Monolithic LTCC seal frame and lid
Krueger, Daniel S.; Peterson, Kenneth A.; Stockdale, Dave; Duncan, James Brent; Riggs, Bristen
2016-06-21
A method for forming a monolithic seal frame and lid for use with a substrate and electronic circuitry comprises the steps of forming a mandrel from a ceramic and glass based material, forming a seal frame and lid block from a ceramic and glass based material, creating a seal frame and lid by forming a compartment and a plurality of sidewalls in the seal frame and lid block, placing the seal frame and lid on the mandrel such that the mandrel fits within the compartment, and cofiring the seal frame and lid block.
Ceramic-glass-metal seal by microwave heating
Meek, Thomas T.; Blake, Rodger D.
1985-01-01
A method for producing a ceramic-glass-metal seal by microwaving mixes a slurry of glass sealing material and coupling agent and applies same to ceramic and metal workpieces. The slurry and workpieces are then insulated and microwaved at a power, time and frequency sufficient to cause a liquid phase reaction in the slurry. The reaction of the glass sealing material forms a chemically different seal than that which would be formed by conventional heating because it is formed by diffusion rather than by wetting of the reactants.
Ceramic-glass-metal seal by microwave heating
Meek, T.T.; Blake, R.D.
1983-10-04
A method for producing a ceramic-glass-metal seal by microwaving, mixes a slurry of glass sealing material and coupling agent and applies same to ceramic and metal workpieces. The slurry and workpieces are then insulated and microwaved at a power, time and frequency sufficient to cause a liquid-phase reaction in the slurry. The reaction of the glass sealing material forms a chemically different seal than that which would be formed by conventional heating because it is formed by diffusion rather than by wetting of the reactants.
NASA Technical Reports Server (NTRS)
Feigenbaum, Haim (Inventor); Pudick, Sheldon (Inventor)
1988-01-01
A process for forming an integral edge seal in a gas distribution plate for use in a fuel cell. A seal layer is formed along an edge of a porous gas distribution plate by impregnating the pores in the layer with a material adapted to provide a seal which is operative dry or when wetted by an electrolyte of a fuel cell. Vibratory energy is supplied to the sealing material during the step of impregnating the pores to provide a more uniform seal throughout the cross section of the plate.
Method of assembling and sealing an alkali metal battery
Elkins, Perry E.; Bell, Jerry E.; Harlow, Richard A.; Chase, Gordon G.
1983-01-01
A method of initially assembling and then subsequently hermetically sealing a container portion of an alkali metal battery to a ceramic portion of such a battery is disclosed. Sealing surfaces are formed respectively on a container portion and a ceramic portion of an alkali metal battery. These sealing surfaces are brought into juxtaposition and a material is interposed therebetween. This interposed material is one which will diffuse into sealing relationship with both the container portion and the ceramic portion of the alkali metal battery at operational temperatures of such a battery. A pressure is applied between these sealing surfaces to cause the interposed material to be brought into intimate physical contact with such juxtaposed surfaces. A temporary sealing material which will provide a seal against a flow of alkali metal battery reactants therethrough at room temperatures and is applied over the juxtaposed sealing surfaces and material interposed therebetween. The entire assembly is heated to an operational temperature so that the interposed material diffuses into the container portion and the ceramic portion to form a hermetic seal therebetween. The pressure applied to the juxtaposed sealing surfaces is maintained in order to ensure the continuation of the hermetic seal.
Method of assembling and sealing an alkali metal battery
Elkins, P.E.; Bell, J.E.; Harlow, R.A.; Chase, G.G.
1983-03-01
A method of initially assembling and then subsequently hermetically sealing a container portion of an alkali metal battery to a ceramic portion of such a battery is disclosed. Sealing surfaces are formed respectively on a container portion and a ceramic portion of an alkali metal battery. These sealing surfaces are brought into juxtaposition and a material is interposed there between. This interposed material is one which will diffuse into sealing relationship with both the container portion and the ceramic portion of the alkali metal battery at operational temperatures of such a battery. A pressure is applied between these sealing surfaces to cause the interposed material to be brought into intimate physical contact with such juxtaposed surfaces. A temporary sealing material which will provide a seal against a flow of alkali metal battery reactants there through at room temperatures and is applied over the juxtaposed sealing surfaces and material interposed there between. The entire assembly is heated to an operational temperature so that the interposed material diffuses into the container portion and the ceramic portion to form a hermetic seal there between. The pressure applied to the juxtaposed sealing surfaces is maintained in order to ensure the continuation of the hermetic seal. 4 figs.
Ceramic-glass-ceramic seal by microwave heating
Meek, T.T.; Blake, R.D.
1983-10-04
A method for producing a ceramic-glass-ceramic seal by microwaving, mixes a slurry of glass sealing material and coupling agent and applies same to ceramic workpieces. The slurry and workpieces are placed together, insulated and then microwaved at a power, time and frequency sufficient to cause a liquid phase reaction in the slurry. The reaction of the glass sealing material forms a chemically different seal than that which would be formed by conventional heating because it is formed by a diffusion rather than by wetting of the reactants.
Ceramic-glass-ceramic seal by microwave heating
Meek, Thomas T.; Blake, Rodger D.
1985-01-01
A method for producing a ceramic-glass-ceramic seal by microwaving, mixes a slurry of glass sealing material and coupling agent and applies same to ceramic workpieces. The slurry and workpieces are placed together, insulated and then microwaved at a power, time and frequency sufficient to cause a liquid phase reaction in the slurry. The reaction of the glass sealing material forms a chemically different seal than that which would be formed by conventional heating because it is formed by a diffusion rather than by wetting of the reactants.
Test device for measuring permeability of a barrier material
Reese, Matthew; Dameron, Arrelaine; Kempe, Michael
2014-03-04
A test device for measuring permeability of a barrier material. An exemplary device comprises a test card having a thin-film conductor-pattern formed thereon and an edge seal which seals the test card to the barrier material. Another exemplary embodiment is an electrical calcium test device comprising: a test card an impermeable spacer, an edge seal which seals the test card to the spacer and an edge seal which seals the spacer to the barrier material.
Compliant high temperature seals for dissimilar materials
Rynders, Steven Walton; Minford, Eric; Tressler, Richard Ernest; Taylor, Dale M.
2001-01-01
A high temperature, gas-tight seal is formed by utilizing one or more compliant metallic toroidal ring sealing elements, where the applied pressure serves to activate the seal, thus improving the quality of the seal. The compliant nature of the sealing element compensates for differences in thermal expansion between the materials to be sealed, and is particularly useful in sealing a metallic member and a ceramic tube art elevated temperatures. The performance of the seal may be improved by coating the sealing element with a soft or flowable coating such as silver or gold and/or by backing the sealing element with a bed of fine powder. The material of the sealing element is chosen such that the element responds to stress elastically, even at elevated temperatures, permitting the seal to operate through multiple thermal cycles.
Groh, Edward F.; Cassidy, Dale A.
1978-01-01
A thermocouple lead or other small diameter wire, cable or tube is passed through a thin material such as sheet metal and sealed thereinto by drawing complementary longitudinally angled, laterally rounded grooves terminating at their base ends in a common plane in both sides of the thin material with shearing occuring at the deep end faces thereof to form a rounded opening in the thin material substantially perpendicular to the plane of the thin material, passing a thermocouple lead or similar object through the opening so formed and sealing the opening with a sealant which simultaneously bonds the lead to the thin material.
SEAL FOR HIGH SPEED CENTRIFUGE
Skarstrom, C.W.
1957-12-17
A seal is described for a high speed centrifuge wherein the centrifugal force of rotation acts on the gasket to form a tight seal. The cylindrical rotating bowl of the centrifuge contains a closure member resting on a shoulder in the bowl wall having a lower surface containing bands of gasket material, parallel and adjacent to the cylinder wall. As the centrifuge speed increases, centrifugal force acts on the bands of gasket material forcing them in to a sealing contact against the cylinder wall. This arrangememt forms a simple and effective seal for high speed centrifuges, replacing more costly methods such as welding a closure in place.
Engineered glass seals for solid-oxide fuel cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Surdoval, Wayne; Lara-Curzio, Edgar; Stevenson, Jeffry
2017-02-07
A seal for a solid oxide fuel cell includes a glass matrix having glass percolation therethrough and having a glass transition temperature below 650.degree. C. A deformable second phase material is dispersed in the glass matrix. The second phase material can be a compliant material. The second phase material can be a crushable material. A solid oxide fuel cell, a precursor for forming a seal for a solid oxide fuel cell, and a method of making a seal for a solid oxide fuel cell are also disclosed.
Improved material-bagging device
Wach, C.G.; Nelson, R.E.; Brak, S.B.
1982-01-19
A bagging device for transferring material; specifically contaminated material, from one chamber through an opening in a wall to a second chamber includes a cylindrical housing communicating with the opening and defining a passage between the chambers. A cylindrical cartridge is slidably received within the housing. The cartridge has a substantially rigid cylindrical sleeve to which is affixed a pliable tube. The pliable tube is positioned concentrically about the sleeve and has a pleated portion capable of unfolding from the sleeve and a closed end extending over a terminal end of the sleeve. Sealing means are interposed in sealed relationship between the cartridge and the housing. Material from one chamber is inserted into the cartridge secured in the housing and received in the closed end of the tube which unfolds into the other chamber enclosing the material therein. The tube may then be sealed behind the material and then severed to form a bag-like enclosure defined by the tube's closed terminal end and the new seal. The new seal then forms a terminal end for the unsevered portion of the pliable tube into which additional material may be placed and the bagging process repeated.
Canister, sealing method and composition for sealing a borehole
Brown, Donald W [Los Alamos, NM; Wagh, Arun S [Orland Park, IL
2003-05-13
Canister, sealing method and composition for sealing a borehole. The canister includes a container with slurry inside the container, one or more slurry exits at one end of the container, a pump at the other end of the container, and a piston inside that pushes the slurry though the slurry exit(s), out of the container, and into a borehole. An inflatable packer outside the container provides stabilization in the borehole. A borehole sealing material is made by combining an oxide or hydroxide and a phosphate with water to form a slurry which then sets to form a high strength, minimally porous material which binds well to itself, underground formations, steel and ceramics.
Forming a Turbomachinery Seals Working Group - An Overview and Discussion
NASA Technical Reports Server (NTRS)
Proctor, Margaret P.
2007-01-01
A proposal to form a Turbomachinery Seals Working Group is discussed. Survey responses regarding the purpose, membership, and meeting frequency are presented as well as the areas of expertise and experience of the respondents. The types of seals used, designed, or sold, current work, and technical challenges of turbomachinery seals, their materials, analysis, geometry, manufacturing, maintenance, testing, and incorporation into engine systems are also presented.
Wach, Charles G.; Nelson, Robert E.; Brak, Stephen B.
1984-01-01
A bagging device for transferring material from one chamber through an opening in a wall to a second chamber includes a cylindrical housing communicating with the opening and defining a passage between the chambers. A cylindrical cartridge is slidably received within the housing. The cartridge has a substantially rigid cylindrical sleeve to which is affixed a pliable tube. The pliable tube is positioned concentrically about the sleeve and has a pleated portion capable of unfolding from the sleeve and a closed end extending over a terminal end of the sleeve. Sealing means are interposed in sealed relationship between the cartridge and the housing. Material from one chamber is inserted into the cartridge secured in the housing and received in the closed end of the tube which unfolds into the other chamber enclosing the material therein. The tube may then be sealed behind the material and then severed to form a bag-like enclosure defined by the tube's closed terminal end and the new seal. The new seal then forms a terminal end for the unsevered portion of the pliable tube into which additional material may be placed and the bagging process repeated.
Method of making hermetic seals for hermetic terminal assemblies
Hsu, John S.; Marlino, Laura D.; Ayers, Curtis W.
2010-04-13
This invention teaches methods of making a hermetic terminal assembly comprising the steps of: inserting temporary stops, shims and jigs on the bottom face of a terminal assembly thereby blocking assembly core open passageways; mounting the terminal assembly inside a vacuum chamber using a temporary assembly perimeter seal and flange or threaded assembly interfaces; mixing a seal admixture and hardener in a mixer conveyor to form a polymer seal material; conveying the polymer seal material into a polymer reservoir; feeding the polymer seal material from the reservoir through a polymer outlet valve and at least one polymer outlet tube into the terminal assembly core thereby filling interstitial spaces in the core adjacent to service conduits, temporary stop, and the terminal assembly casing; drying the polymer seal material at room temperature thereby hermetically sealing the core of the terminal assembly; removing the terminal assembly from the vacuum chamber, and; removing the temporary stops, shims.
Pressure Actuated Leaf Seals for Improved Turbine Shaft Sealing
NASA Technical Reports Server (NTRS)
Grondahl, Clayton
2006-01-01
This presentation introduces a shaft seal in which leaf seal elements are constructed from slotted shim material formed and layered into a frusto-conical assembly. Limited elastic deflection of seal leaves with increasing system pressure close large startup clearance to a small, non-contacting, steady state running clearance. At shutdown seal elements resiliently retract as differential seal pressure diminishes. Large seal clearance during startup and shutdown provides a mechanism for rub avoidance. Minimum operating clearance improves performance and non-contacting operation promises long seal life. Design features of this seal, sample calculations at differential pressures up to 2400 psid and benefit comparison with brush and labyrinth seals is documented in paper, AIAA 2005 3985, presented at the Advanced Seal Technology session of the Joint Propulsion Conference in Tucson this past July. In this presentation use of bimetallic leaf material will be discussed. Frictional heating of bimetallic leaf seals during a seal rub can relieve the rub condition to some extent with a change in seal shape. Improved leaf seal rub tolerance is expected with bimetallic material.
Reusable tamper-indicating security seal
Ryan, Michael J.
1983-01-01
The invention teaches means for detecting unauthorized tampering or substitutions of a device, and has particular utility when applied on a "seal" device used to secure a location or thing. The seal has a transparent body wall, and a first indicia, viz., a label identification is formed on the inside surface of this wall. Second and third indicia are formed on the outside surface of the transparent wall, and each of these indicia is transparent to allow the parallax angled viewing of the first indicia through these indicia. The second indicia is in the form of a broadly uniform pattern, viz, many small spaced dots; while the third indicia is in the form of easily memorized objects, such as human faces, made on a substrate by means of halftone printing. The substrate is lapped over the outside surface of the transparent wall. A thin cocoon of a transparent material, generally of the same material as the substrate such as plastic, is formed over the seal body and specifically over the transparent wall and the second and third indicia formed thereon. This cocoon is seamless and has walls of nonuniform thickness. Both the genuineness of the seal and whether anyone has attempted to compromise the seal can thus be visually determined upon inspection.
NASA Technical Reports Server (NTRS)
Jayaraj, Kumaraswamy (Inventor); Noll, Thomas E. (Inventor); Lockwood, Harry F. (Inventor)
2001-01-01
A hermetically sealed package for at least one semiconductor chip is provided which is formed of a substrate having electrical interconnects thereon to which the semiconductor chips are selectively bonded, and a lid which preferably functions as a heat sink, with a hermetic seal being formed around the chips between the substrate and the heat sink. The substrate is either formed of or includes a layer of a thermoplastic material having low moisture permeability which material is preferably a liquid crystal polymer (LCP) and is a multiaxially oriented LCP material for preferred embodiments. Where the lid is a heat sink, the heat sink is formed of a material having high thermal conductivity and preferably a coefficient of thermal expansion which substantially matches that of the chip. A hermetic bond is formed between the side of each chip opposite that connected to the substrate and the heat sink. The thermal bond between the substrate and the lid/heat sink may be a pinched seal or may be provided, for example by an LCP frame which is hermetically bonded or sealed on one side to the substrate and on the other side to the lid/heat sink. The chips may operate in the RF or microwave bands with suitable interconnects on the substrate and the chips may also include optical components with optical fibers being sealed into the substrate and aligned with corresponding optical components to transmit light in at least one direction. A plurality of packages may be physically and electrically connected together in a stack to form a 3D array.
High temperature autoclave vacuum seals
NASA Technical Reports Server (NTRS)
Hoffman, J. R.; Simpson, W. G.; Walker, H. M.
1971-01-01
Aluminum sheet forms effective sealing film at temperatures up to 728 K. Soft aluminum wire rings provide positive seal between foil and platen. For applications at temperatures above aluminum's service temperature, stainless steel is used as film material and copper wire as sealant.
Johnson, Roger Neal; Longfritz, William David
2001-01-01
A seal assembly that seals a gap formed by a groove comprises a seal body, a biasing element, and a connection that connects the seal body to the biasing element to form the seal assembly. The seal assembly further comprises a concave-shaped center section and convex-shaped contact portions at each end of the seal body. The biasing element is formed from an elastic material and comprises a convex-shaped center section and concave-shaped biasing zones that are opposed to the convex-shaped contact portions. The biasing element is adapted to be compressed to change a width of the seal assembly from a first width to a second width that is smaller than the first width. In the compressed state, the seal assembly can be disposed in the groove. After release of the compressing force, the seal assembly expands. The contact portions will move toward a surface of the groove and the biasing zones will move into contact with another surface of the groove. The biasing zones will bias the contact portions of the seal body against the surface of the groove.
Thermally-Activated Metal-to-Glass Bonding
NASA Technical Reports Server (NTRS)
Gallagher, B. D.
1986-01-01
Hermetic seals formed easily by use of metallo-organic film. Metallo-organic film thermally bonded to glass and soldered or welded to form hermetic seal. Film applied as ink consisting of silver neodecanoate in xylene. Relative amounts of ingredients selected to obtain desired viscosity. Material applied by printing or even by scribing with pen. Sealing technique useful in making solar-cell modules, microelectronic packages, and other hermetic silicon devices.
Folded membrane dialyzer with mechanically sealed edges
Markley, Finley W.
1976-01-01
A semipermeable membrane is folded in accordion fashion to form a stack of pleats and the edges are sealed so as to isolate the opposite surfaces of the membrane. The stack is contained within a case that provides ports for flow of blood in contact with one surface of the membrane through channels formed by the pleats and also provides ports for flow of a dialysate through channels formed by the pleats in contact with the other surface of the membrane. The serpentine side edges of the membrane are sealed by a solidified plastic material, whereas effective mechanical means are provided to seal the end edges of the folded membrane. The mechanical means include a clamping strip which biases case sealing flanges into a sealed relationship with end portions of the membrane near the end edges, which portions extend from the stack and between the sealing flanges.
Viscous sealing glass compositions for solid oxide fuel cells
Kim, Cheol Woon; Brow, Richard K.
2016-12-27
A sealant for forming a seal between at least two solid oxide fuel cell components wherein the sealant comprises a glass material comprising B.sub.2O.sub.3 as a principal glass former, BaO, and other components and wherein the glass material is substantially alkali-free and contains less than 30% crystalline material.
Method of forming and starting a sodium sulfur battery
Paquette, David G.
1981-01-01
A method of forming a sodium sulfur battery and of starting the reactive capability of that battery when heated to a temperature suitable for battery operation is disclosed. An anodic reaction zone is constructed in a manner that sodium is hermetically sealed therein, part of the hermetic seal including fusible material which closes up openings through the container of the anodic reaction zone. The hermetically sealed anodic reaction zone is assembled under normal atmospheric conditions with a suitable cathodic reaction zone and a cation-permeable barrier. When the entire battery is heated to an operational temperature, the fusible material of the hermetically sealed anodic reaction zone is fused, thereby allowing molten sodium to flow from the anodic reaction zone into reactive engagement with the cation-permeable barrier.
Slab edge insulating form system and methods
Lee, Brain E [Corral de Tierra, CA; Barsun, Stephan K [Davis, CA; Bourne, Richard C [Davis, CA; Hoeschele, Marc A [Davis, CA; Springer, David A [Winters, CA
2009-10-06
A method of forming an insulated concrete foundation is provided comprising constructing a foundation frame, the frame comprising an insulating form having an opening, inserting a pocket former into the opening; placing concrete inside the foundation frame; and removing the pocket former after the placed concrete has set, wherein the concrete forms a pocket in the placed concrete that is accessible through the opening. The method may further comprise sealing the opening by placing a sealing plug or sealing material in the opening. A system for forming an insulated concrete foundation is provided comprising a plurality of interconnected insulating forms, the insulating forms having a rigid outer member protecting and encasing an insulating material, and at least one gripping lip extending outwardly from the outer member to provide a pest barrier. At least one insulating form has an opening into which a removable pocket former is inserted. The system may also provide a tension anchor positioned in the pocket former and a tendon connected to the tension anchor.
Non-graphite crucible for high temperature applications
Holcombe, C.E.; Pfeiler, W.A.
1994-08-02
A multi-piece crucible for high temperature applications comprises a tubular side wall member having a lip on the inside surface and a bottom member or members forming a container for containing a melt of a material during a high temperature melt-casting operations. The multi-piece design prevents cracking of the crucible or leakage of the melt from the crucible during the melt-casting operation. The lip of the tubular member supports the bottom member. The contacting surfaces where the lip of the tubular side wall member contacts the bottom member of the multi-piece crucible contains a ceramic sealing material. The ceramic sealing material forms a seal sufficient to prevent the melt of the material from leaking out of the multi-piece crucible during the melt-casting process. The multi-piece crucible is made of a material which is chemically inert to the melt and has structural integrity at the melting point temperature of the melt, or of a material coated with such a material. 6 figs.
Non-graphite crucible for high temperature applications
Holcombe, Cressie E.; Pfeiler, William A.
1994-01-01
A multi-piece crucible for high temperature applications comprises a tubular side wall member having a lip on the inside surface and a bottom member or members forming a container for containing a melt of a material during a high temperature melt-casting operations. The multi-piece design prevents cracking of the crucible or leakage of the melt from the crucible during the melt-casting operation. The lip of the tubular member supports the bottom member. The contacting surfaces where the lip of the tubular side wall member contacts the bottom member of the multi-piece crucible contains a ceramic sealing material. The ceramic sealing material forms a seal sufficient to prevent the melt of the material from leaking out of the multi-piece crucible during the melt-casting process. The multi-piece crucible is made of a material which is chemically inert to the melt and has structural integrity at the melting point temperature of the melt, or of a material coated with such a material.
30 CFR 819.15 - Auger mining: Hydrologic balance.
Code of Federal Regulations, 2014 CFR
2014-07-01
... and 816.42 of this chapter. (b) All auger holes, except as provided in paragraph (c) of this section... the holes are discharging water containing acid-or toxic-forming material. If sealing is not possible... applicable effluent limitations and water-quality standards until the holes are sealed; and (2) Sealed with...
30 CFR 819.15 - Auger mining: Hydrologic balance.
Code of Federal Regulations, 2012 CFR
2012-07-01
... and 816.42 of this chapter. (b) All auger holes, except as provided in paragraph (c) of this section... the holes are discharging water containing acid-or toxic-forming material. If sealing is not possible... applicable effluent limitations and water-quality standards until the holes are sealed; and (2) Sealed with...
30 CFR 819.15 - Auger mining: Hydrologic balance.
Code of Federal Regulations, 2013 CFR
2013-07-01
... and 816.42 of this chapter. (b) All auger holes, except as provided in paragraph (c) of this section... the holes are discharging water containing acid-or toxic-forming material. If sealing is not possible... applicable effluent limitations and water-quality standards until the holes are sealed; and (2) Sealed with...
Glass-to-Metal Seal Against Liquid Helium
NASA Technical Reports Server (NTRS)
Watkins, John L.; Gatewood, John R.
1987-01-01
Simple compression joint with indium gasket forms demountable seal for superfluids. Seal developed for metal lid on glass jar used in experiments on liquid helium. Glass container allows contents to be viewed for such purposes as calibration of liquid-level detectors and adjustments of displacement plungers. Seal contains liquid helium even when temperature drops below 2.19K. Made from inexpensive, commercially available materials and parts.
NASA Astrophysics Data System (ADS)
Yasuhiro, Matsuda; Katsushi, Okuyama; Hiroko, Yamamoto; Hisanori, Komatsu; Masashi, Koka; Takahiro, Sato; Naoki, Hashimoto; Saiko, Oki; Chiharu, Kawamoto; Hidehiko, Sano
2015-04-01
To prevent the formation of caries and reduce dentin hypersensitivity, sealing materials, either with or without fluoride, are generally applied on the tooth in clinical practice. Application of fluoride-free sealing materials results in the formation of an acid-resistant layer on the tooth surface. On the other hand, fluoride-containing sealing materials might not only form an acid-resistant layer but could possibly further provide fluoride to enhance remineralization and reduce demineralization. In this study, the demineralization prevention ability and fluorine uptake rate in human enamel of fluoride-containing sealing materials ["MS coats F" (MSF)] and fluoride-free sealing materials ("hybrid coats 2" [HI]) were evaluated using an automatic pH cycling system. Each material was applied to the original tooth surface, the cut surfaces were covered with sticky wax, and the automatic pH-cycling system simulated daily acid changes (pH 6.8-4.5) occurring in the oral cavity for 4 weeks. Caries progression was analyzed using transverse microradiography (TMR) taken pre and post the 4 weeks of pH cycling. The fluorine and calcium distributions in the carious lesion in each specimen were evaluated using the proton-induced gamma emission (PIGE) and proton-induced X-ray (PIXE) techniques, respectively. TMR analysis showed that both MSF and HI had a caries-preventing effect after 4 weeks of pH cycling. PIGE/PIXE analysis demonstrated that only MSF resulted in fluoride uptake in the enamel surface. Therefore, MSF can help to form an acid-resistant layer and provide fluoride to the enamel surface. The presence of fluoride on the enamel surface suggested that MSF could prevent demineralization, even if the acid-resistant layer was removed, in clinical settings. The data obtained using the PIGE and PIXE techniques are useful for understanding the benefits of the use of a fluoride-containing sealing material for preventing caries.
Molten carbonate fuel cell separator
Nickols, Richard C.
1986-09-02
In a stacked array of molten carbonate fuel cells, a fuel cell separator is positioned between adjacent fuel cells to provide isolation as well as a conductive path therebetween. The center portion of the fuel cell separator includes a generally rectangular, flat, electrical conductor. Around the periphery of the flat portion of the separator are positioned a plurality of elongated resilient flanges which form a gas-tight seal around the edges of the fuel cell. With one elongated flange resiliently engaging a respective edge of the center portion of the separator, the sealing flanges, which are preferably comprised of a noncorrosive material such as an alloy of yttrium, iron, aluminum or chromium, form a tight-fitting wet seal for confining the corrosive elements of the fuel cell therein. This arrangement permits a good conductive material which may be highly subject to corrosion and dissolution to be used in combination with a corrosion-resistant material in the fuel cell separator of a molten carbonate fuel cell for improved fuel cell conductivity and a gas-tight wet seal.
Molten carbonate fuel cell separator
Nickols, R.C.
1984-10-17
In a stacked array of molten carbonate fuel cells, a fuel cell separator is positioned between adjacent fuel cells to provide isolation as well as a conductive path therebetween. The center portion of the fuel cell separator includes a generally rectangular, flat, electrical conductor. Around the periphery of the flat portion of the separator are positioned a plurality of elongated resilient flanges which form a gas-tight seal around the edges of the fuel cell. With one elongated flange resiliently engaging a respective edge of the center portion of the separator, the sealing flanges, which are preferably comprised of a noncorrosive material such as an alloy of yttrium, iron, aluminum or chromium, form a tight-fitting wet seal for confining the corrosive elements of the fuel cell therein. This arrangement permits a good conductive material which may be highly subject to corrosion and dissolution to be used in combination with a corrosion-resistant material in the fuel cell separator of a molten carbonate fuel cell for improved fuel cell conductivity and a gas-tight wet seal.
Multilayer compressive seal for sealing in high temperature devices
Chou, Yeong-Shyung [Richland, WA; Stevenson, Jeffry W [Richland, WA
2007-08-21
A mica based compressive seal has been developed exhibiting superior thermal cycle stability when compared to other compressive seals known in the art. The seal is composed of compliant glass or metal interlayers and a sealing (gasket) member layer composed of mica that is infiltrated with a glass forming material, which effectively reduces leaks within the seal. The compressive seal shows approximately a 100-fold reduction in leak rates compared with previously developed hybrid seals after from 10 to about 40 thermal cycles under a compressive stress of from 50 psi to 100 psi at temperatures in the range from 600.degree. C. to about 850.degree. C.
Bagless transfer process and apparatus for radioactive waste confinement
Maxwell, D.N.; Hones, R.H.; Rogers, M.L.
1998-04-14
A process and apparatus are provided for removing radioactive material from a glovebox, placing the material in a stainless steel storage vessel in communication with the glovebox, and sealing the vessel with a welded plug. The vessel is then severed along the weld, a lower half of the plug forming a closure for the vessel. The remaining welded plug half provides a seal for the remnant portion of the vessel and thereby maintains the sealed integrity of the glovebox. 7 figs.
Bagless transfer process and apparatus for radioactive waste confinement
Maxwell, David N.; Hones, Robert H.; Rogers, M. Lane
1998-01-01
A process and apparatus is provided for removing radioactive material from a glovebox, placing the material in a stainless steel storage vessel in communication with the glovebox, and sealing the vessel with a welded plug. The vessel is then severed along the weld, a lower half of the plug forming a closure for the vessel. The remaining welded plug half provides a seal for the remnant portion of the vessel and thereby maintains the sealed integrity of the glovebox.
Sealed One Piece Battery Having A Prism Shape Container
Verhoog, Roelof; Barbotin, Jean-Loup
2000-03-28
A sealed one-piece battery having a prism-shaped container including: a tank consisting of a single plastic material, a member fixed and sealed to the tank and to partitions on the side of the tank opposite the transverse wall to seal the tank, two flanges fixed and sealed to longitudinal walls defining flow compartments for a heat-conducting fluid, and two tubes on the transverse wall of the tank forming an inlet and an outlet for fluid common to the compartments.
Stress Mapping in Glass-to-Metal Seals using Indentation Crack Lengths.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Strong, Kevin; Buchheit, Thomas E.; Diebold, Thomas Wayne
Predicting the residual stress which develops during fabrication of a glass-to-metal compression seal requires material models that can accurately predict the effects of processing on the sealing glass. Validation of the predictions requires measurements on representative test geometries to accurately capture the interaction between the seal materials during a processing cycle required to form the seal, which consists of a temperature excursion through the glass transition temperature of the sealing glass. To this end, a concentric seal test geometry, referred to as a short cylinder seal, consisting of a stainless steel shell enveloping a commercial sealing glass disk has beenmore » designed, fabricated, and characterized as a model validation test geometry. To obtain data to test/validate finite element (FE) stress model predictions of this geometry, spatially-resolved residual stress was calculated from the measured lengths of the cracks emanating from radially positioned Vickers indents in the glass disk portion of the seal. The indentation crack length method is described, and the spatially-resolved residual stress determined experimentally are compared to FE stress predictions made using a nonlinear viscoelastic material model adapted to inorganic sealing glasses and an updated rate dependent material model for 304L stainless steel. The measurement method is a first to achieve a degree of success for measuring spatially resolved residual stress in a glass-bearing geometry and a favorable comparison between measurements and simulation was observed.« less
Stress Mapping in Glass-to-Metal Seals using Indentation Crack Lengths
DOE Office of Scientific and Technical Information (OSTI.GOV)
Buchheit, Thomas E.; Strong, Kevin; Newton, Clay S.
Predicting the residual stress which develops during fabrication of a glass-to-metal compression seal requires material models that can accurately predict the effects of processing on the sealing glass. Validation of the predictions requires measurements on representative test geometries to accurately capture the interaction between the seal materials during a processing cycle required to form the seal, which consists of a temperature excursion through the glass transition temperature of the sealing glass. To this end, a concentric seal test geometry, referred to as a short cylinder seal, consisting of a stainless steel shell enveloping a commercial sealing glass disk has beenmore » designed, fabricated, and characterized as a model validation test geometry. To obtain data to test/validate finite element (FE) stress model predictions of this geometry, spatially-resolved residual stress was calculated from the measured lengths of the cracks emanating from radially positioned Vickers indents in the glass disk portion of the seal. The indentation crack length method is described, and the spatially-resolved residual stress determined experimentally are compared to FE stress predictions made using a nonlinear viscoelastic material model adapted to inorganic sealing glasses and an updated rate dependent material model for 304L stainless steel. The measurement method is a first to achieve a degree of success for measuring spatially resolved residual stress in a glass-bearing geometry and a favorable comparison between measurements and simulation was observed.« less
Non-graphite crucible for high temperature applications
Holcombe, Cressie E.; Pfeiler, William A.
1996-01-01
A multi-piece crucible for high temperature applications comprises a tubular side wall member having a lip on the inside surface and a bottom member or members forming a container for containing a melt of a material during a high temperature melt-casting operations. The multi-piece design prevents cracking of the crucible or leakage of the melt from the crucible during the melt-casting operation. The lip of the tubular member supports the bottom member. The contacting surfaces where the lip of the tubular side wall member contacts the bottom member of the multi-piece crucible contains a ceramic sealing material. The ceramic sealing material forms a seal sufficient to prevent the melt of the material from leaking out of the multi-piece crucible during the melt-casting process. The multi-piece crucible is made of a material which is chemically inert to the melt and has structural integrity at the melting point temperature of the melt, or of a material coated with such a material. The multi-piece crucible is contained in a thermal can assembly of a high temperature induction furnace during a high temperature melt-casting operation. One embodiment of the multi-piece crucible comprises a tubular member having a vertical slot filled with a ceramic sealing material to provide expansion of the tubular member without cracking during the high temperature melt-casting operation.
Non-graphite crucible for high temperature applications
Holcombe, C.E.; Pfeiler, W.A.
1996-01-09
A multi-piece crucible for high temperature applications comprises a tubular side wall member having a lip on the inside surface and a bottom member or members forming a container for containing a melt of a material during a high temperature melt-casting operations. The multi-piece design prevents cracking of the crucible or leakage of the melt from the crucible during the melt-casting operation. The lip of the tubular member supports the bottom member. The contacting surfaces where the lip of the tubular side wall member contacts the bottom member of the multi-piece crucible contains a ceramic sealing material. The ceramic sealing material forms a seal sufficient to prevent the melt of the material from leaking out of the multi-piece crucible during the melt-casting process. The multi-piece crucible is made of a material which is chemically inert to the melt and has structural integrity at the melting point temperature of the melt, or of a material coated with such a material. The multi-piece crucible is contained in a thermal can assembly of a high temperature induction furnace during a high temperature melt-casting operation. One embodiment of the multi-piece crucible comprises a tubular member having a vertical slot filled with a ceramic sealing material to provide expansion of the tubular member without cracking during the high temperature melt-casting operation. 9 figs.
Evaluation of a Conductive Elastomer Seal for Spacecraft
NASA Technical Reports Server (NTRS)
Daniels, C. C.; Mather, J. L.; Oravec, H. A.; Dunlap, P. H., Jr.
2016-01-01
An electrically conductive elastomer was evaluated as a material candidate for a spacecraft seal. The elastomer used electrically conductive constituents as a means to reduce the resistance between mating interfaces of a sealed joint to meet spacecraft electrical bonding requirements. The compound's outgassing levels were compared against published NASA requirements. The compound was formed into a hollow O-ring seal and its compression set was measured. The O-ring seal was placed into an interface and the electrical resistance and leak rate were quantified. The amount of force required to fully compress the test article in the sealing interface and the force needed to separate the joint were also measured. The outgassing and resistance measurements were below the maximum allowable levels. The room temperature compression set and leak rates were fairly high when compared against other typical spacecraft seal materials, but were not excessive. The compression and adhesion forces were desirably low. Overall, the performance of the elastomer compound was sufficient to be considered for future spacecraft seal applications.
Laboratory development and field demonstration of self-sealing/self-healing landfill liner.
Shi, Caijun; Booth, Rob
2005-01-01
The self-sealing/self-healing (SS/SH) barrier concept is based on the principle that two or more parent materials placed in vertical or horizontal layers will react at their interfaces to form insoluble reaction products. These products constitute a seamless impermeable seal, which is resistant to the transmission of leachate and contaminants. A SS/SH liner formulation was developed in the laboratory and demonstrated at the Sudokwon landfill site in South Korea. Laboratory testing results indicated that a seal with a hydraulic conductivity less than 10(-9) m/s formed after two to four weeks of curing at room temperature, and the seal healed itself after it was fractured. The use of the soil from the Sudokwon landfill site instead of sand as the matrix of the parent materials in the SS/SH liner retarded the sealing and healing of the seal, but did not show an obvious effect on the overall sealing and healing capacity of the seal at early stages. The construction and installation of the field demonstration SS/SH liner were carried out in the same way as for a soil cement liner. The quality of the liner was ensured by the enforcement of quality analysis/quality control procedures during installation. A single sealed ring infiltration test was performed on the field demonstration liner 36 days after the installation was completed. The measurement of water infiltration rate indicated that the liner healed after it was fractured. However, the long-term sealing and healing capacity needs to be further investigated.
Method of forming densified edge seals for fuel cell components
DeCasperis, Anthony J.; Roethlein, Richard J.; Breault, Richard D.
1981-01-01
A porous fuel cell component, such as an electrode substrate, has a densified edge which forms an improved gas seal during operation when soaked with electrolyte. The edges are made from the same composition as the rest of the component and are made by compressing an increased thickness of this material along the edges during the fabrication process.
Method and apparatus for testing surface characteristics of a material
NASA Technical Reports Server (NTRS)
Johnson, David L. (Inventor); Kersker, Karl D. (Inventor); Stratton, Troy C. (Inventor); Richardson, David E. (Inventor)
2006-01-01
A method, apparatus and system for testing characteristics of a material sample is provided. The system includes an apparatus configured to house the material test sample while defining a sealed volume against a surface of the material test sample. A source of pressurized fluid is in communication with, and configured to pressurize, the sealed volume. A load applying apparatus is configured to apply a defined load to the material sample while the sealed volume is monitored for leakage of the pressurized fluid. Thus, the inducement of surface defects such as microcracking and crazing may be detected and their effects analyzed for a given material. The material test samples may include laminar structures formed of, for example, carbon cloth phenolic, glass cloth phenolic, silica cloth phenolic materials or carbon-carbon materials. In one embodiment the system may be configured to analyze the material test sample while an across-ply loading is applied thereto.
Improved ultraviolet resonance lamp
NASA Technical Reports Server (NTRS)
Bass, A. M.
1970-01-01
Removal of the seal area from the path of the lamp discharge eliminates the gradual deterioration of lithium fluoride window surfaces from condensation of products formed by interaction of a resonant rare-gas discharge with window sealing materials. The discharge is confined to the inner tube.
Flexible edge seal for vacuum insulating glazing units
Bettger, Kenneth J.; Stark, David H.
2012-12-11
A flexible edge seal is provided for a vacuum insulating glazing unit having a first glass pane and a second glass pane spaced-apart from the first. The edge seal comprises a seal member formed of a hermetically bondable material and having a first end, a second end and a center section disposed therebetween. The first end is hermetically bondable to a first glass pane. The second end is hermetically bondable to a second glass pane. The center section comprises a plurality of convolutes.
Material Properties of Three Candidate Elastomers for Space Seals Applications
NASA Technical Reports Server (NTRS)
Bastrzyk, Marta B.; Daniels, Christopher C.; Oswald, Jay J.; Dunlap, Patrick H., Jr.; Steinetz, Bruce M.
2010-01-01
A next-generation docking system is being developed by the National Aeronautics and Space Administration (NASA) to support Constellation Space Exploration Missions to low Earth orbit (LEO), to the Moon, and to Mars. A number of investigations were carried out to quantify the properties of candidate elastomer materials for use in the main interface seal of the Low Impact Docking System (LIDS). This seal forms the gas pressure seal between two mating spacecraft. Three candidate silicone elastomer compounds were examined: Esterline ELA-SA-401, Parker Hannifin S0383-70, and Parker Hannifin S0899-50. All three materials were characterized as low-outgassing compounds, per ASTM E595, so as to minimize the contamination of optical and solar array systems. Important seal properties such as outgas levels, durometer, tensile strength, elongation to failure, glass transition temperature, permeability, compression set, Yeoh strain energy coefficients, coefficients of friction, coefficients of thermal expansion, thermal conductivity and diffusivity were measured and are reported herein.
NASA Technical Reports Server (NTRS)
Herald, Stephen D.; Frisby, Paul M.; Davis, Samuel Eddie
2009-01-01
Safe and reliable seal materials for high-pressure oxygen systems sometimes appear to be extinct species when sought out by oxygen systems designers. Materials that seal well are easy to find, but these materials are typically incompatible with oxygen, especially in cryogenic liquid form. This incompatibility can result in seals that leak, or much worse, seals that easily ignite and burn during use. Materials that are compatible with oxygen are easy to find, such as the long list of compatible metals, but these metallic materials are limiting as seal materials. A material that seals well and is oxygen compatible has been the big game in the designer's safari. Scientists at the Materials Combustion Research Facility (MCRF), part of NASA/Marshall Space Flight Center (MSFC), are constantly searching for better materials and processes to improve the safety of oxygen systems. One focus of this effort is improving the characteristics of polymers used in the presence of an oxygen enriched environment. Very few systems can be built which contain no polymeric materials; therefore, materials which have good impact resistance, low heat of combustion, high auto-ignition temperature and that maintain good mechanical properties are essential. The scientists and engineers at the Materials Combustion Research Facility, in cooperation with seal suppliers, are currently testing a new formulation of polytetrafluoroethylene (PTFE) with Brass filler. This Brass-filled PTFE is showing great promise as a seal and seat material for high pressure oxygen systems. Early research has demonstrated very encouraging results, which could rank this material as one of the best fluorinated polymers ever tested. This paper will compare the data obtained for Brass-filled PTFE with other fluorinated polymers, such as TFE-Teflon (PTFE) , Kel-F 81, Viton A, Viton A-500, Fluorel , and Algoflon . A similar metal filled fluorinated polymer, Salox-M , was tested in comparison to Brass-filled PTFE to demonstrate the importance of the metal chosen and relative percentage of filler. General conclusions on the oxygen compatibility of this formulation are drawn, with an emphasis on comparing and contrasting the materials performance to the performance of the current state-of-the-art oxygen compatible polymers.
Overview of NASA Glenn Seal Program
NASA Technical Reports Server (NTRS)
Steinetz, Bruce M.; Proctor, Margaret P.; Dunlap, Patrick H., Jr.; Delgado, Irebert; DeMange, Jeffrey J.; Daniels, Christopher C.; Lattime, Scott B.
2003-01-01
The Seal Team is divided into four primary areas. These areas include turbine engine seal development, structural seal development, acoustic seal development, and adaptive seal development. The turbine seal area focuses on high temperature, high speed shaft seals for secondary air system flow management. The structural seal area focuses on high temperature, resilient structural seals required to accommodate large structural distortions for both space- and aero-applications. Our goal in the acoustic seal project is to develop non-contacting, low leakage seals exploiting the principles of advanced acoustics. We are currently investigating a new acoustic field known as Resonant Macrosonic Synthesis (RMS) to see if we can harness the large acoustic standing pressure waves to form an effective air-barrier/seal. Our goal in the adaptive seal project is to develop advanced sealing approaches for minimizing blade-tip (shroud) or interstage seal leakage. We are planning on applying either rub-avoidance or regeneration clearance control concepts (including smart structures and materials) to promote higher turbine engine efficiency and longer service lives.
Method of forming capsules containing a precise amount of material
Grossman, Mark W.; George, William A.; Maya, Jakob
1986-01-01
A method of forming a sealed capsule containing a submilligram quantity of mercury or the like, the capsule being constructed from a hollow glass tube, by placing a globule or droplet of the mercury in the tube. The tube is then evacuated and sealed and is subsequently heated so as to vaporize the mercury and fill the tube therewith. The tube is then separated into separate sealed capsules by heating spaced locations along the tube with a coiled heating wire means to cause collapse spaced locations therealong and thus enable separation of the tube into said capsules.
Method of forming capsules containing a precise amount of material
Grossman, M.W.; George, W.A.; Maya, J.
1986-06-24
A method of forming a sealed capsule containing a submilligram quantity of mercury or the like, the capsule being constructed from a hollow glass tube, by placing a globule or droplet of the mercury in the tube. The tube is then evacuated and sealed and is subsequently heated so as to vaporize the mercury and fill the tube therewith. The tube is then separated into separate sealed capsules by heating spaced locations along the tube with a coiled heating wire means to cause collapse spaced locations there along and thus enable separation of the tube into said capsules. 7 figs.
Ultrasonic probe deployment device for increased wave transmission and rapid area scan inspections
DiMambro, Joseph; Roach, Dennis P; Rackow, Kirk A; Nelson, Ciji L; Dasch, Cameron J; Moore, David G
2013-02-12
An ultrasonic probe deployment device in which an ultrasound-transmitting liquid forms the portion of the ultrasonic wave path in contact with the surface being inspected (i.e., the inspection surface). A seal constrains flow of the liquid, for example preventing the liquid from surging out and flooding the inspection surface. The seal is not rigid and conforms to variations in the shape and unevenness of the inspection surface, thus forming a seal (although possibly a leaky seal) around the liquid. The probe preferably is held in place to produce optimum ultrasonic focus on the area of interest. Use of encoders can facilitate the production of C-scan area maps of the material being inspected.
Ultrasonic probe deployment device for increased wave transmission and rapid area scan inspections
DiMambro, Joseph [Placitas, NM; Roach, Dennis P [Albuquerque, NM; Rackow, Kirk A [Albuquerque, NM; Nelson, Ciji L [Albuquerque, NM; Dasch, Cameron J [Boomfield Hills, MI; Moore, David G [Albuquerque, NM
2012-01-03
An ultrasonic probe deployment device in which an ultrasound-transmitting liquid forms the portion of the ultrasonic wave path in contact with the surface being inspected (i.e., the inspection surface). A seal constrains flow of the liquid, for example preventing the liquid from surging out and flooding the inspection surface. The seal is not rigid and conforms to variations in the shape and unevenness of the inspection surface, thus forming a seal (although possibly a leaky seal) around the liquid. The probe preferably is held in place to produce optimum ultrasonic focus on the area of interest. Use of encoders can facilitate the production of C-scan area maps of the material being inspected.
Method of laminating structural members
NASA Technical Reports Server (NTRS)
Heier, W. C. (Inventor)
1974-01-01
A laminate is obtained by providing a lightweight core material, such as a honeycombed plastic or metal, within the cavity defined by an annular mold cavity frame. Face sheets, which are to be bonded to the core material, are provided on opposite sides of the frame and extend over the frame, thus sealing the core material in the cavity. An adhesive is provided between the core material and the face sheets and the combined thickness of the core material and adhesive is a close fit within the opposed face sheets. A gas tight seal, such as an O-ring gasket, is provided between the frame and the face sheet members to form a gas tight cavity between the face sheet members and the frame. External heat and pressure are used to bond the face sheets to the core material. Gas pressure is introduced into the sealed cavity to minimize out-gasing of the adhesive.
Microwave impregnation of porous materials with thermal energy storage materials
Benson, David K.; Burrows, Richard W.
1993-01-01
A method for impregnating a porous, non-metallic construction material with a solid phase-change material is described. The phase-change material in finely divided form is spread onto the surface of the porous material, after which the porous material is exposed to microwave energy for a time sufficient to melt the phase-change material. The melted material is spontaneously absorbed into the pores of the porous material. A sealing chemical may also be included with the phase-change material (or applied subsequent to the phase-change material) to seal the surface of the porous material. Fire retardant chemicals may also be included with the phase-change materials. The treated construction materials are better able to absorb thermal energy and exhibit increased heat storage capacity.
Microwave impregnation of porous materials with thermal energy storage materials
Benson, D.K.; Burrows, R.W.
1993-04-13
A method for impregnating a porous, non-metallic construction material with a solid phase-change material is described. The phase-change material in finely divided form is spread onto the surface of the porous material, after which the porous material is exposed to microwave energy for a time sufficient to melt the phase-change material. The melted material is spontaneously absorbed into the pores of the porous material. A sealing chemical may also be included with the phase-change material (or applied subsequent to the phase-change material) to seal the surface of the porous material. Fire retardant chemicals may also be included with the phase-change materials. The treated construction materials are better able to absorb thermal energy and exhibit increased heat storage capacity.
Realization of MEMS-IC Vertical Integration Utilizing Smart Bumpless Bonding
NASA Astrophysics Data System (ADS)
Shiozaki, Masayoshi; Moriguchi, Makoto; Sasaki, Sho; Oba, Masatoshi
This paper reports fundamental technologies, properties, and new experimental results of SBB (Smart Bumpless Bonding) to realize MEMS-IC vertical integration. Although conventional bonding technologies have had difficulties integrating MEMS and its processing circuit because of their rough bonding surfaces, fragile structures, and thermal restriction, SBB technology realized the vertical integration without thermal treatment, any adhesive materials including bumps, and chemical mechanical polishing. The SBB technology bonds sealing parts for vacuum sealing and electrodes for electrical connection simultaneously as published in previous experimental study. The plasma CVD SiO2 is utilized to realize vacuum sealing as sealing material. And Au projection studs are formed on each electrode and connected electrically between two wafers by compressive plastic deformation and surface activation. In this paper, new experimental results including vacuum sealing properties, electrical improvement, IC bonding results on the described fundamental concept and properties are reported.
Vacuum encapsulated hermetically sealed diamond amplified cathode capsule and method for making same
Rao, Triveni; Walsh, John; Gangone, Elizabeth
2014-12-30
A vacuum encapsulated, hermetically sealed cathode capsule for generating an electron beam of secondary electrons, which generally includes a cathode element having a primary emission surface adapted to emit primary electrons, an annular insulating spacer, a diamond window element comprising a diamond material and having a secondary emission surface adapted to emit secondary electrons in response to primary electrons impinging on the diamond window element, a first cold-weld ring disposed between the cathode element and the annular insulating spacer and a second cold-weld ring disposed between the annular insulating spacer and the diamond window element. The cathode capsule is formed by a vacuum cold-weld process such that the first cold-weld ring forms a hermetical seal between the cathode element and the annular insulating spacer and the second cold-weld ring forms a hermetical seal between the annular spacer and the diamond window element whereby a vacuum encapsulated chamber is formed within the capsule.
Method of making nanostructured glass-ceramic waste forms
Gao, Huizhen; Wang, Yifeng; Rodriguez, Mark A.; Bencoe, Denise N.
2012-12-18
A method of rendering hazardous materials less dangerous comprising trapping the hazardous material in nanopores of a nanoporous composite material, reacting the trapped hazardous material to render it less volatile/soluble, sealing the trapped hazardous material, and vitrifying the nanoporous material containing the less volatile/soluble hazardous material.
Glass composition and process for sealing void spaces in electrochemical devices
Meinhardt, Kerry D [Richland, WA; Kirby, Brent W [Kennewick, WA
2012-05-01
A glass foaming material and method are disclosed for filling void spaces in electrochemical devices. The glass material includes a reagent that foams at a temperature above the softening point of the glass. Expansion of the glass fills void spaces including by-pass and tolerance channels of electrochemical devices. In addition, cassette to cassette seals can also be formed while channels and other void spaces are filled, reducing the number of processing steps needed.
Bipolar battery with array of sealed cells
Kaun, Thomas D.; Smaga, John A.
1987-01-01
A lithium alloy/metal sulfide battery as a dipolar battery is disclosed with an array of stacked cells with the anode and cathode electrode materials in each cell sealed in a confining structure and separated from one another except across separator material interposed therebetween. The separator material is contained in a module having separate perforated metallic sheets that sandwich opposite sides of the separator material for the cell and an annular insulating spacer that surrounds the separator material beyond the perforations and is also sandwiched between and sealed to the sheets. The peripheral edges of the sheets project outwardly beyond the spacer, traverse the side edges of the adjacent electrode material to form cup-like electrode holders, and are fused to the adjacent current collector or end face members of the array. Electrolyte is infused into the electrolyte cavity through the perforations of one of the metallic sheets with the perforations also functioning to allow ionic conductance across the separator material between the adjacent electrodes. A gas-tight housing provides an enclosure of the array.
Floating seal system for rotary devices
Banasiuk, Hubert A.
1983-01-01
This invention relates to a floating seal system for rotary devices to reduce gas leakage around the rotary device in a duct and across the face of the rotary device to an adjacent duct. The peripheral seal bodies are made of resilient material having a generally U-shaped cross section wherein one of the legs is secured to a support member and the other of the legs forms a contacting seal against the rotary device. The legs of the peripheral seal form an extended angle of intersection of about 10.degree. to about 30.degree. in the unloaded condition to provide even sealing forces around the periphery of the rotary device. The peripheral seal extends around the periphery of the support member except where intersected by radial seals which reduce gas leakage across the face of the rotary device and between adjacent duct portions. The radial seal assembly is fabricated from channel bars, the smaller channel bar being secured to the divider of the support member and a larger inverted rigid floating channel bar having its legs freely movable over the legs of the smaller channel bar forming therewith a tubular channel. A resilient flexible tube is positioned within the tubular channel for substantially its full length to reduce gas leakage across the tubular channel. A spacer extends beyond the face of the floating channel near each end of the floating channel a distance to provide desired clearance between the floating channel and the face of the rotary device.
Floating seal system for rotary devices
Banasiuk, H.A.
1983-08-23
This invention relates to a floating seal system for rotary devices to reduce gas leakage around the rotary device in a duct and across the face of the rotary device to an adjacent duct. The peripheral seal bodies are made of resilient material having a generally U-shaped cross section wherein one of the legs is secured to a support member and the other of the legs forms a contacting seal against the rotary device. The legs of the peripheral seal form an extended angle of intersection of about 10[degree] to about 30[degree] in the unloaded condition to provide even sealing forces around the periphery of the rotary device. The peripheral seal extends around the periphery of the support member except where intersected by radial seals which reduce gas leakage across the face of the rotary device and between adjacent duct portions. The radial seal assembly is fabricated from channel bars, the smaller channel bar being secured to the divider of the support member and a larger inverted rigid floating channel bar having its legs freely movable over the legs of the smaller channel bar forming therewith a tubular channel. A resilient flexible tube is positioned within the tubular channel for substantially its full length to reduce gas leakage across the tubular channel. A spacer extends beyond the face of the floating channel near each end of the floating channel a distance to provide desired clearance between the floating channel and the face of the rotary device. 5 figs.
Method and apparatus for the management of hazardous waste material
Murray, Jr., Holt
1995-01-01
A container for storing hazardous waste material, particularly radioactive waste material, consists of a cylindrical body and lid of precipitation hardened C17510 beryllium-copper alloy, and a channel formed between the mated lid and body for receiving weld filler material of C17200 copper-beryllium alloy. The weld filler material has a precipitation hardening temperature lower than the aging kinetic temperature of the material of the body and lid, whereby the weld filler material is post weld heat treated for obtaining a weld having substantially the same physical, thermal, and electrical characteristics as the material of the body and lid. A mechanical seal assembly is located between an interior shoulder of the body and the bottom of the lid for providing a vacuum seal.
Removal of Biologically Active Organic Contaminants using Atomic Oxygen
NASA Technical Reports Server (NTRS)
Banks, Bruce A. (Inventor); Banks, Michael A. (Inventor); Banks, Eric B. (Inventor)
2003-01-01
Biomedical devices that are to come into contact with living tissue, such as prosthetic and other implants for the human body and the containers used to store and transport them, are together cleaned of non-living, but biologically active organic materials, including endotoxins such as lipopolysaccharides, and assembled into a hermetically sealed package without recontamination. This is achieved by cleaning both the device and package components together in an apparatus, which includes a hermetically sealed chamber, in which they are contacted with atomic oxygen which biocleans them, by oxidizing the biologically active organic materials. The apparatus also includes means for manipulating the device and container and hermetically sealing the cleaned device into the cleaned container to form the package. A calibrated witness coupon visually indicates whether or not the device and container have received enough exposure to the atomic oxygen to have removed the organic materials from their surfaces. Gamma radiation is then used to sterilize the device in the sealed container.
2000 NASA Seal/Secondary Air System Workshop. Volume 1
NASA Technical Reports Server (NTRS)
Steinetz, Bruce M. (Editor); Hendricks, Robert C. (Editor)
2001-01-01
The 2000 NASA Seal/Secondary Air System Workshop covered four main areas: (1) overviews of NASA-sponsored Ultra-Efficient Engine Technology (UEET) and Access to Space Programs, with emphasis on program goals and seal needs; (2) review of turbine engine seal issues from the perspective of end users such as United Airlines; (3) reviews of sealing concepts, test results, experimental facilities, and numerical predictions; and (4) reviews of material development programs relevant to advanced seals development. The NASA UEET overview illustrates for the reader the importance of advanced technologies, including seals, in meeting future engine system efficiency and emission goals. GE, Pratt & Whitney, and Honeywell presented advanced seal development work being performed within their organizations. The NASA-funded GE/Stein Seal team has successfully demonstrated a large (3-ft. diam) aspirating seal that can withstand all anticipated pressures, speeds, and rotor runouts anticipated for a GE90 L.P. turbine balance piston location. GE/Stein Seal are fabricating a full-scale seal to be tested in a GE-90 ground test engine in early 2002. Pratt & Whitney and Stein Seal are investigating carbon seals to accommodate large radial movements anticipated in future geared-fan gearbox locations. Honeywell presented a finger seal design being considered for a high-temperature static combustor location incorporating ceramic finger elements. Successful demonstration of the braided carbon rope thermal barriers to extreme temperatures (5500 F) for short durations provide a new form of very high temperature thermal barrier for future Shuttle solid rocket motor nozzle joints. The X-37, X-38, and future highly reusable launch vehicles pose challenging control surface seal demands that require new seal concepts made from emerging high temperature ceramics and other materials.
Method for storage of solid waste
Mecham, William J.
1976-01-01
Metal canisters for long-term storage of calcined highlevel radioactive wastes can be made self-sealing against a breach in the canister wall by the addition of powdered cement to the canister with the calcine before it is sealed for storage. Any breach in the canister wall will permit entry of water which will mix with the cement and harden to form a concrete patch, thus sealing the opening in the wall of the canister and preventing the release of radioactive material to the cooling water or atmosphere.
Low-Melt Poly(Amic Acids) and Polyimides and Their Uses
NASA Technical Reports Server (NTRS)
Parrish, Clyde F. (Inventor); Jolley, Scott T. (Inventor); Gibson, Tracy L. (Inventor); Snyder, Sarah J. (Inventor); Williams, Martha K. (Inventor)
2016-01-01
Provided are low-melt polyimides and poly(amic acids) (PAAs) for use as adhesives, and methods of using the materials for attaching two substrates. The methods typically form an adhesive bond that is hermetically sealed to both substrates. Additionally, the method typically forms a cross-linked bonding material that is flexible.
10 CFR 30.32 - Application for specific licenses.
Code of Federal Regulations, 2011 CFR
2011-01-01
... material in the form of a sealed source or in a device that contains the sealed source must either— (1) Identify the source or device by manufacturer and model number as registered with the Commission under § 32.210 of this chapter, with an Agreement State, or for a source or a device containing radium-226 or...
10 CFR 30.32 - Application for specific licenses.
Code of Federal Regulations, 2010 CFR
2010-01-01
... material in the form of a sealed source or in a device that contains the sealed source must either— (1) Identify the source or device by manufacturer and model number as registered with the Commission under § 32.210 of this chapter, with an Agreement State, or for a source or a device containing radium-226 or...
Densified edge seals for fuel cell components
DeCasperis, Anthony J.; Roethlein, Richard J.; Breault, Richard D.
1982-01-01
A porous fuel cell component, such as an electrode substrate, has a densified edge which forms an improved gas seal during operation when soaked with electrolyte. The edges are made from the same composition as the rest of the component and are made by compressing an increased thickness of this material along the edges during the fabrication process.
Manifold seal structure for fuel cell stack
Collins, William P.
1988-01-01
The seal between the sides of a fuel cell stack and the gas manifolds is improved by adding a mechanical interlock between the adhesive sealing strip and the abutting surface of the manifolds. The adhesive is a material which can flow to some extent when under compression, and the mechanical interlock is formed providing small openings in the portion of the manifold which abuts the adhesive strip. When the manifolds are pressed against the adhesive strips, the latter will flow into and through the manifold openings to form buttons or ribs which mechanically interlock with the manifolds. These buttons or ribs increase the bond between the manifolds and adhesive, which previously relied solely on the adhesive nature of the adhesive.
Borehole sealing method and apparatus
Hartley, James N.; Jansen, Jr., George
1977-01-01
A method and apparatus is described for sealing boreholes in the earth. The borehole is blocked at the sealing level, and a sealing apparatus capable of melting rock and earth is positioned in the borehole just above seal level. The apparatus is heated to rock-melting temperature and powdered rock or other sealing material is transported down the borehole to the apparatus where it is melted, pooling on the mechanical block and allowed to cool and solidify, sealing the hole. Any length of the borehole can be sealed by slowly raising the apparatus in the borehole while continuously supplying powdered rock to the apparatus to be melted and added to the top of the column of molten and cooling rock, forming a continuous borehole seal. The sealing apparatus consists of a heater capable of melting rock, including means for supplying power to the heater, means for transporting powdered rock down the borehole to the heater, means for cooling the apparatus and means for positioning the apparatus in the borehole.
Zero dead volume tube to surface seal
Benett, William J.; Folta, James A.
2000-01-01
A method and apparatus for connecting a tube to a surface that creates a dead volume seal. The apparatus is composed of three components, a body, a ferrule, and a threaded fitting. The ferrule is compressed onto a tube and a seal is formed between the tube and a device retained in the body by threading the fitting into the body which provides pressure that seals the face of the ferrule to a mating surface on the device. This seal can be used at elevated temperatures depending on the materials used. While the invention has been developed for use with micro-machined silicon wafers used in Capillary Gas Chromatograph (GC), it can be utilized anywhere for making a gas or fluid face seal to the surface of a device that has near zero dead volume.
Special Form Testing of Sealed Source Encapsulation for High-Alpha-Activity Actinide Materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martinez, Oscar A
In the United States all transportation of radioactive material is regulated by the U.S. Department of Transportation (DOT). Beginning in 2008 a new type of sealed-source encapsulation package was developed and tested by Oak Ridge National Laboratory (ORNL). These packages contain high-alpha-activity actinides and are regulated and transported in accordance with the requirements for DOT Class 7 hazardous material. The DOT provides specific regulations pertaining to special form encapsulation designs. The special form designation indicates that the encapsulated radioactive contents have a very low probability of dispersion even when subjected to significant structural events. The special form designs have beenmore » shown to simplify the delivery, transport, acceptance, and receipt processes. It is intended for these sealed-source encapsulations to be shipped to various facilities making it very advantageous for them to be certified as special form. To this end, DOT Certificates of Competent Authority (CoCAs) have been sought for the design suitable for containing high-alpha-activity actinide materials. This design consists of the high-alpha-activity material encapsulated within a triangular zirconia canister, referred to as a ZipCan, tile that is then enclosed by a spherical shell. The spherical shell design, with ZipCan tile inside, was tested for compliance with the special form regulations found in 49 CFR 173.469. The spherical enclosure was subjected to 9-m impact, 1 m percussion, and 10-minute thermal tests at the Packaging Evaluation Facility located at the National Transportation Research Center in Knoxville, TN USA and operated by ORNL. Before and after each test, the test units were subjected to a helium leak check and a bubble test. The ZipCan tiles and core were also subjected to the tests required for ISO 2919:2012(E), including a Class IV impact test and heat test and subsequently subjected to helium leakage rate tests [49 CFR 173.469(a)(4)(i)]. The impact-tile test unit contained a nonradioactive surrogate; however, the thermal test unit contained a radioactive source. This paper describes the regulatory special form tests and presents detailed impact and leak test results that demonstrate that the sealed source encapsulation designs satisfy the regulatory tests.« less
Double angle seal forming lubricant film
Ernst, William D.
1984-01-01
A lubricated piston rod seal which inhibits gas leaking from a high pressure chamber on one side of the seal to a low pressure chamber on the other side of the seal. A liquid is supplied to the surface of the piston rod on the low pressure side of the seal. This liquid acts as lubricant for the seal and provides cooling for the rod. The seal, which can be a plastic, elastomer or other material with low elastic modulus, is designed to positively pump lubricant through the piston rod/seal interface in both directions when the piston rod is reciprocating. The capacity of the seal to pump lubricant from the low pressure side to the high pressure side is less than its capacity to pump lubricant from the high pressure side to the low pressure side which ensures that there is zero net flow of lubricant to the high pressure side of the seal. The film of lubricant between the seal and the rod minimizes any sliding contact and prevents the leakage of gas. Under static conditions gas leakage is prevented by direct contact between the seal and the rod.
Method for sealing an oxygen transport membrane assembly
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gonzalez, Javier E.; Grant, Arthur F.
An improved method of sealing a ceramic part to a solid part made of ceramic, metal, cermet or a ceramic coated metal is provided. The improved method includes placing a bond agent comprising an Al 2O 3 and SiO 2 based glass-ceramic material and organic binder material on adjoining surfaces of the ceramic part and the solid part. The assembly is heated to a first target temperature that removes or dissolves the organic binder material from the bond agent and the assembly is subjected to a second induction heating step at a temperature ramp rate of between about 100.degree. C.more » and 200.degree. C. per minute to temperatures where the glass-ceramic material flows and wets the interface between adjoining surfaces. The assembly is rapidly cooled at a cooling rate of about 140.degree. C. per minute or more to induce nucleation and re-crystallization of the glass-ceramic material to form a dense, durable and gas-tight seal.« less
Hydrogen gettering packing material, and process for making same
LeMay, James D.; Thompson, Lisa M.; Smith, Henry Michael; Schicker, James R.
2001-01-01
A hydrogen gettering system for a sealed container is disclosed comprising packing material for use within the sealed container, and a coating film containing hydrogen gettering material on at least a portion of the surface of such packing material. The coating film containing the hydrogen gettering material comprises a mixture of one or more organic materials capable of reacting with hydrogen and one or more catalysts capable of catalyzing the reaction of hydrogen with such one or more organic materials. The mixture of one or more organic materials capable of reacting with hydrogen and the one or more catalysts is dispersed in a suitable carrier which preferably is a curable film-forming material. In a preferred embodiment, the packing material comprises a foam material which is compatible with the coating film containing hydrogen gettering material thereon.
Method and apparatus for the management of hazardous waste material
Murray, H. Jr.
1995-02-21
A container for storing hazardous waste material, particularly radioactive waste material, consists of a cylindrical body and lid of precipitation hardened C17510 beryllium-copper alloy, and a channel formed between the mated lid and body for receiving weld filler material of C17200 copper-beryllium alloy. The weld filler material has a precipitation hardening temperature lower than the aging kinetic temperature of the material of the body and lid, whereby the weld filler material is post weld heat treated for obtaining a weld having substantially the same physical, thermal, and electrical characteristics as the material of the body and lid. A mechanical seal assembly is located between an interior shoulder of the body and the bottom of the lid for providing a vacuum seal. 40 figs.
High expansion, lithium corrosion resistant sealing glasses
Brow, Richard K.; Watkins, Randall D.
1991-01-01
Glass compositions containing CaO, Al.sub.2 O.sub.3, B.sub.2 O.sub.3, SrO and BaO in various combinations of mole % are provided. These compositions are capable of forming stable glass-to-metal seals with pin materials of 446 Stainless Steel and Alloy-52 rather than molybdenum, for use in harsh chemical environments, specifically in lithium batteries.
High expansion, lithium corrosion resistant sealing glasses
Brow, R.K.; Watkins, R.D.
1991-06-04
Glass compositions containing CaO, Al[sub 2]O[sub 3], B[sub 2]O[sub 3], SrO and BaO in various combinations of mole % are provided. These compositions are capable of forming stable glass-to-metal seals with pin materials of 446 Stainless Steel and Alloy-52 rather than molybdenum, for use in harsh chemical environments, specifically in lithium batteries.
Development of seal ring carbon-graphite materials (tasks 5, 6, and 7)
NASA Technical Reports Server (NTRS)
Fechter, N. J.; Petrunich, P. S.
1972-01-01
Carbon-graphite seal ring bodies for operation at air temperatures to 1300 F(704 C) were manufactured from three select formulations. Mechanical and thermal properties, porosities, and oxidation rates were measured. The results have shown that: (1) Major property improvements anticipated from the screening studies were not realized because of processing problems associated with the scale-up in material size and probable deterioration of a phenolic resin binder; (2) the mechanical properties of a phenolic resin-bonded, carbon-graphite material can be improved by applying high pressure during carbonization; and (3) the textile form of graphite fiber used as the minor filler component in a carbon-graphite material can beneficially affect mechanical properties.
Innovative Self-Healing Seals for Solid Oxide Fuel Cells (SOFC)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Raj Singh
Solid oxide fuel cell (SOFC) technology is critical to several national initiatives. Solid State Energy Conversion Alliance (SECA) addresses the technology needs through its comprehensive programs on SOFC. A reliable and cost-effective seal that works at high temperatures is essential to the long-term performance of the SOFC for 40,000 hours at 800°C. Consequently, seals remain an area of highest priority for the SECA program and its industry teams. An innovative concept based on self-healing glasses was advanced and successfully demonstrated through seal tests for 3000 hours and 300 thermal cycles to minimize internal stresses under both steady state and thermalmore » transients for making reliable seals for the SECA program. The self-healing concept requires glasses with low viscosity at the SOFC operating temperature of 800°C but this requirement may lead to excessive flow of the glass in areas forming the seal. To address this challenge, a modification to glass properties by addition of particulate fillers is pursued in the project. The underlying idea is that a non-reactive ceramic particulate filler is expected to form glass-ceramic composite and increase the seal viscosity thereby increasing the creep resistance of the glass-composite seals under load. The objectives of the program are to select appropriate filler materials for making glass-composite, fabricate glass-composites, measure thermal expansion behaviors, and determine stability of the glass-composites in air and fuel environments of a SOFC. Self-healing glass-YSZ composites are further developed and tested over a longer time periods under conditions typical of the SOFCs to validate the long-term stability up to 2000 hours. The new concepts of glass-composite seals, developed and nurtured in this program, are expected to be cost-effective as these are based on conventional processing approaches and use of the inexpensive materials.« less
Emergency sacrificial sealing method in filters, equipment, or systems
Brown, Erik P
2014-09-30
A system seals a filter or equipment component to a base and will continue to seal the filter or equipment component to the base in the event of hot air or fire. The system includes a first sealing material between the filter or equipment component and the base; and a second sealing material between the filter or equipment component and the base and proximate the first sealing material. The first sealing material and the second seal material are positioned relative to each other and relative to the filter or equipment component and the base to seal the filter or equipment component to the base and upon the event of fire the second sealing material will be activated and expand to continue to seal the filter or equipment component to the base in the event of hot air or fire.
Emergency sacrificial sealing method in filters, equipment, or systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, Erik P.
A system seals a filter or equipment component to abase and will continue to seal the filter or equipment component to the base in the event of hot air or fire. The system includes a first sealing material between the filter or equipment component and the base; and a second sealing material between the filter or equipment component and the base and proximate the first sealing material. The first sealing material and the second seal material are positioned relative to each other and relative to the filter or equipment component and the base to seal the filter or equipment componentmore » to the base and upon the event of fire the second sealing material will be activated and expand to continue to seal the filter or equipment component to the base in the event of hot air or fire.« less
Gas seal for an in situ oil shale retort and method of forming thermal barrier
Burton, III, Robert S.
1982-01-01
A gas seal is provided in an access drift excavated in a subterranean formation containing oil shale. The access drift is adjacent an in situ oil shale retort and is in gas communication with the fragmented permeable mass of formation particles containing oil shale formed in the in situ oil shale retort. The mass of formation particles extends into the access drift, forming a rubble pile of formation particles having a face approximately at the angle of repose of fragmented formation. The gas seal includes a temperature barrier which includes a layer of heat insulating material disposed on the face of the rubble pile of formation particles and additionally includes a gas barrier. The gas barrier is a gas-tight bulkhead installed across the access drift at a location in the access drift spaced apart from the temperature barrier.
Vacuum encapsulated, high temperature diamond amplified cathode capsule and method for making same
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rao, Triveni; Walsh, Josh; Gangone, Elizabeth
2015-12-29
A vacuum encapsulated, hermetically sealed cathode capsule for generating an electron beam of secondary electrons, which generally includes a cathode element having a primary emission surface adapted to emit primary electrons, an annular insulating spacer, a diamond window element comprising a diamond material and having a secondary emission surface adapted to emit secondary electrons in response to primary electrons impinging on the diamond window element, a first high-temperature solder weld disposed between the diamond window element and the annular insulating spacer and a second high-temperature solder weld disposed between the annular insulating spacer and the cathode element. The cathode capsulemore » is formed by a high temperature weld process under vacuum such that the first solder weld forms a hermetical seal between the diamond window element and the annular insulating spacer and the second solder weld forms a hermetical seal between the annular spacer and the cathode element whereby a vacuum encapsulated chamber is formed within the capsule.« less
Encapsulation of thermal energy storage media
Goswami, Dharendra Yogi; Stefanakos, Elias K.; Jotshi, Chand K.; Dhau, Jaspreet
2018-01-30
In one embodiment, a method for fabricating a ceramic phase change material capsule includes forming a hollow ceramic capsule body having a filling hole, filling the ceramic capsule body with one or more phase change materials via the filling hole, and closing and sealing the filling hole.
Kaufman, Arthur; Werth, John
1986-01-01
A bipolar gas reactant distribution assembly for use in a fuel cell is disclosed, the assembly having a solid edge seal to prevent leakage of gaseous reactants wherein a pair of porous plates are provided with peripheral slits generally parallel to, and spaced apart from two edges of the plate, the slit being filled with a solid, fusible, gas impervious edge sealing compound. The plates are assembled with opposite faces adjacent one another with a layer of a fusible sealant material therebetween the slits in the individual plates being approximately perpendicular to one another. The plates are bonded to each other by the simultaneous application of heat and pressure to cause a redistribution of the sealant into the pores of the adjacent plate surfaces and to cause the edge sealing compound to flow and impregnate the region of the plates adjacent the slits and comingle with the sealant layer material to form a continuous layer of sealant along the edges of the assembled plates.
Microfluidic systems with embedded materials and structures and method thereof
Morse, Jeffrey D [Martinez, CA; Rose, Klint A [Boston, MA; Maghribi, Mariam [Livermore, CA; Benett, William [Livermore, CA; Krulevitch, Peter [Pleasanton, CA; Hamilton, Julie [Tracy, CA; Graff, Robert T [Modesto, CA; Jankowski, Alan [Livermore, CA
2007-03-06
Described herein is a process for fabricating microfluidic systems with embedded components in which micron-scale features are molded into the polymeric material polydimethylsiloxane (PDMS). Micromachining is used to create a mold master and the liquid precursors for PDMS are poured over the mold and allowed to cure. The PDMS is then removed form the mold and bonded to another material such as PDMS, glass, or silicon after a simple surface preparation step to form sealed microchannels.
Conducting polymer ultracapacitor
Shi, Steven Z.; Davey, John R.; Gottesfeld, Shimshon; Ren, Xiaoming
2002-01-01
A sealed ultracapacitor assembly is formed with first and second electrodes of first and second conducting polymers electrodeposited on porous carbon paper substrates, where the first and second electrodes each define first and second exterior surfaces and first and second opposing surfaces. First and second current collector plates are bonded to the first and second exterior surfaces, respectively. A porous membrane separates the first and second opposing surfaces, with a liquid electrolyte impregnating the insulating membrane. A gasket formed of a thermoplastic material surrounds the first and second electrodes and seals between the first and second current collector plates for containing the liquid electrolyte.
NASA Technical Reports Server (NTRS)
Waterman, A. W.; Huxford, R. L.; Nelson, W. G.
1976-01-01
Molded high temperature plastic first and second stage rod seal elements were evaluated in seal assemblies to determine performance characteristics. These characteristics were compared with the performance of machined seal elements. The 6.35 cm second stage Chevron seal assembly was tested using molded Chevrons fabricated from five molding materials. Impulse screening tests conducted over a range of 311 K to 478 K revealed thermal setting deficiencies in the aromatic polyimide molding materials. Seal elements fabricated from aromatic copolyester materials structurally failed during impulse cycle calibration. Endurance testing of 3.85 million cycles at 450 K using MIL-H-83283 fluid showed poorer seal performance with the unfilled aromatic polyimide material than had been attained with seals machined from Vespel SP-21 material. The 6.35 cm first stage step-cut compression loaded seal ring fabricated from copolyester injection molding material failed structurally during impulse cycle calibration. Molding of complex shape rod seals was shown to be a potentially controllable technique, but additional molding material property testing is recommended.
Microfluidic fuel cell systems with embedded materials and structures and method thereof
Morse, Jeffrey D.; Rose, Klint A; Maghribi, Mariam; Benett, William; Krulevitch, Peter; Hamilton, Julie; Graff, Robert T.; Jankowski, Alan
2005-07-26
Described herein is a process for fabricating microfluidic systems with embedded components in which micron-scale features are molded into the polymeric material polydimethylsiloxane (PDMS). Micromachining is used to create a mold master and the liquid precursors for PDMS are poured over the mold and allowed to cure. The PDMS is then removed form the mold and bonded to another material such as PDMS, glass, or silicon after a simple surface preparation step to form sealed microchannels.
Status of Understanding for Seal Materials
NASA Technical Reports Server (NTRS)
Brown, P. F.
1984-01-01
Material selection for mainshaft face and ring seals, labyrinth seals, accessory gearbox face seals, and lip seals are discussed in light of tribology requirements and a given seal application. Carbon graphite has been found to be one of the best sealing materials and it is widely used in current gas turbine mainshaft and accessory gearbox seals. Its popularity is due to its unique combination of properties which consists of dimensional stability, corrosion resistance, low friction, good self lubricating characteristics, high thermal conductivity and low thermal expansion, the latter two properties combining to provide good thermal shock resistance. A brief description of the seals and the requirements they must meet are discussed to provide insight into the limitations and advantages of the seals in containing the lubricant. A forecast is made of the operational requirements of main shaft and gearbox seals for advanced engines and candidate materials and coatings that may satisfy these advanced engine requirements.
78 FR 33204 - Airworthiness Directives; Bell Helicopter Textron, Inc. (Bell) Helicopters
Federal Register 2010, 2011, 2012, 2013, 2014
2013-06-04
... manufactured seal material is installed on the bearing. This AD is prompted by a report that certain bearings were manufactured with an incorrect seal material that does not meet Bell specifications. The actions... June 2012 were manufactured with incorrect seal material. The incorrect seal material does not meet...
Sealing of cracks in cement using microencapsulated sodium silicate
NASA Astrophysics Data System (ADS)
Giannaros, P.; Kanellopoulos, A.; Al-Tabbaa, A.
2016-08-01
Cement-based materials possess an inherent autogenous self-healing capability allowing them to seal, and potentially heal, microcracks. This can be improved through the addition of microencapsulated healing agents for autonomic self-healing. The fundamental principle of this self-healing mechanism is that when cracks propagate in the cementitious matrix, they rupture the dispersed capsules and their content (cargo material) is released into the crack volume. Various healing agents have been explored in the literature for their efficacy to recover mechanical and durability properties in cementitious materials. In these materials, the healing agents are most commonly encapsulated in macrocontainers (e.g. glass tubes or capsules) and placed into the material. In this work, microencapsulated sodium silicate in both liquid and solid form was added to cement specimens. Sodium silicate reacts with the calcium hydroxide in hydrated cement paste to form calcium-silicate-hydrate gel that fills cracks. The effect of microcapsule addition on rheological and mechanical properties of cement is reported. It is observed that the microcapsule addition inhibits compressive strength development in cement and this is observed through a plateau in strength between 28 and 56 days. The improvement in crack-sealing for microcapsule-containing specimens is quantified through sorptivity measurements over a 28 day healing period. After just seven days, the addition of 4% microcapsules resulted in a reduction in sorptivity of up to 45% when compared to specimens without any microcapsule addition. A qualitative description of the reaction between the cargo material and the cementitious matrix is also provided using x-ray diffraction analysis.
Carbon Fiber Reinforced Carbon Composites Rotary Valves for Internal Combustion Engines
NASA Technical Reports Server (NTRS)
Northam, G. Burton (Inventor); Ransone, Philip O. (Inventor); Rivers, H. Kevin (Inventor)
1999-01-01
Carbon fiber reinforced carbon composite rotary, sleeve, and disc valves for internal combustion engines and the like are disclosed. The valves are formed from knitted or braided or warp-locked carbon fiber shapes. Also disclosed are valves fabricated from woven carbon fibers and from molded carbon matrix material. The valves of the present invention with their very low coefficient of thermal expansion and excellent thermal and self-lubrication properties, do not present the sealing and lubrication problems that have prevented rotary, sleeve, and disc valves from operating efficiently and reliably in the past. Also disclosed are a sealing tang to further improve sealing capabilities and anti-oxidation treatments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Strassner, II, Bernd H.; Liedtke, Richard; McDonald, Jacob Jeremiah
The various technologies presented herein relate to utilizing a sealing layer of malleable material to seal gaps, etc., at a joint between edges of a waveguide channel formed in a first plate and a surface of a clamping plate. A compression pad is included in the surface of the clamping plate and is dimensioned such that the upper surface of the pad is less than the area of the waveguide channel opening on the first plate. The sealing layer is placed between the waveguide plate and the clamping plate, and during assembly of the waveguide module, the compression pad deformsmore » a portion of the sealing layer such that it ingresses into the waveguide channel opening. Deformation of the sealing layer results in the gaps, etc., to be filled, improving the operational integrity of the joint.« less
Space shuttle seal material and design development for earth storable propellant systems
NASA Technical Reports Server (NTRS)
1973-01-01
The results of a program to investigate and characterize seal materials suitable for space shuttle storable propellant systems are given. Two new elastomeric materials were identified as being potentially superior to existing state-of-the art materials for specific sealing applications. These materials were AF-E-124D and AF-E-411. AF-E-124D is a cured perfluorinated polymer suitable for use with dinitrogen tetroxide oxidizer, and hydrazine base fuels. AF-E-411 is an ethylene propylene terpolymer material for hydrazine base fuel service. Data are presented relative to low and high temperature characteristics as well as propellant exposure effects. Types of data included are: mechanical properties, stress strain curves, friction and wear characteristics, compression set and permeability. Sealing tests with a flat poppet-seal valve were conducted for verification of sealing capability. A bibliography includes over 200 references relating to seal design or materials and presents a concise tabulation of the more useful seal design data sources.
Preliminary investigation and application of alternate dry gas seal face materials{copyright}
DOE Office of Scientific and Technical Information (OSTI.GOV)
Evenson, R.; Peterson, R.; Hanson, R.
1994-01-01
Traditional seal mating ring materials such as tungsten carbide (WC) are commonly used in high pressure centrifugal gas compressor dry gas (gas lubricating film) seal applications. Although these materials possess desirable properties for minimizing thermal distortion and deformation when subjected to pressure and centrifugal force, they have low toughness, i.e., they are brittle and have poor resistance to thermal shock. It has been found that these materials are easily heat checked during seal face touchdown. Heat checking as well as other crack indications inherent in these materials can quickly propagate, resulting in a catastrophic seal ring failure. In this paper,more » an investigation of alternate seal face materials is described. Two ductile, nitrided, low ferrous materials proved to be readily manufacturable into dry gas seal rings and performed comparably to tungsten carbide in natural gas service. 10 refs., 13 figs., 5 tabs.« less
NASA Technical Reports Server (NTRS)
Wang, D. S.; Warren, A. D. (Inventor)
1980-01-01
A method for installing fragile, high temperature insulation batting in an elongated cavity or in a resilient wire sleeve to form a resilient seal. The batting is preformed to rough dimensions and wrapped in a plastic film, the film being of a material which is fugitive at a high temperature. The film is heat sealed and trimmed to form a snugly fit skin which overlaps at least at one end to permit attachment of a pull cord. The film absorbs the tensile force of pulling the film enclosed batting through the cavity or wire mesh sleeve and is subsequently driven off by high temperature baking, leaving only the insulation in the cavity or wire mesh sleeve.
Peacock, Harold B [Evans, GA; Imrich, Kenneth J [Grovetown, GA
2009-03-17
A sealing device that may expand more planar dimensions due to internal thermal expansion of a filler material. The sealing material is of a composition such that when desired environment temperatures and internal actuating pressures are reached, the sealing materials undergoes a permanent deformation. For metallic compounds, this permanent deformation occurs when the material enters the plastic deformation phase. Polymers, and other materials, may be using a sealing mechanism depending on the temperatures and corrosivity of the use. Internal pressures are generated by either rapid thermal expansion or material phase change and may include either liquid or solid to gas phase change, or in the gaseous state with significant pressure generation in accordance with the gas laws. Sealing material thickness and material composition may be used to selectively control geometric expansion of the seal such that expansion is limited to a specific facing and or geometric plane.
Cladding material, tube including such cladding material and methods of forming the same
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garnier, John E.; Griffith, George W.
A multi-layered cladding material including a ceramic matrix composite and a metallic material, and a tube formed from the cladding material. The metallic material forms an inner liner of the tube and enables hermetic sealing of thereof. The metallic material at ends of the tube may be exposed and have an increased thickness enabling end cap welding. The metallic material may, optionally, be formed to infiltrate voids in the ceramic matrix composite, the ceramic matrix composite encapsulated by the metallic material. The ceramic matrix composite includes a fiber reinforcement and provides increased mechanical strength, stiffness, thermal shock resistance and highmore » temperature load capacity to the metallic material of the inner liner. The tube may be used as a containment vessel for nuclear fuel used in a nuclear power plant or other reactor. Methods for forming the tube comprising the ceramic matrix composite and the metallic material are also disclosed.« less
NASA Technical Reports Server (NTRS)
Palosz, W.
2003-01-01
The amounts and composition of residual gases formed in sealed ampoules loaded with different sources (elements and II-VI and IV-VI compounds) after consecutive annealings were investigated. A given source was subjected to a series of heat treatments, with intermediate measurements and removal of the gas accumulated in the system. The results of these experiments are discussed in terms of the underlying thermochemical and kinetic phenomena and practical limitations of reducing the amount of residual gases in sealed ampoules.
Sealed Battery Block Provided With A Cooling System
Verhoog, Roelof; Barbotin, Jean-Loup
1999-11-16
The present invention relates to a sealed battery block operating at a pressure of at least 1 bar relative, the battery including a container made of a plastics material and made up of a lid and of a case subdivided into wells by at least one partition, said battery being provided with a cooling system including two cheek plates made of a plastics material and co-operating with the outside faces of respective ones of two opposite walls of said case, each cheek plate co-operating with the corresponding wall to define a compartment provided with a plurality of ribs forming baffles for fluid flow purposes, and with an inlet orifice and an outlet orifice for the fluid, said battery being characterized in that each of said ribs extends in a direction that forms an angle relative to the plane of said partition lying in the range 60.degree. to 90.degree..
Permeameter studies of water flow through cement and clay borehole seals in granite, basalt and tuff
DOE Office of Scientific and Technical Information (OSTI.GOV)
South, D.L.; Daemen, J.J.K.
1986-10-01
Boreholes near a repository must be sealed to prevent rapid migration of radionuclide-contaminated water to the accessible environment. The objective of this research is to assess the performance of borehole seals under laboratory conditions, particularly with regard to varying stress fields. Flow through a sealed borehole is compared with flow through intact rock. Cement or bentonite seals have been tested in granite, basalt, and welded tuff. The main conclusion is that under laboratory conditions, existing commercial materials can form high quality seals. Triaxial stress changes about a borehole do not significantly affect seal performance if the rock is stiffer thanmore » the seal. Temperature but especially moisture variations (drying) significantly degrade the quality of cement seals. Performance partially recovers upon resaturation. A skillfully sealed borehole may be as impermeable as the host rock. Analysis of the influence of relative seal-rock permeabilities shows that a plug with permeability one order of magnitude greater than that of the rock results in a flow increase through the hole and surrounding rock of only 1-1/2 times compared to the undisturbed rock. Since a borehole is only a small part of the total rock mass, the total effect is even less pronounced. The simplest and most effective way to decrease flow through a rock-seal system is to increase the seal length, assuming it can be guaranteed that no dominant by-pass flowpath through the rock exists.« less
Highly fluorinated polyurethanes
NASA Technical Reports Server (NTRS)
Stump, E. C., Jr.; Rochow, S. E. (Inventor)
1972-01-01
New polyurethanes containing a high degree of fluorine atoms are reported. The presence of the fluorine atoms in the polyurethane resins provides material having good thermal stability and chemical resistance. These polyurethanes are derived from a new hydroxy-terminated perfluoro polyether. The hydroxy terminated material is reacted with a diisocyanate to produce the polyurethanes. The polyurethanes can be used to form seals, coatings, potting material, hoses and the like.
Carbon Fiber Reinforced Carbon Composite Rotary Valve for an Internal Combustion Engine
NASA Technical Reports Server (NTRS)
Northam, G.Burton (Inventor); Ransone, Philip O. (Inventor); Rivers, H. Kevin (Inventor)
2000-01-01
Carbon fiber reinforced carbon composite rotary sleeve, and disc valves for internal combustion engines and the like are disclosed. The valves are formed from knitted or braided or wrap-locked carbon fiber shapes. Also disclosed are valves fabricated from woven carbon fibers and from molded carbon matrix material. The valves of the present invention with their very low coefficient of thermal expansion and excellent thermal and self-lubrication properties do not present the sealing and lubrication problems that have prevented rotary sleeve and disc valves from operating efficiently and reliably in the past. Also disclosed are a sealing tang to further improve sealing capabilities and anti-oxidation treatments.
Wafer-Level Vacuum Packaging of Smart Sensors.
Hilton, Allan; Temple, Dorota S
2016-10-31
The reach and impact of the Internet of Things will depend on the availability of low-cost, smart sensors-"low cost" for ubiquitous presence, and "smart" for connectivity and autonomy. By using wafer-level processes not only for the smart sensor fabrication and integration, but also for packaging, we can further greatly reduce the cost of sensor components and systems as well as further decrease their size and weight. This paper reviews the state-of-the-art in the wafer-level vacuum packaging technology of smart sensors. We describe the processes needed to create the wafer-scale vacuum microchambers, focusing on approaches that involve metal seals and that are compatible with the thermal budget of complementary metal-oxide semiconductor (CMOS) integrated circuits. We review choices of seal materials and structures that are available to a device designer, and present techniques used for the fabrication of metal seals on device and window wafers. We also analyze the deposition and activation of thin film getters needed to maintain vacuum in the ultra-small chambers, and the wafer-to-wafer bonding processes that form the hermetic seal. We discuss inherent trade-offs and challenges of each seal material set and the corresponding bonding processes. Finally, we identify areas for further research that could help broaden implementations of the wafer-level vacuum packaging technology.
Wafer-Level Vacuum Packaging of Smart Sensors
Hilton, Allan; Temple, Dorota S.
2016-01-01
The reach and impact of the Internet of Things will depend on the availability of low-cost, smart sensors—“low cost” for ubiquitous presence, and “smart” for connectivity and autonomy. By using wafer-level processes not only for the smart sensor fabrication and integration, but also for packaging, we can further greatly reduce the cost of sensor components and systems as well as further decrease their size and weight. This paper reviews the state-of-the-art in the wafer-level vacuum packaging technology of smart sensors. We describe the processes needed to create the wafer-scale vacuum microchambers, focusing on approaches that involve metal seals and that are compatible with the thermal budget of complementary metal-oxide semiconductor (CMOS) integrated circuits. We review choices of seal materials and structures that are available to a device designer, and present techniques used for the fabrication of metal seals on device and window wafers. We also analyze the deposition and activation of thin film getters needed to maintain vacuum in the ultra-small chambers, and the wafer-to-wafer bonding processes that form the hermetic seal. We discuss inherent trade-offs and challenges of each seal material set and the corresponding bonding processes. Finally, we identify areas for further research that could help broaden implementations of the wafer-level vacuum packaging technology. PMID:27809249
Fractal modeling of fluidic leakage through metal sealing surfaces
NASA Astrophysics Data System (ADS)
Zhang, Qiang; Chen, Xiaoqian; Huang, Yiyong; Chen, Yong
2018-04-01
This paper investigates the fluidic leak rate through metal sealing surfaces by developing fractal models for the contact process and leakage process. An improved model is established to describe the seal-contact interface of two metal rough surface. The contact model divides the deformed regions by classifying the asperities of different characteristic lengths into the elastic, elastic-plastic and plastic regimes. Using the improved contact model, the leakage channel under the contact surface is mathematically modeled based on the fractal theory. The leakage model obtains the leak rate using the fluid transport theory in porous media, considering that the pores-forming percolation channels can be treated as a combination of filled tortuous capillaries. The effects of fractal structure, surface material and gasket size on the contact process and leakage process are analyzed through numerical simulations for sealed ring gaskets.
High temperature seal for joining ceramics and metal alloys
Maiya, P.S.; Picciolo, J.J.; Emerson, J.E.; Dusek, J.T.; Balachandran, U.
1998-03-10
For a combination of a membrane of SrFeCo{sub 0.5}O{sub x} and an Inconel alloy, a high-temperature seal is formed between the membrane and the alloy. The seal is interposed between the alloy and the membrane, and is a fritted compound of Sr oxide and boric oxide and a fritted compound of Sr, Fe and Co oxides. The fritted compound of SrFeCo{sub 0.50}O{sub x} is present in the range of from about 30 to 70 percent by weight of the total sealant material and the fritted compound of Sr oxide and boric oxide has a mole ratio of 2 moles of the Sr oxide for each mole of boric oxide. A method of sealing a ceramic to an Inconel metal alloy is also disclosed. 3 figs.
High temperature seal for joining ceramics and metal alloys
Maiya, P. Subraya; Picciolo, John J.; Emerson, James E.; Dusek, Joseph T.; Balachandran, Uthamalingam
1998-01-01
For a combination of a membrane of SrFeCo.sub.0.5 O.sub.x and an Inconel alloy, a high-temperature seal is formed between the membrane and the alloy. The seal is interposed between the alloy and the membrane, and is a fritted compound of Sr oxide and boric oxide and a fritted compound of Sr, Fe and Co oxides. The fritted compound of SrFeCo.sub.0.50 O.sub.x is present in the range of from about 30 to 70 percent by weight of the total sealant material and the fritted compound of Sr oxide and boric oxide has a mole ratio of 2 moles of the Sr oxide for each mole of boric oxide. A method of sealing a ceramic to an Inconel metal alloy is also disclosed.
Wear of seal materials used in aircraft propulsion systems
NASA Technical Reports Server (NTRS)
Bill, R. C.; Ludwig, L. P.
1978-01-01
The various types of seal locations in a gas turbine engine are described, and the significance of wear to each type is reviewed. Starting with positive contact shaft seals, existing material selection guidelines are reviewed, and the existing PV (contact pressure X sliding velocity) criteria for selecting seal materials are discussed, along with the theoretical background for these criteria. Examples of wear mechanisms observed to operate in positive contact seals are shown. Design features that can extend the operating capabilities of positive contact seals, including pressure balancing and incorporation of hydrodynamic lift are briefly discussed. It is concluded that, despite the benefits arising from these design features, improved positive contact seal materials from the standpoint of wear, erosion and oxidation resistance will be necessary for further improvements in seal performance and durability, and to meet stringent future challenges.
Air riding seal with purge cavity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sexton, Thomas D; Mills, Jacob A
An air riding seal for a turbine in a gas turbine engine, where an annular piston is axial moveable within an annular piston chamber formed in a stator of the turbine and forms a seal with a surface on the rotor using pressurized air that forms a cushion in a pocket of the annular piston. A purge cavity is formed on the annular piston and is connected to a purge hole that extends through the annular piston to a lower pressure region around the annular piston or through the rotor to an opposite side. The annular piston is sealed alsomore » with inner and outer seals that can be a labyrinth seal to form an additional seal than the cushion of air in the pocket to prevent the face of the air riding seal from overheating.« less
Radioactive waste disposal package
Lampe, Robert F.
1986-11-04
A radioactive waste disposal package comprising a canister for containing vitrified radioactive waste material and a sealed outer shell encapsulating the canister. A solid block of filler material is supported in said shell and convertible into a liquid state for flow into the space between the canister and outer shell and subsequently hardened to form a solid, impervious layer occupying such space.
Radioactive waste disposal package
Lampe, Robert F.
1986-01-01
A radioactive waste disposal package comprising a canister for containing vitrified radioactive waste material and a sealed outer shell encapsulating the canister. A solid block of filler material is supported in said shell and convertible into a liquid state for flow into the space between the canister and outer shell and subsequently hardened to form a solid, impervious layer occupying such space.
A Solution in Search of Problems
NASA Technical Reports Server (NTRS)
1981-01-01
Ferrofluids offered vast-problem solving potential. Under license for the NASA technology, Dr. Ronald Moskowitz and Dr. Ronald Rosensweig formed Ferrofluids Corporation. First problem they found a solution for was related to the manufacture of semiconductor "chips" for use in electronic systems. They developed a magnetic seal composed of ferrofluid and a magnetic circuit. Magnetic field confines the ferrofluid in the regions between the stationary elements and the rotary shaft of the seal. Result is a series of liquid barriers that totally bar passage of contaminants. Seal is virtually wear-proof and has a lifetime measured in billions of shaft revolutions. It has reduced maintenance, minimizes "downtime" of production equipment, and reduces the cost of expensive materials that had previously been lost through seal failures. Products based on ferrofluid are exclusion seals for computer disc drives and inertia dampers for stepper motors. Uses are performance-improving, failure-reducing coolants for hi-fi loudspeakers. Other applications include analytical instrumentation, medical equipment, industrial processes, silicon crystal growing furnaces, plasma processes, fusion research, visual displays, and automated machine tools.
Autogenic reaction synthesis of photocatalysts for solar fuel generation
Ingram, Brian J.; Pol, Vilas G.; Cronauer, Donald C.; Ramanathan, Muruganathan
2016-04-19
In one preferred embodiment, a photocatalyst for conversion of carbon dioxide and water to a hydrocarbon and oxygen comprises at least one nanoparticulate metal or metal oxide material that is substantially free of a carbon coating, prepared by heating a metal-containing precursor compound in a sealed reactor under a pressure autogenically generated by dissociation of the precursor material in the sealed reactor at a temperature of at least about 600.degree. C. to form a nanoparticulate carbon-coated metal or metal oxide material, and subsequently substantially removing the carbon coating. The precursor material comprises a solid, solvent-free salt comprising a metal ion and at least one thermally decomposable carbon- and oxygen-containing counter-ion, and the metal of the salt is selected from the group consisting of Mn, Ti, Sn, V, Fe, Zn, Zr, Mo, Nb, W, Eu, La, Ce, In, and Si.
10 CFR 60.134 - Design of seals for shafts and boreholes.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 2 2011-01-01 2011-01-01 false Design of seals for shafts and boreholes. 60.134 Section....134 Design of seals for shafts and boreholes. (a) General design criterion. Seals for shafts and... closure. (b) Selection of materials and placement methods. Materials and placement methods for seals shall...
Flexible diaphragm-extreme temperature usage
NASA Astrophysics Data System (ADS)
Lerma, Guillermo
1991-02-01
A diaphragm suitable for extreme temperature usage, such as encountered in critical aerospace applications, is fabricated by a unique method, and of a unique combination of materials. The materials include multilayered lay-ups of diaphragm materials sandwiched between layers of bleeder fabrics. After being formed in the desired shape on a mold, they are vacuum sealed and then cured under pressure, in a heated autoclave. A bond capable of withstanding extreme temperatures are produced.
Flexible diaphragm-extreme temperature usage
NASA Technical Reports Server (NTRS)
Lerma, Guillermo (Inventor)
1991-01-01
A diaphragm suitable for extreme temperature usage, such as encountered in critical aerospace applications, is fabricated by a unique method, and of a unique combination of materials. The materials include multilayered lay-ups of diaphragm materials sandwiched between layers of bleeder fabrics. After being formed in the desired shape on a mold, they are vacuum sealed and then cured under pressure, in a heated autoclave. A bond capable of withstanding extreme temperatures are produced.
10 CFR 71.75 - Qualification of special form radioactive material.
Code of Federal Regulations, 2010 CFR
2010-01-01
... temperature of 30°C (86°F) or greater; (v) The process in paragraph (c)(2)(i), (ii), and (iii) of this section... test specified in the International Organization for Standardization document ISO 2919-1980(e), “Sealed...
Tiwari, Avinash; Shubin, Sergey N; Alcock, Ben; Freidin, Alexander B; Thorkildsen, Brede; Echtermeyer, Andreas T
2017-11-01
The feasibility of a novel composite rubber sealing material to improve sealing under transient cooling (in a so-called blowdown scenario) is investigated here. A composite of hydrogenated nitrile butadiene rubber (HNBR) filled with Micro Encapsulated Phase Change Materials (MEPCM) is described. The fillers contain phase change materials that release heat during the phase transformation from liquid to solid while cooling. This exotherm locally heats the rubber and may improve the function of the seal during a blowdown event. A representative HNBR-MEPCM composite was made and the critical thermal and mechanical properties were obtained by simulating the temperature distribution during a blowdown event. Simulations predict that the MEPCM composites can delay the temperature decrease in a region of the seal during the transient blowdown. A sensitivity analysis of material properties is also presented which highlights possible avenues of improvement of the MEPCMs for sealing applications.
Measurements of True Leak Rates of MEMS Packages
Han, Bongtae
2012-01-01
Gas transport mechanisms that characterize the hermetic behavior of MEMS packages are fundamentally different depending upon which sealing materials are used in the packages. In metallic seals, gas transport occurs through a few nanoscale leak channels (gas conduction) that are produced randomly during the solder reflow process, while gas transport in polymeric seals occurs through the bulk material (gas diffusion). In this review article, the techniques to measure true leak rates of MEMS packages with the two sealing materials are described and discussed: a Helium mass spectrometer based technique for metallic sealing and a gas diffusion based model for polymeric sealing. PMID:22736994
Titanium sealing glasses and seals formed therefrom
Brow, Richard K.; McCollister, Howard L.; Phifer, Carol C.; Day, Delbert E.
1997-01-01
Alkaline-earth lanthanoborate sealing-glass compositions containing CaO, La.sub.2 O.sub.3, B.sub.2 O.sub.3, TiO.sub.2 and Al.sub.2 O.sub.3 in various combinations of mole-% are provided. These sealing-glass compositions are useful for forming hermetic glass-to-metal seals with titanium and titanium alloys that have a high aqueous durability for component or device applications requiring exposure to moisture, water or body fluids. Particular applications of the titanium sealing-glass compositions include forming glass-to-metal seals for lithium batteries and implanted biomedical devices (e.g. batteries, pacemakers, defibrillators, pumps).
Performance Evaluations of Ceramic Wafer Seals
NASA Technical Reports Server (NTRS)
Dunlap, Patrick H., Jr.; DeMange, Jeffrey J.; Steinetz, Bruce M.
2006-01-01
Future hypersonic vehicles will require high temperature, dynamic seals in advanced ramjet/scramjet engines and on the vehicle airframe to seal the perimeters of movable panels, flaps, and doors. Seal temperatures in these locations can exceed 2000 F, especially when the seals are in contact with hot ceramic matrix composite sealing surfaces. NASA Glenn Research Center is developing advanced ceramic wafer seals to meet the needs of these applications. High temperature scrub tests performed between silicon nitride wafers and carbon-silicon carbide rub surfaces revealed high friction forces and evidence of material transfer from the rub surfaces to the wafer seals. Stickage between adjacent wafers was also observed after testing. Several design changes to the wafer seals were evaluated as possible solutions to these concerns. Wafers with recessed sides were evaluated as a potential means of reducing friction between adjacent wafers. Alternative wafer materials are also being considered as a means of reducing friction between the seals and their sealing surfaces and because the baseline silicon nitride wafer material (AS800) is no longer commercially available.
NASA Technical Reports Server (NTRS)
Irick, S. C. (Inventor)
1982-01-01
A spiral wound seal for effecting a seal between two surfaces is described. The seal consists of a strip of gasket material wound into a groove machined into one of the surfaces. The gasket strip is wider than the groove is deep so that a portion of the gasket material protrudes from the groove. The seal is effected by clamping the second surface onto the first surface and compressing the protruding gasket material.
Method and technique for installing light-weight, fragile, high-temperature fiber insulation
NASA Technical Reports Server (NTRS)
Patel, B. C. (Inventor)
1983-01-01
A method of installing fragile, light weight, high temperature fiber insulation, particularly where the insulation is to be used as a seal strip providing a high order of thermal barrier insulation is discussed. The process is based on provision of a strip of the mineral batting cut oversize by a predetermined amount, saturated in a fugitive polymer solution, compressed in a mold, dried and cured to form a rigidized batting material which is machined to required shape. The machine dimensions would normally be at least nominally less than the dimensions of the cavity to be sealed. After insertion in the cavity, which may be a wire-mesh seal enclosure, the apparatus is subjected to baking at a temperature sufficiently high to cause the resin to burn off cleanly, leaving the batting substantially in its original condition and expanded into the cavity or seal enclosure.
A method and technique for installing light-weight fragile, high-temperature fiber insulation
NASA Technical Reports Server (NTRS)
Ballantine, T. J. (Inventor)
1982-01-01
A method of installing fragile, light-weight, high-temperature fiber insulation, particularly where the insulation is to be used as a seal strip providing a high order of thermal barrier insulation is described. The process is based on provision of a strip of the mineral batting cut oversize by a predetermined amount, saturated in a fugitive polymer solution, compressed in a mold, dried and cured to form a rigidized batting material which may be machined to required shape. The machined dimensions would normally be at least nominally less than the dimensions of the cavity to be sealed. After insertion in the cavity, which may be a wire-mesh seal enclosure, the apparatus is subjected to baking at a temperature sufficiently high to cause the resin to burn off cleanly, leaving the batting substantially in its original condition and expanded into the cavity or seal enclosure.
36 CFR 1200.6 - Who is authorized to apply the official seals on documents or other materials?
Code of Federal Regulations, 2011 CFR
2011-07-01
... the official seals on documents or other materials? 1200.6 Section 1200.6 Parks, Forests, and Public Property NATIONAL ARCHIVES AND RECORDS ADMINISTRATION GENERAL RULES OFFICIAL SEALS How are NARA's Official Seals and Logos Designed and Used? § 1200.6 Who is authorized to apply the official seals on documents...
36 CFR 1200.6 - Who is authorized to apply the official seals on documents or other materials?
Code of Federal Regulations, 2010 CFR
2010-07-01
... the official seals on documents or other materials? 1200.6 Section 1200.6 Parks, Forests, and Public Property NATIONAL ARCHIVES AND RECORDS ADMINISTRATION GENERAL RULES OFFICIAL SEALS How are NARA's Official Seals and Logos Designed and Used? § 1200.6 Who is authorized to apply the official seals on documents...
Seal material development test program
NASA Technical Reports Server (NTRS)
1971-01-01
A program designed to characterize an experimental fluoroelastomer material designated AF-E-124D, is examined. Tests conducted include liquid nitrogen load compression tests, flexure tests and valve seal tests, ambient and elevated temperature compression set tests, and cleaning and flushing fluid exposure tests. The results of these tests indicate the AF-E-124D is a good choice for a cryogenic seal, since it exhibits good low temperature sealing characteristics and resistance to permanent set. The status of this material as an experimental fluorelastomer is stressed and recommended. Activity includes definition and control of critical processing to ensure consistent material properties. Design, fabrication and test of this and other materials is recommended in valve and static seal applications.
Turbine interstage seal with self-balancing capability
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mills, Jacob A; Jones, Russell B; Sexton, Thomas D
An interstage seal for a turbine of a gas turbine engine, the interstage seal having a seal carrier with an axial extending seal tooth movable with a stator of the engine, and a rotor with a seal surface that forms the interstage seal with the seal tooth, where a magnetic force produced by two magnets and a gas force produced by a gas pressure acting on the seal carrier forms a balancing force to maintain a close clearance of the seal without the seal tooth contacting the rotor seal surfaces during engine operation. In other embodiments, two pairs of magnetsmore » produce first and second magnetic forces that balance the seal in the engine.« less
Peterson, Kenneth A [Albuquerque, NM; Rohde, Steven B [Corrales, NM; Pfeifer, Kent B [Los Lunas, NM; Turner, Timothy S [Rio Rancho, NM
2007-01-02
A method is described for producing tubular substrates having parallel spaced concentric rings of electrical conductors that can be used as the drift tube of an Ion Mobility Spectrometer (IMS). The invention comprises providing electrodes on the inside of a tube that are electrically connected to the outside of the tube through conductors that extend between adjacent plies of substrate that are combined to form the tube. Tubular substrates are formed from flexible polymeric printed wiring board materials, ceramic materials and material compositions of glass and ceramic, commonly known as Low Temperature Co-Fired Ceramic (LTCC). The adjacent plies are sealed together around the electrode.
Code of Federal Regulations, 2014 CFR
2014-01-01
... material in sealed sources for irradiation of materials in which the source is not removed from its shield... than 10,000 curies of byproduct material in sealed sources for irradiation of materials in which the source is exposed for irradiation purposes. This category also includes underwater irradiators for...
Method for joining carbon-carbon composites to metals
Lauf, Robert J.; McMillan, April D.; Moorhead, Arthur J.
1997-01-01
A method for joining carbon-carbon composites to metals by brazing. Conventional brazing of recently developed carbon-bonded carbon fiber (CBCF) material to a metal substrate is limited by the tendency of the braze alloy to "wick" into the CBCF composite rather than to form a strong bond. The surface of the CBCF composite that is to be bonded is first sealed with a fairly dense carbonaceous layer achieved by any of several methods. The sealed surface is then brazed to the metal substrate by vacuum brazing with a Ti-Cu-Be alloy.
Method for joining carbon-carbon composites to metals
Lauf, R.J.; McMillan, A.D.; Moorhead, A.J.
1997-07-15
A method for joining carbon-carbon composites to metals by brazing. Conventional brazing of recently developed carbon-bonded carbon fiber (CBCF) material to a metal substrate is limited by the tendency of the braze alloy to ``wick`` into the CBCF composite rather than to form a strong bond. The surface of the CBCF composite that is to be bonded is first sealed with a fairly dense carbonaceous layer achieved by any of several methods. The sealed surface is then brazed to the metal substrate by vacuum brazing with a Ti-Cu-Be alloy. 1 fig.
NASA Technical Reports Server (NTRS)
Hendricks, R. C.; Steinetz, B. M.
2006-01-01
The leading Aeronautics program within NASA is the High Speed Research Program (HSR). The HSR program's highest priorities are high pay-off technologies for airframe and propulsion systems required for a high speed civil transport (HSCT). These priorities have been developed collaboratively with NASA, FAA and the US Industry (Boeing-McDonnell Douglas, Pratt & Whitney and General Electric). Phase one of the HSR program started on 1990, and concentrated on the environmental challenges of minimizing NOx and noise. The first program goal is to reduce the NOx emission index to less than 5 (Concord NOx index is 20 and is unacceptable), in order to have little impact on the earth's ozone layer. The second goal is to reduce noise levels to FAR Stage 3 (or better), comparable to those of subsonic aircraft (far below the Concorde noise levels that require exemptions form less stringent standards). This requirement greatly impacts the nozzle design increasing its length and complexity and poses unique sealing challenges. Phase two started in 1993 and initiated work on the technologies required for an economical HSCT. Materials technologies under development include a ceramic-matrix-composite combustion liner, lightweight materials for the nozzle, as well long-life turbomachinery disk and blade alloys. Other required materials are being developed under the DOD-IHPTET program, where there is close cooperation. Economic goals translate into the development of technologies for tri-class service, 5000 nautical mile range aircraft with a ticket price no more than 20% over the subsonic ticket price. The potential market could be as large as 1500 aircraft, according to a Boeing study. Technology alone will not enable this airplane, yet without enabling technologies "on the shelf", it will not occur. The HSCT engine will be the largest engine ever built and operate at maximum conditions for long periods of time posing a number of challenges. The HSR engine mission requires that rotating equipment stay at take-off condition temperatures for hours not minutes per flight. Hence rotating equipment and seals must operate for many thousands of hours at extreme temperatures. It is anticipated that the nozzle will be 12 feet long and roughly 4 ft. by 5 ft. in cross-section with a nominal airflow of 800 lbs/sec. The complex function of the nozzle (including an ejector for noise attenuation) combined with long life place new demands on nozzle seal design. Three inlet configurations are under consideration with attendant sealing challenges, as will be illustrated herein. Four of these engines are required to propel a 5000 nautical mile class vehicle which demand that component reliability be at the highest possible level. In response, an HSR seals session was implemented as a part of the 1997-Seals and Secondary Flow Workshop. Overview presentations were given for each of the following areas: inlet, turbomachinery, combustor and nozzle. The HSCT seal issues center on durability and efficiency of rotating equipment seals (including brush seals), structural seals (including rope seals and other advanced concepts), and high-speed bearing and sump seals. Tighter clearances, propulsion system size and thermal requirements represent extremes that challenge the component designers. This document provides an initial step toward defining HSR seal needs. The overview for HSR seal designs includes, defining seal objectives, summarizing sealing and materials requirements, presenting relevant seal cross-sections, and identifying technology needs for the HSR office.
Spring loaded compliant seal for high temperature use
Memmen, Robert L; Fedock, John A; Downs, James P
2013-10-15
A flexible seal having an X-shaped cross section that forms four contact points on four contact surfaces of two opposed seal slots. The flexible seal is used for a component in which the two seal slots undergo a large deflection such that the opposed slots are not aligned and a rigid seal will not form an adequate seal. The flexible seal can be used in a component of a combustor or a turbine in a gas turbine engine where opposed seal slots undergo the large deflection during operation.
9 CFR 325.16 - Official seals; forms, use, and breaking.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 9 Animals and Animal Products 2 2011-01-01 2011-01-01 false Official seals; forms, use, and... AND VOLUNTARY INSPECTION AND CERTIFICATION TRANSPORTATION § 325.16 Official seals; forms, use, and breaking. (a) The official seals required by this part shall be those prescribed in § 312.5(a) of this...
9 CFR 325.16 - Official seals; forms, use, and breaking.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 9 Animals and Animal Products 2 2010-01-01 2010-01-01 false Official seals; forms, use, and... AND VOLUNTARY INSPECTION AND CERTIFICATION TRANSPORTATION § 325.16 Official seals; forms, use, and breaking. (a) The official seals required by this part shall be those prescribed in § 312.5(a) of this...
High Temperature Brush Seal Tuft Testing of Selected Nickel-Chrome and Cobalt-Chrome Superalloys
NASA Technical Reports Server (NTRS)
Fellenstein, James A.; DellaCorte, Christopher; Moore, Kenneth D.; Boyes, Esther
1997-01-01
The tribology of brush seals is of considerable interest to turbine engine designers because bristle wear continues to limit long term seal performance and life. To provide better materials characterization and foster the development of improved seals, NASA Lewis has developed a brush seal tuft tester. In this test, a 'paintbrush' sample tuft is loaded under constant contact pressure against the outside diameter of a rotating journal. With this configuration, load and friction are directly measured and accurate wear measurements are possible. Previously reported research using this facility showed excellent data repeatability and wear morphology similar to published seal data and dynamic rig tests. This paper is an update of the ongoing research into the tribology of brush seals. The effects of wire materials processing on seal wear and the tribological results for three journal coatings are discussed. Included in the materials processing were two nickel-chrome superalloys each processed to two different yield strengths. The results suggest that seal wear is dependent more on material composition than processing conditions.
Overview of LIDS Docking and Berthing System Seals
NASA Technical Reports Server (NTRS)
Daniels, Christopher C.; Dunlap, Patrick H., Jr.; deGroh, Henry C., III; Steinetz, Bruce M.; Oswald, Jay J.; Smith, Ian
2007-01-01
This viewgraph presentation describes the Low Impact Docking System (LIDS) docking and berthing system seals. The contents include: 1) Description of the Application: Low Impact Docking System (LIDS); 2) LIDS Seal Locations: Vehicle Undocked (Hatch Closed); 3) LIDS Seal Locations: Mechanical Pass Thru; 4) LIDS Seal Locations: Electrical and Pyro Connectors; 5) LIDS Seal Locations: Vehicle Docked (Hatches Open); 6) LIDS Seal Locations: Main Interface Seal; 7) Main Interface Seal Challenges and Specifications; 8) Approach; 9) Seal Concepts Under Development/Evaluation; 10) Elastomer Material Evaluations; 11) Evaluation of Relevant Seal Properties; 12) Medium-Scale (12") Gask-O-Seal Compression Tests; 13) Medium-Scale Compression Results; 14) Adhesion Forces of Elliptical Top Gask-o-seals; 15) Medium-Scale Seals; 16) Medium-Scale Leakage Results: Effect of Configuration; 17) Full Scale LIDS Seal Test Rig Development; 18) Materials International Space Station Experiment (MISSE 6A and 6B); and 19) Schedule.
Seal Materials Compatible with the Electroplating Solvent Used in Constellation-X Mirrors
NASA Technical Reports Server (NTRS)
Pei, Xiong-Skiba
1999-01-01
The existing gasket seals used in electroplating of the Constellation-X mirrors are difficult to assemble, and the current seal material is hydrophobic and too thick. The combination of the above problems result in: 1) non-uniform plating; 2) defect sites such as pits on the mirror edges; 3) "bear claws" on the edges of the mandrels and mirrors causing difficulties in shell-mirror separations; and 4) leakage of the plating solution past the seals into the mandrel causing chemical etching of the mandrel interior. This paper reports the results of this summer study in searching for alternate seal materials chemically compatible with the electroplating solvent. Fifteen common elastomeric rubber seal materials made-by Parker Seals were investigated including butyl, ethylene propylene, fluorosilicone, nitrile, Viton fluorocarbon, and silicone. Test results showed that Viton fluorocarbon compounds as a group were superior to the other tested compounds for chemical compatibility with the plating bath.
Titanium sealing glasses and seals formed therefrom
Brow, R.K.; McCollister, H.L.; Phifer, C.C.; Day, D.E.
1997-12-02
Alkaline-earth lanthanoborate sealing-glass compositions containing CaO, La{sub 2}O{sub 3}, B{sub 2}O{sub 3}, TiO{sub 2} and Al{sub 2}O{sub 3} in various combinations of mole-% are provided. These sealing-glass compositions are useful for forming hermetic glass-to-metal seals with titanium and titanium alloys that have a high aqueous durability for component or device applications requiring exposure to moisture, water or body fluids. Particular applications of the titanium sealing-glass compositions include forming glass-to-metal seals for lithium batteries and implanted biomedical devices (e.g. batteries, pacemakers, defibrillators, pumps). 2 figs.
NASA Technical Reports Server (NTRS)
Bill, R. C.
1978-01-01
Two strength level variations of sintered NiCrAl (about 40 percent dense), candidate high pressure turbine seal materials, were subject to rub tolerance testing against AM 355 steel blade tips. The high strength material (17 N/sq mm tensile strength) showed frictional and radial loads that were 20 to 50 percent higher than those measured for the low strength material (15.5 N/ sq mm tensile strength). Measured wear to the AM 355 blade tips was not significantly different for the two sintered NiCrAl seal materials. Wear of the sintered NiCrAl was characterized by material removal to a depth greater than the depth to which blade tips were driven into the seal, indicating self-erosion effects.
Seal system with integral detector
Fiarman, S.
1982-08-12
A seal system is disclosed for materials where security is of the essence, such as nuclear materials. The seal is tamper-indicating, indicates changes in environmental conditions that evidence attempts to bypass the seal, is unique and cost effective. The seal system is comprised of a seal where an optical signal is transmitted through a loop, with a detector to read said signal, and one or more additional detectors designed to detect environmental changes, these detectors being operatively associated with the seal so that detection of a break in the optical signal or detection of environmental changes will cause an observable change in the seal.
39 CFR 3007.10 - Submission of non-public materials under seal.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 39 Postal Service 1 2011-07-01 2011-07-01 false Submission of non-public materials under seal. 3007.10 Section 3007.10 Postal Service POSTAL REGULATORY COMMISSION PERSONNEL TREATMENT OF NON-PUBLIC MATERIALS PROVIDED BY THE POSTAL SERVICE § 3007.10 Submission of non-public materials under seal. (a) Non...
Chemical compatibility screening results of plastic packaging to mixed waste simulants
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nigrey, P.J.; Dickens, T.G.
1995-12-01
We have developed a chemical compatibility program for evaluating transportation packaging components for transporting mixed waste forms. We have performed the first phase of this experimental program to determine the effects of simulant mixed wastes on packaging materials. This effort involved the screening of 10 plastic materials in four liquid mixed waste simulants. The testing protocol involved exposing the respective materials to {approximately}3 kGy of gamma radiation followed by 14 day exposures to the waste simulants of 60 C. The seal materials or rubbers were tested using VTR (vapor transport rate) measurements while the liner materials were tested using specificmore » gravity as a metric. For these tests, a screening criteria of {approximately}1 g/m{sup 2}/hr for VTR and a specific gravity change of 10% was used. It was concluded that while all seal materials passed exposure to the aqueous simulant mixed waste, EPDM and SBR had the lowest VTRs. In the chlorinated hydrocarbon simulant mixed waste, only VITON passed the screening tests. In both the simulant scintillation fluid mixed waste and the ketone mixture simulant mixed waste, none of the seal materials met the screening criteria. It is anticipated that those materials with the lowest VTRs will be evaluated in the comprehensive phase of the program. For specific gravity testing of liner materials the data showed that while all materials with the exception of polypropylene passed the screening criteria, Kel-F, HDPE, and XLPE were found to offer the greatest resistance to the combination of radiation and chemicals.« less
Waste forms, packages, and seals working group summary
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sridhar, N.
1995-09-01
This article is a summary of the proceedings of a group discussion which took place at the Workshop on the Role of Natural Analogs in Geologic Disposal of High-Level Nuclear Waste in San Antonio, Texas on July 22-25, 1991. The working group concentrated on the subject of radioactive waste forms and packaging. Also included is a description of the use of natural analogs in waste packaging, container materials and waste forms.
Controlled-force end seal arrangement for an air press of a papermaking machine
Beck, David A.
2003-07-08
An air press for pressing a fiber web includes a plurality of rolls and a pair of end seal arrangements. Of the plurality of rolls, each pair of adjacent rolls forms a nip therebetween. Further, each roll has a pair of roll ends, the plurality of rolls together forming two sets of roll ends. Each end seal arrangement coacts with one set of roll ends, the plurality of rolls and the pair of end seal arrangements together defining an air press chamber having an air chamber pressure. Each end seal arrangement is composed of at least one roll seal, including a first roll seal, and an adjustable bias mechanism. Each roll seal forms a seal with at least one roll end, and one side of the first roll seal being exposed to the air chamber pressure. The adjustable bias mechanism is configured for controlling a position of each roll seal relative to a respective at least one roll end and for adjusting a seal force between the roll seal and the respective at least one roll end.
Low-leakage and low-instability labyrinth seal
NASA Technical Reports Server (NTRS)
Rhode, David L. (Inventor)
1997-01-01
Improved labyrinth seal designs are disclosed. The present invention relates to labyrinth seal systems with selected sealing surfaces and seal geometry to optimize flow deflection and produce maximum turbulent action. Optimum seal performance is generally accomplished by providing sealing surfaces and fluid cavities formed to dissipate fluid energy as a function of the geometry of the sealing surfaces along with the position and size of the fluid cavities formed between members of the labyrinth seal system. Improved convex surfaces, annular flow reversal grooves, flow deflection blocks and rough, machined surfaces cooperate to enhance the performance of the labyrinth seal systems. For some labyrinth seal systems a mid-cavity throttle and either rigid teeth or flexible spring teeth may be included.
MECHANICAL PROPERTY CHARACTERIZATIONS AND PERFORMANCE MODELING OF SOFC SEALS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koeppel, Brian J.; Vetrano, John S.; Nguyen, Ba Nghiep
2008-03-26
This study provides modeling tools for the design of reliable seals for SOFC stacks. The work consists of 1) experimental testing to determine fundamental properties of SOFC sealing materials, and 2) numerical modeling of stacks and sealing systems. The material tests capture relevant temperature-dependent physical and mechanical data needed by the analytical models such as thermal expansion, strength, fracture toughness, and relaxation behavior for glass-ceramic seals and other materials. Testing has been performed on both homogenous specimens and multiple material assemblies to investigate the effect of interfacial reactions. A viscoelastic continuum damage model for a glass-ceramic seal was developed tomore » capture the nonlinear behavior of this material at high temperatures. This model was implemented in the MSC MARC finite element code and was used for a detailed analysis of a planar SOFC stack under thermal cycling conditions. Realistic thermal loads for the stack were obtained using PNNL’s in-house multiphysics solver. The accumulated seal damage and component stresses were evaluated for multiple thermal loading cycles, and regions of high seal damage susceptible to cracking were identified. Selected test results, numerical model development, and analysis results will be presented.« less
Mills, Jacob A; Brown, Wesley D; Sexton, Thomas D; Jones, Russell B
2016-07-19
An air riding seal between a rotor and a stator in a turbine of a gas turbine engine, where an annular piston is movable in an axial direction within a housing that extends from the stator, and a bellows is secured to the annular piston to form a flexible air passageway from a compressed air inlet through the annular piston and into a cushion cavity that forms an air riding seal between the annular piston and the rotor sealing surface. In another embodiment, a flexible seal secured to and extending from the annular piston forms a sealing surface between the annular piston chamber and the annular piston to provide a seal and allow for axial movement.
Hayes, John R.
1983-01-01
A regenerator assembly for a gas turbine engine has a hot side seal assembly formed in part by a cast metal engine block having a seal recess formed therein that is configured to supportingly receive ceramic support blocks including an inboard face thereon having a regenerator seal face bonded thereto. A pressurized leaf seal is interposed between the ceramic support block and the cast metal engine block to bias the seal wear face into sealing engagement with a hot side surface of a rotary regenerator matrix.
Atomic Oxygen Effects on Seal Leakage
NASA Technical Reports Server (NTRS)
Christensen, John R.; Underwood, Steve D.; Kamenetzky, Rachel R.; Vaughn, Jason A.
1999-01-01
Common Berthing Mechanism (CBM provides the structural interface between separate International Space Station (ISS) elements, such as the Laboratory and Node modules. The CBM consists of an active and a passive half that join together with structural bolts. The seal at this interface is the CBM-to-CBM molded seal. The CBM-to-CBM interface is assembled on orbit, thus the seals can be exposed to the space environment for up to 65 hours. Atomic Oxygen/Vacuum Ultraviolet radiation (AO/VUV) in space is a potential hazard to the seals. Testing was conducted to determine the effect on leakage of the CBM-to-CBM seal material exposed to AO/VUV. The sealing materials were S383 silicone and V835 fluorocarbon material. Control samples, which were not exposed to the AO/VUV environment, were used to ensure that ff any changes in leakage occurred, they could be attributed to the AO/VUV exposure. After exposure to the AO/VUV environment the leakage increase was dramatic for the fluorocarbon. This testing was a major contributing factor in selecting silicone as the CBM-to-CBM seal material.
Fuel cell separator with compressible sealing flanges
Mientek, A.P.
1984-03-30
A separator for separating adjacent fuel cells in a stack of such cells includes a flat, rectangular, gas-impermeable plate disposed between adjacent cells and having two opposite side margins thereof folded back over one side of the plate to form two first seal flanges and having the other side margins thereof folded back over the opposite side of the plate to form two second seal flanges, each of the seal flanges cooperating with the plate to define a channel in which is disposed a resiliently compressible stack of thin metal sheets. The two first seal flanges cooperate with the electrolyte matrix of one of the cells to form a gas-impermeable seal between an electrode of the one cell and one of two reactant gas manifolds. The second seal flanges cooperate with the electrolyte matrix of the other cell for forming a gas-impermeable seal between an electrode of the other cell and the other of the two reactant gas manifolds. The seal flanges cooperate with the associated compressible stacks of sheets for maintaining a spacing between the plate and the electrolyte matrices while accommodating variation of that spacing.
Fuel cell separator with compressible sealing flanges
Mientek, Anthony P.
1985-04-30
A separator for separating adjacent fuel cells in a stack of such cells includes a flat, rectangular, gas-impermeable plate disposed between adjacent cells and having two opposite side margins thereof folded back over one side of the plate to form two first seal flanges and having the other side margins thereof folded back over the opposite side of the plate to form two second seal flanges, each of the seal flanges cooperating with the plate to define a channel in which is disposed a resiliently compressible stack of thin metal sheets. The two first seal flanges cooperate with the electrolyte matrix of one of the cells to form a gas-impermeable seal between an electrode of the one cell and one of two reactant gas manifolds. The second seal flanges cooperate with the electrolyte matrix of the other cell for forming a gas-impermeable seal between an electrode of the other cell and the other of the two reactant gas manifolds. The seal flanges cooperate with the associated compressible stacks of sheets for maintaining a spacing between the plate and the electrolyte matrices while accommodating variation of that spacing.
40 CFR 59.412 - Incorporations by reference.
Code of Federal Regulations, 2010 CFR
2010-07-01
... address: American Society for Testing and Materials (ASTM), 100 Barr Harbor Drive, West Conshohocken, PA 19428-2959. (1) ASTM Method C 1315-95, Standard Specification for Liquid Membrane-Forming Compounds....401, Concrete curing and sealing compound. (2) ASTM Method D 523-89, Standard Test Method for Specular...
Unique Tuft Test Facility Dramatically Reduces Brush Seal Development Costs
NASA Technical Reports Server (NTRS)
Fellenstein, James A.
1997-01-01
Brush seals have been incorporated in the latest turbine engines to reduce leakage and improve efficiency. However, the life of these seals is limited by wear. Studies have shown that optimal sealing characteristics for a brush seal occur before the interference fit between the brush and shaft is excessively worn. Research to develop improved tribopairs (brush and coating) with reduced wear and lower friction has been hindered by the lack of an accurate, low-cost, efficient test methodology. Estimated costs for evaluating a new material combination in an engine company seal test program are on the order of $100,000. To address this need, the NASA Lewis Research Center designed, built, and validated a unique, innovative brush seal tuft tester that slides a single tuft of brush seal wire against a rotating shaft under controlled loads, speeds, and temperatures comparable to those in turbine engines. As an initial screening tool, the brush seal tuft tester can tribologicaly evaluate candidate seal materials for 1/10th the cost of full-scale seal tests. Previous to the development of the brush seal tuft tester facility, most relevant tribological data had been obtained from full-scale seal tests conducted primarily to determine seal leakage characteristics. However, from a tribological point of view, these tests included the confounding effects of varying contact pressures, bristle flaring, high-temperature oxidation, and varying bristle contact angles. These confounding effects are overcome in tuft testing. The interface contact pressures can be either constant or varying depending on the tuft mounting device, and bristle wear can be measured optically with inscribed witness marks. In a recent cooperative program with a U.S. turbine engine manufacturer, five metallic wire candidates were tested against a plasma-sprayed Nichrome-bonded chrome carbide. The wire materials used during this collaboration were either nickel-chrome- or cobaltchrome-based superalloys. These tests corroborated full-scale seal test results and provided insight into previously untested combinations. As the cycle temperature for improved efficiency turbine engines increases, new brush seal materials combinations must be considered. Future brush seal tuft testing will include both metallic and ceramic bristles versus commercial and NASA-developed shaft coatings. The ultimate goal of this work is to expand the current data base so that seal designers can tailor brush seal materials to specific applications.
Turbomachinery Clearance Control
NASA Technical Reports Server (NTRS)
Chupp, Raymond E.; Hendricks, Robert C.; Lattime, Scott B.; Steinetz, Bruce M.; Aksit, Mahmut F.
2007-01-01
Controlling interface clearances is the most cost effective method of enhancing turbomachinery performance. Seals control turbomachinery leakages, coolant flows and contribute to overall system rotordynamic stability. In many instances, sealing interfaces and coatings are sacrificial, like lubricants, giving up their integrity for the benefit of the component. They are subjected to abrasion, erosion, oxidation, incursive rubs, foreign object damage (FOD) and deposits as well as extremes in thermal, mechanical, aerodynamic and impact loadings. Tribological pairing of materials control how well and how long these interfaces will be effective in controlling flow. A variety of seal types and materials are required to satisfy turbomachinery sealing demands. These seals must be properly designed to maintain the interface clearances. In some cases, this will mean machining adjacent surfaces, yet in many other applications, coatings are employed for optimum performance. Many seals are coating composites fabricated on superstructures or substrates that are coated with sacrificial materials which can be refurbished either in situ or by removal, stripping, recoating and replacing until substrate life is exceeded. For blade and knife tip sealing an important class of materials known as abradables permit blade or knife rubbing without significant damage or wear to the rotating element while maintaining an effective sealing interface. Most such tip interfaces are passive, yet some, as for the high-pressure turbine (HPT) case or shroud, are actively controlled. This work presents an overview of turbomachinery sealing. Areas covered include: characteristics of gas and steam turbine sealing applications and environments, benefits of sealing, types of standard static and dynamics seals, advanced seal designs, as well as life and limitations issues.
NASA Technical Reports Server (NTRS)
Steinetz, Bruce M.
1992-01-01
A critical mechanical system in advanced hypersonic engines is the panel-edge seal system that seals gaps between the articulating engine panels and the adjacent engine splitter walls. Significant advancements in seal technology are required to meet the extreme demands placed on the seals, including the simultaneous requirements of low leakage, conformable, high temperature, high pressure, sliding operation. In this investigation, the design, development, analytical and experimental evaluation of a new ceramic wafer seal that shows promise of meeting these demands will be addressed. A high temperature seal test fixture was designed and fabricated to measure static seal leakage performance under engine simulated conditions. Ceramic wafer seal leakage rates are presented for engine-simulated air pressure differentials (up to 100 psi), and temperature (up to 1350 F), sealing both flat and distorted wall conditions, where distortions can be as large as 0.15 inches in only an 18 inch span. Seal leakage rates are low, meeting an industry-established tentative leakage limit for all combinations of temperature, pressure and wall conditions considered. A seal leakage model developed from externally-pressurized gas film bearing theory is also presented. Predicted leakage rates agree favorably with the measured data for nearly all conditions of temperature and pressure. Discrepancies noted at high engine pressure and temperature are attributed to thermally-induced, non-uniform changes in the size and shape of the leakage gap condition. The challenging thermal environment the seal must operate in places considerable demands on the seal concept and material selection. Of the many high temperature materials considered in the design, ceramics were the only materials that met the many challenging seal material design requirements. Of the aluminum oxide, silicon carbide, and silicon nitride ceramics considered in the material ranking scheme developed herein, the silicon nitride class of ceramics ranked the highest because of their high temperature strength; resistance to the intense heating rates; resistance to hydrogen damage; and good structural properties. Baseline seal feasibility has been established through the research conducted in this investigation. Recommendations for future work are also discussed.
Energy conversion device with improved seal
Miller, Gerald R.; Virkar, Anil V.
1980-01-01
An energy conversion device comprising an improved sealing member adapted to seal a cation-permeable casing to the remainder of the device. The sealing member comprises a metal substrate which (i) bears a nonconductive and corrosion resistant coating on the major surface to which said casing is sealed, and (ii) is corrugated so as to render it flexible, thereby allowing said member to move relative to said casing without cracking the seal therebetween. Corrugations may be circumferential, radial, or both radial and circumferential so as to form dimples. The corrugated member may be in form of a bellows or in a substantially flat form, such as a disc.
Security seal. [Patent application
Gobeli, G.W.
1981-11-17
Security for a package or verifying seal in plastic material is provided by a print seal with unique thermally produced imprints in the plastic. If tampering is attempted, the material is irreparably damaged and thus detectable. The pattern of the imprints, similar to fingerprints are recorded as a positive identification for the seal, and corresponding recordings made to allow comparison. The integrity of the seal is proved by the comparison of imprint identification records made by laser beam projection.
Gobeli, Garth W.
1985-01-01
Security for a package or verifying seal in plastic material is provided by a print seal with unique thermally produced imprints in the plastic. If tampering is attempted, the material is irreparably damaged and thus detectable. The pattern of the imprints, similar to "fingerprints" are recorded as a positive identification for the seal, and corresponding recordings made to allow comparison. The integrity of the seal is proved by the comparison of imprint identification records made by laser beam projection.
Method of fabricating high-density hermetic electrical feedthroughs
Shah, Kedar G.; Pannu, Satinderpall S.; Delima, Terri L.
2015-06-02
A method of fabricating electrical feedthroughs selectively removes substrate material from a first side of an electrically conductive substrate (e.g. a bio-compatible metal) to form an array of electrically conductive posts in a substrate cavity. An electrically insulating material (e.g. a bio-compatible sealing glass) is then flowed to fill the substrate cavity and surround each post, and solidified. The solidified insulating material is then exposed from an opposite second side of the substrate so that each post is electrically isolated from each other as well as the bulk substrate. In this manner a hermetic electrically conductive feedthrough construction is formed having an array of electrical feedthroughs extending between the first and second sides of the substrate from which it was formed.
New Standard Weir Design for Dredged Material Management Area, Jacksonville District
2014-08-01
dock access, Bartram Island Cell B2, Jacksonville, Florida. Report Documentation Page Form ApprovedOMB No. 0704-0188 Public reporting burden for...Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std Z39-18 ERDC/TN DOTS-14-01 August 2014 2 US Army Corps of Engineers • Engineer Research...and through the riser stack of weir boards. This requires secondary sealing measures in the form of plastic sheeting, geotextiles, and/or burlap
Fabrication of fillable microparticles and other complex 3D microstructures
NASA Astrophysics Data System (ADS)
McHugh, Kevin J.; Nguyen, Thanh D.; Linehan, Allison R.; Yang, David; Behrens, Adam M.; Rose, Sviatlana; Tochka, Zachary L.; Tzeng, Stephany Y.; Norman, James J.; Anselmo, Aaron C.; Xu, Xian; Tomasic, Stephanie; Taylor, Matthew A.; Lu, Jennifer; Guarecuco, Rohiverth; Langer, Robert; Jaklenec, Ana
2017-09-01
Three-dimensional (3D) microstructures created by microfabrication and additive manufacturing have demonstrated value across a number of fields, ranging from biomedicine to microelectronics. However, the techniques used to create these devices each have their own characteristic set of advantages and limitations with regards to resolution, material compatibility, and geometrical constraints that determine the types of microstructures that can be formed. We describe a microfabrication method, termed StampEd Assembly of polymer Layers (SEAL), and create injectable pulsatile drug-delivery microparticles, pH sensors, and 3D microfluidic devices that we could not produce using traditional 3D printing. SEAL allows us to generate microstructures with complex geometry at high resolution, produce fully enclosed internal cavities containing a solid or liquid, and use potentially any thermoplastic material without processing additives.
Stress and Sealing Performance Analysis of Containment Vessel
DOE Office of Scientific and Technical Information (OSTI.GOV)
WU, TSU-TE
2005-05-24
This paper presents a numerical technique for analyzing the containment vessel subjected to the combined loading of closure-bolt torque and internal pressure. The detailed stress distributions in the O-rings generated by both the torque load and the internal pressure can be evaluated by using this method. Consequently, the sealing performance of the O-rings can be determined. The material of the O-rings can be represented by any available constitutive equation for hyperelastic material. In the numerical calculation of this paper, the form of the Mooney-Rivlin strain energy potential is used. The technique treats both the preloading process of bolt tightening andmore » the application of internal pressure as slow dynamic loads. Consequently, the problem can be evaluated using explicit numerical integration scheme.« less
High-pressure cryogenic seals for pressure vessels
NASA Technical Reports Server (NTRS)
Buggele, A. E.
1977-01-01
This investigation of the problems associated with reliably containing gaseous helium pressurized to 1530 bars (22 500 psi) between 4.2 K and 150 K led to the following conclusions: (1) common seal designs used in existing elevated-temperature pressure vessels are unsuitable for high-pressure cryogenic operation, (2) extrusion seal-ring materials such as Teflon, tin, and lead are not good seal materials for cryogenic high-pressure operation; and (3) several high-pressure cryogenic seal systems suitable for large-pressure vessel applications were developed; two seals required prepressurization, and one seal functioned repeatedly without any prepressurization. These designs used indium seal rings, brass or 304 stainless-steel anvil rings, and two O-rings of silicone rubber or Kel-F.
NASA Astrophysics Data System (ADS)
Ballarini, E.; Graupner, B.; Bauer, S.
2015-12-01
For deep geological repositories of high-level radioactive waste (HLRW), bentonite and sand bentonite mixtures are investigated as buffer materials to form a a sealing layer. This sealing layer surrounds the canisters and experiences an initial drying due to the heat produced by HLRW and a successive re-saturation with fluid from the host rock. These complex thermal, hydraulic and mechanical processes interact and were investigated in laboratory column experiments using MX-80 clay pellets as well as a mixture of 35% sand and 65% bentonite. The aim of this study is to both understand the individual processes taking place in the buffer materials and to identify the key physical parameters that determine the material behavior under heating and hydrating conditions. For this end, detailed and process-oriented numerical modelling was applied to the experiments, simulating heat transport, multiphase flow and mechanical effects from swelling. For both columns, the same set of parameters was assigned to the experimental set-up (i.e. insulation, heater and hydration system), while the parameters of the buffer material were adapted during model calibration. A good fit between model results and data was achieved for temperature, relative humidity, water intake and swelling pressure, thus explaining the material behavior. The key variables identified by the model are the permeability and relative permeability, the water retention curve and the thermal conductivity of the buffer material. The different hydraulic and thermal behavior of the two buffer materials observed in the laboratory observations was well reproduced by the numerical model.
A New Tribological Test for Candidate Brush Seal Materials Evaluation
NASA Technical Reports Server (NTRS)
Fellenstein, James A.; Dellacorte, Christopher
1994-01-01
A new tribological test for candidate brush seal materials evaluation has been developed. The sliding contact between the brush seal wires and their mating counterface journal is simulated by testing a small tuft of wire against the outside diameter of a high speed rotating shaft. The test configuration is similar to a standard block on ring geometry. The new tester provides the capability to measure both the friction and wear of candidate wire and counterface materials under controlled loading conditions in the gram to kilogram range. A wide test condition latitude of speeds (1 to 27 m/s), temperatures (25 to 700 C), and loads (0.5 to 10 N) enables the simulation of many of the important tribological parameters found in turbine engine brush seals. This paper describes the new test rig and specimen configuration and presents initial data for candidate seal materials comparing tuft test results and wear surface morphology to field tested seal components.
Quick-sealing design for radiological containment
Rampolia, Donald S.; Speer, Elmer
1990-01-01
A quick-sealing assembly and method for forming an adhesive seal on opposite sides of a mechanical seal for a flexible containment bag of the type used for working with radioactively contaminated objects. The assembly includes an elongated mechanical fastener having opposing engaging members affixed at a predetermined distance from each of the elongated edges, with an adhesive layer formed between the mechanical fastener and the elongated edge such that upon engagement of the mechanical fastener and adhesive layers to opposing containment fabric, a neat triple hermetic seal is formed.
Quick-sealing design for radiological containment
Rampolla, Donald S.; Speer, Elmer
1991-01-01
A quick-sealing assembly and method for forming an adhesive seal on opposite sides of a mechanical seal for a flexible containment bag of the type used for working with radioactively contaminated objects. The assembly includes an elongated mechanical fastener having opposing engaging members affixed at a predetermined distance from each of the elongated edges, with an adhesive layer formed between the mechanical fastener and the elongated edge such that upon engagement of the mechanical fastener and adhesive layers to opposing containment fabric, a neat triple hermetic seal is formed.
Seal Related Development Activities at EG/G
NASA Technical Reports Server (NTRS)
Greiner, Harold F.
1991-01-01
Seal related development activities including modeling, analysis, and performance testing are described for several current seal related projects. Among the current seal related projects are the following: high pressure gas sealing systems for turbomachinery; brush seals for gas path sealing in gas turbines; and tribological material evaluation for wear surfaces in sealing systems.
A Study on Sealing Process of Anodized Al Alloy Film
NASA Astrophysics Data System (ADS)
Tsujita, Takeshi; Sato, Hiroshi; Tsukahara, Sonoko; Ishikawa, Yuuichi
Since sealing is an important process to improve the corrosion resistance in practical application of anodized aluminum, we prepared anodic oxide films on A5052 alloy in an oxalic acid bath and a sulfuric acid bath, sealed them at various conditions, and analyzed them by scanning electron microscopy, acid-dissolution examination, admittance measurements and infrared spectroscopy. The pore radius of the oxalic acid anodized film was about 5 times larger than that of sulfuric acid anodized film, while the corrosion resistance of the former showed about 2 times higher value than the latter with the same sealed state and amount of hydroxide formed by sealing process of the former was 6 times larger than the latter, respectively. Steam sealing formed dense hydroxide and boiling water sealing formed big coral-like hydroxide, whereas the corrosion resistance of the film sealed by the former showed about 1.5 times higher value than that sealed by the latter, respectively. Thus microstructure of anodic oxide films and their surface morphology after sealing process clearly depended on their anodizing solution and the sealing condition and showed obvious relation to electric and corrosive properties.
Method of making a flexible diaphragm
NASA Technical Reports Server (NTRS)
Lerma, Guillermo (Inventor)
1987-01-01
A diaphragm suitable for extreme temperature usage, such as encountered in critical aerospace applications, is fabricated by a unique method, and of a unique combination of materials, which include multilayered lay-ups of diaphragm materials sandwiched between layers of bleeder fabrics which, after being formed in the desired shape on a mold, are vacuum sealed and then cured under pressure, in a heated autoclave, to produce a bond capable of withstanding extreme temperatures.
Seal system with integral detector
Fiarman, Sidney
1985-01-01
There is disclosed a seal system for materials where security is of the essence, such as nuclear materials, which is tamper-indicating, which indicates changes in environmental conditions that evidence attempts to by-pass the seal, which is unique and cost effective, said seal system comprised of a seal where an optical signal is transmitted through a loop, with a detector to read said signal, and one or more additional detectors designed to detect environmental changes, these detectors being operatively associated with the seal so that detection of a break in the optical signal or detection of environmental changes will cause an observable change in the seal.
Performance evaluation of seal coat materials and designs.
DOT National Transportation Integrated Search
2011-01-01
"This project presents an evaluation of seal coat materials and design method. The primary objectives of this research are 1) to evaluate seal coat performance : from various combinations of aggregates and emulsions in terms of aggregate loss; 2) to ...
Using Aerogel-Based Insulation Material To Prevent Foam Loss on the Liquid-Hydrogen Intertank
NASA Technical Reports Server (NTRS)
2008-01-01
Uninsulated areas on cryogenic propellant tanks and feedlines cause moisture in the air to condense or ice to form. Flange joints, bracket supports, expansion bellows, and other cavities are uninsulated by design. These areas cannot be sealed because conventional thermal insulation materials would restrict mechanical articulations. Aerogel-based thermal insulation systems are able to seal critical locations such as the liquid-oxygen (LO2) feedline bellows. A new thermal insulation system was also necessary between the intertank wall, flange, and the liquid-hydrogen (LH2) tank dome, where there is a cavity (or crevice) with an exposed 20-K surface. When nitrogen gas is used for purging within the intertank volume, it condenses on this cold surface. Some solid nitrogen may also form on the colder side of the crevice. Voids or discontinuities within the foam can pressurize and cause areas of foam to weaken and break off, reducing thermal efficiency and creating potentially dangerous debris. To prevent this foam loss, we developed a thermal insulation system using bulk-fill aerogel material and demonstrated it with a one-tenth-scale model of the LH2 intertank flange area
Lightweight bladder lined pressure vessels
Mitlitsky, F.; Myers, B.; Magnotta, F.
1998-08-25
A lightweight, low permeability liner is described for graphite epoxy composite compressed gas storage vessels. The liner is composed of polymers that may or may not be coated with a thin layer of a low permeability material, such as silver, gold, or aluminum, deposited on a thin polymeric layer or substrate which is formed into a closed bladder using tori spherical or near tori spherical end caps, with or without bosses therein, about which a high strength to weight material, such as graphite epoxy composite shell, is formed to withstand the storage pressure forces. The polymeric substrate may be laminated on one or both sides with additional layers of polymeric film. The liner may be formed to a desired configuration using a dissolvable mandrel or by inflation techniques and the edges of the film sealed by heat sealing. The liner may be utilized in most any type of gas storage system, and is particularly applicable for hydrogen, gas mixtures, and oxygen used for vehicles, fuel cells or regenerative fuel cell applications, high altitude solar powered aircraft, hybrid energy storage/propulsion systems, and lunar/Mars space applications, and other applications requiring high cycle life. 19 figs.
Removable, hermetically-sealing, filter attachment system for hostile environments
Mayfield, Glenn L [Richland, WA
1983-01-01
A removable and reusable filter attachment system. A filter medium is fixed o, and surrounded by, a filter frame having a coaxial, longitudinally extending, annular rim. The rim engages an annular groove which surrounds the opening of a filter housing. The annular groove contains a fusible material and a heating mechanism for melting the fusible material. Upon resolidifying, the fusible material forms a hermetic bond with the rim and groove. Remelting allows detachment and replacement of the filter frame.
Code of Federal Regulations, 2010 CFR
2010-01-01
... openings and backfill materials, but excluding shafts, boreholes, and their seals, is designated the... structure, including openings and backfill materials, but excluding, shafts, boreholes, and their seals. (2... includes sealing of shafts. Permanent closure represents the end of active human intervention with respect...
Design considerations in mechanical face seals for improved performance. 1: Basic configurations
NASA Technical Reports Server (NTRS)
Ludwig, L. P.; Greiner, H. F.
1977-01-01
Basic assembly configurations of the mechanical face seal are described and some advantages associated with each are listed. The various forms of seal components are illustrated, and functions pointed out. The technique of seal pressure balancing and its application are described; and the concept of the PV factor, its different forms and limitations are discussed. Brief attention is given to seal lubrication since it is covered in detail in a companion paper. Finally, the operating conditions for various applications of low pressure seals (aircraft transmissions) are listed, and the seal failure mode of a particular application is discussed.
Resilient Flexible Pressure-Activated Seal
NASA Technical Reports Server (NTRS)
Steinetz, Bruce M. (Inventor); Dunlap, Patrick H., Jr. (Inventor)
2009-01-01
A resilient, flexible, pressure-activated, high-temperature seal is adapted to be interposed between high and low pressure regions to provide sealing between opposing surfaces of adjacent relatively movable structures. The seal comprises at least one C-shaped sheet element. The C-shaped element design enables the seal to be pressure-activated to provide a radially outward biasing force, responsive to a seal-activating pressure differential acting across the seal thereby increasing resiliency. A centrally-located, resilient core structure provides load bearing and insulating properties. In an exemplary embodiment where at least two seal elements are used, each layer has a cutout slot pattern and the remaining strip material pattern. The slots provide flexibility to the seal, enabling the seal to be manually contoured to seal around corners and curves. The strip material of each layer covers the slots in each adjacent layer to minimize leakage through the slots. Attached barrier strips can block interface leakage between the seal and the opposing surfaces.
Shaft Seal Compensates for Cold Flow
NASA Technical Reports Server (NTRS)
Myers, W. N.; Hein, L. A.
1985-01-01
Seal components easy to install. Ring seal for rotating or reciprocating shafts spring-loaded to compensate for slow yielding (cold flow) of sealing material. New seal relatively easy to install because components preassembled, then installed in one piece.
COMPRESSION SEAL AND SEALING MATERIAL THEREFOR
Branin, T.G.
1962-05-29
This patent relates to compression seal and more particularly to a seaiing material therefor. The sealing surface is a coating consisting of alternate layers of gold and of a non-gold metal having similar plastic flow properties under pressure as gold. The coating is substantially free from oxidation effects when exposed to ambient atmosphere and does not become brittle when worked, as in a valve. (AEC)
Materials testing of the IUS techroll seal material
NASA Technical Reports Server (NTRS)
Nichols, R. L.; Hall, W. B.
1984-01-01
As a part of the investigation of the control system failure Inertial Upper Stage on IUS-1 flight to position a Tracking and Data Relay Satellite (TDRS) in geosynchronous orbit, the materials utilized in the techroll seal are evaluated for possible failure models. Studies undertaken included effect of temperature on the strength of the system, effect of fatigue on the strength of the system, thermogravimetric analysis, thermomechanical analysis, differential scanning calorimeter analysis, dynamic mechanical analysis, and peel test. The most likely failure mode is excessive temperature in the seal. In addition, the seal material is susceptible to fatigue damage which could be a contributing factor.
International Data on Radiological Sources
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martha Finck; Margaret Goldberg
2010-07-01
ABSTRACT The mission of radiological dispersal device (RDD) nuclear forensics is to identify the provenance of nuclear and radiological materials used in RDDs and to aid law enforcement in tracking nuclear materials and routes. The application of databases to radiological forensics is to match RDD source material to a source model in the database, provide guidance regarding a possible second device, and aid the FBI by providing a short list of manufacturers and distributors, and ultimately to the last legal owner of the source. The Argonne/Idaho National Laboratory RDD attribution database is a powerful technical tool in radiological forensics. Themore » database (1267 unique vendors) includes all sealed sources and a device registered in the U.S., is complemented by data from the IAEA Catalogue, and is supported by rigorous in-lab characterization of selected sealed sources regarding physical form, radiochemical composition, and age-dating profiles. Close working relationships with global partners in the commercial sealed sources industry provide invaluable technical information and expertise in the development of signature profiles. These profiles are critical to the down-selection of potential candidates in either pre- or post- event RDD attribution. The down-selection process includes a match between an interdicted (or detonated) source and a model in the database linked to one or more manufacturers and distributors.« less
75 FR 79049 - Final Regulatory Guide: Issuance, Availability
Federal Register 2010, 2011, 2012, 2013, 2014
2010-12-17
... (RG) 5.80, ``Pressure-Sensitive and Tamper-Indicating Device Seals for Material Control and Accounting... and licenses. Regulatory Guide 5.80, ``Pressure-Sensitive and Tamper-Indicating Device Seals for... and Use of Pressure-Sensitive Seals on Containers for Onsite Storage of Special Nuclear Material...
Trap seal for open circuit liquid cooled turbines
Grondahl, Clayton M.; Germain, Malcolm R.
1980-01-01
An improved trap seal for open circuit liquid cooled turbines is disclosed. The trap seal of the present invention includes an annular recess formed in the supply conduit of cooling channels formed in the airfoil of the turbine buckets. A cylindrical insert is located in the annular recesses and has a plurality of axial grooves formed along the outer periphery thereof and a central recess formed in one end thereof. The axial grooves and central recess formed in the cylindrical insert cooperate with the annular recess to define a plurality of S-shaped trap seals which permit the passage of liquid coolant but prohibit passage of gaseous coolant.
Development of Advanced Carbon Face Seals for Aircraft Engines
NASA Astrophysics Data System (ADS)
Falaleev, S. V.; Bondarchuk, P. V.; Tisarev, A. Yu
2018-01-01
Modern aircraft gas turbine engines require the development of seals which can operate for a long time with low leakages. The basic type of seals applied for gas turbine engine rotor supports is face seal. To meet the modern requirements of reliability, leak-tightness and weight, low-leakage gas-static and hydrodynamic seals have to be developed. Dry gas seals use both gas-static and hydrodynamic principles. In dry gas seals microgrooves are often used, which ensure the reverse injection of leakages in the sealed cavity. Authors have developed a calculation technique including the concept of coupled hydrodynamic, thermal and structural calculations. This technique allows to calculate the seal performance taking into account the forces of inertia, rupture of the lubricant layer and the real form of the gap. Authors have compared the efficiency of seals with different forms of microgrooves. Results of calculations show that seal with rectangular form of microgrooves has a little gap leading to both the contact of seal surfaces and the wear. Reversible microgrooves have a higher oil mass flow rate, whereas HST micro-grooves have good performance, but they are difficult to produce. Spiral microgrooves have both an acceptable leakages and a high stiffness of liquid layer that is important in terms of ensuring of sealing performance at vibration conditions. Therefore, the spiral grooves were chosen for the developed seal. Based on calculation results, geometric dimensions were chosen to ensure the reliability of the seal operation by creating a guaranteed liquid film, which eliminates the wear of the sealing surfaces. Seals designed were tested both at the test rig and in the engine.
Contracting/expanding self-sealing cryogenic tube seals
NASA Technical Reports Server (NTRS)
Jia, Lin X. (Inventor)
1997-01-01
Contracting/expanding self-sealing cryogenic tube seals are disclosed which use the different properties of thermal contraction and expansion of selected dissimilar materials in accord with certain design criteria to yield self-tightening seals via sloped-surface sealing. The seals of the subject invention are reusable, simple to assemble, and adaptable to a wide variety of cryogenic applications.
Contracting/expanding self-sealing cryogenic tube seals
NASA Technical Reports Server (NTRS)
Jia, Lin X. (Inventor)
1997-01-01
Contracting/expanding self-sealing cryogenic tube seals are disclosed which use the different properties of thermal contraction and expansion of selected dissimilar materials in accord with certain design criteria to yield self-tightening seals via sloped-surface sealing. The seals of the subject invention are reusable, simple to assemble, adaptable to a wide variety of cryogenic applications.
Solar cell modules with improved backskin and methods for forming same
Hanoka, Jack I.
1998-04-21
A laminated solar cell module with a backskin layer that reduces the materials and labor required during the manufacturing process. The solar cell module includes a rigid front support layer formed of light transmitting material having first and second surfaces. A transparent encapsulant layer has a first surface disposed adjacent the second surface of the front support layer. A plurality of interconnected solar cells have a first surface disposed adjacent a second surface of the transparent encapsulant layer. The backskin layer is formed of a thermoplastic olefin, which includes first ionomer, a second ionomer, glass fiber, and carbon black. A first surface of the backskin layer is disposed adjacent a second surface of the interconnected solar cells. The transparent encapsulant layer and the backskin layer, in combination, encapsulate the interconnected solar cells. An end portion of the backskin layer can be wrapped around the edge of the module for contacting the first surface of the front support layer to form an edge seal. A laminated solar cell module with a backskin layer that reduces the materials and labor required during the manufacturing process. The solar cell module includes a rigid front support layer formed of light transmitting material having first and second surfaces. A transparent encapsulant layer has a first surface disposed adjacent the second surface of the front support layer. A plurality of interconnected solar cells have a first surface disposed adjacent a second surface of the transparent encapsulant layer. The backskin layer is formed of a thermoplastic olefin, which includes first ionomer, a second ionomer, glass fiber, and carbon black. A first surface of the backskin layer is disposed adjacent a second surface of the interconnected solar cells. The transparent encapsulant layer and the backskin layer, in combination, encapsulate the interconnected solar cells. An end portion of the backskin layer can be wrapped around the edge of the module for contacting the first surface of the front support layer to form an edge seal.
Brush Seal Performance and Durability Issues Based on T-700 Engine Test Results
NASA Technical Reports Server (NTRS)
Hendricks, R. C.
1994-01-01
The integrity and performance of brush seals have been established. Severe bench and engine tests have shown high initial wear or run-in rates, material smearing at the interface, and bristle and rub-runner wear, but the brush seals did not fail. Short-duration (46 hr) experimental T-700 engine testing of the compressor discharge seal established over 1-percent engine performance gain (brush versus labyrinth). Long-term gains were established only as leakage comparisons, with the brush at least 20 percent better at controlling leakage. Long-term materials issues, such as wear and ultimately seal life, remain to be resolved. Future needs are cited for materials and analysis tools that account for heat generation, thermomechanical behavior, and tribological pairing to enable original equipment manufacturers to design high-temperature, high-surface-speed seals with confidence.
High temperature dynamic engine seal technology development
NASA Technical Reports Server (NTRS)
Steinetz, Bruce M.; Dellacorte, Christopher; Machinchick, Michael; Mutharasan, Rajakkannu; Du, Guang-Wu; Ko, Frank; Sirocky, Paul J.; Miller, Jeffrey H.
1992-01-01
Combined cycle ramjet/scramjet engines being designed for advanced hypersonic vehicles, including the National Aerospace Plane (NASP), require innovative high temperature dynamic seals to seal the sliding interfaces of the articulated engine panels. New seals are required that will operate hot (1200 to 2000 F), seal pressures ranging from 0 to 100 psi, remain flexible to accommodate significant sidewall distortions, and resist abrasion over the engine's operational life. This report reviews the recent high temperature durability screening assessments of a new braided rope seal concept, braided of emerging high temperature materials, that shows promise of meeting many of the seal demands of hypersonic engines. The paper presents durability data for: (1) the fundamental seal building blocks, a range of candidate ceramic fiber tows; and for (2) braided rope seal subelements scrubbed under engine simulated sliding, temperature, and preload conditions. Seal material/architecture attributes and limitations are identified through the investigations performed. The paper summarizes the current seal technology development status and presents areas in which future work will be performed.
Seal assembly for materials with different coefficients of thermal expansion
Minford, Eric [Laurys Station, PA
2009-09-01
Seal assembly comprising (a) two or more seal elements, each element having having a coefficient of thermal expansion; and (b) a clamping element having a first segment, a second segment, and a connecting segment between and attached to the first and second segments, wherein the two or more seal elements are disposed between the first and second segments of the clamping element. The connecting segment has a central portion extending between the first segment of the clamping element and the second segment of the clamping element, and the connecting segment is made of a material having a coefficient of thermal expansion. The coefficient of thermal expansion of the material of the connecting segment is intermediate the largest and smallest of the coefficients of thermal expansion of the materials of the two or more seal elements.
Microfabricated triggered vacuum switch
Roesler, Alexander W [Tijeras, NM; Schare, Joshua M [Albuquerque, NM; Bunch, Kyle [Albuquerque, NM
2010-05-11
A microfabricated vacuum switch is disclosed which includes a substrate upon which an anode, cathode and trigger electrode are located. A cover is sealed over the substrate under vacuum to complete the vacuum switch. In some embodiments of the present invention, a metal cover can be used in place of the trigger electrode on the substrate. Materials used for the vacuum switch are compatible with high vacuum, relatively high temperature processing. These materials include molybdenum, niobium, copper, tungsten, aluminum and alloys thereof for the anode and cathode. Carbon in the form of graphitic carbon, a diamond-like material, or carbon nanotubes can be used in the trigger electrode. Channels can be optionally formed in the substrate to mitigate against surface breakdown.
Canister, Sealing Method And Composition For Sealing A Borehole
Brown, Donald W.; Wagh, Arun S.
2005-06-28
Method and composition for sealing a borehole. A chemically bonded phosphate ceramic sealant for sealing, stabilizing, or plugging boreholes is prepared by combining an oxide or hydroxide and a phosphate with water to form slurry. The slurry is introduced into the borehole where the seal, stabilization or plug is desired, and then allowed to set up to form the high strength, minimally porous sealant, which binds strongly to itself and to underground formations, steel and ceramics.
49 CFR 173.469 - Tests for special form Class 7 (radioactive) materials.
Code of Federal Regulations, 2013 CFR
2013-10-01
... be determined by— (i) A method no less sensitive than the leaching assessment prescribed in paragraph... volume greater than 0.1 milliliter, an alternative to the leaching assessment is a demonstration of... contained in a sealed capsule need not be subjected to the leaching assessment specified in paragraph (c) of...
49 CFR 173.469 - Tests for special form Class 7 (radioactive) materials.
Code of Federal Regulations, 2012 CFR
2012-10-01
... be determined by— (i) A method no less sensitive than the leaching assessment prescribed in paragraph... volume greater than 0.1 milliliter, an alternative to the leaching assessment is a demonstration of... contained in a sealed capsule need not be subjected to the leaching assessment specified in paragraph (c) of...
49 CFR 173.469 - Tests for special form Class 7 (radioactive) materials.
Code of Federal Regulations, 2014 CFR
2014-10-01
... be determined by— (i) A method no less sensitive than the leaching assessment prescribed in paragraph... volume greater than 0.1 milliliter, an alternative to the leaching assessment is a demonstration of... contained in a sealed capsule need not be subjected to the leaching assessment specified in paragraph (c) of...
49 CFR 173.469 - Tests for special form Class 7 (radioactive) materials.
Code of Federal Regulations, 2010 CFR
2010-10-01
... prescribed in the International Organization for Standardization document ISO 9978-1992(E): “Radiation... not less than 90%. (v) The process in paragraphs (c)(2)(i), (c)(2)(ii), and (c)(2)(iii) of this... International Organization for Standardization document ISO 2919-1980(e), “Sealed Radioactive Sources...
49 CFR 173.469 - Tests for special form Class 7 (radioactive) materials.
Code of Federal Regulations, 2011 CFR
2011-10-01
... be determined by— (i) A method no less sensitive than the leaching assessment prescribed in paragraph... volume greater than 0.1 milliliter, an alternative to the leaching assessment is a demonstration of... contained in a sealed capsule need not be subjected to the leaching assessment specified in paragraph (c) of...
Composite Materials for Maxillofacial Prostheses.
1980-08-01
projected composite systems are elastomeric-shelled, liquid-filled * microcapsules . Experiments continued on the interfacial polymerization process with...filled microcapsules . Experiments continued on the interfacial polymerization process, with spherical, sealed, capsules achieved. Needs identified are...consists of liquid-filled, elastomeric-shelled microcapsules held together to form a deformable mass; this is to simulate the semi-liquid cellular structure
An earthquake mechanism based on rapid sealing of faults
Blanpied, M.L.; Lockner, D.A.; Byerlee, J.D.
1992-01-01
RECENT seismological, heat flow and stress measurements in active fault zones such as the San Andreas have led to the suggestion1,2 that such zones can be relatively weak. One explanation for this may be the presence of overpressured fluids along the fault3-5, which would reduce the shear stress required for sliding by partially 'floating' the rock. Although several mechanisms have been proposed for overpressurizing fault fluids3,4,6,7, we recall that 'pressure seals' are known to form in both sedimentary8 and igneous9 rocks by the redistribution of materials in solution; the formation of such a seal along the boundaries of a fault will prevent the communication of fluids between the porous, deforming fault zone and the surrounding country rock. Compaction of fault gouge, under hydrostatic loading and/or during shear, elevates pore pressure in the sealed fault and allows sliding at low shear stress. We report the results of laboratory sliding experiments on granite, which demonstrate that the sliding resistance of faults can be significantly decreased by sealing and compaction. The weakening that results from shear-induced compaction can be rapid, and may provide an instability mechanism for earthquakes.
Electron beam selectively seals porous metal filters
NASA Technical Reports Server (NTRS)
Snyder, J. A.; Tulisiak, G.
1968-01-01
Electron beam welding selectively seals the outer surfaces of porous metal filters and impedances used in fluid flow systems. The outer surface can be sealed by melting a thin outer layer of the porous material with an electron beam so that the melted material fills all surface pores.
Chemical compatibility screening test results
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nigrey, P.J.; Dickens, T.G.
1997-12-01
A program for evaluating packaging components that may be used in transporting mixed-waste forms has been developed and the first phase has been completed. This effort involved the screening of ten plastic materials in four simulant mixed-waste types. These plastics were butadiene-acrylonitrile copolymer rubber, cross-linked polyethylene (XLPE), epichlorohydrin rubber, ethylene-propylene rubber (EPDM), fluorocarbon (Viton or Kel-F), polytetrafluoroethylene, high-density polyethylene (HDPE), isobutylene-isoprene copolymer rubber (butyl), polypropylene, and styrene-butadiene rubber (SBR). The selected simulant mixed wastes were (1) an aqueous alkaline mixture of sodium nitrate and sodium nitrite; (2) a chlorinated hydrocarbon mixture; (3) a simulant liquid scintillation fluid; and (4) amore » mixture of ketones. The testing protocol involved exposing the respective materials to 286,000 rads of gamma radiation followed by 14-day exposures to the waste types at 60{degrees}C. The seal materials were tested using vapor transport rate (VTR) measurements while the liner materials were tested using specific gravity as a metric. For these tests, a screening criterion of 0.9 g/hr/m{sup 2} for VTR and a specific gravity change of 10% was used. Based on this work, it was concluded that while all seal materials passed exposure to the aqueous simulant mixed waste, EPDM and SBR had the lowest VTRs. In the chlorinated hydrocarbon simulant mixed waste, only Viton passed the screening tests. In both the simulant scintillation fluid mixed waste and the ketone mixture simulant mixed waste, none of the seal materials met the screening criteria. For specific gravity testing of liner materials, the data showed that while all materials with the exception of polypropylene passed the screening criteria, Kel-F, HDPE, and XLPE offered the greatest resistance to the combination of radiation and chemicals.« less
Compliant Turbomachine Sealing
NASA Technical Reports Server (NTRS)
Hendricks, R. C.; Braun, M. J.; Deng, D.; Hendricks, J. A.
2011-01-01
Sealing interface materials and coatings are sacrificial, giving up their integrity for the benefit of the component. Seals that are compliant while still controlling leakage, dynamics, and coolant flows are sought to enhance turbomachine performance. Herein we investigate the leaf-seal configuration. While the leaf seal is classified as contacting, a ready modification using the leaf-housing arrangement in conjunction with an interface film rider (a bore seal, for example) provides for a film-riding noncontact seal. The leaf housing and leaf elements can be made from a variety of materials from plastic to ceramic. Four simplistic models are used to identify the physics essential to controlling leakage. Corroborated by CFD, these results provide design parameters for applications to within reasonable engineering certainty. Some potential improvements are proposed.
The First of March Gets the Seal of Approval.
ERIC Educational Resources Information Center
Tinney, Richard; And Others
1984-01-01
Presents background information on seals, legislation designed to protect them, activities related to seals and the fourth International Day of the Seal, and suggestions for field trips. Includes list of materials available from the Seal Rescue Fund with current costs. (JM)
Pilot cryo tunnel: Attachments, seals, and insulation
NASA Technical Reports Server (NTRS)
Wilson, J. F.; Ware, G. D.; Ramsey, J. W., Jr.
1974-01-01
Several different tests are described which simulated the actual configuration of a cryogenic wind tunnel operating at pressures up to 5 atmospheres (507 kPa) and temperatures from -320 F (78K) to 120 F (322K) in order to determine compatible bolting, adequate sealing, and effective insulating materials. The evaluation of flange attachments (continuous threaded studs) considered bolting based on compatible flanges, attachment materials, and prescribed bolt elongations. Various types of seals and seal configurations were studied to determine suitability and reusability under the imposed pressure and temperature loadings. The temperature profile was established for several materials used for structural supports.
Explosion Welding for Hermetic Containerization
NASA Technical Reports Server (NTRS)
Dolgin, Benjamin; Sanok, Joseph
2003-01-01
A container designed for storing samples of hazardous material features a double wall, part of which is sacrificed during an explosion-welding process in which the container is sealed and transferred to a clean environment. The major advantage of this container sealing process is that once the samples have been sealed inside, the outer wall of what remains of the container is a clean surface that has not come into contact with the environment from which the samples were taken. Thus, there is no need to devise a decontamination process capable of mitigating all hazards that might be posed by unanticipated radioactive, chemical, and/or biological contamination of the outside of the container. The container sealing method was originally intended to be used to return samples from Mars to Earth, but it could also be used to store samples of hazardous materials, without the need to decontaminate its outer surface. The process stages are shown. In its initial double-wall form, the volume between the walls is isolated from the environment; in other words, the outer wall (which is later sacrificed) initially serves to protect the inner container from contamination. The sample is placed inside the container through an opening at one end, then the container is placed into a transfer dock/lid. The surfaces that will be welded together under the explosive have been coated with a soft metallic sacrificial layer. During the explosion, the sacrificial layer is ejected, and the container walls are welded together, creating a strong metallic seal. The inner container is released during the same event and enters the clean environment.
LEAKAGE CHARACTERISTICS OF MULTI-CONDUCTOR CABLES AND CONDUIT SEALS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nelson, C.; Becker, S.
1962-12-12
Pipe threads in conduit seal-offs can be made air tight by use of a two- part thiokol-epoxy sealant such as Sika.'' This material bonds to metal but does not harden; thus, threaded parts can be separated. Gas seals in conduit sealoffs can be made by use of Chico, Type A'' sealant. This material is hard and can withstand high pressure differentials. However, there is a detectable leakage through Chico, Type A.'' Sika'' can be used to make a suitable gas- tight seal. However, this material is flexible and will not support long cable lengths. A dual pour method is suggestedmore » of first casting Chico'' around the connectors to obtain strength in the seal and then using either Sika'' or Micro-Preg'' to produce a tight seal. Leakage through the cable, between strands of conductor, can be reduced by either soldering the ends or dipping the ends in conductive epoxy paint. (auth)« less
A novel process for preparing fireproofing materials from various industrial wastes.
Su, Yi; Wang, Lei; Zhang, Fu-Shen
2018-05-09
In the current study, the possibility of incorporating various industrial wastes into fireproofing materials was investigated. It was found that the newly developed materials showed excellent air sealing and fireproofing performance, with air permeability coefficients 3 to 4 orders of magnitude smaller than traditional fire prevention materials. The influence of different parameters on the air permeability was investigated, and the air sealing mechanisms were clarified through microstructure analysis. In addition, the workability and mechanical properties of the fireproofing materials for practical application in coal mine were studied. The new materials derived from industrial wastes had a compact and monolithic structure, and the excellent air tightness could be attributed to the pozzolanic activity of the industrial wastes and the film-forming property of organic polymers. Among the industrial wastes examined, a special coal fly ash with high pozzolanic activity and little free calcium oxide derived the best product with air permeability coefficient, tensile strength and breaking elongation of 4.17 × 10 -8 m 2 /s, 2.14 MPa and 48.90%, respectively. This study provides an economical, environmentally friendly and promising approach for industrial wastes recycling. Copyright © 2018 Elsevier Ltd. All rights reserved.
On the selection of materials for cryogenic seals and the testing of their performance
NASA Technical Reports Server (NTRS)
Russell, John M.
1989-01-01
Three questions are addressed: what mission must a cryogenic seal perform; what are the contrasts between desirable and available seal materials; and how realistic must test conditions be. The question of how to quantify the response of a material subject to large strains and which is susceptible to memory effects leads to a discussion of theoretical issues. Accordingly, the report summarizes some ideas from the rational mechanics of materials. The report ends with a list of recommendations and a conclusion.
Method of forming shrink-fit compression seal
NASA Technical Reports Server (NTRS)
Podgorski, T. J. (Inventor)
1977-01-01
A method for making a glass-to-metal seal is described. A domed metal enclosure having a machined seal ring is fitted to a glass post machined to a slight taper and to a desired surface finish. The metal part is then heated by induction in a vacuum. As the metal part heats and expands relative to the glass post, the metal seal ring, possessing a higher coefficient of expansion than the glass post, slides down the tapered post. Upon cooling, the seal ring crushes against the glass post forming the seal. The method results in a glass-to-metal seal possessing extremely good leak resistance, while the parts are kept clean and free of the contaminants.
Materials Development for Hypersonic Flight Vehicles
NASA Technical Reports Server (NTRS)
Glass, David E.; Dirling, Ray; Croop, Harold; Fry, Timothy J.; Frank, Geoffrey J.
2006-01-01
The DARPA/Air Force Falcon program is planning to flight test several hypersonic technology vehicles (HTV) in the next several years. A Materials Integrated Product Team (MIPT) was formed to lead the development of key thermal protection system (TPS) and hot structures technologies. The technologies being addressed by the MIPT are in the following areas: 1) less than 3000 F leading edges, 2) greater than 3000 F refractory composite materials, 3) high temperature multi-layer insulation, 4) acreage TPS, and 5) high temperature seals. Technologies being developed in each of these areas are discussed in this paper.
Method for forming glass-to-metal seals
Kramer, Daniel P.; Massey, Richard T.
1986-01-01
A method for forming a glass-to-metal seal in which the glass has a higher melting point than the metal. The molten glass is vacuum injection molded onto the metal, thus melting a very thin layer of the surface of the metal long enough to form a seal, but not long enough to cause a distortion in the shape of the metal component.
Kaun, T.D.; Eshman, P.F.
1980-05-09
A secondary electrochemical cell is prepared by providing positive and negative electrodes having outer enclosures of rigid perforated electrically conductive material defining an internal compartment containing the electrode material in porous solid form. The electrodes are each immersed in molten electrolyte salt prior to cell assembly to incorporate the cell electrolyte. Following solidification of the electrolyte substantially throughout the porous volume of the electrode material, the electrodes are arranged in an alternating positive-negative array with interelectrode separators of porous frangible electrically insulative material. The completed array is assembled into the cell housing and sealed such that on heating the solidified electrolyte flows into the interelectrode separator.
Friction and wear of several compressor gas-path seal movements
NASA Technical Reports Server (NTRS)
Bill, R. C.; Wisander, D. W.
1978-01-01
Rub interaction experiments were conducted on a series of sintered and plasma sprayed compressor gas path seal materials in contact with Ti-6Al-4V blade tip and knife edge rotors. The most rub tolerant materials investigated were sintered Nichrome and plasma sprayed nickel 25 percent graphite. The effectiveness of providing a compliant substrate for dense seal material coatings was also demonstrated. In general, it was observed that rotor wear and high frictional energy generation rates accompanied smearing or surface densification of the materials investigated. The onset of smearing was sensitive to rub interaction parameters and seal geometry. Two complementary models were proposed to account for the smearing trends. One is based on thermal effects, the other on particulate escape effects. They were shown to be consistent with the experimental evidence at hand, and together they predict that smearing, with the onset of high energy rub conditions, is favored when incursion rates (radial motion) are low, incursion depths are high, the seal geometry is of a knife-edge character, and the seal particle size is small.
NASA Technical Reports Server (NTRS)
Zuk, J.
1976-01-01
The fundamentals of fluid sealing, including seal operating regimes, are discussed and the general fluid-flow equations for fluid sealing are developed. Seal performance parameters such as leakage and power loss are presented. Included in the discussion are the effects of geometry, surface deformations, rotation, and both laminar and turbulent flows. The concept of pressure balancing is presented, as are differences between liquid and gas sealing. Mechanisms of seal surface separation, fundamental friction and wear concepts applicable to seals, seal materials, and pressure-velocity (PV) criteria are discussed.
Method for producing ceramic-glass-ceramic seals by microwave heating
Blake, Rodger D.; Meek, Thomas T.
1986-01-01
Method for producing a ceramic-glass-ceramic seal by the use of microwave energy, and a sealing mixture which comprises a glass sealing material, a coupling agent, and an oxidizer. The seal produced exhibits greater strength due to its different microstructure. Sodium nitrate is the most preferred oxidizer.
Seal Technology for Hypersonic Vehicle and Propulsion: An Overview
NASA Technical Reports Server (NTRS)
Steinetz, Bruce M.
2008-01-01
Hypersonic vehicles and propulsion systems pose an extraordinary challenge for structures and materials. Airframes and engines require lightweight, high-temperature materials and structural configurations that can withstand the extreme environment of hypersonic flight. Some of the challenges posed include very high temperatures, heating of the whole vehicle, steady-state and transient localized heating from shock waves, high aerodynamic loads, high fluctuating pressure loads, potential for severe flutter, vibration, and acoustic loads and erosion. Correspondingly high temperature seals are required to meet these aggressive requirements. This presentation reviews relevant seal technology for both heritage (e.g. Space Shuttle, X-15, and X-38) vehicles and presents several seal case studies aimed at providing lessons learned for future hypersonic vehicle seal development. This presentation also reviews seal technology developed for the National Aerospace Plane propulsion systems and presents several seal case studies aimed at providing lessons learned for future hypersonic propulsion seal development.
Do Sealing Materials Influence Superstructure Attachment in Implants?
Biscoping, Stephanie; Ruttmann, Esther; Rehmann, Peter; Wöstmann, Bernd
This study aimed to evaluate the possible effect of sealing materials on superstructure attachment (ie, tightening/loosening torque and implant-abutment gap) in two different implant systems. A silicone, a chlorhexidine gel, and an industrial lubricant were tested. A 3D microscope was used for assessment of the implant-abutment gap, and the abutment screw was tightened and loosened with a digital torque screwdriver. A total of 20 implants per test group (10 BEGO Semados RI and 10 Nobel Biocare Replace Select Straight) were evaluated. The tested sealing materials did not influence the gap between implant and abutment, but the force necessary for loosening the abutment screws decreased significantly. Sealing materials may be useful against bacteria, but probably influence torque negatively.
Hypersonic engine seal development at NASA Lewis Research Center
NASA Technical Reports Server (NTRS)
Steinetz, Bruce M.
1994-01-01
NASA Lewis Research Center is developing advanced seal concepts and sealing technology for advanced combined cycle ramjet/scramjet engines being designed for the National Aerospace Plane (NASP). Technologies are being developed for both the dynamic seals that seal the sliding interfaces between articulating engine panels and sidewalls, and for the static seals that seal the heat exchanger to back-up structure interfaces. This viewgraph presentation provides an overview of the candidate engine seal concepts, seal material assessments, and unique test facilities used to assess the leakage and thermal performance of the seal concepts.
Hypersonic engine seal development at NASA Lewis Research Center
NASA Astrophysics Data System (ADS)
Steinetz, Bruce M.
1994-07-01
NASA Lewis Research Center is developing advanced seal concepts and sealing technology for advanced combined cycle ramjet/scramjet engines being designed for the National Aerospace Plane (NASP). Technologies are being developed for both the dynamic seals that seal the sliding interfaces between articulating engine panels and sidewalls, and for the static seals that seal the heat exchanger to back-up structure interfaces. This viewgraph presentation provides an overview of the candidate engine seal concepts, seal material assessments, and unique test facilities used to assess the leakage and thermal performance of the seal concepts.
NASA Astrophysics Data System (ADS)
Younse, Paulo
Four sealing methods for encapsulating samples in 1 cm diameter thin-walled sample tubes were designed, along with a set of tests for characterization and evaluation of contamination prevention and sample preservation capability for the proposed Mars Sample Return (MSR) campaign. The sealing methods include a finned shape memory alloy (SMA) plug, expanding torque plug, contracting SMA ring cap, and expanding SMA ring plug. Mechanical strength and hermeticity of the seal were measured using a helium leak detector. Robustness of the seal to Mars simulant dust, surface abrasion, and pressure differentials were tested. Survivability tests were run to simulate thermal cycles on Mars, vibration from a Mars Ascent Vehicle (MAV), and shock from Earth Entry Vehicle (EEV) landing. Material compatibility with potential sample minerals and organic molecules were studied to select proper tube and seal materials that would not lead to adverse reactions nor contaminate the sample. Cleaning and sterilization techniques were executed on coupons made from the seal materials to assess compliance with planetary protection and contamination control. Finally, a method to cut a sealed tube for sample removal was designed and tested.
Static seal for turbine engine
DOE Office of Scientific and Technical Information (OSTI.GOV)
Salazar, Santiago; Gisch, Andrew
2014-04-01
A seal structure for a gas turbine engine, the seal structure including first and second components located adjacent to each other and forming a barrier between high and low pressure zones. A seal cavity is defined in the first and second components, the seal cavity extending to either side of an elongated gap extending generally in a first direction between the first and second components. A seal member is positioned within the seal cavity and spans across the elongated gap. The seal member includes first and second side edges extending into each of the components in a second direction transversemore » to the first direction, and opposing longitudinal edges extending between the side edges generally parallel to the first direction. The side edges include a groove formed therein for effecting a reduction of gas flow around the seal member at the side edges.« less
Dry compliant seal for phosphoric acid fuel cell
Granata, Jr., Samuel J.; Woodle, Boyd M.
1990-01-01
A dry compliant overlapping seal for a phosphoric acid fuel cell preformed f non-compliant Teflon to make an anode seal frame that encircles an anode assembly, a cathode seal frame that encircles a cathode assembly and a compliant seal frame made of expanded Teflon, generally encircling a matrix assembly. Each frame has a thickness selected to accommodate various tolerances of the fuel cell elements and are either bonded to one of the other frames or to a bipolar or end plate. One of the non-compliant frames is wider than the other frames forming an overlap of the matrix over the wider seal frame, which cooperates with electrolyte permeating the matrix to form a wet seal within the fuel cell that prevents process gases from intermixing at the periphery of the fuel cell and a dry seal surrounding the cell to keep electrolyte from the periphery thereof. The frames may be made in one piece, in L-shaped portions or in strips and have an outer perimeter which registers with the outer perimeter of bipolar or end plates to form surfaces upon which flanges of pan shaped, gas manifolds can be sealed.
Fibrin sealant: past, present, and future: a brief review.
Spotnitz, William D
2010-04-01
Fibrin sealant is a two-component topical hemostat, sealant, and tissue adhesive consisting of fibrinogen and thrombin that has been used in the United States as a blood bank- or laboratory-derived product since the 1980s and has been commercially available since 1998. Initially, surgeons employed hospital-based materials because of the lack of availability of a commercially produced agent. At present, there are five U.S. Food and Drug Administration (FDA)-approved forms including products derived from pooled or autologous human plasma as well as bovine plasma. On-label indications include hemostasis, colonic sealing, and skin graft attachment. Recent clinical and experimental uses include tissue or mesh attachment, fistula closure, lymphatic sealing, adhesion prevention, drug delivery, and tissue engineering. The modern literature on fibrin sealant now exceeds 3000 articles and continues to expand. This brief review presents the history of this material, its present clinical use, and its future applications.
Helmet of a laminate construction of polycarbonate and polysulfone polymeric material
NASA Technical Reports Server (NTRS)
Kosmo, Joseph J. (Inventor); Dawn, Frederic S. (Inventor)
1991-01-01
An article of laminate construction is disclosed which is comprised of an underlayer of polycarbonate polymer material to which is applied a chemically resistant outer layer of polysulfone. The layers which are joined by compression-heat molding, are molded to form the shape of a body protective shell such as a space helmet comprising a shell of polycarbonate, polysulfone laminate construction attached at its open end to a sealing ring adapted for connection to a space suit. The front portion of the shell provides a transparent visor for the helmet. An outer visor of polycarbonate polysulfone laminate construction is pivotally mounted to the sealing ring for covering the transparent visor portion of the shell during extravehicular activities. The polycarbonate under layer of the outer visor is coated on its inner surface with a vacuum deposit of gold to provide additional thermal radiation resistance.
Method for forming glass-to-metal seals
Kramer, D.P.; Massey, R.T.
1985-08-26
Disclosed is a method for forming a glass-to-metal seal in which the glass has a higher melting point than the metal. The molten glass is vacuum injection molded onto the metal, thus melting a very thin layer of the surface of the metal long enough to form a seal, but not long enough to cause a distortion in the shape of the metal component.
NASA Technical Reports Server (NTRS)
Ludwig, L. P. (Inventor)
1981-01-01
A circumferential shaft seal comprising two sealing rings held to a rotating shaft by means of a surrounding elastomeric band is disclosed. The rings are segmented and are of a rigid sealing material such as carbon or a polyimide and graphite fiber composite.
NASA Technical Reports Server (NTRS)
Ludwig, L. P. (Inventor)
1980-01-01
A circumferential shaft seal is described which comprises two sealing rings held to a rotating shaft by means of a surrounding elastomeric band. The rings are segmented and are of a rigid sealing material such as carbon or a polyimide and graphite fiber composite.
Code of Federal Regulations, 2013 CFR
2013-01-01
.... Licenses for possession and use of byproduct material in sealed sources for irradiation of materials in... sources for irradiation of materials in which the source is exposed for irradiation purposes. This category also includes underwater irradiators for irradiation of materials in which the source is not...
Method of making an integral window hermetic fiber optic component
Dalton, R.D.; Kramer, D.P.; Massey, R.T.; Waker, D.A.
1996-11-12
In the fabrication of igniters, actuators, detonators, and other pyrotechnic devices to be activated by a laser beam, an integral optical glass window is formed by placing a preform in the structural member of the device and then melting the glass and sealing it in place by heating at a temperature between the ceramming temperature of the glass and the melting point of the metal, followed by rapid furnace cooling to avoid devitrification. No other sealing material is needed to achieve hermeticity. A preferred embodiment of this type of device is fabricated by allowing the molten glass to flow further and form a plano-convex lens integral with and at the bottom of the window. The lens functions to decrease the beam divergence caused by refraction of the laser light passing through the window when the device is fired by means of a laser beam. 9 figs.
Method of making an integral window hermetic fiber optic component
Dalton, Rick D.; Kramer, Daniel P.; Massey, Richard T.; Waker, Damon A.
1996-11-12
In the fabrication of igniters, actuators, detonators, and other pyrotechnic devices to be activated by a laser beam, an integral optical glass window is formed by placing a preform in the structural member of the device and then melting the glass and sealing it in place by heating at a temperature between the ceramming temperature of the glass and the melting point of the metal, followed by rapid furnace cooling to avoid devitrification. No other sealing material is needed to achieve hermeticity. A preferred embodiment of this type of device is fabricated by allowing the molten glass to flow further and form a plano-convex lens integral with and at the bottom of the window. The lens functions to decrease the beam divergence caused by refraction of the laser light passing through the window when the device is fired by means of a laser beam.
Sealed, nozzle-mix burners for silica deposition
Adler, Meryle D. M.; Brown, John T.; Misra, Mahendra K.
2003-07-08
Burners (40) for producing fused silica boules are provided. The burners employ a tube-in-tube (301-306) design with flats (56, 50) on some of the tubes (305, 301) being used to limit the cross-sectional area of certain passages (206, 202) within the burner and/or to atomize a silicon-containing, liquid source material, such as OMCTS. To avoid the possibility of flashback, the burner has separate passages for fuel (205) and oxygen (204, 206), i.e., the burner employs nozzle mixing, rather than premixing, of the fuel and oxygen. The burners are installed in burner holes (26) formed in the crown (20) of a furnace and form a seal with those holes so that ambient air cannot be entrained into the furnace through the holes. An external air cooled jacket (60) can be used to hold the temperature of the burner below a prescribed upper limit, e.g., 400.degree. C.
Jiang, Ying-Bing [Albuquerque, NM; Cecchi, Joseph L [Albuquerque, NM; Brinker, C Jeffrey [Albuquerque, NM
2011-05-24
Barrier layers and methods for forming barrier layers on a porous layer are provided. The methods can include chemically adsorbing a plurality of first molecules on a surface of the porous layer in a chamber and forming a first layer of the first molecules on the surface of the porous layer. A plasma can then be used to react a plurality of second molecules with the first layer of first molecules to form a first layer of a barrier layer. The barrier layers can seal the pores of the porous material, function as a diffusion barrier, be conformal, and/or have a negligible impact on the overall ILD k value of the porous material.
Asbestos and Inconel combined to form hot-gas seal
NASA Technical Reports Server (NTRS)
Wooster, C. W., Jr.
1968-01-01
Hot-gas seal prevents warpage tendencies in large flange joints exposed to high temperatures, such as those present in large space vehicle engine exhausts. Two Inconel wire mesh cores are held in place by an asbestos cloth cover that acts as a spacer to form the seal.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 1200.1 Parks, Forests, and Public Property NATIONAL ARCHIVES AND RECORDS ADMINISTRATION GENERAL RULES... means a display of the form and content of the official seal made on a die so that the seal can be... content. Replica or reproduction means a copy of an official seal or NARA logo displaying the form and...
Comprehensive testing to measure the response of butyl rubber to Hanford tank waste simulant
DOE Office of Scientific and Technical Information (OSTI.GOV)
NIGREY,PAUL J.
This report presents the findings of the Chemical Compatibility Program developed to evaluate plastic packaging components that may be incorporated in packaging mixed-waste forms for transportation. Consistent with the methodology outlined in this report, the authors performed the second phase of this experimental program to determine the effects of simulant Hanford tank mixed wastes on packaging seal materials. That effort involved the comprehensive testing of five plastic liner materials in an aqueous mixed-waste simulant. The testing protocol involved exposing the materials to {approximately}143, 286, 571, and 3,670 krad of gamma radiation and was followed by 7-, 14-, 28-, 180-day exposuresmore » to the waste simulant at 18, 50, and 60 C. Butyl rubber samples subjected to the same protocol were then evaluated by measuring seven material properties: specific gravity, dimensional changes, mass changes, hardness, compression set, vapor transport rates, and tensile properties. From the analyses, they determined that butyl rubber has relatively good resistance to radiation, this simulant, and a combination of these factors. These results suggest that butyl rubber is a relatively good seal material to withstand aqueous mixed wastes having similar composition to the one used in this study.« less
Response of ethylene propylene diene monomer rubber (EPDM) to simulant Hanford tank waste
DOE Office of Scientific and Technical Information (OSTI.GOV)
NIGREY,PAUL J.
2000-02-01
This report presents the findings of the Chemical Compatibility Program developed to evaluate plastic packaging components that may be incorporated in packaging mixed-waste forms for transportation. Consistent with the methodology outlined in this report, the author performed the second phase of this experimental program to determine the effects of simulant Hanford tank mixed wastes on packaging seal materials. That effort involved the comprehensive testing of five plastic liner materials in an aqueous mixed-waste simulant. The testing protocol involved exposing the materials to {approximately}143, 286, 571, and 3,670 krad of gamma radiation and was followed by 7-, 14-, 28-, 180-day exposuresmore » to the waste simulant at 18, 50, and 60 C. Ethylene propylene diene monomer (EPDM) rubber samples subjected to the same protocol were then evaluated by measuring seven material properties: specific gravity, dimensional changes, mass changes, hardness, compression set, vapor transport rates, and tensile properties. The author has determined that EPDM rubber has excellent resistance to radiation, this simulant, and a combination of these factors. These results suggest that EPDM is an excellent seal material to withstand aqueous mixed wastes having similar composition to the one used in this study.« less
10 CFR 35.500 - Use of sealed sources for diagnosis.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 1 2010-01-01 2010-01-01 false Use of sealed sources for diagnosis. 35.500 Section 35.500 Energy NUCLEAR REGULATORY COMMISSION MEDICAL USE OF BYPRODUCT MATERIAL Sealed Sources for Diagnosis § 35.500 Use of sealed sources for diagnosis. A licensee shall use only sealed sources for diagnostic...
Integral edge seals for phosphoric acid fuel cells
Granata, Jr., Samuel J.; Woodle, Boyd M.; Dunyak, Thomas J.
1992-01-01
A phosphoric acid fuel cell having integral edge seals formed by an elastomer permeating an outer peripheral band contiguous with the outer peripheral edges of the cathode and anode assemblies and the matrix to form an integral edge seal which is reliable, easy to manufacture and has creep characteristics similar to the anode, cathode and matrix assemblies inboard of the seals to assure good electrical contact throughout the life of the fuel cell.
Floating air riding seal for a turbine
Ebert, Todd A
2016-08-16
A floating air riding seal for a gas turbine engine with a rotor and a stator, an annular piston chamber with an axial moveable annular piston assembly within the annular piston chamber formed in the stator, an annular cavity formed on the annular piston assembly that faces a seal surface on the rotor, where the axial moveable annular piston includes an inlet scoop on a side opposite to the annular cavity that scoops up the swirling cooling air and directs the cooling air to the annular cavity to form an air cushion with the seal surface of the rotor.
Modeling the rubbing contact in honeycomb seals
NASA Astrophysics Data System (ADS)
Fischer, Tim; Welzenbach, Sarah; Meier, Felix; Werner, Ewald; kyzy, Sonun Ulan; Munz, Oliver
2018-03-01
Metallic honeycomb labyrinth seals are commonly used as sealing systems in gas turbine engines. Because of their capability to withstand high thermo-mechanical loads and oxidation, polycrystalline nickel-based superalloys, such as Hastelloy X and Haynes 214, are used as sealing material. In addition, these materials must exhibit a tolerance against rubbing between the rotating part and the stationary seal component. The tolerance of the sealing material against rubbing preserves the integrity of the rotating part. In this article, the rubbing behavior at the rotor-stator interface is considered numerically. A simulation model is incorporated into the commercial finite element code ABAQUS/explicit and is utilized to simulate a simplified rubbing process. A user-defined interaction routine between the contact surfaces accounts for the thermal and mechanical interfacial behavior. Furthermore, an elasto-plastic constitutive material law captures the extreme temperature conditions and the damage behavior of the alloys. To validate the model, representative quantities of the rubbing process are determined and compared with experimental data from the literature. The simulation results correctly reproduce the observations made on a test rig with a reference stainless steel material (AISI 304). A parametric study using the nickel-based superalloys reveals a clear dependency of the rubbing behavior on the sliding and incursion velocity. Compared to each other, the two superalloys studied exhibit a different rubbing behavior.
A closed-chamber method to measure greenhouse gas fluxes from dry aquatic sediments
NASA Astrophysics Data System (ADS)
Lesmeister, Lukas; Koschorreck, Matthias
2017-06-01
Recent research indicates that greenhouse gas (GHG) emissions from dry aquatic sediments are a relevant process in the freshwater carbon cycle. However, fluxes are difficult to measure because of the often rocky substrate and the dynamic nature of the habitat. Here we tested the performance of different materials to seal a closed chamber to stony ground both in laboratory and field experiments. Using on-site material consistently resulted in elevated fluxes. The artefact was caused both by outgassing of the material and production of gas. The magnitude of the artefact was site dependent - the measured CO2 flux increased between 10 and 208 %. Errors due to incomplete sealing proved to be more severe than errors due to non-inert sealing material.Pottery clay as sealing material provided a tight seal between the chamber and the ground and no production of gases was detected. With this approach it is possible to get reliable gas fluxes from hard-substrate sites without using a permanent collar. Our test experiments confirmed that CO2 fluxes from dry aquatic sediments are similar to CO2 fluxes from terrestrial soils.
Integrated seal for high-temperature electrochemical device
Tucker, Michael C; Jacobson, Craig P
2013-07-16
The present invention provides electrochemical device structures having integrated seals, and methods of fabricating them. According to various embodiments the structures include a thin, supported electrolyte film with the electrolyte sealed to the support. The perimeter of the support is self-sealed during fabrication. The perimeter can then be independently sealed to a manifold or other device, e.g., via an external seal. According to various embodiments, the external seal does not contact the electrolyte, thereby eliminating the restrictions on the sealing method and materials imposed by sealing against the electrolyte.
2011-10-06
applied, the microcapsules are broken and the color-forming material reacts with the color-developing material. Red patches appear on the film and the...used inorganic silicate-sealing agent and succeeded to l:i"eeze the trajectory of sphere’s motion. Penetration velocity inside sand layer was...with aqueous colored inks. After firing. test chamber was retri eved and the whole specimens was dipped into a s ilicone-based inorganic po lymer
Winner, Taryn L; Lanzarotta, Adam; Sommer, André J
2016-06-01
An effective method for detecting and characterizing counterfeit finished dosage forms and packaging materials is described in this study. Using attenuated total internal reflection Fourier transform infrared spectroscopic imaging, suspect tablet coating and core formulations as well as multi-layered foil safety seals, bottle labels, and cigarette tear tapes were analyzed and compared directly with those of a stored authentic product. The approach was effective for obtaining molecular information from structures as small as 6 μm.
Laser Glass Frit Sealing for Encapsulation of Vacuum Insulation Glasses
NASA Astrophysics Data System (ADS)
Kind, H.; Gehlen, E.; Aden, M.; Olowinsky, A.; Gillner, A.
Laser glass frit sealing is a joining method predestined in electronics for the sealing of engineered materials housings in dimensions of some 1 mm2 to several 10 mm2. The application field ranges from encapsulation of display panels to sensor housings. Laser glass frit sealing enables a hermetical closure excluding humidity and gas penetration. But the seam quality is also interesting for other applications requiring a hermetical sealing. One application is the encapsulation of vacuum insulation glass. The gap between two panes must be evacuated for reducing the thermal conductivity. Only an efficient encapsulating technique ensures durable tight joints of two panes for years. Laser glass frit sealing is an alternative joining method even though the material properties of soda lime glass like sensitivity to thermal stresses are much higher as known from engineered materials. An adapted thermal management of the process is necessary to prevent the thermal stresses within the pane to achieve crack free and tight glass frit seams.
NASA Technical Reports Server (NTRS)
Hochuli, U.; Haldemann, P.
1972-01-01
Gold films are used as an alloying flux to form 5-micron-thick indium film seals at temperatures below 300 C. Pyrex was sealed to quartz, ULE, CER-VIT, Irtran 2, Ge, GaAs, Invar, Kovar, Al, and Cu. The seals can also be used as current feedthroughs and graded seals.
High temperature braided rope seals for static sealing applications
NASA Technical Reports Server (NTRS)
Adams, Michael L.; Olsen, Andrew; Darolia, Ram; Steinetz, Bruce M.; Bartolotta, Paul A.
1996-01-01
Achieving efficiency and performance goals of advanced aircraft and industrial systems are leading designers to implement high temperature materials such as ceramics and intermetallics. Generally these advanced materials are applied selectively in the highest temperature sections of the engine system including the combustor and high pressure turbine, amongst others. Thermal strains that result in attaching the low expansion-rate components to high expansion rate superalloy structures can cause significant life reduction in the components. Seals are being designed to both seal and to serve as compliant mounts allowing for relative thermal growths between high temperature but brittle primary structures and the surrounding support structures. Designers require high temperature, low-leakage, compliant seals to mitigate thermal stresses and control parasitic and cooling airflow between structures. NASA is developing high temperature braided rope seals in a variety of configurations to help solve these problems. This paper will describe the types of seals being developed, describe unique test techniques used to assess seal performance, and present leakage flow data under representative pressure, temperature and scrubbing conditions. Feasibility of the braided rope seals for both an industrial tube seal and a turbine vane seal application is also demonstrated.
Lasecki, J.V.; Novak, R.F.; McBride, J.R.
1991-08-27
A metal to ceramic sealed joint which can withstand wide variations in temperature and maintain a good seal is provided for use in a device adapted to withstand thermal cycling from about 20 to about 1000 degrees C. The sealed joint includes a metal member, a ceramic member having an end portion, and an active metal braze forming a joint to seal the metal member to the ceramic member. The joint is positioned remote from the end portion of the ceramic member to avoid stresses at the ends or edges of the ceramic member. The sealed joint is particularly suited for use to form sealed metal to ceramic joints in a thermoelectric generator such as a sodium heat engine where a solid ceramic electrolyte is joined to metal parts in the system. 11 figures.
Lasecki, John V.; Novak, Robert F.; McBride, James R.
1991-01-01
A metal to ceramic sealed joint which can withstand wide variations in temperature and maintain a good seal is provided for use in a device adapted to withstand thermal cycling from about 20 to about 1000 degrees C. The sealed joint includes a metal member, a ceramic member having an end portion, and an active metal braze forming a joint to seal the metal member to the ceramic member. The joint is positioned remote from the end portion of the ceramic member to avoid stresses at the ends or edges of the ceramic member. The sealed joint is particularly suited for use to form sealed metal to ceramic joints in a thermoelectric generator such as a sodium heat engine where a solid ceramic electrolyte is joined to metal parts in the system.
NASA Technical Reports Server (NTRS)
1992-01-01
A heat sealing process was developed by SEBRA based on technology that originated in work with NASA's Jet Propulsion Laboratory. The project involved connecting and transferring blood and fluids between sterile plastic containers while maintaining a closed system. SEBRA markets the PIRF Process to manufacturers of medical catheters. It is a precisely controlled method of heating thermoplastic materials in a mold to form or weld catheters and other products. The process offers advantages in fast, precise welding or shape forming of catheters as well as applications in a variety of other industries.
Plastic container bagless transfer
Tibrea, Steven L.; D'Amelio, Joseph A.; Daugherty, Brent A.
2003-11-18
A process and apparatus are provided for transferring material from an isolated environment into a storage carrier through a conduit that can be sealed with a plug. The plug and conduit can then be severed to provide a hermetically sealed storage carrier containing the material which may be transported for storage or disposal and to maintain a seal between the isolated environment and the ambient environment.
Hermetic edge sealing of photovoltaic modules
NASA Astrophysics Data System (ADS)
1983-02-01
The edge sealing technique is accomplished by a combination of a chemical bond between glass and aluminum, formed by electrostatic bonding, and a metallurgical bond between aluminum and aluminum, formed by ultrasonic welding. Such a glass to metal seal promises to provide a low cost, long lifetime, highly effective hermetic seal which can protect module components from severe environments. Development of the sealing techniques and demonstration of their effectiveness by fabricating a small number of dummy modules, up to eight inches square in size, and testing them for hermeticity using helium leak testing methods are reviewed. Non-destructive test methods are investigated.
Hermetic edge sealing of photovoltaic modules
NASA Technical Reports Server (NTRS)
1983-01-01
The edge sealing technique is accomplished by a combination of a chemical bond between glass and aluminum, formed by electrostatic bonding, and a metallurgical bond between aluminum and aluminum, formed by ultrasonic welding. Such a glass to metal seal promises to provide a low cost, long lifetime, highly effective hermetic seal which can protect module components from severe environments. Development of the sealing techniques and demonstration of their effectiveness by fabricating a small number of dummy modules, up to eight inches square in size, and testing them for hermeticity using helium leak testing methods are reviewed. Non-destructive test methods are investigated.
METHOD OF PREPARATION OF MATERIAL FOR NEUTRON BOMBARDMENT
Ura, C.L.; Sisman, O.; Briggs, R.B.
1959-02-01
A method is presented for forming slugs or cartridges of sample material to be proeessed in a neutronic reactor. Aceording to this invention, the sample material is originally in the fcrm of powder. The powder is placed within a tube formed of a metallic foil. The material encased in the foil is then placed in a die and compressed under sufficient pressure to form a rigid cartridge. The cartridge is then sealed in a metallic can. As a result of this process, crumbling of the compact during handling is eliminated and it is not necessary to clean ana relubricate the die after compression of each cartridge. ~ A method is presented for producing small spherical shot-type pellets from ceramic or refractory materials. According to this process the material to be pelletized is first formed into a powder. The powdered material is then suspended in a liquid carrier or vehicle. Small drops of the suspension, produced by a capillary-drop apparatus, are deposited on the surfacc of a liquid repellent powder, which causes the drops to assume a spherical shape. The liquid is then evaporated from the spherical pellets and tbe pellets are collected and fired to produce the finished product.
Some composite bearing and seal materials for gas turbine applications: A review
NASA Technical Reports Server (NTRS)
Sliney, Harold E.
1989-01-01
A review is made of the selection and tribological testing of materials for high-temperature bearings and seals. The goal is to achieve good tribological properties over a wide range of temperatures because bearings and seals must be functional from low temperature start-up conditions on up to the maximum temperatures encountered during engine operation. Plasma sprayed composite coatings with favorable tribological properties from 25 to 900 C are discussed. The performance of these coatings in simple tribological bench tests is described. Examples are also given of their performance in high-speed sliding contact seals and as Stirling cylinder liner materials, and as back up lubricants for compliant foil gas bearings.
Davis, Leonard C.; Pacala, Theodore; Sippel, George R.
1981-01-01
A method for manufacturing a hot side regenerator cross arm seal assembly having a thermally stablilized wear coating with a substantially flat wear surface thereon to seal between low pressure and high pressure passages to and from the hot inboard side of a rotary regenerator matrix includes the steps of forming a flat cross arm substrate member of high nickel alloy steel; fixedly securing the side edges of the substrate member to a holding fixture with a concave surface thereacross to maintain the substrate member to a slightly bent configuration on the fixture surface between the opposite ends of the substrate member to produce prestress therein; applying coating layers on the substrate member including a wear coating of plasma sprayed nickel oxide/calcium flouride material to define a wear surface of slightly concave form across the restrained substrate member between the free ends thereon; and thereafter subjecting the substrate member and the coating thereon to a heat treatment of 1600.degree. F. for sixteen hours to produce heat stabilizing growth in the coating layers on the substrate member and to produce a thermally induced growth stress in the wear surface that substantially equalizes the prestress in the substrate whereby when the cross arm is removed from the fixture surface following the heat treatment step a wear face is formed on the cross arm assembly that will be substantially flat between the ends.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kempe, Michael D.; Dameron, Arrelaine A.; Reese, Matthew O.
2013-05-14
Many thin film photovoltaic (PV) technologies can be sensitive to corrosion induced by the presence of water vapor in the packaging materials. Typically impermeable front and backsheets are used in conjunction with an edge-seal around the perimeter to prevent water vapor ingress. These edge-seal materials are often made of a polyisobutylene resin filled with desiccant, which dramatically increases the time for moisture to reach sensitive module components. While edge-seals can prevent moisture ingress, even the lowest diffusivity transparent encapsulant materials are insufficient for the lifetime of a module. To evaluate the performance of edge-seal and encapsulant materials in a mannermore » that simulates their function in a PV module, an optical method was devised where ingress is detected by reaction of a Ca film with water. Using this method, we have exposed test samples to heat and humidity allowing quantitative comparison of different edge-seal and encapsulant materials. Next, we use measurements of polymer diffusivity and solubility to evaluate the ability to model this moisture ingress. Here, we find good agreement between these two methods highlighting the much greater ability of polyisobutylene materials to keep moisture out as compared with typical encapsulant materials used in the PV industry.« less
Method and apparatus for in-densification of geomaterials for sealing applications
Finley, Ray E.; Zeuch, David H.
1997-01-01
A method and apparatus (10) for forming improved seals in boreholes (101) formed in host rock (100) by using the apparatus (10) to introduce a feedstock (60) into the borehole (101) and simultaneously subject the introduced feedstock to both compressive and shear stresses until the borehole becomes filled and sealed.
Method and apparatus for in-situ densification of geomaterials for sealing applications
Finley, R.E.; Zeuch, D.H.
1997-04-22
A method and apparatus is described for forming improved seals in boreholes formed in host rock by using the apparatus to introduce a feedstock into the borehole and simultaneously subjecting the introduced feedstock to both compressive and shear stresses until the borehole becomes filled and sealed. 3 figs.
FRACTIONAL DISTILLATION SEPARATION OF PLUTONIUM VALUES FROM LIGHT ELEMENT VALUES
Cunningham, B.B.
1957-12-17
A process is described for removing light element impurities from plutonium. It has been found that plutonium contaminated with impurities may be purified by converting the plutonium to a halide and purifying the halide by a fractional distillation whereby impurities may be distilled from the plutonium halide. A particularly effective method includes the step of forming a lower halide such as the trior tetrahalide and distilling the halide under conditions such that no decomposition of the halide occurs. Molecular distillation methods are particularly suitable for this process. The apparatus may comprise an evaporation plate with means for heating it and a condenser surface with means for cooling it. The condenser surface is placed at a distance from the evaporating surface less than the mean free path of molecular travel of the material being distilled at the pressure and temperature used. The entire evaporating system is evacuated until the pressure is about 10/sup -4/ millimeters of mercury. A high temperuture method is presented for sealing porous materials such as carbon or graphite that may be used as a support or a moderator in a nuclear reactor. The carbon body is subjected to two surface heats simultaneously in an inert atmosphere; the surface to be sealed is heated to 1500 degrees centigrade; and another surface is heated to 300 degrees centigrade, whereupon the carbon vaporizes and flows to the cooler surface where it is deposited to seal that surface. This method may be used to seal a nuclear fuel in the carbon structure.
Ceramic Borehole Seals for Nuclear Waste Disposal Applications
NASA Astrophysics Data System (ADS)
Lowry, B.; Coates, K.; Wohletz, K.; Dunn, S.; Patera, E.; Duguid, A.; Arnold, B.; Zyvoloski, G.; Groven, L.; Kuramyssova, K.
2015-12-01
Sealing plugs are critical features of the deep borehole system design. They serve as structural platforms to bear the weight of the backfill column, and as seals through their low fluid permeability and bond to the borehole or casing wall. High hydrostatic and lithostatic pressures, high mineral content water, and elevated temperature due to the waste packages and geothermal gradient challenge the long term performance of seal materials. Deep borehole nuclear waste disposal faces the added requirement of assuring performance for thousands of years in large boreholes, requiring very long term chemical and physical stability. A high performance plug system is being developed which capitalizes on the energy of solid phase reactions to form a ceramic plug in-situ. Thermites are a family of self-oxidized metal/oxide reactions with very high energy content and the ability to react under water. When combined with engineered additives the product exhibits attractive structural, sealing, and corrosion properties. In the initial phase of this research, exploratory and scaled tests demonstrated formulations that achieved controlled, fine grained, homogeneous, net shape plugs composed predominantly of ceramic material. Laboratory experiments produced plug cores with confined fluid permeability as low as 100 mDarcy, compressive strength as high as 70 MPa (three times the strength of conventional well cement), with the inherent corrosion resistance and service temperature of ceramic matrices. Numerical thermal and thermal/structural analyses predicted the in-situ thermal performance of the reacted plugs, showing that they cooled to ambient temperature (and design strength) within 24 to 48 hours. The current development effort is refining the reactant formulations to achieve desired performance characteristics, developing the system design and emplacement processes to be compatible with conventional well service practices, and understanding the thermal, fluid, and structural effects the plug will have on surrounding media. This paper will report on the state of the development effort and plans for a field demonstration in early 2016 in a cased well with traditional plug seal and strength measurements.
Sealed head access area enclosure
Golden, Martin P.; Govi, Aldo R.
1978-01-01
A liquid-metal-cooled fast breeder power reactor is provided with a sealed head access area enclosure disposed above the reactor vessel head consisting of a plurality of prefabricated structural panels including a center panel removably sealed into position with inflatable seals, and outer panels sealed into position with semipermanent sealant joints. The sealant joints are located in the joint between the edge of the panels and the reactor containment structure and include from bottom to top an inverted U-shaped strip, a lower layer of a room temperature vulcanizing material, a separator strip defining a test space therewithin, and an upper layer of a room temperature vulcanizing material. The test space is tapped by a normally plugged passage extending to the top of the enclosure for testing the seal or introducing a buffer gas thereinto.
Experimental study of foam-insulated liquified-gas tanks
NASA Technical Reports Server (NTRS)
Reynolds, Thaine W; Weiss, Solomon
1957-01-01
Experiments with liquid nitrogen and liquid hydrogen is styrofoam-insulated tanks have indicated good agreement between measured and calculated heat-leak rates when the insulation was formed from a single block of material. In a large tank installation where the insulation was applied in sections without sealing the joints, the measured heat leak was about 2 and 1/2 times the calculated value.
Ebert, Todd A [West Palm Beach, FL; Carella, John A [Jupiter, FL
2012-03-13
A triple acting radial seal used as an interstage seal assembly in a gas turbine engine, where the seal assembly includes an interstage seal support extending from a stationary inner shroud of a vane ring, the interstage seal support includes a larger annular radial inward facing groove in which an outer annular floating seal assembly is secured for radial displacement, and the outer annular floating seal assembly includes a smaller annular radial inward facing groove in which an inner annular floating seal assembly is secured also for radial displacement. A compliant seal is secured to the inner annular floating seal assembly. The outer annular floating seal assembly encapsulates the inner annular floating seal assembly which is made from a very low alpha material in order to reduce thermal stress.
Interaction between clay-based sealing components and crystalline host rock
NASA Astrophysics Data System (ADS)
Priyanto, D. G.; Dixon, D. A.; Man, A. G.
The results of hydraulic-mechanical (H-M) numerical simulation of a shaft seal installed at a fracture zone (FZ) in a crystalline host rock using the finite element method are presented. The primary function of a shaft seal is to limit short-circuiting of the groundwater flow regime via the shaft in a deep geological repository. Two different stages of system evolution were considered in this numerical modelling. Stage 1 simulates the groundwater flow into an open shaft, prior to seal installation. Stage 2 simulates the groundwater flow into the shaft seal after seal installation. Four different cases were completed to: (i) evaluate H-M response due to the interaction between clay-based sealing material and crystalline host rock in the shaft seal structure; (ii) quantify the effect of the different times between the completion of the shaft excavation and the completion of shaft seal installation on the H-M response; and (iii) define the potential effects of different sealing material configurations. Shaft sealing materials include the bentonite-sand mixture (BSM), dense backfill (DBF), and concrete plug (CP). The BSM has greater swelling capacity and lower hydraulic conductivity ( K) than the DBF. The results of these analyses show that the decrease of the pore water pressure is concentrated along the fracture zone (FZ), which has the greatest K. As the time increases, the greatest decrease in pore water pressure is found around the FZ. Following FZ isolation and the subsequent filling of the shaft with water as it floods, the pore water pressure profile tends to recover back to the initial conditions prior to shaft excavation. The majority of the fluids that ultimately saturate the centre of the shaft seal flow radially inwards from the FZ. The time between the completion of the shaft excavation and the completion of shaft seal installation has a significant effect on the saturation time. A shorter time can reduce the saturation time. Since most of the inflow comes from the FZ, application of the BSM for extended distances above and below the FZ does not significantly affect the saturation time of the volume adjacent to the FZ. The application of BSM near the FZ rather than a low swelling capacity, more permeable filling material is very significant. This study assumed a perfect contact between seal materials and host rock. Limited to the assumptions used in this study, use of BSM near the FZ was found to increase the time before the centre of the shaft seal became fully saturated from between 4 and 30 years (when the DBF is used) to between 90 and 100 years (when the BSM is used).
Spray sealing: A breakthrough in integral fuel tank sealing technology
NASA Astrophysics Data System (ADS)
Richardson, Martin D.; Zadarnowski, J. H.
1989-11-01
In a continuing effort to increase readiness, a new approach to sealing integral fuel tanks is being developed. The technique seals potential leak sources by spraying elastomeric materials inside the tank cavity. Laboratory evaluations project an increase in aircraft supportability and reliability, an improved maintainability, decreasing acquisition and life cycle costs. Increased usable fuel volume and lower weight than conventional bladders improve performance. Concept feasibility was demonstrated on sub-scale aircraft fuel tanks. Materials were selected by testing sprayable elastomers in a fuel tank environment. Chemical stability, mechanical properties, and dynamic durability of the elastomer are being evaluated at the laboratory level and in sub-scale and full scale aircraft component fatigue tests. The self sealing capability of sprayable materials is also under development. Ballistic tests show an improved aircraft survivability, due in part to the elastomer's mechanical properties and its ability to damp vibrations. New application equipment, system removal, and repair methods are being investigated.
Hermetically sealed electrical feedthrough for high temperature secondary cells
Knoedler, R.; Nelson, P.A.; Shimotake, H.; Battles, J.E.
1983-07-26
A passthrough seal is disclosed for electrically isolating the terminal in a lithium/metal sulfide cell from the structural cell housing. The seal has spaced upper and lower insulator rings fitted snuggly between the terminal and an annularly disposed upstanding wall, and outwardly of a powdered insulator also confined between the upstanding wall and terminal. The adjacent surfaces of the upper insulator ring and the respective upstanding wall and terminal are conically tapered, diverging in the axial direction away from the cell interior, and a sealing ring is located between each pair of the adjacent surfaces. The components are sized so that upon appropriate movement of the upper insulator ring toward the lower insulator ring the powdered insulator and sealing rings are each compressed to a high degree. This compacts the powdered insulator thereby rendering the same highly impervious and moreover fuses the sealing rings to and between the adjacent surfaces. The upper and lower insulator rings might be formed of beryllium oxide and/or alumina, the powdered insulator might be formed of boron nitride, and the sealing rings might be formed of aluminum.
Hermetically sealed electrical feedthrough for high temperature secondary cells
Knoedler, Reinhard; Nelson, Paul A.; Shimotake, Hiroshi; Battles, James E.
1985-01-01
A passthrough seal is disclosed for electrically isolating the terminal in a lithium/metal sulfide cell from the structural cell housing. The seal has spaced upper and lower insulator rings fitted snuggly between the terminal and an annularly disposed upstanding wall, and outwardly of a powdered insulator also confined between the upstanding wall and terminal. The adjacent surfaces of the upper insulator ring and the respective upstanding wall and terminal are conically tapered, diverging in the axial direction away from the cell interior, and a sealing ring is located between each pair of the adjacent surfaces. The components are sized so that upon appropriate movement of the upper insulator ring toward the lower insulator ring the powdered insulator and sealing rings are each compressed to a high degree. This compacts the powdered insulator thereby rendering the same highly impervious and moreover fuses the sealing rings to and between the adjacent surfaces. The upper and lower insulator rings might be formed of beryllium oxide and/or alumina, the powdered insulator might be formed of boron nitride, and the sealing rings might be formed of aluminum.
Thermal sensors to control polymer forming. Challenge and solutions
NASA Astrophysics Data System (ADS)
Lemeunier, F.; Boyard, N.; Sarda, A.; Plot, C.; Lefèvre, N.; Petit, I.; Colomines, G.; Allanic, N.; Bailleul, J. L.
2017-10-01
Many thermal sensors are already used, for many years, to better understand and control material forming processes, especially polymer processing. Due to technical constraints (high pressure, sealing, sensor dimensions…) the thermal measurement is often performed in the tool or close its surface. Thus, it only gives partial and disturbed information. Having reliable information about the heat flux exchanges between the tool and the material during the process would be very helpful to improve the control of the process and to favor the development of new materials. In this work, we present several sensors developed in labs to study the molding steps in forming processes. The analysis of the obtained thermal measurements (temperature, heat flux) shows the required sensitivity threshold of sensitivity of thermal sensors to be able to detect on-line the rate of thermal reaction. Based on these data, we will present new sensor designs which have been patented.
Development of a plasma sprayed ceramic gas path seal for high pressure turbine application
NASA Technical Reports Server (NTRS)
Shiembob, L. T.
1978-01-01
Development of the plasma sprayed graded, layered ZRO2/CoCrAlY seal system for gas turbine engine blade tip seal applications up to 1589 K (2400 F) surface temperature was continued. The effect of changing ZRO2/CoCrAlY ratios in the intermediate layers on thermal stresses was evaluated analytically with the goal of identifying the materials combinations which would minimize thermal stresses in the seal system. Three methods of inducing compressive residual stresses in the sprayed seal materials to offset tensile thermal stresses were analyzed. The most promising method, thermal prestraining, was selected based upon potential, feasibility and complexity considerations. The plasma spray equipment was modified to heat, control and monitor the substrate temperature during spraying. Specimens were fabricated and experimentally evaluated to: (1) substantiate the capability of the thermal prestrain method to develop compressive residual stresses in the sprayed structure and (2) define the effect of spraying on a heated substate on abradability, erosion and thermal shock characteristics of the seal system. Thermal stress analysis, including residual stresses and material properties variations, was performed and correlated with thermal shock test results. Seal system performance was assessed and recommendations for further development were made.
Metal recovery from porous materials
Sturcken, Edward F.
1992-01-01
A method for recovering plutonium and other metals from materials by leaching comprising the steps of incinerating the materials to form a porous matrix as the residue of incineration, immersing the matrix into acid in a microwave-transparent pressure vessel, sealing the pressure vessel, and applying microwaves so that the temperature and the pressure in the pressure vessel increase. The acid for recovering plutonium can be a mixture of HBF.sub.4 and HNO.sub.3 and preferably the pressure is increased to at least 100 PSI and the temperature to at least 200.degree. C. The porous material can be pulverized before immersion to further increase the leach rate.
Metal recovery from porous materials
Sturcken, E.F.
1992-10-13
A method is described for recovering plutonium and other metals from materials by leaching comprising the steps of incinerating the materials to form a porous matrix as the residue of incineration, immersing the matrix into acid in a microwave-transparent pressure vessel, sealing the pressure vessel, and applying microwaves so that the temperature and the pressure in the pressure vessel increase. The acid for recovering plutonium can be a mixture of HBF[sub 4] and HNO[sub 3] and preferably the pressure is increased to at least 100 PSI and the temperature to at least 200 C. The porous material can be pulverized before immersion to further increase the leach rate.
Method for manufacturing an electrochemical cell
Kaun, Thomas D.; Eshman, Paul F.
1982-01-01
A secondary electrochemical cell is prepared by providing positive and negative electrodes having outer enclosures of rigid perforated electrically conductive material defining an internal compartment containing the electrode material in porous solid form. The electrodes are each immersed in molten electrolyte salt prior to cell assembly to incorporate the cell electrolyte. Following solidification of the electrolyte substantially throughout the porous volume of the electrode material, the electrodes are arranged in an alternating positive-negative array with interelectrode separators of porous frangible electrically insulative material. The completed array is assembled into the cell housing and sealed such that on heating the solidified electrolyte flows into the interelectrode separator.
Seals Research at AlliedSignal
NASA Technical Reports Server (NTRS)
Ullah, M. Rifat
1996-01-01
A consortium has been formed to address seal problems in the Aerospace sector of Allied Signal, Inc. The consortium is represented by makers of Propulsion Engines, Auxiliary Power Units, Gas Turbine Starters, etc. The goal is to improve Face Seal reliability, since Face Seals have become reliability drivers in many of our product lines. Several research programs are being implemented simultaneously this year. They include: Face Seal Modeling and Analysis Methodology; Oil Cooling of Seals; Seal Tracking Dynamics; Coking Formation & Prevention; and Seal Reliability Methods.
Corrosion resistant storage container for radioactive material
Schweitzer, D.G.; Davis, M.S.
1984-08-30
A corrosion resistant long-term storage container for isolating high-level radioactive waste material in a repository is claimed. The container is formed of a plurality of sealed corrosion resistant canisters of different relative sizes, with the smaller canisters housed within the larger canisters, and with spacer means disposed between juxtaposed pairs of canisters to maintain a predetermined spacing between each of the canisters. The combination of the plural surfaces of the canisters and the associated spacer means is effective to make the container capable of resisting corrosion, and thereby of preventing waste material from leaking from the innermost canister into the ambient atmosphere.
Corrosion resistant storage container for radioactive material
Schweitzer, Donald G.; Davis, Mary S.
1990-01-01
A corrosion resistant long-term storage container for isolating radioactive waste material in a repository. The container is formed of a plurality of sealed corrosion resistant canisters of different relative sizes, with the smaller canisters housed within the larger canisters, and with spacer means disposed between judxtaposed pairs of canisters to maintain a predetermined spacing between each of the canisters. The combination of the plural surfaces of the canisters and the associated spacer means is effective to make the container capable of resisting corrosion, and thereby of preventing waste material from leaking from the innermost canister into the ambient atmosphere.
Effects of geometric variables on rub characteristics of Ti-6Al-4V
NASA Technical Reports Server (NTRS)
Bill, R. C.; Wolak, J.; Wisander, D. W.
1981-01-01
Experiments simulating rub interactions between Ti-6Al-4V blade tips and various seal materials were conducted. The number of blade tips and the blade tip geometry were varied to determine their effects on rub forces and on wear phenomena. Contact was found to be quite unsteady for all blade tip geometries except for those incorporating deliberately rounded blade tips. The unsteady contact was characterized by long periods of rubbing contact and increasing blade tip that terminated in sudden rapid metal removal, sometimes accompanied by tearing and disruption of porous seal material under the rub surface. A model describing the blade tip loading is proposed and is based on the propagation of an elastic stress wave through the seal material as the seal material is dynamically compressed by the blade tip leading edge.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miller, D. H.; Reigel, M. M.
A full-scale formed core sampler was designed and functionally tested for use in the Saltstone Disposal Facility (SDF). Savannah River National Laboratory (SRNL) was requested to compare properties of the formed core samples and core drilled samples taken from adjacent areas in the full-scale sampler. While several physical properties were evaluated, the primary property of interest was hydraulic conductivity. Differences in hydraulic conductivity between the samples from the formed core sampler and those representing the bulk material were noted with respect to the initial handling and storage of the samples. Due to testing conditions, the site port samples were exposedmore » to uncontrolled temperature and humidity conditions prior to testing whereas the formed core samples were kept in sealed containers with minimal exposure to an uncontrolled environment prior to testing. Based on the results of the testing, no significant differences in porosity or density were found between the formed core samples and those representing the bulk material in the test stand.« less
Performance of end-face seals with diametral tilt and coning - Hydrodynamic effects
NASA Technical Reports Server (NTRS)
Sharoni, A.; Etsion, I.
1979-01-01
Hydrodynamic effects in end-face seals with diametral tilt and coning are analyzed. A closed-form solution for the axial separating force and the restoring and transverse moments is presented that covers the whole range from zero to full angular misalignment at various degrees of coning. Both low-pressure seals with cavitating flow and high-pressure seals with full fluid film are considered. The effect of coning is to reduce the axial force and the restoring and transverse moments compared to their magnitude in flat-face seals. Strong coupling between diametral tilt and transverse moment is demonstrated. This transverse moment which is entirely due to hydrodynamic effects can be the source of dynamic instability in the form of seal wobble.
Posterior composite restoration update: focus on factors influencing form and function
Bohaty, Brenda S; Ye, Qiang; Misra, Anil; Sene, Fabio; Spencer, Paulette
2013-01-01
Restoring posterior teeth with resin-based composite materials continues to gain popularity among clinicians, and the demand for such aesthetic restorations is increasing. Indeed, the most common aesthetic alternative to dental amalgam is resin composite. Moderate to large posterior composite restorations, however, have higher failure rates, more recurrent caries, and increased frequency of replacement. Investigators across the globe are researching new materials and techniques that will improve the clinical performance, handling characteristics, and mechanical and physical properties of composite resin restorative materials. Despite such attention, large to moderate posterior composite restorations continue to have a clinical lifetime that is approximately one-half that of the dental amalgam. While there are numerous recommendations regarding preparation design, restoration placement, and polymerization technique, current research indicates that restoration longevity depends on several variables that may be difficult for the dentist to control. These variables include the patient’s caries risk, tooth position, patient habits, number of restored surfaces, the quality of the tooth–restoration bond, and the ability of the restorative material to produce a sealed tooth–restoration interface. Although clinicians tend to focus on tooth form when evaluating the success and failure of posterior composite restorations, the emphasis must remain on advancing our understanding of the clinical variables that impact the formation of a durable seal at the restoration–tooth interface. This paper presents an update of existing technology and underscores the mechanisms that negatively impact the durability of posterior composite restorations in permanent teeth. PMID:23750102
Fiber optic assembly and method of making same
Kramer, D.P.; Beckman, T.M.
1997-09-02
There is provided an assembly having a light guiding medium sealed to a holder. Preferably the holder is a metal shell and a light guiding medium is an optical fiber of glass or sapphire whisker. The assembly includes a sealing medium which sealingly engages the metal holder to the fiber. In the formation of the assembly, the seal is essentially hermetic having a capability of minimizing leakage having a helium leak rate of less than 1{times}10{sup {minus}8} cubic centimeters per second and high strength having a capability of withstanding pressures of 100,000 psi or greater. The features of the assembly are obtained by a specific preparation method and by selection of specific starting materials. The fiber is selected to have a sufficiently high coefficient of thermal expansion which minimizes strains in the component during fabrication, as a result of fabrication, and during use. The other components are selected to be of a material having compatible coefficients of thermal expansion (TEC) where the TEC of the holder is greater than or equal to the TEC of the sealing material. The TEC of the sealing material is in turn greater than or equal to the TEC of the fiber. It is preferred that the materials be selected so that their respective coefficients of thermal expansion are as close as possible to one another and they may all be equal. 4 figs.
Fiber optic assembly and method of making same
Kramer, Daniel P.; Beckman, Thomas M.
1997-09-02
There is provided an assembly having a light guiding medium sealed to a her. Preferably the holder is a metal shell and a light guiding medium is an optical fiber of glass or sapphire whisker. The assembly includes a sealing medium which sealingly engages the metal holder to the fiber. In the formation of the assembly, the seal is essentially hermetic having a capability of minimizing leakage having a helium leak rate of less than 1.times.10.sup.-8 cubic centimeters per second and high strength having a capability of withstanding pressures of 100,000 psi or greater. The features of the assembly are obtained by a specific preparation method and by selection of specific starting materials. The fiber is selected to have a sufficiently high coefficient of thermal expansion which minimizes strains in the component during fabrication, as a result of fabrication, and during use. The other components are selected to be of a material having compatible coefficients of thermal expansion (TEC) where the TEC of the holder is greater than or equal to the TEC of the sealing material. The TEC of the sealing material is in turn greater than or equal to the TEC of the fiber. It is preferred that the materials be selected so that their respective coefficients of thermal expansion are as close as possible to one another and they may all be equal.
Corrosion resistant ceramic materials
Kaun, Thomas D.
1995-01-01
Ceramic materials which exhibit stability in severely-corrosive environments having high alkali-metal activity, high sulfur/sulfide activity and/or molten halides at temperatures of 200.degree.-550.degree. C. or organic salt (including SO.sub.2 and SO.sub.2 Cl.sub.2) at temperatures of 25.degree.-200.degree. C. These sulfide ceramics form stoichiometric (single-phase) compounds with sulfides of Ca, Li, Na, K, Al, Mg, Si, Y, La, Ce, Ga, Ba, Zr and Sr and show melting-points that are sufficiently low and have excellent wettability with many metals (Fe, Ni, Mo) to easily form metal/ceramic seals. Ceramic compositions are also formulated to adequately match thermal expansion coefficient of adjacent metal components.
Corrosion resistant ceramic materials
Kaun, Thomas D.
1996-01-01
Ceramic materials which exhibit stability in severely-corrosive environments having high alkali-metal activity, high sulfur/sulfide activity and/or molten halides at temperatures of 200.degree.-550.degree. C. or organic salt (including SO.sub.2 and SO.sub.2 Cl.sub.2) at temperatures of 25.degree.-200.degree. C. These sulfide ceramics form stoichiometric (single-phase) compounds with sulfides of Ca, Li, Na, K, Al, Mg, Si, Y, La, Ce, Ga, Ba, Zr and Sr and show melting-points that are sufficiently low and have excellent wettability with many metals (Fe, Ni, Mo) to easily form metal/ceramic seals. Ceramic compositions are also formulated to adequately match thermal expansion coefficient of adjacent metal components.
Corrosion resistant ceramic materials
Kaun, T.D.
1996-07-23
Ceramic materials are disclosed which exhibit stability in severely-corrosive environments having high alkali-metal activity, high sulfur/sulfide activity and/or molten halides at temperatures of 200--550 C or organic salt (including SO{sub 2} and SO{sub 2}Cl{sub 2}) at temperatures of 25--200 C. These sulfide ceramics form stoichiometric (single-phase) compounds with sulfides of Ca, Li, Na, K, Al, Mg, Si, Y, La, Ce, Ga, Ba, Zr and Sr and show melting-points that are sufficiently low and have excellent wettability with many metals (Fe, Ni, Mo) to easily form metal/ceramic seals. Ceramic compositions are also formulated to adequately match thermal expansion coefficient of adjacent metal components. 1 fig.
Ability of New Obturation Materials to Improve the Seal of the Root Canal System – A Review
Zhang, Wei; Olsen, Mark; De-Deus, Gustavo; Eid, Ashraf A.; Chen, Ji-hua; Pashley, David H.; Tay, Franklin R.
2014-01-01
Objectives New obturation biomaterials have been introduced over the past decade to improve the seal of the root canal system. However, it is not clear whether they have really produced a three-dimensional impervious seal that is important for reducing diseases associated with root canal treatment. Methods A review of the literature was performed to identify models that have been employed for evaluating the seal of the root canal system. Results and Significance In-vitro and in-vivo models are not totally adept at quantifying the seal of root canals obturated with classic materials. Thus, one has to resort to clinical outcomes to examine whether there are real benefits associated with the use of recently-introduced materials for obturating root canals. However, there is no facile answer because endodontic treatment outcomes are influenced by a host of other predictors that are more likely to take precedence over the influence of obturation materials. From the perspective of clinical performance, classic root filling materials have stood the test of time. Because many of the recently-introduced materials are so new, there is not enough evidence yet to support their ability to improve clinical performance. This emphasizes the need to translate anecdotal information into clinically relevant research data on new biomaterials. PMID:24321349
Finite element analysis as a design tool for thermoplastic vulcanizate glazing seals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gase, K.M.; Hudacek, L.L.; Pesevski, G.T.
1998-12-31
There are three materials that are commonly used in commercial glazing seals: EPDM, silicone and thermoplastic vulcanizates (TPVs). TPVs are a high performance class of thermoplastic elastomers (TPEs), where TPEs have elastomeric properties with thermoplastic processability. TPVs have emerged as materials well suited for use in glazing seals due to ease of processing, economics and part design flexibility. The part design and development process is critical to ensure that the chosen TPV provides economics, quality and function in demanding environments. In the design and development process, there is great value in utilizing dual durometer systems to capitalize on the benefitsmore » of soft and rigid materials. Computer-aided design tools, such as Finite Element Analysis (FEA), are effective in minimizing development time and predicting system performance. Examples of TPV glazing seals will illustrate the benefits of utilizing FEA to take full advantage of the material characteristics, which results in functional performance and quality while reducing development iterations. FEA will be performed on two glazing seal profiles to confirm optimum geometry.« less
Nuclear instrumentation cable end seal
Cannon, Collins P.; Brown, Donald P.
1979-01-01
An improved coaxial end seal for hermetically sealed nuclear instrumentation cable exhibiting an improved breakdown pulse noise characteristic under high voltage, high temperature conditions. A tubular insulator body has metallized interior and exterior surface portions which are braze sealed to a center conductor and an outer conductive sheath. The end surface of the insulator body which is directed toward the coaxial cable to which it is sealed has a recessed surface portion within which the braze seal material terminates.
NASA Astrophysics Data System (ADS)
Takahashi, K.; Ishida, H.; Sawada, K.
2018-01-01
We report the development of a microcavity drum sealed by suspended graphene. The drum is fabricated by using a low-pressure dry-transfer technique, which involves vacuum de-aeration between a graphene sheet and a substrate and raising the temperature to above the glass transition of the supporting poly(methyl methacrylate) film, which serves to increase the real contact area. The result is a suspended graphene sheet with a maximum diameter of 48.6 μm. The Raman spectrum of the suspended graphene has a 2D/G ratio of 1.79 and a few D peaks, which suggests that the material is high-quality single-layer graphene. The dry-transfer technique yields a vacuum-sealed microcavity drum 1.1 μm deep up to 4.5 μm in diameter. The Raman shift indicates that the suspended graphene is subjected to a tensile strain of 0.05%, which is attributed to the pressure difference between the evacuated cavity and the exterior gas.
A new polymer nanocomposite repair material for restoring wellbore seal integrity
Genedy, Moneeb; Kandil, Usama F.; Matteo, Edward N.; ...
2017-03-01
Seal integrity of functional oil wells and abandoned wellbores used for CO 2 subsequent storage has become of significant interest with the oil and gas leaks worldwide. This is attributed to the fact that wellbores intersecting geographical formations contain potential leakage pathways. One of the critical leakage pathways is the cement-shale interface. In this study, we examine the efficiency of a new polymer nanocomposite repair material that can be injected for sealing micro annulus in wellbores. The bond strength and microstructure of the interface of Type G oil well cement (reference), microfine cement, Novolac epoxy incorporating Neat, 0.25%, 0.5%, andmore » 1.0% Aluminum Nanoparticles (ANPs) with shale is investigated. Interfacial bond strength testing shows that injected microfine cement repair has considerably low bond strength, while ANPs-epoxy nanocomposites have a bond strength that is an order of magnitude higher than cement. Microscopic investigations of the interface show that micro annulus interfacial cracks with widths up to 40 μm were observed at the cement-shale interface while these cracks were absent at the cement-epoxy-shale interface. Finally, Fourier Transform Infrared and Dynamic mechanical analysis measurements showed that ANPs improve interfacial bond by limiting epoxy crosslinking, and therefore allowing epoxy to form robust bonds with cement and shale.« less
Arntzen, John D.
1978-01-01
An electrochemical cell includes two outer electrodes and a central electrode of opposite polarity, all nested within a housing having two symmetrical halves which together form an offset configuration. The outer electrodes are nested within raised portions within the side walls of each housing half while the central electrode sealingly engages the perimetric margins of the side-wall internal surfaces. Suitable interelectrode separators and electrical insulating material electrically isolate the central electrode from the housing and the outer electrodes. The outer electrodes are electrically connected to the internal surfaces of the cell housing to provide current collection. The nested structure minimizes void volume that would otherwise be filled with gas or heavy electrolyte and also provides perimetric edge surfaces for sealing and supporting at the outer margins of frangible interelectrode separator layers.
Program for the improvement of downhole drilling motor bearings and seals. Phase V. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
DeLafosse, P.H.; Tibbitts, G.A.; Black, A.D.
1983-08-01
The work done during the fifth and final phase of a program to improve downhole drilling motor bearing and seals is described. The principal activities in this phase were: (a) testing seals with abrasive-laden mud on the low-pressure side; (b) test second and third generation designs of both elastomeric chevron seals and Teflon U-seals; and (c) testing a full-scale bearing/seal package. Several operating parameters which have a radical effect on seal life were identified, and some promising designs and materials were tested.
Seal assembly with anti-rotation pin for high pressure supercritical fluids
Wright, Steven A.; Fuller, Robert L.
2014-08-05
A seal assembly for sealing a machine with a first chamber and a second chamber is provided. A rotating shaft extends through the first and second chambers, and rotates therein. The seal assembly has a seal housing, a seal ring and a seal pin. The seal housing is positionable in the machine housing. The seal housing has a seal pocket extending into a fluid side thereof, and a housing receptacle extending into an inner diameter thereof at the seal pocket. The seal ring is positionable in the seal pocket of the seal housing for forming a seal therewith. The seal ring has a ring receptacle extending into an outer diameter thereof. The ring receptacle is positionable adjacent to the housing receptacle for defining a pin hole therebetween. The seal pin is loosely positionable in the pin hole whereby movement about the seal ring is accommodated while preventing rotation thereof.
Synthesis of perfluoroalkylether triazine elastomers
NASA Technical Reports Server (NTRS)
Rosser, R. W.; Korus, R. A.
1980-01-01
A method of perfluoroalkylether triazine elastomer synthesis is described. To form an elastomer, the resultant polymer is heated in a closed oven at slightly reduced pressures for 1-day periods at 100, 130 and 150 C. A high-molecular-weight perfluoroalkylether triazine elastomer is produced that exhibits thermal and oxidative stability. This material is potentially useful in applications such as high-temperature seals, 'O' rings, and wire enamels.
NASA Astrophysics Data System (ADS)
de Groh, Henry C.; Puleo, Bernadette J.; Steinetz, Bruce M.
An investigation of silicone elastomers for seals used in docking and habitat systems for future space exploration vehicles is being conducted at NASA. For certain missions, NASA is considering androgynous docking systems where two vehicles each having a seal would be required to: dock for a period of time, seal effectively, and then separate with minimum push-off forces for undocking. Silicone materials are generally chosen for their wide operating temperatures and low leakage rates. However silicone materials are often sticky and usually exhibit considerable adhesion when mated against metals and silicone surfaces. This paper investigates the adhesion unit pressure for a space rated silicone material (S0383-70) for either seal-on-seal (SoS) or seal-on-aluminum (SoAl) operation modes in the following conditions: as-received, after ground-based atomic-oxygen (AO) pre-treatment, after application of a thin coating of a space-qualified grease (Braycote 601EF), and after a combination of AO pre-treatment and grease coating. In order of descending adhesion reduction, the AO treatment reduced seal adhesion the most, followed by the AO plus grease pre-treatment, followed by the grease treatment. The effects of various treatments on silicone (S0383-70 and ELA-SA-401) outgassing properties were also investigated. The leading adhesion AO pre-treatment reduction led to a slight decrease in outgassing for the S0383-70 material and virtually no change in ELA-SA-401 outgassing.
NASA Technical Reports Server (NTRS)
deGroh, Henry C., III; Puleo, Bernadette J.; Steinetz, Bruce M.
2011-01-01
An investigation of silicone elastomers for seals used in docking and habitat systems for future space exploration vehicles is being conducted at NASA. For certain missions, NASA is considering androgynous docking systems where two vehicles each having a seal would be required to: dock for a period of time, seal effectively, and then separate with minimum push-off forces for undocking. Sili-cone materials are generally chosen for their wide operating temperatures and low leakage rates. However silicone materials are often sticky and usually exhibit considerable adhesion when mated against metals and silicone surfaces. This paper investigates the adhesion unit pressure for a space rated silicone material (S0383-70) for either seal-on-seal (SoS) or seal-on-aluminum (SoAl) operation modes in the following conditions: as-received, after ground-based atomic-oxygen (AO) pre-treatment, after application of a thin coating of a space-qualified grease (Bray-cote 601EF), and after a combination of AO pre-treatment and grease coating. In order of descending adhesion reduction, the AO treatment reduced seal adhesion the most, followed by the AO plus grease pre-treatment, followed by the grease treatment. The effects of various treatments on silicone (S0383-70 and ELA-SA-401) outgassing properties were also investigated. The leading adhesion AO pre-treatment reduction led to a slight decrease in outgassing for the S0383-70 material and virtually no change in ELA-SA-401 outgassing.
NASA Technical Reports Server (NTRS)
deGroh, Henry C., III; Puleo, Bernadette J.; Steinetz, Bruce M.
2012-01-01
An investigation of silicone elastomers for seals used in docking and habitat systems for future space exploration vehicles is being conducted at NASA. For certain missions, NASA is considering androgynous docking systems where two vehicles each having a seal would be required to: dock for a period of time, seal effectively, and then separate with minimum push-off forces for undocking. Silicone materials are generally chosen for their wide operating temperatures and low leakage rates. However silicone materials are often sticky and usually exhibit considerable adhesion when mated against metals and silicone surfaces. This paper investigates the adhesion unit pressure for a space rated silicone material (S0383-70) for either seal-on-seal (SoS) or seal-on-aluminum (SoAl) operation modes in the following conditions: as-received, after ground-based atomic-oxygen (AO) pre-treatment, after application of a thin coating of a space-qualified grease (Braycote 601EF), and after a combination of AO pre-treatment and grease coating. In order of descending adhesion reduction, the AO treatment reduced seal adhesion the most, followed by the AO plus grease pre-treatment, followed by the grease treatment. The effects of various treatments on silicone (S0383-70 and ELA-SA-401) outgassing properties were also investigated. The leading adhesion AO pretreatment reduction led to a slight decrease in outgassing for the S0383-70 material and virtually no change in ELA-SA-401 outgassing.
Solubility and bacterial sealing ability of MTA and root-end filling materials.
Espir, Camila Galletti; Guerreiro-Tanomaru, Juliane Maria; Spin-Neto, Rubens; Chávez-Andrade, Gisselle Moraima; Berbert, Fabio Luiz Camargo Villela; Tanomaru-Filho, Mario
2016-04-01
Objective To evaluate solubility and sealing ability of Mineral Trioxide Aggregate (MTA) and root-end filling materials. Material and Methods The materials evaluated were: MTA, Calcium Silicate Cement with zirconium oxide (CSC/ZrO2), and zinc oxide/eugenol (ZOE). Solubility test was performed according to ANSI/ADA. The difference between initial and final mass of the materials was analyzed after immersion in distilled water for 7 and 30 days. Retrograde cavities in human teeth with single straight root canal were performed by using ultrasonic tip CVD 9.5107-8. The cavities were filled with the evaluated materials to evaluate sealing ability using the bacterial leakage test with Enterococcus faecalis. Bacterial leakage was evaluated every 24 hours for six weeks observing the turbidity of Brain Heart infusion (BHI) medium in contact with root apex. Data were submitted to ANOVA followed by Tukey tests (solubility), and Kruskal-Wallis and Dunn tests (sealing ability) at a 5% significance level. Results For the 7-day period, ZOE presented highest solubility when compared with the other groups (p<0.05). For the 30-day period, no difference was observed among the materials. Lower bacterial leakage was observed for MTA and CSC/ZrO2, and both presented better results than ZOE (p<0.05). Conclusion MTA and CSC/ZrO2 presented better bacterial sealing capacity, which may be related to lower initial solubility observed for these materials in relation to ZOE.
Model and Simulation of an SMA Enhanced Lip Seal
NASA Astrophysics Data System (ADS)
Qiao, Rui; Gao, Xiujie; Brinson, L. Catherine
2011-07-01
The feasibility of using SMA wires to improve the seal effectiveness has been studied experimentally and numerically. In this article, we present only the numerical study of simulating the thermo-mechanical behavior for an SMA enhanced lip seal, leaving the test setup and results in the experimental counterpart. A pseudo 3D SMA model, considering 1D SMA behavior in the major loading direction and elastic response in other directions, was used to capture the thermo-mechanical behavior of SMA wires. The model was then implemented into ABAQUS using the user-defined material subroutine to inherit most features of the commercial finite element package. Two-way shape memory effect was also considered since the SMA material exhibits strong two-way effects. An axisymmetric finite element model was constructed to simulate a seal mounting on a shaft and the sealing pressure was calculated for both the regular seal and the SMA enhanced seal. Finally, the result was qualitatively compared with the experimental observation.
Space Environment Effects on Silicone Seal Materials
NASA Technical Reports Server (NTRS)
deGroh, Henry C., III; Daniels, Christopher C.; Dever, Joyce A.; Miller, Sharon K.; Waters, Deborah L.; Finkbeiner, Joshua R.; Dunlap, Patrick H.; Steinetz, Bruce M.
2010-01-01
A docking system is being developed by the NASA to support future space missions. It is expected to use redundant elastomer seals to help contain cabin air during dockings between two spacecraft. The sealing surfaces are exposed to the space environment when vehicles are not docked. In space, the seals will be exposed to temperatures between 125 to -75 C, vacuum, atomic oxygen, particle and ultraviolet radiation, and micrometeoroid and orbital debris (MMOD). Silicone rubber is the only class of space flight-qualified elastomeric seal material that functions across the expected temperature range. NASA Glenn has tested three silicone elastomers for such seal applications: two provided by Parker (S0899-50 and S0383-70) and one from Esterline (ELA-SA-401). The effects of atomic oxygen (AO), UV and electron particle radiation, and vacuum on the properties of these three elastomers were examined. Critical seal properties such as leakage, adhesion, and compression set were measured before and after simulated space exposures. The S0899-50 silicone was determined to be inadequate for extended space seal applications due to high adhesion and intolerance to UV, but both S0383-70 and ELA-SA-401 seals were adequate.
Validation Assessment of a Glass-to-Metal Seal Finite-Element Model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jamison, Ryan Dale; Buchheit, Thomas E.; Emery, John M
Sealing glasses are ubiquitous in high pressure and temperature engineering applications, such as hermetic feed-through electrical connectors. A common connector technology are glass-to-metal seals where a metal shell compresses a sealing glass to create a hermetic seal. Though finite-element analysis has been used to understand and design glass-to-metal seals for many years, there has been little validation of these models. An indentation technique was employed to measure the residual stress on the surface of a simple glass-to-metal seal. Recently developed rate- dependent material models of both Schott 8061 and 304L VAR stainless steel have been applied to a finite-element modelmore » of the simple glass-to-metal seal. Model predictions of residual stress based on the evolution of material models are shown. These model predictions are compared to measured data. Validity of the finite- element predictions is discussed. It will be shown that the finite-element model of the glass-to-metal seal accurately predicts the mean residual stress in the glass near the glass-to-metal interface and is valid for this quantity of interest.« less
Russell, W.H. Jr.
1959-06-30
A device is described for removing material from the interior of a hollow workpiece so as to form a true spherical internal surface in a workpiece, or to cut radial slots of an adjustable constant depth in an already established spherical internal surface. This is accomplished by a spring loaded cutting tool adapted to move axially wherein the entire force urging the tool against the workpiece is derived from the spring. Further features of importance involve the provision of a seal between the workpiece and the cutting device and a suction device for carrying away particles of removed material.
Cermet insert high voltage holdoff improvement for ceramic/metal vacuum devices
Ierna, W.F.
1986-03-11
An improved metal-to-ceramic seal is provided wherein the ceramic body of the seal contains an integral region of cermet material in electrical contact with the metallic member, e.g., an electrode, of the seal. The seal is useful in high voltage vacuum devices, e.g., vacuum switches, and increases the high-voltage holdoff capabilities of such devices. A method of fabricating such seals is also provided.
Cermet insert high voltage holdoff for ceramic/metal vacuum devices
Ierna, William F.
1987-01-01
An improved metal-to-ceramic seal is provided wherein the ceramic body of the seal contains an integral region of cermet material in electrical contact with the metallic member, e.g., an electrode, of the seal. The seal is useful in high voltage vacuum devices, e.g., vacuum switches, and increases the high-voltage holdoff capabilities of such devices. A method of fabricating such seals is also provided.
DOE Office of Scientific and Technical Information (OSTI.GOV)
BRONOWSKI,DAVID R.
The US Department of Energy Offices of Defense Programs and Civilian Radioactive Waste Management jointly sponsored a program to evaluate elastomeric O-ring seal materials for radioactive material shipping containers. The report presents the results of low- and high-temperature tests conducted on 27 common elastomeric compounds.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Pin; Wang, Yifeng; Rodriguez, Mark A.
The concept of deep borehole nuclear waste disposal has recently been proposed. Effective sealing of a borehole after waste emplacement is generally required. In a high temperature disposal mode, the sealing function will be fulfilled by melting the ambient granitic rock with waste decay heat or an external heating source, creating a melt that will encapsulate waste containers or plug a portion of the borehole above a stack of the containers. However, there are certain drawbacks associated with natural materials, such as high melting temperatures, slow crystallization kinetics, the resulting sealing materials generally being porous with low mechanical strength, insufficientmore » adhesion to waste container surface, and lack of flexibility for engineering controls. Here we show that natural granitic materials can be purposefully engineered through chemical modifications to enhance the sealing capability of the materials for deep borehole disposal. This work systematically explores the effect of chemical modification and crystallinity (amorphous vs. crystalline) on the melting and crystallization processes of a granitic rock system. A number of engineered granitic materials have been obtained that have decreased melting points, enhanced viscous densification, and accelerated recrystallization rates without compromising the mechanical integrity of the materials.« less
ERIC Educational Resources Information Center
Macaulay, Sara Grove
2000-01-01
Describes an art unit in which students sculpt a signature seal out of clay and use Chinese brush painting techniques to paint a scroll. Discusses the seal and its historical use in China. Lists materials needed and explains the procedure. (CMK)
Knife-edge seal for vacuum bagging
NASA Technical Reports Server (NTRS)
Rauschl, J. A.
1980-01-01
Cam actuated clamps pinch bagging material between long knife edge (mounted to clamps) and high temperature rubber cushion bonded to baseplate. No adhesive, tape, or sealing groove is needed to seal edge of bagging sheet against base plate.
Friction and wear of sintered fiber-metal abradable seal materials
NASA Technical Reports Server (NTRS)
Bill, R. C.; Shiembob, L. T.
1977-01-01
Three abradable gas path seal material systems based on a sintered NiCrAlY fibermetal structure were evaluated under a range of wear conditions representative of those likely to be encountered in various knife-edge seal (labyrinth or shrouded turbine) applications. Conditions leading to undesirable wear of the rotating knife were identified and a model was proposed based on thermal effects arising under different rub conditions. It was found, and predicted by the model, that low incursion (plunge) rates tended to promote smearing of the low density sintered material with consequent wear to the knife-edge. Tradeoffs benefits between baseline 19 percent dense material, a similar material of increased density, and a self lubricating coating applied to the 19 percent material were identified based on relative rub tolerance and erosion resistance.
Evaluation of hydrogels for soft tissue adhesives in vitro and in vivo analyses
NASA Astrophysics Data System (ADS)
Yuan, Liu; Fan, Wenshuai; Han, Linyingjun; Guo, Changan; Yan, Zuoqin; Zhu, Meifang; Mo, Xiumei
2018-03-01
In this study, natural materials (sodium alginate, dextran, gelatin and carboxymethyl chitosan) were modified to get aldehyde components and amino components. Upon mixing the two-component solutions together, four kinds of Schiff base hydrogels formed successfully within 5-300 s and could seal the wound tissue. The cytotoxicity tests of hydrogel extraction solution confirmed that the hydrogels are nontoxic materials. The adhesive ability was evaluated in vivo by measuring the adhesive strength after sealing the skin incisions on the back of rats. All the hydrogels showed higher adhesive strength than that of commercial fibrin glue and the blank control. The histological staining observation by hematoxylin and eosin staining (HE) and Masson's trichrome staining (MTC) methods suggested that the hydrogels had good biocompatibility and biodegradation in vivo. They have only normal initial inflammation to skin tissue and could improve the formation of new collagen in the incision section. So, the prepared hydrogels were both safe and effective tissue adhesive, which had the great potentials to be used as skin tissue adhesive.
Multiple piece turbine blade/vane
Kimmel, Keith D
2013-02-05
An air cooled turbine blade or vane of a spar and shell construction with the shell made from a high temperature resistant material that must be formed from an EDM process. The shell and the spar both have a number of hooks extending in a spanwise direction and forming a contact surface that is slanted such that a contact force increases as the engaging hooks move away from one another. The slanted contact surfaces on the hooks provides for an better seal and allows for twisting between the shell and the spar while maintaining a tight fit.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nigrey, P.J.; Dickens, T.G.; Dickman, P.T.
1997-08-01
Based on regulatory requirements for Type A and B radioactive material packaging, a Testing Program was developed to evaluate the effects of mixed wastes on plastic materials which could be used as liners and seals in transportation containers. The plastics evaluated in this program were butadiene-acrylonitrile copolymer (Nitrile rubber), cross-linked polyethylene, epichlorohydrin, ethylene-propylene rubber (EPDM), fluorocarbons, high-density polyethylene (HDPE), butyl rubber, polypropylene, polytetrafluoroethylene, and styrene-butadiene rubber (SBR). These plastics were first screened in four simulant mixed wastes. The liner materials were screened using specific gravity measurements and seal materials by vapor transport rate (VTR) measurements. For the screening of linermore » materials, Kel-F, HDPE, and XLPE were found to offer the greatest resistance to the combination of radiation and chemicals. The tests also indicated that while all seal materials passed exposure to the aqueous simulant mixed waste, EPDM and SBR had the lowest VTRs. In the chlorinated hydrocarbon simulant mixed waste, only Viton passed the screening tests. In both the simulant scintillation fluid mixed waste and the ketone mixture waste, none of the seal materials met the screening criteria. Those materials which passed the screening tests were subjected to further comprehensive testing in each of the simulant wastes. The materials were exposed to four different radiation doses followed by exposure to a simulant mixed waste at three temperatures and four different exposure times (7, 14, 28, 180 days). Materials were tested by measuring specific gravity, dimensional, hardness, stress cracking, VTR, compression set, and tensile properties. The second phase of this Testing Program involving the comprehensive testing of plastic liner has been completed and for seal materials is currently in progress.« less
NASA Technical Reports Server (NTRS)
Burgess, Robert K.; Yakos, David; Walthall, Bryan
2012-01-01
This invention utilizes a new method of opening and closing a ball valve. Instead of rotating the ball with a perpendicular stem (as is the case with standard ball valves), the ball is rotated around a fixed axis by two guide pins. This innovation eliminates the leak point that is present in all standard ball valves due to the penetration of an actuation stem through the valve body. The VOST (Venturi Off-Set-Technology) valve has been developed for commercial applications. The standard version of the valve consists of an off-set venturi flow path through the valve. This path is split at the narrowest portion of the venturi, allowing the section upstream from the venturi to be rotated. As this rotation takes place, the venturi becomes restricted as one face rotates with respect to the other, eventually closing off the flow path. A spring-loaded seal made of resilient material is embedded in the upstream face of the valve, making a leak-proof seal between the faces; thus a valve is formed. The spring-loaded lip seal is the only seal that can provide a class six, or bubble-tight, seal against the opposite face of the valve. Tearing action of the seal by high-velocity gas on this early design required relocation of the seal to the downstream face of the valve. In the stemless embodiment of this valve, inner and outer magnetic cartridges are employed to transfer mechanical torque from the outside of the valve to the inside without the use of a stem. This eliminates the leak path caused by the valve stems in standard valves because the stems penetrate through the bodies of these valves.
An analysis on the magnetic fluid seal capacity
NASA Astrophysics Data System (ADS)
Meng, Zhao; Jibin, Zou; Jianhui, Hu
2006-08-01
The capacity of the magnetic fluid seal depends on the magnetic field and the saturation magnetization of the magnetic fluid. There are many factors that influence the magnetic field and the seal capacity of the magnetic fluid seal, such as the sealing gap, the shaft eccentricity, the shaft diameter, and the centrifugal force. In this paper, these factors are analyzed by numerical computations. When the material and structure are the same, the magnetic fluid seal capacity will reduce with the increasing of the sealing gap. When the shaft diameter is large the gravity should be considered. The centrifugal force has influence on the magnetic fluid seal capacity.
Study of sealing practices for rigid pavement joints.
DOT National Transportation Integrated Search
1971-01-01
The joint sealing materials and the rigid pavement joint sealing practices employed by Virginia and other highway agencies were studied. The studies showed that Virginia's sealant and joint designs were in need of updating and that higher quality pou...
10 CFR 35.590 - Training for use of sealed sources for diagnosis.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 1 2010-01-01 2010-01-01 false Training for use of sealed sources for diagnosis. 35.590 Section 35.590 Energy NUCLEAR REGULATORY COMMISSION MEDICAL USE OF BYPRODUCT MATERIAL Sealed Sources for Diagnosis § 35.590 Training for use of sealed sources for diagnosis. Except as provided in § 35.57, the...
Solid Oxide Fuel Cell Seal Development at NASA Glenn Research Center
NASA Technical Reports Server (NTRS)
Steinetz, Bruce M.; Bansal, Narottam P.; Dynys, Fred W.; Lang, Jerry; Daniels, Christopher C.; Palko, Joeseph L.; Choi, S. R.
2004-01-01
Researchers at NASA GRC are confronting the seal durability challenges of Solid Oxide Fuel Cells by pursuing an integrated and multidisciplinary development effort incorporating thermo-structural analyses, advanced materials, experimentation, and novel seal design concepts. The successful development of durable hermetic SOFC seals is essential to reliably producing the high power densities required for aerospace applications.
Self-balancing air riding seal for a turbine
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mills, Jacob A.
A turbine of a gas turbine engine has an air riding seal that forms a seal between a rotor and a stator of the turbine, the air riding seal including an annular piston movable in an axial direction under the influence of a pressure on one side with a pressure acting on an opposite side that self-balances the air riding seal during the steady state condition of the engine and lifts off the seal during engine transients.
Automatic Inspection Of Heat Seals Between Plastic Sheets
NASA Technical Reports Server (NTRS)
Rai, Kula R.; Lew, Thomas M.; Sinclair, Robert B.
1995-01-01
Automatic inspection apparatus detects flaws in heat seals between films of polyethylene or other thermoplastic material. Heat-sealed strip in multilayer plastic sheet continuously moved lengthwise over illuminators. Variations in light transmitted through sheet interpreted to find flaws in heat seal. Site of flaw marked to facilitate subsequent manual inspection. Heat sealing used to join plastic films in manufacturing of variety of products, including inflatable toys and balloons carrying scientific instruments to high altitudes.
Skew resisting hydrodynamic seal
Conroy, William T.; Dietle, Lannie L.; Gobeli, Jeffrey D.; Kalsi, Manmohan S.
2001-01-01
A novel hydrodynamically lubricated compression type rotary seal that is suitable for lubricant retention and environmental exclusion. Particularly, the seal geometry ensures constraint of a hydrodynamic seal in a manner preventing skew-induced wear and provides adequate room within the seal gland to accommodate thermal expansion. The seal accommodates large as-manufactured variations in the coefficient of thermal expansion of the sealing material, provides a relatively stiff integral spring effect to minimize pressure-induced shuttling of the seal within the gland, and also maintains interfacial contact pressure within the dynamic sealing interface in an optimum range for efficient hydrodynamic lubrication and environment exclusion. The seal geometry also provides for complete support about the circumference of the seal to receive environmental pressure, as compared the interrupted character of seal support set forth in U.S. Pat. Nos. 5,873,576 and 6,036,192 and provides a hydrodynamic seal which is suitable for use with non-Newtonian lubricants.
RADIOLOGICAL SEALED SOURCE LIBRARY: A NUCLEAR FORENSICS TOOL
DOE Office of Scientific and Technical Information (OSTI.GOV)
Canaday, Jodi; Chamberlain, David; Finck, Martha
If a terrorist were to obtain and possibly detonate a device that contained radiological material, radiological forensic analysis of the material and source capsule could provide law enforcement with valuable clues about the origin of the radiological material; this information could then provide further leads on where the material and sealed source was obtained, and the loss of control point. This information could potentially be utilized for attribution and prosecution. Analyses of nuclear forensic signatures for radiological materials are generally understood to include isotopic ratios, trace element concentrations, the time since irradiation or purification, and morphology. Radiological forensic signatures formore » sealed sources provide additional information that leverages information on the physical design and chemical composition of the source capsule and containers, physical markings indicative of an owner or manufacturer. Argonne National Laboratory (Argonne), in collaboration with Idaho National Laboratory (INL), has been working since 2003 to understand signatures that could be used to identify specific source manufacturers. These signatures include the materials from which the capsule is constructed, dimensions, weld details, elemental composition, and isotopic abundances of the radioactive material. These signatures have been compiled in a library known as the Argonne/INL Radiological Sealed Source Library. Data collected for the library has included open-source information from vendor catalogs and web pages; discussions with source manufacturers and touring of production facilities (both protected through non-disclosure agreements); technical publications; and government registries such as the U.S. Nuclear Regulatory Commission’s Sealed Source and Device Registry.« less
Knudsen, Julian R.; Welch, Christopher B.
2005-04-26
In an engine having a rocker member adapted to rock about an axis intermediate the rocker member and a pushrod extending from a lower body to an upper body and engaging an end of the rocker member, a gasket for sealing the lower body to the upper body is provided. The gasket includes a sealing portion adapted to substantially seal at least a portion of the upper body to the lower body, and a pushrod support portion extending outwardly from the sealing portion adapted to engage the pushrod. At least a portion of the pushrod support portion engaging the pushrod is constructed from a material that is softer than the material of the pushrod.
Caps Seal Boltholes On Vacuum-System Flanges
NASA Technical Reports Server (NTRS)
Roman, Robert F.
1993-01-01
Sealing caps devised for boltholes on vacuum-system flanges. Used in place of leak-prone gaskets, and provide solid metal-to-metal interfaces. Each sealing cap contains square-cut circular groove in which O-ring placed. Mounted on studs protruding into access ports, providing positive seal around each bolthole. Each cap mates directly with surface of flange, in solid metal-to-metal fit, with O-ring completely captured in groove. Assembly immune to misalignment, leakage caused by vibration, and creeping distortion caused by weight of port. O-ring material chosen for resistance to high temperature; with appropriate choice of material, temperature raised to as much as 315 degrees C.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shott, Gregory
This special analysis (SA) evaluates whether the Materials and Energy Corporation (M&EC) Sealed Source waste stream (PERM000000036, Revision 0) is suitable for shallow land burial (SLB) at the Area 5 Radioactive Waste Management Site (RWMS) on the Nevada National Security Site (NNSS). Disposal of the M&EC Sealed Source waste meets all U.S. Department of Energy (DOE) Manual DOE M 435.1-1, “Radioactive Waste Management Manual,” Chapter IV, Section P performance objectives (DOE 1999). The M&EC Sealed Source waste stream is recommended for acceptance without conditions.
Fuel cell assembly fluid flow plate having conductive fibers and rigidizing material therein
Walsh, Michael M.
2000-01-01
A fluid flow plate is preferably formed with three initial sections, for instance, two layers of conductive (e.g., metal) fibers and a barrier material (e.g., metal foil) which is interposed between the two layers. For example, sintering of these three sections can provide electrical path(s) between outer faces of the two layers. Then, the sintered sections can be, for instance, placed in a mold for forming of flow channel(s) into one or more of the outer faces. Next, rigidizing material (e.g., resin) can be injected into the mold, for example, to fill and/or seal space(s) about a conductive matrix of the electrical path(s). Preferably, abrading of surface(s) of the outer face(s) serves to expose electrical contact(s) to the electrical path(s).
Hydrostatic extrusion of Cu-Ag melt spun ribbon
Hill, M.A.; Bingert, J.F.; Bingert, S.A.; Thoma, D.J.
1998-09-08
The present invention provides a method of producing high-strength and high-conductance copper and silver materials comprising the steps of combining a predetermined ratio of the copper with the silver to produce a composite material, and melt spinning the composite material to produce a ribbon of copper and silver. The ribbon of copper and silver is heated in a hydrogen atmosphere, and thereafter die pressed into a slug. The slug then is placed into a high-purity copper vessel and the vessel is sealed with an electron beam. The vessel and slug then are extruded into wire form using a cold hydrostatic extrusion process. 5 figs.
Hydrostatic extrusion of Cu-Ag melt spun ribbon
Hill, Mary Ann; Bingert, John F.; Bingert, Sherri A.; Thoma, Dan J.
1998-01-01
The present invention provides a method of producing high-strength and high-conductance copper and silver materials comprising the steps of combining a predetermined ratio of the copper with the silver to produce a composite material, and melt spinning the composite material to produce a ribbon of copper and silver. The ribbon of copper and silver is heated in a hydrogen atmosphere, and thereafter die pressed into a slug. The slug then is placed into a high-purity copper vessel and the vessel is sealed with an electron beam. The vessel and slug then are extruded into wire form using a cold hydrostatic extrusion process.
Effects of Compression, Staging, and Braid Angle on Braided Rope Seal Performance
NASA Technical Reports Server (NTRS)
Steinetz, Bruce M.; Adams, Michael L.
1997-01-01
Future turbine engines and industrial systems will be operating at increased temperatures to achieve more demanding efficiency and performance goals. In the highest temperature sections of the engine new material systems such as ceramics and intermetallics are being considered to withstand the harsh thermal environment. Components constructed of these low expansion-rate materials experience thermal strains and a resulting reduction of life when rigidly attached to high expansion-rate, superalloy support structures. Seals are being designed to both seal and to serve as compliant mounts allowing for relative thermal growths between high temperature but brittle primary structures and the surrounding support structures. Previous seal research yielded several braided rope seal designs which demonstrated the ability to both seal and serve as a compliant mount. The hybrid seal was constructed of an all-ceramic (alumina-silica) core overbraided with a superalloy wire sheath (cobalt based superalloy). The all ceramic seal was constructed of an all-ceramic (alumina-silica) core overbraided with multiple ceramic (alumina-silica) sheath layers. Program goals for braided rope seals are to improve flow resistance and/or seal resilience. To that end, the current report studies the test results of: baseline and modified hybrid seals; two stage hybrid and two stage all-ceramic seal configurations; and single stage hybrid and single stage all-ceramic seal configurations for a range of seal crush conditions. Hybrid seal modifications include increasing the sheath braid angle and core coverage. For the same percent seal cross-sectional crush, results show that increasing the hybrid seal braid angle increased seal stiffness and seal unit load, resulting in flows approximately one third of the baseline hybrid seal flows. For both hybrid and all-ceramic seals, two stage seal configurations significantly outperformed single stage configurations. Two stage seal flows were at least 30% less than the single stage seal flows for the same seal crush. Furthermore, test results of single stage seals indicate that for both all-ceramic and hybrid seals, a specific seal crush condition exists at which minimum flows are achieved (i.e. increasing seal crush beyond a certain point does not result in better flow performance). Flow results are presented for a range of pressures and temperatures from ambient to 1300 F, before and after scrubbing. Compression tests results show that for both all-ceramic and hybrid seals, seal preload and stiffness increase with seal crush, but residual seal interference remains constant.
Sealed fiber-optic bundle feedthrough
Tanner, Carol E.
2002-01-01
A sealed fiber-optic bundle feedthrough by which a multitude of fiber-optic elements may be passed through an opening or port in a wall or structure separating two environments at different pressures or temperatures while maintaining the desired pressure or temperature in each environment. The feedthrough comprises a rigid sleeve of suitable material, a bundle of individual optical fibers, and a resin-based sealing material that bonds the individual optical fibers to each other and to the rigid sleeve.
Cantilevered multilevel LIGA devices and methods
Morales, Alfredo Martin; Domeier, Linda A.
2002-01-01
In the formation of multilevel LIGA microstructures, a preformed sheet of photoresist material, such as polymethylmethacrylate (PMMA) is patterned by exposure through a mask to radiation, such as X-rays, and developed using a developer to remove the exposed photoresist material. A first microstructure is then formed by electroplating metal into the areas from which the photoresist has been removed. Additional levels of microstructure are added to the initial microstructure by covering the first microstructure with a conductive polymer, machining the conductive polymer layer to reveal the surface of the first microstructure, sealing the conductive polymer and surface of the first microstructure with a metal layer, and then forming the second level of structure on top of the first level structure. In such a manner, multiple layers of microstructure can be built up to allow complex cantilevered microstructures to be formed.
DOT National Transportation Integrated Search
1999-06-01
The Strategic Highway Research Program (SHRP) H-106 maintenance experiment and the Federal Highway Administration (FHWA) Long-Term Monitoring (LTM) of Pavement Maintenance Materials Test Sites project studied the treatment (sealing and filling) of cr...
Separator plate for a fuel cell
Petri, R.J.; Meek, J.; Bachta, R.P.; Marianowski, L.G.
1996-04-02
A separator plate is described for a fuel cell comprising an anode current collector, a cathode current collector and a main plate, the main plate disposed between the anode current collector and the cathode current collector. The anode current collector forms a flattened peripheral wet seal structure and manifold wet seal structure on the anode side of the separator plate and the cathode current collector forms a flattened peripheral wet seal structure and manifold wet seal structure on the cathode side of the separator plate. In this manner, the number of components required to manufacture and assemble a fuel cell stack is reduced. 9 figs.
Separator plate for a fuel cell
Petri, Randy J.; Meek, John; Bachta, Robert P.; Marianowski, Leonard G.
1996-01-01
A separator plate for a fuel cell comprising an anode current collector, a cathode current collector and a main plate, the main plate disposed between the anode current collector and the cathode current collector. The anode current collector forms a flattened peripheral wet seal structure and manifold wet seal structure on the anode side of the separator plate and the cathode current collector forms a flattened peripheral wet seal structure and manifold wet seal structure on the cathode side of the separator plate. In this manner, the number of components required to manufacture and assemble a fuel cell stack is reduced.
Integrated main rail, feed rail, and current collector
Petri, Randy J.; Meek, John; Bachta, Robert P.; Marianowski, Leonard G.
1994-01-01
A separator plate for a fuel cell comprising an anode current collector, a cathode current collector and a main plate, the main plate disposed between the anode current collector and the cathode current collector. The anode current collector forms a flattened peripheral wet seal structure and manifold wet seal structure on the anode side of the separator plate and the cathode current collector forms a flattened peripheral wet seal structure and manifold wet seal structure on the cathode side of the separator plate. In this manner, the number of components required to manufacture and assemble a fuel cell stack is reduced.
Method of preparing corrosion resistant composite materials
Kaun, Thomas D.
1993-01-01
Method of manufacture of ceramic materials which require stability in severely-corrosive environment having high alkali-metal activity, high sulfur/sulfide activity and/or molten halides at temperatures of 200.degree.-550.degree. C. or organic salt (including SO.sub.2 and SO.sub.2 Cl.sub.2) at temperatures of 25.degree.-200.degree. C. These surfide ceramics form stoichiometric (single-phase) compounds with sulfides of Ca, Li, Na, K, Al, Mg, Si, Y, La, Ce, Ga, Ba, Zr and Sr and show melting-points that are sufficiently low and have excellent wettability with many metals (Fe, Ni, Mo) to easily form metal/ceramic seals. Ceramic compositions are also formulated to adequately match thermal expansion coefficient of adjacent metal components.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 29 Labor 9 2010-07-01 2010-07-01 false Seal. 4002.11 Section 4002.11 Labor Regulations Relating to Labor (Continued) PENSION BENEFIT GUARANTY CORPORATION GENERAL BYLAWS OF THE PENSION BENEFIT GUARANTY CORPORATION § 4002.11 Seal. The seal of the Corporation shall be in such form as may be approved from time to...
Code of Federal Regulations, 2011 CFR
2011-07-01
... 29 Labor 9 2011-07-01 2011-07-01 false Seal. 4002.11 Section 4002.11 Labor Regulations Relating to Labor (Continued) PENSION BENEFIT GUARANTY CORPORATION GENERAL BYLAWS OF THE PENSION BENEFIT GUARANTY CORPORATION § 4002.11 Seal. The seal of the Corporation shall be in such form as may be approved from time to...
Mechanical connection for a tubular assembly
Grover, J.M.
1984-09-12
Disclosed is a mechanical connection assembly for connecting two telescopically related parts together in a fluidtight relation. The system uses snap-in fasteners having flexible barbed tangs which are snapped into receiving holes formed in the parts being attached together. A locking pin can be inserted into a central aperture through the snap-in fastener to secure the fastener in the receiving holes. The system also includes a seal having sealing surfaces at least one of which is formed at an angle inclined relative to a true vertical. a metallic sealing element is interposed between the sealing surfaces. The geometry of the sealing surfaces is capable of compensating for the differential thermal growth rates occurring when the two parts are made from dissimilar metals.
A new leakage measurement method for damaged seal material
NASA Astrophysics Data System (ADS)
Wang, Shen; Yao, Xue Feng; Yang, Heng; Yuan, Li; Dong, Yi Feng
2018-07-01
In this paper, a new leakage measurement method based on the temperature field and temperature gradient field is proposed for detecting the leakage location and measuring the leakage rate in damaged seal material. First, a heat transfer leakage model is established, which can calculate the leakage rate based on the temperature gradient field near the damaged zone. Second, a finite element model of an infinite plate with a damaged zone is built to calculate the leakage rate, which fits the simulated leakage rate well. Finally, specimens in a tubular rubber seal with different damage shapes are used to conduct the leakage experiment, validating the correctness of this new measurement principle for the leakage rate and the leakage position. The results indicate the feasibility of the leakage measurement method for damaged seal material based on the temperature gradient field from infrared thermography.
Rotary seal with enhanced lubrication and contaminant flushing
Dietle, Lannie L.
2000-01-01
A resilient, ring shaped interference-type hydrodynamic rotary seal having waves on the lubricant side which provide increased film thickness and flushing action by creating contact pressure induced angulated restrictions formed by abrupt restrictive diverters. The angulated restrictions are defined by projecting ridges, corners at the trailing edge of the waves, or simply by use of a converging shape at the trailing edge of the waves which is more abrupt than the gently converging hydrodynamic inlet shape at the leading edge of the waves. The abrupt restrictive diverter performs two functions; a restricting function and a diverting function. The angulated restrictions cause a local film thickness restriction which produces a damming effect preventing a portion of the lubricant from leaking out of the dynamic sealing interface at the trailing edge of the wave, and results in a much thicker lubricant film thickness under the waves. This contributes to more film thickness in the remainder of the dynamic sealing interface toward the environment because film thickness tends to decay gradually rather than abruptly due to the relative stiffness of the seal material. Because of the angle of the abrupt restrictive diverter relative to the relative rotation direction, in conjunction with the restriction or damming effect, a strong diverting action is produced which pumps lubricant across the dynamic sealing interface toward the environment. The lubricant diversion is caused by the component of the rotational velocity tangent to the abrupt restrictive diverter. The component of rotational velocity normal to the abrupt restrictive diverter causes a portion of the lubricant film to be pumped past the abrupt restrictive diverter, thereby assuring adequate lubrication thereof.
Microoptoelectromechanical system (MOEMS) based laser
Hutchinson, Donald P.
2003-11-04
A method for forming a folded laser and associated laser device includes providing a waveguide substrate, micromachining the waveguide substrate to form a folded waveguide structure including a plurality of intersecting folded waveguide paths, forming a single fold mirror having a plurality of facets which bound all ends of said waveguide paths except those reserved for resonator mirrors, and disposing a pair of resonator mirrors on opposite sides of the waveguide to form a lasing cavity. A lasing material is provided in the lasing cavity. The laser can be sealed by disposing a top on the waveguide substrate. The laser can include a re-entrant cavity, where the waveguide substrate is disposed therein, the re-entrant cavity including the single fold mirror.
Steady-state and dynamic analysis of a jet engine, gas lubricated shaft seal
NASA Technical Reports Server (NTRS)
Shapiro, W.; Colsher, R.
1974-01-01
Dynamic response of a gas-lubricated, jet-engine main shaft seal was analytically established as a function of collar misalignment and secondary seal friction. Response was obtained by a forward integration-in-time (time-transient) scheme, which traces a time history of seal motions in all its degrees of freedom. Results were summarized in the form of a seal tracking map which indicated regions of acceptable collar misalignments and secondary seal friction. Methodology, results and interpretations are comprehensively described.
Seals/Secondary Fluid Flows Workshop 1997; Volume II: HSR Engine Special Session
NASA Technical Reports Server (NTRS)
Hendricks, Robert C. (Editor)
2006-01-01
The High Speed Civil Transport (HSCT) will be the largest engine ever built and operated at maximum conditions for long periods of time. It is being developed collaboratively with NASA, FAA, Boeing-McDonnell Douglas, Pratt & Whitney, and General Electric. This document provides an initial step toward defining high speed research (HSR) sealing needs. The overview for HSR seals includes defining objectives, summarizing sealing and material requirements, presenting relevant seal cross-sections, and identifying technology needs. Overview presentations are given for the inlet, turbomachinery, combustor and nozzle. The HSCT and HSR seal issues center on durability and efficiency of rotating equipment seals, structural seals and high speed bearing and sump seals. Tighter clearances, propulsion system size and thermal requirements challenge component designers.
Analysis of molecular interactions in solid dosage forms; challenge to molecular pharmaceutics.
Yamamoto, Keiji; Limwikrant, Waree; Moribe, Kunikazu
2011-01-01
The molecular states of active pharmaceutical ingredients (APIs) in pharmaceutical dosage forms strongly affect the properties and quality of a drug. Various important fundamental physicochemical studies were reviewed from the standpoint of molecular pharmaceutics. Mechanochemical effects were evaluated in mixtures of APIs and pharmaceutical additives. Amorphization, complex formation and nanoparticle formation are observed after grinding process depending on the combination of APIs and pharmaceutical additives. Sealed-heating method and mesoporous materials have been used to investigate drug molecular interactions in dosage forms. Molecular states have been investigated using powder X-ray diffraction, thermal analysis, IR, solid state fluorometry, and NMR. © 2011 Pharmaceutical Society of Japan
Sodium nitrate containing mixture for producing ceramic-glass-ceramic seal by microwave heating
Blake, R.D.; Meek, T.T.
1984-10-10
A mixture for, and method of using such a mixture, for producing a ceramic-glass-ceramic seal by the use of microwave energy are disclosed, wherein the mixture comprises a glass sealing material, a coupling agent, and an oxidizer. The seal produced exhibits greater strength due to its different microstructure. Sodium nitrate is the most preferred oxidizer.
Ionic requirements for membrane-glass adhesion and giga seal formation in patch-clamp recording.
Priel, Avi; Gil, Ziv; Moy, Vincent T; Magleby, Karl L; Silberberg, Shai D
2007-06-01
Patch-clamp recording has revolutionized the study of ion channels, transporters, and the electrical activity of small cells. Vital to this method is formation of a tight seal between glass recording pipette and cell membrane. To better understand seal formation and improve practical application of this technique, we examine the effects of divalent ions, protons, ionic strength, and membrane proteins on adhesion of membrane to glass and on seal resistance using both patch-clamp recording and atomic force microscopy. We find that H(+), Ca(2+), and Mg(2+) increase adhesion force between glass and membrane (lipid and cellular), decrease the time required to form a tight seal, and increase seal resistance. In the absence of H(+) (10(-10) M) and divalent cations (<10(-8) M), adhesion forces are greatly reduced and tight seals are not formed. H(+) (10(-7) M) promotes seal formation in the absence of divalent cations. A positive correlation between adhesion force and seal formation indicates that high resistance seals are associated with increased adhesion between membrane and glass. A similar ionic dependence of the adhesion of lipid membranes and cell membranes to glass indicates that lipid membranes without proteins are sufficient for the action of ions on adhesion.
Turbomachine Interface Sealing
NASA Technical Reports Server (NTRS)
Hendricks, Robert C.; Chupp, Raymond E.; Lattime, Scott B.; Steinetz, Bruce M.
2005-01-01
Sealing interfaces and coatings, like lubricants, are sacrificial, giving up their integrity for the benefit of the component. Clearance control is a major issue in power systems turbomachine design and operational life. Sealing becomes the most cost-effective way to enhance system performance. Coatings, films, and combined use of both metals and ceramics play a major role in maintaining interface clearances in turbomachine sealing and component life. This paper focuses on conventional and innovative materials and design practices for sealing interfaces.
Comparison of push-out bond strengths of Resilon with three different sealers.
Stiegemeier, Danielle; Baumgartner, J Craig; Ferracane, Jack
2010-02-01
The purpose of this study was to evaluate the push-out bond strengths of different obturating materials. Forty single-rooted human extracted teeth were used in this study. The teeth were instrumented and irrigated by using 5.25% NaOCl, 15% ethylenediaminetetraacetic acid, and sterile water. The teeth were then filled with Resilon/RealSeal, Resilon/RealSeal SE, Resilon/MetaSeal , or gutta-percha/Kerr EWT sealer. The roots were then sectioned into 1-mm-thick slices and subjected to vertical loading to displace the obturating material toward the coronal side of the slice. The bond strength was then calculated and subjected to statistical analysis. Slices were examined by using a stereomicroscope at 30x to determine the mode of failure. The mean push-out bond strengths were as follows: Resilon/RealSeal, 1.45 +/- 0.99 MPa; RealSeal SE, 0.88 +/- 0.49 MPa; Resilon/MetaSeal, 2.41 +/- 1.7 MPa; and gutta-percha/Kerr EWT sealer, 2.32 +/- 0.74 MPa. The push-out bond strengths of Resilon/MetaSeal and gutta-percha/Kerr EWT were significantly (P < .05) higher than either Resilon/RealSeal or Resilon/RealSeal SE. Resilon/MetaSeal and gutta-percha/Kerr EWT did not differ significantly. Copyright 2010 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.
Friction characteristics of trocars in laparoscopic surgery.
Alazmani, Ali; Roshan, Rupesh; Jayne, David G; Neville, Anne; Culmer, Peter
2015-04-01
This article investigates the friction characteristics of the instrument-trocar interface in laparoscopic surgery for varying linear instrument velocities, trocar seal design and material, and trocar tilt. Furthermore, the effect of applying lubrication at the instrument-trocar seal interface on friction was studied. A friction testing apparatus was designed and built to characterise the resistance force at the instrument-trocar interface as a function of the instrument's linear movement in the 12-mm trocar (at constant velocity) for different design, seal material, and angle of tilt. The resistance force depended on the trocar seal design and material properties, specifically surface roughness, elasticity, hardness, the direction of movement, and the instrument linear velocity, and varied between 0.25 and 8 N. Lubricating the shaft with silicone oil reduced the peak resistance force by 75% for all trocars and eliminated the stick-slip phenomenon evident in non-lubricated cases. The magnitude of fluctuation in resistance force depends on the trocar design and is attributed to stick-slip of the sealing mechanism and is generally higher during retraction in comparison to insertion. Trocars that have an inlet seal made of rubber/polyurethane showed higher resistance forces during retraction. Use of a lubricant significantly reduced frictional effects. Comparisons of the investigated trocars indicate that a low friction port, providing the surgeon with improved haptic feedback, can be designed by improving the tribological properties of the trocar seal interface. © IMechE 2015.
Glassy composition for hermetic seals
Wilder, Jr., James A.
1980-01-01
The invention relates to a glassy composition adaptable for sealing to aluminum-based alloys to form a hermetically-sealed insulator body. The composition may either be employed as a glass or, after devitrifying heat treatment, as a glass-ceramic.
Microleakage of different sealing materials in access holes of internal connection implant systems.
Park, Sung-Do; Lee, Yoon; Kim, Yu-Lee; Yu, Sang-Hui; Bae, Ji-Myung; Cho, Hye-Won
2012-09-01
Current implant systems cannot completely prevent microleakage from the access holes of screw-retained implant prostheses, which may constitute risks to the clinical success of the implants. The purpose of this study was to evaluate the levels of microleakage through the access holes of screw-retained implant prostheses sealed with different materials. An implant with an internal hexagonal configuration was connected to a temporary abutment with an acrylic resin crown. The apical 6.5 mm of the access hole was filled with 1 of the following materials: cotton pellet, silicone sealing material, vinyl polysiloxane, or gutta-percha. The remaining coronal 3 mm was sealed with composite resin. Cyclic loading with 21 N at 1 Hz was applied 16,000 times to the specimens in 0.5% basic fuchsin solution according to the long axis of the tooth. Basic fuchsin dye which penetrated into the internal wall of the abutment through the access hole was dissolved with methyl alcohol. Then the absorbance was measured by a spectrophotometer at 540 nm to evaluate the degree of microleakage. The results were statistically analyzed with 1-way ANOVA and the Tukey HSD test. From greatest to least, the levels of microleakage were in the following order: cotton pellet, silicone sealing material, vinyl polysiloxane, and gutta-percha. The microleakage associated with gutta-percha was not significantly different from that of vinyl polysiloxane. When sealing the access holes of screw-retained implant prostheses, gutta-percha or vinyl polysiloxane would help reduce microleakage. Copyright © 2012 The Editorial Council of the Journal of Prosthetic Dentistry. Published by Mosby, Inc. All rights reserved.
Deep Boreholes Seals Subjected to High P,T conditions - Proposed Experimental Studies
NASA Astrophysics Data System (ADS)
Caporuscio, F.
2015-12-01
Deep borehole experimental work will constrain the P,T conditions which "seal" material will experience in deep borehole crystalline rock repositories. The rocks of interest to this study include mafic (amphibolites) and silicic (granitic gneiss) end members. The experiments will systematically add components to capture discrete changes in both water and EBS component chemistries. Experiments in the system wall rock-clay-concrete-groundwater will evaluate interactions among components, including: mineral phase stability, metal corrosion rates and thermal limits. Based on engineered barrier studies, experimental investigations will move forward with three focusses. First, evaluation of interaction between "seal" materials and repository wall rock (crystalline) under fluid-saturated conditions over long-term (i.e., six-month) experiments; which reproduces the thermal pulse event of a repository. Second, perform experiments to determine the stability of zeolite minerals (analcime-wairakitess) under repository conditions. Both sets of experiments are critically important for understanding mineral paragenesis (zeolites and/or clay transformations) associated with "seals" in contact with wall rock at elevated temperatures. Third, mineral growth at the metal interface is a principal control on the survivability (i.e. corrosion) of waste canisters in a repository. The objective of this planned experimental work is to evaluate physio-chemical processes for 'seal' components and materials relevant to deep borehole disposal. These evaluations will encompass multi-laboratory efforts for the development of seals concepts and application of Thermal-Mechanical-Chemical (TMC) modeling work to assess barrier material interactions with subsurface fluids and other barrier materials, their stability at high temperatures, and the implications of these processes to the evaluation of thermal limits.
Thermal stress analysis of ceramic gas-path seal components for aircraft turbines
NASA Technical Reports Server (NTRS)
Kennedy, F. E.; Bill, R. C.
1979-01-01
Stress and temperature distributions were evaluated numerically for a blade-tip seal system proposed for gas turbine applications. The seal consists of an abradable ceramic layer on metallic backing with intermediate layers between the ceramic layer and metal substrate. The most severe stresses in the seal, as far as failure is concerned, are tensile stresses at the top of the ceramic layer and shear and normal stresses at the layer interfaces. All these stresses reach their maximum values during the deceleration phase of a test engine cycle. A parametric study was carried out to evaluate the influence of various design parameters on these critical stress values. The influences of material properties and geometric parameters of the ceramic, intermediate, and backing layers were investigated. After the parametric study was completed, a seal system was designed which incorporated materials with beneficial elastic and thermal properties in each layer of the seal. An analysis of the proposed seal design shows an appreciable decrease in the magnitude of the maximum critical stresses over those obtained with earlier configurations.
A ferrofluidic seal specially designed for rotary blood pumps.
Mitamura, Y; Fujiyoshi, M; Yoshida, T; Yozu, R; Okamoto, E; Tanaka, T; Kawada, S
1996-06-01
One of the key technologies required for rotary blood pumps is sealing of the motor shaft. A ferrofluidic seal was developed for an axial flow pump. The seal body was composed of a plastic magnet and two pole pieces. This seal was formed by injecting ferrofluid into the gap between the pole pieces and the motor shaft. To contain the ferrofluid in the seal and to minimize the possibility of ferrofluid making contact with blood, a shield with a small cavity was provided on the pole piece. Sealing pressure of the seal was measured. The sealing pressure was maintained at more than 23.3 kPa (175 mm Hg) for a motor speed up to 11,000 rpm. The specially designed ferrofluidic seal for sealing out liquids is useful for axial flow blood pumps.
Recombination device for storage batteries
Kraft, H.; Ledjeff, K.
1984-01-01
A recombination device including a gas-tight enclosure connected to receive the discharge gases from a rechargeable storage battery. Catalytic material for the recombination of hydrogen and oxygen to form water is supported within the enclosure. The enclosure is sealed from the atmosphere by a liquid seal including two vertical chambers interconnected with an inverted U-shaped overflow tube. The first chamber is connected at its upper portion to the enclosure and the second chamber communicates at its upper portion with the atmosphere. If the pressure within the enclosure differs as overpressure or vacuum by more than the liquid level, the liquid is forced into one of the two chambers and the overpressure is vented or the vacuum is relieved. The recombination device also includes means for returning recombined liquid to the battery and for absorbing metal hydrides.
Recombination device for storage batteries
Kraft, Helmut; Ledjeff, Konstantin
1985-01-01
A recombination device including a gas-tight enclosure connected to receive he discharge gases from a rechargeable storage battery. Catalytic material for the recombination of hydrogen and oxygen to form water is supported within the enclosure. The enclosure is sealed from the atmosphere by a liquid seal including two vertical chambers interconnected with an inverted U-shaped overflow tube. The first chamber is connected at its upper portion to the enclosure and the second chamber communicates at its upper portion with the atmosphere. If the pressure within the enclosure differs as overpressure or vacuum by more than the liquid level, the liquid is forced into one of the two chambers and the overpressure is vented or the vacuum is relieved. The recombination device also includes means for returning recombined liquid to the battery and for absorbing metal hydrides.
Development of partially fluorinated resin apex seals
NASA Technical Reports Server (NTRS)
Green, H. E.; Chang, G. E. C.; Powell, S. H.; Yates, K.
1984-01-01
Partially fluorinated polyimides were prepared and molded in the form of discs and pins for test as potential apex seal materials for advanced rotary combustion engines. The polyimides were formulated from the diamine 2,2-bis 4-(4-aminophenoxy)phenyl hexafluoropropane (4-BDAF) and the dianhydrides of pyromellitic acid (PMDA) and benzophenonetetracarboxylic acid (BTDA). Tribological testing was performed at sliding speeds of 0.31 to 11.6 m/s and at temperatures of from 298K to 573K. It is shown that the carbon fiber filled polyimides, particularly the 80/20 compositions, have an excellent balance of wear/friction at 573K. The unfilled, 80/20 and 60/40 compositions indicate an unusual combination of high friction and low wear which may be advantageous in such applications as brakes and traction drives.
Sealing Materials for Use in Vacuum at High Temperatures
NASA Technical Reports Server (NTRS)
Pettit, Donald R.; Camarda, Charles J.; Lee Vaughn, Wallace
2012-01-01
Sealing materials that can be applied and left in place in vacuum over a wide range of temperatures (especially temperatures of a few thousand degrees Celsius) have been conceived and investigated for potential utility in repairing thermal-protection tiles on the space shuttles in orbit before returning to Earth. These materials are also adaptable to numerous terrestrial applications that involve vacuum processing and/or repair of structures that must withstand high temperatures. These materials can be formulated to have mechanical handling characteristics ranging from almost freely flowing liquid-like consistency through paste-like consistency to stiff puttylike consistency, and to retain these characteristics in vacuum until heated to high curing temperatures. A sealing material of this type can be formulated to be used in any of several different ways for example, to be impregnated into a high-temperature-fabric patch, impregnated into a high-temperature-fabric gasket for sealing a patch, applied under a patch, or applied alone in the manner of putty or wallboard compound. The sealing material must be formulated to be compatible with, and adhere to, the structural material(s) to be repaired. In general, the material consists of a vacuum-compatible liquid containing one or more dissolved compound(s) and/or mixed with suspended solid particles. Depending on the intended application, the liquid can be chosen to be of a compound that can remain in place in vacuum for a time long enough to be useful, and/or to evaporate or decompose in a controlled way to leave a useful solid residue behind. The evaporation rate is determined by proper choice of vapor pressure, application of heat, and/or application of ultraviolet light or other optical radiation. The liquid chosen for the original space shuttle application is a commercial silicone vacuum-pump oil.
2003 NASA Seal/Secondary Air System Workshop. Volume 1
NASA Technical Reports Server (NTRS)
Steinetz, Bruce M. (Editor); Hendricks, Robert C. (Editor)
2004-01-01
The following reports were included in the 2003 NASA Seal/Secondary Air System Workshop:Low Emissions Alternative Power (LEAP); Overview of NASA Glenn Seal Developments; NASA Ultra Efficient Engine Technology Project Overview; Development of Higher Temperature Abradable Seals for Industrial Gas Turbines; High Misalignment Carbon Seals for the Fan Drive Gear System Technologies; Compliant Foil Seal Investigations; Test Rig for Evaluating Active Turbine Blade Tip Clearance Control Concepts; Controls Considerations for Turbine Active Clearance Control; Non-Contacting Finger Seal Developments and Design Considerations; Effect of Flow-Induced Radial Load on Brush Seal/Rotor Contact Mechanics; Seal Developments at Flowserve Corporation; Investigations of High Pressure Acoustic Waves in Resonators With Seal-Like Features; Numerical Investigations of High Pressure Acoustic Waves in Resonators; Feltmetal Seal Material Through-Flow; "Bimodal" Nuclear Thermal Rocket (BNTR) Propulsion for Future Human Mars Exploration Missions; High Temperature Propulsion System Structural Seals for Future Space Launch Vehicles; Advanced Control Surface Seal Development for Future Space Vehicles; High Temperature Metallic Seal Development for Aero Propulsion and Gas Turbine Applications; and BrazeFoil Honeycomb.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Buce, W.F.
Heretofore methods of preventing lost circulation in a formation zone during drilling operations, for example, involve pumping loss circulation material into the zone. These materials were wedged into the pores and indices of the formation with fluid pressure. In large pathways, these methods were often unsuccessful owing to the fact that the material could not be maintained at their desired location. By this method, a polymerizable material capable of forming hard, porous relatively insoluble popcorn polymers is placed in the formation zone desired to be sealed. The material is there maintained under polymerization conditions for a time sufficient to polymerizemore » in situ at least a portion of the material and restrict fluid pathways through the zone without exerting a force on the formation zone of a magnitude sufficient for fracturing it. (10 claims)« less
Liao, Baopeng; Yan, Meichen; Zhang, Weifang; Zhou, Kun
2017-01-01
Due to the increase in working hours, the reliability of rubber O-ring seals used in hydraulic systems of transfer machines will change. While traditional methods can only analyze one of the material properties or seal properties, the failure of the O-ring is caused by these two factors together. In this paper, two factors are mainly analyzed: the degradation of material properties and load randomization by processing technology. Firstly, the two factors are defined in terms of material failure and seal failure, before the experimental methods of rubber materials are studied. Following this, the time-variant material properties through experiments and load distribution by monitoring the processing can be obtained. Thirdly, compressive stress and contact stress have been calculated, which was combined with the reliability model to acquire the time-variant reliability for the O-ring. Finally, the life prediction and effect of oil pressure were discussed, then compared with the actual situation. The results show a lifetime of 12 months for the O-ring calculated in this paper, and compared with the replacement records from the maintenance workshop, the result is credible. PMID:29053597
77 FR 2098 - New Postal Product
Federal Register 2010, 2011, 2012, 2013, 2014
2012-01-13
... Competitive Products List and Notice of Filing Two Functionally Equivalent Global Plus 1C Contracts Negotiated Service Agreements and Application for Non-Public Treatment of Materials Filed Under Seal, December 30... under seal. Attachment 1 to the Notice is an application for non-public treatment of that material...
Wide temperature range seal for demountable joints
Sixsmith, Herbert; Valenzuela, Javier A.; Nutt, William E.
1991-07-23
The present invention is directed to a seal for demountable joints operating over a wide temperature range down to liquid helium temperatures. The seal has anti-extrusion guards which prevent extrusion of the soft ductile sealant material, which may be indium or an alloy thereof.
75 FR 20399 - Notice of Issuance of Regulatory Guide
Federal Register 2010, 2011, 2012, 2013, 2014
2010-04-19
..., Revision 1, ``Establishing Quality Assurance Programs for the Manufacture and Distribution of Sealed... Manufacture and Distribution of Sealed Sources and Devices Containing Byproduct Material,'' was issued with a... during the review of an application to manufacture or distribute sealed sources and devices containing...
Forming a Turbomachinery Seals Working Group: An Overview and Discussion
NASA Technical Reports Server (NTRS)
Proctor, Margaret P.
2007-01-01
Purose: Identify technical challenges to improving turbomachinery seal leakage and wear performance, reliability and cost effectiveness. Develop a coordinated effort to resolve foundational issues for turbomachinery seal technologies. Identify and foster opportunities for collaboration. Advocate for funding.
Diverter assembly for radioactive material
Andrews, Katherine M.; Starenchak, Robert W.
1989-01-01
A diverter assembly for diverting a pneumatically conveyed holder for a radioactive material between a central conveying tube and one of a plurality of radially offset conveying tubes includes an airtight container. A diverter tube having an offset end is suitably mounted in the container for rotation. A rotary seal seals one end of the diverter tube during and after rotation of the diverter tube while a spring biased seal seals the other end of the diverter tube which mvoes between various offset conveying tubes. An indexing device rotatably indexes the diverter tube and this indexing device is driven by a suitable drive. The indexing mechanism is preferably a geneva-type mechanism to provide a locking of the diverter tube in place.
Shetty, Shilpa; Hiremath, Geeta; Yeli, Mahantesh
2017-01-01
Aim of the Study: The aim of this study was to compare and evaluate the sealing ability of four root end filling materials mineral trioxide aggregate (MTA)-Plus, Biodentine, MTA (MTA Angelus) and glass ionomer cement (GIC) using fluid filtration method. Materials and Methods: Forty-four extracted, human single-rooted teeth were collected. The crown of each tooth was decoronated 2 mm above the cementoenamel junction. Canals were negotiated, instrumented, obturated using lateral compaction method. The access cavities were sealed with Cavit. Root end resection and apical root end cavity preparations of 4 mm were made in each specimen. The selected roots were then randomly divided into four groups (n = 11) and restored as follows. Group 1 – GIC, Group 2 – MTA (MTA Angelus), Group 3 – Biodentine, and Group 4 – MTA Plus. The apical microleakage of each specimen was assessed using fluid filtration method at 72 h, 1 month and 3 months. Microleakage in each specimen was recorded in mm (millimeter) and converted to μl/min/cm H2O. Results: MTA Angelus showed least microleakage followed by Biodentine and MTA Plus. Least sealing ability was seen with GIC. There was statistically significant difference between all the materials at various time intervals. Conclusion: MTA Angelus showed superior sealing ability as a retrograde filling material followed by Biodentine and MTA Plus. PMID:29386776
Markose, Aji; Krishnan, Ramesh; Ramesh, Maya; Singh, Shishir
2016-10-01
In multiple-appointment root canal treatment, a temporary filling material is used to seal the access cavity between visits. The primary function of this material is to prevent the contamination of the root canal system by fluids, organic debris, and bacteria from the oral cavity. A total of fifty extracted noncarious unrestored human maxillaryanterior teeth with intact crowns and roots were selected The canals were instrumented using stepback technique and sodium hypochlorite (3%) and hydrogen peroxide (3%) were used as irrigants for each specimen alternatively. The coronal two-thirds of each canal were flared using Gates-Glidden drills up to no. 3 size and obturated with Gutta-percha using zinc oxide-eugenol (ZnOE) as sealer. The teeth were then randomly selected and divided into six groups out of which four were experimental groups and two control groups. The teeth were then immersed in 2% methylene blue dye solution for 3 days. All sealing materials and Gutta-percha were gently removed from the walls of the canal, and the entire circumference of the canal wall examined for dye penetration. The lowest mean leakage was in the Fermit-N group followed by Cavit-W, ZnOE, intermediate restorative materials (IRM), and positive control. Fermit-N showed better sealing ability compared to cavit, ZnOE and IRM.
Compressor seal rub energetics study
NASA Technical Reports Server (NTRS)
Laverty, W. F.
1978-01-01
The rub mechanics of compressor abradable blade tip seals at simulated engine conditions were investigated. Twelve statistically planned, instrumented rub tests were conducted with titanium blades and Feltmetal fibermetal rubstrips. The tests were conducted with single stationary blades rubbing against seal material bonded to rotating test disks. The instantaneous rub torque, speed, incursion rate and blade temperatures were continuously measured and recorded. Basic rub parameters (incursion rate, rub depth, abradable density, blade thickness and rub velocity) were varied to determine the effects on rub energy and heat split between the blade, rubstrip surface and rub debris. The test data was reduced, energies were determined and statistical analyses were completed to determine the primary and interactive effects. Wear surface morphology, profile measurements and metallographic analysis were used to determine wear, glazing, melting and material transfer. The rub energies for these tests were most significantly affected by the incursion rate while rub velocity and blade thickness were of secondary importance. The ratios of blade wear to seal wear were representative of those experienced in engine operation of these seal system materials.
Experimental amine-epoxide sealer: a physicochemical study in comparison with AH Plus and EasySeal.
Sonntag, D; Ritter, A; Burkhart, A; Fischer, J; Mondrzyk, A; Ritter, H
2015-08-01
To compare selected physicochemical and biological properties of an experimental sealer with those of two commercially available sealers. AH Plus and EasySeal were used as model materials for commercially available amine-epoxide sealers. They were mixed as stated by the manufacturer. The two components of experimental sealer EvoSeal A were mixed 1 : 1 vol%. The setting time was determined in two different ways: first, by setting of sealers in a temperature- and moisture-controlled environment followed by testing with a Gilmore needle and secondly, by oscillating measurements of setting behaviour using a rheometer. Differential scanning calorimetry (DSC) of the sealer was performed for comparison of thermal properties. Flow and film thickness were determined by applying pressures of 100 g and 15.3 kg, respectively, on the materials between two glass plates and measuring the diameters of the compressed sealer and the thickness with a micrometer gauge. Solubility of set materials was conducted by layering the samples with water, storing in a temperature- and humidity-controlled environment and evaporating the solvent. The solved sealer parts were then weighed. The radiopacity was measured in an X-ray experiment comparing radiopacity of a cured sealer to an aluminium step wedge. Volume shrinkage was defined by measuring the densities of samples before and after setting. The film thickness, fluidity, curing time, radiopacity and solubility of the test materials were performed as specified in DIN EN ISO 6876:2010 draft. The volume shrinkage was determined in a method adapted from standard DIN 13907:2007-01. Antibacterial activity was tested against Gram-positive Streptococcus oralis cultures in a contact test based on standard ISO 22196:2011 (E). Statistical analysis was performed using Mann-Whitney U-test where applicable. Significant differences were determined with P < 0.05. The experimental sealer, EvoSeal A, reached standard specifications. In terms of film thickness, the highest value was measured for EvoSeal A with a film thickness of 27 μm, comparing to 6 μm for EasySeal (P ≤ 0.001) and 8 μm for AH Plus (P ≤ 0.001). Comparing the flow, all values corresponded to EasySeal with a diameter of 17.3 mm. The only significant difference was determined for AH Plus compared to EvoSeal A (P = 0.0353). Volume shrinkage of EvoSeal A was 48% smaller compared to EasySeal and approximately 20% lower compared to AH Plus. The shortest curing time was determined for EvoSeal A (3.0 h) followed by EasySeal (4.1 h) and AH Plus (24 h). For all groups, significant differences were observed (P ≤ 0.001). EvoSeal A had a significantly higher radiopacity than EasySeal (P ≤ 0.001) but significantly lower values than AH Plus (P ≤ 0.001). The solubility of AH Plus and EvoSeal A was <0.5% (P = 0.2435). Compared to EasySeal with a solubility of 2.7%, significant differences were observed (P ≤ 0.02). Three weeks after setting, EasySeal and EvoSeal A still had an antibacterial effect against S. oralis in contrast to AH Plus. In this respect, comparing AH Plus with EvoSeal A and EasySeal, respectively, significant differences were observed (P ≤ 0.001). No significant differences between EasySeal with EvoSeal A (P = 0.540) were determined. The physical and chemical properties of the experimental sealer EvoSeal A were comparable to the two commercially established sealers EasySeal and AH Plus. © 2014 International Endodontic Journal. Published by John Wiley & Sons Ltd.
Integrated main rail, feed rail, and current collector
Petri, R.J.; Meek, J.; Bachta, R.P.; Marianowski, L.G.
1994-11-08
A separator plate is described for a fuel cell comprising an anode current collector, a cathode current collector and a main plate, the main plate disposed between the anode current collector and the cathode current collector. The anode current collector forms a flattened peripheral wet seal structure and manifold wet seal structure on the anode side of the separator plate and the cathode current collector forms a flattened peripheral wet seal structure and manifold wet seal structure on the cathode side of the separator plate. In this manner, the number of components required to manufacture and assemble a fuel cell stack is reduced. 9 figs.
Associated-particle sealed-tube neutron probe for characterization of materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rhodes, E.; Dickerman, C.E.; Peters, C.W.
1993-10-01
A neutron diagnostic probe system has been developed that can identify and image most elements having a larger atomic number than boron. It can satisfy van-mobile and fixed-portal requirements for nondestructive detection of contraband drugs, explosives, and nuclear and chemical warfare weapon materials, and for treaty verification of sealed munitions and remediation of radioactive waste. The probe is based on a nonpulsed associated-particle sealed-tube neutron generator (APSTNG) that interrogates the object with a 14-MeV neutrons and detects alpha-particle associated with each neutron. Gamma-ray spectra of resulting neutron reactions (primarily inelastic scattering) identify nuclides associated with drugs, explosives, and other contraband.more » Flight times determined from detection times of gamma-rays and alpha-particles yield a separate coarse tomographic image of each identified nuclide. Chemical substances are identified and imaged by comparing relative spectra fine intensities with ratios of elements in reference compounds. The High-energy neutrons in gamma-rays will penetrate large objects and dense materials. The source and emission detection systems can be on the same side, allowing measurements with access to one side only. A high signal-to-background ratio is obtained and maximum information is extracted from each detected gamma-ray, yet high-bandwidth data acquisition is not required. The APSTNG also forms the basis for a compact fast-neutron transmission imaging system. No collimators are required, and only minimal shielding is needed. The small and relatively inexpensive neutron generator tube exhibits high reliability and can be quickly replaced. The detector arrays and associated electronics can be made reliable with low maintenance cost.« less
Method and apparatus for detecting flaws and defects in heat seals
NASA Technical Reports Server (NTRS)
Rai, Kula R. (Inventor); Lew, Thomas M. (Inventor); Sinclair, Robert B. (Inventor)
1993-01-01
Flaws and defects in heat seals formed between sheets of translucent film are identified by optically examining consecutive lateral sections of the seal along the seal length. Each lateral seal section is illuminated and an optical sensor array detects the intensity of light transmitted through the seal section for the purpose of detecting and locating edges in the heat seal. A line profile for each consecutive seal section is derived having an amplitude proportional to the change in light intensity across the seal section. Instances in the derived line profile where the amplitude is greater than a threshold level indicate the detection of a seal edge. The detected edges in each derived line profile are then compared to a preset profile edge standard to identify the existence of a flaw or defect.
A Ferrofluidic Seal Specially Designed for Rotary Blood Pumps.
Mitamura, Yoshinori; Fujiyoshi, Masayoshi; Yoshida, Toshiobu; Yozu, Ryohei; Okamoto, Eiji; Tanaka, Takashi; Kawada, Shiaki
1996-05-01
One of the key technologies required for rotary blood pumps is sealing of the motor shaft. A ferrofluidic seal was developed for an axial flow pump. The seal body was composed of a plastic magnet and two pole pieces. This seal was formed by injecting ferrofluid into the gap between the pole pieces and the motor shaft. To contain the ferrofluid in the seal and to minimize the possibility of ferrofluid making contact with blood, a shield with a small cavity was provided on the pole piece. Sealing pressure of the seal was measured. The sealing pressure was maintained at more than 23.3 kPa (175 mm Hg) for a motor speed up to 11,000 rpm. The specially designed ferrofluidic seal for sealing out liquids is useful for axial flow blood pumps. © 1996 International Society for Artificial Organs.
Kotlyar, Oleg M.
2001-01-01
An improved mechanical seal assembly is provided for sealing rotating shafts with respect to their shaft housings, wherein the rotating shafts are subject to substantial axial vibrations. The mechanical seal assembly generally includes a rotating sealing ring fixed to the shaft, a non-rotating sealing ring adjacent to and in close contact with the rotating sealing ring for forming an annular seal about the shaft, and a mechanical diode element that applies a biasing force to the non-rotating sealing ring by means of hemispherical joint. The alignment of the mechanical diode with respect to the sealing rings is maintained by a series of linear bearings positioned axially along a desired length of the mechanical diode. Alternative embodiments include mechanical or hydraulic amplification components for amplifying axial displacement of the non-rotating sealing ring and transferring it to the mechanical diode.
Kotlyar, Oleg M.
2002-01-01
An improved mechanical seal assembly is provided for sealing rotating shafts with respect to their shaft housings, wherein the rotating shafts are subject to substantial axial vibrations. The mechanical seal assembly generally includes a rotating sealing ring fixed to the shaft, a non-rotating sealing ring adjacent to and in close contact with the rotating sealing ring for forming an annular seal about the shaft, and a mechanical diode element that applies a biasing force to the non-rotating sealing ring by means of hemispherical joint. The alignment of the mechanical diode with respect to the sealing rings is maintained by a series of linear bearings positioned axially along a desired length of the mechanical diode. Alternative embodiments include mechanical or hydraulic amplification components for amplifying axial displacement of the non-rotating sealing ring and transfering it to the mechanical diode.
Zagar, Thomas W.; Schiavo, Anthony L.
2001-01-01
A rotating blade group 90 for a turbo-machine having an improved device for sealing the gap 110 between the edges 112,114 of adjacent blade platforms 96,104. The gap 110 between adjacent blades 92,100 is sealed by a seal pin 20 its central portion 110 and by a seal plate 58,60 at each of the front 54 and rear 56 portions. The seal plates 58,60 are inserted into corresponding grooves 62,64 formed in the adjacent edges 112,114 of adjoining blades 92,100 and held in place by end plates 40,42. The end of the seal plates 58,60 may be chamfered 78,80 to improve the seal against the end plate 40,42. The seal pin 20 provides the required damping between the blades 92,100 and the seal plates 58,60 provide improved sealing effectiveness.
Detection of liquid hazardous molecules using linearly focused Raman spectroscopy
NASA Astrophysics Data System (ADS)
Cho, Soo Gyeong; Chung, Jin Hyuk
2013-05-01
In security, it is an important issue to analyze hazardous materials in sealed bottles. Particularly, prompt nondestructive checking of sealed liquid bottles in a very short time at the checkpoints of crowded malls, stadiums, or airports is of particular importance to prevent probable terrorist attack using liquid explosives. Aiming to design and fabricate a detector for liquid explosives, we have used linearly focused Raman spectroscopy to analyze liquid materials in transparent or semi-transparent bottles without opening their caps. Continuous lasers with 532 nm wavelength and 58 mW/130 mW beam energy have been used for the Raman spectroscopy. Various hazardous materials including flammable liquids and explosive materials have successfully been distinguished and identified within a couple of seconds. We believe that our technique will be one of suitable methods for fast screening of liquid materials in sealed bottles.
Articles for high temperature service and methods for their manufacture
Sarrafi-Nour, Reza; Meschter, Peter Joel; Johnson, Curtis Alan; Luthra, Krishan Lal; Rosenzweig, Larry Steven
2016-06-14
An article for use in aggressive environments is presented. In one embodiment, the article comprises a substrate and a self-sealing and substantially hermetic sealing layer comprising an alkaline-earth aluminosilicate disposed over the bondcoat. The substrate may be any high-temperature material, including, for instance, silicon-bearing ceramics and ceramic matrix composites. A method for making such articles is also presented. The method comprises providing a substrate; disposing a self-sealing alkaline-earth aluminosilicate layer over the substrate; and heating the sealing layer to a sealing temperature at which at least a portion of the sealing layer will flow.
NASA Technical Reports Server (NTRS)
Hogenson, P. A.; Lu, Tina
1995-01-01
The objective is to develop the advanced thermal seals to a technology readiness level (TRL) of 6 to support the rapid turnaround time and low maintenance requirements of the X-33 and the future reusable launch vehicle (RLV). This program is divided into three subtasks: (1) orbiter thermal seals operation history review; (2) material, process, and design improvement; and (3) fabrication and evaluation of the advanced thermal seals.
Wide temperature range seal for demountable joints
Sixsmith, H.; Valenzuela, J.A.; Nutt, W.E.
1991-07-23
The present invention is directed to a seal for demountable joints operating over a wide temperature range down to liquid helium temperatures. The seal has anti-extrusion guards which prevent extrusion of the soft ductile sealant material, which may be indium or an alloy thereof. 6 figures.
17 CFR 2.2 - Authority to affix seal.
Code of Federal Regulations, 2014 CFR
2014-04-01
... Authority to affix seal. (a) The following officials of the Commodity Futures Trading Commission are authorized to affix the Seal to appropriate documents and other materials of the Commission for all purposes... redelegate, and authorize redelegation of this authority, except that the Secretary may redelegate this...
17 CFR 2.2 - Authority to affix seal.
Code of Federal Regulations, 2012 CFR
2012-04-01
... Authority to affix seal. (a) The following officials of the Commodity Futures Trading Commission are authorized to affix the Seal to appropriate documents and other materials of the Commission for all purposes... redelegate, and authorize redelegation of this authority, except that the Secretary may redelegate this...
17 CFR 2.2 - Authority to affix seal.
Code of Federal Regulations, 2013 CFR
2013-04-01
... Authority to affix seal. (a) The following officials of the Commodity Futures Trading Commission are authorized to affix the Seal to appropriate documents and other materials of the Commission for all purposes... redelegate, and authorize redelegation of this authority, except that the Secretary may redelegate this...
Chalfant, Jr., Gordon G.
1984-01-01
A shipping container for radioactive or other hazardous materials which has a conical-shaped closure containing grooves in the conical surface thereof and an O-ring seal incorporated in each of such grooves. The closure and seal provide a much stronger, tighter and compact containment than with a conventional flanged joint.
Chalfant, G.G. Jr.
A shipping container for radioactive or other hazardous materials has a conical-shaped closure containing grooves in the conical surface thereof and an O-ring seal incorporated in each of such grooves. The closure and seal provide a much stronger, tighter and compact containment than with a conventional flanged joint.
78 FR 4478 - New Postal Product
Federal Register 2010, 2011, 2012, 2013, 2014
2013-01-22
... Equivalent Global Plus 2C Contract Negotiated Service Agreement and Application for Non-Public Treatment of... Equivalent Global Plus 2C Agreements, January 13, 2012. Customers for Global Plus 2C contracts are Postal... application for non-public treatment of material filed under seal. The material filed under seal consists of...
Application of a magnetic fluid seal to rotary blood pumps
NASA Astrophysics Data System (ADS)
Mitamura, Y.; Arioka, S.; Sakota, D.; Sekine, K.; Azegami, M.
2008-05-01
A magnetic fluid seal enables mechanical contact-free rotation of a shaft without frictional heat and material wear and hence has excellent durability. However, the durability of a magnetic fluid seal decreases in liquid. The life of a seal applied to a rotary blood pump is not known. We have developed a magnetic fluid seal that has a shield mechanism minimizing the influence of the rotary pump on the magnetic fluid. The developed magnetic fluid seal worked for over 286 days in a continuous flow condition, for 24 days (on-going) in a pulsatile flow condition and for 24 h (electively terminated) in blood flow. The magnetic fluid seal is promising as a shaft seal for rotary blood pumps.
Application of a magnetic fluid seal to rotary blood pumps.
Mitamura, Y; Arioka, S; Sakota, D; Sekine, K; Azegami, M
2008-05-21
A magnetic fluid seal enables mechanical contact-free rotation of a shaft without frictional heat and material wear and hence has excellent durability. However, the durability of a magnetic fluid seal decreases in liquid. The life of a seal applied to a rotary blood pump is not known. We have developed a magnetic fluid seal that has a shield mechanism minimizing the influence of the rotary pump on the magnetic fluid. The developed magnetic fluid seal worked for over 286 days in a continuous flow condition, for 24 days (on-going) in a pulsatile flow condition and for 24 h (electively terminated) in blood flow. The magnetic fluid seal is promising as a shaft seal for rotary blood pumps.
Sealed-off CO2 laser with In-Au alloy sealing
NASA Astrophysics Data System (ADS)
Iehisa, N.; Fukaya, K.; Karube, N.
1986-02-01
The In-Au alloy sealing was found to satisfy all the requirements imposed on the sealed-off CO2 lasers. The sealing between different materials such as quartz, SUS 303, Si, and ZnSe was shown to withstand the thermal shock test, and gave the He leak rate lower than 1×10-9 atm cc/s both before and after the tests. It was also proved that the transmittance characteristics of dielectric coated output couplers did not change after the sealing. The sealed-off CO2 lasers with La1-xSrxCoO3 perovskite oxide cathodes sealed with this technique produced the operational life of 3000 h at the laser power level of 50 W/m.
NASA Astrophysics Data System (ADS)
Hao, X. H.; Ju, Y. L.; Lu, Y. J.
2011-05-01
The labyrinth sealing displacer has been optimal designed to improve the operating stability and life-time of 10 K G-M refrigerator. The displacer was made of stainless steel 304 or inconel 718, coated with PTFE on its outer surface. Compared to the traditional piston-ring sealing displacer, the sealing clearance between the ridge of the labyrinth sealing displacer and cylinder is critical to the cooling performance of the G-M refrigerator. The displacers with different sealing clearances were experimentally studied, and the optimal clearance was given. The effects of the materials of the displacers and the system charge pressures on the performance of the labyrinth sealing were also tested and analyzed.
Direct and Indirect Pulp Capping: A Brief History, Material Innovations, and Clinical Case Report.
Alex, Gary
2018-03-01
Among the goals of pulp capping are to manage bacteria, arrest caries progression, stimulate pulp cells to form new dentin, and produce a durable seal that protects the pulp complex. This article will provide a general discussion of direct and indirect pulp capping procedures, offering practitioners a pragmatic and science-based clinical protocol for treatment of vital pulp exposures. A clinical case will be presented in which a novel light-cured resin-modified mineral trioxide aggregate hybrid material was used to manage a mechanical vital pulp exposure that occurred during deep caries excavation.
High performance fuel element with end seal
Lee, Gary E.; Zogg, Gordon J.
1987-01-01
A nuclear fuel element comprising an elongate block of refractory material having a generally regular polygonal cross section. The block includes parallel, spaced, first and second end surfaces. The first end surface has a peripheral sealing flange formed thereon while the second end surface has a peripheral sealing recess sized to receive the flange. A plurality of longitudinal first coolant passages are positioned inwardly of the flange and recess. Elongate fuel holes are separate from the coolant passages and disposed inwardly of the flange and the recess. The block is further provided with a plurality of peripheral second coolant passages in general alignment with the flange and the recess for flowing coolant. The block also includes two bypasses for each second passage. One bypass intersects the second passage adjacent to but spaced from the first end surface and intersects a first passage, while the other bypass intersects the second passage adjacent to but spaced from the second end surface and intersects a first passage so that coolant flowing through the second passages enters and exits the block through the associated first passages.
Ion-plasma gun for ion-milling machine
Kaminsky, Manfred S.; Campana, Jr., Thomas J.
1976-01-01
An ion gun includes an elongated electrode with a hollow end portion closed by a perforated end plate. The end plate is positioned parallel to a perforated flat electrode of opposite electrical polarity. An insulated sleeve encompasses the elongated electrode and extends outwardly from the perforated end towards the flat electrode. The sleeve length is separated into two portions of different materials. The first is formed of a high-temperature material that extends over the hollow portion of the elongated electrode where the arc is initiated by a point source electrode. The second sleeve portion extending over the remainder of the elongated electrode is of a resilient material for enhanced seal-forming ability and retention of plasma gas. Perforations are arranged in the flat electrode in a mutually opposing triangular pattern to project a plasma beam having a generally flat current profile towards a target requiring precision milling.
Investigation of a Wedge Adhesion Test for Edge Seals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kempe, Michael; Wohlgemuth, John; Miller, David
2016-09-26
Many photovoltaic (PV) technologies have been found to be sensitive to moisture that diffuses into a PV package. Even with the use of impermeable frontsheets and backsheets, moisture can penetrate from the edges of a module. To limit this moisture ingress pathway from occurring, manufacturers often use a low permeability polyisobutylene (PIB) based edge seal filled with desiccant to further restrict moisture ingress. Moisture ingress studies have shown that these materials are capable of blocking moisture for the 25-year life of a module; but to do so, they must remain well-adhered and free of cracks. This work focuses on adaptingmore » the Boeing Wedge test for use with edge seals laminated using glass substrates as part of a strategy to assess the long-term durability of edge seals. The advantage of this method is that it duplicates the residual stresses and strains that a glass/glass module may have when the lamination process results in some residual glass bending that puts the perimeter in tension. Additionally, this method allows one to simultaneously expose the material to thermal stress, humidity, mechanical stress, and ultraviolet radiation. The disadvantage of this method generally is that we are limited by the fracture toughness of the glass substrates that the edge seal is adhered to. However, the low toughness of typical uncrosslinked or sparsely crosslinked PIB makes them suitable for this technique. We present data obtained during the development of the wedge test for use with PV edge seal materials. This includes development of the measuring techniques and evaluation of the test method with relevant materials. We find consistent data within a given experiment, along with the theoretical independence of fracture toughness measurements with wedge thickness. This indicates that the test methodology is reproducible. However, even though individual experimental sets are consistent, the reproducibility between experimental sets is poor. We believe this may be due to inconsistencies in sample history, sample batch, or small changes in sample preparation/assembly from one month to the next. Because the fracture strength of typical edge seal materials is so low, they cannot be relied upon for mechanical strength. A small stress or strain on the edge seal is capable of promoting delamination or tearing causing the edge seal to fail. Because of this, edge seals are very dependent on the processing and construction parameters in the full size PV module such that any long term evaluation of their durability must be conducted on full size modules to be accurate.« less
Space Environment's Effects on Seal Materials
NASA Technical Reports Server (NTRS)
deGroh, Henry C., III; Daniels, Christopher C.; Dunlap, Patrick; Miller, Sharon; Dever, Joyce; Waters, Deborah; Steinetz, Bruce M.
2007-01-01
A Low Impact Docking System (LIDS) is being developed by the NASA Johnson Space Center to support future missions of the Crew Exploration Vehicle (CEV). The LIDS is androgynous, such that each system half is identical, thus any two vehicles or modules with LIDS can be coupled. Since each system half is a replica, the main interface seals must seal against each other instead of a conventional flat metal surface. These sealing surfaces are also expected to be exposed to the space environment when vehicles are not docked. The NASA Glenn Research Center (NASA GRC) is supporting this project by developing the main interface seals for the LIDS and determining the durability of candidate seal materials in the space environment. In space, the seals will be exposed to temperatures of between 50 to 50 C, vacuum, atomic oxygen, particle and ultraviolet radiation, and micrometeoroid and orbital debris (MMOD). NASA GRC is presently engaged in determining the effects of these environments on our candidate elastomers. Since silicone rubber is the only class of seal elastomer that functions across the expected temperature range, NASA GRC is focusing on three silicone elastomers: two provided by Parker Hannifin (S0-899-50 and S0-383-70) and one from Esterline Kirkhill (ELA-SA-401). Our results from compression set, elastomer to elastomer adhesion, and seal leakage tests before and after various simulated space exposures will be presented.
Continued development of abradable gas path seals. [for gas turbine engines
NASA Technical Reports Server (NTRS)
Shiembob, L. T.
1975-01-01
Major program objectives were the continued development of NiCrAlY feltmetal and honeycomb systems for knife edge seal applications in the 1144 to 1366 K temperature range, and to initiate abradable seal material evaluation for blade tip seal applications in the 1366 to 1589 K temperature range. Larger fiber size, higher density feltmetal showed greatly improved erosion resistance with a slight reduction in abradability compared to the baseline feltmetal. Pack aluminide coating of the honeycomb extended the oxidation resistance and slightly improved the abradability of this material. Evaluation through selected abradability, erosion and oxidation testing, and pertinent metallography led to selection of a plasma sprayed yttria stabilized zirconia (ZrO2)/CoCrAlY layered system as the system with the most potential to meet the 1589 K requirement for blade tip seals. This system demonstrated structural integrity, erosion resistance, and some degree of abradability.
Experimental studies and performance analyses on polyurethane and nitrile rubber rod seals
NASA Astrophysics Data System (ADS)
Mirza, M.; Temiz, V.; Kamburoǧlu, E.
2012-09-01
The aim of this study is to determine the friction and leakage properties of rod seals made of polyethylene and nitrile rubber with different design geometries, under various pressure and lubricating oil viscosity conditions, in order to make assumptions about their general sealing characteristics and their pros and cons under certain working conditions that involve a range of fluid pressures. The test specimens consist of commercial rod seals of various designs and materials and were mounted on a hard chrome coated shaft subject to reciprocating motion. The test rig is capable of measuring friction force by means of strain measurements on a load cell transmitting the linear motion of a screw shaft to the test shaft. The test results of the reciprocating rod seal samples were evaluated according to leakage amount and friction resistance as a function of materials, design geometries and fluid pressures as well as the lubricating oil viscosity.
Detection of seal contamination in heat-sealed food packaging based on active infrared thermography
NASA Astrophysics Data System (ADS)
D'huys, Karlien; Saeys, Wouter; De Ketelaere, Bart
2015-05-01
In the food industry packaging is often applied to protect the product from the environment, assuring quality and safety throughout shelf life if properly performed. Packaging quality depends on the material used and the closure (seal). The material is selected based on the specific needs of the food product to be wrapped. However, proper closure of the package is often harder to achieve. One problem possibly jeopardizing seal quality is the presence of food particles between the seal. Seal contamination can cause a decreased seal strength and thus an increased packaging failure risk. It can also trigger the formation of microchannels through which air and microorganisms can enter and spoil the enclosed food. Therefore, early detection and removal of seal-contaminated packages from the production chain is essential. In this work, a pulsed-type active thermography method using the heat of the sealing bars as an excitation source was studied for detecting seal contamination. The cooling profile of contaminated seals was recorded. The detection performance of four processing methods (based on a single frame, a fit of the cooling profile, pulsed phase thermography and a matched filter) was compared. High resolution digital images served as a reference to quantify contamination. The lowest detection limit (equivalent diameter of 0.63 mm) and the lowest processing time (0.42 s per sample) were obtained for the method based on a single frame. Presumably, practical limitations in the recording stage prevented the added value of active thermography to be fully reflected in this application.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Verst, C.; Skidmore, E.; Daugherty, W.
2014-05-30
A testing and analysis approach to predict the sealing behavior of elastomeric seal materials in dry storage casks and evaluate their ability to maintain a seal under thermal and radiation exposure conditions of extended storage and beyond was developed, and initial tests have been conducted. The initial tests evaluate the aging response of EPDM elastomer O-ring seals. The thermal and radiation exposure conditions of the CASTOR® V/21 casks were selected for testing as this cask design is of interest due to its widespread use, and close proximity of the seals to the fuel compared to other cask designs leading tomore » a relatively high temperature and dose under storage conditions. A novel test fixture was developed to enable compression stress relaxation measurements for the seal material at the thermal and radiation exposure conditions. A loss of compression stress of 90% is suggested as the threshold at which sealing ability of an elastomeric seal would be lost. Previous studies have shown this value to be conservative to actual leakage failure for most aging conditions. These initial results indicate that the seal would be expected to retain sealing ability throughout extended storage at the cask design conditions, though longer exposure times are needed to validate this assumption. The high constant dose rate used in the testing is not prototypic of the decreasingly low dose rate that would occur under extended storage. The primary degradation mechanism of oxidation of polymeric compounds is highly dependent on temperature and time of exposure, and with radiation expected to exacerbate the oxidation.« less
Shaft/shaft-seal interface characteristics of a multiple disk centrifugal blood pump.
Manning, K B; Miller, G E
1999-06-01
A multiple disk centrifugal pump (MDCP) is under investigation as a potential left ventricular assist device. As is the case with most shaft driven pumps, leakage problems around the shaft/shaft seal interface are of major interest. If leakage were to occur during or after implantation, potential events such as blood loss, clotting, blood damage, and/or infections might result in adverse effects for the patient. Because these effects could be quite disastrous, potential shaft and shaft seal materials have been investigated to determine the most appropriate course to limit these effects. Teflon and nylon shaft seals were analyzed as potential candidates along with a stainless steel shaft and a Melonite coated shaft. The materials and shafts were evaluated under various time durations (15, 30, 45, and 60 min), motor speeds (800, 1,000, 1,200, and 1,400 rpm), and outer diameters (1/2 and 3/4 inches). The motor speed and geometrical configurations were typical for the MDCP under normal physiologic conditions. An air and water study was conducted to analyze the inner diameter wear, the inner temperature values, and the outer temperature values. Statistical comparisons were computed for the shaft seal materials, the shafts, and the outer diameters along with the inner and outer temperatures. The conclusions made from the results indicate that both the tested shaft seal materials and shaft materials are not ideal candidates to be used for the MDCP. Teflon experienced a significant amount of wear in air and water studies. Nylon did experience little wear, but heat generation was an evident problem. A water study on nylon was not conducted because of its molecular structure.
H Bhandi, Shilpa; T S, Subhash
2013-01-01
Introduction: Microleakage continues to be a main reason for failure of root canal treatment where the challenge has been to achieve an adequate seal between the internal structure and the main obturating material. The objective of this study is to compare the sealing ability of 3 newer obturating materials GuttaFlow, Resilon/Epiphany system (RES) and Thermafil, using silver nitrate dye and observing under stereomicroscope. Methodology: Thirty single rooted teeth were divided into following groups. Group I : GuttaFlow ;Group II : Resilon /Epiphany sealer Group III : Thermafil with AH-Plus sealer. Teeth were decoronated and instrumented with profile rotary system and obturated with specified materials. Apical seal was determined by dye penetration method using silver nitrate. Then the specimens were transversely sectioned at each mm till 3 mm from the apex. Dye leakage was determined using stereomicroscope. Statistical analysis of the results was performed using Kruskall-Wallis test. Results: The results showed that Group II i.e., Resilon with Epiphany sealer showed the least amount of microleakage when compared to Group I i.e., GuttaFlow and Group III i.e., Thermafil with AH-plus sealer. Conclusion: Based on the results of this study it can be concluded that RES had higher sealing ability followed by Thermafil and GuttaFlow in vitro but further studies have to be carried out to make a direct correlation between these results and invivo situation. How to cite this article: Bhandi S H, Subhash T S. Comparative Evaluation of Sealing Ability of Three Newer Root Canal Obturating Materials Guttaflow, Resilon and Thermafil: An In Vitro Study. J Int Oral Health 2013; 5(1):54-65. PMID:24155579
Exploratory Development of New and Improved Self-Sealing Materials for Fuel Lines
1974-10-01
identify hy block number) New and improved self-sealing fuel line composites were developed under this program. Fabric reinforced plastic and nonflowering...integrated aluminum foil, fabric reinforced laminated fuel line composites employing compressed natural rubber foam as the sealant were fabricated which...successfully sealed wounds inflicted by .30 and .50 caliber projectiles. The weight of these new self-sealing fuel line composites ranged from 0.83
Overview of CEV Thermal Protection System Seal Development
NASA Technical Reports Server (NTRS)
DeMange, Jeff; Taylor, Shawn; Dunlap, Patrick; Steinetz, Bruce; Delgado, Irebert; Finkbeiner, Josh; Mayer, John
2009-01-01
NASA GRC supporting design, development, and implementation of numerous seal systems for the Orion CEV: a) HS-to-BS interface. b) Compression pad. HS-to-BS Interface Seal System: a) design has evolved as a result of changes with the CEV TPS. b) Seal system is currently under development/evaluation. Coupon level tests, Arc jet tests, and Validation test development. Compression Pad: a) Finalizing design options. b) Evaluating material candidates.
New Joint Sealants. Criteria, Design and Materials.
ERIC Educational Resources Information Center
Building Research Inst., Inc., Washington, DC.
Contents include--(1) sealing concrete joints, (2) sealing glass and metal joints, (3) metal and glass joint sealants from a fabricator's viewpoint, (4) a theory of adhesion for joint sealants, (5) geometry of simple joint seals under strain, (6) joint sealant specifications from a manufacturer's viewpoint, (7) joint sealant requirements from an…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Govindaraju, Nirmal; Liu, Wenning N.; Sun, Xin
Hermetic gas seals are critical components for planar solid oxide fuel cells. This article focuses on comparative evaluation of a glass-ceramic developed by the Pacific Northwest National Laboratory (PNNL) and a self-healing glass seal developed by the University of Cincinnati. The stress and strain levels in the Positive electrode-Electrolyte-Negative electrode (PEN) seal in one cell stack are evaluated using a multi-physics simulation package developed at PNNL. Simulations were carried out with and without consideration of clamping force and stack body force, respectively. The results indicate that the overall stress and strain levels are dominated by the thermal expansion mismatches betweenmore » the different cell components. Further, compared with glass-ceramic seal, the self-healing glass seal results in much lower steady state stress due to its much lower stiffness at the operating temperature of SOFC, and also exhibits much shorter relaxation times due to high creep rate. It is also noted that the self-healing glass seal will experience continuing creep deformation under the operating temperature of SOFC therefore resulting in possible overflow of the sealing materials. Further stopper material may need to be added to maintain its geometric stability during operation.« less
Structural Mechanics Solutions for Butt Joint Seals in Cold Climates
DOT National Transportation Integrated Search
1996-08-01
An effective, formed-in-place joint seal will respond with elastic or viscoelastic behavior over a reasonable design life to any large movement of the joint without adhesive or cohesive failure. For a given joint movement, seals with lower stiffness ...
Smith, James L.
1984-01-01
A device is provided for sealing an inner tube and an outer tube without excessively deforming the tubes. The device includes two ferrules which cooperate to form a vacuum-tight seal between the inner tube and outer tube and having mating surfaces such that overtightening is not possible.
Numerical Investigation of the Effect of Radial Lip Seal Geometry on Sealing Performance
NASA Astrophysics Data System (ADS)
Tok, G.; Parlar, Z.; Temiz, V.
2018-01-01
Sealing elements are often needed in industry and especially in machine design. With the change and development of machine technology from day to day, sealing elements show continuous development and change in parallel with these developments. Many factors influence the performance of the sealing elements such as shaft surface roughness, radial force, lip geometry etc. In addition, the radial lip seals must have a certain pre-load and interference in order to provide a good sealing. This also affects the friction torque. Researchers are developing new seal designs to reduce friction losses in mechanical systems. In the presented study, the effect of the lip seal geometry on sealing performance will be examined numerically. The numerical model created for this purpose will be verified with experimental data firstly. In the numerical model, shaft and seal will be modeled as hyper-elastic in 2D and 3D. NBR (Nitrile Butadiene Rubber) as seal material will be analyzed for the rotating shaft state at constant speed by applying a uniform radial force.
Effects of Low Earth Orbit on Docking Seal Materials
NASA Technical Reports Server (NTRS)
Imka, Emily C.; Asmar, Olivia C.; deGroh, Henry C., III; Banks, Bruce A.
2014-01-01
Spacecraft docking seals are typically made of silicone elastomers. When such seals are exposed to low Earth orbit (LEO) conditions, they can suffer damage from ultraviolet (UV) radiation and atomic oxygen (AO, or monoatomic oxygen, the predominant oxygen species in LEO). An experiment flew on the International Space Station (ISS) to measure the effects of LEO on seal materials S0383-70 and ELA-SA-401 and various mating counterface materials which included anodized aluminum. Samples flown in different orientations received different amounts of UV and AO. The hypotheses were that most of the damage would be from UV, and 10 days or more of exposure in LEO would badly damage the seals. Eighteen seals were exposed for 543 days in ram (windward), zenith (away from Earth), or wake (leeward) orientations, and 15 control samples (not flown) provided undamaged baseline leakage. To determine post-flight leak rates, each of the 33 seals were placed in an O-ring groove of a leak test fixture and pressure tested over time. Resistance temperature detectors (RTDs), pressure transducers, and LabVIEW (National Instruments) programs were used to measure and analyze the temperature and pressure and calculate leakage. Average leakage of control samples was 2.6 x 10(exp -7) lbs/day. LEO exposure did not considerably damage ELA-SA-401. The S0383-70 flight samples leaked at least 10 times more than ELA-SA-401 in all cases except one, demonstrating that ELA-SA-401 may be a more suitable sealing material in LEO. AO caused greater damage than UV; samples in ram orientation (receiving an AO fluence of 4.3 x 10(exp 21) atoms/(sq cm) and in wake (2.9x 10(exp 20) atoms/(sq cm)) leaked more than those in zenith orientation (1.58 x 10(exp 20) atoms/(sq cm)), whereas variations in UV exposure did not seem to affect the samples. Exposure to LEO did less damage to the seals than hypothesized, and the data did not support the conjecture that UV causes more damage than AO.
Pressurized heat treatment of glass ceramic
Kramer, D.P.
1984-04-19
A method of producing a glass-ceramic having a specified thermal expansion value is disclosed. The method includes the step of pressurizing the parent glass material to a predetermined pressure during heat treatment so that the glass-ceramic produced has a specified thermal expansion value. Preferably, the glass-ceramic material is isostatically pressed. A method for forming a strong glass-ceramic to metal seal is also disclosed in which the glass-ceramic is fabricated to have a thermal expansion value equal to that of the metal. The determination of the thermal expansion value of a parent glass material placed in a high-temperature environment is also used to determine the pressure in the environment.
Testing of candidate waste-package backfill and canister materials for basalt
NASA Astrophysics Data System (ADS)
Wood, M. I.; Anderson, W. J.; Aden, G. D.
1982-09-01
The Basalt Waste Isolation Project (BWIP) is developing a multiple-barrier waste package to contain high-level nuclear waste as part of an overall system (e.g., waste package, repository sealing system, and host rock) designed to isolate the waste in a repository located in basalt beneath the Hanford Site, Richland, Washington. The three basic components of the waste package are the waste form, the canister, and the backfill. An extensive testing program is under way to determine the chemical, physical, and mechanical properties of potential canister and backfill materials. The data derived from this testing program will be used to recommend those materials that most adequately perform the functions assigned to the canister and backfill.
Pressurized heat treatment of glass-ceramic to control thermal expansion
Kramer, Daniel P.
1985-01-01
A method of producing a glass-ceramic having a specified thermal expansion value is disclosed. The method includes the step of pressurizing the parent glass material to a predetermined pressure during heat treatment so that the glass-ceramic produced has a specified thermal expansion value. Preferably, the glass-ceramic material is isostatically pressed. A method for forming a strong glass-ceramic to metal seal is also disclosed in which the glass-ceramic is fabricated to have a thermal expansion value equal to that of the metal. The determination of the thermal expansion value of a parent glass material placed in a high-temperature environment is also used to determine the pressure in the environment.
Sealing and External Sterilization of a Sample Container
NASA Technical Reports Server (NTRS)
Bar-Cohen, Yoseph; Badescu, Mircea; Bao, Xiaoqi; Sherrit, Stewart; Olorunsola, Ayoola
2008-01-01
A method of (1) sealing a sample of material acquired in a possibly b iologically contaminated ("dirty") environment into a hermetic conta iner, (2) sterilizing the outer surface of the container, then (3) d elivering the sealed container to a clean environment has been propos ed. The method now proposed was originally intended to be used to ret urn samples from Mars to Earth, but could also be used on Earth to t ransport material samples acquired in environments that contain biol ogical hazards and/or, in some cases, chemical hazards.
Hertelendy, N.A.
1987-04-22
A pressure resistant seal for a metallic container is formed between a cylindrical portion having one end open and a cap which seals the open end of the shell. The cap is in the form of a frusto-conical flange which is inserted narrow end first into the open end of the shell and the container is sealed by means of a capping tool which pulls the flange against a die, deforming the flange and forcing the edge of the flange into the wall of the shell. 6 figs.
Hertelendy, Nicholas A [Kennewick, WA
1989-01-01
A pressure resistant seal for a metallic container is formed between a cylindrical portion having one end open and a cap which seals the open end of the shell. The cap is in the form of a frusto-conical flange which is inserted narrow end first into the open end of the shell and the container is sealed by means of a capping tool which pulls the flange against a die, deforming the flange and forcing the edge of the flange into the wall of the shell.
Hertelendy, Nicholas A.
1989-04-04
A pressure resistant seal for a metallic container is formed between a cylindrical portion having one end open and a cap which seals the open end of the shell. The cap is in the form of a frusto-conical flange which is inserted narrow end first into the open end of the shell and the container is sealed by means of a capping tool which pulls the flange against a die, deforming the flange and forcing the edge of the flange into the wall of the shell.
Mechanical seal having a double-tier mating ring
Khonsari, Michael M.; Somanchi, Anoop K.
2005-09-13
An apparatus and method to enhance the overall performance of mechanical seals in one of the following ways: by reducing seal face wear, by reducing the contact surface temperature, or by increasing the life span of mechanical seals. The apparatus is a mechanical seal (e.g., single mechanical seals, double mechanical seals, tandem mechanical seals, bellows, pusher mechanical seals, and all types of rotating and reciprocating machines) comprising a rotating ring and a double-tier mating ring. In a preferred embodiment, the double-tier mating ring comprises a first and a second stationary ring that together form an agitation-inducing, guided flow channel to allow for the removal of heat generated at the seal face of the mating ring by channeling a coolant entering the mating ring to a position adjacent to and in close proximity with the interior surface area of the seal face of the mating ring.
Diverter assembly for radioactive material
Andrews, K.M.; Starenchak, R.W.
1988-04-11
A diverter assembly for diverting a pneumatically conveyed holder for a radioactive material between a central conveying tube and one of a plurality of radially offset conveying tubes includes an airtight container. A diverter tube having an offset end is suitably mounted in the container for rotation. A rotary seal seals one end of the diverter tube during and after rotation of the diverter tube while a spring biased seal seals the other end of the diverter tube which moves between various offset conveying tubes. An indexing device rotatably indexes the diverter tube and this indexing device is driven by a suitable drive. The indexing mechanism is preferably a geneva-type mechanism to provide a locking of the diverter tube in place. 3 figs.
Golovashchenko, Sergey Fedorovich [Beverly Hills, MI; Bonnen, John Joseph Francis [Milford, MI
2012-03-20
An electro-hydraulic forming tool for forming a sheet metal blank in a one-sided die has first and second rigid rings that engage opposite sides of a sheet metal blank. The rigid rings are contained within slots on a die portion and a hydraulic force applicator portion of the forming tool. The seals are either resiliently biased by an elastomeric member or inherently resiliently biased into contact with the blank.
Numerical Simulation of the Fluid-Structure Interaction of a Surface Effect Ship Bow Seal
NASA Astrophysics Data System (ADS)
Bloxom, Andrew L.
Numerical simulations of fluid-structure interaction (FSI) problems were performed in an effort to verify and validate a commercially available FSI tool. This tool uses an iterative partitioned coupling scheme between CD-adapco's STAR-CCM+ finite volume fluid solver and Simulia's Abaqus finite element structural solver to simulate the FSI response of a system. Preliminary verification and validation work (V&V) was carried out to understand the numerical behavior of the codes individually and together as a FSI tool. Verification and Validation work that was completed included code order verification of the respective fluid and structural solvers with Couette-Poiseuille flow and Euler-Bernoulli beam theory. These results confirmed the 2 nd order accuracy of the spatial discretizations used. Following that, a mixture of solution verifications and model calibrations was performed with the inclusion of the physics models implemented in the solution of the FSI problems. Solution verifications were completed for fluid and structural stand-alone models as well as for the coupled FSI solutions. These results re-confirmed the spatial order of accuracy but for more complex flows and physics models as well as the order of accuracy of the temporal discretizations. In lieu of a good material definition, model calibration is performed to reproduce the experimental results. This work used model calibration for both instances of hyperelastic materials which were presented in the literature as validation cases because these materials were defined as linear elastic. Calibrated, three dimensional models of the bow seal on the University of Michigan bow seal test platform showed the ability to reproduce the experimental results qualitatively through averaging of the forces and seal displacements. These simulations represent the only current 3D results for this case. One significant result of this study is the ability to visualize the flow around the seal and to directly measure the seal resistances at varying cushion pressures, seal immersions, forward speeds, and different seal materials. SES design analysis could greatly benefit from the inclusion of flexible seals in simulations, and this work is a positive step in that direction. In future work, the inclusion of more complex seal geometries and contact will further enhance the capability of this tool.
Smith, J.L.
1984-07-10
A device is provided for sealing an inner tube and an outer tube without excessively deforming the tubes. The device includes two ferrules which cooperate to form a vacuum-tight seal between the inner tube and outer tube and having mating surfaces such that overtightening is not possible. 3 figs.
Advanced High Temperature Structural Seals
NASA Astrophysics Data System (ADS)
Newquist, Charles W.; Verzemnieks, Juris; Keller, Peter C.; Rorabaugh, Michael; Shorey, Mark
2002-10-01
This program addresses the development of high temperature structural seals for control surfaces for a new generation of small reusable launch vehicles. Successful development will contribute significantly to the mission goal of reducing launch cost for small, 200 to 300 pound payloads. Development of high temperature seals is mission enabling. For instance, ineffective control surface seals can result in high temperature (3100 F) flows in the elevon area exceeding structural material limits. Longer sealing life will allow use for many missions before replacement, contributing to the reduction of hardware, operation and launch costs.
Advanced High Temperature Structural Seals
NASA Technical Reports Server (NTRS)
Newquist, Charles W.; Verzemnieks, Juris; Keller, Peter C.; Rorabaugh, Michael; Shorey, Mark
2002-01-01
This program addresses the development of high temperature structural seals for control surfaces for a new generation of small reusable launch vehicles. Successful development will contribute significantly to the mission goal of reducing launch cost for small, 200 to 300 pound payloads. Development of high temperature seals is mission enabling. For instance, ineffective control surface seals can result in high temperature (3100 F) flows in the elevon area exceeding structural material limits. Longer sealing life will allow use for many missions before replacement, contributing to the reduction of hardware, operation and launch costs.
Advanced High Temperature Structural Seals
NASA Technical Reports Server (NTRS)
Newquist, Charles W.; Verzemnieks, Juris; Keller, Peter C.; Shorey, Mark W.; Steinetz, Bruce (Technical Monitor)
2000-01-01
This program addresses the development of high temperature structural seals for control surfaces for a new generation of small reusable launch vehicles. Successful development will contribute significantly to the mission goal of reducing launch cost for small, 200 to 300 lb payloads. Development of high temperature seals is mission enabling. For instance, ineffective control surface seals can result in high temperature (3100 F) flows in the elevon area exceeding structural material limits. Longer sealing life will allow use for many missions before replacement, contributing to the reduction of hardware, operation and launch costs. During the first phase of this program the existing launch vehicle control surface sealing concepts were reviewed, the aerothermal environment for a high temperature seal design was analyzed and a mock up of an arc-jet test fixture for evaluating seal concepts was fabricated.
Sealing ceramic material in low melting point glass
NASA Technical Reports Server (NTRS)
Moritoki, M.; Fujikawa, T.; Miyanaga, J.
1984-01-01
A structured device placed in an aerated crucible to pack ceramics molding substance that is to be processed was designed. The structure is wrapped by sealing material made of pyrex glass and graphite foil or sheet with a weight attached on top of it. The crucible is made of carbon; the ceramics material to be treated through heat intervenient press process is molding substance consisting mainly of silicon nitride.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Dong-Sang; Schweiger, Michael J.
2013-07-25
We investigated a mass balance of rhenium (used as a surrogate for technetium-99) in a borosilicate glass that was mixed with excess Re source (KReO4) beyond its solubility and heat treated in a vacuum-sealed fused silica ampoule. Distribution of Re in the bulk of the glass, in a salt phase formed on the melt surface, and in condensate material deposited on the ampoule wall was evaluated to understand the Re migration into different phases during the reaction between the molten glass and KReO4. The information gained from this study will contribute to an effort to understand the mechanism of technetiummore » retention in or escape from glass melt during early stages of glass batch melting, which is a goal of the present series of studies.« less
Axial seal system for a gas turbine steam-cooled rotor
Mashey, Thomas Charles
2002-01-01
An axial seal assembly is provided at the interface between adjacent wheels and spacers of a gas turbine rotor and disposed about tubes passing through openings in the rotor adjacent the rotor rim and carrying a thermal medium. Each seal assembly includes a support bushing for supporting a land of the thermal medium carrying tube, an axially registering seat bushing disposed in the opposed opening and a frustoconical seal between the seal bushing and seat. The seal bushing includes a radial flange having an annular recess for retaining the outer diameter edge of the seal, while the seat bushing has an axially facing annular surface forming a seat for engagement by the inner diameter edge of the seal.
NASA Technical Reports Server (NTRS)
Walowit, Jed A.; Shapiro, Wibur
2005-01-01
This is the source listing of the computer code SPIRALI which predicts the performance characteristics of incompressible cylindrical and face seals with or without the inclusion of spiral grooves. Performance characteristics include load capacity (for face seals), leakage flow, power requirements and dynamic characteristics in the form of stiffness, damping and apparent mass coefficients in 4 degrees of freedom for cylindrical seals and 3 degrees of freedom for face seals. These performance characteristics are computed as functions of seal and groove geometry, load or film thickness, running and disturbance speeds, fluid viscosity, and boundary pressures.
Hermetic Glass-To-Metal Seal For Instrumentation Window
NASA Technical Reports Server (NTRS)
Hill, Arthur J.
1992-01-01
Proposed mounting scheme for optical element of instrumentation window in pressure vessel ensures truly hermetic seal while minimizing transmission of stress to optical element. Brazed metal seal superior to conventional gaskets of elastomer, carbon, asbestos, or other material compressed between optical element and wall of vessel. Concentric brazed joints in proposed seal bond metal ring to wall of vessel and to optical element. U-shaped cross section allows ring to flex under pressure.
[Comparative studies on fissure sealing: composite versus Cermet cement].
Hickel, R; Voss, A
1989-06-01
Fifty two molars sealed with either composite or Cermet cement were compared. The composite sealant was applied after enamel etching using a rubber dam. Before sealing with Cermet cement the enamel was only cleaned with pumice powder and sodium hypochlorie and the material was applied without enamel etching. After an average follow-up of 1.6 years composite sealants proved to be significantly more reliable. Cermet cement sealings showed defects more frequently.
2007 NASA Seal/Secondary Air System Workshop. Volume 1
NASA Technical Reports Server (NTRS)
Steinetz, Bruce M.; Hendricks, Robert C.; Delgado, Irebert
2008-01-01
The 2007 NASA Seal/Secondary Air System workshop covered the following topics: (i) Overview of NASA's new Orion project aimed at developing a new spacecraft that will fare astronauts to the International Space Station, the Moon, Mars, and beyond; (ii) Overview of NASA's fundamental aeronautics technology project; (iii) Overview of NASA Glenn s seal project aimed at developing advanced seals for NASA's turbomachinery, space, and reentry vehicle needs; (iv) Reviews of NASA prime contractor, vendor, and university advanced sealing concepts, test results, experimental facilities, and numerical predictions; and (v) Reviews of material development programs relevant to advanced seals development. Turbine engine studies have shown that reducing seal leakage as well as high-pressure turbine (HPT) blade tip clearances will reduce fuel burn, lower emissions, retain exhaust gas temperature margin, and increase range. Turbine seal development topics covered include a method for fast-acting HPT blade tip clearance control, noncontacting low-leakage seals, intershaft seals, and a review of engine seal performance requirements for current and future Army engine platforms.
2008 NASA Seal/Secondary Air System Workshop
NASA Technical Reports Server (NTRS)
Steinetz, Bruce M. (Editor); Hendricks, Robert C. (Editor); Delgado, Irebert R. (Editor)
2009-01-01
The 2008 NASA Seal/Secondary Air System Workshop covered the following topics: (i) Overview of NASA s new Orion project aimed at developing a new spacecraft that will fare astronauts to the International Space Station, the Moon, Mars, and beyond; (ii) Overview of NASA s fundamental aeronautics technology project; (iii) Overview of NASA Glenn s seal project aimed at developing advanced seals for NASA s turbomachinery, space, and reentry vehicle needs; (iv) Reviews of NASA prime contractor, vendor, and university advanced sealing concepts, test results, experimental facilities, and numerical predictions; and (v) Reviews of material development programs relevant to advanced seals development. Turbine engine studies have shown that reducing seal leakage as well as high-pressure turbine (HPT) blade tip clearances will reduce fuel burn, lower emissions, retain exhaust gas temperature margin, and increase range. Turbine seal development topics covered include a method for fast-acting HPT blade tip clearance control, noncontacting low-leakage seals, intershaft seals, and a review of engine seal performance requirements for current and future Army engine platforms.
NASA Astrophysics Data System (ADS)
Lawrence, J.; Li, L.; Spencer, J. T.
1998-04-01
Work has been conducted using a 60 Wcw high power diode laser (HPDL) in order to determine the feasibility and characteristics of sealing the void between adjoining ceramic tiles with a specially developed grout material having an impermeable enamel surface glaze. A two-stage process has been developed using a new grout material which consists of two distinct components: an amalgamated compound substrate and a glazed enamel surface; the amalgamated compound seal providing a tough, heat resistant bulk substrate, whilst the enamel provides an impervious surface. HPDL processing has resulted in crack free seals produced in normal atmospheric conditions. The basic process phenomena are investigated and the laser effects in terms of seal morphology, composition and microstructure are presented. Also, the resultant heat affects are analysed and described, as well as the effects of the shield gases, O 2 and Ar, during laser processing. Tiles were successfully sealed with power densities as low as 500 W/cm 2 and at rates up to 600 mm/min. Contact angle measurements revealed that due to the wettability characteristics of the amalgamated oxide compound grout (AOCG), laser surface treatment was necessary in order to alter the surface from a polycrystalline to a semi-amorphous structure, thus allowing the enamel to adhere. Bonding of the enamel to the AOCG and the ceramic tiles was identified as being principally due to van der Waals forces, and on a very small scale, some of the base AOCG material dissolving into the glaze.
High temperature storage characteristics of lithium sulfur dioxide cells
NASA Technical Reports Server (NTRS)
Watson, T.
1980-01-01
Hermetically sealed SO2 cells were developed to eliminate SO2 diffusion and its adverse effects on shelf life. A two part barrier coating material was applied to the internal surface of the glass seal and cured under a predetermined thermal profile in order to prevent the self discharge associated with glass seal corrosion.
10 CFR 35.590 - Training for use of sealed sources for diagnosis.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 10 Energy 1 2012-01-01 2012-01-01 false Training for use of sealed sources for diagnosis. 35.590 Section 35.590 Energy NUCLEAR REGULATORY COMMISSION MEDICAL USE OF BYPRODUCT MATERIAL Sealed Sources for...— (1) Radiation physics and instrumentation; (2) Radiation protection; (3) Mathematics pertaining to...
10 CFR 35.590 - Training for use of sealed sources for diagnosis.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 10 Energy 1 2014-01-01 2014-01-01 false Training for use of sealed sources for diagnosis. 35.590 Section 35.590 Energy NUCLEAR REGULATORY COMMISSION MEDICAL USE OF BYPRODUCT MATERIAL Sealed Sources for...— (1) Radiation physics and instrumentation; (2) Radiation protection; (3) Mathematics pertaining to...
10 CFR 35.590 - Training for use of sealed sources for diagnosis.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 10 Energy 1 2013-01-01 2013-01-01 false Training for use of sealed sources for diagnosis. 35.590 Section 35.590 Energy NUCLEAR REGULATORY COMMISSION MEDICAL USE OF BYPRODUCT MATERIAL Sealed Sources for...— (1) Radiation physics and instrumentation; (2) Radiation protection; (3) Mathematics pertaining to...
10 CFR 35.590 - Training for use of sealed sources for diagnosis.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 1 2011-01-01 2011-01-01 false Training for use of sealed sources for diagnosis. 35.590 Section 35.590 Energy NUCLEAR REGULATORY COMMISSION MEDICAL USE OF BYPRODUCT MATERIAL Sealed Sources for...— (1) Radiation physics and instrumentation; (2) Radiation protection; (3) Mathematics pertaining to...
75 FR 20565 - Marine Mammals; File No. 14636
Federal Register 2010, 2011, 2012, 2013, 2014
2010-04-20
..., Santa Cruz, CA, has applied in due form for a permit to conduct research on northern elephant seals... on northern elephant seals in California, including population growth and status, reproductive... metabolism, and sensory capacities. Northern elephant seals, totaling a maximum of 3,930 animals per year...
Glass-ceramic hermetic seals to high thermal expansion metals
Kramer, D.P.; Massey, R.T.
1987-04-28
A process for forming glass-ceramic materials from an alkaline silica-lithia glass composition comprising 60-72 mole-% SiO/sub 2/, 18-27 mole-% Li/sub 2/O, 0-5 mole-% Al/sub 2/O/sub 3/, 0-6 mole-% K/sub 2/O, 0-3 mole-% B/sub 2/O/sub 3/, and 0.5-2.5 mole-% P/sub 2/O/sub 5/, which comprises heating said glass composition at a first temperature within the 950-1050/degree/C range for 5-60 minutes, and then at a devitrification temperature within the 700-900/degree/C range for about 5-300 minutes to obtain a glass-ceramic having a thermal expansion coefficient of up to 210 x 10/sup /minus/7///degree/C. These ceramics form strong, hermetic seals with high expansion metals such as stainless steel alloys. An intermediate nucleation heating step conducted at a temperature within the range of 675-750/degree/C for 10-120 minutes may be employed between the first stage and the devitrification stage. 1 fig., 2 tabs.
Shaft seal assembly and method
NASA Technical Reports Server (NTRS)
Keba, John E. (Inventor)
2007-01-01
A pressure-actuated shaft seal assembly and associated method for controlling the flow of fluid adjacent a rotatable shaft are provided. The seal assembly includes one or more seal members that can be adjusted between open and closed positions, for example, according to the rotational speed of the shaft. For example, the seal member can be configured to be adjusted according to a radial pressure differential in a fluid that varies with the rotational speed of the shaft. In addition, in the closed position, each seal member can contact a rotatable member connected to the shaft to form a seal with the rotatable member and prevent fluid from flowing through the assembly. Thus, the seal can be closed at low speeds of operation and opened at high speeds of operation, thereby reducing the heat and wear in the seal assembly while maintaining a sufficient seal during all speeds of operation.
NASA Astrophysics Data System (ADS)
Andolina, Vincent L.
The scientific hypothesis of this work is that modulation of the properties of hard materials to exhibit abrasion-reducing and low-energy surfaces will extend the functional lifetimes of elastomeric seals pressed against them in abrasive underwater systems. The initial motivation of this work was to correct a problem noted in the leaking of seals at major hydropower generating facilities subject to fouling by abrasive zebra mussel shells and extensive corrosion. Similar biofouling-influenced problems can develop at seals in medical devices and appliances from regulators in anesthetic machines and SCUBA diving oxygen supply units to autoclave door seals, injection syringe gaskets, medical pumps, drug delivery components, and feeding devices, as well as in food handling equipment like pasteurizers and transfer lines. Maritime and many other heavy industrial seal interfaces could also benefit from this coating system. Little prior work has been done to elucidate the relationship of seal plate surface properties to the friction and wear of elastomeric seals during sliding contacts of these articulating materials, or to examine the secondary influence of mineralized debris within the contacting interfaces. This investigation utilized the seal materials relevant to the hydropower application---neoprene elastomer against carbon steel---with and without the application of a silicone-epoxy coating (WearlonRTM 2020.98) selected for its wear-resistance, hydrophobicity, and "easy-release" capabilities against biological fouling debris present in actual field use. Analytical techniques applied to these materials before and after wear-producing processes included comprehensive Contact Angle measurements for Critical Surface Tension (CA-CST) determination, Scanning Electron Microscopic inspections, together with Energy Dispersive X-ray Spectroscopy (SEM-EDS) and X-Ray Fluorescence (XRF) measurements for determination of surface texture and inorganic composition, Multiple Attenuated Internal Reflection (MAIR-IR) and Microscopic Infrared Spectroscopy for organic surface compositional details, light microscopy for wear area quantification, and profilometry for surface roughness estimation and wear depth quantification. Pin-on-disc dynamic Coefficient of Friction (CoF) measurements provided data relevant to forecasts of seal integrity in dry, wet and biofouling-influenced sliding contact. Actual wear of neoprene seal material against uncoated and coated steel surfaces, wet and dry, was monitored after both rotary and linear cyclic wear testing, demonstrating significant reductions in elastomer wear areas and depths (and resultant volumes) when the coating was present. Coating the steel eliminated a 270% increase in neoprene surface area wear and an 11-fold increase in seal abrasive volume loss associated with underwater rusting in rotary experiments. Linear testing results confirm coating efficacy by reducing wear area in both loading regimes by about half. No coating delamination was observed, apparently due to a differential distribution of silicone and epoxy ingredients at the air-exposed vs. steel-bonded interfaces demonstrated by IR and EDS methods. Frictional testing revealed higher Coefficients of Friction (CoF) associated with the low-speed sliding of Neoprene over coated rather than uncoated steel surfaces in a wet environment, indicating better potential seal adhesion between the hydrophobic elastomer and coating than between the elastomer and intrinsically hydrophilic uncoated steel. When zebra mussel biofouling debris was present in the articulating joints, CoF was reduced as a result of a water channel path produced between the articulating surfaces by the retained biological matter. Easier release of the biofouling from the low-CST coated surfaces restored the seal integrity more rapidly with further water rinsing. Rapid sliding diminished these biofouling-related differences, but revealed a significant advantage in reducing the CoF of the elastomer-on-coating couples to less than 50% of the elastomer-on-steel couples in all conditions. These consolidated results indicate that general improvements in maintenance of seal integrity and functional lifetimes for other sliding joints exposed to potentially abrasive biofouling media can be obtained by coating the more-rigid seal-plate surfaces with low-CST, hydrophobic, wear-resistant materials such as the silicone-epoxy system characterized here.
Femtosecond laser machining and lamination for large-area flexible organic microfluidic chips
NASA Astrophysics Data System (ADS)
Malek, C. Khan; Robert, L.; Salut, R.
2009-04-01
A hybrid process compatible with reel-to-reel manufacturing is developed for ultra low-cost large-scale manufacture of disposable microfluidic chips. It combines ultra-short laser microstructuring and lamination technology. Microchannels in polyester foils were formed using focused, high-intensity femtosecond laser pulses. Lamination using a commercial SU8-epoxy resist layer was used to seal the microchannel layer and cover foil. This hybrid process also enables heterogeneous material structuration and integration.
Method of sealing casings of subsurface materials management system
Nickelson, Reva A.; Richardson, John G.; Kostelnik, Kevin M.; Sloan, Paul A.
2007-02-06
Systems, components, and methods relating to subterranean containment barriers. Laterally adjacent tubular casings having male interlock structures and multiple female interlock structures defining recesses for receiving a male interlock structure are used to create subterranean barriers for containing and treating buried waste and its effluents. The multiple female interlock structures enable the barriers to be varied around subsurface objects and to form barrier sidewalls. The barrier may be used for treating and monitoring a zone of interest.
2001-01-24
The Protein Crystallization for Microgravity (DCAM) was developed at NASA's Marshall Space Flight Center. A droplet of solution with protein molecules dissolved in it is isolated in the center of a small well. In orbit, an elastomer seal is lifted so the solution can evaporate and be absorbed by a wick material. This raises the concentration of the solution, thus prompting protein molecules in the solution to form crystals. The principal investigator is Dr. Dan Carter of New Century Pharmaceuticals in Huntsville, AL.
New hermetic sealing material for vacuum brazing of stainless steels
NASA Astrophysics Data System (ADS)
Hildebrandt, S.; Wiehl, G.; Silze, F.
2016-03-01
For vacuum brazing applications such as in vacuum interrupter industry Hermetic Sealing Materials (HSM) with low partial pressure are widely used. AgCu28 dominates the hermetic sealing market, as it has a very good wetting behavior on copper and metallized ceramics. Within recent decades wetting on stainless steel has become more and more important. However, today the silver content of HSMs is more in focus than in the past decades, because it has the biggest impact on the material prices. Umicore Technical Materials has developed a new copper based HSM, CuAg40Ga10. The wettability on stainless steel is significantly improved compared to AgCu28 and the total silver content is reduced by almost 44%. In this article the physical properties of the alloy and its brazed joints will be presented compared to AgCu28.
Welding/sealing glass-enclosed space in a vacuum
Tracy, C.E.; Benson, D.K.
1996-02-06
A method of welding and sealing the edges of two juxtaposed glass sheets together to seal a vacuum space between the sheets comprises the steps of positioning a radiation absorbent material, such as FeO, VO{sub 2}, or NiO, between the radiation transmissive glass sheets adjacent the edges and then irradiating the absorbent material, preferably with a laser beam, through at least one of the glass sheets. Heat produced by the absorbed radiation in the absorbent material melts glass in the portions of both glass sheets that are adjacent the absorbent material, and the melted glass from both sheets flows together to create the weld when the melted glass cools and hardens. The absorbent material can be dissolved and diffused into the melted glass to the extent that it no longer absorbs enough energy to keep the glass melted, thus, with appropriate proportioning of absorbent material to source energy power and welding heat needed, the process can be made self-stopping. 8 figs.
Welding/sealing glass-enclosed space in a vacuum
Tracy, C. Edwin; Benson, David K.
1996-01-01
A method of welding and sealing the edges of two juxtaposed glass sheets together to seal a vacuum space between the sheets comprises the steps of positioning a radiation absorbant material, such as FeO, VO.sub.2, or NiO, between the radiation transmissive glass sheets adjacent the edges and then irradiating the absorbant material, preferably with a laser beam, through at least one of the glass sheets. Heat produced by the absorbed radiation in the absorbant material melts glass in the portions of both glass sheets that are adjacent the absorbant material, and the melted glass from both sheets flows together to create the weld when the melted glass cools and hardens. The absorbant material can be dissolved and diffused into the melted glass to the extent that it no longer absorbs enough energy to keep the glass melted, thus, with appropriate proportioning of absorbant material to source energy power and welding heat needed, the process can be made self-stopping.
75 FR 11132 - Marine Mammals; File No. 15261
Federal Register 2010, 2011, 2012, 2013, 2014
2010-03-10
... form for a permit to conduct research on leopard seals (Hydrurga leptonyx) in Antarctica. DATES.... Ponganis proposes to study the foraging behavior of leopard seals at Cape Washington, Antarctica. Backpack digital cameras and time depth recorders would be deployed on up to five leopard seals annually over five...
Air Force Research Laboratory Technology Milestones 2008
2008-01-01
futuristic ‘bots will possess self - healing properties as well, enhancing their resiliency to damage sustained during such missions. Leading the SuperBot...Matrix Composites Pollution Prevention Materials Polymeric Materials Power and Chemical Processes Quantitative Defect Characterization Robotics ...advanced self -sealing CMC manufactured by French company Snecma Propulsion Solide (SPS). Thus far, the seals have performed extremely well, and a
Orbital transfer rocket engine technology program: Soft wear ring seal technology
NASA Technical Reports Server (NTRS)
Lariviere, Brian W.
1992-01-01
Liquid oxygen (LOX) compatibility tests, including autogenous ignition, promoted ignition, LOX impact tests, and friction and wear tests on different PV products were conducted for several polymer materials as verification for the implementation of soft wear ring seals in advanced rocket engine turbopumps. Thermoplastics, polyimide based materials, and polyimide-imide base materials were compared for oxygen compatibility, specific wear coefficient, wear debris production, and heat dissipation mechanisms. A thermal model was generated that simulated the frictional heating input and calculated the surface temperature and temperature distribution within the seal. The predictions were compared against measured values. Heat loads in the model were varied to better match the test data and determine the difference between the measured and the calculated coefficients of friction.
Development of a plasma sprayed ceramic gas path seal for high pressure turbine applications
NASA Technical Reports Server (NTRS)
Shiembob, L. T.
1977-01-01
The plasma sprayed graded layered yittria stabilized zirconia (ZrO2)/metal(CoCrAlY) seal system for gas turbine blade tip applications up to 1589 K (2400 F) seal temperatures was studied. Abradability, erosion, and thermal fatigue characteristics of the graded layered system were evaluated by rig tests. Satisfactory abradability and erosion resistance was demonstrated. Encouraging thermal fatigue tolerance was shown. Initial properties for the plasma sprayed materials in the graded, layered seal system was obtained, and thermal stress analyses were performed. Sprayed residual stresses were determined. Thermal stability of the sprayed layer materials was evaluated at estimated maximum operating temperatures in each layer. Anisotropic behavior in the layer thickness direction was demonstrated by all layers. Residual stresses and thermal stability effects were not included in the analyses. Analytical results correlated reasonably well with results of the thermal fatigue tests. Analytical application of the seal system to a typical gas turbine engine application predicted performance similar to rig specimen thermal fatigue performance. A model for predicting crack propagation in the sprayed ZrO2/CoCrAlY seal system was proposed, and recommendations for improving thermal fatigue resistance were made. Seal system layer thicknesses were analytically optimized to minimize thermal stresses in the abradability specimen during thermal fatigue testing. Rig tests on the optimized seal configuration demonstrated some improvement in thermal fatigue characteristics.
System and method for producing metallic iron nodules
Bleifuss, Rodney L [Grand Rapids, MN; Englund, David J [Bovey, MN; Iwasaki, Iwao [Grand Rapids, MN; Lindgren, Andrew J [Grand Rapids, MN; Kiesel, Richard F [Hibbing, MN
2011-09-20
A method for producing metallic iron nodules by assembling a shielding entry system to introduce coarse carbonaceous material greater than 6 mesh in to the furnace atmosphere at location(s) where the temperature of the furnace atmosphere adjacent at least partially reduced reducible iron bearing material is between about 2200 and 2650.degree. F. (1200 and 1450.degree. C.), the shielding entry system adapted to inhibit emission of infrared radiation from the furnace atmosphere and seal the furnace atmosphere from exterior atmosphere while introducing coarse carbonaceous material greater than 6 mesh into the furnace to be distributed over the at least partially reduced reducible iron bearing material, and heating the covered at least partially reduced reducible iron bearing material in a fusion atmosphere to assist in fusion and inhibit reoxidation of the reduced material during fusion to assist in fusion and inhibit reoxidation of the reduced material in forming metallic iron nodules.
Leaf seal for inner and outer casings of a turbine
Schroder, Mark Stewart; Leach, David
2002-01-01
A plurality of arcuate, circumferentially extending leaf seal segments form an annular seal spanning between annular sealing surfaces of inner and outer casings of a turbine. The ends of the adjoining seal segments have circumferential gaps to enable circumferential expansion and contraction of the segments. The end of a first segment includes a tab projecting into a recess of a second end of a second segment. Edges of the tab seal against the sealing surfaces of the inner and outer casings have a narrow clearance with opposed edges of the recess. An overlying cover plate spans the joint. Leakage flow is maintained at a minimum because of the reduced gap between the radially spaced edges of the tab and recess, while the seal segments retain the capacity to expand and contract circumferentially.
Split ring floating air riding seal for a turbine
Mills, Jacob A
2015-11-03
A floating air riding seal for a gas turbine engine with a rotor and a stator, an annular piston chamber with an axial moveable annular piston assembly within the annular piston chamber, an annular cavity formed on the annular piston assembly that faces a seal surface on the rotor, and a central passage connecting the annular cavity to the annular piston chamber to supply compressed air to the seal face, where the annular piston assembly is a split piston assembly to maintain a tight seal as coning of the rotor disk occurs.
Effects of Hypervelocity Impacts on Silicone Elastomer Seals and Mating Aluminum Surfaces
NASA Technical Reports Server (NTRS)
deGroh, Henry C., III; Steinetz, Bruce M.
2009-01-01
While in space silicone based elastomer seals planned for use on NASA's Crew Exploration Vehicle (CEV) are exposed to threats from micrometeoroids and orbital debris (MMOD). An understanding of these threats is required to assess risks to the crew, the CEV orbiter, and missions. An Earth based campaign of hypervelocity impacts on small scale seal rings has been done to help estimate MMOD threats to the primary docking seal being developed for the Low Impact Docking System (LIDS). LIDS is being developed to enable the CEV to dock to the ISS (International Space Station) or to Altair (NASA's next lunar lander). The silicone seal on LIDS seals against aluminum alloy flanges on ISS or Altair. Since the integrity of a seal depends on both sealing surfaces, aluminum targets were also impacted. The variables considered in this study included projectile mass, density, speed, incidence angle, seal materials, and target surface treatments and coatings. Most of the impacts used a velocity near 8 km/s and spherical aluminum projectiles (density = 2.7 g/cubic cm), however, a few tests were done near 5.6 km/s. Tests were also performed using projectile densities of 7.7, 2.79, 2.5 or 1.14 g/cubic cm. Projectile incidence angles examined included 0 deg, 45 deg, and 60 deg from normal to the plane of the target. Elastomer compounds impacted include Parker's S0383-70 and Esterline's ELA-SA-401 in the as received condition, or after an atomic oxygen treatment. Bare, anodized and nickel coated aluminum targets were tested simulating the candidate mating seal surface materials. After impact, seals and aluminum plates were leak tested: damaged seals were tested against an undamaged aluminum plate; and undamaged seals were placed at various locations over craters in aluminum plates. It has been shown that silicone elastomer seals can withstand an impressive level of damage before leaking beyond allowable limits. In general on the tests performed to date, the diameter of the crater in either the elastomer, or the aluminum, must be at least as big as 80% to 90% of width of the bulb of the seal before significant leakage occurs.
Effects of Hypervelocity Impacts on Silicone Elastomer Seals and Mating Aluminum Surfaces
NASA Technical Reports Server (NTRS)
deGroh, Henry C., III; Steinetz, Bruce M.
2009-01-01
While in space silicone based elastomer seals planned for use on NASA's Crew Exploration Vehicle (CEV) are exposed to threats from micrometeoroids and orbital debris (MMOD). An understanding of these threats is required to assess risks to the crew, the CEV orbiter, and missions. An Earth based campaign of hypervelocity impacts on small scale seal rings has been done to help estimate MMOD threats to the primary docking seal being developed for the Low Impact Docking System (LIDS). LIDS is being developed to enable the CEV to dock to the ISS (International Space Station) or to Altair (NASA's next lunar lander). The silicone seal on LIDS seals against aluminum alloy flanges on ISS or Altair. Since the integrity of a seal depends on both sealing surfaces, aluminum targets were also impacted. The variables considered in this study included projectile mass, density, speed, incidence angle, seal materials, and target surface treatments and coatings. Most of the impacts used a velocity near 8 km/s and spherical aluminum projectiles (density = 2.7 g/cubic centimeter), however, a few tests were done near 5.6 km/s. Tests were also performed using projectile densities of 7.7, 2.79, 2.5 or 1.14 g/cubic centimeter. Projectile incidence angles examined included 0 degrees, 45 degrees , and 60 degrees from normal to the plane of the target. Elastomer compounds impacted include Parker's S0383-70 and Esterline's ELA-SA-401 in the as received condition, or after an atomic oxygen treatment. Bare, anodized and nickel coated aluminum targets were tested simulating the candidate mating seal surface materials. After impact, seals and aluminum plates were leak tested: damaged seals were tested against an undamaged aluminum plate; and undamaged seals were placed at various locations over craters in aluminum plates. It has been shown that silicone elastomer seals can withstand an impressive level of damage before leaking beyond allowable limits. In general on the tests performed to date, the diameter of the crater in either the elastomer, or the aluminum, must be at least as big as 80% to 90% of width of the bulb of the seal before significant leakage occurs.
Mechanical seal with textured sidewall
Khonsari, Michael M.; Xiao, Nian
2017-02-14
The present invention discloses a mating ring, a primary ring, and associated mechanical seal having superior heat transfer and wear characteristics. According to an exemplary embodiment of the present invention, one or more dimples are formed onto the cylindrical outer surface of a mating ring sidewall and/or a primary ring sidewall. A stationary mating ring for a mechanical seal assembly is disclosed. Such a mating ring comprises an annular body having a central axis and a sealing face, wherein a plurality of dimples are formed into the outer circumferential surface of the annular body such that the exposed circumferential surface area of the annular body is increased. The texture added to the sidewall of the mating ring yields superior heat transfer and wear characteristics.
NASA Astrophysics Data System (ADS)
Khalifa, H. E.; Deck, C. P.; Gutierrez, O.; Jacobsen, G. M.; Back, C. A.
2015-02-01
The use of silicon carbide (SiC) composites as structural materials in nuclear applications necessitates the development of a viable joining method. One critical application for nuclear-grade joining is the sealing of fuel within a cylindrical cladding. This paper demonstrates cylindrical joint feasibility using a low activation nuclear-grade joint material comprised entirely of β-SiC. While many papers have considered joining material, this paper takes into consideration the joint geometry and component form factor, as well as the material performance. Work focused specifically on characterizing the strength and permeability performance of joints between cylindrical SiC-SiC composites and monolithic SiC endplugs. The effects of environment and neutron irradiation were not evaluated in this study. Joint test specimens of different geometries were evaluated in their as-fabricated state, as well as after being subjected to thermal cycling and partial mechanical loading. A butted scarf geometry supplied the best combination of high strength and low permeability. A leak rate performance of 2 × 10-9 mbar l s-1 was maintained after thermal cycling and partial mechanical loading and sustained applied force of 3.4 kN, or an apparent strength of 77 MPa. This work shows that a cylindrical SiC-SiC composite tube sealed with a butted scarf endplug provides out-of-pile strength and permeability performance that meets light water reactor design requirements.
Aguilar, F G; Drubi-Filho, B; Casemiro, L A; Watanabe, M G C; Pires-de-Souza, F C P
2007-01-01
This study compares the retention and penetration of a conventional resin-based sealant (Fluroshield) and a photochromatic flowable composite resin (Tetric Flow Chroma) placed on occlusal pits and fissures and submitted to thermal or chemical cycling regimens. Penetration assessment--ten premolars were sealed with each material, isolated (except for the sealed surface) and immersed in 0.2% Rhodamine B. The teeth were serially sectioned in a mesiodistal direction. The images of the sections were digitized and analyzed (ImageLab). The distance between the most superficial and the deepest points on the occlusal central groove was calculated to determine the groove's total depth. The length of the central groove filled with the sealant was divided by its total depth to obtain the percentage of sealing of the occlusal groove. Retention assessment--30 premolars were sealed, their occlusal surfaces were photographed and the area occupied by the sealing materials was demarcated (ImageLab). The teeth were submitted to different treatments: thermocycled, stored in artificial saliva and immersed in acetic acid and saliva (10 cycles/day protocol for 30 days). New photographs were taken to assess the final area occupied by the materials. The difference between the final and initial area was calculated to obtain the material loss. The data was analyzed (two-way ANOVA and Tukey's test P<0.05). Both materials presented similar penetration of the occlusal central groove. After thermal and chemical cycling, the materials did not differ with respect to retention, except for immersion in acetic acid. In this case, Tetric Flow Chroma presented greater retention than Fluoroshield.
Stress analyses for the glass joints of contemporary sodium sulfur batteries
NASA Astrophysics Data System (ADS)
Jung, Keeyoung; Lee, Solki; Kim, Goun; Kim, Chang-Soo
2014-12-01
During the manufacturing and thermal cycles of advanced contemporary large sized sodium sulfur (NaS) batteries, thermally driven stresses can be applied to the glass sealing joints, which may result in catastrophic cell failure. To minimize the thermal stresses at the joints, there is a need to develop a method to properly estimate the maximum thermal stresses by varying the materials properties and shapes of the sealing area, and thereby determine the properties and shapes of sealing material at the joints. In the present study, the optimum coefficient of thermal expansion (CTE) of the glass sealant and end shape of the glass sealing area (i.e., concave, flat, and convex shapes) have been determined using the finite-element analysis (FEA) computation technique. The results showed that the CTE value of 7.8 × 10-6 K-1 with a convex end shape would have the lowest stress concentration in the vicinity of glass sealing joints for the prototype tubular NaS cell design adopted in this work.
Ultra low friction carbon/carbon composites for extreme temperature applications
Erdemir, Ali; Busch, Donald E.; Fenske, George R.; Lee, Sam; Shepherd, Gary; Pruett, Gary J.
2001-01-01
A carbon/carbon composite in which a carbon matrix containing a controlled amount of boron or a boron compound is reinforced with carbon fiber exhibits a low coefficient of friction, i.e., on the order of 0.04 to 0.1 at temperatures up to 600.degree. C., which is one of the lowest frictional coefficients for any type of carbonaceous material, including graphite, glassy carbon, diamond, diamond-like carbon and other forms of carbon material. The high degree of slipperiness of the carbon composite renders it particularly adapted for limiting friction and wear at elevated temperatures such as in seals, bearings, shafts, and flexible joints
Electrochemical cell with high conductivity glass electrolyte
Nelson, P.A.; Bloom, I.D.; Roche, M.F.
1986-04-17
A secondary electrochemical cell with sodium-sulfur or other molten reactants is provided with an ionically conductive glass electrolyte. The cell is contained within an electrically conductive housing with a first portion at negative potential and a second portion insulated therefrom at positive electrode potential. The glass electrolyte is formed into a plurality of elongated tubes and placed lengthwise within the housing. The positive electrode material, for instance sulfur, is sealed into the glass electrolyte tubes and is provided with an elongated axial current collector. The glass electrolyte tubes are protected by shield tubes or sheets that also define narrow annuli for wicking of the molten negative electrode material.
Electrochemical cell with high conductivity glass electrolyte
Nelson, P.A.; Bloom, I.D.; Roche, M.F.
1987-04-21
A secondary electrochemical cell with sodium-sulfur or other molten reactants is provided with a ionically conductive glass electrolyte. The cell is contained within an electrically conductive housing with a first portion at negative potential and a second portion insulated therefrom at positive electrode potential. The glass electrolyte is formed into a plurality of elongated tubes and placed lengthwise within the housing. The positive electrode material, for instance sulfur, is sealed into the glass electrolyte tubes and is provided with an elongated axial current collector. The glass electrolyte tubes are protected by shield tubes or sheets that also define narrow annuli for wicking of the molten negative electrode material. 6 figs.
Electrochemical cell with high conductivity glass electrolyte
Nelson, Paul A.; Bloom, Ira D.; Roche, Michael F.
1987-01-01
A secondary electrochemical cell with sodium-sulfur or other molten reactants is provided with a ionically conductive glass electrolyte. The cell is contained within an electrically conductive housing with a first portion at negative potential and a second portion insulated therefrom at positive electrode potential. The glass electrolyte is formed into a plurality of elongated tubes and placed lengthwise within the housing. The positive electrode material, for instance sulfur, is sealed into the glass electrolyte tubes and is provided with an elongated axial current collector. The glass electrolyte tubes are protected by shield tubes or sheets that also define narrow annuli for wicking of the molten negative electrode material.
Multi-pane glass unit having seal with adhesive and hermetic coating layer
Miller, Seth A; Stark, David H; Francis, IV, William H; Puligandla, Viswanadham; Boulos, Edward N; Pernicka, John
2015-02-10
A vacuum insulated glass unit (VIGU) comprises a first pane of a transparent material and a second pane of a transparent material. The second pane is spaced apart from the first pane to define a cavity therebetween. At least one of a spacer and an array of stand-off members is disposed between the first and second panes to maintain separation therebetween. A first adhesive layer forms at least a portion of a gas-tight connection between the first pane and the second pane. A highly hermetic coating is disposed over the adhesive layer, where the coating is an inorganic layer.
Wireless sensing system for non-invasive monitoring of attributes of contents in a container
NASA Technical Reports Server (NTRS)
Woodard, Stanley E. (Inventor)
2010-01-01
A wireless sensing system monitors the level, temperature, magnetic permeability and electrical dielectric constant of a non-gaseous material in a container. An open-circuit electrical conductor is shaped to form a two-dimensional geometric pattern that can store and transfer electrical and magnetic energy. The conductor resonates in the presence of a time-varying magnetic field to generate a harmonic response. The conductor is mounted in an environmentally-sealed housing. A magnetic field response recorder wirelessly transmits the time-varying magnetic field to power the conductor, and wirelessly detects the harmonic response that is an indication of at least one of level of the material in the container, temperature of the material in the container, magnetic permeability of the material in the container, and dielectric constant of the material in the container.
Improved Main Shaft Seal Life in Gas Turbines Using Laser Surface Texturing
NASA Astrophysics Data System (ADS)
McNickle, Alan D.; Etsion, Izhak
2002-10-01
This paper presents a general overview of the improved main shaft seal life in gas turbines using laser surface texturing (LST). The contents include: 1) Laser Surface Texturing System; 2) Seal Schematic with LST applied; 3) Dynamic Rig Tests; 4) Surface Finish Definitions; 5) Wear Test Rig; 6) Dynamic Test Rig; 7) Seal Cross Section-Rig Test; and 8) Typical Test Results. This paper is in viewgraph form.
Investigating Low Temperature Properties of Rubber Seals - 13020
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jaunich, M.; Wolff, D.; Stark, W.
To achieve the required tightness levels of containers for low and intermediate level radioactive wastes rubbers are widely applied as main sealing materials. The save encapsulation of the radioactive container contents has to be guaranteed according to legislation and appropriate guidelines for long storage periods as well as down to temperatures of -40 deg. C during transportation. Therefore the understanding of failure mechanisms that lead to leakage at low temperatures is of high importance. It is known that the material properties of rubbers are strongly influenced by temperature. At low temperatures this is caused by the rubber-glass transition (abbr. glassmore » transition). During continuous cooling the material changes from rubber-like entropy-elastic to stiff energy-elastic behaviour, that allows nearly no strain or retraction. Therefore, rubbers are normally used above their glass transition but the minimum working temperature limit is not defined precisely, what can cause problems during application. The temperature range where full functionality is possible is strongly dependent on the application conditions and the material. For this investigation mainly ethylene propylene diene (EPDM) and fluorocarbon rubbers (FKM) were selected as they are often used for radioactive waste containers. Differential Scanning Calorimetry (DSC) and Dynamic Mechanical Analysis (DMA) are typically used for the determination of the temperature range of the glass transition process. The standardized compression set measurement according to ISO 815 is common for investigation of rubber sealing materials as the test simulates the seal behaviour after release. To reduce the test time of the standard tests a faster technique giving the same information was developed. Additionally, the breakdown temperature of the sealing function of complete O-ring seals is measured in a component test setup to compare it with the results of the other tests. The experimental setup is capable of measuring the leakage rate at low temperatures by the pressure rise method. A model was developed that allows calculating the minimum working temperature limit of a seal by combining the results of the applied methods. (authors)« less
Containment penetration elastomer seal leak rate tests
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bridges, T.L.
1987-07-01
Tests were performed on three elastomer seal designs commonly used for nuclear plant containment mechanical penetrations. The objective of this research project is to obtain an understanding of the integrity and leakage behavior of these seal designs under severe accident temperature and pressure conditions. The three designs tested and the seal materials used in the tests were: (1) double tongue-and-groove design with silicone rubber seals, (2) double-O-ring design with neoprene and ethylene-propylene (EPDM) seals, and (3) double gumdrop design with neoprene and EPDM seals. The effects of thermal aging and angular rotations of flange mating surfaces were determined. The testmore » results provide information required to characterize the leakage behavior of penetrations under severe accident conditions. 3 refs., 10 figs., 12 tabs.« less
System for Packaging Planetary Samples for Return to Earth
NASA Technical Reports Server (NTRS)
Badescu, Mircea; Bar-Cohen, Yoseph; Backes, paul G.; Sherrit, Stewart; Bao, Xiaoqi; Scott, James S.
2010-01-01
A system is proposed for packaging material samples on a remote planet (especially Mars) in sealed sample tubes in preparation for later return to Earth. The sample tubes (Figure 1) would comprise (1) tubes initially having open tops and closed bottoms; (2) small, bellows-like collapsible bodies inside the tubes at their bottoms; and (3) plugs to be eventually used to close the tops of the tubes. The top inner surface of each tube would be coated with solder. The side of each plug, which would fit snugly into a tube, would feature a solder-filled ring groove. The system would include equipment for storing, manipulating, filling, and sealing the tubes. The containerization system (see Figure 2) will be organized in stations and will include: the storage station, the loading station, and the heating station. These stations can be structured in circular or linear pattern to minimize the manipulator complexity, allowing for compact design and mass efficiency. The manipulation of the sample tube between stations is done by a simple manipulator arm. The storage station contains the unloaded sample tubes and the plugs before sealing as well as the sealed sample tubes with samples after loading and sealing. The chambers at the storage station also allow for plug insertion into the sample tube. At the loading station the sample is poured or inserted into the sample tube and then the tube is topped off. At the heating station the plug is heated so the solder ring melts and seals the plug to the sample tube. The process is performed as follows: Each tube is filled or slightly overfilled with sample material and the excess sample material is wiped off the top. Then, the plug is inserted into the top section of the tube packing the sample material against the collapsible bellowslike body allowing the accommodation of the sample volume. The plug and the top of the tube are heated momentarily to melt the solder in order to seal the tube.
Wet powder seal for gas containment
Stang, Louis G.
1982-01-01
A gas seal is formed by a compact layer of an insoluble powder and liquid filling the fine interstices of that layer. The smaller the particle size of the selected powder, such as sand or talc, the finer will be the interstices or capillary spaces in the layer and the greater will be the resulting sealing capacity, i.e., the gas pressure differential which the wet powder layer can withstand. Such wet powder seal is useful in constructing underground gas reservoirs or storage cavities for nuclear wastes as well as stopping leaks in gas mains buried under ground or situated under water. The sealing capacity of the wet powder seal can be augmented by the hydrostatic head of a liquid body established over the seal.
Wet powder seal for gas containment
Stang, L.G.
1979-08-29
A gas seal is formed by a compact layer of an insoluble powder and liquid filling the fine interstices of that layer. The smaller the particle size of the selected powder, such as sand or talc, the finer will be the interstices or capillary spaces in the layer and the greater will be the resulting sealing capacity, i.e., the gas pressure differential which the wet powder layer can withstand. Such wet powder seal is useful in constructing underground gas reservoirs or storage cavities for nuclear wastes as well as stopping leaks in gas mains buried under ground or situated under water. The sealing capacity of the wet powder seal can be augmented by the hydrostatic head of a liquid body established over the seal.
Groff, Russell Dennis; Vatovec, Richard John
1978-06-11
In an illustrative embodiment of the invention, a nuclear reactor pressure vessel, having an internal hoop from which the heated coolant emerges from the reactor core and passes through to the reactor outlet nozzles, is provided with annular sealing members operatively disposed between the outlet nozzle and the hoop and partly within a retaining annulus formed in the hoop. The sealing members are biased against the pressure vessel and the hoop and one of the sealing members is provided with a piston type pressure ring sealing member which effectively closes the path between the inlet and outlet coolants in the region about the outlet nozzle establishing a leak-proof condition. Furthermore, the flexible responsiveness of the seal assures that the seal will not structurally couple the hoop to the pressure vessel.
Compatibility of Elastomeric Seal Compounds with MIL-H-6083 and MIL-H- 46170 Hydraulic Fluid
1990-06-01
are also made with results obtained using NBR -L, a reference material cited in AMS 3217. 20. DISTRIBUTION/AVAILABILJTY OF ABSTRACT 21. ABSTRACT...Concurrent comparative studies were conducted using NBR -L, a standard reference compound cited in Aerospace Materials Specification (AMS) 3217. Volume...of a standard reference material such as NBR -L, cited in AMS 3217. Obviously, requirements for fluids and for seals are both dictated by the needs of
Development of spiral-groove self-acting seals for helicopter engines
NASA Technical Reports Server (NTRS)
Obrien, M.
1979-01-01
A spiral-groove, self-acting face seal was rig tested at advanced gas turbine operating conditions to determine wear and leakage rates. The spiral-groove, self-acting geometry was located in the rotating seal seat. Seal component wear induced by start-stop operation was measured after subjecting the test seal to 176 start-stop cycles. Wear occurring during normal operation was documented throughout a 75-hour endurance test. Seal air leakage was also measured. During endurance operation, the seal was subjected to operating conditions bounded by the values surface speed - 244 m/s (800 ft/sec), air pressure - 148 N/sq cm abs (215 psia), and air temperature - 622 K (660 F). The post-test condition of the seal components was documented. Wear data is presented in tabular form, while seal air leakage is presented graphically, as a function of pressure and speed.
Sealing glasses for titanium and titanium alloys
Brow, Richard K.; Watkins, Randall D.
1992-01-01
Glass compositions containing CaO, Al.sub.2 O.sub.3, B.sub.2 O.sub.3, SrO and BaO of various combinations of mole % are provided. These compositions are capable of forming stable glass-to-metal seals with titanium and titanium alloys, for use in components such as seals for battery headers.
Sealing glasses for titanium and titanium alloys
Brow, R.K.; Watkins, R.D.
1988-01-21
Glass compositions containing CaO, Al/sub 2/O/sub 3/, B/sub 2/O/sub 3/, SrO and BaO of various combinations of mole % are provided. These compositions are capable of forming stable glass-to-metal seals with titanium and titanium alloys, for use in components such as seals for battery headers.
Molybdenum sealing glass-ceramic composition
Eagan, Robert J.
1976-01-01
The invention relates to a glass-ceramic composition having low hydrogen and helium permeability properties, along with high fracture strength, a thermal coefficient of expansion similar to that of molybdenum, and adaptable for hermetically sealing to molybdenum at temperatures of between about 900.degree. and about 950.degree.C. to form a hermatically sealed insulator body.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-06-15
... Activities: Cargo Container and Road Vehicle Certification for Transport Under Customs Seal AGENCY: U.S... Paperwork Reduction Act: Cargo Container and Road Vehicle for Transport under Customs Seal. This is a.... Title: Cargo Container and Road Vehicle for Transport under Customs Seal. OMB Number: 1651-0124. Form...
Method for producing micro heat panels
NASA Technical Reports Server (NTRS)
Camarda, Charles J. (Inventor); Peterson, George P. (Inventor); Rummler, Donald R. (Inventor)
1997-01-01
Flat or curved micro heat pipe panels are fabricated by arranging essentially parallel filaments in the shape of the desired panel. The configuration of the filaments corresponds to the desired configuration of the tubes that will constitute the heat pipes. A thermally conductive material is then deposited on and around the filaments to fill in the desired shape of the panel. The filaments are then removed, leaving tubular passageways of the desired configuration and surface texture in the material. The tubes are then filled with a working fluid and sealed. Composite micro heat pipe laminates are formed by layering individual micro heat pipe panels and bonding them to each other to form a single structure. The layering sequence of the micro heat pipe panels can be tailored to transport heat preferentially in specific directions as desired for a particular application.
Special nuclear material simulation device
Leckey, John H.; DeMint, Amy; Gooch, Jack; Hawk, Todd; Pickett, Chris A.; Blessinger, Chris; York, Robbie L.
2014-08-12
An apparatus for simulating special nuclear material is provided. The apparatus typically contains a small quantity of special nuclear material (SNM) in a configuration that simulates a much larger quantity of SNM. Generally the apparatus includes a spherical shell that is formed from an alloy containing a small quantity of highly enriched uranium. Also typically provided is a core of depleted uranium. A spacer, typically aluminum, may be used to separate the depleted uranium from the shell of uranium alloy. A cladding, typically made of titanium, is provided to seal the source. Methods are provided to simulate SNM for testing radiation monitoring portals. Typically the methods use at least one primary SNM spectral line and exclude at least one secondary SNM spectral line.
Jia, Yu; Stahre, Nanna; Mäkitalo, Maria; Maurice, Christian; Öhlander, Björn
2017-09-01
Sealing layers made of two alkaline paper mill by-products, fly ash and green liquor dregs, were placed on top of 50-year-old sulfide-containing tailings as a full-scale remediation approach. The performance and effectiveness of the sealing layers with high water content for an oxygen barrier and low hydraulic conductivity for a sealing layer in preventing the formation of acid rock drainage were evaluated 5 years after the remediation. The leaching behavior of the covered tailings was studied using batch leaching tests (L/S ratio 10 L/kg). The leaching results revealed that, in general, the dregs- and ash-covered tailings released relatively lower concentrations of many elements contained in acid rock drainage compared to those from the uncovered tailings. A change in the chemical composition and mineralogical state of the tailings was observed for the tailings beneath the covers. The increase in pH caused by the alkaline materials promoted metal precipitation. Geochemical modeling using PHREEQC confirmed most of the geochemical changes of the covered tailings. Both the ash and dregs showed potential to function as sealing materials in terms of their geochemical properties. However, mobilization of Zn and Ni from the lower part of the dregs-covered tailings was observed. The same phenomenon was observed for the lower part of the ash-covered tailings. Ash showed advantages over dregs as a cover material; based on geochemical studies, the ash immobilized more elements than the dregs did. Lysimeters were installed below the sealing layers, and infiltrating water chemistry and hydrology were studied to monitor the amount and quality of the leachate percolating through.
Sarkar Das, Srilekha; Coburn, James C; Tack, Charles; Schwerin, Matthew R; Richardson, D Coleman
2014-07-01
Male condoms act as mechanical barriers to prevent passage of body fluids. For effective use of condoms the mechanical seal is also expected to remain intact under reasonable use conditions, including with personal lubricants. Absorption of low molecular weight lubricant components into the material of male condoms may initiate material changes leading to swelling and stress relaxation of the polymer network chains that could affect performance of the sealing function of the device. Swelling indicates both a rubber-solvent interaction and stress relaxation, the latter of which may indicate and/or result in a reduced seal pressure in the current context. Swelling and stress relaxation of natural rubber latex condoms were assessed in a laboratory model in the presence of silicone-, glycol-, and water-based lubricants. Within 15 minutes, significant swelling (≥6 %) and stress reduction (≥12 %) of condoms were observed with 2 out of 4 silicone-based lubricants tested, but neither was observed with glycol- or water-based lubricants tested. Under a given strain, reduction in stress was prominent during the swelling processes, but not after the process was complete. Lubricant induced swelling and stress relaxation may loosen the circumferential stress responsible for the mechanical seal. Swelling and stress relaxation behavior of latex condoms in the presence of personal lubricants may be useful tests to identify lubricant-rooted changes in condom-materials. For non-lubricated latex condoms, material characteristics--which are relevant to failure--may change in the presence of a few silicone-based personal lubricants. These changes may in turn induce a loss of condom seal during use, specifically at low strain conditions. Published by Elsevier Inc.
Evaluation of seals and lubricants used on the Long Duration Exposure Facility
NASA Technical Reports Server (NTRS)
Dursch, H. W.; Keough, B. K.; Pippin, H. G.
1994-01-01
This report described results from testing and analysis of seals and lubricants subsequent to the 69-month low-earth-orbit (LEO) exposure on the Long Duration Exposure Facility (LDEF). Results show that if the materials were shielded from exposure to LDEF's external environment, the 69-month exposure to LEO resulted in minimal changes to material properties. However, if the materials were exposed to LDEF's exterior environments (atomic oxygen, solar radiation, meteoroids, and/or space debris), a variety of events occurred, ranging from no material change, to changes in properties, to significant erosion of the material.