatus in which the objects, or fuel elements, are normally disposed in use. The outermost end of the cylindrical extension is closed by a removable seal plug. The lower end of the cylindrical extension is separated from the intennal tube by a disk valve which is operated externally. A source of pressure fluid and a drain line are provided in communication with the interior of the cylindrical extension. To load an object into the internal tube, the disk valve is closed, the seal plug is renmoved, an object is placed in the cylindrical extension, and the seal plug is replaced. The disk valve is then opened and ihe pressure of the fluid within the cylindrical extension is increased until it is greater than the pressure within the internal tube and forces the object out of the cylindrical extension into the internal tube. To remove an object from the tube the disk valve is opened and the intenior of thc cylindnical extension is connected to the drain line whereby the operating pressure within the intennal tube forces the object out of the internal tube and up into the cylindrical extension. The disk valve is then closed and the seal plug is removed to permit removal of the object.

  16. Shaft/shaft-seal interface characteristics of a multiple disk centrifugal blood pump.

    PubMed

    Manning, K B; Miller, G E

    1999-06-01

    A multiple disk centrifugal pump (MDCP) is under investigation as a potential left ventricular assist device. As is the case with most shaft driven pumps, leakage problems around the shaft/shaft seal interface are of major interest. If leakage were to occur during or after implantation, potential events such as blood loss, clotting, blood damage, and/or infections might result in adverse effects for the patient. Because these effects could be quite disastrous, potential shaft and shaft seal materials have been investigated to determine the most appropriate course to limit these effects. Teflon and nylon shaft seals were analyzed as potential candidates along with a stainless steel shaft and a Melonite coated shaft. The materials and shafts were evaluated under various time durations (15, 30, 45, and 60 min), motor speeds (800, 1,000, 1,200, and 1,400 rpm), and outer diameters (1/2 and 3/4 inches). The motor speed and geometrical configurations were typical for the MDCP under normal physiologic conditions. An air and water study was conducted to analyze the inner diameter wear, the inner temperature values, and the outer temperature values. Statistical comparisons were computed for the shaft seal materials, the shafts, and the outer diameters along with the inner and outer temperatures. The conclusions made from the results indicate that both the tested shaft seal materials and shaft materials are not ideal candidates to be used for the MDCP. Teflon experienced a significant amount of wear in air and water studies. Nylon did experience little wear, but heat generation was an evident problem. A water study on nylon was not conducted because of its molecular structure.

  17. Production Facility Prototype Blower Installation Report with 1000 Hour Test Results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Woloshun, Keith Albert; Dale, Gregory E.; Romero, Frank Patrick

    2016-04-01

    The roots blower in use at ANL for in-beam experiments and also at LANL for flow tests was sized for 12 mm diameter disks and significantly less beam heating. Currently, the disks are 29 mm in diameter, with a 12 mm FWHM Gaussian beam spot at 42 MeV and 2.86 μA on each side of the target, 5.72 μA total. The target design itself is reported elsewhere. With the increased beam heating, the helium flow requirement increased so that a larger blower was needed for a mass flow rate of 400 g/s at 2.76 MPa (400 psig). An Aerzen GMmore » 12.4 blower was selected, and is currently being installed at the LANL facility for target and component flow testing. This report describes this blower/motor/pressure vessel package and the status of the facility preparations. The blower has been operated for 1000 hours as a preliminary investigation of long term performance, operation and possible maintenance issues. The blower performed well, with no significant change in blower head or mass flow rate developed under the operating conditions. Upon inspection, some oil had leaked out of the shaft seal of the blower. The shaft seal and bearing race have been replaced. Test results and conclusions are reported.« less

  18. The experimental evaluation and application of high-temperature solid lubricants. Ph.D. Thesis - Case Western Reserve Univ., 1989 Final Report

    NASA Technical Reports Server (NTRS)

    Dellacorte, Christopher

    1990-01-01

    A research program is described which developes an understanding of high-temperature solid lubrication and experimental techniques through the development of a composite lubricant coating system. The knowledge gained through this research was then applied to a specific engineering challenge, the tribology of a sliding seal for hypersonic flight vehicles. The solid lubricant coating is a chromium carbide based composite combined with silver, which acts as a low temperature lubricant, and barium fluoride/calcium fluoride eutectic, which acts as a high-temperature lubricant. This composite coating provides good wear resistance and low friction for sliding contacts from room temperature to over 900 C in reducing or oxidative environments. The specific research on this coating included a composition screening using a foil gas bearing test rig and the use of thin silver films to reduce initial wear using a pin-on-disk test rig. The chemical stability of the materials used was also addressed. This research indicated that soft metallic films and materials which become soft at elevated temperatures are potentially good lubricants. The general results from the experiments with the model solid lubricant coating were then applied to a sliding seal design concept. This seal design requires that a braided ceramic fabric slide against a variety of metal counterface materials at temperatures from 25 to 850 C in an oxidative environment. A pin-on-disk tribometer was used to evaluate the tribological properties of these materials and to develop lubrication techniques. The results indicate that these seal materials must be lubricated to prevent wear and reduce friction. Thin films of silver, gold and calcium fluoride provided lubrication to the sliding materials.

  19. Production Facility Prototype Blower Installation Report with 1000 Hr Test Results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Woloshun, Keith Albert; Olivas, Eric Richard; Dale, Gregory E.

    2016-09-23

    The roots blower in use at ANL for in-beam experiments and also at LANL for flow tests was sized for 12 mm diameter disks and significantly less beam heating. Currently, the disks are 29 mm in diameter, with a 12 mm FWHM Gaussian beam spot at 42 MeV and 2.86 μA on each side of the target, 5.72 μA total. The target design itself is reported elsewhere. With the increased beam heating, the helium flow requirement increased so that a larger blower was needed for a mass flow rate of 400 g/s at 2.76 MPa (400 psig). An Aerzen GMmore » 12.4 blower was selected, and is currently being installed at the LANL facility for target and component flow testing. This report describes this blower/motor/pressure vessel package and the status of the facility preparations. The blower has been operated for 1000 hours as a preliminary investigation of long-term performance, operation and possible maintenance issues. The blower performed well, with no significant change in blower head or mass flow rate developed under the operating conditions. Upon inspection, some oil had leaked out of the shaft seal of the blower. The shaft seal and bearing race have been replaced.« less

  20. Analysis of Coupled Seals, Secondary and Powerstream Flow Fields in Aircraft and Aerospace Turbomachines

    NASA Technical Reports Server (NTRS)

    Athavale, M. M.; Ho, Y. H.; Prezekwas, A. J.

    2005-01-01

    Higher power, high efficiency gas turbine engines require optimization of the seals and secondary flow systems as well as their impact on the powerstream. This work focuses on two aspects: 1. To apply the present day CFD tools (SCISEAL) to different real-life secondary flow applications from different original equipment manufacturers (OEM s) to provide feedback data and 2. Develop a computational methodology for coupled time-accurate simulation of the powerstream and secondary flow with emphasis on the interaction between the disk-cavity and rim seals flows with the powerstream (SCISEAL-MS-TURBO). One OEM simulation was of the Allison Engine Company T-56 turbine drum cavities including conjugate heat transfer with good agreement with data and provided design feedback information. Another was the GE aspirating seal where the 3-D CFD simulations played a major role in analysis and modification of that seal configuration. The second major objective, development of a coupled flow simulation capability was achieved by using two codes MS-TURBO for the powerstream and SCISEAL for the secondary flows with an interface coupling algorithm. The coupled code was tested against data from three differed configurations: 1. bladeless-rotor-stator-cavity turbine test rig, 2. UTRC high pressure turbine test rig, and, 3. the NASA Low-Speed-Air Compressor rig (LSAC) with results and limitations discussed herein.

  1. Split ring floating air riding seal for a turbine

    DOEpatents

    Mills, Jacob A

    2015-11-03

    A floating air riding seal for a gas turbine engine with a rotor and a stator, an annular piston chamber with an axial moveable annular piston assembly within the annular piston chamber, an annular cavity formed on the annular piston assembly that faces a seal surface on the rotor, and a central passage connecting the annular cavity to the annular piston chamber to supply compressed air to the seal face, where the annular piston assembly is a split piston assembly to maintain a tight seal as coning of the rotor disk occurs.

  2. Small-Scale Thermal Violence Cook Off Test

    NASA Astrophysics Data System (ADS)

    Cook, Malcolm; Curtis, John; Stennett, Christopher

    2015-06-01

    The Small-Scale thermal Violence Test (SSVT) is designed to quantify the violence (explosiveness) of test materials by means of observing the velocity history of a metal burst disk that forms one end of a strong thick-walled cylindrical test vehicle. A copper heating block is placed to the rear of, but in contact with, the sample and provides sealing. The difference in thermal conductivity between copper and steel is sufficient that thermal runaway is induced near to the explosive / copper interface in an unlagged test. A series of experiments has been made, in which explosive specimens were confined and heated to explosion. A high-accuracy velocity measurement system was used to record the motion of the bursting disk. These experiments have shown that the early-time motion of the bursting disk corresponds qualitatively to the onset of thermal explosion and growth of reaction within the explosive specimens. However, the velocity history traces are more complex than had been anticipated. In particular, unexplained shoulders were observed in the Phase-Doppler Velocimeter (PDV) data. Some preliminary modelling studies have been carried out in order to shed light on the complex shapes of the projectile velocity histories.

  3. Production Facility Prototype Blower 1000 Hour Test Results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Woloshun, Keith Albert; Dale, Gregory E.; Romero, Frank Patrick

    2016-10-18

    The roots blower in use at ANL for in-beam experiments and also at LANL for flow tests was sized for 12 mm diameter disks and significantly less beam heating. Currently, the disks are 29 mm in diameter, with a 12 mm FWHM Gaussian beam spot at 42 MeV and 2.86 μA on each side of the target, 5.72 μA total. The target design itself is reported elsewhere. With the increased beam heating, the helium flow requirement increased so that a larger blower was needed for a mass flow rate of 400 g/s at 2.76 MPa (400 psig). An Aerzen GMmore » 12.4 blower was selected, and is now installed at the LANL facility for target and component flow testing. Two extended tests of >1000 hr operation have been completed. Those results and discussion thereof are reported herein. Also included in Appendix A is the detailed description of the blower and its installation, while Appendix B documents the pressure vessel design analysis. The blower has been operated for 1000 hours as a preliminary investigation of long-term performance, operation and possible maintenance issues. The blower performed well, with no significant change in blower head or mass flow rate developed under the operating conditions. Upon inspection, some oil had leaked out of the shaft seal of the blower. The shaft seal and bearing race have been replaced. Test results and conclusions are in Appendix B.« less

  4. Tribological properties of ceramic-(Ti3Al-Nb) sliding couples for use as candidate seal materials to 700 C

    NASA Technical Reports Server (NTRS)

    Dellacorte, Christhopher; Steinetz, Bruce M.; Brindley, Pamela K.

    1990-01-01

    Tribological properties of Ti3Al-Nb intermetallic disks sliding against alumina-boria-silicate fabric were ascertained in air at temperatures from 25 to 700 C. These materials are candidates for sliding seal applications for the National AeroSpace Plane. The tests were done using a pin on disk tribometer. Sliding was unidirectional at 0.27 m/sec under a nominal contact stress of 340 kPa. Gold sputter or ion plating deposited films were used to reduce friction and wear. Rhodium and palladium films were used beneath the gold lubricating films to prevent diffusion of the substrate into the gold at high temperature. The friction and wear of the unlubricated specimens was unacceptable. Friction coefficients were generally greater than 1.0. The ion plated gold films, when used with a rhodium diffusion barrier reduced friction by almost a factor of 2. Wear was also substantially reduced. The sputter deposited films were not adherent unless the substrate was sputter cleaned immediately prior to film deposition. Palladium did not function as a diffusion barrier.

  5. Tribological properties of ceramic/Ti3Al-Nb sliding couples for use as candidate seal materials to 700 deg C

    NASA Technical Reports Server (NTRS)

    Dellacorte, Christopher; Steinetz, Bruce M.; Brindley, Pamela K.

    1989-01-01

    Tribological properties of Ti3Al-Nb intermetallic disks sliding against alumina-boria-silicate fabric were ascertained in air at temperatures from 25 to 700 C. These materials are candidates for sliding seal applications for the National AeroSpace Plane. The tests were done using a pin on disk tribometer. Sliding was unidirectional at 0.27 m/sec under a nominal contact stress of 340 kPa. Gold sputter or ion plating deposited films were used to reduce friction and wear. Rhodium and palladium films were used beneath the gold lubricating films to prevent diffusion of the substrate into the gold at high temperature. The friction and wear of the unlubricated specimens was unacceptable. Friction coefficients were generally greater than 1.0. The ion plated gold films, when used with a rhodium diffusion barrier reduced friction by almost a factor of 2. Wear was also substantially reduced. The sputter deposited films were not adherent unless the substrate was sputter cleaned immediately prior to film deposition. Palladium did not function as a diffusion barrier.

  6. Hot isostatically pressed manufacture of high strength MERL 76 disk and seal shapes

    NASA Technical Reports Server (NTRS)

    Eng, R. D.; Evans, D. J.

    1982-01-01

    The feasibility of using MERL 76, an advanced high strength direct hot isostatic pressed powder metallurgy superalloy, as a full scale component in a high technology, long life, commercial turbine engine were demonstrated. The component was a JT9D first stage turbine disk. The JT9D disk rim temperature capability was increased by at least 22 C and the weight of JT9D high pressure turbine rotating components was reduced by at least 35 pounds by replacement of forged Superwaspaloy components with hot isostatic pressed (HIP) MERL 76 components. The process control plan and acceptance criteria for manufacture of MERL 76 HIP consolidated components were generated. Disk components were manufactured for spin/burst rig test, experimental engine tests, and design data generation, which established lower design properties including tensile, stress-rupture, 0.2% creep and notched (Kt = 2.5) low cycle fatigue properties, Sonntag, fatigue crack propagation, and low cycle fatigue crack threshold data. Direct HIP MERL 76, when compared to conventionally forged Superwaspaloy, is demonstrated to be superior in mechanical properties, increased rim temperature capability, reduced component weight, and reduced material cost by at least 30% based on 1980 costs.

  7. Butterfly valve with metal seals controls flow of hydrogen from cryogenic through high temperatures

    NASA Technical Reports Server (NTRS)

    Johnson, L. D.

    1967-01-01

    Butterfly valve with metal seals operates over a temperature range of minus 423 degrees to plus 440 degrees F with hydrogen as a medium and in a radiation environment. Media flow is controlled by an internal butterfly disk which is rotated by an actuation shaft.

  8. Life and Utilization Criteria Identification in Design (LUCID). Volume 1

    DTIC Science & Technology

    1981-10-01

    stator, seal /spacer, etc. weights are added to these rotor weights in estimating module weights. Weights of other engine modules (combustor, augmentor...of turbine airfoil/platform cooling air and disk cooling/ seal leakage air), number of vanes and blades for the single stage high-pressure turbine, and...subroutines include hubs, shafts, seals and spacers in estimating rotor weights. Module weight is estimated by adding case and stator weights to the rotor

  9. Turbine blade and non-integral platform with pin attachment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Campbell, Christian X; Eng, Darryl; Marra, John J

    Platforms (36, 38) span between turbine blades (23, 24, 25) on a disk (32). Each platform may be individually mounted to the disk by a pin attachment (42). Each platform (36) may have a rotationally rearward edge portion (50) that underlies a forward portion (45) of the adjacent platform (38). This limits centrifugal bending of the rearward portion of the platform, and provides coolant sealing. The rotationally forward edge (44A, 44B) of the platform overlies a seal element (51) on the pressure side (28) of the forwardly adjacent blade, and does not underlie a shelf on that blade. The pinmore » attachment allows radial mounting of each platform onto the disk via tilting (60) of the platform during mounting to provide mounting clearance for the rotationally rearward edge portion (50). This facilitates quick platform replacement without blade removal.« less

  10. Turbine blade and non-integral platform with pin attachment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Campbell, Christian Xavier; Eng, Darryl; Marra, John J.

    2016-08-02

    Platforms (36, 38) span between turbine blades (23, 24, 25) on a disk (32). Each platform may be individually mounted to the disk by a pin attachment (42). Each platform (36) may have a rotationally rearward edge portion (50) that underlies a forward portion (45) of the adjacent platform (38). This limits centrifugal bending of the rearward portion of the platform, and provides coolant sealing. The rotationally forward edge (44A, 44B) of the platform overlies a seal element (51) on the pressure side (28) of the forwardly adjacent blade, and does not underlie a shelf on that blade. The pinmore » attachment allows radial mounting of each platform onto the disk via tilting (60) of the platform during mounting to provide mounting clearance for the rotationally rearward edge portion (50). This facilitates quick platform replacement without blade removal.« less

  11. METHOD OF JACKETING A FISSIONABLE BODY

    DOEpatents

    Creutz, E.C.

    1960-02-16

    A method for jacketing fuel elements is described. A fissionablc body ts fitted into a steel jacket, and a steel rimmed closure disk is inserted into the open end of the jacket. The jacket is then drawn through a die, aind the rim of the disk is welded to the jacket to form an impervious seal.

  12. DEVELOPMENT OF A LAMINATED DISK FOR THE SPIN TEK ROTARY MICROFILTER

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Herman, D.

    2011-06-03

    Funded by the Department of Energy Office of Environmental Management, EM-31, the Savannah River National Laboratory (SRNL) partnered with SpinTek Filtration{trademark} to develop a filter disk that would withstand a reverse pressure or flow during operation of the rotary microfilter. The ability to withstand a reverse pressure and flow eliminates a potential accident scenario that could have resulted in damage to the filter membranes. While the original welded filter disks have been shown to withstand and reverse pressure/flow in the static condition, the filter disk design discussed in this report will allow a reverse pressure/flow while the disks are rotating.more » In addition, the laminated disk increases the flexibility during filter startup and cleaning operations. The new filter disk developed by SRNL and SpinTek is manufactured with a more open structure significantly reducing internal flow restrictions in the disk. The prototype was tested at the University of Maryland and demonstrated to withstand the reverse pressure due to the centrifugal action of the rotary filter. The tested water flux of the disk was demonstrated to be 1.34 gpm in a single disk test. By comparison, the water flux of the current disk was 0.49 gpm per disk during a 25 disk test. The disk also demonstrated rejection of solids by filtering a 5 wt % Strontium Carbonate slurry with a filtrate clarity of less the 1.4 Nephelometric Turbidity Units (NTU) throughout the two hour test. The Savannah River National Laboratory (SRNL) has been working with SpinTek Filtration{trademark} to adapt the rotary microfilter for radioactive service in the Department of Energy (DOE) Complex. One potential weakness is the loose nature of the membrane on the filter disks. The current disk is constructed by welding the membrane at the outer edge of the disk. The seal for the center of the membrane is accomplished by an o-ring in compression for the assembled stack. The remainder of the membrane is free floating on the disk. This construction requires that a positive pressure be applied to the rotary filter tank to prevent the membrane from rising from the disk structure and potentially contacting the filter turbulence promoter. In addition, one accident scenario is a reverse flow through the filtrate line due to mis-alignment of valves resulting in the membrane rising from the disk structure. The structural integrity of the current disk has been investigated, and shown that the disk can withstand a significant reverse pressure in a static condition. However, the disk will likely incur damage if the filter stack is rotated during a reverse pressure. The development of a laminated disk would have several significant benefits for the operation of the rotary filter including the prevention of a compromise in filter disk integrity during a reverse flow accident, increasing operational flexibility, and increasing the self cleaning ability of the filter. A laminated disk would allow the filter rotor operation prior to a positive pressure in the filter tank. This would prevent the initial dead-head of the filter and prevent the resulting initial filter cake buildup. The laminated disk would allow rotor operation with cleaning fluid, eliminating the need for a recirculation pump. Additionally, a laminated disk would allow a reverse flow of fluid through the membrane pores removing trapped particles.« less

  13. Depressurization valve

    DOEpatents

    Skoda, G.I.

    1989-03-28

    A depressurization valve for use in relieving completely the pressure in a simplified boiling water reactor is disclosed. The normally closed and sealed valve is provided with a valve body defining a conduit from an outlet of a manifold from the reactor through a valve seat. A closing valve disk is configured for fitting to the valve seat to normally close the valve. The seat below the disk is provided with a radially extending annulus extending a short distance into the aperture defined by the seat. The disk is correspondingly provided with a longitudinally extending annulus that extends downwardly through the aperture defined by the seat towards the high pressure side of the valve body. A ring shaped membrane is endlessly welded to the seat annulus and to the disk annulus. The membrane is conformed over the confronted surface of the seat and disk in a C-sectioned configuration to seal the depressurization valve against the possibility of weeping. The disk is held to the closed position by an elongate stem extending away from the high pressure side of the valve body. The stem has a flange configured integrally to the stem for bias by two springs. The first spring acts from a portion of the housing overlying the disk on the stem flange adjacent the disk. This spring urges the stem and attached disk away from the seat and thus will cause the valve to open at any pressure. A second spring-preferably of the Belleville variety-acts on a latch plate surrounding and freely moving relative to the end of the stem. This second spring overcomes the bias of the first spring and any pressure acting upon the disk. This Belleville spring maintains through its spring force the valve in the closed position. At the same time, the latch plate with its freedom of movement relative to the stem allows the stem to thermally expand during valve temperature excursion.

  14. Sealing in Turbomachinery

    NASA Technical Reports Server (NTRS)

    Chupp, Raymond E.; Hendricks, Robert C.; Lattime, Scott B.; Steinetz, Bruce M.

    2006-01-01

    Clearance control is of paramount importance to turbomachinery designers and is required to meet today's aggressive power output, efficiency, and operational life goals. Excessive clearances lead to losses in cycle efficiency, flow instabilities, and hot gas ingestion into disk cavities. Insufficient clearances limit coolant flows and cause interface rubbing, overheating downstream components and damaging interfaces, thus limiting component life. Designers have put renewed attention on clearance control, as it is often the most cost effective method to enhance system performance. Advanced concepts and proper material selection continue to play important roles in maintaining interface clearances to enable the system to meet design goals. This work presents an overview of turbomachinery sealing to control clearances. Areas covered include: characteristics of gas and steam turbine sealing applications and environments, benefits of sealing, types of standard static and dynamics seals, advanced seal designs, as well as life and limitations issues.

  15. Magnetic Check Valve

    NASA Technical Reports Server (NTRS)

    Morris, Brian G.; Bozeman, Richard J., Jr.

    1994-01-01

    Poppet in proposed check valve restored to closed condition by magnetic attraction instead of spring force. Oscillations suppressed, with consequent reduction of wear. Stationary magnetic disk mounted just upstream of poppet, also containing magnet. Valve body nonmagnetic. Forward pressure or flow would push poppet away from stationary magnetic disk so fluid flows easily around poppet. Stop in valve body prevents poppet from being swept away. When flow stopped or started to reverse, magnetic attraction draws poppet back to disk. Poppet then engages floating O-ring, thereby closing valve and preventing reverse flow. Floating O-ring facilitates sealing at low loads.

  16. Depressurization valve

    DOEpatents

    Skoda, George I.

    1989-01-01

    A depressurization valve for use in relieving completely the pressure in a simplified boiling water reactor is disclosed. The normally closed and sealed valve is provided with a valve body defining a conduit from an outlet of a manifold from the reactor through a valve seat. A closing valve disk is configured for fitting to the valve seat to normally close the valve. The seat below the disk is provided with a radially extending annulus extending a short distance into the aperture defined by the seat. The disk is correspondingly provided with a longitudinally extending annulus that extends downwardly through the aperture defined by the seat towards the high pressure side of the valve body. A ring shaped membrane is endlessly welded to the seat annulus and to the disk annulus. The membrane is conformed over the confronted surface of the seat and disk in a C-sectioned configuration to seal the depressurization valve against the possibility of weeping. The disk is held to the closed position by an elongate stem extending away from the high pressure side of the valve body. The stem has a flange configured integrally to the stem for bias by two springs. The first spring acts from a portion of the housing overlying the disk on the stem flange adjacent the disk. This spring urges the stem and attached disk away from the seat and thus will cause the valve to open at any pressure. A second spring--preferably of the Belleville variety--acts on a latch plate surrounding and freely moving relative to the end of the stem. This second spring overcomes the bias of the first spring and any pressure acting upon the disk. This Belleville spring maintains through its spring force the valve in the closed position. At the same time, the latch plate with its freedom of movement relative to the stem allows the stem to thermally expand during valve temperature excursion. The latch plate in surrounding the stem is limited in its outward movement by a boss attached to the stem at the end of the stem remote from the disk. The latch plate is held normally closed by three radial latches spaced at 120.degree. around the periphery of the plate.

  17. The preparation of polytrifluorochloroethylene (PCTFE) micro-particles and application on treating bearing steel surfaces to improve the lubrication effect for copper-graphite (Cu/C)

    NASA Astrophysics Data System (ADS)

    Lu, Hailin; Zhang, Pengpeng; Ren, Shanshan; Guo, Junde; Li, Xing; Dong, Guangneng

    2018-01-01

    Contact mechanical seal is a normal technology applied on middle axis of liquid rocket turbo pump, and the kinetic and static seal rings contact low temperature rocket propellant. Copper-graphite (Cu/C) composite as an excellent self-lubrication material was widely used in aerospace industry, this study took Cu/C as ball and bearing steel as disk to investigate the tribology properties, and distilled water were used to simulate the lox tribology performances. This study prepared polytrifluorochloroethylene (PCTFE) micro-particles which were coated on the oxide surfaces of bearing steel disk at temperature of 150 °C. The tribology results showed that the oxide surfaces treated with micro PCTFE particles have lower fiction coefficient and lower wear rate than original disk in water, and the wear morphology revealed that the treated surfaces obviously had less Cu/C composite transfer film than original disk. Meanwhile SEM, EDS, XRD, XPS and light microscope etc revealed that PCTFE micro-particles could associate with the oxide surfaces and caused higher water contact angle, due to the properties of the fluorine-containing composite may cause the good lubrication effect in water. Thus this technology shows great potential to enhance tribological performances for aerospace industry on a large scale.

  18. Modeling of a diode-pumped thin-disk cesium vapor laser

    NASA Astrophysics Data System (ADS)

    An, Guofei; Cai, He; Liu, Xiaoxu; Han, Juhong; Zhang, Wei; Wang, Hongyuan; Wang, You

    2018-03-01

    A diode pumped alkali laser (DPAL) provides a significant potential for construction of high-powered lasers. Until now, a series of models have been established to analyze the kinetic process and most of them are based on the end-pumped alkali laser system in which the vapor cell are usually cylindrical and cuboid. In this paper, a mathematic model is constructed to investigate the kinetic processes of a diode pumped thin-disk cesium vapor laser, in which the cesium vapor and the buffer gases are beforehand filled in a sealed glass cell with a thin-disk structure. We systemically study the influences of the cell temperature and cell thickness on the output features of a thin-disk DPAL. Further, we study the thin-disk DPAL with the W-shaped resonator and multiple-disk configuration. To the best of our knowledge, there have not been any similar reports so far.

  19. Experimental investigation of turbine disk cavity aerodynamics and heat transfer

    NASA Technical Reports Server (NTRS)

    Daniels, W. A.; Johnson, B. V.

    1993-01-01

    An experimental investigation of turbine disk cavity aerodynamics and heat transfer was conducted to provide an experimental data base that can guide the aerodynamic and thermal design of turbine disks and blade attachments for flow conditions and geometries simulating those of the space shuttle main engine (SSME) turbopump drive turbines. Experiments were conducted to define the nature of the aerodynamics and heat transfer of the flow within the disk cavities and blade attachments of a large scale model simulating the SSME turbopump drive turbines. These experiments include flow between the main gas path and the disk cavities, flow within the disk cavities, and leakage flows through the blade attachments and labyrinth seals. Air was used to simulate the combustion products in the gas path. Air and carbon dioxide were used to simulate the coolants injected at three locations in the disk cavities. Trace amounts of carbon dioxide were used to determine the source of the gas at selected locations on the rotors, the cavity walls, and the interstage seal. The measurements on the rotor and stationary walls in the forward and aft cavities showed that the coolant effectiveness was 90 percent or greater when the coolant flow rate was greater than the local free disk entrainment flow rate and when room temperature air was used as both coolant and gas path fluid. When a coolant-to-gas-path density ratio of 1.51 was used in the aft cavity, the coolant effectiveness on the rotor was also 90 percent or greater at the aforementioned condition. However, the coolant concentration on the stationary wall was 60 to 80 percent at the aforementioned condition indicating a more rapid mixing of the coolant and flow through the rotor shank passages. This increased mixing rate was attributed to the destabilizing effects of the adverse density gradients.

  20. 40 CFR 63.1331 - Equipment leak provisions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... pump or seal whereby polymer fluid used to provide lubrication and/or cooling of the pump or agitator... limited to, a rupture disk indicator, magnetic sensor, motion detector on the pressure relief valve stem...

  1. Self-Rupturing Hermetic Valve

    NASA Technical Reports Server (NTRS)

    Tucker, Curtis E., Jr.; Sherrit, Stewart

    2011-01-01

    For commercial, military, and aerospace applications, low-cost, small, reliable, and lightweight gas and liquid hermetically sealed valves with post initiation on/off capability are highly desirable for pressurized systems. Applications include remote fire suppression, single-use system-pressurization systems, spacecraft propellant systems, and in situ instruments. Current pyrotechnic- activated rupture disk hermetic valves were designed for physically larger systems and are heavy and integrate poorly with portable equipment, aircraft, and small spacecraft and instrument systems. Additionally, current pyrotechnically activated systems impart high g-force shock loads to surrounding components and structures, which increase the risk of damage and can require additional mitigation. The disclosed mechanism addresses the need for producing a hermetically sealed micro-isolation valve for low and high pressure for commercial, aerospace, and spacecraft applications. High-precision electrical discharge machining (EDM) parts allow for the machining of mated parts with gaps less than a thousandth of an inch. These high-precision parts are used to support against pressure and extrusion, a thin hermetically welded diaphragm. This diaphragm ruptures from a pressure differential when the support is removed and/or when the plunger is forced against the diaphragm. With the addition of conventional seals to the plunger and a two-way actuator, a derivative of this design would allow nonhermetic use as an on/off or metering valve after the initial rupturing of the hermetic sealing disk. In addition, in a single-use hermetically sealed isolation valve, the valve can be activated without the use of potential leak-inducing valve body penetrations. One implementation of this technology is a high-pressure, high-flow-rate rupture valve that is self-rupturing, which is advantageous for high-pressure applications such as gas isolation valves. Once initiated, this technology is self-energizing and requires low force compared to current pyrotechnic-based burst disk hermetic valves. This is a novel design for producing a single-use, self-rupturing, hermetically sealed valve for isolation of pressurized gas and/or liquids. This design can also be applied for single-use disposable valves for chemical instruments. A welded foil diaphragm is fully supported by two mated surfaces that are machined to micron accuracies using EDM. To open the valve, one of the surfaces is moved relative to the other to (a) remove the support creating an unsupported diaphragm that ruptures due to over pressure, and/or (b) produce tension in the diaphragm and rupture it.

  2. Well pump

    DOEpatents

    Ames, Kenneth R.; Doesburg, James M.

    1987-01-01

    A well pump includes a piston and an inlet and/or outlet valve assembly of special structure. Each is formed of a body of organic polymer, preferably PTFE. Each includes a cavity in its upper portion and at least one passage leading from the cavity to the bottom of the block. A screen covers each cavity and a valve disk covers each screen. Flexible sealing flanges extend upwardly and downwardly from the periphery of the piston block. The outlet valve block has a sliding block and sealing fit with the piston rod.

  3. The effect of three variables on shear bond strength when luting a resin inlay to dentin.

    PubMed

    Lee, Jae-Ik; Park, Sung-Ho H

    2009-01-01

    The current study evaluated the effects of three variables on the shear bond strength of indirect composite restorations to human dentin. The three variables examined included immediate dentin sealing (IDS), the thinning of dentin adhesives by air-blowing before cementation and light-curing the dentin adhesive before cementation. One-hundred and eighty cylinder composite inlays, 2 mm in diameter and 3 mm in length, were made using a Tescera ATL system (BISCO Inc). Tooth disks 2-mm thick were obtained from 90 freshly-extracted human premolars. Two indirect composite cylinders were assigned to a single tooth disk. The discs were randomly divided into six groups according to the luting methods. AdheSE (Ivoclar Vivadent) was used as the dentin-bonding agent (DBA) for all groups. In Groups 1, 2 and 3, the dentin was sealed with AdheSE before taking the impression. After priming, the adhesive was lightly air-blown, then light-cured. On the other hand, the dentin was not sealed before taking the impression in Groups 4, 5 and 6. Regarding the application of DBA before cementation, it was gently air-blown and light-cured before cementation in Groups 1 and 4; whereas, it was heavily air-blown and light-cured in Groups 2 and 5 and gently air-blown but not light-cured in Groups 3 and 6. Z-250 and Duo-Link were used as luting materials. After 24-hours of storage, the bonded inlays were subjected to a shear bond test. For each luting material, one-way ANOVA and Duncan's Multiple Range Test were used to compare the shear bond strength. Paired t-tests were also performed to compare the shear strength between the two luting materials. All the statistical tests were carried out at the 95% confidence level. In Z-250, the results of the shear bond strength were as follows: Group 1(14.90MPa) > Group 2(12.22MPa), Group 4(12.16MPa) Group 5(9.61MPa), Group 3(9.60MPa) Group 6(3.54MPa)(p<0.05). In Duo-Link, the following shear bond strengths were obtained: Group 1(14.65MPa) > Group 2(13.04MPa), Group 4(12.66MPa) > Group 5(10.10MPa) > Group 3(8.40MPa) > Group 6(2.88MPa) (p<0.05). The mean shear bond strength of Z-250 and Duo-Link were not statistically different with the exception of Group 5. In conclusion, the shear bond strength of the indirect composite restoration to dentin can be improved by dentin sealing with DBA before taking an impression, gently air drying and light curing the DBA before the luting procedure.

  4. ROCKET PORT CLOSURE

    DOEpatents

    Mattingly, J.T.

    1963-02-12

    This invention provides a simple pressure-actuated closure whereby windowless observation ports are opened to the atmosphere at preselected altitudes. The closure comprises a disk which seals a windowless observation port in rocket hull. An evacuated instrument compartment is affixed to the rocket hull adjacent the inner surface of the disk, while the outer disk surface is exposed to the atmosphere through which the rocket is traveling. The pressure differential between the evacuated instrument compartment and the relatively high pressure external atmosphere forces the disk against the edge of the observation port, thereby effecting a tight seai. The instrument compartment is evacuated to a pressure equal to the atmospheric pressure existing at the altitude at which it is desiretl that the closure should open. When the rocket reaches this preselected altitude, the inwardly directed atmospheric force on the disk is just equaled by the residual air pressure force within the instrument compartment. Consequently, the closure disk falls away and uncovers the open observation port. The separation of the disk from the rocket hull actuates a switch which energizes the mechanism of a detecting instrument disposed within the instrument compartment. (AE C)

  5. Rotary filtration system

    DOEpatents

    Herman, David T [Aiken, SC; Maxwell, David N [Aiken, SC

    2011-04-19

    A rotary filtration apparatus for filtering a feed fluid into permeate is provided. The rotary filtration apparatus includes a container that has a feed fluid inlet. A shaft is at least partially disposed in the container and has a passageway for the transport of permeate. A disk stack made of a plurality of filtration disks is mounted onto the shaft so that rotation of the shaft causes rotation of the filtration disks. The filtration disks may be made of steel components and may be welded together. The shaft may penetrate a filtering section of the container at a single location. The rotary filtration apparatus may also incorporate a bellows seal to prevent leakage along the shaft, and an around the shaft union rotary joint to allow for removal of permeate. Various components of the rotary filtration apparatus may be removed as a single assembly.

  6. Vacuum breaker valve assembly

    DOEpatents

    Thompson, J.L.; Upton, H.A.

    1999-04-27

    Breaker valve assemblies for a simplified boiling water nuclear reactor are described. The breaker valve assembly, in one form, includes a valve body and a breaker valve. The valve body includes an interior chamber, and an inlet passage extends from the chamber and through an inlet opening to facilitate transporting particles from outside of the valve body to the interior chamber. The breaker valve is positioned in the chamber and is configured to substantially seal the inlet opening. Particularly, the breaker valve includes a disk which is sized to cover the inlet opening. The disk is movably coupled to the valve body and is configured to move substantially concentrically with respect to the valve opening between a first position, where the disk completely covers the inlet opening, and a second position, where the disk does not completely cover the inlet opening. 1 fig.

  7. Vacuum breaker valve assembly

    DOEpatents

    Thompson, Jeffrey L.; Upton, Hubert Allen

    1999-04-27

    Breaker valve assemblies for a simplified boiling water nuclear reactor are described. The breaker valve assembly, in one form, includes a valve body and a breaker valve. The valve body includes an interior chamber, and an inlet passage extends from the chamber and through an inlet opening to facilitate transporting particles from outside of the valve body to the interior chamber. The breaker valve is positioned in the chamber and is configured to substantially seal the inlet opening. Particularly, the breaker valve includes a disk which is sized to cover the inlet opening. The disk is movably coupled to the valve body and is configured to move substantially concentrically with respect to the valve opening between a first position, where the disk completely covers the inlet opening, and a second position, where the disk does not completely cover the inlet opening.

  8. Oxygen production on Mars and the Moon

    NASA Technical Reports Server (NTRS)

    Sridhar, K. R.; Vaniman, B.; Miller, S.

    1992-01-01

    Significant progress was made in the area of in-situ oxygen production in the last year. In order to reduce sealing problems due to thermal expansion mismatch in the disk configuration, several all-Zirconia cells were constructed and are being tested. Two of these cells were run successfully for extended periods of time. One was run for over 200 hours and the other for over 800 hours. These extended runs, along with gas sample analysis, showed that the oxygen being produced is definitely from CO2 and not from air leaks or from the disk material. A new tube system is being constructed that is more rugged, portable, durable, and energy efficient. The important operating parameters of this system will be better controlled compared to previous systems. An electrochemical compressor will also be constructed with a similar configuration. The electrochemical compressor will use less energy since the feed stock is already heated in the separation unit. In addition, it does not have moving parts.

  9. Numerical Analysis of Intra-Cavity and Power-Stream Flow Interaction in Multiple Gas-Turbine Disk-Cavities

    NASA Technical Reports Server (NTRS)

    Athavale, M. M.; Przekwas, A. J.; Hendricks, R. C.; Steinetz, B. M.

    1995-01-01

    A numerical analysis methodology and solutions of the interaction between the power stream and multiply-connected multi-cavity sealed secondary flow fields are presented. Flow solutions for a multi-cavity experimental rig were computed and compared with experimental data of Daniels and Johnson. The flow solutions illustrate the complex coupling between the main-path and the cavity flows as well as outline the flow thread that exists throughout the subplatform multiple cavities and seals. The analysis also shows that the de-coupled solutions on single cavities is inadequate. The present results show trends similar to the T-700 engine data that suggests the changes in the CDP seal altered the flow fields throughout the engine and affected the engine performance.

  10. Major Effects of Nonmetallic Inclusions on the Fatigue Life of Disk Superalloy Demonstrated

    NASA Technical Reports Server (NTRS)

    Gabb, Timothy P.; Telesman, Jack; Kantzos, Peter T.; Bonacuse, Peter J.; Barrie, Robert L.

    2002-01-01

    The fatigue properties of modern powder metallurgy disk alloys can vary because of the different steps of materials and component processing and machining. Among these variables, the effects of nonmetallic inclusions introduced during the powder atomization and handling processes have been shown to significantly degrade low-cycle fatigue life. The levels of inclusion contamination have, therefore, been reduced to less than 1 part per million in state-of-the-art nickel disk powder-processing facilities. Yet the large quantities of compressor and turbine disks weighing from 100 to over 1000 lb have enough total volume and surface area for these rare inclusions to still be present and limit fatigue life. The objective of this study was to investigate the effects on fatigue life of these inclusions, as part of the Crack Resistant Disk Materials task within the Ultra Safe Propulsion Project. Inclusions were carefully introduced at elevated levels in a nickel-base disk superalloy, U720, produced using powder metallurgy processing. Multiple strain-controlled fatigue tests were then performed on extracted test specimens at 650 C. Analyses were performed to compare the low-cycle fatigue lives and failure initiation sites as functions of inclusion content and fatigue conditions. Powder of the nickel-base superalloy U720 was atomized in argon at Special Metals Corporation, Inc., using production-scale high-cleanliness powder-processing facilities and handling practices. The powder was then passed through a 270-mesh screen. One portion of this powder was set aside for subsequent consolidation without introduced inclusions. Two other portions of this powder were seeded with alumina inclusions. Small, polycrystalline soft (Type 2) inclusions of about 50 mm diameter were carefully prepared and blended into one powder lot, and larger hard (Type 1) inclusions of about 150 mm mean diameter were introduced into the other seeded portion of powder. All three portions of powder were then sealed in separate containers, hot isostatically pressurized, extruded, forged into subscale disks, and heat treated. Low-cycle-fatigue specimens were then extracted, machined, and tested. Fatigue tests were performed at 650 C in closed-loop servohydraulic testing machines using induction heating and axial extensometers. All tests were continued to failure, and fractographic evaluations were performed on all specimens to determine the crack initiation sites. A large majority of the failures in specimens with introduced inclusions occurred at cracks initiating from inclusions at the specimen surface, as shown for each type of inclusion in the following bar chart. The inclusions significantly reduced fatigue life from unseeded material levels, as shown in the bar chart. These effects were found to depend on the strain range, strain ratio, and inclusion size. Tests at lower strain ranges and higher strain ratios resulted in larger effects of inclusions on life. Inclusion effects on life were thereby maximized in tests at the lowest strain range of 0.6 percent and the most positive strain ratio of 0.5. Under these conditions, small Type 2 inclusions reduced life substantially-- about 20 times, whereas large Type 1 inclusions dramatically reduced life 100 times. These results clearly demonstrate that it is essential to include the effects of inclusions for realistic predictions of disk fatigue life. Important issues, including temperature dependence, crack initiation versus propagation, surface treatments, realistic disk features and machining, and realistic disk spin testing will be addressed to accurately model inclusion effects on disk fatigue life. Fatigue life varied from well over 105 cycles for no inclusions to a little over 103 cycles for 100-micrometer inclusions. A single crack initiating at a surface-connected seeded inclusion caused failure in each case.

  11. Tribological properties of PM212: A high-temperature, self-lubricating, powder metallurgy composite

    NASA Technical Reports Server (NTRS)

    Dellacorte, Christopher; Sliney, Harold E.

    1989-01-01

    This paper describes a research program to develop and evaluate a new high temperature, self-lubricating powder metallurgy composite, PM212. PM212 has the same composition as the plasma-sprayed coating, PS212, which contains 70 wt percent metal-bonded chromium carbide, 15 wt percent silver and 15 wt percent barium fluoride/calcium fluoride eutectic. The carbide acts as a wear resistant matrix and the silver and fluorides act as low and high temperature lubricants, respectively. The material is prepared by sequential cold press, cold isostatic pressing and sintering techniques. In this study, hemispherically tipped wear pins of PM212 were prepared and slid against superalloy disks at temperatures from 25 to 850 C in air in a pin-on-disk tribometer. Friction coefficients range from 0.29 to 0.38 and the wear of both the composite pins and superalloy disks was moderate to low in the 10(exp -5) to 10(exp -6) cubic mm/N-m range. Preliminary tests indicate that the material has a compressive strength of at least 130 MPa over the entire temperature range of 25 to 900 C. This material has promise for use as seal inserts, bushings, small inside diameter parts and other applications where plasma-sprayed coatings are impractical or too costly.

  12. Tribological properties of PM212 - A high temperature, self-lubricating, powder metallurgy composite

    NASA Technical Reports Server (NTRS)

    Dellacorte, Christopher; Sliney, Harold E.

    1990-01-01

    This paper describes a research program to develop and evaluate a new high temperature, self-lubricating powder metallurgy composite, PM212. PM212 has the same composition as the plasma-sprayed coating, PS212, which contains 70 wt percent metal-bonded chromium carbide, 15 wt percent silver and 15 wt percent barium fluoride/calcium fluoride eutectic. The carbide acts as a wear resistant matrix and the silver and fluorides act as low and high temperature lubricants, respectively. The material is prepared by sequential cold press, cold isostatic pressing and sintering techniques. In this study, hemispherically tipped wear pins of PM212 were prepared and slid against superalloy disks at temperatures from 25 to 850 C in air in a pin-on-disk tribometer. Friction coefficients range from 0.29 to 0.38 and the wear of both the composite pins and superalloy disks was moderate to low in the 10(exp -5) to 10(exp -6) cubic mm/N-m range. Preliminary tests indicate that the material has a compressive strength of at least 130 MPa over the entire temperature range of 25 to 900 C. This material has promise for use as seal inserts, bushings, small inside diameter parts and other applications where plasma-sprayed coatings are impractical or too costly.

  13. A Demonstration of an Intelligent Control System for a Reusable Rocket Engine

    DTIC Science & Technology

    1992-06-01

    Research Center Cleveland, Ohio 44135 ABSTRACT DTIC QUALrI’ ’illE ,;TED 3 An Intelligent Control System for reusable rocket engines is under development at...through the ring seal may be written as rh,i,,g - 0.685 It Co d c~iiPexi g ( 3 )VRTIprt( where d. and cri6t now correspond to the shaft diameter and the ring...discharge coefficient of 0.9 for both seals and disk and shaft diameters of 6.0 and 2.0 inches respectively, equations I and 3 may be equated and the

  14. High Temperature Permeability of Carbon Cloth Phenolic Composite

    NASA Technical Reports Server (NTRS)

    Park, O. Y.; Lawrence, T. W.

    2003-01-01

    The carbon fiber phenolic resin composite material used for the RSRM nozzle insulator occasionally experiences problems during operation from pocketing or spalling-like erosion and lifting of plies into the char layer. This phenomenon can be better understood if the permeability of the material at elevated temperatures is well defined. This paper describes an experimental approach to determining high temperature permeability of the carbon phenolic material used as the RSRM nozzle liner material. Two different approaches were conducted independently using disk and bar type specimens with the designed permeability apparatus. The principle of the apparatus was to subject a test specimen to a high pressure differential and a heat supply and to monitor both the pressure and temperature variations resulting from gas penetration through the permeable wall between the two chambers. The bar types, especially designed to eliminate sealing difficulties at a high temperature environment, were directly exposed to real time temperature elevation from 22 C to 260 C during the test period. The disk types were pre-heat treated up to 300 C for 8 hours and cooled to room temperature before testing. Nonlinear variation of downstream pressure at a certain temperature range implied moisture release and matrix pyrolysis. Permeability was calculated using a semi-numerical model of quasi-steady state. The test results and the numerical model are discussed in the paper.

  15. Whirl Motion of a Seal Test Rig with Squeeze-Film Dampers

    NASA Technical Reports Server (NTRS)

    Proctor, Margaret P.; Gunter, Edgar J.

    2007-01-01

    This paper presents the experimental behavior and dynamic analysis of a high speed test rig with rolling element bearings mounted in squeeze film oil damper bearings. The test rotor is a double overhung configuration with rolling element ball bearings mounted in uncentered squeeze-film oil dampers. The damper design is similar to that employed with various high-speed aircraft HP gas turbines. The dynamic performance of the test rig with the originally installed dampers with an effective damper length of length 0.23-inch was unacceptable. The design speed of 40,000 RPM could not be safely achieved as nonsynchronous whirling at the overhung seal test disk and high amplitude critical speed response at the drive spline section occurred at 32,000 RPM. In addition to the self excited stability and critical speed problems, it was later seen from FFT data analysis, that a region of supersynchronous dead band whirling occurs between 10,000 to 15,000 RPM which can lead to bearing distress and wear. The system was analyzed using both linear and nonlinear techniques. The extended length damper design resulting from the analysis eliminated the rotor subsynchronous whirling, high amplitude critical speed, and the dead band whirling region allowing the system to achieve a speed of 45,000 RPM. However, nonlinear analysis shows that damper lockup could occur with high rotor unbalance at 33,000 RPM, even with the extended squeeze-film dampers. The control of damper lockup will be addressed in a future paper.

  16. A Simple and Low-Cost Ultramicroelectrode Fabrication and Characterization Method for Undergraduate Students

    ERIC Educational Resources Information Center

    Sur, Ujjal Kumar; Dhason, A.; Lakshminarayanan, V.

    2012-01-01

    A laboratory experiment is described in which students fabricate disk-shaped gold and platinum microelectrodes with diameters of 10-50 [mu]m by sealing sodalime glass with metal microwires. The electrodes are characterized by performing cyclic voltammetry in aqueous and acetonitrile solution. Commercial microelectrodes are expensive (cost depends…

  17. Advanced Control Surface Seal Development at NASA GRC for Future Space Launch Vehicles

    NASA Technical Reports Server (NTRS)

    Dunlap, Patrick H., Jr.; Steinetz, Bruce M.; DeMange, Jeffrey J.

    2003-01-01

    NASA s Glenn Research Center (GRC) is developing advanced control surface seal technologies for future space launch vehicles as part of the Next Generation Launch Technology project (NGLT). New resilient seal designs are currently being fabricated and high temperature seal preloading devices are being developed as a means of improving seal resiliency. GRC has designed several new test rigs to simulate the temperatures, pressures, and scrubbing conditions that seals would have to endure during service. A hot compression test rig and hot scrub test rig have been developed to perform tests at temperatures up to 3000 F. Another new test rig allows simultaneous seal flow and scrub tests at room temperature to evaluate changes in seal performance with scrubbing. These test rigs will be used to evaluate the new seal designs. The group is also performing tests on advanced TPS seal concepts for Boeing using these new test facilities.

  18. Test device for measuring permeability of a barrier material

    DOEpatents

    Reese, Matthew; Dameron, Arrelaine; Kempe, Michael

    2014-03-04

    A test device for measuring permeability of a barrier material. An exemplary device comprises a test card having a thin-film conductor-pattern formed thereon and an edge seal which seals the test card to the barrier material. Another exemplary embodiment is an electrical calcium test device comprising: a test card an impermeable spacer, an edge seal which seals the test card to the spacer and an edge seal which seals the spacer to the barrier material.

  19. Turbomachine Sealing and Secondary Flows - Part 3. Part 3; Review of Power-Stream Support, Unsteady Flow Systems, Seal and Disk Cavity Flows, Engine Externals, and Life and Reliability Issues

    NASA Technical Reports Server (NTRS)

    Hendricks, R. C.; Steinetz, B. M.; Zaretsky, E. V.; Athavale, M. M.; Przekwas, A. J.

    2004-01-01

    The issues and components supporting the engine power stream are reviewed. It is essential that companies pay close attention to engine sealing issues, particularly on the high-pressure spool or high-pressure pumps. Small changes in these systems are reflected throughout the entire engine. Although cavity, platform, and tip sealing are complex and have a significant effect on component and engine performance, computational tools (e.g., NASA-developed INDSEAL, SCISEAL, and ADPAC) are available to help guide the designer and the experimenter. Gas turbine engine and rocket engine externals must all function efficiently with a high degree of reliability in order for the engine to run but often receive little attention until they malfunction. Within the open literature statistically significant data for critical engine components are virtually nonexistent; the classic approach is deterministic. Studies show that variations with loading can have a significant effect on component performance and life. Without validation data they are just studies. These variations and deficits in statistical databases require immediate attention.

  20. High Misalignment Carbon Seals for the Fan Drive Gear System Technologies

    NASA Technical Reports Server (NTRS)

    Shaughnessy, Dennis; Dobek, Lou

    2006-01-01

    Aircraft engines of the future will require capability bearing compartment seals than found in current engines. Geared systems driving the fan will be subjected to inertia and gyroscopic forces resulting in extremely high angular and radial misalignments. Because of the high misalignment levels, compartment seals capable of accommodating angularities and eccentricities are required. Pratt & Whitney and Stein Seal Company selected the segmented circumferential carbon seal as the best candidate to operate at highly misaligned conditions. Initial seal tests established the misalignment limits of the current technology circumferential seal. From these results a more compliant seal configuration was conceived, designed, fabricated, and tested. Further improvements to the design are underway and plans are to conduct a durability test of the next phase configuration. A technical approach is presented, including design modification to a "baseline"seal, carbon grade selection, test rig configuration, test plan and results of analysis of seal testing.

  1. SSME seal test program: Test results for smooth, hole-pattern and helically-grooved stators

    NASA Technical Reports Server (NTRS)

    Childs, Dara W.

    1987-01-01

    All of the listed seals were tested in a liquid Halon test facility at high Reynolds numbers. In addition, a helically-grooved-stator seal was tested in an air seal facility. An analysis of the test results with comparisons to theoretical predictions supports the following conclusions: (1) For small seals, the Hirs' friction-factor model is more restricted than had been thought; (2) For smooth seals, predictions of stiffness and damping improve markedly as the radical clearance is reduced; (3) Friction-factor data for hole-pattern-seal stators frequently deviates from the Hirs model; (4) Predictions of stiffness and damping coefficients for hole-pattern-stator seals is generally reasonable; (5) Tests for the hole-pattern stators at reduced clearances show no clear optimum for hole-pattern seals with respect to either hole-area ratio or hole depth to minimum clearance ratios; (6) Tests of these hole-pattern stators show no significant advantage in net damping over smooth seals; (7) Tests of helically-grooved seal stators in Halon show reasonable agreement between theory and prediction for leakage and direct stiffness but poor agreement for the net damping coefficient.

  2. Development of a new seal for use on large openings of pressurized spacecraft

    NASA Technical Reports Server (NTRS)

    Weddendorf, B.

    1994-01-01

    The goal of this project was to design, build, and test an example of the seal invented by the author for use on Space Station Freedom and patented in 1991. The seal features a metallic spring core and replaceable elastomeric sealing elements. The metallic spring is designed to retain the sealing force of the elastomeric element against both sides of face seal gland for any specified amount of waviness or separation of the glands. A seal able to tolerate at least 1.3 mm (0.05 in) of flange distortion or separation and a test fixture of this seal which allowed direct comparison testing of O-rings were built. These designs were tested to compare leakage at different amounts of flange deflection. Results of the testing show the development seal exceeded its requirement to seal 1.3 mm of flange separation by 1 mm. This compared with the O-ring leakage, increasing dramatically at 0.5 mm of separation. The development seal also leaked at a lower rate than the O-ring seals in all tests.

  3. Leakage and Power Loss Test Results for Competing Turbine Engine Seals

    NASA Technical Reports Server (NTRS)

    Proctor, Margaret P.; Delgado, Irebert R.

    2004-01-01

    Advanced brush and finger seal technologies offer reduced leakage rates over conventional labyrinth seals used in gas turbine engines. To address engine manufacturers concerns about the heat generation and power loss from these contacting seals, brush, finger, and labyrinth seals were tested in the NASA High Speed, High Temperature Turbine Seal Test Rig. Leakage and power loss test results are compared for these competing seals for operating conditions up to 922 K (1200 F) inlet air temperature, 517 KPa (75 psid) across the seal, and surface velocities up to 366 m/s (1200 ft/s).

  4. Tribological properties of alumina-boria-silicate fabric from 25 to 850 C

    NASA Technical Reports Server (NTRS)

    Dellacorte, Christopher

    1988-01-01

    Demanding tribological properties are required of the materials used for the sliding seal between the sidewalls and the lower wall of the variable area hypersonic engine. Temperatures range from room temperature and below to operating temperatures of 1000 C in an environment of air, hydrogen, and water vapor. Candidate sealing materials for this application are an alumina-boria-silicate, ceramic, fabric rope sliding against the engine walls which may be made from copper- or nickel-based alloys. Using a pin-on-disk tribometer, the friction and wear properties of some of these potential materials and possible lubrication methods are evaluated. The ceramic fabric rope displayed unacceptably high friction coefficients (0.6 to 1.3) and, thus, requires lubrication. Sputtered thin films of gold, silver, and CaF2 reduced the friction by a factor of two. Sprayed coatings of boride nitride did not effectively lubricate the fabric. Static heat treatment tests at 950 C indicate that the fabric is chemically attacked by large quantities of silver, CaF2, and boron nitride. Sputtered films or powder impregnation of the fabric with gold may provide adequate lubrication up to 1000 C without showing any chemical attack.

  5. High-Speed, High-Temperature Finger Seal Test Evaluated

    NASA Technical Reports Server (NTRS)

    Proctor, Margaret P.

    2003-01-01

    A finger seal, designed and fabricated by Honeywell Engines, Systems and Services, was tested at the NASA Glenn Research Center at surface speeds up to 1200 ft/s, air temperatures up to 1200 F, and pressures across the seal of 75 psid. These are the first test results obtained with NASA s new High-Temperature, High-Speed Turbine Seal Test Rig (see the photograph). The finger seal is an innovative design recently patented by AlliedSignal Engines, which has demonstrated considerably lower leakage than commonly used labyrinth seals and is considerably cheaper than brush seals. The cost to produce finger seals is estimated to be about half of the cost to produce brush seals. Replacing labyrinth seals with fingers seals at locations that have high-pressure drops in gas turbine engines, typically main engine and thrust seals, can reduce air leakage at each location by 50 percent or more. This directly results in a 0.7- to 1.4-percent reduction in specific fuel consumption and a 0.35- to 0.7-percent reduction in direct operating costs . Because the finger seal is a contacting seal, this testing was conducted to address concerns about its heat generation and life capability at the higher speeds and temperatures required for advanced engines. The test results showed that the seal leakage and wear performance are acceptable for advanced engines.

  6. Program for the improvement of downhole drilling motor bearings and seals. Phase V. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DeLafosse, P.H.; Tibbitts, G.A.; Black, A.D.

    1983-08-01

    The work done during the fifth and final phase of a program to improve downhole drilling motor bearing and seals is described. The principal activities in this phase were: (a) testing seals with abrasive-laden mud on the low-pressure side; (b) test second and third generation designs of both elastomeric chevron seals and Teflon U-seals; and (c) testing a full-scale bearing/seal package. Several operating parameters which have a radical effect on seal life were identified, and some promising designs and materials were tested.

  7. Unique Tuft Test Facility Dramatically Reduces Brush Seal Development Costs

    NASA Technical Reports Server (NTRS)

    Fellenstein, James A.

    1997-01-01

    Brush seals have been incorporated in the latest turbine engines to reduce leakage and improve efficiency. However, the life of these seals is limited by wear. Studies have shown that optimal sealing characteristics for a brush seal occur before the interference fit between the brush and shaft is excessively worn. Research to develop improved tribopairs (brush and coating) with reduced wear and lower friction has been hindered by the lack of an accurate, low-cost, efficient test methodology. Estimated costs for evaluating a new material combination in an engine company seal test program are on the order of $100,000. To address this need, the NASA Lewis Research Center designed, built, and validated a unique, innovative brush seal tuft tester that slides a single tuft of brush seal wire against a rotating shaft under controlled loads, speeds, and temperatures comparable to those in turbine engines. As an initial screening tool, the brush seal tuft tester can tribologicaly evaluate candidate seal materials for 1/10th the cost of full-scale seal tests. Previous to the development of the brush seal tuft tester facility, most relevant tribological data had been obtained from full-scale seal tests conducted primarily to determine seal leakage characteristics. However, from a tribological point of view, these tests included the confounding effects of varying contact pressures, bristle flaring, high-temperature oxidation, and varying bristle contact angles. These confounding effects are overcome in tuft testing. The interface contact pressures can be either constant or varying depending on the tuft mounting device, and bristle wear can be measured optically with inscribed witness marks. In a recent cooperative program with a U.S. turbine engine manufacturer, five metallic wire candidates were tested against a plasma-sprayed Nichrome-bonded chrome carbide. The wire materials used during this collaboration were either nickel-chrome- or cobaltchrome-based superalloys. These tests corroborated full-scale seal test results and provided insight into previously untested combinations. As the cycle temperature for improved efficiency turbine engines increases, new brush seal materials combinations must be considered. Future brush seal tuft testing will include both metallic and ceramic bristles versus commercial and NASA-developed shaft coatings. The ultimate goal of this work is to expand the current data base so that seal designers can tailor brush seal materials to specific applications.

  8. Experimental rotordynamic coefficient results for honeycomb seals

    NASA Technical Reports Server (NTRS)

    Elrod, David A.; Childs, Dara W.

    1988-01-01

    Test results (leakage and rotordynamic coefficients) are presented for seven honeycomb-stator smooth-rotor seals. Tests were carried out with air at rotor speeds up to 16,000 cpm and supply pressures up to 8.2 bars. Test results for the seven seals are compared, and the most stable configuration is identified based on the whirl frequency ratio. Results from tests of a smooth-rotor/smooth-stator seal, a teeth-on-stator labyrinth seal, and the most stable honeycomb seal are compared.

  9. Propulsion and Energetics Panel Working Group 20 on Test Cases for Engine Life Assessment Technology (Cas d’Essai pour la Gestion de la Duree de Vie des Moteurs)

    DTIC Science & Technology

    1992-09-01

    the 10 Figure 2.1 LARZAC ENGINE - welded disk-shaft 1 - shaft-spacer 2 -cone 3 - aft seal 4 - blades 5 Figure 2.2 COMPONENT GEOMETRY OEZ 0 9LL 0 It- C4...57 ൒--m-- 5.735 29.475 95 12.525 0.08 F60,45 chom at 456 -- - 6 1 Holes equall WIN 2,24! sae 80 T RIo.2 R838*20’ •-R2o4..6 0537,6 4 0640.226 R4...steel attempt was made Lo predict wire. Control thermocouples were initiation at the oil feed holes, welded to the compressor and since the stated goal of

  10. High-Speed, High-Temperature Finger Seal Test Results

    NASA Technical Reports Server (NTRS)

    Proctor, Margaret P.; Kumar, Arun; Delgado, Irebert R.

    2002-01-01

    Finger seals have significantly lower leakage rates than conventional labyrinth seals used in gas turbine engines and are expected to decrease specific fuel consumption by over 1 percent and to decrease direct operating cost by over 0.5 percent. Their compliant design accommodates shaft growth and motion due to thermal and dynamic loads with minimal wear. The cost to fabricate these finger seals is estimated to be about half the cost to fabricate brush seals. A finger seal has been tested in NASA's High Temperature, High Speed Turbine Seal Test Rig at operating conditions up to 1200 F, 1200 ft/s, and 75 psid. Static, performance and endurance test results are presented. While seal leakage and wear performance are acceptable, further design improvements are needed to reduce the seal power loss.

  11. An Overview of Advanced Elastomeric Seal Development and Testing Capabilities at NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Dunlap, Patrick H., Jr.

    2014-01-01

    NASA is developing advanced space-rated elastomeric seals to support future space exploration missions to low Earth orbit, the Moon, near Earth asteroids, and other destinations. This includes seals for a new docking system and vehicle hatches. These seals must exhibit extremely low leak rates to ensure that astronauts have sufficient breathable air for extended missions. Seal compression loads must be below prescribed limits so as not to overload the mechanisms that compress them, and seal adhesion forces must be low to allow the sealed interface to be separated when required (e.g., during undocking or hatch opening). NASA Glenn Research Center has developed a number of unique test fixtures to measure the leak rates and compression and adhesion loads of candidate seal designs under simulated thermal, vacuum, and engagement conditions. Tests can be performed on fullscale seals with diameters on the order of 50 in., subscale seals that are about 12 in. in diameter, and smaller specimens such as O-rings. Test conditions include temperatures ranging from -238 to 662degF (-150 to 350degC), operational pressure gradients, and seal-on-seal or seal-on-flange mating configurations. Nominal and off-nominal conditions (e.g., incomplete seal compression) can also be simulated. This paper describes the main design features and capabilities of each type of test apparatus and provides an overview of advanced seal development activities at NASA Glenn.

  12. An Overview of Advanced Elastomeric Seal Development and Testing Capabilities at NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Dunlap, Patrick H.

    2014-01-01

    NASA is developing advanced space-rated elastomeric seals to support future space exploration missions to low Earth orbit, the Moon, near Earth asteroids, and other destinations. This includes seals for a new docking system and vehicle hatches. These seals must exhibit extremely low leak rates to ensure that astronauts have sufficient breathable air for extended missions. Seal compression loads must be below prescribed limits so as not to overload the mechanisms that compress them, and seal adhesion forces must be low to allow the sealed interface to be separated when required (e.g., during undocking or hatch opening). NASA Glenn Research Center has developed a number of unique test fixtures to measure the leak rates and compression and adhesion loads of candidate seal designs under simulated thermal, vacuum, and engagement conditions. Tests can be performed on full-scale seals with diameters on the order of 50 in., subscale seals that are about 12 in. in diameter, and smaller specimens such as O-rings. Test conditions include temperatures ranging from -238 to 662 F (-150 to 350 C), operational pressure gradients, and seal-on-seal or seal-on-flange mating configurations. Nominal and off-nominal conditions (e.g., incomplete seal compression) can also be simulated. This paper describes the main design features and capabilities of each type of test apparatus and provides an overview of advanced seal development activities at NASA Glenn.

  13. Continued Investigation of Leakage and Power Loss Test Results for Competing Turbine Engine Seals

    NASA Technical Reports Server (NTRS)

    Delgado, Irebert R.; Proctor, Margaret P.

    2006-01-01

    Secondary seal leakage in jet engine applications results in power losses to the engine cycle. Likewise, seal power loss in jet engines not only result in efficiency loss but also increase the heat input into the engine resulting in reduced component lives. Experimental work on labyrinth and annular seals was performed at NASA Glenn Research Center to quantify seal leakage and power loss at various temperatures, seal pressure differentials, and surface speeds. Data from annular and labyrinth seals are compared with previous brush and finger seal test results. Data are also compared to literature. Annular and labyrinth seal leakage rates are 2 to 3 times greater than brush and finger seal rates. Seal leakage decreases with increasing speed but increases with increasing test temperature due to thermal expansion mismatch. Also seal power loss increases with surface speed, seal pressure differential, mass flow rate, and radial clearance. Annular and labyrinth seal power losses were higher than those of brush or finger seal data. The brush seal power loss was 15 to 30 percent lower than annular and labyrinth seal power loss.

  14. Development of spiral-groove self-acting face seals

    NASA Technical Reports Server (NTRS)

    Obrien, M.

    1977-01-01

    An experimental evaluation and a 100-hour endurance test were performed on a spiral groove geometry, self-acting face seal. The seal was tested and operated successfully at maximum conditions of 243.8 m/s surface speed, 199.9 N/sq cm air pressure, and 645.4K (702 F) air temperature. The maximum speed condition of 243.8 m/s was obtained at a shaft speed of 72,500 rpm. Seal wear, gas leakage, and sealing element temperature were monitored during the test. Condition of the seal at the completion of the test was documented and found acceptable for further use. The spiral groove wear rate measured during the endurance test indicates a minimum potential seal life of over 2700 hours. Seal air leakage measured during the test program is within the range considered acceptable for consideration for use in a small gas turbine engine.

  15. Comparison of numerical results and multicavity purge and rim seal data with extensions to dynamics

    NASA Astrophysics Data System (ADS)

    Athavale, Mahesh; Przekwas, Andrzej J.; Hendricks, Robert C.; Steinetz, Bruce M.

    1995-05-01

    The computation of flows within interconnected, multiple-disk cavities shows strong interaction between the cavities and the power stream. For this reason, simulations of single cavities in such cases are not realistic; the complete, linked configuration must be considered. Unsteady flow fields affect engine stability and can engender power-stream-driven secondary flows that produce local hot spotting or general cavity heating. Further, a concentric whirling rotor produces a circumferential pressure wave, but a statically eccentric whirling rotor produces a radial wave; both waves affect cavity ingestion and the stability of the entire engine. It is strongly suggested that seals be used to enhance turbojet engine stability. Simple devices, such as swirl brakes, honeycomb inserts, and new seal configurations, should be considered. The cost effectiveness of the NASA Lewis Research Center seals program can be expressed in terms of program goals (e.g., the Integrated High-pressure/Temperature Engine Technology (IHPTET) cannot be achieved without such a program), cost (savings to $250 million/1-percent decrease in specific fuel consumption), and indirect benefits (reduction of atmospheric NO(x) and CO2 and reduction of powerplant downtime).

  16. Comparison of Numerical Results and Multicavity Purge and Rim Seal Data with Extensions to Dynamics

    NASA Technical Reports Server (NTRS)

    Athavale, Mahesh; Przekwas, Andrzej J.; Hendricks, Robert C.; Steinetz, Bruce M.

    1995-01-01

    The computation of flows within interconnected, multiple-disk cavities shows strong interaction between the cavities and the power stream. For this reason, simulations of single cavities in such cases are not realistic; the complete, linked configuration must be considered. Unsteady flow fields affect engine stability and can engender power-stream-driven secondary flows that produce local hot spotting or general cavity heating. Further, a concentric whirling rotor produces a circumferential pressure wave, but a statically eccentric whirling rotor produces a radial wave; both waves affect cavity ingestion and the stability of the entire engine. It is strongly suggested that seals be used to enhance turbojet engine stability. Simple devices, such as swirl brakes, honeycomb inserts, and new seal configurations, should be considered. The cost effectiveness of the NASA Lewis Research Center seals program can be expressed in terms of program goals (e.g., the Integrated High-pressure/Temperature Engine Technology (IHPTET) cannot be achieved without such a program), cost (savings to $250 million/1-percent decrease in specific fuel consumption), and indirect benefits (reduction of atmospheric NO(x) and CO2 and reduction of powerplant downtime).

  17. Development of gas-to-gas lift pad dynamic seals, volumes 1 and 2

    NASA Technical Reports Server (NTRS)

    Pope, A. N.; Pugh, D. W.

    1987-01-01

    Dynamic tests were performed on self acting (hydrodynamic) carbon face rotary shaft seals to assess their potential, relative to presently used labyrinth seals, for improving performance of aircraft gas turbine engines by reducing air leakage flow rate at compressor end seal locations. Three self acting bearing configurations, designed to supply load support at the interface of the stationary carbon seal and rotating seal race, were tested. Two configurations, the shrouded taper and shrouded flat step, were incorporated on the face of the stationary carbon seal element. The third configuration, inward pumping spiral grooves, was incorporated on the hard faced surface of the rotating seal race. Test results demonstrated seal leakage air flow rates from 75 to 95% lower that can be achieved with best state-of-the-art labyrinth designs and led to identification of the need for a more geometrically stable seal design configuration which is presently being manufactured for subsequent test evaluation.

  18. Investigation of low cost, high reliability sealing techniques for hybrid microcircuits, phase 1

    NASA Technical Reports Server (NTRS)

    Perkins, K. L.; Licari, J. J.

    1976-01-01

    A preliminary investigation was made to determine the feasibility of using adhesive package sealing for hybrid microcircuits. Major effort consisted of: (1) surveying representative hybrid manufacturers to assess the current use of adhesives for package sealing; (2) making a cost comparison of metallurgical versus adhesive package sealing; (3) determining the seal integrity of gold plated flatpack type packages sealed with selected adhesives, thermal shock, temperature cycling, mechanical shock, and constant acceleration test environments; and (4) defining a more comprehensive study to continue the evaluation of adhesives for package sealing. Results showed that 1.27 cm square gold plated flatpack type packages sealed with the film adhesives and the paste adhesive retained their seal integrity after all tests, and that similarly prepared 2.54 cm square packages retained their seal integrity after all tests except the 10,000 g's constant acceleration test. It is concluded that these results are encouraging, but by no means sufficient to establish the suitability of adhesives for sealing high reliability hybrid microcircuits.

  19. Labyrinth seal testing for lift fan engines

    NASA Technical Reports Server (NTRS)

    Dobek, L. J.

    1973-01-01

    An abradable buffered labyrinth seal for the control of turbine gas path leakage in a tip-turbine driven lift fan was designed, tested, and analyzed. The seal configuration was not designed to operate in any specific location but was sized to be evaluated in an existing test rig. The final sealing diameter selected was 28 inches. Results of testing indicate that the flow equations predicted seal air flows consistent with measured values. Excellent sealing characteristics of the abradable coating on the stator land were demonstrated when a substantial seal penetration of .030 inch into the land surface was encountered without appreciable wear on the labyrinth knife edges.

  20. Aspirating Seal Development: Analytical Modeling and Seal Test Rig

    NASA Technical Reports Server (NTRS)

    Bagepalli, Bharat

    1996-01-01

    This effort is to develop large diameter (22 - 36 inch) Aspirating Seals for application in aircraft engines. Stein Seal Co. will be fabricating the 36-inch seal(s) for testing. GE's task is to establish a thorough understanding of the operation of Aspirating Seals through analytical modeling and full-scale testing. The two primary objectives of this project are to develop the analytical models of the aspirating seal system, to upgrade using GE's funds, GE's 50-inch seal test rig for testing the Aspirating Seal (back-to-back with a corresponding brush seal), test the aspirating seal(s) for seal closure, tracking and maneuver transients (tilt) at operating pressures and temperatures, and validate the analytical model. The objective of the analytical model development is to evaluate the transient and steady-state dynamic performance characteristics of the seal designed by Stein. The transient dynamic model uses a multi-body system approach: the Stator, Seal face and the rotor are treated as individual bodies with relative degrees of freedom. Initially, the thirty-six springs are represented as a single one trying to keep open the aspirating face. Stops (Contact elements) are provided between the stator and the seal (to compensate the preload in the fully-open position) and between the rotor face and Seal face (to detect rub). The secondary seal is considered as part of the stator. The film's load, damping and stiffness characteristics as functions of pressure and clearance are evaluated using a separate (NASA) code GFACE. Initially, a laminar flow theory is used. Special two-dimensional interpolation routines are written to establish exact film load and damping values at each integration time step. Additionally, other user-routines are written to read-in actual pressure, rpm, stator-growth and rotor growth data and, later, to transfer these as appropriate loads/motions in the system-dynamic model. The transient dynamic model evaluates the various motions, clearances and forces as the seals are subjected to different aircraft maneuvers: Windmilling restart; start-ground idle; ground idle-takeoff; takeoff-burst chop, etc. Results of this model show that the seal closes appropriately and does not ram into the rotor for all of the conditions analyzed. The rig upgrade design for testing Aspirating Seals has been completed. Long lead-time items (forgings, etc.) have been ordered.

  1. Brush seals for turbine engine fuel conservation

    NASA Astrophysics Data System (ADS)

    Sousa, Mike

    1994-07-01

    The program objective is to demonstrate brush seals for replacing labyrinth seals in turboprop engines. The approach taken was to design and procure brush seals with assistance from Sealol, modify and instrument an existing T407 low pressure turbine test rig, replace inner balance piston and outer balance piston labyrinth seals with brush seals, conduct cyclic tests to evaluate seal leakage at operating pressures and temperatures, and evaluate effect of seal pack width and rotor eccentricity. Results are presented in viewgraph format and show that brush seals offer performance advantages over labyrinth seals.

  2. MTA and F-doped MTA cements used as sealers with warm gutta-percha. Long-term study of sealing ability.

    PubMed

    Gandolfi, M G; Prati, C

    2010-10-01

    To evaluate the long-term sealing ability (up to 6 months) of two experimental calcium silicate MTA cements used as root canal sealers in association with warm gutta-percha. Calcium silicate (MTA) and calcium-fluoro-silicate powders were prepared. Sodium fluoride was included in FMTA (Fluoride-doped Mineral Trioxide Aggregate) as an expansive and retardant agent. Single-rooted teeth were instrumented with NiTi rotary instruments, filled with warm gutta-percha in association with one of the experimental sealers or with AH Plus as a control (n = 20 for each sealer) and stored at 37 °C. Sealing was assessed at 24, 48 h, 1, 2 weeks and 1, 3, 6 months by a fluid filtration method. Scanning electron microscopy with energy dispersive analysis (SEM/EDX) was used to study the dentine/sealer interface of roots stored for 6 months and the surface of cement disks stored for 24 h. All sealers revealed a statistically significant reduction (P < 0.05) in fluid filtration after the first 2 weeks. No statistically significant differences were observed between FMTA and AH Plus at all analysis times. At short times (24, 48-h), no statistically significant differences were found between the experimental cements and AH Plus. At long-term evaluations (1, 3, 6 months), FMTA and AH Plus sealed significantly better (P < 0.05) than MTA. FMTA was associated with lower fluid filtration rates, and the seal was stable from 48 h to 6 months, thus proving the most effective material. Scanning electron microscopy with energy dispersive analysis of root sections filled with calcium silicate sealers revealed the formation of a blend layer of gutta-percha and cement consequent to the warm gutta-percha condensation technique. Scanning electron microscopy with energy dispersive analysis of 24-h-stored disks identified a Ca-rich coating on the outer surface consisting of globular particles (calcium hydroxide and calcium carbonate), and a deeper internal Ca- and Si-rich region consisting of needle-like ettringite crystals and round formations of calcium silicate hydrate gel. Fluoride-doped MTA demonstrated stable sealing during a period of up to 6 months and significantly better than conventional calcium silicate MTA cements and comparable to AH Plus. The study supports the suitability of calcium silicate MTA cements as sealers in association with warm gutta-percha for root filling. © 2010 International Endodontic Journal.

  3. Seal Investigations of an Active Clearance Control System Concept

    NASA Technical Reports Server (NTRS)

    Steinetz, Bruce M.; Taylor, Shawn; Oswald, Jay; DeCastro, Jonathan A.

    2006-01-01

    In an effort to improve upon current thermal active clearance control methods, a first generation, fast-acting mechanically actuated, active clearance control system has been designed and installed into a non-rotating test rig. In order to harvest the benefit of tighter blade tip clearances, low-leakage seals are required for the actuated carrier segments of the seal shroud to prevent excessive leakage of compressor discharge (P3) cooling air. The test rig was designed and fabricated to facilitate the evaluation of these types of seals, identify seal leakage sources, and test other active clearance control system concepts. The objective of this paper is to present both experimental and analytical investigations into the nature of the face-seal to seal-carrier interface. Finite element analyses were used to examine face seal contact pressures and edge-loading under multiple loading conditions, varied E-seal positions and two new face seal heights. The analyses indicated that moving the E-seal inward radially and reducing face seal height would lead to more uniform contact conditions between the face seal and the carriers. Lab testing confirmed that moving the balance diameter inward radially caused a decrease in overall system leakage.

  4. Testing of molded high temperature plastic actuator road seals for use in advanced aircraft hydraulic systems

    NASA Technical Reports Server (NTRS)

    Waterman, A. W.; Huxford, R. L.; Nelson, W. G.

    1976-01-01

    Molded high temperature plastic first and second stage rod seal elements were evaluated in seal assemblies to determine performance characteristics. These characteristics were compared with the performance of machined seal elements. The 6.35 cm second stage Chevron seal assembly was tested using molded Chevrons fabricated from five molding materials. Impulse screening tests conducted over a range of 311 K to 478 K revealed thermal setting deficiencies in the aromatic polyimide molding materials. Seal elements fabricated from aromatic copolyester materials structurally failed during impulse cycle calibration. Endurance testing of 3.85 million cycles at 450 K using MIL-H-83283 fluid showed poorer seal performance with the unfilled aromatic polyimide material than had been attained with seals machined from Vespel SP-21 material. The 6.35 cm first stage step-cut compression loaded seal ring fabricated from copolyester injection molding material failed structurally during impulse cycle calibration. Molding of complex shape rod seals was shown to be a potentially controllable technique, but additional molding material property testing is recommended.

  5. Dynamic response of film thickness in spiral-groove face seals

    NASA Technical Reports Server (NTRS)

    Dirusso, E.

    1985-01-01

    Tests were performed on an inward- and an outward-pumping spiral-groove face seal to experimentally determine the film thickness response to seal seat motions and to gain insight into the effect of secondary seal friction on film thickness behavior. Film thickness, seal seat axial motion, seal frictional torque, and film axial load were recorded as functions of time. The experiments revealed that for sinusoidal axial oscillations of the seal seat, the primary ring followed the seal seat motion very well. For a skewed seal seat, however, the primary ring did not follow the seal seat motion, and load-carrying capacity was degraded. Secondary seal friction was varied over a wide range to determine its effect on film thickness dynamics. The seals were tested with ambient air at room temperature and atmospheric pressure as the fluid medium. The test speed ranged from 7000 to 20,000 rpm. Seal tangential velocity ranged from 34 to 98 m/sec (113 to 323 ft/sec).

  6. A comparison of experimental and theoretical results for leakage, pressure distribution, and rotordynamic coefficients for annular gas seals

    NASA Technical Reports Server (NTRS)

    Nicks, C. O.; Childs, D. W.

    1984-01-01

    The importance of seal behavior in rotordynamics is discussed and current annular seal theory is reviewed. A Nelson's analytical-computational method for determining rotordynamic coefficients for this type of compressible-flow seal is outlined. Various means for the experimental identification of the dynamic coefficients are given, and the method employed at the Texas A and M University (TAMU) test facility is explained. The TAMU test apparatus is described, and the test procedures are discussed. Experimental results, including leakage, entrance-loss coefficients, pressure distributions, and rotordynamic coefficients for a smooth and a honeycomb constant-clearance seal are presented and compared to theoretical results from Nelson's analysis. The results for both seals show little sensitivity to the running speed over the test range. Agreement between test results and theory for leakage through the seal is satisfactory. Test results for direct stiffness show a greater sensitivity to fluid pre-rotation than predicted. Results also indicate that the deliberately roughened surface of the honeycomb seal provides improved stability versus the smooth seal.

  7. Dynamic Behavior of Spiral-Groove and Rayleigh-Step Self-Acting Face Seals

    NASA Technical Reports Server (NTRS)

    Dirusso, Eliseo

    1984-01-01

    Tests were performed to determine the dynamic behavior and establish baseline dynamic data for five self-acting face seals employing Rayleigh-step lift-pads and inward pumping as well as outward-pumping spiral grooves for the lift-generating mechanism. The primary parameters measured in the tests were film thickness, seal seat axial motion, and seal frictional torque. The data show the dynamic response of the film thickness to the motion of the seal seat. The inward-pumping spiral-groove seals exhibited a high-amplitude film thickness vibratory mode with a frequency of four times the shaft speed. This mode was not observed in the other seals tested. The tests also revealed that high film thickness vibration amplitude produces considerably higher average film thickness than do low amplitude film thickness vibrations. The seals were tested at a constant face load of 73 N (16.4 lb) with ambient air at room temperature and atmospheric pressure as the fluid medium. The test speed range was from 7000 to 17000 rpm. Seal tangential speed range was 34.5 to 83.7 m/sec (113 to 274 ft/sec).

  8. Non-Contacting Finger Seals Static Performance Test Results at Ambient and High Temperatures

    NASA Technical Reports Server (NTRS)

    Proctor, Margaret P.

    2016-01-01

    The non-contacting finger seal is an advanced seal concept with potential to reduce specific fuel consumption in gas turbine engines by 2 to 3 percent with little to no wear of the seal or rotor. Static performance tests and bind-up tests of eight different non-contacting finger seal configurations were conducted in air at pressure differentials up to 689.4 kPa and temperatures up to 922 K. Four of the seals tested were designed to have lift pads concentric to a herringbone-grooved rotor which generates hydrodynamic lift when rotating. The remaining seals were tested with a smooth rotor; one seal had a circumferential taper and one had an axial taper on the lift pad inner diameter to create hydrodynamic lift during rotation. The effects of the aft finger axial thickness and of the forward finger inner diameter on leakage performance were investigated as well and compared to analytical predictions.

  9. Non-Contacting Finger Seals Static Performance Test Results at Ambient and High Temperatures

    NASA Technical Reports Server (NTRS)

    Proctor, Margaret P.

    2016-01-01

    The non-contacting finger seal is an advanced seal concept with potential to reduce specific fuel consumption in gas turbine engines by 2 to 3 with little to no wear of the seal or rotor. Static performance tests and bind-up tests of eight different non-contacting finger seal configurations were conducted in air at pressure differentials up to 689.4 kPa and temperatures up to 922 K. Four of the seals tested were designed to have lift pads concentric to a herringbone-grooved rotor which generates hydrodynamic lift when rotating. The remaining seals were tested with a smooth rotor; one seal had a circumferential taper and one had an axial taper on the lift pad inner diameter to create hydrodynamic lift during rotation. The effects of the aft finger axial thickness and of the forward finger inner diameter on leakage performance were investigated as well and compared to analytical predictions.

  10. Development of helicopter transmission seals, task 2

    NASA Technical Reports Server (NTRS)

    Hayden, T. S.; Keller, C. H., Jr.

    1973-01-01

    High speed helicopter transmission seal concepts were designed, fabricated and tested. The concepts were a dual element split ring seal and a circumferential seal. The tests were performed in a rig using an actual input quill assembly. The test conditions were selected to simulate transmission operation and were 230 F oil temperature, and a sliding speed of 9400 ft/min. The split ring seal exhibited gross leakage and was considered unsatisfactory, while the circumferential seal leakage was less than 1 c.c./hour; this leakage is within acceptable limits. The circumferential seal wear was only to .0005 inches during a 100 hour run (40 starts and stops). During a 40 hour contamination test (mesh silica flour) the seal total wear was a maximum of .004 inches. This wear is considered acceptable.

  11. Investigations of Control Surface Seals for Re-entry Vehicles

    NASA Technical Reports Server (NTRS)

    Dunlap, Patrick H., Jr.; Steinetz, Bruce M.; Curry, Donald M.; DeMange, Jeffrey J.; Rivers, H. Kevin; Hsu, Su-Yuen

    2002-01-01

    Re-entry vehicles generally require control surfaces (e.g., rudders, body flaps) to steer them during flight. Control surface seals are installed along hinge lines and where control surface edges move close to the vehicle body. These seals must operate at high temperatures and limit heat transfer to underlying structures to prevent them from overheating and causing possible loss of vehicle structural integrity. This paper presents results for thermal analyses and mechanical testing conducted on the baseline rudder/fin seal design for the X-38 re-entry vehicle. Exposure of the seals in a compressed state at the predicted peak seal temperature of 1900 F resulted in loss of seal resiliency. The vertical Inconel rudder/fin rub surface was re-designed to account for this loss of resiliency. Room temperature compression tests revealed that seal unit loads and contact pressures were below limits set to protect Shuttle thermal tiles on the horizontal sealing surface. The seals survived an ambient temperature 1000 cycle scrub test over sanded Shuttle tiles and were able to disengage and re-engage the tile edges during testing. Arc jet tests confirmed the need for seals in the rudder/fin gap location because a single seal caused a large temperature drop (delta T = 1710 F) in the gap.

  12. The General Electric F404 - Engine of the RAAF’s New Fighter.

    DTIC Science & Technology

    1985-07-01

    turbine stages, high pressure and low pressure, stationary and rotating, are cooled, as well as rotors, cooling plates, blade and vane platforms and...such engine components as turbine rotor blading . disks and seals. This has led to the development of design methods that enable extended usage to...Scientific Adviser RAN Aircraft Maintenance and Flight Trials Unit Directorate of Naval Aircraft Engineering Directorate of Naval Aviation Policy

  13. Development of spiral-groove self-acting seals for helicopter engines

    NASA Technical Reports Server (NTRS)

    Obrien, M.

    1979-01-01

    A spiral-groove, self-acting face seal was rig tested at advanced gas turbine operating conditions to determine wear and leakage rates. The spiral-groove, self-acting geometry was located in the rotating seal seat. Seal component wear induced by start-stop operation was measured after subjecting the test seal to 176 start-stop cycles. Wear occurring during normal operation was documented throughout a 75-hour endurance test. Seal air leakage was also measured. During endurance operation, the seal was subjected to operating conditions bounded by the values surface speed - 244 m/s (800 ft/sec), air pressure - 148 N/sq cm abs (215 psia), and air temperature - 622 K (660 F). The post-test condition of the seal components was documented. Wear data is presented in tabular form, while seal air leakage is presented graphically, as a function of pressure and speed.

  14. The SSME seal test program: Leakage tests for helically-grooved seals

    NASA Technical Reports Server (NTRS)

    Childs, D. W.

    1983-01-01

    Helically grooved annular seal configurations were tested in highly turbulent flow to determine if reduced leakage and enhanced stability would result from the pumping action of the seal. It was found that: (1) leakage of a helically grooved seals decreases with running speed; (2) leakage reduction due to increased running speed is greater at lower values of R sub a; (3) an asymptote for leakage reduction is indicated with increasing running speed; (4) leakage is reduced by reducing the ridge (minimum) and average clearances; (5) leakage increases with increasing pitch angles and with increasing groove depth. Plain seals with smooth rotors and stators will leak more than a helically grooved seal. It was also found that plain seals with a rough rotor and a rough stator leak less than a properly designed helically grooved seal. A properly designed helically grooved seal consumes at least twice as much power as a conventional annular seal.

  15. Investigations of Shuttle Main Landing Gear Door Environmental Seals

    NASA Technical Reports Server (NTRS)

    Finkbeiner, Joshua; Dunlap, Pat; Steinetz, Bruce; DeMango, Jeff; Newswander, Daniel

    2005-01-01

    The environmental seals for the main landing gear doors of the Shuttle Orbiters were raised by the Columbia Accident Investigation Board as a potential safety concern. Inspections of seals installed on the Shuttle Discovery revealed that they were permanently deformed and no longer met certified seal compression requirements. Replacement of the seals led to the inability to fully close the main landing gear doors. Johnson Space Center requested that Glenn Research Center conduct tests on the main landing gear door environmental seals to assist in installing the seals in a manner to allow the main landing gear doors to fully close. Further testing was conducted to fill out the seal performance database. Results from the testing indicated that the method of bonding the seals was important in reducing seal loads on the main landing gear doors. Also, the replacement seals installed in Shuttle Discovery were found to have leakage performance sufficient to meet the certification requirements.

  16. Review of Full-Scale Docking Seal Testing Capabilities

    NASA Technical Reports Server (NTRS)

    Dunlap, Patrick H., Jr.; Penney, Nicholas; Wasowski, Janice L.; Daniels, Christopher C.; Steinetz, Bruce M.

    2008-01-01

    NASA is developing a new docking system to support future space exploration missions to low-Earth orbit, the Moon, and Mars. This mechanism, called the Low Impact Docking System (LIDS), is designed to connect pressurized space vehicles and structures including the Crew Exploration Vehicle, International Space Station, and lunar lander. NASA Glenn Research Center (GRC) is playing a key role in developing the main interface seal for this new docking system. These seals will be approximately 147 cm (58 in.) in diameter. To evaluate the performance of the seals under simulated operating conditions, NASA GRC is developing two new test rigs: a non-actuated version that will be used to measure seal leak rates and an actuated test rig that will be able to measure both seal leak rates and loads. Both test rigs will be able to evaluate the seals under seal-on-seal or seal-on-plate configurations at temperatures from -50 to 50 C (-58 to 122 F) under operational and pre-flight checkout pressure gradients in both aligned and misaligned conditions.

  17. Self-acting seals for helicopter engines

    NASA Technical Reports Server (NTRS)

    Lynwander, P.

    1975-01-01

    An experimental evaluation was conducted with NASA-designed self-acting face and circumferential seals for use in the main shaft positions of advanced gas turbine engines. The seals featured Rayleigh step pads (self-acting geometry) for lift augmentation. The tested seals incorporated design improvements over previous self-acting configurations. Self-acting face seals were tested to speeds of 214 m/s (700 ft/sec, 63700 rpm), air pressures of 216.8 N/sq cm abs (314.7 psia), and air temperatures of 688K (778 F). Self-acting circumferential seals were tested to speeds of 183 m/s (600 ft/sec, 47700 rpm), air pressures of 61.8 N/sq cm abs (89.7 psia), and air temperatures of 711 K (820 F). Self-acting face-seals are capable of operating at conditions exceeding conventional seal capability. The limit on speed capability was found to be the flatness of the seal-seat. The self-acting circumferential seal design tested requires further development for use in advanced engines.

  18. Actively controlled shaft seals for aerospace applications

    NASA Astrophysics Data System (ADS)

    Salant, Richard F.

    The objective of years 4 and 5 of this project (1992 and 1993) is to determine experimentally the behavior and operating characteristics of a controllable mechanical seal, and to identify potential problem areas. A controllable mechanical seal is one in which the thickness of the lubricating film separating the sealing surfaces is adjustable, and can be controlled by an electronic control system, based on information supplied by sensors that monitor the condition of the film. This work builds upon work done during years 1-3, in which a controllable mechanical seal was designed, analyzed, and fabricated. At the beginning of year 4, the mechanical seal and test rig was assembled, and preliminary testing begun. The five major tasks of years 4 and 5 encompass instrumentation, configuration changes of the mechanical seal to optimize its performance, systematic steady state tests, systematic transient tests, and a final report. During this reporting period, significant progress was made on instrumenting the test rig and modifying the design to optimize the seal's performance. Initial steady state tests were also performed.

  19. Small High-Speed Self-Acting Shaft Seals for Liquid Rocket Engines

    NASA Technical Reports Server (NTRS)

    Burcham, R. E.; Boynton, J. L.

    1977-01-01

    Design analysis, fabrication, and experimental evaluation were performed on three self-acting facetype LOX seal designs and one circumferential-type helium deal design. The LOX seals featured Rayleigh step lift pad and spiral groove geometry for lift augmentation. Machined metal bellows and piston ring secondary seal designs were tested. The helium purge seal featured floating rings with Rayleigh step lift pads. The Rayleigh step pad piston ring and the spiral groove LOX seals were successfully tested for approximately 10 hours in liquid oxygen. The helium seal was successfully tested for 24 hours. The shrouded Rayleigh step hydrodynamic lift pad LOX seal is feasible for advanced, small, high-speed oxygen turbopumps.

  20. Hermetic Seal Leak Detection Apparatus with Variable Size Test Chamber

    NASA Technical Reports Server (NTRS)

    Kelley, Anthony R. (Inventor)

    2015-01-01

    The present invention is a versatile hermetic seal leak detection apparatus for testing hermetically sealed containers and devices for leaks without the need to create a custom or specially manufactured testing chamber conforming to the dimensions of the specific object under test. The size of the testing chamber may be mechanically adjusted by the novel use of bellows to reduce and optimize the amount of gas space in a test chamber which surrounds the hermetically sealed object under test. The present invention allows the size of the test chamber to be selectively adjusted during testing to provide an optimum test chamber gas space. The present invention may be further adapted to isolate and test specific portions of the hermetically sealed object under test for leaks.

  1. Advanced Gas Turbine (AGT) Technology Project

    NASA Technical Reports Server (NTRS)

    1986-01-01

    Engine testing, ceramic component fabrication and evaluation, component performance rig testing, and analytical studies comprised AGT 100 activities during the 1985 year. Ten experimental assemblies (builds) were evaluated using two engines. Accrued operating time was 120 hr of burning and 170 hr total, bringing cumulative total operating time to 395 hr, all devoid of major failures. Tests identified the generator seals as the primary working fluid leakage sources. Power transfer clutch operation was demonstrated. An alpha SiC gasifier rotor engine test resulted in blade tip failures. Recurring case vibration and shaft whip have limited gasifier shaft speeds to 84%. Ceramic components successfully engine tested now include the SiC scroll assembly, Si3N3 turbine rotor, combustor assembly, regenerator disk bulkhead, turbine vanes, piston rings, and couplings. A compressor shroud design change to reduce heat recirculation back to the inlet was executed. Ceramic components activity continues to focus on the development of state-of-the-art material strength characteristics in full-scale engine hardware. Fiber reinforced glass-ceramic composite turbine (inner) backplates were fabricated by Corning Glass Works. The BMAS/III material performed well in engine testing. Backplates of MAS material have not been engine tested.

  2. Annular honeycomb seals: Test results for leakage and rotordynamic coefficients; comparisons to labyrinth and smooth configurations

    NASA Technical Reports Server (NTRS)

    Childs, Dara W.; Elrod, David; Hale, Keith

    1989-01-01

    Test results are presented for leakage and rotordynamic coefficients for seven honeycomb seals. All seals have the same radius, length, and clearance; however, the cell depths and diameters are varied. Rotordynamic data, which are presented, consist of the direct and cross-coupled stiffness coefficients and the direct damping coefficients. The rotordynamic-coefficient data show a considerable sensitivity to changes in cell dimensions; however, no clear trends are identifiable. Comparisons of test data for the honeycomb seals with labyrinth and smooth annular seals show the honeycomb seal had the best sealing (minimum leakage) performance, followed in order by the labyrinth and smooth seals. For prerotated fluid entering the seal, in the direction of shaft rotation, the honeycomb seal has the best rotordynamic stability followed in order by the labyrinth and smooth. For no prerotation, or fluid prerotation against shaft rotation, the labyrinth seal has the best rotordynamic stability followed in order by the smooth and honeycomb seals.

  3. Seal material development test program

    NASA Technical Reports Server (NTRS)

    1971-01-01

    A program designed to characterize an experimental fluoroelastomer material designated AF-E-124D, is examined. Tests conducted include liquid nitrogen load compression tests, flexure tests and valve seal tests, ambient and elevated temperature compression set tests, and cleaning and flushing fluid exposure tests. The results of these tests indicate the AF-E-124D is a good choice for a cryogenic seal, since it exhibits good low temperature sealing characteristics and resistance to permanent set. The status of this material as an experimental fluorelastomer is stressed and recommended. Activity includes definition and control of critical processing to ensure consistent material properties. Design, fabrication and test of this and other materials is recommended in valve and static seal applications.

  4. Rudder/Fin Seal Investigations for the X-38 Re-Entry Vehicle

    NASA Technical Reports Server (NTRS)

    Dunlap, Patrick H., Jr.; Steinetz, Bruce M.; Curry, Donald M.

    2000-01-01

    NASA is currently developing the X-38 vehicle that will be used to demonstrate the technologies required for a crew return vehicle (CRV) for the International Space Station. The X-38 control surfaces require high temperature seals to limit hot gas ingestion and transfer of heat to underlying low-temperature structures to prevent over-temperature of these structures and possible loss of the vehicle. This paper presents results for thermal analyses and flow and compression tests conducted on as-received and thermally exposed seals for the rudder/fin location of the X-38. A thermal analysis of the rudder/fin dual seal assembly based on representative heating rates on the windward surface of the rudder/fin area predicted a peak seal temperature of 1900 F. The temperature-exposed seals were heated in a compressed state at 1900 F corresponding to the predicted peak temperature. Room temperature compression tests were performed to determine load versus linear compression, preload, contact area, stiffness, and resiliency characteristics for the as-received and temperature-exposed seals. Temperature exposure resulted in permanent set and loss of resiliency in these seals. Unit loads and contact pressures for the seals were below the 5 lb/in. and 10 psi limits set to limit the loads on the Shuttle thermal tiles that the seals seal against in the rudder/fin location. Measured seal flow rates for a double seal were about 4.5 times higher than the preliminary seal flow goal. The seal designs examined in this study are expected to be able to endure the high temperatures that they will be exposed to for a single-use life. Tests performed herein combined with future analyses, arc jet tests, and scrubbing tests will be used to select the final seal design for this application.

  5. Rudder/Fin Seal Investigations for the X-38 Re-Entry Vehicle

    NASA Technical Reports Server (NTRS)

    Dunlap, Patrick H., Jr.; Steinetz, Bruce M.; Curry, Donald M.

    2000-01-01

    NASA is currently developing the X-38 vehicle that will be used to demonstrate the technologies required for a crew return vehicle (CRV) for the International Space Station. The X-38 control surfaces require high temperature seals to limit hot gas ingestion and transfer of heat to underlying low-temperature structures to prevent over-temperature of these structures and possible loss of the vehicle. This paper presents results for thermal analyses and flow and compression tests conducted on as-received and thermally exposed seals for the rudder/fin location of the X-38. A thermal analysis of the rudder/fin dual seal assembly based on representative heating rates on the windward surface of the rudder/fin area predicted a peak seal temperature of 1900 F. The temperature-exposed seals were heated in a compressed state at 1900 F corresponding to the predicted peak temperature. Room temperature compression tests were performed to determine load versus linear compression, preload, contact area, stiffness, and resiliency characteristics for the as-received and temperature-exposed seals. Temperature exposure resulted in permanent set and loss of resiliency in these seals. Unit loads and contact pressures for the seals were below the five pounds/inch and ten psi limits set to limit the loads on the Shuttle thermal tiles that the seals seal against in the rudder/fin location. Measured seal flow rates for a double seal were about 4.5 times higher than the preliminary seal flow goal. The seal designs examined in this study are expected to be able to endure the high temperatures that they will be exposed to for a single-use life. Tests performed herein combined with future analyses, arc jet tests, and scrubbing tests will be used to select the final seal design for this application.

  6. Advanced Control Surface Seal Development for Future Space Vehicles

    NASA Technical Reports Server (NTRS)

    DeMange, J. J.; Dunlap, P. H., Jr.; Steinetz, B. M.

    2004-01-01

    NASA s Glenn Research Center (GRC) has been developing advanced high temperature structural seals since the late 1980's and is currently developing seals for future space vehicles as part of the Next Generation Launch Technology (NGLT) program. This includes control surface seals that seal the edges and hinge lines of movable flaps and elevons on future reentry vehicles. In these applications, the seals must operate at temperatures above 2000 F in an oxidizing environment, limit hot gas leakage to protect underlying structures, endure high temperature scrubbing against rough surfaces, and remain flexible and resilient enough to stay in contact with sealing surfaces for multiple heating and loading cycles. For this study, three seal designs were compared against the baseline spring tube seal through a series of compression tests at room temperature and 2000 F and flow tests at room temperature. In addition, canted coil springs were tested as preloaders behind the seals at room temperature to assess their potential for improving resiliency. Addition of these preloader elements resulted in significant increases in resiliency compared to the seals by themselves and surpassed the performance of the baseline seal at room temperature. Flow tests demonstrated that the seal candidates with engineered cores had lower leakage rates than the baseline spring tube design. However, when the seals were placed on the preloader elements, the flow rates were higher as the seals were not compressed as much and therefore were not able to fill the groove as well. High temperature tests were also conducted to asses the compatibility of seal fabrics against ceramic matrix composite (CMC) panels anticipated for use in next generation launch vehicles. These evaluations demonstrated potential bonding issues between the Nextel fabrics and CMC candidates.

  7. Experimental Research and Analysis of Rotordynamic Characteristics for a New Kind of Tilting-pad Gas Seal

    NASA Astrophysics Data System (ADS)

    Cao, Hao; Cao, Xiaoyu; Chen, Fei; Li, Ming; Zhang, Bolin; Wei, Jilong

    2017-12-01

    This paper presents a new kind of tilting-pad gas seal. This design is introduced to reduce the tangential seal force and to improve the stability of rotor system finally. A seal test rig is set up. The paper compares the leakage between tilting-pad seal and fixed pad seal. The result shows that the leakage ratio of the tilting-pad seal is close to the leakage ratio of the fixed pad seal. The work done by seal force on the cylinder system is calculated as an index of comparison between these two seals. Result shows that the work done by the fixed pad seal is greater than the work done by the tilting-pad seal. Moreover, system damping factor is used to compare the stabilities of these two seals. The impact tests on the cylinder system are done under different conditions. The system damping factors are calculated from the damped waves of system vibration. Test results show that the damping factor of the tilting pad seal is higher than that of the fixed pad seal in both the vertical and the horizontal directions.

  8. Cyclic tests of P-bulb end-seal designs for a shuttle-type wing-elevon cove membrane seal

    NASA Technical Reports Server (NTRS)

    Hunt, L. R.

    1979-01-01

    Four P-bulb end seal designs were tested at room temperature in a cyclic seal test apparatus. Test results show that all the P-bulb end seals have the durability required for a 100 mission life (neglecting possible elevated-temperature effects) and three of the four P-bulbs provide an adequate seal against a 7.0-kPa air pressure differential. Antifriction material attached to the P-bulb rub surface reduced friction slightly but could degrade the sealing effectiveness. A flat rub surface molded into the P-bulb discouraged wrinkling and rolling and thereby reduced leakage. However, the P-bulbs lacked resilience, as indicated by increased leakage when P-bulb compression was reduced. The best P-bulb design tested included an antifriction interface bonded to a flat surface molded into the P-bulb.

  9. Development of a Flexible Seal for a 60 psi Cryogenic Pressure Box

    NASA Technical Reports Server (NTRS)

    Glass, David E.

    1998-01-01

    A cryogenic pressure box test facility has been designed and fabricated for use at NASA Langley Research Center (LaRC) to subject 5 ft x 6 ft curved panels to cryogenic temperatures and biaxial tensile loads. The cryogenic pressure box is capable of testing curved panels down to -423 F (20 K) with 54 psig maximum pressure. The key challenge in the design and fabrication of the pressure box was the development of a seal that could remain flexible at -423 F and contain 60 psi gaseous helium as the pressurization gas. A C-shaped seal was developed using a Gore-tex woven fabric. Mechanical testing of the fabric at room and elevated temperature, liquid nitrogen temperature, and liquid helium temperature demonstrated the strength and creep resistance of the material over the desired operating range. A small scale cryogenic pressure box was used to test prototype seals at cryogenic temperatures up to 60 psi. Preliminary tests indicated that excessive leakage was present through the seal. As a result, an aluminized mylar liner was placed inside the Gore-tex seal to reduce leakage through the seal. The final seal configuration resulted in minimal pressure loss during seal testing.

  10. A Hot Dynamic Seal Rig for Measuring Hypersonic Engine Seal Durability and Flow Performance

    NASA Technical Reports Server (NTRS)

    Miller, Jeffrey H.; Steinetz, Bruce M.; Sirocky, Paul J.; Kren, Lawrence A.

    1993-01-01

    A test fixture for measuring the dynamic performance of candidate high-temperature engine seal concepts was installed at NASA Lewis Research Center. The test fixture was designed to evaluate seal concepts under development for advanced hypersonic engines, such as those being considered for the National Aerospace Plane (NASP). The fixture can measure dynamic seal leakage performance from room temperature up to 840 C (1550 F) and air pressure differentials up to 690 kPa (100 psi). Performance of the seals can be measured while sealing against flat or distorted walls. In the fixture two seals are preloaded against the sides of a 30 cm (1 ft) long saber that slides transverse to the axis of the seals, simulating the scrubbing motion anticipated in these engines. The capabilities of this test fixture along with preliminary data showing the dependence of seal leakage performance on high temperature cycling are addressed.

  11. A hot dynamic seal rig for measuring hypersonic engine seal durability and flow performance

    NASA Technical Reports Server (NTRS)

    Miller, Jeffrey H.; Steinetz, Bruce M.; Sirocky, Paul J.; Kren, Lawrence A.

    1993-01-01

    A test fixture for measuring the dynamic performance of candidate high-temperature engine seal concepts has been installed at NASA Lewis Research Center. The test fixture has been designed to evaluate seal concepts under development for advanced hypersonic engines, such as those being considered for the National Aerospace Plane (NASP). The fixture can measure dynamic seal leakage performance from room temperature up to 840 C (1550 F) and air pressure differentials up to 690 kPa (100 psi). Performance of the seals can be measured while sealing against flat or distorted walls. In the fixture two seals are preloaded against the sides of a 30 cm (1 ft) long saber that slides transverse to the axis of the seals, simulating the scrubbing motion anticipated in these engines. This report covers the capabilities of this test fixture along with preliminary data showing the dependence of seal leakage performance on high temperature cycling.

  12. Feasibility Assessment of Thermal Barrier Seals for Extreme Transient Temperatures

    NASA Technical Reports Server (NTRS)

    Steinetz, Bruce M.; Dunlap, Patrick H., Jr.

    1998-01-01

    The assembly joints of modem solid rocket motor cases are generally sealed using conventional O-ring type seals. The 5500+ F combustion gases produced by rocket motors are kept a safe distance away from the seals by thick layers of phenolic insulation. Special compounds are used to fill insulation gaps leading up to the seals to prevent a direct flowpath to them. Design criteria require that the seals should not experience torching or charring during operation, or their sealing ability would be compromised. On limited occasions, NASA has observed charring of the primary O-rings of the Space Shuttle solid rocket nozzle assembly joints due to parasitic leakage paths opening up in the gap-fill compounds during rocket operation. NASA is investigating different approaches for preventing torching or charring of the primary O-rings. One approach is to implement a braided rope seal upstream of the primary O-ring to serve as a thermal barrier that prevents the hot gases from impinging on the O-ring seals. This paper presents flow, resiliency, and thermal resistance for several types of NASA rope seals braided out of carbon fibers. Burn tests were performed to determine the time to burn through each of the seals when exposed to the flame of an oxyacetylene torch (5500 F), representative of the 5500 F solid rocket motor combustion temperatures. Rope seals braided out of carbon fibers endured the flame for over six minutes, three times longer than solid rocket motor burn time. Room and high temperature flow tests are presented for the carbon seals for different amounts of linear compression. Room temperature compression tests were performed to assess seal resiliency and unit preloads as a function of compression. The thermal barrier seal was tested in a subscale "char" motor test in which the seal sealed an intentional defect in the gap insulation. Temperature measurements indicated that the seal blocked 2500 F combustion gases on the upstream side with very little temperature rise on the downstream side.

  13. A hybrid floating brush seal (HFBS) for improved sealing and wear performance in turbomachinery applications

    NASA Astrophysics Data System (ADS)

    Lattime, Scott Byran

    A conceptually new type of seal has been developed for gas turbine applications which dramatically reduces wear and leakage associated with current labyrinth and brush seal technologies. The Hybrid Floating Brush Seal (HFBS) combines brush seal and film riding face seal technologies to create a hybrid seal that allows both axial and radial excursions of the sealed shaft, while simultaneously eliminating interface surface speeds (friction and heat) between the rotor and the brush material that characterize standard brush seal technology. A simple test rig was designed to evaluate feasibility of the HFBS under relatively low pressures and rotational speeds (50psig, 5krpm). A second test stand was created to study the effects of centrifugal force on bristle deflection. A third test facility was constructed for prototype development and extensive room temperature testing at moderate pressures and fairly high rotational speeds (100psig, 40krpm). This test rig also allowed the evaluation of the HFBS during axial movement of a rotating shaft. An analytical model to predict the effects of centrifugal force on the bristles of a rotating brush seal was developed. Room temperature analysis of the HFBS proved successful for relatively high operating rotational velocities at moderate pressures with very acceptable leakage rates for gas turbine engines. Brush seals were able to track rotor speeds up to 24krpm while maintaining sealing integrity. The HFBS's ability to function under axial shaft displacement and synchronous dynamic radial loading was also proven successful. Hydrodynamic performance of the face seal was proven to provide adequate stiffness and load carrying capacity to keep the brush seal from contacting the face seal at pressure drops across the brush of up to 100psi. Leakage performance over standard brush seal and labyrinth technology was quite dramatic. The HFBS showed its sealing advantage using much higher radial interference between the rotor and the bristle bore over standard brush seal designs. Experimental results of the HFBS showed leakage reductions of 6 to 7 times that of a standard brush seal at the same operating pressure ratios and rotational speed and an order of magnitude less than numerical predictions of a standard labyrinth seal. (Abstract shortened by UMI.)

  14. A comparison of experimental and theoretical results for rotordynamic coefficients of four annular gas seals

    NASA Technical Reports Server (NTRS)

    Childs, D. W.; Nelson, C. C.; Elrod, D.; Nicks, C.

    1985-01-01

    The test facility and initial test program developed to experimentally measure the fluid forces induced by annular gas seals is described. A comparison of theoretically predicted and experimentally obtained data for smooth and honeycomb seals is provided. And a comparison of experimental data from the tests of three smooth-rotor/smooth-stator seals is provided. The leakage of the working fluid through the seal, the pressure gradient along the seal length, entrance pressure-loss data, and rotordynamic coefficients provide a basis for comparison. A short discussion on seal theory is included, and various rotordynamic coefficient identification schemes are described.

  15. Feasibility study of negative lift circumferential type seal for helicopter transmissions

    NASA Technical Reports Server (NTRS)

    Goldring, E. N.

    1977-01-01

    A new seal concept, the negative lift circumferential type seal, was evaluated under simulated helicopter transmission conditions. The bore of the circumferential seal contains step type geometry which produces a negative lift that urges the sealing segments towards the shaft surface. The seal size was a 2.5 inch bore and the test speeds were 7000 and 14,250 rpm. During the 300 hour test at typical transmission seal pressure (to 2 psig) the leakage was within acceptable limits and generally less than 0.1 cc/hour during the last 150 hours of testing. The wear to the carbon segments during the 300 hours was negligible.

  16. Overview of LIDS Docking and Berthing System Seals

    NASA Technical Reports Server (NTRS)

    Daniels, Christopher C.; Dunlap, Patrick H., Jr.; deGroh, Henry C., III; Steinetz, Bruce M.; Oswald, Jay J.; Smith, Ian

    2007-01-01

    This viewgraph presentation describes the Low Impact Docking System (LIDS) docking and berthing system seals. The contents include: 1) Description of the Application: Low Impact Docking System (LIDS); 2) LIDS Seal Locations: Vehicle Undocked (Hatch Closed); 3) LIDS Seal Locations: Mechanical Pass Thru; 4) LIDS Seal Locations: Electrical and Pyro Connectors; 5) LIDS Seal Locations: Vehicle Docked (Hatches Open); 6) LIDS Seal Locations: Main Interface Seal; 7) Main Interface Seal Challenges and Specifications; 8) Approach; 9) Seal Concepts Under Development/Evaluation; 10) Elastomer Material Evaluations; 11) Evaluation of Relevant Seal Properties; 12) Medium-Scale (12") Gask-O-Seal Compression Tests; 13) Medium-Scale Compression Results; 14) Adhesion Forces of Elliptical Top Gask-o-seals; 15) Medium-Scale Seals; 16) Medium-Scale Leakage Results: Effect of Configuration; 17) Full Scale LIDS Seal Test Rig Development; 18) Materials International Space Station Experiment (MISSE 6A and 6B); and 19) Schedule.

  17. An Evaluation of High Temperature Airframe Seals for Advanced Hypersonic Vehicles

    NASA Technical Reports Server (NTRS)

    DeMange, Jeffrey J.; Dunlap, Patrick H.; Steinetz, Bruce M.; Drlik, Gary J.

    2007-01-01

    High temperature seals are required for advanced hypersonic airframe applications. In this study, both spring tube thermal barriers and innovative wafer seal systems were evaluated under relevant hypersonic test conditions (temperatures, pressures, etc.) via high temperature compression testing and room temperature flow assessments. Thermal barriers composed of a Rene 41 spring tube filled with Saffil insulation and overbraided with a Nextel 312 sheath showed acceptable performance at 1500 F in both short term and longer term compression testing. Nextel 440 thermal barriers with Rene 41 spring tubes and Saffil insulation demonstrated good compression performance up to 1750 F. A silicon nitride wafer seal/compression spring system displayed excellent load performance at temperatures as high as 2200 F and exhibited room temperature leakage values that were only 1/3 those for the spring tube rope seals. For all seal candidates evaluated, no significant degradation in leakage resistance was noted after high temperature compression testing. In addition to these tests, a superalloy seal suitable for dynamic seal applications was optimized through finite element techniques.

  18. Sliding Seal Materials for Adiabatic Engines, Phase 2

    NASA Technical Reports Server (NTRS)

    Lankford, J.; Wei, W.

    1986-01-01

    An essential task in the development of the heavy-duty adiabatic diesel engine is identification and improvements of reliable, low-friction piston seal materials. In the present study, the sliding friction coefficients and wear rates of promising carbide, oxide, and nitride materials were measured under temperature, environmental, velocity, and loading conditions that are representative of the adiabatic engine environment. In addition, silicon nitride and partially stabilized zirconia disks were ion implanted with TiNi, Ni, Co, and Cr, and subsequently run against carbide pins, with the objective of producing reduced friction via solid lubrication at elevated temperature. In order to provide guidance needed to improve materials for this application, the program stressed fundamental understanding of the mechanisms involved in friction and wear. Electron microscopy was used to elucidate the micromechanisms of wear following wear testing, and Auger electron spectroscopy was used to evaluate interface/environment interactions which seemed to be important in the friction and wear process. Unmodified ceramic sliding couples were characterized at all temperatures by friction coefficients of 0.24 and above. The coefficient at 800 C in an oxidizing environment was reduced to below 0.1, for certain material combinations, by the ion implanation of TiNi or Co. This beneficial effect was found to derive from lubricious Ti, Ni, and Co oxides.

  19. Design, develop and test high temperature dynamic seals for the space shuttle's aerodynamic control surfaces

    NASA Technical Reports Server (NTRS)

    1973-01-01

    A description is given of the design, development and testing of high temperature dynamic seals for the gaps between the structure and aerodynamic control surfaces on the space shuttle. These aerodynamic seals are required to prevent high temperature airflow from damaging thermally unprotected structures and components during entry. Two seal concepts evolved a curtain seal for the spanwise elevon cove gap, and a labyrinth seal for the area above the elevon, at the gap between the end of the elevon and the fuselage. On the basis of development testing, both seal concepts were shown to be feasible for controlling internal temperatures to 350 F or less when exposed to a typical space shuttle entry environment. The curtain seal concept demonstrated excellent test results and merits strong consideration for application on the space shuttle orbiter. The labyrinth seal concept, although demonstrating significant temperature reduction characteristics, may or may not be required on the Orbiter, depending on the actual design configuration and flight environment.

  20. SSME seal test program: Test results for hole-pattern damper seals

    NASA Technical Reports Server (NTRS)

    Childs, D. W.

    1985-01-01

    The results consisting of direct and transverse force coefficients are presented for thirteen, hole-pattern, damper-seal configurations. The designation damper seal refers to a seal which uses a deliberately roughened stator nd smooth rotor, to increase the net damping force developed by a seal. The designation hole-pattern refers to a stator roughness pattern which is developed by a pattern of round holes while are milled into the stator. All seals tested use the same smooth rotor and have the same constant minimum clearance. The seal tests examined the following major design options: (1) hole-area density, i.e., the proportion of stator surface area consumed by holes; and (2) hole depth, particularly the ratio of hole depth to minimum clearance. In addition, limited data were taken to examine the influence of in-line versus staggered hole patterns and flat-bottomed versus spherical-bottomed holes.

  1. Hermetic Seal Leak Detection Apparatus

    NASA Technical Reports Server (NTRS)

    Kelley, Anthony R. (Inventor)

    2013-01-01

    The present invention is a hermetic seal leak detection apparatus, which can be used to test for hermetic seal leaks in instruments and containers. A vacuum tight chamber is created around the unit being tested to minimize gas space outside of the hermetic seal. A vacuum inducing device is then used to increase the gas chamber volume inside the device, so that a slight vacuum is pulled on the unit being tested. The pressure in the unit being tested will stabilize. If the stabilized pressure reads close to a known good seal calibration, there is not a leak in the seal. If the stabilized pressure reads closer to a known bad seal calibration value, there is a leak in the seal. The speed of the plunger can be varied and by evaluating the resulting pressure change rates and final values, the leak rate/size can be accurately calculated.

  2. A New Tribological Test for Candidate Brush Seal Materials Evaluation

    NASA Technical Reports Server (NTRS)

    Fellenstein, James A.; Dellacorte, Christopher

    1994-01-01

    A new tribological test for candidate brush seal materials evaluation has been developed. The sliding contact between the brush seal wires and their mating counterface journal is simulated by testing a small tuft of wire against the outside diameter of a high speed rotating shaft. The test configuration is similar to a standard block on ring geometry. The new tester provides the capability to measure both the friction and wear of candidate wire and counterface materials under controlled loading conditions in the gram to kilogram range. A wide test condition latitude of speeds (1 to 27 m/s), temperatures (25 to 700 C), and loads (0.5 to 10 N) enables the simulation of many of the important tribological parameters found in turbine engine brush seals. This paper describes the new test rig and specimen configuration and presents initial data for candidate seal materials comparing tuft test results and wear surface morphology to field tested seal components.

  3. Program for the improvement of downhole drilling motor bearings and seals. Phase IV. Semi-annual report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tibbitts, G.A.; DeLafosse, P.H.; Black, A.

    1980-07-01

    Four main areas of development for the project are covered: design and fabrication of a dynamometer and a mud cooling system for the Bearing-Seal Package Test Facility; modification of the Bearing-Seal Package Test Facility based on test results; testing of new lubricant samples from Pacer Lubricants, Inc., in the Terra Tek High Temperature Lubricant Tester; and testing of new seal types in the Terra Tek Sea Tester. The Maurer Engineering Report, Semi-Annual Progress Report on Improvement of Downhole Motor Bearings and Seals by Jeff L. Barnwell, has been included as Appendix B.

  4. Containment penetration elastomer seal leak rate tests

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bridges, T.L.

    1987-07-01

    Tests were performed on three elastomer seal designs commonly used for nuclear plant containment mechanical penetrations. The objective of this research project is to obtain an understanding of the integrity and leakage behavior of these seal designs under severe accident temperature and pressure conditions. The three designs tested and the seal materials used in the tests were: (1) double tongue-and-groove design with silicone rubber seals, (2) double-O-ring design with neoprene and ethylene-propylene (EPDM) seals, and (3) double gumdrop design with neoprene and EPDM seals. The effects of thermal aging and angular rotations of flange mating surfaces were determined. The testmore » results provide information required to characterize the leakage behavior of penetrations under severe accident conditions. 3 refs., 10 figs., 12 tabs.« less

  5. Prototype Rechargeable Lithium Batteries. Phase 1

    DTIC Science & Technology

    1987-06-01

    pentoxide [ V2o5 ], titanium disulfide [TiS ], vanadium V) sulfide [V2S 5 ], and lithium cobalt oxide [Li Co02]) witi high conductivity, ester-Eased...2400 envelope while the cathodes were supported with porous glass disks to maintain good electrical contact with the expanded metal current collectors...cells consisted of an electrode stack mounted between two glass slides held together with stainless steel wire and sealed in a Fisher & Porter 3-ounce

  6. Seals Flow Code Development 1993

    NASA Technical Reports Server (NTRS)

    Liang, Anita D. (Compiler); Hendricks, Robert C. (Compiler)

    1994-01-01

    Seals Workshop of 1993 code releases include SPIRALI for spiral grooved cylindrical and face seal configurations; IFACE for face seals with pockets, steps, tapers, turbulence, and cavitation; GFACE for gas face seals with 'lift pad' configurations; and SCISEAL, a CFD code for research and design of seals of cylindrical configuration. GUI (graphical user interface) and code usage was discussed with hands on usage of the codes, discussions, comparisons, and industry feedback. Other highlights for the Seals Workshop-93 include environmental and customer driven seal requirements; 'what's coming'; and brush seal developments including flow visualization, numerical analysis, bench testing, T-700 engine testing, tribological pairing and ceramic configurations, and cryogenic and hot gas facility brush seal results. Also discussed are seals for hypersonic engines and dynamic results for spiral groove and smooth annular seals.

  7. Improved Main Shaft Seal Life in Gas Turbines Using Laser Surface Texturing

    NASA Astrophysics Data System (ADS)

    McNickle, Alan D.; Etsion, Izhak

    2002-10-01

    This paper presents a general overview of the improved main shaft seal life in gas turbines using laser surface texturing (LST). The contents include: 1) Laser Surface Texturing System; 2) Seal Schematic with LST applied; 3) Dynamic Rig Tests; 4) Surface Finish Definitions; 5) Wear Test Rig; 6) Dynamic Test Rig; 7) Seal Cross Section-Rig Test; and 8) Typical Test Results. This paper is in viewgraph form.

  8. Laboratory validation of a new gas-enhanced dentine liquid permeation evaluation system.

    PubMed

    Al-Jadaa, Anas; Attin, Thomas; Peltomäki, Timo; Heumann, Christian; Schmidlin, Patrick R

    2014-12-01

    To validate a new automated dentine permeability testing platform based on pressure change measurements. A split chamber was designed allowing for concomitant measurement of fluid permeation and pressure difference. In a first test, system reliability was assessed by interposing a solid metal disk, embedded composite resin disks, or teeth by consecutively measuring eight times under standardized conditions. Secondly, the repeatability and applicability of the method was tested in a dentine wound model by using intact third molars: Class I (2 × 5 mm) and a full occlusal preparation as well a ceramic restoration were consecutively performed and repeatedly measured eight times each. In the last test, the system detection limit as well correlation between gas pressure difference and liquid permeation were evaluated: Again, third molars were used and occlusal preparations of increasing size (2 × 5, 3 × 5, 4 × 5, and 5 × 5 mm and full occlusal preparations, respectively) were made. Data was analyzed for the linearity of measurement, and R (2) values were calculated. The embedding procedure allowed for perfect separation of the two chambers, and no significant variation in repeated measurements of evaluated samples for the respective treatments (p = 0.05) was found. The detection was 0.002 hPa/min for the pressure slope and 0.0225 μl/min for the fluid infiltration, respectively. The saline volume was highly correlating to the gas pressure changes (R (2) = 0.996, p < 0.0001). The presented method is a reliable and exact tool to assess dentine permeability by nondestructive and repeatable measurements. This method is suitable for measurements and comparison of the effectiveness of dentine wounds sealing materials.

  9. Electronically controlled mechanical seal for aerospace applications--Part 2: Transient tests

    NASA Technical Reports Server (NTRS)

    Wolff, Paul J.; Salant, Richard F.

    1995-01-01

    An electronically controlled mechanical seal for use as the purge gas seal in a liquid oxygen turbopump has been fabricated and tested under transient operating conditions. The thickness of the lubricating film is controlled by adjusting the coning of the carbon face. This is accomplished by applying a voltage to a piezoelectric actuator to which the carbon face is bonded. The seal has been operated with a closed-loop control system that utilizes either the leakage rate or seal face temperature as the feedback. Both speed and pressure transients have been imposed on the seal. The transient tests have demonstrated that the seal is capable of maintaing low leakage rates while limiting face temperatures.

  10. Hot dynamic test rig for measuring hypersonic engine seal flow and durability

    NASA Technical Reports Server (NTRS)

    Miller, Jeffrey H.; Steinetz, Bruce M.; Sirocky, Paul J.; Kren, Lawrence A.

    1994-01-01

    A test fixture for measuring the dynamic performance of candidate high-temperature engine seal concepts was developed. The test fixture was developed to evaluate seal concepts under development for advanced hypersonic engines, such as those being considered for the National Aerospace Plane (NASP). The fixture can measure dynamic seal leakage performance from room temperature up to 840 C and air pressure differentials of to 0.7 MPa. Performance of the seals can be measured while sealing against flat or engine-simulated distorted walls. In the fixture, two seals are preloaded against the sides of a 0.3 m long saber that slides transverse to the axis of the seals, simulating the scrubbing motion anticipated in these engines. The capabilities of this text fixture along with preliminary data showing the dependence of seal leakage performance on high temperature cycling are covered.

  11. Comparison of central axis and jet ring coolant supply for turbine disk cooling on a SSME-HPOTP model

    NASA Technical Reports Server (NTRS)

    Kim, Y. W.; Metzger, D. E.

    1992-01-01

    The test facility, test methods and results are presented for an experimental study modeling the cooling of turbine disks in the blade attachment regions with multiple impinging jets, in a configuration simulating the disk cooling method employed on the Space Shuttle Main Engine oxygen turbopump. The study's objective was to provide a comparison of detailed local convection heat transfer rates obtained for a single center-supply of disk coolant with those obtained with the present flight configuration where disk coolant is supplied through an array of 19 jets located near the disk outer radius. Specially constructed disk models were used in a program designed to evaluate possible benefits and identify any possible detrimental effects involved in employing an alternate disk cooling scheme. The study involved the design, construction and testing of two full scale rotating model disks, one plane and smooth for baseline testing and the second contoured to the present flight configuration, together with the corresponding plane and contoured stator disks. Local heat transfer rates are determined from the color display of encapsulated liquid crystals coated on the disk in conjunction with use of a computer vision system. The test program was composed of a wide variety of disk speeds, flowrates, and geometrical configurations, including testing for the effects of disk boltheads and gas ingestion from the gas path region radially outboard of the disk-cavity.

  12. Further Investigations of Control Surface Seals for the X-38 Re-Entry Vehicle

    NASA Technical Reports Server (NTRS)

    Dunlap, Patrick H., Jr.; Steinetz, Bruce M.; Curry, Donald M.; Newquist, Charles W.; Verzemnieks, Juris

    2001-01-01

    NASA is currently developing the X-38 vehicle that will be used to demonstrate the technologies required for a potential crew return vehicle (CRV) for the International Space Station. This vehicle would serve both as an ambulance for medical emergencies and as an evacuation vehicle for the Space Station. Control surfaces on the X-38 (body flaps and rudder/fin assemblies) require high temperature seals to limit hot gas ingestion and transfer of heat to underlying low-temperature structures to prevent over-temperature of these structures and possible loss of the vehicle. NASAs Johnson Space Center (JSC) and Glenn Research Center (GRC) are working together to develop and evaluate seals for these control surfaces. This paper presents results for compression. flow, scrub, and arc jet tests conducted on the baseline X-38 rudder/fin seal design. Room temperature seal compression tests were performed at low compression levels to determine load versus linear compression, preload. contact area, stiffness. and resiliency characteristics under low load conditions. For all compression levels that were tested, unit loads and contact pressures for the seals were below the 5 lb/in. and 10 psi limits required to limit the loads on the adjoining Shuttle thermal tiles that the seals will contact. Flow rates through an unloaded (i.e. 0% compression) double arrangement were twice those of a double seal compressed to the 20% design compression level. The seals survived an ambient temperature 1000 cycle scrub test over relatively rough Shuttle tile surfaces. The seals were able to disengage and re-engage the edges of the rub surface tiles while being scrubbed over them. Arc jet tests were performed to experimentally determine anticipated seal temperatures for representative flow boundary conditions (pressures and temperatures) under simulated vehicle re-entry conditions. Installation of a single seat in the gap of the test fixture caused a large temperature drop (1710 F) across the seal location as compared to an open gap condition (140 F) confirming the need for seals in the rudder/fin gap location. The seal acted as an effective thermal barrier limiting heat convection through the seal gap and minimizing temperature increases downstream of the seal during maximum heating conditions.

  13. Actively controlled shaft seals for aerospace applications

    NASA Technical Reports Server (NTRS)

    Salant, Richard F.

    1994-01-01

    This study experimentally investigates an actively controlled mechanical seal for aerospace applications. The seal of interest is a gas seal, which is considerably more compact than previous actively controlled mechanical seals that were developed for industrial use. In a mechanical seal, the radial convergence of the seal interface has a primary effect on the film thickness. Active control of the film thickness is established by controlling the radial convergence of the seal interface with piezoelectric actuator. An actively controlled mechanical seal was initially designed and evaluated using a mathematical model. Based on these results, a seal was fabricated and tested under laboratory conditions. The seal was tested with both helium and air, at rotational speeds up to 3770 rad/sec, and at sealed pressures as high as 1.48 x 10(exp 6) Pa. The seal was operated with both manual control and with a closed-loop control system that used either the leakage rate or face temperature as the feedback. The output of the controller was the voltage applied to the piezoelectric actuator. The seal operated successfully for both short term tests (less than one hour) and for longer term tests (four hours) with a closed-loop control system. The leakage rates were typically 5-15 slm (standard liters per minute), and the face temperatures were generally maintained below 100 C. When leakage rate was used as the feedback signal, the setpoint leakage rate was typically maintained within 1 slm. However, larger deviations occurred during sudden changes in sealed pressure. When face temperature was used as the feedback signal, the setpoint face temperature was generally maintained within 3 C, with larger deviations occurring when the sealed pressure changed suddenly.

  14. Hot piston ring/cylinder liner materials: Selection and evaluation

    NASA Technical Reports Server (NTRS)

    Sliney, Harold E.

    1988-01-01

    In current designs of the automotive (kinematic) Stirling engine, the piston rings are made of a reinforced polymer and are located below the pistons because they cannot withstand the high temperatures in the upper cylinder area. Theoretically, efficiency could be improved if hot piston rings were located near the top of the pistons. Described is a program to select piston ring and cylinder coating materials to test this theory. Candidate materials were screened, then subjected to a pin or disk friction and wear test machine. Tests were performed in hydrogen at specimen temperatures up to 760 C to simulate environmental conditions in the region of the hot piston ring reversal. Based on the results of these tests, a cobalt based alloy, Stellite 6B, was chosen for the piston rings and PS200, which consists of a metal-bonded chromium carbide matrix with dispersed solid lubricants, was chosen as the cylinder coating. Tests of a modified engine and a baseline engine showed that the hot ring reduced specific fuel consumption by up to 7 percent for some operating conditions and averaged about 3 percent for all conditions evaluated. Related applications of high-temperature coatings for shaft seals and as back-up lubricants are also described.

  15. PRDA-2 and 3 Brush Seal Development Programs at EG and G

    NASA Technical Reports Server (NTRS)

    Loewenthal, Robert G.

    1996-01-01

    EG&G Mechanical Components Technology Group R&D completed a Brush Seal Development Program under PRDA-2 in late 1992. We started the Advanced Brush Seal Development program, under PRDA-3, in 1993 and will complete it in 1996. Both programs have been funded by the United States Air Force. In the first program, we made significant gains in the area of tribopairs (bristle materials vs. shaft coatings) and the 'Low Hysteresis' design for brush seals. These were reported in two AIAA Propulsion Conference papers, and the 'Low Hysteresis' design has been patented. Seals were delivered for test in an Air Force demonstrator at Allison. In PRDA-3, goals are to increase the pressure sealing capability, and the surface speeds and temperatures at which brush seals can be used. We have conducted part of the design and testing and have tested brush seals successfully at more severe conditions than in the previous program. We are continuing with the program, and will complete it in time to furnish brush seals for an Air Force Demonstrator test in 1997.

  16. Viscoelastic analysis of seals for extended service life

    NASA Technical Reports Server (NTRS)

    Bower, Mark V.

    1993-01-01

    The space station is being developed for a service life of up to thirty years. As a consequence, the design requirements for the seals to be used are unprecedented. Full scale testing to assure the selected seals can satisfy the design requirements are not feasible. As an alternative, a sub-scale test program (2) has been developed by MSFC to calibrate the analysis tools to be used to certify the proposed design. This research has been conducted in support of the MSFC Integrated Seal Test Program. The ultimate objective of this research is to correlate analysis and test results to qualify the analytical tools which in turn, are to be used to qualify the flight hardware. Seals are simple devices, in wide spread use. The most common type of seal is the O-ring. O-ring seals are typically rings of rubber with a circular cross section. The rings are placed between the surfaces to be sealed, usually in a groove of some design. The particular design may differ based on a number of different factors. This research is focused on O-rings that are staticly compressed by perpendicular clamping forces, commonly referred to as face seals. In this type of seal the O-ring is clamped between the sealing surfaces by loads perpendicular to the circular cross section.

  17. Low-Torque Seal Development

    NASA Technical Reports Server (NTRS)

    Lattime, Scott B.; Borowski, Richard

    2009-01-01

    The EcoTurn Class K production prototypes have passed all AAR qualification tests and received conditional approval. The accelerated life test on the second set of seals is in progress. Due to the performance of the first set, no problems are expected.The seal has demonstrated superior performance over the HDL seal in the test lab with virtually zero torque and excellent contamination exclusion and grease retention.

  18. An Update on Structural Seal Development at NASA GRC

    NASA Technical Reports Server (NTRS)

    Dunlap, Pat; Steinetz, Bruce; Finkbeiner, Josh; DeMange, Jeff; Taylor, Shawn; Daniels, Chris; Oswald, Jay

    2006-01-01

    A viewgraph presentation describing advanced structural seal development for NASA exploration is shown. The topics include: 1) GRC Structural Seals Team Research Areas; 2) Research Areas & Objective; 3) Wafer Seal Geometry/Flow Investigations; 4) Wafer Seal Installation DOE Study; 5) Results of Wafer Seal Installation DOE Study; 6) Wafer Geometry Study: Thickness Variations; 7) Wafer Geometry Study: Full-Size vs. Half-Size Wafers; 8) Spring Tube Seal Development; 9) Resiliency Improvement for Rene 41 Spring Tube; 10) Spring Tube Seals: Go-Forward Plan; 11) High Temperature Seal Preloader Development: TZM Canted Coil Spring; 12) TZM Canted Coil Spring Development; 13) Arc Jet Test Rig Development; and 14) Arc Jet Test Rig Status.

  19. PRELIMINARY REPORT: EFFECTS OF IRRADIATION AND THERMAL EXPOSURE ON ELASTOMERIC SEALS FOR CASK TRANSPORTATION AND STORAGE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Verst, C.; Skidmore, E.; Daugherty, W.

    2014-05-30

    A testing and analysis approach to predict the sealing behavior of elastomeric seal materials in dry storage casks and evaluate their ability to maintain a seal under thermal and radiation exposure conditions of extended storage and beyond was developed, and initial tests have been conducted. The initial tests evaluate the aging response of EPDM elastomer O-ring seals. The thermal and radiation exposure conditions of the CASTOR® V/21 casks were selected for testing as this cask design is of interest due to its widespread use, and close proximity of the seals to the fuel compared to other cask designs leading tomore » a relatively high temperature and dose under storage conditions. A novel test fixture was developed to enable compression stress relaxation measurements for the seal material at the thermal and radiation exposure conditions. A loss of compression stress of 90% is suggested as the threshold at which sealing ability of an elastomeric seal would be lost. Previous studies have shown this value to be conservative to actual leakage failure for most aging conditions. These initial results indicate that the seal would be expected to retain sealing ability throughout extended storage at the cask design conditions, though longer exposure times are needed to validate this assumption. The high constant dose rate used in the testing is not prototypic of the decreasingly low dose rate that would occur under extended storage. The primary degradation mechanism of oxidation of polymeric compounds is highly dependent on temperature and time of exposure, and with radiation expected to exacerbate the oxidation.« less

  20. Testing of sealed lead-acid batteries

    NASA Astrophysics Data System (ADS)

    Bush, D. M.; Sealey, J. D.; Miller, D. W.

    1984-02-01

    Sealed lead acid batteries under development were tested. The goal was to develop a totally maintenance free sealed lead acid battery capable of deep discharge operation in a photovoltaic power system. Sealed lead acid batteries and a group of conventional, flooded lead acid batteries were exposed to a matrix test plan, with some approaching 1000 cycles. This performance was achieved with the standard National Electrical Manufacturers' Association cycle test, and the partial state of charge cycle test. Modes of failure are investigated.

  1. Reversible thermo-pneumatic valves on centrifugal microfluidic platforms.

    PubMed

    Aeinehvand, Mohammad Mahdi; Ibrahim, Fatimah; Harun, Sulaiman Wadi; Kazemzadeh, Amin; Rothan, Hussin A; Yusof, Rohana; Madou, Marc

    2015-08-21

    Centrifugal microfluidic systems utilize a conventional spindle motor to automate parallel biochemical assays on a single microfluidic disk. The integration of complex, sequential microfluidic procedures on these platforms relies on robust valving techniques that allow for the precise control and manipulation of fluid flow. The ability of valves to consistently return to their former conditions after each actuation plays a significant role in the real-time manipulation of fluidic operations. In this paper, we introduce an active valving technique that operates based on the deflection of a latex film with the potential for real-time flow manipulation in a wide range of operational spinning speeds. The reversible thermo-pneumatic valve (RTPV) seals or reopens an inlet when a trapped air volume is heated or cooled, respectively. The RTPV is a gas-impermeable valve composed of an air chamber enclosed by a latex membrane and a specially designed liquid transition chamber that enables the efficient usage of the applied thermal energy. Inputting thermo-pneumatic (TP) energy into the air chamber deflects the membrane into the liquid transition chamber against an inlet, sealing it and thus preventing fluid flow. From this point, a centrifugal pressure higher than the induced TP pressure in the air chamber reopens the fluid pathway. The behaviour of this newly introduced reversible valving system on a microfluidic disk is studied experimentally and theoretically over a range of rotational frequencies from 700 RPM to 2500 RPM. Furthermore, adding a physical component (e.g., a hemispherical rubber element) to induce initial flow resistance shifts the operational range of rotational frequencies of the RTPV to more than 6000 RPM. An analytical solution for the cooling of a heated RTPV on a spinning disk is also presented, which highlights the need for the future development of time-programmable RTPVs. Moreover, the reversibility and gas impermeability of the RTPV in the microfluidic networks are validated on a microfluidic disk designed for performing liquid circulation. Finally, an array of RTPVs is integrated into a microfluidic cartridge to enable sequential aliquoting for the conversion of dengue virus RNA to cDNA and the preparation of PCR reaction mixtures.

  2. Three-step labyrinth seal for high-performance turbomachines

    NASA Technical Reports Server (NTRS)

    Hendricks, Robert C.

    1987-01-01

    A three-step labyrinth seal with 12, 11, and 10 labyrinth teeth per step, respectively, was tested under static (nonrotating) conditions. The configuration represented the seal for a high-performance turbopump (e.g., the space shuttle main engine fuel pump). The test data included critical mass flux and pressure profiles over a wide range of fluid conditions at concentric, partially eccentric, and fully eccentric seal positions. The seal mass fluxes (leakage rates) were lower over the entire range of fluid conditions tested than those for data collected for similar straight and three-step cylindrical seals, and this conformed somewhat to expectations. However, the pressure profiles for the eccentric positions indicated little, if any, direct stiffness for this configuration in contrast to significant direct stiffness reported for the straight and three-step cylindrical seals over the range of test conditions. Seal dynamics depend on geometric configuration, inlet and exit parameters, fluid phase, and rotation. The method of corresponding states was applied to the mass flux data, which were found to have a pressure dependency for helium.

  3. Turbomachinery Laboratory Texas A and M University research progress on annular gas seals

    NASA Technical Reports Server (NTRS)

    Childs, Dara W.

    1994-01-01

    Three helically-grooved seals were tested and the results were compared to the MTI code SPIRALG. A smooth annular seal was tested at six eccentricity ratios from 0 to 0.5. The following are concluded in this viewgraph presentation: (1) Helical-grooved seals provide a substantial reduction in cross-coupled stiffness coefficients. Negative k(sub xy) values are obtained for no-swirl or low-swirl cases. (2) SPIRALG is completely unsuitable for the type of seal tested, namely, turbulent flow, wide grooves and lands, etc. (3) A good analysis code is needed to guide the design of helically-grooved annular seals including groove and smooth sections.

  4. Development of circumferential seal for helicopter transmissions: Results of bench and flight tests

    NASA Technical Reports Server (NTRS)

    Strom, T. N.; Ludwig, L. P.

    1975-01-01

    A modified circumferential segmented ring seal was designed for direct replacement of a helicopter transmission elastomeric lip seal operating on a shaft diameter of 13.91 centimeters (5.481 in.) at sliding velocities to 52.48 m/sec (10 330 ft/min). The modifications involved the garter spring tension, shaft roundness, seal housing flatness, and pumping grooves to inhibit leakage. Operation of the seals in bench tests under simulated helicopter transmission conditions revealed that the seal leakage rate was within acceptable limits and that the wear rate was negligible. The low leakage and wear rates were confirmed in flight tests of 600 and 175 hours (sliding speed, 48.11 m/sec (9470 ft/min)). An additional 200 hours of air worthiness qualification testing (aircraft tie down) demonstrated that the seal can operate at the advanced sliding conditions of 52.48 m/sec (10 330 ft/min).

  5. Seal Related Development Activities at EG/G

    NASA Technical Reports Server (NTRS)

    Greiner, Harold F.

    1991-01-01

    Seal related development activities including modeling, analysis, and performance testing are described for several current seal related projects. Among the current seal related projects are the following: high pressure gas sealing systems for turbomachinery; brush seals for gas path sealing in gas turbines; and tribological material evaluation for wear surfaces in sealing systems.

  6. Electrochemical power-producing cell. [Li/Se

    DOEpatents

    Cairns, E.J.; Chilenskas, A.A.; Steunenberg, R.K.; Shimotake, H.

    1972-05-30

    An electrochemical power-producing cell including a molten lithium metal anode, a molten selenium metal cathode, a paste electrolyte separating the anode from the cathode, an anode current collector, and a single layer of niobium expanded metal formed in corrugated shape as cathode current collector is described. In addition, means are provided for sealing the anode and the cathode from loss of lithium and selenium, respectively, and an insulator is provided between the anode housing and the paste electrolyte disk.

  7. Development and testing of improved polyimide actuator rod seals at higher temperatures for use in advanced aircraft hydraulic systems

    NASA Technical Reports Server (NTRS)

    Robinson, E. D.; Waterman, A. W.; Nelson, W. G.

    1972-01-01

    Polyimide second stage rod seals were evaluated to determine their suitability for application in advanced aircraft systems. The configurations of the seals are described. The conditions of the life cycle tests are provided. It was determined that external rod seal leakage was within prescribed limits and that the seals showed no signs of structural degradation.

  8. Gastight Hydrodynamic Electrochemistry: Design for a Hermetically Sealed Rotating Disk Electrode Cell.

    PubMed

    Jung, Suho; Kortlever, Ruud; Jones, Ryan J R; Lichterman, Michael F; Agapie, Theodor; McCrory, Charles C L; Peters, Jonas C

    2017-01-03

    Rotating disk electrodes (RDEs) are widely used in electrochemical characterization to analyze the mechanisms of various electrocatalytic reactions. RDE experiments often make use of or require collection and quantification of gaseous products. The combination of rotating parts and gaseous analytes makes the design of RDE cells that allow for headspace analysis challenging due to gas leaks at the interface of the cell body and the rotator. In this manuscript we describe a new, hermetically sealed electrochemical cell that allows for electrode rotation while simultaneously providing a gastight environment. Electrode rotation in this new cell design is controlled by magnetically coupling the working electrode to a rotating magnetic driver. Calibration of the RDE using a tachometer shows that the rotation speed of the electrode is the same as that of the magnetic driver. To validate the performance of this cell for hydrodynamic measurements, limiting currents from the reduction of a potassium ferrocyanide (K 4 [Fe(CN) 6 ]·3H 2 O) were measured and shown to compare favorably with calculated values from the Levich equation and with data obtained using more typical, nongastight RDE cells. Faradaic efficiencies of ∼95% were measured in the gas phase for oxygen evolution in alkaline media at an Inconel 625 alloy electrocatalyst during rotation at 1600 rpm. These data verify that a gastight environment is maintained even during rotation.

  9. Effects of Hypervelocity Impacts on Silicone Elastomer Seals and Mating Aluminum Surfaces

    NASA Technical Reports Server (NTRS)

    deGroh, Henry C., III; Steinetz, Bruce M.

    2009-01-01

    While in space silicone based elastomer seals planned for use on NASA's Crew Exploration Vehicle (CEV) are exposed to threats from micrometeoroids and orbital debris (MMOD). An understanding of these threats is required to assess risks to the crew, the CEV orbiter, and missions. An Earth based campaign of hypervelocity impacts on small scale seal rings has been done to help estimate MMOD threats to the primary docking seal being developed for the Low Impact Docking System (LIDS). LIDS is being developed to enable the CEV to dock to the ISS (International Space Station) or to Altair (NASA's next lunar lander). The silicone seal on LIDS seals against aluminum alloy flanges on ISS or Altair. Since the integrity of a seal depends on both sealing surfaces, aluminum targets were also impacted. The variables considered in this study included projectile mass, density, speed, incidence angle, seal materials, and target surface treatments and coatings. Most of the impacts used a velocity near 8 km/s and spherical aluminum projectiles (density = 2.7 g/cubic cm), however, a few tests were done near 5.6 km/s. Tests were also performed using projectile densities of 7.7, 2.79, 2.5 or 1.14 g/cubic cm. Projectile incidence angles examined included 0 deg, 45 deg, and 60 deg from normal to the plane of the target. Elastomer compounds impacted include Parker's S0383-70 and Esterline's ELA-SA-401 in the as received condition, or after an atomic oxygen treatment. Bare, anodized and nickel coated aluminum targets were tested simulating the candidate mating seal surface materials. After impact, seals and aluminum plates were leak tested: damaged seals were tested against an undamaged aluminum plate; and undamaged seals were placed at various locations over craters in aluminum plates. It has been shown that silicone elastomer seals can withstand an impressive level of damage before leaking beyond allowable limits. In general on the tests performed to date, the diameter of the crater in either the elastomer, or the aluminum, must be at least as big as 80% to 90% of width of the bulb of the seal before significant leakage occurs.

  10. Effects of Hypervelocity Impacts on Silicone Elastomer Seals and Mating Aluminum Surfaces

    NASA Technical Reports Server (NTRS)

    deGroh, Henry C., III; Steinetz, Bruce M.

    2009-01-01

    While in space silicone based elastomer seals planned for use on NASA's Crew Exploration Vehicle (CEV) are exposed to threats from micrometeoroids and orbital debris (MMOD). An understanding of these threats is required to assess risks to the crew, the CEV orbiter, and missions. An Earth based campaign of hypervelocity impacts on small scale seal rings has been done to help estimate MMOD threats to the primary docking seal being developed for the Low Impact Docking System (LIDS). LIDS is being developed to enable the CEV to dock to the ISS (International Space Station) or to Altair (NASA's next lunar lander). The silicone seal on LIDS seals against aluminum alloy flanges on ISS or Altair. Since the integrity of a seal depends on both sealing surfaces, aluminum targets were also impacted. The variables considered in this study included projectile mass, density, speed, incidence angle, seal materials, and target surface treatments and coatings. Most of the impacts used a velocity near 8 km/s and spherical aluminum projectiles (density = 2.7 g/cubic centimeter), however, a few tests were done near 5.6 km/s. Tests were also performed using projectile densities of 7.7, 2.79, 2.5 or 1.14 g/cubic centimeter. Projectile incidence angles examined included 0 degrees, 45 degrees , and 60 degrees from normal to the plane of the target. Elastomer compounds impacted include Parker's S0383-70 and Esterline's ELA-SA-401 in the as received condition, or after an atomic oxygen treatment. Bare, anodized and nickel coated aluminum targets were tested simulating the candidate mating seal surface materials. After impact, seals and aluminum plates were leak tested: damaged seals were tested against an undamaged aluminum plate; and undamaged seals were placed at various locations over craters in aluminum plates. It has been shown that silicone elastomer seals can withstand an impressive level of damage before leaking beyond allowable limits. In general on the tests performed to date, the diameter of the crater in either the elastomer, or the aluminum, must be at least as big as 80% to 90% of width of the bulb of the seal before significant leakage occurs.

  11. Characterization of plastic deformation in a disk bend test

    NASA Astrophysics Data System (ADS)

    Byun, T. S.; Lee, E. H.; Hunn, J. D.; Farrell, K.; Mansur, L. K.

    2001-04-01

    A disk bend test technique has been developed to study deformation mechanisms as well as mechanical properties. In the disk bend test, a transmission electron microscopy (TEM) disk size specimen of 3 mm diameter ×0.25 mm thick is clamped around its rim in a circular holder and indented with a tungsten carbide ball of 1 mm diameter on its back face. AISI 316LN austenitic stainless steel and 9Cr-2WVTa ferritic/martensitic steel were selected as test materials. A model was developed to determine the average plastic strain and surface plastic strain in the disk bend test. The deformation regimes of the plastic strain versus deflection curves corresponded to those of the load versus deflection curves. The stress state of the disk bend deformation was analyzed for the two test materials and compared with those of other mechanical tests such as uniaxial tensile, compact tension, and ball indentation tests. Slip line features at the deformed surface and the corresponding TEM microstructures were examined for both tensile and disk bend specimens. Differences and similarities in deformation between the disk bend and the tensile tests are described.

  12. DEVELOPMENT AND DEMONSTRATION OF CONCEPTS FOR IMPROVING COKE-OVEN DOOR SEALS

    EPA Science Inventory

    The report discusses the design, laboratory scale tests, construction, and field tests of an improved metal-to-metal seal for coke-oven end doors. Basic features of the seal are: high-strength temperature-resistant steel capable of 3 times the deflection of current seals without ...

  13. Comparison of results of fluconazole disk diffusion testing for Candida species with results from a central reference laboratory in the ARTEMIS global antifungal surveillance program.

    PubMed

    Pfaller, M A; Hazen, K C; Messer, S A; Boyken, L; Tendolkar, S; Hollis, R J; Diekema, D J

    2004-08-01

    The accuracy of antifungal susceptibility tests is important for accurate resistance surveillance and for the clinical management of patients with serious infections. Our main objective was to compare the results of fluconazole disk diffusion testing of Candida spp. performed by ARTEMIS participating centers with disk diffusion and MIC results obtained by the central reference laboratory. A total of 2,949 isolates of Candida spp. were tested by NCCLS disk diffusion and reference broth microdilution methods in the central reference laboratory. These results were compared to the results of disk diffusion testing performed in the 54 participating centers. All tests were performed and interpreted following NCCLS recommendations. Overall categorical agreement between participant disk diffusion test results and reference laboratory MIC results was 87.4%, with 0.2% very major errors (VME) and 3.3% major errors (ME). The categorical agreement between the disk diffusion test results obtained in the reference laboratory with the MIC test results was similar: 92.8%. Likewise, good agreement was observed between participant disk diffusion test results and reference laboratory disk diffusion test results: 90.4%, 0.4% VME, and 3.4% ME. The disk diffusion test was especially reliable in detecting those isolates of Candida spp. that were characterized as resistant by reference MIC testing. External quality assurance data obtained by surveillance programs such as the ARTEMIS Global Antifungal Surveillance Program ensure the generation of useful surveillance data and result in the continued improvement of antifungal susceptibility testing practices.

  14. On the Development of a Unique Arc Jet Test Apparatus for Control Surface Seal Evaluations

    NASA Technical Reports Server (NTRS)

    Finkbeiner, Joshua R.; Dunlap, Patrick H., Jr.; Steinetz, Bruce M.; Robbie, Malcolm; Baker, Gus; Erker, Arthur

    2004-01-01

    NASA Glenn has developed a unique test apparatus capable of evaluating control surface seal and flap designs under simulated reentry heating conditions in NASA Johnson's arc jet test facility. The test apparatus is capable of testing a variety of seal designs with a variety of control surface materials and designs using modular components. The flap angle can be varied during testing, allowing modification of the seal environment while testing is in progress. The flap angle is varied using an innovative transmission system which limits heat transfer from the hot flap structure to the motor, all while keeping the components properly aligned regardless of thermal expansion. A combination of active and passive cooling is employed to prevent thermal damage to the test fixture while still obtaining the target seal temperature.

  15. Toward an Improved Hypersonic Engine Seal

    NASA Technical Reports Server (NTRS)

    Dunlap, Patrick H., Jr.; Steinetz, Bruce M.; DeMange,Jeffrey J.; Taylor, Shawn C.

    2003-01-01

    High temperature, dynamic seals are required in advanced engines to seal the perimeters of movable engine ramps for efficient, safe operation in high heat flux environments at temperatures from 2000 to 2500 F. Current seal designs do not meet the demanding requirements for future engines, so NASA s Glenn Research Center (GRC) is developing advanced seals to overcome these shortfalls. Two seal designs and two types of seal preloading devices were evaluated in a series of compression tests at room temperature and 2000 F and flow tests at room temperature. Both seals lost resiliency with repeated load cycling at room temperature and 2000 F, but seals with braided cores were significantly more flexible than those with cores composed of uniaxial ceramic fibers. Flow rates for the seals with cores of uniaxial fibers were lower than those for the seals with braided cores. Canted coil springs and silicon nitride compression springs showed promise conceptually as potential seal preloading devices to help maintain seal resiliency.

  16. SRB attach ring phenolic TPS fishtail seal evaluation tests

    NASA Technical Reports Server (NTRS)

    Karu, Z. S.

    1982-01-01

    The SRB attach ring is thermally protected with layered phenolic cloth fairings that are fastened to the ring. The gap between the fairings and the motor case is closed off with a rubber seal of a fishtail cross sectional shape bonded to the phenolic. On both the STS-1 and STS-2 flights this gap was discovered to vary anywhere from an intended gap of 0.375 in. to an actual measured gap of 0.60 in. due to tolerances. Tests were conducted with and without a 0.25 in. thick cork shim placed under the seal with a 0.60 in. gap under the phenolic TPS to determine and compare the performance of the seal in the two different configurations. To alleviate the difficult and costly procedure of installing the cork shim under the seal, especially after phenolic TPS mounting on the attach ring, large fishtail seals of idential Elder gray silicon material and two different hardnesses were tested. A similar matrix of tests was conducted with this new large fishtail seal, and seals with both type hardnesses performed well regardless of whether or not the seal was bonded in the phenolic at the front of the seal groove. Similar results had been obtained with the original small fishtail seal which performed adequately with the 0.25 in. cork shim under it.

  17. Effect of temperature and O-ring gland finish on sealing ability of Viton V747-75

    NASA Technical Reports Server (NTRS)

    Lach, Cynthia L.

    1993-01-01

    As a part of the redesign project of the Space Shuttle solid rocket motor (SRM) following the Challenger accident, the field joint was redesigned to minimize the relative joint motion caused by internal motor pressurization during ignition. The O-ring seals and glands for the field joint were designed both to accommodate structural deflections and to promote pressure-assisted sealing. Tests were conducted in various face seal fixtures to evaluate the ability of Viton V747-75 O-rings to seal for a range of temperatures and surface finishes of the redesigned O-ring gland. The effect of surface finish on the sealing performance and wear characteristics of the O-rings was evaluated during simulated launch conditions that included low-frequency vibrations, gap openings, and rapid pressurizations. The effect of contamination on the sealing performance was also investigated. The O-rings sealed throughout the 75 deg F leak check test and for the seal tests from 50 deg F to 120 deg F for the range of surface finishes investigated. Although abrasions were found in the O-rings from pressurization against the rougher finishes, these abrasions were not detrimental to sealing. Below 50 deg F, Viton V747-75 O-rings were insufficiently resilient to track the test gap opening.

  18. Brush Seals for Improved Steam Turbine Performance

    NASA Technical Reports Server (NTRS)

    Turnquist, Norman; Chupp, Ray; Baily, Fred; Burnett, Mark; Rivas, Flor; Bowsher, Aaron; Crudgington, Peter

    2006-01-01

    GE Energy has retrofitted brush seals into more than 19 operating steam turbines. Brush seals offer superior leakage control compared to labyrinth seals, owing to their compliant nature and ability to maintain very tight clearances to the rotating shaft. Seal designs have been established for steam turbines ranging in size from 12 MW to over 1200 MW, including fossil, nuclear, combined-cycle and industrial applications. Steam turbines present unique design challenges that must be addressed to ensure that the potential performance benefits of brush seals are realized. Brush seals can have important effects on the overall turbine system that must be taken into account to assure reliable operation. Subscale rig tests are instrumental to understanding seal behavior under simulated steam-turbine operating conditions, prior to installing brush seals in the field. This presentation discusses the technical challenges of designing brush seals for steam turbines; subscale testing; performance benefits of brush seals; overall system effects; and field applications.

  19. Brush seals for cryogenic applications

    NASA Astrophysics Data System (ADS)

    Proctor, Margaret P.

    1994-07-01

    This viewgraph presentation presents test results of brush seals for cryogenic applications. Leakage for a single brush seal was two to three times less than for a 12-tooth labyrinth seal. The maximum temperature rise for a single brush seal was less than 50 R and occurred at 25 psid across the seal and 35,000 rpm. A static blowout test demonstrated sealing capability up to 550 psid. The seal limit was not obtained. The power loss for a single brush at 35,000 rpm and 175 psid was 2.45 hp. Two brushes far apart leak less than two brushes tight packed. Rotor wear was approximately 0.00075 mils and bristle wear was 1-3 mils after 4-1/2 hours.

  20. Overview of CEV Thermal Protection System Seal Development

    NASA Technical Reports Server (NTRS)

    DeMange, Jeff; Taylor, Shawn; Dunlap, Patrick; Steinetz, Bruce; Delgado, Irebert; Finkbeiner, Josh; Mayer, John

    2009-01-01

    NASA GRC supporting design, development, and implementation of numerous seal systems for the Orion CEV: a) HS-to-BS interface. b) Compression pad. HS-to-BS Interface Seal System: a) design has evolved as a result of changes with the CEV TPS. b) Seal system is currently under development/evaluation. Coupon level tests, Arc jet tests, and Validation test development. Compression Pad: a) Finalizing design options. b) Evaluating material candidates.

  1. Theory versus experiment for the rotordynamic coefficients of labyrinth gas seals. II - A comparison to experiment

    NASA Technical Reports Server (NTRS)

    Childs, D. W.; Scharrer, J. K.

    1987-01-01

    An experimental test facility is used to measure the leakage and rotordynamic coefficients of teeth-on-rotor and teeth-on-stator labyrinth gas seals. The test results are presented along with the theoretically predicted values for the two seal configurations at three different radial clearances and shaft speeds to 16,000 cpm. The test results show that the theory accurately predicts the cross-coupled stiffness for both seal configurations and shows improvement in the prediction of the direct damping for the teeth-on-rotor seal. The theory fails to predict a decrease in the direct damping coefficient for an increase in the radial clearance for the teeth-on-stator seal.

  2. Preliminary Evaluation of PS300: A New Self-Lubricating High Temperature Composite Coating for Use to 800 C

    NASA Technical Reports Server (NTRS)

    Dellacorte, C.; Edmonds, B. J.

    1995-01-01

    This paper introduces PS300, a plasma sprayed, self-lubricating composite coating for use in sliding contacts at temperatures to 800 C. PS300 is a metal bonded chrome oxide coating with silver and BaF2/CaF2 eutectic solid lubricant additives. PS300 is similar to PS200, a chromium carbide based coating, which is currently being investigated for a variety of tribological applications. In pin-on-disk testing up to 650 C, PS300 exhibited comparable friction and wear properties to PS200. The PS300 matrix, which is predominantly chromium oxide rather than chromium carbide, does not require diamond grinding and polishes readily with silicon carbide abrasives greatly reducing manufacturing costs compared to PS200. It is anticipated that PS300 has potential for sliding bearing and seal applications in both aerospace and general industry.

  3. Thermal Analysis of the MC1 Engine Turbopump

    NASA Technical Reports Server (NTRS)

    Roman, Jose; Turner, Larry D. (Technical Monitor)

    2001-01-01

    The MC1 Engine turbopump supplied the propellants to the main injector. The turbopump consisted of four parts; lox pump, interpropellant seal package (IPS), RP pump and turbine. The thermal analysis was divided into two 2D finite element models; Housing or stationary parts and rotor or rotating parts. Both models were analyzed at the same boundary conditions using SINDA. The housing model consisted of, lox pump housing, ips housing, RP housing, turbine inlet housing, turbine housing, exit guide vane, heat shield and both bearing outer races. The rotor model consisted of the lox impeller; lox end bearing and id race, RP impeller, and RP bearing and id race, shaft and turbine disk. The objectives of the analysis were to: (1) verified the original design and recommend modifications to it, (2) submitted a thermal environment to support the structural analysis, (3) support the component and engine test program. and (4) to support the X34 vehicle program.

  4. Thermal Analysis of the MCI Engine Turbopump

    NASA Technical Reports Server (NTRS)

    Roman, Jose

    2002-01-01

    The MCI Engine turbopump supplied the propellants to the main injector. The turbopump consisted of four parts; lox pump, interpropellant seal package (IPS), RP pump and turbine. The thermal analysis was divided into two 2D finite element models; Housing or stationary parts and rotor or rotating parts. Both models were analyzed at the same boundary conditions using SINDA. The housing model consisted of; lox pump housing, ips housing, RP housing, turbine inlet housing, turbine housing, exit guide vane, heat shield and both bearing outer races. The rotor model consisted of the lox impeller; lox end bearing and id race, RP impeller, and RP bearing and id race, shaft and turbine disk. The objectives of the analysis were to (1) verified the original design and recommend modifications to it, (2) submitted a thermal environment to support the structural analysis, (3) support the component and engine test program and (4) to support the X34 vehicle program.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smartt, Heidi A.; Romero, Juan A.; Custer, Joyce Olsen

    Containment/Surveillance (C/S) measures are critical to any verification regime in order to maintain Continuity of Knowledge (CoK). The Ceramic Seal project is research into the next generation technologies to advance C/S, in particular improving security and efficiency. The Ceramic Seal is a small form factor loop seal with improved tamper-indication including a frangible seal body, tamper planes, external coatings, and electronic monitoring of the seal body integrity. It improves efficiency through a self-securing wire and in-situ verification with a handheld reader. Sandia National Laboratories (SNL) and Savannah River National Laboratory (SRNL), under sponsorship from the U.S. National Nuclear Security Administrationmore » (NNSA) Office of Defense Nuclear Nonproliferation Research and Development (DNN R&D), have previously designed and have now fabricated and tested Ceramic Seals. Tests have occurred at both SNL and SRNL, with different types of tests occurring at each facility. This interim report will describe the Ceramic Seal prototype, the design and development of a handheld standalone reader and an interface to a data acquisition system, fabrication of the seals, and results of initial testing.« less

  6. Time-Dependent Testing Evaluation and Modeling for Rubber Stopper Seal Performance.

    PubMed

    Zeng, Qingyu; Zhao, Xia

    2018-01-01

    Sufficient rubber stopper sealing performance throughout the entire sealed product life cycle is essential for maintaining container closure integrity in the parenteral packaging industry. However, prior publications have lacked systematic considerations for the time-dependent influence on sealing performance that results from the viscoelastic characteristics of the rubber stoppers. In this paper, we report results of an effort to study these effects by applying both compression stress relaxation testing and residual seal force testing for time-dependent experimental data collection. These experiments were followed by modeling fit calculations based on the Maxwell-Wiechert theory modified with the Kohlrausch-Williams-Watts stretched exponential function, resulting in a nonlinear, time-dependent sealing force model. By employing both testing evaluations and modeling calculations, an in-depth understanding of the time-dependent effects on rubber stopper sealing force was developed. Both testing and modeling data show good consistency, demonstrating that the sealing force decays exponentially over time and eventually levels off because of the viscoelastic nature of the rubber stoppers. The nonlinearity of stress relaxation derives from the viscoelastic characteristics of the rubber stoppers coupled with the large stopper compression deformation into restrained geometry conditions. The modeling fit with capability to handle actual testing data can be employed as a tool to calculate the compression stress relaxation and residual seal force throughout the entire sealed product life cycle. In addition to being time-dependent, stress relaxation is also experimentally shown to be temperature-dependent. The present work provides a new, integrated methodology framework and some fresh insights to the parenteral packaging industry for practically and proactively considering, designing, setting up, controlling, and managing stopper sealing performance throughout the entire sealed product life cycle. LAY ABSTRACT: Historical publications in the parenteral packaging industry have lacked systematic considerations for the time-dependent influence on the sealing performance that results from effects of viscoelastic characteristic of the rubber stoppers. This study applied compression stress relaxation testing and residual seal force testing for time-dependent experimental data collection. These experiments were followed by modeling fit calculations based on the Maxwell-Wiechert theory modified with the Kohlrausch-Williams-Watts stretched exponential function, resulting in a nonlinear, time-dependent sealing force model. Experimental and modeling data show good consistency, demonstrating that sealing force decays exponentially over time and eventually levels off. The nonlinearity of stress relaxation derives from the viscoelastic characteristics of the rubber stoppers coupled with the large stopper compression deformation into restrained geometry conditions. In addition to being time-dependent stress relaxation, it is also experimentally shown to be temperature-dependent. The present work provides a new, integrated methodology framework and some fresh insights to the industry for practically and proactively considering, designing, setting up, controlling, and managing of the stopper sealing performance throughout the entire sealed product life cycle. © PDA, Inc. 2018.

  7. Performance of a shaft seal system for the LE-7 rocket engine oxidizer turbopump

    NASA Astrophysics Data System (ADS)

    Oike, Mamoru; Nosaka, Masataka; Kikuchi, Masataka; Watanabe, Yoshiaki

    An experimental study on a rotating-shaft seal system for a high-pressure liquid oxygen (LOX) turbopump has been conducted to develop the LE-7 engine for the Japanese H-II launch vehicle. The LOX turbopump rotating-shaft seal system, which prevents LOX (4.9 MPa) and the high-pressure turbine-drive gas (16.6 MPa, 970 K) from mixing during high-speed operations (18,000 to 20,000 rpm), consists of the following seals: an LOX seal comprising a floating-ring and a wear-ring, a turbine gas seal comprising two floating-rings, and a helium purge seal comprising two segmented circumferential seal-rings. This report describes experimental and observational results concerning the rotating-shaft seal system obtained in the LOX turbopump operations and the seal tests. Based on comparisons between the measurements and the analytical results, sealing characteristics of the seal system are discussed. Inspections of the sealing surfaces after the engine firing tests demonstrated that the LOX turbopump rotating-shaft seal system has sufficient durability for use in the LE-7 engine for the H-II launch vehicle.

  8. Chip and scrub seal field test results for Hwy 17 and Hwy 35.

    DOT National Transportation Integrated Search

    2009-11-09

    This report contains field test results from two pavements located in Mississippi containing chip seals and scrub seals. Limestone aggregate from the same source was used with PASS-CR emulsion. The pavements were tested at three intervals. One or bot...

  9. Modifications to Marshall's Annular Seal Test (MAST) Rig and Facility for Improved Rotordynamic Coefficient Testing of Annular Seals and Fluid Film Bearings

    NASA Technical Reports Server (NTRS)

    Darden, J. M.; Earhart, E. M.

    2011-01-01

    The limits of rotordynamic stability continue to be pushed by the high power densities and rotational speeds of modern rocket engine turbomachinery. Destabilizing forces increase dramatically with rotor speed. Rotordynamic stability is lost when these destabilizing forces overwhelm the stabilizing forces. The vibration from the unstable rotor grows until it is limited by some nonlinearity. For example, a rolling element bearing with a stiffness characteristic that increases with deflection may limit the vibration amplitude. The loads and deflections resulting from this limit cycle vibration (LCV) can lead to bearing and seal damage which promotes ever increasing levels of subsynchronous vibration. Engineers combat LCV by introducing rotordynamic elements that generate increased stabilizing forces and reduced destabilizing forces. For example, replacing a labyrinth seal with a damping seal results in substantial increases in the damping and stiffness rotordynamic coefficients. Adding a swirl brake to the damping seal greatly reduces the destabilizing cross-coupled forces generated by the damping seal for even further increases in the stabilizing capacity. Marshall?s Annular Seal Test (MAST) rig is designed to experimentally measure the stabilizing capacity of new annular seal designs. The rig has been moved to a new facility and outfitted with a new slave bearing to allow increased test durations and to enable the testing of fluid film bearings. The purpose of this paper is to describe the new facility and the new bearing arrangement. Several novel seal and bearing designs will also be discussed.

  10. Hermetic edge sealing of photovoltaic modules

    NASA Astrophysics Data System (ADS)

    1983-02-01

    The edge sealing technique is accomplished by a combination of a chemical bond between glass and aluminum, formed by electrostatic bonding, and a metallurgical bond between aluminum and aluminum, formed by ultrasonic welding. Such a glass to metal seal promises to provide a low cost, long lifetime, highly effective hermetic seal which can protect module components from severe environments. Development of the sealing techniques and demonstration of their effectiveness by fabricating a small number of dummy modules, up to eight inches square in size, and testing them for hermeticity using helium leak testing methods are reviewed. Non-destructive test methods are investigated.

  11. Analysis and Design of a Double-Divert Spiral Groove Seal

    NASA Technical Reports Server (NTRS)

    Zheng, Xiaoqing; Berard, Gerald

    2007-01-01

    This viewgraph presentation describes the design and analysis of a double spiral groove seal. The contents include: 1) Double Spiral Design Features; 2) Double Spiral Operational Features; 3) Mating Ring/Rotor Assembly; 4) Seal Ring Assembly; 5) Insert Segment Joints; 6) Rotor Assembly Completed Prototype Parts; 7) Seal Assembly Completed Prototype Parts; 8) Finite Element Analysis; 9) Computational Fluid Dynamics (CFD) Analysis; 10) Restrictive Orifice Design; 11) Orifice CFD Model; 12) Orifice Results; 13) Restrictive Orifice; 14) Seal Face Coning; 15) Permanent Magnet Analysis; 16) Magnetic Repulsive Force; 17) Magnetic Repulsive Test Results; 18) Spin Testing; and 19) Testing and Validation.

  12. Hermetic edge sealing of photovoltaic modules

    NASA Technical Reports Server (NTRS)

    1983-01-01

    The edge sealing technique is accomplished by a combination of a chemical bond between glass and aluminum, formed by electrostatic bonding, and a metallurgical bond between aluminum and aluminum, formed by ultrasonic welding. Such a glass to metal seal promises to provide a low cost, long lifetime, highly effective hermetic seal which can protect module components from severe environments. Development of the sealing techniques and demonstration of their effectiveness by fabricating a small number of dummy modules, up to eight inches square in size, and testing them for hermeticity using helium leak testing methods are reviewed. Non-destructive test methods are investigated.

  13. JT90 Ceramic Outer Air Seal System Refinement Program, Phase 2

    NASA Technical Reports Server (NTRS)

    Shiembob, L. T.

    1982-01-01

    The sprayed ceramic gas turbine outer air seal system was tested in two JT9D engines to substantiate the abradability and durability of the seals. Of particular significance was that one of the tests, a 150 hour 1000 cycle endurance program at nominal JT9D operating conditions, was completed with minimal effect on the seals and received Federal Aviation Administration cognizance with respect to potential field service use by the airlines. The other engine test completed 1825 endurance cycles at severe operating conditions and no burn through or other serious defects in the structural integrity of a seal segment was observed. These test results combined with other Pratt and Whitney Aircraft engine tests substantiate the potential of the ceramic outer air seal system to attain the durability goal of 50000 hour engine operating capability. Both engine tests subjected the seals to intentional blade rubs and demonstrated good abradability with volume wear ratios greater than 100, far exceeding the design goal of 10. The improved volume wear ratio will allow the turbine tip clearance to be reduced, thereby resulting in an estimated thrust specific fuel consumption improvement of 0.3 percent.

  14. 2000 NASA Seal/Secondary Air System Workshop. Volume 1

    NASA Technical Reports Server (NTRS)

    Steinetz, Bruce M. (Editor); Hendricks, Robert C. (Editor)

    2001-01-01

    The 2000 NASA Seal/Secondary Air System Workshop covered four main areas: (1) overviews of NASA-sponsored Ultra-Efficient Engine Technology (UEET) and Access to Space Programs, with emphasis on program goals and seal needs; (2) review of turbine engine seal issues from the perspective of end users such as United Airlines; (3) reviews of sealing concepts, test results, experimental facilities, and numerical predictions; and (4) reviews of material development programs relevant to advanced seals development. The NASA UEET overview illustrates for the reader the importance of advanced technologies, including seals, in meeting future engine system efficiency and emission goals. GE, Pratt & Whitney, and Honeywell presented advanced seal development work being performed within their organizations. The NASA-funded GE/Stein Seal team has successfully demonstrated a large (3-ft. diam) aspirating seal that can withstand all anticipated pressures, speeds, and rotor runouts anticipated for a GE90 L.P. turbine balance piston location. GE/Stein Seal are fabricating a full-scale seal to be tested in a GE-90 ground test engine in early 2002. Pratt & Whitney and Stein Seal are investigating carbon seals to accommodate large radial movements anticipated in future geared-fan gearbox locations. Honeywell presented a finger seal design being considered for a high-temperature static combustor location incorporating ceramic finger elements. Successful demonstration of the braided carbon rope thermal barriers to extreme temperatures (5500 F) for short durations provide a new form of very high temperature thermal barrier for future Shuttle solid rocket motor nozzle joints. The X-37, X-38, and future highly reusable launch vehicles pose challenging control surface seal demands that require new seal concepts made from emerging high temperature ceramics and other materials.

  15. An in vitro evaluation of the apical sealing ability of new polymeric endodontic filling systems.

    PubMed

    Onay, Emel Olga; Ungor, Mete; Unver, Saadet; Ari, Hale; Belli, Sema

    2009-08-01

    The objective of this study was to compare the short-term sealing abilities of recently introduced polymeric endodontic filling systems. Root canals of 120 extracted and decoronated human single-rooted teeth were instrumented using crown-down technique with HERO Shaper rotary instruments. The roots were divided randomly into 8 groups (6 experimental and 2 control groups of 15 roots each) and filled with different combinations of core and sealer as follows: group 1, RealSeal/Resilon; group 2, RealSeal/Herofill; group 3, Hybrid Root Seal/Resilon; group 4, Hybrid Root Seal/Herofill; group 5, MM-Seal/Resilon; group 6, MM-Seal/Herofill; group 7, positive controls (Herofill only); group 8, negative controls. Apical leakage quantity was evaluated after 1 week by using a fluid filtration model. For each sample, measurements of fluid movement were recorded at 2-minute intervals for a total of 8 minutes, and then averaged. The data were calculated and analyzed using the Kolmogorov-Smirnov test, 1-way analysis of variance (ANOVA), and the Tukey test. Significance was set at P less than .05. Multiple paired comparisons (Tukey test) showed that, of all the groups, MM-Seal/Herofill combination exhibited the least microleakage, and RealSeal/Herofill combination ranked second in this regard. The mean leakage values for the RealSeal/Resilon and MM-Seal/Resilon combinations were both significantly higher than the means for the other 4 experimental groups (P < .01). Hybrid Root Seal combined with Resilon resulted in significantly less microleakage than Hybrid Root Seal combined with Herofill (P = .001). The results suggest that the sealing properties of epoxy-resin-based sealer (MM-Seal) combined with gutta-percha (Herofill) are superior to those of methacrylate-based sealers (Hybrid Root Seal and Realseal) combined with Resilon.

  16. Actively Controlled Shaft Seals for Aerospace Applications

    NASA Technical Reports Server (NTRS)

    Salant, Richard F.; Wolff, Paul

    1995-01-01

    This study experimentally investigates an actively controlled mechanical seal for aerospace applications. The seal of interest is a gas seal, which is considerably more compact than previous actively controlled mechanical seals that were developed for industrial use. In a mechanical seal, the radial convergence of the seal interface has a primary effect on the film thickness. Active control of the film thickness is established by controlling the radial convergence of the seal interface with a piezoelectric actuator. An actively controlled mechanical seal was initially designed and evaluated using a mathematical model. Based on these results, a seal was fabricated and tested under laboratory conditions. The seal was tested with both helium and air, at rotational speeds up to 3770 rad/sec, and at sealed pressures as high as 1.48 x 10(exp 6) Pa. The seal was operated with both manual control and with a closed-loop control system that used either the leakage rate or face temperature as the feedback. The output of the controller was the voltage applied to the piezoelectric actuator. The seal operated successfully for both short term tests (less than one hour) and for longer term tests (four hours) with a closed-loop control system. The leakage rates were typically 5-15 slm (standard liters per minute), and the face temperatures were generally maintained below 100C. When leakage rate was used as the feedback signal, the setpoint leakage rate was typically maintained within 1 slm. However, larger deviations occurred during sudden changes in sealed pressure. When face temperature was used as the feedback signal, the setpoint face temperature was generally maintained within 3 C, with larger deviations occurring when the sealed pressure changes suddenly. the experimental results were compared to the predictions from the mathematical model. The model was successful in predicting the trends in leakage rate that occurred as the balance ratio and sealed pressure changed, although the leakage rates were not quantitatively predicted with a high degree of accuracy. This model could be useful in providing valuable design information for future actively controlled mechanical seals.

  17. Rotor fragment protection program: Statistics on aircraft gas turbine ngine rotor failures that occurred in U.S. commercial aviation during 1978

    NASA Technical Reports Server (NTRS)

    Delucia, R. A.; Salvino, J. T.

    1981-01-01

    This report presents statistical information relating to the number of gas turbine engine rotor failures which occurred in commercial aviation service use. The predominant failure involved blade fragments, 82.4 percent of which were contained. Although fewer rotor rim, disk, and seal failures occurred, 33.3%, 100% and 50% respectively were uncontained. Sixty-five percent of the 166 rotor failures occurred during the takeoff and climb stages of flight.

  18. Design of a Stagnation Heater for the Rarefied Gas Wing Tunnel

    DTIC Science & Technology

    1990-12-01

    parts are ground together with zirconia powder as the medium, then fired to help make a good seal. The zirconia disk size, 6" diameter by 1" thick...pressure vessel, with zirconia powder . This is an interesting concept. With each grain of powder radiating to and from neighboring grains, it could...meets ASTM SA 106 Grade B. " zirconia powder " = Wanted powder with a 30-50 j tm grain size to help make the ground tapered joint between the zirconia tube

  19. On the Behaviour of Porcine Adipose and Skeletal Muscle Tissues under Shock Compression

    DTIC Science & Technology

    2012-09-01

    74 (breech pressure) shots. Secondly, a smaller vacuum pump evacuates the air within both the barrel of the gun and a sealed section mounted at the end...pressure. To fire the gun this cavity was rapidly evacuated, allowing first the disk adjacent to the breech and then that adjacent to the barrel to...of the gun , i.e. the barrel section. Such action allowed for a much stronger vacuum to be created than within the rearward expansion chamber and

  20. Sealed-off CO2 laser with In-Au alloy sealing

    NASA Astrophysics Data System (ADS)

    Iehisa, N.; Fukaya, K.; Karube, N.

    1986-02-01

    The In-Au alloy sealing was found to satisfy all the requirements imposed on the sealed-off CO2 lasers. The sealing between different materials such as quartz, SUS 303, Si, and ZnSe was shown to withstand the thermal shock test, and gave the He leak rate lower than 1×10-9 atm cc/s both before and after the tests. It was also proved that the transmittance characteristics of dielectric coated output couplers did not change after the sealing. The sealed-off CO2 lasers with La1-xSrxCoO3 perovskite oxide cathodes sealed with this technique produced the operational life of 3000 h at the laser power level of 50 W/m.

  1. ENVIRONMENTAL TECHNOLOGY VERIFICATION REPORT, PERFORMANCE TEST RESULTS FOR THE A AND A ENVIRONMENTAL SEALS' SEAL ASSIST SYSTEM (SAS), PHASE I--TECHNOLOGY VERIFICATION REPORT

    EPA Science Inventory

    The report presents results of tests determining the efficacy of A&A Environmental Seals, Inc's Seal Assist System (SAS) in preventing natural gas compressor station's compressor rod packing leaks from escaping into the atmosphere. The SAS consists of an Emission Containment Glan...

  2. Rationale behind the design and comparative evaluation of an all-in-one self-etch model adhesive.

    PubMed

    Kanehira, Masafumi; Finger, Werner J; Ishihata, Hiroshi; Hoffmann, Marcus; Manabe, Atsufumi; Shimauchi, Hidetoshi; Komatsu, Masashi

    2009-06-01

    To investigate and compare bonding and dentin sealing efficacy of a marketed all-in-one and an experimental model adhesive with minimum effective amounts of acidic monomer and water. Composition of model adhesive (NAD) in mass%: UDMA (45), 4-META (20), H2O (7.5), and acetone (27.5). For characterization of a reasonable NAD application procedure shear bond strengths (SBS, n=8) were determined on human enamel and dentin. Clearfil S3 Bond (TSB; Kuraray) served as reference. SBSs were evaluated after 10 min, 1 and 7 days, and 1 month, marginal adaptation (n=8) was assessed in cylindrical butt-joint dentin cavities. Diffusive and convective water fluxes through 1mm thick adhesive-coated dentin disks (n=6) were qualitatively and quantitatively analyzed. SBSs proved that application of NAD in one coat with 20s agitated dwell time was > or =20 MPa, enamel SBSs (24h) were 25 MPa, p>0.05. Dentin SBSs for TSB and NAD were not different (p>0.05) at the four stages (means: 18.9, 23.5, 25.4, and 23.6 MPa). Five and seven of the eight bonded restorations with TSB and NAD were gap-free (p>0.05). Dentin disks treated with EDTA from both sides or one side only were highly permeable for liquid, whereas adhesive-coated dentin disks showed no permeability at 0 and 2.5 kPa water pressure. Within the limitations of this study the model adhesive tested represents a promising basic composition for all-in-one adhesives, eliminating common problems encountered with single step adhesives such as phase separation and permeability.

  3. High stability design for new centrifugal compressor

    NASA Technical Reports Server (NTRS)

    Kanki, H.; Katayama, K.; Morii, S.; Mouri, Y.; Umemura, S.; Ozawa, U.; Oda, T.

    1989-01-01

    It is essential that high-performance centrifugal compressors be free of subsynchronous vibrations. A new high-performance centrifugal compressor has been developed by applying the latest rotordynamics knowledge and design techniques: (1) To improve the system damping, a specially designed oil film seal was developed. This seal attained a damping ratio three times that of the conventional design. The oil film seal contains a special damper ring in the seal cartridge. (2) To reduce the destabilizing effect of the labyrinth seal, a special swirl canceler (anti-swirl nozzle) was applied to the balance piston seal. (3) To confirm the system damping margin, the dynamic simulation rotor model test and the full load test applied the vibration exciting test in actual load conditions.

  4. High Temperature Brush Seal Tuft Testing of Selected Nickel-Chrome and Cobalt-Chrome Superalloys

    NASA Technical Reports Server (NTRS)

    Fellenstein, James A.; DellaCorte, Christopher; Moore, Kenneth D.; Boyes, Esther

    1997-01-01

    The tribology of brush seals is of considerable interest to turbine engine designers because bristle wear continues to limit long term seal performance and life. To provide better materials characterization and foster the development of improved seals, NASA Lewis has developed a brush seal tuft tester. In this test, a 'paintbrush' sample tuft is loaded under constant contact pressure against the outside diameter of a rotating journal. With this configuration, load and friction are directly measured and accurate wear measurements are possible. Previously reported research using this facility showed excellent data repeatability and wear morphology similar to published seal data and dynamic rig tests. This paper is an update of the ongoing research into the tribology of brush seals. The effects of wire materials processing on seal wear and the tribological results for three journal coatings are discussed. Included in the materials processing were two nickel-chrome superalloys each processed to two different yield strengths. The results suggest that seal wear is dependent more on material composition than processing conditions.

  5. Preliminary Assessment of Seals for Dust Mitigation of Mechanical Components for Lunar Surface Systems

    NASA Technical Reports Server (NTRS)

    Delgado, Irebert R.; Handschuh, Michael J.

    2010-01-01

    Component tests were conducted on spring-loaded Teflon seals to determine their performance in keeping lunar simulant out of mechanical component gearbox, motor, and bearing housings. Baseline tests were run in a dry-room without simulant for 10,000 cycles to determine wear effects of the seal against either anodized aluminum or stainless steel shafts. Repeat tests were conducted using lunar simulants JSC-1A and LHT-2M. Finally, tests were conducted with and without simulant in vacuum at ambient temperature. Preliminary results indicate minimal seal and shaft wear through 10,000 cycles, and more importantly, no simulant was observed to pass through the seal-shaft interface. Future endurance tests are planned at relevant NASA Lunar Surface System architecture shaft sizes and operating conditions.

  6. Effects of Compression, Staging, and Braid Angle on Braided Rope Seal Performance

    NASA Technical Reports Server (NTRS)

    Steinetz, Bruce M.; Adams, Michael L.

    1997-01-01

    Future turbine engines and industrial systems will be operating at increased temperatures to achieve more demanding efficiency and performance goals. In the highest temperature sections of the engine new material systems such as ceramics and intermetallics are being considered to withstand the harsh thermal environment. Components constructed of these low expansion-rate materials experience thermal strains and a resulting reduction of life when rigidly attached to high expansion-rate, superalloy support structures. Seals are being designed to both seal and to serve as compliant mounts allowing for relative thermal growths between high temperature but brittle primary structures and the surrounding support structures. Previous seal research yielded several braided rope seal designs which demonstrated the ability to both seal and serve as a compliant mount. The hybrid seal was constructed of an all-ceramic (alumina-silica) core overbraided with a superalloy wire sheath (cobalt based superalloy). The all ceramic seal was constructed of an all-ceramic (alumina-silica) core overbraided with multiple ceramic (alumina-silica) sheath layers. Program goals for braided rope seals are to improve flow resistance and/or seal resilience. To that end, the current report studies the test results of: baseline and modified hybrid seals; two stage hybrid and two stage all-ceramic seal configurations; and single stage hybrid and single stage all-ceramic seal configurations for a range of seal crush conditions. Hybrid seal modifications include increasing the sheath braid angle and core coverage. For the same percent seal cross-sectional crush, results show that increasing the hybrid seal braid angle increased seal stiffness and seal unit load, resulting in flows approximately one third of the baseline hybrid seal flows. For both hybrid and all-ceramic seals, two stage seal configurations significantly outperformed single stage configurations. Two stage seal flows were at least 30% less than the single stage seal flows for the same seal crush. Furthermore, test results of single stage seals indicate that for both all-ceramic and hybrid seals, a specific seal crush condition exists at which minimum flows are achieved (i.e. increasing seal crush beyond a certain point does not result in better flow performance). Flow results are presented for a range of pressures and temperatures from ambient to 1300 F, before and after scrubbing. Compression tests results show that for both all-ceramic and hybrid seals, seal preload and stiffness increase with seal crush, but residual seal interference remains constant.

  7. Full-Scale System for Quantifying Loads and Leak Rates of Seals for Space Applications

    NASA Technical Reports Server (NTRS)

    Dunlap, Patrick H., Jr.; Steinetz, Bruce M.; Daniels, Christopher C.; Wasowski, Janice L.; Robbie, Malcolm G.; Erker, Arthur H.; Drlik, Gary J.; Mayer, John J.

    2010-01-01

    NASA is developing advanced space-rated vacuum seals in support of future space exploration missions to low-Earth orbit and other destinations. These seals may be 50 to 60 in. (127 to 152 cm) in diameter and must exhibit extremely low leak rates to ensure that astronauts have sufficient breathable air for extended missions to the International Space Station or the Moon. Seal compression loads must be below prescribed limits so as not to overload the mechanisms that compress them during docking or mating, and seal adhesion forces must be low to allow two mated systems to separate when required. NASA Glenn Research Center has developed a new test apparatus to measure leak rates and compression and adhesion loads of candidate full-scale seals under simulated thermal, vacuum, and engagement conditions. Tests can be performed in seal-on-seal or seal-on-flange configurations at temperatures from -76 to 140 F (-60 to 60 C) under operational pressure gradients. Nominal and off-nominal mating conditions (e.g., incomplete seal compression) can also be simulated. This paper describes the main design features of the test apparatus as well as techniques used to overcome some of the design challenges.

  8. An Overview of High Temperature Seal Development and Testing Capabilities at the NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Demange, Jeffrey J.; Taylor, Shawn C.; Dunlap, Patrick H.; Steinetz, Bruce M.; Finkbeiner, Joshua R.; Proctor, Margaret P.

    2014-01-01

    The NASA Glenn Research Center (GRC), partnering with the University of Toledo, has a long history of developing and testing seal technologies for high-temperature applications. The GRC Seals Team has conducted research and development on high-temperature seal technologies for applications including advanced propulsion systems, thermal protection systems (airframe and control surface thermal seals), high-temperature preloading technologies, and other extreme-environment seal applications. The team has supported several high-profile projects over the past 30 years and has partnered with numerous organizations, including other government entities, academic institutions, and private organizations. Some of these projects have included the National Aerospace Space Plane (NASP), Space Shuttle Space Transport System (STS), the Multi-Purpose Crew Vehicle (MPCV), and the Dream Chaser Space Transportation System, as well as several high-speed vehicle programs for other government organizations. As part of the support for these programs, NASA GRC has developed unique seal-specific test facilities that permit evaluations and screening exercises in relevant environments. The team has also embarked on developing high-temperature preloaders to help maintain seal functionality in extreme environments. This paper highlights several propulsion-related projects that the NASA GRC Seals Team has supported over the past several years and will provide an overview of existing testing capabilities

  9. Performance Evaluations of Ceramic Wafer Seals

    NASA Technical Reports Server (NTRS)

    Dunlap, Patrick H., Jr.; DeMange, Jeffrey J.; Steinetz, Bruce M.

    2006-01-01

    Future hypersonic vehicles will require high temperature, dynamic seals in advanced ramjet/scramjet engines and on the vehicle airframe to seal the perimeters of movable panels, flaps, and doors. Seal temperatures in these locations can exceed 2000 F, especially when the seals are in contact with hot ceramic matrix composite sealing surfaces. NASA Glenn Research Center is developing advanced ceramic wafer seals to meet the needs of these applications. High temperature scrub tests performed between silicon nitride wafers and carbon-silicon carbide rub surfaces revealed high friction forces and evidence of material transfer from the rub surfaces to the wafer seals. Stickage between adjacent wafers was also observed after testing. Several design changes to the wafer seals were evaluated as possible solutions to these concerns. Wafers with recessed sides were evaluated as a potential means of reducing friction between adjacent wafers. Alternative wafer materials are also being considered as a means of reducing friction between the seals and their sealing surfaces and because the baseline silicon nitride wafer material (AS800) is no longer commercially available.

  10. Performance of Subscale Docking Seals Under Simulated Temperature Conditions

    NASA Technical Reports Server (NTRS)

    Smith, Ian M.; Daniels, Christopher C.

    2008-01-01

    A universal docking system is being developed by the National Aeronautics and Space Administration (NASA) to support future space exploration missions to low Earth orbit (LEO), to the moon, and to Mars. The candidate docking seals for the system are a composite design consisting of elastomer seal bulbs molded into the front and rear sides of a metal ring. The test specimens were subscale seals with two different elastomer cross-sections and a 12-in. outside diameter. The seal assemblies were mated in elastomer seal-on-metal plate and elastomer seal-on-elastomer seal configurations. The seals were manufactured from S0383-70 silicone elastomer compound. Nominal and off-nominal joint configurations were examined. Both the compression load required to mate the seals and the leak rate observed were recorded while the assemblies were subjected to representative docking system operating temperatures of -58, 73, and 122 F (-50, 23, and 50 C). Both the loads required to fully compress the seals and their leak rates were directly proportional to the test temperature.

  11. Modular, multi-level groundwater sampler

    DOEpatents

    Nichols, Ralph L.; Widdowson, Mark A.; Mullinex, Harry; Orne, William H.; Looney, Brian B.

    1994-01-01

    Apparatus for taking a multiple of samples of groundwater or pressure measurements from a well simultaneously. The apparatus comprises a series of chambers arranged in an axial array, each of which is dimensioned to fit into a perforated well casing and leave a small gap between the well casing and the exterior of the chamber. Seals at each end of the container define the limits to the axial portion of the well to be sampled. A submersible pump in each chamber pumps the groundwater that passes through the well casing perforations into the gap from the gap to the surface for analysis. The power lines and hoses for the chambers farther down the array pass through each chamber above them in the array. The seals are solid, water-proof, non-reactive, resilient disks supported to engage the inside surface of the well casing. Because of the modular design, the apparatus provides flexibility for use in a variety of well configurations.

  12. Design and analysis of seals for extended service life

    NASA Technical Reports Server (NTRS)

    Bower, Mark V.

    1992-01-01

    Space Station Freedom is being developed for a service life of up to thirty years. As a consequence, the design requirements for the seals to be used are unprecedented. Full scale testing to assure the selected seals can satisfy the design requirements are not feasible. As an alternative, a sub-scale test program has been developed by MSFC to calibrate the analysis tools to be used to certify the proposed design. This research has been conducted in support of the MSFC Integrated Seal Test Program. The ultimate objective of this research is to correlate analysis and test results to qualify the analytical tools, which in turn, are to be used to qualify the flight hardware. This research is totally focused on O-rings that are compressed by perpendicular clamping forces. In this type of seal the O-ring is clamped between the sealing surfaces by loads perpendicular to the circular cross section.

  13. Task 4 supporting technology. Part 2: Detailed test plan for thermal seals. Thermal seals evaluation, improvement and test. CAN8-1, Reusable Launch Vehicle (RLV), advanced technology demonstrator: X-33. Leading edge and seals thermal protection system technology demonstration

    NASA Technical Reports Server (NTRS)

    Hogenson, P. A.; Lu, Tina

    1995-01-01

    The objective is to develop the advanced thermal seals to a technology readiness level (TRL) of 6 to support the rapid turnaround time and low maintenance requirements of the X-33 and the future reusable launch vehicle (RLV). This program is divided into three subtasks: (1) orbiter thermal seals operation history review; (2) material, process, and design improvement; and (3) fabrication and evaluation of the advanced thermal seals.

  14. Actively controlled shaft seals for aerospace applications

    NASA Technical Reports Server (NTRS)

    Salant, Richard F.

    1993-01-01

    An electronically controlled mechanical seal for use as the purge gas seal in a liquid oxygen turbo pump has been fabricated and tested under transient operating conditions. The thickness of the lubricating film is controlled by adjusting the coning of the carbon face. This is accomplished by applying a voltage to a piezoelectric actuator to which the carbon face is bonded. The seal has been operated with a closed-loop control system that utilizes either the leakage rate or the seal face temperature as the feedback. Both speed and pressure transients have been imposed on the seal. The transient tests have demonstrated that the seal is capable of maintaining low leakage rates while limiting the face temperatures.

  15. Test results for rotordynamic coefficients of anti-swirl self-injection seals

    NASA Technical Reports Server (NTRS)

    Kim, C. H.; Lee, Y. B.

    1994-01-01

    Test results are presented for rotordynamic coefficients and leakage for three annular seals which use anti-swirl self-injection concept to yield significant improvement in whirl frequency ratios as compared to smooth and damper seals. A new anti-swirl self-inection mechanism is achieved by deliberately machining self-injection holes inside the seal stator mechanism which is used to achieve effective reduction of the tangential flow which is considered as a prime cause of rotor instability in high performance turbomachinery. Test results show that the self-injection mechanism significantly improves whirl frequency ratios; however, the leakage performance degrades due to the introduction of the self-injection mechanism. Through a series of the test program, an optimum anti-swirl self-injection seal which uses a labyrinth stator surface with anti-axial flow injections is selected to obtain a significant improvement in the whirl frequency ratio as compared to a damper seal, while showing moderate leakage performance. Best whirl frequency ratio is achieved by an anti-swirl self-injection seal of 12 holes anti-swirl and 6 degree anti-leakage injection with a labyrinth surface configuration. When compared to a damper seal, the optimum configuration outperforms the whirl frequency ratio by a factor of 2.

  16. MECHANICAL PROPERTY CHARACTERIZATIONS AND PERFORMANCE MODELING OF SOFC SEALS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koeppel, Brian J.; Vetrano, John S.; Nguyen, Ba Nghiep

    2008-03-26

    This study provides modeling tools for the design of reliable seals for SOFC stacks. The work consists of 1) experimental testing to determine fundamental properties of SOFC sealing materials, and 2) numerical modeling of stacks and sealing systems. The material tests capture relevant temperature-dependent physical and mechanical data needed by the analytical models such as thermal expansion, strength, fracture toughness, and relaxation behavior for glass-ceramic seals and other materials. Testing has been performed on both homogenous specimens and multiple material assemblies to investigate the effect of interfacial reactions. A viscoelastic continuum damage model for a glass-ceramic seal was developed tomore » capture the nonlinear behavior of this material at high temperatures. This model was implemented in the MSC MARC finite element code and was used for a detailed analysis of a planar SOFC stack under thermal cycling conditions. Realistic thermal loads for the stack were obtained using PNNL’s in-house multiphysics solver. The accumulated seal damage and component stresses were evaluated for multiple thermal loading cycles, and regions of high seal damage susceptible to cracking were identified. Selected test results, numerical model development, and analysis results will be presented.« less

  17. Testing of polyimide second-stage rod seals for single-state applications in advanced aircraft hydraulic systems

    NASA Technical Reports Server (NTRS)

    Waterman, A. W.

    1977-01-01

    Machined polyimide second-stage rod seals were evaluated to determine their suitability for single-stage applications where full system pressure acts on the upstream side of the seal. The 6.35-cm (2.5-in.) K-section seal was tested in impulse screening tests where peak pressure was increased in 3.448-MPa (500-psi) increments each 20,000 cycles. Seal failure occurred at 37.92 MPa (5,500 psi), indicating a potential for acceptability in a 27.58-MPa (4,000-psi) system. Static pressurization for 600 sec at pressures in excess of 10.34 MPa (1,500 psi) revealed structural inadequacy of the seal cross section to resist fracture and extrusion. Endurance testing showed the seals capable of at least 65,000 1.27-cm (0.5-in.) cycles at 450 K (350 F) without leakage. It was concluded that the second-stage seals were proven to be exceptional in the 1.379-MPa (200-psi) applications for which they were designed, but polyimide material properties are not adequate for use in this design at pressure loading equivalent to that present in single-stage applications.

  18. Sample Containerization and Sealing Techniques for Contamination Prevention and Preservation of Science Value for Mars Sample Return

    NASA Astrophysics Data System (ADS)

    Younse, Paulo

    Four sealing methods for encapsulating samples in 1 cm diameter thin-walled sample tubes were designed, along with a set of tests for characterization and evaluation of contamination prevention and sample preservation capability for the proposed Mars Sample Return (MSR) campaign. The sealing methods include a finned shape memory alloy (SMA) plug, expanding torque plug, contracting SMA ring cap, and expanding SMA ring plug. Mechanical strength and hermeticity of the seal were measured using a helium leak detector. Robustness of the seal to Mars simulant dust, surface abrasion, and pressure differentials were tested. Survivability tests were run to simulate thermal cycles on Mars, vibration from a Mars Ascent Vehicle (MAV), and shock from Earth Entry Vehicle (EEV) landing. Material compatibility with potential sample minerals and organic molecules were studied to select proper tube and seal materials that would not lead to adverse reactions nor contaminate the sample. Cleaning and sterilization techniques were executed on coupons made from the seal materials to assess compliance with planetary protection and contamination control. Finally, a method to cut a sealed tube for sample removal was designed and tested.

  19. [Bioactivity of ultraviolet ray-treated titanium surface in nitrogen storing environment].

    PubMed

    Wang, Heng; Shang, Ren; Guan, Yun; Wang, Yan; Teng, Wei

    2013-05-01

    To evaluate the adhesion, proliferation and differentiation of osteoblast-like cells on the ultraviolet (UV)-treated titanium in different storing environment, and to find a way to enhance the bioactivity of titanium and to prevent its age-related degradation. Acid-etched titanium disks stored under ambient conditions for 4 weeks and treated with UV light for 48 h.Then disks were divided into three groups and placed in a sealed container for 0 h (no-stored,NO group) , 4 weeks (air-stored, AS group) or in a sealed container filled with nitrogen for 4 weeks (nitrogen-stored,NS group) respectively. A group of UV-untreated titanium served as negative control (NC group).The surface morphology was evaluated using scanning electron microscopy (SEM), and hydrophilicity of disks were measured using contact angle measuring device. Cell counting kit-8 was used to measure the cell adhesion and proliferation. Cell differentiation was evaluated by testing alkaline phosphatase (ALP) activity using ALP reagent kit. There was no difference in surface topography among groups.Contact angels in NS group [(67.70 ± 3.59)°] and NO group [(0.70 ± 0.28)°] were smaller than the others (P < 0.05). Cell adhesion in NS group at 2 h and 4 h point was (0.237 ± 0.006) and (0.578 ± 0.039), respectively, and proliferation at 3 d and 5 d point was (0.743 ± 0.026) and (1.548 ± 0.046) respectively, which were significantly higher than those in AS group [(0.158 ± 0.036), (0.400 ± 0.010), (0.499 ± 0.019) and (1.174 ± 0.062)] and in NC group [(0.161 ± 0.024), (0.390 ± 0.011), (0.508 ± 0.015) and (1.209 ± 0.025)] at the same time point (P < 0.05). How ever the results mention above in the NS group were lower than those in the NO group (P < 0.05). No difference were found between data from the AS group and NS group (P > 0.05). Osteoblast-like cells had an abundant spread on NS and NO group during 2 h incubation, but did not exactly spread on AS and NC group after incubation for 4 h. No difference were found in ALP among groups. UV treatment can enhance bioactivity of titanium, and nitrogen storage can slow down its biological aging.

  20. 46 CFR 97.15-75 - Test of inflatable hopper gate seals on Great Lakes bulk dry cargo vessels.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Test of inflatable hopper gate seals on Great Lakes bulk... (CONTINUED) CARGO AND MISCELLANEOUS VESSELS OPERATIONS Tests, Drills, and Inspections § 97.15-75 Test of... ensure that the inflatable hopper gate seals installed on vessels required to meet the damage stability...

  1. 46 CFR 97.15-75 - Test of inflatable hopper gate seals on Great Lakes bulk dry cargo vessels.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Test of inflatable hopper gate seals on Great Lakes bulk... (CONTINUED) CARGO AND MISCELLANEOUS VESSELS OPERATIONS Tests, Drills, and Inspections § 97.15-75 Test of... ensure that the inflatable hopper gate seals installed on vessels required to meet the damage stability...

  2. 46 CFR 97.15-75 - Test of inflatable hopper gate seals on Great Lakes bulk dry cargo vessels.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Test of inflatable hopper gate seals on Great Lakes bulk... (CONTINUED) CARGO AND MISCELLANEOUS VESSELS OPERATIONS Tests, Drills, and Inspections § 97.15-75 Test of... ensure that the inflatable hopper gate seals installed on vessels required to meet the damage stability...

  3. Reevaluation of interpretive criteria for Haemophilus influenzae by using meropenem (10-microgram), imipenem (10-microgram), and ampicillin (2- and 10-microgram) disks.

    PubMed Central

    Zerva, L; Biedenbach, D J; Jones, R N

    1996-01-01

    A collection of 300 Haemophilus influenzae clinical strains was used to assess in vitro susceptibility to carbapenems (meropenem, imipenem) by MIC and disk diffusion methods and to compare disk diffusion test results with two potencies of ampicillin disks (2 and 10 micrograms). The isolates included ampicillin-susceptible or- intermediate (167 strains), beta-lactamase-positive (117 strains), and beta-lactamase-negative ampicillin-resistant (BLNAR; 16 strains) organisms. Disk diffusion testing was performed with 10-micrograms meropenem disks from two manufacturers. Meropenem was highly active against H. influenzae strains (MIC50, 0.06 microgram/ml; MIC90, 0.25 microgram/ml; MIC50 and MIC90, MICs at which 50 and 90%, respectively, of strains are inhibited) and was 8- to 16-fold more potent than imipenem (MIC50, 1 microgram/ml; MIC90, 2 micrograms/ml). Five non-imipenem-susceptible strains were identified (MIC, 8 micrograms/ml), but the disk diffusion test indicated susceptibility (zone diameters, 18 to 21 mm). MIC values of meropenem, doxycycline, ceftazidime, and ceftriaxone for BLNAR strains were two- to fourfold greater than those for other strains. The performance of both meropenem disks was comparable and considered acceptable. A single susceptible interpretive zone diameter of > or = 17 mm (MIC, < = or 4 micrograms/ml) was proposed for meropenem. Testing with the 2-micrograms ampicillin disk was preferred because of an excellent correlation between MIC values and zone diameters (r = 0.94) and superior interpretive accuracy with the susceptible criteria at > or = 17 mm (MIC, < or = 1 microgram/ml) and the resistant criteria at < or = 13 mm (MIC, > or = 4 micrograms/ml). Among the BLNAR strains tested, 81.3% were miscategorized as susceptible or intermediate when the 10-micrograms ampicillin disk was used, while the 2-micrograms disk produced only minor interpretive errors (12.5%). Use of these criteria for testing H. influenzae against meropenem and ampicillin should maximize reference test and standardized disk diffusion test performance with the Haemophilus Test Medium. The imipenem disk diffusion test appears compromised and should be used with caution for detecting strains for which imipenem MICs are elevated. PMID:8818892

  4. Development of improved high temperature seals and lubricants for downhole motors in geothermal applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    De La Fosse, P.H.; Black, A.D.; DiBona, B.G.

    1983-01-01

    A major limitation of downhole mud motors for geothermal drilling, as well as straight-hole oil and gas drilling, is the bearing section. Reduced bearing life results from the inability to seal a lubricant in the bearing pack. A reliable rotary seal will extend the bearing life and will allow high pressure drops across the bit for improved bottomhole cleaning and increased drilling rate. This paper summarizes the results of a six-year program funded by the U.S. Department of Energy/Division of Geothermal Energy to develop a sealed bearing pack for use with downhole motors in geothermal applications. Descriptions of the Sealmore » Test Machine, Lubricant Test Machine and Bearing Pack Test Facility are presented. Summaries of all seal tests, lubricant tests and bearing pack tests are provided; and a comprehensive program bibliography is presented.« less

  5. Sealed head access area enclosure

    DOEpatents

    Golden, Martin P.; Govi, Aldo R.

    1978-01-01

    A liquid-metal-cooled fast breeder power reactor is provided with a sealed head access area enclosure disposed above the reactor vessel head consisting of a plurality of prefabricated structural panels including a center panel removably sealed into position with inflatable seals, and outer panels sealed into position with semipermanent sealant joints. The sealant joints are located in the joint between the edge of the panels and the reactor containment structure and include from bottom to top an inverted U-shaped strip, a lower layer of a room temperature vulcanizing material, a separator strip defining a test space therewithin, and an upper layer of a room temperature vulcanizing material. The test space is tapped by a normally plugged passage extending to the top of the enclosure for testing the seal or introducing a buffer gas thereinto.

  6. Influence of compact disk recording protocols on reliability and comparability of speech audiometry outcomes: acoustic analysis.

    PubMed

    Di Berardino, F; Tognola, G; Paglialonga, A; Alpini, D; Grandori, F; Cesarani, A

    2010-08-01

    To assess whether different compact disk recording protocols, used to prepare speech test material, affect the reliability and comparability of speech audiometry testing. We conducted acoustic analysis of compact disks used in clinical practice, to determine whether speech material had been recorded using similar procedures. To assess the impact of different recording procedures on speech test outcomes, normal hearing subjects were tested using differently prepared compact disks, and their psychometric curves compared. Acoustic analysis revealed that speech material had been recorded using different protocols. The major difference was the gain between the levels at which the speech material and the calibration signal had been recorded. Although correct calibration of the audiometer was performed for each compact disk before testing, speech recognition thresholds and maximum intelligibility thresholds differed significantly between compact disks (p < 0.05), and were influenced by the gain between the recording level of the speech material and the calibration signal. To ensure the reliability and comparability of speech test outcomes obtained using different compact disks, it is recommended to check for possible differences in the recording gains used to prepare the compact disks, and then to compensate for any differences before testing.

  7. Mainshaft seals for small gas turbine engines

    NASA Technical Reports Server (NTRS)

    Ludwig, L. P.; Lynwander, P.

    1974-01-01

    An experimental evaluation of mainshaft seals for small gas turbine engines was conducted with shaft speeds to 213 m/s (700 ft/sec), air pressures to 148 Newtons per square centimeter abs. (215 psia), and air temperatures to 412k(282 F). A radial face seal incorporating self-acting geometry for lift augmentation was evaluated. In addition, three conventional carbon seal types (face, circumferential segmented, and rotating ring) were run for comparison. Test results indicated that the conventional seals used in this evaluation may not be satisfactory in future advanced engines because of excessive air leakage. On the other hand, the self-acting face seal was shown to have the potential capability of limiting leakages to one-half that of the conventional face seals and one-fifth that of conventional ring seals. A 150-hour endurance test of the self-acting face seal was conducted.

  8. Industrial Computer Codes

    NASA Technical Reports Server (NTRS)

    Shapiro, Wilbur

    1996-01-01

    This is an overview of new and updated industrial codes for seal design and testing. GCYLT (gas cylindrical seals -- turbulent), SPIRALI (spiral-groove seals -- incompressible), KTK (knife to knife) Labyrinth Seal Code, and DYSEAL (dynamic seal analysis) are covered. CGYLT uses G-factors for Poiseuille and Couette turbulence coefficients. SPIRALI is updated to include turbulence and inertia, but maintains the narrow groove theory. KTK labyrinth seal code handles straight or stepped seals. And DYSEAL provides dynamics for the seal geometry.

  9. Advanced Seal Development for Large Industrial Gas Turbines

    NASA Technical Reports Server (NTRS)

    Chupp, Raymond E.

    2006-01-01

    Efforts are in progress to develop advanced sealing for large utility industrial gas turbine engines (combustion turbines). Such seals have been under developed for some time for aero gas turbines. It is desired to transition this technology to combustion turbines. Brush seals, film riding face and circumferential seals, and other dynamic and static sealing approaches are being incorporated into gas turbines for aero applications by several engine manufacturers. These seals replace labyrinth or other seals with significantly reduced leakage rates. For utility industrial gas turbines, leakage reduction with advanced sealing can be even greater with the enormous size of the components. Challenges to transitioning technology include: extremely long operating times between overhauls; infrequent but large radial and axial excursions; difficulty in coating larger components; and maintenance, installation, and durability requirements. Advanced sealing is part of the Advanced Turbine Systems (ATS) engine development being done under a cooperative agreement between Westinghouse and the US Department of Energy, Office of Fossil Energy. Seal development focuses on various types of seals in the 501ATS engine both at dynamic and static locations. Each development includes rig testing of candidate designs and subsequent engine validation testing of prototype seals. This presentation gives an update of the ongoing ATS sealing efforts with special emphasis on brush seals.

  10. Brucella Antibodies in Alaskan True Seals and Eared Seals-Two Different Stories.

    PubMed

    Nymo, Ingebjørg H; Rødven, Rolf; Beckmen, Kimberlee; Larsen, Anett K; Tryland, Morten; Quakenbush, Lori; Godfroid, Jacques

    2018-01-01

    Brucella pinnipedialis was first isolated from true seals in 1994 and from eared seals in 2008. Although few pathological findings have been associated with infection in true seals, reproductive pathology including abortions, and the isolation of the zoonotic strain type 27 have been documented in eared seals. In this study, a Brucella enzyme-linked immunosorbent assay (ELISA) and the Rose Bengal test (RBT) were initially compared for 206 serum samples and a discrepancy between the tests was found. Following removal of lipids from the serum samples, ELISA results were unaltered while the agreement between the tests was improved, indicating that serum lipids affected the initial RBT outcome. For the remaining screening, we used ELISA to investigate the presence of Brucella antibodies in sera of 231 eared and 1,412 true seals from Alaskan waters sampled between 1975 and 2011. In eared seals, Brucella antibodies were found in two Steller sea lions ( Eumetopias jubatus ) (2%) and none of the 107 Northern fur seals ( Callorhinus ursinus ). The low seroprevalence in eared seals indicate a low level of exposure or lack of susceptibility to infection. Alternatively, mortality due to the Brucella infection may remove seropositive animals from the population. Brucella antibodies were detected in all true seal species investigated; harbor seals ( Phoca vitulina ) (25%), spotted seals ( Phoca largha ) (19%), ribbon seals ( Histriophoca fasciata ) (16%), and ringed seals ( Pusa hispida hispida ) (14%). There was a low seroprevalence among pups, a higher seroprevalence among juveniles, and a subsequent decreasing probability of seropositivity with age in harbor seals. Similar patterns were present for the other true seal species; however, solid conclusions could not be made due to sample size. This pattern is in accordance with previous reports on B. pinnipedialis infections in true seals and may suggest environmental exposure to B. pinnipedialis at the juvenile stage, with a following clearance of infection. Furthermore, analyses by region showed minor differences in the probability of being seropositive for harbor seals from different regions regardless of the local seal population trend, signifying that the Brucella infection may not cause significant mortality in these populations. In conclusion, the Brucella infection pattern is very different for eared and true seals.

  11. Hypersonic engine seal development at NASA Lewis Research Center

    NASA Technical Reports Server (NTRS)

    Steinetz, Bruce M.

    1994-01-01

    NASA Lewis Research Center is developing advanced seal concepts and sealing technology for advanced combined cycle ramjet/scramjet engines being designed for the National Aerospace Plane (NASP). Technologies are being developed for both the dynamic seals that seal the sliding interfaces between articulating engine panels and sidewalls, and for the static seals that seal the heat exchanger to back-up structure interfaces. This viewgraph presentation provides an overview of the candidate engine seal concepts, seal material assessments, and unique test facilities used to assess the leakage and thermal performance of the seal concepts.

  12. Hypersonic engine seal development at NASA Lewis Research Center

    NASA Astrophysics Data System (ADS)

    Steinetz, Bruce M.

    1994-07-01

    NASA Lewis Research Center is developing advanced seal concepts and sealing technology for advanced combined cycle ramjet/scramjet engines being designed for the National Aerospace Plane (NASP). Technologies are being developed for both the dynamic seals that seal the sliding interfaces between articulating engine panels and sidewalls, and for the static seals that seal the heat exchanger to back-up structure interfaces. This viewgraph presentation provides an overview of the candidate engine seal concepts, seal material assessments, and unique test facilities used to assess the leakage and thermal performance of the seal concepts.

  13. Investigation of package sealing using organic adhesives

    NASA Technical Reports Server (NTRS)

    Perkins, K. L.; Licari, J. J.

    1977-01-01

    A systematic study was performed to evaluate the suitability of adhesives for sealing hybrid packages. Selected adhesives were screened on the basis of their ability to seal gold-plated Kovar butterfly-type packages that retain their seal integrity after individual exposures to increasingly severe temperature-humidity environments. Tests were also run using thermal shock, temperature cycling, mechanical shock and temperature aging. The four best adhesives were determined and further tested in a 60 C/98% RH environment and continuously monitored in regard to moisture content. Results are given, however, none of the tested adhesives passed all the tests.

  14. 46 CFR 97.15-75 - Test of inflatable hopper gate seals on Great Lakes bulk dry cargo vessels.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Test of inflatable hopper gate seals on Great Lakes bulk... inflatable hopper gate seals on Great Lakes bulk dry cargo vessels. (a) It is the duty of the Master to ensure that the inflatable hopper gate seals installed on vessels required to meet the damage stability...

  15. 46 CFR 97.15-75 - Test of inflatable hopper gate seals on Great Lakes bulk dry cargo vessels.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Test of inflatable hopper gate seals on Great Lakes bulk... inflatable hopper gate seals on Great Lakes bulk dry cargo vessels. (a) It is the duty of the Master to ensure that the inflatable hopper gate seals installed on vessels required to meet the damage stability...

  16. Development of braided fiber seals for engine applications

    NASA Technical Reports Server (NTRS)

    Cai, Zhong; Mutharasan, Rajakkannu; Ko, Frank K.; Du, Guang-Wu; Steinetz, Bruce M.

    1993-01-01

    A new type of braided fiber seal was developed for high temperature engine applications. Development work performed includes seal design, fabrication, leakage flow testing, and flow resistance modeling. This new type of seal utilizes the high flow resistance of tightly packed fibers and the conformability of textile structures. The seal contains a core part with aligned fibers, and a sheath with braided fiber layers. Seal samples are made by using the conventional braiding process. Leakage flow measurements are then performed. Mass flow rate versus the simulated engine pressure and preload pressure is recorded. The flow resistance of the seal is analyzed using the Ergun equation for flow through porous media, including both laminar and turbulent effects. The two constants in the Ergun equation are evaluated for the seal structures. Leakage flow of the seal under the test condition is found to be in the transition flow region. The analysis is used to predict the leakage flow performance of the seal with the determined design parameters.

  17. 10 CFR 35.2067 - Records of leaks tests and inventory of sealed sources and brachytherapy sources.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Records of leaks tests and inventory of sealed sources and... MATERIAL Records § 35.2067 Records of leaks tests and inventory of sealed sources and brachytherapy sources. (a) A licensee shall retain records of leak tests required by § 35.67(b) for 3 years. The records...

  18. Full-Scale System for Quantifying Leakage of Docking System Seals for Space Applications

    NASA Technical Reports Server (NTRS)

    Dunlap, Patrick H., Jr.; Daniels, Christopher C.; Steinetz, Bruce M.; Erker, Arthur H.; Robbie, Malcolm G.; Wasowski, Janice L.; Drlik, Gary J.; Tong, Michael T.; Penney, Nicholas

    2007-01-01

    NASA is developing a new docking and berthing system to support future space exploration missions to low-Earth orbit, the Moon, and Mars. This mechanism, called the Low Impact Docking System, is designed to connect pressurized space vehicles and structures. NASA Glenn Research Center is playing a key role in developing advanced technology for the main interface seal for this new docking system. The baseline system is designed to have a fully androgynous mating interface, thereby requiring a seal-on-seal configuration when two systems mate. These seals will be approximately 147 cm (58 in.) in diameter. NASA Glenn has designed and fabricated a new test fixture which will be used to evaluate the leakage of candidate full-scale seals under simulated thermal, vacuum, and engagement conditions. This includes testing under seal-on-seal or seal-on-plate configurations, temperatures from -50 to 50 C (-58 to 122 F), operational and pre-flight checkout pressure gradients, and vehicle misalignment (plus or minus 0.381 cm (0.150 in.)) and gapping (up to 0.10 cm (0.040 in.)) conditions. This paper describes the main design features of the test rig and techniques used to overcome some of the design challenges.

  19. Assessing MMOD Impacts on Seal Performance

    NASA Technical Reports Server (NTRS)

    deGroh, Henry C., III; Daniels, C.; Dunlap, P.; Steinetz, B.

    2007-01-01

    The elastomer seal needed to seal in cabin air when NASA s Crew Exploration Vehicle is docked is exposed to space prior to docking. While open to space, the seal might be hit by orbital debris or meteoroids. The likelihood of damage of this type depends on the size of the particle. Our campaign is designed to find the smallest particle that will cause seal failure resulting in loss of mission. We will then be able to estimate environmental risks to the seal. Preliminary tests indicate seals can withstand a surprising amount of damage and still function. Collaborations with internal and external partners are in place and include seal leak testing, modeling of the space environment using a computer code known as BUMPER, and hypervelocity impact (HVI) studies at Caltech. Preliminary work at White Sands Test Facility showed a 0.5 mm diameter HVI damaged areas about 7 times that diameter, boring deep (5 mm) into elastomer specimens. BUMPER simulations indicate there is a 1 in 1440 chance of getting hit by a particle of diameter 0.08 cm for current Lunar missions; and 0.27 cm for a 10 year ISS LIDS seal area exposure.

  20. Improved circumferential shaft seal

    NASA Technical Reports Server (NTRS)

    Ludwig, L. P.; Strom, T. N.

    1974-01-01

    Comparative tests of modified and unmodified carbon ring seals showed that addition of helical grooves to conventional segmented carbon ring seals reduced leakage significantly. Modified seal was insensitive to shaft runout and to flooding by lubricant.

  1. Measurement of oil film thickness for application to elastomeric Stirling engine rod seals

    NASA Technical Reports Server (NTRS)

    Krauter, A. I.

    1981-01-01

    The rod seal in the Stirling engine has the function of separating high pressure gas from low or ambient pressure oil. An experimental apparatus was designed to measure the oil film thickness distribution for an elastomeric seal in a reciprocating application. Tests were conducted on commercial elastomeric seals having a 76 mm rod and a 3.8 mm axial width. Test conditions included 70 and 90 seal durometers, a sliding velocity of 0.8 m/sec, and a zero pressure gradient across the seal. An acrylic cylinder and a typical synthetic base automotive lubricant were used. The experimental results showed that the effect of seal hardness on the oil film thickness is considerable. A comparison between analytical and experimental oil film profiles for an elastomeric seal during relatively high speed reciprocating motion showed an overall qualitative agreement.

  2. 10 CFR 34.67 - Records of leak testing of sealed sources and devices containing depleted uranium.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 1 2014-01-01 2014-01-01 false Records of leak testing of sealed sources and devices containing depleted uranium. 34.67 Section 34.67 Energy NUCLEAR REGULATORY COMMISSION LICENSES FOR INDUSTRIAL... Requirements § 34.67 Records of leak testing of sealed sources and devices containing depleted uranium. Each...

  3. 10 CFR 34.67 - Records of leak testing of sealed sources and devices containing depleted uranium.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 1 2012-01-01 2012-01-01 false Records of leak testing of sealed sources and devices containing depleted uranium. 34.67 Section 34.67 Energy NUCLEAR REGULATORY COMMISSION LICENSES FOR INDUSTRIAL... Requirements § 34.67 Records of leak testing of sealed sources and devices containing depleted uranium. Each...

  4. 10 CFR 34.67 - Records of leak testing of sealed sources and devices containing depleted uranium.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 1 2013-01-01 2013-01-01 false Records of leak testing of sealed sources and devices containing depleted uranium. 34.67 Section 34.67 Energy NUCLEAR REGULATORY COMMISSION LICENSES FOR INDUSTRIAL... Requirements § 34.67 Records of leak testing of sealed sources and devices containing depleted uranium. Each...

  5. 10 CFR 34.67 - Records of leak testing of sealed sources and devices containing depleted uranium.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 1 2011-01-01 2011-01-01 false Records of leak testing of sealed sources and devices containing depleted uranium. 34.67 Section 34.67 Energy NUCLEAR REGULATORY COMMISSION LICENSES FOR INDUSTRIAL... Requirements § 34.67 Records of leak testing of sealed sources and devices containing depleted uranium. Each...

  6. 10 CFR 34.67 - Records of leak testing of sealed sources and devices containing depleted uranium.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Records of leak testing of sealed sources and devices containing depleted uranium. 34.67 Section 34.67 Energy NUCLEAR REGULATORY COMMISSION LICENSES FOR INDUSTRIAL... Requirements § 34.67 Records of leak testing of sealed sources and devices containing depleted uranium. Each...

  7. Brush Seal Performance and Durability Issues Based on T-700 Engine Test Results

    NASA Technical Reports Server (NTRS)

    Hendricks, R. C.

    1994-01-01

    The integrity and performance of brush seals have been established. Severe bench and engine tests have shown high initial wear or run-in rates, material smearing at the interface, and bristle and rub-runner wear, but the brush seals did not fail. Short-duration (46 hr) experimental T-700 engine testing of the compressor discharge seal established over 1-percent engine performance gain (brush versus labyrinth). Long-term gains were established only as leakage comparisons, with the brush at least 20 percent better at controlling leakage. Long-term materials issues, such as wear and ultimately seal life, remain to be resolved. Future needs are cited for materials and analysis tools that account for heat generation, thermomechanical behavior, and tribological pairing to enable original equipment manufacturers to design high-temperature, high-surface-speed seals with confidence.

  8. Labyrinth Seal Flutter Analysis and Test Validation in Support of Robust Rocket Engine Design

    NASA Technical Reports Server (NTRS)

    El-Aini, Yehia; Park, John; Frady, Greg; Nesman, Tom

    2010-01-01

    High energy-density turbomachines, like the SSME turbopumps, utilize labyrinth seals, also referred to as knife-edge seals, to control leakage flow. The pressure drop for such seals is order of magnitude higher than comparable jet engine seals. This is aggravated by the requirement of tight clearances resulting in possible unfavorable fluid-structure interaction of the seal system (seal flutter). To demonstrate these characteristics, a benchmark case of a High Pressure Oxygen Turbopump (HPOTP) outlet Labyrinth seal was studied in detail. First, an analytical assessment of the seal stability was conducted using a Pratt & Whitney legacy seal flutter code. Sensitivity parameters including pressure drop, rotor-to-stator running clearances and cavity volumes were examined and modeling strategies established. Second, a concurrent experimental investigation was undertaken to validate the stability of the seal at the equivalent operating conditions of the pump. Actual pump hardware was used to construct the test rig, also referred to as the (Flutter Rig). The flutter rig did not include rotational effects or temperature. However, the use of Hydrogen gas at high inlet pressure provided good representation of the critical parameters affecting flutter especially the speed of sound. The flutter code predictions showed consistent trends in good agreement with the experimental data. The rig test program produced a stability threshold empirical parameter that separated operation with and without flutter. This empirical parameter was used to establish the seal build clearances to avoid flutter while providing the required cooling flow metering. The calibrated flutter code along with the empirical flutter parameter was used to redesign the baseline seal resulting in a flutter-free robust configuration. Provisions for incorporation of mechanical damping devices were introduced in the redesigned seal to ensure added robustness

  9. Testing of improved polyimide actuator rod seals at high temperature and under vacuum conditions for use in advanced aircraft hydraulic systems

    NASA Technical Reports Server (NTRS)

    Sellereite, B. K.; Waterman, A. W.; Nelson, W. G.

    1974-01-01

    Polyimide second-stage rod seals were evaluated to determine their suitability for applications in space station environments. The 6.35-cm (2.5-in.)K-section seal was verified for thermal cycling operation between room temperature and 478 K (400 F) and for operation in a 133 micron PA(0.000001 mm Hg) vacuum environment. The test seal completed the scheduled 96 thermal cycles and 1438 hr in vacuum with external rod seal leakage well within the maximum allowable of two drops per 25 actuation cycles. At program completion, the seals showed no signs of structural degradation. Posttest inspection showed the seals retained a snug fit against the shaft and housing walls, indicating additional wear life capability. Evaluation of a molecular flow section during vacuum testing, to inhibit fluid loss through vaporization, showed it to be beneficial with MIL-H-5606, a petroleum-base fluid, in comparison with MIL-H-83282, a synthetic hydrocarbon-base fluid.

  10. 10 CFR 63.133 - Design testing.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... design, such as, for example, borehole and shaft seals, backfill, and drip shields, as well as the... placement is begun. (d) Tests must be conducted to evaluate the effectiveness of borehole, shaft, and ramp seals before full-scale operation proceeds to seal boreholes, shafts, and ramps. ...

  11. Pressure Decay Testing Methodology for Quantifying Leak Rates of Full-Scale Docking System Seals

    NASA Technical Reports Server (NTRS)

    Dunlap, Patrick H., Jr.; Daniels, Christopher C.; Wasowski, Janice L.; Garafolo, Nicholas G.; Penney, Nicholas; Steinetz, Bruce M.

    2010-01-01

    NASA is developing a new docking system to support future space exploration missions to low-Earth orbit and the Moon. This system, called the Low Impact Docking System, is a mechanism designed to connect the Orion Crew Exploration Vehicle to the International Space Station, the lunar lander (Altair), and other future Constellation Project vehicles. NASA Glenn Research Center is playing a key role in developing the main interface seal for this docking system. This seal will be relatively large with an outside diameter in the range of 54 to 58 in. (137 to 147 cm). As part of this effort, a new test apparatus has been designed, fabricated, and installed to measure leak rates of candidate full-scale seals under simulated thermal, vacuum, and engagement conditions. Using this test apparatus, a pressure decay testing and data processing methodology has been developed to quantify full-scale seal leak rates. Tests performed on untreated 54 in. diameter seals at room temperature in a fully compressed state resulted in leak rates lower than the requirement of less than 0.0025 lbm, air per day (0.0011 kg/day).

  12. Space shuttle prototype check valve development

    NASA Technical Reports Server (NTRS)

    Tellier, G. F.

    1976-01-01

    Contaminant-resistant seal designs and a dynamically stable prototype check valve for the orbital maneuvering and reaction control helium pressurization systems of the space shuttle were developed. Polymer and carbide seal models were designed and tested. Perfluoroelastomers compatible with N2O4 and N2H4 types were evaluated and compared with Teflon in flat and captive seal models. Low load sealing and contamination resistance tests demonstrated cutter seal superiority over polymer seals. Ceramic and carbide materials were evaluated for N2O4 service using exposure to RFNA as a worst case screen; chemically vapor deposited tungsten carbide was shown to be impervious to the acid after 6 months immersion. A unique carbide shell poppet/cutter seat check valve was designed and tested to demonstrate low cracking pressure ( 2.0 psid), dynamic stability under all test bench flow conditions, contamination resistance (0.001 inch CRES wires cut with 1.5 pound seat load) and long life of 100,000 cycles (leakage 1.0 scc/hr helium from 0.1 to 400 psig).

  13. Examining the accuracy of astrophysical disk simulations with a generalized hydrodynamical test problem [The role of pressure and viscosity in SPH simulations of astrophysical disks

    DOE PAGES

    Raskin, Cody; Owen, J. Michael

    2016-10-24

    Here, we discuss a generalization of the classic Keplerian disk test problem allowing for both pressure and rotational support, as a method of testing astrophysical codes incorporating both gravitation and hydrodynamics. We argue for the inclusion of pressure in rotating disk simulations on the grounds that realistic, astrophysical disks exhibit non-negligible pressure support. We then apply this test problem to examine the performance of various smoothed particle hydrodynamics (SPH) methods incorporating a number of improvements proposed over the years to address problems noted in modeling the classical gravitation-only Keplerian disk. We also apply this test to a newly developed extensionmore » of SPH based on reproducing kernels called CRKSPH. Counterintuitively, we find that pressure support worsens the performance of traditional SPH on this problem, causing unphysical collapse away from the steady-state disk solution even more rapidly than the purely gravitational problem, whereas CRKSPH greatly reduces this error.« less

  14. Spin Testing of Superalloy Disks With Dual Grain Structure

    NASA Technical Reports Server (NTRS)

    Hefferman, Tab M.

    2006-01-01

    This 24-month program was a joint effort between Allison Advanced Development Company (AADC), General Electric Aircraft (GEAE), and NASA Glenn Research Center (GRC). AADC led the disk and spin hardware design and analysis utilizing existing Rolls-Royce turbine disk forging tooling. Testing focused on spin testing four disks: two supplied by GEAE and two by AADC. The two AADC disks were made of Alloy 10, and each was subjected to a different heat treat process: one producing dual microstructure with coarse grain size at the rim and fine grain size at the bore and the other produced single fine grain structure throughout. The purpose of the spin tests was to provide data for evaluation of the impact of dual grain structure on disk overspeed integrity (yielding) and rotor burst criteria. The program culminated with analysis and correlation of the data to current rotor overspeed criteria and advanced criteria required for dual structure disks.

  15. Development of helicopter engine seals

    NASA Technical Reports Server (NTRS)

    Lynwander, P.

    1973-01-01

    An experimental evaluation of main shaft seals for helicopter gas turbine engines was conducted with shaft speeds to 213 m/s(700 ft/sec), air pressures to 148 N/sq cm (215 psia), and air temperatures to 645 K (675 F). Gas leakage test results indicate that conventional seals will not be satisfactory for high-pressure sealing because of excessive leakage. The self-acting face seal, however, had significantly lower leakage and operated with insignificant wear during a 150-hour endurance test at sliding speeds to 145 m/s (475 ft/sec), air pressures to 124 N/sq cm (180 psia), and air temperatures to 408 K (275 F). Wear measurements indicate that noncontact operation was achieved at shaft speeds of 43,000 rpm. Evaluation of the self-acting circumferential seal was inconclusive because of seal dimensional variations.

  16. The Mechanical Performance of Subscale Candidate Elastomer Docking Seals

    NASA Technical Reports Server (NTRS)

    Bastrzyk, Marta B.; Daniels, Christopher C.

    2010-01-01

    The National Aeronautics and Space Administration is developing a Low Impact Docking System (LIDS) for future exploration missions. The mechanism is a new state-of-the-art device for in-space assembly of structures and rendezvous of vehicles. At the interface between two pressurized modules, each with a version of the LIDS attached, a composite elastomer-metal seal assembly prevents the breathable air from escaping into the vacuum of space. Attached to the active LIDS, this seal mates against the passive LIDS during docking operation. The main interface seal assembly must exhibit low leak and outgas values, must be able to withstand various harsh space environments, must remain operational over a range of temperatures from -50 C to 75 C, and perform after numerous docking cycles. This paper presents results from a comprehensive study of the mechanical performance of four candidate subscale seal assembly designs at -50, 23, 50, and 75 C test temperatures. In particular, the force required to fully compress the seal during docking, and that which is required for separation during the undocking operation were measured. The height of subscale main interface seal bulbs, as well as the test temperature, were shown to have a significant effect on the forces the main interface seal of the LIDS may experience during docking and undocking operations. The average force values required to fully compress each of the seal assemblies were shown to increase with test temperature by approximately 50% from -50 to 75 C. Also, the required compression forces were shown to increase as the height of the seal bulb was increased. The seal design with the tallest elastomer seal bulb, which was 31% taller than that with the shortest bulb, required force values approximately 45% higher than those for the shortest bulb, independent of the test temperature. The force required to separate the seal was shown to increase with decreasing temperature after 15 hours of simulated docking. No adhesion force was observed at 75 C, while magnitudes of up to 235 lbf were recorded at the refrigerated temperature. In addition, the adhesion force was observed to increase with bulb height. When compared with the LIDS program requirements, the measured compression force values were found to be below the maximum allowable load allotted to the main interface seal. However, the measured adhesion force values at the refrigerated test temperature were found to exceed the program limits.

  17. TESTING AND PERFORMANCE EVALUATION OF AN INNOVATIVE INTERNAL PIPE SEALING SYSTEM FOR WASTEWATER MAIN REHABILITATION

    EPA Science Inventory

    Many utilities are seeking emerging and innovative rehabilitation technologies to extend the service life of their infrastructure systems. This report describes the testing and performance evaluation of an internal pipe sealing system, which provides a permanent physical seal fo...

  18. Manufacture of low carbon astroloy turbine disk shapes by hot isostatic pressing. Volume 2, project 1

    NASA Technical Reports Server (NTRS)

    Eng, R. D.; Evans, D. J.

    1979-01-01

    The performance of a hot isotatic pressed disk installed in an experimental engine and exposed to realistic operating conditions in a 150-hour engine test and a 1000 cycle endurance test is documented. Post test analysis, based on visual, fluorescent penetrant and dimensional inspection, revealed no defects in the disk and indicated that the disk performed satisfactorily.

  19. Development of self-acting seals for helicopter engines

    NASA Technical Reports Server (NTRS)

    Lynwander, P.

    1974-01-01

    An experimental evaluation of a NASA-designed self-acting face seal for use in advanced gas turbine main shaft positions was conducted. The seal incorporated Rayleigh step pads (self-acting geometry) for lift augmentation. Satisfactory performance of the gas film seal was demonstrated in a 500-hour endurance test at speeds to 183 m/s (600 ft/sec, 54,000 rpm) and air pressure differential of 137 newtons per square centimeter (198.7 psi). Carbon wear was minor. Tests were also conducted with seal seat runout greater than that expected in engine operation and in a severe sand and dust environment. Seal operation was satisfactory in both these detrimental modes of operation.

  20. Temperature and Atomic Oxygen Effects on Helium Leak Rates of a Candidate Main Interface Seal

    NASA Technical Reports Server (NTRS)

    Penney, Nicholas; Wasowski, Janice L.; Daniels, Christopher C.

    2011-01-01

    Helium leak tests were completed to characterize the leak rate of a 54 in. diameter composite space docking seal design in support of the National Aeronautics and Space Administration s (NASA's) Low Impact Docking System (LIDS). The evaluated seal design was a candidate for the main interface seal on the LIDS, which would be compressed between two vehicles, while docked, to prevent the escape of breathable air from the vehicles and into the vacuum of space. Leak tests completed at nominal temperatures of -30, 20, and 50 C on untreated and atomic oxygen (AO) exposed test samples were examined to determine the influence of both test temperature and AO exposure on the performance of the composite seal assembly. Results obtained for untreated seal samples showed leak rates which increased with increased test temperature. This general trend was not observed in tests of the AO exposed specimens. Initial examination of collected test data suggested that AO exposure resulted in higher helium leak rates, however, further analysis showed that the differences observed in the 20 and 50 C tests between the untreated and AO exposed samples were within the experimental error of the test method. Lack of discernable trends in the test data prevented concrete conclusions about the effects of test temperature and AO exposure on helium leak rates of the candidate seal design from being drawn. To facilitate a comparison of the current test data with results from previous leak tests using air as the test fluid, helium leak rates were converted to air leak rates using standard conversion factors for viscous and molecular flow. Flow rates calculated using the viscous flow conversion factor were significantly higher than the experimental air leakage values, whereas values calculated using the molecular flow conversion factor were significantly lower than the experimentally obtained air leak rates. The difference in these sets of converted flow rates and their deviation from the experimentally obtained air leak rate data suggest that neither conversion factor can be used alone to accurately convert helium leak rates to equivalent air leak rates for the test seals evaluated in this study; other leak phenomena, including permeation, must also be considered.

  1. High Temperature Burst Testing of a Superalloy Disk With a Dual Grain Structure

    NASA Technical Reports Server (NTRS)

    Gayda, J.; Kantzos, P.

    2004-01-01

    Elevated temperature burst testing of a disk with a dual grain structure made from an advanced nickel-base superalloy, LSHR, was conducted. The disk had a fine grain bore and coarse grain rim, produced using NASA's low cost DMHT technology. The results of the spin testing showed the disk burst at 42 530 rpm in line with predictions based on a 2-D finite element analysis. Further, significant growth of the disk was observed before failure which was also in line with predictions.

  2. Sealing of Base Wells, McClellan Air Force Base, California

    DTIC Science & Technology

    1984-02-15

    Slurry 111-16 Equipment Requirement 111-17 Inspection of the Well 111-18 Turbine Pump Repairs 111-18 Testing of the Well 111-19 Wells to be Sealed 111...hydrogeology underlying the Base, reviews the ES groundwater testing procedures and the conclusions reached by ES as a result of those tests , reviews...perform proper sealing, LSCE proposes that a preliminary engineering site investigation be conducted which would include test drilling and installation

  3. Cyclic Spin Testing of Superalloy Disks With a Dual Grain Microstructure

    NASA Technical Reports Server (NTRS)

    Gayda, John; Kantzos, Pete

    2005-01-01

    An aggressive cyclic spin test program was run to verify the reliability of superalloy disks with a dual grain structure, fine grain bore and coarse grain rim, utilizing a disk design with web holes bisecting the grain size transition zone. Results of these tests were compared with conventional disks with uniform grain structures. Analysis of the test results indicated the cyclic performance of disks with a dual grain structure could be estimated to a level of accuracy which does not appear to prohibit the use of this technology in advanced gas turbine engines, although further refinement of lifing methodology is clearly warranted.

  4. Thyroid function testing in elephant seals in health and disease.

    PubMed

    Yochem, Pamela K; Gulland, Frances M D; Stewart, Brent S; Haulena, Martin; Mazet, Jonna A K; Boyce, Walter M

    2008-02-01

    Northern Elephant Seal Skin Disease (NESSD) is a severe, ulcerative, skin condition of unknown cause affecting primarily yearling northern elephant seals (Mirounga angustirostris); it has been associated with decreased levels of circulating thyroxine (T4) and triiodothyronine (T3). Abnormalities of the thyroid gland that result in decreased hormone levels (hypothyroidism) can result in hair loss, scaling and secondary skin infections. However, concurrent illness (including skin ailments) can suppress basal levels of thyroid hormones and mimic hypothyroidism; when this occurs in animals with normal thyroid glands it is called "sick euthyroid syndrome". The two conditions (true hypothyroidism vs. "sick euthyroid") can be distinguished in dogs by testing the response of the thyroid gland to exogenous thyrotropin (Thyroid Stimulating Hormone, TSH). To determine whether hypothyroidism is involved in the etiology of NESSD, we tested thyroid function of stranded yearling elephant seals in the following categories: healthy seals (rehabilitated and ready for release; N=9), seals suffering from NESSD (N=16) and seals with other illnesses (e.g., lungworm pneumonia; N=10). Levels of T4 increased significantly for all three categories of elephant seals following TSH stimulation, suggesting that seals with NESSD are "sick euthyroid" and that the disease is not associated with abnormal thyroid gland function.

  5. High Temperature Metallic Seal Development For Aero Propulsion and Gas Turbine Applications

    NASA Technical Reports Server (NTRS)

    More, Greg; Datta, Amit

    2006-01-01

    A viewgraph presentation on metallic high temperature static seal development at NASA for gas turbine applications is shown. The topics include: 1) High Temperature Static Seal Development; 2) Program Review; 3) Phase IV Innovative Seal with Blade Alloy Spring; 4) Spring Design; 5) Phase IV: Innovative Seal with Blade Alloy Spring; 6) PHase IV: Testing Results; 7) Seal Seating Load; 8) Spring Seal Manufacturing; and 9) Other Applications for HIgh Temperature Spring Design

  6. Canned pump having a high inertia flywheel

    DOEpatents

    Veronesi, Luciano; Raimondi, ALbert A.

    1989-01-01

    A canned pump is described which includes a motor, impeller, shaft, and high inertia flywheel mounted within a hermetically sealed casing. The flywheel comprises a heavy metal disk made preferably of a uranium alloy with a stainless steel shell sealably enclosing the heavy metal. The outside surfaces of the stainless steel comprise thrust runners and a journal for mating with, respectively, thrust bearing shoes and radial bearing segments. The bearings prevent vibration of the pump and, simultaneously, minimize power losses normally associated with the flywheel resulting from frictionally pumping surrounding fluid.

  7. Canned pump having a high inertia flywheel

    DOEpatents

    Veronesi, L.; Raimondi, A.A.

    1989-12-12

    A canned pump is described which includes a motor, impeller, shaft, and high inertia flywheel mounted within a hermetically sealed casing. The flywheel comprises a heavy metal disk made preferably of a uranium alloy with a stainless steel shell sealably enclosing the heavy metal. The outside surfaces of the stainless steel comprise thrust runners and a journal for mating with, respectively, thrust bearing shoes and radial bearing segments. The bearings prevent vibration of the pump and, simultaneously, minimize power losses normally associated with the flywheel resulting from frictionally pumping surrounding fluid. 5 figs.

  8. Theory versus experiment for the rotordynamic coefficients of annular gas seals. I - Test facility and apparatus

    NASA Technical Reports Server (NTRS)

    Childs, D. W.; Nelson, C. E.; Nicks, C.; Scharrer, J.; Elrod, D.

    1985-01-01

    A facility and apparatus are described for determining the rotordynamic coefficients and leakage characteristics of annular gas seals. The coefficients and leakage characteristics of annular gas seals. The apparatus has a current top speed of 8000 cpm with a nominal seal diameter of 15.24 cmn (6 in.). The air supply unit yields a seal pressure ratio of approximately 7. An external shaker is used to excite the test rotor. The capability to independently calculate all rotordynamic coefficients at a given operating condition with one excitation frequency are discussed.

  9. Self-acting geometry for noncontact seals

    NASA Technical Reports Server (NTRS)

    Allen, G. P.

    1981-01-01

    Performance ot two self acting seal designs for a liquid oxygen (LOX) turbopump was predicted over ranges of pressure differential and speed. Predictions were compared with test results. Performance of a radial face seal for LOX was predicted up to 448 N/cu cm and 147 m/sec. Performance of a segmented circumferential seal for helium was predicted up to 69 N/cu cm and 189 m/sec. Results confirmed predictions of noncontact operation. Qualitative agreement between test and analysis was found. The LOX face seal evidently operated with mostly liquid in the self acting geometry and mostly gas across the dam.

  10. EXAMINING THE ACCURACY OF ASTROPHYSICAL DISK SIMULATIONS WITH A GENERALIZED HYDRODYNAMICAL TEST PROBLEM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Raskin, Cody; Owen, J. Michael, E-mail: raskin1@llnl.gov, E-mail: mikeowen@llnl.gov

    2016-11-01

    We discuss a generalization of the classic Keplerian disk test problem allowing for both pressure and rotational support, as a method of testing astrophysical codes incorporating both gravitation and hydrodynamics. We argue for the inclusion of pressure in rotating disk simulations on the grounds that realistic, astrophysical disks exhibit non-negligible pressure support. We then apply this test problem to examine the performance of various smoothed particle hydrodynamics (SPH) methods incorporating a number of improvements proposed over the years to address problems noted in modeling the classical gravitation-only Keplerian disk. We also apply this test to a newly developed extension ofmore » SPH based on reproducing kernels called CRKSPH. Counterintuitively, we find that pressure support worsens the performance of traditional SPH on this problem, causing unphysical collapse away from the steady-state disk solution even more rapidly than the purely gravitational problem, whereas CRKSPH greatly reduces this error.« less

  11. Disk Diffusion Testing Using Candida sp. Colonies Taken Directly from CHROMagar Candida Medium May Decrease Time Required To Obtain Results

    PubMed Central

    Klevay, Michael; Ebinger, Alex; Diekema, Daniel; Messer, Shawn; Hollis, Richard; Pfaller, Michael

    2005-01-01

    We compared results of disk diffusion antifungal susceptibility testing from Candida sp. strains passaged on CHROMagar and on potato dextrose agar. The overall categorical agreements for fluconazole and voriconazole disk testing were 95% and 98% with 0% and 0.5% very major errors, respectively. Disk diffusion testing by the CLSI (formerly NCCLS) M44-A method can be performed accurately by taking inocula directly from CHROMagar. PMID:16000489

  12. Results of thermal test of metallic molybdenum disk target and fast-acting valve testing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Virgo, M.; Chemerisov, S.; Gromov, R.

    2016-12-01

    This report describes the irradiation conditions for thermal testing of helium-cooled metallic disk targets that was conducted on March 9, 2016, at the Argonne National Laboratory electron linac. The four disks in this irradiation were pressed and sintered by Oak Ridge National Laboratory from molybdenum metal powder. Two of those disks were instrumented with thermocouples. Also reported are results of testing a fast-acting-valve system, which was designed to protect the accelerator in case of a target-window failure.

  13. Development of Advanced Carbon Face Seals for Aircraft Engines

    NASA Astrophysics Data System (ADS)

    Falaleev, S. V.; Bondarchuk, P. V.; Tisarev, A. Yu

    2018-01-01

    Modern aircraft gas turbine engines require the development of seals which can operate for a long time with low leakages. The basic type of seals applied for gas turbine engine rotor supports is face seal. To meet the modern requirements of reliability, leak-tightness and weight, low-leakage gas-static and hydrodynamic seals have to be developed. Dry gas seals use both gas-static and hydrodynamic principles. In dry gas seals microgrooves are often used, which ensure the reverse injection of leakages in the sealed cavity. Authors have developed a calculation technique including the concept of coupled hydrodynamic, thermal and structural calculations. This technique allows to calculate the seal performance taking into account the forces of inertia, rupture of the lubricant layer and the real form of the gap. Authors have compared the efficiency of seals with different forms of microgrooves. Results of calculations show that seal with rectangular form of microgrooves has a little gap leading to both the contact of seal surfaces and the wear. Reversible microgrooves have a higher oil mass flow rate, whereas HST micro-grooves have good performance, but they are difficult to produce. Spiral microgrooves have both an acceptable leakages and a high stiffness of liquid layer that is important in terms of ensuring of sealing performance at vibration conditions. Therefore, the spiral grooves were chosen for the developed seal. Based on calculation results, geometric dimensions were chosen to ensure the reliability of the seal operation by creating a guaranteed liquid film, which eliminates the wear of the sealing surfaces. Seals designed were tested both at the test rig and in the engine.

  14. Relative performance comparison between baseline labyrinth and dual-brush compressor discharge seals in a T-700 engine test

    NASA Technical Reports Server (NTRS)

    Hendricks, Robert C.; Griffin, Thomas A.; Kline, Teresa R.; Csavina, Kristine R.; Pancholi, Arvind; Sood, Devendra

    1995-01-01

    In separate series of YT-700 engine tests, direct comparisons were made between the forward-facing labyrinth and dual brush compressor discharge seals. Compressor speeds to 43 000 rpm, surface speeds to 160 m/s (530 ft/s), pressures to 1 MPa (145 psi), and temperatures to 680 K (765 F) characterized these tests. The wear estimate for 46 hr of engine operations was less than 0.025 mm (0.001 in.) of the Haynes 25 alloy bristles running against a chromium-carbide-coated rub runner. The pressure drops were higher for the dual-brush seal than for the forward-facing labyrinth seal and leakage was lower-with the labyrinth seal leakage being 2-1/2 times greater-implying better seal characteristics, better secondary airflow distribution, and better engine performance (3 percent at high pressure to 5 percent at lower pressure) for the brush seal. (However, as brush seals wear down (after 500 to 1000 hr of engine operation), their leakage rates will increase.) Modification of the secondary flow path requires that changes in cooling air and engine dynamics be accounted for.

  15. Application of the Wavy Mechanical Face Seal to Submarine Seal Design.

    DTIC Science & Technology

    1982-07-01

    to Stainless Steel Bond Strength Tests. . . 31 3-1 Seal Design ...... .................... ... 54 3-2 Offset and Tilt Results...primer, Loctite Superbonder 420 with the addi- tion of two stainless steel rings for the inner and outer diam- eter of the carbon insert to give a...near zero clearance fit, and the use of the 3M 1838 B/A epoxy also with the same stainless steel rings. Static and dynamic tests on the seal under water

  16. Development of a plasma sprayed ceramic gas path seal for high pressure turbine applications

    NASA Technical Reports Server (NTRS)

    Shiembob, L. T.

    1977-01-01

    The plasma sprayed graded layered yittria stabilized zirconia (ZrO2)/metal(CoCrAlY) seal system for gas turbine blade tip applications up to 1589 K (2400 F) seal temperatures was studied. Abradability, erosion, and thermal fatigue characteristics of the graded layered system were evaluated by rig tests. Satisfactory abradability and erosion resistance was demonstrated. Encouraging thermal fatigue tolerance was shown. Initial properties for the plasma sprayed materials in the graded, layered seal system was obtained, and thermal stress analyses were performed. Sprayed residual stresses were determined. Thermal stability of the sprayed layer materials was evaluated at estimated maximum operating temperatures in each layer. Anisotropic behavior in the layer thickness direction was demonstrated by all layers. Residual stresses and thermal stability effects were not included in the analyses. Analytical results correlated reasonably well with results of the thermal fatigue tests. Analytical application of the seal system to a typical gas turbine engine application predicted performance similar to rig specimen thermal fatigue performance. A model for predicting crack propagation in the sprayed ZrO2/CoCrAlY seal system was proposed, and recommendations for improving thermal fatigue resistance were made. Seal system layer thicknesses were analytically optimized to minimize thermal stresses in the abradability specimen during thermal fatigue testing. Rig tests on the optimized seal configuration demonstrated some improvement in thermal fatigue characteristics.

  17. Experimental studies and performance analyses on polyurethane and nitrile rubber rod seals

    NASA Astrophysics Data System (ADS)

    Mirza, M.; Temiz, V.; Kamburoǧlu, E.

    2012-09-01

    The aim of this study is to determine the friction and leakage properties of rod seals made of polyethylene and nitrile rubber with different design geometries, under various pressure and lubricating oil viscosity conditions, in order to make assumptions about their general sealing characteristics and their pros and cons under certain working conditions that involve a range of fluid pressures. The test specimens consist of commercial rod seals of various designs and materials and were mounted on a hard chrome coated shaft subject to reciprocating motion. The test rig is capable of measuring friction force by means of strain measurements on a load cell transmitting the linear motion of a screw shaft to the test shaft. The test results of the reciprocating rod seal samples were evaluated according to leakage amount and friction resistance as a function of materials, design geometries and fluid pressures as well as the lubricating oil viscosity.

  18. JT9D ceramic outer air seal system refinement program

    NASA Technical Reports Server (NTRS)

    Gaffin, W. O.

    1982-01-01

    The abradability and durability characteristics of the plasma sprayed system were improved by refinement and optimization of the plasma spray process and the metal substrate design. The acceptability of the final seal system for engine testing was demonstrated by an extensive rig test program which included thermal shock tolerance, thermal gradient, thermal cycle, erosion, and abradability tests. An interim seal system design was also subjected to 2500 endurance test cycles in a JT9D-7 engine.

  19. Disk Alloy Development

    NASA Technical Reports Server (NTRS)

    Gabb, Tim; Gayda, John; Telesman, Jack

    2001-01-01

    The advanced powder metallurgy disk alloy ME3 was designed using statistical screening and optimization of composition and processing variables in the NASA HSR/EPM disk program to have extended durability at 1150 to 1250 "Fin large disks. Scaled-up disks of this alloy were produced at the conclusion of this program to demonstrate these properties in realistic disk shapes. The objective of the UEET disk program was to assess the mechanical properties of these ME3 disks as functions of temperature, in order to estimate the maximum temperature capabilities of this advanced alloy. Scaled-up disks processed in the HSR/EPM Compressor / Turbine Disk program were sectioned, machined into specimens, and tested in tensile, creep, fatigue, and fatigue crack growth tests by NASA Glenn Research Center, in cooperation with General Electric Engine Company and Pratt & Whitney Aircraft Engines. Additional sub-scale disks and blanks were processed and tested to explore the effects of several processing variations on mechanical properties. Scaled-up disks of an advanced regional disk alloy, Alloy 10, were used to evaluate dual microstructure heat treatments. This allowed demonstration of an improved balance of properties in disks with higher strength and fatigue resistance in the bores and higher creep and dwell fatigue crack growth resistance in the rims. Results indicate the baseline ME3 alloy and process has 1300 to 1350 O F temperature capabilities, dependent on detailed disk and engine design property requirements. Chemistry and process enhancements show promise for further increasing temperature capabilities.

  20. Effects of Compression, Staging, and Braid Angle on Braided Rope Seal Performance

    NASA Technical Reports Server (NTRS)

    Steinetz, Bruce M.; Dunlap, Patrick H.; Adams, Michael L.

    2006-01-01

    This viewgraph presentation describes the effects of compression, staging and braid angle on braided rope seals. The contents include: 1) Test Fixture Schematics; 2) Comparison of Hybrid Seal Braid Architecture; 3) Residual Interference After Compression Cycling; 4) Effect of Compression, Braid, and Staging on Seal Flow; 5) Effect of Staging on Seal Pressure Drop; 6) Three Stag Seal Durability; 7) P&W Turbine Vane Seal Requirements; and 8) Next Generation Fighter F-22 P&W F119 Engines.

  1. 40 CFR 60.113b - Testing and procedures.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...), prior to filling the storage vessel with VOL. If there are holes, tears, or other openings in the..., or the seal is detached, or there are holes or tears in the seal fabric, the owner or operator shall... has defects, the primary seal has holes, tears, or other openings in the seal or the seal fabric, or...

  2. Space Station Freedom seal leakage rate analysis and testing summary: Air leaks in ambient versus vacuum exit conditions

    NASA Technical Reports Server (NTRS)

    Rodriguez, P. I.; Markovitch, R.

    1992-01-01

    This report is intended to reveal the apparent relationship of air seal leakage rates between 2 atmospheres (atm) to 1 atm and 1 atm to vacuum conditions. Gas dynamics analysis is provided as well as data summarizing the MSFC test report, 'Space Station Freedom (S.S. Freedom) Seal Flaw Study With Delta Pressure Leak Rate Comparison Test Report'.

  3. Characterization of three antifungal calcite-forming bacteria, Arthrobacter nicotianae KNUC2100, Bacillus thuringiensis KNUC2103, and Stenotrophomonas maltophilia KNUC2106, derived from the Korean islands, Dokdo and their application on mortar.

    PubMed

    Park, Jong-Myong; Park, Sung-Jin; Ghim, Sa-Youl

    2013-09-28

    Crack remediation on the surface of cement mortar using microbiological calcium carbonate (CaCO3) precipitation (MICP) has been investigated as a microbial sealing agent on construction materials. However, MICP research has never acknowledged the antifungal properties of calcite-forming bacteria (CFB). Since fungal colonization on concrete surfaces can trigger biodeterioration processes, fungi on concrete buildings have to be prevented. Therefore, to develop a microbial sealing agent that has antifungal properties to remediate cement cracks without deteriorative fungal colonization, we introduced an antifungal CFB isolated from oceanic islands (Dokdo islands, territory of South Korea, located at the edge of the East Sea in Korea.). The isolation of CFB was done using B4 or urea-CaCl2 media. Furthermore, antifungal assays were done using the pairing culture and disk diffusion methods. Five isolated CFB showed CaCO3 precipitation and antifungal activities against deteriorative fungal strains. Subsequently, five candidate bacteria were identified using 16S rDNA sequence analysis. Crack remediation, fungi growth inhibition, and water permeability reduction of antifungal CFB-treated cement surfaces were tested. All antifungal CFB showed crack remediation abilities, but only three strains (KNUC2100, 2103, and 2106) reduced the water permeability. Furthermore, these three strains showed fungi growth inhibition. This paper is the first application research of CFB that have antifungal activity, for an eco-friendly improvement of construction materials.

  4. Installation and one-year evaluation of no. 8 aggregate slurry seal and precoated chip seal.

    DOT National Transportation Integrated Search

    1984-01-01

    This report describes the placement and early performance of experimental test sections on which No. 8 modified slurry seal and precoated No. 8 chip seal surface treatments were placed. From observations made during the installation and the performan...

  5. Design Study of Wafer Seals for Future Hypersonic Vehicles

    NASA Technical Reports Server (NTRS)

    Dunlap, Patrick H.; Finkbeiner, Joshua R.; Steinetz, Bruce M.; DeMange, Jeffrey J.

    2005-01-01

    Future hypersonic vehicles require high temperature, dynamic seals in advanced hypersonic engines and on the vehicle airframe to seal the perimeters of movable panels, flaps, and doors. Current seals do not meet the demanding requirements of these applications, so NASA Glenn Research Center is developing improved designs to overcome these shortfalls. An advanced ceramic wafer seal design has shown promise in meeting these needs. Results from a design of experiments study performed on this seal revealed that several installation variables played a role in determining the amount of leakage past the seals. Lower leakage rates were achieved by using a tighter groove width around the seals, a higher seal preload, a tighter wafer height tolerance, and a looser groove length. During flow testing, a seal activating pressure acting behind the wafers combined with simulated vibrations to seat the seals more effectively against the sealing surface and produce lower leakage rates. A seal geometry study revealed comparable leakage for full-scale wafers with 0.125 and 0.25 in. thicknesses. For applications in which lower part counts are desired, fewer 0.25-in.-thick wafers may be able to be used in place of 0.125-in.-thick wafers while achieving similar performance. Tests performed on wafers with a rounded edge (0.5 in. radius) in contact with the sealing surface resulted in flow rates twice as high as those for wafers with a flat edge. Half-size wafers had leakage rates approximately three times higher than those for full-size wafers.

  6. Labyrinth seal forces on a whirling rotor

    NASA Technical Reports Server (NTRS)

    Wright, D. V.

    1983-01-01

    An experimental investigation of air labyrinth seal forces on a subsynchronously whirling model rotor is described and test results are given for diverging, converging, and straight two-strip seals. The effects of pressure drop, provide basic experimental data needed in the development of design methods for predicting and preventing self-excited whirl of turbine rotors and other machines having labyrinth seals. The total dynamic seal forces on the whirling model rotor are measured accurately by means of an active damping and stiffness system that is adjusted to obtain neutral whirl stability of the model rotor system. In addition, the whirling pressure pattern in the seal annulus is measured for a few test conditions and the corresponding pressure forces on the rotor are compared with the total measured forces. This comparison shows that either radial and axial pressure gradients in the seal annulus or drag forces on the rotor are significant. Comparisons made between the measured seal forces and theoretical results show that present theory is inadequate.

  7. SSME Seal Test Program: Test results for sawtooth pattern damper seal

    NASA Technical Reports Server (NTRS)

    Childs, D. W.

    1986-01-01

    Direct and transverse force coefficients for 11, sawtooth-pattern, and damper-seal configurations were examined. The designation damper seal uses a deliberately roughened stator and smooth rotor to increase the net damping force developed by a seal. The designation sawtooth-pattern refers to a stator roughness pattern. The sawtooth pattern yields axial grooves in the stator which are interrupted by spacer elements which act as flow constrictions or dams. All seals use the same smooth rotor and have the same, constant, minimum clearance. The stators examined the consequences of changes in the following design parameters: (1) axial-groove depth; (2) number of teeth: (3) number of sawtooth sections; (4) number of spacer elements; (5) dam width; (6) axially aligned sawtooth sections versus axially-staggered sawtooth sections; and (7) groove geometry. It is found that none of the sawtooth-pattern seal performs as well as the best round-hole-pattern seal. Maximum damping configurations for the sawtooth and round-hole-pattern stators have comparable stiffness performance. Several of the sawtooth pattern stators outperformed the best round-hole pattern seal.

  8. Seal Integrity of Selected Fuzes as Measured by Three Leak Test Methods

    DTIC Science & Technology

    1976-09-01

    the worst fuze from the seal standpoint. The M503A-2 fuze body is made from a cast aluminum alloy . The casting process leaves voids which, after...leak resistance of the joint. WDU4A/A The design of this fuze depends upon ultrasonic welding to seal lid to case. The specified leak test merely...test is probably one of the better leakage tests from an effectiveness standpoint. However, from lot quantities of 690 and 480, reject rates of 20% were

  9. Prismatic sealed nickel-cadmium batteries utilizing fiber structured electrodes. II - Applications as a maintenance free aircraft battery

    NASA Astrophysics Data System (ADS)

    Anderman, Menahem; Benczur-Urmossy, Gabor; Haschka, Friedrich

    Test data on prismatic sealed Ni-Cd batteries utilizing fiber structured electrodes (sealed FNC) is discussed. It is shown that, under a voltage limited charging scheme, the charge acceptance of the sealed FNC battery is far superior to that of the standard vented aircraft Ni-Cd batteries. This results in the sealed FNC battery maintaining its capacity over several thousand cycles without any need for electrical conditioning or water topping. APU start data demonstrate superior power capabilities over existing technologies. Performance at low temperature is presented. Abuse test results reveal a safe fail mechanism even under severe electrical abuse.

  10. Characterization of irradiated AISI 316L stainless steel disks removed from the Spallation Neutron Source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vevera, Bradley J; Hyres, James W; McClintock, David A

    2014-01-01

    Irradiated AISI 316L stainless steel disks were removed from the Spallation Neutron Source (SNS) for post-irradiation examination (PIE) to assess mechanical property changes due to radiation damage and erosion of the target vessel. Topics reviewed include high-resolution photography of the disk specimens, cleaning to remove mercury (Hg) residue and surface oxides, profile mapping of cavitation pits using high frequency ultrasonic testing (UT), high-resolution surface replication, and machining of test specimens using wire electrical discharge machining (EDM), tensile testing, Rockwell Superficial hardness testing, Vickers microhardness testing, scanning electron microscopy (SEM), and energy dispersive spectroscopy (EDS). The effectiveness of the cleaning proceduremore » was evident in the pre- and post-cleaning photography and permitted accurate placement of the test specimens on the disks. Due to the limited amount of material available and the unique geometry of the disks, machine fixturing and test specimen design were critical aspects of this work. Multiple designs were considered and refined during mock-up test runs on unirradiated disks. The techniques used to successfully machine and test the various specimens will be presented along with a summary of important findings from the laboratory examinations.« less

  11. Seal Materials Compatible with the Electroplating Solvent Used in Constellation-X Mirrors

    NASA Technical Reports Server (NTRS)

    Pei, Xiong-Skiba

    1999-01-01

    The existing gasket seals used in electroplating of the Constellation-X mirrors are difficult to assemble, and the current seal material is hydrophobic and too thick. The combination of the above problems result in: 1) non-uniform plating; 2) defect sites such as pits on the mirror edges; 3) "bear claws" on the edges of the mandrels and mirrors causing difficulties in shell-mirror separations; and 4) leakage of the plating solution past the seals into the mandrel causing chemical etching of the mandrel interior. This paper reports the results of this summer study in searching for alternate seal materials chemically compatible with the electroplating solvent. Fifteen common elastomeric rubber seal materials made-by Parker Seals were investigated including butyl, ethylene propylene, fluorosilicone, nitrile, Viton fluorocarbon, and silicone. Test results showed that Viton fluorocarbon compounds as a group were superior to the other tested compounds for chemical compatibility with the plating bath.

  12. Development of high velocity gas gun with a new trigger system-numerical analysis

    NASA Astrophysics Data System (ADS)

    Husin, Z.; Homma, H.

    2018-02-01

    In development of high performance armor vests, we need to carry out well controlled experiments using bullet speed of more than 900 m/sec. After reviewing trigger systems used for high velocity gas guns, this research intends to develop a new trigger system, which can realize precise and reproducible impact tests at impact velocity of more than 900 m/sec. A new trigger system developed here is called a projectile trap. A projectile trap is placed between a reservoir and a barrel. A projectile trap has two functions of a sealing disk and triggering. Polyamidimide is selected for the trap material and dimensions of the projectile trap are determined by numerical analysis for several levels of launching pressure to change the projectile velocity. Numerical analysis results show that projectile trap designed here can operate reasonably and stresses caused during launching operation are less than material strength. It means a projectile trap can be reused for the next shooting.

  13. Fabrication of oxocuprate superconductor microelectrodes for sub-{Tc} use

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Green, S.J.; Rosseinsky, D.R.; Toohey, M.J.

    1995-07-01

    The technique of partial resin encapsulation is described for the direct fabrication of cryorobust oxocuprate microelectrodes from bulk ceramic samples, here Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8{minus}{delta}}, Bi{sub 2}Sr{sub 2}Ca{sub 2}Cu{sub 3}O{sub 10{minus}{delta}}. Cyclic voltammetry is used in tests of the electrochemical response at 295 K (ferrocene in acetonitrile/NBu{sub 4}BF{sub 4}), affording approximated disk radii 2.9, 37.0, and 32.5 {micro}m, and at 123 and at 103 K (ferrocene in chloroethane/tetrahydrofuran/LiBF{sub 4}). Some nonideality in the 295 K responses results from electrode porosity and, at the smallest electrodes, defects in the HTSC/resin seal. Acceptable sub-T{sub c} responses show these problems to bemore » irrelevant in the high viscosity of the electrolytes at low temperature. These microelectrodes usefully advance the emerging study of electrochemistry on superconducting electrodes by responding to free-solute electroactives at <{Tc}.« less

  14. Operating characteristics of a 0.87 kW-hr flywheel energy storage module

    NASA Technical Reports Server (NTRS)

    Loewenthal, S. H.; Scibbe, H. W.; Parker, R. D.; Zaretsky, E. V.

    1985-01-01

    Discussion is given of the design and loss characteristics of 0.87 kW-hr (peak) flywheel energy storage module suitable for aerospace and automotive applications. The maraging steel flywheel rotor, a 46-cm- (18-in-) diameter, 58-kg (128-lb) tapered disk, delivers 0.65 kW-hr of usable energy between operating speeds of 10,000 and 20,000 rpm. The rotor is supported by 20- and 25-mm bore diameter, deep-groove ball bearings, lubricated by a self-replenishing wick type lubrication system. To reduce aerodynamic losses, the rotor housing was evacuated to vacuum levels from 40 to 200 millitorr. Dynamic rotor instabilities uncovered during testing necessitated the use of an elastometric-bearing damper to limit shaft excursions. Spindown losses from bearing, seal, and aerodynamic drag at 50 millitorr typically ranged from 64 to 193 W at 10,000 and 20,000 rpm, respectively. Discharge efficiency of the flywheel system exceeded 96 percent at torque levels greater than 21 percent of rated torque.

  15. HSR Overview

    NASA Technical Reports Server (NTRS)

    Hendricks, R. C.; Steinetz, B. M.

    2006-01-01

    The leading Aeronautics program within NASA is the High Speed Research Program (HSR). The HSR program's highest priorities are high pay-off technologies for airframe and propulsion systems required for a high speed civil transport (HSCT). These priorities have been developed collaboratively with NASA, FAA and the US Industry (Boeing-McDonnell Douglas, Pratt & Whitney and General Electric). Phase one of the HSR program started on 1990, and concentrated on the environmental challenges of minimizing NOx and noise. The first program goal is to reduce the NOx emission index to less than 5 (Concord NOx index is 20 and is unacceptable), in order to have little impact on the earth's ozone layer. The second goal is to reduce noise levels to FAR Stage 3 (or better), comparable to those of subsonic aircraft (far below the Concorde noise levels that require exemptions form less stringent standards). This requirement greatly impacts the nozzle design increasing its length and complexity and poses unique sealing challenges. Phase two started in 1993 and initiated work on the technologies required for an economical HSCT. Materials technologies under development include a ceramic-matrix-composite combustion liner, lightweight materials for the nozzle, as well long-life turbomachinery disk and blade alloys. Other required materials are being developed under the DOD-IHPTET program, where there is close cooperation. Economic goals translate into the development of technologies for tri-class service, 5000 nautical mile range aircraft with a ticket price no more than 20% over the subsonic ticket price. The potential market could be as large as 1500 aircraft, according to a Boeing study. Technology alone will not enable this airplane, yet without enabling technologies "on the shelf", it will not occur. The HSCT engine will be the largest engine ever built and operate at maximum conditions for long periods of time posing a number of challenges. The HSR engine mission requires that rotating equipment stay at take-off condition temperatures for hours not minutes per flight. Hence rotating equipment and seals must operate for many thousands of hours at extreme temperatures. It is anticipated that the nozzle will be 12 feet long and roughly 4 ft. by 5 ft. in cross-section with a nominal airflow of 800 lbs/sec. The complex function of the nozzle (including an ejector for noise attenuation) combined with long life place new demands on nozzle seal design. Three inlet configurations are under consideration with attendant sealing challenges, as will be illustrated herein. Four of these engines are required to propel a 5000 nautical mile class vehicle which demand that component reliability be at the highest possible level. In response, an HSR seals session was implemented as a part of the 1997-Seals and Secondary Flow Workshop. Overview presentations were given for each of the following areas: inlet, turbomachinery, combustor and nozzle. The HSCT seal issues center on durability and efficiency of rotating equipment seals (including brush seals), structural seals (including rope seals and other advanced concepts), and high-speed bearing and sump seals. Tighter clearances, propulsion system size and thermal requirements represent extremes that challenge the component designers. This document provides an initial step toward defining HSR seal needs. The overview for HSR seal designs includes, defining seal objectives, summarizing sealing and materials requirements, presenting relevant seal cross-sections, and identifying technology needs for the HSR office.

  16. Building America Case Study: Apartment Compartmentalization with an Aerosol-Based Sealing Process - Queens, NY; Technology Solutions for New and Existing Homes, Energy Efficiency & Renewable Energy (EERE)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2015-07-01

    Air sealing of building enclosures is a difficult and time-consuming process. Current methods in new construction require laborers to physically locate small and sometimes large holes in multiple assemblies and then manually seal each of them. The innovation demonstrated under this research study was the automated air sealing and compartmentalization of buildings through the use of an aerosolized sealant, developed by the Western Cooling Efficiency Center at University of California Davis.CARB sought to demonstrate this new technology application in a multifamily building in Queens, NY. The effectiveness of the sealing process was evaluated by three methods: air leakage testing ofmore » overall apartment before and after sealing, point-source testing of individual leaks, and pressure measurements in the walls of the target apartment during sealing. Aerosolized sealing was successful by several measures in this study. Many individual leaks that are labor-intensive to address separately were well sealed by the aerosol particles. In addition, many diffuse leaks that are difficult to identify and treat were also sealed. The aerosol-based sealing process resulted in an average reduction of 71% in air leakage across three apartments and an average apartment airtightness of 0.08 CFM50/SF of enclosure area.« less

  17. A comparison of experimental and theoretical results for leakage, pressure gradients, and rotordynamic coefficients for tapered annular gas seal

    NASA Technical Reports Server (NTRS)

    Elrod, D. A.; Childs, D. W.

    1986-01-01

    A brief review of current annular seal theory and a discussion of the predicted effect on stiffness of tapering the seal stator are presented. An outline of Nelson's analytical-computational method for determining rotordynamic coefficients for annular compressible-flow seals is included. Modifications to increase the maximum rotor speed of an existing air-seal test apparatus at Texas A&M University are described. Experimental results, including leakage, entrance-loss coefficients, pressure distributions, and normalized rotordynamic coefficients, are presented for four convergent-tapered, smooth-rotor, smooth-stator seals. A comparison of the test results shows that an inlet-to-exit clearance ratio of 1.5 to 2.0 provides the maximum direct stiffness, a clearance ratio of 2.5 provides the greatest stability, and a clearance ratio of 1.0 provides the least stability. The experimental results are compared to theoretical results from Nelson's analysis with good agreement. Test results for cross-coupled stiffness show less sensitivity of fluid prerotation than predicted.

  18. Thermal Test on Target with Pressed Disks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Woloshun, Keith Albert; Dale, Gregory E.; Olivas, Eric Richard

    A thorough test of the thermal performance of a target for Mo 99 production using solid Mo 100 target to produce the Mo 99 via a gamma-n reaction has previously been conducted at Argonne National Laboratory (ANL). The results are reported in “Zero Degree Line Mo Target Thermal Test Results and Analysis,” LANL report Number LA-UR-15-23134 dated 3/27/15. This target was comprised of 25 disks 1 mm thick and 12 mm in diameter, separated by helium coolant gaps 0.5 mm wide. The test reported in the above referenced report was conducted with natural Mo disks all cut from commercial rod.more » The production plant will have Mo 100 disks pressed and sintered using a process being developed at Oak Ridge National Laboratory (ORNL). The structural integrity of press-and-sinter disks is of some concern. The test reported herein included 4 disks made by the ORNL process and placed in the high heat, and therefore high thermal stress, region of the target. The electron beam energy was 23 MeV for these tests. Beam spot size was 3.5 mm horizontal and 3 mm vertical, FWHM. The thermal stress test of pressed-and-sintered disks resulted in no mechanical failures. The induced thermal stresses were below yield stress for natural Mo, indicating that up to that stress state no inherent deficiencies in the mechanical properties of the fabricated disks were evident.« less

  19. Clinical microbiology laboratories do not always detect resistance of Haemophilus influenzae with disk or tablet diffusion methods. Finnish Study Group for Antimicrobial Resistance (FiRe).

    PubMed

    Manninen, R; Huovinen, P; Nissinen, A

    1998-04-01

    The performance of disk diffusion testing of Haemophilus influenzae was evaluated in 20 laboratories. Thirteen disk-medium-breakpoint-inoculum modifications were used in Finnish clinical microbiology laboratories. The performance of various methods was evaluated by testing a susceptible control strain and one with non-beta-lactamase-mediated ampicillin resistance 10 times in 16 laboratories. Gaps in millimeters were measured between these two groups of results. The strains were separated by a gap of at least 5 mm in 8/16 laboratories testing ampicillin, in 7/15 laboratories testing cefaclor, in 5/ 16 laboratories testing cefuroxime, and in 15/16 laboratories testing trimethoprim-sulfa. Detection of ampicillin resistance was better with 2.5 microg tablets than with 10 microg disks or 33 microg tablets. For MIC-determinations, 785 isolates and their disk diffusion results were collected. None of the 12 clinical isolates with non-beta-lactamase-mediated ampicillin resistance was detected as resistant in the participating laboratories. The ampicillin and cefaclor results of the isolates were no better even when a laboratory was able to separate the control strains. Cefaclor results were unreliable because of poor disk diffusion-MIC correspondence and incoherent breakpoint references. Interlaboratory variation of the zone diameters caused false intermediate results of cefuroxime-susceptible strains. When ampicillin, cefaclor and cefuroxime were tested, the discrimination of laboratories using disks and tablets was equal, whereas the laboratories using paper disks were better able to detect trimethoprim-sulfa resistance.

  20. Modular, multi-level groundwater sampler

    DOEpatents

    Nichols, R.L.; Widdowson, M.A.; Mullinex, H.; Orne, W.H.; Looney, B.B.

    1994-03-15

    An apparatus is described for taking a multiple of samples of groundwater or pressure measurements from a well simultaneously. The apparatus comprises a series of chambers arranged in an axial array, each of which is dimensioned to fit into a perforated well casing and leave a small gap between the well casing and the exterior of the chamber. Seals at each end of the container define the limits to the axial portion of the well to be sampled. A submersible pump in each chamber pumps the groundwater that passes through the well casing perforations into the gap from the gap to the surface for analysis. The power lines and hoses for the chambers farther down the array pass through each chamber above them in the array. The seals are solid, water-proof, non-reactive, resilient disks supported to engage the inside surface of the well casing. Because of the modular design, the apparatus provides flexibility for use in a variety of well configurations. 3 figures.

  1. Composite seals for liquid hydrogen and nuclear radiation environments.

    NASA Technical Reports Server (NTRS)

    Van Auken, R. L.; Chase, V. A.

    1971-01-01

    Description of plastic composite seals for service in a liquid-hydrogen and nuclear-radiation environment. The radiation-resistant aromatic heterocyclic class of polymers, including polyimide, polybenzimidazole, and polyquinoxaline, were evaluated for this application. The seal developed is based on a design involving a resin-starved laminate consisting of alternating layers of woven glass fabric and polymer film. This design imparts a mechanical spring characteristic to the seal, resulting in essentially complete elastic recovery when unloaded, and eliminates cold flow. Encapsulating techniques employing the polyquinoxaline polymer were developed which rendered the seal impervious to liquid hydrogen. The seals were tested before and after gamma irradiation up to 10 to the 10th ergs/g. Load/deflection and leakage tests were performed over a temperature range from -423 through +500 F.

  2. Preliminary Test Results of a Non-Contacting Finger Seal on a Herringbone-Grooved Rotor

    NASA Technical Reports Server (NTRS)

    Proctor, Margaret P.; Degado, Irebert R.

    2008-01-01

    Low leakage, non-contacting finger seals have potential to reduce gas turbine engine specific fuel consumption by 2 to 3 percent and to reduce direct operating costs by increasing the time between engine overhauls. A non-contacting finger seal with concentric lift-pads operating adjacent to a test rotor with herringbone grooves was statically tested at 300, 533, and 700 K inlet air temperatures at pressure differentials up to 576 kPa. Leakage flow factors were approximately 70 percent less than state-of-the-art labyrinth seals. Leakage rates are compared to first order predictions. Initial spin tests at 5000 rpm, 300 K inlet air temperature and pressure differentials to 241 kPa produced no measurable wear.

  3. The continued value of disk diffusion for assessing antimicrobial susceptibility in clinical laboratories: report from the Clinical and Laboratory Standards Institute Methods Development and Standardization Working Group.

    PubMed

    Humphries, Romney M; Kircher, Susan; Ferrell, Andrea; Krause, Kevin M; Malherbe, Rianna; Hsiung, Andre; Burnham, C A

    2018-05-09

    Expedited pathways to antimicrobial agent approval by the United States Food and Drug Administration (FDA) have led to increased delays between drug approval and the availability of FDA-cleared antimicrobial susceptibility testing (AST) devices. Antimicrobial disks for use with disk diffusion testing are among the first AST devices available to clinical laboratories. However, many laboratories are reluctant to implement a disk diffusion method for a variety of reasons, including dwindling proficiency with this method, interruptions to laboratory workflow, uncertainty surrounding the quality and reliability of a disk diffusion test, and perceived need to report an MIC to clinicians. This mini-review provides a report from the Clinical and Laboratory Standards Institute Working Group on Methods Development and Standardization on the current standards and clinical utility of disk diffusion testing. Copyright © 2018 American Society for Microbiology.

  4. JT8D revised high-pressure turbine cooling and other outer air seal program

    NASA Technical Reports Server (NTRS)

    Gaffin, W. O.

    1979-01-01

    The JT8D high pressure turbine was revised to reduce leakage between the blade tip shrouds and the outer air seal, and engine testing was performed to determine the effect on performance. The addition of a second knife-edge on the blade tip shroud, the extension of the honeycomb seal land to cover the added knife-edge and an existing spoiler on the shroud, and a material substitution in the seal support ring to improve thermal growth characteristics are included. A relocation of the blade cooling air discharge to insure adequate cooling flow is required. Significant specific fuel consumption and exhaust gas temperature improvements were demonstrated with the revised turbine in sea level and simulated altitude engine tests. Inspection of the revised seal hardware after these tests showed no unusual wear or degradation.

  5. Detection of relatively penicillin G-resistant Neisseria meningitidis by disk susceptibility testing.

    PubMed Central

    Campos, J; Mendelman, P M; Sako, M U; Chaffin, D O; Smith, A L; Sáez-Nieto, J A

    1987-01-01

    Beginning in 1985, relatively penicillin G-resistant (Penr) meningococci which did not produce beta-lactamase were isolated from the blood and cerebrospinal fluid of patients in Spain. We identified 16 Penr (mean MIC, 0.3 microgram/ml; range, 0.1 to 0.7 microgram/ml) and 12 penicillin-susceptible (Pens; mean MIC, less than or equal to 0.06 microgram/ml) strains of Neisseria meningitidis by the agar dilution technique using an inoculum of 10(4) CFU and questioned which disk susceptibility test would best differentiate these two populations. We compared the disk susceptibility of these strains using disks containing 2 (P2) and 10 (P10) U of penicillin G, 2 (Am2) and 10 (Am10) micrograms of ampicillin, and 1 microgram of oxacillin (OX1). We also investigated susceptibility with disks containing 30 micrograms of each of cephalothin (CF30), cefoxitin (FOX30), cefuroxime (CXM30), and cefotaxime (CTX30) and 75 micrograms of cefoperazone (CFP75) and determined by cluster analysis any correlation with the zone diameters obtained with P2 disks. Using the P2 and AM2 disks (in contrast to the P10 and AM10 disks), we correctly differentiated all the Penr from Pens isolates. In addition, the zone diameters with the P2 disk gave the best correlation with the penicillin G MIC determinations. All 16 Penr strains and 3 of 12 Pens strains showed zone diameters of 6 mm around OX1 disks, limiting the usefulness of OX1 disks. The zone diameters obtained with CF30, CXM30, and OX1 disks correlated with those obtained with the P2 disk, which suggests that these antibiotics have similar effects on these strains. In contrast, the data obtained with FOX30, CTX30, and CFP75 disks did not cluster with those obtained with the P2 disk, which suggests that there was a difference in the bacterial target or reflects their greater activity. We conclude that the P2 disk tests more readily identify Penr meningococci than do the standard P10 disk tests. PMID:3124729

  6. Development of a Brush Seals Program Leading to Ceramic Brush Seals

    NASA Technical Reports Server (NTRS)

    Hendricks, Robert C.; Flower, Ralph; Howe, Harold

    1994-01-01

    Some events of a U.S. Army/NASA Lewis Research Center brush seals program are reviewed, and the development of ceramic brush seals is described. Some preliminary room-temperature flow data are given, and the results of testing metallic brushes in cryogenic nitrogen are discussed.

  7. 40 CFR 60.113a - Testing and procedures.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... every five years thereafter. All primary seal inspections or gap measurements which require the removal... the gap areas and maximum gap widths between the primary seal and the tank wall and between the secondary seal and the tank wall according to the following frequency: (A) For primary seals, gap...

  8. 40 CFR 60.113a - Testing and procedures.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... every five years thereafter. All primary seal inspections or gap measurements which require the removal... the gap areas and maximum gap widths between the primary seal and the tank wall and between the secondary seal and the tank wall according to the following frequency: (A) For primary seals, gap...

  9. Experimental amine-epoxide sealer: a physicochemical study in comparison with AH Plus and EasySeal.

    PubMed

    Sonntag, D; Ritter, A; Burkhart, A; Fischer, J; Mondrzyk, A; Ritter, H

    2015-08-01

    To compare selected physicochemical and biological properties of an experimental sealer with those of two commercially available sealers. AH Plus and EasySeal were used as model materials for commercially available amine-epoxide sealers. They were mixed as stated by the manufacturer. The two components of experimental sealer EvoSeal A were mixed 1 : 1 vol%. The setting time was determined in two different ways: first, by setting of sealers in a temperature- and moisture-controlled environment followed by testing with a Gilmore needle and secondly, by oscillating measurements of setting behaviour using a rheometer. Differential scanning calorimetry (DSC) of the sealer was performed for comparison of thermal properties. Flow and film thickness were determined by applying pressures of 100 g and 15.3 kg, respectively, on the materials between two glass plates and measuring the diameters of the compressed sealer and the thickness with a micrometer gauge. Solubility of set materials was conducted by layering the samples with water, storing in a temperature- and humidity-controlled environment and evaporating the solvent. The solved sealer parts were then weighed. The radiopacity was measured in an X-ray experiment comparing radiopacity of a cured sealer to an aluminium step wedge. Volume shrinkage was defined by measuring the densities of samples before and after setting. The film thickness, fluidity, curing time, radiopacity and solubility of the test materials were performed as specified in DIN EN ISO 6876:2010 draft. The volume shrinkage was determined in a method adapted from standard DIN 13907:2007-01. Antibacterial activity was tested against Gram-positive Streptococcus oralis cultures in a contact test based on standard ISO 22196:2011 (E). Statistical analysis was performed using Mann-Whitney U-test where applicable. Significant differences were determined with P < 0.05. The experimental sealer, EvoSeal A, reached standard specifications. In terms of film thickness, the highest value was measured for EvoSeal A with a film thickness of 27 μm, comparing to 6 μm for EasySeal (P ≤ 0.001) and 8 μm for AH Plus (P ≤ 0.001). Comparing the flow, all values corresponded to EasySeal with a diameter of 17.3 mm. The only significant difference was determined for AH Plus compared to EvoSeal A (P = 0.0353). Volume shrinkage of EvoSeal A was 48% smaller compared to EasySeal and approximately 20% lower compared to AH Plus. The shortest curing time was determined for EvoSeal A (3.0 h) followed by EasySeal (4.1 h) and AH Plus (24 h). For all groups, significant differences were observed (P ≤ 0.001). EvoSeal A had a significantly higher radiopacity than EasySeal (P ≤ 0.001) but significantly lower values than AH Plus (P ≤ 0.001). The solubility of AH Plus and EvoSeal A was <0.5% (P = 0.2435). Compared to EasySeal with a solubility of 2.7%, significant differences were observed (P ≤ 0.02). Three weeks after setting, EasySeal and EvoSeal A still had an antibacterial effect against S. oralis in contrast to AH Plus. In this respect, comparing AH Plus with EvoSeal A and EasySeal, respectively, significant differences were observed (P ≤ 0.001). No significant differences between EasySeal with EvoSeal A (P = 0.540) were determined. The physical and chemical properties of the experimental sealer EvoSeal A were comparable to the two commercially established sealers EasySeal and AH Plus. © 2014 International Endodontic Journal. Published by John Wiley & Sons Ltd.

  10. Improved Seals for High Temperature Airframe Applications

    NASA Technical Reports Server (NTRS)

    DeMange, Jeffrey J.; Dunlap, Patrick H.; Steinetz, Bruce M.

    2006-01-01

    Current thermal barrier seals, such as those used on the Space Shuttle, are insufficient to fully meet the demands of future hypersonic vehicles and reentry spacecraft. Previous investigations have demonstrated limited usage temperatures, as evidenced by a decreased ability to maintain sealing effectiveness at high temperatures (i.e., inadequate resiliency). In order to improve resiliency at elevated temperatures, Rene 41 (Allvac) was substituted for Inconel X-750 (Special Metals Corp.) as the spring tube material in the existing seal design. A seal construction incorporating the Rene 41 spring tube was fabricated and tested against the baseline Inconel X-750 spring tube seal. Although resiliency improvements were not as dramatic as in previous tests with the spring tubes alone, seals incorporating the Rene 41 spring tube exhibited an average 20 percent resiliency enhancement up to 1750 F when compared to seals containing the Inconel spring tube. In addition, the seals with the Rene 41 spring tubes showed less reduction in resiliency as temperatures increased above 1200 F. Results also indicated the Saffil (Saffil Ltd.) insulation in the core of the seal contributed more to resiliency than previously thought. Leakage data did not demonstrate an improvement with the seal containing the Rene 41 spring tube. However, based upon resiliency results, one could reasonably expect the Rene 41 version of the seal to track gap openings over a wider range. Therefore it would exhibit lower leakage than the Inconel X-750 version as the seal gap opens during a typical mission.

  11. Damage Tolerant Design for Cold-Section Turbine Engine Disks

    DTIC Science & Technology

    1981-06-01

    Ti-6Al-4V Disks ......... .. 59 28. FIOO 2nd-Stage Fan Disk Designs ........ ................ .. 61 29. Fan Disk Tangential Stress Profile... 61 30. Life-Limiting Features of Damage-Tolerant Disk .......... ... 62 31. Disk Life Limits .... ...................... 62 32. Life Test...Stress Rati• Model ..... .......... .. 113 61 . Thick-Section Center-Notched Specimen ....... ............. .. 116 62. Bolthole Specimen

  12. Theory versus experiment for the rotordynamic coefficients of annular gas seals. Part 1: Test facility and apparatus

    NASA Technical Reports Server (NTRS)

    Childs, D. W.; Nelson, C. E.; Nicks, C.; Scharrer, J. K.; Elrod, D.; Hale, K.

    1983-01-01

    A facility and apparatus are described for determining the rotordynamic coefficients and leakage characteristics of annular gas seals. The apparatus has a current top speed of 8000 cpm with a nominal seal diameter of 15.24 cmn (6 in). The air supply unit yields a seal pressure ratio of approximately 7. An external shaker is used to excite the test rotor. The capability to independently calculate all rotordynamic coefficients at a given operating condition with one excitation frequency are discussed.

  13. Preventive maintenance study : interim report.

    DOT National Transportation Integrated Search

    2017-09-01

    This interim report details the performance of 69 test sites treated with various preventive maintenance treatments. The maintenance treatments applied included crack sealing, full lane chip sealing, wheel path chip sealing, dig outs (mill and fill),...

  14. Effect of Summon Preferred Food Source on feeding, tunneling, and bait station discovery by the formosan subterranean termite (Isoptera: Rhinotermitidae).

    PubMed

    Cornelius, Mary L; Lax, Alan R

    2005-04-01

    This study evaluated the effect of Summon Preferred Food Source on feeding, tunneling, and bait station discovery by the Formosan subterranean termite, Coptotermes formosanus Shiraki. Bioassays were conducted to determine whether Summon disks affected the aggregation and feeding behavior of termites and to determine whether the presence of Summon disks caused increased recruitment of termites to wood blocks. When termites encountered the disk, they immediately clustered on top of the disk. Termites were observed aggregating on top of the disk throughout the experiment. Consumption of Summon disks was significantly greater than consumption of cardboard disks in paired choice tests. The presence of a Summon disk on top of a wood block caused a significant increase in consumption of the wood block. Bioassays also were conducted to determine whether water extracts of Summon disks affected termite behavior. Consumption of filter paper disks treated with a water extract of Summon disks was significantly greater than consumption of control filter paper disks. Termites tunneled through sand treated with a water extract of Summon disks faster than they tunneled through untreated sand. In a field test, the rate of infestation of monitoring stations with a Summon disk was 3 times greater than the rate of infestations of stations without a disk.

  15. Why do seals have cones? Behavioural evidence for colour-blindness in harbour seals.

    PubMed

    Scholtyssek, Christine; Kelber, Almut; Dehnhardt, Guido

    2015-03-01

    All seals and cetaceans have lost at least one of two ancestral cone classes and should therefore be colour-blind. Nevertheless, earlier studies showed that these marine mammals can discriminate colours and a colour vision mechanism has been proposed which contrasts signals from cones and rods. However, these earlier studies underestimated the brightness discrimination abilities of these animals, so that they could have discriminated colours using brightness only. Using a psychophysical discrimination experiment, we showed that a harbour seal can solve a colour discrimination task by means of brightness discrimination alone. Performing a series of experiments in which two harbour seals had to discriminate the brightness of colours, we also found strong evidence for purely scotopic (rod-based) vision at light levels that lead to mesopic (rod-cone-based) vision in other mammals. This finding speaks against rod-cone-based colour vision in harbour seals. To test for colour-blindness, we used a cognitive approach involving a harbour seal trained to use a concept of same and different. We tested this seal with pairs of isoluminant stimuli that were either same or different in colour. If the seal had perceived colour, it would have responded to colour differences between stimuli. However, the seal responded with "same", providing strong evidence for colour-blindness.

  16. An in vitro comparative study of the adaptation and sealing ability of two carrier-based root canal obturators.

    PubMed

    Alkahtani, Ahmed; Al-Subait, Sara; Anil, Sukumaran

    2013-01-01

    The study was done to assess the sealing ability and adaptation of RealSeal 1, and to compare it with Thermafil. 65 single-rooted extracted teeth were selected and root canal treatment was performed. Root canals were obturated with RealSeal 1 or Thermafil. A double chamber bacterial leakage model using E. faecalis was developed to assess the sealing ability. Samples were monitored daily for 60 days. After the bacterial leakage test, samples were embedded in resin and sectioned horizontally at 2 and 4 mm from the apical foramen. Specimens were examined under scanning electron microscope and digitally photographed. AutoCAD software was used to measure the gap between the canal surface and obturation material. Results were statistically analyzed using nonparametric Kaplan-Meier survival analysis for the bacterial leakage and t-test to compare the means of gap in RealSeal 1 and Thermafil at 2 and 4 mm. There was no significant difference between the RealSeal 1 and Thermafil with respect to leakage over time. At 2 mm and 4 mm, RealSeal 1 had significantly more gaps than Thermafil. From the observations it can be concluded that RealSeal 1 and Thermafil have comparable performance in terms of adaptation and sealing ability.

  17. An In Vitro Comparative Study of the Adaptation and Sealing Ability of Two Carrier-Based Root Canal Obturators

    PubMed Central

    Alkahtani, Ahmed; Al-Subait, Sara; Anil, Sukumaran

    2013-01-01

    The study was done to assess the sealing ability and adaptation of RealSeal 1, and to compare it with Thermafil. 65 single-rooted extracted teeth were selected and root canal treatment was performed. Root canals were obturated with RealSeal 1 or Thermafil. A double chamber bacterial leakage model using E. faecalis was developed to assess the sealing ability. Samples were monitored daily for 60 days. After the bacterial leakage test, samples were embedded in resin and sectioned horizontally at 2 and 4 mm from the apical foramen. Specimens were examined under scanning electron microscope and digitally photographed. AutoCAD software was used to measure the gap between the canal surface and obturation material. Results were statistically analyzed using nonparametric Kaplan-Meier survival analysis for the bacterial leakage and t-test to compare the means of gap in RealSeal 1 and Thermafil at 2 and 4 mm. There was no significant difference between the RealSeal 1 and Thermafil with respect to leakage over time. At 2 mm and 4 mm, RealSeal 1 had significantly more gaps than Thermafil. From the observations it can be concluded that RealSeal 1 and Thermafil have comparable performance in terms of adaptation and sealing ability. PMID:23710141

  18. 2003 NASA Seal/Secondary Air System Workshop. Volume 1

    NASA Technical Reports Server (NTRS)

    Steinetz, Bruce M. (Editor); Hendricks, Robert C. (Editor)

    2004-01-01

    The following reports were included in the 2003 NASA Seal/Secondary Air System Workshop:Low Emissions Alternative Power (LEAP); Overview of NASA Glenn Seal Developments; NASA Ultra Efficient Engine Technology Project Overview; Development of Higher Temperature Abradable Seals for Industrial Gas Turbines; High Misalignment Carbon Seals for the Fan Drive Gear System Technologies; Compliant Foil Seal Investigations; Test Rig for Evaluating Active Turbine Blade Tip Clearance Control Concepts; Controls Considerations for Turbine Active Clearance Control; Non-Contacting Finger Seal Developments and Design Considerations; Effect of Flow-Induced Radial Load on Brush Seal/Rotor Contact Mechanics; Seal Developments at Flowserve Corporation; Investigations of High Pressure Acoustic Waves in Resonators With Seal-Like Features; Numerical Investigations of High Pressure Acoustic Waves in Resonators; Feltmetal Seal Material Through-Flow; "Bimodal" Nuclear Thermal Rocket (BNTR) Propulsion for Future Human Mars Exploration Missions; High Temperature Propulsion System Structural Seals for Future Space Launch Vehicles; Advanced Control Surface Seal Development for Future Space Vehicles; High Temperature Metallic Seal Development for Aero Propulsion and Gas Turbine Applications; and BrazeFoil Honeycomb.

  19. Application of Pinniped Vibrissae to Aeropropulsion

    NASA Technical Reports Server (NTRS)

    Shyam, Vikram; Ameri, Ali; Poinsatte, Philip; Thurman, Douglas; Wroblewski, Adam; Snyder, Christopher

    2015-01-01

    Vibrissae of Phoca Vitulina (Harbor Seal) and Mirounga Angustirostris (Elephant Seal) possessundulations along their length. Harbor Seal Vibrissae were shown to reduce vortex induced vibrations and reduce dragcompared to appropriately scaled cylinders and ellipses. Samples of Harbor Seal vibrissae, Elephant Seal vibrissae andCalifornia Sea Lion vibrissae were collected from the Marine Mammal Center in California. CT scanning, microscopy and3D scanning techniques were utilized to characterize the whiskers. Computational fluid dynamics simulations of thewhiskers were carried out to compare them to an ellipse and a cylinder. Leading edge parameters from the whiskerswere used to create a 3D profile based on a modern power turbine blade. The NASA SW-2 facility was used to performwind tunnel cascade testing on the 'Seal Blades'. Computational Fluid Dynamics simulations were used to studyincidence angles from -37 to +10 degrees on the aerodynamic performance of the Seal Blade. The tests and simulationswere conducted at a Reynolds number of 100,000. The Seal Blades showed consistent performance improvements overthe baseline configuration. It was determined that a fuel burn reduction of approximately 5 could be achieved for a fixedwing aircraft. Noise reduction potential is also explored

  20. Atomic Oxygen Effects on Seal Leakage

    NASA Technical Reports Server (NTRS)

    Christensen, John R.; Underwood, Steve D.; Kamenetzky, Rachel R.; Vaughn, Jason A.

    1999-01-01

    Common Berthing Mechanism (CBM provides the structural interface between separate International Space Station (ISS) elements, such as the Laboratory and Node modules. The CBM consists of an active and a passive half that join together with structural bolts. The seal at this interface is the CBM-to-CBM molded seal. The CBM-to-CBM interface is assembled on orbit, thus the seals can be exposed to the space environment for up to 65 hours. Atomic Oxygen/Vacuum Ultraviolet radiation (AO/VUV) in space is a potential hazard to the seals. Testing was conducted to determine the effect on leakage of the CBM-to-CBM seal material exposed to AO/VUV. The sealing materials were S383 silicone and V835 fluorocarbon material. Control samples, which were not exposed to the AO/VUV environment, were used to ensure that ff any changes in leakage occurred, they could be attributed to the AO/VUV exposure. After exposure to the AO/VUV environment the leakage increase was dramatic for the fluorocarbon. This testing was a major contributing factor in selecting silicone as the CBM-to-CBM seal material.

  1. Seal Technology for Liquid Oxygen (LOX) Turbopumps

    NASA Technical Reports Server (NTRS)

    Shapiro, Wilbur; Hamm, Robert

    1985-01-01

    Two types of advanced seals for liquid oxygen (LOX) turbopumps were investigated. One was a spiral-groove face seal whose function is to seal high-pressure LOX at the impeller end of the turbopump. The other was a floating-ring, Rayleigh-step, helium buffered seal used to prevent LOX ingress to the turbine side of the unit. For each seal type, two sizes were investigated (50 and 20 mm). A turbine-driven test rig was designed and manufactured, and a test program was completed on the 50 mm floating-ring, Rayleigh-step, helium buffered seal. Significant results were: vaporization in the flow path could cause failure by overheating; therefore, the spiral-groove pumping portion of the seal that provides the fluid film must circulate fluid without disruption if vaporization occurs in the sealing dam. This is successfully accomplished by a pressure-balanced spiral-groove concept that is described. The spiral-groove configuration is affected by turbulence in the fluid film and pressure drops due to fluid inertia at sudden contractions. The net results of these effects are deep grooves, large operating films, and high power loss when compared against seals operating with laminar films. Turbulence and inertia are induced by the high-density and low-viscosity characteristics of LOX. The program clearly pointed out the need to consider system environmental factors such as thermal and centrifugal distortions and rotor vibrations in the seal design.

  2. 2005 NASA Seal/Secondary Air System Workshop, Volume 1

    NASA Technical Reports Server (NTRS)

    Steinetz, Bruce M. (Editor); Hendricks, Robert C. (Editor)

    2006-01-01

    The 2005 NASA Seal/Secondary Air System workshop covered the following topics: (i) Overview of NASA s new Exploration Initiative program aimed at exploring the Moon, Mars, and beyond; (ii) Overview of the NASA-sponsored Propulsion 21 Project; (iii) Overview of NASA Glenn s seal project aimed at developing advanced seals for NASA s turbomachinery, space, and reentry vehicle needs; (iv) Reviews of NASA prime contractor, vendor, and university advanced sealing concepts including tip clearance control, test results, experimental facilities, and numerical predictions; and (v) Reviews of material development programs relevant to advanced seals development. Turbine engine studies have shown that reducing high-pressure turbine (HPT) blade tip clearances will reduce fuel burn, lower emissions, retain exhaust gas temperature margin, and increase range. Several organizations presented development efforts aimed at developing faster clearance control systems and associated technology to meet future engine needs. The workshop also covered several programs NASA is funding to develop technologies for the Exploration Initiative and advanced reusable space vehicle technologies. NASA plans on developing an advanced docking and berthing system that would permit any vehicle to dock to any on-orbit station or vehicle. Seal technical challenges (including space environments, temperature variation, and seal-on-seal operation) as well as plans to develop the necessary "androgynous" seal technologies were reviewed. Researchers also reviewed tests completed for the shuttle main landing gear door seals.

  3. Burst Testing and Analysis of Superalloy Disks With a Dual Grain Microstructure

    NASA Technical Reports Server (NTRS)

    Gayda, John; Kantzos, Pete

    2006-01-01

    Elastic-plastic finite element analyses of room temperature burst tests on four superalloy disks were conducted and reported in this paper. Two alloys, Rene 104 (General Electric Aircraft Engines) and Alloy 10 (Honeywell Engines & Systems), were studied. For both alloys an advanced dual microstructure disk, fine grain bore and coarse grain rim, were analyzed and compared with conventional disks with uniform microstructures, coarse grain for Rene 104 and fine grain for Alloy 10. The analysis and experimental data were in good agreement up to burst. At burst, the analysis underestimated the speed and growth of the Rene 104 disks, but overestimated the speed and growth of the Alloy 10 disks. Fractography revealed that the Alloy 10 disks displayed significant surface microcracking and coalescence in comparison to Rene 104 disks. This phenomenon may help explain the differences between the Alloy 10 disks and the Rene 104 disks, as well as the observed deviations between analytical and experimental data at burst.

  4. Cover-gas seal program. Test report - sodium dip-seal wetting study. [at 450/sup 0/F

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carnevali, R.

    1977-10-20

    This report documents the tests conducted to find a reliable surface preparation method of treating the CRBRP dip seal blade (SA508 Class 2 steel) to insure its sodium wettability at 450F or less. Two techniques were established which depressed the sodium wetting temperature of SA 508, Class 2 dip seal blade material to 375F. These techniques were depositing an approx. 60 x 10/sup -6/ inch layer of tin on the blade surface by a brush-on plating process, and, by cleaning the blade surface with ultrasonics while it is immersed in sodium. The tin plating technique is recommended as the initialmore » and primary surface preparation method and ultrasonics as a rewetting and backup technique. This work was conducted in support of the Sodium Dip Seal Feature Test, DRS 32.05.« less

  5. Spray sealing: A breakthrough in integral fuel tank sealing technology

    NASA Astrophysics Data System (ADS)

    Richardson, Martin D.; Zadarnowski, J. H.

    1989-11-01

    In a continuing effort to increase readiness, a new approach to sealing integral fuel tanks is being developed. The technique seals potential leak sources by spraying elastomeric materials inside the tank cavity. Laboratory evaluations project an increase in aircraft supportability and reliability, an improved maintainability, decreasing acquisition and life cycle costs. Increased usable fuel volume and lower weight than conventional bladders improve performance. Concept feasibility was demonstrated on sub-scale aircraft fuel tanks. Materials were selected by testing sprayable elastomers in a fuel tank environment. Chemical stability, mechanical properties, and dynamic durability of the elastomer are being evaluated at the laboratory level and in sub-scale and full scale aircraft component fatigue tests. The self sealing capability of sprayable materials is also under development. Ballistic tests show an improved aircraft survivability, due in part to the elastomer's mechanical properties and its ability to damp vibrations. New application equipment, system removal, and repair methods are being investigated.

  6. Propulsion Health Monitoring of a Turbine Engine Disk Using Spin Test Data

    NASA Technical Reports Server (NTRS)

    Abdul-Aziz, Ali; Woike, Mark R.; Oza, Nikunj; Matthews, Bryan; Baaklini, George Y.

    2010-01-01

    This paper considers data collected from an experimental study using high frequency capacitive sensor technology to capture blade tip clearance and tip timing measurements in a rotating turbine engine-like-disk-to predict the disk faults and assess its structural integrity. The experimental results collected at a range of rotational speeds from tests conducted at the NASA Glenn Research Center s Rotordynamics Laboratory are evaluated using multiple data-driven anomaly detection techniques to identify abnormalities in the disk. Further, this study presents a select evaluation of an online health monitoring scheme of a rotating disk using high caliber sensors and test the capability of the in-house spin system.

  7. Repair of through thickness corrosion/leaking defects in corroded pipelines using Fiber Reinforced Polymer overwrap

    NASA Astrophysics Data System (ADS)

    Nitheesh Kumar, P.; Khan, Vishwas Chandra; Balaganesan, G.; Pradhan, A. K.; Sivakumar, M. S.

    2018-04-01

    The present study is concerned with the repair of through thickness corrosion or leaking defects in metallic pipelines using a commercially available metallic seal and glass/epoxy composite. Pipe specimens are made with three different types of most commonly occurring through thickness corrosion/leaking defects. The metallic seal is applied over the through thickness corrosion/leaking defect and it is reinforced with glass/epoxy composite overwrap. The main objective of the metallic seal is to arrest the leak at live pressure. After reinforcing the metallic seal with glass/epoxy composite overwrap, the repaired composite wrap is able to sustain high pressures. Burst test is performed for different configurations of metallic seal and optimum configuration of metallic seal is determined. The optimum configurations of metallic seal for three different types of through thickness corrosion/leaking defects are further reinforced with glass/epoxy composite wrap and experimental failure pressure is determined by performing the burst test. An analytical model as per ISO 24817 has been developed to validate experimental results.

  8. In Vitro Activity of Cephalothin and Three Penicillins Against Escherichia coli and Proteus Species

    PubMed Central

    Barry, Arthur L.; Hoeprich, Paul D.

    1973-01-01

    The susceptibility of clinical isolates of Escherichia coli (67) and Proteus species (58) to cephalothin, ampicillin, benzyl penicillin, and phenoxymethyl penicillin was determined in vitro by using broth dilution and disk diffusion tests. The data were correlated by using a four-category scheme for interpreting minimal inhibitory concentrations (groups 1 to 4) as recommended by a subcommittee of an international collaborative study of susceptibility testing. With cephalothin and ampicillin, groups 1 (susceptible) and 2 (moderately susceptible) were susceptible by the disk test, and with benzyl penicillin, similar results were observed when the interpretive zone standards were changed. Strains categorized as group 4 (very resistant) were resistant by the disk method, but group 3 (moderately resistant) strains were not adequately distinguished by disk testing. Group 3 susceptibility to benzyl and phenoxymethyl penicillins can be predicted by extrapolating results from tests with ampicillin disks. PMID:4202343

  9. Detection of Methicillin-Resistant Coagulase-Negative Staphylococci by the Vitek 2 System

    PubMed Central

    Johnson, Kristen N.; Andreacchio, Kathleen

    2014-01-01

    The accurate performance of the Vitek 2 GP67 card for detecting methicillin-resistant coagulase-negative staphylococci (CoNS) is not known. We prospectively determined the ability of the Vitek 2 GP67 card to accurately detect methicillin-resistant CoNS, with mecA PCR results used as the gold standard for a 4-month period in 2012. Included in the study were 240 consecutively collected nonduplicate CoNS isolates. Cefoxitin susceptibility by disk diffusion testing was determined for all isolates. We found that the three tested systems, Vitek 2 oxacillin and cefoxitin testing and cefoxitin disk susceptibility testing, lacked specificity and, in some cases, sensitivity for detecting methicillin resistance. The Vitek 2 oxacillin and cefoxitin tests had very major error rates of 4% and 8%, respectively, and major error rates of 38% and 26%, respectively. Disk cefoxitin testing gave the best performance, with very major and major error rates of 2% and 24%, respectively. The test performances were species dependent, with the greatest errors found for Staphylococcus saprophyticus. While the 2014 CLSI guidelines recommend reporting isolates that test resistant by the oxacillin MIC or cefoxitin disk test as oxacillin resistant, following such guidelines produces erroneous results, depending on the test method and bacterial species tested. Vitek 2 cefoxitin testing is not an adequate substitute for cefoxitin disk testing. For critical-source isolates, mecA PCR, rather than Vitek 2 or cefoxitin disk testing, is required for optimal antimicrobial therapy. PMID:24951799

  10. Evaluation of High Temperature Knitted Spring Tubes for Structural Seal Applications

    NASA Technical Reports Server (NTRS)

    Taylor, Shawn C.; DeMange, Jeffrey J.; Dunlap, Patrick H., Jr.; Steinetz, Bruce M.

    2004-01-01

    Control surface seals are crucial to current and future space vehicles, as they are used to seal the gaps surrounding body flaps, elevons, and other actuated exterior surfaces. During reentry, leakage of high temperature gases through these gaps could damage underlying lower temperature structures such as rudder drive motors and mechanical actuators, resulting in impaired vehicle control. To be effective, control surface seals must shield lower temperature structures from heat transfer by maintaining sufficient resiliency to remain in contact with opposing sealing surfaces through multiple compression cycles. The current seal exhibits significant loss of resiliency after a few compression cycles at elevated temperatures (i.e., 1900 F) and therefore would be inadequate for advanced space vehicles. This seal utilizes a knitted Inconel X-750 spring tube as its primary resilient element. As part of a larger effort to enhance seal resiliency, researchers at the NASA Glenn Research Center performed high temperature compression testing (up to 2000 F) on candidate spring tube designs employing material substitutions and modified geometries. These tests demonstrated significant improvements in spring tube resiliency (5.5x better at 1750 F) through direct substitution of heat treated Rene 41 alloy in the baseline knit design. The impact of geometry modification was minor within the range of parameters tested, however trends did suggest that moderate resiliency improvements could be obtained by optimizing the current spring tube geometry.

  11. Characterization of the Temperature Capabilities of Advanced Disk Alloy ME3

    NASA Technical Reports Server (NTRS)

    Gabb, Timothy P.; Telesman, Jack; Kantzos, Peter T.; OConnor, Kenneth

    2002-01-01

    The successful development of an advanced powder metallurgy disk alloy, ME3, was initiated in the NASA High Speed Research/Enabling Propulsion Materials (HSR/EPM) Compressor/Turbine Disk program in cooperation with General Electric Engine Company and Pratt & Whitney Aircraft Engines. This alloy was designed using statistical screening and optimization of composition and processing variables to have extended durability at 1200 F in large disks. Disks of this alloy were produced at the conclusion of the program using a realistic scaled-up disk shape and processing to enable demonstration of these properties. The objective of the Ultra-Efficient Engine Technologies disk program was to assess the mechanical properties of these ME3 disks as functions of temperature in order to estimate the maximum temperature capabilities of this advanced alloy. These disks were sectioned, machined into specimens, and extensively tested. Additional sub-scale disks and blanks were processed and selectively tested to explore the effects of several processing variations on mechanical properties. Results indicate the baseline ME3 alloy and process can produce 1300 to 1350 F temperature capabilities, dependent on detailed disk and engine design property requirements.

  12. Three-Dimensional Radiative Hydrodynamics for Disk Stability Simulations: A Proposed Testing Standard and New Results

    NASA Astrophysics Data System (ADS)

    Boley, Aaron C.; Durisen, Richard H.; Nordlund, Åke; Lord, Jesse

    2007-08-01

    Recent three-dimensional radiative hydrodynamics simulations of protoplanetary disks report disparate disk behaviors, and these differences involve the importance of convection to disk cooling, the dependence of disk cooling on metallicity, and the stability of disks against fragmentation and clump formation. To guarantee trustworthy results, a radiative physics algorithm must demonstrate the capability to handle both the high and low optical depth regimes. We develop a test suite that can be used to demonstrate an algorithm's ability to relax to known analytic flux and temperature distributions, to follow a contracting slab, and to inhibit or permit convection appropriately. We then show that the radiative algorithm employed by Mejía and Boley et al. and the algorithm employed by Cai et al. pass these tests with reasonable accuracy. In addition, we discuss a new algorithm that couples flux-limited diffusion with vertical rays, we apply the test suite, and we discuss the results of evolving the Boley et al. disk with this new routine. Although the outcome is significantly different in detail with the new algorithm, we obtain the same qualitative answers. Our disk does not cool fast due to convection, and it is stable to fragmentation. We find an effective α~10-2. In addition, transport is dominated by low-order modes.

  13. Development of mainshaft seals for advanced air breathing propulsion systems

    NASA Technical Reports Server (NTRS)

    Dobek, L. J.

    1973-01-01

    A gas-film face seal design incorporating shrouded Rayleigh step lift pads at the primary sealing face was analyzed for performance over a wide range of gas turbine engine conditions. Acceptable leakage rates and operation without rubbing contact was predicted for engine conditions that included sealed pressures to 500 psi, sliding speeds to 600 ft/sec, and sealed gas temperatures to 1200 F. In the experimental evaluation, measured gas leakage rates were, in general, close to that predicted and sometimes lower. Satisfactory performance of the gas-film seal was demonstrated at the maximum seal seat axial runout expected in present positive contact face seal applications. Stable operation was shown when testing was performed with air-entrained dirt.

  14. Turbine Seal Research at NASA GRC

    NASA Technical Reports Server (NTRS)

    Proctor, Margaret P.; Steinetz, Bruce M.; Delgado, Irebert R.; Hendricks, Robert C.

    2011-01-01

    Low-leakage, long-life turbomachinery seals are important to both Space and Aeronautics Missions. (1) Increased payload capability (2) Decreased specific fuel consumption and emissions (3) Decreased direct operating costs. NASA GRC has a history of significant accomplishments and collaboration with industry and academia in seals research. NASA's unique, state-of-the-art High Temperature, High Speed Turbine Seal Test Facility is an asset to the U.S. Engine / Seal Community. Current focus is on developing experimentally validated compliant, non-contacting, high temperature seal designs, analysis, and design methodologies to enable commercialization.

  15. High-Pressure Hot-Gas Self-Acting Floating Ring Shaft Seal for Liquid Rocket Turbopumps. [tapered bore seals

    NASA Technical Reports Server (NTRS)

    Burcham, R. E.; Diamond, W. A.

    1980-01-01

    Design analysis, detail design, fabrication, and experimental evaluation was performed on two self acting floating ring shaft seals for a rocket engine turbopump high pressure 24132500 n/sq m (3500 psig) hot gas 533 K 9500 F) high speed 3142 rad/sec (30000 rmp) turbine. The initial design used Rayleigh step hydrodynamic lift pads to assist in centering the seal ring with minimum rubbing contact. The final design used a convergent tapered bore to provide hydrostatic centering force. The Rayleigh step design was tested for 107 starts and 4.52 hours total. The leakage was satisfactory; however, the design was not acceptable due to excessive wear caused by inadequate centering force and failure of the sealing dam caused by erosion damage. The tapered bore design was tested for 370 starts and 15.93 hours total. Satisfactory performance for the required life of 7.5 hours per seal was successfully demonstrated.

  16. Development of seals for a geothermal downhole intensifier. Progress report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Captain, K.M.; Harvey, A.C.; Caskey, B.C.

    1985-08-01

    A system using high-velocity fluid jets in conjunction with a rotary diamond bit is currently considered as the best candidate for reducing the cost of drilling geothermal wells. Technical, safety and cost considerations indicate that the required jet supply pressure can best be established by a downhole pressure intensifier. Key intensifier components are the check valve and plunger seals, which must prevent leakage of the high-pressure, high-temperature abrasive fluid (drilling mud). To achieve the required performance, novel ceramic seals are currently being developed. The check valve seal includes a tapered polymeric plug and ceramic stop acting against a ceramic seat.more » The ceramic plunger seal is a variant of the ''stepped-joint'' piston ring and is designed to minimize contact pressure and abrasive wear. Initial testing of these seals in the laboratory shows encouraging results; design refinement and further testing is in progress. 2 refs., 6 figs., 3 tabs.« less

  17. Quantifying the benefits of improved rolling of chip seals : final report, June 2008.

    DOT National Transportation Integrated Search

    2008-06-01

    This report presents an improvement in the rolling protocol for chip seals based on an evaluation of aggregate : retention performance and aggregate embedment depth. The flip-over test (FOT), Vialit test, modified sand circle : test, digital image pr...

  18. Seal coat binder performance specifications.

    DOT National Transportation Integrated Search

    2013-11-01

    Need to improve seal coat binder specs: replace empirical tests (penetration, ductility) with : performance-related tests applicable to both : unmodified and modified binders; consider temperatures that cover entire in service : range that are tied t...

  19. Qualification tests for {sup 192}Ir sealed sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Iancso, Georgeta, E-mail: georgetaiancso@yahoo.com; Iliescu, Elena, E-mail: georgetaiancso@yahoo.com; Iancu, Rodica, E-mail: georgetaiancso@yahoo.com

    This paper describes the results of qualification tests for {sup 192}Ir sealed sources, available in Testing and Nuclear Expertise Laboratory of National Institute for Physics and Nuclear Engineering 'Horia Hulubei' (I.F.I.N.-HH), Romania. These sources had to be produced in I.F.I.N.-HH and were tested in order to obtain the authorization from The National Commission for Nuclear Activities Control (CNCAN). The sources are used for gammagraphy procedures or in gammadefectoscopy equipments. Tests, measurement methods and equipments used, comply with CNCAN, AIEA and International Quality Standards and regulations. The qualification tests are: 1. Radiological tests and measurements: dose equivalent rate at 1 m;more » tightness; dose equivalent rate at the surface of the transport and storage container; external unfixed contamination of the container surface. 2. Mechanical and climatic tests: thermal shock; external pressure; mechanic shock; vibrations; boring; thermal conditions for storage and transportation. Passing all tests, it was obtained the Radiological Security Authorization for producing the {sup 192}Ir sealed sources. Now IFIN-HH can meet many demands for this sealed sources, as the only manufacturer in Romania.« less

  20. Do Sealing Materials Influence Superstructure Attachment in Implants?

    PubMed

    Biscoping, Stephanie; Ruttmann, Esther; Rehmann, Peter; Wöstmann, Bernd

    This study aimed to evaluate the possible effect of sealing materials on superstructure attachment (ie, tightening/loosening torque and implant-abutment gap) in two different implant systems. A silicone, a chlorhexidine gel, and an industrial lubricant were tested. A 3D microscope was used for assessment of the implant-abutment gap, and the abutment screw was tightened and loosened with a digital torque screwdriver. A total of 20 implants per test group (10 BEGO Semados RI and 10 Nobel Biocare Replace Select Straight) were evaluated. The tested sealing materials did not influence the gap between implant and abutment, but the force necessary for loosening the abutment screws decreased significantly. Sealing materials may be useful against bacteria, but probably influence torque negatively.

  1. Disk diffusion antimicrobial susceptibility testing of members of the family Legionellaceae including erythromycin-resistant variants of Legionella micdadei.

    PubMed Central

    Dowling, J N; McDevitt, D A; Pasculle, A W

    1984-01-01

    Disk diffusion antimicrobial susceptibility testing of members of the family Legionellaceae was accomplished on buffered charcoal yeast extract agar by allowing the bacteria to grow for 6 h before placement of the disks, followed by an additional 42-h incubation period before the inhibitory zones were measured. This system was standardized by comparing the zone sizes with the MICs for 20 antimicrobial agents of nine bacterial strains in five Legionella species and of 19 laboratory-derived, erythromycin-resistant variants of Legionella micdadei. A high, linear correlation between zone size and MIC was found for erythromycin, trimethoprim, penicillin, ampicillin, carbenicillin, cephalothin, cefamandole, cefoxitin, moxalactam, chloramphenicol, vancomycin, and clindamycin. Disk susceptibility testing could be employed to screen Legionella isolates for resistance to any of these antimicrobial agents, of which only erythromycin is known to be efficacious in the treatment of legionellosis. With selected antibiotics, disk susceptibility patterns also appeared to accurately identify to the species level the legionellae. The range of the MICs of the legionellae for rifampin and the aminoglycosides was too small to determine whether the correlation of zone size with MIC was linear. However, laboratory-derived, high-level rifampin-resistant variants of L. micdadei demonstrated no inhibition zone around the rifampin disk, indicating that disk susceptibility testing would likely identify a rifampin-resistant clinical isolate. Of the antimicrobial agents tested, the only agents for which disk susceptibility testing was definitely not possible on buffered charcoal yeast extract agar were oxacillin, the tetracyclines, and the sulfonamides. PMID:6565706

  2. Rod-cone based color vision in seals under photopic conditions.

    PubMed

    Oppermann, Daniela; Schramme, Jürgen; Neumeyer, Christa

    2016-08-01

    Marine mammals have lost the ability to express S-cone opsin, and possess only one type of M/L-cone in addition to numerous rods. As they are cone monochromats they should be color blind. However, early behavioral experiments with fur seals and sea lions indicated discrimination ability between many shades of grey and blue or green. On the other hand, most recent training experiments with harbor seals under "mesopic" conditions demonstrated rod based color blindness (Scholtyssek et al., 2015). In our experiments we trained two harbor seals (Phoca vitulina) and two South African fur seals (Arctocephalus pusillus) with surface colors under photopic conditions. The seals had to detect a triangle on grey background shown on one of three test fields while the other two test fields were homogeneously grey. In a first series of experiments we determined brightness detection. We found a luminance contrast of >3% sufficient for correctly choosing the triangle. In the tests for color vision the triangle was blue, green or yellow in grey surround. The results show that the animals could see the colored triangle despite minimal or zero brightness contrast. Thus, seals have color vision based on the contribution of cones and rods even in bright daylight. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Efficiency of a borehole seal by means of pre-compacted bentonite blocks

    NASA Astrophysics Data System (ADS)

    Van Geet, M.; Volckaert, G.; Bastiaens, W.; Maes, N.; Weetjens, E.; Sillen, X.; Vallejan, B.; Gens, A.

    The backfilling and sealing of shafts and galleries is an essential part of the design of underground repositories for high-level radioactive waste. Part of the EC funded project RESEAL studied the feasibility of sealing off a borehole in plastic Boom Clay by means of pre-compacted bentonite blocks. Two bentonites, namely the FoCa and Serrata clay, have been used. Based on laboratory tests, the bentonite blocks had an initial dry density of about 1.8 g/cm 3 to obtain a swelling pressure of about 4.4 MPa, corresponding to the in situ lithostatic stress, at full saturation. The set-up was equipped with several sensors to follow-up the behaviour of the seal and the surrounding host rock during hydration. Full saturation was reached after five months and was mainly reached by natural hydration. Swelling pressure was lower than originally foreseen due to the slow reconsolidation of the host rock. Later on, the efficiency of the seal with respect to water, gas and radionuclide migration was tested. The in situ measured permeability of the seals was about 5 × 10 -13 m/s. A gas breakthrough experiment did not show any preferential gas migration through the seal. No evidences of a preferential pathway could be detected from 125I tracer test results.

  4. [Study on the stability of tetrandrine microsphere].

    PubMed

    Cheng, Guohu; Luo, Jiabo

    2005-05-01

    To study the stability of Tetrandrine Microsphere. Higher speed test and room temperature test were adopted to investigate the indexes, such as properties of appearance, amount of medicine loaded, seal rate, seepage rate, microbial stability, etc. Through the test of six months, properties of appearance, amount of medicine loaded, seal rate, seepage rate, microbial stability have not obviously change. But after testing for 6 months with higher temperature, the seal rate was reduced, and the seepage rate was increased. Tetrandrine microsphere is steady under the room temperature condition, but is unstable to hot, and ought to keep in conformity with low-temperature.

  5. Reliability Study of Beam Lead Sealed Junction Devices

    DTIC Science & Technology

    1975-03-01

    metallurgy was reportedly less prone to migration or corrosion, the junctions were sealed with silicon nitride which is impervious to sodium ion...normal solution). This solution was used both to test device hermeticity and to provide a sodium ion penetration test. The deionized water and...were looked for, but not found, were sodium ion penetration and platinum migration. Several of the devices that were sealed with saline solution were

  6. Detailed Microstructural Characterization of the Disk Alloy ME3

    NASA Technical Reports Server (NTRS)

    Gabb, Timothy P.; Garg, Anita; Ellis, David L.; O'Connor, Kenneth M.

    2004-01-01

    The advanced powder metallurgy disk alloy ME3 was designed using statistical screening and optimization of composition and processing variables in the NASA/General Electric/Pratt & Whitney HSR/EPM disk program to have extended durability for large disks at maximum temperatures of 600 to 700 C. Scaled-up disks of this alloy were then produced at the conclusion of that program to demonstrate these properties in realistic disk shapes. The objective of the present study was to assess the microstructural characteristics of these ME3 disks at two consistent locations, in order to enable estimation of the variations in microstructure across each disk and across several disks of this advanced alloy. Scaled-up disks processed in the HSR/EPM Compressor/Turbine Disk program had been sectioned, machined into specimens, and tested in tensile, creep, fatigue, and fatigue crack growth tests by NASA Glenn Research Center, in cooperation with General Electric Engine Company and Pratt & Whitney Aircraft Engines. For this study, microstructures of grip sections from tensile specimens in the bore and rim were evaluated from these disks. The major and minor phases were identified and quantified using transmission electron microscopy (TEM). Particular attention was directed to the .' precipitates, which along with grain size can predominantly control the mechanical properties of superalloy disks.

  7. Performance oriented guidance for Mississippi chip seals - volume II.

    DOT National Transportation Integrated Search

    2013-12-01

    A laboratory and field study was conducted related to long term chip seal performance. This reports primary : objective was to initiate development of a long term performance (LTP) test protocol for chip seals focused on : aggregate retention. Key...

  8. Design of a Two Dimensional Planer Pressurized Air Labyrinth Seal Test Rig

    DTIC Science & Technology

    1993-12-01

    identity by block number) Dump Diffuser, Flow Modification, Laser Doppler Velocimeter, Labyrinth Seal , Leakage Prediction, Press --ized air 19 Abstract...reducing this high to low pressure leakage . Figure 1.1 is a two dimensional representation of a 3 dimensional annular labyrinth seal . The object of this... Labyrinth Seal literature, Sneck [2] credits C.A. Parsons with development of the labyrinth seal in concert with Parson’s [31 development of the steam

  9. Dynamics of Vibrio with virulence genes detected in Pacific harbor seals (Phoca vitulina richardii) off California: implications for marine mammal health.

    PubMed

    Hughes, Stephanie N; Greig, Denise J; Miller, Woutrina A; Byrne, Barbara A; Gulland, Frances M D; Harvey, James T

    2013-05-01

    Given their coastal site fidelity and opportunistic foraging behavior, harbor seals (Phoca vitulina) may serve as sentinels for coastal ecosystem health. Seals using urbanized coastal habitat can acquire enteric bacteria, including Vibrio that may affect their health. To understand Vibrio dynamics in seals, demographic and environmental factors were tested for predicting potentially virulent Vibrio in free-ranging and stranded Pacific harbor seals (Phoca vitulina richardii) off California. Vibrio prevalence did not vary with season and was greater in free-ranging seals (29 %, n = 319) compared with stranded seals (17 %, n = 189). Of the factors tested, location, turbidity, and/or salinity best predicted Vibrio prevalence in free-ranging seals. The relationship of environmental factors with Vibrio prevalence differed by location and may be related to oceanographic or terrestrial contributions to water quality. Vibrio parahaemolyticus, Vibrio alginolyticus, and Vibrio cholerae were observed in seals, with V. cholerae found almost exclusively in stranded pups and yearlings. Additionally, virulence genes (trh and tdh) were detected in V. parahaemolyticus isolates. Vibrio cholerae isolates lacked targeted virulence genes, but were hemolytic. Three out of four stranded pups with V. parahaemolyticus (trh+ and/or tdh+) died in rehabilitation, but the role of Vibrio in causing mortality is unclear, and Vibrio expression of virulence genes should be investigated. Considering that humans share the environment and food resources with seals, potentially virulent Vibrio observed in seals also may be of concern to human health.

  10. Evaluation of powder metallurgy superalloy disk materials

    NASA Technical Reports Server (NTRS)

    Evans, D. J.

    1975-01-01

    A program was conducted to develop nickel-base superalloy disk material using prealloyed powder metallurgy techniques. The program included fabrication of test specimens and subscale turbine disks from four different prealloyed powders (NASA-TRW-VIA, AF2-1DA, Mar-M-432 and MERL 80). Based on evaluation of these specimens and disks, two alloys (AF2-1DA and Mar-M-432) were selected for scale-up evaluation. Using fabricating experience gained in the subscale turbine disk effort, test specimens and full scale turbine disks were formed from the selected alloys. These specimens and disks were then subjected to a rigorous test program to evaluate their physical properties and determine their suitability for use in advanced performance turbine engines. A major objective of the program was to develop processes which would yield alloy properties that would be repeatable in producing jet engine disks from the same powder metallurgy alloys. The feasibility of manufacturing full scale gas turbine engine disks by thermomechanical processing of pre-alloyed metal powders was demonstrated. AF2-1DA was shown to possess tensile and creep-rupture properties in excess of those of Astroloy, one of the highest temperature capability disk alloys now in production. It was determined that metallographic evaluation after post-HIP elevated temperature exposure should be used to verify the effectiveness of consolidation of hot isostatically pressed billets.

  11. Preclinical evaluation of hydrogel sealed fluropassivated indigenous vascular prosthesis.

    PubMed

    Unnikrishnan, Madathipat; Umashankar, P R; Viswanathan, Sidharth; Savlania, Ajay; Joseph, Roy; Muraleedharan, C V; Agrawal, Vivek; Shenoy, Sachin J; Krishnan, Lissy K; Mohanan, P V; Sabareeswaran, A

    2017-11-01

    Polyethylene terephthalate (PET) graft, designed and developed at our institute for vascular reconstruction, is porous to promote optimal incorporation and neointima formation, requiring pre-clotting or biomodification by sealing the pores before implantation. The objective of this study was to characterize, test and perform preclinical evaluation of hydrogel (alginate dialdehyde cross-linked gelatin) sealed fluoropassivated PET vascular prosthesis in pig model, so as to avoid pre-clotting, for its safety and efficacy before employing the indigenous and less expensive graft for clinical use. Hydrogel sealed, fluoropassivated PET vascular prosthesis were tested for haemocompatibility and toxicity followed by small animal toxicology tests and in vivo experiments in pigs receiving implantation at thoracic aorta. All 33 animals received test as well as control grafts with a plan for phased explantation at 2, 12 and 26 weeks. All animals underwent completion angiogram at the end of procedure as well as before graft explantation. Haemocompatibility tests for haemolysis and toxicity tests showed no adverse events in tested mice and rabbits. Completion angiogram showed intact anastamosis and patent graft in each animal in post-operative period and at explantation. Gross and histopathological examination showed well-encapsulated grafts, clean glistening neointima and no evidence of thrombus in both test and control grafts. Hydrogel sealed, fluoropassivated PET vascular prosthesis was found non-toxic, haemocompatible and remained patent in in vivo studies at planned intervals.

  12. Preclinical evaluation of hydrogel sealed fluropassivated indigenous vascular prosthesis

    PubMed Central

    Unnikrishnan, Madathipat; Umashankar, P.R.; Viswanathan, Sidharth; Savlania, Ajay; Joseph, Roy; Muraleedharan, C.V.; Agrawal, Vivek; Shenoy, Sachin J.; Krishnan, Lissy K.; Mohanan, P.V.; Sabareeswaran, A.

    2017-01-01

    Background & objectives: Polyethylene terephthalate (PET) graft, designed and developed at our institute for vascular reconstruction, is porous to promote optimal incorporation and neointima formation, requiring pre-clotting or biomodification by sealing the pores before implantation. The objective of this study was to characterize, test and perform preclinical evaluation of hydrogel (alginate dialdehyde cross-linked gelatin) sealed fluoropassivated PET vascular prosthesis in pig model, so as to avoid pre-clotting, for its safety and efficacy before employing the indigenous and less expensive graft for clinical use. Methods: Hydrogel sealed, fluoropassivated PET vascular prosthesis were tested for haemocompatibility and toxicity followed by small animal toxicology tests and in vivo experiments in pigs receiving implantation at thoracic aorta. All 33 animals received test as well as control grafts with a plan for phased explantation at 2, 12 and 26 weeks. All animals underwent completion angiogram at the end of procedure as well as before graft explantation. Results: Haemocompatibility tests for haemolysis and toxicity tests showed no adverse events in tested mice and rabbits. Completion angiogram showed intact anastamosis and patent graft in each animal in post-operative period and at explantation. Gross and histopathological examination showed well-encapsulated grafts, clean glistening neointima and no evidence of thrombus in both test and control grafts. Interpretation & conclusions: Hydrogel sealed, fluoropassivated PET vascular prosthesis was found non-toxic, haemocompatible and remained patent in in vivo studies at planned intervals. PMID:29512608

  13. Experimental study on the sealing clearance between the labyrinth sealing displacer and cylinder in the 10 K G-M refrigerator

    NASA Astrophysics Data System (ADS)

    Hao, X. H.; Ju, Y. L.; Lu, Y. J.

    2011-05-01

    The labyrinth sealing displacer has been optimal designed to improve the operating stability and life-time of 10 K G-M refrigerator. The displacer was made of stainless steel 304 or inconel 718, coated with PTFE on its outer surface. Compared to the traditional piston-ring sealing displacer, the sealing clearance between the ridge of the labyrinth sealing displacer and cylinder is critical to the cooling performance of the G-M refrigerator. The displacers with different sealing clearances were experimentally studied, and the optimal clearance was given. The effects of the materials of the displacers and the system charge pressures on the performance of the labyrinth sealing were also tested and analyzed.

  14. 10 CFR 39.35 - Leak testing of sealed sources.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... analysis. (c) Test frequency. (1) Each sealed source (except an energy compensation source (ECS)) must be.... (2) Each ECS that is not exempt from testing in accordance with paragraph (e) of this section must be... has been made within the 3 years before the transfer, the ECS may not be used until tested. (d...

  15. 10 CFR 39.35 - Leak testing of sealed sources.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... analysis. (c) Test frequency. (1) Each sealed source (except an energy compensation source (ECS)) must be.... (2) Each ECS that is not exempt from testing in accordance with paragraph (e) of this section must be... has been made within the 3 years before the transfer, the ECS may not be used until tested. (d...

  16. 10 CFR 39.35 - Leak testing of sealed sources.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... analysis. (c) Test frequency. (1) Each sealed source (except an energy compensation source (ECS)) must be.... (2) Each ECS that is not exempt from testing in accordance with paragraph (e) of this section must be... has been made within the 3 years before the transfer, the ECS may not be used until tested. (d...

  17. 10 CFR 39.35 - Leak testing of sealed sources.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... analysis. (c) Test frequency. (1) Each sealed source (except an energy compensation source (ECS)) must be.... (2) Each ECS that is not exempt from testing in accordance with paragraph (e) of this section must be... has been made within the 3 years before the transfer, the ECS may not be used until tested. (d...

  18. 10 CFR 39.35 - Leak testing of sealed sources.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... analysis. (c) Test frequency. (1) Each sealed source (except an energy compensation source (ECS)) must be.... (2) Each ECS that is not exempt from testing in accordance with paragraph (e) of this section must be... has been made within the 3 years before the transfer, the ECS may not be used until tested. (d...

  19. Bypass control valve seal and bearing life cycle test report

    NASA Technical Reports Server (NTRS)

    Lundback, A. V.

    1972-01-01

    The operating characteristics of a bypass control valve seal and bearing life cycle tests are reported. Data from the initial assembly, leak, torque, and deflection tests are included along with the cycle life test results and conclusions. The equipment involved was to be used in the nuclear engine for the rocket vehicles program.

  20. Application of Pinniped Vibrissae to Aeropropulsion

    NASA Technical Reports Server (NTRS)

    Shyam, Vikram (Principal Investigator); Ameri, Ali; Poinsatte, Phil; Thurman, Doug; Wroblewski, Adam; Snyder, Chris

    2015-01-01

    Vibrissae of Phoca Vitulina (Harbor Seal) and Mirounga Angustirostris (Elephant Seal) possess undulations along their length. Harbor Seal Vibrissae were shown to reduce vortex induced vibrations and reduce drag compared to appropriately scaled cylinders and ellipses. Samples of Harbor Seal vibrissae, Elephant Seal vibrissae and California Sea Lion vibrissae were collected from the Marine Mammal Center in California. CT scanning, microscopy and 3D scanning techniques were utilized to characterize the whiskers. Computational fluid dynamics simulations of the whiskers were carried out to compare them to an ellipse and a cylinder. Leading edge parameters from the whiskers were used to create a 3D profile based on a modern power turbine blade. The NASA SW-2 facility was used to perform wind tunnel cascade testing on the 'Seal Blades'. Computational Fluid Dynamics simulations were used to study incidence angles from -37 to +10 degrees on the aerodynamic performance of the Seal Blade. The tests and simulations were conducted at a Reynolds number of 100,000. The Seal Blades showed consistent performance improvements over the baseline configuration. It was determined that a fuel burn reduction of approximately 5 could be achieved for a fixed wing aircraft. Noise reduction potential is also explored.

  1. JT8D-15/17 High Pressure Turbine Root Discharged Blade Performance Improvement. [engine design

    NASA Technical Reports Server (NTRS)

    Janus, A. S.

    1981-01-01

    The JT8D high pressure turbine blade and seal were modified, using a more efficient blade cooling system, improved airfoil aerodynamics, more effective control of secondary flows, and improved blade tip sealing. Engine testing was conducted to determine the effect of these improvements on performance. The modified turbine package demonstrated significant thrust specific fuel consumption and exhaust gas temperature improvements in sea level and altitude engine tests. Inspection of the improved blade and seal hardware after testing revealed no unusual wear or degradation.

  2. Seal and whale meat: two newly recognized food allergies.

    PubMed

    Moore, Laura M; Rathkopf, Melinda McNeal; Sanner, Carol J; Whisman, Bonnie A; Demain, Jeffrey G

    2007-01-01

    Alaska's marine mammals compose a large portion of the diet of indigenous coastal Alaskan people. Bowhead whales (Balaena mysticetus) and bearded seals (Erignathus barbatus), inhabitants of the Bering and Beaufort seas along Alaska's western and northern coasts, are 2 of the most important subsistence species, serving as major food sources to the native population. To describe an Inupiaq boy with symptoms consistent with an IgE-mediated food allergy after ingestion of bowhead whale and bearded seal meat. Extracts of cooked bowhead whale and bearded seal were prepared, lyophilized, and evaluated for protein content. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis was performed for each extract, followed by transfer to nitrocellulose and IgE immunoblots. Skin prick testing was conducted using reconstituted extracts of 1:10 wt/vol dilution. Immunoblots revealed serum specific IgE binding with the extracts of bowhead whale and bearded seal meat. Protein bands of approximately 25, 40, 50, and 90 kDa were found in the seal meat. Protein bands of 55 and 90 kDa were found in the whale meat. Skin prick test results were positive to whale and seal extracts with appropriate positive and negative controls. Ten control subjects had negative reactions to both extracts. A patient with moderate anaphylaxis to bowhead whale and bearded seal meat demonstrated serum specific IgE by means of immunoblot and positive skin prick test results. This is the first known reported case of specific IgE to these species.

  3. Rub tolerance evaluation of two sintered NiCrAl gas path seal materials. [wear tests of gas turbine engine seals

    NASA Technical Reports Server (NTRS)

    Bill, R. C.

    1978-01-01

    Two strength level variations of sintered NiCrAl (about 40 percent dense), candidate high pressure turbine seal materials, were subject to rub tolerance testing against AM 355 steel blade tips. The high strength material (17 N/sq mm tensile strength) showed frictional and radial loads that were 20 to 50 percent higher than those measured for the low strength material (15.5 N/ sq mm tensile strength). Measured wear to the AM 355 blade tips was not significantly different for the two sintered NiCrAl seal materials. Wear of the sintered NiCrAl was characterized by material removal to a depth greater than the depth to which blade tips were driven into the seal, indicating self-erosion effects.

  4. Assessment of Water Quality of Runoff from Sealed Asphalt Surfaces

    EPA Science Inventory

    This report discusses the results of runoff tests from recently-sealed asphalt surfaces conducted at EPA's Urban Watershed Research Facility (UWRF) in Edison, New Jersey. Both bench-scale panels and full-scale test plots were evaluated. Full-scale tests were performed on an asp...

  5. Rapid sealing of porcine renal blood vessels, ex vivo, using a high power, 1470-nm laser, and laparoscopic prototype

    NASA Astrophysics Data System (ADS)

    Hardy, Luke A.; Hutchens, Thomas C.; Larson, Eric R.; Gonzalez, David A.; Chang, Chun-Hung; Nau, William H.; Fried, Nathaniel M.

    2017-05-01

    Energy-based, radiofrequency (RF) and ultrasonic (US) devices currently provide rapid sealing of blood vessels during laparoscopic procedures. We are exploring infrared lasers as an alternate energy modality for vessel sealing, capable of generating less collateral thermal damage. Previous studies demonstrated feasibility of sealing vessels in an in vivo porcine model using a 1470-nm laser. However, the initial prototype was designed for testing in open surgery and featured tissue clasping and light delivery mechanisms incompatible with laparoscopic surgery. In this study, a laparoscopic prototype similar to devices currently in surgical use was developed, and performance tests were conducted on porcine renal blood vessels, ex vivo. The 5-mm outer-diameter laparoscopic prototype featured a traditional Maryland jaw configuration that enables tissue manipulation and blunt dissection. Laser energy was delivered through a 550-μm-core-diameter optical fiber with side-delivery from the lower jaw and beam dimensions of 18-mm length×1.2-mm width. The 1470-nm diode laser delivered 68 W with 3-s activation time, consistent with vessel seal times associated with RF and US-based devices. A total of 69 fresh porcine renal vessels with mean diameter of 3.3±1.7 mm were tested, ex vivo. Vessels smaller than 5-mm diameter were consistently sealed (48/51) with burst pressures greater than malignant hypertension blood pressure (180 mmHg), averaging 1038±474 mmHg. Vessels larger than 5 mm were not consistently sealed (6/18), yielding burst pressures of only 174±221 mmHg. Seal width, thermal damage zone, and thermal spread averaged 1.7±0.8, 3.4±0.7, and 1.0±0.4 mm, respectively. Results demonstrated that the 5-mm optical laparoscopic prototype consistently sealed vessels less than 5-mm diameter with low thermal spread. Further in vivo studies are planned to test the performance across a variety of vessels and tissues.

  6. Alternate seal configuration for lithium primary cells

    NASA Technical Reports Server (NTRS)

    Kelley, J. A.

    1982-01-01

    The problem of glass degradation in the glass-to-metal seals in lithium/sulfur dioxide cells is discussed. The glass degradation mechanism is attributed to lithium reacting with glass which is a result of deposition of lithium at the glass/metal/electrolyte interface. The worst degradation was observed when cells were stored in the inverted position. Alternate sealing methods were examined and a modified Ziegler seal is considered to be one of the best possible methods. The seal consists of a crimp type soft seal using a plastic annulus and a metal tube. Results of degradation tests are presented.

  7. Hermetic edge sealing of photovoltaic modules

    NASA Astrophysics Data System (ADS)

    Nowlan, M. J.

    1983-07-01

    The feasibility of using an electrostatic bonding (ESB) and ultrasonic welding process to produce hermetic edge seals on terrestrial solar cell modules was investigated. The fabrication sequence is to attach an aluminum foil "gasket' to the perimeter of a glass sheet. A cell circuit is next encapsulated inside the gasket, and its aluminum foil back cover is seam welded ultrasonically to the gasket. An ESB process for sealing aluminum to glass was developed in an ambient air atmosphere, which eliminates the requirement for a vacuum or pressure vessel. An ultrasonic seam welding process was also developed which did not degrade the quality of the ESB seal. Good quality welds with minimal deformation were produced. The effectiveness of the above described sealing techniques was tested by constructing 400 sq cm (8 x 8 s64 sq in) sample modules, and then subjecting them to nondestructive fine and gross leak tests. The gross leak tests identified several different causes of leaks which were then eliminated by modifying the assembly process.

  8. Hermetic edge sealing of photovoltaic modules

    NASA Technical Reports Server (NTRS)

    Nowlan, M. J.

    1983-01-01

    The feasibility of using an electrostatic bonding (ESB) and ultrasonic welding process to produce hermetic edge seals on terrestrial solar cell modules was investigated. The fabrication sequence is to attach an aluminum foil "gasket' to the perimeter of a glass sheet. A cell circuit is next encapsulated inside the gasket, and its aluminum foil back cover is seam welded ultrasonically to the gasket. An ESB process for sealing aluminum to glass was developed in an ambient air atmosphere, which eliminates the requirement for a vacuum or pressure vessel. An ultrasonic seam welding process was also developed which did not degrade the quality of the ESB seal. Good quality welds with minimal deformation were produced. The effectiveness of the above described sealing techniques was tested by constructing 400 sq cm (8 x 8 s64 sq in) sample modules, and then subjecting them to nondestructive fine and gross leak tests. The gross leak tests identified several different causes of leaks which were then eliminated by modifying the assembly process.

  9. Frictional properties of lubrication greases with the addition of nickel nanoparticles in pneumatic cylinder

    NASA Astrophysics Data System (ADS)

    Chang, Ho; Lan, Chou-Wei; Guo, Jia-Bin

    2011-12-01

    This paper studies the influence of addition of 100 nm diameter nickel nano-particles on the friction properties of synthetic grease (Li base, VG100) in pneumatic cylinder. The friction force test of pneumatic cylinder equipment measures the frictional force between seal and cylinder bore in pneumatic cylinders. The lubricants with addition of nickel nano-particles were used for lubricating the contact interface between seal and cylinder bore. The friction force test equipment employ a load cell force sensor to measure the friction force between seals and cylinder bores. Results obtained from experimental tests are compared to determine the friction force between seals and cylinder bore in pneumatic cylinders. The study leads to the conclusion that the addition of nickel nano-particles to synthetic grease results in a decrease in friction force between seals and cylinder bores in pneumatic cylinder. This tribological behavior is closely related to the deposition of nano-particles on the rubbing surfaces

  10. Mechanical and thermal characterization of a ceramic/glass composite seal for solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Dev, Bodhayan; Walter, Mark E.; Arkenberg, Gene B.; Swartz, Scott L.

    2014-01-01

    Solid oxide fuel cells (SOFCs) require seals that can function in harsh, elevated temperature environments. Comprehensive characterization and understanding of seals is needed for commercially viable SOFCs. The present research focuses on a novel ceramic/glass composite seal that is produced by roller compaction or tape casting of glass and ceramic powders and an organic binder. Upon heat treatment, micro-voids and surface anomalies are formed. Increased heating and cooling rates during the heat treatment resulted in more and larger voids. The first goal of the current research is to suggest an appropriate heating and cooling rate to minimize the formation of microstructural defects. After identifying an appropriate cure cycle, seals were thermally cycled and then characterized with laser dilatometry, X-ray diffraction, and sonic resonance. From these experiments the crystalline phases, thermal expansion, and elastic properties were determined. Subsequently compression testing with an acoustic emission (AE) sensor and post-test microstructural analysis were used to identify the formation of damage. By fully understanding the characteristics of this ceramic/glass composite seal, next generation seals can be fabricated for improved performance.

  11. Effect of cultural conditions on the seed-to-seed growth of Arabidopsis and Cardamine - A study of growth rates and reproductive development as affected by test tube seals

    NASA Technical Reports Server (NTRS)

    Hoshizaki, T.

    1982-01-01

    The effects of test tube seals on the growth, flowering, and seed pod formation of Arabidopsis thaliana (L.) Heynh., mouse ear cress, and Cardamine oligosperma Nutt, bitter cress, are studied in order to assess the conditions used in weightlessness experiments. Among other results, it is found that the growth (height) and flowering (date of bud appearance) were suppressed in mouse ear cress in tubes sealed with Saran. Seed pod formation which occurred by day 45 in open-to-air controls, was still lacking in the sealed plants even up to day 124. The growth and flowering of bitter cress were also suppressed by the Saran seal, although up to day 55 the Saran-sealed plants were taller. It is suggested that atmospheric composition was the cause of the suppression of growth, flowering, and seed pod development in these plants, since the mouse ear cress renewed their growth and then set seed pods after the Saran seal was ruptured.

  12. Advanced solid electrolyte cell for CO2 and H2O electrolysis. [for extended duration manned spaceflights

    NASA Technical Reports Server (NTRS)

    Shumar, J. W.; Berger, T. A.

    1978-01-01

    A solid electrolyte cell with improved sealing characteristics was examined. A tube cell was designed, developed, fabricated, and tested. Design concepts incorporated in the tube cell to improve its sealing capability included minimizing the number of seals per cell and moving seals to lower temperature regions. The advanced tube cell design consists of one high temperature ceramic cement seal, one high temperature gasket seal, and three low temperature silicone elastomer seals. The two high temperature seals in the tube cell design represent a significant improvement over the ten high temperature precious metal seals required by the electrolyzer drum design. For the tube cell design the solid electrolyte was 8 mole percent yttria stabilized zirconium oxide slip cast into the shape of a tube with electrodes applied on the inside and outside surfaces.

  13. Analytical Solutions for Radiative Transfer: Implications for Giant Planet Formation by Disk Instability

    NASA Astrophysics Data System (ADS)

    Boss, Alan P.

    2009-03-01

    The disk instability mechanism for giant planet formation is based on the formation of clumps in a marginally gravitationally unstable protoplanetary disk, which must lose thermal energy through a combination of convection and radiative cooling if they are to survive and contract to become giant protoplanets. While there is good observational support for forming at least some giant planets by disk instability, the mechanism has become theoretically contentious, with different three-dimensional radiative hydrodynamics codes often yielding different results. Rigorous code testing is required to make further progress. Here we present two new analytical solutions for radiative transfer in spherical coordinates, suitable for testing the code employed in all of the Boss disk instability calculations. The testing shows that the Boss code radiative transfer routines do an excellent job of relaxing to and maintaining the analytical results for the radial temperature and radiative flux profiles for a spherical cloud with high or moderate optical depths, including the transition from optically thick to optically thin regions. These radial test results are independent of whether the Eddington approximation, diffusion approximation, or flux-limited diffusion approximation routines are employed. The Boss code does an equally excellent job of relaxing to and maintaining the analytical results for the vertical (θ) temperature and radiative flux profiles for a disk with a height proportional to the radial distance. These tests strongly support the disk instability mechanism for forming giant planets.

  14. Materials testing of the IUS techroll seal material

    NASA Technical Reports Server (NTRS)

    Nichols, R. L.; Hall, W. B.

    1984-01-01

    As a part of the investigation of the control system failure Inertial Upper Stage on IUS-1 flight to position a Tracking and Data Relay Satellite (TDRS) in geosynchronous orbit, the materials utilized in the techroll seal are evaluated for possible failure models. Studies undertaken included effect of temperature on the strength of the system, effect of fatigue on the strength of the system, thermogravimetric analysis, thermomechanical analysis, differential scanning calorimeter analysis, dynamic mechanical analysis, and peel test. The most likely failure mode is excessive temperature in the seal. In addition, the seal material is susceptible to fatigue damage which could be a contributing factor.

  15. Development of a CFD Code for Analysis of Fluid Dynamic Forces in Seals

    NASA Technical Reports Server (NTRS)

    Athavale, Mahesh M.; Przekwas, Andrzej J.; Singhal, Ashok K.

    1991-01-01

    The aim is to develop a 3-D computational fluid dynamics (CFD) code for the analysis of fluid flow in cylindrical seals and evaluation of the dynamic forces on the seals. This code is expected to serve as a scientific tool for detailed flow analysis as well as a check for the accuracy of the 2D industrial codes. The features necessary in the CFD code are outlined. The initial focus was to develop or modify and implement new techniques and physical models. These include collocated grid formulation, rotating coordinate frames and moving grid formulation. Other advanced numerical techniques include higher order spatial and temporal differencing and an efficient linear equation solver. These techniques were implemented in a 2D flow solver for initial testing. Several benchmark test cases were computed using the 2D code, and the results of these were compared to analytical solutions or experimental data to check the accuracy. Tests presented here include planar wedge flow, flow due to an enclosed rotor, and flow in a 2D seal with a whirling rotor. Comparisons between numerical and experimental results for an annular seal and a 7-cavity labyrinth seal are also included.

  16. Application of polyimide actuator rod seals

    NASA Technical Reports Server (NTRS)

    Watermann, A. W.; Gay, B. F.; Robinson, E. D.; Srinath, S. K.; Nelson, W. G.

    1972-01-01

    Development of polyimide two-stage hydraulic actuator rod seals for application in high-performance aircraft was accomplished. The significant portion of the effort was concentrated on optimization of the chevron and K-section second-stage seal geometries to satisfy the requirements for operation at 450 K (350 F) with dynamic pressure loads varying between 200 psig steady-state and 1500 psig impulse cycling. Particular significance was placed on reducing seal gland dimension by efficiently utilizing the fatigue allowables of polyimide materials. Other objectives included investigation of pressure balancing techniques for first-stage polyimide rod seals for 4000 psig 450 K(350 F) environment and fabrication of a modular retainer for the two-stage combination. Seals were fabricated in 0.0254 m (1.0in.) and 0.0635 m (2.5in.) sizes and tested for structural integrity, frictional resistance, and endurance life. Test results showed that carefully designed second stages using polyimides could be made to satisfy the dynamic return pressure requirements of applications in high-performance aircraft. High wear under full system pressure indicated that further research is necessary to obtain an acceptable first-stage design. The modular retainer was successfully tested and showed potential for new actuator applications.

  17. An acceptance test for chip seal projects based on image analysis.

    DOT National Transportation Integrated Search

    2016-05-01

    Chip seal is one of the most popular preventive maintenance techniques performed by many DOTs, county road departments and cities. One of the most important parameters affecting performance of a chip seal is the percent aggregate embedment depth into...

  18. 30 CFR 250.617 - Blowout preventer system testing, records, and drills.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... drills. 250.617 Section 250.617 Mineral Resources BUREAU OF SAFETY AND ENVIRONMENTAL ENFORCEMENT... Gas Well-Workover Operations § 250.617 Blowout preventer system testing, records, and drills. (a) BOP... disconnecting a pressure seal in the assembly, the affected seal will be pressure tested. (c) Drills. All...

  19. 30 CFR 250.616 - Blowout preventer system testing, records, and drills.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... drills. 250.616 Section 250.616 Mineral Resources BUREAU OF SAFETY AND ENVIRONMENTAL ENFORCEMENT... Gas Well-Workover Operations § 250.616 Blowout preventer system testing, records, and drills. (a) BOP... disconnecting a pressure seal in the assembly, the affected seal will be pressure tested. (c) Drills. All...

  20. 30 CFR 250.617 - Blowout preventer system testing, records, and drills.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... drills. 250.617 Section 250.617 Mineral Resources BUREAU OF SAFETY AND ENVIRONMENTAL ENFORCEMENT... Gas Well-Workover Operations § 250.617 Blowout preventer system testing, records, and drills. (a) BOP... disconnecting a pressure seal in the assembly, the affected seal will be pressure tested. (c) Drills. All...

  1. 10 CFR 34.27 - Leak testing and replacement of sealed sources.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 1 2014-01-01 2014-01-01 false Leak testing and replacement of sealed sources. 34.27 Section 34.27 Energy NUCLEAR REGULATORY COMMISSION LICENSES FOR INDUSTRIAL RADIOGRAPHY AND RADIATION SAFETY REQUIREMENTS FOR INDUSTRIAL RADIOGRAPHIC OPERATIONS Equipment § 34.27 Leak testing and replacement...

  2. 10 CFR 34.27 - Leak testing and replacement of sealed sources.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 1 2011-01-01 2011-01-01 false Leak testing and replacement of sealed sources. 34.27 Section 34.27 Energy NUCLEAR REGULATORY COMMISSION LICENSES FOR INDUSTRIAL RADIOGRAPHY AND RADIATION SAFETY REQUIREMENTS FOR INDUSTRIAL RADIOGRAPHIC OPERATIONS Equipment § 34.27 Leak testing and replacement...

  3. 10 CFR 34.27 - Leak testing and replacement of sealed sources.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Leak testing and replacement of sealed sources. 34.27 Section 34.27 Energy NUCLEAR REGULATORY COMMISSION LICENSES FOR INDUSTRIAL RADIOGRAPHY AND RADIATION SAFETY REQUIREMENTS FOR INDUSTRIAL RADIOGRAPHIC OPERATIONS Equipment § 34.27 Leak testing and replacement...

  4. 10 CFR 34.27 - Leak testing and replacement of sealed sources.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 1 2012-01-01 2012-01-01 false Leak testing and replacement of sealed sources. 34.27 Section 34.27 Energy NUCLEAR REGULATORY COMMISSION LICENSES FOR INDUSTRIAL RADIOGRAPHY AND RADIATION SAFETY REQUIREMENTS FOR INDUSTRIAL RADIOGRAPHIC OPERATIONS Equipment § 34.27 Leak testing and replacement...

  5. 10 CFR 34.27 - Leak testing and replacement of sealed sources.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 1 2013-01-01 2013-01-01 false Leak testing and replacement of sealed sources. 34.27 Section 34.27 Energy NUCLEAR REGULATORY COMMISSION LICENSES FOR INDUSTRIAL RADIOGRAPHY AND RADIATION SAFETY REQUIREMENTS FOR INDUSTRIAL RADIOGRAPHIC OPERATIONS Equipment § 34.27 Leak testing and replacement...

  6. Film thickness measurement for spiral groove and Rayleigh step lift pad self-acting face seals

    NASA Technical Reports Server (NTRS)

    Dirusso, E.

    1982-01-01

    One Rayleigh step lift pad and three spiral groove self-acting face seal configurations were tested to measure film thickness and frictional torque as a function of shaft speed. The seals were tested at a constant face load of 73 N (16.4 lb) with ambient air at room temperature and atmospheric pressure as the fluid medium. The test speed range was from 7000 to 17,000 rpm. The measured film thickness was compared with theoretical data from mathematical models. The mathematical models overpredicted the measured film thickness at the lower speeds of the test speed range and underpredicted the measured film thickness at the higher speeds of the test speed range.

  7. 2007 NASA Seal/Secondary Air System Workshop. Volume 1

    NASA Technical Reports Server (NTRS)

    Steinetz, Bruce M.; Hendricks, Robert C.; Delgado, Irebert

    2008-01-01

    The 2007 NASA Seal/Secondary Air System workshop covered the following topics: (i) Overview of NASA's new Orion project aimed at developing a new spacecraft that will fare astronauts to the International Space Station, the Moon, Mars, and beyond; (ii) Overview of NASA's fundamental aeronautics technology project; (iii) Overview of NASA Glenn s seal project aimed at developing advanced seals for NASA's turbomachinery, space, and reentry vehicle needs; (iv) Reviews of NASA prime contractor, vendor, and university advanced sealing concepts, test results, experimental facilities, and numerical predictions; and (v) Reviews of material development programs relevant to advanced seals development. Turbine engine studies have shown that reducing seal leakage as well as high-pressure turbine (HPT) blade tip clearances will reduce fuel burn, lower emissions, retain exhaust gas temperature margin, and increase range. Turbine seal development topics covered include a method for fast-acting HPT blade tip clearance control, noncontacting low-leakage seals, intershaft seals, and a review of engine seal performance requirements for current and future Army engine platforms.

  8. 2008 NASA Seal/Secondary Air System Workshop

    NASA Technical Reports Server (NTRS)

    Steinetz, Bruce M. (Editor); Hendricks, Robert C. (Editor); Delgado, Irebert R. (Editor)

    2009-01-01

    The 2008 NASA Seal/Secondary Air System Workshop covered the following topics: (i) Overview of NASA s new Orion project aimed at developing a new spacecraft that will fare astronauts to the International Space Station, the Moon, Mars, and beyond; (ii) Overview of NASA s fundamental aeronautics technology project; (iii) Overview of NASA Glenn s seal project aimed at developing advanced seals for NASA s turbomachinery, space, and reentry vehicle needs; (iv) Reviews of NASA prime contractor, vendor, and university advanced sealing concepts, test results, experimental facilities, and numerical predictions; and (v) Reviews of material development programs relevant to advanced seals development. Turbine engine studies have shown that reducing seal leakage as well as high-pressure turbine (HPT) blade tip clearances will reduce fuel burn, lower emissions, retain exhaust gas temperature margin, and increase range. Turbine seal development topics covered include a method for fast-acting HPT blade tip clearance control, noncontacting low-leakage seals, intershaft seals, and a review of engine seal performance requirements for current and future Army engine platforms.

  9. AMTEC recirculating test cell component testing and operation

    NASA Technical Reports Server (NTRS)

    Underwood, M. L.; Sievers, R. K.; O'Connor, D.; Williams, R. M.; Jeffries-Nakamura, B.; Bankston, C. P.

    1989-01-01

    Alkali metal thermoelectric converter operation in a recirculating test cell (RTC), which requires a small electromagnetic pump (EM) and a high-temperature beta-double-prime alumina-solid-electrolyte (BASE)-to-metal seal, is discussed. The design of a pump and an active metal braze seal and the initial operation of a cell using these components are described. The pump delivered 0.25 cu cm/min against a 28-psia head. A braze seal system was selected after shear strength tests of Ta or Nb brazed to BASE by a variety of fillers including TiCuNi, TiNi, and TiNiCr. The TiCuNi filler was chosen for environment cell testing and showed no failure or observable degradation after short-term tests up to 1055 K. The pump and the Nb/TiCuNi/BASE seal were used in a test that demonstrated all the operational functions of the RTC for the first time. An increase in the radiation reduction factor at constant input power was observed, indicating that the condenser was being wet by sodium resulting in an increased reflectivity.

  10. Forming a Turbomachinery Seals Working Group - An Overview and Discussion

    NASA Technical Reports Server (NTRS)

    Proctor, Margaret P.

    2007-01-01

    A proposal to form a Turbomachinery Seals Working Group is discussed. Survey responses regarding the purpose, membership, and meeting frequency are presented as well as the areas of expertise and experience of the respondents. The types of seals used, designed, or sold, current work, and technical challenges of turbomachinery seals, their materials, analysis, geometry, manufacturing, maintenance, testing, and incorporation into engine systems are also presented.

  11. A versatile system for biological and soil chemical tests on a planetary landing craft. II - Hardware development

    NASA Technical Reports Server (NTRS)

    Martin, J. P.; Kok, B.; Radmer, R.

    1976-01-01

    A system has been under development which is designed to seek remotely for clues to life in planetary soil samples. The basic approach is a set of experiments, all having a common sensor, a gas analysis mass spectrometer which monitors gas composition in the head spaces above sealed, temperature controlled soil samples. Versatility is obtained with up to three preloaded, sealed fluid injector capsules for each of eleven soil test cells. Tests results with an engineering model has demonstrated performance capability of subsystem components such as soil distribution, gas sampling valves, injector mechanisms, temperature control, and test cell seal.

  12. Seals/Secondary Fluid Flows Workshop 1997; Volume I

    NASA Technical Reports Server (NTRS)

    Hendricks, Robert C. (Editor)

    2006-01-01

    The 1997 Conference provided discussions and data on (a) program overviews, (b) developments in seals and secondary air management systems, (c) interactive seals flows with secondary air or fluid flows and powerstream flows, (d) views of engine externals and limitations, (e) high speed engine research sealing needs and demands, and (f) a short course on engine design development margins. Sealing concepts discussed include, mechanical rim and cavity seals, leaf, finger, air/oil, rope, floating-brush, floating-T-buffer, and brush seals. Engine externals include all components of engine fluid systems, sensors and their support structures that lie within or project through the nacelle. The clean features of the nacelle belie the minefield of challenges and opportunities that lie within. Seals; Secondary air flows; Rotordynamics; Gas turbine; Aircraft; CFD; Testing; Turbomachinery

  13. Advanced High Temperature Structural Seals

    NASA Technical Reports Server (NTRS)

    Newquist, Charles W.; Verzemnieks, Juris; Keller, Peter C.; Shorey, Mark W.; Steinetz, Bruce (Technical Monitor)

    2000-01-01

    This program addresses the development of high temperature structural seals for control surfaces for a new generation of small reusable launch vehicles. Successful development will contribute significantly to the mission goal of reducing launch cost for small, 200 to 300 lb payloads. Development of high temperature seals is mission enabling. For instance, ineffective control surface seals can result in high temperature (3100 F) flows in the elevon area exceeding structural material limits. Longer sealing life will allow use for many missions before replacement, contributing to the reduction of hardware, operation and launch costs. During the first phase of this program the existing launch vehicle control surface sealing concepts were reviewed, the aerothermal environment for a high temperature seal design was analyzed and a mock up of an arc-jet test fixture for evaluating seal concepts was fabricated.

  14. A Test Suite for 3D Radiative Hydrodynamics Simulations of Protoplanetary Disks

    NASA Astrophysics Data System (ADS)

    Boley, Aaron C.; Durisen, R. H.; Nordlund, A.; Lord, J.

    2006-12-01

    Radiative hydrodynamics simulations of protoplanetary disks with different treatments for radiative cooling demonstrate disparate evolutions (see Durisen et al. 2006, PPV chapter). Some of these differences include the effects of convection and metallicity on disk cooling and the susceptibility of the disk to fragmentation. Because a principal reason for these differences may be the treatment of radiative cooling, the accuracy of cooling algorithms must be evaluated. In this paper we describe a radiative transport test suite, and we challenge all researchers who use radiative hydrodynamics to study protoplanetary disk evolution to evaluate their algorithms with these tests. The test suite can be used to demonstrate an algorithm's accuracy in transporting the correct flux through an atmosphere and in reaching the correct temperature structure, to test the algorithm's dependence on resolution, and to determine whether the algorithm permits of inhibits convection when expected. In addition, we use this test suite to demonstrate the accuracy of a newly developed radiative cooling algorithm that combines vertical rays with flux-limited diffusion. This research was supported in part by a Graduate Student Researchers Program fellowship.

  15. Laboratory development and field demonstration of self-sealing/self-healing landfill liner.

    PubMed

    Shi, Caijun; Booth, Rob

    2005-01-01

    The self-sealing/self-healing (SS/SH) barrier concept is based on the principle that two or more parent materials placed in vertical or horizontal layers will react at their interfaces to form insoluble reaction products. These products constitute a seamless impermeable seal, which is resistant to the transmission of leachate and contaminants. A SS/SH liner formulation was developed in the laboratory and demonstrated at the Sudokwon landfill site in South Korea. Laboratory testing results indicated that a seal with a hydraulic conductivity less than 10(-9) m/s formed after two to four weeks of curing at room temperature, and the seal healed itself after it was fractured. The use of the soil from the Sudokwon landfill site instead of sand as the matrix of the parent materials in the SS/SH liner retarded the sealing and healing of the seal, but did not show an obvious effect on the overall sealing and healing capacity of the seal at early stages. The construction and installation of the field demonstration SS/SH liner were carried out in the same way as for a soil cement liner. The quality of the liner was ensured by the enforcement of quality analysis/quality control procedures during installation. A single sealed ring infiltration test was performed on the field demonstration liner 36 days after the installation was completed. The measurement of water infiltration rate indicated that the liner healed after it was fractured. However, the long-term sealing and healing capacity needs to be further investigated.

  16. Three-step cylindrical seal for high-performance turbomachines

    NASA Technical Reports Server (NTRS)

    Hendricks, Robert C.

    1987-01-01

    A three-step cylindrical seal configuration representing the seal for a high performance turbopump (e.g., the space shuttle main engine fuel pump) was tested under static (nonrotating) conditions. The test data included critical mass flux and pressure profiles over a wide range of inlet temperatures and pressures for fluid nitrogen and fluid hydrogen with the seal in concentric and fully eccentric positions. The critical mass flux (leakage rate) was 70% that of an equivalent straight cylindrical seal with a correspondingly higher pressure drop based on the same flow areas of 0.3569 sq cm but 85% that of the straight seal based on the third-step flow area of 0.3044 sq cm. The mass flow rates for the three step cylindrical seal in the fully eccentric and concentric positions were essentially the same, and the trends in flow coefficient followed those of a simple axisymmetric inlet configuration. However, for inlet stagnation temperatures less than the thermodynamic critical temperature the pressure profiles exhibited a flat region throughout the third step of the seal, with the pressure magnitude dependent on the inlet stagnation temperature. Such profiles represent an extreme positive direct stiffness. These conditions engendered a crossover in the pressure profile upstream of the postulated choke that resulted in a local negative stiffness. Flat and crossover profiles resulting from choking within the seal are practically unknown to the seal designer. However, they are of critical importance to turbomachine stability and must be integrated into any dynamic analysis of a seal of this configuration. In addition, choking is highly dependent on geometry, inlet-to-backpressure ratio, and inlet temperature and can occur within the seal even though the backpressure is above the critical pressure.

  17. Implementation of Statistical Process Control: Evaluating the Mechanical Performance of a Candidate Silicone Elastomer Docking Seal

    NASA Technical Reports Server (NTRS)

    Oravec, Heather Ann; Daniels, Christopher C.

    2014-01-01

    The National Aeronautics and Space Administration has been developing a novel docking system to meet the requirements of future exploration missions to low-Earth orbit and beyond. A dynamic gas pressure seal is located at the main interface between the active and passive mating components of the new docking system. This seal is designed to operate in the harsh space environment, but is also to perform within strict loading requirements while maintaining an acceptable level of leak rate. In this study, a candidate silicone elastomer seal was designed, and multiple subscale test articles were manufactured for evaluation purposes. The force required to fully compress each test article at room temperature was quantified and found to be below the maximum allowable load for the docking system. However, a significant amount of scatter was observed in the test results. Due to the stochastic nature of the mechanical performance of this candidate docking seal, a statistical process control technique was implemented to isolate unusual compression behavior from typical mechanical performance. The results of this statistical analysis indicated a lack of process control, suggesting a variation in the manufacturing phase of the process. Further investigation revealed that changes in the manufacturing molding process had occurred which may have influenced the mechanical performance of the seal. This knowledge improves the chance of this and future space seals to satisfy or exceed design specifications.

  18. Investigations of Air-cooled Turbine Rotors for Turbojet Engines II : Mechanical Design, Stress Analysis, and Burst Test of Modified J33 Split-disk Rotor / Richard H. Kemp and Merland L. Moseson

    NASA Technical Reports Server (NTRS)

    Kemp, Richard H; Moseson, Merland L

    1952-01-01

    A full-scale J33 air-cooled split turbine rotor was designed and spin-pit tested to destruction. Stress analysis and spin-pit results indicated that the rotor in a J33 turbojet engine, however, showed that the rear disk of the rotor operated at temperatures substantially higher than the forward disk. An extension of the stress analysis to include the temperature difference between the two disks indicated that engine modifications are required to permit operation of the two disks at more nearly the same temperature level.

  19. Seals Research at Texas A/M University

    NASA Technical Reports Server (NTRS)

    Morrison, Gerald L.

    1991-01-01

    The Turbomachinery Laboratory at Texas A&M has been providing experimental data and computational codes for the design seals for many years. The program began with the development of a Halon based seal test rig. This facility provided information about the effective stiffness and damping in whirling seals. The Halon effectively simulated cryogenic fluids. Another test facility was developed (using air as the working fluid) where the stiffness and damping matrices can be determined. This data was used to develop bulk flow models of the seal's effect upon rotating machinery; in conjunction with this research, a bulk flow model for calculation of performance and rotordynamic coefficients of annular pressure seals of arbitrary non-uniform clearance for barotropic fluids such as LH2, LOX, LN2, and CH4 was developed. This program is very efficient (fast) and converges for very large eccentricities. Currently, work is being performed on a bulk flow analysis of the effects of the impeller-shroud interaction upon the stability of pumps. The data was used along with data from other researchers to develop an empirical leakage prediction code for MSFC. Presently, the flow field inside labyrinth and annular seals are being studied in detail. An advanced 3-D Doppler anemometer system is being used to measure the mean velocity and entire Reynolds stress tensor distribution throughout the seals. Concentric and statically eccentric seals were studied; presently, whirling seals are being studied. The data obtained are providing valuable information about the flow phenomena occurring inside the seals, as well as a data base for comparison with numerical predictions and for turbulence model development. A finite difference computer code was developed for solving the Reynolds averaged Navier Stokes equation inside labyrinth seals. A multi-scale k-epsilon turbulence model is currently being evaluated. A new seal geometry was designed and patented using a computer code. A large scale, 2-D seal flow visualization facility is also being developed.

  20. Gold Seal Vocational Endorsement and Scholarship Program, 1993-94. Information Booklet.

    ERIC Educational Resources Information Center

    Florida State Dept. of Education, Tallahassee. Div. of Vocational, Adult, and Community Education.

    This revised edition provides information about Florida's Gold Seal Vocational Endorsement and Scholarship program. The booklet includes the following: (1) general program information, including information on eligible vocational program areas, program eligibility requirements, Gold Seal endorsement program requirements, competency testing, course…

  1. Robustness of Modeling of Out-of-Service Gas Mechanical Face Seal

    NASA Technical Reports Server (NTRS)

    Green, Itzhak

    2007-01-01

    Gas lubricated mechanical face seal are ubiquitous in many high performance applications such as compressors and gas turbines. The literature contains various analyses of seals having orderly face patterns (radial taper, waves, spiral grooves, etc.). These are useful for design purposes and for performance predictions. However, seals returning from service (or from testing) inevitably contain wear tracks and warped faces that depart from the aforementioned orderly patterns. Questions then arise as to the heat generated at the interface, leakage rates, axial displacement and tilts, minimum film thickness, contact forces, etc. This work describes an analysis of seals that may inherit any (i.e., random) face pattern. A comprehensive computer code is developed, based upon the Newton- Raphson method, which solves for the equilibrium of the axial force and tilting moments that are generated by asperity contact and fluid film effects. A contact mechanics model is incorporated along with a finite volume method that solves the compressible Reynolds equation. Results are presented for a production seal that has sustained a testing cycle.

  2. Dynamic tester for rotor seals and bearings

    NASA Technical Reports Server (NTRS)

    Vonpragenau, George L. (Inventor)

    1993-01-01

    A dynamic tester for testing vibration damping seals and bearings is constructed having a hollow shaft extending through the seal or bearing, with the shaft internally supported at each end by fluid bearings on hollow bosses connected to an interior of an enclosure, with no rolling members connected to the shaft is described. A high pressure working fluid is forced through the hollow bosses to operate the bearings. Additionally, the shaft is provided with a reaction turbine that angularly vents a portion of the high pressure working fluid in order to rotate the shaft at high speed, up to 40,000 rpm. The seal or bearing is mounted in a bushing, in turn supported by rods to a shaking device that vibrates the seal or bearing as the shaft is rotated. A plurality of proximity sensors are mounted from outside the enclosure to sense shaft and seal bushing vibrations, and a plurality of pressure ports are disposed in the enclosure to allow sensing of dynamic and static pressures of the testing apparatus.

  3. Overview of Glenn Mechanical Components Branch Research

    NASA Astrophysics Data System (ADS)

    Zakrajsek, James

    2002-09-01

    Mr. James Zakrajsek, chief of the Mechanical Components Branch, gave an overview of research conducted by the branch. Branch members perform basic research on mechanical components and systems, including gears and bearings, turbine seals, structural and thermal barrier seals, and space mechanisms. The research is focused on propulsion systems for present and advanced aerospace vehicles. For rotorcraft and conventional aircraft, we conduct research to develop technology needed to enable the design of low noise, ultra safe geared drive systems. We develop and validate analytical models for gear crack propagation, gear dynamics and noise, gear diagnostics, bearing dynamics, and thermal analyses of gear systems using experimental data from various component test rigs. In seal research we develop and test advanced turbine seal concepts to increase efficiency and durability of turbine engines. We perform experimental and analytical research to develop advanced thermal barrier seals and structural seals for current and next generation space vehicles. Our space mechanisms research involves fundamental investigation of lubricants, materials, components and mechanisms for deep space and planetary environments.

  4. The New Perilaryngeal Airway (CobraPLA™)1 Is as Efficient as the Laryngeal Mask Airway (LMA™)2, But Provides Better Airway Sealing Pressures

    PubMed Central

    Akça, Ozan; Wadhwa, Anupama; Sengupta, Papiya; Durrani, Jaleel; Hanni, Keith; Wenke, Mary; Yücel, Yüksel; Lenhardt, Rainer; Doufas, Anthony G.; Sessler, Daniel I.

    2006-01-01

    The Laryngeal Mask Airway (LMA) is a frequently-used efficient airway device, yet it sometimes seals poorly, thus reducing the efficacy of positive-pressure ventilation. The Perilaryngeal Airway (CobraPLA) is a novel airway device with a larger pharyngeal cuff (when inflated). We tested the hypothesis that the CobraPLA was superior to LMA with regard to insertion time and airway sealing pressure and comparable to LMA in airway adequacy and recovery characteristics. After midazolam and fentanyl, 81 ASA I-II outpatients having elective surgery were randomized to receive an LMA or CobraPLA. Anesthesia was induced with propofol (2.5 mg/kg, IV), and the airway inserted. We measured 1) insertion time; 2) adequacy of the airway (no leak at 15-cm-H2O peak pressure or tidal volume of 5 ml/kg); 3) airway sealing pressure; 4) number of repositioning attempts; and 5) sealing quality (no leak at tidal volume of 8 ml/kg). At the end of surgery, gastric insufflation, postoperative sore throat, dysphonia, and dysphagia were evaluated. Data were compared with unpaired t-tests, chi-square tests, or Fisher’s Exact tests; P<0.05 was significant. Patient characteristics, insertion times, airway adequacy, number of repositioning attempts, and recovery were similar in each group. Airway sealing pressure was significantly greater with CobraPLA (23±6 cm H2O) than LMA (18±5 cm H2O, P<0.001). The CobraPLA has insertion characteristics similar to LMA, but better airway sealing capabilities. PMID:15281543

  5. Some new results concerning the dynamic behavior of annular turbulent seals

    NASA Technical Reports Server (NTRS)

    Massmann, H.; Nordmann, R.

    1985-01-01

    The dynamic characteristics of annular turbulent seals applied in high pressure turbopumps can be described by stiffness, damping, and inertia coefficients. An improved procedure is presented for determining these parameters by using measurements made with newly developed test equipment. The dynamic system seal, consisting of the fluid between the cylindrical surfaces of the rotating shaft and the housing, is excited by test forces (input), and the relative motion between the surfaces (output) is measured. Transformation of the input and output time signals into the frequency domain leads to frequency response functions. An analytical model, depending on the seal parameters, is fitted to the measured data in order to identify the dynamic coefficients. Some new results are reported that show the dependencies of these coefficients with respect to the axial and radial Reynolds numbers and the geometrical data of the seal.

  6. COMPARTMENTED REACTOR FUEL ELEMENT

    DOEpatents

    Cain, F.M. Jr.

    1962-09-11

    A method of making a nuclear reactor fuel element of the elongated red type is given wherein the fissionable fuel material is enclosed within a tubular metal cladding. The method comprises coating the metal cladding tube on its inside wall with a brazing alloy, inserting groups of cylindrical pellets of fissionable fuel material into the tube with spacing members between adjacent groups of pellets, sealing the ends of the tubes to leave a void space therewithin, heating the tube and its contents to an elevated temperature to melt the brazing alloy and to expand the pellets to their maximum dimensions under predetermined operating conditions thereby automatically positioning the spacing members along the tube, and finally cooling the tube to room temperature whereby the spacing disks become permanently fixed at their edges in the brazing alloy and define a hermetically sealed compartment for each fl group of fuel pellets. Upon cooling, the pellets contract thus leaving a space to accommodate thermal expansion of the pellets when in use in a reactor. The spacing members also provide lateral support for the tubular cladding to prevent collapse thereof when subjected to a reactor environment. (AEC)

  7. Levofloxacin susceptibility testing against Helicobacter pylori: evaluation of a modified disk diffusion method compared to E test.

    PubMed

    Boyanova, Lyudmila; Ilieva, Juliana; Gergova, Galina; Mitov, Ivan

    2016-01-01

    We compared levofloxacin (1 μg/disk) disk diffusion method to E test against 212 Helicobacter pylori strains. Using diameter breakpoints for susceptibility (≥15 mm) and resistance (≤9 mm), very major error, major error rate, and categoric agreement were 0.0%, 0.6%, and 93.9%, respectively. The method may be useful in low-resource laboratories. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Proposed quality control guidelines for antimicrobial susceptibility tests using tilmicosin.

    PubMed Central

    Shryock, T R; White, D W; Werner, C S; Staples, J M

    1995-01-01

    Quality control guidelines for tilmicosin, a novel veterinary-use-only macrolide, were developed in a multi-laboratory study according to established National Committee for Clinical Laboratory Standards (NCCLS) procedures (M23-T2). Tilmicosin was incorporated into Sensititre plates for broth microdilution endpoint testing and into two lots of 15-micrograms disks for Kirby-Bauer agar disk diffusion testing. One common lot and five unique lots of Mueller-Hinton media were used. (Broth was cation adjusted, and agar was supplemented with 5% defibrinated sheep blood.) Bacteria used for reference strains included Pasteurella haemolytica 128K, Pasteurella multocida ATCC 43137, and Staphylococcus aureus ATCC 29213 (microdilution) and ATCC 25923 (disk). Replicate tests were conducted. Disk diffusion and broth microdilution quality control ranges are proposed. PMID:7714188

  9. A generalized theory for eccentric and misalignment effects in high-pressure annular seals

    NASA Technical Reports Server (NTRS)

    Chen, W. C.; Jackson, E. D.

    1986-01-01

    High-pressure annular seal leakage and dynamic coefficients vary with eccentricity and misalignment. Recent seal leakage data with both concentric and fully eccentric alignments support the seal leakage model with surface roughness and eccentricity effects included. In this paper, the seal dynamic coefficient calculation has been generalized and allows direct calculation of the seal dynamic coefficients at any circumferential location. The generalized solution agrees with the results obtained by using the calculated values of an earlier paper and performing a coordinate transformation. The analysis results coincide with the measured data in showing that the stiffness and damping matrices of seal coefficients are not skew symmetric, and the main diagonal seal coefficients are not equal. The measured direct stiffnesses were found higher than predicted by the concentric seal theory, but this may be explained by the presence of eccentricity in the test operating mode.

  10. Syn-Fuel reciprocating charge pump improvement program. Quarterly technical project report, April-June 1984

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1984-01-01

    Major accomplishments during the second quarter of 1984 were completion of the Diaphragm Separation Seal clear liquid testing, and initiation of Phase III Field Testing. Diaphragm operational testing was conducted on a clear water test loop. The test goals were to ensure; mechanical reliability of the Diaphragm Seal, safe operation with simulated component failure, and proper operation of the Diaphragm Buffer Volume Control System. This latter system is essential in controlling the phasing of the diaphragm with its driving plunger. These tests were completed successfully. All operational problems were solved. However, it must be emphasized that the Diaphragm Seal wouldmore » be damaged by allowing the pump to operate in a cavitating condition for an extended period of time. A change in the Field Test phase of the program was made regarding choice of field test site. There is no operating Syn-Fuel pilot plant capable of inexpensively producing the slurry stream required for the reciprocating pump testing. The Field Tests will now be conducted by first testing the prototype pump and separation seals in an ambient temperature sand water slurry. This will determine resistence to abrasive wear and determine any operation problems at pressure over a lengthy period of time. After successful conclusion of these tests the pump and seals will be operated with a high temperature oil, but without solids, to identify any problems associated with thermal gradients, thermal shock and differential growth. After successful completion of the high temperature clean oil tests the pump will be deemed ready for in-line installation at a designated Syn-Fuel pilot plant. The above approach avoids the expense and complications of a separate hot slurry test loop. It also reduces risk of operational problems while in-line at the pilot plant. 5 figs.« less

  11. Implementation of transverse variable asphalt rate seal coat practices in Texas.

    DOT National Transportation Integrated Search

    2011-01-01

    An implementation project was performed to expand use of transversely varied asphalt rate (TVAR) seal : coat practices in all districts. The project included nine regional workshops, continued field texture testing of : test sites, provided one set o...

  12. A simple screening test for the detection of metallo-β-lactamase-producing Pseudomonas aeruginosa and Acinetobacter in a tertiary care hospital.

    PubMed

    Wan Nor Amilah, W A W; Noor Izani, N J; Ng, W K; Ashraful Haq, J

    2012-12-01

    Clinical utilization of carbapenems remains under threat with the emergence of acquired carbapenemase-producing bacteria, particularly metallo-β-lactamases (MBL). Rapid detection of MBL-producing Gram-negative bacilli is essential to prevent their widespread dissemination. However, no standardized detection method is available for routine laboratory use. The purpose of the study was to evaluate a chelating-agent based double disk synergic test and disk potentiation test for MBL-producing strain detection and to determine the isolation rate of MBL-producing Pseudomonas aeruginosa and Acinetobacter from clinical samples in our tertiary teaching hospital. A total of 22 and 66 imipenem-resistant P. aeruginosa and Acinetobacter isolates respectively were tested with ceftazidime (CAZ) disk by modified double disk synergic test and disk potentiation test using ethylenediaminetetraacetic acid (EDTA) and 2-mercaptopropionic acid (as chelating agents) to detect MBL production. The tests were compared with EDTA-phenanthroline-imipenem (EPI) microdilution MIC test as gold standard. MBL positive strains were detected in 17 (77.3%) P. aeruginosa and 2 (3.5%) Acinetobacter isolates. The disk potentiation test with 2-mercaptopropionic acid (2-MPA) dilution of 1:12 provided the most acceptable sensitivities and specificities (88.2% sensitivity and 100% specificity in P. aeruginosa; 100% sensitivity and specificity in Acinetobacter) compared to other screening methods used in this study. This study provided useful information on the local prevalence of MBL-producing P. aeruginosa and Acinetobacter in our hospital. Disc potentiation test with CAZ/2-MPA disc appears to be reliable and convenient MBL detection method in the routine clinical laboratory.

  13. A seal test facility for the measurement of isotropic and anisotropic linear rotordynamic characteristics

    NASA Technical Reports Server (NTRS)

    Adams, M. L.; Yang, T.; Pace, S. E.

    1989-01-01

    A new seal test facility for measuring high-pressure seal rotor-dynamic characteristics has recently been made operational at Case Western Reserve University (CWRU). This work is being sponsored by the Electric Power Research Institute (EPRI). The fundamental concept embodied in this test apparatus is a double-spool-shaft spindle which permits independent control over the spin speed and the frequency of an adjustable circular vibration orbit for both forward and backward whirl. Also, the static eccentricity between the rotating and non-rotating test seal parts is easily adjustable to desired values. By accurately measuring both dynamic radial displacement and dynamic radial force signals, over a wide range of circular orbit frequency, one is able to solve for the full linear-anisotropic model's 12 coefficients rather than the 6 coefficients of the more restrictive isotropic linear model. Of course, one may also impose the isotropic assumption in reducing test data, thereby providing a valid qualification of which seal configurations are well represented by the isotropic model and which are not. In fact, as argued in reference (1), the requirement for maintaining a symmetric total system mass matrix means that the resulting isotropic model needs 5 coefficients and the anisotropic model needs 11 coefficients.

  14. Transmission seal development

    NASA Technical Reports Server (NTRS)

    Brien, M.

    1977-01-01

    An experimental evaluation was performed on a high-speed (72.9 m/s, 14,349 ft/min) transmission seal of the synergistic type. During testing of the seal, oil leakage occurred at positive bearing cavity pressures. Modifications were made in an attempt to eliminate the leakage but none were completely successful. Leakage appears to be the result of questionable positioning of the sealing elements resulting in inadequate shaft contact by the oil side sealing element. This condition may be related to the nonsymmetrical shape of the elastomeric retainer and to dimensional changes caused by swelling of the elastomeric retainer from exposure to the sealed fluid. Indications of a speed dependent leakage characteristic were also observed.

  15. Comparison of Adhesion and Retention Forces for Two Candidate Docking Seal Elastomers

    NASA Technical Reports Server (NTRS)

    Hartzler, Brad D.; Panickar, Marta B.; Wasowski, Janice L.; Daniels, Christopher C.

    2011-01-01

    To successfully mate two pressurized vehicles or structures in space, advanced seals are required at the interface to prevent the loss of breathable air to the vacuum of space. A critical part of the development testing of candidate seal designs was a verification of the integrity of the retaining mechanism that holds the silicone seal component to the structure. Failure to retain the elastomer seal during flight could liberate seal material in the event of high adhesive loads during undocking. This work presents an investigation of the force required to separate the elastomer from its metal counter-face surface during simulated undocking as well as a comparison to that force which was necessary to destructively remove the elastomer from its retaining device. Two silicone elastomers, Wacker 007-49524 and Esterline ELASA-401, were evaluated. During the course of the investigation, modifications were made to the retaining devices to determine if the modifications improved the force needed to destructively remove the seal. The tests were completed at the expected operating temperatures of -50, +23, and +75 C. Under the conditions investigated, the comparison indicated that the adhesion between the elastomer and the metal counter-face was significantly less than the force needed to forcibly remove the elastomer seal from its retainer, and no failure would be expected.

  16. Crack-Detection Experiments on Simulated Turbine Engine Disks in NASA Glenn Research Center's Rotordynamics Laboratory

    NASA Technical Reports Server (NTRS)

    Woike, Mark R.; Abdul-Aziz, Ali

    2010-01-01

    The development of new health-monitoring techniques requires the use of theoretical and experimental tools to allow new concepts to be demonstrated and validated prior to use on more complicated and expensive engine hardware. In order to meet this need, significant upgrades were made to NASA Glenn Research Center s Rotordynamics Laboratory and a series of tests were conducted on simulated turbine engine disks as a means of demonstrating potential crack-detection techniques. The Rotordynamics Laboratory consists of a high-precision spin rig that can rotate subscale engine disks at speeds up to 12,000 rpm. The crack-detection experiment involved introducing a notch on a subscale engine disk and measuring its vibration response using externally mounted blade-tip-clearance sensors as the disk was operated at speeds up to 12 000 rpm. Testing was accomplished on both a clean baseline disk and a disk with an artificial crack: a 50.8-mm- (2-in.-) long introduced notch. The disk s vibration responses were compared and evaluated against theoretical models to investigate how successful the technique was in detecting cracks. This paper presents the capabilities of the Rotordynamics Laboratory, the baseline theory and experimental setup for the crack-detection experiments, and the associated results from the latest test campaign.

  17. High-temperature, long-life polyimide seals for hydraulic actuator rods

    NASA Technical Reports Server (NTRS)

    Johnson, R. L.; Lee, J.; Loomis, W. R.

    1971-01-01

    Two types of polyimide seals are developed for hydraulic actuator rod in low pressure second stage of two-stage configuration. Each seal melts test objectives of twenty million cycles of operation at 534 K. Analytical and experimental study results are discussed. Potential applications are given.

  18. Performance Evaluation of an Actuator Dust Seal for Lunar Operation

    NASA Technical Reports Server (NTRS)

    Delgado, Irebert R.; Gaier, James R.; Handschuh, Michael; Panko, Scott; Sechkar, Ed

    2013-01-01

    Exploration of extraterrestrial surfaces (e.g. moon, Mars, asteroid) will require durable space mechanisms that will survive potentially dusty surface conditions in addition to the hard vacuum and extreme temperatures of space. Baseline tests with lunar simulant were recently completed at NASA GRC on a new Low-Temperature Mechanism (LTM) dust seal for space actuator application. Following are top-level findings of the tests completed to date in vacuum using NU-LHT-2M lunar-highlands simulant. A complete set of findings are found in the conclusions section.Tests were run at approximately 10-7 torr with unidirectional rotational speed of 39 RPM.Initial break-in runs were performed at atmospheric conditions with no simulant. During the break-in runs, the maximum torque observed was 16.7 lbf-in. while the maximum seal outer diameter temperature was 103F. Only 0.4 milligrams of NU-LHT-2M simulant passed through the sealshaft interface in the first 511,000 cycles while under vacuum despite a chip on the secondary sealing surface.Approximately 650,000 of a planned 1,000,000 cycles were completed in vacuum with NU-LHT-2M simulant.Upon test disassembly NU-LHT-2M was found on the secondary sealing surface.

  19. A Test of Black-Hole Disk Truncation: Thermal Disk Emission in the Bright Hard State

    NASA Astrophysics Data System (ADS)

    Steiner, James

    2017-09-01

    The assumption that a black hole's accretion disk extends inwards to the ISCO is on firm footing for soft spectral states, but has been challenged for hard spectral states where it is often argued that the accretion flow is truncated far from the horizon. This is of critical importance because black-hole spin is measured on the basis of this assumption. The direct detection (or absence) of thermal disk emission associated with a disk extending to the ISCO is the smoking-gun test to rule truncation in or out for the bright hard state. Using a self-consistent spectral model on data taken in the bright hard state while taking advantage of the complementary coverage and capabilities of Chandra and NuSTAR, we will achieve a definitive test of the truncation paradigm.

  20. Igniter adapter-to-igniter chamber deflection test

    NASA Technical Reports Server (NTRS)

    Cook, M.

    1990-01-01

    Testing was performed to determine the maximum RSRM igniter adapter-to-igniter chamber joint deflection at the crown of the inner joint primary seal. The deflection data was gathered to support igniter inner joint gasket resiliency predictions which led to launch commit criteria temperature determinations. The proximity (deflection) gage holes for the first test (Test No. 1) were incorrectly located; therefore, the test was declared a non-test. Prior to Test No. 2, test article configuration was modified with the correct proximity gage locations. Deflection data were successfully acquired during Test No. 2. However, the proximity gage deflection measurements were adversely affected by temperature increases. Deflections measured after the temperature rise at the proximity gages were considered unreliable. An analysis was performed to predict the maximum deflections based on the reliable data measured before the detectable temperature rise. Deflections to the primary seal crown location were adjusted to correspond to the time of maximum expected operating pressure (2,159 psi) to account for proximity gage bias, and to account for maximum attach and special bolt relaxation. The maximum joint deflection for the igniter inner joint at the crown of the primary seal, accounting for all significant correction factors, was 0.0031 in. (3.1 mil). Since the predicted (0.003 in.) and tested maximum deflection values were sufficiently close, the launch commit criteria was not changed as a result of this test. Data from this test should be used to determine if the igniter inner joint gasket seals are capable of maintaining sealing capability at a joint displacement of (1.4) x (0.0031 in.) = 0.00434 inches. Additional testing should be performed to increase the database on igniter deflections and address launch commit criteria temperatures.

  1. Continued Investigation of Leakage and Power Loss Test Results for Competing Turbine Engine Seals

    DTIC Science & Technology

    2006-09-01

    Pressure-balanced design Figure 3.—Annular seal made of Inconel 625 . Note, each grid square is 6.35 mm. Figure 4.—Four-knife labyrinth...seal made of Inconel 625 . NASA/TM—2006-214420 7 Figure 5.—Brush seal with flow deflector. Figure 6.—Finger seal design. NASA/TM—2006-214420 8...thermocouples are located at the 90° and 180° positions (0° is top-dead-center). Type-K thermocouples are used and all are 157 µm, Inconel sheath, closed

  2. Results of continuous synchronous orbit testing of sealed nickel-cadmium cells

    NASA Technical Reports Server (NTRS)

    Harkness, J. D.

    1981-01-01

    Test results from continuous synchronous orbit testing of sealed nickel cadmium cells are presented. The synchronous orbit regime simulates a space satellite maintaining a position over a fixed point on earth as the earth rotates on its axis and revolves about the sun. Characteristics of each lot of cells, test conditions, and charge control methods are described.

  3. Further Investigations of Hypersonic Engine Seals

    NASA Technical Reports Server (NTRS)

    Dunlap, Patrick H., Jr.; Steinetz, Bruce M.; DeMange, Jeffrey J.

    2004-01-01

    Durable, flexible sliding seals are required in advanced hypersonic engines to seal the perimeters of movable engine ramps for efficient, safe operation in high heat flux environments at temperatures of 2000 to 2500 F. Current seal designs do not meet the demanding requirements for future engines, so NASA's Glenn Research Center is developing advanced seals and preloading devices to overcome these shortfalls. An advanced ceramic wafer seal design and two silicon nitride compression spring designs were evaluated in a series of compression, scrub, and flow tests. Silicon nitride wafer seals survived 2000 in. (50.8 m) of scrubbing at 2000 F against a silicon carbide rub surface with no chips or signs of damage. Flow rates measured for the wafers before and after scrubbing were almost identical and were up to 32 times lower than those recorded for the best braided rope seal flow blockers. Silicon nitride compression springs showed promise conceptually as potential seal preload devices to help maintain seal resiliency.

  4. Thermoplastic fusion bonding using a pressure-assisted boiling point control system.

    PubMed

    Park, Taehyun; Song, In-Hyouk; Park, Daniel S; You, Byoung Hee; Murphy, Michael C

    2012-08-21

    A novel thermoplastic fusion bonding method using a pressure-assisted boiling point (PABP) control system was developed to apply precise temperatures and pressures during bonding. Hot embossed polymethyl methacrylate (PMMA) components containing microchannels were sealed using the PABP system. Very low aspect ratio structures (AR = 1/100, 10 μm in depth and 1000 μm in width) were successfully sealed without collapse or deformation. The integrity and strength of the bonds on the sealed PMMA devices were evaluated using leakage and rupture tests; no leaks were detected and failure during the rupture tests occurred at pressures greater than 496 kPa. The PABP system was used to seal 3D shaped flexible PMMA devices successfully.

  5. Some composite bearing and seal materials for gas turbine applications: A review

    NASA Technical Reports Server (NTRS)

    Sliney, Harold E.

    1989-01-01

    A review is made of the selection and tribological testing of materials for high-temperature bearings and seals. The goal is to achieve good tribological properties over a wide range of temperatures because bearings and seals must be functional from low temperature start-up conditions on up to the maximum temperatures encountered during engine operation. Plasma sprayed composite coatings with favorable tribological properties from 25 to 900 C are discussed. The performance of these coatings in simple tribological bench tests is described. Examples are also given of their performance in high-speed sliding contact seals and as Stirling cylinder liner materials, and as back up lubricants for compliant foil gas bearings.

  6. Development of a rotating graphite carbon disk stripper

    NASA Astrophysics Data System (ADS)

    Hasebe, Hiroo; Okuno, Hiroki; Tatami, Atsushi; Tachibana, Masamitsu; Murakami, Mutsuaki; Kuboki, Hironori; Imao, Hiroshi; Fukunishi, Nobuhisa; Kase, Masayuki; Kamigaito, Osamu

    2018-05-01

    Highly oriented graphite carbon sheets (GCSs) were successfully used as disk strippers. An irradiation test conducted in 2015 showed that GCS strippers have the longest lifetime and exhibit improved stripping and transmission efficiencies. The problem of disk deformation in previously used Be-disk was solved even with higher beam intensity.

  7. On the selection of materials for cryogenic seals and the testing of their performance

    NASA Technical Reports Server (NTRS)

    Russell, John M.

    1989-01-01

    Three questions are addressed: what mission must a cryogenic seal perform; what are the contrasts between desirable and available seal materials; and how realistic must test conditions be. The question of how to quantify the response of a material subject to large strains and which is susceptible to memory effects leads to a discussion of theoretical issues. Accordingly, the report summarizes some ideas from the rational mechanics of materials. The report ends with a list of recommendations and a conclusion.

  8. Improved Steam Turbine Leakage Control with a Brush Seal Design

    NASA Astrophysics Data System (ADS)

    Turnquist, Norman; Chupp, Raymond E.; Pastrana, Ryan; Wolfe, Chris; Burnett, Mark

    2002-10-01

    This paper presents an improved steam turbine leakage control system with a brush seal design. The contents include: 1) Typical Design Characteristics; 2) Typical Brush Seal Locations; 3) Reduced Leakage Rates; 4) Performance Benefits; 5) System Considerations; 6) Rotor Dynamics; 7) Laboratory Tests and 8) Field Experience.

  9. 9 CFR 355.25 - Canning with heat processing and hermetically sealed containers; closures; code marking; heat...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... hermetically sealed containers; closures; code marking; heat processing; incubation. 355.25 Section 355.25... processing and hermetically sealed containers; closures; code marking; heat processing; incubation. (a... storage and transportation as evidenced by the incubation test. (h) Lots of canned products shall be...

  10. 9 CFR 355.25 - Canning with heat processing and hermetically sealed containers; closures; code marking; heat...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... hermetically sealed containers; closures; code marking; heat processing; incubation. 355.25 Section 355.25... processing and hermetically sealed containers; closures; code marking; heat processing; incubation. (a... storage and transportation as evidenced by the incubation test. (h) Lots of canned products shall be...

  11. 9 CFR 355.25 - Canning with heat processing and hermetically sealed containers; closures; code marking; heat...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... hermetically sealed containers; closures; code marking; heat processing; incubation. 355.25 Section 355.25... processing and hermetically sealed containers; closures; code marking; heat processing; incubation. (a... storage and transportation as evidenced by the incubation test. (h) Lots of canned products shall be...

  12. 9 CFR 355.25 - Canning with heat processing and hermetically sealed containers; closures; code marking; heat...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... hermetically sealed containers; closures; code marking; heat processing; incubation. 355.25 Section 355.25... processing and hermetically sealed containers; closures; code marking; heat processing; incubation. (a... storage and transportation as evidenced by the incubation test. (h) Lots of canned products shall be...

  13. 9 CFR 355.25 - Canning with heat processing and hermetically sealed containers; closures; code marking; heat...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... hermetically sealed containers; closures; code marking; heat processing; incubation. 355.25 Section 355.25... processing and hermetically sealed containers; closures; code marking; heat processing; incubation. (a... storage and transportation as evidenced by the incubation test. (h) Lots of canned products shall be...

  14. Silver plating technique seals leaks in thin wall tubing joints

    NASA Technical Reports Server (NTRS)

    Blenderman, W. H.

    1966-01-01

    Leaks in thin wall tubing joints are sealed by cleaning and silver plating the hot gas side of the joint in the leakage area. The pressure differential across the silver during hydrostatic test and subsequent use forces the ductile silver into the leak area and seals it.

  15. Sealing vessels up to 7 mm in diameter solely with ultrasonic technology.

    PubMed

    Timm, Richard W; Asher, Ryan M; Tellio, Karalyn R; Welling, Alissa L; Clymer, Jeffrey W; Amaral, Joseph F

    2014-01-01

    Ultrasonic energy is a mainstay in the armamentarium of surgeons, providing multifunctionality, precision, and control when dissecting and sealing vessels up to 5 mm in diameter. Historically, the inability to seal vessels in the 5-7 mm range has been perceived as an inherent limitation of ultrasonic technology. The purpose of this study was to evaluate sealing of vessels up to 7 mm in diameter with an ultrasonic device that modulates energy delivery during the sealing period. In ex vivo benchtop and in vivo acute and survival preclinical models, a new ultrasonic device, Harmonic ACE(®)+7 Shears (Harmonic 7), was compared with advanced bipolar devices in sealing vessels 1-7 mm in diameter with respect of burst pressure, seal reliability, and seal durability. Lateral thermal damage and transection time were also evaluated. Ex vivo tests of Harmonic 7 demonstrated significantly greater median burst pressures than an advanced bipolar device both for vessels <5 mm in diameter (1,078 mmHg and 836 mmHg, respectively, P=0.046) and for those in the range of 5-7 mm (1,419 mmHg and 591 mmHg, P<0.001). In vivo tests in porcine and caprine models demonstrated similar rates of hemostasis between Harmonic 7 and advanced bipolar devices, with high success rates at initial transection and seal durability of 100% after a 30-day survival period. Sealing 5-7 mm vessels is not a limitation of the type of energy used but of how energy is delivered to tissue. These studies document the ability of ultrasonic energy alone to reliably seal large vessels 5-7 mm in diameter, with significantly greater burst pressure observed in in vitro studies than those observed with an advanced bipolar technology when energy delivery is modulated during the sealing cycle. Furthermore, the seals created in 5-7 mm vessels are shown to be reliable and durable in in vivo preclinical studies.

  16. Materials and structural aspects of advanced gas-turbine helicopter engines

    NASA Technical Reports Server (NTRS)

    Freche, J. C.; Acurio, J.

    1979-01-01

    Advances in materials, coatings, turbine cooling technology, structural and design concepts, and component-life prediction of helicopter gas-turbine-engine components are presented. Stationary parts including the inlet particle separator, the front frame, rotor tip seals, vanes and combustors and rotating components - compressor blades, disks, and turbine blades - are discussed. Advanced composite materials are considered for the front frame and compressor blades, prealloyed powder superalloys will increase strength and reduce costs of disks, the oxide dispersion strengthened alloys will have 100C higher use temperature in combustors and vanes than conventional superalloys, ceramics will provide the highest use temperature of 1400C for stator vanes and 1370C for turbine blades, and directionally solidified eutectics will afford up to 50C temperature advantage at turbine blade operating conditions. Coatings for surface protection at higher surface temperatures and design trends in turbine cooling technology are discussed. New analytical methods of life prediction such as strain gage partitioning for high temperature prediction, fatigue life, computerized prediction of oxidation resistance, and advanced techniques for estimating coating life are described.

  17. Strain-Tailored Double-Disk Synergy Test Detects Extended-Spectrum Oxacillinases in Pseudomonas aeruginosa▿

    PubMed Central

    Hocquet, Didier; Dehecq, Barbara; Bertrand, Xavier; Plésiat, Patrick

    2011-01-01

    The prevalence of class D extended-spectrum oxacillinases (ES-OXAs) in ceftazidime-resistant strains of Pseudomonas aeruginosa is often underestimated by double-disk synergy tests (DDST) using clavulanate. A DDST with a customized distance between a disk of ceftazidime or cefepime and inhibitors (clavulanate and imipenem) detected 14 out of 15 different ES-OXAs. PMID:21450950

  18. INFECTIOUS DISEASE AND TOXICOLOGICAL MONITORING OF STRANDED PACIFIC HARBOR SEALS (PHOCA VITULINA RICHARDSI) IN COOK INLET AS SURROGATES FOR MONITORING ENDANGERED BELUGAS (DELPHINAPTERUS LEUCAS).

    PubMed

    Bauer, Kendra L; Goertz, Caroline E C; Belovarac, Jane A; Walton, Robert W; Dunn, J Lawrence; Tuomi, Pamela

    2016-09-01

      Pacific harbor seals ( Phoca vitulina richardsi) and belugas ( Delphinapterus leucas ) eat many of the same prey species, occupy the same geographic area, and demonstrate site fidelity in Cook Inlet, Alaska. Although most direct research involving the critically endangered belugas is currently prohibited, studying harbor seals may provide important information about this beluga population. In recent years, harbor seal populations in Alaska have declined for unknown reasons. As part of its stranding program, the Alaska SeaLife Center (ASLC) managed 59 cases of live and dead stranded harbor seals from Cook Inlet between 1997 and 2011. Animals were screened for a variety of diseases and contaminants of concern. Animals were negative by serology to the following diseases: avian influenza, canine distemper virus, dolphin morbillivirus, porpoise morbillivirus, Leptospira canicola, L. grippotyphosa, L. pomona, Neospora caninum , Sarcocystis neurona , and Toxoplasma gondii . Positive titers were found against Brucella spp., phocine distemper virus, seal herpesvirus-1, L. bratislava, L. hardjo, and L. icterohemorrhagiae. All titers were stable or declining except in one animal with an increasing titer for seal herpesvirus-1. Fecal pathogen screenings identified normal flora as well as stable or declining low levels of potentially pathogenic and opportunistic bacteria, though most were of little concern for seal health. In most animals, toxicology screening showed that the majority of tested contaminants were below detectable limits. The level of evidence of exposure to pathogens of concern was low in harbor seals. Although the infectious disease burden and contaminant levels in belugas in Cook Inlet cannot be definitively determined without direct testing, pathogen and contaminant exposure is expected to be similar to that found in harbor seals in this region, as the harbor seals and belugas share the habitat and food resources.

  19. Experimental Investigation of Elastomer Docking Seal Compression Set, Adhesion, and Leakage

    NASA Technical Reports Server (NTRS)

    Daniels, Christopher C.; Oswald, Jay J.; Bastrzyk, Marta B.; Smith, Ian; Dunlap, Patrick H., Jr.; Steinetz, Bruce M.

    2008-01-01

    A universal docking and berthing system is being developed by the National Aeronautics and Space Administration (NASA) to support all future space exploration missions to low-Earth orbit (LEO), to the Moon, and to Mars. An investigation of the compression set of two seals mated in a seal-on-seal configuration and the force required to separate the two seals after periods of mating was conducted. The leakage rates of seals made from two silicone elastomer compounds, S0383-70 and S0899-50, configured in seal-on-seal mating were quantified. The test specimens were sub-scale seals with representative cross-sections and a 12 inch outside diameter. The leakage rate of the seals manufactured from S0899-50 was higher than that of the seals made from S0383-70 by a factor of 1.8. Similarly, the adhesion of the 50 durometer elastomer was significantly higher than that of the 70 durometer compound. However, the compression set values of the S0899-50 material were observed to be significantly lower than those for the S0383-70.

  20. Aerodynamic performance of conventional and advanced design labyrinth seals with solid-smooth abradable, and honeycomb lands. [gas turbine engines

    NASA Technical Reports Server (NTRS)

    Stocker, H. L.; Cox, D. M.; Holle, G. F.

    1977-01-01

    Labyrinth air seal static and dynamic performance was evaluated using solid, abradable, and honeycomb lands with standard and advanced seal designs. The effects on leakage of land surface roughness, abradable land porosity, rub grooves in abradable lands, and honeycomb land cell size and depth were studied using a standard labyrinth seal. The effects of rotation on the optimum seal knife pitch were also investigated. Selected geometric and aerodynamic parameters for an advanced seal design were evaluated to derive an optimized performance configuration. The rotational energy requirements were also measured to determine the inherent friction and pumping energy absorbed by the various seal knife and land configurations tested in order to properly assess the net seal system performance level. Results indicate that: (1) seal leakage can be significantly affected with honeycomb or abradable lands; (2) rotational energy absorption does not vary significantly with the use of a solid-smooth, an abradable, or a honeycomb land; and (3) optimization of an advanced lab seal design produced a configuration that had leakage 25% below a conventional stepped seal.

  1. An experimental investigation of rubbing interaction in labyrinth seals at cryogenic temperature

    NASA Technical Reports Server (NTRS)

    Dolan, F. X.; Kennedy, F. E.; Schulson, E. M.

    1985-01-01

    An experimental program was carried out to address issues related to the observed cracking of the titanium knife edges on the labyrinth seals of the high pressure fuel pump (HPFP) in the Space Shuttle main engine (SSME). Thermal shock experiments were carried out using a jet specimen with geometry similar to the knife edge geometry. These tests demonstrate that cracking of the titanium alloy is possible in a situation involving repeated thermal cycles over a wide temperature range, as might be realized during a rub in the liquid hydrogen fuel pump. High speed rub interaction tests were conducted using a representative knife edge and seal geometry over a broad range of interaction rates. Alternative materials were also experimentally evaluated. These tests provide information which can be used to design improved labyrinth seals for the HPFP of the SSME. In particular, plasma-sprayed aluminum-graphite was found to be significantly better than aluminum alloy seals used at present from the standpoint of rub performance. Ion nitriding of the titanium alloy knife edges was also found to improve rub performance compared with the untreated baseline knife edge material.

  2. Exposure of harbour seals Phoca vitulina to Brucella in declining populations across Scotland.

    PubMed

    Kershaw, Joanna L; Stubberfield, Emma J; Foster, Geoffrey; Brownlow, Andrew; Hall, Ailsa J; Perrett, Lorraine L

    2017-09-20

    Since 2000 there has been a major decline in the abundance of Scottish harbour seals Phoca vitulina. The causes of the decline remain uncertain. The aim of this study was to establish the extent to which the seals in the regions of greatest decline have been exposed to Brucella, a bacterial pathogen that causes reproductive failure in terrestrial mammalian hosts. Tissues from dead seals collected between 1992 and 2013 were cultured for Brucella (n = 150). Serum samples collected from live capture-released seals (n = 343) between 1997 and 2012 were tested for Brucella antibodies using the Rose Bengal plate agglutination test (RBT) and a competitive enzyme-linked immunosorbent assay (cELISA). In total, 16% of seals cultured had Brucella isolated from one or more tissues, but there were no pathological signs of infection. The cELISA results were more sensitive than the RBT results, showing that overall 25.4% of seals were seropositive, with the highest seroprevalence in juveniles. As there was no evidence of either a higher seroprevalence or higher circulating antibody levels in seropositive animals in the areas with the greatest declines, it was concluded that Brucella infection is likely not a major contributing factor to recent declines. However, the consistently high proportion of seals exposed to Brucella indicates possible endemicity in these populations, likely due to B. pinnipedialis, which has demonstrated a preference for pinniped hosts. Importantly, given the close proximity between seals, humans and livestock in many areas, there is the potential for cross-species infections.

  3. Acceptance tests and manufacturer relationships for 20 amphere-hour sealed nickel-cadmium cells using discharge parameters

    NASA Technical Reports Server (NTRS)

    Leibecki, H. F.

    1980-01-01

    One hundred and forty-six 20 ampere-hour sealed nickel cadmium cells from five manufacturers were detected using preliminary tests which do not require life testing and do not reduce the expected life of the cells. Differences between individual cells were also detected, using these tests, allowing a comparison of variability of cell construction by and between manufacturers.

  4. Investigation of a Wedge Adhesion Test for Edge Seals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kempe, Michael; Wohlgemuth, John; Miller, David

    2016-09-26

    Many photovoltaic (PV) technologies have been found to be sensitive to moisture that diffuses into a PV package. Even with the use of impermeable frontsheets and backsheets, moisture can penetrate from the edges of a module. To limit this moisture ingress pathway from occurring, manufacturers often use a low permeability polyisobutylene (PIB) based edge seal filled with desiccant to further restrict moisture ingress. Moisture ingress studies have shown that these materials are capable of blocking moisture for the 25-year life of a module; but to do so, they must remain well-adhered and free of cracks. This work focuses on adaptingmore » the Boeing Wedge test for use with edge seals laminated using glass substrates as part of a strategy to assess the long-term durability of edge seals. The advantage of this method is that it duplicates the residual stresses and strains that a glass/glass module may have when the lamination process results in some residual glass bending that puts the perimeter in tension. Additionally, this method allows one to simultaneously expose the material to thermal stress, humidity, mechanical stress, and ultraviolet radiation. The disadvantage of this method generally is that we are limited by the fracture toughness of the glass substrates that the edge seal is adhered to. However, the low toughness of typical uncrosslinked or sparsely crosslinked PIB makes them suitable for this technique. We present data obtained during the development of the wedge test for use with PV edge seal materials. This includes development of the measuring techniques and evaluation of the test method with relevant materials. We find consistent data within a given experiment, along with the theoretical independence of fracture toughness measurements with wedge thickness. This indicates that the test methodology is reproducible. However, even though individual experimental sets are consistent, the reproducibility between experimental sets is poor. We believe this may be due to inconsistencies in sample history, sample batch, or small changes in sample preparation/assembly from one month to the next. Because the fracture strength of typical edge seal materials is so low, they cannot be relied upon for mechanical strength. A small stress or strain on the edge seal is capable of promoting delamination or tearing causing the edge seal to fail. Because of this, edge seals are very dependent on the processing and construction parameters in the full size PV module such that any long term evaluation of their durability must be conducted on full size modules to be accurate.« less

  5. Seal Joint Analysis and Design for the Ares-I Upper Stage LOX Tank

    NASA Technical Reports Server (NTRS)

    Phillips, Dawn R.; Wingate, Robert J.

    2011-01-01

    The sealing capability of the Ares-I Upper Stage liquid oxygen tank-to-sump joint is assessed by analyzing the deflections of the joint components. Analyses are performed using three-dimensional symmetric wedge finite element models and the ABAQUS commercial finite element software. For the pressure loads and feedline interface loads, the analyses employ a mixed factor of safety approach to comply with the Constellation Program factor of safety requirements. Naflex pressure-assisted seals are considered first because they have been used successfully in similar seal joints in the Space Shuttle External Tank. For the baseline sump seal joint configuration with a Naflex seal, the predicted joint opening greatly exceeds the seal design specification. Three redesign options of the joint that maintain the use of a Naflex seal are studied. The joint openings for the redesigned seal joints show improvement over the baseline configuration; however, these joint openings still exceed the seal design specification. RACO pressure-assisted seals are considered next because they are known to also be used on the Space Shuttle External Tank, and the joint opening allowable is much larger than the specification for the Naflex seals. The finite element models for the RACO seal analyses are created by modifying the models that were used for the Naflex seal analyses. The analyses show that the RACO seal may provide sufficient sealing capability for the sump seal joint. The results provide reasonable data to recommend the design change and plan a testing program to determine the capability of RACO seals in the Ares-I Upper Stage liquid oxygen tank sump seal joint.

  6. Evaluation of a direct blood culture disk diffusion antimicrobial susceptibility test.

    PubMed Central

    Doern, G V; Scott, D R; Rashad, A L; Kim, K S

    1981-01-01

    A total of 556 unique blood culture isolates of nonfastidious aerobic and facultatively anaerobic bacteria were examined by direct and standardized disk susceptibility test methods (4,234 antibiotic-organism comparisons). When discrepancies which could be accounted for by the variability inherent in disk diffusion susceptibility tests were excluded, the direct method demonstrated 96.8% overall agreement with the standardized method. A total of 1.6% minor, 1.5% major, and 0.1% very major discrepancies were noted. PMID:7325634

  7. Probabilistic Analysis of Aircraft Gas Turbine Disk Life and Reliability

    NASA Technical Reports Server (NTRS)

    Melis, Matthew E.; Zaretsky, Erwin V.; August, Richard

    1999-01-01

    Two series of low cycle fatigue (LCF) test data for two groups of different aircraft gas turbine engine compressor disk geometries were reanalyzed and compared using Weibull statistics. Both groups of disks were manufactured from titanium (Ti-6Al-4V) alloy. A NASA Glenn Research Center developed probabilistic computer code Probable Cause was used to predict disk life and reliability. A material-life factor A was determined for titanium (Ti-6Al-4V) alloy based upon fatigue disk data and successfully applied to predict the life of the disks as a function of speed. A comparison was made with the currently used life prediction method based upon crack growth rate. Applying an endurance limit to the computer code did not significantly affect the predicted lives under engine operating conditions. Failure location prediction correlates with those experimentally observed in the LCF tests. A reasonable correlation was obtained between the predicted disk lives using the Probable Cause code and a modified crack growth method for life prediction. Both methods slightly overpredict life for one disk group and significantly under predict it for the other.

  8. Development of a magnetic fluid shaft seal for an axial-flow blood pump.

    PubMed

    Sekine, Kazumitsu; Mitamura, Yoshinori; Murabayashi, Shun; Nishimura, Ikuya; Yozu, Ryouhei; Kim, Dong-Wook

    2003-10-01

    A rotating impeller in a rotary blood pump requires a supporting system in blood, such as a pivot bearing or magnetic suspension. To solve potential problems such as abrasive wear and complexity of a supporting system, a magnetic fluid seal was developed for use in an axial-flow blood pump. Sealing pressures at motor speeds of up to 8,000 rpm were measured with the seal immersed in water or bovine blood. The sealing pressure was about 200 mm Hg in water and blood. The calculated theoretical sealing pressure was about 230 mm Hg. The seal remained perfect for 743 days in a static condition and for 180+ days (ongoing test) at a motor speed of 7,000 rpm. Results of measurement of cell growth activity indicated that the magnetic fluid has no negative cytological effects. The specially designed magnetic fluid shaft seal is useful for an axial-flow blood pump.

  9. Cryogenic Flange and Seal Evaluation

    NASA Technical Reports Server (NTRS)

    Ramirez, Adrian

    2014-01-01

    The assembly of flanges, seals, and pipes are used to carry cryogenic fluid from a storage tank to the vehicle at launch sites. However, after a certain amount of cycles these raised face flanges with glass-filled Teflon gaskets have been found to have torque relaxation and are as a result susceptible to cryogenic fluid leakage if not re-torqued. The intent of this project is to identify alternate combinations of flanges and seals which may improve thermal cycle performance and decrease re-torque requirements. The general approach is to design a test fixture to evaluate leak characteristics between spiral and concentric serrations and to test alternate flange and seal combinations. Due to insufficient time, it was not possible to evaluate these different types of combinations for the combination that improved thermal cycle performance the most. However, the necessary drawings for the test fixture were designed and assembled along with the collection of the necessary parts.

  10. Laparoscopic prototype for optical sealing of renal blood vessels

    NASA Astrophysics Data System (ADS)

    Hardy, Luke A.; Hutchens, Thomas C.; Larson, Eric R.; Gonzalez, David A.; Chang, Chun-Hung; Nau, William H.; Fried, Nathaniel M.

    2017-02-01

    Energy-based, radiofrequency and ultrasonic devices provide rapid sealing of blood vessels during laparoscopic procedures. We are exploring infrared lasers as an alternative for vessel sealing with less collateral thermal damage. Previous studies demonstrated vessel sealing in an in vivo porcine model using a 1470-nm laser. However, the initial prototype was designed for open surgery and featured tissue clasping and light delivery mechanisms incompatible with laparoscopic surgery. In this study, a laparoscopic prototype similar to devices in surgical use was developed, and tests were conducted on porcine renal blood vessels. The 5-mm-OD prototype featured a traditional Maryland jaw configuration. Laser energy was delivered through a 550-μm-core fiber and side-delivery from the lower jaw, with beam dimensions of 18-mm-length x 1.2-mm-width. The 1470-nm diode laser delivered 68 W with 3 s activation time. A total of 69 porcine renal vessels with mean diameter of 3.3 +/- 1.7 mm were tested, ex vivo. Vessels smaller than 5 mm were consistently sealed (48/51) with burst pressures greater than malignant hypertension blood pressure (180 mmHg), averaging 1038 +/- 474 mmHg. Vessels larger than 5 mm were not consistently sealed (6/18), yielding burst pressures of only 174 +/- 221 mmHg. Seal width, thermal damage zone, and thermal spread averaged 1.7 +/- 0.8, 3.4 +/- 0.7, and 1.0 +/- 0.4 mm. A novel optical laparoscopic prototype with 5-mm- OD shaft integrated within a standard Maryland jaw design consistently sealed vessels less than 5 mm with minimal thermal spread. Further in vivo studies are planned to test performance across a variety of vessels and tissues.

  11. Molecular Epidemiology of Seal Parvovirus, 1988–2014

    PubMed Central

    Bodewes, Rogier; Hapsari, Rebriarina; Rubio García, Ana; Sánchez Contreras, Guillermo J.; van de Bildt, Marco W. G.; de Graaf, Miranda; Kuiken, Thijs; Osterhaus, Albert D. M. E.

    2014-01-01

    A novel parvovirus was discovered recently in the brain of a harbor seal (Phoca vitulina) with chronic meningo-encephalitis. Phylogenetic analysis of this virus indicated that it belongs to the genus Erythroparvovirus, to which also human parvovirus B19 belongs. In the present study, the prevalence, genetic diversity and clinical relevance of seal parvovirus (SePV) infections was evaluated in both harbor and grey seals (Halichoerus grypus) that lived in Northwestern European coastal waters from 1988 to 2014. To this end, serum and tissue samples collected from seals were tested for the presence of seal parvovirus DNA by real-time PCR and the sequences of the partial NS gene and the complete VP2 gene of positive samples were determined. Seal parvovirus DNA was detected in nine (8%) of the spleen tissues tested and in one (0.5%) of the serum samples tested, including samples collected from seals that died in 1988. Sequence analysis of the partial NS and complete VP2 genes of nine SePV revealed multiple sites with nucleotide substitutions but only one amino acid change in the VP2 gene. Estimated nucleotide substitution rates per year were 2.00×10−4 for the partial NS gene and 1.15×10−4 for the complete VP2 gene. Most samples containing SePV DNA were co-infected with phocine herpesvirus 1 or PDV, so no conclusions could be drawn about the clinical impact of SePV infection alone. The present study is one of the few in which the mutation rates of parvoviruses were evaluated over a period of more than 20 years, especially in a wildlife population, providing additional insights into the genetic diversity of parvoviruses. PMID:25390639

  12. Molecular epidemiology of seal parvovirus, 1988-2014.

    PubMed

    Bodewes, Rogier; Hapsari, Rebriarina; Rubio García, Ana; Sánchez Contreras, Guillermo J; van de Bildt, Marco W G; de Graaf, Miranda; Kuiken, Thijs; Osterhaus, Albert D M E

    2014-01-01

    A novel parvovirus was discovered recently in the brain of a harbor seal (Phoca vitulina) with chronic meningo-encephalitis. Phylogenetic analysis of this virus indicated that it belongs to the genus Erythroparvovirus, to which also human parvovirus B19 belongs. In the present study, the prevalence, genetic diversity and clinical relevance of seal parvovirus (SePV) infections was evaluated in both harbor and grey seals (Halichoerus grypus) that lived in Northwestern European coastal waters from 1988 to 2014. To this end, serum and tissue samples collected from seals were tested for the presence of seal parvovirus DNA by real-time PCR and the sequences of the partial NS gene and the complete VP2 gene of positive samples were determined. Seal parvovirus DNA was detected in nine (8%) of the spleen tissues tested and in one (0.5%) of the serum samples tested, including samples collected from seals that died in 1988. Sequence analysis of the partial NS and complete VP2 genes of nine SePV revealed multiple sites with nucleotide substitutions but only one amino acid change in the VP2 gene. Estimated nucleotide substitution rates per year were 2.00 × 10(-4) for the partial NS gene and 1.15 × 10(-4) for the complete VP2 gene. Most samples containing SePV DNA were co-infected with phocine herpesvirus 1 or PDV, so no conclusions could be drawn about the clinical impact of SePV infection alone. The present study is one of the few in which the mutation rates of parvoviruses were evaluated over a period of more than 20 years, especially in a wildlife population, providing additional insights into the genetic diversity of parvoviruses.

  13. The SSME HPFTP interstage seals: Analysis and experiments for leakage and reaction-force coefficients

    NASA Technical Reports Server (NTRS)

    Childs, D. W.

    1983-01-01

    An improved theory for the prediction of the rotordynamic coefficients of turbulent annular seals was developed. Predictions from the theory are compared to the experimental results and an approach for the direct calculation of empirical turbulent coefficients from test data are introduced. An improved short seal solution is shown to do a better job of calculating effective stiffness and damping coefficients than either the original short seal solution or a finite length solution. However, the original short seal solution does a much better job of predicting equivalent added mass coefficient.

  14. Bidirectional Brush Seals

    NASA Technical Reports Server (NTRS)

    Hendricks, Robert C.; Wilson, Jack; Wu, Tom; Flower, Ralph

    1997-01-01

    Presented is a study of the use of a set of I.D./O.D. bidirectional press seals to reduce the leakage losses in a wave rotor. Relative to the baseline configuration, data indicate the use of brush seals enhanced wave rotor efficiency from 36 to 45 percent at low leakages (small rotor endwall gap spacings) and from 15 to 33 percent at high leakages (larger endwall gap spacings). These brush seals are capable of sealing positive or negative pressure drops with respect to the axial direction. Surface tribology for these tests suggested little evidence of grooving although the bristles appeared polished.

  15. Labyrinth Seal Analysis. Volume 3. Analytical and Experimental Development of a Design Model for Labyrinth Seals

    DTIC Science & Technology

    1986-01-01

    the information that has been determined experimentally. The Labyrinth Seal Analysis program was, therefore, directed to the develop - ment of an...labyrinth seal performance, the program included the development of an improved empirical design model to pro- j. .,’ vide the calculation of the flow... program . * Phase I was directed to the analytical development of both an *analysis* model and an improvwd empirical *design" model. Supporting rig tests

  16. Field Test of Advanced Duct-Sealing Technologies Within the Weatherization Assistance Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ternes, MP

    A field test of an aerosol-spray duct-sealing technology and a conventional, best-practice approach was performed in 80 homes to determine the efficacy and programmatic needs of the duct-sealing technologies as applied in the U.S. Department of Energy Weatherization Assistance Program. The field test was performed in five states: Iowa, Virginia, Washington, West Virginia, and Wyoming. The study found that, compared with the best-practice approach, the aerosol-spray technology is 50% more effective at sealing duct leaks and can potentially reduce labor time and costs for duct sealing by 70%, or almost 4 crew-hours. Further study to encourage and promote use ofmore » the aerosol-spray technology within the Weatherization Assistance Program is recommended. A pilot test of full production weatherization programs using the aerosol-spray technology is recommended to develop approaches for integrating this technology with other energy conservation measures and minimizing impacts on weatherization agency logistics. In order to allow or improve adoption of the aerosol spray technology within the Weatherization Assistance Program, issues must be addressed concerning equipment costs, use of the technology under franchise arrangements with Aeroseal, Inc. (the holders of an exclusive license to use this technology), software used to control the equipment, safety, and training. Application testing of the aerosol-spray technology in mobile homes is also recommended.« less

  17. Foil Face Seal Testing

    NASA Technical Reports Server (NTRS)

    Munson, John

    2009-01-01

    In the seal literature you can find many attempts by various researchers to adapt film riding seals to the gas turbine engine. None have been successful, potential distortion of the sealing faces is the primary reason. There is a film riding device that does accommodate distortion and is in service in aircraft applications, namely the foil bearing. More specifically a foil thrust bearing. These are not intended to be seals, and they do not accommodate large axial movement between shaft & static structure. By combining the 2 a unique type of face seal has been created. It functions like a normal face seal. The foil thrust bearing replaces the normal primary sealing surface. The compliance of the foil bearing allows the foils to track distortion of the mating seal ring. The foil seal has several perceived advantages over existing hydrodynamic designs, enumerated in the chart. Materials and design methodology needed for this application already exist. Also the load capacity requirements for the foil bearing are low since it only needs to support itself and overcome friction forces at the antirotation keys.

  18. Design, testing and emplacement of sand-bentonite for the construction of a gas-permeable seal test (gast)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Teodori, Sven-Peter; Ruedi, Jorg; Reinhold, Matthias

    2013-07-01

    The main aim of a gas-permeable seal is to increase the gas transport capacity of the backfilled underground structures without compromising the radionuclide retention capacity of the engineered barrier system or the host rock. Such a seal, proposed by NAGRA as part of the 'Engineered Gas Transport System' in a L/ILW repository, considers specially designed backfill and sealing materials such as sand/bentonite (S/B) mixtures with a bentonite content of 20- 30%. NAGRA's RD and D plan foresees demonstrating the construction and performance of repository seals and improving the understanding and the database for reliably predicting water and gas transport throughmore » these systems. The fluid flow and gas transport properties of these backfills have been determined at the laboratory scale and through modelling the maximum gas pressures in the near field of a repository system and the gas flow rates have been evaluated. Within this context, the Gas-permeable Seal Test (GAST) was constructed at Grimsel Test Site (GTS) to validate the effective functioning of gas-permeable seals at realistic scale. The intrinsic permeability of such seals should be in the order of 10-18 m2. Because the construction of S/B seals is not common practice for construction companies, a stepwise approach was followed to evaluate different construction and quality assurance methods. As a first step, an investigation campaign with simple tests in the laboratory and in the field followed by 1:1 scale pre-tests at GTS was performed. Through this gradual increase of the degree of complexity, practical experience was gained and confidence in the methods and procedures to be used was built, which allowed reliably producing and working with S/B mixtures at a realistic scale. During the whole pre-testing phase, a quality assurance (QA) programme for S/B mixtures was developed and different methods were assessed. They helped to evaluate and choose appropriate emplacement techniques and methodologies to achieve the target S/B dry density of 1.70 g/cm{sup 3}, which results in the desired intrinsic permeability throughout the experiment. The final QA methodology was targeted at engineering measures to decide if the work can proceed, and at producing high resolution material properties database for future water and gas transport modelling activities. The different applied QA techniques included standard core cutter tests, the application of neutron-gamma (Troxler) probes and two mass balance methods (2D and 3D). The methods, looking at different representative scales, have provided only slightly different results and showed that the average density of the emplaced S/B plug was between 1.65 and 1.73 g/cm{sup 3}. Spatial variability of dry densities was observed at decimeter scale. Overall, the pre-testing and QA programme performed for the GAST project demonstrated how the given design criteria and requirements can be met by appropriately planning and designing the material emplacement. (authors)« less

  19. In vitro dentin barrier cytotoxicity testing of some dental restorative materials.

    PubMed

    Jiang, R D; Lin, H; Zheng, G; Zhang, X M; Du, Q; Yang, M

    2017-03-01

    To investigate the cytotoxicity of four dental restorative materials in three-dimensional (3D) L929 cell cultures using a dentin barrier test. The cytotoxicities of light-cured glass ionomer cement (Vitrebond), total-etching adhesive (GLUMA Bond5), and two self-etching adhesives (GLUMA Self Etch and Single Bond Universal) were evaluated. The permeabilities of human dentin disks with thicknesses of 300, 500, and 1000μm were standardized using a hydraulic device. Test materials and controls were applied to the occlusal side of human dentin disks. The 3D-cell scaffolds were placed beneath the dentin disks. After a 24-h contact with the dentin barrier test device, cell viabilities were measured by performing MTT assays. Statistical analysis was performed using the Mann-Whitney U test. The mean (SD) permeabilities of the 300-μm, 500-μm, and 1000-μm dentin disks were 0.626 (0.214), 0.219 (0.0387) and 0.089 (0.028) μlmin -1 cm -2 cm H 2 O -1 . Vitrebond was severely cytotoxic, reducing the cell viability to 10% (300-μm disk), 17% (500μm), and 18% (1000μm). GLUMA Bond5 reduced the cell viability to 40% (300μm), 83% (500μm), and 86% (1000μm), showing moderate cytotoxicity (300-μm) and non-cytotoxicity (500-μm and 1000-μm). Single Bond Universal and GLUMA Self Etch did not significantly reduce cell viability, regardless of the dentin thicknesses, which characterized them as non-cytotoxic. Cytotoxicity varied with the materials tested and the thicknesses of the dentin disks. The tested cytotoxicity of materials applied on 300-, 500-, and 1000-μm dentin disks indicates that the clinical use of the test materials (excepting self-etching adhesives) in deep cavities poses a potential risk of damage to the pulp tissues to an extent, depending on the thickness of the remaining dentin. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Orbital transfer rocket engine technology program: Soft wear ring seal technology

    NASA Technical Reports Server (NTRS)

    Lariviere, Brian W.

    1992-01-01

    Liquid oxygen (LOX) compatibility tests, including autogenous ignition, promoted ignition, LOX impact tests, and friction and wear tests on different PV products were conducted for several polymer materials as verification for the implementation of soft wear ring seals in advanced rocket engine turbopumps. Thermoplastics, polyimide based materials, and polyimide-imide base materials were compared for oxygen compatibility, specific wear coefficient, wear debris production, and heat dissipation mechanisms. A thermal model was generated that simulated the frictional heating input and calculated the surface temperature and temperature distribution within the seal. The predictions were compared against measured values. Heat loads in the model were varied to better match the test data and determine the difference between the measured and the calculated coefficients of friction.

  1. Fabrication of Large YBCO Superconducting Disks

    NASA Technical Reports Server (NTRS)

    Koczor, Ronald J.; Noever, David A.; Robertson, Glen A.

    1999-01-01

    We have undertaken fabrication of large bulk items to develop a repeatable process and to provide test articles in laboratory experiments investigating reported coupling of electromagnetic fields with the local gravity field in the presence of rotating superconducting disks. A successful process was developed which resulted in fabrication of 30 cm diameter annular disks. The disks were fabricated of the superconductor YBa2Cu3O(7-x). Various material parameters of the disks were measured.

  2. Turbine rotor disk health monitoring assessment based on sensor technology and spin tests data.

    PubMed

    Abdul-Aziz, Ali; Woike, Mark

    2013-01-01

    The paper focuses on presenting data obtained from spin test experiments of a turbine engine like rotor disk and assessing their correlation to the development of a structural health monitoring and fault detection system. The data were obtained under various operating conditions such as the rotor disk being artificially induced with and without a notch and rotated at a rotational speed of up to 10,000 rpm under balanced and imbalanced state. The data collected included blade tip clearance, blade tip timing measurements, and shaft displacements. Two different sensor technologies were employed in the testing: microwave and capacitive sensors, respectively. The experimental tests were conducted at the NASA Glenn Research Center's Rotordynamics Laboratory using a high precision spin system. Disk flaw observations and related assessments from the collected data for both sensors are reported and discussed.

  3. Accelerated test program for sealed nickel-cadmium spacecraft batteries/cells

    NASA Technical Reports Server (NTRS)

    Goodman, L. A.

    1976-01-01

    The feasibility was examined of inducing an accelerated test on sealed Nickel-Cadmium batteries or cells as a tool for spacecraft projects and battery users to determine: (1) the prediction of life capability; (2) a method of evaluating the effect of design and component changes in cells; and (3) a means of reducing time and cost of cell testing.

  4. Design and testing of an electromagnetic coupling

    NASA Technical Reports Server (NTRS)

    Anderson, William J.

    1986-01-01

    Hostile environments such as the hard vacuum of space, and exposure to water or caustic fluids have fostered the development of devices which allow mechanical rotary feed throughs with positive sealing without the use of conventional dynamic seals. One such device is an electromagnetic coupling which transfers motion across a hermetic seal by means of a rotating magnetic field. Static pull-out torque and dynamic heat build-up and pull-out torque tests of a synchronous reluctance homopolar coupling are reported herein. Coupling efficiencies are estimated for a range of speeds and torques.

  5. ZEST Flight Test Experiments, Kauai Test Facility, Hawaii

    DTIC Science & Technology

    1991-07-01

    present on KTF/PMRF are 3 the Hawaiian monk seal and the Hawaiian hoary bat. The monk seal (Monachus schauinslandi) has established a colony on Niihau ...feeding and resting offshore of the Nohili Ditch (DOE, 1991). 3 The channel between Kauai and Niihau islands is along the migration route of the

  6. 75 FR 53277 - Notice of Intent To Terminate Selected National Voluntary Laboratory Accreditation Program (NVLAP...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-31

    ... coatings, paper and related products, building seals and sealants, plastics, plumbing, roofing, and... products, building seals and sealants, plastics, plumbing, roofing, and mattresses. The purpose of this... plumbing laboratories are also accredited for plastic and paint testing in support of plumbing testing...

  7. A testing program to evaluate the effects of simulant mixed wastes on plastic transportation packaging components

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nigrey, P.J.; Dickens, T.G.; Dickman, P.T.

    1997-08-01

    Based on regulatory requirements for Type A and B radioactive material packaging, a Testing Program was developed to evaluate the effects of mixed wastes on plastic materials which could be used as liners and seals in transportation containers. The plastics evaluated in this program were butadiene-acrylonitrile copolymer (Nitrile rubber), cross-linked polyethylene, epichlorohydrin, ethylene-propylene rubber (EPDM), fluorocarbons, high-density polyethylene (HDPE), butyl rubber, polypropylene, polytetrafluoroethylene, and styrene-butadiene rubber (SBR). These plastics were first screened in four simulant mixed wastes. The liner materials were screened using specific gravity measurements and seal materials by vapor transport rate (VTR) measurements. For the screening of linermore » materials, Kel-F, HDPE, and XLPE were found to offer the greatest resistance to the combination of radiation and chemicals. The tests also indicated that while all seal materials passed exposure to the aqueous simulant mixed waste, EPDM and SBR had the lowest VTRs. In the chlorinated hydrocarbon simulant mixed waste, only Viton passed the screening tests. In both the simulant scintillation fluid mixed waste and the ketone mixture waste, none of the seal materials met the screening criteria. Those materials which passed the screening tests were subjected to further comprehensive testing in each of the simulant wastes. The materials were exposed to four different radiation doses followed by exposure to a simulant mixed waste at three temperatures and four different exposure times (7, 14, 28, 180 days). Materials were tested by measuring specific gravity, dimensional, hardness, stress cracking, VTR, compression set, and tensile properties. The second phase of this Testing Program involving the comprehensive testing of plastic liner has been completed and for seal materials is currently in progress.« less

  8. Air Force seal activities

    NASA Astrophysics Data System (ADS)

    Mayhew, Ellen R.

    1994-07-01

    Seal technology development is an important part of the Air Force's participation in the Integrated High Performance Turbine Engine Technology (IHPTET) initiative, the joint DOD, NASA, ARPA, and industry endeavor to double turbine engine capabilities by the turn of the century. Significant performance and efficiency improvements can be obtained through reducing internal flow system leakage, but seal environment requirements continue to become more extreme as the engine thermodynamic cycles advance towards these IHPTET goals. Brush seal technology continues to be pursued by the Air Force to reduce leakage at the required conditions. Likewise, challenges in engine mainshaft air/oil seals are also being addressed. Counter-rotating intershaft applications within the IHPTET initiative involve very high rubbing velocities. This viewgraph presentation briefly describes past and current seal research and development programs and gives a summary of seal applications in demonstrator and developmental engine testing.

  9. High temperature braided rope seals for static sealing applications

    NASA Technical Reports Server (NTRS)

    Adams, Michael L.; Olsen, Andrew; Darolia, Ram; Steinetz, Bruce M.; Bartolotta, Paul A.

    1996-01-01

    Achieving efficiency and performance goals of advanced aircraft and industrial systems are leading designers to implement high temperature materials such as ceramics and intermetallics. Generally these advanced materials are applied selectively in the highest temperature sections of the engine system including the combustor and high pressure turbine, amongst others. Thermal strains that result in attaching the low expansion-rate components to high expansion rate superalloy structures can cause significant life reduction in the components. Seals are being designed to both seal and to serve as compliant mounts allowing for relative thermal growths between high temperature but brittle primary structures and the surrounding support structures. Designers require high temperature, low-leakage, compliant seals to mitigate thermal stresses and control parasitic and cooling airflow between structures. NASA is developing high temperature braided rope seals in a variety of configurations to help solve these problems. This paper will describe the types of seals being developed, describe unique test techniques used to assess seal performance, and present leakage flow data under representative pressure, temperature and scrubbing conditions. Feasibility of the braided rope seals for both an industrial tube seal and a turbine vane seal application is also demonstrated.

  10. High Temperature Propulsion System Structural Seals for Future Space Launch Vehicles

    NASA Technical Reports Server (NTRS)

    Dunlap, Patrick H., Jr.; Steinetz, Bruce M.; DeMange, Jeffrey J.

    2004-01-01

    Durable, flexible sliding seals are required in advanced hypersonic engines to seal the perimeters of movable engine ramps for efficient, safe operation in high heat flux environments at temperatures of 2000 to 2500 F. Current seal designs do not meet the demanding requirements for future engines, so NASA s Glenn Research Center is developing advanced seals and preloading devices to overcome these shortfalls. An advanced ceramic wafer seal design and two types of seal preloading devices were evaluated in a series of compression, scrub, and flow tests. Silicon nitride wafer seals survived 2000 in. 1000 cycles) of scrubbing at 1600 F against an Inconel 625 rub surface with no chips or signs of damage. Flow rates measured for the wafers before and after scrubbing were almost identical and were up to 32 times lower than those recorded for the best braided rope seal flow blockers. Canted coil springs and silicon nitride compression springs showed promise conceptually as potential seal preloading devices to help maintain seal resiliency. A finite element model of the canted coil spring revealed that it should be possible to produce a spring out of high temperature materials for applications at 2000+ F.

  11. High Temperature Propulsion System Structural Seals for Future Space Launch Vehicles

    NASA Technical Reports Server (NTRS)

    Dunlap, Patrick H., Jr.; Steinetz, Bruce M.; DeMange, Jeffrey J.

    2003-01-01

    Durable, flexible sliding seals are required in advanced hypersonic engines to seal the perimeters of movable engine ramps for efficient, safe operation in high heat flux environments at temperatures of 2000 to 2500 F. Current seal designs do not meet the demanding requirements for future engines, so NASA's Glenn Research Center is developing advanced seals and preloading devices to overcome these shortfalls. An advanced ceramic wafer seal design and two types of seal preloading devices were evaluated in a series of compression, scrub, and flow tests. Silicon nitride wafer seals survived 2000 in. (1000 cycles) of scrubbing at room temperature against an Inconel 625 rub surface with no chips or signs of damage. Flow rates measured for the wafers before and after scrubbing were almost identical and were much lower than those recorded for the best braided rope seal flow blockers. Canted coil springs and silicon nitride compression springs showed promise conceptually as potential seal preloading devices to help maintain seal resiliency. A finite element model of the canted coil spring revealed that it should be possible to produce a spring out of high temperature materials for applications at 2000+ F.

  12. Coaxial twin-shaft magnetic fluid seals applied in vacuum wafer-handling robot

    NASA Astrophysics Data System (ADS)

    Cong, Ming; Wen, Haiying; Du, Yu; Dai, Penglei

    2012-07-01

    Compared with traditional mechanical seals, magnetic fluid seals have unique characters of high airtightness, minimal friction torque requirements, pollution-free and long life-span, widely used in vacuum robots. With the rapid development of Integrate Circuit (IC), there is a stringent requirement for sealing wafer-handling robots when working in a vacuum environment. The parameters of magnetic fluid seals structure is very important in the vacuum robot design. This paper gives a magnetic fluid seal device for the robot. Firstly, the seal differential pressure formulas of magnetic fluid seal are deduced according to the theory of ferrohydrodynamics, which indicate that the magnetic field gradient in the sealing gap determines the seal capacity of magnetic fluid seal. Secondly, the magnetic analysis model of twin-shaft magnetic fluid seals structure is established. By analyzing the magnetic field distribution of dual magnetic fluid seal, the optimal value ranges of important parameters, including parameters of the permanent magnetic ring, the magnetic pole tooth, the outer shaft, the outer shaft sleeve and the axial relative position of two permanent magnetic rings, which affect the seal differential pressure, are obtained. A wafer-handling robot equipped with coaxial twin-shaft magnetic fluid rotary seals and bellows seal is devised and an optimized twin-shaft magnetic fluid seals experimental platform is built. Test result shows that when the speed of the two rotational shafts ranges from 0-500 r/min, the maximum burst pressure is about 0.24 MPa. Magnetic fluid rotary seals can provide satisfactory performance in the application of wafer-handling robot. The proposed coaxial twin-shaft magnetic fluid rotary seal provides the instruction to design high-speed vacuum robot.

  13. Bond strength to root dentin and fluid filtration test of AH Plus/gutta-percha, EndoREZ and RealSeal systems

    PubMed Central

    MAHDI, Alaa Abdul; BOLAÑOS-CARMONA, Victoria; GONZALEZ-LOPEZ, Santiago

    2013-01-01

    Objectives To investigate the bond strength and seal ability produced by AH Plus/gutta-percha, EndoREZ and RealSeal systems to root canal dentin. Material and Methods Sixty extracted single-root human teeth, instrumented manually to size 40, were divided into three groups (n=20) according to the sealer used; G1: AH Plus, G2: EndoREZ, and G3: RealSeal sealers. After filling using the lateral condensation technique, each sealer group was randomly divided into two subgroups according to the tests applied (n=10 for µPush-out test and n=10 for fluid filtration test). A fluid filtration method was used for quantitative evaluation of apical leakage. Four 1-mm-thick slices (cervical and medium level) were obtained from each root sample and a µPush-out test was performed. Failure modes were examined under microscopy at 40x, and a one-way ANOVA was applied to analyze the permeability. Non-parametrical statistics for related (Friedman's and Wilcoxon's rank tests) or unrelated samples (Kruskal-Wallis' and Mann-Whitney's tests) allowed for comparisons of µPush-out strength values among materials at the different levels. Statistical significance was accepted for p values <.05. Results There are no significant differences among fluid filtration of the three sealers. The sealer/core material does not significantly influence the µPush-out bond strength values (F=2.49; p=0.10), although statistically significant differences were detected with regard to root level (Chi2=23.93; p<0.001). AH Plus and RealSeal obtained higher bond strength to intraradicular dentin in the medium root slices. Conclusions There are no significant differences between the permeability and global µPush-out bond strength to root canal dentin achieved by AH Plus/gutta-percha, EndoREZ and RealSeal systems. PMID:24037078

  14. Apparatus and method for pressure testing closure disks

    DOEpatents

    Merten, Jr., Charles W.

    1992-01-21

    A method and device for testing the burst pressure of closure disks which provides high pressure to both sides of a disk and rapidly releases pressure from one side thereof causing a high rate of change of pressure. A hollow notched plug allows the rapid release of pressure upon rupturing. A tensile load is transmitted by a piston in combination with fluid pressure to the hollow notched plug.

  15. Solidification Using a Baffle in Sealed Ampoules (SUBSA)

    NASA Technical Reports Server (NTRS)

    Marin, C.; Ostrogorsky, A. G.; Volz, M.; Luz, P.; Jeter, L.; Spivey, R.; Burton, H.; Smith, G.; Knowles, T. R.; Bonner, W. A.

    2003-01-01

    Solidification Using a Baffle in Sealed Ampoules (SUBSA) will be the first materials science experiment conducted in the Microgravity Science Glovebox (MSG) Facility at the International Space Station (ISS) Alpha. The launch is schedule for May 31, 2002. Using the specially developed furnace, 10 Te and Zn-doped single crystals of InSb will be directionally solidified in microgravity. A key goal of the SUBSA investigation is to (i) clarify the origin of the melt motion in space laboratories and (ii) to reduce the magnitude of the melt motion to the point that it does not interfere with the transport phenomena. These goals will be accomplished through a special ampoule and furnace design. A disk-shaped baffle, positioned close to the freezing front, is used to reduce melt motion. Furthermore, the solidification will be visualized by using a transparent furnace, with a video camera, continuously sending images to the earth. This allows detection of bubbles and melt de-wetting that could cause surface tension driven convection. In preparation for the space experiments, 30 ground-based experiments were conducted. The results of ground based tests and numerical modeling will be presented. Based on numerical modeling, 12 mm 1D silica ampoules were selected. The small diameter ampoule favors closer placement of the baffle to the interface, without excessive radial segregation caused by forced convection while providing more damping of natural convection. The parts in the silica ampoule include 2 carbon springs made by Energy Science Laboratories, Inc., a pyrocarbon-coated graphite cylinder, pyrocarbon-coated graphite a baffle with the shaft and the InSb charge with the seed crystal grown by W.A. Bonner of Crystallod Inc.

  16. Performance of bolted closure joint elastomers under cask aging conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Verst, C.; Sindelar, R.; Skidmore, E.

    The bolted closure joint of a bare spent fuel cask is susceptible to age-related degradation and potential loss of confinement function under long-term storage conditions. Elastomeric seals, a component of the joint typically used to facilitate leak testing of the primary seal that includes the metallic seal and bolting, is susceptible to degradation over time by several mechanisms, principally via thermo-oxidation, stress-relaxation, and radiolytic degradation under time and temperature condition. Irradiation and thermal exposure testing and evaluation of an ethylene-propylene diene monomer (EPDM) elastomeric seal material similar to that used in the CASTOR® V/21 cask for a matrix of temperaturemore » and radiation exposure conditions relevant to the cask extended storage conditions, and development of semiempirical predictive models for loss of sealing force is in progress. A special insert was developed to allow Compressive Stress Relaxation (CSR) measurements before and after the irradiation and/or thermal exposure without unloading the elastomer. A condition of the loss of sealing force for the onset of leakage was suggested. The experimentation and modeling being performed could enable acquisition of extensive coupled aging data as well as an estimation of the timeframe when loss of sealing function under aging (temperature/radiation) conditions may occur.« less

  17. Effect of carbonated water manufactured by a soda carbonator on etched or sealed enamel

    PubMed Central

    Ryu, Hyo-kyung; Kim, Yong-do; Heo, Sung-su

    2018-01-01

    Objective The purpose of this study was to determine the effects of carbonated water on etched or sealed enamel according to the carbonation level and the presence of calcium ions. Methods Carbonated water with different carbonation levels was manufactured by a soda carbonator. Seventy-five premolar teeth were randomly divided into a control group and 4 experimental groups in accordance with the carbonation level and the presence of calcium ions in the test solutions. After specimen preparation of the Unexposed, Etched, and Sealed enamel subgroups, all the specimens were submerged in each test solution for 15 minutes three times a day during 7 days. Microhardness tests on the Unexposed and Etched enamel subgroups were performed with 10 specimens from each group. Scanning electron microscopy (SEM) tests on the Unexposed, Etched, and Sealed enamel subgroups were performed with 5 specimens from each group. Microhardness changes in different groups were statistically compared using paired t-tests, the Wilcoxon signed rank test, and the Kruskal-Wallis test. Results The microhardness changes were significantly different between the groups (p = 0.000). The microhardness changes in all experimental groups except Group 3 (low-level carbonated water with calcium ions) were significantly greater than those in the Control group. SEM showed that etched areas of the specimen were affected by carbonated water and the magnitude of destruction varied between groups. Adhesive material was partially removed in groups exposed to carbonated water. Conclusions Carbonated water has negative effects on etched or sealed enamel, resulting in decreased microhardness and removal of the adhesive material. PMID:29291188

  18. Sealing scientific probes against deep space and the Venusian environment A tough job

    NASA Technical Reports Server (NTRS)

    Pokras, J.; Reinert, R. P.; Switz, R. J.

    1978-01-01

    The Pioneer Venus mission evolved from studies conducted during the late 1960s and early 1970s. It was found that a need existed for low cost orbiters and landers to explore the planet. The considered mission was to be accomplished with six separate vehicles arriving at Venus nearly simultaneously in mid-December 1978. The probes are designed to survive entry and descent into the atmosphere. A description is presented of the approaches used to maintain sealing integrity for the large and small probes under the constraints imposed by the harsh Venusian environment. Attention is given to probe vehicle configuration, pressure vessel sealing requirements, material and configuration considerations, permanent seals, separable seals, development problems, and aspects of seal testing.

  19. Temperature distributions and thermal stresses in a graded zirconia/metal gas path seal system for aircraft gas turbine engines

    NASA Technical Reports Server (NTRS)

    Taylor, C. M.; Bill, R. C.

    1978-01-01

    A ceramic/metallic aircraft gas turbine outer gas path seal designed for improved engine performance was studied. Transient temperature and stress profiles in a test seal geometry were determined by numerical analysis. During a simulated engine deceleration cycle from sea-level takeoff to idle conditions, the maximum seal temperature occurred below the seal surface, therefore the top layer of the seal was probably subjected to tensile stresses exceeding the modulus of rupture. In the stress analysis both two- and three-dimensional finite element computer programs were used. Predicted trends of the simpler and more easily usable two-dimensional element programs were borne out by the three-dimensional finite element program results.

  20. Rocket engine diagnostics using qualitative modeling techniques

    NASA Technical Reports Server (NTRS)

    Binder, Michael; Maul, William; Meyer, Claudia; Sovie, Amy

    1992-01-01

    Researchers at NASA Lewis Research Center are presently developing qualitative modeling techniques for automated rocket engine diagnostics. A qualitative model of a turbopump interpropellant seal system has been created. The qualitative model describes the effects of seal failures on the system steady-state behavior. This model is able to diagnose the failure of particular seals in the system based on anomalous temperature and pressure values. The anomalous values input to the qualitative model are generated using numerical simulations. Diagnostic test cases include both single and multiple seal failures.

  1. Rocket engine diagnostics using qualitative modeling techniques

    NASA Technical Reports Server (NTRS)

    Binder, Michael; Maul, William; Meyer, Claudia; Sovie, Amy

    1992-01-01

    Researchers at NASA Lewis Research Center are presently developing qualitative modeling techniques for automated rocket engine diagnostics. A qualitative model of a turbopump interpropellant seal system was created. The qualitative model describes the effects of seal failures on the system steady state behavior. This model is able to diagnose the failure of particular seals in the system based on anomalous temperature and pressure values. The anomalous values input to the qualitative model are generated using numerical simulations. Diagnostic test cases include both single and multiple seal failures.

  2. Space Shuttle Orbital Maneuvering Subsystem (OMS) Engine Propellant Leakage Ball-Valve Shaft Seals

    NASA Technical Reports Server (NTRS)

    Lueders, Kathy; Buntain, Nick; Fries, Joseph (Technical Monitor)

    1999-01-01

    Evidence of propellant leakage across ball-valve shaft seals has been noted during the disassembly of five flight engines and one test engine at the NASA Lyndon B. Johnson Space Center, White Sands Test Facility. Based on data collected during the disassembly of these five engines, the consequences of propellant leakage across the ball-valve shaft seals can be divided into four primary areas of concern: Damage to the ball-valve pinion shafts, damage to sleeved bearings inside the ball-valve and actuator assemblies, degradation of the synthetic rubber o-rings used in the actuator assemblies, and corrosion and degradation to the interior of the actuator assemblies. The exact time at which leakage across the ball-valve shaft seals occurs has not been determined, however, the leakage most likely occurs during engine firings when, depending on the specification used, ball-valve cavity pressures range as high as 453 to 550 psia. This potential pressure range for the ball-valve cavities greatly exceeds the acceptance leakage test pressure of 332 psia. Since redesign and replacement of the ball-valve shaft seals is unlikely, the near term solution to prevent damage that occurs from shaft-seal leakage is to implement a routine overhaul and maintenance program for engines in the fleet. Recommended repair, verification, and possible preventative maintenance measures are discussed in the paper.

  3. Disk Susceptibility Studies with Cefazolin and Cephalothin

    PubMed Central

    Actor, Paul; Guarini, Joseph; Uri, Joseph; Dickson, Judith; Pauls, John F.; Weisbach, Jerry A.

    1974-01-01

    Cefazolin and cephalothin disk susceptibility and minimal inhibitory concentration determinations were conducted on 591 clinical isolates. Cefazolin demonstrated superior activity, as shown by lower minimal inhibitory concentrations, and a greater percentage of isolates inhibited in the disk susceptibility test. The cephalothin antibiotic class disk by the standard Bauer-Kirby method failed to detect susceptibility to cefazolin in a significant percentage of Escherchia coli, Enterobacter species, and Enterococcus isolates. A separate cefazolin disk with a susceptibility cut-off point of 18 mm is recommended. An alternative to a separate cefazolin disk would be a reinterpretation of the cephalothin susceptibility disk zone diameters so that it would more adequately predict cefazolin activity. PMID:4840450

  4. Hydrodynamic perception in true seals (Phocidae) and eared seals (Otariidae).

    PubMed

    Hanke, Wolf; Wieskotten, Sven; Marshall, Christopher; Dehnhardt, Guido

    2013-06-01

    Pinnipeds, that is true seals (Phocidae), eared seals (Otariidae), and walruses (Odobenidae), possess highly developed vibrissal systems for mechanoreception. They can use their vibrissae to detect and discriminate objects by direct touch. At least in Phocidae and Otariidae, the vibrissae can also be used to detect and analyse water movements. Here, we review what is known about this ability, known as hydrodynamic perception, in pinnipeds. Hydrodynamic perception in pinnipeds developed convergently to the hydrodynamic perception with the lateral line system in fish and the sensory hairs in crustaceans. So far two species of pinnipeds, the harbour seal (Phoca vitulina) representing the Phocidae and the California sea lion (Zalophus californianus) representing the Otariidae, have been studied for their ability to detect local water movements (dipole stimuli) and to follow hydrodynamic trails, that is the water movements left behind by objects that have passed by at an earlier point in time. Both species are highly sensitive to dipole stimuli and can follow hydrodynamic trails accurately. In the individuals tested, California sea lions were clearly more sensitive to dipole stimuli than harbour seals, and harbour seals showed a superior trail following ability as compared to California sea lions. Harbour seals have also been shown to derive additional information from hydrodynamic trails, such as motion direction, size and shape of the object that caused the trail (California sea lions have not yet been tested). The peculiar undulated shape of the harbour seals' vibrissae appears to play a crucial role in trail following, as it suppresses self-generated noise while the animal is swimming.

  5. An Experimental Investigation of Silicone-to-Metal Bond Strength in Composite Space Docking System Seals

    NASA Technical Reports Server (NTRS)

    Gaier, James R.; Siamidis, John; Larkin, Elizabeth M. G.

    2010-01-01

    The National Aeronautics and Space Administration (NASA) is currently developing a new universal docking mechanism for future space exploration missions called the Low Impact Docking System (LIDS). A candidate LIDS main interface seal design is a composite assembly of silicone elastomer seals vacuum molded into grooves in an electroless nickel plated aluminum retainer. The strength of the silicone-tometal bond is a critical consideration for the new system, especially due to the presence of small areas of disbond created during the molding process. In the work presented herein, seal-to-retainer bonds of subscale seal specimens with different sizes of intentional disbond were destructively tensile tested. Nominal specimens without intentional disbonds were also tested. Tension was applied either uniformly on the entire seal circumference or locally in one short circumferential length. Bond failure due to uniform tension produced a wide scatter of observable failure modes and measured load-displacement behaviors. Although the preferable failure mode for the seal-to-retainer bond is cohesive failure of the elastomer material, the dominant observed failure mode under the uniform loading condition was found to be the less desirable adhesive failure of the bond in question. The uniform tension case results did not show a correlation between disbond size and bond strength. Localized tension was found to produce failure either as immediate tearing of the elastomer material outside the bond region or as complete peel-out of the seal in one piece. The obtained results represent a valuable benchmark for comparison in the future between adhesion loads under various separation conditions and composite seal bond strength.

  6. Assessment of Metronidazole Susceptibility in Helicobacter pylori: Statistical Validation and Error Rate Analysis of Breakpoints Determined by the Disk Diffusion Test

    PubMed Central

    Chaves, Sandra; Gadanho, Mário; Tenreiro, Rogério; Cabrita, José

    1999-01-01

    Metronidazole susceptibility of 100 Helicobacter pylori strains was assessed by determining the inhibition zone diameters by disk diffusion test and the MICs by agar dilution and PDM Epsilometer test (E test). Linear regression analysis was performed, allowing the definition of significant linear relations, and revealed correlations of disk diffusion results with both E-test and agar dilution results (r2 = 0.88 and 0.81, respectively). No significant differences (P = 0.84) were found between MICs defined by E test and those defined by agar dilution, taken as a standard. Reproducibility comparison between E-test and disk diffusion tests showed that they are equivalent and with good precision. Two interpretative susceptibility schemes (with or without an intermediate class) were compared by an interpretative error rate analysis method. The susceptibility classification scheme that included the intermediate category was retained, and breakpoints were assessed for diffusion assay with 5-μg metronidazole disks. Strains with inhibition zone diameters less than 16 mm were defined as resistant (MIC > 8 μg/ml), those with zone diameters equal to or greater than 16 mm but less than 21 mm were considered intermediate (4 μg/ml < MIC ≤ 8 μg/ml), and those with zone diameters of 21 mm or greater were regarded as susceptible (MIC ≤ 4 μg/ml). Error rate analysis applied to this classification scheme showed occurrence frequencies of 1% for major errors and 7% for minor errors, when the results were compared to those obtained by agar dilution. No very major errors were detected, suggesting that disk diffusion might be a good alternative for determining the metronidazole sensitivity of H. pylori strains. PMID:10203543

  7. Detecting a Defective Casing Seal at the Top of a Bedrock Aquifer.

    PubMed

    Richard, Sandra K; Chesnaux, Romain; Rouleau, Alain

    2016-03-01

    An improperly sealed casing can produce a direct hydraulic connection between two or more originally isolated aquifers with important consequences regarding groundwater quantity and quality. A recent study by Richard et al. (2014) investigated a monitoring well installed in a fractured rock aquifer with a defective casing seal at the soil-bedrock interface. A hydraulic short circuit was detected that produced some leakage between the rock and the overlying deposits. A falling-head permeability test performed in this well showed that the usual method of data interpretation is not valid in this particular case due to the presence of a piezometric error. This error is the direct result of the preferential flow originating from the hydraulic short circuit and the subsequent re-equilibration of the piezometric levels of both aquifers in the vicinity of the inlet and the outlet of the defective seal. Numerical simulations of groundwater circulation around the well support the observed impact of the hydraulic short circuit on the results of the falling-head permeability test. These observations demonstrate that a properly designed falling-head permeability test may be useful in the detection of defective casing seals. © 2015, National Ground Water Association.

  8. High Temperature Performance Evaluation of a Compliant Foil Seal

    NASA Technical Reports Server (NTRS)

    Salehi, Mohsen; Heshmat, Hooshang; Walton, James F., II

    2001-01-01

    The key points to be gleaned from the effort reported herein are that the CFS (Compliant Foil Seal) has been demonstrated in conjunction with a foil bearing in a small gas turbine simulator at temperatures as high as 1000 F and outperformed a comparable brush seal. Having demonstrated the feasibility of the CFS, it would appear that this new seal design has application potential in a wide range of machines. What remains is to demonstrate performance at higher pressure ratios, consistent performance at large rotor excursions and the ability to manufacture the seal in much larger sizes exceeding by an order of magnitude that which has been tested to date.

  9. High temperature lubricant screening and systems studies

    NASA Technical Reports Server (NTRS)

    Jones, D. A.

    1973-01-01

    Four candidate lubricants for next generation aircraft gas turbine application were tested under open atmosphere conditions in a rig simulating an advanced engine 125 mm bore mainshaft thrust bearing position. Testing was conducted at speeds to 24,000 rpm (3,000,000 bearing DN), bearing ring temperature of 500 F, and with 1200 F air and 100 psi differential pressure across the seals installed in a dual tandem arrangement. Test bearing was a 125 mm bore split inner ring, outer race riding angular contact ball bearing under a 3280 lb. thrust load. One lubricant, a type 2 ester, performed extremely well. The mainshaft seal limited the performance. Numerous design improvements for this seal were indicated.

  10. Future Missions to Study Signposts of Planets

    NASA Technical Reports Server (NTRS)

    Traub, Wesley A.

    2011-01-01

    This talk will focus on debris disks, will compare ground and space and will discuss 2 proposed missions, Exoplanetary Circumstellar Environments And Disk Explorer (EXCEDE) and Zodiac II. At least 2 missions have been proposed for disk imaging. The technology is largely in hand today. A small mission would do excellent disk science, and would test technology for a future large mission for planets.

  11. Dynamical simulations of the interacting galaxies in the NGC 520/UGC 957 system

    NASA Technical Reports Server (NTRS)

    Stanford, S. A.; Balcells, Marc

    1991-01-01

    Numerical simulations of the interacting galaxies in the NGC 520/UGC 957 system are presented. Two sets of models were produced to investigate the postulated three-galaxy system of two colliding disk galaxies within NGC 520 and the dwarf galaxy UGC 957. The first set of models simulated a dwarf perturbing one-disk galaxy, which tested the possibility that NGC 520 contains only one galaxy disturbed by the passage of UGC 957. The resulting morphology of the perturbed single disk in the simulation fails to reproduce the observed tidal tails and northwest mass condensation of NGC 520. A second set of models simulated two colliding disks, which tested the hypothesis that NGC 520 itself contains two galaxies in a strong collision and UGC 957 is unimportant to the interaction. These disk-disk models produced a good match to the morphology of the present NGC 520. It is concluded that (1) NGC 520 contains two colliding disk galaxies which have produced the brighter southern half of the long tidal tail and (2) UGC 957, which may originally have been a satellite of one of the disk galaxies, formed the diffuse northern tail as it orbited NGC 520.

  12. Cell Attachment Following Instrumentation with Titanium and Plastic Instruments, Diode Laser, and Titanium Brush on Titanium, Titanium-Zirconium, and Zirconia Surfaces.

    PubMed

    Lang, Melissa S; Cerutis, D Roselyn; Miyamoto, Takanari; Nunn, Martha E

    2016-01-01

    The aim of this study was to evaluate the surface characteristics and gingival fibroblast adhesion of disks composed of implant and abutment materials following brief and repeated instrumentation with instruments commonly used in procedures for implant maintenance, stage-two implant surgery, and periimplantitis treatment. One hundred twenty disks (40 titanium, 40 titaniumzirconium, 40 zirconia) were grouped into treatment categories of instrumentation by plastic curette, titanium curette, diode microlaser, rotary titanium brush, and no treatment. Twenty strokes were applied to half of the disks in the plastic and titanium curette treatment categories, while half of the disks received 100 strokes each to simulate implant maintenance occurring on a repetitive basis. Following analysis of the disks by optical laser profilometry, disks were cultured with human gingival fibroblasts. Cell counts were conducted from scanning electron microscopy (SEM) images. Differences in surface roughness across all instruments tested for zirconia disks were negligible, while both titanium disks and titaniumzirconium disks showed large differences in surface roughness across the spectrum of instruments tested. The rotary titanium brush and the titanium curette yielded the greatest overall mean surface roughness, while the plastic curette yielded the lowest mean surface roughness. The greatest mean cell counts for each disk type were as follows: titanium disks with plastic curettes, titanium-zirconium disks with titanium curettes, and zirconia disks with the diode microlaser. Repeated instrumentation did not result in cumulative changes in surface roughness of implant materials made of titanium, titanium-zirconium, or zirconia. Instrumentation with plastic implant curettes on titanium and zirconia surfaces appeared to be more favorable than titanium implant curettes in terms of gingival fibroblast attachment on these surfaces.

  13. Method and apparatus for testing surface characteristics of a material

    NASA Technical Reports Server (NTRS)

    Johnson, David L. (Inventor); Kersker, Karl D. (Inventor); Stratton, Troy C. (Inventor); Richardson, David E. (Inventor)

    2006-01-01

    A method, apparatus and system for testing characteristics of a material sample is provided. The system includes an apparatus configured to house the material test sample while defining a sealed volume against a surface of the material test sample. A source of pressurized fluid is in communication with, and configured to pressurize, the sealed volume. A load applying apparatus is configured to apply a defined load to the material sample while the sealed volume is monitored for leakage of the pressurized fluid. Thus, the inducement of surface defects such as microcracking and crazing may be detected and their effects analyzed for a given material. The material test samples may include laminar structures formed of, for example, carbon cloth phenolic, glass cloth phenolic, silica cloth phenolic materials or carbon-carbon materials. In one embodiment the system may be configured to analyze the material test sample while an across-ply loading is applied thereto.

  14. Dynamic and Static High Temperature Resistant Ceramic Seals for X- 38 re-Entry Vehicle

    NASA Astrophysics Data System (ADS)

    Handrick, Karin E.; Curry, Donald M.

    2002-01-01

    In a highly successful partnership, NAS A, ESA, DLR (German Space Agency) and European industry are building the X-38, V201 re-entry spacecraft, the prototype of the International Space Station's Crew Return Vehicle (CRV). This vehicle would serve both as an ambulance for medical emergencies and as an evacuation vehicle for the Space Station. The development of essential systems and technologies for a reusable re-entry vehicle is a first for Europe, and sharing the development of an advanced re-entry spacecraft with foreign partners is a first for NASA. NASA, in addition to its subsystem responsibilities, is performing overall X-38 vehicle system engineering and integration, will launch V201 on the Space Shuttle, deliver flight data for post-flight analysis and assessment and is responsible for development and manufacture of structural vehicle components and thermal protection (TPS) tiles. The major European objective for cooperation with NASA on X-38 was to establish a clear path through which key technologies needed for future space transportation systems could be developed and validated at affordable cost and with controlled risk. Europe has taken the responsibility to design and manufacture hot control surfaces like metallic rudders and ceramic matrix composites (CMC) body flaps, thermal protection systems such as CMC leading edges, the CMC nose cap and -skirt, insulation, landing gears and elements of the V201 primary structure. Especially hot control surfaces require extremely high temperature resistant seals to limit hot gas ingestion and transfer of heat to underlying low-temperature structures to prevent overheating of these structures and possible loss of the vehicle. Complex seal interfaces, which have to fulfill various, tight mission- and vehicle-related requirements exist between the moveable ceramic body flaps and the bottom surface of the vehicle, between the rudder and fin structure and the ceramic leading edge panel and TPS tiles. While NASA concentrated on the development, qualification and manufacture of dynamic seals in the rudder area, the responsibility of MAN Technologie focused on the development, lay-out, qualification and flight hardware manufacture of static and dynamic seals in ceramic hot structures' associated gaps and interfaces, dealing with re-entry temperatures up to 1600°C. This paper presents results for temperature and mechanical stability, flow, scrub (up to 1000 cycles) and of arc jet tests under representative low boundary conditions and plasma step/gap tests, conducted during the development and qualification phases of these different kind of ceramic seals. Room temperature seal compression tests were performed at low compression levels to determine load versus linear compression, preload, contact area, stiffness and resiliency characteristics under low load conditions. Flow tests with thermally aged seals were conducted at ambient temperature to examine leakage at low compression levels and in as-manufactured conditions. Seal scrub tests were performed to examine durability and wear resistance and to recommend surface treatments required to maximize seal wear life. Results of arc jet/plasma tests under simulated re-entry conditions (pressure, temperature) verified seal temperature stability and function under representative assembly and interface conditions. Each of these specifically developed seals fulfilled the requirements and is qualified for flight on X-38, V201.

  15. Atmosphere-entry behavior of a modular, disk-shaped, isotope heat source.

    NASA Technical Reports Server (NTRS)

    Vorreiter, J. W.; Pitts, W. C.; Stine, H. A.; Burns, J. J.

    1973-01-01

    The authors have studied the entry and impact behavior of an isotope heat source for space nuclear power that disassembles into a number of modules which would enter the earth's atmosphere separately if a flight aborted. These modules are disk-shaped units, each with its own reentry heat shield and protective impact container. In normal operation, the disk modules are stacked inside the generator, but during a reentry abort they separate and fly as individual units of low ballistic coefficient. Flight tests at hypersonic speeds have confirmed that a stack of disks will separate and assume a flat-forward mode of flight. Free-fall tests of single disks have demonstrated a nominal impact velocity of 30 m/sec at sea level for a practical range of ballistic coefficients.

  16. Turbine Rotor Disk Health Monitoring Assessment Based on Sensor Technology and Spin Tests Data

    PubMed Central

    2013-01-01

    The paper focuses on presenting data obtained from spin test experiments of a turbine engine like rotor disk and assessing their correlation to the development of a structural health monitoring and fault detection system. The data were obtained under various operating conditions such as the rotor disk being artificially induced with and without a notch and rotated at a rotational speed of up to 10,000 rpm under balanced and imbalanced state. The data collected included blade tip clearance, blade tip timing measurements, and shaft displacements. Two different sensor technologies were employed in the testing: microwave and capacitive sensors, respectively. The experimental tests were conducted at the NASA Glenn Research Center's Rotordynamics Laboratory using a high precision spin system. Disk flaw observations and related assessments from the collected data for both sensors are reported and discussed. PMID:23844396

  17. Size Constancy in Infants: 4-Month-Olds' Responses to Physical versus Retinal Image Size

    ERIC Educational Resources Information Center

    Granrud, Carl E.

    2006-01-01

    This study tested whether 4-month-old infants respond primarily to objects' physical or retinal image sizes. In the study's main experiment, infants were habituated to either a 6-cm-diameter disk at a distance of 18 cm or a 10-cm disk at 50 cm. They were then given 2 test trials in which the 6- and 10-cm disks were presented side by side at a…

  18. Performance testing of elastomeric seal materials under low and high temperature conditions: Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    BRONOWSKI,DAVID R.

    The US Department of Energy Offices of Defense Programs and Civilian Radioactive Waste Management jointly sponsored a program to evaluate elastomeric O-ring seal materials for radioactive material shipping containers. The report presents the results of low- and high-temperature tests conducted on 27 common elastomeric compounds.

  19. Space shuttle seal material and design development for earth storable propellant systems

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The results of a program to investigate and characterize seal materials suitable for space shuttle storable propellant systems are given. Two new elastomeric materials were identified as being potentially superior to existing state-of-the art materials for specific sealing applications. These materials were AF-E-124D and AF-E-411. AF-E-124D is a cured perfluorinated polymer suitable for use with dinitrogen tetroxide oxidizer, and hydrazine base fuels. AF-E-411 is an ethylene propylene terpolymer material for hydrazine base fuel service. Data are presented relative to low and high temperature characteristics as well as propellant exposure effects. Types of data included are: mechanical properties, stress strain curves, friction and wear characteristics, compression set and permeability. Sealing tests with a flat poppet-seal valve were conducted for verification of sealing capability. A bibliography includes over 200 references relating to seal design or materials and presents a concise tabulation of the more useful seal design data sources.

  20. Evaluation of a Conductive Elastomer Seal for Spacecraft

    NASA Technical Reports Server (NTRS)

    Daniels, C. C.; Mather, J. L.; Oravec, H. A.; Dunlap, P. H., Jr.

    2016-01-01

    An electrically conductive elastomer was evaluated as a material candidate for a spacecraft seal. The elastomer used electrically conductive constituents as a means to reduce the resistance between mating interfaces of a sealed joint to meet spacecraft electrical bonding requirements. The compound's outgassing levels were compared against published NASA requirements. The compound was formed into a hollow O-ring seal and its compression set was measured. The O-ring seal was placed into an interface and the electrical resistance and leak rate were quantified. The amount of force required to fully compress the test article in the sealing interface and the force needed to separate the joint were also measured. The outgassing and resistance measurements were below the maximum allowable levels. The room temperature compression set and leak rates were fairly high when compared against other typical spacecraft seal materials, but were not excessive. The compression and adhesion forces were desirably low. Overall, the performance of the elastomer compound was sufficient to be considered for future spacecraft seal applications.

Top