Sample records for search query terms

  1. Categorical and Specificity Differences between User-Supplied Tags and Search Query Terms for Images. An Analysis of "Flickr" Tags and Web Image Search Queries

    ERIC Educational Resources Information Center

    Chung, EunKyung; Yoon, JungWon

    2009-01-01

    Introduction: The purpose of this study is to compare characteristics and features of user supplied tags and search query terms for images on the "Flickr" Website in terms of categories of pictorial meanings and level of term specificity. Method: This study focuses on comparisons between tags and search queries using Shatford's categorization…

  2. Personalized query suggestion based on user behavior

    NASA Astrophysics Data System (ADS)

    Chen, Wanyu; Hao, Zepeng; Shao, Taihua; Chen, Honghui

    Query suggestions help users refine their queries after they input an initial query. Previous work mainly concentrated on similarity-based and context-based query suggestion approaches. However, models that focus on adapting to a specific user (personalization) can help to improve the probability of the user being satisfied. In this paper, we propose a personalized query suggestion model based on users’ search behavior (UB model), where we inject relevance between queries and users’ search behavior into a basic probabilistic model. For the relevance between queries, we consider their semantical similarity and co-occurrence which indicates the behavior information from other users in web search. Regarding the current user’s preference to a query, we combine the user’s short-term and long-term search behavior in a linear fashion and deal with the data sparse problem with Bayesian probabilistic matrix factorization (BPMF). In particular, we also investigate the impact of different personalization strategies (the combination of the user’s short-term and long-term search behavior) on the performance of query suggestion reranking. We quantify the improvement of our proposed UB model against a state-of-the-art baseline using the public AOL query logs and show that it beats the baseline in terms of metrics used in query suggestion reranking. The experimental results show that: (i) for personalized ranking, users’ behavioral information helps to improve query suggestion effectiveness; and (ii) given a query, merging information inferred from the short-term and long-term search behavior of a particular user can result in a better performance than both plain approaches.

  3. Analysis of queries sent to PubMed at the point of care: Observation of search behaviour in a medical teaching hospital

    PubMed Central

    Hoogendam, Arjen; Stalenhoef, Anton FH; Robbé, Pieter F de Vries; Overbeke, A John PM

    2008-01-01

    Background The use of PubMed to answer daily medical care questions is limited because it is challenging to retrieve a small set of relevant articles and time is restricted. Knowing what aspects of queries are likely to retrieve relevant articles can increase the effectiveness of PubMed searches. The objectives of our study were to identify queries that are likely to retrieve relevant articles by relating PubMed search techniques and tools to the number of articles retrieved and the selection of articles for further reading. Methods This was a prospective observational study of queries regarding patient-related problems sent to PubMed by residents and internists in internal medicine working in an Academic Medical Centre. We analyzed queries, search results, query tools (Mesh, Limits, wildcards, operators), selection of abstract and full-text for further reading, using a portal that mimics PubMed. Results PubMed was used to solve 1121 patient-related problems, resulting in 3205 distinct queries. Abstracts were viewed in 999 (31%) of these queries, and in 126 (39%) of 321 queries using query tools. The average term count per query was 2.5. Abstracts were selected in more than 40% of queries using four or five terms, increasing to 63% if the use of four or five terms yielded 2–161 articles. Conclusion Queries sent to PubMed by physicians at our hospital during daily medical care contain fewer than three terms. Queries using four to five terms, retrieving less than 161 article titles, are most likely to result in abstract viewing. PubMed search tools are used infrequently by our population and are less effective than the use of four or five terms. Methods to facilitate the formulation of precise queries, using more relevant terms, should be the focus of education and research. PMID:18816391

  4. Multimedia Web Searching Trends.

    ERIC Educational Resources Information Center

    Ozmutlu, Seda; Spink, Amanda; Ozmutlu, H. Cenk

    2002-01-01

    Examines and compares multimedia Web searching by Excite and FAST search engine users in 2001. Highlights include audio and video queries; time spent on searches; terms per query; ranking of the most frequently used terms; and differences in Web search behaviors of U.S. and European Web users. (Author/LRW)

  5. Development and empirical user-centered evaluation of semantically-based query recommendation for an electronic health record search engine.

    PubMed

    Hanauer, David A; Wu, Danny T Y; Yang, Lei; Mei, Qiaozhu; Murkowski-Steffy, Katherine B; Vydiswaran, V G Vinod; Zheng, Kai

    2017-03-01

    The utility of biomedical information retrieval environments can be severely limited when users lack expertise in constructing effective search queries. To address this issue, we developed a computer-based query recommendation algorithm that suggests semantically interchangeable terms based on an initial user-entered query. In this study, we assessed the value of this approach, which has broad applicability in biomedical information retrieval, by demonstrating its application as part of a search engine that facilitates retrieval of information from electronic health records (EHRs). The query recommendation algorithm utilizes MetaMap to identify medical concepts from search queries and indexed EHR documents. Synonym variants from UMLS are used to expand the concepts along with a synonym set curated from historical EHR search logs. The empirical study involved 33 clinicians and staff who evaluated the system through a set of simulated EHR search tasks. User acceptance was assessed using the widely used technology acceptance model. The search engine's performance was rated consistently higher with the query recommendation feature turned on vs. off. The relevance of computer-recommended search terms was also rated high, and in most cases the participants had not thought of these terms on their own. The questions on perceived usefulness and perceived ease of use received overwhelmingly positive responses. A vast majority of the participants wanted the query recommendation feature to be available to assist in their day-to-day EHR search tasks. Challenges persist for users to construct effective search queries when retrieving information from biomedical documents including those from EHRs. This study demonstrates that semantically-based query recommendation is a viable solution to addressing this challenge. Published by Elsevier Inc.

  6. Searching the Web: The Public and Their Queries.

    ERIC Educational Resources Information Center

    Spink, Amanda; Wolfram, Dietmar; Jansen, Major B. J.; Saracevic, Tefko

    2001-01-01

    Reports findings from a study of searching behavior by over 200,000 users of the Excite search engine. Analysis of over one million queries revealed most people use few search terms, few modified queries, view few Web pages, and rarely use advanced search features. Concludes that Web searching by the public differs significantly from searching of…

  7. A study on PubMed search tag usage pattern: association rule mining of a full-day PubMed query log.

    PubMed

    Mosa, Abu Saleh Mohammad; Yoo, Illhoi

    2013-01-09

    The practice of evidence-based medicine requires efficient biomedical literature search such as PubMed/MEDLINE. Retrieval performance relies highly on the efficient use of search field tags. The purpose of this study was to analyze PubMed log data in order to understand the usage pattern of search tags by the end user in PubMed/MEDLINE search. A PubMed query log file was obtained from the National Library of Medicine containing anonymous user identification, timestamp, and query text. Inconsistent records were removed from the dataset and the search tags were extracted from the query texts. A total of 2,917,159 queries were selected for this study issued by a total of 613,061 users. The analysis of frequent co-occurrences and usage patterns of the search tags was conducted using an association mining algorithm. The percentage of search tag usage was low (11.38% of the total queries) and only 2.95% of queries contained two or more tags. Three out of four users used no search tag and about two-third of them issued less than four queries. Among the queries containing at least one tagged search term, the average number of search tags was almost half of the number of total search terms. Navigational search tags are more frequently used than informational search tags. While no strong association was observed between informational and navigational tags, six (out of 19) informational tags and six (out of 29) navigational tags showed strong associations in PubMed searches. The low percentage of search tag usage implies that PubMed/MEDLINE users do not utilize the features of PubMed/MEDLINE widely or they are not aware of such features or solely depend on the high recall focused query translation by the PubMed's Automatic Term Mapping. The users need further education and interactive search application for effective use of the search tags in order to fulfill their biomedical information needs from PubMed/MEDLINE.

  8. A Study on Pubmed Search Tag Usage Pattern: Association Rule Mining of a Full-day Pubmed Query Log

    PubMed Central

    2013-01-01

    Background The practice of evidence-based medicine requires efficient biomedical literature search such as PubMed/MEDLINE. Retrieval performance relies highly on the efficient use of search field tags. The purpose of this study was to analyze PubMed log data in order to understand the usage pattern of search tags by the end user in PubMed/MEDLINE search. Methods A PubMed query log file was obtained from the National Library of Medicine containing anonymous user identification, timestamp, and query text. Inconsistent records were removed from the dataset and the search tags were extracted from the query texts. A total of 2,917,159 queries were selected for this study issued by a total of 613,061 users. The analysis of frequent co-occurrences and usage patterns of the search tags was conducted using an association mining algorithm. Results The percentage of search tag usage was low (11.38% of the total queries) and only 2.95% of queries contained two or more tags. Three out of four users used no search tag and about two-third of them issued less than four queries. Among the queries containing at least one tagged search term, the average number of search tags was almost half of the number of total search terms. Navigational search tags are more frequently used than informational search tags. While no strong association was observed between informational and navigational tags, six (out of 19) informational tags and six (out of 29) navigational tags showed strong associations in PubMed searches. Conclusions The low percentage of search tag usage implies that PubMed/MEDLINE users do not utilize the features of PubMed/MEDLINE widely or they are not aware of such features or solely depend on the high recall focused query translation by the PubMed’s Automatic Term Mapping. The users need further education and interactive search application for effective use of the search tags in order to fulfill their biomedical information needs from PubMed/MEDLINE. PMID:23302604

  9. Analyzing Medical Image Search Behavior: Semantics and Prediction of Query Results.

    PubMed

    De-Arteaga, Maria; Eggel, Ivan; Kahn, Charles E; Müller, Henning

    2015-10-01

    Log files of information retrieval systems that record user behavior have been used to improve the outcomes of retrieval systems, understand user behavior, and predict events. In this article, a log file of the ARRS GoldMiner search engine containing 222,005 consecutive queries is analyzed. Time stamps are available for each query, as well as masked IP addresses, which enables to identify queries from the same person. This article describes the ways in which physicians (or Internet searchers interested in medical images) search and proposes potential improvements by suggesting query modifications. For example, many queries contain only few terms and therefore are not specific; others contain spelling mistakes or non-medical terms that likely lead to poor or empty results. One of the goals of this report is to predict the number of results a query will have since such a model allows search engines to automatically propose query modifications in order to avoid result lists that are empty or too large. This prediction is made based on characteristics of the query terms themselves. Prediction of empty results has an accuracy above 88%, and thus can be used to automatically modify the query to avoid empty result sets for a user. The semantic analysis and data of reformulations done by users in the past can aid the development of better search systems, particularly to improve results for novice users. Therefore, this paper gives important ideas to better understand how people search and how to use this knowledge to improve the performance of specialized medical search engines.

  10. SPARK: Adapting Keyword Query to Semantic Search

    NASA Astrophysics Data System (ADS)

    Zhou, Qi; Wang, Chong; Xiong, Miao; Wang, Haofen; Yu, Yong

    Semantic search promises to provide more accurate result than present-day keyword search. However, progress with semantic search has been delayed due to the complexity of its query languages. In this paper, we explore a novel approach of adapting keywords to querying the semantic web: the approach automatically translates keyword queries into formal logic queries so that end users can use familiar keywords to perform semantic search. A prototype system named 'SPARK' has been implemented in light of this approach. Given a keyword query, SPARK outputs a ranked list of SPARQL queries as the translation result. The translation in SPARK consists of three major steps: term mapping, query graph construction and query ranking. Specifically, a probabilistic query ranking model is proposed to select the most likely SPARQL query. In the experiment, SPARK achieved an encouraging translation result.

  11. Exploration of Web Users' Search Interests through Automatic Subject Categorization of Query Terms.

    ERIC Educational Resources Information Center

    Pu, Hsiao-tieh; Yang, Chyan; Chuang, Shui-Lung

    2001-01-01

    Proposes a mechanism that carefully integrates human and machine efforts to explore Web users' search interests. The approach consists of a four-step process: extraction of core terms; construction of subject taxonomy; automatic subject categorization of query terms; and observation of users' search interests. Research findings are proved valuable…

  12. Folksonomical P2P File Sharing Networks Using Vectorized KANSEI Information as Search Tags

    NASA Astrophysics Data System (ADS)

    Ohnishi, Kei; Yoshida, Kaori; Oie, Yuji

    We present the concept of folksonomical peer-to-peer (P2P) file sharing networks that allow participants (peers) to freely assign structured search tags to files. These networks are similar to folksonomies in the present Web from the point of view that users assign search tags to information distributed over a network. As a concrete example, we consider an unstructured P2P network using vectorized Kansei (human sensitivity) information as structured search tags for file search. Vectorized Kansei information as search tags indicates what participants feel about their files and is assigned by the participant to each of their files. A search query also has the same form of search tags and indicates what participants want to feel about files that they will eventually obtain. A method that enables file search using vectorized Kansei information is the Kansei query-forwarding method, which probabilistically propagates a search query to peers that are likely to hold more files having search tags that are similar to the query. The similarity between the search query and the search tags is measured in terms of their dot product. The simulation experiments examine if the Kansei query-forwarding method can provide equal search performance for all peers in a network in which only the Kansei information and the tendency with respect to file collection are different among all of the peers. The simulation results show that the Kansei query forwarding method and a random-walk-based query forwarding method, for comparison, work effectively in different situations and are complementary. Furthermore, the Kansei query forwarding method is shown, through simulations, to be superior to or equal to the random-walk based one in terms of search speed.

  13. Meshable: searching PubMed abstracts by utilizing MeSH and MeSH-derived topical terms.

    PubMed

    Kim, Sun; Yeganova, Lana; Wilbur, W John

    2016-10-01

    Medical Subject Headings (MeSH(®)) is a controlled vocabulary for indexing and searching biomedical literature. MeSH terms and subheadings are organized in a hierarchical structure and are used to indicate the topics of an article. Biologists can use either MeSH terms as queries or the MeSH interface provided in PubMed(®) for searching PubMed abstracts. However, these are rarely used, and there is no convenient way to link standardized MeSH terms to user queries. Here, we introduce a web interface which allows users to enter queries to find MeSH terms closely related to the queries. Our method relies on co-occurrence of text words and MeSH terms to find keywords that are related to each MeSH term. A query is then matched with the keywords for MeSH terms, and candidate MeSH terms are ranked based on their relatedness to the query. The experimental results show that our method achieves the best performance among several term extraction approaches in terms of topic coherence. Moreover, the interface can be effectively used to find full names of abbreviations and to disambiguate user queries. https://www.ncbi.nlm.nih.gov/IRET/MESHABLE/ CONTACT: sun.kim@nih.gov Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press.

  14. Searching for Images: The Analysis of Users' Queries for Image Retrieval in American History.

    ERIC Educational Resources Information Center

    Choi, Youngok; Rasmussen, Edie M.

    2003-01-01

    Studied users' queries for visual information in American history to identify the image attributes important for retrieval and the characteristics of users' queries for digital images, based on queries from 38 faculty and graduate students. Results of pre- and post-test questionnaires and interviews suggest principle categories of search terms.…

  15. System, method and apparatus for conducting a phrase search

    NASA Technical Reports Server (NTRS)

    McGreevy, Michael W. (Inventor)

    2004-01-01

    A phrase search is a method of searching a database for subsets of the database that are relevant to an input query. First, a number of relational models of subsets of a database are provided. A query is then input. The query can include one or more sequences of terms. Next, a relational model of the query is created. The relational model of the query is then compared to each one of the relational models of subsets of the database. The identifiers of the relevant subsets are then output.

  16. Automatic query formulations in information retrieval.

    PubMed

    Salton, G; Buckley, C; Fox, E A

    1983-07-01

    Modern information retrieval systems are designed to supply relevant information in response to requests received from the user population. In most retrieval environments the search requests consist of keywords, or index terms, interrelated by appropriate Boolean operators. Since it is difficult for untrained users to generate effective Boolean search requests, trained search intermediaries are normally used to translate original statements of user need into useful Boolean search formulations. Methods are introduced in this study which reduce the role of the search intermediaries by making it possible to generate Boolean search formulations completely automatically from natural language statements provided by the system patrons. Frequency considerations are used automatically to generate appropriate term combinations as well as Boolean connectives relating the terms. Methods are covered to produce automatic query formulations both in a standard Boolean logic system, as well as in an extended Boolean system in which the strict interpretation of the connectives is relaxed. Experimental results are supplied to evaluate the effectiveness of the automatic query formulation process, and methods are described for applying the automatic query formulation process in practice.

  17. Searching for cancer information on the internet: analyzing natural language search queries.

    PubMed

    Bader, Judith L; Theofanos, Mary Frances

    2003-12-11

    Searching for health information is one of the most-common tasks performed by Internet users. Many users begin searching on popular search engines rather than on prominent health information sites. We know that many visitors to our (National Cancer Institute) Web site, cancer.gov, arrive via links in search engine result. To learn more about the specific needs of our general-public users, we wanted to understand what lay users really wanted to know about cancer, how they phrased their questions, and how much detail they used. The National Cancer Institute partnered with AskJeeves, Inc to develop a methodology to capture, sample, and analyze 3 months of cancer-related queries on the Ask.com Web site, a prominent United States consumer search engine, which receives over 35 million queries per week. Using a benchmark set of 500 terms and word roots supplied by the National Cancer Institute, AskJeeves identified a test sample of cancer queries for 1 week in August 2001. From these 500 terms only 37 appeared >or= 5 times/day over the trial test week in 17208 queries. Using these 37 terms, 204165 instances of cancer queries were found in the Ask.com query logs for the actual test period of June-August 2001. Of these, 7500 individual user questions were randomly selected for detailed analysis and assigned to appropriate categories. The exact language of sample queries is presented. Considering multiples of the same questions, the sample of 7500 individual user queries represented 76077 queries (37% of the total 3-month pool). Overall 78.37% of sampled Cancer queries asked about 14 specific cancer types. Within each cancer type, queries were sorted into appropriate subcategories including at least the following: General Information, Symptoms, Diagnosis and Testing, Treatment, Statistics, Definition, and Cause/Risk/Link. The most-common specific cancer types mentioned in queries were Digestive/Gastrointestinal/Bowel (15.0%), Breast (11.7%), Skin (11.3%), and Genitourinary (10.5%). Additional subcategories of queries about specific cancer types varied, depending on user input. Queries that were not specific to a cancer type were also tracked and categorized. Natural-language searching affords users the opportunity to fully express their information needs and can aid users naïve to the content and vocabulary. The specific queries analyzed for this study reflect news and research studies reported during the study dates and would surely change with different study dates. Analyzing queries from search engines represents one way of knowing what kinds of content to provide to users of a given Web site. Users ask questions using whole sentences and keywords, often misspelling words. Providing the option for natural-language searching does not obviate the need for good information architecture, usability engineering, and user testing in order to optimize user experience.

  18. Searching for Cancer Information on the Internet: Analyzing Natural Language Search Queries

    PubMed Central

    Theofanos, Mary Frances

    2003-01-01

    Background Searching for health information is one of the most-common tasks performed by Internet users. Many users begin searching on popular search engines rather than on prominent health information sites. We know that many visitors to our (National Cancer Institute) Web site, cancer.gov, arrive via links in search engine result. Objective To learn more about the specific needs of our general-public users, we wanted to understand what lay users really wanted to know about cancer, how they phrased their questions, and how much detail they used. Methods The National Cancer Institute partnered with AskJeeves, Inc to develop a methodology to capture, sample, and analyze 3 months of cancer-related queries on the Ask.com Web site, a prominent United States consumer search engine, which receives over 35 million queries per week. Using a benchmark set of 500 terms and word roots supplied by the National Cancer Institute, AskJeeves identified a test sample of cancer queries for 1 week in August 2001. From these 500 terms only 37 appeared ≥ 5 times/day over the trial test week in 17208 queries. Using these 37 terms, 204165 instances of cancer queries were found in the Ask.com query logs for the actual test period of June-August 2001. Of these, 7500 individual user questions were randomly selected for detailed analysis and assigned to appropriate categories. The exact language of sample queries is presented. Results Considering multiples of the same questions, the sample of 7500 individual user queries represented 76077 queries (37% of the total 3-month pool). Overall 78.37% of sampled Cancer queries asked about 14 specific cancer types. Within each cancer type, queries were sorted into appropriate subcategories including at least the following: General Information, Symptoms, Diagnosis and Testing, Treatment, Statistics, Definition, and Cause/Risk/Link. The most-common specific cancer types mentioned in queries were Digestive/Gastrointestinal/Bowel (15.0%), Breast (11.7%), Skin (11.3%), and Genitourinary (10.5%). Additional subcategories of queries about specific cancer types varied, depending on user input. Queries that were not specific to a cancer type were also tracked and categorized. Conclusions Natural-language searching affords users the opportunity to fully express their information needs and can aid users naïve to the content and vocabulary. The specific queries analyzed for this study reflect news and research studies reported during the study dates and would surely change with different study dates. Analyzing queries from search engines represents one way of knowing what kinds of content to provide to users of a given Web site. Users ask questions using whole sentences and keywords, often misspelling words. Providing the option for natural-language searching does not obviate the need for good information architecture, usability engineering, and user testing in order to optimize user experience. PMID:14713659

  19. Correlation between National Influenza Surveillance Data and Search Queries from Mobile Devices and Desktops in South Korea

    PubMed Central

    Seo, Dong-Woo; Sohn, Chang Hwan; Kim, Sung-Hoon; Ryoo, Seung Mok; Lee, Yoon-Seon; Lee, Jae Ho; Kim, Won Young; Lim, Kyoung Soo

    2016-01-01

    Background Digital surveillance using internet search queries can improve both the sensitivity and timeliness of the detection of a health event, such as an influenza outbreak. While it has recently been estimated that the mobile search volume surpasses the desktop search volume and mobile search patterns differ from desktop search patterns, the previous digital surveillance systems did not distinguish mobile and desktop search queries. The purpose of this study was to compare the performance of mobile and desktop search queries in terms of digital influenza surveillance. Methods and Results The study period was from September 6, 2010 through August 30, 2014, which consisted of four epidemiological years. Influenza-like illness (ILI) and virologic surveillance data from the Korea Centers for Disease Control and Prevention were used. A total of 210 combined queries from our previous survey work were used for this study. Mobile and desktop weekly search data were extracted from Naver, which is the largest search engine in Korea. Spearman’s correlation analysis was used to examine the correlation of the mobile and desktop data with ILI and virologic data in Korea. We also performed lag correlation analysis. We observed that the influenza surveillance performance of mobile search queries matched or exceeded that of desktop search queries over time. The mean correlation coefficients of mobile search queries and the number of queries with an r-value of ≥ 0.7 equaled or became greater than those of desktop searches over the four epidemiological years. A lag correlation analysis of up to two weeks showed similar trends. Conclusion Our study shows that mobile search queries for influenza surveillance have equaled or even become greater than desktop search queries over time. In the future development of influenza surveillance using search queries, the recognition of changing trend of mobile search data could be necessary. PMID:27391028

  20. Correlation between National Influenza Surveillance Data and Search Queries from Mobile Devices and Desktops in South Korea.

    PubMed

    Shin, Soo-Yong; Kim, Taerim; Seo, Dong-Woo; Sohn, Chang Hwan; Kim, Sung-Hoon; Ryoo, Seung Mok; Lee, Yoon-Seon; Lee, Jae Ho; Kim, Won Young; Lim, Kyoung Soo

    2016-01-01

    Digital surveillance using internet search queries can improve both the sensitivity and timeliness of the detection of a health event, such as an influenza outbreak. While it has recently been estimated that the mobile search volume surpasses the desktop search volume and mobile search patterns differ from desktop search patterns, the previous digital surveillance systems did not distinguish mobile and desktop search queries. The purpose of this study was to compare the performance of mobile and desktop search queries in terms of digital influenza surveillance. The study period was from September 6, 2010 through August 30, 2014, which consisted of four epidemiological years. Influenza-like illness (ILI) and virologic surveillance data from the Korea Centers for Disease Control and Prevention were used. A total of 210 combined queries from our previous survey work were used for this study. Mobile and desktop weekly search data were extracted from Naver, which is the largest search engine in Korea. Spearman's correlation analysis was used to examine the correlation of the mobile and desktop data with ILI and virologic data in Korea. We also performed lag correlation analysis. We observed that the influenza surveillance performance of mobile search queries matched or exceeded that of desktop search queries over time. The mean correlation coefficients of mobile search queries and the number of queries with an r-value of ≥ 0.7 equaled or became greater than those of desktop searches over the four epidemiological years. A lag correlation analysis of up to two weeks showed similar trends. Our study shows that mobile search queries for influenza surveillance have equaled or even become greater than desktop search queries over time. In the future development of influenza surveillance using search queries, the recognition of changing trend of mobile search data could be necessary.

  1. Noesis: Ontology based Scoped Search Engine and Resource Aggregator for Atmospheric Science

    NASA Astrophysics Data System (ADS)

    Ramachandran, R.; Movva, S.; Li, X.; Cherukuri, P.; Graves, S.

    2006-12-01

    The goal for search engines is to return results that are both accurate and complete. The search engines should find only what you really want and find everything you really want. Search engines (even meta search engines) lack semantics. The basis for search is simply based on string matching between the user's query term and the resource database and the semantics associated with the search string is not captured. For example, if an atmospheric scientist is searching for "pressure" related web resources, most search engines return inaccurate results such as web resources related to blood pressure. In this presentation Noesis, which is a meta-search engine and a resource aggregator that uses domain ontologies to provide scoped search capabilities will be described. Noesis uses domain ontologies to help the user scope the search query to ensure that the search results are both accurate and complete. The domain ontologies guide the user to refine their search query and thereby reduce the user's burden of experimenting with different search strings. Semantics are captured by refining the query terms to cover synonyms, specializations, generalizations and related concepts. Noesis also serves as a resource aggregator. It categorizes the search results from different online resources such as education materials, publications, datasets, web search engines that might be of interest to the user.

  2. Raising the IQ in full-text searching via intelligent querying

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kero, R.; Russell, L.; Swietlik, C.

    1994-11-01

    Current Information Retrieval (IR) technologies allow for efficient access to relevant information, provided that user selected query terms coincide with the specific linguistical choices made by the authors whose works constitute the text-base. Therefore, the challenge is to enhance the limited searching capability of state-of-the-practice IR. This can be done either with augmented clients that overcome current server searching deficiencies, or with added capabilities that can augment searching algorithms on the servers. The technology being investigated is that of deductive databases, with a set of new techniques called cooperative answering. This technology utilizes semantic networks to allow for navigation betweenmore » possible query search term alternatives. The augmented search terms are passed to an IR engine and the results can be compared. The project utilizes the OSTI Environment, Safety and Health Thesaurus to populate the domain specific semantic network and the text base of ES&H related documents from the Facility Profile Information Management System as the domain specific search space.« less

  3. Essie: A Concept-based Search Engine for Structured Biomedical Text

    PubMed Central

    Ide, Nicholas C.; Loane, Russell F.; Demner-Fushman, Dina

    2007-01-01

    This article describes the algorithms implemented in the Essie search engine that is currently serving several Web sites at the National Library of Medicine. Essie is a phrase-based search engine with term and concept query expansion and probabilistic relevancy ranking. Essie’s design is motivated by an observation that query terms are often conceptually related to terms in a document, without actually occurring in the document text. Essie’s performance was evaluated using data and standard evaluation methods from the 2003 and 2006 Text REtrieval Conference (TREC) Genomics track. Essie was the best-performing search engine in the 2003 TREC Genomics track and achieved results comparable to those of the highest-ranking systems on the 2006 TREC Genomics track task. Essie shows that a judicious combination of exploiting document structure, phrase searching, and concept based query expansion is a useful approach for information retrieval in the biomedical domain. PMID:17329729

  4. Retrieval of diagnostic and treatment studies for clinical use through PubMed and PubMed's Clinical Queries filters.

    PubMed

    Lokker, Cynthia; Haynes, R Brian; Wilczynski, Nancy L; McKibbon, K Ann; Walter, Stephen D

    2011-01-01

    Clinical Queries filters were developed to improve the retrieval of high-quality studies in searches on clinical matters. The study objective was to determine the yield of relevant citations and physician satisfaction while searching for diagnostic and treatment studies using the Clinical Queries page of PubMed compared with searching PubMed without these filters. Forty practicing physicians, presented with standardized treatment and diagnosis questions and one question of their choosing, entered search terms which were processed in a random, blinded fashion through PubMed alone and PubMed Clinical Queries. Participants rated search retrievals for applicability to the question at hand and satisfaction. For treatment, the primary outcome of retrieval of relevant articles was not significantly different between the groups, but a higher proportion of articles from the Clinical Queries searches met methodologic criteria (p=0.049), and more articles were published in core internal medicine journals (p=0.056). For diagnosis, the filtered results returned more relevant articles (p=0.031) and fewer irrelevant articles (overall retrieval less, p=0.023); participants needed to screen fewer articles before arriving at the first relevant citation (p<0.05). Relevance was also influenced by content terms used by participants in searching. Participants varied greatly in their search performance. Clinical Queries filtered searches returned more high-quality studies, though the retrieval of relevant articles was only statistically different between the groups for diagnosis questions. Retrieving clinically important research studies from Medline is a challenging task for physicians. Methodological search filters can improve search retrieval.

  5. Supporting ontology-based keyword search over medical databases.

    PubMed

    Kementsietsidis, Anastasios; Lim, Lipyeow; Wang, Min

    2008-11-06

    The proliferation of medical terms poses a number of challenges in the sharing of medical information among different stakeholders. Ontologies are commonly used to establish relationships between different terms, yet their role in querying has not been investigated in detail. In this paper, we study the problem of supporting ontology-based keyword search queries on a database of electronic medical records. We present several approaches to support this type of queries, study the advantages and limitations of each approach, and summarize the lessons learned as best practices.

  6. Sexual information seeking on web search engines.

    PubMed

    Spink, Amanda; Koricich, Andrew; Jansen, B J; Cole, Charles

    2004-02-01

    Sexual information seeking is an important element within human information behavior. Seeking sexually related information on the Internet takes many forms and channels, including chat rooms discussions, accessing Websites or searching Web search engines for sexual materials. The study of sexual Web queries provides insight into sexually-related information-seeking behavior, of value to Web users and providers alike. We qualitatively analyzed queries from logs of 1,025,910 Alta Vista and AlltheWeb.com Web user queries from 2001. We compared the differences in sexually-related Web searching between Alta Vista and AlltheWeb.com users. Differences were found in session duration, query outcomes, and search term choices. Implications of the findings for sexual information seeking are discussed.

  7. 41. DISCOVERY, SEARCH, AND COMMUNICATION OF TEXTUAL KNOWLEDGE RESOURCES IN DISTRIBUTED SYSTEMS a. Discovering and Utilizing Knowledge Sources for Metasearch Knowledge Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zamora, Antonio

    Advanced Natural Language Processing Tools for Web Information Retrieval, Content Analysis, and Synthesis. The goal of this SBIR was to implement and evaluate several advanced Natural Language Processing (NLP) tools and techniques to enhance the precision and relevance of search results by analyzing and augmenting search queries and by helping to organize the search output obtained from heterogeneous databases and web pages containing textual information of interest to DOE and the scientific-technical user communities in general. The SBIR investigated 1) the incorporation of spelling checkers in search applications, 2) identification of significant phrases and concepts using a combination of linguisticmore » and statistical techniques, and 3) enhancement of the query interface and search retrieval results through the use of semantic resources, such as thesauri. A search program with a flexible query interface was developed to search reference databases with the objective of enhancing search results from web queries or queries of specialized search systems such as DOE's Information Bridge. The DOE ETDE/INIS Joint Thesaurus was processed to create a searchable database. Term frequencies and term co-occurrences were used to enhance the web information retrieval by providing algorithmically-derived objective criteria to organize relevant documents into clusters containing significant terms. A thesaurus provides an authoritative overview and classification of a field of knowledge. By organizing the results of a search using the thesaurus terminology, the output is more meaningful than when the results are just organized based on the terms that co-occur in the retrieved documents, some of which may not be significant. An attempt was made to take advantage of the hierarchy provided by broader and narrower terms, as well as other field-specific information in the thesauri. The search program uses linguistic morphological routines to find relevant entries regardless of whether terms are stored in singular or plural form. Implementation of additional inflectional morphology processes for verbs can enhance retrieval further, but this has to be balanced by the possibility of broadening the results too much. In addition to the DOE energy thesaurus, other sources of specialized organized knowledge such as the Medical Subject Headings (MeSH), the Unified Medical Language System (UMLS), and Wikipedia were investigated. The supporting role of the NLP thesaurus search program was enhanced by incorporating spelling aid and a part-of-speech tagger to cope with misspellings in the queries and to determine the grammatical roles of the query words and identify nouns for special processing. To improve precision, multiple modes of searching were implemented including Boolean operators, and field-specific searches. Programs to convert a thesaurus or reference file into searchable support files can be deployed easily, and the resulting files are immediately searchable to produce relevance-ranked results with builtin spelling aid, morphological processing, and advanced search logic. Demonstration systems were built for several databases, including the DOE energy thesaurus.« less

  8. Sundanese ancient manuscripts search engine using probability approach

    NASA Astrophysics Data System (ADS)

    Suryani, Mira; Hadi, Setiawan; Paulus, Erick; Nurma Yulita, Intan; Supriatna, Asep K.

    2017-10-01

    Today, Information and Communication Technology (ICT) has become a regular thing for every aspect of live include cultural and heritage aspect. Sundanese ancient manuscripts as Sundanese heritage are in damage condition and also the information that containing on it. So in order to preserve the information in Sundanese ancient manuscripts and make them easier to search, a search engine has been developed. The search engine must has good computing ability. In order to get the best computation in developed search engine, three types of probabilistic approaches: Bayesian Networks Model, Divergence from Randomness with PL2 distribution, and DFR-PL2F as derivative form DFR-PL2 have been compared in this study. The three probabilistic approaches supported by index of documents and three different weighting methods: term occurrence, term frequency, and TF-IDF. The experiment involved 12 Sundanese ancient manuscripts. From 12 manuscripts there are 474 distinct terms. The developed search engine tested by 50 random queries for three types of query. The experiment results showed that for the single query and multiple query, the best searching performance given by the combination of PL2F approach and TF-IDF weighting method. The performance has been evaluated using average time responds with value about 0.08 second and Mean Average Precision (MAP) about 0.33.

  9. [On the seasonality of dermatoses: a retrospective analysis of search engine query data depending on the season].

    PubMed

    Köhler, M J; Springer, S; Kaatz, M

    2014-09-01

    The volume of search engine queries about disease-relevant items reflects public interest and correlates with disease prevalence as proven by the example of flu (influenza). Other influences include media attention or holidays. The present work investigates if the seasonality of prevalence or symptom severity of dermatoses correlates with search engine query data. The relative weekly volume of dermatological relevant search terms was assessed by the online tool Google Trends for the years 2009-2013. For each item, the degree of seasonality was calculated via frequency analysis and a geometric approach. Many dermatoses show a marked seasonality, reflected by search engine query volumes. Unexpected seasonal variations of these queries suggest a previously unknown variability of the respective disease prevalence. Furthermore, using the example of allergic rhinitis, a close correlation of search engine query data with actual pollen count can be demonstrated. In many cases, search engine query data are appropriate to estimate seasonal variability in prevalence of common dermatoses. This finding may be useful for real-time analysis and formation of hypotheses concerning pathogenetic or symptom aggravating mechanisms and may thus contribute to improvement of diagnostics and prevention of skin diseases.

  10. Comparing image search behaviour in the ARRS GoldMiner search engine and a clinical PACS/RIS.

    PubMed

    De-Arteaga, Maria; Eggel, Ivan; Do, Bao; Rubin, Daniel; Kahn, Charles E; Müller, Henning

    2015-08-01

    Information search has changed the way we manage knowledge and the ubiquity of information access has made search a frequent activity, whether via Internet search engines or increasingly via mobile devices. Medical information search is in this respect no different and much research has been devoted to analyzing the way in which physicians aim to access information. Medical image search is a much smaller domain but has gained much attention as it has different characteristics than search for text documents. While web search log files have been analysed many times to better understand user behaviour, the log files of hospital internal systems for search in a PACS/RIS (Picture Archival and Communication System, Radiology Information System) have rarely been analysed. Such a comparison between a hospital PACS/RIS search and a web system for searching images of the biomedical literature is the goal of this paper. Objectives are to identify similarities and differences in search behaviour of the two systems, which could then be used to optimize existing systems and build new search engines. Log files of the ARRS GoldMiner medical image search engine (freely accessible on the Internet) containing 222,005 queries, and log files of Stanford's internal PACS/RIS search called radTF containing 18,068 queries were analysed. Each query was preprocessed and all query terms were mapped to the RadLex (Radiology Lexicon) terminology, a comprehensive lexicon of radiology terms created and maintained by the Radiological Society of North America, so the semantic content in the queries and the links between terms could be analysed, and synonyms for the same concept could be detected. RadLex was mainly created for the use in radiology reports, to aid structured reporting and the preparation of educational material (Lanlotz, 2006) [1]. In standard medical vocabularies such as MeSH (Medical Subject Headings) and UMLS (Unified Medical Language System) specific terms of radiology are often underrepresented, therefore RadLex was considered to be the best option for this task. The results show a surprising similarity between the usage behaviour in the two systems, but several subtle differences can also be noted. The average number of terms per query is 2.21 for GoldMiner and 2.07 for radTF, the used axes of RadLex (anatomy, pathology, findings, …) have almost the same distribution with clinical findings being the most frequent and the anatomical entity the second; also, combinations of RadLex axes are extremely similar between the two systems. Differences include a longer length of the sessions in radTF than in GoldMiner (3.4 and 1.9 queries per session on average). Several frequent search terms overlap but some strong differences exist in the details. In radTF the term "normal" is frequent, whereas in GoldMiner it is not. This makes intuitive sense, as in the literature normal cases are rarely described whereas in clinical work the comparison with normal cases is often a first step. The general similarity in many points is likely due to the fact that users of the two systems are influenced by their daily behaviour in using standard web search engines and follow this behaviour in their professional search. This means that many results and insights gained from standard web search can likely be transferred to more specialized search systems. Still, specialized log files can be used to find out more on reformulations and detailed strategies of users to find the right content. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Searching PubMed for studies on bacteremia, bloodstream infection, septicemia, or whatever the best term is: a note of caution.

    PubMed

    Søgaard, Mette; Andersen, Jens P; Schønheyder, Henrik C

    2012-04-01

    There is inconsistency in the terminology used to describe bacteremia. To demonstrate the impact on information retrieval, we compared the yield of articles from PubMed MEDLINE using the terms "bacteremia," "bloodstream infection," and "septicemia." We searched for articles published between 1966 and 2009, and depicted the relationships among queries graphically. To examine the content of the retrieved articles, we extracted all Medical Subject Headings (MeSH) terms and compared topic similarity using a cosine measure. The recovered articles differed greatly by term, and only 53 articles were captured by all terms. Of the articles retrieved by the "bacteremia" query, 21,438 (84.1%) were not captured when searching for "bloodstream infection" or "septicemia." Likewise, only 2,243 of the 11,796 articles recovered by free-text query for "bloodstream infection" were retrieved by the "bacteremia" query (19%). Entering "bloodstream infection" as a phrase, 46.1% of the records overlapped with the "bacteremia" query. Similarity measures ranged from 0.52 to 0.78 and were lowest for "bloodstream infection" as a phrase compared with "septicemia." Inconsistent terminology has a major impact on the yield of queries. Agreement on terminology should be sought and promoted by scientific journals. An immediate solution is to add "bloodstream infection" as entry term for bacteremia in the MeSH vocabulary. Copyright © 2012 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Mosby, Inc. All rights reserved.

  12. Query Transformations for Result Merging

    DTIC Science & Technology

    2014-11-01

    tors, term dependence, query expansion 1. INTRODUCTION Federated search deals with the problem of aggregating results from multiple search engines . The...invidual search engines are (i) typically focused on a particular domain or a particular corpus, (ii) employ diverse retrieval models, and (iii...determine which search engines are appropri- ate for addressing the information need (resource selection), and (ii) merging the results returned by

  13. Generating Personalized Web Search Using Semantic Context

    PubMed Central

    Xu, Zheng; Chen, Hai-Yan; Yu, Jie

    2015-01-01

    The “one size fits the all” criticism of search engines is that when queries are submitted, the same results are returned to different users. In order to solve this problem, personalized search is proposed, since it can provide different search results based upon the preferences of users. However, existing methods concentrate more on the long-term and independent user profile, and thus reduce the effectiveness of personalized search. In this paper, the method captures the user context to provide accurate preferences of users for effectively personalized search. First, the short-term query context is generated to identify related concepts of the query. Second, the user context is generated based on the click through data of users. Finally, a forgetting factor is introduced to merge the independent user context in a user session, which maintains the evolution of user preferences. Experimental results fully confirm that our approach can successfully represent user context according to individual user information needs. PMID:26000335

  14. Accessing suicide-related information on the internet: a retrospective observational study of search behavior.

    PubMed

    Wong, Paul Wai-Ching; Fu, King-Wa; Yau, Rickey Sai-Pong; Ma, Helen Hei-Man; Law, Yik-Wa; Chang, Shu-Sen; Yip, Paul Siu-Fai

    2013-01-11

    The Internet's potential impact on suicide is of major public health interest as easy online access to pro-suicide information or specific suicide methods may increase suicide risk among vulnerable Internet users. Little is known, however, about users' actual searching and browsing behaviors of online suicide-related information. To investigate what webpages people actually clicked on after searching with suicide-related queries on a search engine and to examine what queries people used to get access to pro-suicide websites. A retrospective observational study was done. We used a web search dataset released by America Online (AOL). The dataset was randomly sampled from all AOL subscribers' web queries between March and May 2006 and generated by 657,000 service subscribers. We found 5526 search queries (0.026%, 5526/21,000,000) that included the keyword "suicide". The 5526 search queries included 1586 different search terms and were generated by 1625 unique subscribers (0.25%, 1625/657,000). Of these queries, 61.38% (3392/5526) were followed by users clicking on a search result. Of these 3392 queries, 1344 (39.62%) webpages were clicked on by 930 unique users but only 1314 of those webpages were accessible during the study period. Each clicked-through webpage was classified into 11 categories. The categories of the most visited webpages were: entertainment (30.13%; 396/1314), scientific information (18.31%; 240/1314), and community resources (14.53%; 191/1314). Among the 1314 accessed webpages, we could identify only two pro-suicide websites. We found that the search terms used to access these sites included "commiting suicide with a gas oven", "hairless goat", "pictures of murder by strangulation", and "photo of a severe burn". A limitation of our study is that the database may be dated and confined to mainly English webpages. Searching or browsing suicide-related or pro-suicide webpages was uncommon, although a small group of users did access websites that contain detailed suicide method information.

  15. Use of controlled vocabularies to improve biomedical information retrieval tasks.

    PubMed

    Pasche, Emilie; Gobeill, Julien; Vishnyakova, Dina; Ruch, Patrick; Lovis, Christian

    2013-01-01

    The high heterogeneity of biomedical vocabulary is a major obstacle for information retrieval in large biomedical collections. Therefore, using biomedical controlled vocabularies is crucial for managing these contents. We investigate the impact of query expansion based on controlled vocabularies to improve the effectiveness of two search engines. Our strategy relies on the enrichment of users' queries with additional terms, directly derived from such vocabularies applied to infectious diseases and chemical patents. We observed that query expansion based on pathogen names resulted in improvements of the top-precision of our first search engine, while the normalization of diseases degraded the top-precision. The expansion of chemical entities, which was performed on the second search engine, positively affected the mean average precision. We have shown that query expansion of some types of biomedical entities has a great potential to improve search effectiveness; therefore a fine-tuning of query expansion strategies could help improving the performances of search engines.

  16. Search query data to monitor interest in behavior change: application for public health.

    PubMed

    Carr, Lucas J; Dunsiger, Shira I

    2012-01-01

    There is a need for effective interventions and policies that target the leading preventable causes of death in the U.S. (e.g., smoking, overweight/obesity, physical inactivity). Such efforts could be aided by the use of publicly available, real-time search query data that illustrate times and locations of high and low public interest in behaviors related to preventable causes of death. This study explored patterns of search query activity for the terms 'weight', 'diet', 'fitness', and 'smoking' using Google Insights for Search. Search activity for 'weight', 'diet', 'fitness', and 'smoking' conducted within the United States via Google between January 4(th), 2004 (first date data was available) and November 28(th), 2011 (date of data download and analysis) were analyzed. Using a generalized linear model, we explored the effects of time (month) on mean relative search volume for all four terms. Models suggest a significant effect of month on mean search volume for all four terms. Search activity for all four terms was highest in January with observable declines throughout the remainder of the year. These findings demonstrate discernable temporal patterns of search activity for four areas of behavior change. These findings could be used to inform the timing, location and messaging of interventions, campaigns and policies targeting these behaviors.

  17. An ontology-based search engine for protein-protein interactions

    PubMed Central

    2010-01-01

    Background Keyword matching or ID matching is the most common searching method in a large database of protein-protein interactions. They are purely syntactic methods, and retrieve the records in the database that contain a keyword or ID specified in a query. Such syntactic search methods often retrieve too few search results or no results despite many potential matches present in the database. Results We have developed a new method for representing protein-protein interactions and the Gene Ontology (GO) using modified Gödel numbers. This representation is hidden from users but enables a search engine using the representation to efficiently search protein-protein interactions in a biologically meaningful way. Given a query protein with optional search conditions expressed in one or more GO terms, the search engine finds all the interaction partners of the query protein by unique prime factorization of the modified Gödel numbers representing the query protein and the search conditions. Conclusion Representing the biological relations of proteins and their GO annotations by modified Gödel numbers makes a search engine efficiently find all protein-protein interactions by prime factorization of the numbers. Keyword matching or ID matching search methods often miss the interactions involving a protein that has no explicit annotations matching the search condition, but our search engine retrieves such interactions as well if they satisfy the search condition with a more specific term in the ontology. PMID:20122195

  18. An ontology-based search engine for protein-protein interactions.

    PubMed

    Park, Byungkyu; Han, Kyungsook

    2010-01-18

    Keyword matching or ID matching is the most common searching method in a large database of protein-protein interactions. They are purely syntactic methods, and retrieve the records in the database that contain a keyword or ID specified in a query. Such syntactic search methods often retrieve too few search results or no results despite many potential matches present in the database. We have developed a new method for representing protein-protein interactions and the Gene Ontology (GO) using modified Gödel numbers. This representation is hidden from users but enables a search engine using the representation to efficiently search protein-protein interactions in a biologically meaningful way. Given a query protein with optional search conditions expressed in one or more GO terms, the search engine finds all the interaction partners of the query protein by unique prime factorization of the modified Gödel numbers representing the query protein and the search conditions. Representing the biological relations of proteins and their GO annotations by modified Gödel numbers makes a search engine efficiently find all protein-protein interactions by prime factorization of the numbers. Keyword matching or ID matching search methods often miss the interactions involving a protein that has no explicit annotations matching the search condition, but our search engine retrieves such interactions as well if they satisfy the search condition with a more specific term in the ontology.

  19. Seasonal trends in sleep-disordered breathing: evidence from Internet search engine query data.

    PubMed

    Ingram, David G; Matthews, Camilla K; Plante, David T

    2015-03-01

    The primary aim of the current study was to test the hypothesis that there is a seasonal component to snoring and obstructive sleep apnea (OSA) through the use of Google search engine query data. Internet search engine query data were retrieved from Google Trends from January 2006 to December 2012. Monthly normalized search volume was obtained over that 7-year period in the USA and Australia for the following search terms: "snoring" and "sleep apnea". Seasonal effects were investigated by fitting cosinor regression models. In addition, the search terms "snoring children" and "sleep apnea children" were evaluated to examine seasonal effects in pediatric populations. Statistically significant seasonal effects were found using cosinor analysis in both USA and Australia for "snoring" (p < 0.00001 for both countries). Similarly, seasonal patterns were observed for "sleep apnea" in the USA (p = 0.001); however, cosinor analysis was not significant for this search term in Australia (p = 0.13). Seasonal patterns for "snoring children" and "sleep apnea children" were observed in the USA (p = 0.002 and p < 0.00001, respectively), with insufficient search volume to examine these search terms in Australia. All searches peaked in the winter or early spring in both countries, with the magnitude of seasonal effect ranging from 5 to 50 %. Our findings indicate that there are significant seasonal trends for both snoring and sleep apnea internet search engine queries, with a peak in the winter and early spring. Further research is indicated to determine the mechanisms underlying these findings, whether they have clinical impact, and if they are associated with other comorbid medical conditions that have similar patterns of seasonal exacerbation.

  20. Automatic Query Formulations in Information Retrieval.

    ERIC Educational Resources Information Center

    Salton, G.; And Others

    1983-01-01

    Introduces methods designed to reduce role of search intermediaries by generating Boolean search formulations automatically using term frequency considerations from natural language statements provided by system patrons. Experimental results are supplied and methods are described for applying automatic query formulation process in practice.…

  1. Does query expansion limit our learning? A comparison of social-based expansion to content-based expansion for medical queries on the internet.

    PubMed

    Pentoney, Christopher; Harwell, Jeff; Leroy, Gondy

    2014-01-01

    Searching for medical information online is a common activity. While it has been shown that forming good queries is difficult, Google's query suggestion tool, a type of query expansion, aims to facilitate query formation. However, it is unknown how this expansion, which is based on what others searched for, affects the information gathering of the online community. To measure the impact of social-based query expansion, this study compared it with content-based expansion, i.e., what is really in the text. We used 138,906 medical queries from the AOL User Session Collection and expanded them using Google's Autocomplete method (social-based) and the content of the Google Web Corpus (content-based). We evaluated the specificity and ambiguity of the expansion terms for trigram queries. We also looked at the impact on the actual results using domain diversity and expansion edit distance. Results showed that the social-based method provided more precise expansion terms as well as terms that were less ambiguous. Expanded queries do not differ significantly in diversity when expanded using the social-based method (6.72 different domains returned in the first ten results, on average) vs. content-based method (6.73 different domains, on average).

  2. Using search engine query data to track pharmaceutical utilization: a study of statins.

    PubMed

    Schuster, Nathaniel M; Rogers, Mary A M; McMahon, Laurence F

    2010-08-01

    To examine temporal and geographic associations between Google queries for health information and healthcare utilization benchmarks. Retrospective longitudinal study. Using Google Trends and Google Insights for Search data, the search terms Lipitor (atorvastatin calcium; Pfizer, Ann Arbor, MI) and simvastatin were evaluated for change over time and for association with Lipitor revenues. The relationship between query data and community-based resource use per Medicare beneficiary was assessed for 35 US metropolitan areas. Google queries for Lipitor significantly decreased from January 2004 through June 2009 and queries for simvastatin significantly increased (P <.001 for both), particularly after Lipitor came off patent (P <.001 for change in slope). The mean number of Google queries for Lipitor correlated (r = 0.98) with the percentage change in Lipitor global revenues from 2004 to 2008 (P <.001). Query preference for Lipitor over simvastatin was positively associated (r = 0.40) with a community's use of Medicare services. For every 1% increase in utilization of Medicare services in a community, there was a 0.2-unit increase in the ratio of Lipitor queries to simvastatin queries in that community (P = .02). Specific search engine queries for medical information correlate with pharmaceutical revenue and with overall healthcare utilization in a community. This suggests that search query data can track community-wide characteristics in healthcare utilization and have the potential for informing payers and policy makers regarding trends in utilization.

  3. Is 'self-medication' a useful term to retrieve related publications in the literature? A systematic exploration of related terms.

    PubMed

    Mansouri, Ava; Sarayani, Amir; Ashouri, Asieh; Sherafatmand, Mona; Hadjibabaie, Molouk; Gholami, Kheirollah

    2015-01-01

    Self-Medication (SM), i.e. using medications to treat oneself, is a major concern for health researchers and policy makers. The terms "self medication" or "self-medication" (SM terms) have been used to explain various concepts while several terms have also been employed to define this practice. Hence, retrieving relevant publications would require exhaustive literature screening. So, we assessed the current situation of SM terms in the literature to improve the relevancy of search outcomes. In this Systematic exploration, SM terms were searched in the 6 following databases and publisher's portals till April 2012: Web of Science, Scopus, PubMed, Google scholar, ScienceDirect, and Wiley. A simple search query was used to include only publications with SM terms. We used Relative-Risk (RR) to estimate the probability of SM terms use in related compared to unrelated publications. Sensitivity and specificity of SM terms as keywords in search query were also calculated. Relevant terms to SM practice were extracted and their Likelihood Ratio positive and negative (LR+/-) were calculated to assess their effect on the probability of search outcomes relevancy in addition to previous search queries. We also evaluated the content of unrelated publications. All mentioned steps were performed in title (TI) and title or abstract (TIAB) of publications. 1999 related and 1917 unrelated publications were found. SM terms RR was 4.5 in TI and 2.1 in TIAB. SM terms sensitivity and specificity respectively were 55.4% and 87.7% in TI and 84.0% and 59.5% in TIAB. "OTC" and "Over-The-Counter Medication", with LR+ 16.78 and 16.30 respectively, provided the most conclusive increase in the probability of the relevancy of publications. The most common unrelated SM themes were self-medication hypothesis, drug abuse and Zoopharmacognosy. Due to relatively low specificity or sensitivity of SM terms, relevant terms should be employed in search queries and clear definitions of SM applications should be applied to improve the relevancy of publications.

  4. Is ‘Self-Medication’ a Useful Term to Retrieve Related Publications in the Literature? A Systematic Exploration of Related Terms

    PubMed Central

    Mansouri, Ava; Sarayani, Amir; Ashouri, Asieh; Sherafatmand, Mona; Hadjibabaie, Molouk; Gholami, Kheirollah

    2015-01-01

    Background Self-Medication (SM), i.e. using medications to treat oneself, is a major concern for health researchers and policy makers. The terms “self medication” or “self-medication” (SM terms) have been used to explain various concepts while several terms have also been employed to define this practice. Hence, retrieving relevant publications would require exhaustive literature screening. So, we assessed the current situation of SM terms in the literature to improve the relevancy of search outcomes. Methods In this Systematic exploration, SM terms were searched in the 6 following databases and publisher’s portals till April 2012: Web of Science, Scopus, PubMed, Google scholar, ScienceDirect, and Wiley. A simple search query was used to include only publications with SM terms. We used Relative-Risk (RR) to estimate the probability of SM terms use in related compared to unrelated publications. Sensitivity and specificity of SM terms as keywords in search query were also calculated. Relevant terms to SM practice were extracted and their Likelihood Ratio positive and negative (LR+/-) were calculated to assess their effect on the probability of search outcomes relevancy in addition to previous search queries. We also evaluated the content of unrelated publications. All mentioned steps were performed in title (TI) and title or abstract (TIAB) of publications. Results 1999 related and 1917 unrelated publications were found. SM terms RR was 4.5 in TI and 2.1 in TIAB. SM terms sensitivity and specificity respectively were 55.4% and 87.7% in TI and 84.0% and 59.5% in TIAB. “OTC” and “Over-The-Counter Medication”, with LR+ 16.78 and 16.30 respectively, provided the most conclusive increase in the probability of the relevancy of publications. The most common unrelated SM themes were self-medication hypothesis, drug abuse and Zoopharmacognosy. Conclusions Due to relatively low specificity or sensitivity of SM terms, relevant terms should be employed in search queries and clear definitions of SM applications should be applied to improve the relevancy of publications. PMID:25932634

  5. Search Query Data to Monitor Interest in Behavior Change: Application for Public Health

    PubMed Central

    Carr, Lucas J.; Dunsiger, Shira I.

    2012-01-01

    There is a need for effective interventions and policies that target the leading preventable causes of death in the U.S. (e.g., smoking, overweight/obesity, physical inactivity). Such efforts could be aided by the use of publicly available, real-time search query data that illustrate times and locations of high and low public interest in behaviors related to preventable causes of death. Objectives This study explored patterns of search query activity for the terms ‘weight’, ‘diet’, ‘fitness’, and ‘smoking’ using Google Insights for Search. Methods Search activity for ‘weight’, ‘diet’, ‘fitness’, and ‘smoking’ conducted within the United States via Google between January 4th, 2004 (first date data was available) and November 28th, 2011 (date of data download and analysis) were analyzed. Using a generalized linear model, we explored the effects of time (month) on mean relative search volume for all four terms. Results Models suggest a significant effect of month on mean search volume for all four terms. Search activity for all four terms was highest in January with observable declines throughout the remainder of the year. Conclusions These findings demonstrate discernable temporal patterns of search activity for four areas of behavior change. These findings could be used to inform the timing, location and messaging of interventions, campaigns and policies targeting these behaviors. PMID:23110198

  6. Building a Smart Portal for Astronomy

    NASA Astrophysics Data System (ADS)

    Derriere, S.; Boch, T.

    2011-07-01

    The development of a portal for accessing astronomical resources is not an easy task. The ever-increasing complexity of the data products can result in very complex user interfaces, requiring a lot of effort and learning from the user in order to perform searches. This is often a design choice, where the user must explicitly set many constraints, while the portal search logic remains simple. We investigated a different approach, where the query interface is kept as simple as possible (ideally, a simple text field, like for Google search), and the search logic is made much more complex to interpret the query in a relevant manner. We will present the implications of this approach in terms of interpretation and categorization of the query parameters (related to astronomical vocabularies), translation (mapping) of these concepts into the portal components metadata, identification of query schemes and use cases matching the input parameters, and delivery of query results to the user.

  7. Blind Seer: A Scalable Private DBMS

    DTIC Science & Technology

    2014-05-01

    searchable index terms per DB row, in time comparable to (insecure) MySQL (many practical queries can be privately executed with work 1.2-3 times slower...than MySQL , although some queries are costlier). We support a rich query set, including searching on arbitrary boolean formulas on keywords and ranges...index terms per DB row, in time comparable to (insecure) MySQL (many practical queries can be privately executed with work 1.2-3 times slower than MySQL

  8. Accessing Suicide-Related Information on the Internet: A Retrospective Observational Study of Search Behavior

    PubMed Central

    2013-01-01

    Background The Internet’s potential impact on suicide is of major public health interest as easy online access to pro-suicide information or specific suicide methods may increase suicide risk among vulnerable Internet users. Little is known, however, about users’ actual searching and browsing behaviors of online suicide-related information. Objective To investigate what webpages people actually clicked on after searching with suicide-related queries on a search engine and to examine what queries people used to get access to pro-suicide websites. Methods A retrospective observational study was done. We used a web search dataset released by America Online (AOL). The dataset was randomly sampled from all AOL subscribers’ web queries between March and May 2006 and generated by 657,000 service subscribers. Results We found 5526 search queries (0.026%, 5526/21,000,000) that included the keyword "suicide". The 5526 search queries included 1586 different search terms and were generated by 1625 unique subscribers (0.25%, 1625/657,000). Of these queries, 61.38% (3392/5526) were followed by users clicking on a search result. Of these 3392 queries, 1344 (39.62%) webpages were clicked on by 930 unique users but only 1314 of those webpages were accessible during the study period. Each clicked-through webpage was classified into 11 categories. The categories of the most visited webpages were: entertainment (30.13%; 396/1314), scientific information (18.31%; 240/1314), and community resources (14.53%; 191/1314). Among the 1314 accessed webpages, we could identify only two pro-suicide websites. We found that the search terms used to access these sites included “commiting suicide with a gas oven”, “hairless goat”, “pictures of murder by strangulation”, and “photo of a severe burn”. A limitation of our study is that the database may be dated and confined to mainly English webpages. Conclusions Searching or browsing suicide-related or pro-suicide webpages was uncommon, although a small group of users did access websites that contain detailed suicide method information. PMID:23305632

  9. Index Compression and Efficient Query Processing in Large Web Search Engines

    ERIC Educational Resources Information Center

    Ding, Shuai

    2013-01-01

    The inverted index is the main data structure used by all the major search engines. Search engines build an inverted index on their collection to speed up query processing. As the size of the web grows, the length of the inverted list structures, which can easily grow to hundreds of MBs or even GBs for common terms (roughly linear in the size of…

  10. Examining the themes of STD-related Internet searches to increase specificity of disease forecasting using Internet search terms.

    PubMed

    Johnson, Amy K; Mikati, Tarek; Mehta, Supriya D

    2016-11-09

    US surveillance of sexually transmitted diseases (STDs) is often delayed and incomplete which creates missed opportunities to identify and respond to trends in disease. Internet search engine data has the potential to be an efficient, economical and representative enhancement to the established surveillance system. Google Trends allows the download of de-identified search engine data, which has been used to demonstrate the positive and statistically significant association between STD-related search terms and STD rates. In this study, search engine user content was identified by surveying specific exposure groups of individuals (STD clinic patients and university students) aged 18-35. Participants were asked to list the terms they use to search for STD-related information. Google Correlate was used to validate search term content. On average STD clinic participant queries were longer compared to student queries. STD clinic participants were more likely to report using search terms that were related to symptomatology such as describing symptoms of STDs, while students were more likely to report searching for general information. These differences in search terms by subpopulation have implications for STD surveillance in populations at most risk for disease acquisition.

  11. Using Bitmap Indexing Technology for Combined Numerical and TextQueries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stockinger, Kurt; Cieslewicz, John; Wu, Kesheng

    2006-10-16

    In this paper, we describe a strategy of using compressedbitmap indices to speed up queries on both numerical data and textdocuments. By using an efficient compression algorithm, these compressedbitmap indices are compact even for indices with millions of distinctterms. Moreover, bitmap indices can be used very efficiently to answerBoolean queries over text documents involving multiple query terms.Existing inverted indices for text searches are usually inefficient forcorpora with a very large number of terms as well as for queriesinvolving a large number of hits. We demonstrate that our compressedbitmap index technology overcomes both of those short-comings. In aperformance comparison against amore » commonly used database system, ourindices answer queries 30 times faster on average. To provide full SQLsupport, we integrated our indexing software, called FastBit, withMonetDB. The integrated system MonetDB/FastBit provides not onlyefficient searches on a single table as FastBit does, but also answersjoin queries efficiently. Furthermore, MonetDB/FastBit also provides avery efficient retrieval mechanism of result records.« less

  12. Issues in the design of a pilot concept-based query interface for the neuroinformatics information framework.

    PubMed

    Marenco, Luis; Li, Yuli; Martone, Maryann E; Sternberg, Paul W; Shepherd, Gordon M; Miller, Perry L

    2008-09-01

    This paper describes a pilot query interface that has been constructed to help us explore a "concept-based" approach for searching the Neuroscience Information Framework (NIF). The query interface is concept-based in the sense that the search terms submitted through the interface are selected from a standardized vocabulary of terms (concepts) that are structured in the form of an ontology. The NIF contains three primary resources: the NIF Resource Registry, the NIF Document Archive, and the NIF Database Mediator. These NIF resources are very different in their nature and therefore pose challenges when designing a single interface from which searches can be automatically launched against all three resources simultaneously. The paper first discusses briefly several background issues involving the use of standardized biomedical vocabularies in biomedical information retrieval, and then presents a detailed example that illustrates how the pilot concept-based query interface operates. The paper concludes by discussing certain lessons learned in the development of the current version of the interface.

  13. Issues in the Design of a Pilot Concept-Based Query Interface for the Neuroinformatics Information Framework

    PubMed Central

    Li, Yuli; Martone, Maryann E.; Sternberg, Paul W.; Shepherd, Gordon M.; Miller, Perry L.

    2009-01-01

    This paper describes a pilot query interface that has been constructed to help us explore a “concept-based” approach for searching the Neuroscience Information Framework (NIF). The query interface is concept-based in the sense that the search terms submitted through the interface are selected from a standardized vocabulary of terms (concepts) that are structured in the form of an ontology. The NIF contains three primary resources: the NIF Resource Registry, the NIF Document Archive, and the NIF Database Mediator. These NIF resources are very different in their nature and therefore pose challenges when designing a single interface from which searches can be automatically launched against all three resources simultaneously. The paper first discusses briefly several background issues involving the use of standardized biomedical vocabularies in biomedical information retrieval, and then presents a detailed example that illustrates how the pilot concept-based query interface operates. The paper concludes by discussing certain lessons learned in the development of the current version of the interface. PMID:18953674

  14. Improving biomedical information retrieval by linear combinations of different query expansion techniques.

    PubMed

    Abdulla, Ahmed AbdoAziz Ahmed; Lin, Hongfei; Xu, Bo; Banbhrani, Santosh Kumar

    2016-07-25

    Biomedical literature retrieval is becoming increasingly complex, and there is a fundamental need for advanced information retrieval systems. Information Retrieval (IR) programs scour unstructured materials such as text documents in large reserves of data that are usually stored on computers. IR is related to the representation, storage, and organization of information items, as well as to access. In IR one of the main problems is to determine which documents are relevant and which are not to the user's needs. Under the current regime, users cannot precisely construct queries in an accurate way to retrieve particular pieces of data from large reserves of data. Basic information retrieval systems are producing low-quality search results. In our proposed system for this paper we present a new technique to refine Information Retrieval searches to better represent the user's information need in order to enhance the performance of information retrieval by using different query expansion techniques and apply a linear combinations between them, where the combinations was linearly between two expansion results at one time. Query expansions expand the search query, for example, by finding synonyms and reweighting original terms. They provide significantly more focused, particularized search results than do basic search queries. The retrieval performance is measured by some variants of MAP (Mean Average Precision) and according to our experimental results, the combination of best results of query expansion is enhanced the retrieved documents and outperforms our baseline by 21.06 %, even it outperforms a previous study by 7.12 %. We propose several query expansion techniques and their combinations (linearly) to make user queries more cognizable to search engines and to produce higher-quality search results.

  15. Sensitivity and Predictive Value of 15 PubMed Search Strategies to Answer Clinical Questions Rated Against Full Systematic Reviews

    PubMed Central

    Merglen, Arnaud; Courvoisier, Delphine S; Combescure, Christophe; Garin, Nicolas; Perrier, Arnaud; Perneger, Thomas V

    2012-01-01

    Background Clinicians perform searches in PubMed daily, but retrieving relevant studies is challenging due to the rapid expansion of medical knowledge. Little is known about the performance of search strategies when they are applied to answer specific clinical questions. Objective To compare the performance of 15 PubMed search strategies in retrieving relevant clinical trials on therapeutic interventions. Methods We used Cochrane systematic reviews to identify relevant trials for 30 clinical questions. Search terms were extracted from the abstract using a predefined procedure based on the population, interventions, comparison, outcomes (PICO) framework and combined into queries. We tested 15 search strategies that varied in their query (PIC or PICO), use of PubMed’s Clinical Queries therapeutic filters (broad or narrow), search limits, and PubMed links to related articles. We assessed sensitivity (recall) and positive predictive value (precision) of each strategy on the first 2 PubMed pages (40 articles) and on the complete search output. Results The performance of the search strategies varied widely according to the clinical question. Unfiltered searches and those using the broad filter of Clinical Queries produced large outputs and retrieved few relevant articles within the first 2 pages, resulting in a median sensitivity of only 10%–25%. In contrast, all searches using the narrow filter performed significantly better, with a median sensitivity of about 50% (all P < .001 compared with unfiltered queries) and positive predictive values of 20%–30% (P < .001 compared with unfiltered queries). This benefit was consistent for most clinical questions. Searches based on related articles retrieved about a third of the relevant studies. Conclusions The Clinical Queries narrow filter, along with well-formulated queries based on the PICO framework, provided the greatest aid in retrieving relevant clinical trials within the 2 first PubMed pages. These results can help clinicians apply effective strategies to answer their questions at the point of care. PMID:22693047

  16. Sensitivity and predictive value of 15 PubMed search strategies to answer clinical questions rated against full systematic reviews.

    PubMed

    Agoritsas, Thomas; Merglen, Arnaud; Courvoisier, Delphine S; Combescure, Christophe; Garin, Nicolas; Perrier, Arnaud; Perneger, Thomas V

    2012-06-12

    Clinicians perform searches in PubMed daily, but retrieving relevant studies is challenging due to the rapid expansion of medical knowledge. Little is known about the performance of search strategies when they are applied to answer specific clinical questions. To compare the performance of 15 PubMed search strategies in retrieving relevant clinical trials on therapeutic interventions. We used Cochrane systematic reviews to identify relevant trials for 30 clinical questions. Search terms were extracted from the abstract using a predefined procedure based on the population, interventions, comparison, outcomes (PICO) framework and combined into queries. We tested 15 search strategies that varied in their query (PIC or PICO), use of PubMed's Clinical Queries therapeutic filters (broad or narrow), search limits, and PubMed links to related articles. We assessed sensitivity (recall) and positive predictive value (precision) of each strategy on the first 2 PubMed pages (40 articles) and on the complete search output. The performance of the search strategies varied widely according to the clinical question. Unfiltered searches and those using the broad filter of Clinical Queries produced large outputs and retrieved few relevant articles within the first 2 pages, resulting in a median sensitivity of only 10%-25%. In contrast, all searches using the narrow filter performed significantly better, with a median sensitivity of about 50% (all P < .001 compared with unfiltered queries) and positive predictive values of 20%-30% (P < .001 compared with unfiltered queries). This benefit was consistent for most clinical questions. Searches based on related articles retrieved about a third of the relevant studies. The Clinical Queries narrow filter, along with well-formulated queries based on the PICO framework, provided the greatest aid in retrieving relevant clinical trials within the 2 first PubMed pages. These results can help clinicians apply effective strategies to answer their questions at the point of care.

  17. Why do people google movement disorders? An infodemiological study of information seeking behaviors.

    PubMed

    Brigo, Francesco; Erro, Roberto

    2016-05-01

    Millions of people worldwide everyday search Google or Wikipedia to look for health-related information. Aim of this study was to evaluate and interpret web search queries for terms related to movement disorders (MD) in English-speaking countries and their changes over time. We analyzed information regarding the volume of online searches in Google and Wikipedia for the most common MD and their treatments. We determined the highest search volume peaks to identify possible relation with online news headlines. The volume of searches for some queries related to MD entered in Google enormously increased over time. Most queries were related to definition, subtypes, symptoms and treatment (mostly to adverse effects, or alternatively, to possible alternative treatments). The highest peaks of MD search queries were temporally related to news about celebrities suffering from MD, to specific mass-media events or to news concerning pharmaceutic companies or scientific discoveries on MD. An increasing number of people use Google and Wikipedia to look for terms related to MD to obtain information on definitions, causes and symptoms, possibly to aid initial self-diagnosis. MD information demand and the actual prevalence of different MDs do not travel together: web search volume may mirrors patients' fears and worries about some particular disorders perceived as more serious than others, or may be driven by release of news about celebrities suffering from MD, "breaking news" or specific mass-media events regarding MD.

  18. G-Bean: an ontology-graph based web tool for biomedical literature retrieval

    PubMed Central

    2014-01-01

    Background Currently, most people use NCBI's PubMed to search the MEDLINE database, an important bibliographical information source for life science and biomedical information. However, PubMed has some drawbacks that make it difficult to find relevant publications pertaining to users' individual intentions, especially for non-expert users. To ameliorate the disadvantages of PubMed, we developed G-Bean, a graph based biomedical search engine, to search biomedical articles in MEDLINE database more efficiently. Methods G-Bean addresses PubMed's limitations with three innovations: (1) Parallel document index creation: a multithreaded index creation strategy is employed to generate the document index for G-Bean in parallel; (2) Ontology-graph based query expansion: an ontology graph is constructed by merging four major UMLS (Version 2013AA) vocabularies, MeSH, SNOMEDCT, CSP and AOD, to cover all concepts in National Library of Medicine (NLM) database; a Personalized PageRank algorithm is used to compute concept relevance in this ontology graph and the Term Frequency - Inverse Document Frequency (TF-IDF) weighting scheme is used to re-rank the concepts. The top 500 ranked concepts are selected for expanding the initial query to retrieve more accurate and relevant information; (3) Retrieval and re-ranking of documents based on user's search intention: after the user selects any article from the existing search results, G-Bean analyzes user's selections to determine his/her true search intention and then uses more relevant and more specific terms to retrieve additional related articles. The new articles are presented to the user in the order of their relevance to the already selected articles. Results Performance evaluation with 106 OHSUMED benchmark queries shows that G-Bean returns more relevant results than PubMed does when using these queries to search the MEDLINE database. PubMed could not even return any search result for some OHSUMED queries because it failed to form the appropriate Boolean query statement automatically from the natural language query strings. G-Bean is available at http://bioinformatics.clemson.edu/G-Bean/index.php. Conclusions G-Bean addresses PubMed's limitations with ontology-graph based query expansion, automatic document indexing, and user search intention discovery. It shows significant advantages in finding relevant articles from the MEDLINE database to meet the information need of the user. PMID:25474588

  19. G-Bean: an ontology-graph based web tool for biomedical literature retrieval.

    PubMed

    Wang, James Z; Zhang, Yuanyuan; Dong, Liang; Li, Lin; Srimani, Pradip K; Yu, Philip S

    2014-01-01

    Currently, most people use NCBI's PubMed to search the MEDLINE database, an important bibliographical information source for life science and biomedical information. However, PubMed has some drawbacks that make it difficult to find relevant publications pertaining to users' individual intentions, especially for non-expert users. To ameliorate the disadvantages of PubMed, we developed G-Bean, a graph based biomedical search engine, to search biomedical articles in MEDLINE database more efficiently. G-Bean addresses PubMed's limitations with three innovations: (1) Parallel document index creation: a multithreaded index creation strategy is employed to generate the document index for G-Bean in parallel; (2) Ontology-graph based query expansion: an ontology graph is constructed by merging four major UMLS (Version 2013AA) vocabularies, MeSH, SNOMEDCT, CSP and AOD, to cover all concepts in National Library of Medicine (NLM) database; a Personalized PageRank algorithm is used to compute concept relevance in this ontology graph and the Term Frequency - Inverse Document Frequency (TF-IDF) weighting scheme is used to re-rank the concepts. The top 500 ranked concepts are selected for expanding the initial query to retrieve more accurate and relevant information; (3) Retrieval and re-ranking of documents based on user's search intention: after the user selects any article from the existing search results, G-Bean analyzes user's selections to determine his/her true search intention and then uses more relevant and more specific terms to retrieve additional related articles. The new articles are presented to the user in the order of their relevance to the already selected articles. Performance evaluation with 106 OHSUMED benchmark queries shows that G-Bean returns more relevant results than PubMed does when using these queries to search the MEDLINE database. PubMed could not even return any search result for some OHSUMED queries because it failed to form the appropriate Boolean query statement automatically from the natural language query strings. G-Bean is available at http://bioinformatics.clemson.edu/G-Bean/index.php. G-Bean addresses PubMed's limitations with ontology-graph based query expansion, automatic document indexing, and user search intention discovery. It shows significant advantages in finding relevant articles from the MEDLINE database to meet the information need of the user.

  20. An Examination of Natural Language as a Query Formation Tool for Retrieving Information on E-Health from Pub Med.

    ERIC Educational Resources Information Center

    Peterson, Gabriel M.; Su, Kuichun; Ries, James E.; Sievert, Mary Ellen C.

    2002-01-01

    Discussion of Internet use for information searches on health-related topics focuses on a study that examined complexity and variability of natural language in using search terms that express the concept of electronic health (e-health). Highlights include precision of retrieved information; shift in terminology; and queries using the Pub Med…

  1. On Relevance Weight Estimation and Query Expansion.

    ERIC Educational Resources Information Center

    Robertson, S. E.

    1986-01-01

    A Bayesian argument is used to suggest modifications to the Robertson and Jones relevance weighting formula to accommodate the addition to the query of terms taken from the relevant documents identified during the search. (Author)

  2. Seasons, Searches, and Intentions: What The Internet Can Tell Us About The Bed Bug (Hemiptera: Cimicidae) Epidemic.

    PubMed

    Sentana-Lledo, Daniel; Barbu, Corentin M; Ngo, Michelle N; Wu, Yage; Sethuraman, Karthik; Levy, Michael Z

    2016-01-01

    The common bed bug (Cimex lectularius L.) is once again prevalent in the United States. We investigated temporal patterns in Google search queries for bed bugs and co-occurring terms, and conducted in-person surveys to explore the intentions behind searches that included those terms. Searches for "bed bugs" rose steadily through 2011 and then plateaued, suggesting that the epidemic has reached an equilibrium in the United States. However, queries including terms that survey respondents associated strongly with having bed bugs (e.g., "exterminator," "remedies") continued to climb, while terms more closely associated with informational searches (e.g., "hotels," "about") fell. Respondents' rankings of terms and nonseasonal trends in Google search volume as assessed by a cosinor model were significantly correlated (Kendall's Tau-b P = 0.015). We find no evidence from Google Trends that the bed bug epidemic in the United States has reached equilibrium. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  3. Internet search query analysis can be used to demonstrate the rapidly increasing public awareness of palliative care in the USA.

    PubMed

    McLean, Sarah; Lennon, Paul; Glare, Paul

    2017-01-27

    A lack of public awareness of palliative care (PC) has been identified as one of the main barriers to appropriate PC access. Internet search query analysis is a novel methodology, which has been effectively used in surveillance of infectious diseases, and can be used to monitor public awareness of health-related topics. We aimed to demonstrate the utility of internet search query analysis to evaluate changes in public awareness of PC in the USA between 2005 and 2015. Google Trends provides a referenced score for the popularity of a search term, for defined regions over defined time periods. The popularity of the search term 'palliative care' was measured monthly between 1/1/2005 and 31/12/2015 in the USA and in the UK. Results were analysed using independent t-tests and joinpoint analysis. The mean monthly popularity of the search term increased between 2008-2009 (p<0.001), 2011-2012 (p<0.001), 2013-2014 (p=0.004) and 2014-2015 (p=0.002) in the USA. Joinpoint analysis was used to evaluate the monthly percentage change (MPC) in the popularity of the search term. In the USA, the MPC increase was 0.6%/month (p<0.05); in the UK the MPC of 0.05% was non-significant. Although internet search query surveillance is a novel methodology, it is freely accessible and has significant potential to monitor health-seeking behaviour among the public. PC is rapidly growing in the USA, and the rapidly increasing public awareness of PC as demonstrated in this study, in comparison with the UK, where PC is relatively well established is encouraging in increasingly ensuring appropriate PC access for all. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  4. A novel adaptive Cuckoo search for optimal query plan generation.

    PubMed

    Gomathi, Ramalingam; Sharmila, Dhandapani

    2014-01-01

    The emergence of multiple web pages day by day leads to the development of the semantic web technology. A World Wide Web Consortium (W3C) standard for storing semantic web data is the resource description framework (RDF). To enhance the efficiency in the execution time for querying large RDF graphs, the evolving metaheuristic algorithms become an alternate to the traditional query optimization methods. This paper focuses on the problem of query optimization of semantic web data. An efficient algorithm called adaptive Cuckoo search (ACS) for querying and generating optimal query plan for large RDF graphs is designed in this research. Experiments were conducted on different datasets with varying number of predicates. The experimental results have exposed that the proposed approach has provided significant results in terms of query execution time. The extent to which the algorithm is efficient is tested and the results are documented.

  5. Querying archetype-based EHRs by search ontology-based XPath engineering.

    PubMed

    Kropf, Stefan; Uciteli, Alexandr; Schierle, Katrin; Krücken, Peter; Denecke, Kerstin; Herre, Heinrich

    2018-05-11

    Legacy data and new structured data can be stored in a standardized format as XML-based EHRs on XML databases. Querying documents on these databases is crucial for answering research questions. Instead of using free text searches, that lead to false positive results, the precision can be increased by constraining the search to certain parts of documents. A search ontology-based specification of queries on XML documents defines search concepts and relates them to parts in the XML document structure. Such query specification method is practically introduced and evaluated by applying concrete research questions formulated in natural language on a data collection for information retrieval purposes. The search is performed by search ontology-based XPath engineering that reuses ontologies and XML-related W3C standards. The key result is that the specification of research questions can be supported by the usage of search ontology-based XPath engineering. A deeper recognition of entities and a semantic understanding of the content is necessary for a further improvement of precision and recall. Key limitation is that the application of the introduced process requires skills in ontology and software development. In future, the time consuming ontology development could be overcome by implementing a new clinical role: the clinical ontologist. The introduced Search Ontology XML extension connects Search Terms to certain parts in XML documents and enables an ontology-based definition of queries. Search ontology-based XPath engineering can support research question answering by the specification of complex XPath expressions without deep syntax knowledge about XPaths.

  6. Thesaurus-Enhanced Search Interfaces.

    ERIC Educational Resources Information Center

    Shiri, Ali Asghar; Revie, Crawford; Chowdhury, Gobinda

    2002-01-01

    Discussion of user interfaces to information retrieval systems focuses on interfaces that incorporate thesauri as part of their searching and browsing facilities. Discusses research literature related to information searching behavior, information retrieval interface evaluation, search term selection, and query expansion; and compares thesaurus…

  7. Meeting medical terminology needs--the Ontology-Enhanced Medical Concept Mapper.

    PubMed

    Leroy, G; Chen, H

    2001-12-01

    This paper describes the development and testing of the Medical Concept Mapper, a tool designed to facilitate access to online medical information sources by providing users with appropriate medical search terms for their personal queries. Our system is valuable for patients whose knowledge of medical vocabularies is inadequate to find the desired information, and for medical experts who search for information outside their field of expertise. The Medical Concept Mapper maps synonyms and semantically related concepts to a user's query. The system is unique because it integrates our natural language processing tool, i.e., the Arizona (AZ) Noun Phraser, with human-created ontologies, the Unified Medical Language System (UMLS) and WordNet, and our computer generated Concept Space, into one system. Our unique contribution results from combining the UMLS Semantic Net with Concept Space in our deep semantic parsing (DSP) algorithm. This algorithm establishes a medical query context based on the UMLS Semantic Net, which allows Concept Space terms to be filtered so as to isolate related terms relevant to the query. We performed two user studies in which Medical Concept Mapper terms were compared against human experts' terms. We conclude that the AZ Noun Phraser is well suited to extract medical phrases from user queries, that WordNet is not well suited to provide strictly medical synonyms, that the UMLS Metathesaurus is well suited to provide medical synonyms, and that Concept Space is well suited to provide related medical terms, especially when these terms are limited by our DSP algorithm.

  8. EquiX-A Search and Query Language for XML.

    ERIC Educational Resources Information Center

    Cohen, Sara; Kanza, Yaron; Kogan, Yakov; Sagiv, Yehoshua; Nutt, Werner; Serebrenik, Alexander

    2002-01-01

    Describes EquiX, a search language for XML that combines querying with searching to query the data and the meta-data content of Web pages. Topics include search engines; a data model for XML documents; search query syntax; search query semantics; an algorithm for evaluating a query on a document; and indexing EquiX queries. (LRW)

  9. An assessment of the visibility of MeSH-indexed medical web catalogs through search engines.

    PubMed

    Zweigenbaum, P; Darmoni, S J; Grabar, N; Douyère, M; Benichou, J

    2002-01-01

    Manually indexed Internet health catalogs such as CliniWeb or CISMeF provide resources for retrieving high-quality health information. Users of these quality-controlled subject gateways are most often referred to them by general search engines such as Google, AltaVista, etc. This raises several questions, among which the following: what is the relative visibility of medical Internet catalogs through search engines? This study addresses this issue by measuring and comparing the visibility of six major, MeSH-indexed health catalogs through four different search engines (AltaVista, Google, Lycos, Northern Light) in two languages (English and French). Over half a million queries were sent to the search engines; for most of these search engines, according to our measures at the time the queries were sent, the most visible catalog for English MeSH terms was CliniWeb and the most visible one for French MeSH terms was CISMeF.

  10. Monitoring Influenza Epidemics in China with Search Query from Baidu

    PubMed Central

    Lv, Benfu; Peng, Geng; Chunara, Rumi; Brownstein, John S.

    2013-01-01

    Several approaches have been proposed for near real-time detection and prediction of the spread of influenza. These include search query data for influenza-related terms, which has been explored as a tool for augmenting traditional surveillance methods. In this paper, we present a method that uses Internet search query data from Baidu to model and monitor influenza activity in China. The objectives of the study are to present a comprehensive technique for: (i) keyword selection, (ii) keyword filtering, (iii) index composition and (iv) modeling and detection of influenza activity in China. Sequential time-series for the selected composite keyword index is significantly correlated with Chinese influenza case data. In addition, one-month ahead prediction of influenza cases for the first eight months of 2012 has a mean absolute percent error less than 11%. To our knowledge, this is the first study on the use of search query data from Baidu in conjunction with this approach for estimation of influenza activity in China. PMID:23750192

  11. Child pornography in peer-to-peer networks.

    PubMed

    Steel, Chad M S

    2009-08-01

    The presence of child pornography in peer-to-peer networks is not disputed, but there has been little effort done to quantify and analyze the distribution and nature of that content to-date. By performing an analysis of queries and query hits on the largest peer-to-peer network, we are able to both quantify and describe the nature of querying by child pornographers as well as the content they are sharing. Child pornography related content was identified and analyzed in 235,513 user queries and 194,444 query hits. The research confirmed a large amount of peer-to-peer traffic is dedicated to child pornography, but supply and demand must be separated for a better understanding. The most prevalent query and the top two most prevalent filenames returned as query hits were child pornography related. However, it would be inaccurate to state child pornography dominates peer-to-peer as 1% of all queries were related to child pornography and 1.45% of all query hits (unique filenames) were related to child pornography, consistent with a smaller study (Hughes et al., 2008). In addition to the above, research indicates that the median age searched for was 13 years old, and the majority of queries were gender-neutral, but of those with gender-related terms, 79% were female-oriented. Distribution-wise, the vast majority of content-specific searches are for movies at 99%, though images are still the most prevalent in availability. There is no shortage of child pornography supply and demand on peer-to-peer networks and by analyzing how consumers seek and distributors advertise content we can better understand their motivations. Understanding the behavior of child pornographers and how they search for content when contrasted with those sharing content provides a basis for finding and combating that behavior. For law enforcement, knowing the specific terms used allows more timely and accurate forensics and better identification of those seeking and distributing child pornography. For Internet researchers, better filtering and monitoring is possible. For mental health professionals, understanding the preferences and behaviors of those searching supports more effective treatment.

  12. Automatic Concept-Based Query Expansion Using Term Relational Pathways Built from a Collection-Specific Association Thesaurus

    ERIC Educational Resources Information Center

    Lyall-Wilson, Jennifer Rae

    2013-01-01

    The dissertation research explores an approach to automatic concept-based query expansion to improve search engine performance. It uses a network-based approach for identifying the concept represented by the user's query and is founded on the idea that a collection-specific association thesaurus can be used to create a reasonable representation of…

  13. Google search behavior for status epilepticus.

    PubMed

    Brigo, Francesco; Trinka, Eugen

    2015-08-01

    Millions of people surf the Internet every day as a source of health-care information looking for materials about symptoms, diagnosis, treatments and their possible adverse effects, or diagnostic procedures. Google is the most popular search engine and is used by patients and physicians to search for online health-related information. This study aimed to evaluate changes in Google search behavior occurring in English-speaking countries over time for the term "status epilepticus" (SE). Using Google Trends, data on global search queries for the term SE between the 1st of January 2004 and 31st of December 2014 were analyzed. Search volume numbers over time (downloaded as CSV datasets) were analyzed by applying the "health" category filter. The research trends for the term SE remained fairly constant over time. The greatest search volume for the term SE was reported in the United States, followed by India, Australia, the United Kingdom, Canada, the Netherlands, Thailand, and Germany. Most terms associated with the search queries were related to SE definition, symptoms, subtypes, and treatment. The volume of searches for some queries (nonconvulsive, focal, and refractory SE; SE definition; SE guidelines; SE symptoms; SE management; SE treatment) was enormously increased over time (search popularity has exceeded a 5000% growth since 2004). Most people use search engines to look for the term SE to obtain information on its definition, subtypes, and management. The greatest search volume occurred not only in developed countries but also in developing countries where raising awareness about SE still remains a challenging task and where there is reduced public knowledge of epilepsy. Health information seeking (the extent to which people search for health information online) reflects the health-related information needs of Internet users for a specific disease. Google Trends shows that Internet users have a great demand for information concerning some aspects of SE (definition, subtypes, symptoms, treatment, and guidelines). Policy makers and neurological scientific societies have the responsibility to try to meet these information needs and to better target public information campaigns on SE to the general population. This article is part of a Special Issue entitled "Status Epilepticus". Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Multitasking Web Searching and Implications for Design.

    ERIC Educational Resources Information Center

    Ozmutlu, Seda; Ozmutlu, H. C.; Spink, Amanda

    2003-01-01

    Findings from a study of users' multitasking searches on Web search engines include: multitasking searches are a noticeable user behavior; multitasking search sessions are longer than regular search sessions in terms of queries per session and duration; both Excite and AlltheWeb.com users search for about three topics per multitasking session and…

  15. An exponentiation method for XML element retrieval.

    PubMed

    Wichaiwong, Tanakorn

    2014-01-01

    XML document is now widely used for modelling and storing structured documents. The structure is very rich and carries important information about contents and their relationships, for example, e-Commerce. XML data-centric collections require query terms allowing users to specify constraints on the document structure; mapping structure queries and assigning the weight are significant for the set of possibly relevant documents with respect to structural conditions. In this paper, we present an extension to the MEXIR search system that supports the combination of structural and content queries in the form of content-and-structure queries, which we call the Exponentiation function. It has been shown the structural information improve the effectiveness of the search system up to 52.60% over the baseline BM25 at MAP.

  16. Seasonal trends in tinnitus symptomatology: evidence from Internet search engine query data.

    PubMed

    Plante, David T; Ingram, David G

    2015-10-01

    The primary aim of this study was to test the hypothesis that the symptom of tinnitus demonstrates a seasonal pattern with worsening in the winter relative to the summer using Internet search engine query data. Normalized search volume for the term 'tinnitus' from January 2004 through December 2013 was retrieved from Google Trends. Seasonal effects were evaluated using cosinor regression models. Primary countries of interest were the United States and Australia. Secondary exploratory analyses were also performed using data from Germany, the United Kingdom, Canada, Sweden, and Switzerland. Significant seasonal effects for 'tinnitus' search queries were found in the United States and Australia (p < 0.00001 for both countries), with peaks in the winter and troughs in the summer. Secondary analyses demonstrated similarly significant seasonal effects for Germany (p < 0.00001), Canada (p < 0.00001), and Sweden (p = 0.0008), again with increased search volume in the winter relative to the summer. Our findings indicate that there are significant seasonal trends for Internet search queries for tinnitus, with a zenith in winter months. Further research is indicated to determine the biological mechanisms underlying these findings, as they may provide insights into the pathophysiology of this common and debilitating medical symptom.

  17. Using internet searches for influenza surveillance.

    PubMed

    Polgreen, Philip M; Chen, Yiling; Pennock, David M; Nelson, Forrest D

    2008-12-01

    The Internet is an important source of health information. Thus, the frequency of Internet searches may provide information regarding infectious disease activity. As an example, we examined the relationship between searches for influenza and actual influenza occurrence. Using search queries from the Yahoo! search engine ( http://search.yahoo.com ) from March 2004 through May 2008, we counted daily unique queries originating in the United States that contained influenza-related search terms. Counts were divided by the total number of searches, and the resulting daily fraction of searches was averaged over the week. We estimated linear models, using searches with 1-10-week lead times as explanatory variables to predict the percentage of cultures positive for influenza and deaths attributable to pneumonia and influenza in the United States. With use of the frequency of searches, our models predicted an increase in cultures positive for influenza 1-3 weeks in advance of when they occurred (P < .001), and similar models predicted an increase in mortality attributable to pneumonia and influenza up to 5 weeks in advance (P < .001). Search-term surveillance may provide an additional tool for disease surveillance.

  18. Complex dynamics of our economic life on different scales: insights from search engine query data.

    PubMed

    Preis, Tobias; Reith, Daniel; Stanley, H Eugene

    2010-12-28

    Search engine query data deliver insight into the behaviour of individuals who are the smallest possible scale of our economic life. Individuals are submitting several hundred million search engine queries around the world each day. We study weekly search volume data for various search terms from 2004 to 2010 that are offered by the search engine Google for scientific use, providing information about our economic life on an aggregated collective level. We ask the question whether there is a link between search volume data and financial market fluctuations on a weekly time scale. Both collective 'swarm intelligence' of Internet users and the group of financial market participants can be regarded as a complex system of many interacting subunits that react quickly to external changes. We find clear evidence that weekly transaction volumes of S&P 500 companies are correlated with weekly search volume of corresponding company names. Furthermore, we apply a recently introduced method for quantifying complex correlations in time series with which we find a clear tendency that search volume time series and transaction volume time series show recurring patterns.

  19. A study of the influence of task familiarity on user behaviors and performance with a MeSH term suggestion interface for PubMed bibliographic search.

    PubMed

    Tang, Muh-Chyun; Liu, Ying-Hsang; Wu, Wan-Ching

    2013-09-01

    Previous research has shown that information seekers in biomedical domain need more support in formulating their queries. A user study was conducted to evaluate the effectiveness of a metadata based query suggestion interface for PubMed bibliographic search. The study also investigated the impact of search task familiarity on search behaviors and the effectiveness of the interface. A real user, user search request and real system approach was used for the study. Unlike tradition IR evaluation, where assigned tasks were used, the participants were asked to search requests of their own. Forty-four researchers in Health Sciences participated in the evaluation - each conducted two research requests of their own, alternately with the proposed interface and the PubMed baseline. Several performance criteria were measured to assess the potential benefits of the experimental interface, including users' assessment of their original and eventual queries, the perceived usefulness of the interfaces, satisfaction with the search results, and the average relevance score of the saved records. The results show that, when searching for an unfamiliar topic, users were more likely to change their queries, indicating the effect of familiarity on search behaviors. The results also show that the interface scored higher on several of the performance criteria, such as the "goodness" of the queries, perceived usefulness, and user satisfaction. Furthermore, in line with our hypothesis, the proposed interface was relatively more effective when less familiar search requests were attempted. Results indicate that there is a selective compatibility between search familiarity and search interface. One implication of the research for system evaluation is the importance of taking into consideration task familiarity when assessing the effectiveness of interactive IR systems. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  20. Improving accuracy for identifying related PubMed queries by an integrated approach.

    PubMed

    Lu, Zhiyong; Wilbur, W John

    2009-10-01

    PubMed is the most widely used tool for searching biomedical literature online. As with many other online search tools, a user often types a series of multiple related queries before retrieving satisfactory results to fulfill a single information need. Meanwhile, it is also a common phenomenon to see a user type queries on unrelated topics in a single session. In order to study PubMed users' search strategies, it is necessary to be able to automatically separate unrelated queries and group together related queries. Here, we report a novel approach combining both lexical and contextual analyses for segmenting PubMed query sessions and identifying related queries and compare its performance with the previous approach based solely on concept mapping. We experimented with our integrated approach on sample data consisting of 1539 pairs of consecutive user queries in 351 user sessions. The prediction results of 1396 pairs agreed with the gold-standard annotations, achieving an overall accuracy of 90.7%. This demonstrates that our approach is significantly better than the previously published method. By applying this approach to a one day query log of PubMed, we found that a significant proportion of information needs involved more than one PubMed query, and that most of the consecutive queries for the same information need are lexically related. Finally, the proposed PubMed distance is shown to be an accurate and meaningful measure for determining the contextual similarity between biological terms. The integrated approach can play a critical role in handling real-world PubMed query log data as is demonstrated in our experiments.

  1. Improving accuracy for identifying related PubMed queries by an integrated approach

    PubMed Central

    Lu, Zhiyong; Wilbur, W. John

    2009-01-01

    PubMed is the most widely used tool for searching biomedical literature online. As with many other online search tools, a user often types a series of multiple related queries before retrieving satisfactory results to fulfill a single information need. Meanwhile, it is also a common phenomenon to see a user type queries on unrelated topics in a single session. In order to study PubMed users’ search strategies, it is necessary to be able to automatically separate unrelated queries and group together related queries. Here, we report a novel approach combining both lexical and contextual analyses for segmenting PubMed query sessions and identifying related queries and compare its performance with the previous approach based solely on concept mapping. We experimented with our integrated approach on sample data consisting of 1,539 pairs of consecutive user queries in 351 user sessions. The prediction results of 1,396 pairs agreed with the gold-standard annotations, achieving an overall accuracy of 90.7%. This demonstrates that our approach is significantly better than the previously published method. By applying this approach to a one day query log of PubMed, we found that a significant proportion of information needs involved more than one PubMed query, and that most of the consecutive queries for the same information need are lexically related. Finally, the proposed PubMed distance is shown to be an accurate and meaningful measure for determining the contextual similarity between biological terms. The integrated approach can play a critical role in handling real-world PubMed query log data as is demonstrated in our experiments. PMID:19162232

  2. Diurnal Variations of Depression-Related Health Information Seeking: Case Study in Finland Using Google Trends Data

    PubMed Central

    Kettunen, Jyrki; Eirola, Emil; Paakkonen, Heikki

    2018-01-01

    Background Some of the temporal variations and clock-like rhythms that govern several different health-related behaviors can be traced in near real-time with the help of search engine data. This is especially useful when studying phenomena where little or no traditional data exist. One specific area where traditional data are incomplete is the study of diurnal mood variations, or daily changes in individuals’ overall mood state in relation to depression-like symptoms. Objective The objective of this exploratory study was to analyze diurnal variations for interest in depression on the Web to discover hourly patterns of depression interest and help seeking. Methods Hourly query volume data for 6 depression-related queries in Finland were downloaded from Google Trends in March 2017. A continuous wavelet transform (CWT) was applied to the hourly data to focus on the diurnal variation. Longer term trends and noise were also eliminated from the data to extract the diurnal variation for each query term. An analysis of variance was conducted to determine the statistical differences between the distributions of each hour. Data were also trichotomized and analyzed in 3 time blocks to make comparisons between different time periods during the day. Results Search volumes for all depression-related query terms showed a unimodal regular pattern during the 24 hours of the day. All queries feature clear peaks during the nighttime hours around 11 PM to 4 AM and troughs between 5 AM and 10 PM. In the means of the CWT-reconstructed data, the differences in nighttime and daytime interest are evident, with a difference of 37.3 percentage points (pp) for the term “Depression,” 33.5 pp for “Masennustesti,” 30.6 pp for “Masennus,” 12.8 pp for “Depression test,” 12.0 pp for “Masennus testi,” and 11.8 pp for “Masennus oireet.” The trichotomization showed peaks in the first time block (00.00 AM-7.59 AM) for all 6 terms. The search volumes then decreased significantly during the second time block (8.00 AM-3.59 PM) for the terms “Masennus oireet” (P<.001), “Masennus” (P=.001), “Depression” (P=.005), and “Depression test” (P=.004). Higher search volumes for the terms “Masennus” (P=.14), “Masennustesti” (P=.07), and “Depression test” (P=.10) were present between the second and third time blocks. Conclusions Help seeking for depression has clear diurnal patterns, with significant rise in depression-related query volumes toward the evening and night. Thus, search engine query data support the notion of the evening-worse pattern in diurnal mood variation. Information on the timely nature of depression-related interest on an hourly level could improve the chances for early intervention, which is beneficial for positive health outcomes. PMID:29792291

  3. Diurnal Variations of Depression-Related Health Information Seeking: Case Study in Finland Using Google Trends Data.

    PubMed

    Tana, Jonas Christoffer; Kettunen, Jyrki; Eirola, Emil; Paakkonen, Heikki

    2018-05-23

    Some of the temporal variations and clock-like rhythms that govern several different health-related behaviors can be traced in near real-time with the help of search engine data. This is especially useful when studying phenomena where little or no traditional data exist. One specific area where traditional data are incomplete is the study of diurnal mood variations, or daily changes in individuals' overall mood state in relation to depression-like symptoms. The objective of this exploratory study was to analyze diurnal variations for interest in depression on the Web to discover hourly patterns of depression interest and help seeking. Hourly query volume data for 6 depression-related queries in Finland were downloaded from Google Trends in March 2017. A continuous wavelet transform (CWT) was applied to the hourly data to focus on the diurnal variation. Longer term trends and noise were also eliminated from the data to extract the diurnal variation for each query term. An analysis of variance was conducted to determine the statistical differences between the distributions of each hour. Data were also trichotomized and analyzed in 3 time blocks to make comparisons between different time periods during the day. Search volumes for all depression-related query terms showed a unimodal regular pattern during the 24 hours of the day. All queries feature clear peaks during the nighttime hours around 11 PM to 4 AM and troughs between 5 AM and 10 PM. In the means of the CWT-reconstructed data, the differences in nighttime and daytime interest are evident, with a difference of 37.3 percentage points (pp) for the term "Depression," 33.5 pp for "Masennustesti," 30.6 pp for "Masennus," 12.8 pp for "Depression test," 12.0 pp for "Masennus testi," and 11.8 pp for "Masennus oireet." The trichotomization showed peaks in the first time block (00.00 AM-7.59 AM) for all 6 terms. The search volumes then decreased significantly during the second time block (8.00 AM-3.59 PM) for the terms "Masennus oireet" (P<.001), "Masennus" (P=.001), "Depression" (P=.005), and "Depression test" (P=.004). Higher search volumes for the terms "Masennus" (P=.14), "Masennustesti" (P=.07), and "Depression test" (P=.10) were present between the second and third time blocks. Help seeking for depression has clear diurnal patterns, with significant rise in depression-related query volumes toward the evening and night. Thus, search engine query data support the notion of the evening-worse pattern in diurnal mood variation. Information on the timely nature of depression-related interest on an hourly level could improve the chances for early intervention, which is beneficial for positive health outcomes. ©Jonas Christoffer Tana, Jyrki Kettunen, Emil Eirola, Heikki Paakkonen. Originally published in JMIR Mental Health (http://mental.jmir.org), 23.05.2018.

  4. The contribution of morphological knowledge to French MeSH mapping for information retrieval.

    PubMed Central

    Zweigenbaum, P.; Darmoni, S. J.; Grabar, N.

    2001-01-01

    MeSH-indexed Internet health directories must provide a mapping from natural language queries to MeSH terms so that both health professionals and the general public can query their contents. We describe here the design of lexical knowledge bases for mapping French expressions to MeSH terms, and the initial evaluation of their contribution to Doc'CISMeF, the search tool of a MeSH-indexed directory of French-language medical Internet resources. The observed trend is in favor of the use of morphological knowledge as a moderate (approximately 5%) but effective factor for improving query to term mapping capabilities. PMID:11825295

  5. A Deep Learning Method to Automatically Identify Reports of Scientifically Rigorous Clinical Research from the Biomedical Literature: Comparative Analytic Study.

    PubMed

    Del Fiol, Guilherme; Michelson, Matthew; Iorio, Alfonso; Cotoi, Chris; Haynes, R Brian

    2018-06-25

    A major barrier to the practice of evidence-based medicine is efficiently finding scientifically sound studies on a given clinical topic. To investigate a deep learning approach to retrieve scientifically sound treatment studies from the biomedical literature. We trained a Convolutional Neural Network using a noisy dataset of 403,216 PubMed citations with title and abstract as features. The deep learning model was compared with state-of-the-art search filters, such as PubMed's Clinical Query Broad treatment filter, McMaster's textword search strategy (no Medical Subject Heading, MeSH, terms), and Clinical Query Balanced treatment filter. A previously annotated dataset (Clinical Hedges) was used as the gold standard. The deep learning model obtained significantly lower recall than the Clinical Queries Broad treatment filter (96.9% vs 98.4%; P<.001); and equivalent recall to McMaster's textword search (96.9% vs 97.1%; P=.57) and Clinical Queries Balanced filter (96.9% vs 97.0%; P=.63). Deep learning obtained significantly higher precision than the Clinical Queries Broad filter (34.6% vs 22.4%; P<.001) and McMaster's textword search (34.6% vs 11.8%; P<.001), but was significantly lower than the Clinical Queries Balanced filter (34.6% vs 40.9%; P<.001). Deep learning performed well compared to state-of-the-art search filters, especially when citations were not indexed. Unlike previous machine learning approaches, the proposed deep learning model does not require feature engineering, or time-sensitive or proprietary features, such as MeSH terms and bibliometrics. Deep learning is a promising approach to identifying reports of scientifically rigorous clinical research. Further work is needed to optimize the deep learning model and to assess generalizability to other areas, such as diagnosis, etiology, and prognosis. ©Guilherme Del Fiol, Matthew Michelson, Alfonso Iorio, Chris Cotoi, R Brian Haynes. Originally published in the Journal of Medical Internet Research (http://www.jmir.org), 25.06.2018.

  6. Conceptual mapping of user's queries to medical subject headings.

    PubMed Central

    Zieman, Y. L.; Bleich, H. L.

    1997-01-01

    This paper describes a way to map users' queries to relevant Medical Subject Headings (MeSH terms) used by the National Library of Medicine to index the biomedical literature. The method, called SENSE (SEarch with New SEmantics), transforms words and phrases in the users' queries into primary conceptual components and compares these components with those of the MeSH vocabulary. Similar to the way in which most numbers can be split into numerical factors and expressed as their product--for example, 42 can be expressed as 2*21, 6*7, 3*14, 2*3*7,--so most medical concepts can be split into "semantic factors" and expressed as their juxtaposition. Note that if we split 42 into its primary factors, the breakdown is unique: 2*3*7. Similarly, when we split medical concepts into their "primary semantic factors" the breakdown is also unique. For example, the MeSH term 'renovascular hypertension' can be split morphologically into reno, vascular, hyper, and tension--morphemes that can then be translated into their primary semantic factors--kidney, blood vessel, high, and pressure. By "factoring" each MeSH term in this way, and by similarly factoring the user's query, we can match query to MeSH term by searching for combinations of common factors. Unlike UMLS and other methods that match at the level of words or phrases, SENSE matches at the level of concepts; in this way, a wide variety of words and phrases that have the same meaning produce the same match. Now used in PaperChase, the method is surprisingly powerful in matching users' queries to Medical Subject Headings. PMID:9357680

  7. An Exponentiation Method for XML Element Retrieval

    PubMed Central

    2014-01-01

    XML document is now widely used for modelling and storing structured documents. The structure is very rich and carries important information about contents and their relationships, for example, e-Commerce. XML data-centric collections require query terms allowing users to specify constraints on the document structure; mapping structure queries and assigning the weight are significant for the set of possibly relevant documents with respect to structural conditions. In this paper, we present an extension to the MEXIR search system that supports the combination of structural and content queries in the form of content-and-structure queries, which we call the Exponentiation function. It has been shown the structural information improve the effectiveness of the search system up to 52.60% over the baseline BM25 at MAP. PMID:24696643

  8. Parallel Index and Query for Large Scale Data Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chou, Jerry; Wu, Kesheng; Ruebel, Oliver

    2011-07-18

    Modern scientific datasets present numerous data management and analysis challenges. State-of-the-art index and query technologies are critical for facilitating interactive exploration of large datasets, but numerous challenges remain in terms of designing a system for process- ing general scientific datasets. The system needs to be able to run on distributed multi-core platforms, efficiently utilize underlying I/O infrastructure, and scale to massive datasets. We present FastQuery, a novel software framework that address these challenges. FastQuery utilizes a state-of-the-art index and query technology (FastBit) and is designed to process mas- sive datasets on modern supercomputing platforms. We apply FastQuery to processing ofmore » a massive 50TB dataset generated by a large scale accelerator modeling code. We demonstrate the scalability of the tool to 11,520 cores. Motivated by the scientific need to search for inter- esting particles in this dataset, we use our framework to reduce search time from hours to tens of seconds.« less

  9. Matching health information seekers' queries to medical terms

    PubMed Central

    2012-01-01

    Background The Internet is a major source of health information but most seekers are not familiar with medical vocabularies. Hence, their searches fail due to bad query formulation. Several methods have been proposed to improve information retrieval: query expansion, syntactic and semantic techniques or knowledge-based methods. However, it would be useful to clean those queries which are misspelled. In this paper, we propose a simple yet efficient method in order to correct misspellings of queries submitted by health information seekers to a medical online search tool. Methods In addition to query normalizations and exact phonetic term matching, we tested two approximate string comparators: the similarity score function of Stoilos and the normalized Levenshtein edit distance. We propose here to combine them to increase the number of matched medical terms in French. We first took a sample of query logs to determine the thresholds and processing times. In the second run, at a greater scale we tested different combinations of query normalizations before or after misspelling correction with the retained thresholds in the first run. Results According to the total number of suggestions (around 163, the number of the first sample of queries), at a threshold comparator score of 0.3, the normalized Levenshtein edit distance gave the highest F-Measure (88.15%) and at a threshold comparator score of 0.7, the Stoilos function gave the highest F-Measure (84.31%). By combining Levenshtein and Stoilos, the highest F-Measure (80.28%) is obtained with 0.2 and 0.7 thresholds respectively. However, queries are composed by several terms that may be combination of medical terms. The process of query normalization and segmentation is thus required. The highest F-Measure (64.18%) is obtained when this process is realized before spelling-correction. Conclusions Despite the widely known high performance of the normalized edit distance of Levenshtein, we show in this paper that its combination with the Stoilos algorithm improved the results for misspelling correction of user queries. Accuracy is improved by combining spelling, phoneme-based information and string normalizations and segmentations into medical terms. These encouraging results have enabled the integration of this method into two projects funded by the French National Research Agency-Technologies for Health Care. The first aims to facilitate the coding process of clinical free texts contained in Electronic Health Records and discharge summaries, whereas the second aims at improving information retrieval through Electronic Health Records. PMID:23095521

  10. An assessment of the visibility of MeSH-indexed medical web catalogs through search engines.

    PubMed Central

    Zweigenbaum, P.; Darmoni, S. J.; Grabar, N.; Douyère, M.; Benichou, J.

    2002-01-01

    Manually indexed Internet health catalogs such as CliniWeb or CISMeF provide resources for retrieving high-quality health information. Users of these quality-controlled subject gateways are most often referred to them by general search engines such as Google, AltaVista, etc. This raises several questions, among which the following: what is the relative visibility of medical Internet catalogs through search engines? This study addresses this issue by measuring and comparing the visibility of six major, MeSH-indexed health catalogs through four different search engines (AltaVista, Google, Lycos, Northern Light) in two languages (English and French). Over half a million queries were sent to the search engines; for most of these search engines, according to our measures at the time the queries were sent, the most visible catalog for English MeSH terms was CliniWeb and the most visible one for French MeSH terms was CISMeF. PMID:12463965

  11. OSTI.GOV | OSTI, US Dept of Energy Office of Scientific and Technical

    Science.gov Websites

    Information Skip to main content ☰ Submit Research Results Search Tools Public Access Policy Data Services & Dev Tools About FAQs News Sign In Create Account Sign In Create Account Department Information Search terms: Advanced search options Advanced Search OptionsAdvanced Search queries use a

  12. Term Relevance Weights in On-Line Information Retrieval

    ERIC Educational Resources Information Center

    Salton, G.; Waldstein, R. K.

    1978-01-01

    Term relevance weighting systems in interactive information retrieval are reviewed. An experiment in which information retrieval users ranked query terms in decreasing order of presumed importance prior to actual search and retrieval is described. (Author/KP)

  13. Query Auto-Completion Based on Word2vec Semantic Similarity

    NASA Astrophysics Data System (ADS)

    Shao, Taihua; Chen, Honghui; Chen, Wanyu

    2018-04-01

    Query auto-completion (QAC) is the first step of information retrieval, which helps users formulate the entire query after inputting only a few prefixes. Regarding the models of QAC, the traditional method ignores the contribution from the semantic relevance between queries. However, similar queries always express extremely similar search intention. In this paper, we propose a hybrid model FS-QAC based on query semantic similarity as well as the query frequency. We choose word2vec method to measure the semantic similarity between intended queries and pre-submitted queries. By combining both features, our experiments show that FS-QAC model improves the performance when predicting the user’s query intention and helping formulate the right query. Our experimental results show that the optimal hybrid model contributes to a 7.54% improvement in terms of MRR against a state-of-the-art baseline using the public AOL query logs.

  14. Comparative Analysis of Online Health Queries Originating From Personal Computers and Smart Devices on a Consumer Health Information Portal

    PubMed Central

    Jadhav, Ashutosh; Andrews, Donna; Fiksdal, Alexander; Kumbamu, Ashok; McCormick, Jennifer B; Misitano, Andrew; Nelsen, Laurie; Ryu, Euijung; Sheth, Amit; Wu, Stephen

    2014-01-01

    Background The number of people using the Internet and mobile/smart devices for health information seeking is increasing rapidly. Although the user experience for online health information seeking varies with the device used, for example, smart devices (SDs) like smartphones/tablets versus personal computers (PCs) like desktops/laptops, very few studies have investigated how online health information seeking behavior (OHISB) may differ by device. Objective The objective of this study is to examine differences in OHISB between PCs and SDs through a comparative analysis of large-scale health search queries submitted through Web search engines from both types of devices. Methods Using the Web analytics tool, IBM NetInsight OnDemand, and based on the type of devices used (PCs or SDs), we obtained the most frequent health search queries between June 2011 and May 2013 that were submitted on Web search engines and directed users to the Mayo Clinic’s consumer health information website. We performed analyses on “Queries with considering repetition counts (QwR)” and “Queries without considering repetition counts (QwoR)”. The dataset contains (1) 2.74 million and 3.94 million QwoR, respectively for PCs and SDs, and (2) more than 100 million QwR for both PCs and SDs. We analyzed structural properties of the queries (length of the search queries, usage of query operators and special characters in health queries), types of search queries (keyword-based, wh-questions, yes/no questions), categorization of the queries based on health categories and information mentioned in the queries (gender, age-groups, temporal references), misspellings in the health queries, and the linguistic structure of the health queries. Results Query strings used for health information searching via PCs and SDs differ by almost 50%. The most searched health categories are “Symptoms” (1 in 3 search queries), “Causes”, and “Treatments & Drugs”. The distribution of search queries for different health categories differs with the device used for the search. Health queries tend to be longer and more specific than general search queries. Health queries from SDs are longer and have slightly fewer spelling mistakes than those from PCs. Users specify words related to women and children more often than that of men and any other age group. Most of the health queries are formulated using keywords; the second-most common are wh- and yes/no questions. Users ask more health questions using SDs than PCs. Almost all health queries have at least one noun and health queries from SDs are more descriptive than those from PCs. Conclusions This study is a large-scale comparative analysis of health search queries to understand the effects of device type (PCs vs SDs) used on OHISB. The study indicates that the device used for online health information search plays an important role in shaping how health information searches by consumers and patients are executed. PMID:25000537

  15. Comparative analysis of online health queries originating from personal computers and smart devices on a consumer health information portal.

    PubMed

    Jadhav, Ashutosh; Andrews, Donna; Fiksdal, Alexander; Kumbamu, Ashok; McCormick, Jennifer B; Misitano, Andrew; Nelsen, Laurie; Ryu, Euijung; Sheth, Amit; Wu, Stephen; Pathak, Jyotishman

    2014-07-04

    The number of people using the Internet and mobile/smart devices for health information seeking is increasing rapidly. Although the user experience for online health information seeking varies with the device used, for example, smart devices (SDs) like smartphones/tablets versus personal computers (PCs) like desktops/laptops, very few studies have investigated how online health information seeking behavior (OHISB) may differ by device. The objective of this study is to examine differences in OHISB between PCs and SDs through a comparative analysis of large-scale health search queries submitted through Web search engines from both types of devices. Using the Web analytics tool, IBM NetInsight OnDemand, and based on the type of devices used (PCs or SDs), we obtained the most frequent health search queries between June 2011 and May 2013 that were submitted on Web search engines and directed users to the Mayo Clinic's consumer health information website. We performed analyses on "Queries with considering repetition counts (QwR)" and "Queries without considering repetition counts (QwoR)". The dataset contains (1) 2.74 million and 3.94 million QwoR, respectively for PCs and SDs, and (2) more than 100 million QwR for both PCs and SDs. We analyzed structural properties of the queries (length of the search queries, usage of query operators and special characters in health queries), types of search queries (keyword-based, wh-questions, yes/no questions), categorization of the queries based on health categories and information mentioned in the queries (gender, age-groups, temporal references), misspellings in the health queries, and the linguistic structure of the health queries. Query strings used for health information searching via PCs and SDs differ by almost 50%. The most searched health categories are "Symptoms" (1 in 3 search queries), "Causes", and "Treatments & Drugs". The distribution of search queries for different health categories differs with the device used for the search. Health queries tend to be longer and more specific than general search queries. Health queries from SDs are longer and have slightly fewer spelling mistakes than those from PCs. Users specify words related to women and children more often than that of men and any other age group. Most of the health queries are formulated using keywords; the second-most common are wh- and yes/no questions. Users ask more health questions using SDs than PCs. Almost all health queries have at least one noun and health queries from SDs are more descriptive than those from PCs. This study is a large-scale comparative analysis of health search queries to understand the effects of device type (PCs vs. SDs) used on OHISB. The study indicates that the device used for online health information search plays an important role in shaping how health information searches by consumers and patients are executed.

  16. Interest in tanning beds and sunscreen in German-speaking countries.

    PubMed

    Kirchberger, Michael C; Kirchberger, Laura F; Eigentler, Thomas K; Reinhard, Raphael; Berking, Carola; Schuler, Gerold; Heinzerling, Lucie; Heppt, Markus V

    2017-12-01

    The growing incidence of nearly all types of skin cancer can be attributed to increased exposure to natural or artificial ultraviolet (UV) radiation. However, there is a scarcity of statistical data on risk behavior or sunscreen use, which would be important for any prevention efforts. Using the search engine Google ® , we analyzed search patterns for the terms Solarium (tanning bed), Sonnencreme (sunscreen), and Sonnenschutz (sun protection) in Germany, Austria, and Switzerland between 2004 and 2016, and compared it to search patterns worldwide. For this purpose, "normalized search volumes" (NSVs) were calculated for the various search queries. The corresponding polynomial functions were then compared with each other over the course of time. Since 2001, there has been a marked worldwide decrease in the search queries for tanning bed, whereas those for sunscreen have steadily increased. In German-speaking countries, on the other hand, there have - for years - consistently been more search queries for tanning bed than for sunscreen. There is an annual periodicity of the queries, with the highest NSVs for tanning bed between March and May and those for sunscreen in the summer months around June. In Germany, the city-states of Hamburg and Berlin have particularly high NSVs for tanning bed. Compared to the rest of the world, German-speaking countries show a strikingly unfavorable search pattern. There is still great need for education and prevention with respect to sunscreen use and avoidance of artificial UV exposure. © 2017 Deutsche Dermatologische Gesellschaft (DDG). Published by John Wiley & Sons Ltd.

  17. PolySearch2: a significantly improved text-mining system for discovering associations between human diseases, genes, drugs, metabolites, toxins and more.

    PubMed

    Liu, Yifeng; Liang, Yongjie; Wishart, David

    2015-07-01

    PolySearch2 (http://polysearch.ca) is an online text-mining system for identifying relationships between biomedical entities such as human diseases, genes, SNPs, proteins, drugs, metabolites, toxins, metabolic pathways, organs, tissues, subcellular organelles, positive health effects, negative health effects, drug actions, Gene Ontology terms, MeSH terms, ICD-10 medical codes, biological taxonomies and chemical taxonomies. PolySearch2 supports a generalized 'Given X, find all associated Ys' query, where X and Y can be selected from the aforementioned biomedical entities. An example query might be: 'Find all diseases associated with Bisphenol A'. To find its answers, PolySearch2 searches for associations against comprehensive collections of free-text collections, including local versions of MEDLINE abstracts, PubMed Central full-text articles, Wikipedia full-text articles and US Patent application abstracts. PolySearch2 also searches 14 widely used, text-rich biological databases such as UniProt, DrugBank and Human Metabolome Database to improve its accuracy and coverage. PolySearch2 maintains an extensive thesaurus of biological terms and exploits the latest search engine technology to rapidly retrieve relevant articles and databases records. PolySearch2 also generates, ranks and annotates associative candidates and present results with relevancy statistics and highlighted key sentences to facilitate user interpretation. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  18. PolySearch2: a significantly improved text-mining system for discovering associations between human diseases, genes, drugs, metabolites, toxins and more

    PubMed Central

    Liu, Yifeng; Liang, Yongjie; Wishart, David

    2015-01-01

    PolySearch2 (http://polysearch.ca) is an online text-mining system for identifying relationships between biomedical entities such as human diseases, genes, SNPs, proteins, drugs, metabolites, toxins, metabolic pathways, organs, tissues, subcellular organelles, positive health effects, negative health effects, drug actions, Gene Ontology terms, MeSH terms, ICD-10 medical codes, biological taxonomies and chemical taxonomies. PolySearch2 supports a generalized ‘Given X, find all associated Ys’ query, where X and Y can be selected from the aforementioned biomedical entities. An example query might be: ‘Find all diseases associated with Bisphenol A’. To find its answers, PolySearch2 searches for associations against comprehensive collections of free-text collections, including local versions of MEDLINE abstracts, PubMed Central full-text articles, Wikipedia full-text articles and US Patent application abstracts. PolySearch2 also searches 14 widely used, text-rich biological databases such as UniProt, DrugBank and Human Metabolome Database to improve its accuracy and coverage. PolySearch2 maintains an extensive thesaurus of biological terms and exploits the latest search engine technology to rapidly retrieve relevant articles and databases records. PolySearch2 also generates, ranks and annotates associative candidates and present results with relevancy statistics and highlighted key sentences to facilitate user interpretation. PMID:25925572

  19. GO2PUB: Querying PubMed with semantic expansion of gene ontology terms

    PubMed Central

    2012-01-01

    Background With the development of high throughput methods of gene analyses, there is a growing need for mining tools to retrieve relevant articles in PubMed. As PubMed grows, literature searches become more complex and time-consuming. Automated search tools with good precision and recall are necessary. We developed GO2PUB to automatically enrich PubMed queries with gene names, symbols and synonyms annotated by a GO term of interest or one of its descendants. Results GO2PUB enriches PubMed queries based on selected GO terms and keywords. It processes the result and displays the PMID, title, authors, abstract and bibliographic references of the articles. Gene names, symbols and synonyms that have been generated as extra keywords from the GO terms are also highlighted. GO2PUB is based on a semantic expansion of PubMed queries using the semantic inheritance between terms through the GO graph. Two experts manually assessed the relevance of GO2PUB, GoPubMed and PubMed on three queries about lipid metabolism. Experts’ agreement was high (kappa = 0.88). GO2PUB returned 69% of the relevant articles, GoPubMed: 40% and PubMed: 29%. GO2PUB and GoPubMed have 17% of their results in common, corresponding to 24% of the total number of relevant results. 70% of the articles returned by more than one tool were relevant. 36% of the relevant articles were returned only by GO2PUB, 17% only by GoPubMed and 14% only by PubMed. For determining whether these results can be generalized, we generated twenty queries based on random GO terms with a granularity similar to those of the first three queries and compared the proportions of GO2PUB and GoPubMed results. These were respectively of 77% and 40% for the first queries, and of 70% and 38% for the random queries. The two experts also assessed the relevance of seven of the twenty queries (the three related to lipid metabolism and four related to other domains). Expert agreement was high (0.93 and 0.8). GO2PUB and GoPubMed performances were similar to those of the first queries. Conclusions We demonstrated that the use of genes annotated by either GO terms of interest or a descendant of these GO terms yields some relevant articles ignored by other tools. The comparison of GO2PUB, based on semantic expansion, with GoPubMed, based on text mining techniques, showed that both tools are complementary. The analysis of the randomly-generated queries suggests that the results obtained about lipid metabolism can be generalized to other biological processes. GO2PUB is available at http://go2pub.genouest.org. PMID:22958570

  20. Differences in Reporting the Ragweed Pollen Season Using Google Trends across 15 Countries.

    PubMed

    Bousquet, Jean; Agache, Ioana; Berger, Uwe; Bergmann, Karl-Christian; Besancenot, Jean-Pierre; Bousquet, Philippe J; Casale, Tom; d'Amato, Gennaro; Kaidashev, Igor; Khaitov, Musa; Mösges, Ralph; Nekam, Kristof; Onorato, Gabrielle L; Plavec, Davor; Sheikh, Aziz; Thibaudon, Michel; Vautard, Robert; Zidarn, Mihaela

    2018-05-09

    Google Trends (GT) searches trends of specific queries in Google, which potentially reflect the real-life epidemiology of allergic rhinitis. We compared GT terms related to ragweed pollen allergy in American and European Union countries with a known ragweed pollen season. Our aim was to assess seasonality and the terms needed to perform the GT searches and to compare these during the spring and summer pollen seasons. We examined GT queries from January 1, 2011, to January 4, 2017. We included 15 countries with a known ragweed pollen season and used the standard 5-year GT graphs. We used the GT translation for all countries and the untranslated native terms for each country. The results of "pollen," "ragweed," and "allergy" searches differed between countries, but "ragweed" was clearly identified in 12 of the 15 countries. There was considerable heterogeneity of findings when the GT translation was used. For Croatia, Hungary, Romania, Serbia, and Slovenia, the GT translation was inappropriate. The country patterns of "pollen," "hay fever," and "allergy" differed in 8 of the 11 countries with identified "ragweed" queries during the spring and the summer, indicating that the perception of tree and grass pollen allergy differs from that of ragweed pollen. To investigate ragweed pollen allergy using GT, the term "ragweed" as a plant is required and the translation of "ragweed" in the native language needed. © 2018 S. Karger AG, Basel.

  1. Software for Studying and Enhancing Educational Uses of Geospatial Semantics and Data

    ERIC Educational Resources Information Center

    Nodenot, Thierry; Sallaberry, Christian; Gaio, Mauro

    2010-01-01

    Geographically related queries form nearly one-fifth of all queries submitted to the Excite search engine and the most frequently occurring terms are names of places. This paper focuses on digital libraries and extends the basic services of existing library management systems to include new ones that are dedicated to geographic information…

  2. Searching for rare diseases in PubMed: a blind comparison of Orphanet expert query and query based on terminological knowledge.

    PubMed

    Griffon, N; Schuers, M; Dhombres, F; Merabti, T; Kerdelhué, G; Rollin, L; Darmoni, S J

    2016-08-02

    Despite international initiatives like Orphanet, it remains difficult to find up-to-date information about rare diseases. The aim of this study is to propose an exhaustive set of queries for PubMed based on terminological knowledge and to evaluate it versus the queries based on expertise provided by the most frequently used resource in Europe: Orphanet. Four rare disease terminologies (MeSH, OMIM, HPO and HRDO) were manually mapped to each other permitting the automatic creation of expended terminological queries for rare diseases. For 30 rare diseases, 30 citations retrieved by Orphanet expert query and/or query based on terminological knowledge were assessed for relevance by two independent reviewers unaware of the query's origin. An adjudication procedure was used to resolve any discrepancy. Precision, relative recall and F-measure were all computed. For each Orphanet rare disease (n = 8982), there was a corresponding terminological query, in contrast with only 2284 queries provided by Orphanet. Only 553 citations were evaluated due to queries with 0 or only a few hits. There were no significant differences between the Orpha query and terminological query in terms of precision, respectively 0.61 vs 0.52 (p = 0.13). Nevertheless, terminological queries retrieved more citations more often than Orpha queries (0.57 vs. 0.33; p = 0.01). Interestingly, Orpha queries seemed to retrieve older citations than terminological queries (p < 0.0001). The terminological queries proposed in this study are now currently available for all rare diseases. They may be a useful tool for both precision or recall oriented literature search.

  3. Do economic equality and generalized trust inhibit academic dishonesty? Evidence from state-level search-engine queries.

    PubMed

    Neville, Lukas

    2012-04-01

    What effect does economic inequality have on academic integrity? Using data from search-engine queries made between 2003 and 2011 on Google and state-level measures of income inequality and generalized trust, I found that academically dishonest searches (queries seeking term-paper mills and help with cheating) were more likely to come from states with higher income inequality and lower levels of generalized trust. These relations persisted even when controlling for contextual variables, such as average income and the number of colleges per capita. The relation between income inequality and academic dishonesty was fully mediated by generalized trust. When there is higher economic inequality, people are less likely to view one another as trustworthy. This lower generalized trust, in turn, is associated with a greater prevalence of academic dishonesty. These results might explain previous findings on the effectiveness of honor codes.

  4. Google Trends terms reporting rhinitis and related topics differ in European countries.

    PubMed

    Bousquet, J; Agache, I; Anto, J M; Bergmann, K C; Bachert, C; Annesi-Maesano, I; Bousquet, P J; D'Amato, G; Demoly, P; De Vries, G; Eller, E; Fokkens, W J; Fonseca, J; Haahtela, T; Hellings, P W; Just, J; Keil, T; Klimek, L; Kuna, P; Lodrup Carlsen, K C; Mösges, R; Murray, R; Nekam, K; Onorato, G; Papadopoulos, N G; Samolinski, B; Schmid-Grendelmeier, P; Thibaudon, M; Tomazic, P; Triggiani, M; Valiulis, A; Valovirta, E; Van Eerd, M; Wickman, M; Zuberbier, T; Sheikh, A

    2017-08-01

    Google Trends (GT) searches trends of specific queries in Google and reflects the real-life epidemiology of allergic rhinitis. We compared Google Trends terms related to allergy and rhinitis in all European Union countries, Norway and Switzerland from 1 January 2011 to 20 December 2016. The aim was to assess whether the same terms could be used to report the seasonal variations of allergic diseases. Using the Google Trend 5-year graph, an annual and clear seasonality of queries was found in all countries apart from Cyprus, Estonia, Latvia, Lithuania and Malta. Different terms were found to demonstrate seasonality depending on the country - namely 'hay fever', 'allergy' and 'pollen' - showing cultural differences. A single set of terms cannot be used across all European countries, but allergy seasonality can be compared across Europe providing the above three terms are used. Using longitudinal data in different countries and multiple terms, we identified an awareness-related spike of searches (December 2016). © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  5. Semantics-Based Intelligent Indexing and Retrieval of Digital Images - A Case Study

    NASA Astrophysics Data System (ADS)

    Osman, Taha; Thakker, Dhavalkumar; Schaefer, Gerald

    The proliferation of digital media has led to a huge interest in classifying and indexing media objects for generic search and usage. In particular, we are witnessing colossal growth in digital image repositories that are difficult to navigate using free-text search mechanisms, which often return inaccurate matches as they typically rely on statistical analysis of query keyword recurrence in the image annotation or surrounding text. In this chapter we present a semantically enabled image annotation and retrieval engine that is designed to satisfy the requirements of commercial image collections market in terms of both accuracy and efficiency of the retrieval process. Our search engine relies on methodically structured ontologies for image annotation, thus allowing for more intelligent reasoning about the image content and subsequently obtaining a more accurate set of results and a richer set of alternatives matchmaking the original query. We also show how our well-analysed and designed domain ontology contributes to the implicit expansion of user queries as well as presenting our initial thoughts on exploiting lexical databases for explicit semantic-based query expansion.

  6. Exploring personalized searches using tag-based user profiles and resource profiles in folksonomy.

    PubMed

    Cai, Yi; Li, Qing; Xie, Haoran; Min, Huaqin

    2014-10-01

    With the increase in resource-sharing websites such as YouTube and Flickr, many shared resources have arisen on the Web. Personalized searches have become more important and challenging since users demand higher retrieval quality. To achieve this goal, personalized searches need to take users' personalized profiles and information needs into consideration. Collaborative tagging (also known as folksonomy) systems allow users to annotate resources with their own tags, which provides a simple but powerful way for organizing, retrieving and sharing different types of social resources. In this article, we examine the limitations of previous tag-based personalized searches. To handle these limitations, we propose a new method to model user profiles and resource profiles in collaborative tagging systems. We use a normalized term frequency to indicate the preference degree of a user on a tag. A novel search method using such profiles of users and resources is proposed to facilitate the desired personalization in resource searches. In our framework, instead of the keyword matching or similarity measurement used in previous works, the relevance measurement between a resource and a user query (termed the query relevance) is treated as a fuzzy satisfaction problem of a user's query requirements. We implement a prototype system called the Folksonomy-based Multimedia Retrieval System (FMRS). Experiments using the FMRS data set and the MovieLens data set show that our proposed method outperforms baseline methods. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Evaluation of the Feasibility of Screening Patients for Early Signs of Lung Carcinoma in Web Search Logs.

    PubMed

    White, Ryen W; Horvitz, Eric

    2017-03-01

    A statistical model that predicts the appearance of strong evidence of a lung carcinoma diagnosis via analysis of large-scale anonymized logs of web search queries from millions of people across the United States. To evaluate the feasibility of screening patients at risk of lung carcinoma via analysis of signals from online search activity. We identified people who issue special queries that provide strong evidence of a recent diagnosis of lung carcinoma. We then considered patterns of symptoms expressed as searches about concerning symptoms over several months prior to the appearance of the landmark web queries. We built statistical classifiers that predict the future appearance of landmark queries based on the search log signals. This was a retrospective log analysis of the online activity of millions of web searchers seeking health-related information online. Of web searchers who queried for symptoms related to lung carcinoma, some (n = 5443 of 4 813 985) later issued queries that provide strong evidence of recent clinical diagnosis of lung carcinoma and are regarded as positive cases in our analysis. Additional evidence on the reliability of these queries as representing clinical diagnoses is based on the significant increase in follow-on searches for treatments and medications for these searchers and on the correlation between lung carcinoma incidence rates and our log-based statistics. The remaining symptom searchers (n = 4 808 542) are regarded as negative cases. Performance of the statistical model for early detection from online search behavior, for different lead times, different sets of signals, and different cohorts of searchers stratified by potential risk. The statistical classifier predicting the future appearance of landmark web queries based on search log signals identified searchers who later input queries consistent with a lung carcinoma diagnosis, with a true-positive rate ranging from 3% to 57% for false-positive rates ranging from 0.00001 to 0.001, respectively. The methods can be used to identify people at highest risk up to a year in advance of the inferred diagnosis time. The 5 factors associated with the highest relative risk (RR) were evidence of family history (RR = 7.548; 95% CI, 3.937-14.470), age (RR = 3.558; 95% CI, 3.357-3.772), radon (RR = 2.529; 95% CI, 1.137-5.624), primary location (RR = 2.463; 95% CI, 1.364-4.446), and occupation (RR = 1.969; 95% CI, 1.143-3.391). Evidence of smoking (RR = 1.646; 95% CI, 1.032-2.260) was important but not top-ranked, which was due to the difficulty of identifying smoking history from search terms. Pattern recognition based on data drawn from large-scale web search queries holds opportunity for identifying risk factors and frames new directions with early detection of lung carcinoma.

  8. Assessing the impact of the national smoking ban in indoor public places in china: evidence from quit smoking related online searches.

    PubMed

    Huang, Jidong; Zheng, Rong; Emery, Sherry

    2013-01-01

    Despite the tremendous economic and health costs imposed on China by tobacco use, China lacks a proactive and systematic tobacco control surveillance and evaluation system, hampering research progress on tobacco-focused surveillance and evaluation studies. This paper uses online search query analyses to investigate changes in online search behavior among Chinese Internet users in response to the adoption of the national indoor public place smoking ban. Baidu Index and Google Trends were used to examine the volume of search queries containing three key search terms "Smoking Ban(s)," "Quit Smoking," and "Electronic Cigarette(s)," along with the news coverage on the smoking ban, for the period 2009-2011. Our results show that the announcement and adoption of the indoor public place smoking ban in China generated significant increases in news coverage on smoking bans. There was a strong positive correlation between the media coverage of smoking bans and the volume of "Smoking Ban(s)" and "Quit Smoking" related search queries. The volume of search queries related to "Electronic Cigarette(s)" was also correlated with the smoking ban news coverage. To the extent it altered smoking-related online searches, our analyses suggest that the smoking ban had a significant effect, at least in the short run, on Chinese Internet users' smoking-related behaviors. This research introduces a novel analytic tool, which could serve as an alternative tobacco control evaluation and behavior surveillance tool in the absence of timely or comprehensive population surveillance system. This research also highlights the importance of a comprehensive approach to tobacco control in China.

  9. Identifying nurse staffing research in Medline: development and testing of empirically derived search strategies with the PubMed interface

    PubMed Central

    2010-01-01

    Background The identification of health services research in databases such as PubMed/Medline is a cumbersome task. This task becomes even more difficult if the field of interest involves the use of diverse methods and data sources, as is the case with nurse staffing research. This type of research investigates the association between nurse staffing parameters and nursing and patient outcomes. A comprehensively developed search strategy may help identify nurse staffing research in PubMed/Medline. Methods A set of relevant references in PubMed/Medline was identified by means of three systematic reviews. This development set was used to detect candidate free-text and MeSH terms. The frequency of these terms was compared to a random sample from PubMed/Medline in order to identify terms specific to nurse staffing research, which were then used to develop a sensitive, precise and balanced search strategy. To determine their precision, the newly developed search strategies were tested against a) the pool of relevant references extracted from the systematic reviews, b) a reference set identified from an electronic journal screening, and c) a sample from PubMed/Medline. Finally, all newly developed strategies were compared to PubMed's Health Services Research Queries (PubMed's HSR Queries). Results The sensitivities of the newly developed search strategies were almost 100% in all of the three test sets applied; precision ranged from 6.1% to 32.0%. PubMed's HSR queries were less sensitive (83.3% to 88.2%) than the new search strategies. Only minor differences in precision were found (5.0% to 32.0%). Conclusions As with other literature on health services research, nurse staffing studies are difficult to identify in PubMed/Medline. Depending on the purpose of the search, researchers can choose between high sensitivity and retrieval of a large number of references or high precision, i.e. and an increased risk of missing relevant references, respectively. More standardized terminology (e.g. by consistent use of the term "nurse staffing") could improve the precision of future searches in this field. Empirically selected search terms can help to develop effective search strategies. The high consistency between all test sets confirmed the validity of our approach. PMID:20731858

  10. Identifying nurse staffing research in Medline: development and testing of empirically derived search strategies with the PubMed interface.

    PubMed

    Simon, Michael; Hausner, Elke; Klaus, Susan F; Dunton, Nancy E

    2010-08-23

    The identification of health services research in databases such as PubMed/Medline is a cumbersome task. This task becomes even more difficult if the field of interest involves the use of diverse methods and data sources, as is the case with nurse staffing research. This type of research investigates the association between nurse staffing parameters and nursing and patient outcomes. A comprehensively developed search strategy may help identify nurse staffing research in PubMed/Medline. A set of relevant references in PubMed/Medline was identified by means of three systematic reviews. This development set was used to detect candidate free-text and MeSH terms. The frequency of these terms was compared to a random sample from PubMed/Medline in order to identify terms specific to nurse staffing research, which were then used to develop a sensitive, precise and balanced search strategy. To determine their precision, the newly developed search strategies were tested against a) the pool of relevant references extracted from the systematic reviews, b) a reference set identified from an electronic journal screening, and c) a sample from PubMed/Medline. Finally, all newly developed strategies were compared to PubMed's Health Services Research Queries (PubMed's HSR Queries). The sensitivities of the newly developed search strategies were almost 100% in all of the three test sets applied; precision ranged from 6.1% to 32.0%. PubMed's HSR queries were less sensitive (83.3% to 88.2%) than the new search strategies. Only minor differences in precision were found (5.0% to 32.0%). As with other literature on health services research, nurse staffing studies are difficult to identify in PubMed/Medline. Depending on the purpose of the search, researchers can choose between high sensitivity and retrieval of a large number of references or high precision, i.e. and an increased risk of missing relevant references, respectively. More standardized terminology (e.g. by consistent use of the term "nurse staffing") could improve the precision of future searches in this field. Empirically selected search terms can help to develop effective search strategies. The high consistency between all test sets confirmed the validity of our approach.

  11. A study of medical and health queries to web search engines.

    PubMed

    Spink, Amanda; Yang, Yin; Jansen, Jim; Nykanen, Pirrko; Lorence, Daniel P; Ozmutlu, Seda; Ozmutlu, H Cenk

    2004-03-01

    This paper reports findings from an analysis of medical or health queries to different web search engines. We report results: (i). comparing samples of 10000 web queries taken randomly from 1.2 million query logs from the AlltheWeb.com and Excite.com commercial web search engines in 2001 for medical or health queries, (ii). comparing the 2001 findings from Excite and AlltheWeb.com users with results from a previous analysis of medical and health related queries from the Excite Web search engine for 1997 and 1999, and (iii). medical or health advice-seeking queries beginning with the word 'should'. Findings suggest: (i). a small percentage of web queries are medical or health related, (ii). the top five categories of medical or health queries were: general health, weight issues, reproductive health and puberty, pregnancy/obstetrics, and human relationships, and (iii). over time, the medical and health queries may have declined as a proportion of all web queries, as the use of specialized medical/health websites and e-commerce-related queries has increased. Findings provide insights into medical and health-related web querying and suggests some implications for the use of the general web search engines when seeking medical/health information.

  12. Exploring Contextual Models in Chemical Patent Search

    NASA Astrophysics Data System (ADS)

    Urbain, Jay; Frieder, Ophir

    We explore the development of probabilistic retrieval models for integrating term statistics with entity search using multiple levels of document context to improve the performance of chemical patent search. A distributed indexing model was developed to enable efficient named entity search and aggregation of term statistics at multiple levels of patent structure including individual words, sentences, claims, descriptions, abstracts, and titles. The system can be scaled to an arbitrary number of compute instances in a cloud computing environment to support concurrent indexing and query processing operations on large patent collections.

  13. A Method for Search Engine Selection using Thesaurus for Selective Meta-Search Engine

    NASA Astrophysics Data System (ADS)

    Goto, Shoji; Ozono, Tadachika; Shintani, Toramatsu

    In this paper, we propose a new method for selecting search engines on WWW for selective meta-search engine. In selective meta-search engine, a method is needed that would enable selecting appropriate search engines for users' queries. Most existing methods use statistical data such as document frequency. These methods may select inappropriate search engines if a query contains polysemous words. In this paper, we describe an search engine selection method based on thesaurus. In our method, a thesaurus is constructed from documents in a search engine and is used as a source description of the search engine. The form of a particular thesaurus depends on the documents used for its construction. Our method enables search engine selection by considering relationship between terms and overcomes the problems caused by polysemous words. Further, our method does not have a centralized broker maintaining data, such as document frequency for all search engines. As a result, it is easy to add a new search engine, and meta-search engines become more scalable with our method compared to other existing methods.

  14. Evaluation of an ontological resource for pharmacovigilance.

    PubMed

    Jaulent, Marie-Christine; Alecu, Iulian

    2009-01-01

    In this work, we present a methodology for evaluating an ontology designed in a previous study to describe adverse drug reactions. We evaluate it in term of its fitness for grouping cases in pharmacovigilance. We define as gold standard the Standardized MedDRA Queries (SMQs) developed manually to group terms representing similar medical conditions. We perform an automatic search in the ontology in order to retrieve concepts related to the medical conditions. An optimal query is built for each medical condition. The evaluation relies on the comparison between the terms in the SMQ and the terms subsumed by the query. The result is quantified by sensitivity and specificity. We applied this methodology for 24 SMQs and we obtain a mean sensitivity of 0.82. This work allows validating the semantic resource and provides, in perspective, tools to maintain the ontology while the knowledge is evolving.

  15. Mapping Self-Guided Learners' Searches for Video Tutorials on YouTube

    ERIC Educational Resources Information Center

    Garrett, Nathan

    2016-01-01

    While YouTube has a wealth of educational videos, how self-guided learners use these resources has not been fully described. An analysis of search engine queries for help with the use of Microsoft Excel shows that few users search for specific features or functions but instead use very general terms. Because the same videos are returned in…

  16. SNOMED CT module-driven clinical archetype management.

    PubMed

    Allones, J L; Taboada, M; Martinez, D; Lozano, R; Sobrido, M J

    2013-06-01

    To explore semantic search to improve management and user navigation in clinical archetype repositories. In order to support semantic searches across archetypes, an automated method based on SNOMED CT modularization is implemented to transform clinical archetypes into SNOMED CT extracts. Concurrently, query terms are converted into SNOMED CT concepts using the search engine Lucene. Retrieval is then carried out by matching query concepts with the corresponding SNOMED CT segments. A test collection of the 16 clinical archetypes, including over 250 terms, and a subset of 55 clinical terms from two medical dictionaries, MediLexicon and MedlinePlus, were used to test our method. The keyword-based service supported by the OpenEHR repository offered us a benchmark to evaluate the enhancement of performance. In total, our approach reached 97.4% precision and 69.1% recall, providing a substantial improvement of recall (more than 70%) compared to the benchmark. Exploiting medical domain knowledge from ontologies such as SNOMED CT may overcome some limitations of the keyword-based systems and thus improve the search experience of repository users. An automated approach based on ontology segmentation is an efficient and feasible way for supporting modeling, management and user navigation in clinical archetype repositories. Copyright © 2013 Elsevier Inc. All rights reserved.

  17. Estimating Influenza Outbreaks Using Both Search Engine Query Data and Social Media Data in South Korea.

    PubMed

    Woo, Hyekyung; Cho, Youngtae; Shim, Eunyoung; Lee, Jong-Koo; Lee, Chang-Gun; Kim, Seong Hwan

    2016-07-04

    As suggested as early as in 2006, logs of queries submitted to search engines seeking information could be a source for detection of emerging influenza epidemics if changes in the volume of search queries are monitored (infodemiology). However, selecting queries that are most likely to be associated with influenza epidemics is a particular challenge when it comes to generating better predictions. In this study, we describe a methodological extension for detecting influenza outbreaks using search query data; we provide a new approach for query selection through the exploration of contextual information gleaned from social media data. Additionally, we evaluate whether it is possible to use these queries for monitoring and predicting influenza epidemics in South Korea. Our study was based on freely available weekly influenza incidence data and query data originating from the search engine on the Korean website Daum between April 3, 2011 and April 5, 2014. To select queries related to influenza epidemics, several approaches were applied: (1) exploring influenza-related words in social media data, (2) identifying the chief concerns related to influenza, and (3) using Web query recommendations. Optimal feature selection by least absolute shrinkage and selection operator (Lasso) and support vector machine for regression (SVR) were used to construct a model predicting influenza epidemics. In total, 146 queries related to influenza were generated through our initial query selection approach. A considerable proportion of optimal features for final models were derived from queries with reference to the social media data. The SVR model performed well: the prediction values were highly correlated with the recent observed influenza-like illness (r=.956; P<.001) and virological incidence rate (r=.963; P<.001). These results demonstrate the feasibility of using search queries to enhance influenza surveillance in South Korea. In addition, an approach for query selection using social media data seems ideal for supporting influenza surveillance based on search query data.

  18. Estimating Influenza Outbreaks Using Both Search Engine Query Data and Social Media Data in South Korea

    PubMed Central

    Woo, Hyekyung; Shim, Eunyoung; Lee, Jong-Koo; Lee, Chang-Gun; Kim, Seong Hwan

    2016-01-01

    Background As suggested as early as in 2006, logs of queries submitted to search engines seeking information could be a source for detection of emerging influenza epidemics if changes in the volume of search queries are monitored (infodemiology). However, selecting queries that are most likely to be associated with influenza epidemics is a particular challenge when it comes to generating better predictions. Objective In this study, we describe a methodological extension for detecting influenza outbreaks using search query data; we provide a new approach for query selection through the exploration of contextual information gleaned from social media data. Additionally, we evaluate whether it is possible to use these queries for monitoring and predicting influenza epidemics in South Korea. Methods Our study was based on freely available weekly influenza incidence data and query data originating from the search engine on the Korean website Daum between April 3, 2011 and April 5, 2014. To select queries related to influenza epidemics, several approaches were applied: (1) exploring influenza-related words in social media data, (2) identifying the chief concerns related to influenza, and (3) using Web query recommendations. Optimal feature selection by least absolute shrinkage and selection operator (Lasso) and support vector machine for regression (SVR) were used to construct a model predicting influenza epidemics. Results In total, 146 queries related to influenza were generated through our initial query selection approach. A considerable proportion of optimal features for final models were derived from queries with reference to the social media data. The SVR model performed well: the prediction values were highly correlated with the recent observed influenza-like illness (r=.956; P<.001) and virological incidence rate (r=.963; P<.001). Conclusions These results demonstrate the feasibility of using search queries to enhance influenza surveillance in South Korea. In addition, an approach for query selection using social media data seems ideal for supporting influenza surveillance based on search query data. PMID:27377323

  19. Where to search top-K biomedical ontologies?

    PubMed

    Oliveira, Daniela; Butt, Anila Sahar; Haller, Armin; Rebholz-Schuhmann, Dietrich; Sahay, Ratnesh

    2018-03-20

    Searching for precise terms and terminological definitions in the biomedical data space is problematic, as researchers find overlapping, closely related and even equivalent concepts in a single or multiple ontologies. Search engines that retrieve ontological resources often suggest an extensive list of search results for a given input term, which leads to the tedious task of selecting the best-fit ontological resource (class or property) for the input term and reduces user confidence in the retrieval engines. A systematic evaluation of these search engines is necessary to understand their strengths and weaknesses in different search requirements. We have implemented seven comparable Information Retrieval ranking algorithms to search through ontologies and compared them against four search engines for ontologies. Free-text queries have been performed, the outcomes have been judged by experts and the ranking algorithms and search engines have been evaluated against the expert-based ground truth (GT). In addition, we propose a probabilistic GT that is developed automatically to provide deeper insights and confidence to the expert-based GT as well as evaluating a broader range of search queries. The main outcome of this work is the identification of key search factors for biomedical ontologies together with search requirements and a set of recommendations that will help biomedical experts and ontology engineers to select the best-suited retrieval mechanism in their search scenarios. We expect that this evaluation will allow researchers and practitioners to apply the current search techniques more reliably and that it will help them to select the right solution for their daily work. The source code (of seven ranking algorithms), ground truths and experimental results are available at https://github.com/danielapoliveira/bioont-search-benchmark.

  20. Variability of patient spine education by Internet search engine.

    PubMed

    Ghobrial, George M; Mehdi, Angud; Maltenfort, Mitchell; Sharan, Ashwini D; Harrop, James S

    2014-03-01

    Patients are increasingly reliant upon the Internet as a primary source of medical information. The educational experience varies by search engine, search term, and changes daily. There are no tools for critical evaluation of spinal surgery websites. To highlight the variability between common search engines for the same search terms. To detect bias, by prevalence of specific kinds of websites for certain spinal disorders. Demonstrate a simple scoring system of spinal disorder website for patient use, to maximize the quality of information exposed to the patient. Ten common search terms were used to query three of the most common search engines. The top fifty results of each query were tabulated. A negative binomial regression was performed to highlight the variation across each search engine. Google was more likely than Bing and Yahoo search engines to return hospital ads (P=0.002) and more likely to return scholarly sites of peer-reviewed lite (P=0.003). Educational web sites, surgical group sites, and online web communities had a significantly higher likelihood of returning on any search, regardless of search engine, or search string (P=0.007). Likewise, professional websites, including hospital run, industry sponsored, legal, and peer-reviewed web pages were less likely to be found on a search overall, regardless of engine and search string (P=0.078). The Internet is a rapidly growing body of medical information which can serve as a useful tool for patient education. High quality information is readily available, provided that the patient uses a consistent, focused metric for evaluating online spine surgery information, as there is a clear variability in the way search engines present information to the patient. Published by Elsevier B.V.

  1. Assessing the Impact of the National Smoking Ban in Indoor Public Places in China: Evidence from Quit Smoking Related Online Searches

    PubMed Central

    Huang, Jidong; Zheng, Rong; Emery, Sherry

    2013-01-01

    Background Despite the tremendous economic and health costs imposed on China by tobacco use, China lacks a proactive and systematic tobacco control surveillance and evaluation system, hampering research progress on tobacco-focused surveillance and evaluation studies. Methods This paper uses online search query analyses to investigate changes in online search behavior among Chinese Internet users in response to the adoption of the national indoor public place smoking ban. Baidu Index and Google Trends were used to examine the volume of search queries containing three key search terms “Smoking Ban(s),” “Quit Smoking,” and “Electronic Cigarette(s),” along with the news coverage on the smoking ban, for the period 2009–2011. Findings Our results show that the announcement and adoption of the indoor public place smoking ban in China generated significant increases in news coverage on smoking bans. There was a strong positive correlation between the media coverage of smoking bans and the volume of “Smoking Ban(s)” and “Quit Smoking” related search queries. The volume of search queries related to “Electronic Cigarette(s)” was also correlated with the smoking ban news coverage. Interpretation To the extent it altered smoking-related online searches, our analyses suggest that the smoking ban had a significant effect, at least in the short run, on Chinese Internet users’ smoking-related behaviors. This research introduces a novel analytic tool, which could serve as an alternative tobacco control evaluation and behavior surveillance tool in the absence of timely or comprehensive population surveillance system. This research also highlights the importance of a comprehensive approach to tobacco control in China. PMID:23776504

  2. Targeted exploration and analysis of large cross-platform human transcriptomic compendia

    PubMed Central

    Zhu, Qian; Wong, Aaron K; Krishnan, Arjun; Aure, Miriam R; Tadych, Alicja; Zhang, Ran; Corney, David C; Greene, Casey S; Bongo, Lars A; Kristensen, Vessela N; Charikar, Moses; Li, Kai; Troyanskaya, Olga G.

    2016-01-01

    We present SEEK (http://seek.princeton.edu), a query-based search engine across very large transcriptomic data collections, including thousands of human data sets from almost 50 microarray and next-generation sequencing platforms. SEEK uses a novel query-level cross-validation-based algorithm to automatically prioritize data sets relevant to the query and a robust search approach to identify query-coregulated genes, pathways, and processes. SEEK provides cross-platform handling, multi-gene query search, iterative metadata-based search refinement, and extensive visualization-based analysis options. PMID:25581801

  3. Ontological Approach to Military Knowledge Modeling and Management

    DTIC Science & Technology

    2004-03-01

    federated search mechanism has to reformulate user queries (expressed using the ontology) in the query languages of the different sources (e.g. SQL...ontologies as a common terminology – Unified query to perform federated search • Query processing – Ontology mapping to sources reformulate queries

  4. LEAP into the Pfizer Global Virtual Library (PGVL) space: creation of readily synthesizable design ideas automatically.

    PubMed

    Hu, Qiyue; Peng, Zhengwei; Kostrowicki, Jaroslav; Kuki, Atsuo

    2011-01-01

    Pfizer Global Virtual Library (PGVL) of 10(13) readily synthesizable molecules offers a tremendous opportunity for lead optimization and scaffold hopping in drug discovery projects. However, mining into a chemical space of this size presents a challenge for the concomitant design informatics due to the fact that standard molecular similarity searches against a collection of explicit molecules cannot be utilized, since no chemical information system could create and manage more than 10(8) explicit molecules. Nevertheless, by accepting a tolerable level of false negatives in search results, we were able to bypass the need for full 10(13) enumeration and enabled the efficient similarity search and retrieval into this huge chemical space for practical usage by medicinal chemists. In this report, two search methods (LEAP1 and LEAP2) are presented. The first method uses PGVL reaction knowledge to disassemble the incoming search query molecule into a set of reactants and then uses reactant-level similarities into actual available starting materials to focus on a much smaller sub-region of the full virtual library compound space. This sub-region is then explicitly enumerated and searched via a standard similarity method using the original query molecule. The second method uses a fuzzy mapping onto candidate reactions and does not require exact disassembly of the incoming query molecule. Instead Basis Products (or capped reactants) are mapped into the query molecule and the resultant asymmetric similarity scores are used to prioritize the corresponding reactions and reactant sets. All sets of Basis Products are inherently indexed to specific reactions and specific starting materials. This again allows focusing on a much smaller sub-region for explicit enumeration and subsequent standard product-level similarity search. A set of validation studies were conducted. The results have shown that the level of false negatives for the disassembly-based method is acceptable when the query molecule can be recognized for exact disassembly, and the fuzzy reaction mapping method based on Basis Products has an even better performance in terms of lower false-negative rate because it is not limited by the requirement that the query molecule needs to be recognized by any disassembly algorithm. Both search methods have been implemented and accessed through a powerful desktop molecular design tool (see ref. (33) for details). The chapter will end with a comparison of published search methods against large virtual chemical space.

  5. FTree query construction for virtual screening: a statistical analysis.

    PubMed

    Gerlach, Christof; Broughton, Howard; Zaliani, Andrea

    2008-02-01

    FTrees (FT) is a known chemoinformatic tool able to condense molecular descriptions into a graph object and to search for actives in large databases using graph similarity. The query graph is classically derived from a known active molecule, or a set of actives, for which a similar compound has to be found. Recently, FT similarity has been extended to fragment space, widening its capabilities. If a user were able to build a knowledge-based FT query from information other than a known active structure, the similarity search could be combined with other, normally separate, fields like de-novo design or pharmacophore searches. With this aim in mind, we performed a comprehensive analysis of several databases in terms of FT description and provide a basic statistical analysis of the FT spaces so far at hand. Vendors' catalogue collections and MDDR as a source of potential or known "actives", respectively, have been used. With the results reported herein, a set of ranges, mean values and standard deviations for several query parameters are presented in order to set a reference guide for the users. Applications on how to use this information in FT query building are also provided, using a newly built 3D-pharmacophore from 57 5HT-1F agonists and a published one which was used for virtual screening for tRNA-guanine transglycosylase (TGT) inhibitors.

  6. FTree query construction for virtual screening: a statistical analysis

    NASA Astrophysics Data System (ADS)

    Gerlach, Christof; Broughton, Howard; Zaliani, Andrea

    2008-02-01

    FTrees (FT) is a known chemoinformatic tool able to condense molecular descriptions into a graph object and to search for actives in large databases using graph similarity. The query graph is classically derived from a known active molecule, or a set of actives, for which a similar compound has to be found. Recently, FT similarity has been extended to fragment space, widening its capabilities. If a user were able to build a knowledge-based FT query from information other than a known active structure, the similarity search could be combined with other, normally separate, fields like de-novo design or pharmacophore searches. With this aim in mind, we performed a comprehensive analysis of several databases in terms of FT description and provide a basic statistical analysis of the FT spaces so far at hand. Vendors' catalogue collections and MDDR as a source of potential or known "actives", respectively, have been used. With the results reported herein, a set of ranges, mean values and standard deviations for several query parameters are presented in order to set a reference guide for the users. Applications on how to use this information in FT query building are also provided, using a newly built 3D-pharmacophore from 57 5HT-1F agonists and a published one which was used for virtual screening for tRNA-guanine transglycosylase (TGT) inhibitors.

  7. Analysis of Online Information Searching for Cardiovascular Diseases on a Consumer Health Information Portal

    PubMed Central

    Jadhav, Ashutosh; Sheth, Amit; Pathak, Jyotishman

    2014-01-01

    Since the early 2000’s, Internet usage for health information searching has increased significantly. Studying search queries can help us to understand users “information need” and how do they formulate search queries (“expression of information need”). Although cardiovascular diseases (CVD) affect a large percentage of the population, few studies have investigated how and what users search for CVD. We address this knowledge gap in the community by analyzing a large corpus of 10 million CVD related search queries from MayoClinic.com. Using UMLS MetaMap and UMLS semantic types/concepts, we developed a rule-based approach to categorize the queries into 14 health categories. We analyzed structural properties, types (keyword-based/Wh-questions/Yes-No questions) and linguistic structure of the queries. Our results show that the most searched health categories are ‘Diseases/Conditions’, ‘Vital-Sings’, ‘Symptoms’ and ‘Living-with’. CVD queries are longer and are predominantly keyword-based. This study extends our knowledge about online health information searching and provides useful insights for Web search engines and health websites. PMID:25954380

  8. An index-based algorithm for fast on-line query processing of latent semantic analysis

    PubMed Central

    Li, Pohan; Wang, Wei

    2017-01-01

    Latent Semantic Analysis (LSA) is widely used for finding the documents whose semantic is similar to the query of keywords. Although LSA yield promising similar results, the existing LSA algorithms involve lots of unnecessary operations in similarity computation and candidate check during on-line query processing, which is expensive in terms of time cost and cannot efficiently response the query request especially when the dataset becomes large. In this paper, we study the efficiency problem of on-line query processing for LSA towards efficiently searching the similar documents to a given query. We rewrite the similarity equation of LSA combined with an intermediate value called partial similarity that is stored in a designed index called partial index. For reducing the searching space, we give an approximate form of similarity equation, and then develop an efficient algorithm for building partial index, which skips the partial similarities lower than a given threshold θ. Based on partial index, we develop an efficient algorithm called ILSA for supporting fast on-line query processing. The given query is transformed into a pseudo document vector, and the similarities between query and candidate documents are computed by accumulating the partial similarities obtained from the index nodes corresponds to non-zero entries in the pseudo document vector. Compared to the LSA algorithm, ILSA reduces the time cost of on-line query processing by pruning the candidate documents that are not promising and skipping the operations that make little contribution to similarity scores. Extensive experiments through comparison with LSA have been done, which demonstrate the efficiency and effectiveness of our proposed algorithm. PMID:28520747

  9. An index-based algorithm for fast on-line query processing of latent semantic analysis.

    PubMed

    Zhang, Mingxi; Li, Pohan; Wang, Wei

    2017-01-01

    Latent Semantic Analysis (LSA) is widely used for finding the documents whose semantic is similar to the query of keywords. Although LSA yield promising similar results, the existing LSA algorithms involve lots of unnecessary operations in similarity computation and candidate check during on-line query processing, which is expensive in terms of time cost and cannot efficiently response the query request especially when the dataset becomes large. In this paper, we study the efficiency problem of on-line query processing for LSA towards efficiently searching the similar documents to a given query. We rewrite the similarity equation of LSA combined with an intermediate value called partial similarity that is stored in a designed index called partial index. For reducing the searching space, we give an approximate form of similarity equation, and then develop an efficient algorithm for building partial index, which skips the partial similarities lower than a given threshold θ. Based on partial index, we develop an efficient algorithm called ILSA for supporting fast on-line query processing. The given query is transformed into a pseudo document vector, and the similarities between query and candidate documents are computed by accumulating the partial similarities obtained from the index nodes corresponds to non-zero entries in the pseudo document vector. Compared to the LSA algorithm, ILSA reduces the time cost of on-line query processing by pruning the candidate documents that are not promising and skipping the operations that make little contribution to similarity scores. Extensive experiments through comparison with LSA have been done, which demonstrate the efficiency and effectiveness of our proposed algorithm.

  10. Quantum Private Queries

    NASA Astrophysics Data System (ADS)

    Giovannetti, Vittorio; Lloyd, Seth; Maccone, Lorenzo

    2008-06-01

    We propose a cheat sensitive quantum protocol to perform a private search on a classical database which is efficient in terms of communication complexity. It allows a user to retrieve an item from the database provider without revealing which item he or she retrieved: if the provider tries to obtain information on the query, the person querying the database can find it out. The protocol ensures also perfect data privacy of the database: the information that the user can retrieve in a single query is bounded and does not depend on the size of the database. With respect to the known (quantum and classical) strategies for private information retrieval, our protocol displays an exponential reduction in communication complexity and in running-time computational complexity.

  11. Locality in Search Engine Queries and Its Implications for Caching

    DTIC Science & Technology

    2001-05-01

    in the question of whether caching might be effective for search engines as well. They study two real search engine traces by examining query...locality and its implications for caching. The two search engines studied are Vivisimo and Excite. Their trace analysis results show that queries have

  12. Revisiting the Rise of Electronic Nicotine Delivery Systems Using Search Query Surveillance

    PubMed Central

    Ayers, John W.; Althouse, Benjamin M.; Allem, Jon-Patrick; Leas, Eric C.; Dredze, Mark; Williams, Rebecca

    2016-01-01

    Introduction Public perceptions of electronic nicotine delivery systems (ENDS) remain poorly understood because surveys are too costly to regularly implement and when implemented there are large delays between data collection and dissemination. Search query surveillance has bridged some of these gaps. Herein, ENDS’ popularity in the U.S. is reassessed using Google searches. Methods ENDS searches originating in the U.S. from January 2009 through January 2015 were disaggregated by terms focused on e-cigarette (e.g., e-cig) versus vaping (e.g., vapers), their geolocation (e.g., state), the aggregate tobacco control measures corresponding to their geolocation (e.g., clean indoor air laws), and by terms that indicated the searcher’s potential interest (e.g., buy e-cigs likely indicates shopping); all analyzed in 2015. Results ENDS searches are increasing across the entire U.S., with 8,498,180 searches during 2014. At the same time, searches shifted from e-cigarette- to vaping-focused terms, especially in coastal states and states with more anti-smoking norms. For example, nationally, e-cigarette searches declined 9% (95% CI=1%, 16%) during 2014 compared with 2013, whereas vaping searches increased 136% (95% CI=97%, 186%), surpassing e-cigarette searches. More ENDS searches were related to shopping (e.g., vape shop) than health concerns (e.g., vaping risks) or cessation (e.g., quit smoking with e-cigs), with shopping searches nearly doubling during 2014. Conclusions ENDS popularity is rapidly growing and evolving, and monitoring searches has provided these timely insights. These findings may inform survey questionnaire development for follow-up investigation and immediately guide policy debates about how the public perceives ENDS’ health risks or cessation benefits. PMID:26876772

  13. "Garbage" In, "Refuse and Refuse Disposal" Out: Making the Most of the Subject Authority File in OPAC.

    ERIC Educational Resources Information Center

    Horn, Marguerite E.

    2002-01-01

    Discusses the difference in subject access in OPACs (online public access catalogs) between subject searching (authority, alphabetic, or controlled vocabulary) versus keyword searching (uncontrolled, free text, natural language vocabulary). Compares a query on the term "garbage" in two online catalogs and discusses results. (Author/LRW)

  14. Assessing Ebola-related web search behaviour: insights and implications from an analytical study of Google Trends-based query volumes.

    PubMed

    Alicino, Cristiano; Bragazzi, Nicola Luigi; Faccio, Valeria; Amicizia, Daniela; Panatto, Donatella; Gasparini, Roberto; Icardi, Giancarlo; Orsi, Andrea

    2015-12-10

    The 2014 Ebola epidemic in West Africa has attracted public interest worldwide, leading to millions of Ebola-related Internet searches being performed during the period of the epidemic. This study aimed to evaluate and interpret Google search queries for terms related to the Ebola outbreak both at the global level and in all countries where primary cases of Ebola occurred. The study also endeavoured to look at the correlation between the number of overall and weekly web searches and the number of overall and weekly new cases of Ebola. Google Trends (GT) was used to explore Internet activity related to Ebola. The study period was from 29 December 2013 to 14 June 2015. Pearson's correlation was performed to correlate Ebola-related relative search volumes (RSVs) with the number of weekly and overall Ebola cases. Multivariate regression was performed using Ebola-related RSV as a dependent variable, and the overall number of Ebola cases and the Human Development Index were used as predictor variables. The greatest RSV was registered in the three West African countries mainly affected by the Ebola epidemic. The queries varied in the different countries. Both quantitative and qualitative differences between the affected African countries and other Western countries with primary cases were noted, in relation to the different flux volumes and different time courses. In the affected African countries, web query search volumes were mostly concentrated in the capital areas. However, in Western countries, web queries were uniformly distributed over the national territory. In terms of the three countries mainly affected by the Ebola epidemic, the correlation between the number of new weekly cases of Ebola and the weekly GT index varied from weak to moderate. The correlation between the number of Ebola cases registered in all countries during the study period and the GT index was very high. Google Trends showed a coarse-grained nature, strongly correlating with global epidemiological data, but was weaker at country level, as it was prone to distortions induced by unbalanced media coverage and the digital divide. Global and local health agencies could usefully exploit GT data to identify disease-related information needs and plan proper communication strategies, particularly in the case of health-threatening events.

  15. Revisiting the Rise of Electronic Nicotine Delivery Systems Using Search Query Surveillance.

    PubMed

    Ayers, John W; Althouse, Benjamin M; Allem, Jon-Patrick; Leas, Eric C; Dredze, Mark; Williams, Rebecca S

    2016-06-01

    Public perceptions of electronic nicotine delivery systems (ENDS) remain poorly understood because surveys are too costly to regularly implement and, when implemented, there are long delays between data collection and dissemination. Search query surveillance has bridged some of these gaps. Herein, ENDS' popularity in the U.S. is reassessed using Google searches. ENDS searches originating in the U.S. from January 2009 through January 2015 were disaggregated by terms focused on e-cigarette (e.g., e-cig) versus vaping (e.g., vapers); their geolocation (e.g., state); the aggregate tobacco control measures corresponding to their geolocation (e.g., clean indoor air laws); and by terms that indicated the searcher's potential interest (e.g., buy e-cigs likely indicates shopping)-all analyzed in 2015. ENDS searches are rapidly increasing in the U.S., with 8,498,000 searches during 2014 alone. Increasingly, searches are shifting from e-cigarette- to vaping-focused terms, especially in coastal states and states where anti-smoking norms are stronger. For example, nationally, e-cigarette searches declined 9% (95% CI=1%, 16%) during 2014 compared with 2013, whereas vaping searches increased 136% (95% CI=97%, 186%), even surpassing e-cigarette searches. Additionally, the percentage of ENDS searches related to shopping (e.g., vape shop) nearly doubled in 2014, whereas searches related to health concerns (e.g., vaping risks) or cessation (e.g., quit smoking with e-cigs) were rare and declined in 2014. ENDS popularity is rapidly growing and evolving. These findings could inform survey questionnaire development for follow-up investigation and immediately guide policy debates about how the public perceives the health risks or cessation benefits of ENDS. Copyright © 2016 American Journal of Preventive Medicine. Published by Elsevier Inc. All rights reserved.

  16. Context-Aware Online Commercial Intention Detection

    NASA Astrophysics Data System (ADS)

    Hu, Derek Hao; Shen, Dou; Sun, Jian-Tao; Yang, Qiang; Chen, Zheng

    With more and more commercial activities moving onto the Internet, people tend to purchase what they need through Internet or conduct some online research before the actual transactions happen. For many Web users, their online commercial activities start from submitting a search query to search engines. Just like the common Web search queries, the queries with commercial intention are usually very short. Recognizing the queries with commercial intention against the common queries will help search engines provide proper search results and advertisements, help Web users obtain the right information they desire and help the advertisers benefit from the potential transactions. However, the intentions behind a query vary a lot for users with different background and interest. The intentions can even be different for the same user, when the query is issued in different contexts. In this paper, we present a new algorithm framework based on skip-chain conditional random field (SCCRF) for automatically classifying Web queries according to context-based online commercial intention. We analyze our algorithm performance both theoretically and empirically. Extensive experiments on several real search engine log datasets show that our algorithm can improve more than 10% on F1 score than previous algorithms on commercial intention detection.

  17. From health search to healthcare: explorations of intention and utilization via query logs and user surveys

    PubMed Central

    White, Ryen W; Horvitz, Eric

    2014-01-01

    Objective To better understand the relationship between online health-seeking behaviors and in-world healthcare utilization (HU) by studies of online search and access activities before and after queries that pursue medical professionals and facilities. Materials and methods We analyzed data collected from logs of online searches gathered from consenting users of a browser toolbar from Microsoft (N=9740). We employed a complementary survey (N=489) to seek a deeper understanding of information-gathering, reflection, and action on the pursuit of professional healthcare. Results We provide insights about HU through the survey, breaking out its findings by different respondent marginalizations as appropriate. Observations made from search logs may be explained by trends observed in our survey responses, even though the user populations differ. Discussion The results provide insights about how users decide if and when to utilize healthcare resources, and how online health information seeking transitions to in-world HU. The findings from both the survey and the logs reveal behavioral patterns and suggest a strong relationship between search behavior and HU. Although the diversity of our survey respondents is limited and we cannot be certain that users visited medical facilities, we demonstrate that it may be possible to infer HU from long-term search behavior by the apparent influence that health concerns and professional advice have on search activity. Conclusions Our findings highlight different phases of online activities around queries pursuing professional healthcare facilities and services. We also show that it may be possible to infer HU from logs without tracking people's physical location, based on the effect of HU on pre- and post-HU search behavior. This allows search providers and others to develop more robust models of interests and preferences by modeling utilization rather than simply the intention to utilize that is expressed in search queries. PMID:23666794

  18. Multi-field query expansion is effective for biomedical dataset retrieval.

    PubMed

    Bouadjenek, Mohamed Reda; Verspoor, Karin

    2017-01-01

    In the context of the bioCADDIE challenge addressing information retrieval of biomedical datasets, we propose a method for retrieval of biomedical data sets with heterogenous schemas through query reformulation. In particular, the method proposed transforms the initial query into a multi-field query that is then enriched with terms that are likely to occur in the relevant datasets. We compare and evaluate two query expansion strategies, one based on the Rocchio method and another based on a biomedical lexicon. We then perform a comprehensive comparative evaluation of our method on the bioCADDIE dataset collection for biomedical retrieval. We demonstrate the effectiveness of our multi-field query method compared to two baselines, with MAP improved from 0.2171 and 0.2669 to 0.2996. We also show the benefits of query expansion, where the Rocchio expanstion method improves the MAP for our two baselines from 0.2171 and 0.2669 to 0.335. We show that the Rocchio query expansion method slightly outperforms the one based on the biomedical lexicon as a source of terms, with an improvement of roughly 3% for MAP. However, the query expansion method based on the biomedical lexicon is much less resource intensive since it does not require computation of any relevance feedback set or any initial execution of the query. Hence, in term of trade-off between efficiency, execution time and retrieval accuracy, we argue that the query expansion method based on the biomedical lexicon offers the best performance for a prototype biomedical data search engine intended to be used at a large scale. In the official bioCADDIE challenge results, although our approach is ranked seventh in terms of the infNDCG evaluation metric, it ranks second in term of P@10 and NDCG. Hence, the method proposed here provides overall good retrieval performance in relation to the approaches of other competitors. Consequently, the observations made in this paper should benefit the development of a Data Discovery Index prototype or the improvement of the existing one. © The Author(s) 2017. Published by Oxford University Press.

  19. Multi-field query expansion is effective for biomedical dataset retrieval

    PubMed Central

    2017-01-01

    Abstract In the context of the bioCADDIE challenge addressing information retrieval of biomedical datasets, we propose a method for retrieval of biomedical data sets with heterogenous schemas through query reformulation. In particular, the method proposed transforms the initial query into a multi-field query that is then enriched with terms that are likely to occur in the relevant datasets. We compare and evaluate two query expansion strategies, one based on the Rocchio method and another based on a biomedical lexicon. We then perform a comprehensive comparative evaluation of our method on the bioCADDIE dataset collection for biomedical retrieval. We demonstrate the effectiveness of our multi-field query method compared to two baselines, with MAP improved from 0.2171 and 0.2669 to 0.2996. We also show the benefits of query expansion, where the Rocchio expanstion method improves the MAP for our two baselines from 0.2171 and 0.2669 to 0.335. We show that the Rocchio query expansion method slightly outperforms the one based on the biomedical lexicon as a source of terms, with an improvement of roughly 3% for MAP. However, the query expansion method based on the biomedical lexicon is much less resource intensive since it does not require computation of any relevance feedback set or any initial execution of the query. Hence, in term of trade-off between efficiency, execution time and retrieval accuracy, we argue that the query expansion method based on the biomedical lexicon offers the best performance for a prototype biomedical data search engine intended to be used at a large scale. In the official bioCADDIE challenge results, although our approach is ranked seventh in terms of the infNDCG evaluation metric, it ranks second in term of P@10 and NDCG. Hence, the method proposed here provides overall good retrieval performance in relation to the approaches of other competitors. Consequently, the observations made in this paper should benefit the development of a Data Discovery Index prototype or the improvement of the existing one. PMID:29220457

  20. Predicting the hand, foot, and mouth disease incidence using search engine query data and climate variables: an ecological study in Guangdong, China.

    PubMed

    Du, Zhicheng; Xu, Lin; Zhang, Wangjian; Zhang, Dingmei; Yu, Shicheng; Hao, Yuantao

    2017-10-06

    Hand, foot, and mouth disease (HFMD) has caused a substantial burden in China, especially in Guangdong Province. Based on the enhanced surveillance system, we aimed to explore whether the addition of temperate and search engine query data improves the risk prediction of HFMD. Ecological study. Information on the confirmed cases of HFMD, climate parameters and search engine query logs was collected. A total of 1.36 million HFMD cases were identified from the surveillance system during 2011-2014. Analyses were conducted at aggregate level and no confidential information was involved. A seasonal autoregressive integrated moving average (ARIMA) model with external variables (ARIMAX) was used to predict the HFMD incidence from 2011 to 2014, taking into account temperature and search engine query data (Baidu Index, BDI). Statistics of goodness-of-fit and precision of prediction were used to compare models (1) based on surveillance data only, and with the addition of (2) temperature, (3) BDI, and (4) both temperature and BDI. A high correlation between HFMD incidence and BDI ( r =0.794, p<0.001) or temperature ( r =0.657, p<0.001) was observed using both time series plot and correlation matrix. A linear effect of BDI (without lag) and non-linear effect of temperature (1 week lag) on HFMD incidence were found in a distributed lag non-linear model. Compared with the model based on surveillance data only, the ARIMAX model including BDI reached the best goodness-of-fit with an Akaike information criterion (AIC) value of -345.332, whereas the model including both BDI and temperature had the most accurate prediction in terms of the mean absolute percentage error (MAPE) of 101.745%. An ARIMAX model incorporating search engine query data significantly improved the prediction of HFMD. Further studies are warranted to examine whether including search engine query data also improves the prediction of other infectious diseases in other settings. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  1. Predicting the hand, foot, and mouth disease incidence using search engine query data and climate variables: an ecological study in Guangdong, China

    PubMed Central

    Du, Zhicheng; Xu, Lin; Zhang, Wangjian; Zhang, Dingmei; Yu, Shicheng; Hao, Yuantao

    2017-01-01

    Objectives Hand, foot, and mouth disease (HFMD) has caused a substantial burden in China, especially in Guangdong Province. Based on the enhanced surveillance system, we aimed to explore whether the addition of temperate and search engine query data improves the risk prediction of HFMD. Design Ecological study. Setting and participants Information on the confirmed cases of HFMD, climate parameters and search engine query logs was collected. A total of 1.36 million HFMD cases were identified from the surveillance system during 2011–2014. Analyses were conducted at aggregate level and no confidential information was involved. Outcome measures A seasonal autoregressive integrated moving average (ARIMA) model with external variables (ARIMAX) was used to predict the HFMD incidence from 2011 to 2014, taking into account temperature and search engine query data (Baidu Index, BDI). Statistics of goodness-of-fit and precision of prediction were used to compare models (1) based on surveillance data only, and with the addition of (2) temperature, (3) BDI, and (4) both temperature and BDI. Results A high correlation between HFMD incidence and BDI (r=0.794, p<0.001) or temperature (r=0.657, p<0.001) was observed using both time series plot and correlation matrix. A linear effect of BDI (without lag) and non-linear effect of temperature (1 week lag) on HFMD incidence were found in a distributed lag non-linear model. Compared with the model based on surveillance data only, the ARIMAX model including BDI reached the best goodness-of-fit with an Akaike information criterion (AIC) value of −345.332, whereas the model including both BDI and temperature had the most accurate prediction in terms of the mean absolute percentage error (MAPE) of 101.745%. Conclusions An ARIMAX model incorporating search engine query data significantly improved the prediction of HFMD. Further studies are warranted to examine whether including search engine query data also improves the prediction of other infectious diseases in other settings. PMID:28988169

  2. Enabling Incremental Query Re-Optimization.

    PubMed

    Liu, Mengmeng; Ives, Zachary G; Loo, Boon Thau

    2016-01-01

    As declarative query processing techniques expand to the Web, data streams, network routers, and cloud platforms, there is an increasing need to re-plan execution in the presence of unanticipated performance changes. New runtime information may affect which query plan we prefer to run. Adaptive techniques require innovation both in terms of the algorithms used to estimate costs , and in terms of the search algorithm that finds the best plan. We investigate how to build a cost-based optimizer that recomputes the optimal plan incrementally given new cost information, much as a stream engine constantly updates its outputs given new data. Our implementation especially shows benefits for stream processing workloads. It lays the foundations upon which a variety of novel adaptive optimization algorithms can be built. We start by leveraging the recently proposed approach of formulating query plan enumeration as a set of recursive datalog queries ; we develop a variety of novel optimization approaches to ensure effective pruning in both static and incremental cases. We further show that the lessons learned in the declarative implementation can be equally applied to more traditional optimizer implementations.

  3. Enabling Incremental Query Re-Optimization

    PubMed Central

    Liu, Mengmeng; Ives, Zachary G.; Loo, Boon Thau

    2017-01-01

    As declarative query processing techniques expand to the Web, data streams, network routers, and cloud platforms, there is an increasing need to re-plan execution in the presence of unanticipated performance changes. New runtime information may affect which query plan we prefer to run. Adaptive techniques require innovation both in terms of the algorithms used to estimate costs, and in terms of the search algorithm that finds the best plan. We investigate how to build a cost-based optimizer that recomputes the optimal plan incrementally given new cost information, much as a stream engine constantly updates its outputs given new data. Our implementation especially shows benefits for stream processing workloads. It lays the foundations upon which a variety of novel adaptive optimization algorithms can be built. We start by leveraging the recently proposed approach of formulating query plan enumeration as a set of recursive datalog queries; we develop a variety of novel optimization approaches to ensure effective pruning in both static and incremental cases. We further show that the lessons learned in the declarative implementation can be equally applied to more traditional optimizer implementations. PMID:28659658

  4. A performance and failure analysis of SAPHIRE with a MEDLINE test collection.

    PubMed Central

    Hersh, W R; Hickam, D H; Haynes, R B; McKibbon, K A

    1994-01-01

    OBJECTIVE: Assess the performance of the SAPHIRE automated information retrieval system. DESIGN: Comparative study of automated and human searching of a MEDLINE test collection. MEASUREMENTS: Recall and precision of SAPHIRE were compared with those attributes of novice physicians, expert physicians, and librarians for a test collection of 75 queries and 2,334 citations. Failure analysis assessed the efficacy of the Metathesaurus as a concept vocabulary; the reasons for retrieval of nonrelevant articles and nonretrieval of relevant articles; and the effect of changing the weighting formula for relevance ranking of retrieved articles. RESULTS: Recall and precision of SAPHIRE were comparable to those of both physician groups, but less than those of librarians. CONCLUSION: The current version of the Metathesaurus, as utilized by SAPHIRE, was unable to represent the conceptual content of one-fourth of physician-generated MEDLINE queries. The most likely cause for retrieval of nonrelevant articles was the presence of some or all of the search terms in the article, with frequencies high enough to lead to retrieval. The most likely cause for nonretrieval of relevant articles was the absence of the actual terms from the query, with synonyms or hierarchically related terms present instead. There were significant variations in performance when SAPHIRE's concept-weighing formulas were modified. PMID:7719787

  5. Privacy-Aware Relevant Data Access with Semantically Enriched Search Queries for Untrusted Cloud Storage Services.

    PubMed

    Pervez, Zeeshan; Ahmad, Mahmood; Khattak, Asad Masood; Lee, Sungyoung; Chung, Tae Choong

    2016-01-01

    Privacy-aware search of outsourced data ensures relevant data access in the untrusted domain of a public cloud service provider. Subscriber of a public cloud storage service can determine the presence or absence of a particular keyword by submitting search query in the form of a trapdoor. However, these trapdoor-based search queries are limited in functionality and cannot be used to identify secure outsourced data which contains semantically equivalent information. In addition, trapdoor-based methodologies are confined to pre-defined trapdoors and prevent subscribers from searching outsourced data with arbitrarily defined search criteria. To solve the problem of relevant data access, we have proposed an index-based privacy-aware search methodology that ensures semantic retrieval of data from an untrusted domain. This method ensures oblivious execution of a search query and leverages authorized subscribers to model conjunctive search queries without relying on predefined trapdoors. A security analysis of our proposed methodology shows that, in a conspired attack, unauthorized subscribers and untrusted cloud service providers cannot deduce any information that can lead to the potential loss of data privacy. A computational time analysis on commodity hardware demonstrates that our proposed methodology requires moderate computational resources to model a privacy-aware search query and for its oblivious evaluation on a cloud service provider.

  6. Privacy-Aware Relevant Data Access with Semantically Enriched Search Queries for Untrusted Cloud Storage Services

    PubMed Central

    Pervez, Zeeshan; Ahmad, Mahmood; Khattak, Asad Masood; Lee, Sungyoung; Chung, Tae Choong

    2016-01-01

    Privacy-aware search of outsourced data ensures relevant data access in the untrusted domain of a public cloud service provider. Subscriber of a public cloud storage service can determine the presence or absence of a particular keyword by submitting search query in the form of a trapdoor. However, these trapdoor-based search queries are limited in functionality and cannot be used to identify secure outsourced data which contains semantically equivalent information. In addition, trapdoor-based methodologies are confined to pre-defined trapdoors and prevent subscribers from searching outsourced data with arbitrarily defined search criteria. To solve the problem of relevant data access, we have proposed an index-based privacy-aware search methodology that ensures semantic retrieval of data from an untrusted domain. This method ensures oblivious execution of a search query and leverages authorized subscribers to model conjunctive search queries without relying on predefined trapdoors. A security analysis of our proposed methodology shows that, in a conspired attack, unauthorized subscribers and untrusted cloud service providers cannot deduce any information that can lead to the potential loss of data privacy. A computational time analysis on commodity hardware demonstrates that our proposed methodology requires moderate computational resources to model a privacy-aware search query and for its oblivious evaluation on a cloud service provider. PMID:27571421

  7. System, method and apparatus for conducting a keyterm search

    NASA Technical Reports Server (NTRS)

    McGreevy, Michael W. (Inventor)

    2004-01-01

    A keyterm search is a method of searching a database for subsets of the database that are relevant to an input query. First, a number of relational models of subsets of a database are provided. A query is then input. The query can include one or more keyterms. Next, a gleaning model of the query is created. The gleaning model of the query is then compared to each one of the relational models of subsets of the database. The identifiers of the relevant subsets are then output.

  8. Environmental Dataset Gateway (EDG) Search Widget

    EPA Pesticide Factsheets

    Use the Environmental Dataset Gateway (EDG) to find and access EPA's environmental resources. Many options are available for easily reusing EDG content in other other applications. This allows individuals to provide direct access to EPA's metadata outside the EDG interface. The EDG Search Widget makes it possible to search the EDG from another web page or application. The search widget can be included on your website by simply inserting one or two lines of code. Users can type a search term or lucene search query in the search field and retrieve a pop-up list of records that match that search.

  9. Using web search query data to monitor dengue epidemics: a new model for neglected tropical disease surveillance.

    PubMed

    Chan, Emily H; Sahai, Vikram; Conrad, Corrie; Brownstein, John S

    2011-05-01

    A variety of obstacles including bureaucracy and lack of resources have interfered with timely detection and reporting of dengue cases in many endemic countries. Surveillance efforts have turned to modern data sources, such as Internet search queries, which have been shown to be effective for monitoring influenza-like illnesses. However, few have evaluated the utility of web search query data for other diseases, especially those of high morbidity and mortality or where a vaccine may not exist. In this study, we aimed to assess whether web search queries are a viable data source for the early detection and monitoring of dengue epidemics. Bolivia, Brazil, India, Indonesia and Singapore were chosen for analysis based on available data and adequate search volume. For each country, a univariate linear model was then built by fitting a time series of the fraction of Google search query volume for specific dengue-related queries from that country against a time series of official dengue case counts for a time-frame within 2003-2010. The specific combination of queries used was chosen to maximize model fit. Spurious spikes in the data were also removed prior to model fitting. The final models, fit using a training subset of the data, were cross-validated against both the overall dataset and a holdout subset of the data. All models were found to fit the data quite well, with validation correlations ranging from 0.82 to 0.99. Web search query data were found to be capable of tracking dengue activity in Bolivia, Brazil, India, Indonesia and Singapore. Whereas traditional dengue data from official sources are often not available until after some substantial delay, web search query data are available in near real-time. These data represent valuable complement to assist with traditional dengue surveillance.

  10. Classification of Automated Search Traffic

    NASA Astrophysics Data System (ADS)

    Buehrer, Greg; Stokes, Jack W.; Chellapilla, Kumar; Platt, John C.

    As web search providers seek to improve both relevance and response times, they are challenged by the ever-increasing tax of automated search query traffic. Third party systems interact with search engines for a variety of reasons, such as monitoring a web site’s rank, augmenting online games, or possibly to maliciously alter click-through rates. In this paper, we investigate automated traffic (sometimes referred to as bot traffic) in the query stream of a large search engine provider. We define automated traffic as any search query not generated by a human in real time. We first provide examples of different categories of query logs generated by automated means. We then develop many different features that distinguish between queries generated by people searching for information, and those generated by automated processes. We categorize these features into two classes, either an interpretation of the physical model of human interactions, or as behavioral patterns of automated interactions. Using the these detection features, we next classify the query stream using multiple binary classifiers. In addition, a multiclass classifier is then developed to identify subclasses of both normal and automated traffic. An active learning algorithm is used to suggest which user sessions to label to improve the accuracy of the multiclass classifier, while also seeking to discover new classes of automated traffic. Performance analysis are then provided. Finally, the multiclass classifier is used to predict the subclass distribution for the search query stream.

  11. Do not hesitate to use Tversky-and other hints for successful active analogue searches with feature count descriptors.

    PubMed

    Horvath, Dragos; Marcou, Gilles; Varnek, Alexandre

    2013-07-22

    This study is an exhaustive analysis of the neighborhood behavior over a large coherent data set (ChEMBL target/ligand pairs of known Ki, for 165 targets with >50 associated ligands each). It focuses on similarity-based virtual screening (SVS) success defined by the ascertained optimality index. This is a weighted compromise between purity and retrieval rate of active hits in the neighborhood of an active query. One key issue addressed here is the impact of Tversky asymmetric weighing of query vs candidate features (represented as integer-value ISIDA colored fragment/pharmacophore triplet count descriptor vectors). The nearly a 3/4 million independent SVS runs showed that Tversky scores with a strong bias in favor of query-specific features are, by far, the most successful and the least failure-prone out of a set of nine other dissimilarity scores. These include classical Tanimoto, which failed to defend its privileged status in practical SVS applications. Tversky performance is not significantly conditioned by tuning of its bias parameter α. Both initial "guesses" of α = 0.9 and 0.7 were more successful than Tanimoto (at its turn, better than Euclid). Tversky was eventually tested in exhaustive similarity searching within the library of 1.6 M commercial + bioactive molecules at http://infochim.u-strasbg.fr/webserv/VSEngine.html , comparing favorably to Tanimoto in terms of "scaffold hopping" propensity. Therefore, it should be used at least as often as, perhaps in parallel to Tanimoto in SVS. Analysis with respect to query subclasses highlighted relationships of query complexity (simply expressed in terms of pharmacophore pattern counts) and/or target nature vs SVS success likelihood. SVS using more complex queries are more robust with respect to the choice of their operational premises (descriptors, metric). Yet, they are best handled by "pro-query" Tversky scores at α > 0.5. Among simpler queries, one may distinguish between "growable" (allowing for active analogs with additional features), and a few "conservative" queries not allowing any growth. These (typically bioactive amine transporter ligands) form the specific application domain of "pro-candidate" biased Tversky scores at α < 0.5.

  12. Google Search Queries About Neurosurgical Topics: Are They a Suitable Guide for Neurosurgeons?

    PubMed

    Lawson McLean, Anna C; Lawson McLean, Aaron; Kalff, Rolf; Walter, Jan

    2016-06-01

    Google is the most popular search engine, with about 100 billion searches per month. Google Trends is an integrated tool that allows users to obtain Google's search popularity statistics from the last decade. Our aim was to evaluate whether Google Trends is a useful tool to assess the public's interest in specific neurosurgical topics. We evaluated Google Trends statistics for the neurosurgical search topic areas "hydrocephalus," "spinal stenosis," "concussion," "vestibular schwannoma," and "cerebral arteriovenous malformation." We compared these with bibliometric data from PubMed and epidemiologic data from the German Federal Monitoring Agency. In addition, we assessed Google users' search behavior for the search terms "glioblastoma" and "meningioma." Over the last 10 years, there has been an increasing interest in the topic "concussion" from Internet users in general and scientists. "Spinal stenosis," "concussion," and "vestibular schwannoma" are topics that are of special interest in high-income countries (eg, Germany), whereas "hydrocephalus" is a popular topic in low- and middle-income countries. The Google-defined top searches within these topic areas revealed more detail about people's interests (eg, "normal pressure hydrocephalus" or "football concussion" ranked among the most popular search queries within the corresponding topics). There was a similar volume of queries for "glioblastoma" and "meningioma." Google Trends is a useful source to elicit information about general trends in peoples' health interests and the role of different diseases across the world. The Internet presence of neurosurgical units and surgeons can be guided by online users' interests to achieve high-quality, professional-endorsed patient education. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. OpenSearch technology for geospatial resources discovery

    NASA Astrophysics Data System (ADS)

    Papeschi, Fabrizio; Enrico, Boldrini; Mazzetti, Paolo

    2010-05-01

    In 2005, the term Web 2.0 has been coined by Tim O'Reilly to describe a quickly growing set of Web-based applications that share a common philosophy of "mutually maximizing collective intelligence and added value for each participant by formalized and dynamic information sharing". Around this same period, OpenSearch a new Web 2.0 technology, was developed. More properly, OpenSearch is a collection of technologies that allow publishing of search results in a format suitable for syndication and aggregation. It is a way for websites and search engines to publish search results in a standard and accessible format. Due to its strong impact on the way the Web is perceived by users and also due its relevance for businesses, Web 2.0 has attracted the attention of both mass media and the scientific community. This explosive growth in popularity of Web 2.0 technologies like OpenSearch, and practical applications of Service Oriented Architecture (SOA) resulted in an increased interest in similarities, convergence, and a potential synergy of these two concepts. SOA is considered as the philosophy of encapsulating application logic in services with a uniformly defined interface and making these publicly available via discovery mechanisms. Service consumers may then retrieve these services, compose and use them according to their current needs. A great degree of similarity between SOA and Web 2.0 may be leading to a convergence between the two paradigms. They also expose divergent elements, such as the Web 2.0 support to the human interaction in opposition to the typical SOA machine-to-machine interaction. According to these considerations, the Geospatial Information (GI) domain, is also moving first steps towards a new approach of data publishing and discovering, in particular taking advantage of the OpenSearch technology. A specific GI niche is represented by the OGC Catalog Service for Web (CSW) that is part of the OGC Web Services (OWS) specifications suite, which provides a set of services for discovery, access, and processing of geospatial resources in a SOA framework. GI-cat is a distributed CSW framework implementation developed by the ESSI Lab of the Italian National Research Council (CNR-IMAA) and the University of Florence. It provides brokering and mediation functionalities towards heterogeneous resources and inventories, exposing several standard interfaces for query distribution. This work focuses on a new GI-cat interface which allows the catalog to be queried according to the OpenSearch syntax specification, thus filling the gap between the SOA architectural design of the CSW and the Web 2.0. At the moment, there is no OGC standard specification about this topic, but an official change request has been proposed in order to enable the OGC catalogues to support OpenSearch queries. In this change request, an OpenSearch extension is proposed providing a standard mechanism to query a resource based on temporal and geographic extents. Two new catalog operations are also proposed, in order to publish a suitable OpenSearch interface. This extended interface is implemented by the modular GI-cat architecture adding a new profiling module called "OpenSearch profiler". Since GI-cat also acts as a clearinghouse catalog, another component called "OpenSearch accessor" is added in order to access OpenSearch compliant services. An important role in the GI-cat extension, is played by the adopted mapping strategy. Two different kind of mappings are required: query, and response elements mapping. Query mapping is provided in order to fit the simple OpenSearch query syntax to the complex CSW query expressed by the OGC Filter syntax. GI-cat internal data model is based on the ISO-19115 profile, that is more complex than the simple XML syndication formats, such as RSS 2.0 and Atom 1.0, suggested by OpenSearch. Once response elements are available, in order to be presented, they need to be translated from the GI-cat internal data model, to the above mentioned syndication formats; the mapping processing, is bidirectional. When GI-cat is used to access OpenSearch compliant services, the CSW query must be mapped to the OpenSearch query, and the response elements, must be translated according to the GI-cat internal data model. As results of such extensions, GI-cat provides a user friendly facade to the complex CSW interface, thus enabling it to be queried, for example, using a browser toolbar.

  14. Improving Web Search for Difficult Queries

    ERIC Educational Resources Information Center

    Wang, Xuanhui

    2009-01-01

    Search engines have now become essential tools in all aspects of our life. Although a variety of information needs can be served very successfully, there are still a lot of queries that search engines can not answer very effectively and these queries always make users feel frustrated. Since it is quite often that users encounter such "difficult…

  15. Analysis of Information Needs of Users of MEDLINEplus, 2002 – 2003

    PubMed Central

    Scott-Wright, Alicia; Crowell, Jon; Zeng, Qing; Bates, David W.; Greenes, Robert

    2006-01-01

    We analyzed query logs from use of MEDLINEplus to answer the questions: Are consumers’ health information needs stable over time? and To what extent do users’ queries change over time? To determine log stability, we assessed an Overlap Rate (OR) defined as the number of unique queries common to two adjacent months divided by the total number of unique queries in those months. All exactly matching queries were considered as one unique query. We measured ORs for the top 10 and 100 unique queries of a month and compared these to ORs for the following month. Over ten months, users submitted 12,234,737 queries; only 2,179,571 (17.8%) were unique and these had a mean word count of 2.73 (S.D., 0.24); 121 of 137 (88.3%) unique queries each comprised of exactly matching search term(s) used at least 5000 times were of only one word. We could predict with 95% confidence that the monthly OR for the top 100 unique queries would lie between 67% – 87% when compared with the top 100 from the previous month. The mean month-to-month OR for top 10 queries was 62% (S.D., 20%) indicating significant variability; the lowest OR of 33% between the top 10 in Mar. compared to Apr. was likely due to “new” interest in information about SARS pneumonia in Apr. 2003. Consumers’ health information needs are relatively stable and the 100 most common unique queries are about 77% the same from month to month. Website sponsors should provide a broad range of information about a relatively stable number of topics. Analyses of log similarity may identify media-induced, cyclical, or seasonal changes in areas of consumer interest. PMID:17238431

  16. Analysis of PubMed User Sessions Using a Full-Day PubMed Query Log: A Comparison of Experienced and Nonexperienced PubMed Users

    PubMed Central

    2015-01-01

    Background PubMed is the largest biomedical bibliographic information source on the Internet. PubMed has been considered one of the most important and reliable sources of up-to-date health care evidence. Previous studies examined the effects of domain expertise/knowledge on search performance using PubMed. However, very little is known about PubMed users’ knowledge of information retrieval (IR) functions and their usage in query formulation. Objective The purpose of this study was to shed light on how experienced/nonexperienced PubMed users perform their search queries by analyzing a full-day query log. Our hypotheses were that (1) experienced PubMed users who use system functions quickly retrieve relevant documents and (2) nonexperienced PubMed users who do not use them have longer search sessions than experienced users. Methods To test these hypotheses, we analyzed PubMed query log data containing nearly 3 million queries. User sessions were divided into two categories: experienced and nonexperienced. We compared experienced and nonexperienced users per number of sessions, and experienced and nonexperienced user sessions per session length, with a focus on how fast they completed their sessions. Results To test our hypotheses, we measured how successful information retrieval was (at retrieving relevant documents), represented as the decrease rates of experienced and nonexperienced users from a session length of 1 to 2, 3, 4, and 5. The decrease rate (from a session length of 1 to 2) of the experienced users was significantly larger than that of the nonexperienced groups. Conclusions Experienced PubMed users retrieve relevant documents more quickly than nonexperienced PubMed users in terms of session length. PMID:26139516

  17. Towards computational improvement of DNA database indexing and short DNA query searching.

    PubMed

    Stojanov, Done; Koceski, Sašo; Mileva, Aleksandra; Koceska, Nataša; Bande, Cveta Martinovska

    2014-09-03

    In order to facilitate and speed up the search of massive DNA databases, the database is indexed at the beginning, employing a mapping function. By searching through the indexed data structure, exact query hits can be identified. If the database is searched against an annotated DNA query, such as a known promoter consensus sequence, then the starting locations and the number of potential genes can be determined. This is particularly relevant if unannotated DNA sequences have to be functionally annotated. However, indexing a massive DNA database and searching an indexed data structure with millions of entries is a time-demanding process. In this paper, we propose a fast DNA database indexing and searching approach, identifying all query hits in the database, without having to examine all entries in the indexed data structure, limiting the maximum length of a query that can be searched against the database. By applying the proposed indexing equation, the whole human genome could be indexed in 10 hours on a personal computer, under the assumption that there is enough RAM to store the indexed data structure. Analysing the methodology proposed by Reneker, we observed that hits at starting positions [Formula: see text] are not reported, if the database is searched against a query shorter than [Formula: see text] nucleotides, such that [Formula: see text] is the length of the DNA database words being mapped and [Formula: see text] is the length of the query. A solution of this drawback is also presented.

  18. muBLASTP: database-indexed protein sequence search on multicore CPUs.

    PubMed

    Zhang, Jing; Misra, Sanchit; Wang, Hao; Feng, Wu-Chun

    2016-11-04

    The Basic Local Alignment Search Tool (BLAST) is a fundamental program in the life sciences that searches databases for sequences that are most similar to a query sequence. Currently, the BLAST algorithm utilizes a query-indexed approach. Although many approaches suggest that sequence search with a database index can achieve much higher throughput (e.g., BLAT, SSAHA, and CAFE), they cannot deliver the same level of sensitivity as the query-indexed BLAST, i.e., NCBI BLAST, or they can only support nucleotide sequence search, e.g., MegaBLAST. Due to different challenges and characteristics between query indexing and database indexing, the existing techniques for query-indexed search cannot be used into database indexed search. muBLASTP, a novel database-indexed BLAST for protein sequence search, delivers identical hits returned to NCBI BLAST. On Intel Haswell multicore CPUs, for a single query, the single-threaded muBLASTP achieves up to a 4.41-fold speedup for alignment stages, and up to a 1.75-fold end-to-end speedup over single-threaded NCBI BLAST. For a batch of queries, the multithreaded muBLASTP achieves up to a 5.7-fold speedups for alignment stages, and up to a 4.56-fold end-to-end speedup over multithreaded NCBI BLAST. With a newly designed index structure for protein database and associated optimizations in BLASTP algorithm, we re-factored BLASTP algorithm for modern multicore processors that achieves much higher throughput with acceptable memory footprint for the database index.

  19. Towards a Simple and Efficient Web Search Framework

    DTIC Science & Technology

    2014-11-01

    any useful information about the various aspects of a topic. For example, for the query “ raspberry pi ”, it covers topics such as “what is raspberry pi ...topics generated by the LDA topic model for query ” raspberry pi ”. One simple explanation is that web texts are too noisy and unfocused for the LDA process...making a rasp- berry pi ”. However, the topics generated based on the 10 top ranked documents do not make much sense to us in terms of their keywords

  20. Search engine ranking, quality, and content of webpages that are critical vs noncritical of HPV vaccine

    PubMed Central

    Fu, Linda Y.; Zook, Kathleen; Spoehr-Labutta, Zachary; Hu, Pamela; Joseph, Jill G.

    2015-01-01

    Purpose Online information can influence attitudes toward vaccination. The aim of the present study is to provide a systematic evaluation of the search engine ranking, quality, and content of webpages that are critical versus noncritical of HPV vaccination. Methods We identified HPV vaccine-related webpages with the Google search engine by entering 20 terms. We then assessed each webpage for critical versus noncritical bias as well as for the following quality indicators: authorship disclosure, source disclosure, attribution of at least one reference, currency, exclusion of testimonial accounts, and readability level less than 9th grade. We also determined webpage comprehensiveness in terms of mention of 14 HPV vaccine relevant topics. Results Twenty searches yielded 116 unique webpages. HPV vaccine-critical webpages comprised roughly a third of the top, top 5 and top 10-ranking webpages. The prevalence of HPV vaccine-critical webpages was higher for queries that included term modifiers in addition to root terms. Compared with noncritical webpages, webpages critical of HPV vaccine overall had a lower quality score than those with a noncritical bias (p<.01) and covered fewer important HPV-related topics (p<.001). Critical webpages required viewers to have higher reading skills, were less likely to include an author byline, and were more likely to include testimonial accounts. They also were more likely to raise unsubstantiated concerns about vaccination. Conclusion Webpages critical of HPV vaccine may be frequently returned and highly ranked by search engine queries despite being of lower quality and less comprehensive than noncritical webpages. PMID:26559742

  1. XSemantic: An Extension of LCA Based XML Semantic Search

    NASA Astrophysics Data System (ADS)

    Supasitthimethee, Umaporn; Shimizu, Toshiyuki; Yoshikawa, Masatoshi; Porkaew, Kriengkrai

    One of the most convenient ways to query XML data is a keyword search because it does not require any knowledge of XML structure or learning a new user interface. However, the keyword search is ambiguous. The users may use different terms to search for the same information. Furthermore, it is difficult for a system to decide which node is likely to be chosen as a return node and how much information should be included in the result. To address these challenges, we propose an XML semantic search based on keywords called XSemantic. On the one hand, we give three definitions to complete in terms of semantics. Firstly, the semantic term expansion, our system is robust from the ambiguous keywords by using the domain ontology. Secondly, to return semantic meaningful answers, we automatically infer the return information from the user queries and take advantage of the shortest path to return meaningful connections between keywords. Thirdly, we present the semantic ranking that reflects the degree of similarity as well as the semantic relationship so that the search results with the higher relevance are presented to the users first. On the other hand, in the LCA and the proximity search approaches, we investigated the problem of information included in the search results. Therefore, we introduce the notion of the Lowest Common Element Ancestor (LCEA) and define our simple rule without any requirement on the schema information such as the DTD or XML Schema. The first experiment indicated that XSemantic not only properly infers the return information but also generates compact meaningful results. Additionally, the benefits of our proposed semantics are demonstrated by the second experiment.

  2. Abyss or Shelter? On the Relevance of Web Search Engines' Search Results When People Google for Suicide.

    PubMed

    Haim, Mario; Arendt, Florian; Scherr, Sebastian

    2017-02-01

    Despite evidence that suicide rates can increase after suicides are widely reported in the media, appropriate depictions of suicide in the media can help people to overcome suicidal crises and can thus elicit preventive effects. We argue on the level of individual media users that a similar ambivalence can be postulated for search results on online suicide-related search queries. Importantly, the filter bubble hypothesis (Pariser, 2011) states that search results are biased by algorithms based on a person's previous search behavior. In this study, we investigated whether suicide-related search queries, including either potentially suicide-preventive or -facilitative terms, influence subsequent search results. This might thus protect or harm suicidal Internet users. We utilized a 3 (search history: suicide-related harmful, suicide-related helpful, and suicide-unrelated) × 2 (reactive: clicking the top-most result link and no clicking) experimental design applying agent-based testing. While findings show no influences either of search histories or of reactivity on search results in a subsequent situation, the presentation of a helpline offer raises concerns about possible detrimental algorithmic decision-making: Algorithms "decided" whether or not to present a helpline, and this automated decision, then, followed the agent throughout the rest of the observation period. Implications for policy-making and search providers are discussed.

  3. Web Searching: A Process-Oriented Experimental Study of Three Interactive Search Paradigms.

    ERIC Educational Resources Information Center

    Dennis, Simon; Bruza, Peter; McArthur, Robert

    2002-01-01

    Compares search effectiveness when using query-based Internet search via the Google search engine, directory-based search via Yahoo, and phrase-based query reformulation-assisted search via the Hyperindex browser by means of a controlled, user-based experimental study of undergraduates at the University of Queensland. Discusses cognitive load,…

  4. Ontology-based vector space model and fuzzy query expansion to retrieve knowledge on medical computational problem solutions.

    PubMed

    Bratsas, Charalampos; Koutkias, Vassilis; Kaimakamis, Evangelos; Bamidis, Panagiotis; Maglaveras, Nicos

    2007-01-01

    Medical Computational Problem (MCP) solving is related to medical problems and their computerized algorithmic solutions. In this paper, an extension of an ontology-based model to fuzzy logic is presented, as a means to enhance the information retrieval (IR) procedure in semantic management of MCPs. We present herein the methodology followed for the fuzzy expansion of the ontology model, the fuzzy query expansion procedure, as well as an appropriate ontology-based Vector Space Model (VSM) that was constructed for efficient mapping of user-defined MCP search criteria and MCP acquired knowledge. The relevant fuzzy thesaurus is constructed by calculating the simultaneous occurrences of terms and the term-to-term similarities derived from the ontology that utilizes UMLS (Unified Medical Language System) concepts by using Concept Unique Identifiers (CUI), synonyms, semantic types, and broader-narrower relationships for fuzzy query expansion. The current approach constitutes a sophisticated advance for effective, semantics-based MCP-related IR.

  5. Automated mapping of clinical terms into SNOMED-CT. An application to codify procedures in pathology.

    PubMed

    Allones, J L; Martinez, D; Taboada, M

    2014-10-01

    Clinical terminologies are considered a key technology for capturing clinical data in a precise and standardized manner, which is critical to accurately exchange information among different applications, medical records and decision support systems. An important step to promote the real use of clinical terminologies, such as SNOMED-CT, is to facilitate the process of finding mappings between local terms of medical records and concepts of terminologies. In this paper, we propose a mapping tool to discover text-to-concept mappings in SNOMED-CT. Name-based techniques were combined with a query expansion system to generate alternative search terms, and with a strategy to analyze and take advantage of the semantic relationships of the SNOMED-CT concepts. The developed tool was evaluated and compared to the search services provided by two SNOMED-CT browsers. Our tool automatically mapped clinical terms from a Spanish glossary of procedures in pathology with 88.0% precision and 51.4% recall, providing a substantial improvement of recall (28% and 60%) over other publicly accessible mapping services. The improvements reached by the mapping tool are encouraging. Our results demonstrate the feasibility of accurately mapping clinical glossaries to SNOMED-CT concepts, by means a combination of structural, query expansion and named-based techniques. We have shown that SNOMED-CT is a great source of knowledge to infer synonyms for the medical domain. Results show that an automated query expansion system overcomes the challenge of vocabulary mismatch partially.

  6. Using Web Search Query Data to Monitor Dengue Epidemics: A New Model for Neglected Tropical Disease Surveillance

    PubMed Central

    Chan, Emily H.; Sahai, Vikram; Conrad, Corrie; Brownstein, John S.

    2011-01-01

    Background A variety of obstacles including bureaucracy and lack of resources have interfered with timely detection and reporting of dengue cases in many endemic countries. Surveillance efforts have turned to modern data sources, such as Internet search queries, which have been shown to be effective for monitoring influenza-like illnesses. However, few have evaluated the utility of web search query data for other diseases, especially those of high morbidity and mortality or where a vaccine may not exist. In this study, we aimed to assess whether web search queries are a viable data source for the early detection and monitoring of dengue epidemics. Methodology/Principal Findings Bolivia, Brazil, India, Indonesia and Singapore were chosen for analysis based on available data and adequate search volume. For each country, a univariate linear model was then built by fitting a time series of the fraction of Google search query volume for specific dengue-related queries from that country against a time series of official dengue case counts for a time-frame within 2003–2010. The specific combination of queries used was chosen to maximize model fit. Spurious spikes in the data were also removed prior to model fitting. The final models, fit using a training subset of the data, were cross-validated against both the overall dataset and a holdout subset of the data. All models were found to fit the data quite well, with validation correlations ranging from 0.82 to 0.99. Conclusions/Significance Web search query data were found to be capable of tracking dengue activity in Bolivia, Brazil, India, Indonesia and Singapore. Whereas traditional dengue data from official sources are often not available until after some substantial delay, web search query data are available in near real-time. These data represent valuable complement to assist with traditional dengue surveillance. PMID:21647308

  7. Secure searching of biomarkers through hybrid homomorphic encryption scheme.

    PubMed

    Kim, Miran; Song, Yongsoo; Cheon, Jung Hee

    2017-07-26

    As genome sequencing technology develops rapidly, there has lately been an increasing need to keep genomic data secure even when stored in the cloud and still used for research. We are interested in designing a protocol for the secure outsourcing matching problem on encrypted data. We propose an efficient method to securely search a matching position with the query data and extract some information at the position. After decryption, only a small amount of comparisons with the query information should be performed in plaintext state. We apply this method to find a set of biomarkers in encrypted genomes. The important feature of our method is to encode a genomic database as a single element of polynomial ring. Since our method requires a single homomorphic multiplication of hybrid scheme for query computation, it has the advantage over the previous methods in parameter size, computation complexity, and communication cost. In particular, the extraction procedure not only prevents leakage of database information that has not been queried by user but also reduces the communication cost by half. We evaluate the performance of our method and verify that the computation on large-scale personal data can be securely and practically outsourced to a cloud environment during data analysis. It takes about 3.9 s to search-and-extract the reference and alternate sequences at the queried position in a database of size 4M. Our solution for finding a set of biomarkers in DNA sequences shows the progress of cryptographic techniques in terms of their capability can support real-world genome data analysis in a cloud environment.

  8. Accuracy and Completeness of Clinical Coding Using ICD-10 for Ambulatory Visits

    PubMed Central

    Horsky, Jan; Drucker, Elizabeth A.; Ramelson, Harley Z.

    2017-01-01

    This study describes a simulation of diagnostic coding using an EHR. Twenty-three ambulatory clinicians were asked to enter appropriate codes for six standardized scenarios with two different EHRs. Their interactions with the query interface were analyzed for patterns and variations in search strategies and the resulting sets of entered codes for accuracy and completeness. Just over a half of entered codes were appropriate for a given scenario and about a quarter were omitted. Crohn’s disease and diabetes scenarios had the highest rate of inappropriate coding and code variation. The omission rate was higher for secondary than for primary visit diagnoses. Codes for immunization, dialysis dependence and nicotine dependence were the most often omitted. We also found a high rate of variation in the search terms used to query the EHR for the same diagnoses. Changes to the training of clinicians and improved design of EHR query modules may lower the rate of inappropriate and omitted codes. PMID:29854158

  9. Intelligent search in Big Data

    NASA Astrophysics Data System (ADS)

    Birialtsev, E.; Bukharaev, N.; Gusenkov, A.

    2017-10-01

    An approach to data integration, aimed on the ontology-based intelligent search in Big Data, is considered in the case when information objects are represented in the form of relational databases (RDB), structurally marked by their schemes. The source of information for constructing an ontology and, later on, the organization of the search are texts in natural language, treated as semi-structured data. For the RDBs, these are comments on the names of tables and their attributes. Formal definition of RDBs integration model in terms of ontologies is given. Within framework of the model universal RDB representation ontology, oil production subject domain ontology and linguistic thesaurus of subject domain language are built. Technique of automatic SQL queries generation for subject domain specialists is proposed. On the base of it, information system for TATNEFT oil-producing company RDBs was implemented. Exploitation of the system showed good relevance with majority of queries.

  10. Cumulative query method for influenza surveillance using search engine data.

    PubMed

    Seo, Dong-Woo; Jo, Min-Woo; Sohn, Chang Hwan; Shin, Soo-Yong; Lee, JaeHo; Yu, Maengsoo; Kim, Won Young; Lim, Kyoung Soo; Lee, Sang-Il

    2014-12-16

    Internet search queries have become an important data source in syndromic surveillance system. However, there is currently no syndromic surveillance system using Internet search query data in South Korea. The objective of this study was to examine correlations between our cumulative query method and national influenza surveillance data. Our study was based on the local search engine, Daum (approximately 25% market share), and influenza-like illness (ILI) data from the Korea Centers for Disease Control and Prevention. A quota sampling survey was conducted with 200 participants to obtain popular queries. We divided the study period into two sets: Set 1 (the 2009/10 epidemiological year for development set 1 and 2010/11 for validation set 1) and Set 2 (2010/11 for development Set 2 and 2011/12 for validation Set 2). Pearson's correlation coefficients were calculated between the Daum data and the ILI data for the development set. We selected the combined queries for which the correlation coefficients were .7 or higher and listed them in descending order. Then, we created a cumulative query method n representing the number of cumulative combined queries in descending order of the correlation coefficient. In validation set 1, 13 cumulative query methods were applied, and 8 had higher correlation coefficients (min=.916, max=.943) than that of the highest single combined query. Further, 11 of 13 cumulative query methods had an r value of ≥.7, but 4 of 13 combined queries had an r value of ≥.7. In validation set 2, 8 of 15 cumulative query methods showed higher correlation coefficients (min=.975, max=.987) than that of the highest single combined query. All 15 cumulative query methods had an r value of ≥.7, but 6 of 15 combined queries had an r value of ≥.7. Cumulative query method showed relatively higher correlation with national influenza surveillance data than combined queries in the development and validation set.

  11. Saying What You're Looking For: Linguistics Meets Video Search.

    PubMed

    Barrett, Daniel Paul; Barbu, Andrei; Siddharth, N; Siskind, Jeffrey Mark

    2016-10-01

    We present an approach to searching large video corpora for clips which depict a natural-language query in the form of a sentence. Compositional semantics is used to encode subtle meaning differences lost in other approaches, such as the difference between two sentences which have identical words but entirely different meaning: The person rode the horse versus The horse rode the person. Given a sentential query and a natural-language parser, we produce a score indicating how well a video clip depicts that sentence for each clip in a corpus and return a ranked list of clips. Two fundamental problems are addressed simultaneously: detecting and tracking objects, and recognizing whether those tracks depict the query. Because both tracking and object detection are unreliable, our approach uses the sentential query to focus the tracker on the relevant participants and ensures that the resulting tracks are described by the sentential query. While most earlier work was limited to single-word queries which correspond to either verbs or nouns, we search for complex queries which contain multiple phrases, such as prepositional phrases, and modifiers, such as adverbs. We demonstrate this approach by searching for 2,627 naturally elicited sentential queries in 10 Hollywood movies.

  12. Evidence From Web-Based Dietary Search Patterns to the Role of B12 Deficiency in Non-Specific Chronic Pain: A Large-Scale Observational Study

    PubMed Central

    Giat, Eitan

    2018-01-01

    Background Profound vitamin B12 deficiency is a known cause of disease, but the role of low or intermediate levels of B12 in the development of neuropathy and other neuropsychiatric symptoms, as well as the relationship between eating meat and B12 levels, is unclear. Objective The objective of our study was to investigate the role of low or intermediate levels of B12 in the development of neuropathy and other neuropsychiatric symptoms. Methods We used food-related Internet search patterns from a sample of 8.5 million people based in the US as a proxy for B12 intake and correlated these searches with Internet searches related to possible effects of B12 deficiency. Results Food-related search patterns were highly correlated with known consumption and food-related searches (ρ=.69). Awareness of B12 deficiency was associated with a higher consumption of B12-rich foods and with queries for B12 supplements. Searches for terms related to neurological disorders were correlated with searches for B12-poor foods, in contrast with control terms. Popular medicines, those having fewer indications, and those which are predominantly used to treat pain, were more strongly correlated with the ability to predict neuropathic pain queries using the B12 contents of food. Conclusions Our findings show that Internet search patterns are a useful way of investigating health questions in large populations, and suggest that low B12 intake may be associated with a broader spectrum of neurological disorders than previously thought. PMID:29305340

  13. Prototype of Multifunctional Full-text Library in the Architecture Web-browser / Web-server / SQL-server

    NASA Astrophysics Data System (ADS)

    Lyapin, Sergey; Kukovyakin, Alexey

    Within the framework of the research program "Textaurus" an operational prototype of multifunctional library T-Libra v.4.1. has been created which makes it possible to carry out flexible parametrizable search within a full-text database. The information system is realized in the architecture Web-browser / Web-server / SQL-server. This allows to achieve an optimal combination of universality and efficiency of text processing, on the one hand, and convenience and minimization of expenses for an end user (due to applying of a standard Web-browser as a client application), on the other one. The following principles underlie the information system: a) multifunctionality, b) intelligence, c) multilingual primary texts and full-text searching, d) development of digital library (DL) by a user ("administrative client"), e) multi-platform working. A "library of concepts", i.e. a block of functional models of semantic (concept-oriented) searching, as well as a subsystem of parametrizable queries to a full-text database, which is closely connected with the "library", serve as a conceptual basis of multifunctionality and "intelligence" of the DL T-Libra v.4.1. An author's paragraph is a unit of full-text searching in the suggested technology. At that, the "logic" of an educational / scientific topic or a problem can be built in a multilevel flexible structure of a query and the "library of concepts", replenishable by the developers and experts. About 10 queries of various level of complexity and conceptuality are realized in the suggested version of the information system: from simple terminological searching (taking into account lexical and grammatical paradigms of Russian) to several kinds of explication of terminological fields and adjustable two-parameter thematic searching (a [set of terms] and a [distance between terms] within the limits of an author's paragraph are such parameters correspondingly).

  14. A Firefly Algorithm-based Approach for Pseudo-Relevance Feedback: Application to Medical Database.

    PubMed

    Khennak, Ilyes; Drias, Habiba

    2016-11-01

    The difficulty of disambiguating the sense of the incomplete and imprecise keywords that are extensively used in the search queries has caused the failure of search systems to retrieve the desired information. One of the most powerful and promising method to overcome this shortcoming and improve the performance of search engines is Query Expansion, whereby the user's original query is augmented by new keywords that best characterize the user's information needs and produce more useful query. In this paper, a new Firefly Algorithm-based approach is proposed to enhance the retrieval effectiveness of query expansion while maintaining low computational complexity. In contrast to the existing literature, the proposed approach uses a Firefly Algorithm to find the best expanded query among a set of expanded query candidates. Moreover, this new approach allows the determination of the length of the expanded query empirically. Experimental results on MEDLINE, the on-line medical information database, show that our proposed approach is more effective and efficient compared to the state-of-the-art.

  15. Patterns of use and impact of standardised MedDRA query analyses on the safety evaluation and review of new drug and biologics license applications.

    PubMed

    Chang, Lin-Chau; Mahmood, Riaz; Qureshi, Samina; Breder, Christopher D

    2017-01-01

    Standardised MedDRA Queries (SMQs) have been developed since the early 2000's and used by academia, industry, public health, and government sectors for detecting safety signals in adverse event safety databases. The purpose of the present study is to characterize how SMQs are used and the impact in safety analyses for New Drug Application (NDA) and Biologics License Application (BLA) submissions to the United States Food and Drug Administration (USFDA). We used the PharmaPendium database to capture SMQ use in Summary Basis of Approvals (SBoAs) of drugs and biologics approved by the USFDA. Characteristics of the drugs and the SMQ use were employed to evaluate the role of SMQ safety analyses in regulatory decisions and the veracity of signals they revealed. A comprehensive search of the SBoAs yielded 184 regulatory submissions approved from 2006 to 2015. Search strategies more frequently utilized restrictive searches with "narrow terms" to enhance specificity over strategies using "broad terms" to increase sensitivity, while some involved modification of search terms. A majority (59%) of 1290 searches used descriptive statistics, however inferential statistics were utilized in 35% of them. Commentary from reviewers and supervisory staff suggested that a small, yet notable percentage (18%) of 1290 searches supported regulatory decisions. The searches with regulatory impact were found in 73 submissions (40% of the submissions investigated). Most searches (75% of 227 searches) with regulatory implications described how the searches were confirmed, indicating prudence in the decision-making process. SMQs have an increasing role in the presentation and review of safety analysis for NDAs/BLAs and their regulatory reviews. This study suggests that SMQs are best used for screening process, with descriptive statistics, description of SMQ modifications, and systematic verification of cases which is crucial for drawing regulatory conclusions.

  16. Search Engine Ranking, Quality, and Content of Web Pages That Are Critical Versus Noncritical of Human Papillomavirus Vaccine.

    PubMed

    Fu, Linda Y; Zook, Kathleen; Spoehr-Labutta, Zachary; Hu, Pamela; Joseph, Jill G

    2016-01-01

    Online information can influence attitudes toward vaccination. The aim of the present study was to provide a systematic evaluation of the search engine ranking, quality, and content of Web pages that are critical versus noncritical of human papillomavirus (HPV) vaccination. We identified HPV vaccine-related Web pages with the Google search engine by entering 20 terms. We then assessed each Web page for critical versus noncritical bias and for the following quality indicators: authorship disclosure, source disclosure, attribution of at least one reference, currency, exclusion of testimonial accounts, and readability level less than ninth grade. We also determined Web page comprehensiveness in terms of mention of 14 HPV vaccine-relevant topics. Twenty searches yielded 116 unique Web pages. HPV vaccine-critical Web pages comprised roughly a third of the top, top 5- and top 10-ranking Web pages. The prevalence of HPV vaccine-critical Web pages was higher for queries that included term modifiers in addition to root terms. Compared with noncritical Web pages, Web pages critical of HPV vaccine overall had a lower quality score than those with a noncritical bias (p < .01) and covered fewer important HPV-related topics (p < .001). Critical Web pages required viewers to have higher reading skills, were less likely to include an author byline, and were more likely to include testimonial accounts. They also were more likely to raise unsubstantiated concerns about vaccination. Web pages critical of HPV vaccine may be frequently returned and highly ranked by search engine queries despite being of lower quality and less comprehensive than noncritical Web pages. Copyright © 2016 Society for Adolescent Health and Medicine. Published by Elsevier Inc. All rights reserved.

  17. Federated Space-Time Query for Earth Science Data Using OpenSearch Conventions

    NASA Astrophysics Data System (ADS)

    Lynnes, C.; Beaumont, B.; Duerr, R. E.; Hua, H.

    2009-12-01

    The past decade has seen a burgeoning of remote sensing and Earth science data providers, as evidenced in the growth of the Earth Science Information Partner (ESIP) federation. At the same time, the need to combine diverse data sets to enable understanding of the Earth as a system has also grown. While the expansion of data providers is in general a boon to such studies, the diversity presents a challenge to finding useful data for a given study. Locating all the data files with aerosol information for a particular volcanic eruption, for example, may involve learning and using several different search tools to execute the requisite space-time queries. To address this issue, the ESIP federation is developing a federated space-time query framework, based on the OpenSearch convention (www.opensearch.org), with Geo and Time extensions. In this framework, data providers publish OpenSearch Description Documents that describe in a machine-readable form how to execute queries against the provider. The novelty of OpenSearch is that the space-time query interface becomes both machine callable and easy enough to integrate into the web browser's search box. This flexibility, together with a simple REST (HTTP-get) interface, should allow a variety of data providers to participate in the federated search framework, from large institutional data centers to individual scientists. The simple interface enables trivial querying of multiple data sources and participation in recursive-like federated searches--all using the same common OpenSearch interface. This simplicity also makes the construction of clients easy, as does existing OpenSearch client libraries in a variety of languages. Moreover, a number of clients and aggregation services already exist and OpenSearch is already supported by a number of web browsers such as Firefox and Internet Explorer.

  18. A rank-based Prediction Algorithm of Learning User's Intention

    NASA Astrophysics Data System (ADS)

    Shen, Jie; Gao, Ying; Chen, Cang; Gong, HaiPing

    Internet search has become an important part in people's daily life. People can find many types of information to meet different needs through search engines on the Internet. There are two issues for the current search engines: first, the users should predetermine the types of information they want and then change to the appropriate types of search engine interfaces. Second, most search engines can support multiple kinds of search functions, each function has its own separate search interface. While users need different types of information, they must switch between different interfaces. In practice, most queries are corresponding to various types of information results. These queries can search the relevant results in various search engines, such as query "Palace" contains the websites about the introduction of the National Palace Museum, blog, Wikipedia, some pictures and video information. This paper presents a new aggregative algorithm for all kinds of search results. It can filter and sort the search results by learning three aspects about the query words, search results and search history logs to achieve the purpose of detecting user's intention. Experiments demonstrate that this rank-based method for multi-types of search results is effective. It can meet the user's search needs well, enhance user's satisfaction, provide an effective and rational model for optimizing search engines and improve user's search experience.

  19. Relevance of Web Documents:Ghosts Consensus Method.

    ERIC Educational Resources Information Center

    Gorbunov, Andrey L.

    2002-01-01

    Discusses how to improve the quality of Internet search systems and introduces the Ghosts Consensus Method which is free from the drawbacks of digital democracy algorithms and is based on linear programming tasks. Highlights include vector space models; determining relevant documents; and enriching query terms. (LRW)

  20. Bat-Inspired Algorithm Based Query Expansion for Medical Web Information Retrieval.

    PubMed

    Khennak, Ilyes; Drias, Habiba

    2017-02-01

    With the increasing amount of medical data available on the Web, looking for health information has become one of the most widely searched topics on the Internet. Patients and people of several backgrounds are now using Web search engines to acquire medical information, including information about a specific disease, medical treatment or professional advice. Nonetheless, due to a lack of medical knowledge, many laypeople have difficulties in forming appropriate queries to articulate their inquiries, which deem their search queries to be imprecise due the use of unclear keywords. The use of these ambiguous and vague queries to describe the patients' needs has resulted in a failure of Web search engines to retrieve accurate and relevant information. One of the most natural and promising method to overcome this drawback is Query Expansion. In this paper, an original approach based on Bat Algorithm is proposed to improve the retrieval effectiveness of query expansion in medical field. In contrast to the existing literature, the proposed approach uses Bat Algorithm to find the best expanded query among a set of expanded query candidates, while maintaining low computational complexity. Moreover, this new approach allows the determination of the length of the expanded query empirically. Numerical results on MEDLINE, the on-line medical information database, show that the proposed approach is more effective and efficient compared to the baseline.

  1. Meta Data Mining in Earth Remote Sensing Data Archives

    NASA Astrophysics Data System (ADS)

    Davis, B.; Steinwand, D.

    2014-12-01

    Modern search and discovery tools for satellite based remote sensing data are often catalog based and rely on query systems which use scene- (or granule-) based meta data for those queries. While these traditional catalog systems are often robust, very little has been done in the way of meta data mining to aid in the search and discovery process. The recently coined term "Big Data" can be applied in the remote sensing world's efforts to derive information from the vast data holdings of satellite based land remote sensing data. Large catalog-based search and discovery systems such as the United States Geological Survey's Earth Explorer system and the NASA Earth Observing System Data and Information System's Reverb-ECHO system provide comprehensive access to these data holdings, but do little to expose the underlying scene-based meta data. These catalog-based systems are extremely flexible, but are manually intensive and often require a high level of user expertise. Exposing scene-based meta data to external, web-based services can enable machine-driven queries to aid in the search and discovery process. Furthermore, services which expose additional scene-based content data (such as product quality information) are now available and can provide a "deeper look" into remote sensing data archives too large for efficient manual search methods. This presentation shows examples of the mining of Landsat and Aster scene-based meta data, and an experimental service using OPeNDAP to extract information from quality band from multiple granules in the MODIS archive.

  2. Searching Databases without Query-Building Aids: Implications for Dyslexic Users

    ERIC Educational Resources Information Center

    Berget, Gerd; Sandnes, Frode Eika

    2015-01-01

    Introduction: Few studies document the information searching behaviour of users with cognitive impairments. This paper therefore addresses the effect of dyslexia on information searching in a database with no tolerance for spelling errors and no query-building aids. The purpose was to identify effective search interface design guidelines that…

  3. Hybrid Filtering in Semantic Query Processing

    ERIC Educational Resources Information Center

    Jeong, Hanjo

    2011-01-01

    This dissertation presents a hybrid filtering method and a case-based reasoning framework for enhancing the effectiveness of Web search. Web search may not reflect user needs, intent, context, and preferences, because today's keyword-based search is lacking semantic information to capture the user's context and intent in posing the search query.…

  4. Assessing Google Flu Trends Performance in the United States during the 2009 Influenza Virus A (H1N1) Pandemic

    PubMed Central

    Cook, Samantha; Conrad, Corrie; Fowlkes, Ashley L.; Mohebbi, Matthew H.

    2011-01-01

    Background Google Flu Trends (GFT) uses anonymized, aggregated internet search activity to provide near-real time estimates of influenza activity. GFT estimates have shown a strong correlation with official influenza surveillance data. The 2009 influenza virus A (H1N1) pandemic [pH1N1] provided the first opportunity to evaluate GFT during a non-seasonal influenza outbreak. In September 2009, an updated United States GFT model was developed using data from the beginning of pH1N1. Methodology/Principal Findings We evaluated the accuracy of each U.S. GFT model by comparing weekly estimates of ILI (influenza-like illness) activity with the U.S. Outpatient Influenza-like Illness Surveillance Network (ILINet). For each GFT model we calculated the correlation and RMSE (root mean square error) between model estimates and ILINet for four time periods: pre-H1N1, Summer H1N1, Winter H1N1, and H1N1 overall (Mar 2009–Dec 2009). We also compared the number of queries, query volume, and types of queries (e.g., influenza symptoms, influenza complications) in each model. Both models' estimates were highly correlated with ILINet pre-H1N1 and over the entire surveillance period, although the original model underestimated the magnitude of ILI activity during pH1N1. The updated model was more correlated with ILINet than the original model during Summer H1N1 (r = 0.95 and 0.29, respectively). The updated model included more search query terms than the original model, with more queries directly related to influenza infection, whereas the original model contained more queries related to influenza complications. Conclusions Internet search behavior changed during pH1N1, particularly in the categories “influenza complications” and “term for influenza.” The complications associated with pH1N1, the fact that pH1N1 began in the summer rather than winter, and changes in health-seeking behavior each may have played a part. Both GFT models performed well prior to and during pH1N1, although the updated model performed better during pH1N1, especially during the summer months. PMID:21886802

  5. SymDex: increasing the efficiency of chemical fingerprint similarity searches for comparing large chemical libraries by using query set indexing.

    PubMed

    Tai, David; Fang, Jianwen

    2012-08-27

    The large sizes of today's chemical databases require efficient algorithms to perform similarity searches. It can be very time consuming to compare two large chemical databases. This paper seeks to build upon existing research efforts by describing a novel strategy for accelerating existing search algorithms for comparing large chemical collections. The quest for efficiency has focused on developing better indexing algorithms by creating heuristics for searching individual chemical against a chemical library by detecting and eliminating needless similarity calculations. For comparing two chemical collections, these algorithms simply execute searches for each chemical in the query set sequentially. The strategy presented in this paper achieves a speedup upon these algorithms by indexing the set of all query chemicals so redundant calculations that arise in the case of sequential searches are eliminated. We implement this novel algorithm by developing a similarity search program called Symmetric inDexing or SymDex. SymDex shows over a 232% maximum speedup compared to the state-of-the-art single query search algorithm over real data for various fingerprint lengths. Considerable speedup is even seen for batch searches where query set sizes are relatively small compared to typical database sizes. To the best of our knowledge, SymDex is the first search algorithm designed specifically for comparing chemical libraries. It can be adapted to most, if not all, existing indexing algorithms and shows potential for accelerating future similarity search algorithms for comparing chemical databases.

  6. Cluster-Based Query Expansion Using Language Modeling for Biomedical Literature Retrieval

    ERIC Educational Resources Information Center

    Xu, Xuheng

    2011-01-01

    The tremendously huge volume of biomedical literature, scientists' specific information needs, long terms of multiples words, and fundamental problems of synonym and polysemy have been challenging issues facing the biomedical information retrieval community researchers. Search engines have significantly improved the efficiency and effectiveness of…

  7. Integrating unified medical language system and association mining techniques into relevance feedback for biomedical literature search.

    PubMed

    Ji, Yanqing; Ying, Hao; Tran, John; Dews, Peter; Massanari, R Michael

    2016-07-19

    Finding highly relevant articles from biomedical databases is challenging not only because it is often difficult to accurately express a user's underlying intention through keywords but also because a keyword-based query normally returns a long list of hits with many citations being unwanted by the user. This paper proposes a novel biomedical literature search system, called BiomedSearch, which supports complex queries and relevance feedback. The system employed association mining techniques to build a k-profile representing a user's relevance feedback. More specifically, we developed a weighted interest measure and an association mining algorithm to find the strength of association between a query and each concept in the article(s) selected by the user as feedback. The top concepts were utilized to form a k-profile used for the next-round search. BiomedSearch relies on Unified Medical Language System (UMLS) knowledge sources to map text files to standard biomedical concepts. It was designed to support queries with any levels of complexity. A prototype of BiomedSearch software was made and it was preliminarily evaluated using the Genomics data from TREC (Text Retrieval Conference) 2006 Genomics Track. Initial experiment results indicated that BiomedSearch increased the mean average precision (MAP) for a set of queries. With UMLS and association mining techniques, BiomedSearch can effectively utilize users' relevance feedback to improve the performance of biomedical literature search.

  8. Improving average ranking precision in user searches for biomedical research datasets

    PubMed Central

    Gobeill, Julien; Gaudinat, Arnaud; Vachon, Thérèse; Ruch, Patrick

    2017-01-01

    Abstract Availability of research datasets is keystone for health and life science study reproducibility and scientific progress. Due to the heterogeneity and complexity of these data, a main challenge to be overcome by research data management systems is to provide users with the best answers for their search queries. In the context of the 2016 bioCADDIE Dataset Retrieval Challenge, we investigate a novel ranking pipeline to improve the search of datasets used in biomedical experiments. Our system comprises a query expansion model based on word embeddings, a similarity measure algorithm that takes into consideration the relevance of the query terms, and a dataset categorization method that boosts the rank of datasets matching query constraints. The system was evaluated using a corpus with 800k datasets and 21 annotated user queries, and provided competitive results when compared to the other challenge participants. In the official run, it achieved the highest infAP, being +22.3% higher than the median infAP of the participant’s best submissions. Overall, it is ranked at top 2 if an aggregated metric using the best official measures per participant is considered. The query expansion method showed positive impact on the system’s performance increasing our baseline up to +5.0% and +3.4% for the infAP and infNDCG metrics, respectively. The similarity measure algorithm showed robust performance in different training conditions, with small performance variations compared to the Divergence from Randomness framework. Finally, the result categorization did not have significant impact on the system’s performance. We believe that our solution could be used to enhance biomedical dataset management systems. The use of data driven expansion methods, such as those based on word embeddings, could be an alternative to the complexity of biomedical terminologies. Nevertheless, due to the limited size of the assessment set, further experiments need to be performed to draw conclusive results. Database URL: https://biocaddie.org/benchmark-data PMID:29220475

  9. Query Log Analysis of an Electronic Health Record Search Engine

    PubMed Central

    Yang, Lei; Mei, Qiaozhu; Zheng, Kai; Hanauer, David A.

    2011-01-01

    We analyzed a longitudinal collection of query logs of a full-text search engine designed to facilitate information retrieval in electronic health records (EHR). The collection, 202,905 queries and 35,928 user sessions recorded over a course of 4 years, represents the information-seeking behavior of 533 medical professionals, including frontline practitioners, coding personnel, patient safety officers, and biomedical researchers for patient data stored in EHR systems. In this paper, we present descriptive statistics of the queries, a categorization of information needs manifested through the queries, as well as temporal patterns of the users’ information-seeking behavior. The results suggest that information needs in medical domain are substantially more sophisticated than those that general-purpose web search engines need to accommodate. Therefore, we envision there exists a significant challenge, along with significant opportunities, to provide intelligent query recommendations to facilitate information retrieval in EHR. PMID:22195150

  10. EasyKSORD: A Platform of Keyword Search Over Relational Databases

    NASA Astrophysics Data System (ADS)

    Peng, Zhaohui; Li, Jing; Wang, Shan

    Keyword Search Over Relational Databases (KSORD) enables casual users to use keyword queries (a set of keywords) to search relational databases just like searching the Web, without any knowledge of the database schema or any need of writing SQL queries. Based on our previous work, we design and implement a novel KSORD platform named EasyKSORD for users and system administrators to use and manage different KSORD systems in a novel and simple manner. EasyKSORD supports advanced queries, efficient data-graph-based search engines, multiform result presentations, and system logging and analysis. Through EasyKSORD, users can search relational databases easily and read search results conveniently, and system administrators can easily monitor and analyze the operations of KSORD and manage KSORD systems much better.

  11. How Do Children Reformulate Their Search Queries?

    ERIC Educational Resources Information Center

    Rutter, Sophie; Ford, Nigel; Clough, Paul

    2015-01-01

    Introduction: This paper investigates techniques used by children in year 4 (age eight to nine) of a UK primary school to reformulate their queries, and how they use information retrieval systems to support query reformulation. Method: An in-depth study analysing the interactions of twelve children carrying out search tasks in a primary school…

  12. Cognitive search model and a new query paradigm

    NASA Astrophysics Data System (ADS)

    Xu, Zhonghui

    2001-06-01

    This paper proposes a cognitive model in which people begin to search pictures by using semantic content and find a right picture by judging whether its visual content is a proper visualization of the semantics desired. It is essential that human search is not just a process of matching computation on visual feature but rather a process of visualization of the semantic content known. For people to search electronic images in the way as they manually do in the model, we suggest that querying be a semantic-driven process like design. A query-by-design paradigm is prosed in the sense that what you design is what you find. Unlike query-by-example, query-by-design allows users to specify the semantic content through an iterative and incremental interaction process so that a retrieval can start with association and identification of the given semantic content and get refined while further visual cues are available. An experimental image retrieval system, Kuafu, has been under development using the query-by-design paradigm and an iconic language is adopted.

  13. Development of a Google-based search engine for data mining radiology reports.

    PubMed

    Erinjeri, Joseph P; Picus, Daniel; Prior, Fred W; Rubin, David A; Koppel, Paul

    2009-08-01

    The aim of this study is to develop a secure, Google-based data-mining tool for radiology reports using free and open source technologies and to explore its use within an academic radiology department. A Health Insurance Portability and Accountability Act (HIPAA)-compliant data repository, search engine and user interface were created to facilitate treatment, operations, and reviews preparatory to research. The Institutional Review Board waived review of the project, and informed consent was not required. Comprising 7.9 GB of disk space, 2.9 million text reports were downloaded from our radiology information system to a fileserver. Extensible markup language (XML) representations of the reports were indexed using Google Desktop Enterprise search engine software. A hypertext markup language (HTML) form allowed users to submit queries to Google Desktop, and Google's XML response was interpreted by a practical extraction and report language (PERL) script, presenting ranked results in a web browser window. The query, reason for search, results, and documents visited were logged to maintain HIPAA compliance. Indexing averaged approximately 25,000 reports per hour. Keyword search of a common term like "pneumothorax" yielded the first ten most relevant results of 705,550 total results in 1.36 s. Keyword search of a rare term like "hemangioendothelioma" yielded the first ten most relevant results of 167 total results in 0.23 s; retrieval of all 167 results took 0.26 s. Data mining tools for radiology reports will improve the productivity of academic radiologists in clinical, educational, research, and administrative tasks. By leveraging existing knowledge of Google's interface, radiologists can quickly perform useful searches.

  14. Manually Classifying User Search Queries on an Academic Library Web Site

    ERIC Educational Resources Information Center

    Chapman, Suzanne; Desai, Shevon; Hagedorn, Kat; Varnum, Ken; Mishra, Sonali; Piacentine, Julie

    2013-01-01

    The University of Michigan Library wanted to learn more about the kinds of searches its users were conducting through the "one search" search box on the Library Web site. Library staff conducted two investigations. A preliminary investigation in 2011 involved the manual review of the 100 most frequently occurring queries conducted…

  15. GeoSearcher: Location-Based Ranking of Search Engine Results.

    ERIC Educational Resources Information Center

    Watters, Carolyn; Amoudi, Ghada

    2003-01-01

    Discussion of Web queries with geospatial dimensions focuses on an algorithm that assigns location coordinates dynamically to Web sites based on the URL. Describes a prototype search system that uses the algorithm to re-rank search engine results for queries with a geospatial dimension, thus providing an alternative ranking order for search engine…

  16. Research on Web Search Behavior: How Online Query Data Inform Social Psychology.

    PubMed

    Lai, Kaisheng; Lee, Yan Xin; Chen, Hao; Yu, Rongjun

    2017-10-01

    The widespread use of web searches in daily life has allowed researchers to study people's online social and psychological behavior. Using web search data has advantages in terms of data objectivity, ecological validity, temporal resolution, and unique application value. This review integrates existing studies on web search data that have explored topics including sexual behavior, suicidal behavior, mental health, social prejudice, social inequality, public responses to policies, and other psychosocial issues. These studies are categorized as descriptive, correlational, inferential, predictive, and policy evaluation research. The integration of theory-based hypothesis testing in future web search research will result in even stronger contributions to social psychology.

  17. An end user evaluation of query formulation and results review tools in three medical meta-search engines.

    PubMed

    Leroy, Gondy; Xu, Jennifer; Chung, Wingyan; Eggers, Shauna; Chen, Hsinchun

    2007-01-01

    Retrieving sufficient relevant information online is difficult for many people because they use too few keywords to search and search engines do not provide many support tools. To further complicate the search, users often ignore support tools when available. Our goal is to evaluate in a realistic setting when users use support tools and how they perceive these tools. We compared three medical search engines with support tools that require more or less effort from users to form a query and evaluate results. We carried out an end user study with 23 users who were asked to find information, i.e., subtopics and supporting abstracts, for a given theme. We used a balanced within-subjects design and report on the effectiveness, efficiency and usability of the support tools from the end user perspective. We found significant differences in efficiency but did not find significant differences in effectiveness between the three search engines. Dynamic user support tools requiring less effort led to higher efficiency. Fewer searches were needed and more documents were found per search when both query reformulation and result review tools dynamically adjust to the user query. The query reformulation tool that provided a long list of keywords, dynamically adjusted to the user query, was used most often and led to more subtopics. As hypothesized, the dynamic result review tools were used more often and led to more subtopics than static ones. These results were corroborated by the usability questionnaires, which showed that support tools that dynamically optimize output were preferred.

  18. Biomedical Requirements for High Productivity Computing Systems

    DTIC Science & Technology

    2005-04-01

    server at http://www.ncbi.nlm.nih.gov/BLAST/. There are many variants of BLAST, including: 1. BLASTN - Compares a DNA query to a DNA database. Searches ...database (3 reading frames from each strand of the DNA) searching . 13 4. TBLASTN - Compares a protein query to a DNA database, in the 6 possible...the molecular during this phase. After eliminating molecules that could not match the query , an atom-by-atom search for the molecules in conducted

  19. From headache to tumour: An examination of health anxiety, health-related Internet use and 'query escalation'.

    PubMed

    Singh, Karmpaul; Brown, Richard J

    2016-09-01

    The current study aimed to explore the phenomenon of disease-related 'query escalation' in high/low health anxious Internet users (N = 40). During a 15-minute health-related Internet search, participants rated their anxiety and the perceived seriousness of information on each page. Post-search interviews determined the reasons for, and effects of, escalating queries to consider serious diseases. Both groups were found to be significantly more anxious after escalating queries. The high group was significantly more likely to escalate queries. Evaluating personal relevance of material was the main reason for escalations and moderated anxiety post-escalation. We conclude that searching for online disease information can increase anxiety, particularly for people worried about their health. © The Author(s) 2015.

  20. Determination of geographic variance in stroke prevalence using Internet search engine analytics.

    PubMed

    Walcott, Brian P; Nahed, Brian V; Kahle, Kristopher T; Redjal, Navid; Coumans, Jean-Valery

    2011-06-01

    Previous methods to determine stroke prevalence, such as nationwide surveys, are labor-intensive endeavors. Recent advances in search engine query analytics have led to a new metric for disease surveillance to evaluate symptomatic phenomenon, such as influenza. The authors hypothesized that the use of search engine query data can determine the prevalence of stroke. The Google Insights for Search database was accessed to analyze anonymized search engine query data. The authors' search strategy utilized common search queries used when attempting either to identify the signs and symptoms of a stroke or to perform stroke education. The search logic was as follows: (stroke signs + stroke symptoms + mini stroke--heat) from January 1, 2005, to December 31, 2010. The relative number of searches performed (the interest level) for this search logic was established for all 50 states and the District of Columbia. A Pearson product-moment correlation coefficient was calculated from the statespecific stroke prevalence data previously reported. Web search engine interest level was available for all 50 states and the District of Columbia over the time period for January 1, 2005-December 31, 2010. The interest level was highest in Alabama and Tennessee (100 and 96, respectively) and lowest in California and Virginia (58 and 53, respectively). The Pearson correlation coefficient (r) was calculated to be 0.47 (p = 0.0005, 2-tailed). Search engine query data analysis allows for the determination of relative stroke prevalence. Further investigation will reveal the reliability of this metric to determine temporal pattern analysis and prevalence in this and other symptomatic diseases.

  1. Drexel at TREC 2014 Federated Web Search Track

    DTIC Science & Technology

    2014-11-01

    of its input RS results. 1. INTRODUCTION Federated Web Search is the task of searching multiple search engines simultaneously and combining their...or distributed properly[5]. The goal of RS is then, for a given query, to select only the most promising search engines from all those available. Most...result pages of 149 search engines . 4000 queries are used in building the sample set. As a part of the Vertical Selection task, search engines are

  2. Adverse Reactions Associated With Cannabis Consumption as Evident From Search Engine Queries

    PubMed Central

    Lev-Ran, Shaul

    2017-01-01

    Background Cannabis is one of the most widely used psychoactive substances worldwide, but adverse drug reactions (ADRs) associated with its use are difficult to study because of its prohibited status in many countries. Objective Internet search engine queries have been used to investigate ADRs in pharmaceutical drugs. In this proof-of-concept study, we tested whether these queries can be used to detect the adverse reactions of cannabis use. Methods We analyzed anonymized queries from US-based users of Bing, a widely used search engine, made over a period of 6 months and compared the results with the prevalence of cannabis use as reported in the US National Survey on Drug Use in the Household (NSDUH) and with ADRs reported in the Food and Drug Administration’s Adverse Drug Reporting System. Predicted prevalence of cannabis use was estimated from the fraction of people making queries about cannabis, marijuana, and 121 additional synonyms. Predicted ADRs were estimated from queries containing layperson descriptions to 195 ICD-10 symptoms list. Results Our results indicated that the predicted prevalence of cannabis use at the US census regional level reaches an R2 of .71 NSDUH data. Queries for ADRs made by people who also searched for cannabis reveal many of the known adverse effects of cannabis (eg, cough and psychotic symptoms), as well as plausible unknown reactions (eg, pyrexia). Conclusions These results indicate that search engine queries can serve as an important tool for the study of adverse reactions of illicit drugs, which are difficult to study in other settings. PMID:29074469

  3. Know your market: use of online query tools to quantify trends in patient information-seeking behavior for varicose vein treatment.

    PubMed

    Harsha, Asheesh K; Schmitt, J Eric; Stavropoulos, S William

    2014-01-01

    To analyze Internet search data to characterize the temporal and geographic interest of Internet users in the United States in varicose vein treatment. From January 1, 2004, to September 1, 2012, the Google Trends tool was used to analyze query data for "varicose vein treatment" to identify individuals seeking treatment information for varicose veins. The term "varicose vein treatment" returned a search volume index (SVI), representing the search frequency relative to the total search volume during a specific time interval and region. Linear regression analysis and Kruskal-Wallis one-way analysis of variance were employed to characterize search results. Search traffic for varicose vein treatment increased by 520% over the 104-month study period. There was an annual mean increase of 28% (range, -18%-100%; standard deviation [SD], 35%), with a statistically significant linear increase in average yearly SVI over time (R(2) = 0.94, P < .0001). All years showed positive growth in mean SVI except for 2008 (18% decrease). There were statistically significant differences in SVI by month (Kruskal-Wallis, P < .0001) with significantly higher mean SVI compared with other months in May (190% increase; range, 26%-670%; SD, 15%) and June (209% increase; range, 35%-700%; SD, 20%). The southern United States showed significantly higher search traffic than all other regions (Tukey-Kramer, P < .00001). There have been significant increases in Internet search traffic related to varicose vein treatment in the past 8 years. Reflected in this trend is an annual peak in search traffic in the late spring months with an overall geographic bias toward southern states. Rigorous analysis of Internet search queries for medical procedures may prove useful to guide the efficient use of limited resources and marketing dollars. © 2013 The Society of Interventional Radiology Published by SIR All rights reserved.

  4. Data Discretization for Novel Relationship Discovery in Information Retrieval.

    ERIC Educational Resources Information Center

    Benoit, G.

    2002-01-01

    Describes an information retrieval, visualization, and manipulation model which offers the user multiple ways to exploit the retrieval set, based on weighted query terms, via an interactive interface. Outlines the mathematical model and describes an information retrieval application built on the model to search structured and full-text files.…

  5. Concept Based Tie-breaking and Maximal Marginal Relevance Retrieval in Microblog Retrieval

    DTIC Science & Technology

    2014-11-01

    the same score, another singal will be used to rank these documents to break the ties , but the relative orders of other documents against these...documents remain the same. The tie- breaking step above is repeatedly applied to further break ties until all candidate signals are applied and the ranking...searched it on the Yahoo! search engine, which returned some query sug- gestions for the query. The original queries as well as their query suggestions

  6. Seasonal trends in hypertension in Poland: evidence from Google search engine query data.

    PubMed

    Płatek, Anna E; Sierdziński, Janusz; Krzowski, Bartosz; Szymański, Filip M

    2018-01-01

    Various conditions, including arterial hypertension, exhibit seasonal trends in their occurrence and magnitude. Those trends correspond to an interest exhibited in the number of Internet searches for the specific conditions per month. The aim of the study was to show seasonal trends in the hypertension prevalence in Poland relate to the data from the Google Trends tool. Internet search engine query data were retrieved from Google Trends from January 2008 to November 2017. Data were calculated as a monthly normalised search volume from the nine-year period. Data was presented for specific geographic regions, including Poland, the United States of America, Australia, and worldwide for the following search terms: "arterial hypertension (pol. nadciśnienie tętnicze)", "hypertension (pol. nadciśnienie)" and "hypertension medical condition". Seasonal effects were calculated using regression models and presented graphically. In Poland the search volume is the highest between November and May, while patients exhibit the least interest in arterial hypertension during summer holidays (p < 0.05). Seasonal variations are comparable in the United States of America representing a Northern hemisphere country, while in Australia (Southern hemisphere) they exhibit a contrary trend. In conclusion, arterial hypertension is more likely to occur during winter months, which correlates with increased interest in the search phrase "hypertension" in Google.

  7. MICA: desktop software for comprehensive searching of DNA databases

    PubMed Central

    Stokes, William A; Glick, Benjamin S

    2006-01-01

    Background Molecular biologists work with DNA databases that often include entire genomes. A common requirement is to search a DNA database to find exact matches for a nondegenerate or partially degenerate query. The software programs available for such purposes are normally designed to run on remote servers, but an appealing alternative is to work with DNA databases stored on local computers. We describe a desktop software program termed MICA (K-Mer Indexing with Compact Arrays) that allows large DNA databases to be searched efficiently using very little memory. Results MICA rapidly indexes a DNA database. On a Macintosh G5 computer, the complete human genome could be indexed in about 5 minutes. The indexing algorithm recognizes all 15 characters of the DNA alphabet and fully captures the information in any DNA sequence, yet for a typical sequence of length L, the index occupies only about 2L bytes. The index can be searched to return a complete list of exact matches for a nondegenerate or partially degenerate query of any length. A typical search of a long DNA sequence involves reading only a small fraction of the index into memory. As a result, searches are fast even when the available RAM is limited. Conclusion MICA is suitable as a search engine for desktop DNA analysis software. PMID:17018144

  8. Has the American Public's Interest in Information Related to Relationships Beyond "The Couple" Increased Over Time?

    PubMed

    Moors, Amy C

    2017-01-01

    Finding romance, love, and sexual intimacy is a central part of our life experience. Although people engage in romance in a variety of ways, alternatives to "the couple" are largely overlooked in relationship research. Scholars and the media have recently argued that the rules of romance are changing, suggesting that interest in consensual departures from monogamy may become popular as people navigate their long-term coupling. This study utilizes Google Trends to assess Americans' interest in seeking out information related to consensual nonmonogamous relationships across a 10-year period (2006-2015). Using anonymous Web queries from hundreds of thousands of Google search engine users, results show that searches for words related to polyamory and open relationships (but not swinging) have significantly increased over time. Moreover, the magnitude of the correlation between consensual nonmonogamy Web queries and time was significantly higher than popular Web queries over the same time period, indicating this pattern of increased interest in polyamory and open relationships is unique. Future research avenues for incorporating consensual nonmonogamous relationships into relationship science are discussed.

  9. Pharmit: interactive exploration of chemical space.

    PubMed

    Sunseri, Jocelyn; Koes, David Ryan

    2016-07-08

    Pharmit (http://pharmit.csb.pitt.edu) provides an online, interactive environment for the virtual screening of large compound databases using pharmacophores, molecular shape and energy minimization. Users can import, create and edit virtual screening queries in an interactive browser-based interface. Queries are specified in terms of a pharmacophore, a spatial arrangement of the essential features of an interaction, and molecular shape. Search results can be further ranked and filtered using energy minimization. In addition to a number of pre-built databases of popular compound libraries, users may submit their own compound libraries for screening. Pharmit uses state-of-the-art sub-linear algorithms to provide interactive screening of millions of compounds. Queries typically take a few seconds to a few minutes depending on their complexity. This allows users to iteratively refine their search during a single session. The easy access to large chemical datasets provided by Pharmit simplifies and accelerates structure-based drug design. Pharmit is available under a dual BSD/GPL open-source license. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  10. Comparison of the efficacy of three PubMed search filters in finding randomized controlled trials to answer clinical questions.

    PubMed

    Yousefi-Nooraie, Reza; Irani, Shirin; Mortaz-Hedjri, Soroush; Shakiba, Behnam

    2013-10-01

    The aim of this study was to compare the performance of three search methods in the retrieval of relevant clinical trials from PubMed to answer specific clinical questions. Included studies of a sample of 100 Cochrane reviews which recorded in PubMed were considered as the reference standard. The search queries were formulated based on the systematic review titles. Precision, recall and number of retrieved records for limiting the results to clinical trial publication type, and using sensitive and specific clinical queries filters were compared. The number of keywords, presence of specific names of intervention and syndrome in the search keywords were used in a model to predict the recalls and precisions. The Clinical queries-sensitive search strategy retrieved the largest number of records (33) and had the highest recall (41.6%) and lowest precision (4.8%). The presence of specific intervention name was the only significant predictor of all recalls and precisions (P = 0.016). The recall and precision of combination of simple clinical search queries and methodological search filters to find clinical trials in various subjects were considerably low. The limit field strategy yielded in higher precision and fewer retrieved records and approximately similar recall, compared with the clinical queries-sensitive strategy. Presence of specific intervention name in the search keywords increased both recall and precision. © 2010 John Wiley & Sons Ltd.

  11. Which factors predict the time spent answering queries to a drug information centre?

    PubMed Central

    Reppe, Linda A.; Spigset, Olav

    2010-01-01

    Objective To develop a model based upon factors able to predict the time spent answering drug-related queries to Norwegian drug information centres (DICs). Setting and method Drug-related queries received at 5 DICs in Norway from March to May 2007 were randomly assigned to 20 employees until each of them had answered a minimum of five queries. The employees reported the number of drugs involved, the type of literature search performed, and whether the queries were considered judgmental or not, using a specifically developed scoring system. Main outcome measures The scores of these three factors were added together to define a workload score for each query. Workload and its individual factors were subsequently related to the measured time spent answering the queries by simple or multiple linear regression analyses. Results Ninety-six query/answer pairs were analyzed. Workload significantly predicted the time spent answering the queries (adjusted R2 = 0.22, P < 0.001). Literature search was the individual factor best predicting the time spent answering the queries (adjusted R2 = 0.17, P < 0.001), and this variable also contributed the most in the multiple regression analyses. Conclusion The most important workload factor predicting the time spent handling the queries in this study was the type of literature search that had to be performed. The categorisation of queries as judgmental or not, also affected the time spent answering the queries. The number of drugs involved did not significantly influence the time spent answering drug information queries. PMID:20922480

  12. Textpresso: An Ontology-Based Information Retrieval and Extraction System for Biological Literature

    PubMed Central

    Müller, Hans-Michael; Kenny, Eimear E

    2004-01-01

    We have developed Textpresso, a new text-mining system for scientific literature whose capabilities go far beyond those of a simple keyword search engine. Textpresso's two major elements are a collection of the full text of scientific articles split into individual sentences, and the implementation of categories of terms for which a database of articles and individual sentences can be searched. The categories are classes of biological concepts (e.g., gene, allele, cell or cell group, phenotype, etc.) and classes that relate two objects (e.g., association, regulation, etc.) or describe one (e.g., biological process, etc.). Together they form a catalog of types of objects and concepts called an ontology. After this ontology is populated with terms, the whole corpus of articles and abstracts is marked up to identify terms of these categories. The current ontology comprises 33 categories of terms. A search engine enables the user to search for one or a combination of these tags and/or keywords within a sentence or document, and as the ontology allows word meaning to be queried, it is possible to formulate semantic queries. Full text access increases recall of biological data types from 45% to 95%. Extraction of particular biological facts, such as gene-gene interactions, can be accelerated significantly by ontologies, with Textpresso automatically performing nearly as well as expert curators to identify sentences; in searches for two uniquely named genes and an interaction term, the ontology confers a 3-fold increase of search efficiency. Textpresso currently focuses on Caenorhabditis elegans literature, with 3,800 full text articles and 16,000 abstracts. The lexicon of the ontology contains 14,500 entries, each of which includes all versions of a specific word or phrase, and it includes all categories of the Gene Ontology database. Textpresso is a useful curation tool, as well as search engine for researchers, and can readily be extended to other organism-specific corpora of text. Textpresso can be accessed at http://www.textpresso.org or via WormBase at http://www.wormbase.org. PMID:15383839

  13. World Wide Web Metaphors for Search Mission Data

    NASA Technical Reports Server (NTRS)

    Norris, Jeffrey S.; Wallick, Michael N.; Joswig, Joseph C.; Powell, Mark W.; Torres, Recaredo J.; Mittman, David S.; Abramyan, Lucy; Crockett, Thomas M.; Shams, Khawaja S.; Fox, Jason M.; hide

    2010-01-01

    A software program that searches and browses mission data emulates a Web browser, containing standard meta - phors for Web browsing. By taking advantage of back-end URLs, users may save and share search states. Also, since a Web interface is familiar to users, training time is reduced. Familiar back and forward buttons move through a local search history. A refresh/reload button regenerates a query, and loads in any new data. URLs can be constructed to save search results. Adding context to the current search is also handled through a familiar Web metaphor. The query is constructed by clicking on hyperlinks that represent new components to the search query. The selection of a link appears to the user as a page change; the choice of links changes to represent the updated search and the results are filtered by the new criteria. Selecting a navigation link changes the current query and also the URL that is associated with it. The back button can be used to return to the previous search state. This software is part of the MSLICE release, which was written in Java. It will run on any current Windows, Macintosh, or Linux system.

  14. Natural language information retrieval in digital libraries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Strzalkowski, T.; Perez-Carballo, J.; Marinescu, M.

    In this paper we report on some recent developments in joint NYU and GE natural language information retrieval system. The main characteristic of this system is the use of advanced natural language processing to enhance the effectiveness of term-based document retrieval. The system is designed around a traditional statistical backbone consisting of the indexer module, which builds inverted index files from pre-processed documents, and a retrieval engine which searches and ranks the documents in response to user queries. Natural language processing is used to (1) preprocess the documents in order to extract content-carrying terms, (2) discover inter-term dependencies and buildmore » a conceptual hierarchy specific to the database domain, and (3) process user`s natural language requests into effective search queries. This system has been used in NIST-sponsored Text Retrieval Conferences (TREC), where we worked with approximately 3.3 GBytes of text articles including material from the Wall Street Journal, the Associated Press newswire, the Federal Register, Ziff Communications`s Computer Library, Department of Energy abstracts, U.S. Patents and the San Jose Mercury News, totaling more than 500 million words of English. The system have been designed to facilitate its scalability to deal with ever increasing amounts of data. In particular, a randomized index-splitting mechanism has been installed which allows the system to create a number of smaller indexes that can be independently and efficiently searched.« less

  15. Project Lefty: More Bang for the Search Query

    ERIC Educational Resources Information Center

    Varnum, Ken

    2010-01-01

    This article describes the Project Lefty, a search system that, at a minimum, adds a layer on top of traditional federated search tools that will make the wait for results more worthwhile for researchers. At best, Project Lefty improves search queries and relevance rankings for web-scale discovery tools to make the results themselves more relevant…

  16. How to improve your PubMed/MEDLINE searches: 3. advanced searching, MeSH and My NCBI.

    PubMed

    Fatehi, Farhad; Gray, Leonard C; Wootton, Richard

    2014-03-01

    Although the basic PubMed search is often helpful, the results may sometimes be non-specific. For more control over the search process you can use the Advanced Search Builder interface. This allows a targeted search in specific fields, with the convenience of being able to select the intended search field from a list. It also provides a history of your previous searches. The search history is useful to develop a complex search query by combining several previous searches using Boolean operators. For indexing the articles in MEDLINE, the NLM uses a controlled vocabulary system called MeSH. This standardised vocabulary solves the problem of authors, researchers and librarians who may use different terms for the same concept. To be efficient in a PubMed search, you should start by identifying the most appropriate MeSH terms and use them in your search where possible. My NCBI is a personal workspace facility available through PubMed and makes it possible to customise the PubMed interface. It provides various capabilities that can enhance your search performance.

  17. GEMINI: a computationally-efficient search engine for large gene expression datasets.

    PubMed

    DeFreitas, Timothy; Saddiki, Hachem; Flaherty, Patrick

    2016-02-24

    Low-cost DNA sequencing allows organizations to accumulate massive amounts of genomic data and use that data to answer a diverse range of research questions. Presently, users must search for relevant genomic data using a keyword, accession number of meta-data tag. However, in this search paradigm the form of the query - a text-based string - is mismatched with the form of the target - a genomic profile. To improve access to massive genomic data resources, we have developed a fast search engine, GEMINI, that uses a genomic profile as a query to search for similar genomic profiles. GEMINI implements a nearest-neighbor search algorithm using a vantage-point tree to store a database of n profiles and in certain circumstances achieves an [Formula: see text] expected query time in the limit. We tested GEMINI on breast and ovarian cancer gene expression data from The Cancer Genome Atlas project and show that it achieves a query time that scales as the logarithm of the number of records in practice on genomic data. In a database with 10(5) samples, GEMINI identifies the nearest neighbor in 0.05 sec compared to a brute force search time of 0.6 sec. GEMINI is a fast search engine that uses a query genomic profile to search for similar profiles in a very large genomic database. It enables users to identify similar profiles independent of sample label, data origin or other meta-data information.

  18. An Analysis of Web Image Queries for Search.

    ERIC Educational Resources Information Center

    Pu, Hsiao-Tieh

    2003-01-01

    Examines the differences between Web image and textual queries, and attempts to develop an analytic model to investigate their implications for Web image retrieval systems. Provides results that give insight into Web image searching behavior and suggests implications for improvement of current Web image search engines. (AEF)

  19. Using Concept Relations to Improve Ranking in Information Retrieval

    PubMed Central

    Price, Susan L.; Delcambre, Lois M.

    2005-01-01

    Despite improved search engine technology, most searches return numerous documents not directly related to the query. This problem is mitigated if relevant documents appear high on a ranked list of search results. We propose that some queries and the underlying information needs can be modeled as relationships between concepts (relations), and we match relations in queries to relations in documents to try to improve ranking of search results. We investigate four techniques to identify two relationships important in medicine, causes and treats, to improve the ranking of medical text documents relevant to clinical questions about causation and treatment. Preliminary results suggest that identifying relation instances can improve the ranking of search results. PMID:16779114

  20. Serial interpolation for secure membership testing and matching in a secret-split archive

    DOEpatents

    Kroeger, Thomas M.; Benson, Thomas R.

    2016-12-06

    The various technologies presented herein relate to analyzing a plurality of shares stored at a plurality of repositories to determine whether a secret from which the shares were formed matches a term in a query. A threshold number of shares are formed with a generating polynomial operating on the secret. A process of serially interpolating the threshold number of shares can be conducted whereby a contribution of a first share is determined, a contribution of a second share is determined while seeded with the contribution of the first share, etc. A value of a final share in the threshold number of shares can be determined and compared with the search term. In the event of the value of the final share and the search term matching, the search term matches the secret in the file from which the shares are formed.

  1. A high performance, ad-hoc, fuzzy query processing system for relational databases

    NASA Technical Reports Server (NTRS)

    Mansfield, William H., Jr.; Fleischman, Robert M.

    1992-01-01

    Database queries involving imprecise or fuzzy predicates are currently an evolving area of academic and industrial research. Such queries place severe stress on the indexing and I/O subsystems of conventional database environments since they involve the search of large numbers of records. The Datacycle architecture and research prototype is a database environment that uses filtering technology to perform an efficient, exhaustive search of an entire database. It has recently been modified to include fuzzy predicates in its query processing. The approach obviates the need for complex index structures, provides unlimited query throughput, permits the use of ad-hoc fuzzy membership functions, and provides a deterministic response time largely independent of query complexity and load. This paper describes the Datacycle prototype implementation of fuzzy queries and some recent performance results.

  2. Multidimensional indexing structure for use with linear optimization queries

    NASA Technical Reports Server (NTRS)

    Bergman, Lawrence David (Inventor); Castelli, Vittorio (Inventor); Chang, Yuan-Chi (Inventor); Li, Chung-Sheng (Inventor); Smith, John Richard (Inventor)

    2002-01-01

    Linear optimization queries, which usually arise in various decision support and resource planning applications, are queries that retrieve top N data records (where N is an integer greater than zero) which satisfy a specific optimization criterion. The optimization criterion is to either maximize or minimize a linear equation. The coefficients of the linear equation are given at query time. Methods and apparatus are disclosed for constructing, maintaining and utilizing a multidimensional indexing structure of database records to improve the execution speed of linear optimization queries. Database records with numerical attributes are organized into a number of layers and each layer represents a geometric structure called convex hull. Such linear optimization queries are processed by searching from the outer-most layer of this multi-layer indexing structure inwards. At least one record per layer will satisfy the query criterion and the number of layers needed to be searched depends on the spatial distribution of records, the query-issued linear coefficients, and N, the number of records to be returned. When N is small compared to the total size of the database, answering the query typically requires searching only a small fraction of all relevant records, resulting in a tremendous speedup as compared to linearly scanning the entire dataset.

  3. Robust hashing with local models for approximate similarity search.

    PubMed

    Song, Jingkuan; Yang, Yi; Li, Xuelong; Huang, Zi; Yang, Yang

    2014-07-01

    Similarity search plays an important role in many applications involving high-dimensional data. Due to the known dimensionality curse, the performance of most existing indexing structures degrades quickly as the feature dimensionality increases. Hashing methods, such as locality sensitive hashing (LSH) and its variants, have been widely used to achieve fast approximate similarity search by trading search quality for efficiency. However, most existing hashing methods make use of randomized algorithms to generate hash codes without considering the specific structural information in the data. In this paper, we propose a novel hashing method, namely, robust hashing with local models (RHLM), which learns a set of robust hash functions to map the high-dimensional data points into binary hash codes by effectively utilizing local structural information. In RHLM, for each individual data point in the training dataset, a local hashing model is learned and used to predict the hash codes of its neighboring data points. The local models from all the data points are globally aligned so that an optimal hash code can be assigned to each data point. After obtaining the hash codes of all the training data points, we design a robust method by employing l2,1 -norm minimization on the loss function to learn effective hash functions, which are then used to map each database point into its hash code. Given a query data point, the search process first maps it into the query hash code by the hash functions and then explores the buckets, which have similar hash codes to the query hash code. Extensive experimental results conducted on real-life datasets show that the proposed RHLM outperforms the state-of-the-art methods in terms of search quality and efficiency.

  4. BioCarian: search engine for exploratory searches in heterogeneous biological databases.

    PubMed

    Zaki, Nazar; Tennakoon, Chandana

    2017-10-02

    There are a large number of biological databases publicly available for scientists in the web. Also, there are many private databases generated in the course of research projects. These databases are in a wide variety of formats. Web standards have evolved in the recent times and semantic web technologies are now available to interconnect diverse and heterogeneous sources of data. Therefore, integration and querying of biological databases can be facilitated by techniques used in semantic web. Heterogeneous databases can be converted into Resource Description Format (RDF) and queried using SPARQL language. Searching for exact queries in these databases is trivial. However, exploratory searches need customized solutions, especially when multiple databases are involved. This process is cumbersome and time consuming for those without a sufficient background in computer science. In this context, a search engine facilitating exploratory searches of databases would be of great help to the scientific community. We present BioCarian, an efficient and user-friendly search engine for performing exploratory searches on biological databases. The search engine is an interface for SPARQL queries over RDF databases. We note that many of the databases can be converted to tabular form. We first convert the tabular databases to RDF. The search engine provides a graphical interface based on facets to explore the converted databases. The facet interface is more advanced than conventional facets. It allows complex queries to be constructed, and have additional features like ranking of facet values based on several criteria, visually indicating the relevance of a facet value and presenting the most important facet values when a large number of choices are available. For the advanced users, SPARQL queries can be run directly on the databases. Using this feature, users will be able to incorporate federated searches of SPARQL endpoints. We used the search engine to do an exploratory search on previously published viral integration data and were able to deduce the main conclusions of the original publication. BioCarian is accessible via http://www.biocarian.com . We have developed a search engine to explore RDF databases that can be used by both novice and advanced users.

  5. Multi-INT Complex Event Processing using Approximate, Incremental Graph Pattern Search

    DTIC Science & Technology

    2012-06-01

    graph pattern search and SPARQL queries . Total execution time for 10 executions each of 5 random pattern searches in synthetic data sets...01/11 1000 10000 100000 RDF triples Time (secs) 10 20 Graph pattern algorithm SPARQL queries Initial Performance Comparisons 09/18/11 2011 Thrust Area

  6. System for Performing Single Query Searches of Heterogeneous and Dispersed Databases

    NASA Technical Reports Server (NTRS)

    Maluf, David A. (Inventor); Okimura, Takeshi (Inventor); Gurram, Mohana M. (Inventor); Tran, Vu Hoang (Inventor); Knight, Christopher D. (Inventor); Trinh, Anh Ngoc (Inventor)

    2017-01-01

    The present invention is a distributed computer system of heterogeneous databases joined in an information grid and configured with an Application Programming Interface hardware which includes a search engine component for performing user-structured queries on multiple heterogeneous databases in real time. This invention reduces overhead associated with the impedance mismatch that commonly occurs in heterogeneous database queries.

  7. Adverse Reactions Associated With Cannabis Consumption as Evident From Search Engine Queries.

    PubMed

    Yom-Tov, Elad; Lev-Ran, Shaul

    2017-10-26

    Cannabis is one of the most widely used psychoactive substances worldwide, but adverse drug reactions (ADRs) associated with its use are difficult to study because of its prohibited status in many countries. Internet search engine queries have been used to investigate ADRs in pharmaceutical drugs. In this proof-of-concept study, we tested whether these queries can be used to detect the adverse reactions of cannabis use. We analyzed anonymized queries from US-based users of Bing, a widely used search engine, made over a period of 6 months and compared the results with the prevalence of cannabis use as reported in the US National Survey on Drug Use in the Household (NSDUH) and with ADRs reported in the Food and Drug Administration's Adverse Drug Reporting System. Predicted prevalence of cannabis use was estimated from the fraction of people making queries about cannabis, marijuana, and 121 additional synonyms. Predicted ADRs were estimated from queries containing layperson descriptions to 195 ICD-10 symptoms list. Our results indicated that the predicted prevalence of cannabis use at the US census regional level reaches an R 2 of .71 NSDUH data. Queries for ADRs made by people who also searched for cannabis reveal many of the known adverse effects of cannabis (eg, cough and psychotic symptoms), as well as plausible unknown reactions (eg, pyrexia). These results indicate that search engine queries can serve as an important tool for the study of adverse reactions of illicit drugs, which are difficult to study in other settings. ©Elad Yom-Tov, Shaul Lev-Ran. Originally published in JMIR Public Health and Surveillance (http://publichealth.jmir.org), 26.10.2017.

  8. Improving Concept-Based Web Image Retrieval by Mixing Semantically Similar Greek Queries

    ERIC Educational Resources Information Center

    Lazarinis, Fotis

    2008-01-01

    Purpose: Image searching is a common activity for web users. Search engines offer image retrieval services based on textual queries. Previous studies have shown that web searching is more demanding when the search is not in English and does not use a Latin-based language. The aim of this paper is to explore the behaviour of the major search…

  9. What is the prevalence of health-related searches on the World Wide Web? Qualitative and quantitative analysis of search engine queries on the Internet

    PubMed Central

    Eysenbach, G.; Kohler, Ch.

    2003-01-01

    While health information is often said to be the most sought after information on the web, empirical data on the actual frequency of health-related searches on the web are missing. In the present study we aimed to determine the prevalence of health-related searches on the web by analyzing search terms entered by people into popular search engines. We also made some preliminary attempts in qualitatively describing and classifying these searches. Occasional difficulties in determining what constitutes a “health-related” search led us to propose and validate a simple method to automatically classify a search string as “health-related”. This method is based on determining the proportion of pages on the web containing the search string and the word “health”, as a proportion of the total number of pages with the search string alone. Using human codings as gold standard we plotted a ROC curve and determined empirically that if this “co-occurance rate” is larger than 35%, the search string can be said to be health-related (sensitivity: 85.2%, specificity 80.4%). The results of our “human” codings of search queries determined that about 4.5% of all searches are “health-related”. We estimate that globally a minimum of 6.75 Million health-related searches are being conducted on the web every day, which is roughly the same number of searches that have been conducted on the NLM Medlars system in 1996 in a full year. PMID:14728167

  10. USGS launches online database: Lichens in National Parks

    USGS Publications Warehouse

    Bennett, Jim

    2005-01-01

    If you are interested in lichens and National Parks, now you can query a lichen database that combines these two elements. Using pull-down menus you can: search by park, specifying either species list or the references used for that area; search by species (a report will show the parks in which species are found); and search by reference codes, which are available from the first query. The reference code search allows you to obtain the complete citation for each lichen species listed in a National Park.The result pages from these queries can be printed directly from the web browser, or can be copied and pasted into a word processor.

  11. A Search Strategy of Level-Based Flooding for the Internet of Things

    PubMed Central

    Qiu, Tie; Ding, Yanhong; Xia, Feng; Ma, Honglian

    2012-01-01

    This paper deals with the query problem in the Internet of Things (IoT). Flooding is an important query strategy. However, original flooding is prone to cause heavy network loads. To address this problem, we propose a variant of flooding, called Level-Based Flooding (LBF). With LBF, the whole network is divided into several levels according to the distances (i.e., hops) between the sensor nodes and the sink node. The sink node knows the level information of each node. Query packets are broadcast in the network according to the levels of nodes. Upon receiving a query packet, sensor nodes decide how to process it according to the percentage of neighbors that have processed it. When the target node receives the query packet, it sends its data back to the sink node via random walk. We show by extensive simulations that the performance of LBF in terms of cost and latency is much better than that of original flooding, and LBF can be used in IoT of different scales. PMID:23112594

  12. A New Publicly Available Chemical Query Language, CSRML ...

    EPA Pesticide Factsheets

    A new XML-based query language, CSRML, has been developed for representing chemical substructures, molecules, reaction rules, and reactions. CSRML queries are capable of integrating additional forms of information beyond the simple substructure (e.g., SMARTS) or reaction transformation (e.g., SMIRKS, reaction SMILES) queries currently in use. Chemotypes, a term used to represent advanced CSRML queries for repeated application can be encoded not only with connectivity and topology, but also with properties of atoms, bonds, electronic systems, or molecules. The CSRML language has been developed in parallel with a public set of chemotypes, i.e., the ToxPrint chemotypes, which are designed to provide excellent coverage of environmental, regulatory and commercial use chemical space, as well as to represent features and frameworks believed to be especially relevant to toxicity concerns. A software application, ChemoTyper, has also been developed and made publicly available to enable chemotype searching and fingerprinting against a target structure set. The public ChemoTyper houses the ToxPrint chemotype CSRML dictionary, as well as reference implementation so that the query specifications may be adopted by other chemical structure knowledge systems. The full specifications of the XML standard used in CSRML-based chemotypes are publicly available to facilitate and encourage the exchange of structural knowledge. Paper details specifications for a new XML-based query lan

  13. Fast Nonparametric Machine Learning Algorithms for High-Dimensional Massive Data and Applications

    DTIC Science & Technology

    2006-03-01

    know the probability of that from Lemma 2. Using the union bound, we know that for any query q, the probability that i-am-feeling-lucky search algorithm...and each point in a d-dimensional space, a naive k-NN search needs to do a linear scan of T for every single query q, and thus the computational time...algorithm based on partition trees with priority search , and give an expected query time O((1/)d log n). But the constant in the O((1/)d log n

  14. TokSearch: A search engine for fusion experimental data

    DOE PAGES

    Sammuli, Brian S.; Barr, Jayson L.; Eidietis, Nicholas W.; ...

    2018-04-01

    At a typical fusion research site, experimental data is stored using archive technologies that deal with each discharge as an independent set of data. These technologies (e.g. MDSplus or HDF5) are typically supplemented with a database that aggregates metadata for multiple shots to allow for efficient querying of certain predefined quantities. Often, however, a researcher will need to extract information from the archives, possibly for many shots, that is not available in the metadata store or otherwise indexed for quick retrieval. To address this need, a new search tool called TokSearch has been added to the General Atomics TokSys controlmore » design and analysis suite [1]. This tool provides the ability to rapidly perform arbitrary, parallelized queries of archived tokamak shot data (both raw and analyzed) over large numbers of shots. The TokSearch query API borrows concepts from SQL, and users can choose to implement queries in either MatlabTM or Python.« less

  15. TokSearch: A search engine for fusion experimental data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sammuli, Brian S.; Barr, Jayson L.; Eidietis, Nicholas W.

    At a typical fusion research site, experimental data is stored using archive technologies that deal with each discharge as an independent set of data. These technologies (e.g. MDSplus or HDF5) are typically supplemented with a database that aggregates metadata for multiple shots to allow for efficient querying of certain predefined quantities. Often, however, a researcher will need to extract information from the archives, possibly for many shots, that is not available in the metadata store or otherwise indexed for quick retrieval. To address this need, a new search tool called TokSearch has been added to the General Atomics TokSys controlmore » design and analysis suite [1]. This tool provides the ability to rapidly perform arbitrary, parallelized queries of archived tokamak shot data (both raw and analyzed) over large numbers of shots. The TokSearch query API borrows concepts from SQL, and users can choose to implement queries in either MatlabTM or Python.« less

  16. DOE Research and Development Accomplishments Website Policies/Important

    Science.gov Websites

    Links RSS Archive Videos XML DOE R&D Accomplishments DOE R&D Accomplishments searchQuery × Find searchQuery x Find DOE R&D Acccomplishments Navigation dropdown arrow The Basics Stories Snapshots R&D Nuggets Database dropdown arrow Search Tag Cloud Browse Reports Database Help

  17. Design of an On-Line Query Language for Full Text Patent Search.

    ERIC Educational Resources Information Center

    Glantz, Richard S.

    The design of an English-like query language and an interactive computer environment for searching the full text of the U.S. patent collection are discussed. Special attention is paid to achieving a transparent user interface, to providing extremely broad search capabilities (including nested substitution classes, Kleene star events, and domain…

  18. VisGets: coordinated visualizations for web-based information exploration and discovery.

    PubMed

    Dörk, Marian; Carpendale, Sheelagh; Collins, Christopher; Williamson, Carey

    2008-01-01

    In common Web-based search interfaces, it can be difficult to formulate queries that simultaneously combine temporal, spatial, and topical data filters. We investigate how coordinated visualizations can enhance search and exploration of information on the World Wide Web by easing the formulation of these types of queries. Drawing from visual information seeking and exploratory search, we introduce VisGets--interactive query visualizations of Web-based information that operate with online information within a Web browser. VisGets provide the information seeker with visual overviews of Web resources and offer a way to visually filter the data. Our goal is to facilitate the construction of dynamic search queries that combine filters from more than one data dimension. We present a prototype information exploration system featuring three linked VisGets (temporal, spatial, and topical), and used it to visually explore news items from online RSS feeds.

  19. New Quality Metrics for Web Search Results

    NASA Astrophysics Data System (ADS)

    Metaxas, Panagiotis Takis; Ivanova, Lilia; Mustafaraj, Eni

    Web search results enjoy an increasing importance in our daily lives. But what can be said about their quality, especially when querying a controversial issue? The traditional information retrieval metrics of precision and recall do not provide much insight in the case of web information retrieval. In this paper we examine new ways of evaluating quality in search results: coverage and independence. We give examples on how these new metrics can be calculated and what their values reveal regarding the two major search engines, Google and Yahoo. We have found evidence of low coverage for commercial and medical controversial queries, and high coverage for a political query that is highly contested. Given the fact that search engines are unwilling to tune their search results manually, except in a few cases that have become the source of bad publicity, low coverage and independence reveal the efforts of dedicated groups to manipulate the search results.

  20. Visual graph query formulation and exploration: a new perspective on information retrieval at the edge

    NASA Astrophysics Data System (ADS)

    Kase, Sue E.; Vanni, Michelle; Knight, Joanne A.; Su, Yu; Yan, Xifeng

    2016-05-01

    Within operational environments decisions must be made quickly based on the information available. Identifying an appropriate knowledge base and accurately formulating a search query are critical tasks for decision-making effectiveness in dynamic situations. The spreading of graph data management tools to access large graph databases is a rapidly emerging research area of potential benefit to the intelligence community. A graph representation provides a natural way of modeling data in a wide variety of domains. Graph structures use nodes, edges, and properties to represent and store data. This research investigates the advantages of information search by graph query initiated by the analyst and interactively refined within the contextual dimensions of the answer space toward a solution. The paper introduces SLQ, a user-friendly graph querying system enabling the visual formulation of schemaless and structureless graph queries. SLQ is demonstrated with an intelligence analyst information search scenario focused on identifying individuals responsible for manufacturing a mosquito-hosted deadly virus. The scenario highlights the interactive construction of graph queries without prior training in complex query languages or graph databases, intuitive navigation through the problem space, and visualization of results in graphical format.

  1. Asking better questions: How presentation formats influence information search.

    PubMed

    Wu, Charley M; Meder, Björn; Filimon, Flavia; Nelson, Jonathan D

    2017-08-01

    While the influence of presentation formats have been widely studied in Bayesian reasoning tasks, we present the first systematic investigation of how presentation formats influence information search decisions. Four experiments were conducted across different probabilistic environments, where subjects (N = 2,858) chose between 2 possible search queries, each with binary probabilistic outcomes, with the goal of maximizing classification accuracy. We studied 14 different numerical and visual formats for presenting information about the search environment, constructed across 6 design features that have been prominently related to improvements in Bayesian reasoning accuracy (natural frequencies, posteriors, complement, spatial extent, countability, and part-to-whole information). The posterior variants of the icon array and bar graph formats led to the highest proportion of correct responses, and were substantially better than the standard probability format. Results suggest that presenting information in terms of posterior probabilities and visualizing natural frequencies using spatial extent (a perceptual feature) were especially helpful in guiding search decisions, although environments with a mixture of probabilistic and certain outcomes were challenging across all formats. Subjects who made more accurate probability judgments did not perform better on the search task, suggesting that simple decision heuristics may be used to make search decisions without explicitly applying Bayesian inference to compute probabilities. We propose a new take-the-difference (TTD) heuristic that identifies the accuracy-maximizing query without explicit computation of posterior probabilities. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  2. Net Improvement of Correct Answers to Therapy Questions After PubMed Searches: Pre/Post Comparison

    PubMed Central

    Keepanasseril, Arun

    2013-01-01

    Background Clinicians search PubMed for answers to clinical questions although it is time consuming and not always successful. Objective To determine if PubMed used with its Clinical Queries feature to filter results based on study quality would improve search success (more correct answers to clinical questions related to therapy). Methods We invited 528 primary care physicians to participate, 143 (27.1%) consented, and 111 (21.0% of the total and 77.6% of those who consented) completed the study. Participants answered 14 yes/no therapy questions and were given 4 of these (2 originally answered correctly and 2 originally answered incorrectly) to search using either the PubMed main screen or PubMed Clinical Queries narrow therapy filter via a purpose-built system with identical search screens. Participants also picked 3 of the first 20 retrieved citations that best addressed each question. They were then asked to re-answer the original 14 questions. Results We found no statistically significant differences in the rates of correct or incorrect answers using the PubMed main screen or PubMed Clinical Queries. The rate of correct answers increased from 50.0% to 61.4% (95% CI 55.0%-67.8%) for the PubMed main screen searches and from 50.0% to 59.1% (95% CI 52.6%-65.6%) for Clinical Queries searches. These net absolute increases of 11.4% and 9.1%, respectively, included previously correct answers changing to incorrect at a rate of 9.5% (95% CI 5.6%-13.4%) for PubMed main screen searches and 9.1% (95% CI 5.3%-12.9%) for Clinical Queries searches, combined with increases in the rate of being correct of 20.5% (95% CI 15.2%-25.8%) for PubMed main screen searches and 17.7% (95% CI 12.7%-22.7%) for Clinical Queries searches. Conclusions PubMed can assist clinicians answering clinical questions with an approximately 10% absolute rate of improvement in correct answers. This small increase includes more correct answers partially offset by a decrease in previously correct answers. PMID:24217329

  3. Net improvement of correct answers to therapy questions after pubmed searches: pre/post comparison.

    PubMed

    McKibbon, Kathleen Ann; Lokker, Cynthia; Keepanasseril, Arun; Wilczynski, Nancy L; Haynes, R Brian

    2013-11-08

    Clinicians search PubMed for answers to clinical questions although it is time consuming and not always successful. To determine if PubMed used with its Clinical Queries feature to filter results based on study quality would improve search success (more correct answers to clinical questions related to therapy). We invited 528 primary care physicians to participate, 143 (27.1%) consented, and 111 (21.0% of the total and 77.6% of those who consented) completed the study. Participants answered 14 yes/no therapy questions and were given 4 of these (2 originally answered correctly and 2 originally answered incorrectly) to search using either the PubMed main screen or PubMed Clinical Queries narrow therapy filter via a purpose-built system with identical search screens. Participants also picked 3 of the first 20 retrieved citations that best addressed each question. They were then asked to re-answer the original 14 questions. We found no statistically significant differences in the rates of correct or incorrect answers using the PubMed main screen or PubMed Clinical Queries. The rate of correct answers increased from 50.0% to 61.4% (95% CI 55.0%-67.8%) for the PubMed main screen searches and from 50.0% to 59.1% (95% CI 52.6%-65.6%) for Clinical Queries searches. These net absolute increases of 11.4% and 9.1%, respectively, included previously correct answers changing to incorrect at a rate of 9.5% (95% CI 5.6%-13.4%) for PubMed main screen searches and 9.1% (95% CI 5.3%-12.9%) for Clinical Queries searches, combined with increases in the rate of being correct of 20.5% (95% CI 15.2%-25.8%) for PubMed main screen searches and 17.7% (95% CI 12.7%-22.7%) for Clinical Queries searches. PubMed can assist clinicians answering clinical questions with an approximately 10% absolute rate of improvement in correct answers. This small increase includes more correct answers partially offset by a decrease in previously correct answers.

  4. DOE Research and Development Accomplishments Nobel Chemists Associated with

    Science.gov Websites

    the DOE and Predecessors RSS Archive Videos XML DOE R&D Accomplishments DOE R&D Accomplishments searchQuery × Find searchQuery x Find DOE R&D Acccomplishments Navigation dropdown arrow The Blog Archive SC Stories Snapshots R&D Nuggets Database dropdown arrow Search Tag Cloud Browse

  5. Efficient bibliographic searches on allergology using PubMed.

    PubMed

    Sáez Gómez, J M; Aguinaga Ontoso, E; Negro Alvarez, J M; Guillén-Grima, F; Ivancevich, J C; Bozzola, C M

    2007-01-01

    PubMed is the most important of the non-specialized databases on biomedical literature. International and quickly updated is elaborated by the American Government and contains only information about papers published in scientific journal/s. Although it can be used as an unique Data Base, as a matter of fact is the addition of several subgroups (among them MEDLINE) that can be searched simultaneously. To present the main characteristics of PubMed, as well as the most important procedures of search, for obtaining efficient results in searches on allergology. PubMed is elaborated by the American Administration, that condition the character of the registered papers, 90 % of them are written in English in American (50 %) or British (20 %) Journals. Because of this, the information for certain specialties or countries must be obtained from other sources. This paper shows how PubMed allows to search in natural language due to the Automatic Term Mapping that links terms from the natural language with the descriptors producing searches with a higher sensitivity although with a low specificity. Nevertheless the MeSH (Medical Subject Headings) thesaurus allows to translate those terms from the natural language to the equivalent descriptor, as well as to make queries in the PubMed's documental language with a high specificity but with lower sensitivity than the natural language. The use of union (OR), intersection (AND) and exclusion (NOT) operators, as well as tags, such as delimiters of the search fields, allows to increase the specificity of the results. Similar results may be obtained with the use of Limits. Searches done using Clinical Queries are very interesting due to their direct clinical application and because allow to find systematic reviews, metaanalysis or clinically oriented papers (treatment, diagnostic, etiology, prognosis or clinical prediction guides) on the area of interest. Other procedures such as the Index, History of searches, and the widening of the selection using Related Articles and the storing of separate results in the Clipboard to be kept by the user, are presented in this paper.

  6. Allie: a database and a search service of abbreviations and long forms.

    PubMed

    Yamamoto, Yasunori; Yamaguchi, Atsuko; Bono, Hidemasa; Takagi, Toshihisa

    2011-01-01

    Many abbreviations are used in the literature especially in the life sciences, and polysemous abbreviations appear frequently, making it difficult to read and understand scientific papers that are outside of a reader's expertise. Thus, we have developed Allie, a database and a search service of abbreviations and their long forms (a.k.a. full forms or definitions). Allie searches for abbreviations and their corresponding long forms in a database that we have generated based on all titles and abstracts in MEDLINE. When a user query matches an abbreviation, Allie returns all potential long forms of the query along with their bibliographic data (i.e. title and publication year). In addition, for each candidate, co-occurring abbreviations and a research field in which it frequently appears in the MEDLINE data are displayed. This function helps users learn about the context in which an abbreviation appears. To deal with synonymous long forms, we use a dictionary called GENA that contains domain-specific terms such as gene, protein or disease names along with their synonymic information. Conceptually identical domain-specific terms are regarded as one term, and then conceptually identical abbreviation-long form pairs are grouped taking into account their appearance in MEDLINE. To keep up with new abbreviations that are continuously introduced, Allie has an automatic update system. In addition, the database of abbreviations and their long forms with their corresponding PubMed IDs is constructed and updated weekly. Database URL: The Allie service is available at http://allie.dbcls.jp/.

  7. Predicting Drug Recalls From Internet Search Engine Queries.

    PubMed

    Yom-Tov, Elad

    2017-01-01

    Batches of pharmaceuticals are sometimes recalled from the market when a safety issue or a defect is detected in specific production runs of a drug. Such problems are usually detected when patients or healthcare providers report abnormalities to medical authorities. Here, we test the hypothesis that defective production lots can be detected earlier by monitoring queries to Internet search engines. We extracted queries from the USA to the Bing search engine, which mentioned one of the 5195 pharmaceutical drugs during 2015 and all recall notifications issued by the Food and Drug Administration (FDA) during that year. By using attributes that quantify the change in query volume at the state level, we attempted to predict if a recall of a specific drug will be ordered by FDA in a time horizon ranging from 1 to 40 days in future. Our results show that future drug recalls can indeed be identified with an AUC of 0.791 and a lift at 5% of approximately 6 when predicting a recall occurring one day ahead. This performance degrades as prediction is made for longer periods ahead. The most indicative attributes for prediction are sudden spikes in query volume about a specific medicine in each state. Recalls of prescription drugs and those estimated to be of medium-risk are more likely to be identified using search query data. These findings suggest that aggregated Internet search engine data can be used to facilitate in early warning of faulty batches of medicines.

  8. Glycan fragment database: a database of PDB-based glycan 3D structures.

    PubMed

    Jo, Sunhwan; Im, Wonpil

    2013-01-01

    The glycan fragment database (GFDB), freely available at http://www.glycanstructure.org, is a database of the glycosidic torsion angles derived from the glycan structures in the Protein Data Bank (PDB). Analogous to protein structure, the structure of an oligosaccharide chain in a glycoprotein, referred to as a glycan, can be characterized by the torsion angles of glycosidic linkages between relatively rigid carbohydrate monomeric units. Knowledge of accessible conformations of biologically relevant glycans is essential in understanding their biological roles. The GFDB provides an intuitive glycan sequence search tool that allows the user to search complex glycan structures. After a glycan search is complete, each glycosidic torsion angle distribution is displayed in terms of the exact match and the fragment match. The exact match results are from the PDB entries that contain the glycan sequence identical to the query sequence. The fragment match results are from the entries with the glycan sequence whose substructure (fragment) or entire sequence is matched to the query sequence, such that the fragment results implicitly include the influences from the nearby carbohydrate residues. In addition, clustering analysis based on the torsion angle distribution can be performed to obtain the representative structures among the searched glycan structures.

  9. Optimizing Online Suicide Prevention: A Search Engine-Based Tailored Approach.

    PubMed

    Arendt, Florian; Scherr, Sebastian

    2017-11-01

    Search engines are increasingly used to seek suicide-related information online, which can serve both harmful and helpful purposes. Google acknowledges this fact and presents a suicide-prevention result for particular search terms. Unfortunately, the result is only presented to a limited number of visitors. Hence, Google is missing the opportunity to provide help to vulnerable people. We propose a two-step approach to a tailored optimization: First, research will identify the risk factors. Second, search engines will reweight algorithms according to the risk factors. In this study, we show that the query share of the search term "poisoning" on Google shows substantial peaks corresponding to peaks in actual suicidal behavior. Accordingly, thresholds for showing the suicide-prevention result should be set to the lowest levels during the spring, on Sundays and Mondays, on New Year's Day, and on Saturdays following Thanksgiving. Search engines can help to save lives globally by utilizing a more tailored approach to suicide prevention.

  10. Integrating Smart Health in the US Health Care System: Infodemiology Study of Asthma Monitoring in the Google Era

    PubMed Central

    Sampri, Alexia; Sypsa, Karla; Tsagarakis, Konstantinos P

    2018-01-01

    Background With the internet’s penetration and use constantly expanding, this vast amount of information can be employed in order to better assess issues in the US health care system. Google Trends, a popular tool in big data analytics, has been widely used in the past to examine interest in various medical and health-related topics and has shown great potential in forecastings, predictions, and nowcastings. As empirical relationships between online queries and human behavior have been shown to exist, a new opportunity to explore the behavior toward asthma—a common respiratory disease—is present. Objective This study aimed at forecasting the online behavior toward asthma and examined the correlations between queries and reported cases in order to explore the possibility of nowcasting asthma prevalence in the United States using online search traffic data. Methods Applying Holt-Winters exponential smoothing to Google Trends time series from 2004 to 2015 for the term “asthma,” forecasts for online queries at state and national levels are estimated from 2016 to 2020 and validated against available Google query data from January 2016 to June 2017. Correlations among yearly Google queries and between Google queries and reported asthma cases are examined. Results Our analysis shows that search queries exhibit seasonality within each year and the relationships between each 2 years’ queries are statistically significant (P<.05). Estimated forecasting models for a 5-year period (2016 through 2020) for Google queries are robust and validated against available data from January 2016 to June 2017. Significant correlations were found between (1) online queries and National Health Interview Survey lifetime asthma (r=–.82, P=.001) and current asthma (r=–.77, P=.004) rates from 2004 to 2015 and (2) between online queries and Behavioral Risk Factor Surveillance System lifetime (r=–.78, P=.003) and current asthma (r=–.79, P=.002) rates from 2004 to 2014. The correlations are negative, but lag analysis to identify the period of response cannot be employed until short-interval data on asthma prevalence are made available. Conclusions Online behavior toward asthma can be accurately predicted, and significant correlations between online queries and reported cases exist. This method of forecasting Google queries can be used by health care officials to nowcast asthma prevalence by city, state, or nationally, subject to future availability of daily, weekly, or monthly data on reported cases. This method could therefore be used for improved monitoring and assessment of the needs surrounding the current population of patients with asthma. PMID:29530839

  11. Effect of Tobacco Control Policies on Information Seeking for Smoking Cessation in the Netherlands: A Google Trends Study.

    PubMed

    Troelstra, Sigrid A; Bosdriesz, Jizzo R; de Boer, Michiel R; Kunst, Anton E

    2016-01-01

    The impact of tobacco control policies on measures of smoking cessation behaviour has often been studied, yet there is little information on their precise magnitude and duration. This study aims to measure the magnitude and timing of the impact of Dutch tobacco control policies on the rate of searching for information on smoking cessation, using Google Trends search query data. An interrupted time series analysis was used to examine the effect of two types of policies (smoke-free legislation and reimbursement of smoking cessation support (SCS)) on Google searches for 'quit smoking'. Google Trends data were seasonally adjusted and analysed using autoregressive integrated moving average (ARIMA) modelling. Multiple effect periods were modelled as dummy variables and analysed simultaneously to examine the magnitude and duration of the effect of each intervention. The same analysis was repeated with Belgian search query data as a control group, since Belgium is the country most comparable to the Netherlands in terms of geography, language, history and culture. A significant increase in relative search volume (RSV) was found from one to four weeks (21-41%) after the introduction of the smoking ban in restaurants and bars in the Netherlands in 2008. The introduction of SCS reimbursement in 2011 was associated with a significant increase of RSV (16-22%) in the Netherlands after 3 to 52 weeks. The reintroduction of SCS in 2013 was associated with a significant increase of RSV (9-21%) in the Netherlands from 3 to 32 weeks after the intervention. No effects were found in the Belgian control group for the smoking ban and the reintroduction of SCS in 2013, but there was a significant increase in RSV shortly before and after the introduction of SCS in 2011. These findings suggest that these tobacco control policies have short-term or medium-term effects on the rate of searching for information on smoking cessation, and therefore potentially on smoking cessation rates.

  12. Research Trend Visualization by MeSH Terms from PubMed.

    PubMed

    Yang, Heyoung; Lee, Hyuck Jai

    2018-05-30

    Motivation : PubMed is a primary source of biomedical information comprising search tool function and the biomedical literature from MEDLINE which is the US National Library of Medicine premier bibliographic database, life science journals and online books. Complimentary tools to PubMed have been developed to help the users search for literature and acquire knowledge. However, these tools are insufficient to overcome the difficulties of the users due to the proliferation of biomedical literature. A new method is needed for searching the knowledge in biomedical field. Methods : A new method is proposed in this study for visualizing the recent research trends based on the retrieved documents corresponding to a search query given by the user. The Medical Subject Headings (MeSH) are used as the primary analytical element. MeSH terms are extracted from the literature and the correlations between them are calculated. A MeSH network, called MeSH Net, is generated as the final result based on the Pathfinder Network algorithm. Results : A case study for the verification of proposed method was carried out on a research area defined by the search query (immunotherapy and cancer and "tumor microenvironment"). The MeSH Net generated by the method is in good agreement with the actual research activities in the research area (immunotherapy). Conclusion : A prototype application generating MeSH Net was developed. The application, which could be used as a "guide map for travelers", allows the users to quickly and easily acquire the knowledge of research trends. Combination of PubMed and MeSH Net is expected to be an effective complementary system for the researchers in biomedical field experiencing difficulties with search and information analysis.

  13. Annotating images by mining image search results.

    PubMed

    Wang, Xin-Jing; Zhang, Lei; Li, Xirong; Ma, Wei-Ying

    2008-11-01

    Although it has been studied for years by the computer vision and machine learning communities, image annotation is still far from practical. In this paper, we propose a novel attempt at model-free image annotation, which is a data-driven approach that annotates images by mining their search results. Some 2.4 million images with their surrounding text are collected from a few photo forums to support this approach. The entire process is formulated in a divide-and-conquer framework where a query keyword is provided along with the uncaptioned image to improve both the effectiveness and efficiency. This is helpful when the collected data set is not dense everywhere. In this sense, our approach contains three steps: 1) the search process to discover visually and semantically similar search results, 2) the mining process to identify salient terms from textual descriptions of the search results, and 3) the annotation rejection process to filter out noisy terms yielded by Step 2. To ensure real-time annotation, two key techniques are leveraged-one is to map the high-dimensional image visual features into hash codes, the other is to implement it as a distributed system, of which the search and mining processes are provided as Web services. As a typical result, the entire process finishes in less than 1 second. Since no training data set is required, our approach enables annotating with unlimited vocabulary and is highly scalable and robust to outliers. Experimental results on both real Web images and a benchmark image data set show the effectiveness and efficiency of the proposed algorithm. It is also worth noting that, although the entire approach is illustrated within the divide-and conquer framework, a query keyword is not crucial to our current implementation. We provide experimental results to prove this.

  14. Implementation of the common phrase index method on the phrase query for information retrieval

    NASA Astrophysics Data System (ADS)

    Fatmawati, Triyah; Zaman, Badrus; Werdiningsih, Indah

    2017-08-01

    As the development of technology, the process of finding information on the news text is easy, because the text of the news is not only distributed in print media, such as newspapers, but also in electronic media that can be accessed using the search engine. In the process of finding relevant documents on the search engine, a phrase often used as a query. The number of words that make up the phrase query and their position obviously affect the relevance of the document produced. As a result, the accuracy of the information obtained will be affected. Based on the outlined problem, the purpose of this research was to analyze the implementation of the common phrase index method on information retrieval. This research will be conducted in English news text and implemented on a prototype to determine the relevance level of the documents produced. The system is built with the stages of pre-processing, indexing, term weighting calculation, and cosine similarity calculation. Then the system will display the document search results in a sequence, based on the cosine similarity. Furthermore, system testing will be conducted using 100 documents and 20 queries. That result is then used for the evaluation stage. First, determine the relevant documents using kappa statistic calculation. Second, determine the system success rate using precision, recall, and F-measure calculation. In this research, the result of kappa statistic calculation was 0.71, so that the relevant documents are eligible for the system evaluation. Then the calculation of precision, recall, and F-measure produces precision of 0.37, recall of 0.50, and F-measure of 0.43. From this result can be said that the success rate of the system to produce relevant documents is low.

  15. Adaptive search in mobile peer-to-peer databases

    NASA Technical Reports Server (NTRS)

    Wolfson, Ouri (Inventor); Xu, Bo (Inventor)

    2010-01-01

    Information is stored in a plurality of mobile peers. The peers communicate in a peer to peer fashion, using a short-range wireless network. Occasionally, a peer initiates a search for information in the peer to peer network by issuing a query. Queries and pieces of information, called reports, are transmitted among peers that are within a transmission range. For each search additional peers are utilized, wherein these additional peers search and relay information on behalf of the originator of the search.

  16. Search engines, news wires and digital epidemiology: Presumptions and facts.

    PubMed

    Kaveh-Yazdy, Fatemeh; Zareh-Bidoki, Ali-Mohammad

    2018-07-01

    Digital epidemiology tries to identify diseases dynamics and spread behaviors using digital traces collected via search engines logs and social media posts. However, the impacts of news on information-seeking behaviors have been remained unknown. Data employed in this research provided from two sources, (1) Parsijoo search engine query logs of 48 months, and (2) a set of documents of 28 months of Parsijoo's news service. Two classes of topics, i.e. macro-topics and micro-topics were selected to be tracked in query logs and news. Keywords of the macro-topics were automatically generated using web provided resources and exceeded 10k. Keyword set of micro-topics were limited to a numerable list including terms related to diseases and health-related activities. The tests are established in the form of three studies. Study A includes temporal analyses of 7 macro-topics in query logs. Study B considers analyzing seasonality of searching patterns of 9 micro-topics, and Study C assesses the impact of news media coverage on users' health-related information-seeking behaviors. Study A showed that the hourly distribution of various macro-topics followed the changes in social activity level. Conversely, the interestingness of macro-topics did not follow the regulation of topic distributions. Among macro-topics, "Pharmacotherapy" has highest interestingness level and wider time-window of popularity. In Study B, seasonality of a limited number of diseases and health-related activities were analyzed. Trends of infectious diseases, such as flu, mumps and chicken pox were seasonal. Due to seasonality of most of diseases covered in national vaccination plans, the trend belonging to "Immunization and Vaccination" was seasonal, as well. Cancer awareness events caused peaks in search trends of "Cancer" and "Screening" micro-topics in specific days of each year that mimic repeated patterns which may mistakenly be identified as seasonality. In study C, we assessed the co-integration and correlation between news and query trends. Our results demonstrated that micro-topics sparsely covered in news media had lowest level of impressiveness and, subsequently, the lowest impact on users' intents. Our results can reveal public reaction to social events, diseases and prevention procedures. Furthermore, we found that news trends are co-integrated with search queries and are able to reveal health-related events; however, they cannot be used interchangeably. It is recommended that the user-generated contents and news documents are analyzed mutually and interactively. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. Development of a Search Strategy for an Evidence Based Retrieval Service

    PubMed Central

    Ho, Gah Juan; Liew, Su May; Ng, Chirk Jenn; Hisham Shunmugam, Ranita; Glasziou, Paul

    2016-01-01

    Background Physicians are often encouraged to locate answers for their clinical queries via an evidence-based literature search approach. The methods used are often not clearly specified. Inappropriate search strategies, time constraint and contradictory information complicate evidence retrieval. Aims Our study aimed to develop a search strategy to answer clinical queries among physicians in a primary care setting Methods Six clinical questions of different medical conditions seen in primary care were formulated. A series of experimental searches to answer each question was conducted on 3 commonly advocated medical databases. We compared search results from a PICO (patients, intervention, comparison, outcome) framework for questions using different combinations of PICO elements. We also compared outcomes from doing searches using text words, Medical Subject Headings (MeSH), or a combination of both. All searches were documented using screenshots and saved search strategies. Results Answers to all 6 questions using the PICO framework were found. A higher number of systematic reviews were obtained using a 2 PICO element search compared to a 4 element search. A more optimal choice of search is a combination of both text words and MeSH terms. Despite searching using the Systematic Review filter, many non-systematic reviews or narrative reviews were found in PubMed. There was poor overlap between outcomes of searches using different databases. The duration of search and screening for the 6 questions ranged from 1 to 4 hours. Conclusion This strategy has been shown to be feasible and can provide evidence to doctors’ clinical questions. It has the potential to be incorporated into an interventional study to determine the impact of an online evidence retrieval system. PMID:27935993

  18. An intuitive graphical webserver for multiple-choice protein sequence search.

    PubMed

    Banky, Daniel; Szalkai, Balazs; Grolmusz, Vince

    2014-04-10

    Every day tens of thousands of sequence searches and sequence alignment queries are submitted to webservers. The capitalized word "BLAST" becomes a verb, describing the act of performing sequence search and alignment. However, if one needs to search for sequences that contain, for example, two hydrophobic and three polar residues at five given positions, the query formation on the most frequently used webservers will be difficult. Some servers support the formation of queries with regular expressions, but most of the users are unfamiliar with their syntax. Here we present an intuitive, easily applicable webserver, the Protein Sequence Analysis server, that allows the formation of multiple choice queries by simply drawing the residues to their positions; if more than one residue are drawn to the same position, then they will be nicely stacked on the user interface, indicating the multiple choice at the given position. This computer-game-like interface is natural and intuitive, and the coloring of the residues makes possible to form queries requiring not just certain amino acids in the given positions, but also small nonpolar, negatively charged, hydrophobic, positively charged, or polar ones. The webserver is available at http://psa.pitgroup.org. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Information Retrieval Using UMLS-based Structured Queries

    PubMed Central

    Fagan, Lawrence M.; Berrios, Daniel C.; Chan, Albert; Cucina, Russell; Datta, Anupam; Shah, Maulik; Surendran, Sujith

    2001-01-01

    During the last three years, we have developed and described components of ELBook, a semantically based information-retrieval system [1-4]. Using these components, domain experts can specify a query model, indexers can use the query model to index documents, and end-users can search these documents for instances of indexed queries.

  20. Federated Space-Time Query for Earth Science Data Using OpenSearch Conventions

    NASA Technical Reports Server (NTRS)

    Lynnes, Chris; Beaumont, Bruce; Duerr, Ruth; Hua, Hook

    2009-01-01

    This slide presentation reviews a Space-time query system that has been developed to assist the user in finding Earth science data that fulfills the researchers needs. It reviews the reasons why finding Earth science data can be so difficult, and explains the workings of the Space-Time Query with OpenSearch and how this system can assist researchers in finding the required data, It also reviews the developments with client server systems.

  1. Examining the Relationship Between Past Orientation and US Suicide Rates: An Analysis Using Big Data-Driven Google Search Queries

    PubMed Central

    Lee, Donghyun; Lee, Hojun

    2016-01-01

    Background Internet search query data reflect the attitudes of the users, using which we can measure the past orientation to commit suicide. Examinations of past orientation often highlight certain predispositions of attitude, many of which can be suicide risk factors. Objective To investigate the relationship between past orientation and suicide rate by examining Google search queries. Methods We measured the past orientation using Google search query data by comparing the search volumes of the past year and those of the future year, across the 50 US states and the District of Columbia during the period from 2004 to 2012. We constructed a panel dataset with independent variables as control variables; we then undertook an analysis using multiple ordinary least squares regression and methods that leverage the Akaike information criterion and the Bayesian information criterion. Results It was found that past orientation had a positive relationship with the suicide rate (P≤.001) and that it improves the goodness-of-fit of the model regarding the suicide rate. Unemployment rate (P≤.001 in Models 3 and 4), Gini coefficient (P≤.001), and population growth rate (P≤.001) had a positive relationship with the suicide rate, whereas the gross state product (P≤.001) showed a negative relationship with the suicide rate. Conclusions We empirically identified the positive relationship between the suicide rate and past orientation, which was measured by big data-driven Google search query. PMID:26868917

  2. Examining the Relationship Between Past Orientation and US Suicide Rates: An Analysis Using Big Data-Driven Google Search Queries.

    PubMed

    Lee, Donghyun; Lee, Hojun; Choi, Munkee

    2016-02-11

    Internet search query data reflect the attitudes of the users, using which we can measure the past orientation to commit suicide. Examinations of past orientation often highlight certain predispositions of attitude, many of which can be suicide risk factors. To investigate the relationship between past orientation and suicide rate by examining Google search queries. We measured the past orientation using Google search query data by comparing the search volumes of the past year and those of the future year, across the 50 US states and the District of Columbia during the period from 2004 to 2012. We constructed a panel dataset with independent variables as control variables; we then undertook an analysis using multiple ordinary least squares regression and methods that leverage the Akaike information criterion and the Bayesian information criterion. It was found that past orientation had a positive relationship with the suicide rate (P ≤ .001) and that it improves the goodness-of-fit of the model regarding the suicide rate. Unemployment rate (P ≤ .001 in Models 3 and 4), Gini coefficient (P ≤ .001), and population growth rate (P ≤ .001) had a positive relationship with the suicide rate, whereas the gross state product (P ≤ .001) showed a negative relationship with the suicide rate. We empirically identified the positive relationship between the suicide rate and past orientation, which was measured by big data-driven Google search query.

  3. Guided Iterative Substructure Search (GI-SSS) - A New Trick for an Old Dog.

    PubMed

    Weskamp, Nils

    2016-07-01

    Substructure search (SSS) is a fundamental technique supported by various chemical information systems. Many users apply it in an iterative manner: they modify their queries to shape the composition of the retrieved hit sets according to their needs. We propose and evaluate two heuristic extensions of SSS aimed at simplifying these iterative query modifications by collecting additional information during query processing and visualizing this information in an intuitive way. This gives the user a convenient feedback on how certain changes to the query would affect the retrieved hit set and reduces the number of trial-and-error cycles needed to generate an optimal search result. The proposed heuristics are simple, yet surprisingly effective and can be easily added to existing SSS implementations. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Web page sorting algorithm based on query keyword distance relation

    NASA Astrophysics Data System (ADS)

    Yang, Han; Cui, Hong Gang; Tang, Hao

    2017-08-01

    In order to optimize the problem of page sorting, according to the search keywords in the web page in the relationship between the characteristics of the proposed query keywords clustering ideas. And it is converted into the degree of aggregation of the search keywords in the web page. Based on the PageRank algorithm, the clustering degree factor of the query keyword is added to make it possible to participate in the quantitative calculation. This paper proposes an improved algorithm for PageRank based on the distance relation between search keywords. The experimental results show the feasibility and effectiveness of the method.

  5. Method for gathering and summarizing internet information

    DOEpatents

    Potok, Thomas E.; Elmore, Mark Thomas; Reed, Joel Wesley; Treadwell, Jim N.; Samatova, Nagiza Faridovna

    2010-04-06

    A computer method of gathering and summarizing large amounts of information comprises collecting information from a plurality of information sources (14, 51) according to respective maps (52) of the information sources (14), converting the collected information from a storage format to XML-language documents (26, 53) and storing the XML-language documents in a storage medium, searching for documents (55) according to a search query (13) having at least one term and identifying the documents (26) found in the search, and displaying the documents as nodes (33) of a tree structure (32) having links (34) and nodes (33) so as to indicate similarity of the documents to each other.

  6. System for gathering and summarizing internet information

    DOEpatents

    Potok, Thomas E.; Elmore, Mark Thomas; Reed, Joel Wesley; Treadwell, Jim N.; Samatova, Nagiza Faridovna

    2006-07-04

    A computer method of gathering and summarizing large amounts of information comprises collecting information from a plurality of information sources (14, 51) according to respective maps (52) of the information sources (14), converting the collected information from a storage format to XML-language documents (26, 53) and storing the XML-language documents in a storage medium, searching for documents (55) according to a search query (13) having at least one term and identifying the documents (26) found in the search, and displaying the documents as nodes (33) of a tree structure (32) having links (34) and nodes (33) so as to indicate similarity of the documents to each other.

  7. Method for gathering and summarizing internet information

    DOEpatents

    Potok, Thomas E [Oak Ridge, TN; Elmore, Mark Thomas [Oak Ridge, TN; Reed, Joel Wesley [Knoxville, TN; Treadwell, Jim N [Louisville, TN; Samatova, Nagiza Faridovna [Oak Ridge, TN

    2008-01-01

    A computer method of gathering and summarizing large amounts of information comprises collecting information from a plurality of information sources (14, 51) according to respective maps (52) of the information sources (14), converting the collected information from a storage format to XML-language documents (26, 53) and storing the XML-language documents in a storage medium, searching for documents (55) according to a search query (13) having at least one term and identifying the documents (26) found in the search, and displaying the documents as nodes (33) of a tree structure (32) having links (34) and nodes (33) so as to indicate similarity of the documents to each other.

  8. New concepts for building vocabulary for cell image ontologies.

    PubMed

    Plant, Anne L; Elliott, John T; Bhat, Talapady N

    2011-12-21

    There are significant challenges associated with the building of ontologies for cell biology experiments including the large numbers of terms and their synonyms. These challenges make it difficult to simultaneously query data from multiple experiments or ontologies. If vocabulary terms were consistently used and reused across and within ontologies, queries would be possible through shared terms. One approach to achieving this is to strictly control the terms used in ontologies in the form of a pre-defined schema, but this approach limits the individual researcher's ability to create new terms when needed to describe new experiments. Here, we propose the use of a limited number of highly reusable common root terms, and rules for an experimentalist to locally expand terms by adding more specific terms under more general root terms to form specific new vocabulary hierarchies that can be used to build ontologies. We illustrate the application of the method to build vocabularies and a prototype database for cell images that uses a visual data-tree of terms to facilitate sophisticated queries based on a experimental parameters. We demonstrate how the terminology might be extended by adding new vocabulary terms into the hierarchy of terms in an evolving process. In this approach, image data and metadata are handled separately, so we also describe a robust file-naming scheme to unambiguously identify image and other files associated with each metadata value. The prototype database http://sbd.nist.gov/ consists of more than 2000 images of cells and benchmark materials, and 163 metadata terms that describe experimental details, including many details about cell culture and handling. Image files of interest can be retrieved, and their data can be compared, by choosing one or more relevant metadata values as search terms. Metadata values for any dataset can be compared with corresponding values of another dataset through logical operations. Organizing metadata for cell imaging experiments under a framework of rules that include highly reused root terms will facilitate the addition of new terms into a vocabulary hierarchy and encourage the reuse of terms. These vocabulary hierarchies can be converted into XML schema or RDF graphs for displaying and querying, but this is not necessary for using it to annotate cell images. Vocabulary data trees from multiple experiments or laboratories can be aligned at the root terms to facilitate query development. This approach of developing vocabularies is compatible with the major advances in database technology and could be used for building the Semantic Web.

  9. New concepts for building vocabulary for cell image ontologies

    PubMed Central

    2011-01-01

    Background There are significant challenges associated with the building of ontologies for cell biology experiments including the large numbers of terms and their synonyms. These challenges make it difficult to simultaneously query data from multiple experiments or ontologies. If vocabulary terms were consistently used and reused across and within ontologies, queries would be possible through shared terms. One approach to achieving this is to strictly control the terms used in ontologies in the form of a pre-defined schema, but this approach limits the individual researcher's ability to create new terms when needed to describe new experiments. Results Here, we propose the use of a limited number of highly reusable common root terms, and rules for an experimentalist to locally expand terms by adding more specific terms under more general root terms to form specific new vocabulary hierarchies that can be used to build ontologies. We illustrate the application of the method to build vocabularies and a prototype database for cell images that uses a visual data-tree of terms to facilitate sophisticated queries based on a experimental parameters. We demonstrate how the terminology might be extended by adding new vocabulary terms into the hierarchy of terms in an evolving process. In this approach, image data and metadata are handled separately, so we also describe a robust file-naming scheme to unambiguously identify image and other files associated with each metadata value. The prototype database http://sbd.nist.gov/ consists of more than 2000 images of cells and benchmark materials, and 163 metadata terms that describe experimental details, including many details about cell culture and handling. Image files of interest can be retrieved, and their data can be compared, by choosing one or more relevant metadata values as search terms. Metadata values for any dataset can be compared with corresponding values of another dataset through logical operations. Conclusions Organizing metadata for cell imaging experiments under a framework of rules that include highly reused root terms will facilitate the addition of new terms into a vocabulary hierarchy and encourage the reuse of terms. These vocabulary hierarchies can be converted into XML schema or RDF graphs for displaying and querying, but this is not necessary for using it to annotate cell images. Vocabulary data trees from multiple experiments or laboratories can be aligned at the root terms to facilitate query development. This approach of developing vocabularies is compatible with the major advances in database technology and could be used for building the Semantic Web. PMID:22188658

  10. A bayesian translational framework for knowledge propagation, discovery, and integration under specific contexts.

    PubMed

    Deng, Michelle; Zollanvari, Amin; Alterovitz, Gil

    2012-01-01

    The immense corpus of biomedical literature existing today poses challenges in information search and integration. Many links between pieces of knowledge occur or are significant only under certain contexts-rather than under the entire corpus. This study proposes using networks of ontology concepts, linked based on their co-occurrences in annotations of abstracts of biomedical literature and descriptions of experiments, to draw conclusions based on context-specific queries and to better integrate existing knowledge. In particular, a Bayesian network framework is constructed to allow for the linking of related terms from two biomedical ontologies under the queried context concept. Edges in such a Bayesian network allow associations between biomedical concepts to be quantified and inference to be made about the existence of some concepts given prior information about others. This approach could potentially be a powerful inferential tool for context-specific queries, applicable to ontologies in other fields as well.

  11. A Bayesian Translational Framework for Knowledge Propagation, Discovery, and Integration Under Specific Contexts

    PubMed Central

    Deng, Michelle; Zollanvari, Amin; Alterovitz, Gil

    2012-01-01

    The immense corpus of biomedical literature existing today poses challenges in information search and integration. Many links between pieces of knowledge occur or are significant only under certain contexts—rather than under the entire corpus. This study proposes using networks of ontology concepts, linked based on their co-occurrences in annotations of abstracts of biomedical literature and descriptions of experiments, to draw conclusions based on context-specific queries and to better integrate existing knowledge. In particular, a Bayesian network framework is constructed to allow for the linking of related terms from two biomedical ontologies under the queried context concept. Edges in such a Bayesian network allow associations between biomedical concepts to be quantified and inference to be made about the existence of some concepts given prior information about others. This approach could potentially be a powerful inferential tool for context-specific queries, applicable to ontologies in other fields as well. PMID:22779044

  12. Menopause and big data: Word Adjacency Graph modeling of menopause-related ChaCha data.

    PubMed

    Carpenter, Janet S; Groves, Doyle; Chen, Chen X; Otte, Julie L; Miller, Wendy R

    2017-07-01

    To detect and visualize salient queries about menopause using Big Data from ChaCha. We used Word Adjacency Graph (WAG) modeling to detect clusters and visualize the range of menopause-related topics and their mutual proximity. The subset of relevant queries was fully modeled. We split each query into token words (ie, meaningful words and phrases) and removed stopwords (ie, not meaningful functional words). The remaining words were considered in sequence to build summary tables of words and two and three-word phrases. Phrases occurring at least 10 times were used to build a network graph model that was iteratively refined by observing and removing clusters of unrelated content. We identified two menopause-related subsets of queries by searching for questions containing menopause and menopause-related terms (eg, climacteric, hot flashes, night sweats, hormone replacement). The first contained 263,363 queries from individuals aged 13 and older and the second contained 5,892 queries from women aged 40 to 62 years. In the first set, we identified 12 topic clusters: 6 relevant to menopause and 6 less relevant. In the second set, we identified 15 topic clusters: 11 relevant to menopause and 4 less relevant. Queries about hormones were pervasive within both WAG models. Many of the queries reflected low literacy levels and/or feelings of embarrassment. We modeled menopause-related queries posed by ChaCha users between 2009 and 2012. ChaCha data may be used on its own or in combination with other Big Data sources to identify patient-driven educational needs and create patient-centered interventions.

  13. Personalizing Information Retrieval Using Interaction Behaviors in Search Sessions in Different Types of Tasks

    ERIC Educational Resources Information Center

    Liu, Chang

    2012-01-01

    When using information retrieval (IR) systems, users often pose short and ambiguous query terms. It is critical for IR systems to obtain more accurate representation of users' information need, their document preferences, and the context they are working in, and then incorporate them into the design of the systems to tailor retrieval to…

  14. TREC 2013 Web Track Overview

    DTIC Science & Technology

    2014-01-30

    tradeoffs systems can achieve between effectiveness (overall gains across queries) and robustness (minimizing the probability of significant failure...by multiple users; less than 10 terms in length; and relatively low effective - ness scores across multiple commercial search engines (as of January...appear in the judgment (qrels) file. These relevance grades are also used for calculating graded effectiveness measures, except that a value of -2 is

  15. Generating PubMed Chemical Queries for Consumer Health Literature

    PubMed Central

    Loo, Jeffery; Chang, Hua Florence; Hochstein, Colette; Sun, Ying

    2005-01-01

    Two popular NLM resources that provide information for consumers about chemicals and their safety are the Household Products Database and Haz-Map. Search queries to PubMed via web links were generated from these databases. The query retrieves consumer health-oriented literature about adverse effects of chemicals. The retrieval was limited to a manageable set of 20 to 60 citations, achieved by successively applying increasing limits to the search until the desired number of references was reached. PMID:16779322

  16. BJUT at TREC 2015 Microblog Track: Real-Time Filtering Using Non-negative Matrix Factorization

    DTIC Science & Technology

    2015-11-20

    information to extend the query, al- leviates the problem of concept drift in query expansion. In User profiles Twitter Google Bing accurate ambiguity...index as the query expansion document set; second- ly,put the interest file in twitter search energy to get back the relevant twetts, the interest in...for clustering is demonstrated in Figure 2. We will be the result of the search energy Twitter as the original expression of interest, the initial

  17. Unhappy with internal corporate search? : learn tips and tricks for building a controlled vocabulary ontology.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arpin, Bettina Karin Schimanski; Jones, Brian S.; Bemesderfer, Joy

    2010-06-01

    Are your employees unhappy with internal corporate search? Frequent complaints include: too many results to sift through; results are unrelated/outdated; employees aren't sure which terms to search for. One way to improve intranet search is to implement a controlled vocabulary ontology. Employing this takes the guess work out of searching, makes search efficient and precise, educates employees about the lingo used within the corporation, and allows employees to contribute to the corpus of terms. It promotes internal corporate search to rival its superior sibling, internet search. We will cover our experiences, lessons learned, and conclusions from implementing a controlled vocabularymore » ontology at Sandia National Laboratories. The work focuses on construction of this ontology from the content perspective and the technical perspective. We'll discuss the following: (1) The tool we used to build a polyhierarchical taxonomy; (2) Examples of two methods of indexing the content: traditional 'back of the book' and folksonomy word-mapping; (3) Tips on how to build future search capabilities while building the basic controlled vocabulary; (4) How to implement the controlled vocabulary as an ontology that mimics Google's search suggestions; (5) Making the user experience more interactive and intuitive; and (6) Sorting suggestions based on preferred, alternate and related terms using SPARQL queries. In summary, future improvements will be presented, including permitting end-users to add, edit and remove terms, and filtering on different subject domains.« less

  18. Allie: a database and a search service of abbreviations and long forms

    PubMed Central

    Yamamoto, Yasunori; Yamaguchi, Atsuko; Bono, Hidemasa; Takagi, Toshihisa

    2011-01-01

    Many abbreviations are used in the literature especially in the life sciences, and polysemous abbreviations appear frequently, making it difficult to read and understand scientific papers that are outside of a reader’s expertise. Thus, we have developed Allie, a database and a search service of abbreviations and their long forms (a.k.a. full forms or definitions). Allie searches for abbreviations and their corresponding long forms in a database that we have generated based on all titles and abstracts in MEDLINE. When a user query matches an abbreviation, Allie returns all potential long forms of the query along with their bibliographic data (i.e. title and publication year). In addition, for each candidate, co-occurring abbreviations and a research field in which it frequently appears in the MEDLINE data are displayed. This function helps users learn about the context in which an abbreviation appears. To deal with synonymous long forms, we use a dictionary called GENA that contains domain-specific terms such as gene, protein or disease names along with their synonymic information. Conceptually identical domain-specific terms are regarded as one term, and then conceptually identical abbreviation-long form pairs are grouped taking into account their appearance in MEDLINE. To keep up with new abbreviations that are continuously introduced, Allie has an automatic update system. In addition, the database of abbreviations and their long forms with their corresponding PubMed IDs is constructed and updated weekly. Database URL: The Allie service is available at http://allie.dbcls.jp/. PMID:21498548

  19. Using a terminology server and consumer search phrases to help patients find physicians with particular expertise.

    PubMed

    Cole, Curtis L; Kanter, Andrew S; Cummens, Michael; Vostinar, Sean; Naeymi-Rad, Frank

    2004-01-01

    To design and implement a real world application using a terminology server to assist patients and physicians who use common language search terms to find specialist physicians with a particular clinical expertise. Terminology servers have been developed to help users encoding of information using complicated structured vocabulary during data entry tasks, such as recording clinical information. We describe a methodology using Personal Health Terminology trade mark and a SNOMED CT-based hierarchical concept server. Construction of a pilot mediated-search engine to assist users who use vernacular speech in querying data which is more technical than vernacular. This approach, which combines theoretical and practical requirements, provides a useful example of concept-based searching for physician referrals.

  20. Query-seeded iterative sequence similarity searching improves selectivity 5–20-fold

    PubMed Central

    Li, Weizhong; Lopez, Rodrigo

    2017-01-01

    Abstract Iterative similarity search programs, like psiblast, jackhmmer, and psisearch, are much more sensitive than pairwise similarity search methods like blast and ssearch because they build a position specific scoring model (a PSSM or HMM) that captures the pattern of sequence conservation characteristic to a protein family. But models are subject to contamination; once an unrelated sequence has been added to the model, homologs of the unrelated sequence will also produce high scores, and the model can diverge from the original protein family. Examination of alignment errors during psiblast PSSM contamination suggested a simple strategy for dramatically reducing PSSM contamination. psiblast PSSMs are built from the query-based multiple sequence alignment (MSA) implied by the pairwise alignments between the query model (PSSM, HMM) and the subject sequences in the library. When the original query sequence residues are inserted into gapped positions in the aligned subject sequence, the resulting PSSM rarely produces alignment over-extensions or alignments to unrelated sequences. This simple step, which tends to anchor the PSSM to the original query sequence and slightly increase target percent identity, can reduce the frequency of false-positive alignments more than 20-fold compared with psiblast and jackhmmer, with little loss in search sensitivity. PMID:27923999

  1. Integrating Smart Health in the US Health Care System: Infodemiology Study of Asthma Monitoring in the Google Era.

    PubMed

    Mavragani, Amaryllis; Sampri, Alexia; Sypsa, Karla; Tsagarakis, Konstantinos P

    2018-03-12

    With the internet's penetration and use constantly expanding, this vast amount of information can be employed in order to better assess issues in the US health care system. Google Trends, a popular tool in big data analytics, has been widely used in the past to examine interest in various medical and health-related topics and has shown great potential in forecastings, predictions, and nowcastings. As empirical relationships between online queries and human behavior have been shown to exist, a new opportunity to explore the behavior toward asthma-a common respiratory disease-is present. This study aimed at forecasting the online behavior toward asthma and examined the correlations between queries and reported cases in order to explore the possibility of nowcasting asthma prevalence in the United States using online search traffic data. Applying Holt-Winters exponential smoothing to Google Trends time series from 2004 to 2015 for the term "asthma," forecasts for online queries at state and national levels are estimated from 2016 to 2020 and validated against available Google query data from January 2016 to June 2017. Correlations among yearly Google queries and between Google queries and reported asthma cases are examined. Our analysis shows that search queries exhibit seasonality within each year and the relationships between each 2 years' queries are statistically significant (P<.05). Estimated forecasting models for a 5-year period (2016 through 2020) for Google queries are robust and validated against available data from January 2016 to June 2017. Significant correlations were found between (1) online queries and National Health Interview Survey lifetime asthma (r=-.82, P=.001) and current asthma (r=-.77, P=.004) rates from 2004 to 2015 and (2) between online queries and Behavioral Risk Factor Surveillance System lifetime (r=-.78, P=.003) and current asthma (r=-.79, P=.002) rates from 2004 to 2014. The correlations are negative, but lag analysis to identify the period of response cannot be employed until short-interval data on asthma prevalence are made available. Online behavior toward asthma can be accurately predicted, and significant correlations between online queries and reported cases exist. This method of forecasting Google queries can be used by health care officials to nowcast asthma prevalence by city, state, or nationally, subject to future availability of daily, weekly, or monthly data on reported cases. This method could therefore be used for improved monitoring and assessment of the needs surrounding the current population of patients with asthma. ©Amaryllis Mavragani, Alexia Sampri, Karla Sypsa, Konstantinos P Tsagarakis. Originally published in JMIR Public Health and Surveillance (http://publichealth.jmir.org), 12.03.2018.

  2. Seasonality in seeking mental health information on Google.

    PubMed

    Ayers, John W; Althouse, Benjamin M; Allem, Jon-Patrick; Rosenquist, J Niels; Ford, Daniel E

    2013-05-01

    Population mental health surveillance is an important challenge limited by resource constraints, long time lags in data collection, and stigma. One promising approach to bridge similar gaps elsewhere has been the use of passively generated digital data. This article assesses the viability of aggregate Internet search queries for real-time monitoring of several mental health problems, specifically in regard to seasonal patterns of seeking out mental health information. All Google mental health queries were monitored in the U.S. and Australia from 2006 to 2010. Additionally, queries were subdivided among those including the terms ADHD (attention deficit-hyperactivity disorder); anxiety; bipolar; depression; anorexia or bulimia (eating disorders); OCD (obsessive-compulsive disorder); schizophrenia; and suicide. A wavelet phase analysis was used to isolate seasonal components in the trends, and based on this model, the mean search volume in winter was compared with that in summer, as performed in 2012. All mental health queries followed seasonal patterns with winter peaks and summer troughs amounting to a 14% (95% CI=11%, 16%) difference in volume for the U.S. and 11% (95% CI=7%, 15%) for Australia. These patterns also were evident for all specific subcategories of illness or problem. For instance, seasonal differences ranged from 7% (95% CI=5%, 10%) for anxiety (followed by OCD, bipolar, depression, suicide, ADHD, schizophrenia) to 37% (95% CI=31%, 44%) for eating disorder queries in the U.S. Several nonclinical motivators for query seasonality (such as media trends or academic interest) were explored and rejected. Information seeking on Google across all major mental illnesses and/or problems followed seasonal patterns similar to those found for seasonal affective disorder. These are the first data published on patterns of seasonality in information seeking encompassing all the major mental illnesses, notable also because they likely would have gone undetected using traditional surveillance. Copyright © 2013. Published by Elsevier Inc.

  3. Searching and Filtering Tweets: CSIRO at the TREC 2012 Microblog Track

    DTIC Science & Technology

    2012-11-01

    stages. We first evaluate the effect of tweet corpus pre- processing in vanilla runs (no query expansion), and then assess the effect of query expansion...Effect of a vanilla run on D4 index (both realtime and non-real-time), and query expansion methods based on the submitted runs for two sets of queries

  4. MYCIN II: design and implementation of a therapy reference with complex content-based indexing.

    PubMed Central

    Kim, D. K.; Fagan, L. M.; Jones, K. T.; Berrios, D. C.; Yu, V. L.

    1998-01-01

    We describe the construction of MYCIN II, a prototype system that provides for content-based markup and search of a forthcoming clinical therapeutics textbook, Antimicrobial Therapy and Vaccines. Existing commercial search technology for digital references utilizes generic tools such as textword-based searches with geographical or statistical refinements. We suggest that the drawbacks of such systems significantly restrict their use in everyday clinical practice. This is in spite of the fact that there is a great need for the information contained within these same references. The system we describe is intended to supplement keyword searching so that certain important questions can be asked easily and can be answered reliably (in terms of precision and recall). Our method attacks this problem in a restricted domain of knowledge-clinical infectious disease. For example, we would like to be able to answer the class of questions exemplified by the following query: "What antimicrobial agents can be used to treat endocarditis caused by Eikenella corrodens?" We have compiled and analyzed a list of such questions to develop a concept-based markup scheme. This scheme was then applied within an HTML markup to electronically "highlight" passages from three textbook chapters. We constructed a functioning web-based search interface. Our system also provides semi-automated querying of PubMed using our concept markup and the user's actions as a guide. PMID:9929205

  5. MYCIN II: design and implementation of a therapy reference with complex content-based indexing.

    PubMed

    Kim, D K; Fagan, L M; Jones, K T; Berrios, D C; Yu, V L

    1998-01-01

    We describe the construction of MYCIN II, a prototype system that provides for content-based markup and search of a forthcoming clinical therapeutics textbook, Antimicrobial Therapy and Vaccines. Existing commercial search technology for digital references utilizes generic tools such as textword-based searches with geographical or statistical refinements. We suggest that the drawbacks of such systems significantly restrict their use in everyday clinical practice. This is in spite of the fact that there is a great need for the information contained within these same references. The system we describe is intended to supplement keyword searching so that certain important questions can be asked easily and can be answered reliably (in terms of precision and recall). Our method attacks this problem in a restricted domain of knowledge-clinical infectious disease. For example, we would like to be able to answer the class of questions exemplified by the following query: "What antimicrobial agents can be used to treat endocarditis caused by Eikenella corrodens?" We have compiled and analyzed a list of such questions to develop a concept-based markup scheme. This scheme was then applied within an HTML markup to electronically "highlight" passages from three textbook chapters. We constructed a functioning web-based search interface. Our system also provides semi-automated querying of PubMed using our concept markup and the user's actions as a guide.

  6. Clinician search behaviors may be influenced by search engine design.

    PubMed

    Lau, Annie Y S; Coiera, Enrico; Zrimec, Tatjana; Compton, Paul

    2010-06-30

    Searching the Web for documents using information retrieval systems plays an important part in clinicians' practice of evidence-based medicine. While much research focuses on the design of methods to retrieve documents, there has been little examination of the way different search engine capabilities influence clinician search behaviors. Previous studies have shown that use of task-based search engines allows for faster searches with no loss of decision accuracy compared with resource-based engines. We hypothesized that changes in search behaviors may explain these differences. In all, 75 clinicians (44 doctors and 31 clinical nurse consultants) were randomized to use either a resource-based or a task-based version of a clinical information retrieval system to answer questions about 8 clinical scenarios in a controlled setting in a university computer laboratory. Clinicians using the resource-based system could select 1 of 6 resources, such as PubMed; clinicians using the task-based system could select 1 of 6 clinical tasks, such as diagnosis. Clinicians in both systems could reformulate search queries. System logs unobtrusively capturing clinicians' interactions with the systems were coded and analyzed for clinicians' search actions and query reformulation strategies. The most frequent search action of clinicians using the resource-based system was to explore a new resource with the same query, that is, these clinicians exhibited a "breadth-first" search behaviour. Of 1398 search actions, clinicians using the resource-based system conducted 401 (28.7%, 95% confidence interval [CI] 26.37-31.11) in this way. In contrast, the majority of clinicians using the task-based system exhibited a "depth-first" search behavior in which they reformulated query keywords while keeping to the same task profiles. Of 585 search actions conducted by clinicians using the task-based system, 379 (64.8%, 95% CI 60.83-68.55) were conducted in this way. This study provides evidence that different search engine designs are associated with different user search behaviors.

  7. Developing A Web-based User Interface for Semantic Information Retrieval

    NASA Technical Reports Server (NTRS)

    Berrios, Daniel C.; Keller, Richard M.

    2003-01-01

    While there are now a number of languages and frameworks that enable computer-based systems to search stored data semantically, the optimal design for effective user interfaces for such systems is still uncle ar. Such interfaces should mask unnecessary query detail from users, yet still allow them to build queries of arbitrary complexity without significant restrictions. We developed a user interface supporting s emantic query generation for Semanticorganizer, a tool used by scient ists and engineers at NASA to construct networks of knowledge and dat a. Through this interface users can select node types, node attribute s and node links to build ad-hoc semantic queries for searching the S emanticOrganizer network.

  8. Thomas R. Cech, RNA, and Ribozymes

    Science.gov Websites

    RSS Archive Videos XML DOE R&D Accomplishments DOE R&D Accomplishments searchQuery × Find searchQuery x Find DOE R&D Acccomplishments Navigation dropdown arrow The Basics dropdown arrow Home About Physicists Nobel Chemists Medicine Nobels Explore dropdown arrow Insights Blog Archive SC Stories Snapshots R

  9. Performance of Point and Range Queries for In-memory Databases using Radix Trees on GPUs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alam, Maksudul; Yoginath, Srikanth B; Perumalla, Kalyan S

    In in-memory database systems augmented by hardware accelerators, accelerating the index searching operations can greatly increase the runtime performance of database queries. Recently, adaptive radix trees (ART) have been shown to provide very fast index search implementation on the CPU. Here, we focus on an accelerator-based implementation of ART. We present a detailed performance study of our GPU-based adaptive radix tree (GRT) implementation over a variety of key distributions, synthetic benchmarks, and actual keys from music and book data sets. The performance is also compared with other index-searching schemes on the GPU. GRT on modern GPUs achieves some of themore » highest rates of index searches reported in the literature. For point queries, a throughput of up to 106 million and 130 million lookups per second is achieved for sparse and dense keys, respectively. For range queries, GRT yields 600 million and 1000 million lookups per second for sparse and dense keys, respectively, on a large dataset of 64 million 32-bit keys.« less

  10. News trends and web search query of HIV/AIDS in Hong Kong.

    PubMed

    Chiu, Alice P Y; Lin, Qianying; He, Daihai

    2017-01-01

    The HIV epidemic in Hong Kong has worsened in recent years, with major contributions from high-risk subgroup of men who have sex with men (MSM). Internet use is prevalent among the majority of the local population, where they sought health information online. This study examines the impacts of HIV/AIDS and MSM news coverage on web search query in Hong Kong. Relevant news coverage about HIV/AIDS and MSM from January 1st, 2004 to December 31st, 2014 was obtained from the WiseNews databse. News trends were created by computing the number of relevant articles by type, topic, place of origin and sub-populations. We then obtained relevant search volumes from Google and analysed causality between news trends and Google Trends using Granger Causality test and orthogonal impulse function. We found that editorial news has an impact on "HIV" Google searches on HIV, with the search term popularity peaking at an average of two weeks after the news are published. Similarly, editorial news has an impact on the frequency of "AIDS" searches two weeks after. MSM-related news trends have a more fluctuating impact on "MSM" Google searches, although the time lag varies anywhere from one week later to ten weeks later. This infodemiological study shows that there is a positive impact of news trends on the online search behavior of HIV/AIDS or MSM-related issues for up to ten weeks after. Health promotional professionals could make use of this brief time window to tailor the timing of HIV awareness campaigns and public health interventions to maximise its reach and effectiveness.

  11. PlateRunner: A Search Engine to Identify EMR Boilerplates.

    PubMed

    Divita, Guy; Workman, T Elizabeth; Carter, Marjorie E; Redd, Andrew; Samore, Matthew H; Gundlapalli, Adi V

    2016-01-01

    Medical text contains boilerplated content, an artifact of pull-down forms from EMRs. Boilerplated content is the source of challenges for concept extraction on clinical text. This paper introduces PlateRunner, a search engine on boilerplates from the US Department of Veterans Affairs (VA) EMR. Boilerplates containing concepts should be identified and reviewed to recognize challenging formats, identify high yield document titles, and fine tune section zoning. This search engine has the capability to filter negated and asserted concepts, save and search query results. This tool can save queries, search results, and documents found for later analysis.

  12. How popular is waterpipe tobacco smoking? Findings from internet search queries

    PubMed Central

    Salloum, Ramzi G; Osman, Amira; Maziak, Wasim; Thrasher, James F

    2015-01-01

    Objectives Waterpipe tobacco smoking (WTS), a traditional tobacco consumption practice in the Middle East, is gaining popularity worldwide. Estimates of population-level interest in WTS over time are not documented. We assessed the popularity of WTS using World Wide Web search query results across four English-speaking countries. Methods We analysed trends in Google search queries related to WTS, comparing these trends with those for electronic cigarettes between 2004 and 2013 in Australia, Canada, the UK and the USA. Weekly search volumes were reported as percentages relative to the week with the highest volume of searches. Results Web-based searches for WTS have increased steadily since 2004 in all four countries. Search volume for WTS was higher than for e-cigarettes in three of the four nations, with the highest volume in the USA. Online searches were primarily targeted at WTS products for home use, followed by searches for WTS cafés/lounges. Conclusions Online demand for information on WTS-related products and venues is large and increasing. Given the rise in WTS popularity, increasing evidence of exposure-related harms, and relatively lax government regulation, WTS is a serious public health concern and could reach epidemic levels in Western societies. PMID:25052859

  13. Seeking Insights About Cycling Mood Disorders via Anonymized Search Logs

    PubMed Central

    White, Ryen W; Horvitz, Eric

    2014-01-01

    Background Mood disorders affect a significant portion of the general population. Cycling mood disorders are characterized by intermittent episodes (or events) of the disease. Objective Using anonymized Web search logs, we identify a population of people with significant interest in mood stabilizing drugs (MSD) and seek evidence of mood swings in this population. Methods We extracted queries to the Microsoft Bing search engine made by 20,046 Web searchers over six months, separately explored searcher demographics using data from a large external panel of users, and sought supporting information from people with mood disorders via a survey. We analyzed changes in information needs over time relative to searches on MSD. Results Queries for MSD focused on side effects and their relation to the disease. We found evidence of significant changes in search behavior and interests coinciding with days that MSD queries are made. These include large increases (>100%) in the access of nutrition information, commercial information, and adult materials. A survey of patients diagnosed with mood disorders provided evidence that repeated queries on MSD may come with exacerbations of mood disorder. A classifier predicting the occurrence of such queries one day before they are observed obtains strong performance (AUC=0.78). Conclusions Observed patterns in search behavior align with known behaviors and those highlighted by survey respondents. These observations suggest that searchers showing intensive interest in MSD may be patients who have been prescribed these drugs. Given behavioral dynamics, we surmise that the days on which MSD queries are made may coincide with commencement of mania or depression. Although we do not have data on mood changes and whether users have been diagnosed with bipolar illness, we see evidence of cycling in people who show interest in MSD and further show that we can predict impending shifts in behavior and interest. PMID:24568936

  14. Semantic technologies improving the recall and precision of the Mercury metadata search engine

    NASA Astrophysics Data System (ADS)

    Pouchard, L. C.; Cook, R. B.; Green, J.; Palanisamy, G.; Noy, N.

    2011-12-01

    The Mercury federated metadata system [1] was developed at the Oak Ridge National Laboratory Distributed Active Archive Center (ORNL DAAC), a NASA-sponsored effort holding datasets about biogeochemical dynamics, ecological data, and environmental processes. Mercury currently indexes over 100,000 records from several data providers conforming to community standards, e.g. EML, FGDC, FGDC Biological Profile, ISO 19115 and DIF. With the breadth of sciences represented in Mercury, the potential exists to address some key interdisciplinary scientific challenges related to climate change, its environmental and ecological impacts, and mitigation of these impacts. However, this wealth of metadata also hinders pinpointing datasets relevant to a particular inquiry. We implemented a semantic solution after concluding that traditional search approaches cannot improve the accuracy of the search results in this domain because: a) unlike everyday queries, scientific queries seek to return specific datasets with numerous parameters that may or may not be exposed to search (Deep Web queries); b) the relevance of a dataset cannot be judged by its popularity, as each scientific inquiry tends to be unique; and c)each domain science has its own terminology, more or less curated, consensual, and standardized depending on the domain. The same terms may refer to different concepts across domains (homonyms), but different terms mean the same thing (synonyms). Interdisciplinary research is arduous because an expert in a domain must become fluent in the language of another, just to find relevant datasets. Thus, we decided to use scientific ontologies because they can provide a context for a free-text search, in a way that string-based keywords never will. With added context, relevant datasets are more easily discoverable. To enable search and programmatic access to ontology entities in Mercury, we are using an instance of the BioPortal ontology repository. Mercury accesses ontology entities using the BioPortal REST API by passing a search parameter to BioPortal that may return domain context, parameter attribute, or entity annotations depending on the entity's associated ontological relationships. As Mercury's facetted search is popular with users, the results are displayed as facets. Unlike a facetted search however, the ontology-based solution implements both restrictions (improving precision) and expansions (improving recall) on the results of the initial search. For instance, "carbon" acquires a scientific context and additional key terms or phrases for discovering domain-specific datasets. A limitation of our solution is that the user must perform an additional step. Another limitation is that the quality of the newly discovered metadata is contingent upon the quality of the ontologies we use. Our solution leverages Mercury's federated capabilities to collect records from heterogeneous domains, and BioPortal's storage, curation and access capabilities for ontology entities. With minimal additional development, our approach builds on two mature systems for finding relevant datasets for interdisciplinary inquiries. We thus indicate a path forward for linking environmental, ecological and biological sciences. References: [1] Devarakonda, R., Palanisamy, G., Wilson, B. E., & Green, J. M. (2010). Mercury: reusable metadata management, data discovery and access system. Earth Science Informatics, 3(1-2), 87-94.

  15. Hybrid ontology for semantic information retrieval model using keyword matching indexing system.

    PubMed

    Uthayan, K R; Mala, G S Anandha

    2015-01-01

    Ontology is the process of growth and elucidation of concepts of an information domain being common for a group of users. Establishing ontology into information retrieval is a normal method to develop searching effects of relevant information users require. Keywords matching process with historical or information domain is significant in recent calculations for assisting the best match for specific input queries. This research presents a better querying mechanism for information retrieval which integrates the ontology queries with keyword search. The ontology-based query is changed into a primary order to predicate logic uncertainty which is used for routing the query to the appropriate servers. Matching algorithms characterize warm area of researches in computer science and artificial intelligence. In text matching, it is more dependable to study semantics model and query for conditions of semantic matching. This research develops the semantic matching results between input queries and information in ontology field. The contributed algorithm is a hybrid method that is based on matching extracted instances from the queries and information field. The queries and information domain is focused on semantic matching, to discover the best match and to progress the executive process. In conclusion, the hybrid ontology in semantic web is sufficient to retrieve the documents when compared to standard ontology.

  16. Hybrid Ontology for Semantic Information Retrieval Model Using Keyword Matching Indexing System

    PubMed Central

    Uthayan, K. R.; Anandha Mala, G. S.

    2015-01-01

    Ontology is the process of growth and elucidation of concepts of an information domain being common for a group of users. Establishing ontology into information retrieval is a normal method to develop searching effects of relevant information users require. Keywords matching process with historical or information domain is significant in recent calculations for assisting the best match for specific input queries. This research presents a better querying mechanism for information retrieval which integrates the ontology queries with keyword search. The ontology-based query is changed into a primary order to predicate logic uncertainty which is used for routing the query to the appropriate servers. Matching algorithms characterize warm area of researches in computer science and artificial intelligence. In text matching, it is more dependable to study semantics model and query for conditions of semantic matching. This research develops the semantic matching results between input queries and information in ontology field. The contributed algorithm is a hybrid method that is based on matching extracted instances from the queries and information field. The queries and information domain is focused on semantic matching, to discover the best match and to progress the executive process. In conclusion, the hybrid ontology in semantic web is sufficient to retrieve the documents when compared to standard ontology. PMID:25922851

  17. DOE Research and Development Accomplishments: Visions of Success I

    Science.gov Websites

    RSS Archive Videos XML DOE R&D Accomplishments DOE R&D Accomplishments searchQuery × Find searchQuery x Find DOE R&D Acccomplishments Navigation dropdown arrow The Basics dropdown arrow Home About Physicists Nobel Chemists Medicine Nobels Explore dropdown arrow Insights Blog Archive SC Stories Snapshots R

  18. DOE Research and Development Accomplishments Contact Us

    Science.gov Websites

    RSS Archive Videos XML DOE R&D Accomplishments DOE R&D Accomplishments searchQuery × Find searchQuery x Find DOE R&D Acccomplishments Navigation dropdown arrow The Basics dropdown arrow Home About Physicists Nobel Chemists Medicine Nobels Explore dropdown arrow Insights Blog Archive SC Stories Snapshots R

  19. DOE Research and Development Accomplishments QR Code

    Science.gov Websites

    RSS Archive Videos XML DOE R&D Accomplishments DOE R&D Accomplishments searchQuery × Find searchQuery x Find DOE R&D Acccomplishments Navigation dropdown arrow The Basics dropdown arrow Home About Physicists Nobel Chemists Medicine Nobels Explore dropdown arrow Insights Blog Archive SC Stories Snapshots R

  20. DOE Research and Development Accomplishments What's New

    Science.gov Websites

    RSS Archive Videos XML DOE R&D Accomplishments DOE R&D Accomplishments searchQuery × Find searchQuery x Find DOE R&D Acccomplishments Navigation dropdown arrow The Basics dropdown arrow Home About Physicists Nobel Chemists Medicine Nobels Explore dropdown arrow Insights Blog Archive SC Stories Snapshots R

  1. DOE Research and Development Accomplishments: Fast Facts

    Science.gov Websites

    RSS Archive Videos XML DOE R&D Accomplishments DOE R&D Accomplishments searchQuery × Find searchQuery x Find DOE R&D Acccomplishments Navigation dropdown arrow The Basics dropdown arrow Home About Physicists Nobel Chemists Medicine Nobels Explore dropdown arrow Insights Blog Archive SC Stories Snapshots R

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    IRIS is a search tool plug-in that is used to implement latent topic feedback for enhancing text navigation. It accepts a list of returned documents from an information retrieval wywtem that is generated from keyword search queries. Data is pulled directly from a topic information database and processed by IRIS to determine the most prominent and relevant topics, along with topic-ngrams, associated with the list of returned documents. User selected topics are then used to expand the query and presumabley refine the search results.

  3. Enriching text with images and colored light

    NASA Astrophysics Data System (ADS)

    Sekulovski, Dragan; Geleijnse, Gijs; Kater, Bram; Korst, Jan; Pauws, Steffen; Clout, Ramon

    2008-01-01

    We present an unsupervised method to enrich textual applications with relevant images and colors. The images are collected by querying large image repositories and subsequently the colors are computed using image processing. A prototype system based on this method is presented where the method is applied to song lyrics. In combination with a lyrics synchronization algorithm the system produces a rich multimedia experience. In order to identify terms within the text that may be associated with images and colors, we select noun phrases using a part of speech tagger. Large image repositories are queried with these terms. Per term representative colors are extracted using the collected images. Hereto, we either use a histogram-based or a mean shift-based algorithm. The representative color extraction uses the non-uniform distribution of the colors found in the large repositories. The images that are ranked best by the search engine are displayed on a screen, while the extracted representative colors are rendered on controllable lighting devices in the living room. We evaluate our method by comparing the computed colors to standard color representations of a set of English color terms. A second evaluation focuses on the distance in color between a queried term in English and its translation in a foreign language. Based on results from three sets of terms, a measure of suitability of a term for color extraction based on KL Divergence is proposed. Finally, we compare the performance of the algorithm using either the automatically indexed repository of Google Images and the manually annotated Flickr.com. Based on the results of these experiments, we conclude that using the presented method we can compute the relevant color for a term using a large image repository and image processing.

  4. Effect of Tobacco Control Policies on Information Seeking for Smoking Cessation in the Netherlands: A Google Trends Study

    PubMed Central

    Troelstra, Sigrid A.; Bosdriesz, Jizzo R.; de Boer, Michiel R.; Kunst, Anton E.

    2016-01-01

    Background The impact of tobacco control policies on measures of smoking cessation behaviour has often been studied, yet there is little information on their precise magnitude and duration. This study aims to measure the magnitude and timing of the impact of Dutch tobacco control policies on the rate of searching for information on smoking cessation, using Google Trends search query data. Methods An interrupted time series analysis was used to examine the effect of two types of policies (smoke-free legislation and reimbursement of smoking cessation support (SCS)) on Google searches for ‘quit smoking’. Google Trends data were seasonally adjusted and analysed using autoregressive integrated moving average (ARIMA) modelling. Multiple effect periods were modelled as dummy variables and analysed simultaneously to examine the magnitude and duration of the effect of each intervention. The same analysis was repeated with Belgian search query data as a control group, since Belgium is the country most comparable to the Netherlands in terms of geography, language, history and culture. Results A significant increase in relative search volume (RSV) was found from one to four weeks (21–41%) after the introduction of the smoking ban in restaurants and bars in the Netherlands in 2008. The introduction of SCS reimbursement in 2011 was associated with a significant increase of RSV (16–22%) in the Netherlands after 3 to 52 weeks. The reintroduction of SCS in 2013 was associated with a significant increase of RSV (9–21%) in the Netherlands from 3 to 32 weeks after the intervention. No effects were found in the Belgian control group for the smoking ban and the reintroduction of SCS in 2013, but there was a significant increase in RSV shortly before and after the introduction of SCS in 2011. Conclusions These findings suggest that these tobacco control policies have short-term or medium-term effects on the rate of searching for information on smoking cessation, and therefore potentially on smoking cessation rates. PMID:26849567

  5. An Improvement to a Multi-Client Searchable Encryption Scheme for Boolean Queries.

    PubMed

    Jiang, Han; Li, Xue; Xu, Qiuliang

    2016-12-01

    The migration of e-health systems to the cloud computing brings huge benefits, as same as some security risks. Searchable Encryption(SE) is a cryptography encryption scheme that can protect the confidentiality of data and utilize the encrypted data at the same time. The SE scheme proposed by Cash et al. in Crypto2013 and its follow-up work in CCS2013 are most practical SE Scheme that support Boolean queries at present. In their scheme, the data user has to generate the search tokens by the counter number one by one and interact with server repeatedly, until he meets the correct one, or goes through plenty of tokens to illustrate that there is no search result. In this paper, we make an improvement to their scheme. We allow server to send back some information and help the user to generate exact search token in the search phase. In our scheme, there are only two round interaction between server and user, and the search token has [Formula: see text] elements, where n is the keywords number in query expression, and [Formula: see text] is the minimum documents number that contains one of keyword in query expression, and the computation cost of server is [Formula: see text] modular exponentiation operation.

  6. Privacy-Preserving Location-Based Query Using Location Indexes and Parallel Searching in Distributed Networks

    PubMed Central

    Liu, Lei; Zhao, Jing

    2014-01-01

    An efficient location-based query algorithm of protecting the privacy of the user in the distributed networks is given. This algorithm utilizes the location indexes of the users and multiple parallel threads to search and select quickly all the candidate anonymous sets with more users and their location information with more uniform distribution to accelerate the execution of the temporal-spatial anonymous operations, and it allows the users to configure their custom-made privacy-preserving location query requests. The simulated experiment results show that the proposed algorithm can offer simultaneously the location query services for more users and improve the performance of the anonymous server and satisfy the anonymous location requests of the users. PMID:24790579

  7. Privacy-preserving location-based query using location indexes and parallel searching in distributed networks.

    PubMed

    Zhong, Cheng; Liu, Lei; Zhao, Jing

    2014-01-01

    An efficient location-based query algorithm of protecting the privacy of the user in the distributed networks is given. This algorithm utilizes the location indexes of the users and multiple parallel threads to search and select quickly all the candidate anonymous sets with more users and their location information with more uniform distribution to accelerate the execution of the temporal-spatial anonymous operations, and it allows the users to configure their custom-made privacy-preserving location query requests. The simulated experiment results show that the proposed algorithm can offer simultaneously the location query services for more users and improve the performance of the anonymous server and satisfy the anonymous location requests of the users.

  8. Using digital surveillance to examine the impact of public figure pancreatic cancer announcements on media and search query outcomes.

    PubMed

    Noar, Seth M; Ribisl, Kurt M; Althouse, Benjamin M; Willoughby, Jessica Fitts; Ayers, John W

    2013-12-01

    Announcements of cancer diagnoses from public figures may stimulate cancer information seeking and media coverage about cancer. This study used digital surveillance to quantify the effects of pancreatic cancer public figure announcements on online cancer information seeking and cancer media coverage. We compiled a list of public figures (N = 25) who had been diagnosed with or had died from pancreatic cancer between 2006 and 2011. We specified interrupted time series models using data from Google Trends to examine search query shifts for pancreatic cancer and other cancers. Weekly media coverage archived on Google News were also analyzed. Most public figures' pancreatic cancer announcements corresponded with no appreciable change in pancreatic cancer search queries or media coverage. In contrast, Patrick Swayze's diagnosis was associated with a 285% (95% confidence interval [CI]: 212 to 360) increase in pancreatic cancer search queries, though it was only weakly associated with increases in pancreatic cancer media coverage. Steve Jobs's death was associated with a 197% (95% CI: 131 to 266) increase in pancreatic cancer queries and a 3517% (95% CI: 2882 to 4492) increase in pancreatic cancer media coverage. In general, a doubling in pancreatic cancer-specific media coverage corresponded with a 325% increase in pancreatic cancer queries. Digital surveillance is an important tool for future cancer control research and practice. The current application of these methods suggested that pancreatic cancer announcements (diagnosis or death) by particular public figures stimulated media coverage of and online information seeking for pancreatic cancer.

  9. Persistent Identifiers for Improved Accessibility for Linked Data Querying

    NASA Astrophysics Data System (ADS)

    Shepherd, A.; Chandler, C. L.; Arko, R. A.; Fils, D.; Jones, M. B.; Krisnadhi, A.; Mecum, B.

    2016-12-01

    The adoption of linked open data principles within the geosciences has increased the amount of accessible information available on the Web. However, this data is difficult to consume for those who are unfamiliar with Semantic Web technologies such as Web Ontology Language (OWL), Resource Description Framework (RDF) and SPARQL - the RDF query language. Consumers would need to understand the structure of the data and how to efficiently query it. Furthermore, understanding how to query doesn't solve problems of poor precision and recall in search results. For consumers unfamiliar with the data, full-text searches are most accessible, but not ideal as they arrest the advantages of data disambiguation and co-reference resolution efforts. Conversely, URI searches across linked data can deliver improved search results, but knowledge of these exact URIs may remain difficult to obtain. The increased adoption of Persistent Identifiers (PIDs) can lead to improved linked data querying by a wide variety of consumers. Because PIDs resolve to a single entity, they are an excellent data point for disambiguating content. At the same time, PIDs are more accessible and prominent than a single data provider's linked data URI. When present in linked open datasets, PIDs provide balance between the technical and social hurdles of linked data querying as evidenced by the NSF EarthCube GeoLink project. The GeoLink project, funded by NSF's EarthCube initiative, have brought together data repositories include content from field expeditions, laboratory analyses, journal publications, conference presentations, theses/reports, and funding awards that span scientific studies from marine geology to marine ecosystems and biogeochemistry to paleoclimatology.

  10. Combinatorial Fusion Analysis for Meta Search Information Retrieval

    NASA Astrophysics Data System (ADS)

    Hsu, D. Frank; Taksa, Isak

    Leading commercial search engines are built as single event systems. In response to a particular search query, the search engine returns a single list of ranked search results. To find more relevant results the user must frequently try several other search engines. A meta search engine was developed to enhance the process of multi-engine querying. The meta search engine queries several engines at the same time and fuses individual engine results into a single search results list. The fusion of multiple search results has been shown (mostly experimentally) to be highly effective. However, the question of why and how the fusion should be done still remains largely unanswered. In this chapter, we utilize the combinatorial fusion analysis proposed by Hsu et al. to analyze combination and fusion of multiple sources of information. A rank/score function is used in the design and analysis of our framework. The framework provides a better understanding of the fusion phenomenon in information retrieval. For example, to improve the performance of the combined multiple scoring systems, it is necessary that each of the individual scoring systems has relatively high performance and the individual scoring systems are diverse. Additionally, we illustrate various applications of the framework using two examples from the information retrieval domain.

  11. Discovering biomedical semantic relations in PubMed queries for information retrieval and database curation

    PubMed Central

    Huang, Chung-Chi; Lu, Zhiyong

    2016-01-01

    Identifying relevant papers from the literature is a common task in biocuration. Most current biomedical literature search systems primarily rely on matching user keywords. Semantic search, on the other hand, seeks to improve search accuracy by understanding the entities and contextual relations in user keywords. However, past research has mostly focused on semantically identifying biological entities (e.g. chemicals, diseases and genes) with little effort on discovering semantic relations. In this work, we aim to discover biomedical semantic relations in PubMed queries in an automated and unsupervised fashion. Specifically, we focus on extracting and understanding the contextual information (or context patterns) that is used by PubMed users to represent semantic relations between entities such as ‘CHEMICAL-1 compared to CHEMICAL-2.’ With the advances in automatic named entity recognition, we first tag entities in PubMed queries and then use tagged entities as knowledge to recognize pattern semantics. More specifically, we transform PubMed queries into context patterns involving participating entities, which are subsequently projected to latent topics via latent semantic analysis (LSA) to avoid the data sparseness and specificity issues. Finally, we mine semantically similar contextual patterns or semantic relations based on LSA topic distributions. Our two separate evaluation experiments of chemical-chemical (CC) and chemical–disease (CD) relations show that the proposed approach significantly outperforms a baseline method, which simply measures pattern semantics by similarity in participating entities. The highest performance achieved by our approach is nearly 0.9 and 0.85 respectively for the CC and CD task when compared against the ground truth in terms of normalized discounted cumulative gain (nDCG), a standard measure of ranking quality. These results suggest that our approach can effectively identify and return related semantic patterns in a ranked order covering diverse bio-entity relations. To assess the potential utility of our automated top-ranked patterns of a given relation in semantic search, we performed a pilot study on frequently sought semantic relations in PubMed and observed improved literature retrieval effectiveness based on post-hoc human relevance evaluation. Further investigation in larger tests and in real-world scenarios is warranted. PMID:27016698

  12. An intelligent user interface for browsing satellite data catalogs

    NASA Technical Reports Server (NTRS)

    Cromp, Robert F.; Crook, Sharon

    1989-01-01

    A large scale domain-independent spatial data management expert system that serves as a front-end to databases containing spatial data is described. This system is unique for two reasons. First, it uses spatial search techniques to generate a list of all the primary keys that fall within a user's spatial constraints prior to invoking the database management system, thus substantially decreasing the amount of time required to answer a user's query. Second, a domain-independent query expert system uses a domain-specific rule base to preprocess the user's English query, effectively mapping a broad class of queries into a smaller subset that can be handled by a commercial natural language processing system. The methods used by the spatial search module and the query expert system are explained, and the system architecture for the spatial data management expert system is described. The system is applied to data from the International Ultraviolet Explorer (IUE) satellite, and results are given.

  13. Searching for randomized controlled trials and systematic reviews on exercise. A descriptive study.

    PubMed

    Grande, Antonio José; Hoffmann, Tammy; Glasziou, Paul

    2015-01-01

    The current paradigm of science is to accumulate as much research data as possible, with less thought given to navigation or synthesis of the resulting mass, which hampers locating and using the research. The aim here was to describe the number of randomized controlled trials (RCTs) and systematic reviews (SRs) focusing on exercise, and their journal sources, that have been indexed in PubMed over time. Descriptive study conducted at Bond University, Australia. To find RCTs, a search was conducted in PubMed Clinical Queries, using the category "Therapy" and the Medical Subject Headings (MeSH) term "Exercise". To find SRs, a search was conducted in PubMed Clinical Queries, using the category "Therapy", the MeSH term "Exercise" and various methodological filters. Up until 2011, 9,354 RCTs about exercise were published in 1,250 journals and 1,262 SRs in 513 journals. Journals in the area of Sports Science published the greatest number of RCTs and journals categorized as belonging to "Other health professions" area (for example nursing or psychology) published the greatest number of SRs. The Cochrane Database of Systematic Reviews was the principal source for SRs, with 9.8% of the total, while the Journal of Strength and Conditioning Research and Medicine & Science in Sports & Exercise published 4.4% and 5.0% of the RCTs, respectively. The rapid growth and resulting scatter of RCTs and SRs on exercise presents challenges for locating and using this research. Solutions for this issue need to be considered.

  14. SPLICE: A program to assemble partial query solutions from three-dimensional database searches into novel ligands

    NASA Astrophysics Data System (ADS)

    Ho, Chris M. W.; Marshall, Garland R.

    1993-12-01

    SPLICE is a program that processes partial query solutions retrieved from 3D, structural databases to generate novel, aggregate ligands. It is designed to interface with the database searching program FOUNDATION, which retrieves fragments containing any combination of a user-specified minimum number of matching query elements. SPLICE eliminates aspects of structures that are physically incapable of binding within the active site. Then, a systematic rule-based procedure is performed upon the remaining fragments to ensure receptor complementarity. All modifications are automated and remain transparent to the user. Ligands are then assembled by linking components into composite structures through overlapping bonds. As a control experiment, FOUNDATION and SPLICE were used to reconstruct a know HIV-1 protease inhibitor after it had been fragmented, reoriented, and added to a sham database of fifty different small molecules. To illustrate the capabilities of this program, a 3D search query containing the pharmacophoric elements of an aspartic proteinase-inhibitor crystal complex was searched using FOUNDATION against a subset of the Cambridge Structural Database. One hundred thirty-one compounds were retrieved, each containing any combination of at least four query elements. Compounds were automatically screened and edited for receptor complementarity. Numerous combinations of fragments were discovered that could be linked to form novel structures, containing a greater number of pharmacophoric elements than any single retrieved fragment.

  15. A novel visualization model for web search results.

    PubMed

    Nguyen, Tien N; Zhang, Jin

    2006-01-01

    This paper presents an interactive visualization system, named WebSearchViz, for visualizing the Web search results and acilitating users' navigation and exploration. The metaphor in our model is the solar system with its planets and asteroids revolving around the sun. Location, color, movement, and spatial distance of objects in the visual space are used to represent the semantic relationships between a query and relevant Web pages. Especially, the movement of objects and their speeds add a new dimension to the visual space, illustrating the degree of relevance among a query and Web search results in the context of users' subjects of interest. By interacting with the visual space, users are able to observe the semantic relevance between a query and a resulting Web page with respect to their subjects of interest, context information, or concern. Users' subjects of interest can be dynamically changed, redefined, added, or deleted from the visual space.

  16. Faceted Visualization of Three Dimensional Neuroanatomy By Combining Ontology with Faceted Search

    PubMed Central

    Veeraraghavan, Harini; Miller, James V.

    2013-01-01

    In this work, we present a faceted-search based approach for visualization of anatomy by combining a three dimensional digital atlas with an anatomy ontology. Specifically, our approach provides a drill-down search interface that exposes the relevant pieces of information (obtained by searching the ontology) for a user query. Hence, the user can produce visualizations starting with minimally specified queries. Furthermore, by automatically translating the user queries into the controlled terminology our approach eliminates the need for the user to use controlled terminology. We demonstrate the scalability of our approach using an abdominal atlas and the same ontology. We implemented our visualization tool on the opensource 3D Slicer software. We present results of our visualization approach by combining a modified Foundational Model of Anatomy (FMA) ontology with the Surgical Planning Laboratory (SPL) Brain 3D digital atlas, and geometric models specific to patients computed using the SPL brain tumor dataset. PMID:24006207

  17. Faceted visualization of three dimensional neuroanatomy by combining ontology with faceted search.

    PubMed

    Veeraraghavan, Harini; Miller, James V

    2014-04-01

    In this work, we present a faceted-search based approach for visualization of anatomy by combining a three dimensional digital atlas with an anatomy ontology. Specifically, our approach provides a drill-down search interface that exposes the relevant pieces of information (obtained by searching the ontology) for a user query. Hence, the user can produce visualizations starting with minimally specified queries. Furthermore, by automatically translating the user queries into the controlled terminology our approach eliminates the need for the user to use controlled terminology. We demonstrate the scalability of our approach using an abdominal atlas and the same ontology. We implemented our visualization tool on the opensource 3D Slicer software. We present results of our visualization approach by combining a modified Foundational Model of Anatomy (FMA) ontology with the Surgical Planning Laboratory (SPL) Brain 3D digital atlas, and geometric models specific to patients computed using the SPL brain tumor dataset.

  18. A method of searching for related literature on protein structure analysis by considering a user's intention

    PubMed Central

    2015-01-01

    Background In recent years, with advances in techniques for protein structure analysis, the knowledge about protein structure and function has been published in a vast number of articles. A method to search for specific publications from such a large pool of articles is needed. In this paper, we propose a method to search for related articles on protein structure analysis by using an article itself as a query. Results Each article is represented as a set of concepts in the proposed method. Then, by using similarities among concepts formulated from databases such as Gene Ontology, similarities between articles are evaluated. In this framework, the desired search results vary depending on the user's search intention because a variety of information is included in a single article. Therefore, the proposed method provides not only one input article (primary article) but also additional articles related to it as an input query to determine the search intention of the user, based on the relationship between two query articles. In other words, based on the concepts contained in the input article and additional articles, we actualize a relevant literature search that considers user intention by varying the degree of attention given to each concept and modifying the concept hierarchy graph. Conclusions We performed an experiment to retrieve relevant papers from articles on protein structure analysis registered in the Protein Data Bank by using three query datasets. The experimental results yielded search results with better accuracy than when user intention was not considered, confirming the effectiveness of the proposed method. PMID:25952498

  19. Method and system for efficiently searching an encoded vector index

    DOEpatents

    Bui, Thuan Quang; Egan, Randy Lynn; Kathmann, Kevin James

    2001-09-04

    Method and system aspects for efficiently searching an encoded vector index are provided. The aspects include the translation of a search query into a candidate bitmap, and the mapping of data from the candidate bitmap into a search result bitmap according to entry values in the encoded vector index. Further, the translation includes the setting of a bit in the candidate bitmap for each entry in a symbol table that corresponds to candidate of the search query. Also included in the mapping is the identification of a bit value in the candidate bitmap pointed to by an entry in an encoded vector.

  20. LETTER TO THE EDITOR: Optimization of partial search

    NASA Astrophysics Data System (ADS)

    Korepin, Vladimir E.

    2005-11-01

    A quantum Grover search algorithm can find a target item in a database faster than any classical algorithm. One can trade accuracy for speed and find a part of the database (a block) containing the target item even faster; this is partial search. A partial search algorithm was recently suggested by Grover and Radhakrishnan. Here we optimize it. Efficiency of the search algorithm is measured by the number of queries to the oracle. The author suggests a new version of the Grover-Radhakrishnan algorithm which uses a minimal number of such queries. The algorithm can run on the same hardware that is used for the usual Grover algorithm.

  1. Architecture for knowledge-based and federated search of online clinical evidence.

    PubMed

    Coiera, Enrico; Walther, Martin; Nguyen, Ken; Lovell, Nigel H

    2005-10-24

    It is increasingly difficult for clinicians to keep up-to-date with the rapidly growing biomedical literature. Online evidence retrieval methods are now seen as a core tool to support evidence-based health practice. However, standard search engine technology is not designed to manage the many different types of evidence sources that are available or to handle the very different information needs of various clinical groups, who often work in widely different settings. The objectives of this paper are (1) to describe the design considerations and system architecture of a wrapper-mediator approach to federate search system design, including the use of knowledge-based, meta-search filters, and (2) to analyze the implications of system design choices on performance measurements. A trial was performed to evaluate the technical performance of a federated evidence retrieval system, which provided access to eight distinct online resources, including e-journals, PubMed, and electronic guidelines. The Quick Clinical system architecture utilized a universal query language to reformulate queries internally and utilized meta-search filters to optimize search strategies across resources. We recruited 227 family physicians from across Australia who used the system to retrieve evidence in a routine clinical setting over a 4-week period. The total search time for a query was recorded, along with the duration of individual queries sent to different online resources. Clinicians performed 1662 searches over the trial. The average search duration was 4.9 +/- 3.2 s (N = 1662 searches). Mean search duration to the individual sources was between 0.05 s and 4.55 s. Average system time (ie, system overhead) was 0.12 s. The relatively small system overhead compared to the average time it takes to perform a search for an individual source shows that the system achieves a good trade-off between performance and reliability. Furthermore, despite the additional effort required to incorporate the capabilities of each individual source (to improve the quality of search results), system maintenance requires only a small additional overhead.

  2. Lyceum: A Multi-Protocol Digital Library Gateway

    NASA Technical Reports Server (NTRS)

    Maa, Ming-Hokng; Nelson, Michael L.; Esler, Sandra L.

    1997-01-01

    Lyceum is a prototype scalable query gateway that provides a logically central interface to multi-protocol and physically distributed, digital libraries of scientific and technical information. Lyceum processes queries to multiple syntactically distinct search engines used by various distributed information servers from a single logically central interface without modification of the remote search engines. A working prototype (http://www.larc.nasa.gov/lyceum/) demonstrates the capabilities, potentials, and advantages of this type of meta-search engine by providing access to over 50 servers covering over 20 disciplines.

  3. Babesia bovis expresses Bbo-6cys-E, a member of a novel gene family that is homologous to the 6-cys family of Plasmodium

    USDA-ARS?s Scientific Manuscript database

    A novel Babesia bovis gene family encoding proteins with similarities to the Plasmodium 6cys protein family was identified by TBLASTN searches of the Babesia bovis genome using the sequence of the P. falciparum PFS230 protein as query, and was termed Bbo-6cys gene family. The Bbo-cys6 gene family co...

  4. An Index to All "Query" Computer Searches Completed from July 1973 to June 1974. Search Number 0403-0619. Information Series No. 24.

    ERIC Educational Resources Information Center

    Wilder, Dolores J., Comp.; Hines, Rella, Comp.

    The Tennessee Research Coordinating Unit (RCU) has implemented a computerized information retrieval system known as "Query," which allows for the retrieval of documents indexed in Research in Education (RIE), Current Index to Journals in Education (CIJE), and Abstracts of Instructional and Research Materials (AIM/ARM). The document…

  5. A two-level cache for distributed information retrieval in search engines.

    PubMed

    Zhang, Weizhe; He, Hui; Ye, Jianwei

    2013-01-01

    To improve the performance of distributed information retrieval in search engines, we propose a two-level cache structure based on the queries of the users' logs. We extract the highest rank queries of users from the static cache, in which the queries are the most popular. We adopt the dynamic cache as an auxiliary to optimize the distribution of the cache data. We propose a distribution strategy of the cache data. The experiments prove that the hit rate, the efficiency, and the time consumption of the two-level cache have advantages compared with other structures of cache.

  6. A Two-Level Cache for Distributed Information Retrieval in Search Engines

    PubMed Central

    Zhang, Weizhe; He, Hui; Ye, Jianwei

    2013-01-01

    To improve the performance of distributed information retrieval in search engines, we propose a two-level cache structure based on the queries of the users' logs. We extract the highest rank queries of users from the static cache, in which the queries are the most popular. We adopt the dynamic cache as an auxiliary to optimize the distribution of the cache data. We propose a distribution strategy of the cache data. The experiments prove that the hit rate, the efficiency, and the time consumption of the two-level cache have advantages compared with other structures of cache. PMID:24363621

  7. Are all quantitative postmarketing signal detection methods equal? Performance characteristics of logistic regression and Multi-item Gamma Poisson Shrinker.

    PubMed

    Berlin, Conny; Blanch, Carles; Lewis, David J; Maladorno, Dionigi D; Michel, Christiane; Petrin, Michael; Sarp, Severine; Close, Philippe

    2012-06-01

    The detection of safety signals with medicines is an essential activity to protect public health. Despite widespread acceptance, it is unclear whether recently applied statistical algorithms provide enhanced performance characteristics when compared with traditional systems. Novartis has adopted a novel system for automated signal detection on the basis of disproportionality methods within a safety data mining application (Empirica™ Signal System [ESS]). ESS uses two algorithms for routine analyses: empirical Bayes Multi-item Gamma Poisson Shrinker and logistic regression (LR). A model was developed comprising 14 medicines, categorized as "new" or "established." A standard was prepared on the basis of safety findings selected from traditional sources. ESS results were compared with the standard to calculate the positive predictive value (PPV), specificity, and sensitivity. PPVs of the lower one-sided 5% and 0.05% confidence limits of the Bayes geometric mean (EB05) and of the LR odds ratio (LR0005) almost coincided for all the drug-event combinations studied. There was no obvious difference comparing the PPV of the leading Medical Dictionary for Regulatory Activities (MedDRA) terms to the PPV for all terms. The PPV of narrow MedDRA query searches was higher than that for broad searches. The widely used threshold value of EB05 = 2.0 or LR0005 = 2.0 together with more than three spontaneous reports of the drug-event combination produced balanced results for PPV, sensitivity, and specificity. Consequently, performance characteristics were best for leading terms with narrow MedDRA query searches irrespective of applying Multi-item Gamma Poisson Shrinker or LR at a threshold value of 2.0. This research formed the basis for the configuration of ESS for signal detection at Novartis. Copyright © 2011 John Wiley & Sons, Ltd.

  8. LAILAPS-QSM: A RESTful API and JAVA library for semantic query suggestions.

    PubMed

    Chen, Jinbo; Scholz, Uwe; Zhou, Ruonan; Lange, Matthias

    2018-03-01

    In order to access and filter content of life-science databases, full text search is a widely applied query interface. But its high flexibility and intuitiveness is paid for with potentially imprecise and incomplete query results. To reduce this drawback, query assistance systems suggest those combinations of keywords with the highest potential to match most of the relevant data records. Widespread approaches are syntactic query corrections that avoid misspelling and support expansion of words by suffixes and prefixes. Synonym expansion approaches apply thesauri, ontologies, and query logs. All need laborious curation and maintenance. Furthermore, access to query logs is in general restricted. Approaches that infer related queries by their query profile like research field, geographic location, co-authorship, affiliation etc. require user's registration and its public accessibility that contradict privacy concerns. To overcome these drawbacks, we implemented LAILAPS-QSM, a machine learning approach that reconstruct possible linguistic contexts of a given keyword query. The context is referred from the text records that are stored in the databases that are going to be queried or extracted for a general purpose query suggestion from PubMed abstracts and UniProt data. The supplied tool suite enables the pre-processing of these text records and the further computation of customized distributed word vectors. The latter are used to suggest alternative keyword queries. An evaluated of the query suggestion quality was done for plant science use cases. Locally present experts enable a cost-efficient quality assessment in the categories trait, biological entity, taxonomy, affiliation, and metabolic function which has been performed using ontology term similarities. LAILAPS-QSM mean information content similarity for 15 representative queries is 0.70, whereas 34% have a score above 0.80. In comparison, the information content similarity for human expert made query suggestions is 0.90. The software is either available as tool set to build and train dedicated query suggestion services or as already trained general purpose RESTful web service. The service uses open interfaces to be seamless embeddable into database frontends. The JAVA implementation uses highly optimized data structures and streamlined code to provide fast and scalable response for web service calls. The source code of LAILAPS-QSM is available under GNU General Public License version 2 in Bitbucket GIT repository: https://bitbucket.org/ipk_bit_team/bioescorte-suggestion.

  9. News trends and web search query of HIV/AIDS in Hong Kong

    PubMed Central

    Chiu, Alice P. Y.; Lin, Qianying

    2017-01-01

    Background The HIV epidemic in Hong Kong has worsened in recent years, with major contributions from high-risk subgroup of men who have sex with men (MSM). Internet use is prevalent among the majority of the local population, where they sought health information online. This study examines the impacts of HIV/AIDS and MSM news coverage on web search query in Hong Kong. Methods Relevant news coverage about HIV/AIDS and MSM from January 1st, 2004 to December 31st, 2014 was obtained from the WiseNews databse. News trends were created by computing the number of relevant articles by type, topic, place of origin and sub-populations. We then obtained relevant search volumes from Google and analysed causality between news trends and Google Trends using Granger Causality test and orthogonal impulse function. Results We found that editorial news has an impact on “HIV” Google searches on HIV, with the search term popularity peaking at an average of two weeks after the news are published. Similarly, editorial news has an impact on the frequency of “AIDS” searches two weeks after. MSM-related news trends have a more fluctuating impact on “MSM” Google searches, although the time lag varies anywhere from one week later to ten weeks later. Conclusions This infodemiological study shows that there is a positive impact of news trends on the online search behavior of HIV/AIDS or MSM-related issues for up to ten weeks after. Health promotional professionals could make use of this brief time window to tailor the timing of HIV awareness campaigns and public health interventions to maximise its reach and effectiveness. PMID:28922376

  10. An Information Infrastructure for Coastal Models and Data

    NASA Astrophysics Data System (ADS)

    Hardin, D.; Keiser, K.; Conover, H.; Graves, S.

    2007-12-01

    Advances in semantics and visualization have given rise to new capabilities for the location, manipulation, integration, management and display of data and information in and across domains. An example of these capabilities is illustrated by a coastal restoration project that utilizes satellite, in-situ data and hydrodynamic model output to address seagrass habitat restoration in the Northern Gulf of Mexico. In this project a standard stressor conceptual model was implemented as an ontology in addition to the typical CMAP diagram. The ontology captures the elements of the seagrass conceptual model as well as the relationships between them. Noesis, developed by the University of Alabama in Huntsville, is an application that provides a simple but powerful way to search and organize data and information represented by ontologies. Noesis uses domain ontologies to help scope search queries to ensure that search results are both accurate and complete. Semantics are captured by refining the query terms to cover synonyms, specializations, generalizations and related concepts. As a resource aggregator Noesis categorizes search results returned from multiple, concurrent search engines such as Google, Yahoo, and Ask.com. Search results are further directed by accessing domain specific catalogs that include outputs from hydrodynamic and other models. Embedded within the search results are links that invoke applications such as web map displays, animation tools and virtual globe applications such as Google Earth. In the seagrass prioritization project Noesis is used to locate information that is vital to understanding the impact of stressors on the habitat. This presentation will show how the intelligent search capabilities of Noesis are coupled with visualization tools and model output to investigate the restoration of seagrass habitat.

  11. Spatial information semantic query based on SPARQL

    NASA Astrophysics Data System (ADS)

    Xiao, Zhifeng; Huang, Lei; Zhai, Xiaofang

    2009-10-01

    How can the efficiency of spatial information inquiries be enhanced in today's fast-growing information age? We are rich in geospatial data but poor in up-to-date geospatial information and knowledge that are ready to be accessed by public users. This paper adopts an approach for querying spatial semantic by building an Web Ontology language(OWL) format ontology and introducing SPARQL Protocol and RDF Query Language(SPARQL) to search spatial semantic relations. It is important to establish spatial semantics that support for effective spatial reasoning for performing semantic query. Compared to earlier keyword-based and information retrieval techniques that rely on syntax, we use semantic approaches in our spatial queries system. Semantic approaches need to be developed by ontology, so we use OWL to describe spatial information extracted by the large-scale map of Wuhan. Spatial information expressed by ontology with formal semantics is available to machines for processing and to people for understanding. The approach is illustrated by introducing a case study for using SPARQL to query geo-spatial ontology instances of Wuhan. The paper shows that making use of SPARQL to search OWL ontology instances can ensure the result's accuracy and applicability. The result also indicates constructing a geo-spatial semantic query system has positive efforts on forming spatial query and retrieval.

  12. Meta Search Engines.

    ERIC Educational Resources Information Center

    Garman, Nancy

    1999-01-01

    Describes common options and features to consider in evaluating which meta search engine will best meet a searcher's needs. Discusses number and names of engines searched; other sources and specialty engines; search queries; other search options; and results options. (AEF)

  13. BioModels.net Web Services, a free and integrated toolkit for computational modelling software.

    PubMed

    Li, Chen; Courtot, Mélanie; Le Novère, Nicolas; Laibe, Camille

    2010-05-01

    Exchanging and sharing scientific results are essential for researchers in the field of computational modelling. BioModels.net defines agreed-upon standards for model curation. A fundamental one, MIRIAM (Minimum Information Requested in the Annotation of Models), standardises the annotation and curation process of quantitative models in biology. To support this standard, MIRIAM Resources maintains a set of standard data types for annotating models, and provides services for manipulating these annotations. Furthermore, BioModels.net creates controlled vocabularies, such as SBO (Systems Biology Ontology) which strictly indexes, defines and links terms used in Systems Biology. Finally, BioModels Database provides a free, centralised, publicly accessible database for storing, searching and retrieving curated and annotated computational models. Each resource provides a web interface to submit, search, retrieve and display its data. In addition, the BioModels.net team provides a set of Web Services which allows the community to programmatically access the resources. A user is then able to perform remote queries, such as retrieving a model and resolving all its MIRIAM Annotations, as well as getting the details about the associated SBO terms. These web services use established standards. Communications rely on SOAP (Simple Object Access Protocol) messages and the available queries are described in a WSDL (Web Services Description Language) file. Several libraries are provided in order to simplify the development of client software. BioModels.net Web Services make one step further for the researchers to simulate and understand the entirety of a biological system, by allowing them to retrieve biological models in their own tool, combine queries in workflows and efficiently analyse models.

  14. Mirador: A Simple, Fast Search Interface for Remote Sensing Data

    NASA Technical Reports Server (NTRS)

    Lynnes, Christopher; Strub, Richard; Seiler, Edward; Joshi, Talak; MacHarrie, Peter

    2008-01-01

    A major challenge for remote sensing science researchers is searching and acquiring relevant data files for their research projects based on content, space and time constraints. Several structured query (SQ) and hierarchical navigation (HN) search interfaces have been develop ed to satisfy this requirement, yet the dominant search engines in th e general domain are based on free-text search. The Goddard Earth Sci ences Data and Information Services Center has developed a free-text search interface named Mirador that supports space-time queries, inc luding a gazetteer and geophysical event gazetteer. In order to compe nsate for a slightly reduced search precision relative to SQ and HN t echniques, Mirador uses several search optimizations to return result s quickly. The quick response enables a more iterative search strateg y than is available with many SQ and HN techniques.

  15. BEAUTY-X: enhanced BLAST searches for DNA queries.

    PubMed

    Worley, K C; Culpepper, P; Wiese, B A; Smith, R F

    1998-01-01

    BEAUTY (BLAST Enhanced Alignment Utility) is an enhanced version of the BLAST database search tool that facilitates identification of the functions of matched sequences. Three recent improvements to the BEAUTY program described here make the enhanced output (1) available for DNA queries, (2) available for searches of any protein database, and (3) more up-to-date, with periodic updates of the domain information. BEAUTY searches of the NCBI and EMBL non-redundant protein sequence databases are available from the BCM Search Launcher Web pages (http://gc.bcm.tmc. edu:8088/search-launcher/launcher.html). BEAUTY Post-Processing of submitted search results is available using the BCM Search Launcher Batch Client (version 2.6) (ftp://gc.bcm.tmc. edu/pub/software/search-launcher/). Example figures are available at http://dot.bcm.tmc. edu:9331/papers/beautypp.html (kworley,culpep)@bcm.tmc.edu

  16. Worldwide trends in fishing interest indicated by Internet search volume

    USGS Publications Warehouse

    Wilde, G.R.; Pope, K.L.

    2013-01-01

    There is a growing body of literature that shows internet search volume on a topic, such as fishing, is a viable measure of salience. Herein, internet search volume for 'fishing' and 'angling' is used as a measure of public interest in fishing, in particular, recreational fishing. An online tool, Google Insights for Search, which allows one to study internet search terms and their volume since 2004, is used to examine trends in interest in fishing for 50 countries. Trends in normalised fishing search volume, during 2004 through 2011, varied from a 72.6% decrease (Russian Federation) to a 133.7% increase (Hungary). Normalised fishing search volume declined in 40 (80%) of the countries studied. The decline has been relatively large in English-speaking countries, but also has been large in Central and South American, and European countries. Analyses of search queries provide a low-cost means of gaining insight into angler interests and, possibly, behaviour in countries around the world.

  17. Property Graph vs RDF Triple Store: A Comparison on Glycan Substructure Search

    PubMed Central

    Alocci, Davide; Mariethoz, Julien; Horlacher, Oliver; Bolleman, Jerven T.; Campbell, Matthew P.; Lisacek, Frederique

    2015-01-01

    Resource description framework (RDF) and Property Graph databases are emerging technologies that are used for storing graph-structured data. We compare these technologies through a molecular biology use case: glycan substructure search. Glycans are branched tree-like molecules composed of building blocks linked together by chemical bonds. The molecular structure of a glycan can be encoded into a direct acyclic graph where each node represents a building block and each edge serves as a chemical linkage between two building blocks. In this context, Graph databases are possible software solutions for storing glycan structures and Graph query languages, such as SPARQL and Cypher, can be used to perform a substructure search. Glycan substructure searching is an important feature for querying structure and experimental glycan databases and retrieving biologically meaningful data. This applies for example to identifying a region of the glycan recognised by a glycan binding protein (GBP). In this study, 19,404 glycan structures were selected from GlycomeDB (www.glycome-db.org) and modelled for being stored into a RDF triple store and a Property Graph. We then performed two different sets of searches and compared the query response times and the results from both technologies to assess performance and accuracy. The two implementations produced the same results, but interestingly we noted a difference in the query response times. Qualitative measures such as portability were also used to define further criteria for choosing the technology adapted to solving glycan substructure search and other comparable issues. PMID:26656740

  18. Efficient privacy-preserving string search and an application in genomics.

    PubMed

    Shimizu, Kana; Nuida, Koji; Rätsch, Gunnar

    2016-06-01

    Personal genomes carry inherent privacy risks and protecting privacy poses major social and technological challenges. We consider the case where a user searches for genetic information (e.g. an allele) on a server that stores a large genomic database and aims to receive allele-associated information. The user would like to keep the query and result private and the server the database. We propose a novel approach that combines efficient string data structures such as the Burrows-Wheeler transform with cryptographic techniques based on additive homomorphic encryption. We assume that the sequence data is searchable in efficient iterative query operations over a large indexed dictionary, for instance, from large genome collections and employing the (positional) Burrows-Wheeler transform. We use a technique called oblivious transfer that is based on additive homomorphic encryption to conceal the sequence query and the genomic region of interest in positional queries. We designed and implemented an efficient algorithm for searching sequences of SNPs in large genome databases. During search, the user can only identify the longest match while the server does not learn which sequence of SNPs the user queried. In an experiment based on 2184 aligned haploid genomes from the 1000 Genomes Project, our algorithm was able to perform typical queries within [Formula: see text] 4.6 s and [Formula: see text] 10.8 s for client and server side, respectively, on laptop computers. The presented algorithm is at least one order of magnitude faster than an exhaustive baseline algorithm. https://github.com/iskana/PBWT-sec and https://github.com/ratschlab/PBWT-sec shimizu-kana@aist.go.jp or Gunnar.Ratsch@ratschlab.org Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press.

  19. Efficient privacy-preserving string search and an application in genomics

    PubMed Central

    Shimizu, Kana; Nuida, Koji; Rätsch, Gunnar

    2016-01-01

    Motivation: Personal genomes carry inherent privacy risks and protecting privacy poses major social and technological challenges. We consider the case where a user searches for genetic information (e.g. an allele) on a server that stores a large genomic database and aims to receive allele-associated information. The user would like to keep the query and result private and the server the database. Approach: We propose a novel approach that combines efficient string data structures such as the Burrows–Wheeler transform with cryptographic techniques based on additive homomorphic encryption. We assume that the sequence data is searchable in efficient iterative query operations over a large indexed dictionary, for instance, from large genome collections and employing the (positional) Burrows–Wheeler transform. We use a technique called oblivious transfer that is based on additive homomorphic encryption to conceal the sequence query and the genomic region of interest in positional queries. Results: We designed and implemented an efficient algorithm for searching sequences of SNPs in large genome databases. During search, the user can only identify the longest match while the server does not learn which sequence of SNPs the user queried. In an experiment based on 2184 aligned haploid genomes from the 1000 Genomes Project, our algorithm was able to perform typical queries within ≈ 4.6 s and ≈ 10.8 s for client and server side, respectively, on laptop computers. The presented algorithm is at least one order of magnitude faster than an exhaustive baseline algorithm. Availability and implementation: https://github.com/iskana/PBWT-sec and https://github.com/ratschlab/PBWT-sec. Contacts: shimizu-kana@aist.go.jp or Gunnar.Ratsch@ratschlab.org Supplementary information: Supplementary data are available at Bioinformatics online. PMID:27153731

  20. Overview of the TREC 2014 Session Track

    DTIC Science & Technology

    2014-11-01

    except all of them have length mi = 1 and thus they have no current/final query. Participants were to run the 1,021 current queries against their search ... engines under each of the following three conditions separately: RL1 ignoring the session prior to this query RL2 considering all the items (1), (2) and

  1. Distributed Efficient Similarity Search Mechanism in Wireless Sensor Networks

    PubMed Central

    Ahmed, Khandakar; Gregory, Mark A.

    2015-01-01

    The Wireless Sensor Network similarity search problem has received considerable research attention due to sensor hardware imprecision and environmental parameter variations. Most of the state-of-the-art distributed data centric storage (DCS) schemes lack optimization for similarity queries of events. In this paper, a DCS scheme with metric based similarity searching (DCSMSS) is proposed. DCSMSS takes motivation from vector distance index, called iDistance, in order to transform the issue of similarity searching into the problem of an interval search in one dimension. In addition, a sector based distance routing algorithm is used to efficiently route messages. Extensive simulation results reveal that DCSMSS is highly efficient and significantly outperforms previous approaches in processing similarity search queries. PMID:25751081

  2. HBVPathDB: a database of HBV infection-related molecular interaction network.

    PubMed

    Zhang, Yi; Bo, Xiao-Chen; Yang, Jing; Wang, Sheng-Qi

    2005-03-21

    To describe molecules or genes interaction between hepatitis B viruses (HBV) and host, for understanding how virus' and host's genes and molecules are networked to form a biological system and for perceiving mechanism of HBV infection. The knowledge of HBV infection-related reactions was organized into various kinds of pathways with carefully drawn graphs in HBVPathDB. Pathway information is stored with relational database management system (DBMS), which is currently the most efficient way to manage large amounts of data and query is implemented with powerful Structured Query Language (SQL). The search engine is written using Personal Home Page (PHP) with SQL embedded and web retrieval interface is developed for searching with Hypertext Markup Language (HTML). We present the first version of HBVPathDB, which is a HBV infection-related molecular interaction network database composed of 306 pathways with 1 050 molecules involved. With carefully drawn graphs, pathway information stored in HBVPathDB can be browsed in an intuitive way. We develop an easy-to-use interface for flexible accesses to the details of database. Convenient software is implemented to query and browse the pathway information of HBVPathDB. Four search page layout options-category search, gene search, description search, unitized search-are supported by the search engine of the database. The database is freely available at http://www.bio-inf.net/HBVPathDB/HBV/. The conventional perspective HBVPathDB have already contained a considerable amount of pathway information with HBV infection related, which is suitable for in-depth analysis of molecular interaction network of virus and host. HBVPathDB integrates pathway data-sets with convenient software for query, browsing, visualization, that provides users more opportunity to identify regulatory key molecules as potential drug targets and to explore the possible mechanism of HBV infection based on gene expression datasets.

  3. BOSS: context-enhanced search for biomedical objects

    PubMed Central

    2012-01-01

    Background There exist many academic search solutions and most of them can be put on either ends of spectrum: general-purpose search and domain-specific "deep" search systems. The general-purpose search systems, such as PubMed, offer flexible query interface, but churn out a list of matching documents that users have to go through the results in order to find the answers to their queries. On the other hand, the "deep" search systems, such as PPI Finder and iHOP, return the precompiled results in a structured way. Their results, however, are often found only within some predefined contexts. In order to alleviate these problems, we introduce a new search engine, BOSS, Biomedical Object Search System. Methods Unlike the conventional search systems, BOSS indexes segments, rather than documents. A segment refers to a Maximal Coherent Semantic Unit (MCSU) such as phrase, clause or sentence that is semantically coherent in the given context (e.g., biomedical objects or their relations). For a user query, BOSS finds all matching segments, identifies the objects appearing in those segments, and aggregates the segments for each object. Finally, it returns the ranked list of the objects along with their matching segments. Results The working prototype of BOSS is available at http://boss.korea.ac.kr. The current version of BOSS has indexed abstracts of more than 20 million articles published during last 16 years from 1996 to 2011 across all science disciplines. Conclusion BOSS fills the gap between either ends of the spectrum by allowing users to pose context-free queries and by returning a structured set of results. Furthermore, BOSS exhibits the characteristic of good scalability, just as with conventional document search engines, because it is designed to use a standard document-indexing model with minimal modifications. Considering the features, BOSS notches up the technological level of traditional solutions for search on biomedical information. PMID:22595092

  4. Query-Adaptive Hash Code Ranking for Large-Scale Multi-View Visual Search.

    PubMed

    Liu, Xianglong; Huang, Lei; Deng, Cheng; Lang, Bo; Tao, Dacheng

    2016-10-01

    Hash-based nearest neighbor search has become attractive in many applications. However, the quantization in hashing usually degenerates the discriminative power when using Hamming distance ranking. Besides, for large-scale visual search, existing hashing methods cannot directly support the efficient search over the data with multiple sources, and while the literature has shown that adaptively incorporating complementary information from diverse sources or views can significantly boost the search performance. To address the problems, this paper proposes a novel and generic approach to building multiple hash tables with multiple views and generating fine-grained ranking results at bitwise and tablewise levels. For each hash table, a query-adaptive bitwise weighting is introduced to alleviate the quantization loss by simultaneously exploiting the quality of hash functions and their complement for nearest neighbor search. From the tablewise aspect, multiple hash tables are built for different data views as a joint index, over which a query-specific rank fusion is proposed to rerank all results from the bitwise ranking by diffusing in a graph. Comprehensive experiments on image search over three well-known benchmarks show that the proposed method achieves up to 17.11% and 20.28% performance gains on single and multiple table search over the state-of-the-art methods.

  5. TREC 2012 Microblog Track Experiments at Kobe University

    DTIC Science & Technology

    2012-11-01

    query expansion method. References 1. Cao, G., Nie, J.Y., Gao, J ., Robertson, S.: Selecting good expansion terms for pseudo-relevance feedback. In...SIGIR. (2008) 243–250 2. Choi, J ., Croft, W.B.: Temporal models for microblogs. In: CIKM. (2012) 2491–2494 3. Cilibrasi, R.L., Vitanyi, P.M.B.: The...Combining recency and topic-dependent temporal variation for microblog search. In: ECIR. (2013) 14. Ounis, I., Macdonald, C., Lin, J ., Soboroff, I

  6. Dermatology in Doximity.

    PubMed

    Ashack, Kurt A; Burton, Kyle A; Dellavalle, Robert P

    2016-02-17

    Doximity, currently the largest online social networking service for United States (US) health care professionals and medical students, provides a wide variety of content to a large audience. In fact, its database includes 1,078,305 physicians in the US. It is therefore important to evaluate this content from time to time. Our objective is to analyze both the residency rankings and news content presented in Doximity, with respect to dermatology. The study compared the residency rankings created by Doximity to another dermatology residency ranking system that used a different algorithm. In terms of dermatology content, seven dermatology-related search terms were entered into the Doximity search query and data was collected on the first 20 "relevant" articles. Our study evaluated a total of 140 articles. The search term "skin cancer" yielded the most articles totaling 6,001. Informative articles were the most common type of article for each content item searched except for "dermatology", yielding research articles as the most common content type (70%). The search term "melanoma awareness" had the largest number of shares (19,032). In comparing dermatology residency rankings on Doximity with another ranking system that accounted for scholarly achievement, there was 50% overlap. In conclusion, it is vital to evaluate content on social media websites that are utilized by US medical students and health care professionals. We hope this information presented provides an up-to-date analysis on the quality of one particular social media platform.

  7. Are cannabis prevalence estimates comparable across countries and regions? A cross-cultural validation using search engine query data.

    PubMed

    Steppan, Martin; Kraus, Ludwig; Piontek, Daniela; Siciliano, Valeria

    2013-01-01

    Prevalence estimation of cannabis use is usually based on self-report data. Although there is evidence on the reliability of this data source, its cross-cultural validity is still a major concern. External objective criteria are needed for this purpose. In this study, cannabis-related search engine query data are used as an external criterion. Data on cannabis use were taken from the 2007 European School Survey Project on Alcohol and Other Drugs (ESPAD). Provincial data came from three Italian nation-wide studies using the same methodology (2006-2008; ESPAD-Italia). Information on cannabis-related search engine query data was based on Google search volume indices (GSI). (1) Reliability analysis was conducted for GSI. (2) Latent measurement models of "true" cannabis prevalence were tested using perceived availability, web-based cannabis searches and self-reported prevalence as indicators. (3) Structure models were set up to test the influences of response tendencies and geographical position (latitude, longitude). In order to test the stability of the models, analyses were conducted on country level (Europe, US) and on provincial level in Italy. Cannabis-related GSI were found to be highly reliable and constant over time. The overall measurement model was highly significant in both data sets. On country level, no significant effects of response bias indicators and geographical position on perceived availability, web-based cannabis searches and self-reported prevalence were found. On provincial level, latitude had a significant positive effect on availability indicating that perceived availability of cannabis in northern Italy was higher than expected from the other indicators. Although GSI showed weaker associations with cannabis use than perceived availability, the findings underline the external validity and usefulness of search engine query data as external criteria. The findings suggest an acceptable relative comparability of national (provincial) prevalence estimates of cannabis use that are based on a common survey methodology. Search engine query data are a too weak indicator to base prevalence estimations on this source only, but in combination with other sources (waste water analysis, sales of cigarette paper) they may provide satisfactory estimates. Copyright © 2012. Published by Elsevier B.V.

  8. Olelo: a web application for intuitive exploration of biomedical literature

    PubMed Central

    Niedermeier, Julian; Jankrift, Marcel; Tietböhl, Sören; Stachewicz, Toni; Folkerts, Hendrik; Uflacker, Matthias; Neves, Mariana

    2017-01-01

    Abstract Researchers usually query the large biomedical literature in PubMed via keywords, logical operators and filters, none of which is very intuitive. Question answering systems are an alternative to keyword searches. They allow questions in natural language as input and results reflect the given type of question, such as short answers and summaries. Few of those systems are available online but they experience drawbacks in terms of long response times and they support a limited amount of question and result types. Additionally, user interfaces are usually restricted to only displaying the retrieved information. For our Olelo web application, we combined biomedical literature and terminologies in a fast in-memory database to enable real-time responses to researchers’ queries. Further, we extended the built-in natural language processing features of the database with question answering and summarization procedures. Combined with a new explorative approach of document filtering and a clean user interface, Olelo enables a fast and intelligent search through the ever-growing biomedical literature. Olelo is available at http://www.hpi.de/plattner/olelo. PMID:28472397

  9. Spatial Query for Planetary Data

    NASA Technical Reports Server (NTRS)

    Shams, Khawaja S.; Crockett, Thomas M.; Powell, Mark W.; Joswig, Joseph C.; Fox, Jason M.

    2011-01-01

    Science investigators need to quickly and effectively assess past observations of specific locations on a planetary surface. This innovation involves a location-based search technology that was adapted and applied to planetary science data to support a spatial query capability for mission operations software. High-performance location-based searching requires the use of spatial data structures for database organization. Spatial data structures are designed to organize datasets based on their coordinates in a way that is optimized for location-based retrieval. The particular spatial data structure that was adapted for planetary data search is the R+ tree.

  10. An EHR Prototype Using Structured ISO/EN 13606 Documents to Respond to Identified Clinical Information Needs of Diabetes Specialists: A Controlled Study on Feasibility and Impact

    PubMed Central

    Huebner-Bloder, Gudrun; Duftschmid, Georg; Kohler, Michael; Rinner, Christoph; Saboor, Samrend; Ammenwerth, Elske

    2012-01-01

    Cross-institutional longitudinal Electronic Health Records (EHR), as introduced in Austria at the moment, increase the challenge of information overload of healthcare professionals. We developed an innovative cross-institutional EHR query prototype that offers extended query options, including searching for specific information items or sets of information items. The available query options were derived from a systematic analysis of information needs of diabetes specialists during patient encounters. The prototype operates in an IHE-XDS-based environment where ISO/EN 13606-structured documents are available. We conducted a controlled study with seven diabetes specialists to assess the feasibility and impact of this EHR query prototype on efficient retrieving of patient information to answer typical clinical questions. The controlled study showed that the specialists were quicker and more successful (measured in percentage of expected information items found) in finding patient information compared to the standard full-document search options. The participants also appreciated the extended query options. PMID:23304308

  11. Fast Multivariate Search on Large Aviation Datasets

    NASA Technical Reports Server (NTRS)

    Bhaduri, Kanishka; Zhu, Qiang; Oza, Nikunj C.; Srivastava, Ashok N.

    2010-01-01

    Multivariate Time-Series (MTS) are ubiquitous, and are generated in areas as disparate as sensor recordings in aerospace systems, music and video streams, medical monitoring, and financial systems. Domain experts are often interested in searching for interesting multivariate patterns from these MTS databases which can contain up to several gigabytes of data. Surprisingly, research on MTS search is very limited. Most existing work only supports queries with the same length of data, or queries on a fixed set of variables. In this paper, we propose an efficient and flexible subsequence search framework for massive MTS databases, that, for the first time, enables querying on any subset of variables with arbitrary time delays between them. We propose two provably correct algorithms to solve this problem (1) an R-tree Based Search (RBS) which uses Minimum Bounding Rectangles (MBR) to organize the subsequences, and (2) a List Based Search (LBS) algorithm which uses sorted lists for indexing. We demonstrate the performance of these algorithms using two large MTS databases from the aviation domain, each containing several millions of observations Both these tests show that our algorithms have very high prune rates (>95%) thus needing actual

  12. RadSearch: a RIS/PACS integrated query tool

    NASA Astrophysics Data System (ADS)

    Tsao, Sinchai; Documet, Jorge; Moin, Paymann; Wang, Kevin; Liu, Brent J.

    2008-03-01

    Radiology Information Systems (RIS) contain a wealth of information that can be used for research, education, and practice management. However, the sheer amount of information available makes querying specific data difficult and time consuming. Previous work has shown that a clinical RIS database and its RIS text reports can be extracted, duplicated and indexed for searches while complying with HIPAA and IRB requirements. This project's intent is to provide a software tool, the RadSearch Toolkit, to allow intelligent indexing and parsing of RIS reports for easy yet powerful searches. In addition, the project aims to seamlessly query and retrieve associated images from the Picture Archiving and Communication System (PACS) in situations where an integrated RIS/PACS is in place - even subselecting individual series, such as in an MRI study. RadSearch's application of simple text parsing techniques to index text-based radiology reports will allow the search engine to quickly return relevant results. This powerful combination will be useful in both private practice and academic settings; administrators can easily obtain complex practice management information such as referral patterns; researchers can conduct retrospective studies with specific, multiple criteria; teaching institutions can quickly and effectively create thorough teaching files.

  13. Can internet search queries be used for dengue fever surveillance in China?

    PubMed

    Guo, Pi; Wang, Li; Zhang, Yanhong; Luo, Ganfeng; Zhang, Yanting; Deng, Changyu; Zhang, Qin; Zhang, Qingying

    2017-10-01

    China experienced an unprecedented outbreak of dengue fever in 2014, and the number of cases reached the highest level over the past 25 years. Traditional sentinel surveillance systems of dengue fever in China have an obvious drawback that the average delay from receipt to dissemination of dengue case data is roughly 1-2 weeks. In order to exploit internet search queries to timely monitor dengue fever, we analyzed data of dengue incidence and Baidu search query from 31 provinces in mainland China during the period of January 2011 to December 2014. We found that there was a strong correlation between changes in people's online health-seeking behavior and dengue fever incidence. Our study represents the first attempt demonstrating a strong temporal and spatial correlation between internet search trends and dengue epidemics nationwide in China. The findings will help the government to strengthen the capacity of traditional surveillance systems for dengue fever. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  14. Querying Event Sequences by Exact Match or Similarity Search: Design and Empirical Evaluation

    PubMed Central

    Wongsuphasawat, Krist; Plaisant, Catherine; Taieb-Maimon, Meirav; Shneiderman, Ben

    2012-01-01

    Specifying event sequence queries is challenging even for skilled computer professionals familiar with SQL. Most graphical user interfaces for database search use an exact match approach, which is often effective, but near misses may also be of interest. We describe a new similarity search interface, in which users specify a query by simply placing events on a blank timeline and retrieve a similarity-ranked list of results. Behind this user interface is a new similarity measure for event sequences which the users can customize by four decision criteria, enabling them to adjust the impact of missing, extra, or swapped events or the impact of time shifts. We describe a use case with Electronic Health Records based on our ongoing collaboration with hospital physicians. A controlled experiment with 18 participants compared exact match and similarity search interfaces. We report on the advantages and disadvantages of each interface and suggest a hybrid interface combining the best of both. PMID:22379286

  15. PDBj Mine: design and implementation of relational database interface for Protein Data Bank Japan

    PubMed Central

    Kinjo, Akira R.; Yamashita, Reiko; Nakamura, Haruki

    2010-01-01

    This article is a tutorial for PDBj Mine, a new database and its interface for Protein Data Bank Japan (PDBj). In PDBj Mine, data are loaded from files in the PDBMLplus format (an extension of PDBML, PDB's canonical XML format, enriched with annotations), which are then served for the user of PDBj via the worldwide web (WWW). We describe the basic design of the relational database (RDB) and web interfaces of PDBj Mine. The contents of PDBMLplus files are first broken into XPath entities, and these paths and data are indexed in the way that reflects the hierarchical structure of the XML files. The data for each XPath type are saved into the corresponding relational table that is named as the XPath itself. The generation of table definitions from the PDBMLplus XML schema is fully automated. For efficient search, frequently queried terms are compiled into a brief summary table. Casual users can perform simple keyword search, and 'Advanced Search' which can specify various conditions on the entries. More experienced users can query the database using SQL statements which can be constructed in a uniform manner. Thus, PDBj Mine achieves a combination of the flexibility of XML documents and the robustness of the RDB. Database URL: http://www.pdbj.org/ PMID:20798081

  16. PDBj Mine: design and implementation of relational database interface for Protein Data Bank Japan.

    PubMed

    Kinjo, Akira R; Yamashita, Reiko; Nakamura, Haruki

    2010-08-25

    This article is a tutorial for PDBj Mine, a new database and its interface for Protein Data Bank Japan (PDBj). In PDBj Mine, data are loaded from files in the PDBMLplus format (an extension of PDBML, PDB's canonical XML format, enriched with annotations), which are then served for the user of PDBj via the worldwide web (WWW). We describe the basic design of the relational database (RDB) and web interfaces of PDBj Mine. The contents of PDBMLplus files are first broken into XPath entities, and these paths and data are indexed in the way that reflects the hierarchical structure of the XML files. The data for each XPath type are saved into the corresponding relational table that is named as the XPath itself. The generation of table definitions from the PDBMLplus XML schema is fully automated. For efficient search, frequently queried terms are compiled into a brief summary table. Casual users can perform simple keyword search, and 'Advanced Search' which can specify various conditions on the entries. More experienced users can query the database using SQL statements which can be constructed in a uniform manner. Thus, PDBj Mine achieves a combination of the flexibility of XML documents and the robustness of the RDB. Database URL: http://www.pdbj.org/

  17. Postmarket Drug Surveillance Without Trial Costs: Discovery of Adverse Drug Reactions Through Large-Scale Analysis of Web Search Queries

    PubMed Central

    Gabrilovich, Evgeniy

    2013-01-01

    Background Postmarket drug safety surveillance largely depends on spontaneous reports by patients and health care providers; hence, less common adverse drug reactions—especially those caused by long-term exposure, multidrug treatments, or those specific to special populations—often elude discovery. Objective Here we propose a low cost, fully automated method for continuous monitoring of adverse drug reactions in single drugs and in combinations thereof, and demonstrate the discovery of heretofore-unknown ones. Methods We used aggregated search data of large populations of Internet users to extract information related to drugs and adverse reactions to them, and correlated these data over time. We further extended our method to identify adverse reactions to combinations of drugs. Results We validated our method by showing high correlations of our findings with known adverse drug reactions (ADRs). However, although acute early-onset drug reactions are more likely to be reported to regulatory agencies, we show that less acute later-onset ones are better captured in Web search queries. Conclusions Our method is advantageous in identifying previously unknown adverse drug reactions. These ADRs should be considered as candidates for further scrutiny by medical regulatory authorities, for example, through phase 4 trials. PMID:23778053

  18. How popular is waterpipe tobacco smoking? Findings from internet search queries.

    PubMed

    Salloum, Ramzi G; Osman, Amira; Maziak, Wasim; Thrasher, James F

    2015-09-01

    Waterpipe tobacco smoking (WTS), a traditional tobacco consumption practice in the Middle East, is gaining popularity worldwide. Estimates of population-level interest in WTS over time are not documented. We assessed the popularity of WTS using World Wide Web search query results across four English-speaking countries. We analysed trends in Google search queries related to WTS, comparing these trends with those for electronic cigarettes between 2004 and 2013 in Australia, Canada, the UK and the USA. Weekly search volumes were reported as percentages relative to the week with the highest volume of searches. Web-based searches for WTS have increased steadily since 2004 in all four countries. Search volume for WTS was higher than for e-cigarettes in three of the four nations, with the highest volume in the USA. Online searches were primarily targeted at WTS products for home use, followed by searches for WTS cafés/lounges. Online demand for information on WTS-related products and venues is large and increasing. Given the rise in WTS popularity, increasing evidence of exposure-related harms, and relatively lax government regulation, WTS is a serious public health concern and could reach epidemic levels in Western societies. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  19. Query Classification and Study of University Students' Search Trends

    ERIC Educational Resources Information Center

    Maabreh, Majdi A.; Al-Kabi, Mohammed N.; Alsmadi, Izzat M.

    2012-01-01

    Purpose: This study is an attempt to develop an automatic identification method for Arabic web queries and divide them into several query types using data mining. In addition, it seeks to evaluate the impact of the academic environment on using the internet. Design/methodology/approach: The web log files were collected from one of the higher…

  20. SkyQuery - A Prototype Distributed Query and Cross-Matching Web Service for the Virtual Observatory

    NASA Astrophysics Data System (ADS)

    Thakar, A. R.; Budavari, T.; Malik, T.; Szalay, A. S.; Fekete, G.; Nieto-Santisteban, M.; Haridas, V.; Gray, J.

    2002-12-01

    We have developed a prototype distributed query and cross-matching service for the VO community, called SkyQuery, which is implemented with hierarchichal Web Services. SkyQuery enables astronomers to run combined queries on existing distributed heterogeneous astronomy archives. SkyQuery provides a simple, user-friendly interface to run distributed queries over the federation of registered astronomical archives in the VO. The SkyQuery client connects to the portal Web Service, which farms the query out to the individual archives, which are also Web Services called SkyNodes. The cross-matching algorithm is run recursively on each SkyNode. Each archive is a relational DBMS with a HTM index for fast spatial lookups. The results of the distributed query are returned as an XML DataSet that is automatically rendered by the client. SkyQuery also returns the image cutout corresponding to the query result. SkyQuery finds not only matches between the various catalogs, but also dropouts - objects that exist in some of the catalogs but not in others. This is often as important as finding matches. We demonstrate the utility of SkyQuery with a brown-dwarf search between SDSS and 2MASS, and a search for radio-quiet quasars in SDSS, 2MASS and FIRST. The importance of a service like SkyQuery for the worldwide astronomical community cannot be overstated: data on the same objects in various archives is mapped in different wavelength ranges and looks very different due to different errors, instrument sensitivities and other peculiarities of each archive. Our cross-matching algorithm preforms a fuzzy spatial join across multiple catalogs. This type of cross-matching is currently often done by eye, one object at a time. A static cross-identification table for a set of archives would become obsolete by the time it was built - the exponential growth of astronomical data means that a dynamic cross-identification mechanism like SkyQuery is the only viable option. SkyQuery was funded by a grant from the NASA AISR program.

  1. Respiratory syncytial virus tracking using internet search engine data.

    PubMed

    Oren, Eyal; Frere, Justin; Yom-Tov, Eran; Yom-Tov, Elad

    2018-04-03

    Respiratory Syncytial Virus (RSV) is the leading cause of hospitalization in children less than 1 year of age in the United States. Internet search engine queries may provide high resolution temporal and spatial data to estimate and predict disease activity. After filtering an initial list of 613 symptoms using high-resolution Bing search logs, we used Google Trends data between 2004 and 2016 for a smaller list of 50 terms to build predictive models of RSV incidence for five states where long-term surveillance data was available. We then used domain adaptation to model RSV incidence for the 45 remaining US states. Surveillance data sources (hospitalization and laboratory reports) were highly correlated, as were laboratory reports with search engine data. The four terms which were most often statistically significantly correlated as time series with the surveillance data in the five state models were RSV, flu, pneumonia, and bronchiolitis. Using our models, we tracked the spread of RSV by observing the time of peak use of the search term in different states. In general, the RSV peak moved from south-east (Florida) to the north-west US. Our study represents the first time that RSV has been tracked using Internet data results and highlights successful use of search filters and domain adaptation techniques, using data at multiple resolutions. Our approach may assist in identifying spread of both local and more widespread RSV transmission and may be applicable to other seasonal conditions where comprehensive epidemiological data is difficult to collect or obtain.

  2. The new Planetary Science Archive: A tool for exploration and discovery of scientific datasets from ESA's planetary missions

    NASA Astrophysics Data System (ADS)

    Heather, David

    2016-07-01

    Introduction: The Planetary Science Archive (PSA) is the European Space Agency's (ESA) repository of science data from all planetary science and exploration missions. The PSA provides access to scientific datasets through various interfaces (e.g. FTP browser, Map based, Advanced search, and Machine interface): http://archives.esac.esa.int/psa All datasets are scientifically peer-reviewed by independent scientists, and are compliant with the Planetary Data System (PDS) standards. Updating the PSA: The PSA is currently implementing a number of significant changes, both to its web-based interface to the scientific community, and to its database structure. The new PSA will be up-to-date with versions 3 and 4 of the PDS standards, as PDS4 will be used for ESA's upcoming ExoMars and BepiColombo missions. The newly designed PSA homepage will provide direct access to scientific datasets via a text search for targets or missions. This will significantly reduce the complexity for users to find their data and will promote one-click access to the datasets. Additionally, the homepage will provide direct access to advanced views and searches of the datasets. Users will have direct access to documentation, information and tools that are relevant to the scientific use of the dataset, including ancillary datasets, Software Interface Specification (SIS) documents, and any tools/help that the PSA team can provide. A login mechanism will provide additional functionalities to the users to aid / ease their searches (e.g. saving queries, managing default views). Queries to the PSA database will be possible either via the homepage (for simple searches of missions or targets), or through a filter menu for more tailored queries. The filter menu will offer multiple options to search for a particular dataset or product, and will manage queries for both in-situ and remote sensing instruments. Parameters such as start-time, phase angle, and heliocentric distance will be emphasized. A further advanced search function will allow users to query all the metadata present in the PSA database. Results will be displayed in 3 different ways: 1) A table listing all the corresponding data matching the criteria in the filter menu, 2) a projection of the products onto the surface of the object when applicable (i.e. planets, small bodies), and 3) a list of images for the relevant instruments to enjoy the beauty of our Solar System. These different ways of viewing the datasets will ensure that scientists and non-professionals alike will have access to the specific data they are looking for, regardless of their background. Conclusions: The new PSA will maintain the various interfaces and services it had in the past, and will include significant improvements designed to allow easier and more effective access to the scientific data and supporting materials. The new PSA is expected to be released by mid-2016. It will support the past, present and future missions, ancillary datasets, and will enhance the scientific output of ESA's missions. As such, the PSA will become a unique archive ensuring the long-term preservation and usage of scientific datasets together with user-friendly access.

  3. The new Planetary Science Archive: A tool for exploration and discovery of scientific datasets from ESA's planetary missions.

    NASA Astrophysics Data System (ADS)

    Heather, David; Besse, Sebastien; Barbarisi, Isa; Arviset, Christophe; de Marchi, Guido; Barthelemy, Maud; Docasal, Ruben; Fraga, Diego; Grotheer, Emmanuel; Lim, Tanya; Macfarlane, Alan; Martinez, Santa; Rios, Carlos

    2016-04-01

    Introduction: The Planetary Science Archive (PSA) is the European Space Agency's (ESA) repository of science data from all planetary science and exploration missions. The PSA provides access to scientific datasets through various interfaces (e.g. FTP browser, Map based, Advanced search, and Machine interface): http://archives.esac.esa.int/psa All datasets are scientifically peer-reviewed by independent scientists, and are compliant with the Planetary Data System (PDS) standards. Updating the PSA: The PSA is currently implementing a number of significant changes, both to its web-based interface to the scientific community, and to its database structure. The new PSA will be up-to-date with versions 3 and 4 of the PDS standards, as PDS4 will be used for ESA's upcoming ExoMars and BepiColombo missions. The newly designed PSA homepage will provide direct access to scientific datasets via a text search for targets or missions. This will significantly reduce the complexity for users to find their data and will promote one-click access to the datasets. Additionally, the homepage will provide direct access to advanced views and searches of the datasets. Users will have direct access to documentation, information and tools that are relevant to the scientific use of the dataset, including ancillary datasets, Software Interface Specification (SIS) documents, and any tools/help that the PSA team can provide. A login mechanism will provide additional functionalities to the users to aid / ease their searches (e.g. saving queries, managing default views). Queries to the PSA database will be possible either via the homepage (for simple searches of missions or targets), or through a filter menu for more tailored queries. The filter menu will offer multiple options to search for a particular dataset or product, and will manage queries for both in-situ and remote sensing instruments. Parameters such as start-time, phase angle, and heliocentric distance will be emphasized. A further advanced search function will allow users to query all the metadata present in the PSA database. Results will be displayed in 3 different ways: 1) A table listing all the corresponding data matching the criteria in the filter menu, 2) a projection of the products onto the surface of the object when applicable (i.e. planets, small bodies), and 3) a list of images for the relevant instruments to enjoy the beauty of our Solar System. These different ways of viewing the datasets will ensure that scientists and non-professionals alike will have access to the specific data they are looking for, regardless of their background. Conclusions: The new PSA will maintain the various interfaces and services it had in the past, and will include significant improvements designed to allow easier and more effective access to the scientific data and supporting materials. The new PSA is expected to be released by mid-2016. It will support the past, present and future missions, ancillary datasets, and will enhance the scientific output of ESA's missions. As such, the PSA will become a unique archive ensuring the long-term preservation and usage of scientific datasets together with user-friendly access.

  4. Query-Adaptive Reciprocal Hash Tables for Nearest Neighbor Search.

    PubMed

    Liu, Xianglong; Deng, Cheng; Lang, Bo; Tao, Dacheng; Li, Xuelong

    2016-02-01

    Recent years have witnessed the success of binary hashing techniques in approximate nearest neighbor search. In practice, multiple hash tables are usually built using hashing to cover more desired results in the hit buckets of each table. However, rare work studies the unified approach to constructing multiple informative hash tables using any type of hashing algorithms. Meanwhile, for multiple table search, it also lacks of a generic query-adaptive and fine-grained ranking scheme that can alleviate the binary quantization loss suffered in the standard hashing techniques. To solve the above problems, in this paper, we first regard the table construction as a selection problem over a set of candidate hash functions. With the graph representation of the function set, we propose an efficient solution that sequentially applies normalized dominant set to finding the most informative and independent hash functions for each table. To further reduce the redundancy between tables, we explore the reciprocal hash tables in a boosting manner, where the hash function graph is updated with high weights emphasized on the misclassified neighbor pairs of previous hash tables. To refine the ranking of the retrieved buckets within a certain Hamming radius from the query, we propose a query-adaptive bitwise weighting scheme to enable fine-grained bucket ranking in each hash table, exploiting the discriminative power of its hash functions and their complement for nearest neighbor search. Moreover, we integrate such scheme into the multiple table search using a fast, yet reciprocal table lookup algorithm within the adaptive weighted Hamming radius. In this paper, both the construction method and the query-adaptive search method are general and compatible with different types of hashing algorithms using different feature spaces and/or parameter settings. Our extensive experiments on several large-scale benchmarks demonstrate that the proposed techniques can significantly outperform both the naive construction methods and the state-of-the-art hashing algorithms.

  5. Vitamin D and Cardiovascular Disease: An Appraisal of the Evidence

    PubMed Central

    Schnatz, Peter F.; Manson, JoAnn E.

    2013-01-01

    Background Supplementation with vitamin D (VitD) has received attention as a potential cardioprotective strategy. Biologically plausible mechanisms have been proposed to link VitD to coronary heart disease (CHD) prevention and observational studies suggest an inverse association between serum 25-hydroxyvitamin D (25OHD) concentrations and CHD. Few randomized clinical trials of VitD supplementation and CHD have been conducted, however, and no completed trial has been done with CHD as the primary pre-specified outcome. Content A search was conducted in PubMed to find prospective studies on the use of vitamin D supplementation and cardiovascular risk factors (RFs) and/or cardiovascular disease. The exact search query was ((vitamin D supplement*[Title/Abstract]) AND cardiovascular [Title/Abstract]) AND prospective [Title/Abstract]. This query yielded 42 results. Randomized Controlled Trial (article type) was employed as a filter in a subsequent query with the same search terms. We review the evidence that VitD supplementation modifies coronary RFs, such as blood pressure, lipids, and glucose tolerance, and/or affects the development of clinical CHD events. We address potential sources of confounding in observational epidemiologic studies of the relationship between serum 25OHD and CHD. We also address laboratory assay issues relevant to the reliable measurement of 25OHD. Summary Most VitD supplementation trials have not demonstrated improvement in cardiovascular disease, but have tested relatively low doses of VitD. Thus, the evidence remains inconclusive, highlighting the need for rigorous randomized trials of higher VitD doses, with cardiovascular events as prespecified outcomes. While awaiting ongoing trial results, the recommended dietary allowances from the Institute of Medicine remain the best guidepost for nutritional requirements. PMID:24193116

  6. Architecture for Knowledge-Based and Federated Search of Online Clinical Evidence

    PubMed Central

    Walther, Martin; Nguyen, Ken; Lovell, Nigel H

    2005-01-01

    Background It is increasingly difficult for clinicians to keep up-to-date with the rapidly growing biomedical literature. Online evidence retrieval methods are now seen as a core tool to support evidence-based health practice. However, standard search engine technology is not designed to manage the many different types of evidence sources that are available or to handle the very different information needs of various clinical groups, who often work in widely different settings. Objectives The objectives of this paper are (1) to describe the design considerations and system architecture of a wrapper-mediator approach to federate search system design, including the use of knowledge-based, meta-search filters, and (2) to analyze the implications of system design choices on performance measurements. Methods A trial was performed to evaluate the technical performance of a federated evidence retrieval system, which provided access to eight distinct online resources, including e-journals, PubMed, and electronic guidelines. The Quick Clinical system architecture utilized a universal query language to reformulate queries internally and utilized meta-search filters to optimize search strategies across resources. We recruited 227 family physicians from across Australia who used the system to retrieve evidence in a routine clinical setting over a 4-week period. The total search time for a query was recorded, along with the duration of individual queries sent to different online resources. Results Clinicians performed 1662 searches over the trial. The average search duration was 4.9 ± 3.2 s (N = 1662 searches). Mean search duration to the individual sources was between 0.05 s and 4.55 s. Average system time (ie, system overhead) was 0.12 s. Conclusions The relatively small system overhead compared to the average time it takes to perform a search for an individual source shows that the system achieves a good trade-off between performance and reliability. Furthermore, despite the additional effort required to incorporate the capabilities of each individual source (to improve the quality of search results), system maintenance requires only a small additional overhead. PMID:16403716

  7. Automatically finding relevant citations for clinical guideline development.

    PubMed

    Bui, Duy Duc An; Jonnalagadda, Siddhartha; Del Fiol, Guilherme

    2015-10-01

    Literature database search is a crucial step in the development of clinical practice guidelines and systematic reviews. In the age of information technology, the process of literature search is still conducted manually, therefore it is costly, slow and subject to human errors. In this research, we sought to improve the traditional search approach using innovative query expansion and citation ranking approaches. We developed a citation retrieval system composed of query expansion and citation ranking methods. The methods are unsupervised and easily integrated over the PubMed search engine. To validate the system, we developed a gold standard consisting of citations that were systematically searched and screened to support the development of cardiovascular clinical practice guidelines. The expansion and ranking methods were evaluated separately and compared with baseline approaches. Compared with the baseline PubMed expansion, the query expansion algorithm improved recall (80.2% vs. 51.5%) with small loss on precision (0.4% vs. 0.6%). The algorithm could find all citations used to support a larger number of guideline recommendations than the baseline approach (64.5% vs. 37.2%, p<0.001). In addition, the citation ranking approach performed better than PubMed's "most recent" ranking (average precision +6.5%, recall@k +21.1%, p<0.001), PubMed's rank by "relevance" (average precision +6.1%, recall@k +14.8%, p<0.001), and the machine learning classifier that identifies scientifically sound studies from MEDLINE citations (average precision +4.9%, recall@k +4.2%, p<0.001). Our unsupervised query expansion and ranking techniques are more flexible and effective than PubMed's default search engine behavior and the machine learning classifier. Automated citation finding is promising to augment the traditional literature search. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Querying and Ranking XML Documents.

    ERIC Educational Resources Information Center

    Schlieder, Torsten; Meuss, Holger

    2002-01-01

    Discussion of XML, information retrieval, precision, and recall focuses on a retrieval technique that adopts the similarity measure of the vector space model, incorporates the document structure, and supports structured queries. Topics include a query model based on tree matching; structured queries and term-based ranking; and term frequency and…

  9. Digital detection for tobacco control: online reactions to the 2009 U.S. cigarette excise tax increase.

    PubMed

    Ayers, John W; Althouse, Benjamin M; Ribisl, Kurt M; Emery, Sherry

    2014-05-01

    The Internet is revolutionizing tobacco control, but few have harnessed the Web for surveillance. We demonstrate for the first time an approach for analyzing aggregate Internet search queries that captures precise changes in population considerations about tobacco. We compared tobacco-related Google queries originating in the United States during the week of the State Children's Health Insurance Program (SCHIP) 2009 cigarette excise tax increase with a historic baseline. Specific queries were then ranked according to their relative increases while also considering approximations of changes in absolute search volume. Individual queries with the largest relative increases the week of the SCHIP tax were "cigarettes Indian reservations" 640% (95% CI, 472-918), "free cigarettes online" 557% (95% CI, 432-756), and "Indian reservations cigarettes" 542% (95% CI, 414-733), amounting to about 7,500 excess searches. By themes, the largest relative increases were tribal cigarettes 246% (95% CI, 228-265), "free" cigarettes 215% (95% CI, 191-242), and cigarette stores 176% (95% CI, 160-193), accounting for 21,000, 27,000, and 90,000 excess queries. All avoidance queries, including those aforementioned themes, relatively increased 150% (95% CI, 144-155) or 550,000 from their baseline. All cessation queries increased 46% (95% CI, 44-48), or 175,000, around SCHIP; including themes for "cold turkey" 19% (95% CI, 11-27) or 2,600, cessation products 47% (95% CI, 44-50) or 78,000, and dubious cessation approaches (e.g., hypnosis) 40% (95% CI, 33-47) or 2,300. The SCHIP tax motivated specific changes in population considerations. Our strategy can support evaluations that temporally link tobacco control measures with instantaneous population reactions, as well as serve as a springboard for traditional studies, for example, including survey questionnaire design.

  10. Privacy-preserving search for chemical compound databases.

    PubMed

    Shimizu, Kana; Nuida, Koji; Arai, Hiromi; Mitsunari, Shigeo; Attrapadung, Nuttapong; Hamada, Michiaki; Tsuda, Koji; Hirokawa, Takatsugu; Sakuma, Jun; Hanaoka, Goichiro; Asai, Kiyoshi

    2015-01-01

    Searching for similar compounds in a database is the most important process for in-silico drug screening. Since a query compound is an important starting point for the new drug, a query holder, who is afraid of the query being monitored by the database server, usually downloads all the records in the database and uses them in a closed network. However, a serious dilemma arises when the database holder also wants to output no information except for the search results, and such a dilemma prevents the use of many important data resources. In order to overcome this dilemma, we developed a novel cryptographic protocol that enables database searching while keeping both the query holder's privacy and database holder's privacy. Generally, the application of cryptographic techniques to practical problems is difficult because versatile techniques are computationally expensive while computationally inexpensive techniques can perform only trivial computation tasks. In this study, our protocol is successfully built only from an additive-homomorphic cryptosystem, which allows only addition performed on encrypted values but is computationally efficient compared with versatile techniques such as general purpose multi-party computation. In an experiment searching ChEMBL, which consists of more than 1,200,000 compounds, the proposed method was 36,900 times faster in CPU time and 12,000 times as efficient in communication size compared with general purpose multi-party computation. We proposed a novel privacy-preserving protocol for searching chemical compound databases. The proposed method, easily scaling for large-scale databases, may help to accelerate drug discovery research by making full use of unused but valuable data that includes sensitive information.

  11. Privacy-preserving search for chemical compound databases

    PubMed Central

    2015-01-01

    Background Searching for similar compounds in a database is the most important process for in-silico drug screening. Since a query compound is an important starting point for the new drug, a query holder, who is afraid of the query being monitored by the database server, usually downloads all the records in the database and uses them in a closed network. However, a serious dilemma arises when the database holder also wants to output no information except for the search results, and such a dilemma prevents the use of many important data resources. Results In order to overcome this dilemma, we developed a novel cryptographic protocol that enables database searching while keeping both the query holder's privacy and database holder's privacy. Generally, the application of cryptographic techniques to practical problems is difficult because versatile techniques are computationally expensive while computationally inexpensive techniques can perform only trivial computation tasks. In this study, our protocol is successfully built only from an additive-homomorphic cryptosystem, which allows only addition performed on encrypted values but is computationally efficient compared with versatile techniques such as general purpose multi-party computation. In an experiment searching ChEMBL, which consists of more than 1,200,000 compounds, the proposed method was 36,900 times faster in CPU time and 12,000 times as efficient in communication size compared with general purpose multi-party computation. Conclusion We proposed a novel privacy-preserving protocol for searching chemical compound databases. The proposed method, easily scaling for large-scale databases, may help to accelerate drug discovery research by making full use of unused but valuable data that includes sensitive information. PMID:26678650

  12. OS2: Oblivious similarity based searching for encrypted data outsourced to an untrusted domain

    PubMed Central

    Pervez, Zeeshan; Ahmad, Mahmood; Khattak, Asad Masood; Ramzan, Naeem

    2017-01-01

    Public cloud storage services are becoming prevalent and myriad data sharing, archiving and collaborative services have emerged which harness the pay-as-you-go business model of public cloud. To ensure privacy and confidentiality often encrypted data is outsourced to such services, which further complicates the process of accessing relevant data by using search queries. Search over encrypted data schemes solve this problem by exploiting cryptographic primitives and secure indexing to identify outsourced data that satisfy the search criteria. Almost all of these schemes rely on exact matching between the encrypted data and search criteria. A few schemes which extend the notion of exact matching to similarity based search, lack realism as those schemes rely on trusted third parties or due to increase storage and computational complexity. In this paper we propose Oblivious Similarity based Search (OS2) for encrypted data. It enables authorized users to model their own encrypted search queries which are resilient to typographical errors. Unlike conventional methodologies, OS2 ranks the search results by using similarity measure offering a better search experience than exact matching. It utilizes encrypted bloom filter and probabilistic homomorphic encryption to enable authorized users to access relevant data without revealing results of search query evaluation process to the untrusted cloud service provider. Encrypted bloom filter based search enables OS2 to reduce search space to potentially relevant encrypted data avoiding unnecessary computation on public cloud. The efficacy of OS2 is evaluated on Google App Engine for various bloom filter lengths on different cloud configurations. PMID:28692697

  13. [Formula: see text]: Oblivious similarity based searching for encrypted data outsourced to an untrusted domain.

    PubMed

    Pervez, Zeeshan; Ahmad, Mahmood; Khattak, Asad Masood; Ramzan, Naeem; Khan, Wajahat Ali

    2017-01-01

    Public cloud storage services are becoming prevalent and myriad data sharing, archiving and collaborative services have emerged which harness the pay-as-you-go business model of public cloud. To ensure privacy and confidentiality often encrypted data is outsourced to such services, which further complicates the process of accessing relevant data by using search queries. Search over encrypted data schemes solve this problem by exploiting cryptographic primitives and secure indexing to identify outsourced data that satisfy the search criteria. Almost all of these schemes rely on exact matching between the encrypted data and search criteria. A few schemes which extend the notion of exact matching to similarity based search, lack realism as those schemes rely on trusted third parties or due to increase storage and computational complexity. In this paper we propose Oblivious Similarity based Search ([Formula: see text]) for encrypted data. It enables authorized users to model their own encrypted search queries which are resilient to typographical errors. Unlike conventional methodologies, [Formula: see text] ranks the search results by using similarity measure offering a better search experience than exact matching. It utilizes encrypted bloom filter and probabilistic homomorphic encryption to enable authorized users to access relevant data without revealing results of search query evaluation process to the untrusted cloud service provider. Encrypted bloom filter based search enables [Formula: see text] to reduce search space to potentially relevant encrypted data avoiding unnecessary computation on public cloud. The efficacy of [Formula: see text] is evaluated on Google App Engine for various bloom filter lengths on different cloud configurations.

  14. Using noun phrases for navigating biomedical literature on Pubmed: how many updates are we losing track of?

    PubMed

    Srikrishna, Devabhaktuni; Coram, Marc A

    2011-01-01

    Author-supplied citations are a fraction of the related literature for a paper. The "related citations" on PubMed is typically dozens or hundreds of results long, and does not offer hints why these results are related. Using noun phrases derived from the sentences of the paper, we show it is possible to more transparently navigate to PubMed updates through search terms that can associate a paper with its citations. The algorithm to generate these search terms involved automatically extracting noun phrases from the paper using natural language processing tools, and ranking them by the number of occurrences in the paper compared to the number of occurrences on the web. We define search queries having at least one instance of overlap between the author-supplied citations of the paper and the top 20 search results as citation validated (CV). When the overlapping citations were written by same authors as the paper itself, we define it as CV-S and different authors is defined as CV-D. For a systematic sample of 883 papers on PubMed Central, at least one of the search terms for 86% of the papers is CV-D versus 65% for the top 20 PubMed "related citations." We hypothesize these quantities computed for the 20 million papers on PubMed to differ within 5% of these percentages. Averaged across all 883 papers, 5 search terms are CV-D, and 10 search terms are CV-S, and 6 unique citations validate these searches. Potentially related literature uncovered by citation-validated searches (either CV-S or CV-D) are on the order of ten per paper--many more if the remaining searches that are not citation-validated are taken into account. The significance and relationship of each search result to the paper can only be vetted and explained by a researcher with knowledge of or interest in that paper.

  15. Using Noun Phrases for Navigating Biomedical Literature on Pubmed: How Many Updates Are We Losing Track of?

    PubMed Central

    Srikrishna, Devabhaktuni; Coram, Marc A.

    2011-01-01

    Author-supplied citations are a fraction of the related literature for a paper. The “related citations” on PubMed is typically dozens or hundreds of results long, and does not offer hints why these results are related. Using noun phrases derived from the sentences of the paper, we show it is possible to more transparently navigate to PubMed updates through search terms that can associate a paper with its citations. The algorithm to generate these search terms involved automatically extracting noun phrases from the paper using natural language processing tools, and ranking them by the number of occurrences in the paper compared to the number of occurrences on the web. We define search queries having at least one instance of overlap between the author-supplied citations of the paper and the top 20 search results as citation validated (CV). When the overlapping citations were written by same authors as the paper itself, we define it as CV-S and different authors is defined as CV-D. For a systematic sample of 883 papers on PubMed Central, at least one of the search terms for 86% of the papers is CV-D versus 65% for the top 20 PubMed “related citations.” We hypothesize these quantities computed for the 20 million papers on PubMed to differ within 5% of these percentages. Averaged across all 883 papers, 5 search terms are CV-D, and 10 search terms are CV-S, and 6 unique citations validate these searches. Potentially related literature uncovered by citation-validated searches (either CV-S or CV-D) are on the order of ten per paper – many more if the remaining searches that are not citation-validated are taken into account. The significance and relationship of each search result to the paper can only be vetted and explained by a researcher with knowledge of or interest in that paper. PMID:21935487

  16. Patterns of use and impact of standardised MedDRA query analyses on the safety evaluation and review of new drug and biologics license applications

    PubMed Central

    Chang, Lin-Chau; Mahmood, Riaz; Qureshi, Samina

    2017-01-01

    Purpose Standardised MedDRA Queries (SMQs) have been developed since the early 2000’s and used by academia, industry, public health, and government sectors for detecting safety signals in adverse event safety databases. The purpose of the present study is to characterize how SMQs are used and the impact in safety analyses for New Drug Application (NDA) and Biologics License Application (BLA) submissions to the United States Food and Drug Administration (USFDA). Methods We used the PharmaPendium database to capture SMQ use in Summary Basis of Approvals (SBoAs) of drugs and biologics approved by the USFDA. Characteristics of the drugs and the SMQ use were employed to evaluate the role of SMQ safety analyses in regulatory decisions and the veracity of signals they revealed. Results A comprehensive search of the SBoAs yielded 184 regulatory submissions approved from 2006 to 2015. Search strategies more frequently utilized restrictive searches with “narrow terms” to enhance specificity over strategies using “broad terms” to increase sensitivity, while some involved modification of search terms. A majority (59%) of 1290 searches used descriptive statistics, however inferential statistics were utilized in 35% of them. Commentary from reviewers and supervisory staff suggested that a small, yet notable percentage (18%) of 1290 searches supported regulatory decisions. The searches with regulatory impact were found in 73 submissions (40% of the submissions investigated). Most searches (75% of 227 searches) with regulatory implications described how the searches were confirmed, indicating prudence in the decision-making process. Conclusions SMQs have an increasing role in the presentation and review of safety analysis for NDAs/BLAs and their regulatory reviews. This study suggests that SMQs are best used for screening process, with descriptive statistics, description of SMQ modifications, and systematic verification of cases which is crucial for drawing regulatory conclusions. PMID:28570569

  17. An advanced search engine for patent analytics in medicinal chemistry.

    PubMed

    Pasche, Emilie; Gobeill, Julien; Teodoro, Douglas; Gaudinat, Arnaud; Vishnykova, Dina; Lovis, Christian; Ruch, Patrick

    2012-01-01

    Patent collections contain an important amount of medical-related knowledge, but existing tools were reported to lack of useful functionalities. We present here the development of TWINC, an advanced search engine dedicated to patent retrieval in the domain of health and life sciences. Our tool embeds two search modes: an ad hoc search to retrieve relevant patents given a short query and a related patent search to retrieve similar patents given a patent. Both search modes rely on tuning experiments performed during several patent retrieval competitions. Moreover, TWINC is enhanced with interactive modules, such as chemical query expansion, which is of prior importance to cope with various ways of naming biomedical entities. While the related patent search showed promising performances, the ad-hoc search resulted in fairly contrasted results. Nonetheless, TWINC performed well during the Chemathlon task of the PatOlympics competition and experts appreciated its usability.

  18. Web search queries can predict stock market volumes.

    PubMed

    Bordino, Ilaria; Battiston, Stefano; Caldarelli, Guido; Cristelli, Matthieu; Ukkonen, Antti; Weber, Ingmar

    2012-01-01

    We live in a computerized and networked society where many of our actions leave a digital trace and affect other people's actions. This has lead to the emergence of a new data-driven research field: mathematical methods of computer science, statistical physics and sociometry provide insights on a wide range of disciplines ranging from social science to human mobility. A recent important discovery is that search engine traffic (i.e., the number of requests submitted by users to search engines on the www) can be used to track and, in some cases, to anticipate the dynamics of social phenomena. Successful examples include unemployment levels, car and home sales, and epidemics spreading. Few recent works applied this approach to stock prices and market sentiment. However, it remains unclear if trends in financial markets can be anticipated by the collective wisdom of on-line users on the web. Here we show that daily trading volumes of stocks traded in NASDAQ-100 are correlated with daily volumes of queries related to the same stocks. In particular, query volumes anticipate in many cases peaks of trading by one day or more. Our analysis is carried out on a unique dataset of queries, submitted to an important web search engine, which enable us to investigate also the user behavior. We show that the query volume dynamics emerges from the collective but seemingly uncoordinated activity of many users. These findings contribute to the debate on the identification of early warnings of financial systemic risk, based on the activity of users of the www.

  19. Web Search Queries Can Predict Stock Market Volumes

    PubMed Central

    Bordino, Ilaria; Battiston, Stefano; Caldarelli, Guido; Cristelli, Matthieu; Ukkonen, Antti; Weber, Ingmar

    2012-01-01

    We live in a computerized and networked society where many of our actions leave a digital trace and affect other people’s actions. This has lead to the emergence of a new data-driven research field: mathematical methods of computer science, statistical physics and sociometry provide insights on a wide range of disciplines ranging from social science to human mobility. A recent important discovery is that search engine traffic (i.e., the number of requests submitted by users to search engines on the www) can be used to track and, in some cases, to anticipate the dynamics of social phenomena. Successful examples include unemployment levels, car and home sales, and epidemics spreading. Few recent works applied this approach to stock prices and market sentiment. However, it remains unclear if trends in financial markets can be anticipated by the collective wisdom of on-line users on the web. Here we show that daily trading volumes of stocks traded in NASDAQ-100 are correlated with daily volumes of queries related to the same stocks. In particular, query volumes anticipate in many cases peaks of trading by one day or more. Our analysis is carried out on a unique dataset of queries, submitted to an important web search engine, which enable us to investigate also the user behavior. We show that the query volume dynamics emerges from the collective but seemingly uncoordinated activity of many users. These findings contribute to the debate on the identification of early warnings of financial systemic risk, based on the activity of users of the www. PMID:22829871

  20. Advances in nowcasting influenza-like illness rates using search query logs

    NASA Astrophysics Data System (ADS)

    Lampos, Vasileios; Miller, Andrew C.; Crossan, Steve; Stefansen, Christian

    2015-08-01

    User-generated content can assist epidemiological surveillance in the early detection and prevalence estimation of infectious diseases, such as influenza. Google Flu Trends embodies the first public platform for transforming search queries to indications about the current state of flu in various places all over the world. However, the original model significantly mispredicted influenza-like illness rates in the US during the 2012-13 flu season. In this work, we build on the previous modeling attempt, proposing substantial improvements. Firstly, we investigate the performance of a widely used linear regularized regression solver, known as the Elastic Net. Then, we expand on this model by incorporating the queries selected by the Elastic Net into a nonlinear regression framework, based on a composite Gaussian Process. Finally, we augment the query-only predictions with an autoregressive model, injecting prior knowledge about the disease. We assess predictive performance using five consecutive flu seasons spanning from 2008 to 2013 and qualitatively explain certain shortcomings of the previous approach. Our results indicate that a nonlinear query modeling approach delivers the lowest cumulative nowcasting error, and also suggest that query information significantly improves autoregressive inferences, obtaining state-of-the-art performance.

  1. Advances in nowcasting influenza-like illness rates using search query logs.

    PubMed

    Lampos, Vasileios; Miller, Andrew C; Crossan, Steve; Stefansen, Christian

    2015-08-03

    User-generated content can assist epidemiological surveillance in the early detection and prevalence estimation of infectious diseases, such as influenza. Google Flu Trends embodies the first public platform for transforming search queries to indications about the current state of flu in various places all over the world. However, the original model significantly mispredicted influenza-like illness rates in the US during the 2012-13 flu season. In this work, we build on the previous modeling attempt, proposing substantial improvements. Firstly, we investigate the performance of a widely used linear regularized regression solver, known as the Elastic Net. Then, we expand on this model by incorporating the queries selected by the Elastic Net into a nonlinear regression framework, based on a composite Gaussian Process. Finally, we augment the query-only predictions with an autoregressive model, injecting prior knowledge about the disease. We assess predictive performance using five consecutive flu seasons spanning from 2008 to 2013 and qualitatively explain certain shortcomings of the previous approach. Our results indicate that a nonlinear query modeling approach delivers the lowest cumulative nowcasting error, and also suggest that query information significantly improves autoregressive inferences, obtaining state-of-the-art performance.

  2. Intelligent web image retrieval system

    NASA Astrophysics Data System (ADS)

    Hong, Sungyong; Lee, Chungwoo; Nah, Yunmook

    2001-07-01

    Recently, the web sites such as e-business sites and shopping mall sites deal with lots of image information. To find a specific image from these image sources, we usually use web search engines or image database engines which rely on keyword only retrievals or color based retrievals with limited search capabilities. This paper presents an intelligent web image retrieval system. We propose the system architecture, the texture and color based image classification and indexing techniques, and representation schemes of user usage patterns. The query can be given by providing keywords, by selecting one or more sample texture patterns, by assigning color values within positional color blocks, or by combining some or all of these factors. The system keeps track of user's preferences by generating user query logs and automatically add more search information to subsequent user queries. To show the usefulness of the proposed system, some experimental results showing recall and precision are also explained.

  3. Clinical Diagnostics in Human Genetics with Semantic Similarity Searches in Ontologies

    PubMed Central

    Köhler, Sebastian; Schulz, Marcel H.; Krawitz, Peter; Bauer, Sebastian; Dölken, Sandra; Ott, Claus E.; Mundlos, Christine; Horn, Denise; Mundlos, Stefan; Robinson, Peter N.

    2009-01-01

    The differential diagnostic process attempts to identify candidate diseases that best explain a set of clinical features. This process can be complicated by the fact that the features can have varying degrees of specificity, as well as by the presence of features unrelated to the disease itself. Depending on the experience of the physician and the availability of laboratory tests, clinical abnormalities may be described in greater or lesser detail. We have adapted semantic similarity metrics to measure phenotypic similarity between queries and hereditary diseases annotated with the use of the Human Phenotype Ontology (HPO) and have developed a statistical model to assign p values to the resulting similarity scores, which can be used to rank the candidate diseases. We show that our approach outperforms simpler term-matching approaches that do not take the semantic interrelationships between terms into account. The advantage of our approach was greater for queries containing phenotypic noise or imprecise clinical descriptions. The semantic network defined by the HPO can be used to refine the differential diagnosis by suggesting clinical features that, if present, best differentiate among the candidate diagnoses. Thus, semantic similarity searches in ontologies represent a useful way of harnessing the semantic structure of human phenotypic abnormalities to help with the differential diagnosis. We have implemented our methods in a freely available web application for the field of human Mendelian disorders. PMID:19800049

  4. WORDGRAPH: Keyword-in-Context Visualization for NETSPEAK's Wildcard Search.

    PubMed

    Riehmann, Patrick; Gruendl, Henning; Potthast, Martin; Trenkmann, Martin; Stein, Benno; Froehlich, Benno

    2012-09-01

    The WORDGRAPH helps writers in visually choosing phrases while writing a text. It checks for the commonness of phrases and allows for the retrieval of alternatives by means of wildcard queries. To support such queries, we implement a scalable retrieval engine, which returns high-quality results within milliseconds using a probabilistic retrieval strategy. The results are displayed as WORDGRAPH visualization or as a textual list. The graphical interface provides an effective means for interactive exploration of search results using filter techniques, query expansion, and navigation. Our observations indicate that, of three investigated retrieval tasks, the textual interface is sufficient for the phrase verification task, wherein both interfaces support context-sensitive word choice, and the WORDGRAPH best supports the exploration of a phrase's context or the underlying corpus. Our user study confirms these observations and shows that WORDGRAPH is generally the preferred interface over the textual result list for queries containing multiple wildcards.

  5. Experiments with Cross-Language Information Retrieval on a Health Portal for Psychology and Psychotherapy.

    PubMed

    Andrenucci, Andrea

    2016-01-01

    Few studies have been performed within cross-language information retrieval (CLIR) in the field of psychology and psychotherapy. The aim of this paper is to to analyze and assess the quality of available query translation methods for CLIR on a health portal for psychology. A test base of 100 user queries, 50 Multi Word Units (WUs) and 50 Single WUs, was used. Swedish was the source language and English the target language. Query translation methods based on machine translation (MT) and dictionary look-up were utilized in order to submit query translations to two search engines: Google Site Search and Quick Ask. Standard IR evaluation measures and a qualitative analysis were utilized to assess the results. The lexicon extracted with word alignment of the portal's parallel corpus provided better statistical results among dictionary look-ups. Google Translate provided more linguistically correct translations overall and also delivered better retrieval results in MT.

  6. Impact of PubMed search filters on the retrieval of evidence by physicians.

    PubMed

    Shariff, Salimah Z; Sontrop, Jessica M; Haynes, R Brian; Iansavichus, Arthur V; McKibbon, K Ann; Wilczynski, Nancy L; Weir, Matthew A; Speechley, Mark R; Thind, Amardeep; Garg, Amit X

    2012-02-21

    Physicians face challenges when searching PubMed for research evidence, and they may miss relevant articles while retrieving too many nonrelevant articles. We investigated whether the use of search filters in PubMed improves searching by physicians. We asked a random sample of Canadian nephrologists to answer unique clinical questions derived from 100 systematic reviews of renal therapy. Physicians provided the search terms that they would type into PubMed to locate articles to answer these questions. We entered the physician-provided search terms into PubMed and applied two types of search filters alone or in combination: a methods-based filter designed to identify high-quality studies about treatment (clinical queries "therapy") and a topic-based filter designed to identify studies with renal content. We evaluated the comprehensiveness (proportion of relevant articles found) and efficiency (ratio of relevant to nonrelevant articles) of the filtered and nonfiltered searches. Primary studies included in the systematic reviews served as the reference standard for relevant articles. The average physician-provided search terms retrieved 46% of the relevant articles, while 6% of the retrieved articles were relevant (corrected) (the ratio of relevant to nonrelevant articles was 1:16). The use of both filters together produced a marked improvement in efficiency, resulting in a ratio of relevant to nonrelevant articles of 1:5 (16 percentage point improvement; 99% confidence interval 9% to 22%; p < 0.003) with no substantive change in comprehensiveness (44% of relevant articles found; p = 0.55). The use of PubMed search filters improves the efficiency of physician searches. Improved search performance may enhance the transfer of research into practice and improve patient care.

  7. Adaptation of machine translation for multilingual information retrieval in the medical domain.

    PubMed

    Pecina, Pavel; Dušek, Ondřej; Goeuriot, Lorraine; Hajič, Jan; Hlaváčová, Jaroslava; Jones, Gareth J F; Kelly, Liadh; Leveling, Johannes; Mareček, David; Novák, Michal; Popel, Martin; Rosa, Rudolf; Tamchyna, Aleš; Urešová, Zdeňka

    2014-07-01

    We investigate machine translation (MT) of user search queries in the context of cross-lingual information retrieval (IR) in the medical domain. The main focus is on techniques to adapt MT to increase translation quality; however, we also explore MT adaptation to improve effectiveness of cross-lingual IR. Our MT system is Moses, a state-of-the-art phrase-based statistical machine translation system. The IR system is based on the BM25 retrieval model implemented in the Lucene search engine. The MT techniques employed in this work include in-domain training and tuning, intelligent training data selection, optimization of phrase table configuration, compound splitting, and exploiting synonyms as translation variants. The IR methods include morphological normalization and using multiple translation variants for query expansion. The experiments are performed and thoroughly evaluated on three language pairs: Czech-English, German-English, and French-English. MT quality is evaluated on data sets created within the Khresmoi project and IR effectiveness is tested on the CLEF eHealth 2013 data sets. The search query translation results achieved in our experiments are outstanding - our systems outperform not only our strong baselines, but also Google Translate and Microsoft Bing Translator in direct comparison carried out on all the language pairs. The baseline BLEU scores increased from 26.59 to 41.45 for Czech-English, from 23.03 to 40.82 for German-English, and from 32.67 to 40.82 for French-English. This is a 55% improvement on average. In terms of the IR performance on this particular test collection, a significant improvement over the baseline is achieved only for French-English. For Czech-English and German-English, the increased MT quality does not lead to better IR results. Most of the MT techniques employed in our experiments improve MT of medical search queries. Especially the intelligent training data selection proves to be very successful for domain adaptation of MT. Certain improvements are also obtained from German compound splitting on the source language side. Translation quality, however, does not appear to correlate with the IR performance - better translation does not necessarily yield better retrieval. We discuss in detail the contribution of the individual techniques and state-of-the-art features and provide future research directions. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Discovering biomedical semantic relations in PubMed queries for information retrieval and database curation.

    PubMed

    Huang, Chung-Chi; Lu, Zhiyong

    2016-01-01

    Identifying relevant papers from the literature is a common task in biocuration. Most current biomedical literature search systems primarily rely on matching user keywords. Semantic search, on the other hand, seeks to improve search accuracy by understanding the entities and contextual relations in user keywords. However, past research has mostly focused on semantically identifying biological entities (e.g. chemicals, diseases and genes) with little effort on discovering semantic relations. In this work, we aim to discover biomedical semantic relations in PubMed queries in an automated and unsupervised fashion. Specifically, we focus on extracting and understanding the contextual information (or context patterns) that is used by PubMed users to represent semantic relations between entities such as 'CHEMICAL-1 compared to CHEMICAL-2' With the advances in automatic named entity recognition, we first tag entities in PubMed queries and then use tagged entities as knowledge to recognize pattern semantics. More specifically, we transform PubMed queries into context patterns involving participating entities, which are subsequently projected to latent topics via latent semantic analysis (LSA) to avoid the data sparseness and specificity issues. Finally, we mine semantically similar contextual patterns or semantic relations based on LSA topic distributions. Our two separate evaluation experiments of chemical-chemical (CC) and chemical-disease (CD) relations show that the proposed approach significantly outperforms a baseline method, which simply measures pattern semantics by similarity in participating entities. The highest performance achieved by our approach is nearly 0.9 and 0.85 respectively for the CC and CD task when compared against the ground truth in terms of normalized discounted cumulative gain (nDCG), a standard measure of ranking quality. These results suggest that our approach can effectively identify and return related semantic patterns in a ranked order covering diverse bio-entity relations. To assess the potential utility of our automated top-ranked patterns of a given relation in semantic search, we performed a pilot study on frequently sought semantic relations in PubMed and observed improved literature retrieval effectiveness based on post-hoc human relevance evaluation. Further investigation in larger tests and in real-world scenarios is warranted. Published by Oxford University Press 2016. This work is written by US Government employees and is in the public domain in the US.

  9. The Limitations of Term Co-Occurrence Data for Query Expansion in Document Retrieval Systems.

    ERIC Educational Resources Information Center

    Peat, Helen J.; Willett, Peter

    1991-01-01

    Identifies limitations in the use of term co-occurrence data as a basis for automatic query expansion in natural language document retrieval systems. The use of similarity coefficients to calculate the degree of similarity between pairs of terms is explained, and frequency and discriminatory characteristics for nearest neighbors of query terms are…

  10. A Survey in Indexing and Searching XML Documents.

    ERIC Educational Resources Information Center

    Luk, Robert W. P.; Leong, H. V.; Dillon, Tharam S.; Chan, Alvin T. S.; Croft, W. Bruce; Allan, James

    2002-01-01

    Discussion of XML focuses on indexing techniques for XML documents, grouping them into flat-file, semistructured, and structured indexing paradigms. Highlights include searching techniques, including full text search and multistage search; search result presentations; database and information retrieval system integration; XML query languages; and…

  11. The development of PubMed search strategies for patient preferences for treatment outcomes.

    PubMed

    van Hoorn, Ralph; Kievit, Wietske; Booth, Andrew; Mozygemba, Kati; Lysdahl, Kristin Bakke; Refolo, Pietro; Sacchini, Dario; Gerhardus, Ansgar; van der Wilt, Gert Jan; Tummers, Marcia

    2016-07-29

    The importance of respecting patients' preferences when making treatment decisions is increasingly recognized. Efficiently retrieving papers from the scientific literature reporting on the presence and nature of such preferences can help to achieve this goal. The objective of this study was to create a search filter for PubMed to help retrieve evidence on patient preferences for treatment outcomes. A total of 27 journals were hand-searched for articles on patient preferences for treatment outcomes published in 2011. Selected articles served as a reference set. To develop optimal search strategies to retrieve this set, all articles in the reference set were randomly split into a development and a validation set. MeSH-terms and keywords retrieved using PubReMiner were tested individually and as combinations in PubMed and evaluated for retrieval performance (e.g. sensitivity (Se) and specificity (Sp)). Of 8238 articles, 22 were considered to report empirical evidence on patient preferences for specific treatment outcomes. The best search filters reached Se of 100 % [95 % CI 100-100] with Sp of 95 % [94-95 %] and Sp of 97 % [97-98 %] with 75 % Se [74-76 %]. In the validation set these queries reached values of Se of 90 % [89-91 %] with Sp 94 % [93-95 %] and Se of 80 % [79-81 %] with Sp of 97 % [96-96 %], respectively. Narrow and broad search queries were developed which can help in retrieving literature on patient preferences for treatment outcomes. Identifying such evidence may in turn enhance the incorporation of patient preferences in clinical decision making and health technology assessment.

  12. Semantically Enriching the Search System of a Music Digital Library

    NASA Astrophysics Data System (ADS)

    de Juan, Paloma; Iglesias, Carlos

    Traditional search systems are usually based on keywords, a very simple and convenient mechanism to express a need for information. This is the most popular way of searching the Web, although it is not always an easy task to accurately summarize a natural language query in a few keywords. Working with keywords means losing the context, which is the only thing that can help us deal with ambiguity. This is the biggest problem of keyword-based systems. Semantic Web technologies seem a perfect solution to this problem, since they make it possible to represent the semantics of a given domain. In this chapter, we present three projects, Harmos, Semusici and Cantiga, whose aim is to provide access to a music digital library. We will describe two search systems, a traditional one and a semantic one, developed in the context of these projects and compare them in terms of usability and effectiveness.

  13. Omokage search: shape similarity search service for biomolecular structures in both the PDB and EMDB.

    PubMed

    Suzuki, Hirofumi; Kawabata, Takeshi; Nakamura, Haruki

    2016-02-15

    Omokage search is a service to search the global shape similarity of biological macromolecules and their assemblies, in both the Protein Data Bank (PDB) and Electron Microscopy Data Bank (EMDB). The server compares global shapes of assemblies independent of sequence order and number of subunits. As a search query, the user inputs a structure ID (PDB ID or EMDB ID) or uploads an atomic model or 3D density map to the server. The search is performed usually within 1 min, using one-dimensional profiles (incremental distance rank profiles) to characterize the shapes. Using the gmfit (Gaussian mixture model fitting) program, the found structures are fitted onto the query structure and their superimposed structures are displayed on the Web browser. Our service provides new structural perspectives to life science researchers. Omokage search is freely accessible at http://pdbj.org/omokage/. © The Author 2015. Published by Oxford University Press.

  14. Understanding PubMed user search behavior through log analysis.

    PubMed

    Islamaj Dogan, Rezarta; Murray, G Craig; Névéol, Aurélie; Lu, Zhiyong

    2009-01-01

    This article reports on a detailed investigation of PubMed users' needs and behavior as a step toward improving biomedical information retrieval. PubMed is providing free service to researchers with access to more than 19 million citations for biomedical articles from MEDLINE and life science journals. It is accessed by millions of users each day. Efficient search tools are crucial for biomedical researchers to keep abreast of the biomedical literature relating to their own research. This study provides insight into PubMed users' needs and their behavior. This investigation was conducted through the analysis of one month of log data, consisting of more than 23 million user sessions and more than 58 million user queries. Multiple aspects of users' interactions with PubMed are characterized in detail with evidence from these logs. Despite having many features in common with general Web searches, biomedical information searches have unique characteristics that are made evident in this study. PubMed users are more persistent in seeking information and they reformulate queries often. The three most frequent types of search are search by author name, search by gene/protein, and search by disease. Use of abbreviation in queries is very frequent. Factors such as result set size influence users' decisions. Analysis of characteristics such as these plays a critical role in identifying users' information needs and their search habits. In turn, such an analysis also provides useful insight for improving biomedical information retrieval.Database URL:http://www.ncbi.nlm.nih.gov/PubMed.

  15. FLASHFLOOD: A 3D Field-based similarity search and alignment method for flexible molecules

    NASA Astrophysics Data System (ADS)

    Pitman, Michael C.; Huber, Wolfgang K.; Horn, Hans; Krämer, Andreas; Rice, Julia E.; Swope, William C.

    2001-07-01

    A three-dimensional field-based similarity search and alignment method for flexible molecules is introduced. The conformational space of a flexible molecule is represented in terms of fragments and torsional angles of allowed conformations. A user-definable property field is used to compute features of fragment pairs. Features are generalizations of CoMMA descriptors (Silverman, B.D. and Platt, D.E., J. Med. Chem., 39 (1996) 2129.) that characterize local regions of the property field by its local moments. The features are invariant under coordinate system transformations. Features taken from a query molecule are used to form alignments with fragment pairs in the database. An assembly algorithm is then used to merge the fragment pairs into full structures, aligned to the query. Key to the method is the use of a context adaptive descriptor scaling procedure as the basis for similarity. This allows the user to tune the weights of the various feature components based on examples relevant to the particular context under investigation. The property fields may range from simple, phenomenological fields, to fields derived from quantum mechanical calculations. We apply the method to the dihydrofolate/methotrexate benchmark system, and show that when one injects relevant contextual information into the descriptor scaling procedure, better results are obtained more efficiently. We also show how the method works and include computer times for a query from a database that represents approximately 23 million conformers of seventeen flexible molecules.

  16. A comparison of Boolean-based retrieval to the WAIS system for retrieval of aeronautical information

    NASA Technical Reports Server (NTRS)

    Marchionini, Gary; Barlow, Diane

    1994-01-01

    An evaluation of an information retrieval system using a Boolean-based retrieval engine and inverted file architecture and WAIS, which uses a vector-based engine, was conducted. Four research questions in aeronautical engineering were used to retrieve sets of citations from the NASA Aerospace Database which was mounted on a WAIS server and available through Dialog File 108 which served as the Boolean-based system (BBS). High recall and high precision searches were done in the BBS and terse and verbose queries were used in the WAIS condition. Precision values for the WAIS searches were consistently above the precision values for high recall BBS searches and consistently below the precision values for high precision BBS searches. Terse WAIS queries gave somewhat better precision performance than verbose WAIS queries. In every case, a small number of relevant documents retrieved by one system were not retrieved by the other, indicating the incomplete nature of the results from either retrieval system. Relevant documents in the WAIS searches were found to be randomly distributed in the retrieved sets rather than distributed by ranks. Advantages and limitations of both types of systems are discussed.

  17. A Semantic Approach for Knowledge Discovery to Help Mitigate Habitat Loss in the Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Ramachandran, R.; Maskey, M.; Graves, S.; Hardin, D.

    2008-12-01

    Noesis is a meta-search engine and a resource aggregator that uses domain ontologies to provide scoped search capabilities. Ontologies enable Noesis to help users refine their searches for information on the open web and in hidden web locations such as data catalogues with standardized, but discipline specific vocabularies. Through its ontologies Noesis provides a guided refinement of search queries which produces complete and accurate searches while reducing the user's burden to experiment with different search strings. All search results are organized by categories (e. g. all results from Google are grouped together) which may be selected or omitted according to the desire of the user. During the past two years ontologies were developed for sea grasses in the Gulf of Mexico and were used to support a habitat restoration demonstration project. Currently these ontologies are being augmented to address the special characteristics of mangroves. These new ontologies will extend the demonstration project to broader regions of the Gulf including protected mangrove locations in coastal Mexico. Noesis contributes to the decision making process by producing a comprehensive list of relevant resources based on the semantic information contained in the ontologies. Ontologies are organized in a tree like taxonomies, where the child nodes represent the Specializations and the parent nodes represent the Generalizations of a node or concept. Specializations can be used to provide more detailed search, while generalizations are used to make the search broader. Ontologies are also used to link two syntactically different terms to one semantic concept (synonyms). Appending a synonym to the query expands the search, thus providing better search coverage. Every concept has a set of properties that are neither in the same inheritance hierarchy (Specializations / Generalizations) nor equivalent (synonyms). These are called Related Concepts and they are captured in the ontology through property relationships. By using Related Concepts users can search for resources with respect to a particular property. Noesis automatically generates searches that include all of these capabilities, removing the burden from the user and producing broader and more accurate search results. This presentation will demonstrate the features of Noesis and describe its application to habitat studies in the Gulf of Mexico.

  18. Utility of Web search query data in testing theoretical assumptions about mephedrone.

    PubMed

    Kapitány-Fövény, Máté; Demetrovics, Zsolt

    2017-05-01

    With growing access to the Internet, people who use drugs and traffickers started to obtain information about novel psychoactive substances (NPS) via online platforms. This paper aims to analyze whether a decreasing Web interest in formerly banned substances-cocaine, heroin, and MDMA-and the legislative status of mephedrone predict Web interest about this NPS. Google Trends was used to measure changes of Web interest on cocaine, heroin, MDMA, and mephedrone. Google search results for mephedrone within the same time frame were analyzed and categorized. Web interest about classic drugs found to be more persistent. Regarding geographical distribution, location of Web searches for heroin and cocaine was less centralized. Illicit status of mephedrone was a negative predictor of its Web search query rates. The connection between mephedrone-related Web search rates and legislative status of this substance was significantly mediated by ecstasy-related Web search queries, the number of documentaries, and forum/blog entries about mephedrone. The results might provide support for the hypothesis that mephedrone's popularity was highly correlated with its legal status as well as it functioned as a potential substitute for MDMA. Google Trends was found to be a useful tool for testing theoretical assumptions about NPS. Copyright © 2017 John Wiley & Sons, Ltd.

  19. Language Preferences on Websites and in Google Searches for Human Health and Food Information

    PubMed Central

    Singh, Punam Mony; Wight, Carly A; Sercinoglu, Olcan; Wilson, David C; Boytsov, Artem

    2007-01-01

    Background While it is known that the majority of pages on the World Wide Web are in English, little is known about the preferred language of users searching for health information online. Objectives (1) To help global and domestic publishers, for example health and food agencies, to determine the need for translation of online information from English into local languages. (2) To help these agencies determine which language(s) they should select when publishing information online in target nations and for target subpopulations within nations. Methods To estimate the percentage of Web publishers that translate their health and food websites, we measured the frequency at which domain names retrieved by Google overlap for language translations of the same health-related search term. To quantify language choice of searchers from different countries, Google provided estimates of the rate at which its search engine was queried in six languages relative to English for the terms “avian flu,” “tuberculosis,” “schizophrenia,” and “maize” (corn) from January 2004 to April 2006. The estimate was based on a 20% sample of all Google queries from 227 nations. Results We estimate that 80%-90% of health- and food-related institutions do not translate their websites into multiple languages, even when the information concerns pandemic disease such as avian influenza. Although Internet users are often well-educated, there was a strong preference for searching for health and food information in the local language, rather than English. For “avian flu,” we found that only 1% of searches in non-English-speaking nations were in English, whereas for “tuberculosis” or “schizophrenia,” about 4%-40% of searches in non-English countries employed English. A subset of searches for health information presumably originating from immigrants occurred in their native tongue, not the language of the adopted country. However, Spanish-language online searches for “avian flu,” “schizophrenia,” and “maize/corn” in the United States occurred at only <1% of the English search rate, although the US online Hispanic population constitutes 12% of the total US online population. Sub-Saharan Africa and Bangladesh searches for health information occurred in unexpected languages, perhaps reflecting the presence of aid workers and the global migration of Internet users, respectively. In Latin America, indigenous-language search terms were often used rather than Spanish. Conclusions (1) Based on the strong preference for searching the Internet for health information in the local language, indigenous language, or immigrant language of origin, global and domestic health and food agencies should continue their efforts to translate their institutional websites into more languages. (2) We have provided linguistic online search pattern data to help health and food agencies better select languages for targeted website publishing. PMID:17613488

  20. Improved nearest codeword search scheme using a tighter kick-out condition

    NASA Astrophysics Data System (ADS)

    Hwang, Kuo-Feng; Chang, Chin-Chen

    2001-09-01

    Using a tighter kick-out condition as a faster approach to nearest codeword searches is proposed. The proposed scheme finds the nearest codeword that is identical to the one found using a full search. However, using our scheme, the search time is much shorter. Our scheme first establishes a tighter kick-out condition. Then, the temporal nearest codeword can be obtained from the codewords that survive the tighter condition. Finally, the temporal nearest codeword cooperatives with the query vector to constitute a better kick-out condition. In other words, more codewords can be excluded without actually computing the distances between the bypassed codewords and the query vector. Comparison to previous work are included to present the benefits of the proposed scheme in relation to search time.

  1. SAFOD Brittle Microstructure and Mechanics Knowledge Base (BM2KB)

    NASA Astrophysics Data System (ADS)

    Babaie, Hassan A.; Broda Cindi, M.; Hadizadeh, Jafar; Kumar, Anuj

    2013-07-01

    Scientific drilling near Parkfield, California has established the San Andreas Fault Observatory at Depth (SAFOD), which provides the solid earth community with short range geophysical and fault zone material data. The BM2KB ontology was developed in order to formalize the knowledge about brittle microstructures in the fault rocks sampled from the SAFOD cores. A knowledge base, instantiated from this domain ontology, stores and presents the observed microstructural and analytical data with respect to implications for brittle deformation and mechanics of faulting. These data can be searched on the knowledge base‧s Web interface by selecting a set of terms (classes, properties) from different drop-down lists that are dynamically populated from the ontology. In addition to this general search, a query can also be conducted to view data contributed by a specific investigator. A search by sample is done using the EarthScope SAFOD Core Viewer that allows a user to locate samples on high resolution images of core sections belonging to different runs and holes. The class hierarchy of the BM2KB ontology was initially designed using the Unified Modeling Language (UML), which was used as a visual guide to develop the ontology in OWL applying the Protégé ontology editor. Various Semantic Web technologies such as the RDF, RDFS, and OWL ontology languages, SPARQL query language, and Pellet reasoning engine, were used to develop the ontology. An interactive Web application interface was developed through Jena, a java based framework, with AJAX technology, jsp pages, and java servlets, and deployed via an Apache tomcat server. The interface allows the registered user to submit data related to their research on a sample of the SAFOD core. The submitted data, after initial review by the knowledge base administrator, are added to the extensible knowledge base and become available in subsequent queries to all types of users. The interface facilitates inference capabilities in the ontology, supports SPARQL queries, allows for modifications based on successive discoveries, and provides an accessible knowledge base on the Web.

  2. The Word Outside and the Pictures in Our Heads: Contingent Framing Effects of Labels on Health Policy Preferences by Political Ideology.

    PubMed

    Roh, Sungjong; Niederdeppe, Jeff

    2016-09-01

    This study uses data from systematic Web image search results and two randomized survey experiments to analyze how frames commonly used in public debates about health issues, operationalized here as alternative word choices, influence public support for health policy reforms. In Study 1, analyses of Bing (N = 1,719), Google (N = 1,872), and Yahoo Images (N = 1,657) search results suggest that the images returned from the search query "sugar-sweetened beverage" are more likely to evoke health-related concepts than images returned from a search query about "soda." In contrast, "soda" search queries were more likely to incorporate brand-related concepts than "sugar-sweetened beverage" search queries. In Study 2, participants (N = 206) in a controlled Web experiment rated their support for policies to reduce consumption of these drinks. As expected, strong liberals had more support for policies designed to reduce the consumption of these drinks when the policies referenced "soda" compared to "sugar-sweetened beverage." To the contrary, items describing these drinks as "soda" produced lower policy support than items describing them as "sugar-sweetened beverage" among strong conservatives. In Study 3, participants (N = 1,000) in a national telephone survey experiment rated their support for a similar set of policies. Results conceptually replicated the previous Web-based experiment, such that strong liberals reported greater support for a penny-per-ounce taxation when labeled "soda" versus "sugar-sweetened beverages." In both Studies 2 and 3, more respondents referred to brand-related concepts in response to questions about "sugar-sweetened beverages" compared to "soda." We conclude with a discussion of theoretical and methodological implications for studying framing effects of labels.

  3. KBGIS-II: A knowledge-based geographic information system

    NASA Technical Reports Server (NTRS)

    Smith, Terence; Peuquet, Donna; Menon, Sudhakar; Agarwal, Pankaj

    1986-01-01

    The architecture and working of a recently implemented Knowledge-Based Geographic Information System (KBGIS-II), designed to satisfy several general criteria for the GIS, is described. The system has four major functions including query-answering, learning and editing. The main query finds constrained locations for spatial objects that are describable in a predicate-calculus based spatial object language. The main search procedures include a family of constraint-satisfaction procedures that use a spatial object knowledge base to search efficiently for complex spatial objects in large, multilayered spatial data bases. These data bases are represented in quadtree form. The search strategy is designed to reduce the computational cost of search in the average case. The learning capabilities of the system include the addition of new locations of complex spatial objects to the knowledge base as queries are answered, and the ability to learn inductively definitions of new spatial objects from examples. The new definitions are added to the knowledge base by the system. The system is performing all its designated tasks successfully. Future reports will relate performance characteristics of the system.

  4. Mercury Toolset for Spatiotemporal Metadata

    NASA Technical Reports Server (NTRS)

    Wilson, Bruce E.; Palanisamy, Giri; Devarakonda, Ranjeet; Rhyne, B. Timothy; Lindsley, Chris; Green, James

    2010-01-01

    Mercury (http://mercury.ornl.gov) is a set of tools for federated harvesting, searching, and retrieving metadata, particularly spatiotemporal metadata. Version 3.0 of the Mercury toolset provides orders of magnitude improvements in search speed, support for additional metadata formats, integration with Google Maps for spatial queries, facetted type search, support for RSS (Really Simple Syndication) delivery of search results, and enhanced customization to meet the needs of the multiple projects that use Mercury. It provides a single portal to very quickly search for data and information contained in disparate data management systems, each of which may use different metadata formats. Mercury harvests metadata and key data from contributing project servers distributed around the world and builds a centralized index. The search interfaces then allow the users to perform a variety of fielded, spatial, and temporal searches across these metadata sources. This centralized repository of metadata with distributed data sources provides extremely fast search results to the user, while allowing data providers to advertise the availability of their data and maintain complete control and ownership of that data. Mercury periodically (typically daily) harvests metadata sources through a collection of interfaces and re-indexes these metadata to provide extremely rapid search capabilities, even over collections with tens of millions of metadata records. A number of both graphical and application interfaces have been constructed within Mercury, to enable both human users and other computer programs to perform queries. Mercury was also designed to support multiple different projects, so that the particular fields that can be queried and used with search filters are easy to configure for each different project.

  5. Mercury Toolset for Spatiotemporal Metadata

    NASA Astrophysics Data System (ADS)

    Devarakonda, Ranjeet; Palanisamy, Giri; Green, James; Wilson, Bruce; Rhyne, B. Timothy; Lindsley, Chris

    2010-06-01

    Mercury (http://mercury.ornl.gov) is a set of tools for federated harvesting, searching, and retrieving metadata, particularly spatiotemporal metadata. Version 3.0 of the Mercury toolset provides orders of magnitude improvements in search speed, support for additional metadata formats, integration with Google Maps for spatial queries, facetted type search, support for RSS (Really Simple Syndication) delivery of search results, and enhanced customization to meet the needs of the multiple projects that use Mercury. It provides a single portal to very quickly search for data and information contained in disparate data management systems, each of which may use different metadata formats. Mercury harvests metadata and key data from contributing project servers distributed around the world and builds a centralized index. The search interfaces then allow the users to perform a variety of fielded, spatial, and temporal searches across these metadata sources. This centralized repository of metadata with distributed data sources provides extremely fast search results to the user, while allowing data providers to advertise the availability of their data and maintain complete control and ownership of that data. Mercury periodically (typically daily)harvests metadata sources through a collection of interfaces and re-indexes these metadata to provide extremely rapid search capabilities, even over collections with tens of millions of metadata records. A number of both graphical and application interfaces have been constructed within Mercury, to enable both human users and other computer programs to perform queries. Mercury was also designed to support multiple different projects, so that the particular fields that can be queried and used with search filters are easy to configure for each different project.

  6. Evolution of Query Optimization Methods

    NASA Astrophysics Data System (ADS)

    Hameurlain, Abdelkader; Morvan, Franck

    Query optimization is the most critical phase in query processing. In this paper, we try to describe synthetically the evolution of query optimization methods from uniprocessor relational database systems to data Grid systems through parallel, distributed and data integration systems. We point out a set of parameters to characterize and compare query optimization methods, mainly: (i) size of the search space, (ii) type of method (static or dynamic), (iii) modification types of execution plans (re-optimization or re-scheduling), (iv) level of modification (intra-operator and/or inter-operator), (v) type of event (estimation errors, delay, user preferences), and (vi) nature of decision-making (centralized or decentralized control).

  7. The Quality of Health Information Available on the Internet for Patients With Pelvic Organ Prolapse.

    PubMed

    Solomon, Ellen R; Janssen, Kristine; Krajewski, Colleen M; Barber, Matthew D

    2015-01-01

    This study aimed to assess the quality of Web sites that provide information on pelvic organ prolapse using validated quality measurement tools. The Google search engine was used to perform a search of the following 4 terms: "pelvic organ prolapse," "dropped bladder," "cystocele," and "vaginal mesh." The DISCERN appraisal tool and JAMA benchmark criteria were used to determine the quality of health information of each Web site. Cohen κ was performed to determine interrater reliability between reviewers. Kruskal-Wallis and Wilcoxon rank sum tests were used to compare DISCERN scores and JAMA criteria among search terms. Interrater reliability between the two reviewers using DISCERN was κ = 0.71 [95% confidence interval (CI), 0.68-0.74] and using JAMA criteria was κ = 0.98 (95% CI, 0.74-1.0). On the basis of the DISCERN appraisal tool, the search term "vaginal mesh" had significantly lower Web site quality than "pelvic organ prolapse" and "cystocele," respectively [mean difference of DISCERN score, -14.65 (95% CI, -25.50 to 8.50, P < 0.0001) and -12.55 (95% CI, -24.00 to 7.00, P = 0.0007)]. "Dropped bladder" had significantly lower Web site quality compared to "pelvic organ prolapse" and "cystocele," respectively (mean difference of DISCERN score, -9.55 (95% CI, -20.00 to 3.00, P = 0.0098) and -7.80 (95% CI, -18.00 to 1.00, P = 0.0348). Using JAMA criteria, there were no statistically significant differences between Web sites. Web sites queried under search terms "vaginal mesh" and "dropped bladder" are lower in quality compared with the Web sites found using the search terms "pelvic organ prolapse" and "cystocele."

  8. Developing a Domain Ontology: the Case of Water Cycle and Hydrology

    NASA Astrophysics Data System (ADS)

    Gupta, H.; Pozzi, W.; Piasecki, M.; Imam, B.; Houser, P.; Raskin, R.; Ramachandran, R.; Martinez Baquero, G.

    2008-12-01

    A semantic web ontology enables semantic data integration and semantic smart searching. Several organizations have attempted to implement smart registration and integration or searching using ontologies. These are the NOESIS (NSF project: LEAD) and HydroSeek (NSF project: CUAHS HIS) data discovery engines and the NSF project GEON. All three applications use ontologies to discover data from multiple sources and projects. The NASA WaterNet project was established to identify creative, innovative ways to bridge NASA research results to real world applications, linking decision support needs to available data, observations, and modeling capability. WaterNet (NASA project) utilized the smart query tool Noesis as a testbed to test whether different ontologies (and different catalog searches) could be combined to match resources with user needs. NOESIS contains the upper level SWEET ontology that accepts plug in domain ontologies to refine user search queries, reducing the burden of multiple keyword searches. Another smart search interface was that developed for CUAHSI, HydroSeek, that uses a multi-layered concept search ontology, tagging variables names from any number of data sources to specific leaf and higher level concepts on which the search is executed. This approach has proven to be quite successful in mitigating semantic heterogeneity as the user does not need to know the semantic specifics of each data source system but just uses a set of common keywords to discover the data for a specific temporal and geospatial domain. This presentation will show tests with Noesis and Hydroseek lead to the conclusion that the construction of a complex, and highly heterogeneous water cycle ontology requires multiple ontology modules. To illustrate the complexity and heterogeneity of a water cycle ontology, Hydroseek successfully utilizes WaterOneFlow to integrate data across multiple different data collections, such as USGS NWIS. However,different methodologies are employed by the Earth Science, the Hydrological, and Hydraulic Engineering Communities, and each community employs models that require different input data. If a sub-domain ontology is created for each of these,describing water balance calculations, then the resulting structure of the semantic network describing these various terms can be rather complex, heterogeneous, and overlapping, and will require "mapping" between equivalent terms in the ontologies, along with the development of an upper level conceptual or domain ontology to utilize and link to those already in existence.

  9. SW#db: GPU-Accelerated Exact Sequence Similarity Database Search.

    PubMed

    Korpar, Matija; Šošić, Martin; Blažeka, Dino; Šikić, Mile

    2015-01-01

    In recent years we have witnessed a growth in sequencing yield, the number of samples sequenced, and as a result-the growth of publicly maintained sequence databases. The increase of data present all around has put high requirements on protein similarity search algorithms with two ever-opposite goals: how to keep the running times acceptable while maintaining a high-enough level of sensitivity. The most time consuming step of similarity search are the local alignments between query and database sequences. This step is usually performed using exact local alignment algorithms such as Smith-Waterman. Due to its quadratic time complexity, alignments of a query to the whole database are usually too slow. Therefore, the majority of the protein similarity search methods prior to doing the exact local alignment apply heuristics to reduce the number of possible candidate sequences in the database. However, there is still a need for the alignment of a query sequence to a reduced database. In this paper we present the SW#db tool and a library for fast exact similarity search. Although its running times, as a standalone tool, are comparable to the running times of BLAST, it is primarily intended to be used for exact local alignment phase in which the database of sequences has already been reduced. It uses both GPU and CPU parallelization and was 4-5 times faster than SSEARCH, 6-25 times faster than CUDASW++ and more than 20 times faster than SSW at the time of writing, using multiple queries on Swiss-prot and Uniref90 databases.

  10. Effective Filtering of Query Results on Updated User Behavioral Profiles in Web Mining

    PubMed Central

    Sadesh, S.; Suganthe, R. C.

    2015-01-01

    Web with tremendous volume of information retrieves result for user related queries. With the rapid growth of web page recommendation, results retrieved based on data mining techniques did not offer higher performance filtering rate because relationships between user profile and queries were not analyzed in an extensive manner. At the same time, existing user profile based prediction in web data mining is not exhaustive in producing personalized result rate. To improve the query result rate on dynamics of user behavior over time, Hamilton Filtered Regime Switching User Query Probability (HFRS-UQP) framework is proposed. HFRS-UQP framework is split into two processes, where filtering and switching are carried out. The data mining based filtering in our research work uses the Hamilton Filtering framework to filter user result based on personalized information on automatic updated profiles through search engine. Maximized result is fetched, that is, filtered out with respect to user behavior profiles. The switching performs accurate filtering updated profiles using regime switching. The updating in profile change (i.e., switches) regime in HFRS-UQP framework identifies the second- and higher-order association of query result on the updated profiles. Experiment is conducted on factors such as personalized information search retrieval rate, filtering efficiency, and precision ratio. PMID:26221626

  11. MedlinePlus Connect: Web Application

    MedlinePlus

    ... will result in a query to the MedlinePlus search engine. If you specify a code and the name/ ... system or problem code, will use the MedlinePlus search engine (English only): https://connect.medlineplus.gov/application?mainSearchCriteria. ...

  12. Keeping Dublin Core Simple: Cross-Domain Discovery or Resource Description?; First Steps in an Information Commerce Economy: Digital Rights Management in the Emerging E-Book Environment; Interoperability: Digital Rights Management and the Emerging EBook Environment; Searching the Deep Web: Direct Query Engine Applications at the Department of Energy.

    ERIC Educational Resources Information Center

    Lagoze, Carl; Neylon, Eamonn; Mooney, Stephen; Warnick, Walter L.; Scott, R. L.; Spence, Karen J.; Johnson, Lorrie A.; Allen, Valerie S.; Lederman, Abe

    2001-01-01

    Includes four articles that discuss Dublin Core metadata, digital rights management and electronic books, including interoperability; and directed query engines, a type of search engine designed to access resources on the deep Web that is being used at the Department of Energy. (LRW)

  13. Evaluating Open-Source Full-Text Search Engines for Matching ICD-10 Codes.

    PubMed

    Jurcău, Daniel-Alexandru; Stoicu-Tivadar, Vasile

    2016-01-01

    This research presents the results of evaluating multiple free, open-source engines on matching ICD-10 diagnostic codes via full-text searches. The study investigates what it takes to get an accurate match when searching for a specific diagnostic code. For each code the evaluation starts by extracting the words that make up its text and continues with building full-text search queries from the combinations of these words. The queries are then run against all the ICD-10 codes until a match indicates the code in question as a match with the highest relative score. This method identifies the minimum number of words that must be provided in order for the search engines choose the desired entry. The engines analyzed include a popular Java-based full-text search engine, a lightweight engine written in JavaScript which can even execute on the user's browser, and two popular open-source relational database management systems.

  14. CITE NLM: Natural-Language Searching in an Online Catalog.

    ERIC Educational Resources Information Center

    Doszkocs, Tamas E.

    1983-01-01

    The National Library of Medicine's Current Information Transfer in English public access online catalog offers unique subject search capabilities--natural-language query input, automatic medical subject headings display, closest match search strategy, ranked document output, dynamic end user feedback for search refinement. References, description…

  15. Peeling the Onion: Okapi System Architecture and Software Design Issues.

    ERIC Educational Resources Information Center

    Jones, S.; And Others

    1997-01-01

    Discusses software design issues for Okapi, an information retrieval system that incorporates both search engine and user interface and supports weighted searching, relevance feedback, and query expansion. The basic search system, adjacency searching, and moving toward a distributed system are discussed. (Author/LRW)

  16. From a word to a world: the current situation in the interdisciplinary field of synthetic biology

    PubMed Central

    Hu, Xiaojun

    2015-01-01

    Using a carefully designed search query, we describe the field of synthetic biology in terms of leading countries, organizations and funding sources. Besides articles we also paid some attention to patents. The USA is the leading country in this field, followed by China. There is a clear exponential growth in the field of synthetic biology over the latest 14 years. Keywords were analyzed using the notion of year-based h-indices, core gap and relative core gap. We conclude that the term “synthetic biology” hides a large world ready to be explored by interdisciplinary research. PMID:25650074

  17. OntologyWidget – a reusable, embeddable widget for easily locating ontology terms

    PubMed Central

    Beauheim, Catherine C; Wymore, Farrell; Nitzberg, Michael; Zachariah, Zachariah K; Jin, Heng; Skene, JH Pate; Ball, Catherine A; Sherlock, Gavin

    2007-01-01

    Background Biomedical ontologies are being widely used to annotate biological data in a computer-accessible, consistent and well-defined manner. However, due to their size and complexity, annotating data with appropriate terms from an ontology is often challenging for experts and non-experts alike, because there exist few tools that allow one to quickly find relevant ontology terms to easily populate a web form. Results We have produced a tool, OntologyWidget, which allows users to rapidly search for and browse ontology terms. OntologyWidget can easily be embedded in other web-based applications. OntologyWidget is written using AJAX (Asynchronous JavaScript and XML) and has two related elements. The first is a dynamic auto-complete ontology search feature. As a user enters characters into the search box, the appropriate ontology is queried remotely for terms that match the typed-in text, and the query results populate a drop-down list with all potential matches. Upon selection of a term from the list, the user can locate this term within a generic and dynamic ontology browser, which comprises the second element of the tool. The ontology browser shows the paths from a selected term to the root as well as parent/child tree hierarchies. We have implemented web services at the Stanford Microarray Database (SMD), which provide the OntologyWidget with access to over 40 ontologies from the Open Biological Ontology (OBO) website [1]. Each ontology is updated weekly. Adopters of the OntologyWidget can either use SMD's web services, or elect to rely on their own. Deploying the OntologyWidget can be accomplished in three simple steps: (1) install Apache Tomcat [2] on one's web server, (2) download and install the OntologyWidget servlet stub that provides access to the SMD ontology web services, and (3) create an html (HyperText Markup Language) file that refers to the OntologyWidget using a simple, well-defined format. Conclusion We have developed OntologyWidget, an easy-to-use ontology search and display tool that can be used on any web page by creating a simple html description. OntologyWidget provides a rapid auto-complete search function paired with an interactive tree display. We have developed a web service layer that communicates between the web page interface and a database of ontology terms. We currently store 40 of the ontologies from the OBO website [1], as well as a several others. These ontologies are automatically updated on a weekly basis. OntologyWidget can be used in any web-based application to take advantage of the ontologies we provide via web services or any other ontology that is provided elsewhere in the correct format. The full source code for the JavaScript and description of the OntologyWidget is available from . PMID:17854506

  18. OntologyWidget - a reusable, embeddable widget for easily locating ontology terms.

    PubMed

    Beauheim, Catherine C; Wymore, Farrell; Nitzberg, Michael; Zachariah, Zachariah K; Jin, Heng; Skene, J H Pate; Ball, Catherine A; Sherlock, Gavin

    2007-09-13

    Biomedical ontologies are being widely used to annotate biological data in a computer-accessible, consistent and well-defined manner. However, due to their size and complexity, annotating data with appropriate terms from an ontology is often challenging for experts and non-experts alike, because there exist few tools that allow one to quickly find relevant ontology terms to easily populate a web form. We have produced a tool, OntologyWidget, which allows users to rapidly search for and browse ontology terms. OntologyWidget can easily be embedded in other web-based applications. OntologyWidget is written using AJAX (Asynchronous JavaScript and XML) and has two related elements. The first is a dynamic auto-complete ontology search feature. As a user enters characters into the search box, the appropriate ontology is queried remotely for terms that match the typed-in text, and the query results populate a drop-down list with all potential matches. Upon selection of a term from the list, the user can locate this term within a generic and dynamic ontology browser, which comprises the second element of the tool. The ontology browser shows the paths from a selected term to the root as well as parent/child tree hierarchies. We have implemented web services at the Stanford Microarray Database (SMD), which provide the OntologyWidget with access to over 40 ontologies from the Open Biological Ontology (OBO) website 1. Each ontology is updated weekly. Adopters of the OntologyWidget can either use SMD's web services, or elect to rely on their own. Deploying the OntologyWidget can be accomplished in three simple steps: (1) install Apache Tomcat 2 on one's web server, (2) download and install the OntologyWidget servlet stub that provides access to the SMD ontology web services, and (3) create an html (HyperText Markup Language) file that refers to the OntologyWidget using a simple, well-defined format. We have developed OntologyWidget, an easy-to-use ontology search and display tool that can be used on any web page by creating a simple html description. OntologyWidget provides a rapid auto-complete search function paired with an interactive tree display. We have developed a web service layer that communicates between the web page interface and a database of ontology terms. We currently store 40 of the ontologies from the OBO website 1, as well as a several others. These ontologies are automatically updated on a weekly basis. OntologyWidget can be used in any web-based application to take advantage of the ontologies we provide via web services or any other ontology that is provided elsewhere in the correct format. The full source code for the JavaScript and description of the OntologyWidget is available from http://smd.stanford.edu/ontologyWidget/.

  19. Discovering Related Clinical Concepts Using Large Amounts of Clinical Notes

    PubMed Central

    Ganesan, Kavita; Lloyd, Shane; Sarkar, Vikren

    2016-01-01

    The ability to find highly related clinical concepts is essential for many applications such as for hypothesis generation, query expansion for medical literature search, search results filtering, ICD-10 code filtering and many other applications. While manually constructed medical terminologies such as SNOMED CT can surface certain related concepts, these terminologies are inadequate as they depend on expertise of several subject matter experts making the terminology curation process open to geographic and language bias. In addition, these terminologies also provide no quantifiable evidence on how related the concepts are. In this work, we explore an unsupervised graphical approach to mine related concepts by leveraging the volume within large amounts of clinical notes. Our evaluation shows that we are able to use a data driven approach to discovering highly related concepts for various search terms including medications, symptoms and diseases. PMID:27656096

  20. Query Language for Location-Based Services: A Model Checking Approach

    NASA Astrophysics Data System (ADS)

    Hoareau, Christian; Satoh, Ichiro

    We present a model checking approach to the rationale, implementation, and applications of a query language for location-based services. Such query mechanisms are necessary so that users, objects, and/or services can effectively benefit from the location-awareness of their surrounding environment. The underlying data model is founded on a symbolic model of space organized in a tree structure. Once extended to a semantic model for modal logic, we regard location query processing as a model checking problem, and thus define location queries as hybrid logicbased formulas. Our approach is unique to existing research because it explores the connection between location models and query processing in ubiquitous computing systems, relies on a sound theoretical basis, and provides modal logic-based query mechanisms for expressive searches over a decentralized data structure. A prototype implementation is also presented and will be discussed.

  1. Automation and integration of components for generalized semantic markup of electronic medical texts.

    PubMed

    Dugan, J M; Berrios, D C; Liu, X; Kim, D K; Kaizer, H; Fagan, L M

    1999-01-01

    Our group has built an information retrieval system based on a complex semantic markup of medical textbooks. We describe the construction of a set of web-based knowledge-acquisition tools that expedites the collection and maintenance of the concepts required for text markup and the search interface required for information retrieval from the marked text. In the text markup system, domain experts (DEs) identify sections of text that contain one or more elements from a finite set of concepts. End users can then query the text using a predefined set of questions, each of which identifies a subset of complementary concepts. The search process matches that subset of concepts to relevant points in the text. The current process requires that the DE invest significant time to generate the required concepts and questions. We propose a new system--called ACQUIRE (Acquisition of Concepts and Queries in an Integrated Retrieval Environment)--that assists a DE in two essential tasks in the text-markup process. First, it helps her to develop, edit, and maintain the concept model: the set of concepts with which she marks the text. Second, ACQUIRE helps her to develop a query model: the set of specific questions that end users can later use to search the marked text. The DE incorporates concepts from the concept model when she creates the questions in the query model. The major benefit of the ACQUIRE system is a reduction in the time and effort required for the text-markup process. We compared the process of concept- and query-model creation using ACQUIRE to the process used in previous work by rebuilding two existing models that we previously constructed manually. We observed a significant decrease in the time required to build and maintain the concept and query models.

  2. Efficient strategies to find diagnostic test accuracy studies in kidney journals.

    PubMed

    Rogerson, Thomas E; Ladhani, Maleeka; Mitchell, Ruth; Craig, Jonathan C; Webster, Angela C

    2015-08-01

    Nephrologists looking for quick answers to diagnostic clinical questions in MEDLINE can use a range of published search strategies or Clinical Query limits to improve the precision of their searches. We aimed to evaluate existing search strategies for finding diagnostic test accuracy studies in nephrology journals. We assessed the accuracy of 14 search strategies for retrieving diagnostic test accuracy studies from three nephrology journals indexed in MEDLINE. Two investigators hand searched the same journals to create a reference set of diagnostic test accuracy studies to compare search strategy results against. We identified 103 diagnostic test accuracy studies, accounting for 2.1% of all studies published. The most specific search strategy was the Narrow Clinical Queries limit (sensitivity: 0.20, 95% CI 0.13-0.29; specificity: 0.99, 95% CI 0.99-0.99). Using the Narrow Clinical Queries limit, a searcher would need to screen three (95% CI 2-6) articles to find one diagnostic study. The most sensitive search strategy was van der Weijden 1999 Extended (sensitivity: 0.95; 95% CI 0.89-0.98; specificity 0.55, 95% CI 0.53-0.56) but required a searcher to screen 24 (95% CI 23-26) articles to find one diagnostic study. Bachmann 2002 was the best balanced search strategy, which was sensitive (0.88, 95% CI 0.81-0.94), but also specific (0.74, 95% CI 0.73-0.75), with a number needed to screen of 15 (95% CI 14-17). Diagnostic studies are infrequently published in nephrology journals. The addition of a strategy for diagnostic studies to a subject search strategy in MEDLINE may reduce the records needed to screen while preserving adequate search sensitivity for routine clinical use. © 2015 Asian Pacific Society of Nephrology.

  3. What, where and when? Using Google Trends and Google to investigate patient needs and inform pharmacy practice.

    PubMed

    Hanna, Alan; Hanna, Lezley-Anne

    2018-03-30

    The aim was to provide a comprehensive overview (using pertinent examples) of the various ways that Google Trends and Google data could inform pharmacy practice. The objectives were to: examine what type of information people search for in relation to a common class of medicines; ascertain where people are directed to (websites) following an initial search for a medicine or medical condition; and establish information about when they search. The methodology differed depending on whether Google Trends or Google was being interrogated, but the search domain was always limited to the United Kingdom. Google Trends was queried, typically for a 5-year time frame, and data downloaded for many search inputs relating to medical conditions (self-treatable and non-self-treatable) and medicines (bought over-the-counter and prescribed). Google was queried and data collected for searches related to 'antibiotics'. Google Trends revealed a previously unknown seasonality pattern for irritable bowel syndrome. Related searches for 'antibiotics' revealed a high level of interest in the appropriateness of concomitant alcohol consumption and queries about what antibiotics are. Largely, people were being directed to reputable websites following their initial search input about a prescription-only medicine. However, searches for over-the-counter medicines were more likely to lead to commercial domains. This is one of the first studies to investigate use of Google Trends and Google in a pharmacy-specific context. It is relevant for practice as it could inform marketing strategies, public health policy and help tailor patient advice and counselling. © 2018 Royal Pharmaceutical Society.

  4. A novel methodology for querying web images

    NASA Astrophysics Data System (ADS)

    Prabhakara, Rashmi; Lee, Ching Cheng

    2005-01-01

    Ever since the advent of Internet, there has been an immense growth in the amount of image data that is available on the World Wide Web. With such a magnitude of image availability, an efficient and effective image retrieval system is required to make use of this information. This research presents an effective image matching and indexing technique that improvises on existing integrated image retrieval methods. The proposed technique follows a two-phase approach, integrating query by topic and query by example specification methods. The first phase consists of topic-based image retrieval using an improved text information retrieval (IR) technique that makes use of the structured format of HTML documents. It consists of a focused crawler that not only provides for the user to enter the keyword for the topic-based search but also, the scope in which the user wants to find the images. The second phase uses the query by example specification to perform a low-level content-based image match for the retrieval of smaller and relatively closer results of the example image. Information related to the image feature is automatically extracted from the query image by the image processing system. A technique that is not computationally intensive based on color feature is used to perform content-based matching of images. The main goal is to develop a functional image search and indexing system and to demonstrate that better retrieval results can be achieved with this proposed hybrid search technique.

  5. A novel methodology for querying web images

    NASA Astrophysics Data System (ADS)

    Prabhakara, Rashmi; Lee, Ching Cheng

    2004-12-01

    Ever since the advent of Internet, there has been an immense growth in the amount of image data that is available on the World Wide Web. With such a magnitude of image availability, an efficient and effective image retrieval system is required to make use of this information. This research presents an effective image matching and indexing technique that improvises on existing integrated image retrieval methods. The proposed technique follows a two-phase approach, integrating query by topic and query by example specification methods. The first phase consists of topic-based image retrieval using an improved text information retrieval (IR) technique that makes use of the structured format of HTML documents. It consists of a focused crawler that not only provides for the user to enter the keyword for the topic-based search but also, the scope in which the user wants to find the images. The second phase uses the query by example specification to perform a low-level content-based image match for the retrieval of smaller and relatively closer results of the example image. Information related to the image feature is automatically extracted from the query image by the image processing system. A technique that is not computationally intensive based on color feature is used to perform content-based matching of images. The main goal is to develop a functional image search and indexing system and to demonstrate that better retrieval results can be achieved with this proposed hybrid search technique.

  6. Digital Detection for Tobacco Control: Online Reactions to the 2009 U.S. Cigarette Excise Tax Increase

    PubMed Central

    2014-01-01

    Introduction: The Internet is revolutionizing tobacco control, but few have harnessed the Web for surveillance. We demonstrate for the first time an approach for analyzing aggregate Internet search queries that captures precise changes in population considerations about tobacco. Methods: We compared tobacco-related Google queries originating in the United States during the week of the State Children’s Health Insurance Program (SCHIP) 2009 cigarette excise tax increase with a historic baseline. Specific queries were then ranked according to their relative increases while also considering approximations of changes in absolute search volume. Results: Individual queries with the largest relative increases the week of the SCHIP tax were “cigarettes Indian reservations” 640% (95% CI, 472–918), “free cigarettes online” 557% (95% CI, 432–756), and “Indian reservations cigarettes” 542% (95% CI, 414–733), amounting to about 7,500 excess searches. By themes, the largest relative increases were tribal cigarettes 246% (95% CI, 228–265), “free” cigarettes 215% (95% CI, 191–242), and cigarette stores 176% (95% CI, 160–193), accounting for 21,000, 27,000, and 90,000 excess queries. All avoidance queries, including those aforementioned themes, relatively increased 150% (95% CI, 144–155) or 550,000 from their baseline. All cessation queries increased 46% (95% CI, 44–48), or 175,000, around SCHIP; including themes for “cold turkey” 19% (95% CI, 11–27) or 2,600, cessation products 47% (95% CI, 44–50) or 78,000, and dubious cessation approaches (e.g., hypnosis) 40% (95% CI, 33–47) or 2,300. Conclusions: The SCHIP tax motivated specific changes in population considerations. Our strategy can support evaluations that temporally link tobacco control measures with instantaneous population reactions, as well as serve as a springboard for traditional studies, for example, including survey questionnaire design. PMID:24323570

  7. STARS 2.0: 2nd-generation open-source archiving and query software

    NASA Astrophysics Data System (ADS)

    Winegar, Tom

    2008-07-01

    The Subaru Telescope is in process of developing an open-source alternative to the 1st-generation software and databases (STARS 1) used for archiving and query. For STARS 2, we have chosen PHP and Python for scripting and MySQL as the database software. We have collected feedback from staff and observers, and used this feedback to significantly improve the design and functionality of our future archiving and query software. Archiving - We identified two weaknesses in 1st-generation STARS archiving software: a complex and inflexible table structure and uncoordinated system administration for our business model: taking pictures from the summit and archiving them in both Hawaii and Japan. We adopted a simplified and normalized table structure with passive keyword collection, and we are designing an archive-to-archive file transfer system that automatically reports real-time status and error conditions and permits error recovery. Query - We identified several weaknesses in 1st-generation STARS query software: inflexible query tools, poor sharing of calibration data, and no automatic file transfer mechanisms to observers. We are developing improved query tools and sharing of calibration data, and multi-protocol unassisted file transfer mechanisms for observers. In the process, we have redefined a 'query': from an invisible search result that can only transfer once in-house right now, with little status and error reporting and no error recovery - to a stored search result that can be monitored, transferred to different locations with multiple protocols, reporting status and error conditions and permitting recovery from errors.

  8. A geodata warehouse: Using denormalisation techniques as a tool for delivering spatially enabled integrated geological information to geologists

    NASA Astrophysics Data System (ADS)

    Kingdon, Andrew; Nayembil, Martin L.; Richardson, Anne E.; Smith, A. Graham

    2016-11-01

    New requirements to understand geological properties in three dimensions have led to the development of PropBase, a data structure and delivery tools to deliver this. At the BGS, relational database management systems (RDBMS) has facilitated effective data management using normalised subject-based database designs with business rules in a centralised, vocabulary controlled, architecture. These have delivered effective data storage in a secure environment. However, isolated subject-oriented designs prevented efficient cross-domain querying of datasets. Additionally, the tools provided often did not enable effective data discovery as they struggled to resolve the complex underlying normalised structures providing poor data access speeds. Users developed bespoke access tools to structures they did not fully understand sometimes delivering them incorrect results. Therefore, BGS has developed PropBase, a generic denormalised data structure within an RDBMS to store property data, to facilitate rapid and standardised data discovery and access, incorporating 2D and 3D physical and chemical property data, with associated metadata. This includes scripts to populate and synchronise the layer with its data sources through structured input and transcription standards. A core component of the architecture includes, an optimised query object, to deliver geoscience information from a structure equivalent to a data warehouse. This enables optimised query performance to deliver data in multiple standardised formats using a web discovery tool. Semantic interoperability is enforced through vocabularies combined from all data sources facilitating searching of related terms. PropBase holds 28.1 million spatially enabled property data points from 10 source databases incorporating over 50 property data types with a vocabulary set that includes 557 property terms. By enabling property data searches across multiple databases PropBase has facilitated new scientific research, previously considered impractical. PropBase is easily extended to incorporate 4D data (time series) and is providing a baseline for new "big data" monitoring projects.

  9. MetaSEEk: a content-based metasearch engine for images

    NASA Astrophysics Data System (ADS)

    Beigi, Mandis; Benitez, Ana B.; Chang, Shih-Fu

    1997-12-01

    Search engines are the most powerful resources for finding information on the rapidly expanding World Wide Web (WWW). Finding the desired search engines and learning how to use them, however, can be very time consuming. The integration of such search tools enables the users to access information across the world in a transparent and efficient manner. These systems are called meta-search engines. The recent emergence of visual information retrieval (VIR) search engines on the web is leading to the same efficiency problem. This paper describes and evaluates MetaSEEk, a content-based meta-search engine used for finding images on the Web based on their visual information. MetaSEEk is designed to intelligently select and interface with multiple on-line image search engines by ranking their performance for different classes of user queries. User feedback is also integrated in the ranking refinement. We compare MetaSEEk with a base line version of meta-search engine, which does not use the past performance of the different search engines in recommending target search engines for future queries.

  10. Infodemiology of status epilepticus: A systematic validation of the Google Trends-based search queries.

    PubMed

    Bragazzi, Nicola Luigi; Bacigaluppi, Susanna; Robba, Chiara; Nardone, Raffaele; Trinka, Eugen; Brigo, Francesco

    2016-02-01

    People increasingly use Google looking for health-related information. We previously demonstrated that in English-speaking countries most people use this search engine to obtain information on status epilepticus (SE) definition, types/subtypes, and treatment. Now, we aimed at providing a quantitative analysis of SE-related web queries. This analysis represents an advancement, with respect to what was already previously discussed, in that the Google Trends (GT) algorithm has been further refined and correlational analyses have been carried out to validate the GT-based query volumes. Google Trends-based SE-related query volumes were well correlated with information concerning causes and pharmacological and nonpharmacological treatments. Google Trends can provide both researchers and clinicians with data on realities and contexts that are generally overlooked and underexplored by classic epidemiology. In this way, GT can foster new epidemiological studies in the field and can complement traditional epidemiological tools. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. GenoQuery: a new querying module for functional annotation in a genomic warehouse

    PubMed Central

    Lemoine, Frédéric; Labedan, Bernard; Froidevaux, Christine

    2008-01-01

    Motivation: We have to cope with both a deluge of new genome sequences and a huge amount of data produced by high-throughput approaches used to exploit these genomic features. Crossing and comparing such heterogeneous and disparate data will help improving functional annotation of genomes. This requires designing elaborate integration systems such as warehouses for storing and querying these data. Results: We have designed a relational genomic warehouse with an original multi-layer architecture made of a databases layer and an entities layer. We describe a new querying module, GenoQuery, which is based on this architecture. We use the entities layer to define mixed queries. These mixed queries allow searching for instances of biological entities and their properties in the different databases, without specifying in which database they should be found. Accordingly, we further introduce the central notion of alternative queries. Such queries have the same meaning as the original mixed queries, while exploiting complementarities yielded by the various integrated databases of the warehouse. We explain how GenoQuery computes all the alternative queries of a given mixed query. We illustrate how useful this querying module is by means of a thorough example. Availability: http://www.lri.fr/~lemoine/GenoQuery/ Contact: chris@lri.fr, lemoine@lri.fr PMID:18586731

  12. Visual perception-based criminal identification: a query-based approach

    NASA Astrophysics Data System (ADS)

    Singh, Avinash Kumar; Nandi, G. C.

    2017-01-01

    The visual perception of eyewitness plays a vital role in criminal identification scenario. It helps law enforcement authorities in searching particular criminal from their previous record. It has been reported that searching a criminal record manually requires too much time to get the accurate result. We have proposed a query-based approach which minimises the computational cost along with the reduction of search space. A symbolic database has been created to perform a stringent analysis on 150 public (Bollywood celebrities and Indian cricketers) and 90 local faces (our data-set). An expert knowledge has been captured to encapsulate every criminal's anatomical and facial attributes in the form of symbolic representation. A fast query-based searching strategy has been implemented using dynamic decision tree data structure which allows four levels of decomposition to fetch respective criminal records. Two types of case studies - viewed and forensic sketches have been considered to evaluate the strength of our proposed approach. We have derived 1200 views of the entire population by taking into consideration 80 participants as eyewitness. The system demonstrates an accuracy level of 98.6% for test case I and 97.8% for test case II. It has also been reported that experimental results reduce the search space up to 30 most relevant records.

  13. BioTCM-SE: a semantic search engine for the information retrieval of modern biology and traditional Chinese medicine.

    PubMed

    Chen, Xi; Chen, Huajun; Bi, Xuan; Gu, Peiqin; Chen, Jiaoyan; Wu, Zhaohui

    2014-01-01

    Understanding the functional mechanisms of the complex biological system as a whole is drawing more and more attention in global health care management. Traditional Chinese Medicine (TCM), essentially different from Western Medicine (WM), is gaining increasing attention due to its emphasis on individual wellness and natural herbal medicine, which satisfies the goal of integrative medicine. However, with the explosive growth of biomedical data on the Web, biomedical researchers are now confronted with the problem of large-scale data analysis and data query. Besides that, biomedical data also has a wide coverage which usually comes from multiple heterogeneous data sources and has different taxonomies, making it hard to integrate and query the big biomedical data. Embedded with domain knowledge from different disciplines all regarding human biological systems, the heterogeneous data repositories are implicitly connected by human expert knowledge. Traditional search engines cannot provide accurate and comprehensive search results for the semantically associated knowledge since they only support keywords-based searches. In this paper, we present BioTCM-SE, a semantic search engine for the information retrieval of modern biology and TCM, which provides biologists with a comprehensive and accurate associated knowledge query platform to greatly facilitate the implicit knowledge discovery between WM and TCM.

  14. BioTCM-SE: A Semantic Search Engine for the Information Retrieval of Modern Biology and Traditional Chinese Medicine

    PubMed Central

    Chen, Xi; Chen, Huajun; Bi, Xuan; Gu, Peiqin; Chen, Jiaoyan; Wu, Zhaohui

    2014-01-01

    Understanding the functional mechanisms of the complex biological system as a whole is drawing more and more attention in global health care management. Traditional Chinese Medicine (TCM), essentially different from Western Medicine (WM), is gaining increasing attention due to its emphasis on individual wellness and natural herbal medicine, which satisfies the goal of integrative medicine. However, with the explosive growth of biomedical data on the Web, biomedical researchers are now confronted with the problem of large-scale data analysis and data query. Besides that, biomedical data also has a wide coverage which usually comes from multiple heterogeneous data sources and has different taxonomies, making it hard to integrate and query the big biomedical data. Embedded with domain knowledge from different disciplines all regarding human biological systems, the heterogeneous data repositories are implicitly connected by human expert knowledge. Traditional search engines cannot provide accurate and comprehensive search results for the semantically associated knowledge since they only support keywords-based searches. In this paper, we present BioTCM-SE, a semantic search engine for the information retrieval of modern biology and TCM, which provides biologists with a comprehensive and accurate associated knowledge query platform to greatly facilitate the implicit knowledge discovery between WM and TCM. PMID:24772189

  15. Method for indexing and retrieving manufacturing-specific digital imagery based on image content

    DOEpatents

    Ferrell, Regina K.; Karnowski, Thomas P.; Tobin, Jr., Kenneth W.

    2004-06-15

    A method for indexing and retrieving manufacturing-specific digital images based on image content comprises three steps. First, at least one feature vector can be extracted from a manufacturing-specific digital image stored in an image database. In particular, each extracted feature vector corresponds to a particular characteristic of the manufacturing-specific digital image, for instance, a digital image modality and overall characteristic, a substrate/background characteristic, and an anomaly/defect characteristic. Notably, the extracting step includes generating a defect mask using a detection process. Second, using an unsupervised clustering method, each extracted feature vector can be indexed in a hierarchical search tree. Third, a manufacturing-specific digital image associated with a feature vector stored in the hierarchicial search tree can be retrieved, wherein the manufacturing-specific digital image has image content comparably related to the image content of the query image. More particularly, can include two data reductions, the first performed based upon a query vector extracted from a query image. Subsequently, a user can select relevant images resulting from the first data reduction. From the selection, a prototype vector can be calculated, from which a second-level data reduction can be performed. The second-level data reduction can result in a subset of feature vectors comparable to the prototype vector, and further comparable to the query vector. An additional fourth step can include managing the hierarchical search tree by substituting a vector average for several redundant feature vectors encapsulated by nodes in the hierarchical search tree.

  16. Cognitive issues in searching images with visual queries

    NASA Astrophysics Data System (ADS)

    Yu, ByungGu; Evens, Martha W.

    1999-01-01

    In this paper, we propose our image indexing technique and visual query processing technique. Our mental images are different from the actual retinal images and many things, such as personal interests, personal experiences, perceptual context, the characteristics of spatial objects, and so on, affect our spatial perception. These private differences are propagated into our mental images and so our visual queries become different from the real images that we want to find. This is a hard problem and few people have tried to work on it. In this paper, we survey the human mental imagery system, the human spatial perception, and discuss several kinds of visual queries. Also, we propose our own approach to visual query interpretation and processing.

  17. What Can Pictures Tell Us About Web Pages? Improving Document Search Using Images.

    PubMed

    Rodriguez-Vaamonde, Sergio; Torresani, Lorenzo; Fitzgibbon, Andrew W

    2015-06-01

    Traditional Web search engines do not use the images in the HTML pages to find relevant documents for a given query. Instead, they typically operate by computing a measure of agreement between the keywords provided by the user and only the text portion of each page. In this paper we study whether the content of the pictures appearing in a Web page can be used to enrich the semantic description of an HTML document and consequently boost the performance of a keyword-based search engine. We present a Web-scalable system that exploits a pure text-based search engine to find an initial set of candidate documents for a given query. Then, the candidate set is reranked using visual information extracted from the images contained in the pages. The resulting system retains the computational efficiency of traditional text-based search engines with only a small additional storage cost needed to encode the visual information. We test our approach on one of the TREC Million Query Track benchmarks where we show that the exploitation of visual content yields improvement in accuracies for two distinct text-based search engines, including the system with the best reported performance on this benchmark. We further validate our approach by collecting document relevance judgements on our search results using Amazon Mechanical Turk. The results of this experiment confirm the improvement in accuracy produced by our image-based reranker over a pure text-based system.

  18. Tracking the rise in popularity of electronic nicotine delivery systems (electronic cigarettes) using search query surveillance.

    PubMed

    Ayers, John W; Ribisl, Kurt M; Brownstein, John S

    2011-04-01

    Public interest in electronic nicotine delivery systems (ENDS) is undocumented. By monitoring search queries, ENDS popularity and correlates of their popularity were assessed in Australia, Canada, the United Kingdom (UK), and the U.S. English-language Google searches conducted from January 2008 through September 2010 were compared to snus, nicotine replacement therapy (NRT), and Chantix® or Champix®. Searches for each week were scaled to the highest weekly search proportion (100), with lower values indicating the relative search proportion compared to the highest-proportion week (e.g., 50=50% of the highest observed proportion). Analyses were performed in 2010. From July 2008 through February 2010, ENDS searches increased in all nations studied except Australia, there an increase occurred more recently. By September 2010, ENDS searches were several-hundred-fold greater than searches for smoking alternatives in the UK and U.S., and were rivaling alternatives in Australia and Canada. Across nations, ENDS searches were highest in the U.S., followed by similar search intensity in Canada and the UK, with Australia having the fewest ENDS searches. Stronger tobacco control, created by clean indoor air laws, cigarette taxes, and anti-smoking populations, were associated with consistently higher levels of ENDS searches. The online popularity of ENDS has surpassed that of snus and NRTs, which have been on the market for far longer, and is quickly outpacing Chantix or Champix. In part, the association between ENDS's popularity and stronger tobacco control suggests ENDS are used to bypass, or quit in response to, smoking restrictions. Search query surveillance is a valuable, real-time, free, and public method to evaluate the diffusion of new health products. This method may be generalized to other behavioral, biological, informational, or psychological outcomes manifested on search engines. Copyright © 2011 American Journal of Preventive Medicine. Published by Elsevier Inc. All rights reserved.

  19. Association between Search Behaviors and Disease Prevalence Rates at 18 U.S. Children's Hospitals.

    PubMed

    Daniel, Dennis; Wolbrink, Traci; Logvinenko, Tanya; Harper, Marvin; Burns, Jeffrey

    2017-10-01

    Background Usage of online resources by clinicians in training and practice can provide insight into knowledge gaps and inform development of decision support tools. Although online information seeking is often driven by encountered patient problems, the relationship between disease prevalence and search rate has not been previously characterized. Objective This article aimed to (1) identify topics frequently searched by pediatric clinicians using UpToDate (http://www.uptodate.com) and (2) explore the association between disease prevalence rate and search rate using data from the Pediatric Health Information System. Methods We identified the most common search queries and resources most frequently accessed on UpToDate for a cohort of 18 children's hospitals during calendar year 2012. We selected 64 of the most frequently searched diseases and matched ICD-9 data from the PHIS database during the same time period. Using linear regression, we explored the relationship between clinician query rate and disease prevalence rate. Results The hospital cohort submitted 1,228,138 search queries across 592,454 sessions. The majority of search sessions focused on a single search topic. We identified no consistent overall association between disease prevalence and search rates. Diseases where search rate was substantially higher than prevalence rate were often infectious or immune/rheumatologic conditions, involved potentially complex diagnosis or management, and carried risk of significant morbidity or mortality. None of the examined diseases showed a decrease in search rate associated with increased disease prevalence rates. Conclusion This is one of the first medical learning needs assessments to use large-scale, multisite data to identify topics of interest to pediatric clinicians, and to examine the relationship between disease prevalence and search rate for a set of pediatric diseases. Overall, disease search rate did not appear to be associated with hospital disease prevalence rates based on ICD-9 codes. However, some diseases were consistently searched at a higher rate than their prevalence rate; many of these diseases shared common features.

  20. Advanced SPARQL querying in small molecule databases.

    PubMed

    Galgonek, Jakub; Hurt, Tomáš; Michlíková, Vendula; Onderka, Petr; Schwarz, Jan; Vondrášek, Jiří

    2016-01-01

    In recent years, the Resource Description Framework (RDF) and the SPARQL query language have become more widely used in the area of cheminformatics and bioinformatics databases. These technologies allow better interoperability of various data sources and powerful searching facilities. However, we identified several deficiencies that make usage of such RDF databases restrictive or challenging for common users. We extended a SPARQL engine to be able to use special procedures inside SPARQL queries. This allows the user to work with data that cannot be simply precomputed and thus cannot be directly stored in the database. We designed an algorithm that checks a query against data ontology to identify possible user errors. This greatly improves query debugging. We also introduced an approach to visualize retrieved data in a user-friendly way, based on templates describing visualizations of resource classes. To integrate all of our approaches, we developed a simple web application. Our system was implemented successfully, and we demonstrated its usability on the ChEBI database transformed into RDF form. To demonstrate procedure call functions, we employed compound similarity searching based on OrChem. The application is publicly available at https://bioinfo.uochb.cas.cz/projects/chemRDF.

  1. Ad-Hoc Queries over Document Collections - A Case Study

    NASA Astrophysics Data System (ADS)

    Löser, Alexander; Lutter, Steffen; Düssel, Patrick; Markl, Volker

    We discuss the novel problem of supporting analytical business intelligence queries over web-based textual content, e.g., BI-style reports based on 100.000's of documents from an ad-hoc web search result. Neither conventional search engines nor conventional Business Intelligence and ETL tools address this problem, which lies at the intersection of their capabilities. "Google Squared" or our system GOOLAP.info, are examples of these kinds of systems. They execute information extraction methods over one or several document collections at query time and integrate extracted records into a common view or tabular structure. Frequent extraction and object resolution failures cause incomplete records which could not be joined into a record answering the query. Our focus is the identification of join-reordering heuristics maximizing the size of complete records answering a structured query. With respect to given costs for document extraction we propose two novel join-operations: The multi-way CJ-operator joins records from multiple relationships extracted from a single document. The two-way join-operator DJ ensures data density by removing incomplete records from results. In a preliminary case study we observe that our join-reordering heuristics positively impact result size, record density and lower execution costs.

  2. Microscopy as a statistical, Rényi-Ulam, half-lie game: a new heuristic search strategy to accelerate imaging.

    PubMed

    Drumm, Daniel W; Greentree, Andrew D

    2017-11-07

    Finding a fluorescent target in a biological environment is a common and pressing microscopy problem. This task is formally analogous to the canonical search problem. In ideal (noise-free, truthful) search problems, the well-known binary search is optimal. The case of half-lies, where one of two responses to a search query may be deceptive, introduces a richer, Rényi-Ulam problem and is particularly relevant to practical microscopy. We analyse microscopy in the contexts of Rényi-Ulam games and half-lies, developing a new family of heuristics. We show the cost of insisting on verification by positive result in search algorithms; for the zero-half-lie case bisectioning with verification incurs a 50% penalty in the average number of queries required. The optimal partitioning of search spaces directly following verification in the presence of random half-lies is determined. Trisectioning with verification is shown to be the most efficient heuristic of the family in a majority of cases.

  3. Bacterial conjunctivitis in childhood: etiology, clinical manifestations, diagnosis, and management.

    PubMed

    Leung, Alexander Kc; Hon, Kam Lun; Wong, Alex H C; Wong, Andrew S

    2018-01-29

    Bacterial conjunctivitis is a common reason for children to be seen in pediatric practices A correct diagnosis is important so that appropriate treatment can be instituted. To provide an update on the evaluation, diagnosis, and treatment of bacterial conjunctivitis in children. A PubMed search was completed in Clinical Queries using the key term "bacterial conjunctivitis". Patents were searched using the key term "bacterial conjunctivitis" from www.freepatentsonline.com and www.google.com/patents. In the neonatal period, bacterial conjunctivitis is rare and the most common cause of organism is Staphylococcus aureus, followed by Chlamydia trachomatis. In infants and older children, bacterial conjunctivitis is most often caused by Haemophilus influenzae, Streptococcus pneumoniae, and Moraxella catarrhalis. Clinically, bacterial conjunctivitis is characterized by a purulent eye discharge, or sticky eyes on awakening, a foreign body sensation and conjunctival injection (pink eye). The diagnosis is made clinically. Cultures are unnecessary. Some authors suggest a watchful observation approach as most cases of bacterial conjunctivitis are self-limited. A Cochrane review suggests the use of antibiotic eye drops is associated with modestly improved rates of clinical and microbiological omission as compared to the use of placebo. Various investigators have also disclosed patents for the treatment of conjunctivitis. The present consensus supports the use of topical antibiotics for bacterial conjunctivitis. Topical antibiotics shorten the course of the disease, reduce discomfort, prevent person-to-person transmission and reduce the rate of reinfection. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  4. Omicseq: a web-based search engine for exploring omics datasets

    PubMed Central

    Sun, Xiaobo; Pittard, William S.; Xu, Tianlei; Chen, Li; Zwick, Michael E.; Jiang, Xiaoqian; Wang, Fusheng

    2017-01-01

    Abstract The development and application of high-throughput genomics technologies has resulted in massive quantities of diverse omics data that continue to accumulate rapidly. These rich datasets offer unprecedented and exciting opportunities to address long standing questions in biomedical research. However, our ability to explore and query the content of diverse omics data is very limited. Existing dataset search tools rely almost exclusively on the metadata. A text-based query for gene name(s) does not work well on datasets wherein the vast majority of their content is numeric. To overcome this barrier, we have developed Omicseq, a novel web-based platform that facilitates the easy interrogation of omics datasets holistically to improve ‘findability’ of relevant data. The core component of Omicseq is trackRank, a novel algorithm for ranking omics datasets that fully uses the numerical content of the dataset to determine relevance to the query entity. The Omicseq system is supported by a scalable and elastic, NoSQL database that hosts a large collection of processed omics datasets. In the front end, a simple, web-based interface allows users to enter queries and instantly receive search results as a list of ranked datasets deemed to be the most relevant. Omicseq is freely available at http://www.omicseq.org. PMID:28402462

  5. Analyzing Document Retrievability in Patent Retrieval Settings

    NASA Astrophysics Data System (ADS)

    Bashir, Shariq; Rauber, Andreas

    Most information retrieval settings, such as web search, are typically precision-oriented, i.e. they focus on retrieving a small number of highly relevant documents. However, in specific domains, such as patent retrieval or law, recall becomes more relevant than precision: in these cases the goal is to find all relevant documents, requiring algorithms to be tuned more towards recall at the cost of precision. This raises important questions with respect to retrievability and search engine bias: depending on how the similarity between a query and documents is measured, certain documents may be more or less retrievable in certain systems, up to some documents not being retrievable at all within common threshold settings. Biases may be oriented towards popularity of documents (increasing weight of references), towards length of documents, favour the use of rare or common words; rely on structural information such as metadata or headings, etc. Existing accessibility measurement techniques are limited as they measure retrievability with respect to all possible queries. In this paper, we improve accessibility measurement by considering sets of relevant and irrelevant queries for each document. This simulates how recall oriented users create their queries when searching for relevant information. We evaluate retrievability scores using a corpus of patents from US Patent and Trademark Office.

  6. Research on multi-user encrypted search scheme in cloud environment

    NASA Astrophysics Data System (ADS)

    Yu, Zonghua; Lin, Sui

    2017-05-01

    Aiming at the existing problems of multi-user encrypted search scheme in cloud computing environment, a basic multi-user encrypted scheme is proposed firstly, and then the basic scheme is extended to an anonymous hierarchical management authority. Compared with most of the existing schemes, the scheme not only to achieve the protection of keyword information, but also to achieve the protection of user identity privacy; the same time, data owners can directly control the user query permissions, rather than the cloud server. In addition, through the use of a special query key generation rules, to achieve the hierarchical management of the user's query permissions. The safety analysis shows that the scheme is safe and that the performance analysis and experimental data show that the scheme is practicable.

  7. Associative memory model for searching an image database by image snippet

    NASA Astrophysics Data System (ADS)

    Khan, Javed I.; Yun, David Y.

    1994-09-01

    This paper presents an associative memory called an multidimensional holographic associative computing (MHAC), which can be potentially used to perform feature based image database query using image snippet. MHAC has the unique capability to selectively focus on specific segments of a query frame during associative retrieval. As a result, this model can perform search on the basis of featural significance described by a subset of the snippet pixels. This capability is critical for visual query in image database because quite often the cognitive index features in the snippet are statistically weak. Unlike, the conventional artificial associative memories, MHAC uses a two level representation and incorporates additional meta-knowledge about the reliability status of segments of information it receives and forwards. In this paper we present the analysis of focus characteristics of MHAC.

  8. View-Based Searching Systems--Progress Towards Effective Disintermediation.

    ERIC Educational Resources Information Center

    Pollitt, A. Steven; Smith, Martin P.; Treglown, Mark; Braekevelt, Patrick

    This paper presents the background and then reports progress made in the development of two view-based searching systems--HIBROWSE for EMBASE, searching Europe's most important biomedical bibliographic database, and HIBROWSE for EPOQUE, improving access to the European Parliament's Online Query System. The HIBROWSE approach to searching promises…

  9. Modeling Group Interactions via Open Data Sources

    DTIC Science & Technology

    2011-08-30

    data. The state-of-art search engines are designed to help general query-specific search and not suitable for finding disconnected online groups. The...groups, (2) developing innovative mathematical and statistical models and efficient algorithms that leverage existing search engines and employ

  10. Query Expansion Using SNOMED-CT and Weighing Schemes

    DTIC Science & Technology

    2014-11-01

    For this research, we have used SNOMED-CT along with UMLS Methathesaurus as our ontology in medical domain to expand the queries. General Terms...CT along with UMLS Methathesaurus as our ontology in medical domain to expand the queries. 15. SUBJECT TERMS 16. SECURITY CLASSIFICATION OF: 17...University of the Basque country discuss their finding on query expansion using external sources headlined by Unified Medical Language System ( UMLS

  11. Embedding strategies for effective use of information from multiple sequence alignments.

    PubMed Central

    Henikoff, S.; Henikoff, J. G.

    1997-01-01

    We describe a new strategy for utilizing multiple sequence alignment information to detect distant relationships in searches of sequence databases. A single sequence representing a protein family is enriched by replacing conserved regions with position-specific scoring matrices (PSSMs) or consensus residues derived from multiple alignments of family members. In comprehensive tests of these and other family representations, PSSM-embedded queries produced the best results overall when used with a special version of the Smith-Waterman searching algorithm. Moreover, embedding consensus residues instead of PSSMs improved performance with readily available single sequence query searching programs, such as BLAST and FASTA. Embedding PSSMs or consensus residues into a representative sequence improves searching performance by extracting multiple alignment information from motif regions while retaining single sequence information where alignment is uncertain. PMID:9070452

  12. Probabilistic and machine learning-based retrieval approaches for biomedical dataset retrieval

    PubMed Central

    Karisani, Payam; Qin, Zhaohui S; Agichtein, Eugene

    2018-01-01

    Abstract The bioCADDIE dataset retrieval challenge brought together different approaches to retrieval of biomedical datasets relevant to a user’s query, expressed as a text description of a needed dataset. We describe experiments in applying a data-driven, machine learning-based approach to biomedical dataset retrieval as part of this challenge. We report on a series of experiments carried out to evaluate the performance of both probabilistic and machine learning-driven techniques from information retrieval, as applied to this challenge. Our experiments with probabilistic information retrieval methods, such as query term weight optimization, automatic query expansion and simulated user relevance feedback, demonstrate that automatically boosting the weights of important keywords in a verbose query is more effective than other methods. We also show that although there is a rich space of potential representations and features available in this domain, machine learning-based re-ranking models are not able to improve on probabilistic information retrieval techniques with the currently available training data. The models and algorithms presented in this paper can serve as a viable implementation of a search engine to provide access to biomedical datasets. The retrieval performance is expected to be further improved by using additional training data that is created by expert annotation, or gathered through usage logs, clicks and other processes during natural operation of the system. Database URL: https://github.com/emory-irlab/biocaddie PMID:29688379

  13. Query-Based Outlier Detection in Heterogeneous Information Networks.

    PubMed

    Kuck, Jonathan; Zhuang, Honglei; Yan, Xifeng; Cam, Hasan; Han, Jiawei

    2015-03-01

    Outlier or anomaly detection in large data sets is a fundamental task in data science, with broad applications. However, in real data sets with high-dimensional space, most outliers are hidden in certain dimensional combinations and are relative to a user's search space and interest. It is often more effective to give power to users and allow them to specify outlier queries flexibly, and the system will then process such mining queries efficiently. In this study, we introduce the concept of query-based outlier in heterogeneous information networks, design a query language to facilitate users to specify such queries flexibly, define a good outlier measure in heterogeneous networks, and study how to process outlier queries efficiently in large data sets. Our experiments on real data sets show that following such a methodology, interesting outliers can be defined and uncovered flexibly and effectively in large heterogeneous networks.

  14. Query-Based Outlier Detection in Heterogeneous Information Networks

    PubMed Central

    Kuck, Jonathan; Zhuang, Honglei; Yan, Xifeng; Cam, Hasan; Han, Jiawei

    2015-01-01

    Outlier or anomaly detection in large data sets is a fundamental task in data science, with broad applications. However, in real data sets with high-dimensional space, most outliers are hidden in certain dimensional combinations and are relative to a user’s search space and interest. It is often more effective to give power to users and allow them to specify outlier queries flexibly, and the system will then process such mining queries efficiently. In this study, we introduce the concept of query-based outlier in heterogeneous information networks, design a query language to facilitate users to specify such queries flexibly, define a good outlier measure in heterogeneous networks, and study how to process outlier queries efficiently in large data sets. Our experiments on real data sets show that following such a methodology, interesting outliers can be defined and uncovered flexibly and effectively in large heterogeneous networks. PMID:27064397

  15. Google it: obtaining information about local STD/HIV testing services online.

    PubMed

    Habel, Melissa A; Hood, Julia; Desai, Sheila; Kachur, Rachel; Buhi, Eric R; Liddon, Nicole

    2011-04-01

    Although the Internet is one of the most commonly accessed resources for health information, finding information on local sexual health services, such as sexually transmitted disease (STD) testing, can be challenging. Recognizing that most quests for online health information begin with search engines, the purpose of this exploratory study was to examine the extent to which online information about local STD/HIV testing services can be found using Google. Queries on STD and HIV testing services were executed in Google for 6 geographically unique locations across the United States. The first 3 websites that resulted from each query were coded for the following characteristics: (1) relevancy to the search topic, (2) domain and purpose, (3) rank in Google results, and (4) content. Websites hosted at .com (57.3%), .org (25.7%), and .gov (10.5%) domains were retrieved most frequently. Roughly half of all websites (n = 376) provided information relevant to the query, and about three-quarters (77.0%) of all queries yielded at least 1 relevant website within the first 3 results. Searches for larger cities were more likely to yield relevant results compared with smaller cities (odds ratio [OR] = 10.0, 95% confidence interval [CI] = 5.6, 17.9). On comparison with .com domains, .gov (OR = 2.9, 95% CI = 1.4, 5.6) and .org domains (OR = 2.9, 95% CI = 1.7, 4.8) were more likely to provide information of the location to get tested. Ease of online access to information about sexual health services varies by search topic and locale. Sexual health service providers must optimize their website placement so as to reach a greater proportion of the sexually active population who use web search engines.

  16. The BioPrompt-box: an ontology-based clustering tool for searching in biological databases.

    PubMed

    Corsi, Claudio; Ferragina, Paolo; Marangoni, Roberto

    2007-03-08

    High-throughput molecular biology provides new data at an incredible rate, so that the increase in the size of biological databanks is enormous and very rapid. This scenario generates severe problems not only at indexing time, where suitable algorithmic techniques for data indexing and retrieval are required, but also at query time, since a user query may produce such a large set of results that their browsing and "understanding" becomes humanly impractical. This problem is well known to the Web community, where a new generation of Web search engines is being developed, like Vivisimo. These tools organize on-the-fly the results of a user query in a hierarchy of labeled folders that ease their browsing and knowledge extraction. We investigate this approach on biological data, and propose the so called The BioPrompt-boxsoftware system which deploys ontology-driven clustering strategies for making the searching process of biologists more efficient and effective. The BioPrompt-box (Bpb) defines a document as a biological sequence plus its associated meta-data taken from the underneath databank--like references to ontologies or to external databanks, and plain texts as comments of researchers and (title, abstracts or even body of) papers. Bpboffers several tools to customize the search and the clustering process over its indexed documents. The user can search a set of keywords within a specific field of the document schema, or can execute Blastto find documents relative to homologue sequences. In both cases the search task returns a set of documents (hits) which constitute the answer to the user query. Since the number of hits may be large, Bpbclusters them into groups of homogenous content, organized as a hierarchy of labeled clusters. The user can actually choose among several ontology-based hierarchical clustering strategies, each offering a different "view" of the returned hits. Bpbcomputes these views by exploiting the meta-data present within the retrieved documents such as the references to Gene Ontology, the taxonomy lineage, the organism and the keywords. Of course, the approach is flexible enough to leave room for future additions of other meta-information. The ultimate goal of the clustering process is to provide the user with several different readings of the (maybe numerous) query results and show possible hidden correlations among them, thus improving their browsing and understanding. Bpb is a powerful search engine that makes it very easy to perform complex queries over the indexed databanks (currently only UNIPROT is considered). The ontology-based clustering approach is efficient and effective, and could thus be applied successfully to larger databanks, like GenBank or EMBL.

  17. The BioPrompt-box: an ontology-based clustering tool for searching in biological databases

    PubMed Central

    Corsi, Claudio; Ferragina, Paolo; Marangoni, Roberto

    2007-01-01

    Background High-throughput molecular biology provides new data at an incredible rate, so that the increase in the size of biological databanks is enormous and very rapid. This scenario generates severe problems not only at indexing time, where suitable algorithmic techniques for data indexing and retrieval are required, but also at query time, since a user query may produce such a large set of results that their browsing and "understanding" becomes humanly impractical. This problem is well known to the Web community, where a new generation of Web search engines is being developed, like Vivisimo. These tools organize on-the-fly the results of a user query in a hierarchy of labeled folders that ease their browsing and knowledge extraction. We investigate this approach on biological data, and propose the so called The BioPrompt-boxsoftware system which deploys ontology-driven clustering strategies for making the searching process of biologists more efficient and effective. Results The BioPrompt-box (Bpb) defines a document as a biological sequence plus its associated meta-data taken from the underneath databank – like references to ontologies or to external databanks, and plain texts as comments of researchers and (title, abstracts or even body of) papers. Bpboffers several tools to customize the search and the clustering process over its indexed documents. The user can search a set of keywords within a specific field of the document schema, or can execute Blastto find documents relative to homologue sequences. In both cases the search task returns a set of documents (hits) which constitute the answer to the user query. Since the number of hits may be large, Bpbclusters them into groups of homogenous content, organized as a hierarchy of labeled clusters. The user can actually choose among several ontology-based hierarchical clustering strategies, each offering a different "view" of the returned hits. Bpbcomputes these views by exploiting the meta-data present within the retrieved documents such as the references to Gene Ontology, the taxonomy lineage, the organism and the keywords. Of course, the approach is flexible enough to leave room for future additions of other meta-information. The ultimate goal of the clustering process is to provide the user with several different readings of the (maybe numerous) query results and show possible hidden correlations among them, thus improving their browsing and understanding. Conclusion Bpb is a powerful search engine that makes it very easy to perform complex queries over the indexed databanks (currently only UNIPROT is considered). The ontology-based clustering approach is efficient and effective, and could thus be applied successfully to larger databanks, like GenBank or EMBL. PMID:17430575

  18. Preliminary Results on Uncertainty Quantification for Pattern Analytics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stracuzzi, David John; Brost, Randolph; Chen, Maximillian Gene

    2015-09-01

    This report summarizes preliminary research into uncertainty quantification for pattern ana- lytics within the context of the Pattern Analytics to Support High-Performance Exploitation and Reasoning (PANTHER) project. The primary focus of PANTHER was to make large quantities of remote sensing data searchable by analysts. The work described in this re- port adds nuance to both the initial data preparation steps and the search process. Search queries are transformed from does the specified pattern exist in the data? to how certain is the system that the returned results match the query? We show example results for both data processing and search,more » and discuss a number of possible improvements for each.« less

  19. How To Do Field Searching in Web Search Engines: A Field Trip.

    ERIC Educational Resources Information Center

    Hock, Ran

    1998-01-01

    Describes the field search capabilities of selected Web search engines (AltaVista, HotBot, Infoseek, Lycos, Yahoo!) and includes a chart outlining what fields (date, title, URL, images, audio, video, links, page depth) are searchable, where to go on the page to search them, the syntax required (if any), and how field search queries are entered.…

  20. Automated Patent Categorization and Guided Patent Search using IPC as Inspired by MeSH and PubMed.

    PubMed

    Eisinger, Daniel; Tsatsaronis, George; Bundschus, Markus; Wieneke, Ulrich; Schroeder, Michael

    2013-04-15

    Document search on PubMed, the pre-eminent database for biomedical literature, relies on the annotation of its documents with relevant terms from the Medical Subject Headings ontology (MeSH) for improving recall through query expansion. Patent documents are another important information source, though they are considerably less accessible. One option to expand patent search beyond pure keywords is the inclusion of classification information: Since every patent is assigned at least one class code, it should be possible for these assignments to be automatically used in a similar way as the MeSH annotations in PubMed. In order to develop a system for this task, it is necessary to have a good understanding of the properties of both classification systems. This report describes our comparative analysis of MeSH and the main patent classification system, the International Patent Classification (IPC). We investigate the hierarchical structures as well as the properties of the terms/classes respectively, and we compare the assignment of IPC codes to patents with the annotation of PubMed documents with MeSH terms.Our analysis shows a strong structural similarity of the hierarchies, but significant differences of terms and annotations. The low number of IPC class assignments and the lack of occurrences of class labels in patent texts imply that current patent search is severely limited. To overcome these limits, we evaluate a method for the automated assignment of additional classes to patent documents, and we propose a system for guided patent search based on the use of class co-occurrence information and external resources.

  1. Automated Patent Categorization and Guided Patent Search using IPC as Inspired by MeSH and PubMed

    PubMed Central

    2013-01-01

    Document search on PubMed, the pre-eminent database for biomedical literature, relies on the annotation of its documents with relevant terms from the Medical Subject Headings ontology (MeSH) for improving recall through query expansion. Patent documents are another important information source, though they are considerably less accessible. One option to expand patent search beyond pure keywords is the inclusion of classification information: Since every patent is assigned at least one class code, it should be possible for these assignments to be automatically used in a similar way as the MeSH annotations in PubMed. In order to develop a system for this task, it is necessary to have a good understanding of the properties of both classification systems. This report describes our comparative analysis of MeSH and the main patent classification system, the International Patent Classification (IPC). We investigate the hierarchical structures as well as the properties of the terms/classes respectively, and we compare the assignment of IPC codes to patents with the annotation of PubMed documents with MeSH terms. Our analysis shows a strong structural similarity of the hierarchies, but significant differences of terms and annotations. The low number of IPC class assignments and the lack of occurrences of class labels in patent texts imply that current patent search is severely limited. To overcome these limits, we evaluate a method for the automated assignment of additional classes to patent documents, and we propose a system for guided patent search based on the use of class co-occurrence information and external resources. PMID:23734562

  2. End User Information Searching on the Internet: How Do Users Search and What Do They Search For? (SIG USE)

    ERIC Educational Resources Information Center

    Saracevic, Tefko

    2000-01-01

    Summarizes a presentation that discussed findings and implications of research projects using an Internet search service and Internet-accessible vendor databases, representing the two sides of public database searching: query formulation and resource utilization. Presenters included: Tefko Saracevic, Amanda Spink, Dietmar Wolfram and Hong Xie.…

  3. Portal to the GALEX Data Archive

    NASA Astrophysics Data System (ADS)

    Smith, M. A.; Conti, A.; Shiao, B.; Volpicelli, C. A.

    2004-05-01

    In early February MAST began its hosting of the GALEX public "Early Release Observations" images (40,000 objects) and spectra (1000 objects). MAST will host a much larger "first release," the GALEX DR1, in October, 2004. In this poster we describe features of our on-line website at http://galex.stsci.edu for researchers interested in downloading and browsing GALEX UV image and spectral data. The site, is based on MS .NET technology and user queries are entered for classes of objects or sky regions on a "MAST-like" query forms or with detailed queries written in SQL. In the latter case examples are provided to tailor a query to a user's specifications. The site provides novel features, such as tooltips that return keyword definitions, "active images" that return object classification and coordinate information in a 2.5 arcmin radius around the selected object, self-documentation of terms and tables, and of course a tutorial for new navigators. The GALEX database employs a Hierarchial Triangular Mesh system for rapid data discovery, neighbor searches, and cross correlations with other catalogs. Our "GMAX" tool allows a coplotting of object positions for objects observed by GALEX and other US-NVO compliant mission websites such as Sloan, 2MASS, FIRST.... As a member of the new Skynode network, GALEX has reported its web services to the US-NVO registry. This permits users to generate queries from other sites to cross-correlate, compare, and plot GALEX data using US-NVO protocols. Future plans for limited on-line data analysis and footprint services are described.

  4. Query Results Clustering by Extending SPARQL with CLUSTER BY

    NASA Astrophysics Data System (ADS)

    Ławrynowicz, Agnieszka

    The task of dynamic clustering of the search results proved to be useful in the Web context, where the user often does not know the granularity of the search results in advance. The goal of this paper is to provide a declarative way for invoking dynamic clustering of the results of queries submitted over Semantic Web data. To achieve this goal the paper proposes an approach that extends SPARQL by clustering abilities. The approach introduces a new statement, CLUSTER BY, into the SPARQL grammar and proposes semantics for such extension.

  5. Treatment Options

    MedlinePlus

    ... of America Search Query (required) Search Understanding Lupus Diagnosing Lupus Living with Lupus Research on Lupus View All ... I want to sort by: Sort all collections Diagnosing Lupus Living with Lupus I Might Have Lupus I ...

  6. Internet search and krokodil in the Russian Federation: an infoveillance study.

    PubMed

    Zheluk, Andrey; Quinn, Casey; Meylakhs, Peter

    2014-09-18

    Krokodil is an informal term for a cheap injectable illicit drug domestically prepared from codeine-containing medication (CCM). The method of krokodil preparation may produce desomorphine as well as toxic reactants that cause extensive tissue necrosis. The first confirmed report of krokodil use in Russia took place in 2004. In 2012, reports of krokodil-related injection injuries began to appear beyond Russia in Western Europe and the United States. This exploratory study had two main objectives: (1) to determine if Internet search patterns could detect regularities in behavioral responses to Russian CCM policy at the population level, and (2) to determine if complementary data sources could explain the regularities we observed. First, we obtained krokodil-related search pattern data for each Russia subregion (oblast) between 2011 and 2012. Second, we analyzed several complementary data sources included krokodil-related court cases, and related search terms on both Google and Yandex to evaluate the characteristics of terms accompanying krokodil-related search queries. In the 6 months preceding CCM sales restrictions, 21 of Russia's 83 oblasts had search rates higher than the national average (mean) of 16.67 searches per 100,000 population for terms associated with krokodil. In the 6 months following restrictions, mean national searches dropped to 9.65 per 100,000. Further, the number of oblasts recording a higher than average search rate dropped from 30 to 16. Second, we found krokodil-related court appearances were moderately positively correlated (Spearman correlation=.506, P≤.001) with behaviors consistent with an interest in the production and use of krokodil across Russia. Finally, Google Trends and Google and Yandex related terms suggested consistent public interest in the production and use of krokodil as well as for CCM as analgesic medication during the date range covered by this study. Illicit drug use data are generally regarded as difficult to obtain through traditional survey methods. Our analysis suggests it is plausible that Yandex search behavior served as a proxy for patterns of krokodil production and use during the date range we investigated. More generally, this study demonstrates the application of novel methods recently used by policy makers to both monitor illicit drug use and influence drug policy decision making.

  7. New Term Weighting Formulas for the Vector Space Method in Information Retrieval

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chisholm, E.; Kolda, T.G.

    The goal in information retrieval is to enable users to automatically and accurately find data relevant to their queries. One possible approach to this problem i use the vector space model, which models documents and queries as vectors in the term space. The components of the vectors are determined by the term weighting scheme, a function of the frequencies of the terms in the document or query as well as throughout the collection. We discuss popular term weighting schemes and present several new schemes that offer improved performance.

  8. A Comparison of Query-by-Example Methods for Spoken Term Detection

    DTIC Science & Technology

    2009-09-01

    consistent “errors” between the in- dex and the query. Few query terms have more than one pro- nunciation (avg. 1.1 prons . per term), as a result, there is... pron lex. one dict entry (llr) 73.01 47.66 21.11 all dict entries (avg+llr) 73.99 48.16 20.92 all dict entries (max+llr) 74.27 48.26 20.93 Table 1

  9. Modeling Rich Interactions for Web Search Intent Inference, Ranking and Evaluation

    ERIC Educational Resources Information Center

    Guo, Qi

    2012-01-01

    Billions of people interact with Web search engines daily and their interactions provide valuable clues about their interests and preferences. While modeling search behavior, such as queries and clicks on results, has been found to be effective for various Web search applications, the effectiveness of the existing approaches are limited by…

  10. Automated Ontology Alignment with Fuselets for Community of Interest (COI) Integration

    DTIC Science & Technology

    2008-09-01

    Search Example ............................................................................... 22 Figure 8 - Federated Search Example Revisited...integrating information from various sources through a single query. This is the traditional federated search problem, where the sources don’t...Figure 7 - Federated Search Example For the data sources in the graphic above, the ontologies align in a fairly straightforward manner

  11. The Weaknesses of Full-Text Searching

    ERIC Educational Resources Information Center

    Beall, Jeffrey

    2008-01-01

    This paper provides a theoretical critique of the deficiencies of full-text searching in academic library databases. Because full-text searching relies on matching words in a search query with words in online resources, it is an inefficient method of finding information in a database. This matching fails to retrieve synonyms, and it also retrieves…

  12. Just-in-Time Web Searches for Trainers & Adult Educators.

    ERIC Educational Resources Information Center

    Kirk, James J.

    Trainers and adult educators often need to quickly locate quality information on the World Wide Web (WWW) and need assistance in searching for such information. A "search engine" is an application used to query existing information on the WWW. The three types of search engines are computer-generated indexes, directories, and meta search…

  13. A Real-Time All-Atom Structural Search Engine for Proteins

    PubMed Central

    Gonzalez, Gabriel; Hannigan, Brett; DeGrado, William F.

    2014-01-01

    Protein designers use a wide variety of software tools for de novo design, yet their repertoire still lacks a fast and interactive all-atom search engine. To solve this, we have built the Suns program: a real-time, atomic search engine integrated into the PyMOL molecular visualization system. Users build atomic-level structural search queries within PyMOL and receive a stream of search results aligned to their query within a few seconds. This instant feedback cycle enables a new “designability”-inspired approach to protein design where the designer searches for and interactively incorporates native-like fragments from proven protein structures. We demonstrate the use of Suns to interactively build protein motifs, tertiary interactions, and to identify scaffolds compatible with hot-spot residues. The official web site and installer are located at http://www.degradolab.org/suns/ and the source code is hosted at https://github.com/godotgildor/Suns (PyMOL plugin, BSD license), https://github.com/Gabriel439/suns-cmd (command line client, BSD license), and https://github.com/Gabriel439/suns-search (search engine server, GPLv2 license). PMID:25079944

  14. BioSearch: a semantic search engine for Bio2RDF

    PubMed Central

    Qiu, Honglei; Huang, Jiacheng

    2017-01-01

    Abstract Biomedical data are growing at an incredible pace and require substantial expertise to organize data in a manner that makes them easily findable, accessible, interoperable and reusable. Massive effort has been devoted to using Semantic Web standards and technologies to create a network of Linked Data for the life sciences, among others. However, while these data are accessible through programmatic means, effective user interfaces for non-experts to SPARQL endpoints are few and far between. Contributing to user frustrations is that data are not necessarily described using common vocabularies, thereby making it difficult to aggregate results, especially when distributed across multiple SPARQL endpoints. We propose BioSearch — a semantic search engine that uses ontologies to enhance federated query construction and organize search results. BioSearch also features a simplified query interface that allows users to optionally filter their keywords according to classes, properties and datasets. User evaluation demonstrated that BioSearch is more effective and usable than two state of the art search and browsing solutions. Database URL: http://ws.nju.edu.cn/biosearch/ PMID:29220451

  15. A real-time all-atom structural search engine for proteins.

    PubMed

    Gonzalez, Gabriel; Hannigan, Brett; DeGrado, William F

    2014-07-01

    Protein designers use a wide variety of software tools for de novo design, yet their repertoire still lacks a fast and interactive all-atom search engine. To solve this, we have built the Suns program: a real-time, atomic search engine integrated into the PyMOL molecular visualization system. Users build atomic-level structural search queries within PyMOL and receive a stream of search results aligned to their query within a few seconds. This instant feedback cycle enables a new "designability"-inspired approach to protein design where the designer searches for and interactively incorporates native-like fragments from proven protein structures. We demonstrate the use of Suns to interactively build protein motifs, tertiary interactions, and to identify scaffolds compatible with hot-spot residues. The official web site and installer are located at http://www.degradolab.org/suns/ and the source code is hosted at https://github.com/godotgildor/Suns (PyMOL plugin, BSD license), https://github.com/Gabriel439/suns-cmd (command line client, BSD license), and https://github.com/Gabriel439/suns-search (search engine server, GPLv2 license).

  16. Searching Electronic Health Records for Temporal Patterns in Patient Histories: A Case Study with Microsoft Amalga

    PubMed Central

    Plaisant, Catherine; Lam, Stanley; Shneiderman, Ben; Smith, Mark S.; Roseman, David; Marchand, Greg; Gillam, Michael; Feied, Craig; Handler, Jonathan; Rappaport, Hank

    2008-01-01

    As electronic health records (EHR) become more widespread, they enable clinicians and researchers to pose complex queries that can benefit immediate patient care and deepen understanding of medical treatment and outcomes. However, current query tools make complex temporal queries difficult to pose, and physicians have to rely on computer professionals to specify the queries for them. This paper describes our efforts to develop a novel query tool implemented in a large operational system at the Washington Hospital Center (Microsoft Amalga, formerly known as Azyxxi). We describe our design of the interface to specify temporal patterns and the visual presentation of results, and report on a pilot user study looking for adverse reactions following radiology studies using contrast. PMID:18999158

  17. PubFocus: semantic MEDLINE/PubMed citations analytics through integration of controlled biomedical dictionaries and ranking algorithm

    PubMed Central

    Plikus, Maksim V; Zhang, Zina; Chuong, Cheng-Ming

    2006-01-01

    Background Understanding research activity within any given biomedical field is important. Search outputs generated by MEDLINE/PubMed are not well classified and require lengthy manual citation analysis. Automation of citation analytics can be very useful and timesaving for both novices and experts. Results PubFocus web server automates analysis of MEDLINE/PubMed search queries by enriching them with two widely used human factor-based bibliometric indicators of publication quality: journal impact factor and volume of forward references. In addition to providing basic volumetric statistics, PubFocus also prioritizes citations and evaluates authors' impact on the field of search. PubFocus also analyses presence and occurrence of biomedical key terms within citations by utilizing controlled vocabularies. Conclusion We have developed citations' prioritisation algorithm based on journal impact factor, forward referencing volume, referencing dynamics, and author's contribution level. It can be applied either to the primary set of PubMed search results or to the subsets of these results identified through key terms from controlled biomedical vocabularies and ontologies. NCI (National Cancer Institute) thesaurus and MGD (Mouse Genome Database) mammalian gene orthology have been implemented for key terms analytics. PubFocus provides a scalable platform for the integration of multiple available ontology databases. PubFocus analytics can be adapted for input sources of biomedical citations other than PubMed. PMID:17014720

  18. Seeking science information online: Data mining Google to better understand the roles of the media and the education system.

    PubMed

    Segev, Elad; Baram-Tsabari, Ayelet

    2012-10-01

    Which extrinsic cues motivate people to search for science-related information? For many science-related search queries, media attention and time during the academic year are highly correlated with changes in information seeking behavior (expressed by changes in the proportion of Google science-related searches). The data mining analysis presented here shows that changes in the volume of searches for general and well-established science terms are strongly linked to the education system. By contrast, ad-hoc events and current concerns were better aligned with media coverage. The interest and ability to independently seek science knowledge in response to current events or concerns is one of the fundamental goals of the science literacy movement. This method provides a mirror of extrapolated behavior and as such can assist researchers in assessing the role of the media in shaping science interests, and inform the ways in which lifelong interests in science are manifested in real world situations.

  19. Bengali-English Relevant Cross Lingual Information Access Using Finite Automata

    NASA Astrophysics Data System (ADS)

    Banerjee, Avishek; Bhattacharyya, Swapan; Hazra, Simanta; Mondal, Shatabdi

    2010-10-01

    CLIR techniques searches unrestricted texts and typically extract term and relationships from bilingual electronic dictionaries or bilingual text collections and use them to translate query and/or document representations into a compatible set of representations with a common feature set. In this paper, we focus on dictionary-based approach by using a bilingual data dictionary with a combination to statistics-based methods to avoid the problem of ambiguity also the development of human computer interface aspects of NLP (Natural Language processing) is the approach of this paper. The intelligent web search with regional language like Bengali is depending upon two major aspect that is CLIA (Cross language information access) and NLP. In our previous work with IIT, KGP we already developed content based CLIA where content based searching in trained on Bengali Corpora with the help of Bengali data dictionary. Here we want to introduce intelligent search because to recognize the sense of meaning of a sentence and it has a better real life approach towards human computer interactions.

  20. CDAPubMed: a browser extension to retrieve EHR-based biomedical literature.

    PubMed

    Perez-Rey, David; Jimenez-Castellanos, Ana; Garcia-Remesal, Miguel; Crespo, Jose; Maojo, Victor

    2012-04-05

    Over the last few decades, the ever-increasing output of scientific publications has led to new challenges to keep up to date with the literature. In the biomedical area, this growth has introduced new requirements for professionals, e.g., physicians, who have to locate the exact papers that they need for their clinical and research work amongst a huge number of publications. Against this backdrop, novel information retrieval methods are even more necessary. While web search engines are widespread in many areas, facilitating access to all kinds of information, additional tools are required to automatically link information retrieved from these engines to specific biomedical applications. In the case of clinical environments, this also means considering aspects such as patient data security and confidentiality or structured contents, e.g., electronic health records (EHRs). In this scenario, we have developed a new tool to facilitate query building to retrieve scientific literature related to EHRs. We have developed CDAPubMed, an open-source web browser extension to integrate EHR features in biomedical literature retrieval approaches. Clinical users can use CDAPubMed to: (i) load patient clinical documents, i.e., EHRs based on the Health Level 7-Clinical Document Architecture Standard (HL7-CDA), (ii) identify relevant terms for scientific literature search in these documents, i.e., Medical Subject Headings (MeSH), automatically driven by the CDAPubMed configuration, which advanced users can optimize to adapt to each specific situation, and (iii) generate and launch literature search queries to a major search engine, i.e., PubMed, to retrieve citations related to the EHR under examination. CDAPubMed is a platform-independent tool designed to facilitate literature searching using keywords contained in specific EHRs. CDAPubMed is visually integrated, as an extension of a widespread web browser, within the standard PubMed interface. It has been tested on a public dataset of HL7-CDA documents, returning significantly fewer citations since queries are focused on characteristics identified within the EHR. For instance, compared with more than 200,000 citations retrieved by breast neoplasm, fewer than ten citations were retrieved when ten patient features were added using CDAPubMed. This is an open source tool that can be freely used for non-profit purposes and integrated with other existing systems.

  1. CDAPubMed: a browser extension to retrieve EHR-based biomedical literature

    PubMed Central

    2012-01-01

    Background Over the last few decades, the ever-increasing output of scientific publications has led to new challenges to keep up to date with the literature. In the biomedical area, this growth has introduced new requirements for professionals, e.g., physicians, who have to locate the exact papers that they need for their clinical and research work amongst a huge number of publications. Against this backdrop, novel information retrieval methods are even more necessary. While web search engines are widespread in many areas, facilitating access to all kinds of information, additional tools are required to automatically link information retrieved from these engines to specific biomedical applications. In the case of clinical environments, this also means considering aspects such as patient data security and confidentiality or structured contents, e.g., electronic health records (EHRs). In this scenario, we have developed a new tool to facilitate query building to retrieve scientific literature related to EHRs. Results We have developed CDAPubMed, an open-source web browser extension to integrate EHR features in biomedical literature retrieval approaches. Clinical users can use CDAPubMed to: (i) load patient clinical documents, i.e., EHRs based on the Health Level 7-Clinical Document Architecture Standard (HL7-CDA), (ii) identify relevant terms for scientific literature search in these documents, i.e., Medical Subject Headings (MeSH), automatically driven by the CDAPubMed configuration, which advanced users can optimize to adapt to each specific situation, and (iii) generate and launch literature search queries to a major search engine, i.e., PubMed, to retrieve citations related to the EHR under examination. Conclusions CDAPubMed is a platform-independent tool designed to facilitate literature searching using keywords contained in specific EHRs. CDAPubMed is visually integrated, as an extension of a widespread web browser, within the standard PubMed interface. It has been tested on a public dataset of HL7-CDA documents, returning significantly fewer citations since queries are focused on characteristics identified within the EHR. For instance, compared with more than 200,000 citations retrieved by breast neoplasm, fewer than ten citations were retrieved when ten patient features were added using CDAPubMed. This is an open source tool that can be freely used for non-profit purposes and integrated with other existing systems. PMID:22480327

  2. Virtual Solar Observatory Distributed Query Construction

    NASA Technical Reports Server (NTRS)

    Gurman, J. B.; Dimitoglou, G.; Bogart, R.; Davey, A.; Hill, F.; Martens, P.

    2003-01-01

    Through a prototype implementation (Tian et al., this meeting) the VSO has already demonstrated the capability of unifying geographically distributed data sources following the Web Services paradigm and utilizing mechanisms such as the Simple Object Access Protocol (SOAP). So far, four participating sites (Stanford, Montana State University, National Solar Observatory and the Solar Data Analysis Center) permit Web-accessible, time-based searches that allow browse access to a number of diverse data sets. Our latest work includes the extension of the simple, time-based queries to include numerous other searchable observation parameters. For VSO users, this extended functionality enables more refined searches. For the VSO, it is a proof of concept that more complex, distributed queries can be effectively constructed and that results from heterogeneous, remote sources can be synthesized and presented to users as a single, virtual data product.

  3. Enhanced Approximate Nearest Neighbor via Local Area Focused Search.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gonzales, Antonio; Blazier, Nicholas Paul

    Approximate Nearest Neighbor (ANN) algorithms are increasingly important in machine learning, data mining, and image processing applications. There is a large family of space- partitioning ANN algorithms, such as randomized KD-Trees, that work well in practice but are limited by an exponential increase in similarity comparisons required to optimize recall. Additionally, they only support a small set of similarity metrics. We present Local Area Fo- cused Search (LAFS), a method that enhances the way queries are performed using an existing ANN index. Instead of a single query, LAFS performs a number of smaller (fewer similarity comparisons) queries and focuses onmore » a local neighborhood which is refined as candidates are identified. We show that our technique improves performance on several well known datasets and is easily extended to general similarity metrics using kernel projection techniques.« less

  4. Children & Teens (with Lupus)

    MedlinePlus

    ... of America Search Query (required) Search Understanding Lupus Diagnosing Lupus Living with Lupus Research on Lupus View All ... article Medications for treating lupus in children article Diagnosing lupus in children article Types of health care providers ...

  5. Using search query surveillance to monitor tax avoidance and smoking cessation following the United States' 2009 "SCHIP" cigarette tax increase.

    PubMed

    Ayers, John W; Ribisl, Kurt; Brownstein, John S

    2011-03-16

    Smokers can use the web to continue or quit their habit. Online vendors sell reduced or tax-free cigarettes lowering smoking costs, while health advocates use the web to promote cessation. We examined how smokers' tax avoidance and smoking cessation Internet search queries were motivated by the United States' (US) 2009 State Children's Health Insurance Program (SCHIP) federal cigarette excise tax increase and two other state specific tax increases. Google keyword searches among residents in a taxed geography (US or US state) were compared to an untaxed geography (Canada) for two years around each tax increase. Search data were normalized to a relative search volume (RSV) scale, where the highest search proportion was labeled 100 with lesser proportions scaled by how they relatively compared to the highest proportion. Changes in RSV were estimated by comparing means during and after the tax increase to means before the tax increase, across taxed and untaxed geographies. The SCHIP tax was associated with an 11.8% (95% confidence interval [95%CI], 5.7 to 17.9; p<.001) immediate increase in cessation searches; however, searches quickly abated and approximated differences from pre-tax levels in Canada during the months after the tax. Tax avoidance searches increased 27.9% (95%CI, 15.9 to 39.9; p<.001) and 5.3% (95%CI, 3.6 to 7.1; p<.001) during and in the months after the tax compared to Canada, respectively, suggesting avoidance is the more pronounced and durable response. Trends were similar for state-specific tax increases but suggest strong interactive processes across taxes. When the SCHIP tax followed Florida's tax, versus not, it promoted more cessation and avoidance searches. Efforts to combat tax avoidance and increase cessation may be enhanced by using interventions targeted and tailored to smokers' searches. Search query surveillance is a valuable real-time, free and public method, that may be generalized to other behavioral, biological, informational or psychological outcomes manifested online.

  6. Development and evaluation of a biomedical search engine using a predicate-based vector space model.

    PubMed

    Kwak, Myungjae; Leroy, Gondy; Martinez, Jesse D; Harwell, Jeffrey

    2013-10-01

    Although biomedical information available in articles and patents is increasing exponentially, we continue to rely on the same information retrieval methods and use very few keywords to search millions of documents. We are developing a fundamentally different approach for finding much more precise and complete information with a single query using predicates instead of keywords for both query and document representation. Predicates are triples that are more complex datastructures than keywords and contain more structured information. To make optimal use of them, we developed a new predicate-based vector space model and query-document similarity function with adjusted tf-idf and boost function. Using a test bed of 107,367 PubMed abstracts, we evaluated the first essential function: retrieving information. Cancer researchers provided 20 realistic queries, for which the top 15 abstracts were retrieved using a predicate-based (new) and keyword-based (baseline) approach. Each abstract was evaluated, double-blind, by cancer researchers on a 0-5 point scale to calculate precision (0 versus higher) and relevance (0-5 score). Precision was significantly higher (p<.001) for the predicate-based (80%) than for the keyword-based (71%) approach. Relevance was almost doubled with the predicate-based approach-2.1 versus 1.6 without rank order adjustment (p<.001) and 1.34 versus 0.98 with rank order adjustment (p<.001) for predicate--versus keyword-based approach respectively. Predicates can support more precise searching than keywords, laying the foundation for rich and sophisticated information search. Copyright © 2013 Elsevier Inc. All rights reserved.

  7. Using Search Engine Query Data to Explore the Epidemiology of Common Gastrointestinal Symptoms.

    PubMed

    Hassid, Benjamin G; Day, Lukejohn W; Awad, Mohannad A; Sewell, Justin L; Osterberg, E Charles; Breyer, Benjamin N

    2017-03-01

    Internet searches are an increasingly used tool in medical research. To date, no studies have examined Google search data in relation to common gastrointestinal symptoms. The aim of this study was to compare trends in Internet search volume with clinical datasets for common gastrointestinal symptoms. Using Google Trends, we recorded relative changes in volume of searches related to dysphagia, vomiting, and diarrhea in the USA between January 2008 and January 2011. We queried the National Inpatient Sample (NIS) and the National Hospital Ambulatory Medical Care Survey (NHAMCS) during this time period and identified cases related to these symptoms. We assessed the correlation between Google Trends and these two clinical datasets, as well as examined seasonal variation trends. Changes to Google search volume for all three symptoms correlated significantly with changes to NIS output (dysphagia: r = 0.5, P = 0.002; diarrhea: r = 0.79, P < 0.001; vomiting: r = 0.76, P < 0.001). Both Google and NIS data showed that the prevalence of all three symptoms rose during the time period studied. On the other hand, the NHAMCS data trends during this time period did not correlate well with either the NIS or the Google data for any of the three symptoms studied. Both the NIS and Google data showed modest seasonal variation. Changes to the population burden of chronic GI symptoms may be tracked by monitoring changes to Google search engine query volume over time. These data demonstrate that the prevalence of common GI symptoms is rising over time.

  8. Building a better search engine for earth science data

    NASA Astrophysics Data System (ADS)

    Armstrong, E. M.; Yang, C. P.; Moroni, D. F.; McGibbney, L. J.; Jiang, Y.; Huang, T.; Greguska, F. R., III; Li, Y.; Finch, C. J.

    2017-12-01

    Free text data searching of earth science datasets has been implemented with varying degrees of success and completeness across the spectrum of the 12 NASA earth sciences data centers. At the JPL Physical Oceanography Distributed Active Archive Center (PO.DAAC) the search engine has been developed around the Solr/Lucene platform. Others have chosen other popular enterprise search platforms like Elasticsearch. Regardless, the default implementations of these search engines leveraging factors such as dataset popularity, term frequency and inverse document term frequency do not fully meet the needs of precise relevancy and ranking of earth science search results. For the PO.DAAC, this shortcoming has been identified for several years by its external User Working Group that has assigned several recommendations to improve the relevancy and discoverability of datasets related to remotely sensed sea surface temperature, ocean wind, waves, salinity, height and gravity that comprise a total count of over 500 public availability datasets. Recently, the PO.DAAC has teamed with an effort led by George Mason University to improve the improve the search and relevancy ranking of oceanographic data via a simple search interface and powerful backend services called MUDROD (Mining and Utilizing Dataset Relevancy from Oceanographic Datasets to Improve Data Discovery) funded by the NASA AIST program. MUDROD has mined and utilized the combination of PO.DAAC earth science dataset metadata, usage metrics, and user feedback and search history to objectively extract relevance for improved data discovery and access. In addition to improved dataset relevance and ranking, the MUDROD search engine also returns recommendations to related datasets and related user queries. This presentation will report on use cases that drove the architecture and development, and the success metrics and improvements on search precision and recall that MUDROD has demonstrated over the existing PO.DAAC search interfaces.

  9. Guiding Students to Answers: Query Recommendation

    ERIC Educational Resources Information Center

    Yilmazel, Ozgur

    2011-01-01

    This paper reports on a guided navigation system built on the textbook search engine developed at Anadolu University to support distance education students. The search engine uses Turkish Language specific language processing modules to enable searches over course material presented in Open Education Faculty textbooks. We implemented a guided…

  10. Concept similarity and related categories in information retrieval using formal concept analysis

    NASA Astrophysics Data System (ADS)

    Eklund, P.; Ducrou, J.; Dau, F.

    2012-11-01

    The application of formal concept analysis to the problem of information retrieval has been shown useful but has lacked any real analysis of the idea of relevance ranking of search results. SearchSleuth is a program developed to experiment with the automated local analysis of Web search using formal concept analysis. SearchSleuth extends a standard search interface to include a conceptual neighbourhood centred on a formal concept derived from the initial query. This neighbourhood of the concept derived from the search terms is decorated with its upper and lower neighbours representing more general and special concepts, respectively. SearchSleuth is in many ways an archetype of search engines based on formal concept analysis with some novel features. In SearchSleuth, the notion of related categories - which are themselves formal concepts - is also introduced. This allows the retrieval focus to shift to a new formal concept called a sibling. This movement across the concept lattice needs to relate one formal concept to another in a principled way. This paper presents the issues concerning exploring, searching, and ordering the space of related categories. The focus is on understanding the use and meaning of proximity and semantic distance in the context of information retrieval using formal concept analysis.

  11. Can Google Trends search queries contribute to risk diversification?

    PubMed

    Kristoufek, Ladislav

    2013-01-01

    Portfolio diversification and active risk management are essential parts of financial analysis which became even more crucial (and questioned) during and after the years of the Global Financial Crisis. We propose a novel approach to portfolio diversification using the information of searched items on Google Trends. The diversification is based on an idea that popularity of a stock measured by search queries is correlated with the stock riskiness. We penalize the popular stocks by assigning them lower portfolio weights and we bring forward the less popular, or peripheral, stocks to decrease the total riskiness of the portfolio. Our results indicate that such strategy dominates both the benchmark index and the uniformly weighted portfolio both in-sample and out-of-sample.

  12. Can Google Trends search queries contribute to risk diversification?

    PubMed Central

    Kristoufek, Ladislav

    2013-01-01

    Portfolio diversification and active risk management are essential parts of financial analysis which became even more crucial (and questioned) during and after the years of the Global Financial Crisis. We propose a novel approach to portfolio diversification using the information of searched items on Google Trends. The diversification is based on an idea that popularity of a stock measured by search queries is correlated with the stock riskiness. We penalize the popular stocks by assigning them lower portfolio weights and we bring forward the less popular, or peripheral, stocks to decrease the total riskiness of the portfolio. Our results indicate that such strategy dominates both the benchmark index and the uniformly weighted portfolio both in-sample and out-of-sample. PMID:24048448

  13. Application of kernel functions for accurate similarity search in large chemical databases.

    PubMed

    Wang, Xiaohong; Huan, Jun; Smalter, Aaron; Lushington, Gerald H

    2010-04-29

    Similarity search in chemical structure databases is an important problem with many applications in chemical genomics, drug design, and efficient chemical probe screening among others. It is widely believed that structure based methods provide an efficient way to do the query. Recently various graph kernel functions have been designed to capture the intrinsic similarity of graphs. Though successful in constructing accurate predictive and classification models, graph kernel functions can not be applied to large chemical compound database due to the high computational complexity and the difficulties in indexing similarity search for large databases. To bridge graph kernel function and similarity search in chemical databases, we applied a novel kernel-based similarity measurement, developed in our team, to measure similarity of graph represented chemicals. In our method, we utilize a hash table to support new graph kernel function definition, efficient storage and fast search. We have applied our method, named G-hash, to large chemical databases. Our results show that the G-hash method achieves state-of-the-art performance for k-nearest neighbor (k-NN) classification. Moreover, the similarity measurement and the index structure is scalable to large chemical databases with smaller indexing size, and faster query processing time as compared to state-of-the-art indexing methods such as Daylight fingerprints, C-tree and GraphGrep. Efficient similarity query processing method for large chemical databases is challenging since we need to balance running time efficiency and similarity search accuracy. Our previous similarity search method, G-hash, provides a new way to perform similarity search in chemical databases. Experimental study validates the utility of G-hash in chemical databases.

  14. Fast and Flexible Multivariate Time Series Subsequence Search

    NASA Technical Reports Server (NTRS)

    Bhaduri, Kanishka; Oza, Nikunj C.; Zhu, Qiang; Srivastava, Ashok N.

    2010-01-01

    Multivariate Time-Series (MTS) are ubiquitous, and are generated in areas as disparate as sensor recordings in aerospace systems, music and video streams, medical monitoring, and financial systems. Domain experts are often interested in searching for interesting multivariate patterns from these MTS databases which often contain several gigabytes of data. Surprisingly, research on MTS search is very limited. Most of the existing work only supports queries with the same length of data, or queries on a fixed set of variables. In this paper, we propose an efficient and flexible subsequence search framework for massive MTS databases, that, for the first time, enables querying on any subset of variables with arbitrary time delays between them. We propose two algorithms to solve this problem (1) a List Based Search (LBS) algorithm which uses sorted lists for indexing, and (2) a R*-tree Based Search (RBS) which uses Minimum Bounding Rectangles (MBR) to organize the subsequences. Both algorithms guarantee that all matching patterns within the specified thresholds will be returned (no false dismissals). The very few false alarms can be removed by a post-processing step. Since our framework is also capable of Univariate Time-Series (UTS) subsequence search, we first demonstrate the efficiency of our algorithms on several UTS datasets previously used in the literature. We follow this up with experiments using two large MTS databases from the aviation domain, each containing several millions of observations. Both these tests show that our algorithms have very high prune rates (>99%) thus needing actual disk access for only less than 1% of the observations. To the best of our knowledge, MTS subsequence search has never been attempted on datasets of the size we have used in this paper.

  15. A topic clustering approach to finding similar questions from large question and answer archives.

    PubMed

    Zhang, Wei-Nan; Liu, Ting; Yang, Yang; Cao, Liujuan; Zhang, Yu; Ji, Rongrong

    2014-01-01

    With the blooming of Web 2.0, Community Question Answering (CQA) services such as Yahoo! Answers (http://answers.yahoo.com), WikiAnswer (http://wiki.answers.com), and Baidu Zhidao (http://zhidao.baidu.com), etc., have emerged as alternatives for knowledge and information acquisition. Over time, a large number of question and answer (Q&A) pairs with high quality devoted by human intelligence have been accumulated as a comprehensive knowledge base. Unlike the search engines, which return long lists of results, searching in the CQA services can obtain the correct answers to the question queries by automatically finding similar questions that have already been answered by other users. Hence, it greatly improves the efficiency of the online information retrieval. However, given a question query, finding the similar and well-answered questions is a non-trivial task. The main challenge is the word mismatch between question query (query) and candidate question for retrieval (question). To investigate this problem, in this study, we capture the word semantic similarity between query and question by introducing the topic modeling approach. We then propose an unsupervised machine-learning approach to finding similar questions on CQA Q&A archives. The experimental results show that our proposed approach significantly outperforms the state-of-the-art methods.

  16. Omicseq: a web-based search engine for exploring omics datasets.

    PubMed

    Sun, Xiaobo; Pittard, William S; Xu, Tianlei; Chen, Li; Zwick, Michael E; Jiang, Xiaoqian; Wang, Fusheng; Qin, Zhaohui S

    2017-07-03

    The development and application of high-throughput genomics technologies has resulted in massive quantities of diverse omics data that continue to accumulate rapidly. These rich datasets offer unprecedented and exciting opportunities to address long standing questions in biomedical research. However, our ability to explore and query the content of diverse omics data is very limited. Existing dataset search tools rely almost exclusively on the metadata. A text-based query for gene name(s) does not work well on datasets wherein the vast majority of their content is numeric. To overcome this barrier, we have developed Omicseq, a novel web-based platform that facilitates the easy interrogation of omics datasets holistically to improve 'findability' of relevant data. The core component of Omicseq is trackRank, a novel algorithm for ranking omics datasets that fully uses the numerical content of the dataset to determine relevance to the query entity. The Omicseq system is supported by a scalable and elastic, NoSQL database that hosts a large collection of processed omics datasets. In the front end, a simple, web-based interface allows users to enter queries and instantly receive search results as a list of ranked datasets deemed to be the most relevant. Omicseq is freely available at http://www.omicseq.org. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  17. An Evaluation of the Interactive Query Expansion in an Online Library Catalogue with a Graphical User Interface.

    ERIC Educational Resources Information Center

    Hancock-Beaulieu, Micheline; And Others

    1995-01-01

    An online library catalog was used to evaluate an interactive query expansion facility based on relevance feedback for the Okapi, probabilistic, term weighting, retrieval system. A graphical user interface allowed searchers to select candidate terms extracted from relevant retrieved items to reformulate queries. Results suggested that the…

  18. Automated Text Markup for Information Retrieval from an Electronic Textbook of Infectious Disease

    PubMed Central

    Berrios, Daniel C.; Kehler, Andrew; Kim, David K.; Yu, Victor L.; Fagan, Lawrence M.

    1998-01-01

    The information needs of practicing clinicians frequently require textbook or journal searches. Making these sources available in electronic form improves the speed of these searches, but precision (i.e., the fraction of relevant to total documents retrieved) remains low. Improving the traditional keyword search by transforming search terms into canonical concepts does not improve search precision greatly. Kim et al. have designed and built a prototype system (MYCIN II) for computer-based information retrieval from a forthcoming electronic textbook of infectious disease. The system requires manual indexing by experts in the form of complex text markup. However, this mark-up process is time consuming (about 3 person-hours to generate, review, and transcribe the index for each of 218 chapters). We have designed and implemented a system to semiautomate the markup process. The system, information extraction for semiautomated indexing of documents (ISAID), uses query models and existing information-extraction tools to provide support for any user, including the author of the source material, to mark up tertiary information sources quickly and accurately.

  19. A Statistical Ontology-Based Approach to Ranking for Multiword Search

    ERIC Educational Resources Information Center

    Kim, Jinwoo

    2013-01-01

    Keyword search is a prominent data retrieval method for the Web, largely because the simple and efficient nature of keyword processing allows a large amount of information to be searched with fast response. However, keyword search approaches do not formally capture the clear meaning of a keyword query and fail to address the semantic relationships…

  20. Designing a Syntax-Based Retrieval System for Supporting Language Learning

    ERIC Educational Resources Information Center

    Tsao, Nai-Lung; Kuo, Chin-Hwa; Wible, David; Hung, Tsung-Fu

    2009-01-01

    In this paper, we propose a syntax-based text retrieval system for on-line language learning and use a fast regular expression search engine as its main component. Regular expression searches provide more scalable querying and search results than keyword-based searches. However, without a well-designed index scheme, the execution time of regular…

Top