Sample records for search space based

  1. Guiding Conformation Space Search with an All-Atom Energy Potential

    PubMed Central

    Brunette, TJ; Brock, Oliver

    2009-01-01

    The most significant impediment for protein structure prediction is the inadequacy of conformation space search. Conformation space is too large and the energy landscape too rugged for existing search methods to consistently find near-optimal minima. To alleviate this problem, we present model-based search, a novel conformation space search method. Model-based search uses highly accurate information obtained during search to build an approximate, partial model of the energy landscape. Model-based search aggregates information in the model as it progresses, and in turn uses this information to guide exploration towards regions most likely to contain a near-optimal minimum. We validate our method by predicting the structure of 32 proteins, ranging in length from 49 to 213 amino acids. Our results demonstrate that model-based search is more effective at finding low-energy conformations in high-dimensional conformation spaces than existing search methods. The reduction in energy translates into structure predictions of increased accuracy. PMID:18536015

  2. Insight and search in Katona's five-square problem.

    PubMed

    Ollinger, Michael; Jones, Gary; Knoblich, Günther

    2014-01-01

    Insights are often productive outcomes of human thinking. We provide a cognitive model that explains insight problem solving by the interplay of problem space search and representational change, whereby the problem space is constrained or relaxed based on the problem representation. By introducing different experimental conditions that either constrained the initial search space or helped solvers to initiate a representational change, we investigated the interplay of problem space search and representational change in Katona's five-square problem. Testing 168 participants, we demonstrated that independent hints relating to the initial search space and to representational change had little effect on solution rates. However, providing both hints caused a significant increase in solution rates. Our results show the interplay between problem space search and representational change in insight problem solving: The initial problem space can be so large that people fail to encounter impasse, but even when representational change is achieved the resulting problem space can still provide a major obstacle to finding the solution.

  3. Joint search and sensor management for geosynchronous satellites

    NASA Astrophysics Data System (ADS)

    Zatezalo, A.; El-Fallah, A.; Mahler, R.; Mehra, R. K.; Pham, K.

    2008-04-01

    Joint search and sensor management for space situational awareness presents daunting scientific and practical challenges as it requires a simultaneous search for new, and the catalog update of the current space objects. We demonstrate a new approach to joint search and sensor management by utilizing the Posterior Expected Number of Targets (PENT) as the objective function, an observation model for a space-based EO/IR sensor, and a Probability Hypothesis Density Particle Filter (PHD-PF) tracker. Simulation and results using actual Geosynchronous Satellites are presented.

  4. Space-based visual attention: a marker of immature selective attention in toddlers?

    PubMed

    Rivière, James; Brisson, Julie

    2014-11-01

    Various studies suggested that attentional difficulties cause toddlers' failure in some spatial search tasks. However, attention is not a unitary construct and this study investigated two attentional mechanisms: location selection (space-based attention) and object selection (object-based attention). We investigated how toddlers' attention is distributed in the visual field during a manual search task for objects moving out of sight, namely the moving boxes task. Results show that 2.5-year-olds who failed this task allocated more attention to the location of the relevant object than to the object itself. These findings suggest that in some manual search tasks the primacy of space-based attention over object-based attention could be a marker of immature selective attention in toddlers. © 2014 Wiley Periodicals, Inc.

  5. Modelling and Simulation of Search Engine

    NASA Astrophysics Data System (ADS)

    Nasution, Mahyuddin K. M.

    2017-01-01

    The best tool currently used to access information is a search engine. Meanwhile, the information space has its own behaviour. Systematically, an information space needs to be familiarized with mathematics so easily we identify the characteristics associated with it. This paper reveal some characteristics of search engine based on a model of document collection, which are then estimated the impact on the feasibility of information. We reveal some of characteristics of search engine on the lemma and theorem about singleton and doubleton, then computes statistically characteristic as simulating the possibility of using search engine. In this case, Google and Yahoo. There are differences in the behaviour of both search engines, although in theory based on the concept of documents collection.

  6. Mirador: A Simple, Fast Search Interface for Remote Sensing Data

    NASA Technical Reports Server (NTRS)

    Lynnes, Christopher; Strub, Richard; Seiler, Edward; Joshi, Talak; MacHarrie, Peter

    2008-01-01

    A major challenge for remote sensing science researchers is searching and acquiring relevant data files for their research projects based on content, space and time constraints. Several structured query (SQ) and hierarchical navigation (HN) search interfaces have been develop ed to satisfy this requirement, yet the dominant search engines in th e general domain are based on free-text search. The Goddard Earth Sci ences Data and Information Services Center has developed a free-text search interface named Mirador that supports space-time queries, inc luding a gazetteer and geophysical event gazetteer. In order to compe nsate for a slightly reduced search precision relative to SQ and HN t echniques, Mirador uses several search optimizations to return result s quickly. The quick response enables a more iterative search strateg y than is available with many SQ and HN techniques.

  7. Gravitational wave searches using the DSN (Deep Space Network)

    NASA Technical Reports Server (NTRS)

    Nelson, S. J.; Armstrong, J. W.

    1988-01-01

    The Deep Space Network Doppler spacecraft link is currently the only method available for broadband gravitational wave searches in the 0.01 to 0.001 Hz frequency range. The DSN's role in the worldwide search for gravitational waves is described by first summarizing from the literature current theoretical estimates of gravitational wave strengths and time scales from various astrophysical sources. Current and future detection schemes for ground based and space based detectors are then discussed. Past, present, and future planned or proposed gravitational wave experiments using DSN Doppler tracking are described. Lastly, some major technical challenges to improve gravitational wave sensitivities using the DSN are discussed.

  8. Searching Fragment Spaces with feature trees.

    PubMed

    Lessel, Uta; Wellenzohn, Bernd; Lilienthal, Markus; Claussen, Holger

    2009-02-01

    Virtual combinatorial chemistry easily produces billions of compounds, for which conventional virtual screening cannot be performed even with the fastest methods available. An efficient solution for such a scenario is the generation of Fragment Spaces, which encode huge numbers of virtual compounds by their fragments/reagents and rules of how to combine them. Similarity-based searches can be performed in such spaces without ever fully enumerating all virtual products. Here we describe the generation of a huge Fragment Space encoding about 5 * 10(11) compounds based on established in-house synthesis protocols for combinatorial libraries, i.e., we encode practically evaluated combinatorial chemistry protocols in a machine readable form, rendering them accessible to in silico search methods. We show how such searches in this Fragment Space can be integrated as a first step in an overall workflow. It reduces the extremely huge number of virtual products by several orders of magnitude so that the resulting list of molecules becomes more manageable for further more elaborated and time-consuming analysis steps. Results of a case study are presented and discussed, which lead to some general conclusions for an efficient expansion of the chemical space to be screened in pharmaceutical companies.

  9. Graphical Representations of Electronic Search Patterns.

    ERIC Educational Resources Information Center

    Lin, Xia; And Others

    1991-01-01

    Discussion of search behavior in electronic environments focuses on the development of GRIP (Graphic Representor of Interaction Patterns), a graphing tool based on HyperCard that produces graphic representations of search patterns. Search state spaces are explained, and forms of data available from electronic searches are described. (34…

  10. An efficient and practical approach to obtain a better optimum solution for structural optimization

    NASA Astrophysics Data System (ADS)

    Chen, Ting-Yu; Huang, Jyun-Hao

    2013-08-01

    For many structural optimization problems, it is hard or even impossible to find the global optimum solution owing to unaffordable computational cost. An alternative and practical way of thinking is thus proposed in this research to obtain an optimum design which may not be global but is better than most local optimum solutions that can be found by gradient-based search methods. The way to reach this goal is to find a smaller search space for gradient-based search methods. It is found in this research that data mining can accomplish this goal easily. The activities of classification, association and clustering in data mining are employed to reduce the original design space. For unconstrained optimization problems, the data mining activities are used to find a smaller search region which contains the global or better local solutions. For constrained optimization problems, it is used to find the feasible region or the feasible region with better objective values. Numerical examples show that the optimum solutions found in the reduced design space by sequential quadratic programming (SQP) are indeed much better than those found by SQP in the original design space. The optimum solutions found in a reduced space by SQP sometimes are even better than the solution found using a hybrid global search method with approximate structural analyses.

  11. Search algorithm complexity modeling with application to image alignment and matching

    NASA Astrophysics Data System (ADS)

    DelMarco, Stephen

    2014-05-01

    Search algorithm complexity modeling, in the form of penetration rate estimation, provides a useful way to estimate search efficiency in application domains which involve searching over a hypothesis space of reference templates or models, as in model-based object recognition, automatic target recognition, and biometric recognition. The penetration rate quantifies the expected portion of the database that must be searched, and is useful for estimating search algorithm computational requirements. In this paper we perform mathematical modeling to derive general equations for penetration rate estimates that are applicable to a wide range of recognition problems. We extend previous penetration rate analyses to use more general probabilistic modeling assumptions. In particular we provide penetration rate equations within the framework of a model-based image alignment application domain in which a prioritized hierarchical grid search is used to rank subspace bins based on matching probability. We derive general equations, and provide special cases based on simplifying assumptions. We show how previously-derived penetration rate equations are special cases of the general formulation. We apply the analysis to model-based logo image alignment in which a hierarchical grid search is used over a geometric misalignment transform hypothesis space. We present numerical results validating the modeling assumptions and derived formulation.

  12. Finding Chemical Structures Corresponding to a Set of Coordinates in Chemical Descriptor Space.

    PubMed

    Miyao, Tomoyuki; Funatsu, Kimito

    2017-08-01

    When chemical structures are searched based on descriptor values, or descriptors are interpreted based on values, it is important that corresponding chemical structures actually exist. In order to consider the existence of chemical structures located in a specific region in the chemical space, we propose to search them inside training data domains (TDDs), which are dense areas of a training dataset in the chemical space. We investigated TDDs' features using diverse and local datasets, assuming that GDB11 is the chemical universe. These two analyses showed that considering TDDs gives higher chance of finding chemical structures than a random search-based method, and that novel chemical structures actually exist inside TDDs. In addition to those findings, we tested the hypothesis that chemical structures were distributed on the limited areas of chemical space. This hypothesis was confirmed by the fact that distances among chemical structures in several descriptor spaces were much shorter than those among randomly generated coordinates in the training data range. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Balancing exploration and exploitation in population-based sampling improves fragment-based de novo protein structure prediction.

    PubMed

    Simoncini, David; Schiex, Thomas; Zhang, Kam Y J

    2017-05-01

    Conformational search space exploration remains a major bottleneck for protein structure prediction methods. Population-based meta-heuristics typically enable the possibility to control the search dynamics and to tune the balance between local energy minimization and search space exploration. EdaFold is a fragment-based approach that can guide search by periodically updating the probability distribution over the fragment libraries used during model assembly. We implement the EdaFold algorithm as a Rosetta protocol and provide two different probability update policies: a cluster-based variation (EdaRose c ) and an energy-based one (EdaRose en ). We analyze the search dynamics of our new Rosetta protocols and show that EdaRose c is able to provide predictions with lower C αRMSD to the native structure than EdaRose en and Rosetta AbInitio Relax protocol. Our software is freely available as a C++ patch for the Rosetta suite and can be downloaded from http://www.riken.jp/zhangiru/software/. Our protocols can easily be extended in order to create alternative probability update policies and generate new search dynamics. Proteins 2017; 85:852-858. © 2016 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  14. Transformation of an uncertain video search pipeline to a sketch-based visual analytics loop.

    PubMed

    Legg, Philip A; Chung, David H S; Parry, Matthew L; Bown, Rhodri; Jones, Mark W; Griffiths, Iwan W; Chen, Min

    2013-12-01

    Traditional sketch-based image or video search systems rely on machine learning concepts as their core technology. However, in many applications, machine learning alone is impractical since videos may not be semantically annotated sufficiently, there may be a lack of suitable training data, and the search requirements of the user may frequently change for different tasks. In this work, we develop a visual analytics systems that overcomes the shortcomings of the traditional approach. We make use of a sketch-based interface to enable users to specify search requirement in a flexible manner without depending on semantic annotation. We employ active machine learning to train different analytical models for different types of search requirements. We use visualization to facilitate knowledge discovery at the different stages of visual analytics. This includes visualizing the parameter space of the trained model, visualizing the search space to support interactive browsing, visualizing candidature search results to support rapid interaction for active learning while minimizing watching videos, and visualizing aggregated information of the search results. We demonstrate the system for searching spatiotemporal attributes from sports video to identify key instances of the team and player performance.

  15. Kernel Method Based Human Model for Enhancing Interactive Evolutionary Optimization

    PubMed Central

    Zhao, Qiangfu; Liu, Yong

    2015-01-01

    A fitness landscape presents the relationship between individual and its reproductive success in evolutionary computation (EC). However, discrete and approximate landscape in an original search space may not support enough and accurate information for EC search, especially in interactive EC (IEC). The fitness landscape of human subjective evaluation in IEC is very difficult and impossible to model, even with a hypothesis of what its definition might be. In this paper, we propose a method to establish a human model in projected high dimensional search space by kernel classification for enhancing IEC search. Because bivalent logic is a simplest perceptual paradigm, the human model is established by considering this paradigm principle. In feature space, we design a linear classifier as a human model to obtain user preference knowledge, which cannot be supported linearly in original discrete search space. The human model is established by this method for predicting potential perceptual knowledge of human. With the human model, we design an evolution control method to enhance IEC search. From experimental evaluation results with a pseudo-IEC user, our proposed model and method can enhance IEC search significantly. PMID:25879050

  16. Solving the flexible job shop problem by hybrid metaheuristics-based multiagent model

    NASA Astrophysics Data System (ADS)

    Nouri, Houssem Eddine; Belkahla Driss, Olfa; Ghédira, Khaled

    2018-03-01

    The flexible job shop scheduling problem (FJSP) is a generalization of the classical job shop scheduling problem that allows to process operations on one machine out of a set of alternative machines. The FJSP is an NP-hard problem consisting of two sub-problems, which are the assignment and the scheduling problems. In this paper, we propose how to solve the FJSP by hybrid metaheuristics-based clustered holonic multiagent model. First, a neighborhood-based genetic algorithm (NGA) is applied by a scheduler agent for a global exploration of the search space. Second, a local search technique is used by a set of cluster agents to guide the research in promising regions of the search space and to improve the quality of the NGA final population. The efficiency of our approach is explained by the flexible selection of the promising parts of the search space by the clustering operator after the genetic algorithm process, and by applying the intensification technique of the tabu search allowing to restart the search from a set of elite solutions to attain new dominant scheduling solutions. Computational results are presented using four sets of well-known benchmark literature instances. New upper bounds are found, showing the effectiveness of the presented approach.

  17. Putting Man in the Machine: Exploiting Expertise to Enhance Multiobjective Design of Water Supply Monitoring Network

    NASA Astrophysics Data System (ADS)

    Bode, F.; Nowak, W.; Reed, P. M.; Reuschen, S.

    2016-12-01

    Drinking-water well catchments need effective early-warning monitoring networks. Groundwater water supply wells in complex urban environments are in close proximity to a myriad of potential industrial pollutant sources that could irreversibly damage their source aquifers. These urban environments pose fiscal and physical challenges to designing monitoring networks. Ideal early-warning monitoring networks would satisfy three objectives: to detect (1) all potential contaminations within the catchment (2) as early as possible before they reach the pumping wells, (3) while minimizing costs. Obviously, the ideal case is nonexistent, so we search for tradeoffs using multiobjective optimization. The challenge of this optimization problem is the high number of potential monitoring-well positions (the search space) and the non-linearity of the underlying groundwater flow-and-transport problem. This study evaluates (1) different ways to effectively restrict the search space in an efficient way, with and without expert knowledge, (2) different methods to represent the search space during the optimization and (3) the influence of incremental increases in uncertainty in the system. Conductivity, regional flow direction and potential source locations are explored as key uncertainties. We show the need and the benefit of our methods by comparing optimized monitoring networks for different uncertainty levels with networks that seek to effectively exploit expert knowledge. The study's main contributions are the different approaches restricting and representing the search space. The restriction algorithms are based on a point-wise comparison of decision elements of the search space. The representation of the search space can be either binary or continuous. For both cases, the search space must be adjusted properly. Our results show the benefits and drawbacks of binary versus continuous search space representations and the high potential of automated search space restriction algorithms for high-dimensional, highly non-linear optimization problems.

  18. Search-based model identification of smart-structure damage

    NASA Technical Reports Server (NTRS)

    Glass, B. J.; Macalou, A.

    1991-01-01

    This paper describes the use of a combined model and parameter identification approach, based on modal analysis and artificial intelligence (AI) techniques, for identifying damage or flaws in a rotating truss structure incorporating embedded piezoceramic sensors. This smart structure example is representative of a class of structures commonly found in aerospace systems and next generation space structures. Artificial intelligence techniques of classification, heuristic search, and an object-oriented knowledge base are used in an AI-based model identification approach. A finite model space is classified into a search tree, over which a variant of best-first search is used to identify the model whose stored response most closely matches that of the input. Newly-encountered models can be incorporated into the model space. This adaptativeness demonstrates the potential for learning control. Following this output-error model identification, numerical parameter identification is used to further refine the identified model. Given the rotating truss example in this paper, noisy data corresponding to various damage configurations are input to both this approach and a conventional parameter identification method. The combination of the AI-based model identification with parameter identification is shown to lead to smaller parameter corrections than required by the use of parameter identification alone.

  19. The Search for Life Beyond Earth

    NASA Image and Video Library

    2014-07-14

    Matt Mountain, Director of the Space Telescope Science Institute and telescope scientist for the James Webb Space Telescope, speaks during a panel discussion on the search for life beyond Earth in the James E. Webb Auditorium at NASA Headquarters on Monday, July 14, 2014 in Washington, DC. The panel discussed how NASA's space-based observatories are making new discoveries and how the agency's new telescope, the James Webb Space Telescope, will continue this path of discovery after its schedule launch in 2018. Photo Credit: (NASA/Joel Kowsky)

  20. The Search for Life Beyond Earth

    NASA Image and Video Library

    2014-07-14

    John Mather, Nobel Laureate and Project Scientist for the James Webb Space Telescope at NASA's Goddard Space Flight Center, speaks during a panel discussion on the search for life beyond Earth in the James E. Webb Auditorium at NASA Headquarters on Monday, July 14, 2014 in Washington, DC. The panel discussed how NASA's space-based observatories are making new discoveries and how the agency's new telescope, the James Webb Space Telescope, will continue this path of discovery after its schedule launch in 2018. Photo Credit: (NASA/Joel Kowsky)

  1. A computer search for asteroid families

    NASA Technical Reports Server (NTRS)

    Lindblad, Bertil A.

    1992-01-01

    The improved proper elements of 4100 numbered asteroids have been searched for clusterings in a, e, i space using a computer technique based on the D-criterion. A list of 14 dynamical families each with more than 15 members is presented. Quantitative measurements of the density and dimensions in phase space of each family are presented.

  2. An overview of expert systems. [artificial intelligence

    NASA Technical Reports Server (NTRS)

    Gevarter, W. B.

    1982-01-01

    An expert system is defined and its basic structure is discussed. The knowledge base, the inference engine, and uses of expert systems are discussed. Architecture is considered, including choice of solution direction, reasoning in the presence of uncertainty, searching small and large search spaces, handling large search spaces by transforming them and by developing alternative or additional spaces, and dealing with time. Existing expert systems are reviewed. Tools for building such systems, construction, and knowledge acquisition and learning are discussed. Centers of research and funding sources are listed. The state-of-the-art, current problems, required research, and future trends are summarized.

  3. Parameter estimation methods for gene circuit modeling from time-series mRNA data: a comparative study.

    PubMed

    Fan, Ming; Kuwahara, Hiroyuki; Wang, Xiaolei; Wang, Suojin; Gao, Xin

    2015-11-01

    Parameter estimation is a challenging computational problem in the reverse engineering of biological systems. Because advances in biotechnology have facilitated wide availability of time-series gene expression data, systematic parameter estimation of gene circuit models from such time-series mRNA data has become an important method for quantitatively dissecting the regulation of gene expression. By focusing on the modeling of gene circuits, we examine here the performance of three types of state-of-the-art parameter estimation methods: population-based methods, online methods and model-decomposition-based methods. Our results show that certain population-based methods are able to generate high-quality parameter solutions. The performance of these methods, however, is heavily dependent on the size of the parameter search space, and their computational requirements substantially increase as the size of the search space increases. In comparison, online methods and model decomposition-based methods are computationally faster alternatives and are less dependent on the size of the search space. Among other things, our results show that a hybrid approach that augments computationally fast methods with local search as a subsequent refinement procedure can substantially increase the quality of their parameter estimates to the level on par with the best solution obtained from the population-based methods while maintaining high computational speed. These suggest that such hybrid methods can be a promising alternative to the more commonly used population-based methods for parameter estimation of gene circuit models when limited prior knowledge about the underlying regulatory mechanisms makes the size of the parameter search space vastly large. © The Author 2015. Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  4. Antenna concepts for interstellar search systems

    NASA Technical Reports Server (NTRS)

    Basler, R. P.; Johnson, G. L.; Vondrak, R. R.

    1977-01-01

    An evaluation is made of microwave receiving systems designed to search for signals from extraterrestrial intelligence. Specific design concepts are analyzed parametrically to determine whether the optimum antenna system location is on earth, in space, or on the moon. Parameters considered include the hypothesized number of transmitting civilizations, the number of stars that must be searched to give any desired probability of receiving a signal, the antenna collecting area, the search time, the search range, and the cost. This analysis suggests that (1) search systems based on the moon are not cost-competitive, (2) if the search is extended only a few hundred light years from the earth, a Cyclops-type array on earth may be the most cost-effective system, (3) for a search extending to 500 light years or more, a substantial cost and search-time advantage can be achieved with a large spherical reflector in space with multiple feeds, (4) radio frequency interference shields can be provided for space systems, and (5) cost can range from a few hundred million to tens of billions of dollars, depending on the parameter values assumed.

  5. Ubiquitous Computing Services Discovery and Execution Using a Novel Intelligent Web Services Algorithm

    PubMed Central

    Choi, Okkyung; Han, SangYong

    2007-01-01

    Ubiquitous Computing makes it possible to determine in real time the location and situations of service requesters in a web service environment as it enables access to computers at any time and in any place. Though research on various aspects of ubiquitous commerce is progressing at enterprises and research centers, both domestically and overseas, analysis of a customer's personal preferences based on semantic web and rule based services using semantics is not currently being conducted. This paper proposes a Ubiquitous Computing Services System that enables a rule based search as well as semantics based search to support the fact that the electronic space and the physical space can be combined into one and the real time search for web services and the construction of efficient web services thus become possible.

  6. An Asymptotically-Optimal Sampling-Based Algorithm for Bi-directional Motion Planning

    PubMed Central

    Starek, Joseph A.; Gomez, Javier V.; Schmerling, Edward; Janson, Lucas; Moreno, Luis; Pavone, Marco

    2015-01-01

    Bi-directional search is a widely used strategy to increase the success and convergence rates of sampling-based motion planning algorithms. Yet, few results are available that merge both bi-directional search and asymptotic optimality into existing optimal planners, such as PRM*, RRT*, and FMT*. The objective of this paper is to fill this gap. Specifically, this paper presents a bi-directional, sampling-based, asymptotically-optimal algorithm named Bi-directional FMT* (BFMT*) that extends the Fast Marching Tree (FMT*) algorithm to bidirectional search while preserving its key properties, chiefly lazy search and asymptotic optimality through convergence in probability. BFMT* performs a two-source, lazy dynamic programming recursion over a set of randomly-drawn samples, correspondingly generating two search trees: one in cost-to-come space from the initial configuration and another in cost-to-go space from the goal configuration. Numerical experiments illustrate the advantages of BFMT* over its unidirectional counterpart, as well as a number of other state-of-the-art planners. PMID:27004130

  7. Space debris measurement program at Phillips Laboratory

    NASA Technical Reports Server (NTRS)

    Dao, Phan D.; Mcnutt, Ross T.

    1992-01-01

    Ground-based optical sensing was identified as a technique for measuring space debris complementary to radar in the critical debris size range of 1 to 10 cm. The Phillips Laboratory is building a staring optical sensor for space debris measurement and considering search and track optical measurement at additional sites. The staring sensor is implemented in collaboration with Wright Laboratory using the 2.5 m telescope at Wright Patterson AFB, Dayton, Ohio. The search and track sensor is designed to detect and track orbital debris in tasked orbits. A progress report and a discussion of sensor performance and search and track strategies will be given.

  8. Use of an informed search space maximizes confidence of site-specific assignment of glycoprotein glycosylation.

    PubMed

    Khatri, Kshitij; Klein, Joshua A; Zaia, Joseph

    2017-01-01

    In order to interpret glycopeptide tandem mass spectra, it is necessary to estimate the theoretical glycan compositions and peptide sequences, known as the search space. The simplest way to do this is to build a naïve search space from sets of glycan compositions from public databases and to assume that the target glycoprotein is pure. Often, however, purified glycoproteins contain co-purified glycoprotein contaminants that have the potential to confound assignment of tandem mass spectra based on naïve assumptions. In addition, there is increasing need to characterize glycopeptides from complex biological mixtures. Fortunately, liquid chromatography-mass spectrometry (LC-MS) methods for glycomics and proteomics are now mature and accessible. We demonstrate the value of using an informed search space built from measured glycomes and proteomes to define the search space for interpretation of glycoproteomics data. We show this using α-1-acid glycoprotein (AGP) mixed into a set of increasingly complex matrices. As the mixture complexity increases, the naïve search space balloons and the ability to assign glycopeptides with acceptable confidence diminishes. In addition, it is not possible to identify glycopeptides not foreseen as part of the naïve search space. A search space built from released glycan glycomics and proteomics data is smaller than its naïve counterpart while including the full range of proteins detected in the mixture. This maximizes the ability to assign glycopeptide tandem mass spectra with confidence. As the mixture complexity increases, the number of tandem mass spectra per glycopeptide precursor ion decreases, resulting in lower overall scores and reduced depth of coverage for the target glycoprotein. We suggest use of α-1-acid glycoprotein as a standard to gauge effectiveness of analytical methods and bioinformatics search parameters for glycoproteomics studies. Graphical Abstract Assignment of site specific glycosylation from LC-tandemMS data.

  9. The Search for Life Beyond Earth

    NASA Image and Video Library

    2014-07-14

    John Mather, Project Scientist for the James Webb Space Telescope at NASA's Goddard Space Flight Center, center, answers a question from the audience during a panel discussion on the search for life beyond Earth in the James E. Webb Auditorium at NASA Headquarters on Monday, July 14, 2014 in Washington, DC. The panel discussed how NASA's space-based observatories are making new discoveries and how the agency's new telescope, the James Webb Space Telescope, will continue this path of discovery after its schedule launch in 2018. Photo Credit: (NASA/Joel Kowsky)

  10. The Telecommunications and Data Acquisition Report

    NASA Technical Reports Server (NTRS)

    Posner, Edward C. (Editor)

    1991-01-01

    A compilation is presented of articles on developments in programs managed by JPL's Office of Telecommunications and Data Acquisition. In space communications, radio navigation, radio science, and ground based radio and radar astronomy, activities of the Deep Space Network are reported in planning, in supporting research and technology, in implementation, and in operations. Also included is standards activity at JPL for space data and information systems and reimbursable DSN work performed for other space agencies through NASA. In the search for extraterrestrial intelligence (SETI), implementation and operations are reported for searching the microwave spectrum.

  11. A Novel Method Using Abstract Convex Underestimation in Ab-Initio Protein Structure Prediction for Guiding Search in Conformational Feature Space.

    PubMed

    Hao, Xiao-Hu; Zhang, Gui-Jun; Zhou, Xiao-Gen; Yu, Xu-Feng

    2016-01-01

    To address the searching problem of protein conformational space in ab-initio protein structure prediction, a novel method using abstract convex underestimation (ACUE) based on the framework of evolutionary algorithm was proposed. Computing such conformations, essential to associate structural and functional information with gene sequences, is challenging due to the high-dimensionality and rugged energy surface of the protein conformational space. As a consequence, the dimension of protein conformational space should be reduced to a proper level. In this paper, the high-dimensionality original conformational space was converted into feature space whose dimension is considerably reduced by feature extraction technique. And, the underestimate space could be constructed according to abstract convex theory. Thus, the entropy effect caused by searching in the high-dimensionality conformational space could be avoided through such conversion. The tight lower bound estimate information was obtained to guide the searching direction, and the invalid searching area in which the global optimal solution is not located could be eliminated in advance. Moreover, instead of expensively calculating the energy of conformations in the original conformational space, the estimate value is employed to judge if the conformation is worth exploring to reduce the evaluation time, thereby making computational cost lower and the searching process more efficient. Additionally, fragment assembly and the Monte Carlo method are combined to generate a series of metastable conformations by sampling in the conformational space. The proposed method provides a novel technique to solve the searching problem of protein conformational space. Twenty small-to-medium structurally diverse proteins were tested, and the proposed ACUE method was compared with It Fix, HEA, Rosetta and the developed method LEDE without underestimate information. Test results show that the ACUE method can more rapidly and more efficiently obtain the near-native protein structure.

  12. Content-based Music Search and Recommendation System

    NASA Astrophysics Data System (ADS)

    Takegawa, Kazuki; Hijikata, Yoshinori; Nishida, Shogo

    Recently, the turn volume of music data on the Internet has increased rapidly. This has increased the user's cost to find music data suiting their preference from such a large data set. We propose a content-based music search and recommendation system. This system has an interface for searching and finding music data and an interface for editing a user profile which is necessary for music recommendation. By exploiting the visualization of the feature space of music and the visualization of the user profile, the user can search music data and edit the user profile. Furthermore, by exploiting the infomation which can be acquired from each visualized object in a mutually complementary manner, we make it easier for the user to search music data and edit the user profile. Concretely, the system gives to the user an information obtained from the user profile when searching music data and an information obtained from the feature space of music when editing the user profile.

  13. Foraging in Semantic Fields: How We Search Through Memory.

    PubMed

    Hills, Thomas T; Todd, Peter M; Jones, Michael N

    2015-07-01

    When searching for concepts in memory--as in the verbal fluency task of naming all the animals one can think of--people appear to explore internal mental representations in much the same way that animals forage in physical space: searching locally within patches of information before transitioning globally between patches. However, the definition of the patches being searched in mental space is not well specified. Do we search by activating explicit predefined categories (e.g., pets) and recall items from within that category (categorical search), or do we activate and recall a connected sequence of individual items without using categorical information, with each item recalled leading to the retrieval of an associated item in a stream (associative search), or both? Using semantic representations in a search of associative memory framework and data from the animal fluency task, we tested competing hypotheses based on associative and categorical search models. Associative, but not categorical, patch transitions took longer to make than position-matched productions, suggesting that categorical transitions were not true transitions. There was also clear evidence of associative search even within categorical patch boundaries. Furthermore, most individuals' behavior was best explained by an associative search model without the addition of categorical information. Thus, our results support a search process that does not use categorical information, but for which patch boundaries shift with each recall and local search is well described by a random walk in semantic space, with switches to new regions of the semantic space when the current region is depleted. Copyright © 2015 Cognitive Science Society, Inc.

  14. Deep Space Wide Area Search Strategies

    NASA Astrophysics Data System (ADS)

    Capps, M.; McCafferty, J.

    There is an urgent need to expand the space situational awareness (SSA) mission beyond catalog maintenance to providing near real-time indications and warnings of emerging events. While building and maintaining a catalog of space objects is essential to SSA, this does not address the threat of uncatalogued and uncorrelated deep space objects. The Air Force therefore has an interest in transformative technologies to scan the geostationary (GEO) belt for uncorrelated space objects. Traditional ground based electro-optical sensors are challenged in simultaneously detecting dim objects while covering large areas of the sky using current CCD technology. Time delayed integration (TDI) scanning has the potential to enable significantly larger coverage rates while maintaining sensitivity for detecting near-GEO objects. This paper investigates strategies of employing TDI sensing technology from a ground based electro-optical telescope, toward providing tactical indications and warnings of deep space threats. We present results of a notional wide area search TDI sensor that scans the GEO belt from three locations: Maui, New Mexico, and Diego Garcia. Deep space objects in the NASA 2030 debris catalog are propagated over multiple nights as an indicative data set to emulate notional uncatalogued near-GEO orbits which may be encountered by the TDI sensor. Multiple scan patterns are designed and simulated, to compare and contrast performance based on 1) efficiency in coverage, 2) number of objects detected, and 3) rate at which detections occur, to enable follow-up observations by other space surveillance network (SSN) sensors. A step-stare approach is also modeled using a dedicated, co-located sensor notionally similar to the Ground-Based Electro-Optical Deep Space Surveillance (GEODSS) tower. Equivalent sensitivities are assumed. This analysis quantifies the relative benefit of TDI scanning for the wide area search mission.

  15. The Search for Life Beyond Earth

    NASA Image and Video Library

    2014-07-14

    Dave Gallagher, Director of Astronomy, Physics, and Space Technology at NASA's Jet Propulsion Laboratory speaks during a panel discussion on the search for life beyond Earth in the James E. Webb Auditorium at NASA Headquarters on Monday, July 14, 2014 in Washington, DC. The panel discussed how NASA's space-based observatories are making new discoveries and how the agency's new telescope, the James Webb Space Telescope, will continue this path of discovery after its schedule launch in 2018. Photo Credit: (NASA/Joel Kowsky)

  16. Using Genetic Programming with Prior Formula Knowledge to Solve Symbolic Regression Problem.

    PubMed

    Lu, Qiang; Ren, Jun; Wang, Zhiguang

    2016-01-01

    A researcher can infer mathematical expressions of functions quickly by using his professional knowledge (called Prior Knowledge). But the results he finds may be biased and restricted to his research field due to limitation of his knowledge. In contrast, Genetic Programming method can discover fitted mathematical expressions from the huge search space through running evolutionary algorithms. And its results can be generalized to accommodate different fields of knowledge. However, since GP has to search a huge space, its speed of finding the results is rather slow. Therefore, in this paper, a framework of connection between Prior Formula Knowledge and GP (PFK-GP) is proposed to reduce the space of GP searching. The PFK is built based on the Deep Belief Network (DBN) which can identify candidate formulas that are consistent with the features of experimental data. By using these candidate formulas as the seed of a randomly generated population, PFK-GP finds the right formulas quickly by exploring the search space of data features. We have compared PFK-GP with Pareto GP on regression of eight benchmark problems. The experimental results confirm that the PFK-GP can reduce the search space and obtain the significant improvement in the quality of SR.

  17. Iterative repair for scheduling and rescheduling

    NASA Technical Reports Server (NTRS)

    Zweben, Monte; Davis, Eugene; Deale, Michael

    1991-01-01

    An iterative repair search method is described called constraint based simulated annealing. Simulated annealing is a hill climbing search technique capable of escaping local minima. The utility of the constraint based framework is shown by comparing search performance with and without the constraint framework on a suite of randomly generated problems. Results are also shown of applying the technique to the NASA Space Shuttle ground processing problem. These experiments show that the search methods scales to complex, real world problems and reflects interesting anytime behavior.

  18. Vertex Space Analysis for Model-Based Target Recognition.

    DTIC Science & Technology

    1996-08-01

    performed in our unique invariant representation, Vertex Space, that reduces both the dimensionality and size of the required search space. Vertex Space ... mapping results in a reduced representation that serves as a characteristic target signature which is invariant to four of the six viewing geometry

  19. Semantic Search of Web Services

    ERIC Educational Resources Information Center

    Hao, Ke

    2013-01-01

    This dissertation addresses semantic search of Web services using natural language processing. We first survey various existing approaches, focusing on the fact that the expensive costs of current semantic annotation frameworks result in limited use of semantic search for large scale applications. We then propose a vector space model based service…

  20. Efficient and Accurate Optimal Linear Phase FIR Filter Design Using Opposition-Based Harmony Search Algorithm

    PubMed Central

    Saha, S. K.; Dutta, R.; Choudhury, R.; Kar, R.; Mandal, D.; Ghoshal, S. P.

    2013-01-01

    In this paper, opposition-based harmony search has been applied for the optimal design of linear phase FIR filters. RGA, PSO, and DE have also been adopted for the sake of comparison. The original harmony search algorithm is chosen as the parent one, and opposition-based approach is applied. During the initialization, randomly generated population of solutions is chosen, opposite solutions are also considered, and the fitter one is selected as a priori guess. In harmony memory, each such solution passes through memory consideration rule, pitch adjustment rule, and then opposition-based reinitialization generation jumping, which gives the optimum result corresponding to the least error fitness in multidimensional search space of FIR filter design. Incorporation of different control parameters in the basic HS algorithm results in the balancing of exploration and exploitation of search space. Low pass, high pass, band pass, and band stop FIR filters are designed with the proposed OHS and other aforementioned algorithms individually for comparative optimization performance. A comparison of simulation results reveals the optimization efficacy of the OHS over the other optimization techniques for the solution of the multimodal, nondifferentiable, nonlinear, and constrained FIR filter design problems. PMID:23844390

  1. Efficient and accurate optimal linear phase FIR filter design using opposition-based harmony search algorithm.

    PubMed

    Saha, S K; Dutta, R; Choudhury, R; Kar, R; Mandal, D; Ghoshal, S P

    2013-01-01

    In this paper, opposition-based harmony search has been applied for the optimal design of linear phase FIR filters. RGA, PSO, and DE have also been adopted for the sake of comparison. The original harmony search algorithm is chosen as the parent one, and opposition-based approach is applied. During the initialization, randomly generated population of solutions is chosen, opposite solutions are also considered, and the fitter one is selected as a priori guess. In harmony memory, each such solution passes through memory consideration rule, pitch adjustment rule, and then opposition-based reinitialization generation jumping, which gives the optimum result corresponding to the least error fitness in multidimensional search space of FIR filter design. Incorporation of different control parameters in the basic HS algorithm results in the balancing of exploration and exploitation of search space. Low pass, high pass, band pass, and band stop FIR filters are designed with the proposed OHS and other aforementioned algorithms individually for comparative optimization performance. A comparison of simulation results reveals the optimization efficacy of the OHS over the other optimization techniques for the solution of the multimodal, nondifferentiable, nonlinear, and constrained FIR filter design problems.

  2. Entropy-Based Search Algorithm for Experimental Design

    NASA Astrophysics Data System (ADS)

    Malakar, N. K.; Knuth, K. H.

    2011-03-01

    The scientific method relies on the iterated processes of inference and inquiry. The inference phase consists of selecting the most probable models based on the available data; whereas the inquiry phase consists of using what is known about the models to select the most relevant experiment. Optimizing inquiry involves searching the parameterized space of experiments to select the experiment that promises, on average, to be maximally informative. In the case where it is important to learn about each of the model parameters, the relevance of an experiment is quantified by Shannon entropy of the distribution of experimental outcomes predicted by a probable set of models. If the set of potential experiments is described by many parameters, we must search this high-dimensional entropy space. Brute force search methods will be slow and computationally expensive. We present an entropy-based search algorithm, called nested entropy sampling, to select the most informative experiment for efficient experimental design. This algorithm is inspired by Skilling's nested sampling algorithm used in inference and borrows the concept of a rising threshold while a set of experiment samples are maintained. We demonstrate that this algorithm not only selects highly relevant experiments, but also is more efficient than brute force search. Such entropic search techniques promise to greatly benefit autonomous experimental design.

  3. Supporting inter-topic entity search for biomedical Linked Data based on heterogeneous relationships.

    PubMed

    Zong, Nansu; Lee, Sungin; Ahn, Jinhyun; Kim, Hong-Gee

    2017-08-01

    The keyword-based entity search restricts search space based on the preference of search. When given keywords and preferences are not related to the same biomedical topic, existing biomedical Linked Data search engines fail to deliver satisfactory results. This research aims to tackle this issue by supporting an inter-topic search-improving search with inputs, keywords and preferences, under different topics. This study developed an effective algorithm in which the relations between biomedical entities were used in tandem with a keyword-based entity search, Siren. The algorithm, PERank, which is an adaptation of Personalized PageRank (PPR), uses a pair of input: (1) search preferences, and (2) entities from a keyword-based entity search with a keyword query, to formalize the search results on-the-fly based on the index of the precomputed Individual Personalized PageRank Vectors (IPPVs). Our experiments were performed over ten linked life datasets for two query sets, one with keyword-preference topic correspondence (intra-topic search), and the other without (inter-topic search). The experiments showed that the proposed method achieved better search results, for example a 14% increase in precision for the inter-topic search than the baseline keyword-based search engine. The proposed method improved the keyword-based biomedical entity search by supporting the inter-topic search without affecting the intra-topic search based on the relations between different entities. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. A hybrid, auto-adaptive and rule-based multi-agent approach using evolutionary algorithms for improved searching

    NASA Astrophysics Data System (ADS)

    Izquierdo, Joaquín; Montalvo, Idel; Campbell, Enrique; Pérez-García, Rafael

    2016-08-01

    Selecting the most appropriate heuristic for solving a specific problem is not easy, for many reasons. This article focuses on one of these reasons: traditionally, the solution search process has operated in a given manner regardless of the specific problem being solved, and the process has been the same regardless of the size, complexity and domain of the problem. To cope with this situation, search processes should mould the search into areas of the search space that are meaningful for the problem. This article builds on previous work in the development of a multi-agent paradigm using techniques derived from knowledge discovery (data-mining techniques) on databases of so-far visited solutions. The aim is to improve the search mechanisms, increase computational efficiency and use rules to enrich the formulation of optimization problems, while reducing the search space and catering to realistic problems.

  5. Archaeological Remote Sensing: Searching for Fort Clatsop from Space

    NASA Technical Reports Server (NTRS)

    Karsmizki, Kenneth W.; Spruce, Joe; Giardino, Marco

    2002-01-01

    The Columbia Gorge Discovery Center and NASA's Stennis Space Center have teamed up to use high-resolution aerial and satellite-based remote sensing in the search for Lewis and Clark expedition campsites. A Space Act Agreement between NASA and the Discovery Center has evolved into a study that employs remote sensing, plus modern and historical map data for relocating several Lewis and Clark encampments. Satellite data being studied include 30-meter Landsat Thematic Mapper and 1-meter Space Imaging IKONOS data. This paper includes an overview of the working relationship between NASA and the Discovery Center. It also reports on geospatial analyses of the Fort Clatsop site to demonstrate the ways geospatial technologies interface with the written and cartographic records of the expedition and how they are applied to the search for Lewis and Clark campsites.

  6. The Search for Life Beyond Earth

    NASA Image and Video Library

    2014-07-14

    An animation of the James Webb Space Telescope (JWST) is projected as John Mather, Nobel Laureate and Project Scientist for the JWST speaks during a panel discussion on the search for life beyond Earth in the James E. Webb Auditorium at NASA Headquarters on Monday, July 14, 2014 in Washington, DC. The panel discussed how NASA's space-based observatories are making new discoveries and how the agency's new telescope, the James Webb Space Telescope, will continue this path of discovery after its schedule launch in 2018. Photo Credit: (NASA/Joel Kowsky)

  7. The Search for Life Beyond Earth

    NASA Image and Video Library

    2014-07-14

    Members of the audience walk past an example of a 1.2 meter telescope mirror that could be used in a future space telescope following a panel discussion on the search for life beyond Earth in the James E. Webb Auditorium at NASA Headquarters on Monday, July 14, 2014 in Washington, DC. The panel discussed how NASA's space-based observatories are making new discoveries and how the agency's new telescope, the James Webb Space Telescope, will continue this path of discovery after its schedule launch in 2018. Photo Credit: (NASA/Joel Kowsky)

  8. Optimisation in radiotherapy. III: Stochastic optimisation algorithms and conclusions.

    PubMed

    Ebert, M

    1997-12-01

    This is the final article in a three part examination of optimisation in radiotherapy. Previous articles have established the bases and form of the radiotherapy optimisation problem, and examined certain types of optimisation algorithm, namely, those which perform some form of ordered search of the solution space (mathematical programming), and those which attempt to find the closest feasible solution to the inverse planning problem (deterministic inversion). The current paper examines algorithms which search the space of possible irradiation strategies by stochastic methods. The resulting iterative search methods move about the solution space by sampling random variates, which gradually become more constricted as the algorithm converges upon the optimal solution. This paper also discusses the implementation of optimisation in radiotherapy practice.

  9. Federated Space-Time Query for Earth Science Data Using OpenSearch Conventions

    NASA Astrophysics Data System (ADS)

    Lynnes, C.; Beaumont, B.; Duerr, R. E.; Hua, H.

    2009-12-01

    The past decade has seen a burgeoning of remote sensing and Earth science data providers, as evidenced in the growth of the Earth Science Information Partner (ESIP) federation. At the same time, the need to combine diverse data sets to enable understanding of the Earth as a system has also grown. While the expansion of data providers is in general a boon to such studies, the diversity presents a challenge to finding useful data for a given study. Locating all the data files with aerosol information for a particular volcanic eruption, for example, may involve learning and using several different search tools to execute the requisite space-time queries. To address this issue, the ESIP federation is developing a federated space-time query framework, based on the OpenSearch convention (www.opensearch.org), with Geo and Time extensions. In this framework, data providers publish OpenSearch Description Documents that describe in a machine-readable form how to execute queries against the provider. The novelty of OpenSearch is that the space-time query interface becomes both machine callable and easy enough to integrate into the web browser's search box. This flexibility, together with a simple REST (HTTP-get) interface, should allow a variety of data providers to participate in the federated search framework, from large institutional data centers to individual scientists. The simple interface enables trivial querying of multiple data sources and participation in recursive-like federated searches--all using the same common OpenSearch interface. This simplicity also makes the construction of clients easy, as does existing OpenSearch client libraries in a variety of languages. Moreover, a number of clients and aggregation services already exist and OpenSearch is already supported by a number of web browsers such as Firefox and Internet Explorer.

  10. New development of the image matching algorithm

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaoqiang; Feng, Zhao

    2018-04-01

    To study the image matching algorithm, algorithm four elements are described, i.e., similarity measurement, feature space, search space and search strategy. Four common indexes for evaluating the image matching algorithm are described, i.e., matching accuracy, matching efficiency, robustness and universality. Meanwhile, this paper describes the principle of image matching algorithm based on the gray value, image matching algorithm based on the feature, image matching algorithm based on the frequency domain analysis, image matching algorithm based on the neural network and image matching algorithm based on the semantic recognition, and analyzes their characteristics and latest research achievements. Finally, the development trend of image matching algorithm is discussed. This study is significant for the algorithm improvement, new algorithm design and algorithm selection in practice.

  11. FOCuS: a metaheuristic algorithm for computing knockouts from genome-scale models for strain optimization.

    PubMed

    Mutturi, Sarma

    2017-06-27

    Although handful tools are available for constraint-based flux analysis to generate knockout strains, most of these are either based on bilevel-MIP or its modifications. However, metaheuristic approaches that are known for their flexibility and scalability have been less studied. Moreover, in the existing tools, sectioning of search space to find optimal knocks has not been considered. Herein, a novel computational procedure, termed as FOCuS (Flower-pOllination coupled Clonal Selection algorithm), was developed to find the optimal reaction knockouts from a metabolic network to maximize the production of specific metabolites. FOCuS derives its benefits from nature-inspired flower pollination algorithm and artificial immune system-inspired clonal selection algorithm to converge to an optimal solution. To evaluate the performance of FOCuS, reported results obtained from both MIP and other metaheuristic-based tools were compared in selected case studies. The results demonstrated the robustness of FOCuS irrespective of the size of metabolic network and number of knockouts. Moreover, sectioning of search space coupled with pooling of priority reactions based on their contribution to objective function for generating smaller search space significantly reduced the computational time.

  12. The Search for Life Beyond Earth

    NASA Image and Video Library

    2014-07-14

    NASA Administrator Charles Bolden delivers opening remarks during a panel discussion on the search for life beyond Earth in the James E. Webb Auditorium at NASA Headquarters on Monday, July 14, 2014 in Washington, DC. The panel discussed how NASA's space-based observatories are making new discoveries and how the agency's new telescope, the James Webb Space Telescope, will continue this path of discovery after its schedule launch in 2018. Photo Credit: (NASA/Joel Kowsky)

  13. The Telecommunications and Data Acquisition Report

    NASA Technical Reports Server (NTRS)

    Posner, E. C. (Editor)

    1992-01-01

    Archival reports on developments in programs managed by JPL's Office of Telecommunications and Data Acquisition (TDA) are provided. In space communications, radio navigation, radio science, and ground-based radio and radar astronomy, it reports on activities of the Deep Space Network (DSN) in planning, in supporting research and technology, in implementation, and in operations. Also included is standards activity at JPL for space data and information. In the search for extraterrestrial intelligence (SETI), the TDA Progress Report reports on implementation and operations for searching the microwave spectrum. Topics covered include tracking and ground-based navigation; communications, spacecraft-ground; station control and system technology; capabilities for new projects; network upgrade and sustaining; network operations and operations support; and TDA program management and analysis.

  14. GENESIS: GPS Environmental and Earth Science Information System

    NASA Technical Reports Server (NTRS)

    Hajj, George

    1999-01-01

    This presentation reviews the GPS ENvironmental and Earth Science Information System (GENESIS). The objectives of GENESIS are outlined (1) Data Archiving, searching and distribution for science data products derived from Space borne TurboRogue Space Receivers for GPS science and other ground based GPS receivers, (2) Data browsing using integrated visualization tools, (3) Interactive web/java-based data search and retrieval, (4) Data subscription service, (5) Data migration from existing GPS archived data, (6) On-line help and documentation, and (7) participation in the WP-ESIP federation. The presentation reviews the products and services of Genesis, and the technology behind the system.

  15. Discovery of gigantic molecular nanostructures using a flow reaction array as a search engine.

    PubMed

    Zang, Hong-Ying; de la Oliva, Andreu Ruiz; Miras, Haralampos N; Long, De-Liang; McBurney, Roy T; Cronin, Leroy

    2014-04-28

    The discovery of gigantic molecular nanostructures like coordination and polyoxometalate clusters is extremely time-consuming since a vast combinatorial space needs to be searched, and even a systematic and exhaustive exploration of the available synthetic parameters relies on a great deal of serendipity. Here we present a synthetic methodology that combines a flow reaction array and algorithmic control to give a chemical 'real-space' search engine leading to the discovery and isolation of a range of new molecular nanoclusters based on [Mo(2)O(2)S(2)](2+)-based building blocks with either fourfold (C4) or fivefold (C5) symmetry templates and linkers. This engine leads us to isolate six new nanoscale cluster compounds: 1, {Mo(10)(C5)}; 2, {Mo(14)(C4)4(C5)2}; 3, {Mo(60)(C4)10}; 4, {Mo(48)(C4)6}; 5, {Mo(34)(C4)4}; 6, {Mo(18)(C4)9}; in only 200 automated experiments from a parameter space spanning ~5 million possible combinations.

  16. Visual perception-based criminal identification: a query-based approach

    NASA Astrophysics Data System (ADS)

    Singh, Avinash Kumar; Nandi, G. C.

    2017-01-01

    The visual perception of eyewitness plays a vital role in criminal identification scenario. It helps law enforcement authorities in searching particular criminal from their previous record. It has been reported that searching a criminal record manually requires too much time to get the accurate result. We have proposed a query-based approach which minimises the computational cost along with the reduction of search space. A symbolic database has been created to perform a stringent analysis on 150 public (Bollywood celebrities and Indian cricketers) and 90 local faces (our data-set). An expert knowledge has been captured to encapsulate every criminal's anatomical and facial attributes in the form of symbolic representation. A fast query-based searching strategy has been implemented using dynamic decision tree data structure which allows four levels of decomposition to fetch respective criminal records. Two types of case studies - viewed and forensic sketches have been considered to evaluate the strength of our proposed approach. We have derived 1200 views of the entire population by taking into consideration 80 participants as eyewitness. The system demonstrates an accuracy level of 98.6% for test case I and 97.8% for test case II. It has also been reported that experimental results reduce the search space up to 30 most relevant records.

  17. Visual scan-path analysis with feature space transient fixation moments

    NASA Astrophysics Data System (ADS)

    Dempere-Marco, Laura; Hu, Xiao-Peng; Yang, Guang-Zhong

    2003-05-01

    The study of eye movements provides useful insight into the cognitive processes underlying visual search tasks. The analysis of the dynamics of eye movements has often been approached from a purely spatial perspective. In many cases, however, it may not be possible to define meaningful or consistent dynamics without considering the features underlying the scan paths. In this paper, the definition of the feature space has been attempted through the concept of visual similarity and non-linear low dimensional embedding, which defines a mapping from the image space into a low dimensional feature manifold that preserves the intrinsic similarity of image patterns. This has enabled the definition of perceptually meaningful features without the use of domain specific knowledge. Based on this, this paper introduces a new concept called Feature Space Transient Fixation Moments (TFM). The approach presented tackles the problem of feature space representation of visual search through the use of TFM. We demonstrate the practical values of this concept for characterizing the dynamics of eye movements in goal directed visual search tasks. We also illustrate how this model can be used to elucidate the fundamental steps involved in skilled search tasks through the evolution of transient fixation moments.

  18. LEAP into the Pfizer Global Virtual Library (PGVL) space: creation of readily synthesizable design ideas automatically.

    PubMed

    Hu, Qiyue; Peng, Zhengwei; Kostrowicki, Jaroslav; Kuki, Atsuo

    2011-01-01

    Pfizer Global Virtual Library (PGVL) of 10(13) readily synthesizable molecules offers a tremendous opportunity for lead optimization and scaffold hopping in drug discovery projects. However, mining into a chemical space of this size presents a challenge for the concomitant design informatics due to the fact that standard molecular similarity searches against a collection of explicit molecules cannot be utilized, since no chemical information system could create and manage more than 10(8) explicit molecules. Nevertheless, by accepting a tolerable level of false negatives in search results, we were able to bypass the need for full 10(13) enumeration and enabled the efficient similarity search and retrieval into this huge chemical space for practical usage by medicinal chemists. In this report, two search methods (LEAP1 and LEAP2) are presented. The first method uses PGVL reaction knowledge to disassemble the incoming search query molecule into a set of reactants and then uses reactant-level similarities into actual available starting materials to focus on a much smaller sub-region of the full virtual library compound space. This sub-region is then explicitly enumerated and searched via a standard similarity method using the original query molecule. The second method uses a fuzzy mapping onto candidate reactions and does not require exact disassembly of the incoming query molecule. Instead Basis Products (or capped reactants) are mapped into the query molecule and the resultant asymmetric similarity scores are used to prioritize the corresponding reactions and reactant sets. All sets of Basis Products are inherently indexed to specific reactions and specific starting materials. This again allows focusing on a much smaller sub-region for explicit enumeration and subsequent standard product-level similarity search. A set of validation studies were conducted. The results have shown that the level of false negatives for the disassembly-based method is acceptable when the query molecule can be recognized for exact disassembly, and the fuzzy reaction mapping method based on Basis Products has an even better performance in terms of lower false-negative rate because it is not limited by the requirement that the query molecule needs to be recognized by any disassembly algorithm. Both search methods have been implemented and accessed through a powerful desktop molecular design tool (see ref. (33) for details). The chapter will end with a comparison of published search methods against large virtual chemical space.

  19. The Search for Life Beyond Earth

    NASA Image and Video Library

    2014-07-14

    John Grunsfeld, Associate Administrator for NASA's Science Mission Directorate, far left, speaks during a panel discussion on the search for life beyond Earth in the James E. Webb Auditorium at NASA Headquarters on Monday, July 14, 2014 in Washington, DC. The panel discussed how NASA's space-based observatories are making new discoveries and how the agency's new telescope, the James Webb Space Telescope, will continue this path of discovery after its schedule launch in 2018. Photo Credit: (NASA/Joel Kowsky)

  20. The Search for Life Beyond Earth

    NASA Image and Video Library

    2014-07-14

    NASA Chief Scientist Ellen Stofan, far left, introduces members of the panel prior to a discussion of the search for life beyond Earth in the James E. Webb Auditorium at NASA Headquarters on Monday, July 14, 2014 in Washington, DC. The panel discussed how NASA's space-based observatories are making new discoveries and how the agency's new telescope, the James Webb Space Telescope, will continue this path of discovery after its schedule launch in 2018. Photo Credit: (NASA/Joel Kowsky)

  1. Parallelization of combinatorial search when solving knapsack optimization problem on computing systems based on multicore processors

    NASA Astrophysics Data System (ADS)

    Rahman, P. A.

    2018-05-01

    This scientific paper deals with the model of the knapsack optimization problem and method of its solving based on directed combinatorial search in the boolean space. The offered by the author specialized mathematical model of decomposition of the search-zone to the separate search-spheres and the algorithm of distribution of the search-spheres to the different cores of the multi-core processor are also discussed. The paper also provides an example of decomposition of the search-zone to the several search-spheres and distribution of the search-spheres to the different cores of the quad-core processor. Finally, an offered by the author formula for estimation of the theoretical maximum of the computational acceleration, which can be achieved due to the parallelization of the search-zone to the search-spheres on the unlimited number of the processor cores, is also given.

  2. An Improved Hybrid Encoding Cuckoo Search Algorithm for 0-1 Knapsack Problems

    PubMed Central

    Feng, Yanhong; Jia, Ke; He, Yichao

    2014-01-01

    Cuckoo search (CS) is a new robust swarm intelligence method that is based on the brood parasitism of some cuckoo species. In this paper, an improved hybrid encoding cuckoo search algorithm (ICS) with greedy strategy is put forward for solving 0-1 knapsack problems. First of all, for solving binary optimization problem with ICS, based on the idea of individual hybrid encoding, the cuckoo search over a continuous space is transformed into the synchronous evolution search over discrete space. Subsequently, the concept of confidence interval (CI) is introduced; hence, the new position updating is designed and genetic mutation with a small probability is introduced. The former enables the population to move towards the global best solution rapidly in every generation, and the latter can effectively prevent the ICS from trapping into the local optimum. Furthermore, the greedy transform method is used to repair the infeasible solution and optimize the feasible solution. Experiments with a large number of KP instances show the effectiveness of the proposed algorithm and its ability to achieve good quality solutions. PMID:24527026

  3. WS-BP: An efficient wolf search based back-propagation algorithm

    NASA Astrophysics Data System (ADS)

    Nawi, Nazri Mohd; Rehman, M. Z.; Khan, Abdullah

    2015-05-01

    Wolf Search (WS) is a heuristic based optimization algorithm. Inspired by the preying and survival capabilities of the wolves, this algorithm is highly capable to search large spaces in the candidate solutions. This paper investigates the use of WS algorithm in combination with back-propagation neural network (BPNN) algorithm to overcome the local minima problem and to improve convergence in gradient descent. The performance of the proposed Wolf Search based Back-Propagation (WS-BP) algorithm is compared with Artificial Bee Colony Back-Propagation (ABC-BP), Bat Based Back-Propagation (Bat-BP), and conventional BPNN algorithms. Specifically, OR and XOR datasets are used for training the network. The simulation results show that the WS-BP algorithm effectively avoids the local minima and converge to global minima.

  4. Heuristic approach to image registration

    NASA Astrophysics Data System (ADS)

    Gertner, Izidor; Maslov, Igor V.

    2000-08-01

    Image registration, i.e. correct mapping of images obtained from different sensor readings onto common reference frame, is a critical part of multi-sensor ATR/AOR systems based on readings from different types of sensors. In order to fuse two different sensor readings of the same object, the readings have to be put into a common coordinate system. This task can be formulated as optimization problem in a space of all possible affine transformations of an image. In this paper, a combination of heuristic methods is explored to register gray- scale images. The modification of Genetic Algorithm is used as the first step in global search for optimal transformation. It covers the entire search space with (randomly or heuristically) scattered probe points and helps significantly reduce the search space to a subspace of potentially most successful transformations. Due to its discrete character, however, Genetic Algorithm in general can not converge while coming close to the optimum. Its termination point can be specified either as some predefined number of generations or as achievement of a certain acceptable convergence level. To refine the search, potential optimal subspaces are searched using more delicate and efficient for local search Taboo and Simulated Annealing methods.

  5. A computational model of visual marking using an inter-connected network of spiking neurons: the spiking search over time & space model (sSoTS).

    PubMed

    Mavritsaki, Eirini; Heinke, Dietmar; Humphreys, Glyn W; Deco, Gustavo

    2006-01-01

    In the real world, visual information is selected over time as well as space, when we prioritise new stimuli for attention. Watson and Humphreys [Watson, D., Humphreys, G.W., 1997. Visual marking: prioritizing selection for new objects by top-down attentional inhibition of old objects. Psychological Review 104, 90-122] presented evidence that new information in search tasks is prioritised by (amongst other processes) active ignoring of old items - a process they termed visual marking. In this paper we present, for the first time, an explicit computational model of visual marking using biologically plausible activation functions. The "spiking search over time and space" model (sSoTS) incorporates different synaptic components (NMDA, AMPA, GABA) and a frequency adaptation mechanism based on [Ca(2+)] sensitive K(+) current. This frequency adaptation current can act as a mechanism that suppresses the previously attended items. We show that, when coupled with a process of active inhibition applied to old items, frequency adaptation leads to old items being de-prioritised (and new items prioritised) across time in search. Furthermore, the time course of these processes mimics the time course of the preview effect in human search. The results indicate that the sSoTS model can provide a biologically plausible account of human search over time as well as space.

  6. Voronoi Diagram Based Optimization of Dynamic Reactive Power Sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Weihong; Sun, Kai; Qi, Junjian

    2015-01-01

    Dynamic var sources can effectively mitigate fault-induced delayed voltage recovery (FIDVR) issues or even voltage collapse. This paper proposes a new approach to optimization of the sizes of dynamic var sources at candidate locations by a Voronoi diagram based algorithm. It first disperses sample points of potential solutions in a searching space, evaluates a cost function at each point by barycentric interpolation for the subspaces around the point, and then constructs a Voronoi diagram about cost function values over the entire space. Accordingly, the final optimal solution can be obtained. Case studies on the WSCC 9-bus system and NPCC 140-busmore » system have validated that the new approach can quickly identify the boundary of feasible solutions in searching space and converge to the global optimal solution.« less

  7. A Darwinian approach to control-structure design

    NASA Technical Reports Server (NTRS)

    Zimmerman, David C.

    1993-01-01

    Genetic algorithms (GA's), as introduced by Holland (1975), are one form of directed random search. The form of direction is based on Darwin's 'survival of the fittest' theories. GA's are radically different from the more traditional design optimization techniques. GA's work with a coding of the design variables, as opposed to working with the design variables directly. The search is conducted from a population of designs (i.e., from a large number of points in the design space), unlike the traditional algorithms which search from a single design point. The GA requires only objective function information, as opposed to gradient or other auxiliary information. Finally, the GA is based on probabilistic transition rules, as opposed to deterministic rules. These features allow the GA to attack problems with local-global minima, discontinuous design spaces and mixed variable problems, all in a single, consistent framework.

  8. Similarity searching and scaffold hopping in synthetically accessible combinatorial chemistry spaces.

    PubMed

    Boehm, Markus; Wu, Tong-Ying; Claussen, Holger; Lemmen, Christian

    2008-04-24

    Large collections of combinatorial libraries are an integral element in today's pharmaceutical industry. It is of great interest to perform similarity searches against all virtual compounds that are synthetically accessible by any such library. Here we describe the successful application of a new software tool CoLibri on 358 combinatorial libraries based on validated reaction protocols to create a single chemistry space containing over 10 (12) possible products. Similarity searching with FTrees-FS allows the systematic exploration of this space without the need to enumerate all product structures. The search result is a set of virtual hits which are synthetically accessible by one or more of the existing reaction protocols. Grouping these virtual hits by their synthetic protocols allows the rapid design and synthesis of multiple follow-up libraries. Such library ideas support hit-to-lead design efforts for tasks like follow-up from high-throughput screening hits or scaffold hopping from one hit to another attractive series.

  9. Global Interior Robot Localisation by a Colour Content Image Retrieval System

    NASA Astrophysics Data System (ADS)

    Chaari, A.; Lelandais, S.; Montagne, C.; Ahmed, M. Ben

    2007-12-01

    We propose a new global localisation approach to determine a coarse position of a mobile robot in structured indoor space using colour-based image retrieval techniques. We use an original method of colour quantisation based on the baker's transformation to extract a two-dimensional colour pallet combining as well space and vicinity-related information as colourimetric aspect of the original image. We conceive several retrieving approaches bringing to a specific similarity measure [InlineEquation not available: see fulltext.] integrating the space organisation of colours in the pallet. The baker's transformation provides a quantisation of the image into a space where colours that are nearby in the original space are also nearby in the output space, thereby providing dimensionality reduction and invariance to minor changes in the image. Whereas the distance [InlineEquation not available: see fulltext.] provides for partial invariance to translation, sight point small changes, and scale factor. In addition to this study, we developed a hierarchical search module based on the logic classification of images following rooms. This hierarchical module reduces the searching indoor space and ensures an improvement of our system performances. Results are then compared with those brought by colour histograms provided with several similarity measures. In this paper, we focus on colour-based features to describe indoor images. A finalised system must obviously integrate other type of signature like shape and texture.

  10. The Search for Life Beyond Earth

    NASA Image and Video Library

    2014-07-14

    Sara Seager, a MacArthur Fellow and Professor of Planetary Science and Physics at the Massachusetts Institute of Technology, speaks during a panel discussion on the search for life beyond Earth in the James E. Webb Auditorium at NASA Headquarters on Monday, July 14, 2014 in Washington, DC. The panel discussed how NASA's space-based observatories are making new discoveries and how the agency's new telescope, the James Webb Space Telescope, will continue this path of discovery after its schedule launch in 2018. Photo Credit: (NASA/Joel Kowsky)

  11. The Search for Life Beyond Earth

    NASA Image and Video Library

    2014-07-14

    John Grunsfeld, Associate Administrator for NASA's Science Mission Directorate, second from left, answers a question from the audience during a panel discussion on the search for life beyond Earth in the James E. Webb Auditorium at NASA Headquarters on Monday, July 14, 2014 in Washington, DC. The panel discussed how NASA's space-based observatories are making new discoveries and how the agency's new telescope, the James Webb Space Telescope, will continue this path of discovery after its schedule launch in 2018. Photo Credit: (NASA/Joel Kowsky)

  12. The Search for Life Beyond Earth

    NASA Image and Video Library

    2014-07-14

    John Grunsfeld, Associate Administrator for NASA's Science Mission Directorate, far left, answers a question from the audience during a panel discussion on the search for life beyond Earth in the James E. Webb Auditorium at NASA Headquarters on Monday, July 14, 2014 in Washington, DC. The panel discussed how NASA's space-based observatories are making new discoveries and how the agency's new telescope, the James Webb Space Telescope, will continue this path of discovery after its schedule launch in 2018. Photo Credit: (NASA/Joel Kowsky)

  13. The Search for Life Beyond Earth

    NASA Image and Video Library

    2014-07-14

    NASA Chief Scientist Ellen Stofan, far left, asks the members of the panel a question during a discussion of the search for life beyond Earth in the James E. Webb Auditorium at NASA Headquarters on Monday, July 14, 2014 in Washington, DC. The panel discussed how NASA's space-based observatories are making new discoveries and how the agency's new telescope, the James Webb Space Telescope, will continue this path of discovery after its schedule launch in 2018. Photo Credit: (NASA/Joel Kowsky)

  14. Exhaustive search system and method using space-filling curves

    DOEpatents

    Spires, Shannon V.

    2003-10-21

    A search system and method for one agent or for multiple agents using a space-filling curve provides a way to control one or more agents to cover an area of any space of any dimensionality using an exhaustive search pattern. An example of the space-filling curve is a Hilbert curve. The search area can be a physical geography, a cyberspace search area, or an area searchable by computing resources. The search agent can be one or more physical agents, such as a robot, and can be software agents for searching cyberspace.

  15. Optimal directed searches for continuous gravitational waves

    NASA Astrophysics Data System (ADS)

    Ming, Jing; Krishnan, Badri; Papa, Maria Alessandra; Aulbert, Carsten; Fehrmann, Henning

    2016-03-01

    Wide parameter space searches for long-lived continuous gravitational wave signals are computationally limited. It is therefore critically important that the available computational resources are used rationally. In this paper we consider directed searches, i.e., targets for which the sky position is known accurately but the frequency and spin-down parameters are completely unknown. Given a list of such potential astrophysical targets, we therefore need to prioritize. On which target(s) should we spend scarce computing resources? What parameter space region in frequency and spin-down should we search through? Finally, what is the optimal search setup that we should use? In this paper we present a general framework that allows us to solve all three of these problems. This framework is based on maximizing the probability of making a detection subject to a constraint on the maximum available computational cost. We illustrate the method for a simplified problem.

  16. Virtual Boutique: a 3D modeling and content-based management approach to e-commerce

    NASA Astrophysics Data System (ADS)

    Paquet, Eric; El-Hakim, Sabry F.

    2000-12-01

    The Virtual Boutique is made out of three modules: the decor, the market and the search engine. The decor is the physical space occupied by the Virtual Boutique. It can reproduce any existing boutique. For this purpose, photogrammetry is used. A set of pictures of a real boutique or space is taken and a virtual 3D representation of this space is calculated from them. Calculations are performed with software developed at NRC. This representation consists of meshes and texture maps. The camera used in the acquisition process determines the resolution of the texture maps. Decorative elements are added like painting, computer generated objects and scanned objects. The objects are scanned with laser scanner developed at NRC. This scanner allows simultaneous acquisition of range and color information based on white laser beam triangulation. The second module, the market, is made out of all the merchandises and the manipulators, which are used to manipulate and compare the objects. The third module, the search engine, can search the inventory based on an object shown by the customer in order to retrieve similar objects base don shape and color. The items of interest are displayed in the boutique by reconfiguring the market space, which mean that the boutique can be continuously customized according to the customer's needs. The Virtual Boutique is entirely written in Java 3D and can run in mono and stereo mode and has been optimized in order to allow high quality rendering.

  17. A concept of volume rendering guided search process to analyze medical data set.

    PubMed

    Zhou, Jianlong; Xiao, Chun; Wang, Zhiyan; Takatsuka, Masahiro

    2008-03-01

    This paper firstly presents an approach of parallel coordinates based parameter control panel (PCP). The PCP is used to control parameters of focal region-based volume rendering (FRVR) during data analysis. It uses a parallel coordinates style interface. Different rendering parameters represented with nodes on each axis, and renditions based on related parameters are connected using polylines to show dependencies between renditions and parameters. Based on the PCP, a concept of volume rendering guided search process is proposed. The search pipeline is divided into four phases. Different parameters of FRVR are recorded and modulated in the PCP during search phases. The concept shows that volume visualization could play the role of guiding a search process in the rendition space to help users to efficiently find local structures of interest. The usability of the proposed approach is evaluated to show its effectiveness.

  18. The Telecommunications and Data Acquisition Report

    NASA Technical Reports Server (NTRS)

    Posner, E. C. (Editor)

    1987-01-01

    This quarterly publication (July-September 1987) provides archival reports on developments in programs managed by JPL's Office of Telecommunications and Data Acquisition (TDA). In space communications, radio navigation, radio science, and ground-based radio astronomy, it reports on activities of the Deep Space Network (DSN) and its associated Ground Communications Facility (GCF) in planning, in supporting research and technology, in implementation, and in operations. This work is performed for NASA's Office of Space Tracking and Data Systems (OSTDS). In geodynamics, the publication reports on the application of radio interferometry at microwave frequencies for geodynamic measurements. In the Search for Extraterrestrial Intelligence (SETI), it reports on implementation and operations for searching the microwave spectrum. The latter two programs are performed for NASA's Office of Space Science and Applications (OSSA).

  19. The Telecommunications and Data Acquisition Report

    NASA Technical Reports Server (NTRS)

    Posner, E. C. (Editor)

    1986-01-01

    This quarterly publication (July-Sept. 1986) provides archival reports on developments in programs managed by JPL's Office of Telecommunications and Data Acquisition (TDA). In space communications, radio navigation, radio science, and ground-based radio astronomy, it reports on activities of the Deep Space Network (DSN) and its associated Ground Communications Facility (GCF) in planning, in supporting research and technology, in implementation, and in operations. This work is performed for NASA's Office of Space Tracking and Data Systems (OSTDS). In geodynamics, the publication reports on the application of radio interferometry at microwave frequencies for geodynamic measurements. In the search for extraterrestrial intelligence (SETI), it reports on implementation and operations for searching the microwave spectrum. The latter two programs are performed for NASA's Office of Space Science and Applications (OSSA).

  20. Urban green spaces and cancer: a protocol for a scoping review.

    PubMed

    Porcherie, Marion; Lejeune, Mathilde; Gaudel, Marion; Pommier, Jeanine; Faure, Emmanuelle; Heritage, Zoé; Rican, Stéphane; Simos, Jean; Cantoreggi, Nicola Luca; Roué Le Gall, Anne; Cambon, Linda; Regnaux, Jean-Philippe

    2018-02-16

    Green space in the built environment is an important topic on the health agenda today. Studies have shown that access to green spaces is associated with better mental and physical health, yet green spaces can also be detrimental to health if they are not managed appropriately. Despite the increasing interest in urban green spaces, little research has so far been conducted into the links between green spaces and cancer. The purpose of this scoping review is therefore to map the literature available on the types of relationship between urban green spaces and cancer. We followed the Preferred Reporting Items for Systematic Review and Meta-Analysis Protocols 2015 guideline to report the protocol. To conduct this scoping review, we will use a structured search strategy based on controlled vocabulary and relevant key terms related to green space, urban space and cancer. We will search MEDLINE (PubMed), GreenFILE (EBSCOhost), Cumulative Index to Nursing and Allied Health Literature (EBSCOhost) and ScienceDirect as electronic database as well as hand-search publications for grey literature. This review will therefore provide evidence on this current topic, one which could have practical implications for policy-makers involved in choices which are more conducive to healthy living. No primary data will be collected since all data that will be presented in this review are based on published articles and publicly available documents, and therefore ethics committee approval is not a requirement. The findings of this review will be presented at workshops and conferences, and will be submitted for publication in a peer-reviewed journal. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  1. Urban green spaces and cancer: a protocol for a scoping review

    PubMed Central

    Lejeune, Mathilde; Gaudel, Marion; Pommier, Jeanine; Faure, Emmanuelle; Heritage, Zoé; Rican, Stéphane; Simos, Jean; Cantoreggi, Nicola Luca; Roué Le Gall, Anne; Cambon, Linda; Regnaux, Jean-Philippe

    2018-01-01

    Introduction Green space in the built environment is an important topic on the health agenda today. Studies have shown that access to green spaces is associated with better mental and physical health, yet green spaces can also be detrimental to health if they are not managed appropriately. Despite the increasing interest in urban green spaces, little research has so far been conducted into the links between green spaces and cancer. Objective The purpose of this scoping review is therefore to map the literature available on the types of relationship between urban green spaces and cancer. Method and analysis We followed the Preferred Reporting Items for Systematic Review and Meta-Analysis Protocols 2015 guideline to report the protocol. To conduct this scoping review, we will use a structured search strategy based on controlled vocabulary and relevant key terms related to green space, urban space and cancer. We will search MEDLINE (PubMed), GreenFILE (EBSCOhost), Cumulative Index to Nursing and Allied Health Literature (EBSCOhost) and ScienceDirect as electronic database as well as hand-search publications for grey literature. This review will therefore provide evidence on this current topic, one which could have practical implications for policy-makers involved in choices which are more conducive to healthy living. Ethics and dissemination No primary data will be collected since all data that will be presented in this review are based on published articles and publicly available documents, and therefore ethics committee approval is not a requirement. The findings of this review will be presented at workshops and conferences, and will be submitted for publication in a peer-reviewed journal. PMID:29453298

  2. A method for real-time visual stimulus selection in the study of cortical object perception.

    PubMed

    Leeds, Daniel D; Tarr, Michael J

    2016-06-01

    The properties utilized by visual object perception in the mid- and high-level ventral visual pathway are poorly understood. To better establish and explore possible models of these properties, we adopt a data-driven approach in which we repeatedly interrogate neural units using functional Magnetic Resonance Imaging (fMRI) to establish each unit's image selectivity. This approach to imaging necessitates a search through a broad space of stimulus properties using a limited number of samples. To more quickly identify the complex visual features underlying human cortical object perception, we implemented a new functional magnetic resonance imaging protocol in which visual stimuli are selected in real-time based on BOLD responses to recently shown images. Two variations of this protocol were developed, one relying on natural object stimuli and a second based on synthetic object stimuli, both embedded in feature spaces based on the complex visual properties of the objects. During fMRI scanning, we continuously controlled stimulus selection in the context of a real-time search through these image spaces in order to maximize neural responses across pre-determined 1cm(3) rain regions. Elsewhere we have reported the patterns of cortical selectivity revealed by this approach (Leeds et al., 2014). In contrast, here our objective is to present more detailed methods and explore the technical and biological factors influencing the behavior of our real-time stimulus search. We observe that: 1) Searches converged more reliably when exploring a more precisely parameterized space of synthetic objects; 2) real-time estimation of cortical responses to stimuli is reasonably consistent; 3) search behavior was acceptably robust to delays in stimulus displays and subject motion effects. Overall, our results indicate that real-time fMRI methods may provide a valuable platform for continuing study of localized neural selectivity, both for visual object representation and beyond. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. A method for real-time visual stimulus selection in the study of cortical object perception

    PubMed Central

    Leeds, Daniel D.; Tarr, Michael J.

    2016-01-01

    The properties utilized by visual object perception in the mid- and high-level ventral visual pathway are poorly understood. To better establish and explore possible models of these properties, we adopt a data-driven approach in which we repeatedly interrogate neural units using functional Magnetic Resonance Imaging (fMRI) to establish each unit’s image selectivity. This approach to imaging necessitates a search through a broad space of stimulus properties using a limited number of samples. To more quickly identify the complex visual features underlying human cortical object perception, we implemented a new functional magnetic resonance imaging protocol in which visual stimuli are selected in real-time based on BOLD responses to recently shown images. Two variations of this protocol were developed, one relying on natural object stimuli and a second based on synthetic object stimuli, both embedded in feature spaces based on the complex visual properties of the objects. During fMRI scanning, we continuously controlled stimulus selection in the context of a real-time search through these image spaces in order to maximize neural responses across predetermined 1 cm3 brain regions. Elsewhere we have reported the patterns of cortical selectivity revealed by this approach (Leeds 2014). In contrast, here our objective is to present more detailed methods and explore the technical and biological factors influencing the behavior of our real-time stimulus search. We observe that: 1) Searches converged more reliably when exploring a more precisely parameterized space of synthetic objects; 2) Real-time estimation of cortical responses to stimuli are reasonably consistent; 3) Search behavior was acceptably robust to delays in stimulus displays and subject motion effects. Overall, our results indicate that real-time fMRI methods may provide a valuable platform for continuing study of localized neural selectivity, both for visual object representation and beyond. PMID:26973168

  4. A Composite Algorithm for Mixed Integer Constrained Nonlinear Optimization.

    DTIC Science & Technology

    1980-01-01

    de Silva [141, and Weisman and Wood [76). A particular direct search algorithm, the simplex method, has been cited for having the potential for...spaced discrete points on a line which makes the direction suitable for an efficient integer search technique based on Fibonacci numbers. Two...defined by a subset of variables. The complex algorithm is particularly well suited for this subspace search for two reasons. First, the complex method

  5. Use of World Wide Web-based directories for tracing subjects in epidemiologic studies.

    PubMed

    Koo, M M; Rohan, T E

    2000-11-01

    The recent availability of World Wide Web-based directories has opened up a new approach for tracing subjects in epidemiologic studies. The completeness of two World Wide Web-based directories (Canada411 and InfoSpace Canada) for subject tracing was evaluated by using a randomized crossover design for 346 adults randomly selected from respondents in an ongoing cohort study. About half (56.4%) of the subjects were successfully located by using either Canada411 or InfoSpace. Of the 43.6% of the subjects who could not be located using either directory, the majority (73.5%) were female. Overall, there was no clear advantage of one directory over the other. Although Canada411 could find significantly more subjects than InfoSpace, the number of potential matches returned by Canada411 was also higher, which meant that a longer list of potential matches had to be examined before a true match could be found. One strategy to minimize the number of potential matches per true match is to first search by InfoSpace with the last name and first name, then by Canada411 with the last name and first name, and finally by InfoSpace with the last name and first initial. Internet-based searches represent a potentially useful approach to tracing subjects in epidemiologic studies.

  6. A BLE-Based Pedestrian Navigation System for Car Searching in Indoor Parking Garages

    PubMed Central

    Wang, Sheng-Shih

    2018-01-01

    The continuous global increase in the number of cars has led to an increase in parking issues, particularly with respect to the search for available parking spaces and finding cars. In this paper, we propose a navigation system for car owners to find their cars in indoor parking garages. The proposed system comprises a car-searching mobile app and a positioning-assisting subsystem. The app guides car owners to their cars based on a “turn-by-turn” navigation strategy, and has the ability to correct the user’s heading orientation. The subsystem uses beacon technology for indoor positioning, supporting self-guidance of the car-searching mobile app. This study also designed a local coordinate system to support the identification of the locations of parking spaces and beacon devices. We used Android as the platform to implement the proposed car-searching mobile app, and used Bytereal HiBeacon devices to implement the proposed positioning-assisting subsystem. We also deployed the system in a parking lot in our campus for testing. The experimental results verified that the proposed system not only works well, but also provides the car owner with the correct route guidance information. PMID:29734753

  7. Analysis of Decentralized Variable Structure Control for Collective Search by Mobile Robots

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feddema, J.; Goldsmith, S.; Robinett, R.

    1998-11-04

    This paper presents an analysis of a decentralized coordination strategy for organizing and controlling a team of mobile robots performing collective search. The alpha-beta coordination strategy is a family of collective search algorithms that allow teams of communicating robots to implicitly coordinate their search activities through a division of labor based on self-selected roIes. In an alpha-beta team. alpha agents are motivated to improve their status by exploring new regions of the search space. Beta a~ents are conservative, and reiy on the alpha agents to provide advanced information on favorable regions of the search space. An agent selects its currentmore » role dynamically based on its current status value relative to the current status values of the other team members. Status is determined by some function of the agent's sensor readings, and is generally a measurement of source intensity at the agent's current location. Variations on the decision rules determining alpha and beta behavior produce different versions of the algorithm that lead to different global properties. The alpha-beta strategy is based on a simple finite-state machine that implements a form of Variable Structure Control (VSC). The VSC system changes the dynamics of the collective system by abruptly switching at defined states to alternative control laws . In VSC, Lyapunov's direct method is often used to design control surfaces which guide the system to a given goal. We introduce the alpha-beta aIgorithm and present an analysis of the equilibrium point and the global stability of the alpha-beta algorithm based on Lyapunov's method.« less

  8. Analysis of decentralized variable structure control for collective search by mobile robots

    NASA Astrophysics Data System (ADS)

    Goldsmith, Steven Y.; Feddema, John T.; Robinett, Rush D., III

    1998-10-01

    This paper presents an analysis of a decentralized coordination strategy for organizing and controlling a team of mobile robots performing collective search. The alpha- beta coordination strategy is a family of collective search algorithms that allow teams of communicating robots to implicitly coordinate their search activities through a division of labor based on self-selected roles. In an alpha- beta team, alpha agents are motivated to improve their status by exploring new regions of the search space. Beta agents are conservative, and rely on the alpha agents to provide advanced information on favorable regions of the search space. An agent selects its current role dynamically based on its current status value relative to the current status values of the other team members. Status is determined by some function of the agent's sensor readings, and is generally a measurement of source intensity at the agent's current location. Variations on the decision rules determining alpha and beta behavior produce different versions of the algorithm that lead to different global properties. The alpha-beta strategy is based on a simple finite-state machine that implements a form of Variable Structure Control (VSC). The VSC system changes the dynamics of the collective system by abruptly switching at defined states to alternative control laws. In VSC, Lyapunov's direct method is often used to design control surfaces which guide the system to a given goal. We introduce the alpha- beta algorithm and present an analysis of the equilibrium point and the global stability of the alpha-beta algorithm based on Lyapunov's method.

  9. Space-Based Gravitational-Wave Observatory (SGO) Mission Concept Study

    NASA Technical Reports Server (NTRS)

    Livas, Jeffrey; McNamara, Paul; Jennrich, Oliver

    2012-01-01

    The LISA Mission Concept has been under study for over two decades as a space-based gravitational-wave detector capable of observing astrophysical sources in the 0.0001 to 1 Hz band. The concept has consistently received strong recommendations from various review panels based on the expected science, most recently from the US Astr02010 Decadal Review. Budget constraints have led both the US and European Space agencies to search for lower cost options. We report results from the US effort to explore the tradeoffs between mission cost and science return.

  10. Shape regularized active contour based on dynamic programming for anatomical structure segmentation

    NASA Astrophysics Data System (ADS)

    Yu, Tianli; Luo, Jiebo; Singhal, Amit; Ahuja, Narendra

    2005-04-01

    We present a method to incorporate nonlinear shape prior constraints into segmenting different anatomical structures in medical images. Kernel space density estimation (KSDE) is used to derive the nonlinear shape statistics and enable building a single model for a class of objects with nonlinearly varying shapes. The object contour is coerced by image-based energy into the correct shape sub-distribution (e.g., left or right lung), without the need for model selection. In contrast to an earlier algorithm that uses a local gradient-descent search (susceptible to local minima), we propose an algorithm that iterates between dynamic programming (DP) and shape regularization. DP is capable of finding an optimal contour in the search space that maximizes a cost function related to the difference between the interior and exterior of the object. To enforce the nonlinear shape prior, we propose two shape regularization methods, global and local regularization. Global regularization is applied after each DP search to move the entire shape vector in the shape space in a gradient descent fashion to the position of probable shapes learned from training. The regularized shape is used as the starting shape for the next iteration. Local regularization is accomplished through modifying the search space of the DP. The modified search space only allows a certain amount of deformation of the local shape from the starting shape. Both regularization methods ensure the consistency between the resulted shape with the training shapes, while still preserving DP"s ability to search over a large range and avoid local minima. Our algorithm was applied to two different segmentation tasks for radiographic images: lung field and clavicle segmentation. Both applications have shown that our method is effective and versatile in segmenting various anatomical structures under prior shape constraints; and it is robust to noise and local minima caused by clutter (e.g., blood vessels) and other similar structures (e.g., ribs). We believe that the proposed algorithm represents a major step in the paradigm shift to object segmentation under nonlinear shape constraints.

  11. The Telecommunications and Data Acquisition Report

    NASA Technical Reports Server (NTRS)

    Posner, E. C. (Editor)

    1987-01-01

    Archival reports on developments in programs managed by JPL's Office of Telecommunications and Data Acquisition (TDA) are provided. Activities of the Deep Space Network (DSN) in space communications, radio navigation, radio science, and ground-based radio astronomy are reported. Also included are the plans, supporting research and technology, implementation and operations for the Ground Communications Facility (GCF). In geodynamics, the publication reports on the application of radio interferometry at microwave frequencies for geodynamic measurements. In the search for extraterrestrial intelligence (SETI), it reports on implementation and operations for searching the microwave spectrum.

  12. Software for Project-Based Learning of Robot Motion Planning

    ERIC Educational Resources Information Center

    Moll, Mark; Bordeaux, Janice; Kavraki, Lydia E.

    2013-01-01

    Motion planning is a core problem in robotics concerned with finding feasible paths for a given robot. Motion planning algorithms perform a search in the high-dimensional continuous space of robot configurations and exemplify many of the core algorithmic concepts of search algorithms and associated data structures. Motion planning algorithms can…

  13. The Telecommunications and Data Acquisition Report

    NASA Technical Reports Server (NTRS)

    Posner, Edward C. (Editor)

    1991-01-01

    This quarterly publication provides archival reports on developments in programs managed by JPL's Office of Telecommunications and Data Acquisition (TDA). In space communications, radio navigation, radio science, and ground-based radio and radar astronomy, it reports on activities of the Deep Space Network (DSN). Also included is standards activity at JPL for space data and information systems and reimbursable DSN work performed for other space agencies through NASA. In the search for extraterrestrial intelligence (SETI), 'The TDA Progress Report' reports on implementation and operations for searching the microwave spectrum. In solar system radar, it reports on the uses of the Goldstone Solar System Radar for scientific exploration of the planets, their rings and satellites, asteroids, and comets. In radio astronomy, the areas of support include spectroscopy, very long baseline interferometry, and astrometry.

  14. The Telecommunications and Data Acquisition Report

    NASA Technical Reports Server (NTRS)

    Posner, E. C. (Editor)

    1990-01-01

    Archival reports are given on developments in programs managed by JPL's Office of Telecommunications and Data Acquisition (TDA), including space communications, radio navigation, radio science, ground-based radio and radar astronomy, and the Deep Space Network (DSN) and its associated Ground Communications Facility (GCF) in planning, supporting research and technology, implementation, and operations. Also included is TDA-funded activity at JPL on data and information systems and reimbursable DSN work performed for other space agencies through NASA. In the search for extraterrestrial intelligence (SETI), implementation and operations for searching the microwave spectrum are reported. Use of the Goldstone Solar System Radar for scientific exploration of the planets, their rings and satellites, asteroids, and comets are discussed.

  15. Inference-Based Similarity Search in Randomized Montgomery Domains for Privacy-Preserving Biometric Identification.

    PubMed

    Wang, Yi; Wan, Jianwu; Guo, Jun; Cheung, Yiu-Ming; Yuen, Pong C; Yi Wang; Jianwu Wan; Jun Guo; Yiu-Ming Cheung; Yuen, Pong C; Cheung, Yiu-Ming; Guo, Jun; Yuen, Pong C; Wan, Jianwu; Wang, Yi

    2018-07-01

    Similarity search is essential to many important applications and often involves searching at scale on high-dimensional data based on their similarity to a query. In biometric applications, recent vulnerability studies have shown that adversarial machine learning can compromise biometric recognition systems by exploiting the biometric similarity information. Existing methods for biometric privacy protection are in general based on pairwise matching of secured biometric templates and have inherent limitations in search efficiency and scalability. In this paper, we propose an inference-based framework for privacy-preserving similarity search in Hamming space. Our approach builds on an obfuscated distance measure that can conceal Hamming distance in a dynamic interval. Such a mechanism enables us to systematically design statistically reliable methods for retrieving most likely candidates without knowing the exact distance values. We further propose to apply Montgomery multiplication for generating search indexes that can withstand adversarial similarity analysis, and show that information leakage in randomized Montgomery domains can be made negligibly small. Our experiments on public biometric datasets demonstrate that the inference-based approach can achieve a search accuracy close to the best performance possible with secure computation methods, but the associated cost is reduced by orders of magnitude compared to cryptographic primitives.

  16. Alpha-beta coordination method for collective search

    DOEpatents

    Goldsmith, Steven Y.

    2002-01-01

    The present invention comprises a decentralized coordination strategy called alpha-beta coordination. The alpha-beta coordination strategy is a family of collective search methods that allow teams of communicating agents to implicitly coordinate their search activities through a division of labor based on self-selected roles and self-determined status. An agent can play one of two complementary roles. An agent in the alpha role is motivated to improve its status by exploring new regions of the search space. An agent in the beta role is also motivated to improve its status, but is conservative and tends to remain aggregated with other agents until alpha agents have clearly identified and communicated better regions of the search space. An agent can select its role dynamically based on its current status value relative to the status values of neighboring team members. Status can be determined by a function of the agent's sensor readings, and can generally be a measurement of source intensity at the agent's current location. An agent's decision cycle can comprise three sequential decision rules: (1) selection of a current role based on the evaluation of the current status data, (2) selection of a specific subset of the current data, and (3) determination of the next heading using the selected data. Variations of the decision rules produce different versions of alpha and beta behaviors that lead to different collective behavior properties.

  17. Overview of Space Transportation and Propulsion at NASA

    NASA Technical Reports Server (NTRS)

    Sackheim, Robert L.

    2003-01-01

    Topics considered include: 1. Scientific discovery: The search for the life beyond Earth. Understanding our Planet. Understanding our Universe. Exploration of the Planets and beyond. 2. The ultimate high ground for national security: Intelligence, communications, rapid response, GPS. 3. Space-based commerce: Communications and Earth observing.

  18. OAST Space Theme Workshop. Volume 2: Theme summary. 3: Search for extraterrestrial intelligence (no. 9). A: Theme statement. B. 26 April 1976 presentation. C. Summary. D. Newer initiatives (form 4). E. Initiative actions (form 5)

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Preliminary (1977-1983), intermediate (1982-1988), and long term (1989+) phases of the search for extraterrestrial intelligence (SETI) program are examined as well as the benefits to be derived in radioastronomy and the problems to be surmounted in radio frequency interference. The priorities, intrinsic value, criteria, and strategy for the search are discussed for both terrestrial and lunar-based CYCLOPS and for a space SETI system located at lunar liberation point L4. New initiatives related to antenna independent technology, multichannel analyzers, and radio frequency interference shielding are listed. Projected SETI program costs are included.

  19. The benefits of adaptive parametrization in multi-objective Tabu Search optimization

    NASA Astrophysics Data System (ADS)

    Ghisu, Tiziano; Parks, Geoffrey T.; Jaeggi, Daniel M.; Jarrett, Jerome P.; Clarkson, P. John

    2010-10-01

    In real-world optimization problems, large design spaces and conflicting objectives are often combined with a large number of constraints, resulting in a highly multi-modal, challenging, fragmented landscape. The local search at the heart of Tabu Search, while being one of its strengths in highly constrained optimization problems, requires a large number of evaluations per optimization step. In this work, a modification of the pattern search algorithm is proposed: this modification, based on a Principal Components' Analysis of the approximation set, allows both a re-alignment of the search directions, thereby creating a more effective parametrization, and also an informed reduction of the size of the design space itself. These changes make the optimization process more computationally efficient and more effective - higher quality solutions are identified in fewer iterations. These advantages are demonstrated on a number of standard analytical test functions (from the ZDT and DTLZ families) and on a real-world problem (the optimization of an axial compressor preliminary design).

  20. The quest for the Sun's siblings: an exploratory search in the Hipparcos Catalogue

    NASA Astrophysics Data System (ADS)

    Brown, Anthony G. A.; Portegies Zwart, Simon F.; Bean, Jennifer

    2010-09-01

    We describe the results of a search for the remnants of the Sun's birth cluster among stars in the Hipparcos Catalogue. This search is based on the predicted phase-space distribution of the Sun's siblings from simple simulations of the orbits of the cluster stars in a smooth Galactic potential. For stars within 100 pc, the simulations show that it is interesting to examine those that have small space motions relative to the Sun. From amongst the candidate siblings thus selected, there are six stars with ages consistent with that of the Sun. Considering their radial velocities and abundances only one potential candidate, HIP21158, remains, but essentially the result of the search is negative. This is consistent with predictions by Portegies Zwart on the number of siblings near the Sun. We discuss the steps that should be taken in anticipation of the data from the Gaia mission in order to conduct fruitful searches for the Sun's siblings in the future.

  1. The Quest For The Sun's Siblings: An Exploratory Search In The Hipparcos Catalogue

    NASA Astrophysics Data System (ADS)

    Bean, Jennifer; Brown, A.; Portegies Zwart, S.

    2011-01-01

    We describe the results of a search for the remnants of the Sun's birth cluster among stars in the Hipparcos Catalogue. This search is based on the predicted phase-space distribution of the Sun's siblings from simple simulations of the orbits of the cluster stars in a smooth Galactic potential. For stars within 100 pc, the simulations show that it is interesting to examine those that have small space motions relative to the Sun. From amongst the candidate siblings thus selected, there are six stars with ages consistent with that of the Sun. Considering their radial velocities and abundances only one potential candidate, HIP21158, remains, but essentially the result of the search is negative. This is consistent with predictions by Portegies Zwart on the number of siblings near the Sun. We discuss the steps that should be taken in anticipation of the data from the Gaia mission in order to conduct fruitful searches for the Sun's siblings in the future.

  2. The telecommunications and data acquisition report

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Progress in the development and operations of the Deep Space Network is reported. Developments in Earth based radio technology as applied to geodynamics, astrophysics, and radio astronomy's use of the deep space stations for a radio search for extraterrestrial intelligence in the microwave region of the electromagnetic spectrum are reported.

  3. Multiview face detection based on position estimation over multicamera surveillance system

    NASA Astrophysics Data System (ADS)

    Huang, Ching-chun; Chou, Jay; Shiu, Jia-Hou; Wang, Sheng-Jyh

    2012-02-01

    In this paper, we propose a multi-view face detection system that locates head positions and indicates the direction of each face in 3-D space over a multi-camera surveillance system. To locate 3-D head positions, conventional methods relied on face detection in 2-D images and projected the face regions back to 3-D space for correspondence. However, the inevitable false face detection and rejection usually degrades the system performance. Instead, our system searches for the heads and face directions over the 3-D space using a sliding cube. Each searched 3-D cube is projected onto the 2-D camera views to determine the existence and direction of human faces. Moreover, a pre-process to estimate the locations of candidate targets is illustrated to speed-up the searching process over the 3-D space. In summary, our proposed method can efficiently fuse multi-camera information and suppress the ambiguity caused by detection errors. Our evaluation shows that the proposed approach can efficiently indicate the head position and face direction on real video sequences even under serious occlusion.

  4. Computationally mapping sequence space to understand evolutionary protein engineering.

    PubMed

    Armstrong, Kathryn A; Tidor, Bruce

    2008-01-01

    Evolutionary protein engineering has been dramatically successful, producing a wide variety of new proteins with altered stability, binding affinity, and enzymatic activity. However, the success of such procedures is often unreliable, and the impact of the choice of protein, engineering goal, and evolutionary procedure is not well understood. We have created a framework for understanding aspects of the protein engineering process by computationally mapping regions of feasible sequence space for three small proteins using structure-based design protocols. We then tested the ability of different evolutionary search strategies to explore these sequence spaces. The results point to a non-intuitive relationship between the error-prone PCR mutation rate and the number of rounds of replication. The evolutionary relationships among feasible sequences reveal hub-like sequences that serve as particularly fruitful starting sequences for evolutionary search. Moreover, genetic recombination procedures were examined, and tradeoffs relating sequence diversity and search efficiency were identified. This framework allows us to consider the impact of protein structure on the allowed sequence space and therefore on the challenges that each protein presents to error-prone PCR and genetic recombination procedures.

  5. Development and evaluation of a biomedical search engine using a predicate-based vector space model.

    PubMed

    Kwak, Myungjae; Leroy, Gondy; Martinez, Jesse D; Harwell, Jeffrey

    2013-10-01

    Although biomedical information available in articles and patents is increasing exponentially, we continue to rely on the same information retrieval methods and use very few keywords to search millions of documents. We are developing a fundamentally different approach for finding much more precise and complete information with a single query using predicates instead of keywords for both query and document representation. Predicates are triples that are more complex datastructures than keywords and contain more structured information. To make optimal use of them, we developed a new predicate-based vector space model and query-document similarity function with adjusted tf-idf and boost function. Using a test bed of 107,367 PubMed abstracts, we evaluated the first essential function: retrieving information. Cancer researchers provided 20 realistic queries, for which the top 15 abstracts were retrieved using a predicate-based (new) and keyword-based (baseline) approach. Each abstract was evaluated, double-blind, by cancer researchers on a 0-5 point scale to calculate precision (0 versus higher) and relevance (0-5 score). Precision was significantly higher (p<.001) for the predicate-based (80%) than for the keyword-based (71%) approach. Relevance was almost doubled with the predicate-based approach-2.1 versus 1.6 without rank order adjustment (p<.001) and 1.34 versus 0.98 with rank order adjustment (p<.001) for predicate--versus keyword-based approach respectively. Predicates can support more precise searching than keywords, laying the foundation for rich and sophisticated information search. Copyright © 2013 Elsevier Inc. All rights reserved.

  6. Search of exploration opportunity for near earth objects based on analytical gradients

    NASA Astrophysics Data System (ADS)

    Ren, Y.; Cui, P. Y.; Luan, E. J.

    2008-01-01

    The problem of searching for exploration opportunity of near Earth objects is investigated. For rendezvous missions, the analytical gradients of performance index with respect to free parameters are derived by combining the calculus of variation with the theory of state-transition matrix. Then, some initial guesses are generated random in the search space, and the performance index is optimized with the guidance of analytical gradients from these initial guesses. This method not only keeps the property of global search in traditional method, but also avoids the blindness in the traditional exploration opportunity search; hence, the computing speed could be increased greatly. Furthermore, by using this method, the search precision could be controlled effectively.

  7. PDB-Explorer: a web-based interactive map of the protein data bank in shape space.

    PubMed

    Jin, Xian; Awale, Mahendra; Zasso, Michaël; Kostro, Daniel; Patiny, Luc; Reymond, Jean-Louis

    2015-10-23

    The RCSB Protein Data Bank (PDB) provides public access to experimentally determined 3D-structures of biological macromolecules (proteins, peptides and nucleic acids). While various tools are available to explore the PDB, options to access the global structural diversity of the entire PDB and to perceive relationships between PDB structures remain very limited. A 136-dimensional atom pair 3D-fingerprint for proteins (3DP) counting categorized atom pairs at increasing through-space distances was designed to represent the molecular shape of PDB-entries. Nearest neighbor searches examples were reported exemplifying the ability of 3DP-similarity to identify closely related biomolecules from small peptides to enzyme and large multiprotein complexes such as virus particles. The principle component analysis was used to obtain the visualization of PDB in 3DP-space. The 3DP property space groups proteins and protein assemblies according to their 3D-shape similarity, yet shows exquisite ability to distinguish between closely related structures. An interactive website called PDB-Explorer is presented featuring a color-coded interactive map of PDB in 3DP-space. Each pixel of the map contains one or more PDB-entries which are directly visualized as ribbon diagrams when the pixel is selected. The PDB-Explorer website allows performing 3DP-nearest neighbor searches of any PDB-entry or of any structure uploaded as protein-type PDB file. All functionalities on the website are implemented in JavaScript in a platform-independent manner and draw data from a server that is updated daily with the latest PDB additions, ensuring complete and up-to-date coverage. The essentially instantaneous 3DP-similarity search with the PDB-Explorer provides results comparable to those of much slower 3D-alignment algorithms, and automatically clusters proteins from the same superfamilies in tight groups. A chemical space classification of PDB based on molecular shape was obtained using a new atom-pair 3D-fingerprint for proteins and implemented in a web-based database exploration tool comprising an interactive color-coded map of the PDB chemical space and a nearest neighbor search tool. The PDB-Explorer website is freely available at www.cheminfo.org/pdbexplorer and represents an unprecedented opportunity to interactively visualize and explore the structural diversity of the PDB. ᅟ

  8. Education and Public Outreach for Stardust@home: An Interactive Internet-based Search for Interstellar Dust

    NASA Astrophysics Data System (ADS)

    Mendez, Bryan J.; Westphal, A. J.; Butterworth, A. L.; Craig, N.

    2006-12-01

    On January 15, 2006, NASA’s Stardust mission returned to Earth after nearly seven years in interplanetary space. During its journey, Stardust encountered comet Wild 2, collecting dust particles from it in a special material called aerogel. At two other times in the mission, aerogel collectors were also opened to collect interstellar dust. The Stardust Interstellar Dust Collector is being scanned by an automated microscope at the Johnson Space Center. There are approximately 700,000 fields of view needed to cover the entire collector, but we expect only a few dozen total grains of interstellar dust were captured within it. Finding these particles is a daunting task. We have recruited many thousands of volunteers from the public to aid in the search for these precious pieces of space dust trapped in the collectors. We call the project Stardust@home. Through Stardust@home, volunteers from the public search fields of view from the Stardust aerogel collector using a web-based Virtual Microscope. Volunteers who discover interstellar dust particles have the privilege of naming them. The interest and response to this project has been extraordinary. Many people from all walks of life are very excited about space science and eager to volunteer their time to contribute to a real research project such as this. We will discuss the progress of the project and the education and outreach activities being carried out for it.

  9. Stardust@home: An Interactive Internet-based Search for Interstellar Dust

    NASA Astrophysics Data System (ADS)

    Mendez, B. J.; Westphal, A. J.; Butterworth, A. L.; Craig, N.

    2006-12-01

    On January 15, 2006, NASA's Stardust mission returned to Earth after nearly seven years in interplanetary space. During its journey, Stardust encountered comet Wild 2, collecting dust particles from it in a special material called aerogel. At two other times in the mission, aerogel collectors were also opened to collect interstellar dust. The Stardust Interstellar Dust Collector is being scanned by an automated microscope at the Johnson Space Center. There are approximately 700,000 fields of view needed to cover the entire collector, but we expect only a few dozen total grains of interstellar dust were captured within it. Finding these particles is a daunting task. We have recruited many thousands of volunteers from the public to aid in the search for these precious pieces of space dust trapped in the collectors. We call the project Stardust@home. Through Stardust@home, volunteers from the public search fields of view from the Stardust aerogel collector using a web-based Virtual Microscope. Volunteers who discover interstellar dust particles have the privilege of naming them. The interest and response to this project has been extraordinary. Many people from all walks of life are very excited about space science and eager to volunteer their time to contribute to a real research project such as this. We will discuss the progress of the project and the education and outreach activities being carried out for it.

  10. Evaluation of Genetic Algorithm Concepts using Model Problems. Part 1; Single-Objective Optimization

    NASA Technical Reports Server (NTRS)

    Holst, Terry L.; Pulliam, Thomas H.

    2003-01-01

    A genetic-algorithm-based optimization approach is described and evaluated using a simple hill-climbing model problem. The model problem utilized herein allows for the broad specification of a large number of search spaces including spaces with an arbitrary number of genes or decision variables and an arbitrary number hills or modes. In the present study, only single objective problems are considered. Results indicate that the genetic algorithm optimization approach is flexible in application and extremely reliable, providing optimal results for all problems attempted. The most difficult problems - those with large hyper-volumes and multi-mode search spaces containing a large number of genes - require a large number of function evaluations for GA convergence, but they always converge.

  11. Hierarchical colorant-based direct binary search halftoning.

    PubMed

    He, Zhen

    2010-07-01

    Colorant-based direct binary search (CB-DBS) halftoning proposed in provides an image quality benchmark for dispersed-dot halftoning algorithms. The objective of this paper is to further push the image quality limit. An algorithm called hierarchical colorant-based direct binary search (HCB-DBS) is developed in this paper. By appropriately integrating yellow colorant into dot-overlapping and dot-positioning controls, it is demonstrated that HCB-DBS can achieve better halftone texture of both individual and joint dot-color planes, without compromising the dot distribution of more visible halftone of cyan and magenta colorants. The input color specification is first converted from colorant space to dot-color space with minimum brightness variation principle for full dot-overlapping control. The dot-colors are then split into groups based upon dot visibility. Hierarchical monochrome DBS halftoning is applied to make dot-positioning decision for each group, constrained on the already generated halftone of the groups with higher priority. And dot-coloring is decided recursively with joint monochrome DBS halftoning constrained on the related total dot distribution. Experiments show HCB-DBS improves halftone texture for both individual and joint dot-color planes. And it reduces the halftone graininess and free of color mottle artifacts, comparing to CB-DBS.

  12. Environmental Visualization and Horizontal Fusion

    DTIC Science & Technology

    2005-10-01

    the section on EVIS Rules. Federated Search – Discovering Content Another method of discovering services and their content has been implemented...in HF through a next-generation knowledge discovery framework called Federated Search . A virtual information space, called Collateral Space was...environmental mission effects products, is presented later in the paper. Federated Search allows users to search through Collateral Space data that is

  13. Accelerated search for materials with targeted properties by adaptive design

    PubMed Central

    Xue, Dezhen; Balachandran, Prasanna V.; Hogden, John; Theiler, James; Xue, Deqing; Lookman, Turab

    2016-01-01

    Finding new materials with targeted properties has traditionally been guided by intuition, and trial and error. With increasing chemical complexity, the combinatorial possibilities are too large for an Edisonian approach to be practical. Here we show how an adaptive design strategy, tightly coupled with experiments, can accelerate the discovery process by sequentially identifying the next experiments or calculations, to effectively navigate the complex search space. Our strategy uses inference and global optimization to balance the trade-off between exploitation and exploration of the search space. We demonstrate this by finding very low thermal hysteresis (ΔT) NiTi-based shape memory alloys, with Ti50.0Ni46.7Cu0.8Fe2.3Pd0.2 possessing the smallest ΔT (1.84 K). We synthesize and characterize 36 predicted compositions (9 feedback loops) from a potential space of ∼800,000 compositions. Of these, 14 had smaller ΔT than any of the 22 in the original data set. PMID:27079901

  14. Optimization of the graph model of the water conduit network, based on the approach of search space reducing

    NASA Astrophysics Data System (ADS)

    Korovin, Iakov S.; Tkachenko, Maxim G.

    2018-03-01

    In this paper we present a heuristic approach, improving the efficiency of methods, used for creation of efficient architecture of water distribution networks. The essence of the approach is a procedure of search space reduction the by limiting the range of available pipe diameters that can be used for each edge of the network graph. In order to proceed the reduction, two opposite boundary scenarios for the distribution of flows are analysed, after which the resulting range is further narrowed by applying a flow rate limitation for each edge of the network. The first boundary scenario provides the most uniform distribution of the flow in the network, the opposite scenario created the net with the highest possible flow level. The parameters of both distributions are calculated by optimizing systems of quadratic functions in a confined space, which can be effectively performed with small time costs. This approach was used to modify the genetic algorithm (GA). The proposed GA provides a variable number of variants of each gene, according to the number of diameters in list, taking into account flow restrictions. The proposed approach was implemented to the evaluation of a well-known test network - the Hanoi water distribution network [1], the results of research were compared with a classical GA with an unlimited search space. On the test data, the proposed trip significantly reduced the search space and provided faster and more obvious convergence in comparison with the classical version of GA.

  15. Visualization of Pulsar Search Data

    NASA Astrophysics Data System (ADS)

    Foster, R. S.; Wolszczan, A.

    1993-05-01

    The search for periodic signals from rotating neutron stars or pulsars has been a computationally taxing problem to astronomers for more than twenty-five years. Over this time interval, increases in computational capability have allowed ever more sensitive searches, covering a larger parameter space. The volume of input data and the general presence of radio frequency interference typically produce numerous spurious signals. Visualization of the search output and enhanced real-time processing of significant candidate events allow the pulsar searcher to optimally processes and search for new radio pulsars. The pulsar search algorithm and visualization system presented in this paper currently runs on serial RISC based workstations, a traditional vector based super computer, and a massively parallel computer. A description of the serial software algorithm and its modifications for massively parallel computing are describe. The results of four successive searches for millisecond period radio pulsars using the Arecibo telescope at 430 MHz have resulted in the successful detection of new long-period and millisecond period radio pulsars.

  16. Raising the IQ in full-text searching via intelligent querying

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kero, R.; Russell, L.; Swietlik, C.

    1994-11-01

    Current Information Retrieval (IR) technologies allow for efficient access to relevant information, provided that user selected query terms coincide with the specific linguistical choices made by the authors whose works constitute the text-base. Therefore, the challenge is to enhance the limited searching capability of state-of-the-practice IR. This can be done either with augmented clients that overcome current server searching deficiencies, or with added capabilities that can augment searching algorithms on the servers. The technology being investigated is that of deductive databases, with a set of new techniques called cooperative answering. This technology utilizes semantic networks to allow for navigation betweenmore » possible query search term alternatives. The augmented search terms are passed to an IR engine and the results can be compared. The project utilizes the OSTI Environment, Safety and Health Thesaurus to populate the domain specific semantic network and the text base of ES&H related documents from the Facility Profile Information Management System as the domain specific search space.« less

  17. Searching for Black Holes

    NASA Technical Reports Server (NTRS)

    Garica, M.

    2001-01-01

    In 1995 we proposed to carry out ground-based observations in order to securely identify stellar mass black holes in our galaxy. This type 4 proposal under NASA's UV, Visible, and Gravitational Astrophysics program compliments NASA's space-based research by following up black hole candidates found and studied with space-based observatories, in order to determine if they are indeed black holes. While our primary goal is to securely identify black holes by measuring their masses, a secondary goal is identifying unique visible-range signatures for black holes.

  18. Interactive genetic algorithm for user-centered design of distributed conservation practices in a watershed: An examination of user preferences in objective space and user behavior

    NASA Astrophysics Data System (ADS)

    Piemonti, Adriana Debora; Babbar-Sebens, Meghna; Mukhopadhyay, Snehasis; Kleinberg, Austin

    2017-05-01

    Interactive Genetic Algorithms (IGA) are advanced human-in-the-loop optimization methods that enable humans to give feedback, based on their subjective and unquantified preferences and knowledge, during the algorithm's search process. While these methods are gaining popularity in multiple fields, there is a critical lack of data and analyses on (a) the nature of interactions of different humans with interfaces of decision support systems (DSS) that employ IGA in water resources planning problems and on (b) the effect of human feedback on the algorithm's ability to search for design alternatives desirable to end-users. In this paper, we present results and analyses of observational experiments in which different human participants (surrogates and stakeholders) interacted with an IGA-based, watershed DSS called WRESTORE to identify plans of conservation practices in a watershed. The main goal of this paper is to evaluate how the IGA adapts its search process in the objective space to a user's feedback, and identify whether any similarities exist in the objective space of plans found by different participants. Some participants focused on the entire watershed, while others focused only on specific local subbasins. Additionally, two different hydrology models were used to identify any potential differences in interactive search outcomes that could arise from differences in the numerical values of benefits displayed to participants. Results indicate that stakeholders, in comparison to their surrogates, were more likely to use multiple features of the DSS interface to collect information before giving feedback, and dissimilarities existed among participants in the objective space of design alternatives.

  19. The Paragon Algorithm, a next generation search engine that uses sequence temperature values and feature probabilities to identify peptides from tandem mass spectra.

    PubMed

    Shilov, Ignat V; Seymour, Sean L; Patel, Alpesh A; Loboda, Alex; Tang, Wilfred H; Keating, Sean P; Hunter, Christie L; Nuwaysir, Lydia M; Schaeffer, Daniel A

    2007-09-01

    The Paragon Algorithm, a novel database search engine for the identification of peptides from tandem mass spectrometry data, is presented. Sequence Temperature Values are computed using a sequence tag algorithm, allowing the degree of implication by an MS/MS spectrum of each region of a database to be determined on a continuum. Counter to conventional approaches, features such as modifications, substitutions, and cleavage events are modeled with probabilities rather than by discrete user-controlled settings to consider or not consider a feature. The use of feature probabilities in conjunction with Sequence Temperature Values allows for a very large increase in the effective search space with only a very small increase in the actual number of hypotheses that must be scored. The algorithm has a new kind of user interface that removes the user expertise requirement, presenting control settings in the language of the laboratory that are translated to optimal algorithmic settings. To validate this new algorithm, a comparison with Mascot is presented for a series of analogous searches to explore the relative impact of increasing search space probed with Mascot by relaxing the tryptic digestion conformance requirements from trypsin to semitrypsin to no enzyme and with the Paragon Algorithm using its Rapid mode and Thorough mode with and without tryptic specificity. Although they performed similarly for small search space, dramatic differences were observed in large search space. With the Paragon Algorithm, hundreds of biological and artifact modifications, all possible substitutions, and all levels of conformance to the expected digestion pattern can be searched in a single search step, yet the typical cost in search time is only 2-5 times that of conventional small search space. Despite this large increase in effective search space, there is no drastic loss of discrimination that typically accompanies the exploration of large search space.

  20. Evolving discriminators for querying video sequences

    NASA Astrophysics Data System (ADS)

    Iyengar, Giridharan; Lippman, Andrew B.

    1997-01-01

    In this paper we present a framework for content based query and retrieval of information from large video databases. This framework enables content based retrieval of video sequences by characterizing the sequences using motion, texture and colorimetry cues. This characterization is biologically inspired and results in a compact parameter space where every segment of video is represented by an 8 dimensional vector. Searching and retrieval is done in real- time with accuracy in this parameter space. Using this characterization, we then evolve a set of discriminators using Genetic Programming Experiments indicate that these discriminators are capable of analyzing and characterizing video. The VideoBook is able to search and retrieve video sequences with 92% accuracy in real-time. Experiments thus demonstrate that the characterization is capable of extracting higher level structure from raw pixel values.

  1. OS2: Oblivious similarity based searching for encrypted data outsourced to an untrusted domain

    PubMed Central

    Pervez, Zeeshan; Ahmad, Mahmood; Khattak, Asad Masood; Ramzan, Naeem

    2017-01-01

    Public cloud storage services are becoming prevalent and myriad data sharing, archiving and collaborative services have emerged which harness the pay-as-you-go business model of public cloud. To ensure privacy and confidentiality often encrypted data is outsourced to such services, which further complicates the process of accessing relevant data by using search queries. Search over encrypted data schemes solve this problem by exploiting cryptographic primitives and secure indexing to identify outsourced data that satisfy the search criteria. Almost all of these schemes rely on exact matching between the encrypted data and search criteria. A few schemes which extend the notion of exact matching to similarity based search, lack realism as those schemes rely on trusted third parties or due to increase storage and computational complexity. In this paper we propose Oblivious Similarity based Search (OS2) for encrypted data. It enables authorized users to model their own encrypted search queries which are resilient to typographical errors. Unlike conventional methodologies, OS2 ranks the search results by using similarity measure offering a better search experience than exact matching. It utilizes encrypted bloom filter and probabilistic homomorphic encryption to enable authorized users to access relevant data without revealing results of search query evaluation process to the untrusted cloud service provider. Encrypted bloom filter based search enables OS2 to reduce search space to potentially relevant encrypted data avoiding unnecessary computation on public cloud. The efficacy of OS2 is evaluated on Google App Engine for various bloom filter lengths on different cloud configurations. PMID:28692697

  2. [Formula: see text]: Oblivious similarity based searching for encrypted data outsourced to an untrusted domain.

    PubMed

    Pervez, Zeeshan; Ahmad, Mahmood; Khattak, Asad Masood; Ramzan, Naeem; Khan, Wajahat Ali

    2017-01-01

    Public cloud storage services are becoming prevalent and myriad data sharing, archiving and collaborative services have emerged which harness the pay-as-you-go business model of public cloud. To ensure privacy and confidentiality often encrypted data is outsourced to such services, which further complicates the process of accessing relevant data by using search queries. Search over encrypted data schemes solve this problem by exploiting cryptographic primitives and secure indexing to identify outsourced data that satisfy the search criteria. Almost all of these schemes rely on exact matching between the encrypted data and search criteria. A few schemes which extend the notion of exact matching to similarity based search, lack realism as those schemes rely on trusted third parties or due to increase storage and computational complexity. In this paper we propose Oblivious Similarity based Search ([Formula: see text]) for encrypted data. It enables authorized users to model their own encrypted search queries which are resilient to typographical errors. Unlike conventional methodologies, [Formula: see text] ranks the search results by using similarity measure offering a better search experience than exact matching. It utilizes encrypted bloom filter and probabilistic homomorphic encryption to enable authorized users to access relevant data without revealing results of search query evaluation process to the untrusted cloud service provider. Encrypted bloom filter based search enables [Formula: see text] to reduce search space to potentially relevant encrypted data avoiding unnecessary computation on public cloud. The efficacy of [Formula: see text] is evaluated on Google App Engine for various bloom filter lengths on different cloud configurations.

  3. Theoretical Analysis of Local Search and Simple Evolutionary Algorithms for the Generalized Travelling Salesperson Problem.

    PubMed

    Pourhassan, Mojgan; Neumann, Frank

    2018-06-22

    The generalized travelling salesperson problem is an important NP-hard combinatorial optimization problem for which meta-heuristics, such as local search and evolutionary algorithms, have been used very successfully. Two hierarchical approaches with different neighbourhood structures, namely a Cluster-Based approach and a Node-Based approach, have been proposed by Hu and Raidl (2008) for solving this problem. In this paper, local search algorithms and simple evolutionary algorithms based on these approaches are investigated from a theoretical perspective. For local search algorithms, we point out the complementary abilities of the two approaches by presenting instances where they mutually outperform each other. Afterwards, we introduce an instance which is hard for both approaches when initialized on a particular point of the search space, but where a variable neighbourhood search combining them finds the optimal solution in polynomial time. Then we turn our attention to analysing the behaviour of simple evolutionary algorithms that use these approaches. We show that the Node-Based approach solves the hard instance of the Cluster-Based approach presented in Corus et al. (2016) in polynomial time. Furthermore, we prove an exponential lower bound on the optimization time of the Node-Based approach for a class of Euclidean instances.

  4. Concepts for a Space-Based Gravitational-Wave Observatory (SGO)

    NASA Technical Reports Server (NTRS)

    Stebbins, Robin T.

    2012-01-01

    The low-frequency band (0.0001 - 1 Hz) of the gravitational wave spectrum has the most interesting astrophysical sources. It is only accessible from space. The Laser Interferometer Space Antenna (LISA) concept has been the leading contender for a space-based detector in this band. Despite a strong recommendation from Astro2010, constrained budgets motivate the search for a less expensive concept, even at the loss of some science. We have explored the range of lower cost mission concepts derived from two decades of studying the LISA concept We describe LlSA-like concepts that span the range of affordable and scientifically worthwhile missions, and summarize the analyses behind them.

  5. Hyperopt: a Python library for model selection and hyperparameter optimization

    NASA Astrophysics Data System (ADS)

    Bergstra, James; Komer, Brent; Eliasmith, Chris; Yamins, Dan; Cox, David D.

    2015-01-01

    Sequential model-based optimization (also known as Bayesian optimization) is one of the most efficient methods (per function evaluation) of function minimization. This efficiency makes it appropriate for optimizing the hyperparameters of machine learning algorithms that are slow to train. The Hyperopt library provides algorithms and parallelization infrastructure for performing hyperparameter optimization (model selection) in Python. This paper presents an introductory tutorial on the usage of the Hyperopt library, including the description of search spaces, minimization (in serial and parallel), and the analysis of the results collected in the course of minimization. This paper also gives an overview of Hyperopt-Sklearn, a software project that provides automatic algorithm configuration of the Scikit-learn machine learning library. Following Auto-Weka, we take the view that the choice of classifier and even the choice of preprocessing module can be taken together to represent a single large hyperparameter optimization problem. We use Hyperopt to define a search space that encompasses many standard components (e.g. SVM, RF, KNN, PCA, TFIDF) and common patterns of composing them together. We demonstrate, using search algorithms in Hyperopt and standard benchmarking data sets (MNIST, 20-newsgroups, convex shapes), that searching this space is practical and effective. In particular, we improve on best-known scores for the model space for both MNIST and convex shapes. The paper closes with some discussion of ongoing and future work.

  6. Target-distractor similarity has a larger impact on visual search in school-age children than spacing.

    PubMed

    Huurneman, Bianca; Boonstra, F Nienke

    2015-01-22

    In typically developing children, crowding decreases with increasing age. The influence of target-distractor similarity with respect to orientation and element spacing on visual search performance was investigated in 29 school-age children with normal vision (4- to 6-year-olds [N = 16], 7- to 8-year-olds [N = 13]). Children were instructed to search for a target E among distractor Es (feature search: all flanking Es pointing right; conjunction search: flankers in three orientations). Orientation of the target was manipulated in four directions: right (target absent), left (inversed), up, and down (vertical). Spacing was varied in four steps: 0.04°, 0.5°, 1°, and 2°. During feature search, high target-distractor similarity had a stronger impact on performance than spacing: Orientation affected accuracy until spacing was 1°, and spacing only influenced accuracy for identifying inversed targets. Spatial analyses showed that orientation affected oculomotor strategy: Children made more fixations in the "inversed" target area (4.6) than the vertical target areas (1.8 and 1.9). Furthermore, age groups differed in fixation duration: 4- to 6-year-old children showed longer fixation durations than 7- to 8-year-olds at the two largest element spacings (p = 0.039 and p = 0.027). Conjunction search performance was unaffected by spacing. Four conclusions can be drawn from this study: (a) Target-distractor similarity governs visual search performance in school-age children, (b) children make more fixations in target areas when target-distractor similarity is high, (c) 4- to 6-year-olds show longer fixation durations than 7- to 8-year-olds at 1° and 2° element spacing, and (d) spacing affects feature but not conjunction search-a finding that might indicate top-down control ameliorates crowding in children. © 2015 ARVO.

  7. Awareness-based game-theoretic space resource management

    NASA Astrophysics Data System (ADS)

    Chen, Genshe; Chen, Huimin; Pham, Khanh; Blasch, Erik; Cruz, Jose B., Jr.

    2009-05-01

    Over recent decades, the space environment becomes more complex with a significant increase in space debris and a greater density of spacecraft, which poses great difficulties to efficient and reliable space operations. In this paper we present a Hierarchical Sensor Management (HSM) method to space operations by (a) accommodating awareness modeling and updating and (b) collaborative search and tracking space objects. The basic approach is described as follows. Firstly, partition the relevant region of interest into district cells. Second, initialize and model the dynamics of each cell with awareness and object covariance according to prior information. Secondly, explicitly assign sensing resources to objects with user specified requirements. Note that when an object has intelligent response to the sensing event, the sensor assigned to observe an intelligent object may switch from time-to-time between a strong, active signal mode and a passive mode to maximize the total amount of information to be obtained over a multi-step time horizon and avoid risks. Thirdly, if all explicitly specified requirements are satisfied and there are still more sensing resources available, we assign the additional sensing resources to objects without explicitly specified requirements via an information based approach. Finally, sensor scheduling is applied to each sensor-object or sensor-cell pair according to the object type. We demonstrate our method with realistic space resources management scenario using NASA's General Mission Analysis Tool (GMAT) for space object search and track with multiple space borne observers.

  8. Metaheuristics-Assisted Combinatorial Screening of Eu2+-Doped Ca-Sr-Ba-Li-Mg-Al-Si-Ge-N Compositional Space in Search of a Narrow-Band Green Emitting Phosphor and Density Functional Theory Calculations.

    PubMed

    Lee, Jin-Woong; Singh, Satendra Pal; Kim, Minseuk; Hong, Sung Un; Park, Woon Bae; Sohn, Kee-Sun

    2017-08-21

    A metaheuristics-based design would be of great help in relieving the enormous experimental burdens faced during the combinatorial screening of a huge, multidimensional search space, while providing the same effect as total enumeration. In order to tackle the high-throughput powder processing complications and to secure practical phosphors, metaheuristics, an elitism-reinforced nondominated sorting genetic algorithm (NSGA-II), was employed in this study. The NSGA-II iteration targeted two objective functions. The first was to search for a higher emission efficacy. The second was to search for narrow-band green color emissions. The NSGA-II iteration finally converged on BaLi 2 Al 2 Si 2 N 6 :Eu 2+ phosphors in the Eu 2+ -doped Ca-Sr-Ba-Li-Mg-Al-Si-Ge-N compositional search space. The BaLi 2 Al 2 Si 2 N 6 :Eu 2+ phosphor, which was synthesized with no human intervention via the assistance of NSGA-II, was a clear single phase and gave an acceptable luminescence. The BaLi 2 Al 2 Si 2 N 6 :Eu 2+ phosphor as well as all other phosphors that appeared during the NSGA-II iterations were examined in detail by employing powder X-ray diffraction-based Rietveld refinement, X-ray absorption near edge structure, density functional theory calculation, and time-resolved photoluminescence. The thermodynamic stability and the band structure plausibility were confirmed, and more importantly a novel approach to the energy transfer analysis was also introduced for BaLi 2 Al 2 Si 2 N 6 :Eu 2+ phosphors.

  9. Space-Based Gravitational-wave Mission Concept Studies

    NASA Technical Reports Server (NTRS)

    Livas, Jeffrey C.

    2012-01-01

    The LISA Mission Concept has been under study for over two decades as a spacebased gravitational-wave detector capable of observing astrophysical sources in the 0.0001 to 1 Hz band. The concept has consistently received strong recommendations from various review panels based on the expected science, most recently from the US Astr02010 Decadal Review. Budget constraints have led both the US and European Space agencies to search for lower cost options. We report results from the US effort to explore the tradeoffs between mission cost and science return, and in particular a family of mission concepts referred to as SGO (Space-based Gravitational-wave Observatory).

  10. A Fast Exact k-Nearest Neighbors Algorithm for High Dimensional Search Using k-Means Clustering and Triangle Inequality.

    PubMed

    Wang, Xueyi

    2012-02-08

    The k-nearest neighbors (k-NN) algorithm is a widely used machine learning method that finds nearest neighbors of a test object in a feature space. We present a new exact k-NN algorithm called kMkNN (k-Means for k-Nearest Neighbors) that uses the k-means clustering and the triangle inequality to accelerate the searching for nearest neighbors in a high dimensional space. The kMkNN algorithm has two stages. In the buildup stage, instead of using complex tree structures such as metric trees, kd-trees, or ball-tree, kMkNN uses a simple k-means clustering method to preprocess the training dataset. In the searching stage, given a query object, kMkNN finds nearest training objects starting from the nearest cluster to the query object and uses the triangle inequality to reduce the distance calculations. Experiments show that the performance of kMkNN is surprisingly good compared to the traditional k-NN algorithm and tree-based k-NN algorithms such as kd-trees and ball-trees. On a collection of 20 datasets with up to 10(6) records and 10(4) dimensions, kMkNN shows a 2-to 80-fold reduction of distance calculations and a 2- to 60-fold speedup over the traditional k-NN algorithm for 16 datasets. Furthermore, kMkNN performs significant better than a kd-tree based k-NN algorithm for all datasets and performs better than a ball-tree based k-NN algorithm for most datasets. The results show that kMkNN is effective for searching nearest neighbors in high dimensional spaces.

  11. Artificial bee colony algorithm with dynamic multi-population

    NASA Astrophysics Data System (ADS)

    Zhang, Ming; Ji, Zhicheng; Wang, Yan

    2017-07-01

    To improve the convergence rate and make a balance between the global search and local turning abilities, this paper proposes a decentralized form of artificial bee colony (ABC) algorithm with dynamic multi-populations by means of fuzzy C-means (FCM) clustering. Each subpopulation periodically enlarges with the same size during the search process, and the overlapping individuals among different subareas work for delivering information acting as exploring the search space with diffusion of solutions. Moreover, a Gaussian-based search equation with redefined local attractor is proposed to further accelerate the diffusion of the best solution and guide the search towards potential areas. Experimental results on a set of benchmarks demonstrate the competitive performance of our proposed approach.

  12. Exploration Opportunity Search of Near-earth Objects Based on Analytical Gradients

    NASA Astrophysics Data System (ADS)

    Ren, Yuan; Cui, Ping-Yuan; Luan, En-Jie

    2008-07-01

    The problem of search of opportunity for the exploration of near-earth minor objects is investigated. For rendezvous missions, the analytical gradients of the performance index with respect to the free parameters are derived using the variational calculus and the theory of state-transition matrix. After generating randomly some initial guesses in the search space, the performance index is optimized, guided by the analytical gradients, leading to the local minimum points representing the potential launch opportunities. This method not only keeps the global-search property of the traditional method, but also avoids the blindness in the latter, thereby increasing greatly the computing speed. Furthermore, with this method, the searching precision could be controlled effectively.

  13. Transformational derivation of programs using the Focus system

    NASA Technical Reports Server (NTRS)

    Reddy, Uday S.

    1988-01-01

    A program derivation support system called Focus is being constructed. It will formally derive programs using the paradigm of program transformation. The following issues are discussed: (1) the integration of validation and program derivation activities in the Focus system; (2) its tree-based user interface; (3) the control of search spaces in program derivation; and (4) the structure and organization of program derivation records. The inference procedures of the system are based on the integration of functional and logic programming principles. This brings about a synthesis of paradigms that were heretofore considered far apart, such as logical and executable specifications and constructive and transformational approaches to program derivation. A great emphasis has been placed, in the design of Focus, on achieving small search spaces during program derivation. The program manipulation operations such as expansion, simplification and rewriting were designed with this objective. The role of operations that are expensive in search spaces, such as folding, has been reduced. Program derivations are documented in Focus in a way that the high level descriptions of derivations are expressed only using program level information. All the meta-level information, together with dependencies between derivations of program components, is automatically recorded by the system at a lower level of description for its own use in replay.

  14. The Search for Life Beyond Earth

    NASA Image and Video Library

    2014-07-14

    Panelists (from left) Ellen Stofan, NASA Chief Scientist, left; John Grunsfeld, Associate Administrator for NASA's Science Mission DIrectorate, second from left; John Mather, Nobel Laureate and Senior Project Scientist for the James Webb Space Telescope (JWST) at NASA's Goddard Space Flight Center, third from left; Sara Seager, MacArthur Fellow and Professor of Planetary Science and Physics at the Massachusetts Institute of Technology, third from right; Dave Gallagher, Director for Astronomy and Physics at NASA's Jet Propulsion Laboratory, second from right; and Matt Mountain, Director of the Space Telescope Science Institute and Telescope Scientist for the JWST, right; are seen during a panel discussion on the search for life beyond Earth in the James E. Webb Auditorium at NASA Headquarters on Monday, July 14, 2014 in Washington, DC. The panel discussed how NASA's space-based observatories are making new discoveries and how the agency's new telescope, the James Webb Space Telescope, will continue this path of discovery after its schedule launch in 2018. Photo Credit: (NASA/Joel Kowsky)

  15. Topological materials discovery using electron filling constraints

    NASA Astrophysics Data System (ADS)

    Chen, Ru; Po, Hoi Chun; Neaton, Jeffrey B.; Vishwanath, Ashvin

    2018-01-01

    Nodal semimetals are classes of topological materials that have nodal-point or nodal-line Fermi surfaces, which give them novel transport and topological properties. Despite being highly sought after, there are currently very few experimental realizations, and identifying new materials candidates has mainly relied on exhaustive database searches. Here we show how recent studies on the interplay between electron filling and nonsymmorphic space-group symmetries can guide the search for filling-enforced nodal semimetals. We recast the previously derived constraints on the allowed band-insulator fillings in any space group into a new form, which enables effective screening of materials candidates based solely on their space group, electron count in the formula unit, and multiplicity of the formula unit. This criterion greatly reduces the computation load for discovering topological materials in a database of previously synthesized compounds. As a demonstration, we focus on a few selected nonsymmorphic space groups which are predicted to host filling-enforced Dirac semimetals. Of the more than 30,000 entires listed, our filling criterion alone eliminates 96% of the entries before they are passed on for further analysis. We discover a handful of candidates from this guided search; among them, the monoclinic crystal Ca2Pt2Ga is particularly promising.

  16. Design of combinatorial libraries for the exploration of virtual hits from fragment space searches with LoFT.

    PubMed

    Lessel, Uta; Wellenzohn, Bernd; Fischer, J Robert; Rarey, Matthias

    2012-02-27

    A case study is presented illustrating the design of a focused CDK2 library. The scaffold of the library was detected by a feature trees search in a fragment space based on reactions from combinatorial chemistry. For the design the software LoFT (Library optimizer using Feature Trees) was used. The special feature called FTMatch was applied to restrict the parts of the queries where the reagents are permitted to match. This way a 3D scoring function could be simulated. Results were compared with alternative designs by GOLD docking and ROCS 3D alignments.

  17. Results of a hubble space telescope search for natural satellites of dwarf planet 1 ceres

    NASA Astrophysics Data System (ADS)

    DeMario, Benjamin E.; Schmidt, Britney E.; Mutchler, Max J.; Li, Jian-Yang; McFadden, Lucy A.; McLean, Brian J.; Russell, Christopher T.

    2016-12-01

    In order to prepare for the arrival of the Dawn spacecraft at Ceres, a search for satellites was undertaken by the Hubble Space Telescope (HST) to enhance the mission science return and to ensure spacecraft safety. Previous satellite searches from ground-based telescopes have detected no satellites within Ceres' Hill sphere down to a size of 3 km (Gehrels et al. 1987) and early HST investigations searched to a limit of 1-2 km (Bieryla et al. 2011). The Wide Field Camera 3 (WFC3) on board the HST was used to image Ceres between 14 April-28 April 2014. These images cover approximately the inner third of Ceres' Hill sphere, where the Hill sphere is the region surrounding Ceres where stable satellite orbits are possible. We performed a deep search for possible companions orbiting Ceres. No natural companions were located down to a diameter of 48 m, over most of the Hill sphere to a distance of 205,000 km (434 Ceres radii) from the surface of Ceres. It was impossible to search all the way to the surface of Ceres because of scattered light, but at a distance of 2865 km (five Ceres radii), the search limit was determined to be 925 m.

  18. The Telecommunications and Data Acquisition Report

    NASA Technical Reports Server (NTRS)

    Posner, E. C. (Editor)

    1984-01-01

    Activities in space communication, radio navigation, radio science, and ground-based astronomy are reported. Advanced systems for the Deep Space Network and its Ground-Communications Facility are discussed including station control and system technology. Network sustaining as well as data and information systems are covered. Studies of geodynamics, investigations of the microwave spectrum, and the search for extraterrestrial intelligence are reported.

  19. The Telecommunications and Data Acquisition Report. [Deep Space Network

    NASA Technical Reports Server (NTRS)

    Posner, E. C. (Editor)

    1986-01-01

    This publication, one of a series formerly titled The Deep Space Network Progress Report, documents DSN progress in flight project support, tracking and data acquisition research and technology, network engineering, hardware and software implementation, and operations. In addition, developments in Earth-based radio technology as applied to geodynamics, astrophysics and the radio search for extraterrestrial intelligence are reported.

  20. Improving Search Algorithms by Using Intelligent Coordinates

    NASA Technical Reports Server (NTRS)

    Wolpert, David H.; Tumer, Kagan; Bandari, Esfandiar

    2004-01-01

    We consider algorithms that maximize a global function G in a distributed manner, using a different adaptive computational agent to set each variable of the underlying space. Each agent eta is self-interested; it sets its variable to maximize its own function g (sub eta). Three factors govern such a distributed algorithm's performance, related to exploration/exploitation, game theory, and machine learning. We demonstrate how to exploit alI three factors by modifying a search algorithm's exploration stage: rather than random exploration, each coordinate of the search space is now controlled by a separate machine-learning-based player engaged in a noncooperative game. Experiments demonstrate that this modification improves simulated annealing (SA) by up to an order of magnitude for bin packing and for a model of an economic process run over an underlying network. These experiments also reveal interesting small-world phenomena.

  1. Improving search algorithms by using intelligent coordinates

    NASA Astrophysics Data System (ADS)

    Wolpert, David; Tumer, Kagan; Bandari, Esfandiar

    2004-01-01

    We consider algorithms that maximize a global function G in a distributed manner, using a different adaptive computational agent to set each variable of the underlying space. Each agent η is self-interested; it sets its variable to maximize its own function gη. Three factors govern such a distributed algorithm’s performance, related to exploration/exploitation, game theory, and machine learning. We demonstrate how to exploit all three factors by modifying a search algorithm’s exploration stage: rather than random exploration, each coordinate of the search space is now controlled by a separate machine-learning-based “player” engaged in a noncooperative game. Experiments demonstrate that this modification improves simulated annealing (SA) by up to an order of magnitude for bin packing and for a model of an economic process run over an underlying network. These experiments also reveal interesting small-world phenomena.

  2. A Swarm Optimization Genetic Algorithm Based on Quantum-Behaved Particle Swarm Optimization.

    PubMed

    Sun, Tao; Xu, Ming-Hai

    2017-01-01

    Quantum-behaved particle swarm optimization (QPSO) algorithm is a variant of the traditional particle swarm optimization (PSO). The QPSO that was originally developed for continuous search spaces outperforms the traditional PSO in search ability. This paper analyzes the main factors that impact the search ability of QPSO and converts the particle movement formula to the mutation condition by introducing the rejection region, thus proposing a new binary algorithm, named swarm optimization genetic algorithm (SOGA), because it is more like genetic algorithm (GA) than PSO in form. SOGA has crossover and mutation operator as GA but does not need to set the crossover and mutation probability, so it has fewer parameters to control. The proposed algorithm was tested with several nonlinear high-dimension functions in the binary search space, and the results were compared with those from BPSO, BQPSO, and GA. The experimental results show that SOGA is distinctly superior to the other three algorithms in terms of solution accuracy and convergence.

  3. The Delta Scuti star 38 Eri from the ground and from space

    NASA Astrophysics Data System (ADS)

    Paparó, M.; Kolláth, Z.; Shobbrook, R. R.; Matthews, J. M.; Antoci, V.; Benkő, J. M.; Park, N.-K.; Mirtorabi, M. T.; Luedeke, K.; Kusakin, A.; Bognár, Zs; Sódor, Á.; García-Hernández, A.; Pe na, J. H.; Kuschnig, R.; Moffat, A. F. J.; Rowe, J.; Rucinski, S. M.; Sasselov, D.; Weiss, W. W.

    2018-04-01

    We present and discuss the pulsational characteristics of the Delta Scuti star 38 Eri from photometric data obtained at two widely spaced epochs, partly from the ground (1998) and partly from space (MOST, 2011). We found 18 frequencies resolving the discrepancy among the previously published frequencies. Some of the frequencies appeared with different relative amplitudes at two epochs, however, we carried out investigation for amplitude variability for only the MOST data. Amplitude variability was found for one of three frequencies that satisfy the necessary frequency criteria for linear-combination or resonant-mode coupling. Checking the criteria of beating and resonant-mode coupling we excluded them as possible reason for amplitude variability. The two recently developed methods of rotational-splitting and sequence-search were applied to find regular spacings based only on frequencies. Doublets or incomplete multiplets with l = 1, 2 and 3 were found in the rotational splitting search. In the sequence search method we identified four sequences. The averaged spacing, probably a combination of the large separation and the rotational frequency, is 1.724 ± 0.092 d-1. Using the spacing and the scaling relation \\bar{ρ }= [0.0394, 0.0554] gcm-3 was derived. The shift of the sequences proved to be the integer multiple of the rotational splitting spacing. Using the precise MOST frequencies and multi-colour photometry in a hybrid way, we identified four modes with l = 1, two modes with l = 2, two modes with l = 3, and two modes as l = 0 radial modes.

  4. The telecommunications and data acquisition report

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Progress in the development and operations of the Deep Space Network along with developments in Earth-based radio technology as applied to geodynamics, astrophysics, and the search for extraterrestrial intelligence are reported.

  5. Modelling eye movements in a categorical search task

    PubMed Central

    Zelinsky, Gregory J.; Adeli, Hossein; Peng, Yifan; Samaras, Dimitris

    2013-01-01

    We introduce a model of eye movements during categorical search, the task of finding and recognizing categorically defined targets. It extends a previous model of eye movements during search (target acquisition model, TAM) by using distances from an support vector machine classification boundary to create probability maps indicating pixel-by-pixel evidence for the target category in search images. Other additions include functionality enabling target-absent searches, and a fixation-based blurring of the search images now based on a mapping between visual and collicular space. We tested this model on images from a previously conducted variable set-size (6/13/20) present/absent search experiment where participants searched for categorically defined teddy bear targets among random category distractors. The model not only captured target-present/absent set-size effects, but also accurately predicted for all conditions the numbers of fixations made prior to search judgements. It also predicted the percentages of first eye movements during search landing on targets, a conservative measure of search guidance. Effects of set size on false negative and false positive errors were also captured, but error rates in general were overestimated. We conclude that visual features discriminating a target category from non-targets can be learned and used to guide eye movements during categorical search. PMID:24018720

  6. Optimization in optical systems revisited: Beyond genetic algorithms

    NASA Astrophysics Data System (ADS)

    Gagnon, Denis; Dumont, Joey; Dubé, Louis

    2013-05-01

    Designing integrated photonic devices such as waveguides, beam-splitters and beam-shapers often requires optimization of a cost function over a large solution space. Metaheuristics - algorithms based on empirical rules for exploring the solution space - are specifically tailored to those problems. One of the most widely used metaheuristics is the standard genetic algorithm (SGA), based on the evolution of a population of candidate solutions. However, the stochastic nature of the SGA sometimes prevents access to the optimal solution. Our goal is to show that a parallel tabu search (PTS) algorithm is more suited to optimization problems in general, and to photonics in particular. PTS is based on several search processes using a pool of diversified initial solutions. To assess the performance of both algorithms (SGA and PTS), we consider an integrated photonics design problem, the generation of arbitrary beam profiles using a two-dimensional waveguide-based dielectric structure. The authors acknowledge financial support from the Natural Sciences and Engineering Research Council of Canada (NSERC).

  7. Force-momentum-based self-guided Langevin dynamics: A rapid sampling method that approaches the canonical ensemble

    NASA Astrophysics Data System (ADS)

    Wu, Xiongwu; Brooks, Bernard R.

    2011-11-01

    The self-guided Langevin dynamics (SGLD) is a method to accelerate conformational searching. This method is unique in the way that it selectively enhances and suppresses molecular motions based on their frequency to accelerate conformational searching without modifying energy surfaces or raising temperatures. It has been applied to studies of many long time scale events, such as protein folding. Recent progress in the understanding of the conformational distribution in SGLD simulations makes SGLD also an accurate method for quantitative studies. The SGLD partition function provides a way to convert the SGLD conformational distribution to the canonical ensemble distribution and to calculate ensemble average properties through reweighting. Based on the SGLD partition function, this work presents a force-momentum-based self-guided Langevin dynamics (SGLDfp) simulation method to directly sample the canonical ensemble. This method includes interaction forces in its guiding force to compensate the perturbation caused by the momentum-based guiding force so that it can approximately sample the canonical ensemble. Using several example systems, we demonstrate that SGLDfp simulations can approximately maintain the canonical ensemble distribution and significantly accelerate conformational searching. With optimal parameters, SGLDfp and SGLD simulations can cross energy barriers of more than 15 kT and 20 kT, respectively, at similar rates for LD simulations to cross energy barriers of 10 kT. The SGLDfp method is size extensive and works well for large systems. For studies where preserving accessible conformational space is critical, such as free energy calculations and protein folding studies, SGLDfp is an efficient approach to search and sample the conformational space.

  8. KSC-03PD-1072

    NASA Technical Reports Server (NTRS)

    2003-01-01

    KENNEDY SPACE CENTER, FLA. -- Workers continue to place pieces of Columbia debris on the floor of the KSC RLV Hangar. Shipped from Barksdale Air Force Base, Shreveport, La., more than 70,000 items, weighing 78,000 pounds, about 36 percent of the Shuttle by weight, have been delivered to KSC for use in the mishap investigation. Ground teams have completed 78 percent of their primary search area, and airborne crews finished 80 percent of their assigned area. Search teams have completed 98 percent of the underwater searches in Lake Nacogdoches and Toledo Bend Reservoir.

  9. KSC-03PD-1074

    NASA Technical Reports Server (NTRS)

    2003-01-01

    KENNEDY SPACE CENTER, FLA. -- A worker in the KSC RLV Hangar, collection site of the debris from Columbia, examines a recovered piece before bagging it. Shipped from Barksdale Air Force Base, Shreveport, La., more than 70,000 items, weighing 78,000 pounds, about 36 percent of the Shuttle by weight, have been delivered to KSC for use in the mishap investigation. Ground teams have completed 78 percent of their primary search area, and airborne crews finished 80 percent of their assigned area. Search teams have completed 98 percent of the underwater searches in Lake Nacogdoches and Toledo Bend Reservoir.

  10. An AI-based approach to structural damage identification by modal analysis

    NASA Technical Reports Server (NTRS)

    Glass, B. J.; Hanagud, S.

    1990-01-01

    Flexible-structure damage is presently addressed by a combined model- and parameter-identification approach which employs the AI methodologies of classification, heuristic search, and object-oriented model knowledge representation. The conditions for model-space search convergence to the best model are discussed in terms of search-tree organization and initial model parameter error. In the illustrative example of a truss structure presented, the use of both model and parameter identification is shown to lead to smaller parameter corrections than would be required by parameter identification alone.

  11. Designing the Search Service for Enterprise Portal based on Oracle Universal Content Management

    NASA Astrophysics Data System (ADS)

    Bauer, K. S.; Kuznetsov, D. Y.; Pominov, A. D.

    2017-01-01

    Enterprise Portal is an important part of an organization in informative and innovative space. The portal provides collaboration between employees and the organization. This article gives a valuable background of Enterprise Portal and technologies. The paper presents Oracle WebCenter Portal and UCM Server integration in detail. The focus is on tools for Enterprise Portal and on Search Service in particular. The paper also presents several UML diagrams to describe the use of cases for Search Service and main components of this application.

  12. KSC-03PD-1077

    NASA Technical Reports Server (NTRS)

    2003-01-01

    KENNEDY SPACE CENTER, FLA. -- Members of the Columbia Reconstruction Project Team look over pieces of debris on the floor of the KSC RLV Hangar. Shipped from Barksdale Air Force Base, Shreveport, La., more than 70,000 items, weighing 78,000 pounds, about 36 percent of the Shuttle by weight, have been delivered to KSC for use in the mishap investigation. Ground teams have completed 78 percent of their primary search area, and airborne crews finished 80 percent of their assigned area. Search teams have completed 98 percent of the underwater searches in Lake Nacogdoches and Toledo Bend Reservoir.

  13. KSC-03PD-1073

    NASA Technical Reports Server (NTRS)

    2003-01-01

    KENNEDY SPACE CENTER, FLA. -- Debris pieces of all sizes lie on the floor of the KSC RLV Hangar. Shipped from Barksdale Air Force Base, Shreveport, La., more than 70,000 items, weighing 78,000 pounds, about 36 percent of the Shuttle by weight, have been delivered to KSC for use in the mishap investigation. Ground teams have completed 78 percent of their primary search area, and airborne crews finished 80 percent of their assigned area. Search teams have completed 98 percent of the underwater searches in Lake Nacogdoches and Toledo Bend Reservoir.

  14. KSC-03PD-1075

    NASA Technical Reports Server (NTRS)

    2003-01-01

    KENNEDY SPACE CENTER, FLA. -- Members of the Columbia Reconstruction Project Team look over pieces of debris in the KSC RLV Hangar. Shipped from Barksdale Air Force Base, Shreveport, La., more than 70,000 items, weighing 78,000 pounds, about 36 percent of the Shuttle by weight, have been delivered to KSC for use in the mishap investigation. Ground teams have completed 78 percent of their primary search area, and airborne crews finished 80 percent of their assigned area. Search teams have completed 98 percent of the underwater searches in Lake Nacogdoches and Toledo Bend Reservoir.

  15. Fast Nonparametric Machine Learning Algorithms for High-Dimensional Massive Data and Applications

    DTIC Science & Technology

    2006-03-01

    know the probability of that from Lemma 2. Using the union bound, we know that for any query q, the probability that i-am-feeling-lucky search algorithm...and each point in a d-dimensional space, a naive k-NN search needs to do a linear scan of T for every single query q, and thus the computational time...algorithm based on partition trees with priority search , and give an expected query time O((1/)d log n). But the constant in the O((1/)d log n

  16. KSC-03pd1074

    NASA Image and Video Library

    2003-04-14

    KENNEDY SPACE CENTER, FLA. -- A worker in the KSC RLV Hangar, collection site of the debris from Columbia, examines a recovered piece before bagging it. Shipped from Barksdale Air Force Base, Shreveport, La., more than 70,000 items, weighing 78,000 pounds, about 36 percent of the Shuttle by weight, have been delivered to KSC for use in the mishap investigation. Ground teams have completed 78 percent of their primary search area, and airborne crews finished 80 percent of their assigned area. Search teams have completed 98 percent of the underwater searches in Lake Nacogdoches and Toledo Bend Reservoir.

  17. Space-based infrared near-Earth asteroid survey simulation

    NASA Astrophysics Data System (ADS)

    Tedesco, Edward F.; Muinonen, Karri; Price, Stephan D.

    2000-08-01

    We demonstrate the efficiency and effectiveness of using a satellite-based sensor with visual and infrared focal plane arrays to search for that subclass of Near-Earth Objects (NEOs) with orbits largely interior to the Earth's orbit. A space-based visual-infrared system could detect approximately 97% of the Atens and 64% of the IEOs (the, as yet hypothetical, objects with orbits entirely Interior to Earth's Orbit) with diameters greater than 1 km in a 5-year mission and obtain orbits, albedos and diameters for all of them; the respective percentages with diameters greater than 500 m are 90% and 60%. Incidental to the search for Atens and IEOs, we found that 70% of all Earth-Crossing Asteroids (ECAs) with diameters greater than 1 km, and 50% of those with diameters greater than 500 m, would also be detected. These are the results of a feasibility study; optimizing the concept presented would result in greater levels of completion. The cost of such a space-based system is estimated to be within a factor of two of the cost of a ground-based system capable of about 21st magnitude, which would provide only orbits and absolute magnitudes and require decades to reach these completeness levels. In addition to obtaining albedos and diameters for the asteroids discovered in the space-based survey, a space-based visual-infrared system would obtain the same information on virtually all NEOs of interest. A combined space-based and ground-based survey would be highly synergistic in that each can concentrate on what it does best and each complements the strengths of the other. The ground-based system would discover the majority of Amors and Apollos and provide long-term follow-up on all the NEOs discovered in both surveys. The space-based system would discover the majority of Atens and IEOs and provide albedos and diameters on all the NEOs discovered in both surveys and most previously discovered NEOs as well. Thus, an integrated ground- and space-based system could accomplish the Spaceguard goal in less time than the ground-based system alone. In addition, the result would be a catalog containing well-determined orbits, diameters, and albedos for the majority of ECAs with diameters greater than 500 m.

  18. Discovering discovery patterns with Predication-based Semantic Indexing.

    PubMed

    Cohen, Trevor; Widdows, Dominic; Schvaneveldt, Roger W; Davies, Peter; Rindflesch, Thomas C

    2012-12-01

    In this paper we utilize methods of hyperdimensional computing to mediate the identification of therapeutically useful connections for the purpose of literature-based discovery. Our approach, named Predication-based Semantic Indexing, is utilized to identify empirically sequences of relationships known as "discovery patterns", such as "drug x INHIBITS substance y, substance y CAUSES disease z" that link pharmaceutical substances to diseases they are known to treat. These sequences are derived from semantic predications extracted from the biomedical literature by the SemRep system, and subsequently utilized to direct the search for known treatments for a held out set of diseases. Rapid and efficient inference is accomplished through the application of geometric operators in PSI space, allowing for both the derivation of discovery patterns from a large set of known TREATS relationships, and the application of these discovered patterns to constrain search for therapeutic relationships at scale. Our results include the rediscovery of discovery patterns that have been constructed manually by other authors in previous research, as well as the discovery of a set of previously unrecognized patterns. The application of these patterns to direct search through PSI space results in better recovery of therapeutic relationships than is accomplished with models based on distributional statistics alone. These results demonstrate the utility of efficient approximate inference in geometric space as a means to identify therapeutic relationships, suggesting a role of these methods in drug repurposing efforts. In addition, the results provide strong support for the utility of the discovery pattern approach pioneered by Hristovski and his colleagues. Copyright © 2012 Elsevier Inc. All rights reserved.

  19. Discovering discovery patterns with predication-based Semantic Indexing

    PubMed Central

    Cohen, Trevor; Widdows, Dominic; Schvaneveldt, Roger W.; Davies, Peter; Rindflesch, Thomas C.

    2012-01-01

    In this paper we utilize methods of hyperdimensional computing to mediate the identification of therapeutically useful connections for the purpose of literature-based discovery. Our approach, named Predication-based Semantic Indexing, is utilized to identify empirically sequences of relationships known as “discovery patterns”, such as “drug x INHIBITS substance y, substance y CAUSES disease z” that link pharmaceutical substances to diseases they are known to treat. These sequences are derived from semantic predications extracted from the biomedical literature by the SemRep system, and subsequently utilized to direct the search for known treatments for a held out set of diseases. Rapid and efficient inference is accomplished through the application of geometric operators in PSI space, allowing for both the derivation of discovery patterns from a large set of known TREATS relationships, and the application of these discovered patterns to constrain search for therapeutic relationships at scale. Our results include the rediscovery of discovery patterns that have been constructed manually by other authors in previous research, as well as the discovery of a set of previously unrecognized patterns. The application of these patterns to direct search through PSI space results in better recovery of therapeutic relationships than is accomplished with models based on distributional statistics alone. These results demonstrate the utility of efficient approximate inference in geometric space as a means to identify therapeutic relationships, suggesting a role of these methods in drug repurposing efforts. In addition, the results provide strong support for the utility of the discovery pattern approach pioneered by Hristovski and his colleagues. PMID:22841748

  20. An Elitist Multiobjective Tabu Search for Optimal Design of Groundwater Remediation Systems.

    PubMed

    Yang, Yun; Wu, Jianfeng; Wang, Jinguo; Zhou, Zhifang

    2017-11-01

    This study presents a new multiobjective evolutionary algorithm (MOEA), the elitist multiobjective tabu search (EMOTS), and incorporates it with MODFLOW/MT3DMS to develop a groundwater simulation-optimization (SO) framework based on modular design for optimal design of groundwater remediation systems using pump-and-treat (PAT) technique. The most notable improvement of EMOTS over the original multiple objective tabu search (MOTS) lies in the elitist strategy, selection strategy, and neighborhood move rule. The elitist strategy is to maintain all nondominated solutions within later search process for better converging to the true Pareto front. The elitism-based selection operator is modified to choose two most remote solutions from current candidate list as seed solutions to increase the diversity of searching space. Moreover, neighborhood solutions are uniformly generated using the Latin hypercube sampling (LHS) in the bounded neighborhood space around each seed solution. To demonstrate the performance of the EMOTS, we consider a synthetic groundwater remediation example. Problem formulations consist of two objective functions with continuous decision variables of pumping rates while meeting water quality requirements. Especially, sensitivity analysis is evaluated through the synthetic case for determination of optimal combination of the heuristic parameters. Furthermore, the EMOTS is successfully applied to evaluate remediation options at the field site of the Massachusetts Military Reservation (MMR) in Cape Cod, Massachusetts. With both the hypothetical and the large-scale field remediation sites, the EMOTS-based SO framework is demonstrated to outperform the original MOTS in achieving the performance metrics of optimality and diversity of nondominated frontiers with desirable stability and robustness. © 2017, National Ground Water Association.

  1. Search space mapping: getting a picture of coherent laser control.

    PubMed

    Shane, Janelle C; Lozovoy, Vadim V; Dantus, Marcos

    2006-10-12

    Search space mapping is a method for quickly visualizing the experimental parameters that can affect the outcome of a coherent control experiment. We demonstrate experimental search space mapping for the selective fragmentation and ionization of para-nitrotoluene and show how this method allows us to gather information about the dominant trends behind our achieved control.

  2. The ``Missing Compounds'' affair in functionality-driven material discovery

    NASA Astrophysics Data System (ADS)

    Zunger, Alex

    2014-03-01

    In the paradigm of ``data-driven discovery,'' underlying one of the leading streams of the Material Genome Initiative (MGI), one attempts to compute high-throughput style as many of the properties of as many of the N (about 10**5- 10**6) compounds listed in databases of previously known compounds. One then inspects the ensuing Big Data, searching for useful trends. The alternative and complimentary paradigm of ``functionality-directed search and optimization'' used here, searches instead for the n much smaller than N configurations and compositions that have the desired value of the target functionality. Examples include the use of genetic and other search methods that optimize the structure or identity of atoms on lattice sites, using atomistic electronic structure (such as first-principles) approaches in search of a given electronic property. This addresses a few of the bottlenecks that have faced the alternative, data-driven/high throughput/Big Data philosophy: (i) When the configuration space is theoretically of infinite size, building a complete data base as in data-driven discovery is impossible, yet searching for the optimum functionality, is still a well-posed problem. (ii) The configuration space that we explore might include artificially grown, kinetically stabilized systems (such as 2D layer stacks; superlattices; colloidal nanostructures; Fullerenes) that are not listed in compound databases (used by data-driven approaches), (iii) a large fraction of chemically plausible compounds have not been experimentally synthesized, so in the data-driven approach these are often skipped. In our approach we search explicitly for such ``Missing Compounds''. It is likely that many interesting material properties will be found in cases (i)-(iii) that elude high throughput searches based on databases encapsulating existing knowledge. I will illustrate (a) Functionality-driven discovery of topological insulators and valley-split quantum-computer semiconductors, as well as (b) Use of ``first principles thermodynamics'' to discern which of the previously ``missing compounds'' should, in fact exist and in which structure. Synthesis efforts by Poeppelmeier group at NU realized 20 never-before-made half-Heusler compounds out of the 20 predicted ones, in our predicted space groups. This type of theory-led experimental search of designed materials with target functionalities may shorten the current process of discovery of interesting functional materials. Supported by DOE ,Office of Science, Energy Frontier Research Center for Inverse Design

  3. Engineering calculations for communications satellite systems planning

    NASA Technical Reports Server (NTRS)

    Reilly, C. H.; Levis, C. A.; Mount-Campbell, C.; Gonsalvez, D. J.; Wang, C. W.; Yamamura, Y.

    1985-01-01

    Computer-based techniques for optimizing communications-satellite orbit and frequency assignments are discussed. A gradient-search code was tested against a BSS scenario derived from the RARC-83 data. Improvement was obtained, but each iteration requires about 50 minutes of IBM-3081 CPU time. Gradient-search experiments on a small FSS test problem, consisting of a single service area served by 8 satellites, showed quickest convergence when the satellites were all initially placed near the center of the available orbital arc with moderate spacing. A transformation technique is proposed for investigating the surface topography of the objective function used in the gradient-search method. A new synthesis approach is based on transforming single-entry interference constraints into corresponding constraints on satellite spacings. These constraints are used with linear objective functions to formulate the co-channel orbital assignment task as a linear-programming (LP) problem or mixed integer programming (MIP) problem. Globally optimal solutions are always found with the MIP problems, but not necessarily with the LP problems. The MIP solutions can be used to evaluate the quality of the LP solutions. The initial results are very encouraging.

  4. Dimension- and space-based intertrial effects in visual pop-out search: modulation by task demands for focal-attentional processing.

    PubMed

    Krummenacher, Joseph; Müller, Hermann J; Zehetleitner, Michael; Geyer, Thomas

    2009-03-01

    Two experiments compared reaction times (RTs) in visual search for singleton feature targets defined, variably across trials, in either the color or the orientation dimension. Experiment 1 required observers to simply discern target presence versus absence (simple-detection task); Experiment 2 required them to respond to a detection-irrelevant form attribute of the target (compound-search task). Experiment 1 revealed a marked dimensional intertrial effect of 34 ms for an target defined in a changed versus a repeated dimension, and an intertrial target distance effect, with an 4-ms increase in RTs (per unit of distance) as the separation of the current relative to the preceding target increased. Conversely, in Experiment 2, the dimension change effect was markedly reduced (11 ms), while the intertrial target distance effect was markedly increased (11 ms per unit of distance). The results suggest that dimension change/repetition effects are modulated by the amount of attentional focusing required by the task, with space-based attention altering the integration of dimension-specific feature contrast signals at the level of the overall-saliency map.

  5. Discovery of gigantic molecular nanostructures using a flow reaction array as a search engine

    PubMed Central

    Zang, Hong-Ying; de la Oliva, Andreu Ruiz; Miras, Haralampos N.; Long, De-Liang; McBurney, Roy T.; Cronin, Leroy

    2014-01-01

    The discovery of gigantic molecular nanostructures like coordination and polyoxometalate clusters is extremely time-consuming since a vast combinatorial space needs to be searched, and even a systematic and exhaustive exploration of the available synthetic parameters relies on a great deal of serendipity. Here we present a synthetic methodology that combines a flow reaction array and algorithmic control to give a chemical ‘real-space’ search engine leading to the discovery and isolation of a range of new molecular nanoclusters based on [Mo2O2S2]2+-based building blocks with either fourfold (C4) or fivefold (C5) symmetry templates and linkers. This engine leads us to isolate six new nanoscale cluster compounds: 1, {Mo10(C5)}; 2, {Mo14(C4)4(C5)2}; 3, {Mo60(C4)10}; 4, {Mo48(C4)6}; 5, {Mo34(C4)4}; 6, {Mo18(C4)9}; in only 200 automated experiments from a parameter space spanning ~5 million possible combinations. PMID:24770632

  6. Design of transonic airfoil sections using a similarity theory

    NASA Technical Reports Server (NTRS)

    Nixon, D.

    1978-01-01

    A study of the available methods for transonic airfoil and wing design indicates that the most powerful technique is the numerical optimization procedure. However, the computer time for this method is relatively large because of the amount of computation required in the searches during optimization. The optimization method requires that base and calibration solutions be computed to determine a minimum drag direction. The design space is then computationally searched in this direction; it is these searches that dominate the computation time. A recent similarity theory allows certain transonic flows to be calculated rapidly from the base and calibration solutions. In this paper the application of the similarity theory to design problems is examined with the object of at least partially eliminating the costly searches of the design optimization method. An example of an airfoil design is presented.

  7. A Novel Particle Swarm Optimization Approach for Grid Job Scheduling

    NASA Astrophysics Data System (ADS)

    Izakian, Hesam; Tork Ladani, Behrouz; Zamanifar, Kamran; Abraham, Ajith

    This paper represents a Particle Swarm Optimization (PSO) algorithm, for grid job scheduling. PSO is a population-based search algorithm based on the simulation of the social behavior of bird flocking and fish schooling. Particles fly in problem search space to find optimal or near-optimal solutions. In this paper we used a PSO approach for grid job scheduling. The scheduler aims at minimizing makespan and flowtime simultaneously. Experimental studies show that the proposed novel approach is more efficient than the PSO approach reported in the literature.

  8. Visibiome: an efficient microbiome search engine based on a scalable, distributed architecture.

    PubMed

    Azman, Syafiq Kamarul; Anwar, Muhammad Zohaib; Henschel, Andreas

    2017-07-24

    Given the current influx of 16S rRNA profiles of microbiota samples, it is conceivable that large amounts of them eventually are available for search, comparison and contextualization with respect to novel samples. This process facilitates the identification of similar compositional features in microbiota elsewhere and therefore can help to understand driving factors for microbial community assembly. We present Visibiome, a microbiome search engine that can perform exhaustive, phylogeny based similarity search and contextualization of user-provided samples against a comprehensive dataset of 16S rRNA profiles environments, while tackling several computational challenges. In order to scale to high demands, we developed a distributed system that combines web framework technology, task queueing and scheduling, cloud computing and a dedicated database server. To further ensure speed and efficiency, we have deployed Nearest Neighbor search algorithms, capable of sublinear searches in high-dimensional metric spaces in combination with an optimized Earth Mover Distance based implementation of weighted UniFrac. The search also incorporates pairwise (adaptive) rarefaction and optionally, 16S rRNA copy number correction. The result of a query microbiome sample is the contextualization against a comprehensive database of microbiome samples from a diverse range of environments, visualized through a rich set of interactive figures and diagrams, including barchart-based compositional comparisons and ranking of the closest matches in the database. Visibiome is a convenient, scalable and efficient framework to search microbiomes against a comprehensive database of environmental samples. The search engine leverages a popular but computationally expensive, phylogeny based distance metric, while providing numerous advantages over the current state of the art tool.

  9. Efficient Fingercode Classification

    NASA Astrophysics Data System (ADS)

    Sun, Hong-Wei; Law, Kwok-Yan; Gollmann, Dieter; Chung, Siu-Leung; Li, Jian-Bin; Sun, Jia-Guang

    In this paper, we present an efficient fingerprint classification algorithm which is an essential component in many critical security application systems e. g. systems in the e-government and e-finance domains. Fingerprint identification is one of the most important security requirements in homeland security systems such as personnel screening and anti-money laundering. The problem of fingerprint identification involves searching (matching) the fingerprint of a person against each of the fingerprints of all registered persons. To enhance performance and reliability, a common approach is to reduce the search space by firstly classifying the fingerprints and then performing the search in the respective class. Jain et al. proposed a fingerprint classification algorithm based on a two-stage classifier, which uses a K-nearest neighbor classifier in its first stage. The fingerprint classification algorithm is based on the fingercode representation which is an encoding of fingerprints that has been demonstrated to be an effective fingerprint biometric scheme because of its ability to capture both local and global details in a fingerprint image. We enhance this approach by improving the efficiency of the K-nearest neighbor classifier for fingercode-based fingerprint classification. Our research firstly investigates the various fast search algorithms in vector quantization (VQ) and the potential application in fingerprint classification, and then proposes two efficient algorithms based on the pyramid-based search algorithms in VQ. Experimental results on DB1 of FVC 2004 demonstrate that our algorithms can outperform the full search algorithm and the original pyramid-based search algorithms in terms of computational efficiency without sacrificing accuracy.

  10. Cross-indexing of binary SIFT codes for large-scale image search.

    PubMed

    Liu, Zhen; Li, Houqiang; Zhang, Liyan; Zhou, Wengang; Tian, Qi

    2014-05-01

    In recent years, there has been growing interest in mapping visual features into compact binary codes for applications on large-scale image collections. Encoding high-dimensional data as compact binary codes reduces the memory cost for storage. Besides, it benefits the computational efficiency since the computation of similarity can be efficiently measured by Hamming distance. In this paper, we propose a novel flexible scale invariant feature transform (SIFT) binarization (FSB) algorithm for large-scale image search. The FSB algorithm explores the magnitude patterns of SIFT descriptor. It is unsupervised and the generated binary codes are demonstrated to be dispreserving. Besides, we propose a new searching strategy to find target features based on the cross-indexing in the binary SIFT space and original SIFT space. We evaluate our approach on two publicly released data sets. The experiments on large-scale partial duplicate image retrieval system demonstrate the effectiveness and efficiency of the proposed algorithm.

  11. Creating targeted initial populations for genetic product searches in heterogeneous markets

    NASA Astrophysics Data System (ADS)

    Foster, Garrett; Turner, Callaway; Ferguson, Scott; Donndelinger, Joseph

    2014-12-01

    Genetic searches often use randomly generated initial populations to maximize diversity and enable a thorough sampling of the design space. While many of these initial configurations perform poorly, the trade-off between population diversity and solution quality is typically acceptable for small-scale problems. Navigating complex design spaces, however, often requires computationally intelligent approaches that improve solution quality. This article draws on research advances in market-based product design and heuristic optimization to strategically construct 'targeted' initial populations. Targeted initial designs are created using respondent-level part-worths estimated from discrete choice models. These designs are then integrated into a traditional genetic search. Two case study problems of differing complexity are presented to illustrate the benefits of this approach. In both problems, targeted populations lead to computational savings and product configurations with improved market share of preferences. Future research efforts to tailor this approach and extend it towards multiple objectives are also discussed.

  12. Very large virtual compound spaces: construction, storage and utility in drug discovery.

    PubMed

    Peng, Zhengwei

    2013-09-01

    Recent activities in the construction, storage and exploration of very large virtual compound spaces are reviewed by this report. As expected, the systematic exploration of compound spaces at the highest resolution (individual atoms and bonds) is intrinsically intractable. By contrast, by staying within a finite number of reactions and a finite number of reactants or fragments, several virtual compound spaces have been constructed in a combinatorial fashion with sizes ranging from 10(11)11 to 10(20)20 compounds. Multiple search methods have been developed to perform searches (e.g. similarity, exact and substructure) into those compound spaces without the need for full enumeration. The up-front investment spent on synthetic feasibility during the construction of some of those virtual compound spaces enables a wider adoption by medicinal chemists to design and synthesize important compounds for drug discovery. Recent activities in the area of exploring virtual compound spaces via the evolutionary approach based on Genetic Algorithm also suggests a positive shift of focus from method development to workflow, integration and ease of use, all of which are required for this approach to be widely adopted by medicinal chemists.

  13. The use of a genetic algorithm-based search strategy in geostatistics: application to a set of anisotropic piezometric head data

    NASA Astrophysics Data System (ADS)

    Abedini, M. J.; Nasseri, M.; Burn, D. H.

    2012-04-01

    In any geostatistical study, an important consideration is the choice of an appropriate, repeatable, and objective search strategy that controls the nearby samples to be included in the location-specific estimation procedure. Almost all geostatistical software available in the market puts the onus on the user to supply search strategy parameters in a heuristic manner. These parameters are solely controlled by geographical coordinates that are defined for the entire area under study, and the user has no guidance as to how to choose these parameters. The main thesis of the current study is that the selection of search strategy parameters has to be driven by data—both the spatial coordinates and the sample values—and cannot be chosen beforehand. For this purpose, a genetic-algorithm-based ordinary kriging with moving neighborhood technique is proposed. The search capability of a genetic algorithm is exploited to search the feature space for appropriate, either local or global, search strategy parameters. Radius of circle/sphere and/or radii of standard or rotated ellipse/ellipsoid are considered as the decision variables to be optimized by GA. The superiority of GA-based ordinary kriging is demonstrated through application to the Wolfcamp Aquifer piezometric head data. Assessment of numerical results showed that definition of search strategy parameters based on both geographical coordinates and sample values improves cross-validation statistics when compared with that based on geographical coordinates alone. In the case of a variable search neighborhood for each estimation point, optimization of local search strategy parameters for an elliptical support domain—the orientation of which is dictated by anisotropic axes—via GA was able to capture the dynamics of piezometric head in west Texas/New Mexico in an efficient way.

  14. SPACE WARPS- II. New gravitational lens candidates from the CFHTLS discovered through citizen science

    NASA Astrophysics Data System (ADS)

    More, Anupreeta; Verma, Aprajita; Marshall, Philip J.; More, Surhud; Baeten, Elisabeth; Wilcox, Julianne; Macmillan, Christine; Cornen, Claude; Kapadia, Amit; Parrish, Michael; Snyder, Chris; Davis, Christopher P.; Gavazzi, Raphael; Lintott, Chris J.; Simpson, Robert; Miller, David; Smith, Arfon M.; Paget, Edward; Saha, Prasenjit; Küng, Rafael; Collett, Thomas E.

    2016-01-01

    We report the discovery of 29 promising (and 59 total) new lens candidates from the Canada-France-Hawaii Telescope Legacy Survey (CFHTLS) based on about 11 million classifications performed by citizen scientists as part of the first SPACE WARPS lens search. The goal of the blind lens search was to identify lens candidates missed by robots (the RINGFINDER on galaxy scales and ARCFINDER on group/cluster scales) which had been previously used to mine the CFHTLS for lenses. We compare some properties of the samples detected by these algorithms to the SPACE WARPS sample and find them to be broadly similar. The image separation distribution calculated from the SPACE WARPS sample shows that previous constraints on the average density profile of lens galaxies are robust. SPACE WARPS recovers about 65 per cent of known lenses, while the new candidates show a richer variety compared to those found by the two robots. This detection rate could be increased to 80 per cent by only using classifications performed by expert volunteers (albeit at the cost of a lower purity), indicating that the training and performance calibration of the citizen scientists is very important for the success of SPACE WARPS. In this work we present the SIMCT pipeline, used for generating in situ a sample of realistic simulated lensed images. This training sample, along with the false positives identified during the search, has a legacy value for testing future lens-finding algorithms. We make the pipeline and the training set publicly available.

  15. The telecommunications and data acquisition progress report 42-64

    NASA Technical Reports Server (NTRS)

    Renzetti, N. A. (Editor)

    1981-01-01

    Progress in the development and operations of the Deep Space Network is reported. Developments in Earth-based radio technology as applied to geodynamics, astrophysics, and the radio search for extraterrestrial intelligence are included.

  16. A sub-space greedy search method for efficient Bayesian Network inference.

    PubMed

    Zhang, Qing; Cao, Yong; Li, Yong; Zhu, Yanming; Sun, Samuel S M; Guo, Dianjing

    2011-09-01

    Bayesian network (BN) has been successfully used to infer the regulatory relationships of genes from microarray dataset. However, one major limitation of BN approach is the computational cost because the calculation time grows more than exponentially with the dimension of the dataset. In this paper, we propose a sub-space greedy search method for efficient Bayesian Network inference. Particularly, this method limits the greedy search space by only selecting gene pairs with higher partial correlation coefficients. Using both synthetic and real data, we demonstrate that the proposed method achieved comparable results with standard greedy search method yet saved ∼50% of the computational time. We believe that sub-space search method can be widely used for efficient BN inference in systems biology. Copyright © 2011 Elsevier Ltd. All rights reserved.

  17. The search space of the rat during whisking behavior.

    PubMed

    Huet, Lucie A; Hartmann, Mitra J Z

    2014-09-15

    Rodents move their vibrissae rhythmically to tactually explore their surroundings. We used a three-dimensional model of the vibrissal array to quantify the rat's 'search space' during whisking. Search space was quantified either as the volume encompassed by the array or as the surface formed by the vibrissal tips. At rest, the average position of the vibrissal tips lies near the rat's mouth, and the tips are all approximately equidistant from the midpoint between the rat's eyes, suggesting spatial registration with the visual system. The intrinsic curvature of the vibrissae greatly increases the volume encompassed by the array, and during a protraction, roll and elevation changes have strong effects on the trajectories of the vibrissal tips. The size of the rat's search space--as measured either by the volume of the array or by the surface area formed by the vibrissal tips--was surprisingly unaffected by protraction angle. In contrast, search space was strongly correlated with the 'spread' of the array, defined as the angle between rostral and caudal-most whiskers. We draw two conclusions: first, that with some caveats, spread can be used as a proxy for changes in search space, and second, in order to change its sensing resolution, the rat must differentially control rostral and caudal vibrissae. Finally, we show that behavioral data can be incorporated into the three-dimensional model to visualize changes in vibrissal search space and sensing resolution during natural exploratory whisking. © 2014. Published by The Company of Biologists Ltd.

  18. VLBI-based Products - Naval Oceanography Portal

    Science.gov Websites

    section Advanced Search... Sections Home Time Earth Orientation Astronomy Meteorology Oceanography Ice You terrestrial reference frames and to predict the variable orientation of the Earth in three-dimensional space antennas that define a VLBI-based Terrestrial Reference Frame (TRF) and the Earth Orientation Parameters

  19. Time-Delay Interferometry for Space-based Gravitational Wave Searches

    NASA Technical Reports Server (NTRS)

    Armstrong, J.; Estabrook, F.; Tinto, M.

    1999-01-01

    Ground-based, equal-arm-length laser interferometers are being built to measure high-frequency astrophysical graviatational waves. Because of the arm-length equality, laser light experiences the same delay in each arm and thus phase or frequency noise from the laser itself precisely cancels at the photodetector.

  20. Features Extraction of Flotation Froth Images and BP Neural Network Soft-Sensor Model of Concentrate Grade Optimized by Shuffled Cuckoo Searching Algorithm

    PubMed Central

    Wang, Jie-sheng; Han, Shuang; Shen, Na-na; Li, Shu-xia

    2014-01-01

    For meeting the forecasting target of key technology indicators in the flotation process, a BP neural network soft-sensor model based on features extraction of flotation froth images and optimized by shuffled cuckoo search algorithm is proposed. Based on the digital image processing technique, the color features in HSI color space, the visual features based on the gray level cooccurrence matrix, and the shape characteristics based on the geometric theory of flotation froth images are extracted, respectively, as the input variables of the proposed soft-sensor model. Then the isometric mapping method is used to reduce the input dimension, the network size, and learning time of BP neural network. Finally, a shuffled cuckoo search algorithm is adopted to optimize the BP neural network soft-sensor model. Simulation results show that the model has better generalization results and prediction accuracy. PMID:25133210

  1. RAG-3D: A search tool for RNA 3D substructures

    DOE PAGES

    Zahran, Mai; Sevim Bayrak, Cigdem; Elmetwaly, Shereef; ...

    2015-08-24

    In this study, to address many challenges in RNA structure/function prediction, the characterization of RNA's modular architectural units is required. Using the RNA-As-Graphs (RAG) database, we have previously explored the existence of secondary structure (2D) submotifs within larger RNA structures. Here we present RAG-3D—a dataset of RNA tertiary (3D) structures and substructures plus a web-based search tool—designed to exploit graph representations of RNAs for the goal of searching for similar 3D structural fragments. The objects in RAG-3D consist of 3D structures translated into 3D graphs, cataloged based on the connectivity between their secondary structure elements. Each graph is additionally describedmore » in terms of its subgraph building blocks. The RAG-3D search tool then compares a query RNA 3D structure to those in the database to obtain structurally similar structures and substructures. This comparison reveals conserved 3D RNA features and thus may suggest functional connections. Though RNA search programs based on similarity in sequence, 2D, and/or 3D structural elements are available, our graph-based search tool may be advantageous for illuminating similarities that are not obvious; using motifs rather than sequence space also reduces search times considerably. Ultimately, such substructuring could be useful for RNA 3D structure prediction, structure/function inference and inverse folding.« less

  2. RAG-3D: a search tool for RNA 3D substructures

    PubMed Central

    Zahran, Mai; Sevim Bayrak, Cigdem; Elmetwaly, Shereef; Schlick, Tamar

    2015-01-01

    To address many challenges in RNA structure/function prediction, the characterization of RNA's modular architectural units is required. Using the RNA-As-Graphs (RAG) database, we have previously explored the existence of secondary structure (2D) submotifs within larger RNA structures. Here we present RAG-3D—a dataset of RNA tertiary (3D) structures and substructures plus a web-based search tool—designed to exploit graph representations of RNAs for the goal of searching for similar 3D structural fragments. The objects in RAG-3D consist of 3D structures translated into 3D graphs, cataloged based on the connectivity between their secondary structure elements. Each graph is additionally described in terms of its subgraph building blocks. The RAG-3D search tool then compares a query RNA 3D structure to those in the database to obtain structurally similar structures and substructures. This comparison reveals conserved 3D RNA features and thus may suggest functional connections. Though RNA search programs based on similarity in sequence, 2D, and/or 3D structural elements are available, our graph-based search tool may be advantageous for illuminating similarities that are not obvious; using motifs rather than sequence space also reduces search times considerably. Ultimately, such substructuring could be useful for RNA 3D structure prediction, structure/function inference and inverse folding. PMID:26304547

  3. RAG-3D: A search tool for RNA 3D substructures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zahran, Mai; Sevim Bayrak, Cigdem; Elmetwaly, Shereef

    In this study, to address many challenges in RNA structure/function prediction, the characterization of RNA's modular architectural units is required. Using the RNA-As-Graphs (RAG) database, we have previously explored the existence of secondary structure (2D) submotifs within larger RNA structures. Here we present RAG-3D—a dataset of RNA tertiary (3D) structures and substructures plus a web-based search tool—designed to exploit graph representations of RNAs for the goal of searching for similar 3D structural fragments. The objects in RAG-3D consist of 3D structures translated into 3D graphs, cataloged based on the connectivity between their secondary structure elements. Each graph is additionally describedmore » in terms of its subgraph building blocks. The RAG-3D search tool then compares a query RNA 3D structure to those in the database to obtain structurally similar structures and substructures. This comparison reveals conserved 3D RNA features and thus may suggest functional connections. Though RNA search programs based on similarity in sequence, 2D, and/or 3D structural elements are available, our graph-based search tool may be advantageous for illuminating similarities that are not obvious; using motifs rather than sequence space also reduces search times considerably. Ultimately, such substructuring could be useful for RNA 3D structure prediction, structure/function inference and inverse folding.« less

  4. The Delta Scuti star 38 Eri from the ground and from space

    NASA Astrophysics Data System (ADS)

    Paparó, M.; Kolláth, Z.; Shobbrook, R. R.; Matthews, J. M.; Antoci, V.; Benkő, J. M.; Park, N.-K.; Mirtorabi, M. T.; Luedeke, K.; Kusakin, A.; Bognár, Zs; Sódor, Á.; García-Hernández, A.; Peña, J. H.; Kuschnig, R.; Moffat, A. F. J.; Rowe, J.; Rucinski, S. M.; Sasselov, D.; Weiss, W. W.

    2018-07-01

    We present and discuss the pulsational characteristics of the Delta Scuti star 38 Eri from photometric data obtained at two widely spaced epochs, partly from the ground (1998) and partly from space (MOST, 2011). We found 18 frequencies resolving the discrepancy among the previously published frequencies. Some of the frequencies appeared with different relative amplitudes at two epochs, however, we carried out investigation for amplitude variability for only the MOST (Microvariability and Oscillation of STars) data. Amplitude variability was found for one of the three frequencies that satisfy the necessary frequency criteria for linear-combination or resonant-mode coupling. Checking the criteria of beating and resonant-mode coupling we excluded them as possible reason for amplitude variability. The two recently developed methods of rotational splitting and sequence search were applied to find regular spacings based only on frequencies. Doublets or incomplete multiplets with l = 1, 2, and 3 were found in the rotational splitting search. In the sequence search method we identified four sequences. The averaged spacing, probably a combination of the large separation and the rotational frequency, is 1.724 ± 0.092 d-1. Using the spacing and the scaling relation \\bar{ρ}= [0.0394, 0.0554] g cm-3 was derived. The shift of the sequences proved to be the integer multiple of the rotational splitting spacing. Using the precise MOST frequencies and multicolour photometry in a hybrid way, we identified four modes with l = 1, two modes with l = 2, two modes with l = 3, and two modes as l = 0 radial modes.

  5. Results of a Hubble Space Telescope Search for Natural Satellites of Dwarf Planet 1 Ceres

    NASA Astrophysics Data System (ADS)

    DeMario, Benjamin; Schmidt, Britney E.; Mutchler, Maximilian J.; Li, Jian-Yang; McFadden, Lucy Ann; McLean, Brian; Russell, Christopher T.

    2016-10-01

    In order to prepare for the arrival of the Dawn spacecraft at Ceres, a search for satellites was undertaken by the Hubble Space Telescope (HST) to enhance the mission science return and to ensure spacecraft safety. Previous satellite searches from ground-based telescopes have detected no satellites within Ceres' Hill sphere down to a size of 3 km (Gehrels et al. 1987) and early HST investigations searched to a limit of 1-2 km (Bieryla et al. 2011). The Wide Field Camera 3 (WFC3) on board the HST was used to image Ceres between 14 April - 28 April 2014. These images cover approximately the inner third of Ceres' Hill sphere, where the Hill sphere is the region surrounding Ceres where stable satellite orbits are possible. We performed a deep search for possible companions orbiting Ceres. No natural companions were located down to a diameter of 48 meters, over most of the Hill sphere to a distance of 205,000 km (434 Ceres radii) from the surface of Ceres. It was impossible to search all the way to the surface of Ceres because of scattered light, but at a distance of 2865 km (five Ceres radii), the search limit was determined to be 925 meters. The absence of a satellite around Ceres could, in the future, support more refined theories about satellite formation or capture mechanisms in the solar system.

  6. Scheduling with genetic algorithms

    NASA Technical Reports Server (NTRS)

    Fennel, Theron R.; Underbrink, A. J., Jr.; Williams, George P. W., Jr.

    1994-01-01

    In many domains, scheduling a sequence of jobs is an important function contributing to the overall efficiency of the operation. At Boeing, we develop schedules for many different domains, including assembly of military and commercial aircraft, weapons systems, and space vehicles. Boeing is under contract to develop scheduling systems for the Space Station Payload Planning System (PPS) and Payload Operations and Integration Center (POIC). These applications require that we respect certain sequencing restrictions among the jobs to be scheduled while at the same time assigning resources to the jobs. We call this general problem scheduling and resource allocation. Genetic algorithms (GA's) offer a search method that uses a population of solutions and benefits from intrinsic parallelism to search the problem space rapidly, producing near-optimal solutions. Good intermediate solutions are probabalistically recombined to produce better offspring (based upon some application specific measure of solution fitness, e.g., minimum flowtime, or schedule completeness). Also, at any point in the search, any intermediate solution can be accepted as a final solution; allowing the search to proceed longer usually produces a better solution while terminating the search at virtually any time may yield an acceptable solution. Many processes are constrained by restrictions of sequence among the individual jobs. For a specific job, other jobs must be completed beforehand. While there are obviously many other constraints on processes, it is these on which we focussed for this research: how to allocate crews to jobs while satisfying job precedence requirements and personnel, and tooling and fixture (or, more generally, resource) requirements.

  7. Properties of heuristic search strategies

    NASA Technical Reports Server (NTRS)

    Vanderbrug, G. J.

    1973-01-01

    A directed graph is used to model the search space of a state space representation with single input operators, an AND/OR is used for problem reduction representations, and a theorem proving graph is used for state space representations with multiple input operators. These three graph models and heuristic strategies for searching them are surveyed. The completeness, admissibility, and optimality properties of search strategies which use the evaluation function f = (1 - omega)g = omega(h) are presented and interpreted using a representation of the search process in the plane. The use of multiple output operators to imply dependent successors, and thus obtain a formalism which includes all three types of representations, is discussed.

  8. Dynamical analysis of Grover's search algorithm in arbitrarily high-dimensional search spaces

    NASA Astrophysics Data System (ADS)

    Jin, Wenliang

    2016-01-01

    We discuss at length the dynamical behavior of Grover's search algorithm for which all the Walsh-Hadamard transformations contained in this algorithm are exposed to their respective random perturbations inducing the augmentation of the dimension of the search space. We give the concise and general mathematical formulations for approximately characterizing the maximum success probabilities of finding a unique desired state in a large unsorted database and their corresponding numbers of Grover iterations, which are applicable to the search spaces of arbitrary dimension and are used to answer a salient open problem posed by Grover (Phys Rev Lett 80:4329-4332, 1998).

  9. Hiding and Searching Strategies of Adult Humans in a Virtual and a Real-Space Room

    ERIC Educational Resources Information Center

    Talbot, Katherine J.; Legge, Eric L. G.; Bulitko, Vadim; Spetch, Marcia L.

    2009-01-01

    Adults searched for or cached three objects in nine hiding locations in a virtual room or a real-space room. In both rooms, the locations selected by participants differed systematically between searching and hiding. Specifically, participants moved farther from origin and dispersed their choices more when hiding objects than when searching for…

  10. A Rigid Image Registration Based on the Nonsubsampled Contourlet Transform and Genetic Algorithms

    PubMed Central

    Meskine, Fatiha; Chikr El Mezouar, Miloud; Taleb, Nasreddine

    2010-01-01

    Image registration is a fundamental task used in image processing to match two or more images taken at different times, from different sensors or from different viewpoints. The objective is to find in a huge search space of geometric transformations, an acceptable accurate solution in a reasonable time to provide better registered images. Exhaustive search is computationally expensive and the computational cost increases exponentially with the number of transformation parameters and the size of the data set. In this work, we present an efficient image registration algorithm that uses genetic algorithms within a multi-resolution framework based on the Non-Subsampled Contourlet Transform (NSCT). An adaptable genetic algorithm for registration is adopted in order to minimize the search space. This approach is used within a hybrid scheme applying the two techniques fitness sharing and elitism. Two NSCT based methods are proposed for registration. A comparative study is established between these methods and a wavelet based one. Because the NSCT is a shift-invariant multidirectional transform, the second method is adopted for its search speeding up property. Simulation results clearly show that both proposed techniques are really promising methods for image registration compared to the wavelet approach, while the second technique has led to the best performance results of all. Moreover, to demonstrate the effectiveness of these methods, these registration techniques have been successfully applied to register SPOT, IKONOS and Synthetic Aperture Radar (SAR) images. The algorithm has been shown to work perfectly well for multi-temporal satellite images as well, even in the presence of noise. PMID:22163672

  11. A rigid image registration based on the nonsubsampled contourlet transform and genetic algorithms.

    PubMed

    Meskine, Fatiha; Chikr El Mezouar, Miloud; Taleb, Nasreddine

    2010-01-01

    Image registration is a fundamental task used in image processing to match two or more images taken at different times, from different sensors or from different viewpoints. The objective is to find in a huge search space of geometric transformations, an acceptable accurate solution in a reasonable time to provide better registered images. Exhaustive search is computationally expensive and the computational cost increases exponentially with the number of transformation parameters and the size of the data set. In this work, we present an efficient image registration algorithm that uses genetic algorithms within a multi-resolution framework based on the Non-Subsampled Contourlet Transform (NSCT). An adaptable genetic algorithm for registration is adopted in order to minimize the search space. This approach is used within a hybrid scheme applying the two techniques fitness sharing and elitism. Two NSCT based methods are proposed for registration. A comparative study is established between these methods and a wavelet based one. Because the NSCT is a shift-invariant multidirectional transform, the second method is adopted for its search speeding up property. Simulation results clearly show that both proposed techniques are really promising methods for image registration compared to the wavelet approach, while the second technique has led to the best performance results of all. Moreover, to demonstrate the effectiveness of these methods, these registration techniques have been successfully applied to register SPOT, IKONOS and Synthetic Aperture Radar (SAR) images. The algorithm has been shown to work perfectly well for multi-temporal satellite images as well, even in the presence of noise.

  12. An evolutionary strategy based on partial imitation for solving optimization problems

    NASA Astrophysics Data System (ADS)

    Javarone, Marco Alberto

    2016-12-01

    In this work we introduce an evolutionary strategy to solve combinatorial optimization tasks, i.e. problems characterized by a discrete search space. In particular, we focus on the Traveling Salesman Problem (TSP), i.e. a famous problem whose search space grows exponentially, increasing the number of cities, up to becoming NP-hard. The solutions of the TSP can be codified by arrays of cities, and can be evaluated by fitness, computed according to a cost function (e.g. the length of a path). Our method is based on the evolution of an agent population by means of an imitative mechanism, we define 'partial imitation'. In particular, agents receive a random solution and then, interacting among themselves, may imitate the solutions of agents with a higher fitness. Since the imitation mechanism is only partial, agents copy only one entry (randomly chosen) of another array (i.e. solution). In doing so, the population converges towards a shared solution, behaving like a spin system undergoing a cooling process, i.e. driven towards an ordered phase. We highlight that the adopted 'partial imitation' mechanism allows the population to generate solutions over time, before reaching the final equilibrium. Results of numerical simulations show that our method is able to find, in a finite time, both optimal and suboptimal solutions, depending on the size of the considered search space.

  13. Research of image retrieval technology based on color feature

    NASA Astrophysics Data System (ADS)

    Fu, Yanjun; Jiang, Guangyu; Chen, Fengying

    2009-10-01

    Recently, with the development of the communication and the computer technology and the improvement of the storage technology and the capability of the digital image equipment, more and more image resources are given to us than ever. And thus the solution of how to locate the proper image quickly and accurately is wanted.The early method is to set up a key word for searching in the database, but now the method has become very difficult when we search much more picture that we need. In order to overcome the limitation of the traditional searching method, content based image retrieval technology was aroused. Now, it is a hot research subject.Color image retrieval is the important part of it. Color is the most important feature for color image retrieval. Three key questions on how to make use of the color characteristic are discussed in the paper: the expression of color, the abstraction of color characteristic and the measurement of likeness based on color. On the basis, the extraction technology of the color histogram characteristic is especially discussed. Considering the advantages and disadvantages of the overall histogram and the partition histogram, a new method based the partition-overall histogram is proposed. The basic thought of it is to divide the image space according to a certain strategy, and then calculate color histogram of each block as the color feature of this block. Users choose the blocks that contain important space information, confirming the right value. The system calculates the distance between the corresponding blocks that users choosed. Other blocks merge into part overall histograms again, and the distance should be calculated. Then accumulate all the distance as the real distance between two pictures. The partition-overall histogram comprehensive utilizes advantages of two methods above, by choosing blocks makes the feature contain more spatial information which can improve performance; the distances between partition-overall histogram make rotating and translation does not change. The HSV color space is used to show color characteristic of image, which is suitable to the visual characteristic of human. Taking advance of human's feeling to color, it quantifies color sector with unequal interval, and get characteristic vector. Finally, it matches the similarity of image with the algorithm of the histogram intersection and the partition-overall histogram. Users can choose a demonstration image to show inquired vision require, and also can adjust several right value through the relevance-feedback method to obtain the best result of search.An image retrieval system based on these approaches is presented. The result of the experiments shows that the image retrieval based on partition-overall histogram can keep the space distribution information while abstracting color feature efficiently, and it is superior to the normal color histograms in precision rate while researching. The query precision rate is more than 95%. In addition, the efficient block expression will lower the complicate degree of the images to be searched, and thus the searching efficiency will be increased. The image retrieval algorithms based on the partition-overall histogram proposed in the paper is efficient and effective.

  14. Patellar segmentation from 3D magnetic resonance images using guided recursive ray-tracing for edge pattern detection

    NASA Astrophysics Data System (ADS)

    Cheng, Ruida; Jackson, Jennifer N.; McCreedy, Evan S.; Gandler, William; Eijkenboom, J. J. F. A.; van Middelkoop, M.; McAuliffe, Matthew J.; Sheehan, Frances T.

    2016-03-01

    The paper presents an automatic segmentation methodology for the patellar bone, based on 3D gradient recalled echo and gradient recalled echo with fat suppression magnetic resonance images. Constricted search space outlines are incorporated into recursive ray-tracing to segment the outer cortical bone. A statistical analysis based on the dependence of information in adjacent slices is used to limit the search in each image to between an outer and inner search region. A section based recursive ray-tracing mechanism is used to skip inner noise regions and detect the edge boundary. The proposed method achieves higher segmentation accuracy (0.23mm) than the current state-of-the-art methods with the average dice similarity coefficient of 96.0% (SD 1.3%) agreement between the auto-segmentation and ground truth surfaces.

  15. A search for spectral lines in gamma-ray bursts using TGRS

    NASA Astrophysics Data System (ADS)

    Kurczynski, P.; Palmer, D.; Seifert, H.; Teegarden, B. J.; Gehrels, N.; Cline, T. L.; Ramaty, R.; Hurley, K.; Madden, N. W.; Pehl, R. H.

    1998-05-01

    We present the results of an ongoing search for narrow spectral lines in gamma-ray burst data. TGRS, the Transient Gamma-Ray Spectrometer aboard the Wind satellite is a high energy-resolution Ge device. Thus it is uniquely situated among the array of space-based, burst sensitive instruments to look for line features in gamma-ray burst spectra. Our search strategy adopts a two tiered approach. An automated `quick look' scan searches spectra for statistically significant deviations from the continuum. We analyzed all possible time accumulations of spectra as well as individual spectra for each burst. Follow-up analysis of potential line candidates uses model fitting with F-test and χ2 tests for statistical significance.

  16. Automation of energy demand forecasting

    NASA Astrophysics Data System (ADS)

    Siddique, Sanzad

    Automation of energy demand forecasting saves time and effort by searching automatically for an appropriate model in a candidate model space without manual intervention. This thesis introduces a search-based approach that improves the performance of the model searching process for econometrics models. Further improvements in the accuracy of the energy demand forecasting are achieved by integrating nonlinear transformations within the models. This thesis introduces machine learning techniques that are capable of modeling such nonlinearity. Algorithms for learning domain knowledge from time series data using the machine learning methods are also presented. The novel search based approach and the machine learning models are tested with synthetic data as well as with natural gas and electricity demand signals. Experimental results show that the model searching technique is capable of finding an appropriate forecasting model. Further experimental results demonstrate an improved forecasting accuracy achieved by using the novel machine learning techniques introduced in this thesis. This thesis presents an analysis of how the machine learning techniques learn domain knowledge. The learned domain knowledge is used to improve the forecast accuracy.

  17. US photovoltaic patents, 1951--1987

    NASA Astrophysics Data System (ADS)

    1988-09-01

    This document contains 2195 U.S. patents on terrestrial photovoltaic (PV) power applications, including systems, components, and materials as well as manufacturing and support functions. The patent entries in this document were issued from 1951 through 1987; no patents were found in 1950. The entries were located by searching USPA, the data base of the U.S. Patent Office. The final search retrieved all patents under the class Batteries, Thermoelectric and Photoelectric, and the subclasses Photoelectric, Testing, and Applications. The search also located patents that contained the words photovoltaic(s) or solar cell(s) and their derivatives. A manual search of the patents in the Solar Energy Research Institute (SERI) patent file augmented the data base search. After the initial list was compiled, most of the patents on the following subjects were excluded: space photovoltaic technology, use of the photovoltaic effect for detectors, and subjects only peripherally concerned with photovoltaics. Some patents on these three subjects were included when it appeared that those inventions might be of use in terrwstrial PV power technologies.

  18. Space communications scheduler: A rule-based approach to adaptive deadline scheduling

    NASA Technical Reports Server (NTRS)

    Straguzzi, Nicholas

    1990-01-01

    Job scheduling is a deceptively complex subfield of computer science. The highly combinatorial nature of the problem, which is NP-complete in nearly all cases, requires a scheduling program to intelligently transverse an immense search tree to create the best possible schedule in a minimal amount of time. In addition, the program must continually make adjustments to the initial schedule when faced with last-minute user requests, cancellations, unexpected device failures, quests, cancellations, unexpected device failures, etc. A good scheduler must be quick, flexible, and efficient, even at the expense of generating slightly less-than-optimal schedules. The Space Communication Scheduler (SCS) is an intelligent rule-based scheduling system. SCS is an adaptive deadline scheduler which allocates modular communications resources to meet an ordered set of user-specified job requests on board the NASA Space Station. SCS uses pattern matching techniques to detect potential conflicts through algorithmic and heuristic means. As a result, the system generates and maintains high density schedules without relying heavily on backtracking or blind search techniques. SCS is suitable for many common real-world applications.

  19. Firms navigating through innovation spaces: a conceptualization of how firms search and perceive technological, market and productive opportunities globally.

    PubMed

    McKelvey, Maureen

    2016-01-01

    The main contribution of this paper is a theory-based conceptual framework of innovation spaces, and how firms must navigate through them to innovate. The concept of innovation systems - at the regional, sectoral and national levels - have been highly influential. Previous literature developing the concept of innovation systems has stressed the importance of institutions, networks and knowledge bases at the regional, sectoral and national levels. This paper primarily draws upon an evolutionary and Schumpeterian economics perspective, in the following three senses. The conceptualization of 'innnovation spaces' focuses upon how and why firm search for innovations is influenced the opportunities within certain geographical contexts. This means that the firm create opportunities and can span different context, but they are influence by the context in term of the access, flow and co-evolution of ideas, resources, technology, people and knowledge, which help stimulate business innovation in terms of products, process and services. The paper concludes with an agenda for future research and especially the need to focus on globalization as a process of intensifying linkages across the globe.

  20. Hybrid grammar-based approach to nonlinear dynamical system identification from biological time series

    NASA Astrophysics Data System (ADS)

    McKinney, B. A.; Crowe, J. E., Jr.; Voss, H. U.; Crooke, P. S.; Barney, N.; Moore, J. H.

    2006-02-01

    We introduce a grammar-based hybrid approach to reverse engineering nonlinear ordinary differential equation models from observed time series. This hybrid approach combines a genetic algorithm to search the space of model architectures with a Kalman filter to estimate the model parameters. Domain-specific knowledge is used in a context-free grammar to restrict the search space for the functional form of the target model. We find that the hybrid approach outperforms a pure evolutionary algorithm method, and we observe features in the evolution of the dynamical models that correspond with the emergence of favorable model components. We apply the hybrid method to both artificially generated time series and experimentally observed protein levels from subjects who received the smallpox vaccine. From the observed data, we infer a cytokine protein interaction network for an individual’s response to the smallpox vaccine.

  1. KSC-03PD-1095

    NASA Technical Reports Server (NTRS)

    2003-01-01

    KENNEDY SPACE CENTER, FLA. -- A member of the Columbia Reconstruction Project Team examines a piece of Columbia debris on the floor of the KSC RLV Hangar. Shipped from Barksdale Air Force Base, Shreveport, La., more than 70,000 items, weighing 78,000 pounds, about 36 percent of the Shuttle by weight, have been delivered to KSC for use in the mishap investigation. Ground teams have completed 78 percent of their primary search area, and airborne crews finished 80 percent of their assigned area. Search teams have completed 98 percent of the underwater searches in Lake Nacogdoches and Toledo Bend Reservoir.

  2. Unexpected series of regular frequency spacing of δ Scuti stars in the non-asymptotic regime - I. The methodology

    DOE PAGES

    Paparo, M.; Benko, J. M.; Hareter, M.; ...

    2016-05-11

    In this study, a sequence search method was developed to search the regular frequency spacing in δ Scuti stars through visual inspection and an algorithmic search. We searched for sequences of quasi-equally spaced frequencies, containing at least four members per sequence, in 90 δ Scuti stars observed by CoRoT. We found an unexpectedly large number of independent series of regular frequency spacing in 77 δ Scuti stars (from one to eight sequences) in the non-asymptotic regime. We introduce the sequence search method presenting the sequences and echelle diagram of CoRoT 102675756 and the structure of the algorithmic search. Four sequencesmore » (echelle ridges) were found in the 5–21 d –1 region where the pairs of the sequences are shifted (between 0.5 and 0.59 d –1) by twice the value of the estimated rotational splitting frequency (0.269 d –1). The general conclusions for the whole sample are also presented in this paper. The statistics of the spacings derived by the sequence search method, by FT (Fourier transform of the frequencies), and the statistics of the shifts are also compared. In many stars more than one almost equally valid spacing appeared. The model frequencies of FG Vir and their rotationally split components were used to formulate the possible explanation that one spacing is the large separation while the other is the sum of the large separation and the rotational frequency. In CoRoT 102675756, the two spacings (2.249 and 1.977 d –1) are in better agreement with the sum of a possible 1.710 d –1 large separation and two or one times, respectively, the value of the rotational frequency.« less

  3. Unexpected series of regular frequency spacing of δ Scuti stars in the non-asymptotic regime - I. The methodology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paparo, M.; Benko, J. M.; Hareter, M.

    In this study, a sequence search method was developed to search the regular frequency spacing in δ Scuti stars through visual inspection and an algorithmic search. We searched for sequences of quasi-equally spaced frequencies, containing at least four members per sequence, in 90 δ Scuti stars observed by CoRoT. We found an unexpectedly large number of independent series of regular frequency spacing in 77 δ Scuti stars (from one to eight sequences) in the non-asymptotic regime. We introduce the sequence search method presenting the sequences and echelle diagram of CoRoT 102675756 and the structure of the algorithmic search. Four sequencesmore » (echelle ridges) were found in the 5–21 d –1 region where the pairs of the sequences are shifted (between 0.5 and 0.59 d –1) by twice the value of the estimated rotational splitting frequency (0.269 d –1). The general conclusions for the whole sample are also presented in this paper. The statistics of the spacings derived by the sequence search method, by FT (Fourier transform of the frequencies), and the statistics of the shifts are also compared. In many stars more than one almost equally valid spacing appeared. The model frequencies of FG Vir and their rotationally split components were used to formulate the possible explanation that one spacing is the large separation while the other is the sum of the large separation and the rotational frequency. In CoRoT 102675756, the two spacings (2.249 and 1.977 d –1) are in better agreement with the sum of a possible 1.710 d –1 large separation and two or one times, respectively, the value of the rotational frequency.« less

  4. Collective search by mobile robots using alpha-beta coordination

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goldsmith, S.Y.; Robinett, R. III

    1998-04-01

    One important application of mobile robots is searching a geographical region to locate the origin of a specific sensible phenomenon. Mapping mine fields, extraterrestrial and undersea exploration, the location of chemical and biological weapons, and the location of explosive devices are just a few potential applications. Teams of robotic bloodhounds have a simple common goal; to converge on the location of the source phenomenon, confirm its intensity, and to remain aggregated around it until directed to take some other action. In cases where human intervention through teleoperation is not possible, the robot team must be deployed in a territory withoutmore » supervision, requiring an autonomous decentralized coordination strategy. This paper presents the alpha beta coordination strategy, a family of collective search algorithms that are based on dynamic partitioning of the robotic team into two complementary social roles according to a sensor based status measure. Robots in the alpha role are risk takers, motivated to improve their status by exploring new regions of the search space. Robots in the beta role are motivated to improve but are conservative, and tend to remain aggregated and stationary until the alpha robots have identified better regions of the search space. Roles are determined dynamically by each member of the team based on the status of the individual robot relative to the current state of the collective. Partitioning the robot team into alpha and beta roles results in a balance between exploration and exploitation, and can yield collective energy savings and improved resistance to sensor noise and defectors. Alpha robots waste energy exploring new territory, and are more sensitive to the effects of ambient noise and to defectors reporting inflated status. Beta robots conserve energy by moving in a direct path to regions of confirmed high status.« less

  5. An automatic scaling method for obtaining the trace and parameters from oblique ionogram based on hybrid genetic algorithm

    NASA Astrophysics Data System (ADS)

    Song, Huan; Hu, Yaogai; Jiang, Chunhua; Zhou, Chen; Zhao, Zhengyu; Zou, Xianjian

    2016-12-01

    Scaling oblique ionogram plays an important role in obtaining ionospheric structure at the midpoint of oblique sounding path. The paper proposed an automatic scaling method to extract the trace and parameters of oblique ionogram based on hybrid genetic algorithm (HGA). The extracted 10 parameters come from F2 layer and Es layer, such as maximum observation frequency, critical frequency, and virtual height. The method adopts quasi-parabolic (QP) model to describe F2 layer's electron density profile that is used to synthesize trace. And it utilizes secant theorem, Martyn's equivalent path theorem, image processing technology, and echoes' characteristics to determine seven parameters' best fit values, and three parameter's initial values in QP model to set up their searching spaces which are the needed input data of HGA. Then HGA searches the three parameters' best fit values from their searching spaces based on the fitness between the synthesized trace and the real trace. In order to verify the performance of the method, 240 oblique ionograms are scaled and their results are compared with manual scaling results and the inversion results of the corresponding vertical ionograms. The comparison results show that the scaling results are accurate or at least adequate 60-90% of the time.

  6. Spike: AI scheduling for Hubble Space Telescope after 18 months of orbital operations

    NASA Technical Reports Server (NTRS)

    Johnston, Mark D.

    1992-01-01

    This paper is a progress report on the Spike scheduling system, developed by the Space Telescope Science Institute for long-term scheduling of Hubble Space Telescope (HST) observations. Spike is an activity-based scheduler which exploits artificial intelligence (AI) techniques for constraint representation and for scheduling search. The system has been in operational use since shortly after HST launch in April 1990. Spike was adopted for several other satellite scheduling problems; of particular interest was the demonstration that the Spike framework is sufficiently flexible to handle both long-term and short-term scheduling, on timescales of years down to minutes or less. We describe the recent progress made in scheduling search techniques, the lessons learned from early HST operations, and the application of Spike to other problem domains. We also describe plans for the future evolution of the system.

  7. IT Challenges for Space Medicine or How do We Protect Medical Information and Still Get Useful Work Done?

    NASA Technical Reports Server (NTRS)

    Johnson-Throop, Kathy A.

    2010-01-01

    Space Medicine provides healthcare services of various types for astronauts throughout their lifetime starting from the time they are selected as astronauts. IT challenges include: protection of private medical information, access from locations both inside and outside NASA, nearly 24x7 access, access during disasters, international partner access, data archiving, off-region backup, secure communication of medical data to people outside the NASA system (e.g. expert consultants), efficient movement of medical record information between locations, search and retrieval of relevant information, and providing all of these services/capabilities within a limited budget. In Space Medicine, we have provided for these in various ways: limit the amount of private medical information stored locally, utilize encryption mechanisms that the international partners can also use, utilize 2-factor authentication, virtualize servers, employ concept-based search, and use of standardized terminologies (SNOMED) and messaging (HL7).

  8. Optimal Fungal Space Searching Algorithms.

    PubMed

    Asenova, Elitsa; Lin, Hsin-Yu; Fu, Eileen; Nicolau, Dan V; Nicolau, Dan V

    2016-10-01

    Previous experiments have shown that fungi use an efficient natural algorithm for searching the space available for their growth in micro-confined networks, e.g., mazes. This natural "master" algorithm, which comprises two "slave" sub-algorithms, i.e., collision-induced branching and directional memory, has been shown to be more efficient than alternatives, with one, or the other, or both sub-algorithms turned off. In contrast, the present contribution compares the performance of the fungal natural algorithm against several standard artificial homologues. It was found that the space-searching fungal algorithm consistently outperforms uninformed algorithms, such as Depth-First-Search (DFS). Furthermore, while the natural algorithm is inferior to informed ones, such as A*, this under-performance does not importantly increase with the increase of the size of the maze. These findings suggest that a systematic effort of harvesting the natural space searching algorithms used by microorganisms is warranted and possibly overdue. These natural algorithms, if efficient, can be reverse-engineered for graph and tree search strategies.

  9. A neural-network-based exponential H∞ synchronisation for chaotic secure communication via improved genetic algorithm

    NASA Astrophysics Data System (ADS)

    Hsiao, Feng-Hsiag

    2016-10-01

    In this study, a novel approach via improved genetic algorithm (IGA)-based fuzzy observer is proposed to realise exponential optimal H∞ synchronisation and secure communication in multiple time-delay chaotic (MTDC) systems. First, an original message is inserted into the MTDC system. Then, a neural-network (NN) model is employed to approximate the MTDC system. Next, a linear differential inclusion (LDI) state-space representation is established for the dynamics of the NN model. Based on this LDI state-space representation, this study proposes a delay-dependent exponential stability criterion derived in terms of Lyapunov's direct method, thus ensuring that the trajectories of the slave system approach those of the master system. Subsequently, the stability condition of this criterion is reformulated into a linear matrix inequality (LMI). Due to GA's random global optimisation search capabilities, the lower and upper bounds of the search space can be set so that the GA will seek better fuzzy observer feedback gains, accelerating feedback gain-based synchronisation via the LMI-based approach. IGA, which exhibits better performance than traditional GA, is used to synthesise a fuzzy observer to not only realise the exponential synchronisation, but also achieve optimal H∞ performance by minimizing the disturbance attenuation level and recovering the transmitted message. Finally, a numerical example with simulations is given in order to demonstrate the effectiveness of our approach.

  10. Stereoselective virtual screening of the ZINC database using atom pair 3D-fingerprints.

    PubMed

    Awale, Mahendra; Jin, Xian; Reymond, Jean-Louis

    2015-01-01

    Tools to explore large compound databases in search for analogs of query molecules provide a strategically important support in drug discovery to help identify available analogs of any given reference or hit compound by ligand based virtual screening (LBVS). We recently showed that large databases can be formatted for very fast searching with various 2D-fingerprints using the city-block distance as similarity measure, in particular a 2D-atom pair fingerprint (APfp) and the related category extended atom pair fingerprint (Xfp) which efficiently encode molecular shape and pharmacophores, but do not perceive stereochemistry. Here we investigated related 3D-atom pair fingerprints to enable rapid stereoselective searches in the ZINC database (23.2 million 3D structures). Molecular fingerprints counting atom pairs at increasing through-space distance intervals were designed using either all atoms (16-bit 3DAPfp) or different atom categories (80-bit 3DXfp). These 3D-fingerprints retrieved molecular shape and pharmacophore analogs (defined by OpenEye ROCS scoring functions) of 110,000 compounds from the Cambridge Structural Database with equal or better accuracy than the 2D-fingerprints APfp and Xfp, and showed comparable performance in recovering actives from decoys in the DUD database. LBVS by 3DXfp or 3DAPfp similarity was stereoselective and gave very different analogs when starting from different diastereomers of the same chiral drug. Results were also different from LBVS with the parent 2D-fingerprints Xfp or APfp. 3D- and 2D-fingerprints also gave very different results in LBVS of folded molecules where through-space distances between atom pairs are much shorter than topological distances. 3DAPfp and 3DXfp are suitable for stereoselective searches for shape and pharmacophore analogs of query molecules in large databases. Web-browsers for searching ZINC by 3DAPfp and 3DXfp similarity are accessible at www.gdb.unibe.ch and should provide useful assistance to drug discovery projects. Graphical abstractAtom pair fingerprints based on through-space distances (3DAPfp) provide better shape encoding than atom pair fingerprints based on topological distances (APfp) as measured by the recovery of ROCS shape analogs by fp similarity.

  11. Identification of potential inhibitors based on compound proposal contest: Tyrosine-protein kinase Yes as a target.

    PubMed

    Chiba, Shuntaro; Ikeda, Kazuyoshi; Ishida, Takashi; Gromiha, M Michael; Taguchi, Y-H; Iwadate, Mitsuo; Umeyama, Hideaki; Hsin, Kun-Yi; Kitano, Hiroaki; Yamamoto, Kazuki; Sugaya, Nobuyoshi; Kato, Koya; Okuno, Tatsuya; Chikenji, George; Mochizuki, Masahiro; Yasuo, Nobuaki; Yoshino, Ryunosuke; Yanagisawa, Keisuke; Ban, Tomohiro; Teramoto, Reiji; Ramakrishnan, Chandrasekaran; Thangakani, A Mary; Velmurugan, D; Prathipati, Philip; Ito, Junichi; Tsuchiya, Yuko; Mizuguchi, Kenji; Honma, Teruki; Hirokawa, Takatsugu; Akiyama, Yutaka; Sekijima, Masakazu

    2015-11-26

    A search of broader range of chemical space is important for drug discovery. Different methods of computer-aided drug discovery (CADD) are known to propose compounds in different chemical spaces as hit molecules for the same target protein. This study aimed at using multiple CADD methods through open innovation to achieve a level of hit molecule diversity that is not achievable with any particular single method. We held a compound proposal contest, in which multiple research groups participated and predicted inhibitors of tyrosine-protein kinase Yes. This showed whether collective knowledge based on individual approaches helped to obtain hit compounds from a broad range of chemical space and whether the contest-based approach was effective.

  12. Identification of potential inhibitors based on compound proposal contest: Tyrosine-protein kinase Yes as a target

    PubMed Central

    Chiba, Shuntaro; Ikeda, Kazuyoshi; Ishida, Takashi; Gromiha, M. Michael; Taguchi, Y-h.; Iwadate, Mitsuo; Umeyama, Hideaki; Hsin, Kun-Yi; Kitano, Hiroaki; Yamamoto, Kazuki; Sugaya, Nobuyoshi; Kato, Koya; Okuno, Tatsuya; Chikenji, George; Mochizuki, Masahiro; Yasuo, Nobuaki; Yoshino, Ryunosuke; Yanagisawa, Keisuke; Ban, Tomohiro; Teramoto, Reiji; Ramakrishnan, Chandrasekaran; Thangakani, A. Mary; Velmurugan, D.; Prathipati, Philip; Ito, Junichi; Tsuchiya, Yuko; Mizuguchi, Kenji; Honma, Teruki; Hirokawa, Takatsugu; Akiyama, Yutaka; Sekijima, Masakazu

    2015-01-01

    A search of broader range of chemical space is important for drug discovery. Different methods of computer-aided drug discovery (CADD) are known to propose compounds in different chemical spaces as hit molecules for the same target protein. This study aimed at using multiple CADD methods through open innovation to achieve a level of hit molecule diversity that is not achievable with any particular single method. We held a compound proposal contest, in which multiple research groups participated and predicted inhibitors of tyrosine-protein kinase Yes. This showed whether collective knowledge based on individual approaches helped to obtain hit compounds from a broad range of chemical space and whether the contest-based approach was effective. PMID:26607293

  13. Skull base lesions: extracranial origins.

    PubMed

    Mosier, Kristine M

    2013-10-01

    A number of extracranial anatomical sites, including the nasopharynx, paranasal sinuses, and masticator space, may give rise to lesions involving the skull base. Implicit in the nature of an invasive lesion, the majority of these lesions are malignant. Accordingly, for optimal patient outcomes and treatment planning, it is imperative to include a search pattern for extracranial sites and to assess accurately the character and extent of these diverse lesions. Of particular importance to radiologists are lesions arising from each extracranial site, the search patterns, and relevant information important to convey to the referring clinician. Copyright © 2013 Elsevier Inc. All rights reserved.

  14. In Search of Respect: A Qualitative Study Exploring Youth Perceptions

    ERIC Educational Resources Information Center

    King, Keith A.; Vidourek, Rebecca A.

    2010-01-01

    Focus groups were conducted with middle and high school students (N = 78) in nine urban, suburban and rural schools to examine students' perceptions regarding school-based respect. Students defined school-based respect as treating others as you would like to be treated, listening to others, honoring others' property/personal space, and refraining…

  15. OAST Space Theme Workshop 1976

    NASA Technical Reports Server (NTRS)

    Sadin, S. R.

    1977-01-01

    Papers that provide a technical foundation including research and technology base candidates for each of six space themes - space power, space industrialization, search for extraterrestrial intelligence, exploration of the solar system, global service, and advanced transportation systems - are presented. The material is mainly intended for further use by workshop participants and NASA elements concerned with space research and technology. While the data presented do not represent official plans or positions, they are part of the process of evolving such plans and positions. The information contained reflects the efforts of workshop participants and should be an aid in the successful implementation and execution of the Agency's near- and far-term advanced technology program.

  16. LIFESPAN: A tool for the computer-aided design of longitudinal studies

    PubMed Central

    Brandmaier, Andreas M.; von Oertzen, Timo; Ghisletta, Paolo; Hertzog, Christopher; Lindenberger, Ulman

    2015-01-01

    Researchers planning a longitudinal study typically search, more or less informally, a multivariate space of possible study designs that include dimensions such as the hypothesized true variance in change, indicator reliability, the number and spacing of measurement occasions, total study time, and sample size. The main search goal is to select a research design that best addresses the guiding questions and hypotheses of the planned study while heeding applicable external conditions and constraints, including time, money, feasibility, and ethical considerations. Because longitudinal study selection ultimately requires optimization under constraints, it is amenable to the general operating principles of optimization in computer-aided design. Based on power equivalence theory (MacCallum et al., 2010; von Oertzen, 2010), we propose a computational framework to promote more systematic searches within the study design space. Starting with an initial design, the proposed framework generates a set of alternative models with equal statistical power to detect hypothesized effects, and delineates trade-off relations among relevant parameters, such as total study time and the number of measurement occasions. We present LIFESPAN (Longitudinal Interactive Front End Study Planner), which implements this framework. LIFESPAN boosts the efficiency, breadth, and precision of the search for optimal longitudinal designs. Its initial version, which is freely available at http://www.brandmaier.de/lifespan, is geared toward the power to detect variance in change as specified in a linear latent growth curve model. PMID:25852596

  17. Inhibition of Return and Object-based Attentional Selection

    PubMed Central

    List, Alexandra; Robertson, Lynn C.

    2008-01-01

    Visual attention research has revealed that attentional allocation can occur in space- and/or object-based coordinates. Using the direct and elegant design of R. Egly, J. Driver and R. Rafal (1994), we examine whether space- and object-based inhibition of return (IOR) emerge under similar time courses. The present experiments were capable of isolating both space- and object-based effects induced by peripheral and back-to-center cues. They generally support the contention that spatially non-predictive cues are effective in producing space-based IOR at a variety of SOAs, and under a variety of stimulus conditions. Whether facilitatory or inhibitory in direction, the object-based effects occurred over a very different time course than did the space-based effects. Reliable object-based IOR was only found under limited conditions and was tied to the time since the most recent cue (peripheral or central). The finding that object-based effects are generally determined by SOA from the most recent cue may help to resolve discrepancies in the IOR literature. These findings also have implications for the search facilitator role IOR is purported to play in the guidance of visual attention. PMID:18085946

  18. Adaptive feature selection using v-shaped binary particle swarm optimization.

    PubMed

    Teng, Xuyang; Dong, Hongbin; Zhou, Xiurong

    2017-01-01

    Feature selection is an important preprocessing method in machine learning and data mining. This process can be used not only to reduce the amount of data to be analyzed but also to build models with stronger interpretability based on fewer features. Traditional feature selection methods evaluate the dependency and redundancy of features separately, which leads to a lack of measurement of their combined effect. Moreover, a greedy search considers only the optimization of the current round and thus cannot be a global search. To evaluate the combined effect of different subsets in the entire feature space, an adaptive feature selection method based on V-shaped binary particle swarm optimization is proposed. In this method, the fitness function is constructed using the correlation information entropy. Feature subsets are regarded as individuals in a population, and the feature space is searched using V-shaped binary particle swarm optimization. The above procedure overcomes the hard constraint on the number of features, enables the combined evaluation of each subset as a whole, and improves the search ability of conventional binary particle swarm optimization. The proposed algorithm is an adaptive method with respect to the number of feature subsets. The experimental results show the advantages of optimizing the feature subsets using the V-shaped transfer function and confirm the effectiveness and efficiency of the feature subsets obtained under different classifiers.

  19. Adaptive feature selection using v-shaped binary particle swarm optimization

    PubMed Central

    Dong, Hongbin; Zhou, Xiurong

    2017-01-01

    Feature selection is an important preprocessing method in machine learning and data mining. This process can be used not only to reduce the amount of data to be analyzed but also to build models with stronger interpretability based on fewer features. Traditional feature selection methods evaluate the dependency and redundancy of features separately, which leads to a lack of measurement of their combined effect. Moreover, a greedy search considers only the optimization of the current round and thus cannot be a global search. To evaluate the combined effect of different subsets in the entire feature space, an adaptive feature selection method based on V-shaped binary particle swarm optimization is proposed. In this method, the fitness function is constructed using the correlation information entropy. Feature subsets are regarded as individuals in a population, and the feature space is searched using V-shaped binary particle swarm optimization. The above procedure overcomes the hard constraint on the number of features, enables the combined evaluation of each subset as a whole, and improves the search ability of conventional binary particle swarm optimization. The proposed algorithm is an adaptive method with respect to the number of feature subsets. The experimental results show the advantages of optimizing the feature subsets using the V-shaped transfer function and confirm the effectiveness and efficiency of the feature subsets obtained under different classifiers. PMID:28358850

  20. A Multi-Level Model of Information Seeking in the Clinical Domain

    PubMed Central

    Hung, Peter W.; Johnson, Stephen B.; Kaufman, David R.; Mendonça, Eneida A.

    2008-01-01

    Objective: Clinicians often have difficulty translating information needs into effective search strategies to find appropriate answers. Information retrieval systems employing an intelligent search agent that generates adaptive search strategies based on human search expertise could be helpful in meeting clinician information needs. A prerequisite for creating such systems is an information seeking model that facilitates the representation of human search expertise. The purpose of developing such a model is to provide guidance to information seeking system development and to shape an empirical research program. Design: The information seeking process was modeled as a complex problem-solving activity. After considering how similarly complex activities had been modeled in other domains, we determined that modeling context-initiated information seeking across multiple problem spaces allows the abstraction of search knowledge into functionally consistent layers. The knowledge layers were identified in the information science literature and validated through our observations of searches performed by health science librarians. Results: A hierarchical multi-level model of context-initiated information seeking is proposed. Each level represents (1) a problem space that is traversed during the online search process, and (2) a distinct layer of knowledge that is required to execute a successful search. Grand strategy determines what information resources will be searched, for what purpose, and in what order. The strategy level represents an overall approach for searching a single resource. Tactics are individual moves made to further a strategy. Operations are mappings of abstract intentions to information resource-specific concrete input. Assessment is the basis of interaction within the strategic hierarchy, influencing the direction of the search. Conclusion: The described multi-level model provides a framework for future research and the foundation for development of an automated information retrieval system that uses an intelligent search agent to bridge clinician information needs and human search expertise. PMID:18006383

  1. A trust-based sensor allocation algorithm in cooperative space search problems

    NASA Astrophysics Data System (ADS)

    Shen, Dan; Chen, Genshe; Pham, Khanh; Blasch, Erik

    2011-06-01

    Sensor allocation is an important and challenging problem within the field of multi-agent systems. The sensor allocation problem involves deciding how to assign a number of targets or cells to a set of agents according to some allocation protocol. Generally, in order to make efficient allocations, we need to design mechanisms that consider both the task performers' costs for the service and the associated probability of success (POS). In our problem, the costs are the used sensor resource, and the POS is the target tracking performance. Usually, POS may be perceived differently by different agents because they typically have different standards or means of evaluating the performance of their counterparts (other sensors in the search and tracking problem). Given this, we turn to the notion of trust to capture such subjective perceptions. In our approach, we develop a trust model to construct a novel mechanism that motivates sensor agents to limit their greediness or selfishness. Then we model the sensor allocation optimization problem with trust-in-loop negotiation game and solve it using a sub-game perfect equilibrium. Numerical simulations are performed to demonstrate the trust-based sensor allocation algorithm in cooperative space situation awareness (SSA) search problems.

  2. Visual graph query formulation and exploration: a new perspective on information retrieval at the edge

    NASA Astrophysics Data System (ADS)

    Kase, Sue E.; Vanni, Michelle; Knight, Joanne A.; Su, Yu; Yan, Xifeng

    2016-05-01

    Within operational environments decisions must be made quickly based on the information available. Identifying an appropriate knowledge base and accurately formulating a search query are critical tasks for decision-making effectiveness in dynamic situations. The spreading of graph data management tools to access large graph databases is a rapidly emerging research area of potential benefit to the intelligence community. A graph representation provides a natural way of modeling data in a wide variety of domains. Graph structures use nodes, edges, and properties to represent and store data. This research investigates the advantages of information search by graph query initiated by the analyst and interactively refined within the contextual dimensions of the answer space toward a solution. The paper introduces SLQ, a user-friendly graph querying system enabling the visual formulation of schemaless and structureless graph queries. SLQ is demonstrated with an intelligence analyst information search scenario focused on identifying individuals responsible for manufacturing a mosquito-hosted deadly virus. The scenario highlights the interactive construction of graph queries without prior training in complex query languages or graph databases, intuitive navigation through the problem space, and visualization of results in graphical format.

  3. Generalized Minimum-Time Follow-up Approaches Applied to Tasking Electro-Optical Sensor Tasking

    NASA Astrophysics Data System (ADS)

    Murphy, T. S.; Holzinger, M. J.

    This work proposes a methodology for tasking of sensors to search an area of state space for a particular object, group of objects, or class of objects. This work creates a general unified mathematical framework for analyzing reacquisition, search, scheduling, and custody operations. In particular, this work looks at searching for unknown space object(s) with prior knowledge in the form of a set, which can be defined via an uncorrelated track, region of state space, or a variety of other methods. The follow-up tasking can occur from a variable location and time, which often requires searching a large region of the sky. This work analyzes the area of a search region over time to inform a time optimal search method. Simulation work looks at analyzing search regions relative to a particular sensor, and testing a tasking algorithm to search through the region. The tasking algorithm is also validated on a reacquisition problem with a telescope system at Georgia Tech.

  4. The NASA Technical Report Server

    NASA Astrophysics Data System (ADS)

    Nelson, M. L.; Gottlich, G. L.; Bianco, D. J.; Paulson, S. S.; Binkley, R. L.; Kellogg, Y. D.; Beaumont, C. J.; Schmunk, R. B.; Kurtz, M. J.; Accomazzi, A.; Syed, O.

    The National Aeronautics and Space Act of 1958 established the National Aeronautics and Space Administration (NASA) and charged it to "provide for the widest practicable and appropriate dissemination of information concerning...its activities and the results thereof". The search for innovative methods to distribute NASA's information led a grass-roots team to create the NASA Technical Report Server (NTRS), which uses the World Wide Web and other popular Internet-based information systems .

  5. Using Model Based Systems Engineering and the Systems Modeling Language to Develop Space Mission Area Architectures

    DTIC Science & Technology

    2013-09-01

    processes used in space system acquisitions, simply implementing a data exchange specification would not fundamentally improve how information is...instruction, searching existing data sources , gathering and maintaining the data needed, and completing and reviewing the collection of information ...and manage the configuration of all critical program models, processes , and tools used throughout the DoD. Second, mandate a data exchange

  6. KSC-08pd1342

    NASA Image and Video Library

    2008-05-12

    CAPE CANAVERAL, Fla. -- Participants in the Mode VIII exercise being conducted at Patrick Air Force Base, Fla., get instruction about the rescue equipment they will be working with. In support of, and with logistical support from, NASA, USSTRATCOM is hosting a major exercise involving Department of Defense, Department of Homeland Security, search and rescue (SAR) forces, including the 45th Space Wing at Patrick Air Force Base, which support space shuttle astronaut bailout contingency operations, known as Mode VIII. This exercise tests SAR capabilities to locate, recover and provide medical treatment for astronauts following a space shuttle launch phase open-ocean bailout. Participants include members of the U.S. Navy, U.S. Coast Guard, U.S. Air Force, and NASA's Kennedy Space Center and Johnson Space Center. This will be the 15th Mode VIII exercise conducted in the past 20 years. Photo credit: NASA/Kim Shiflett

  7. Spaced-based search coil magnetometers

    NASA Astrophysics Data System (ADS)

    Hospodarsky, George B.

    2016-12-01

    Search coil magnetometers are one of the primary tools used to study the magnetic component of low-frequency electromagnetic waves in space. Their relatively small size, mass, and power consumption, coupled with a good frequency range and sensitivity, make them ideal for spaceflight applications. The basic design of a search coil magnetometer consists of many thousands of turns of wire wound on a high permeability core. When a time-varying magnetic field passes through the coil, a time-varying voltage is induced due to Faraday's law of magnetic induction. The output of the coil is usually attached to a preamplifier, which amplifies the induced voltage and conditions the signal for transmission to the main electronics (usually a low-frequency radio receiver). Search coil magnetometers are usually used in conjunction with electric field antenna to measure electromagnetic plasma waves in the frequency range of a few hertz to a few tens of kilohertzs. Search coil magnetometers are used to determine the properties of waves, such as comparing the relative electric and magnetic field amplitudes of the waves, or to investigate wave propagation parameters, such as Poynting flux and wave normal vectors. On a spinning spacecraft, they are also sometimes used to determine the background magnetic field. This paper presents some of the basic design criteria of search coil magnetometers and discusses design characteristics of sensors flown on a number of spacecraft.

  8. Multi-fidelity and multi-disciplinary design optimization of supersonic business jets

    NASA Astrophysics Data System (ADS)

    Choi, Seongim

    Supersonic jets have been drawing great attention after the end of service for the Concorde was announced on April of 2003. It is believed, however, that civilian supersonic aircraft may make a viable return in the business jet market. This thesis focuses on the design optimization of feasible supersonic business jet configurations. Preliminary design techniques for mitigation of ground sonic boom are investigated while ensuring that all relevant disciplinary constraints are satisfied (including aerodynamic performance, propulsion, stability & control and structures.) In order to achieve reasonable confidence in the resulting designs, high-fidelity simulations are required, making the entire design process both expensive and complex. In order to minimize the computational cost, surrogate/approximate models are constructed using a hierarchy of different fidelity analysis tools including PASS, A502/Panair and Euler/NS codes. Direct search methods such as Genetic Algorithms (GAs) and a nonlinear SIMPLEX are employed to designs in searches of large and noisy design spaces. A local gradient-based search method can be combined with these global search methods for small modifications of candidate optimum designs. The Mesh Adaptive Direct Search (MADS) method can also be used to explore the design space using a solution-adaptive grid refinement approach. These hybrid approaches, both in search methodology and surrogate model construction, are shown to result in designs with reductions in sonic boom and improved aerodynamic performance.

  9. An adaptive random search for short term generation scheduling with network constraints.

    PubMed

    Marmolejo, J A; Velasco, Jonás; Selley, Héctor J

    2017-01-01

    This paper presents an adaptive random search approach to address a short term generation scheduling with network constraints, which determines the startup and shutdown schedules of thermal units over a given planning horizon. In this model, we consider the transmission network through capacity limits and line losses. The mathematical model is stated in the form of a Mixed Integer Non Linear Problem with binary variables. The proposed heuristic is a population-based method that generates a set of new potential solutions via a random search strategy. The random search is based on the Markov Chain Monte Carlo method. The main key of the proposed method is that the noise level of the random search is adaptively controlled in order to exploring and exploiting the entire search space. In order to improve the solutions, we consider coupling a local search into random search process. Several test systems are presented to evaluate the performance of the proposed heuristic. We use a commercial optimizer to compare the quality of the solutions provided by the proposed method. The solution of the proposed algorithm showed a significant reduction in computational effort with respect to the full-scale outer approximation commercial solver. Numerical results show the potential and robustness of our approach.

  10. Genetic algorithms as global random search methods

    NASA Technical Reports Server (NTRS)

    Peck, Charles C.; Dhawan, Atam P.

    1995-01-01

    Genetic algorithm behavior is described in terms of the construction and evolution of the sampling distributions over the space of candidate solutions. This novel perspective is motivated by analysis indicating that the schema theory is inadequate for completely and properly explaining genetic algorithm behavior. Based on the proposed theory, it is argued that the similarities of candidate solutions should be exploited directly, rather than encoding candidate solutions and then exploiting their similarities. Proportional selection is characterized as a global search operator, and recombination is characterized as the search process that exploits similarities. Sequential algorithms and many deletion methods are also analyzed. It is shown that by properly constraining the search breadth of recombination operators, convergence of genetic algorithms to a global optimum can be ensured.

  11. Genetic algorithms as global random search methods

    NASA Technical Reports Server (NTRS)

    Peck, Charles C.; Dhawan, Atam P.

    1995-01-01

    Genetic algorithm behavior is described in terms of the construction and evolution of the sampling distributions over the space of candidate solutions. This novel perspective is motivated by analysis indicating that that schema theory is inadequate for completely and properly explaining genetic algorithm behavior. Based on the proposed theory, it is argued that the similarities of candidate solutions should be exploited directly, rather than encoding candidate solution and then exploiting their similarities. Proportional selection is characterized as a global search operator, and recombination is characterized as the search process that exploits similarities. Sequential algorithms and many deletion methods are also analyzed. It is shown that by properly constraining the search breadth of recombination operators, convergence of genetic algorithms to a global optimum can be ensured.

  12. Parameter-space metric of semicoherent searches for continuous gravitational waves

    NASA Astrophysics Data System (ADS)

    Pletsch, Holger J.

    2010-08-01

    Continuous gravitational-wave (CW) signals such as emitted by spinning neutron stars are an important target class for current detectors. However, the enormous computational demand prohibits fully coherent broadband all-sky searches for prior unknown CW sources over wide ranges of parameter space and for yearlong observation times. More efficient hierarchical “semicoherent” search strategies divide the data into segments much shorter than one year, which are analyzed coherently; then detection statistics from different segments are combined incoherently. To optimally perform the incoherent combination, understanding of the underlying parameter-space structure is requisite. This problem is addressed here by using new coordinates on the parameter space, which yield the first analytical parameter-space metric for the incoherent combination step. This semicoherent metric applies to broadband all-sky surveys (also embedding directed searches at fixed sky position) for isolated CW sources. Furthermore, the additional metric resolution attained through the combination of segments is studied. From the search parameters (sky position, frequency, and frequency derivatives), solely the metric resolution in the frequency derivatives is found to significantly increase with the number of segments.

  13. Two-agent cooperative search using game models with endurance-time constraints

    NASA Astrophysics Data System (ADS)

    Sujit, P. B.; Ghose, Debasish

    2010-07-01

    In this article, the problem of two Unmanned Aerial Vehicles (UAVs) cooperatively searching an unknown region is addressed. The search region is discretized into hexagonal cells and each cell is assumed to possess an uncertainty value. The UAVs have to cooperatively search these cells taking limited endurance, sensor and communication range constraints into account. Due to limited endurance, the UAVs need to return to the base station for refuelling and also need to select a base station when multiple base stations are present. This article proposes a route planning algorithm that takes endurance time constraints into account and uses game theoretical strategies to reduce the uncertainty. The route planning algorithm selects only those cells that ensure the agent will return to any one of the available bases. A set of paths are formed using these cells which the game theoretical strategies use to select a path that yields maximum uncertainty reduction. We explore non-cooperative Nash, cooperative and security strategies from game theory to enhance the search effectiveness. Monte-Carlo simulations are carried out which show the superiority of the game theoretical strategies over greedy strategy for different look ahead step length paths. Within the game theoretical strategies, non-cooperative Nash and cooperative strategy perform similarly in an ideal case, but Nash strategy performs better than the cooperative strategy when the perceived information is different. We also propose a heuristic based on partitioning of the search space into sectors to reduce computational overhead without performance degradation.

  14. Ringed Seal Search for Global Optimization via a Sensitive Search Model.

    PubMed

    Saadi, Younes; Yanto, Iwan Tri Riyadi; Herawan, Tutut; Balakrishnan, Vimala; Chiroma, Haruna; Risnumawan, Anhar

    2016-01-01

    The efficiency of a metaheuristic algorithm for global optimization is based on its ability to search and find the global optimum. However, a good search often requires to be balanced between exploration and exploitation of the search space. In this paper, a new metaheuristic algorithm called Ringed Seal Search (RSS) is introduced. It is inspired by the natural behavior of the seal pup. This algorithm mimics the seal pup movement behavior and its ability to search and choose the best lair to escape predators. The scenario starts once the seal mother gives birth to a new pup in a birthing lair that is constructed for this purpose. The seal pup strategy consists of searching and selecting the best lair by performing a random walk to find a new lair. Affected by the sensitive nature of seals against external noise emitted by predators, the random walk of the seal pup takes two different search states, normal state and urgent state. In the normal state, the pup performs an intensive search between closely adjacent lairs; this movement is modeled via a Brownian walk. In an urgent state, the pup leaves the proximity area and performs an extensive search to find a new lair from sparse targets; this movement is modeled via a Levy walk. The switch between these two states is realized by the random noise emitted by predators. The algorithm keeps switching between normal and urgent states until the global optimum is reached. Tests and validations were performed using fifteen benchmark test functions to compare the performance of RSS with other baseline algorithms. The results show that RSS is more efficient than Genetic Algorithm, Particles Swarm Optimization and Cuckoo Search in terms of convergence rate to the global optimum. The RSS shows an improvement in terms of balance between exploration (extensive) and exploitation (intensive) of the search space. The RSS can efficiently mimic seal pups behavior to find best lair and provide a new algorithm to be used in global optimization problems.

  15. Beam-steering efficiency optimization method based on a rapid-search algorithm for liquid crystal optical phased array.

    PubMed

    Xiao, Feng; Kong, Lingjiang; Chen, Jian

    2017-06-01

    A rapid-search algorithm to improve the beam-steering efficiency for a liquid crystal optical phased array was proposed and experimentally demonstrated in this paper. This proposed algorithm, in which the value of steering efficiency is taken as the objective function and the controlling voltage codes are considered as the optimization variables, consisted of a detection stage and a construction stage. It optimized the steering efficiency in the detection stage and adjusted its search direction adaptively in the construction stage to avoid getting caught in a wrong search space. Simulations had been conducted to compare the proposed algorithm with the widely used pattern-search algorithm using criteria of convergence rate and optimized efficiency. Beam-steering optimization experiments had been performed to verify the validity of the proposed method.

  16. Phylogenetic search through partial tree mixing

    PubMed Central

    2012-01-01

    Background Recent advances in sequencing technology have created large data sets upon which phylogenetic inference can be performed. Current research is limited by the prohibitive time necessary to perform tree search on a reasonable number of individuals. This research develops new phylogenetic algorithms that can operate on tens of thousands of species in a reasonable amount of time through several innovative search techniques. Results When compared to popular phylogenetic search algorithms, better trees are found much more quickly for large data sets. These algorithms are incorporated in the PSODA application available at http://dna.cs.byu.edu/psoda Conclusions The use of Partial Tree Mixing in a partition based tree space allows the algorithm to quickly converge on near optimal tree regions. These regions can then be searched in a methodical way to determine the overall optimal phylogenetic solution. PMID:23320449

  17. A search for experiments to exploit the space shuttle environment, volume 2

    NASA Technical Reports Server (NTRS)

    Fenn, J. B.

    1979-01-01

    Institutions and laboratories in India, Japan, and Western Europe which were visited during a search for experiments to exploit the space shuttle environment are described. The facilities and current research interests of the various centers are discussed with particular emphasis given to the Indian Space Research Organization.

  18. UNEXPECTED SERIES OF REGULAR FREQUENCY SPACING OF δ SCUTI STARS IN THE NON-ASYMPTOTIC REGIME. I. THE METHODOLOGY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paparó, M.; Benkő, J. M.; Hareter, M.

    A sequence search method was developed to search the regular frequency spacing in δ Scuti stars through visual inspection and an algorithmic search. We searched for sequences of quasi-equally spaced frequencies, containing at least four members per sequence, in 90 δ Scuti stars observed by CoRoT . We found an unexpectedly large number of independent series of regular frequency spacing in 77 δ Scuti stars (from one to eight sequences) in the non-asymptotic regime. We introduce the sequence search method presenting the sequences and echelle diagram of CoRoT 102675756 and the structure of the algorithmic search. Four sequences (echelle ridges)more » were found in the 5–21 d{sup −1} region where the pairs of the sequences are shifted (between 0.5 and 0.59 d{sup −1}) by twice the value of the estimated rotational splitting frequency (0.269 d{sup −1}). The general conclusions for the whole sample are also presented in this paper. The statistics of the spacings derived by the sequence search method, by FT (Fourier transform of the frequencies), and the statistics of the shifts are also compared. In many stars more than one almost equally valid spacing appeared. The model frequencies of FG Vir and their rotationally split components were used to formulate the possible explanation that one spacing is the large separation while the other is the sum of the large separation and the rotational frequency. In CoRoT 102675756, the two spacings (2.249 and 1.977 d{sup −1}) are in better agreement with the sum of a possible 1.710 d{sup −1} large separation and two or one times, respectively, the value of the rotational frequency.« less

  19. Does linear separability really matter? Complex visual search is explained by simple search

    PubMed Central

    Vighneshvel, T.; Arun, S. P.

    2013-01-01

    Visual search in real life involves complex displays with a target among multiple types of distracters, but in the laboratory, it is often tested using simple displays with identical distracters. Can complex search be understood in terms of simple searches? This link may not be straightforward if complex search has emergent properties. One such property is linear separability, whereby search is hard when a target cannot be separated from its distracters using a single linear boundary. However, evidence in favor of linear separability is based on testing stimulus configurations in an external parametric space that need not be related to their true perceptual representation. We therefore set out to assess whether linear separability influences complex search at all. Our null hypothesis was that complex search performance depends only on classical factors such as target-distracter similarity and distracter homogeneity, which we measured using simple searches. Across three experiments involving a variety of artificial and natural objects, differences between linearly separable and nonseparable searches were explained using target-distracter similarity and distracter heterogeneity. Further, simple searches accurately predicted complex search regardless of linear separability (r = 0.91). Our results show that complex search is explained by simple search, refuting the widely held belief that linear separability influences visual search. PMID:24029822

  20. Telecommunications and data acquisition

    NASA Technical Reports Server (NTRS)

    Renzetti, N. A. (Editor)

    1981-01-01

    Deep Space Network progress in flight project support, tracking and data acquisition research and technology, network engineering, hardware and software implementation, and operations is reported. In addition, developments in Earth based radio technology as applied to geodynamics, astrophysics, and the radio search for extraterrestrial intelligence are reported.

  1. The Telecommunications and Data Acquisition Report

    NASA Technical Reports Server (NTRS)

    Posner, E. C. (Editor)

    1983-01-01

    Developments in programs in telecommunication and data acquisition in space communications, radio navigation, radio science, and ground based radio astronomy are reported. Activities of the deep space network (DSN) and its associated ground communication facility (GCF) in planning, supporting research and technology, implementation, and in operations are outlined. The publication of reports on the application of radio interferometry at microwave frequencies for geodynamic measurements are presented. Implementation and operation for searching the microwave spectrum is reported.

  2. Integrative Review of the Intersection of Green Space and Neighborhood Violence.

    PubMed

    Mancus, Gibran C; Campbell, Jacquelyn

    2018-03-01

    To systematically analyze evidence about the impact of green space on the perception and actual safety of residents of urban neighborhoods. Systematic review of green space and violence based on Broome review criteria. One landmark study prompted the initial hand search and identification of search terms. Twenty-three quantitative, five qualitative, and two mixed-methods studies were found in the urban planning, public health, medical, and psychological literature that met the following criteria: analyzed green space and violence as factors in the perception of safety as an outcome measure, including action taken by being outside for recreation, exercise, or self-report in the survey. Findings were inconsistent regarding the direct relationship between perception of safety and green space when using recreation and exercise as a proxy for perception of safety. Findings regarding perception of safety in surveys were limited but indicated a positive correlation with green space. There is sufficient evidence to conclude that the perception of safety is supported by quality, accessibility, and aesthetic dimensions of neighborhood green space, and the perception of safety is often unrelated to actual crime rates. The science for understanding mechanisms between green space and violence as part of environmental health has been insufficiently developed and requires further study. Environmental health, including green space, is central to health promotion, and understanding is key to preventing the epidemic of violence. This article provides a summary of research related to green space, violence in communities, perception of safety, and violent crime in those communities. It identifies gaps in our knowledge where future research is needed. Nurses have the opportunity to lead the development, implementation, and evaluation of evidence-based interventions and policies addressing the inequality of quality and quantity of green space in the built and natural environment and related co-benefits. © 2018 Sigma Theta Tau International.

  3. A comparative study of the A* heuristic search algorithm used to solve efficiently a puzzle game

    NASA Astrophysics Data System (ADS)

    Iordan, A. E.

    2018-01-01

    The puzzle game presented in this paper consists in polyhedra (prisms, pyramids or pyramidal frustums) which can be moved using the free available spaces. The problem requires to be found the minimum number of movements in order the game reaches to a goal configuration starting from an initial configuration. Because the problem is enough complex, the principal difficulty in solving it is given by dimension of search space, that leads to necessity of a heuristic search. The improving of the search method consists into determination of a strong estimation by the heuristic function which will guide the search process to the most promising side of the search tree. The comparative study is realized among Manhattan heuristic and the Hamming heuristic using A* search algorithm implemented in Java. This paper also presents the necessary stages in object oriented development of a software used to solve efficiently this puzzle game. The modelling of the software is achieved through specific UML diagrams representing the phases of analysis, design and implementation, the system thus being described in a clear and practical manner. With the purpose to confirm the theoretical results which demonstrates that Manhattan heuristic is more efficient was used space complexity criterion. The space complexity was measured by the number of generated nodes from the search tree, by the number of the expanded nodes and by the effective branching factor. From the experimental results obtained by using the Manhattan heuristic, improvements were observed regarding space complexity of A* algorithm versus Hamming heuristic.

  4. Automatic Telescope Search for Extrasolar Planets

    NASA Technical Reports Server (NTRS)

    Henry, Gregory W.

    1998-01-01

    We are using automatic photoelectric telescopes at the Tennessee State University Center for Automated Space Science to search for planets around nearby stars in our galaxy. Over the past several years, wc have developed the capability to make extremely precise measurements of brightness changes in Sun-like stars with automatic telescopes. Extensive quality control and calibration measurements result in a precision of 0.l% for a single nightly observation and 0.0270 for yearly means, far better than previously thought possible with ground-based observations. We are able, for the first time, to trace brightness changes in Sun-like stars that are of similar amplitude to brightness changes in the Sun, whose changes can be observed only with space-based radiometers. Recently exciting discoveries of the first extrasolar planets have been announced, based on the detection of very small radial-velocity variations that imply the existence of planets in orbit around several Sun-like stars. Our precise brightness measurements have been crucial for the confirmation of these discoveries by helping to eliminate alternative explanations for the radial-velocity variations. With our automatic telescopes, we are also searching for transits of these planets across the disks of their stars in order to conclusively verify their existence. The detection of transits would provide the first direct measurements of the sizes, masses, and densities of these planets and, hence, information on their compositions and origins.

  5. KSC-08pd1345

    NASA Image and Video Library

    2008-05-12

    CAPE CANAVERAL, Fla. -- A representative of the 301st Rescue Squadron demonstrates rescue equipment that is used by participants in the Mode VIII exercise being conducted at Patrick Air Force Base, Fla. In the background is an HH-60G helicopter. In support of, and with logistical support from, NASA, USSTRATCOM is hosting a major exercise involving Department of Defense, Department of Homeland Security, search and rescue (SAR) forces, including the 45th Space Wing at Patrick Air Force Base, which support space shuttle astronaut bailout contingency operations, known as Mode VIII. This exercise tests SAR capabilities to locate, recover and provide medical treatment for astronauts following a space shuttle launch phase open-ocean bailout. Participants include members of the U.S. Navy, U.S. Coast Guard, U.S. Air Force, and NASA's Kennedy Space Center and Johnson Space Center. This will be the 15th Mode VIII exercise conducted in the past 20 years. Photo credit: NASA/Kim Shiflett

  6. KSC-08pd1351

    NASA Image and Video Library

    2008-05-12

    CAPE CANAVERAL, Fla. -- Representatives of the 301st Rescue Squadron demonstrate the use of rescue equipment on the HH-60G helicopter that is used by participants in the Mode VIII exercise being conducted at Patrick Air Force Base, Fla. In support of, and with logistical support from, NASA, USSTRATCOM is hosting a major exercise involving Department of Defense, Department of Homeland Security, search and rescue (SAR) forces, including the 45th Space Wing at Patrick Air Force Base, which support space shuttle astronaut bailout contingency operations, known as Mode VIII. This exercise tests SAR capabilities to locate, recover and provide medical treatment for astronauts following a space shuttle launch phase open-ocean bailout. Participants include members of the U.S. Navy, U.S. Coast Guard, U.S. Air Force, and NASA's Kennedy Space Center and Johnson Space Center. This will be the 15th Mode VIII exercise conducted in the past 20 years. Photo credit: NASA/Kim Shiflett

  7. KSC-08pd1350

    NASA Image and Video Library

    2008-05-12

    CAPE CANAVERAL, Fla. -- A representative of the 301st Rescue Squadron demonstrates rescue equipment on the HH-60G helicopter that is used by participants in the Mode VIII exercise being conducted at Patrick Air Force Base, Fla. In support of, and with logistical support from, NASA, USSTRATCOM is hosting a major exercise involving Department of Defense, Department of Homeland Security, search and rescue (SAR) forces, including the 45th Space Wing at Patrick Air Force Base, which support space shuttle astronaut bailout contingency operations, known as Mode VIII. This exercise tests SAR capabilities to locate, recover and provide medical treatment for astronauts following a space shuttle launch phase open-ocean bailout. Participants include members of the U.S. Navy, U.S. Coast Guard, U.S. Air Force, and NASA's Kennedy Space Center and Johnson Space Center. This will be the 15th Mode VIII exercise conducted in the past 20 years. Photo credit: NASA/Kim Shiflett

  8. KSC-08pd1349

    NASA Image and Video Library

    2008-05-12

    CAPE CANAVERAL, Fla. -- Representatives of the 301st Rescue Squadron demonstrate the use of rescue equipment on the HH-60G helicopter that is used by participants in the Mode VIII exercise being conducted at Patrick Air Force Base, Fla. In support of, and with logistical support from, NASA, USSTRATCOM is hosting a major exercise involving Department of Defense, Department of Homeland Security, search and rescue (SAR) forces, including the 45th Space Wing at Patrick Air Force Base, which support space shuttle astronaut bailout contingency operations, known as Mode VIII. This exercise tests SAR capabilities to locate, recover and provide medical treatment for astronauts following a space shuttle launch phase open-ocean bailout. Participants include members of the U.S. Navy, U.S. Coast Guard, U.S. Air Force, and NASA's Kennedy Space Center and Johnson Space Center. This will be the 15th Mode VIII exercise conducted in the past 20 years. Photo credit: NASA/Kim Shiflett

  9. KSC-08pd1344

    NASA Image and Video Library

    2008-05-12

    CAPE CANAVERAL, Fla. -- A representative of the 301st Rescue Squadron demonstrates rescue equipment that is used by participants in the Mode VIII exercise being conducted at Patrick Air Force Base, Fla. In the background is an HH-60G helicopter. In support of, and with logistical support from, NASA, USSTRATCOM is hosting a major exercise involving Department of Defense, Department of Homeland Security, search and rescue (SAR) forces, including the 45th Space Wing at Patrick Air Force Base, which support space shuttle astronaut bailout contingency operations, known as Mode VIII. This exercise tests SAR capabilities to locate, recover and provide medical treatment for astronauts following a space shuttle launch phase open-ocean bailout. Participants include members of the U.S. Navy, U.S. Coast Guard, U.S. Air Force, and NASA's Kennedy Space Center and Johnson Space Center. This will be the 15th Mode VIII exercise conducted in the past 20 years. Photo credit: NASA/Kim Shiflett

  10. KSC-08pd1341

    NASA Image and Video Library

    2008-05-12

    CAPE CANAVERAL, Fla. -- Participants in the Mode VIII exercise being conducted at Patrick Air Force Base, Fla., are introduced to the equipment they will be working with. In the foreground is an HH-60 helicopter. In support of, and with logistical support from, NASA, USSTRATCOM is hosting a major exercise involving Department of Defense, Department of Homeland Security, search and rescue (SAR) forces, including the 45th Space Wing at Patrick Air Force Base, which support space shuttle astronaut bailout contingency operations, known as Mode VIII. This exercise tests SAR capabilities to locate, recover and provide medical treatment for astronauts following a space shuttle launch phase open-ocean bailout. Participants include members of the U.S. Navy, U.S. Coast Guard, U.S. Air Force, and NASA's Kennedy Space Center and Johnson Space Center. This will be the 15th Mode VIII exercise conducted in the past 20 years. Photo credit: NASA/Kim Shiflett

  11. KSC-08pd1343

    NASA Image and Video Library

    2008-05-12

    CAPE CANAVERAL, Fla. -- A representative of the 301st Rescue Squadron familiarizes participants in the Mode VIII exercise with the HH-60G helicopter that will play a part. The Mode VIII is being conducted at Patrick Air Force Base, Fla. In support of, and with logistical support from, NASA, USSTRATCOM is hosting a major exercise involving Department of Defense, Department of Homeland Security, search and rescue (SAR) forces, including the 45th Space Wing at Patrick Air Force Base, which support space shuttle astronaut bailout contingency operations, known as Mode VIII. This exercise tests SAR capabilities to locate, recover and provide medical treatment for astronauts following a space shuttle launch phase open-ocean bailout. Participants include members of the U.S. Navy, U.S. Coast Guard, U.S. Air Force, and NASA's Kennedy Space Center and Johnson Space Center. This will be the 15th Mode VIII exercise conducted in the past 20 years. Photo credit: NASA/Kim Shiflett

  12. KSC-08pd1346

    NASA Image and Video Library

    2008-05-12

    CAPE CANAVERAL, Fla. -- A representative of the 301st Rescue Squadron demonstrates rescue equipment that is used by participants in the Mode VIII exercise being conducted at Patrick Air Force Base, Fla. In support of, and with logistical support from, NASA, USSTRATCOM is hosting a major exercise involving Department of Defense, Department of Homeland Security, search and rescue (SAR) forces, including the 45th Space Wing at Patrick Air Force Base, which support space shuttle astronaut bailout contingency operations, known as Mode VIII. This exercise tests SAR capabilities to locate, recover and provide medical treatment for astronauts following a space shuttle launch phase open-ocean bailout. Participants include members of the U.S. Navy, U.S. Coast Guard, U.S. Air Force, and NASA's Kennedy Space Center and Johnson Space Center. This will be the 15th Mode VIII exercise conducted in the past 20 years. Photo credit: NASA/Kim Shiflett

  13. Learning Problem-Solving Rules as Search through a Hypothesis Space

    ERIC Educational Resources Information Center

    Lee, Hee Seung; Betts, Shawn; Anderson, John R.

    2016-01-01

    Learning to solve a class of problems can be characterized as a search through a space of hypotheses about the rules for solving these problems. A series of four experiments studied how different learning conditions affected the search among hypotheses about the solution rule for a simple computational problem. Experiment 1 showed that a problem…

  14. Characteristic sounds facilitate visual search.

    PubMed

    Iordanescu, Lucica; Guzman-Martinez, Emmanuel; Grabowecky, Marcia; Suzuki, Satoru

    2008-06-01

    In a natural environment, objects that we look for often make characteristic sounds. A hiding cat may meow, or the keys in the cluttered drawer may jingle when moved. Using a visual search paradigm, we demonstrated that characteristic sounds facilitated visual localization of objects, even when the sounds carried no location information. For example, finding a cat was faster when participants heard a meow sound. In contrast, sounds had no effect when participants searched for names rather than pictures of objects. For example, hearing "meow" did not facilitate localization of the word cat. These results suggest that characteristic sounds cross-modally enhance visual (rather than conceptual) processing of the corresponding objects. Our behavioral demonstration of object-based cross-modal enhancement complements the extensive literature on space-based cross-modal interactions. When looking for your keys next time, you might want to play jingling sounds.

  15. Cooperative Search and Rescue with Artificial Fishes Based on Fish-Swarm Algorithm for Underwater Wireless Sensor Networks

    PubMed Central

    Zhao, Wei; Tang, Zhenmin; Yang, Yuwang; Wang, Lei; Lan, Shaohua

    2014-01-01

    This paper presents a searching control approach for cooperating mobile sensor networks. We use a density function to represent the frequency of distress signals issued by victims. The mobile nodes' moving in mission space is similar to the behaviors of fish-swarm in water. So, we take the mobile node as artificial fish node and define its operations by a probabilistic model over a limited range. A fish-swarm based algorithm is designed requiring local information at each fish node and maximizing the joint detection probabilities of distress signals. Optimization of formation is also considered for the searching control approach and is optimized by fish-swarm algorithm. Simulation results include two schemes: preset route and random walks, and it is showed that the control scheme has adaptive and effective properties. PMID:24741341

  16. Cooperative search and rescue with artificial fishes based on fish-swarm algorithm for underwater wireless sensor networks.

    PubMed

    Zhao, Wei; Tang, Zhenmin; Yang, Yuwang; Wang, Lei; Lan, Shaohua

    2014-01-01

    This paper presents a searching control approach for cooperating mobile sensor networks. We use a density function to represent the frequency of distress signals issued by victims. The mobile nodes' moving in mission space is similar to the behaviors of fish-swarm in water. So, we take the mobile node as artificial fish node and define its operations by a probabilistic model over a limited range. A fish-swarm based algorithm is designed requiring local information at each fish node and maximizing the joint detection probabilities of distress signals. Optimization of formation is also considered for the searching control approach and is optimized by fish-swarm algorithm. Simulation results include two schemes: preset route and random walks, and it is showed that the control scheme has adaptive and effective properties.

  17. Hybrid Differential Dynamic Programming with Stochastic Search

    NASA Technical Reports Server (NTRS)

    Aziz, Jonathan; Parker, Jeffrey; Englander, Jacob

    2016-01-01

    Differential dynamic programming (DDP) has been demonstrated as a viable approach to low-thrust trajectory optimization, namely with the recent success of NASAs Dawn mission. The Dawn trajectory was designed with the DDP-based Static Dynamic Optimal Control algorithm used in the Mystic software. Another recently developed method, Hybrid Differential Dynamic Programming (HDDP) is a variant of the standard DDP formulation that leverages both first-order and second-order state transition matrices in addition to nonlinear programming (NLP) techniques. Areas of improvement over standard DDP include constraint handling, convergence properties, continuous dynamics, and multi-phase capability. DDP is a gradient based method and will converge to a solution nearby an initial guess. In this study, monotonic basin hopping (MBH) is employed as a stochastic search method to overcome this limitation, by augmenting the HDDP algorithm for a wider search of the solution space.

  18. Active Solution Space and Search on Job-shop Scheduling Problem

    NASA Astrophysics Data System (ADS)

    Watanabe, Masato; Ida, Kenichi; Gen, Mitsuo

    In this paper we propose a new searching method of Genetic Algorithm for Job-shop scheduling problem (JSP). The coding method that represent job number in order to decide a priority to arrange a job to Gannt Chart (called the ordinal representation with a priority) in JSP, an active schedule is created by using left shift. We define an active solution at first. It is solution which can create an active schedule without using left shift, and set of its defined an active solution space. Next, we propose an algorithm named Genetic Algorithm with active solution space search (GA-asol) which can create an active solution while solution is evaluated, in order to search the active solution space effectively. We applied it for some benchmark problems to compare with other method. The experimental results show good performance.

  19. Detection methods for stochastic gravitational-wave backgrounds: a unified treatment

    NASA Astrophysics Data System (ADS)

    Romano, Joseph D.; Cornish, Neil. J.

    2017-04-01

    We review detection methods that are currently in use or have been proposed to search for a stochastic background of gravitational radiation. We consider both Bayesian and frequentist searches using ground-based and space-based laser interferometers, spacecraft Doppler tracking, and pulsar timing arrays; and we allow for anisotropy, non-Gaussianity, and non-standard polarization states. Our focus is on relevant data analysis issues, and not on the particular astrophysical or early Universe sources that might give rise to such backgrounds. We provide a unified treatment of these searches at the level of detector response functions, detection sensitivity curves, and, more generally, at the level of the likelihood function, since the choice of signal and noise models and prior probability distributions are actually what define the search. Pedagogical examples are given whenever possible to compare and contrast different approaches. We have tried to make the article as self-contained and comprehensive as possible, targeting graduate students and new researchers looking to enter this field.

  20. Where to search top-K biomedical ontologies?

    PubMed

    Oliveira, Daniela; Butt, Anila Sahar; Haller, Armin; Rebholz-Schuhmann, Dietrich; Sahay, Ratnesh

    2018-03-20

    Searching for precise terms and terminological definitions in the biomedical data space is problematic, as researchers find overlapping, closely related and even equivalent concepts in a single or multiple ontologies. Search engines that retrieve ontological resources often suggest an extensive list of search results for a given input term, which leads to the tedious task of selecting the best-fit ontological resource (class or property) for the input term and reduces user confidence in the retrieval engines. A systematic evaluation of these search engines is necessary to understand their strengths and weaknesses in different search requirements. We have implemented seven comparable Information Retrieval ranking algorithms to search through ontologies and compared them against four search engines for ontologies. Free-text queries have been performed, the outcomes have been judged by experts and the ranking algorithms and search engines have been evaluated against the expert-based ground truth (GT). In addition, we propose a probabilistic GT that is developed automatically to provide deeper insights and confidence to the expert-based GT as well as evaluating a broader range of search queries. The main outcome of this work is the identification of key search factors for biomedical ontologies together with search requirements and a set of recommendations that will help biomedical experts and ontology engineers to select the best-suited retrieval mechanism in their search scenarios. We expect that this evaluation will allow researchers and practitioners to apply the current search techniques more reliably and that it will help them to select the right solution for their daily work. The source code (of seven ranking algorithms), ground truths and experimental results are available at https://github.com/danielapoliveira/bioont-search-benchmark.

  1. The telecommunications and data acquisition report

    NASA Technical Reports Server (NTRS)

    Renzetti, N. A.

    1980-01-01

    Deep Space Network progress in flight project support, tracking and data acquisition research and technology, network engineering, hardware and software implemention, and operations is documented. In addition, developments in Earth based radio technology as applied to geodynamics, astrophysics, and the radio search for extraterrestrial intelligence are reported.

  2. The telecommunications and data acquisition report

    NASA Technical Reports Server (NTRS)

    Renzetti, N. A. (Editor)

    1982-01-01

    Progress in the development and operations of the Deep Space Network is reported. Developments in Earth-based radio technology as applied to other research programs are also reported. These programs include geodynamics, astrophysics, and radio searching for extraterrestrial intelligence in the microwave region of the electromagnetic spectrum.

  3. Relevance of Web Documents:Ghosts Consensus Method.

    ERIC Educational Resources Information Center

    Gorbunov, Andrey L.

    2002-01-01

    Discusses how to improve the quality of Internet search systems and introduces the Ghosts Consensus Method which is free from the drawbacks of digital democracy algorithms and is based on linear programming tasks. Highlights include vector space models; determining relevant documents; and enriching query terms. (LRW)

  4. The Telecommunications and Data Acquisition report

    NASA Technical Reports Server (NTRS)

    Renzetti, N. A. (Editor)

    1981-01-01

    Progress in the development and operations of the Deep Space Network is reported including develoments in Earth-based radio technology as applied to other research programs. These programs are: geodynamics, astrophysics, and the radio search for extraterrestrial intelligence in the microwave region of the electromagnetic spectrum.

  5. The Telecommunications and Data Acquisition Report

    NASA Technical Reports Server (NTRS)

    Posner, E. C. (Editor)

    1986-01-01

    Deep Space Network progress in flight project support, tracking and data acquisition research and technology, network engineering, hardware and software implementation, and operations is documented. In addition, developments in Earth-based radio technology as applied to geodynamics, astrophysics and the radio search for extraterrestrial intelligence are reported.

  6. [Development of domain specific search engines].

    PubMed

    Takai, T; Tokunaga, M; Maeda, K; Kaminuma, T

    2000-01-01

    As cyber space exploding in a pace that nobody has ever imagined, it becomes very important to search cyber space efficiently and effectively. One solution to this problem is search engines. Already a lot of commercial search engines have been put on the market. However these search engines respond with such cumbersome results that domain specific experts can not tolerate. Using a dedicate hardware and a commercial software called OpenText, we have tried to develop several domain specific search engines. These engines are for our institute's Web contents, drugs, chemical safety, endocrine disruptors, and emergent response for chemical hazard. These engines have been on our Web site for testing.

  7. On the problem of solving the optimization for continuous space based on information distribution function of ant colony algorithm

    NASA Astrophysics Data System (ADS)

    Min, Huang; Na, Cai

    2017-06-01

    These years, ant colony algorithm has been widely used in solving the domain of discrete space optimization, while the research on solving the continuous space optimization was relatively little. Based on the original optimization for continuous space, the article proposes the improved ant colony algorithm which is used to Solve the optimization for continuous space, so as to overcome the ant colony algorithm’s disadvantages of searching for a long time in continuous space. The article improves the solving way for the total amount of information of each interval and the due number of ants. The article also introduces a function of changes with the increase of the number of iterations in order to enhance the convergence rate of the improved ant colony algorithm. The simulation results show that compared with the result in literature[5], the suggested improved ant colony algorithm that based on the information distribution function has a better convergence performance. Thus, the article provides a new feasible and effective method for ant colony algorithm to solve this kind of problem.

  8. Catalogue Creation for Space Situational Awareness with Optical Sensors

    NASA Astrophysics Data System (ADS)

    Hobson, T.; Clarkson, I.; Bessell, T.; Rutten, M.; Gordon, N.; Moretti, N.; Morreale, B.

    2016-09-01

    In order to safeguard the continued use of space-based technologies, effective monitoring and tracking of man-made resident space objects (RSOs) is paramount. The diverse characteristics, behaviours and trajectories of RSOs make space surveillance a challenging application of the discipline that is tracking and surveillance. When surveillance systems are faced with non-canonical scenarios, it is common for human operators to intervene while researchers adapt and extend traditional tracking techniques in search of a solution. A complementary strategy for improving the robustness of space surveillance systems is to place greater emphasis on the anticipation of uncertainty. Namely, give the system the intelligence necessary to autonomously react to unforeseen events and to intelligently and appropriately act on tenuous information rather than discard it. In this paper we build from our 2015 campaign and describe the progression of a low-cost intelligent space surveillance system capable of autonomously cataloguing and maintaining track of RSOs. It currently exploits robotic electro-optical sensors, high-fidelity state-estimation and propagation as well as constrained initial orbit determination (IOD) to intelligently and adaptively manage its sensors in order to maintain an accurate catalogue of RSOs. In a step towards fully autonomous cataloguing, the system has been tasked with maintaining surveillance of a portion of the geosynchronous (GEO) belt. Using a combination of survey and track-refinement modes, the system is capable of maintaining a track of known RSOs and initiating tracks on previously unknown objects. Uniquely, due to the use of high-fidelity representations of a target's state uncertainty, as few as two images of previously unknown RSOs may be used to subsequently initiate autonomous search and reacquisition. To achieve this capability, particularly within the congested environment of the GEO-belt, we use a constrained admissible region (CAR) to generate a plausible estimate of the unknown RSO's state probability density function and disambiguate measurements using a particle-based joint probability data association (JPDA) method. Additionally, the use of alternative CAR generation methods, incorporating catalogue-based priors, is explored and tested. We also present the findings of two field trials of an experimental system that incorporates these techniques. The results demonstrate that such a system is capable of autonomously searching for an RSO that was briefly observed days prior in a GEO-survey and discriminating it from the measurements of other previously catalogued RSOs.

  9. SEARCH: Spatially Explicit Animal Response to Composition of Habitat.

    PubMed

    Pauli, Benjamin P; McCann, Nicholas P; Zollner, Patrick A; Cummings, Robert; Gilbert, Jonathan H; Gustafson, Eric J

    2013-01-01

    Complex decisions dramatically affect animal dispersal and space use. Dispersing individuals respond to a combination of fine-scale environmental stimuli and internal attributes. Individual-based modeling offers a valuable approach for the investigation of such interactions because it combines the heterogeneity of animal behaviors with spatial detail. Most individual-based models (IBMs), however, vastly oversimplify animal behavior and such behavioral minimalism diminishes the value of these models. We present program SEARCH (Spatially Explicit Animal Response to Composition of Habitat), a spatially explicit, individual-based, population model of animal dispersal through realistic landscapes. SEARCH uses values in Geographic Information System (GIS) maps to apply rules that animals follow during dispersal, thus allowing virtual animals to respond to fine-scale features of the landscape and maintain a detailed memory of areas sensed during movement. SEARCH also incorporates temporally dynamic landscapes so that the environment to which virtual animals respond can change during the course of a simulation. Animals in SEARCH are behaviorally dynamic and able to respond to stimuli based upon their individual experiences. Therefore, SEARCH is able to model behavioral traits of dispersing animals at fine scales and with many dynamic aspects. Such added complexity allows investigation of unique ecological questions. To illustrate SEARCH's capabilities, we simulated case studies using three mammals. We examined the impact of seasonally variable food resources on the weight distribution of dispersing raccoons (Procyon lotor), the effect of temporally dynamic mortality pressure in combination with various levels of behavioral responsiveness in eastern chipmunks (Tamias striatus), and the impact of behavioral plasticity and home range selection on disperser mortality and weight change in virtual American martens (Martes americana). These simulations highlight the relevance of SEARCH for a variety of applications and illustrate benefits it can provide for conservation planning.

  10. Model-based color halftoning using direct binary search.

    PubMed

    Agar, A Ufuk; Allebach, Jan P

    2005-12-01

    In this paper, we develop a model-based color halftoning method using the direct binary search (DBS) algorithm. Our method strives to minimize the perceived error between the continuous tone original color image and the color halftone image. We exploit the differences in how the human viewers respond to luminance and chrominance information and use the total squared error in a luminance/chrominance based space as our metric. Starting with an initial halftone, we minimize this error metric using the DBS algorithm. Our method also incorporates a measurement based color printer dot interaction model to prevent the artifacts due to dot overlap and to improve color texture quality. We calibrate our halftoning algorithm to ensure accurate colorant distributions in resulting halftones. We present the color halftones which demonstrate the efficacy of our method.

  11. An analysis of iterated local search for job-shop scheduling.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Whitley, L. Darrell; Howe, Adele E.; Watson, Jean-Paul

    2003-08-01

    Iterated local search, or ILS, is among the most straightforward meta-heuristics for local search. ILS employs both small-step and large-step move operators. Search proceeds via iterative modifications to a single solution, in distinct alternating phases. In the first phase, local neighborhood search (typically greedy descent) is used in conjunction with the small-step operator to transform solutions into local optima. In the second phase, the large-step operator is applied to generate perturbations to the local optima obtained in the first phase. Ideally, when local neighborhood search is applied to the resulting solution, search will terminate at a different local optimum, i.e.,more » the large-step perturbations should be sufficiently large to enable escape from the attractor basins of local optima. ILS has proven capable of delivering excellent performance on numerous N P-Hard optimization problems. [LMS03]. However, despite its implicity, very little is known about why ILS can be so effective, and under what conditions. The goal of this paper is to advance the state-of-the-art in the analysis of meta-heuristics, by providing answers to this research question. They focus on characterizing both the relationship between the structure of the underlying search space and ILS performance, and the dynamic behavior of ILS. The analysis proceeds in the context of the job-shop scheduling problem (JSP) [Tai94]. They begin by demonstrating that the attractor basins of local optima in the JSP are surprisingly weak, and can be escaped with high probaiblity by accepting a short random sequence of less-fit neighbors. this result is used to develop a new ILS algorithms for the JSP, I-JAR, whose performance is competitive with tabu search on difficult benchmark instances. They conclude by developing a very accurate behavioral model of I-JAR, which yields significant insights into the dynamics of search. The analysis is based on a set of 100 random 10 x 10 problem instances, in addition to some widely used benchmark instances. Both I-JAR and the tabu search algorithm they consider are based on the N1 move operator introduced by van Laarhoven et al. [vLAL92]. The N1 operator induces a connected search space, such that it is always possible to move from an arbitrary solution to an optimal solution; this property is integral to the development of a behavioral model of I-JAR. However, much of the analysis generalizes to other move operators, including that of Nowicki and Smutnick [NS96]. Finally the models are based on the distance between two solutions, which they take as the well-known disjunctive graph distance [MBK99].« less

  12. KENNEDY SPACE CENTER, FLA. - An area of the Vehicle Assembly Building is being prepared to store the debris collected from Space Shuttle Columbia. About 83,000 pieces were shipped to KSC during search and recovery efforts in East Texas.

    NASA Image and Video Library

    2003-09-02

    KENNEDY SPACE CENTER, FLA. - An area of the Vehicle Assembly Building is being prepared to store the debris collected from Space Shuttle Columbia. About 83,000 pieces were shipped to KSC during search and recovery efforts in East Texas.

  13. SARDA Surface Schedulers

    NASA Technical Reports Server (NTRS)

    Malik, Waqar

    2016-01-01

    Provide an overview of algorithms used in SARDA (Spot and Runway Departure Advisor) HITL (Human-in-the-Loop) simulation for Dallas Fort-Worth International Airport and Charlotte Douglas International airport. Outline a multi-objective dynamic programming (DP) based algorithm that finds the exact solution to the single runway scheduling (SRS) problem, and discuss heuristics to restrict the search space for the DP based algorithm and provide improvements.

  14. 3D statistical shape models incorporating 3D random forest regression voting for robust CT liver segmentation

    NASA Astrophysics Data System (ADS)

    Norajitra, Tobias; Meinzer, Hans-Peter; Maier-Hein, Klaus H.

    2015-03-01

    During image segmentation, 3D Statistical Shape Models (SSM) usually conduct a limited search for target landmarks within one-dimensional search profiles perpendicular to the model surface. In addition, landmark appearance is modeled only locally based on linear profiles and weak learners, altogether leading to segmentation errors from landmark ambiguities and limited search coverage. We present a new method for 3D SSM segmentation based on 3D Random Forest Regression Voting. For each surface landmark, a Random Regression Forest is trained that learns a 3D spatial displacement function between the according reference landmark and a set of surrounding sample points, based on an infinite set of non-local randomized 3D Haar-like features. Landmark search is then conducted omni-directionally within 3D search spaces, where voxelwise forest predictions on landmark position contribute to a common voting map which reflects the overall position estimate. Segmentation experiments were conducted on a set of 45 CT volumes of the human liver, of which 40 images were randomly chosen for training and 5 for testing. Without parameter optimization, using a simple candidate selection and a single resolution approach, excellent results were achieved, while faster convergence and better concavity segmentation were observed, altogether underlining the potential of our approach in terms of increased robustness from distinct landmark detection and from better search coverage.

  15. Automatic streak endpoint localization from the cornerness metric

    NASA Astrophysics Data System (ADS)

    Sease, Brad; Flewelling, Brien; Black, Jonathan

    2017-05-01

    Streaked point sources are a common occurrence when imaging unresolved space objects from both ground- and space-based platforms. Effective localization of streak endpoints is a key component of traditional techniques in space situational awareness related to orbit estimation and attitude determination. To further that goal, this paper derives a general detection and localization method for streak endpoints based on the cornerness metric. Corners detection involves searching an image for strong bi-directional gradients. These locations typically correspond to robust structural features in an image. In the case of unresolved imagery, regions with a high cornerness score correspond directly to the endpoints of streaks. This paper explores three approaches for global extraction of streak endpoints and applies them to an attitude and rate estimation routine.

  16. The Telecommunications and Data Acquisition

    NASA Technical Reports Server (NTRS)

    Renzetti, N. A. (Editor)

    1981-01-01

    Progress in the development and operations of the Deep Space Network is reported including developments in Earth based radio technology as applied to other research programs. These programs include application of radio interferometry at microwave frequencies to geodetic measurements and geodynamics, use of deep space stations individually and in pairs as an interferometer by radio astronomers for astrophysics research by direct observations of radio sources, and radio search for extraterrestrial intelligence in the microwave region of the electromagnetic spectrum.

  17. Regional convergence platforms in Europe—Innovation for space through technology partnerships

    NASA Astrophysics Data System (ADS)

    Bütfering, Peter

    2010-05-01

    Upcoming European and national space exploration programs and projects require new capabilities and scientific-technological solutions, and therefore external contributions to innovation. On the other hand European core (industrial) regions are searching of partners for innovation to strengthen their regional economy. In this context the German-based company European Space Innovation AG (former Adam Alva Neil)—highly experienced in the area of convergence activities between space and other sectors—has developed the model of regional convergence platforms (named 'SpaceInnovation'). These platforms are designed to foster technology partnerships between regional companies and institutes from 'non-space' and the space sector (agencies/industry). The article reflects this regional approach and shows examples in three different directions: SpaceInnovation Saar, an benchmark convergence platform initiated by the Saarland region. SpaceInnovation Europe, an European regions network approach. European SpaceInnovation Agent, an interface approach for systematic and sustainable convergence activities.

  18. In silico search for functionally similar proteins involved in meiosis and recombination in evolutionarily distant organisms.

    PubMed

    Bogdanov, Yuri F; Dadashev, Sergei Y; Grishaeva, Tatiana M

    2003-01-01

    Evolutionarily distant organisms have not only orthologs, but also nonhomologous proteins that build functionally similar subcellular structures. For instance, this is true with protein components of the synaptonemal complex (SC), a universal ultrastructure that ensures the successful pairing and recombination of homologous chromosomes during meiosis. We aimed at developing a method to search databases for genes that code for such nonhomologous but functionally analogous proteins. Advantage was taken of the ultrastructural parameters of SC and the conformation of SC proteins responsible for these. Proteins involved in SC central space are known to be similar in secondary structure. Using published data, we found a highly significant correlation between the width of the SC central space and the length of rod-shaped central domain of mammalian and yeast intermediate proteins forming transversal filaments in the SC central space. Basing on this, we suggested a method for searching genome databases of distant organisms for genes whose virtual proteins meet the above correlation requirement. Our recent finding of the Drosophila melanogaster CG17604 gene coding for synaptonemal complex transversal filament protein received experimental support from another lab. With the same strategy, we showed that the Arabidopsis thaliana and Caenorhabditis elegans genomes contain unique genes coding for such proteins.

  19. On-line range images registration with GPGPU

    NASA Astrophysics Data System (ADS)

    Będkowski, J.; Naruniec, J.

    2013-03-01

    This paper concerns implementation of algorithms in the two important aspects of modern 3D data processing: data registration and segmentation. Solution proposed for the first topic is based on the 3D space decomposition, while the latter on image processing and local neighbourhood search. Data processing is implemented by using NVIDIA compute unified device architecture (NIVIDIA CUDA) parallel computation. The result of the segmentation is a coloured map where different colours correspond to different objects, such as walls, floor and stairs. The research is related to the problem of collecting 3D data with a RGB-D camera mounted on a rotated head, to be used in mobile robot applications. Performance of the data registration algorithm is aimed for on-line processing. The iterative closest point (ICP) approach is chosen as a registration method. Computations are based on the parallel fast nearest neighbour search. This procedure decomposes 3D space into cubic buckets and, therefore, the time of the matching is deterministic. First technique of the data segmentation uses accele-rometers integrated with a RGB-D sensor to obtain rotation compensation and image processing method for defining pre-requisites of the known categories. The second technique uses the adapted nearest neighbour search procedure for obtaining normal vectors for each range point.

  20. A novel visualization model for web search results.

    PubMed

    Nguyen, Tien N; Zhang, Jin

    2006-01-01

    This paper presents an interactive visualization system, named WebSearchViz, for visualizing the Web search results and acilitating users' navigation and exploration. The metaphor in our model is the solar system with its planets and asteroids revolving around the sun. Location, color, movement, and spatial distance of objects in the visual space are used to represent the semantic relationships between a query and relevant Web pages. Especially, the movement of objects and their speeds add a new dimension to the visual space, illustrating the degree of relevance among a query and Web search results in the context of users' subjects of interest. By interacting with the visual space, users are able to observe the semantic relevance between a query and a resulting Web page with respect to their subjects of interest, context information, or concern. Users' subjects of interest can be dynamically changed, redefined, added, or deleted from the visual space.

  1. Searching for transiting circumbinary planets in CoRoT and ground-based data using CB-BLS

    NASA Astrophysics Data System (ADS)

    Ofir, A.; Deeg, H. J.; Lacy, C. H. S.

    2009-10-01

    Aims: Already from the initial discoveries of extrasolar planets it was apparent that their population and environments are far more diverse than initially postulated. Discovering circumbinary (CB) planets will have many implications, and in this context it will again substantially diversify the environments that produce and sustain planets. We search for transiting CB planets around eclipsing binaries (EBs). Methods: CB-BLS is a recently-introduced algorithm for the detection of transiting CB planets around EBs. We describe progress in search sensitivity, generality and capability of CB-BLS, and detection tests of CB-BLS on simulated data. We also describe an analytical approach for the determination of CB-BLS detection limits, and a method for the correct detrending of intrinsically-variable stars. Results: We present some blind-tests with simulated planets injected to real CoRoT data. The presented upgrades to CB-BLS allowed it to detect all the blind tests successfully, and these detections were in line with the detection limits analysis. We also correctly detrend bright eclipsing binaries from observations by the TrES planet search, and present some of the first results of applying CB-BLS to multiple real light curves from a wide-field survey. Conclusions: CB-BLS is now mature enough for its application to real data, and the presented processing scheme will serve as the template for our future applications of CB-BLS to data from wide-field surveys such as CoRoT. Being able to put constraints even on non-detection will help to determine the correct frequency of CB planets, contributing to the understanding of planet formation in general. Still, searching for transiting CB planets is still a learning experience, similarly to the state of transiting planets around single stars only a few years ago. The recent rapid progress in this front, coupled with the exquisite quality of space-based photometry, allows to realistically expect that if transiting CB planets exist - then they will soon be found. Based on observations obtained with CoRoT, a space project operated by the French Space Agency, CNES, with participation of the Science Programme of ESA, ESTEC/RSSD, Austria, Belgium, Brazil, Germany and Spain.

  2. The Fragment Network: A Chemistry Recommendation Engine Built Using a Graph Database.

    PubMed

    Hall, Richard J; Murray, Christopher W; Verdonk, Marcel L

    2017-07-27

    The hit validation stage of a fragment-based drug discovery campaign involves probing the SAR around one or more fragment hits. This often requires a search for similar compounds in a corporate collection or from commercial suppliers. The Fragment Network is a graph database that allows a user to efficiently search chemical space around a compound of interest. The result set is chemically intuitive, naturally grouped by substitution pattern and meaningfully sorted according to the number of observations of each transformation in medicinal chemistry databases. This paper describes the algorithms used to construct and search the Fragment Network and provides examples of how it may be used in a drug discovery context.

  3. Responsive Space Situation Awareness in 2020

    DTIC Science & Technology

    2007-04-01

    sensor did not satisfy the most stressing characterization or search requirements. Examples include STSS, Sea-Based X-Band, and NFIRE .36 The goal of...Orbital Express, NFIRE , etc.) to serve as the Red Team to practice these operations. In each exercise, the grey beards and network should conduct

  4. The Telecommunications and Data Acquisition Report

    NASA Technical Reports Server (NTRS)

    Posner, E. C. (Editor)

    1985-01-01

    Deep Space Network (DSN) progress in flight project support, tracking and data acquisition research and technology, network engineering, hardware and software implementation, and operation is discussed. In addition, developments in Earth-based radio technology as applied to geodynamics, astrophysics and the radio search for extraterrestrial intelligence are reported.

  5. Evolutionary computing for the design search and optimization of space vehicle power subsystems

    NASA Technical Reports Server (NTRS)

    Kordon, Mark; Klimeck, Gerhard; Hanks, David; Hua, Hook

    2004-01-01

    Evolutionary computing has proven to be a straightforward and robust approach for optimizing a wide range of difficult analysis and design problems. This paper discusses the application of these techniques to an existing space vehicle power subsystem resource and performance analysis simulation in a parallel processing environment. Out preliminary results demonstrate that this approach has the potential to improve the space system trade study process by allowing engineers to statistically weight subsystem goals of mass, cost and performance then automatically size power elements based on anticipated performance of the subsystem rather than on worst-case estimates.

  6. SPASE: The Connection Among Solar and Space Physics Data Centers

    NASA Technical Reports Server (NTRS)

    Thieman, James R.; King, Todd A.; Roberts, D. Aaron

    2011-01-01

    The Space Physics Archive Search and Extract (SPASE) project is an international collaboration among Heliophysics (solar and space physics) groups concerned with data acquisition and archiving. Within this community there are a variety of old and new data centers, resident archives, "virtual observatories", etc. acquiring, holding, and distributing data. A researcher interested in finding data of value for his or her study faces a complex data environment. The SPASE group has simplified the search for data through the development of the SPASE Data Model as a common method to describe data sets in the various archives. The data model is an XML-based schema and is now in operational use. There are both positives and negatives to this approach. The advantage is the common metadata language enabling wide-ranging searches across the archives, but it is difficult to inspire the data holders to spend the time necessary to describe their data using the Model. Software tools have helped, but the main motivational factor is wide-ranging use of the standard by the community. The use is expanding, but there are still other groups who could benefit from adopting SPASE. The SPASE Data Model is also being expanded in the sense of providing the means for more detailed description of data sets with the aim of enabling more automated ingestion and use of the data through detailed format descriptions. We will discuss the present state of SPASE usage and how we foresee development in the future. The evolution is based on a number of lessons learned - some unique to Heliophysics, but many common to the various data disciplines.

  7. KSC-08pd1384

    NASA Image and Video Library

    2008-05-14

    CAPE CANAVERAL, Fla. -- A support boat from a rescue training exercise, known as Mode VIII, returns to the ship off Florida's central east coast. In support of, and with logistical support from, NASA, USSTRATCOM is hosting a major exercise involving Department of Defense, Department of Homeland Security, search and rescue (SAR) forces, including the 45th Space Wing at Patrick Air Force Base, which support space shuttle astronaut bailout contingency operations, known as Mode VIII. This exercise tests SAR capabilities to locate, recover and provide medical treatment for astronauts following a space shuttle launch phase open-ocean bailout. Participants include members of the U.S. Navy, U.S. Coast Guard, U.S. Air Force, and NASA's Kennedy Space Center and Johnson Space Center. Photo credit: NASA/Dimitri Gerondidakis

  8. KSC-08pd1374

    NASA Image and Video Library

    2008-05-14

    CAPE CANAVERAL, Fla. -- An HH-60G helicopter flies overhead of a rescue boat during a training exercise, known as Mode VIII, off Florida's central east coast. In support of, and with logistical support from, NASA, USSTRATCOM is hosting a major exercise involving Department of Defense, Department of Homeland Security, search and rescue (SAR) forces, including the 45th Space Wing at Patrick Air Force Base, which support space shuttle astronaut bailout contingency operations, known as Mode VIII. This exercise tests SAR capabilities to locate, recover and provide medical treatment for astronauts following a space shuttle launch phase open-ocean bailout. Participants include members of the U.S. Navy, U.S. Coast Guard, U.S. Air Force, and NASA's Kennedy Space Center and Johnson Space Center. Photo credit: NASA/Dimitri Gerondidakis

  9. KSC-08pd1381

    NASA Image and Video Library

    2008-05-14

    CAPE CANAVERAL, Fla. -- Participants in a rescue training exercise, known as Mode VIII, wait for a support boat off Florida's central east coast. In support of, and with logistical support from, NASA, USSTRATCOM is hosting a major exercise involving Department of Defense, Department of Homeland Security, search and rescue (SAR) forces, including the 45th Space Wing at Patrick Air Force Base, which support space shuttle astronaut bailout contingency operations, known as Mode VIII. This exercise tests SAR capabilities to locate, recover and provide medical treatment for astronauts following a space shuttle launch phase open-ocean bailout. Participants include members of the U.S. Navy, U.S. Coast Guard, U.S. Air Force, and NASA's Kennedy Space Center and Johnson Space Center. Photo credit: NASA/Dimitri Gerondidakis

  10. KSC-08pd1382

    NASA Image and Video Library

    2008-05-14

    CAPE CANAVERAL, Fla. -- Support boats connect off Florida's central east coast during a rescue training exercise, known as Mode VIII. In support of, and with logistical support from, NASA, USSTRATCOM is hosting a major exercise involving Department of Defense, Department of Homeland Security, search and rescue (SAR) forces, including the 45th Space Wing at Patrick Air Force Base, which support space shuttle astronaut bailout contingency operations, known as Mode VIII. This exercise tests SAR capabilities to locate, recover and provide medical treatment for astronauts following a space shuttle launch phase open-ocean bailout. Participants include members of the U.S. Navy, U.S. Coast Guard, U.S. Air Force, and NASA's Kennedy Space Center and Johnson Space Center. Photo credit: NASA/Dimitri Gerondidakis

  11. MADM-based smart parking guidance algorithm

    PubMed Central

    Li, Bo; Pei, Yijian; Wu, Hao; Huang, Dijiang

    2017-01-01

    In smart parking environments, how to choose suitable parking facilities with various attributes to satisfy certain criteria is an important decision issue. Based on the multiple attributes decision making (MADM) theory, this study proposed a smart parking guidance algorithm by considering three representative decision factors (i.e., walk duration, parking fee, and the number of vacant parking spaces) and various preferences of drivers. In this paper, the expected number of vacant parking spaces is regarded as an important attribute to reflect the difficulty degree of finding available parking spaces, and a queueing theory-based theoretical method was proposed to estimate this expected number for candidate parking facilities with different capacities, arrival rates, and service rates. The effectiveness of the MADM-based parking guidance algorithm was investigated and compared with a blind search-based approach in comprehensive scenarios with various distributions of parking facilities, traffic intensities, and user preferences. Experimental results show that the proposed MADM-based algorithm is effective to choose suitable parking resources to satisfy users’ preferences. Furthermore, it has also been observed that this newly proposed Markov Chain-based availability attribute is more effective to represent the availability of parking spaces than the arrival rate-based availability attribute proposed in existing research. PMID:29236698

  12. Construction of nested maximin designs based on successive local enumeration and modified novel global harmony search algorithm

    NASA Astrophysics Data System (ADS)

    Yi, Jin; Li, Xinyu; Xiao, Mi; Xu, Junnan; Zhang, Lin

    2017-01-01

    Engineering design often involves different types of simulation, which results in expensive computational costs. Variable fidelity approximation-based design optimization approaches can realize effective simulation and efficiency optimization of the design space using approximation models with different levels of fidelity and have been widely used in different fields. As the foundations of variable fidelity approximation models, the selection of sample points of variable-fidelity approximation, called nested designs, is essential. In this article a novel nested maximin Latin hypercube design is constructed based on successive local enumeration and a modified novel global harmony search algorithm. In the proposed nested designs, successive local enumeration is employed to select sample points for a low-fidelity model, whereas the modified novel global harmony search algorithm is employed to select sample points for a high-fidelity model. A comparative study with multiple criteria and an engineering application are employed to verify the efficiency of the proposed nested designs approach.

  13. Towards improving searches for optimal phylogenies.

    PubMed

    Ford, Eric; St John, Katherine; Wheeler, Ward C

    2015-01-01

    Finding the optimal evolutionary history for a set of taxa is a challenging computational problem, even when restricting possible solutions to be "tree-like" and focusing on the maximum-parsimony optimality criterion. This has led to much work on using heuristic tree searches to find approximate solutions. We present an approach for finding exact optimal solutions that employs and complements the current heuristic methods for finding optimal trees. Given a set of taxa and a set of aligned sequences of characters, there may be subsets of characters that are compatible, and for each such subset there is an associated (possibly partially resolved) phylogeny with edges corresponding to each character state change. These perfect phylogenies serve as anchor trees for our constrained search space. We show that, for sequences with compatible sites, the parsimony score of any tree [Formula: see text] is at least the parsimony score of the anchor trees plus the number of inferred changes between [Formula: see text] and the anchor trees. As the maximum-parsimony optimality score is additive, the sum of the lower bounds on compatible character partitions provides a lower bound on the complete alignment of characters. This yields a region in the space of trees within which the best tree is guaranteed to be found; limiting the search for the optimal tree to this region can significantly reduce the number of trees that must be examined in a search of the space of trees. We analyze this method empirically using four different biological data sets as well as surveying 400 data sets from the TreeBASE repository, demonstrating the effectiveness of our technique in reducing the number of steps in exact heuristic searches for trees under the maximum-parsimony optimality criterion. © The Author(s) 2014. Published by Oxford University Press, on behalf of the Society of Systematic Biologists. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  14. Ceos Wgiss Common Framework for Wgiss Connected Data Assets

    NASA Astrophysics Data System (ADS)

    Enloe, Y.; Mitchell, A. E.; Albani, M.; Yapur, M.

    2016-12-01

    The Committee on Earth Observation Satellites (CEOS), established in 1984 to coordinate civil space-borne observations of the Earth, has been building through its Working Group on Information Systems and Services (WGISS), a common data framework to identify and connect data assets at member agencies. Some of these data assets are federated systems such as the CEOS WGISS Integrated Catalog (CWIC), the European Space Agency's FedEO (Federated Earth Observations Missions Access) system, and the International Directory Network (IDN) which is an international effort developed by NASA to assist researchers in locating information on available data sets. A system level team provides coordination and oversight to make this loosely coupled federated system function and evolve. WGISS has identified 2 search standards, the Open Geospatial Consortium (OGC) Catalog Services for the Web (CSW) and the CEOS OpenSearch Best Practices (which references the OGC OpenSearch Geo and Time Extensions and OGC OpenSearch Extension for Earth Observation) as well as an interoperable metadata standard (ISO 19115) for use within the WGISS Connected Assets. Data partners must register their data collections in the IDN using the Global Change Master Directory (GCMD) Keywords. Data partners need to support one of the 2 search standards and be able to map their internal metadata to the ISO 19115 metadata elements. All searchable data must have a data access path. Clients can offer search and access to all or a subset of the satellite data available through the WGISS Connected Data Assets. Clients can offer support for a 2-step search: (1) Discovery through collection search using platform, instrument, science keywords, etc. at the IDN and (2) Search granule metadata at data partners through CWIC or FedEO. There are more than a dozen international agencies that offer their data through the WGISS Federation or working on developing their connections. This list includes European Space Agency, NASA, NOAA, USGS, National Institute for Space Research (Brazil), Canadian Center for Mapping and Earth Observations (CCMEO), the Academy for Opto-Electronics (China), the Indian Space Research Organization (ISRO), EUMETSAT, Russian Federal Space Agency (ROSCOSMOS) and several agencies within Australia.

  15. Surveying the Inner Solar System with an Infrared Space Telescope

    NASA Astrophysics Data System (ADS)

    Buie, Marc W.; Reitsema, Harold J.; Linfield, Roger P.

    2016-11-01

    We present an analysis of surveying the inner solar system for objects that may pose some threat to Earth. Most of the analysis is based on understanding the capability provided by Sentinel, a concept for an infrared space-based telescope placed in a heliocentric orbit near the distance of Venus. From this analysis, we show that (1) the size range being targeted can affect the survey design, (2) the orbit distribution of the target sample can affect the survey design, (3) minimum observational arc length during the survey is an important metric of survey performance, and (4) surveys must consider objects as small as D=15{--}30 m to meet the goal of identifying objects that have the potential to cause damage on Earth in the next 100 yr. Sentinel will be able to find 50% of all impactors larger than 40 m in a 6.5 yr survey. The Sentinel mission concept is shown to be as effective as any survey in finding objects bigger than D = 140 m but is more effective when applied to finding smaller objects on Earth-impacting orbits. Sentinel is also more effective at finding objects of interest for human exploration that benefit from lower propulsion requirements. To explore the interaction between space and ground search programs, we also study a case where Sentinel is combined with the Large Synoptic Survey Telescope (LSST) and show the benefit of placing a space-based observatory in an orbit that reduces the overlap in search regions with a ground-based telescope. In this case, Sentinel+LSST can find more than 70% of the impactors larger than 40 m assuming a 6.5 yr lifetime for Sentinel and 10 yr for LSST.

  16. Hybrid Differential Dynamic Programming with Stochastic Search

    NASA Technical Reports Server (NTRS)

    Aziz, Jonathan; Parker, Jeffrey; Englander, Jacob A.

    2016-01-01

    Differential dynamic programming (DDP) has been demonstrated as a viable approach to low-thrust trajectory optimization, namely with the recent success of NASA's Dawn mission. The Dawn trajectory was designed with the DDP-based Static/Dynamic Optimal Control algorithm used in the Mystic software.1 Another recently developed method, Hybrid Differential Dynamic Programming (HDDP),2, 3 is a variant of the standard DDP formulation that leverages both first-order and second-order state transition matrices in addition to nonlinear programming (NLP) techniques. Areas of improvement over standard DDP include constraint handling, convergence properties, continuous dynamics, and multi-phase capability. DDP is a gradient based method and will converge to a solution nearby an initial guess. In this study, monotonic basin hopping (MBH) is employed as a stochastic search method to overcome this limitation, by augmenting the HDDP algorithm for a wider search of the solution space.

  17. Characteristic sounds facilitate visual search

    PubMed Central

    Iordanescu, Lucica; Guzman-Martinez, Emmanuel; Grabowecky, Marcia; Suzuki, Satoru

    2009-01-01

    In a natural environment, objects that we look for often make characteristic sounds. A hiding cat may meow, or the keys in the cluttered drawer may jingle when moved. Using a visual search paradigm, we demonstrated that characteristic sounds facilitated visual localization of objects, even when the sounds carried no location information. For example, finding a cat was faster when participants heard a meow sound. In contrast, sounds had no effect when participants searched for names rather than pictures of objects. For example, hearing “meow” did not facilitate localization of the word cat. These results suggest that characteristic sounds cross-modally enhance visual (rather than conceptual) processing of the corresponding objects. Our behavioral demonstration of object-based cross-modal enhancement complements the extensive literature on space-based cross-modal interactions. When looking for your keys next time, you might want to play jingling sounds. PMID:18567253

  18. The Virtual Wave Observatory (VWO): A Portal to Heliophysics Wave Data

    NASA Technical Reports Server (NTRS)

    Fung, Shing F.

    2010-01-01

    The Virtual Wave Observatory (VWO) is one of the discipline-oriented virtual observatories that help form the nascent NASA Heliophysics Data environment to support heliophysics research. It focuses on supporting the searching and accessing of distributed heliophysics wave data and information that are available online. Since the occurrence of a natural wave phenomenon often depends on the underlying geophysical -- i.e., context -- conditions under which the waves are generated and propagate, and the observed wave characteristics can also depend on the location of observation, VWO will implement wave-data search-by-context conditions and location, in addition to searching by time and observing platforms (both space-based and ground-based). This paper describes the VWO goals, the basic design objectives, and the key VWO functionality to be expected. Members of the heliophysics community are invited to participate in VWO development in order to ensure its usefulness and success.

  19. Intense Dreaming: Theories, Narratives, and Our Search for Home

    ERIC Educational Resources Information Center

    Million, Dian

    2011-01-01

    American Indian studies claimed a space to interrogate Western disciplinary epistemologies utilizing Indigenous ways of "knowing". This epistemological struggle has, not surprisingly, been that: a struggle. As the author writes in 2010, people understand that their continuing desire to bring Indigenous community-based ways of knowing into dialogue…

  20. Modeling and Analysis of Space Based Transceivers

    NASA Technical Reports Server (NTRS)

    Reinhart, Richard C.; Liebetreu, John; Moore, Michael S.; Price, Jeremy C.; Abbott, Ben

    2005-01-01

    This paper presents the tool chain, methodology, and initial results of a study to provide a thorough, objective, and quantitative analysis of the design alternatives for space Software Defined Radio (SDR) transceivers. The approach taken was to develop a set of models and tools for describing communications requirements, the algorithm resource requirements, the available hardware, and the alternative software architectures, and generate analysis data necessary to compare alternative designs. The Space Transceiver Analysis Tool (STAT) was developed to help users identify and select representative designs, calculate the analysis data, and perform a comparative analysis of the representative designs. The tool allows the design space to be searched quickly while permitting incremental refinement in regions of higher payoff.

  1. The placement of equipment in the Space Station Freedom using constraint based reasoning

    NASA Technical Reports Server (NTRS)

    Tanner, Steve; Fennel, Randy

    1991-01-01

    This paper describes the Rack Equipment Placement and Optimization System. The primary objective of this system is to assist engineers with the placement of equipment into the racks of the modules of Space Station Freedom. It accomplishes this by showing a user where equipment placement is possible and by generating potential layouts. The system uses an explicit representation of integration constraints to search for potential solutions for individual rack equipment items. A simulated annealing process is being evaluated for total solution generation as well. Versions of this system are in use now and are assisting with the development of the Space Station Freedom at the Marshall Space Flight Center in Huntsville, Alabama.

  2. Homology groups for particles on one-connected graphs

    NASA Astrophysics Data System (ADS)

    MaciÄ Żek, Tomasz; Sawicki, Adam

    2017-06-01

    We present a mathematical framework for describing the topology of configuration spaces for particles on one-connected graphs. In particular, we compute the homology groups over integers for different classes of one-connected graphs. Our approach is based on some fundamental combinatorial properties of the configuration spaces, Mayer-Vietoris sequences for different parts of configuration spaces, and some limited use of discrete Morse theory. As one of the results, we derive the closed-form formulae for ranks of the homology groups for indistinguishable particles on tree graphs. We also give a detailed discussion of the second homology group of the configuration space of both distinguishable and indistinguishable particles. Our motivation is the search for new kinds of quantum statistics.

  3. Modeling and Analysis of Space Based Transceivers

    NASA Technical Reports Server (NTRS)

    Moore, Michael S.; Price, Jeremy C.; Abbott, Ben; Liebetreu, John; Reinhart, Richard C.; Kacpura, Thomas J.

    2007-01-01

    This paper presents the tool chain, methodology, and initial results of a study to provide a thorough, objective, and quantitative analysis of the design alternatives for space Software Defined Radio (SDR) transceivers. The approach taken was to develop a set of models and tools for describing communications requirements, the algorithm resource requirements, the available hardware, and the alternative software architectures, and generate analysis data necessary to compare alternative designs. The Space Transceiver Analysis Tool (STAT) was developed to help users identify and select representative designs, calculate the analysis data, and perform a comparative analysis of the representative designs. The tool allows the design space to be searched quickly while permitting incremental refinement in regions of higher payoff.

  4. 'Sciencenet'--towards a global search and share engine for all scientific knowledge.

    PubMed

    Lütjohann, Dominic S; Shah, Asmi H; Christen, Michael P; Richter, Florian; Knese, Karsten; Liebel, Urban

    2011-06-15

    Modern biological experiments create vast amounts of data which are geographically distributed. These datasets consist of petabytes of raw data and billions of documents. Yet to the best of our knowledge, a search engine technology that searches and cross-links all different data types in life sciences does not exist. We have developed a prototype distributed scientific search engine technology, 'Sciencenet', which facilitates rapid searching over this large data space. By 'bringing the search engine to the data', we do not require server farms. This platform also allows users to contribute to the search index and publish their large-scale data to support e-Science. Furthermore, a community-driven method guarantees that only scientific content is crawled and presented. Our peer-to-peer approach is sufficiently scalable for the science web without performance or capacity tradeoff. The free to use search portal web page and the downloadable client are accessible at: http://sciencenet.kit.edu. The web portal for index administration is implemented in ASP.NET, the 'AskMe' experiment publisher is written in Python 2.7, and the backend 'YaCy' search engine is based on Java 1.6.

  5. Making Temporal Search More Central in Spatial Data Infrastructures

    NASA Astrophysics Data System (ADS)

    Corti, P.; Lewis, B.

    2017-10-01

    A temporally enabled Spatial Data Infrastructure (SDI) is a framework of geospatial data, metadata, users, and tools intended to provide an efficient and flexible way to use spatial information which includes the historical dimension. One of the key software components of an SDI is the catalogue service which is needed to discover, query, and manage the metadata. A search engine is a software system capable of supporting fast and reliable search, which may use any means necessary to get users to the resources they need quickly and efficiently. These techniques may include features such as full text search, natural language processing, weighted results, temporal search based on enrichment, visualization of patterns in distributions of results in time and space using temporal and spatial faceting, and many others. In this paper we will focus on the temporal aspects of search which include temporal enrichment using a time miner - a software engine able to search for date components within a larger block of text, the storage of time ranges in the search engine, handling historical dates, and the use of temporal histograms in the user interface to display the temporal distribution of search results.

  6. Ringed Seal Search for Global Optimization via a Sensitive Search Model

    PubMed Central

    Saadi, Younes; Yanto, Iwan Tri Riyadi; Herawan, Tutut; Balakrishnan, Vimala; Chiroma, Haruna; Risnumawan, Anhar

    2016-01-01

    The efficiency of a metaheuristic algorithm for global optimization is based on its ability to search and find the global optimum. However, a good search often requires to be balanced between exploration and exploitation of the search space. In this paper, a new metaheuristic algorithm called Ringed Seal Search (RSS) is introduced. It is inspired by the natural behavior of the seal pup. This algorithm mimics the seal pup movement behavior and its ability to search and choose the best lair to escape predators. The scenario starts once the seal mother gives birth to a new pup in a birthing lair that is constructed for this purpose. The seal pup strategy consists of searching and selecting the best lair by performing a random walk to find a new lair. Affected by the sensitive nature of seals against external noise emitted by predators, the random walk of the seal pup takes two different search states, normal state and urgent state. In the normal state, the pup performs an intensive search between closely adjacent lairs; this movement is modeled via a Brownian walk. In an urgent state, the pup leaves the proximity area and performs an extensive search to find a new lair from sparse targets; this movement is modeled via a Levy walk. The switch between these two states is realized by the random noise emitted by predators. The algorithm keeps switching between normal and urgent states until the global optimum is reached. Tests and validations were performed using fifteen benchmark test functions to compare the performance of RSS with other baseline algorithms. The results show that RSS is more efficient than Genetic Algorithm, Particles Swarm Optimization and Cuckoo Search in terms of convergence rate to the global optimum. The RSS shows an improvement in terms of balance between exploration (extensive) and exploitation (intensive) of the search space. The RSS can efficiently mimic seal pups behavior to find best lair and provide a new algorithm to be used in global optimization problems. PMID:26790131

  7. The Telecommunications and Data Acquisition Report

    NASA Technical Reports Server (NTRS)

    Posner, E. C. (Editor)

    1983-01-01

    This publication reports on developments in programs managed by JPL's office of Telecommunications and Data Acquisition (TDA). In space communications, radio navigation, radio science, and ground based radio astronomy, it reports on activities of the Deep Space Network (DSN) and its associated Ground Communications Facility (GCF) in planning, in supporting research and technology, in implementation and in operations. In geodynamics, the publication reports on the application of radio interferometry at microwave frequencies for geodynamic measurements. This publication also reports on implementation and operations for searching the microwave spectrum.

  8. Testing general relativity in space-borne and astronomical laboratories

    NASA Technical Reports Server (NTRS)

    Will, Clifford M.

    1989-01-01

    The current status of space-based experiments and astronomical observations designed to test the theory of general relativity is surveyed. Consideration is given to tests of post-Newtonian gravity, searches for feeble short-range forces and gravitomagnetism, improved measurements of parameterized post-Newtonian parameter values, explorations of post-Newtonian physics, tests of the Einstein equivalence principle, observational tests of post-Newtonian orbital effects, and efforts to detect quadrupole and dipole radiation damping. Recent numerical results are presented in tables.

  9. A search for Earth-crossing asteroids, supplement

    NASA Technical Reports Server (NTRS)

    Taff, L. G.; Sorvari, J. M.; Kostishack, D. F.

    1984-01-01

    The ground based electro-optical deep space surveillance program involves a network of computer controlled 40 inch 1m telescopes equipped with large format, low light level, television cameras of the intensified silicon diode array type which is to replace the Baker-Nunn photographic camera system for artificial satellite tracking. A prototype observatory was constructed where distant artificial satellites are discriminated from stars in real time on the basis of the satellites' proper motion. Hardware was modified and the technique was used to observe and search for minor planets. Asteroids are now routinely observed and searched. The complete observing cycle, including the 2"-3" measurement of position, requires about four minutes at present. The commonality of asteroids and artificial satellite observing, searching, data reduction, and orbital analysis is stressed. Improvements to the hardware and software as well as operational techniques are considered.

  10. Microseismic event location using global optimization algorithms: An integrated and automated workflow

    NASA Astrophysics Data System (ADS)

    Lagos, Soledad R.; Velis, Danilo R.

    2018-02-01

    We perform the location of microseismic events generated in hydraulic fracturing monitoring scenarios using two global optimization techniques: Very Fast Simulated Annealing (VFSA) and Particle Swarm Optimization (PSO), and compare them against the classical grid search (GS). To this end, we present an integrated and optimized workflow that concatenates into an automated bash script the different steps that lead to the microseismic events location from raw 3C data. First, we carry out the automatic detection, denoising and identification of the P- and S-waves. Secondly, we estimate their corresponding backazimuths using polarization information, and propose a simple energy-based criterion to automatically decide which is the most reliable estimate. Finally, after taking proper care of the size of the search space using the backazimuth information, we perform the location using the aforementioned algorithms for 2D and 3D usual scenarios of hydraulic fracturing processes. We assess the impact of restricting the search space and show the advantages of using either VFSA or PSO over GS to attain significant speed-ups.

  11. Astrophysics of brown dwarfs; Proceedings of the Workshop, George Mason University, Fairfax, VA, Oct. 14, 15, 1985

    NASA Technical Reports Server (NTRS)

    Kafatos, Minas C. (Editor); Harrington, Robert S. (Editor); Maran, Stephen P. (Editor)

    1986-01-01

    Various reports on theoretical and observational studies of brown dwarfs (BDs) are presented. The topics considered include: astrometric detection of BDs, search for substellar companions to nearby stars using IR imaging, constraints on BD mass function from optical and IR searches, properties of stellar objects near the main sequence mass limit, search for low-mass stellar companions with the HF precision velocity technique, dynamical search for substellar objects, search for BDs in the IRAS data base, deep CCD survey for low mass stars in the disk and halo, the Berkeley search for a faint solar companion, the luminosity function for late M stars, astronomic search for IR dwarfs, and the role of the Space Telescope in the detection of BDs. Also addressed are: theoretical significance of BDs, evolution of super-Jupiters, compositional indicators in IR spectra of BDs, evolution of BDs and the evolutionary status of VB8B, the position of BDs on universal diagrams, theoretical determination of the minimum protostellar mass, Population II BDs and dark halos.

  12. Image search engine with selective filtering and feature-element-based classification

    NASA Astrophysics Data System (ADS)

    Li, Qing; Zhang, Yujin; Dai, Shengyang

    2001-12-01

    With the growth of Internet and storage capability in recent years, image has become a widespread information format in World Wide Web. However, it has become increasingly harder to search for images of interest, and effective image search engine for the WWW needs to be developed. We propose in this paper a selective filtering process and a novel approach for image classification based on feature element in the image search engine we developed for the WWW. First a selective filtering process is embedded in a general web crawler to filter out the meaningless images with GIF format. Two parameters that can be obtained easily are used in the filtering process. Our classification approach first extract feature elements from images instead of feature vectors. Compared with feature vectors, feature elements can better capture visual meanings of the image according to subjective perception of human beings. Different from traditional image classification method, our classification approach based on feature element doesn't calculate the distance between two vectors in the feature space, while trying to find associations between feature element and class attribute of the image. Experiments are presented to show the efficiency of the proposed approach.

  13. The ESPAS e-infrastructure: Access to data from near-Earth space

    NASA Astrophysics Data System (ADS)

    Belehaki, Anna; James, Sarah; Hapgood, Mike; Ventouras, Spiros; Galkin, Ivan; Lembesis, Antonis; Tsagouri, Ioanna; Charisi, Anna; Spogli, Luca; Berdermann, Jens; Häggström, Ingemar; ESPAS Consortium

    2016-10-01

    ESPAS, the ;near-Earth space data infrastructure for e-science; is a data e-infrastructure facilitating discovery and access to observations, ground-based and space borne, and to model predictions of the near-Earth space environment, a region extending from the Earth's atmosphere up to the outer radiation belts. ESPAS provides access to metadata and/or data from an extended network of data providers distributed globally. The interoperability of the heterogeneous data collections is achieved with the adoption and adaption of the ESPAS data model which is built entirely on ISO 19100 series geographic information standards. The ESPAS data portal manages a vocabulary of space physics keywords that can be used to narrow down data searches to observations of specific physical content. Such content-targeted search is an ESPAS innovation provided in addition to the commonly practiced data selection by time, location, and instrument. The article presents an overview of the architectural design of the ESPAS system, of its data model and ontology, and of interoperable services that allow the discovery, access and download of registered data. Emphasis is given to the standardization, and expandability concepts which represent also the main elements that support the building of long-term sustainability activities of the ESPAS e-infrastructure.

  14. Attractors in Sequence Space: Agent-Based Exploration of MHC I Binding Peptides.

    PubMed

    Jäger, Natalie; Wisniewska, Joanna M; Hiss, Jan A; Freier, Anja; Losch, Florian O; Walden, Peter; Wrede, Paul; Schneider, Gisbert

    2010-01-12

    Ant Colony Optimization (ACO) is a meta-heuristic that utilizes a computational analogue of ant trail pheromones to solve combinatorial optimization problems. The size of the ant colony and the representation of the ants' pheromone trails is unique referring to the given optimization problem. In the present study, we employed ACO to generate novel peptides that stabilize MHC I protein on the plasma membrane of a murine lymphoma cell line. A jury of feedforward neural network classifiers served as fitness function for peptide design by ACO. Bioactive murine MHC I H-2K(b) stabilizing as well as nonstabilizing octapeptides were designed, synthesized and tested. These peptides reveal residue motifs that are relevant for MHC I receptor binding. We demonstrate how the performance of the implemented ACO algorithm depends on the colony size and the size of the search space. The actual peptide design process by ACO constitutes a search path in sequence space that can be visualized as trajectories on a self-organizing map (SOM). By projecting the sequence space on a SOM we visualize the convergence of the different solutions that emerge during the optimization process in sequence space. The SOM representation reveals attractors in sequence space for MHC I binding peptides. The combination of ACO and SOM enables systematic peptide optimization. This technique allows for the rational design of various types of bioactive peptides with minimal experimental effort. Here, we demonstrate its successful application to the design of MHC-I binding and nonbinding peptides which exhibit substantial bioactivity in a cell-based assay. Copyright © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Comparing NEO Search Telescopes

    NASA Astrophysics Data System (ADS)

    Myhrvold, Nathan

    2016-04-01

    Multiple terrestrial and space-based telescopes have been proposed for detecting and tracking near-Earth objects (NEOs). Detailed simulations of the search performance of these systems have used complex computer codes that are not widely available, which hinders accurate cross-comparison of the proposals and obscures whether they have consistent assumptions. Moreover, some proposed instruments would survey infrared (IR) bands, whereas others would operate in the visible band, and differences among asteroid thermal and visible-light models used in the simulations further complicate like-to-like comparisons. I use simple physical principles to estimate basic performance metrics for the ground-based Large Synoptic Survey Telescope and three space-based instruments—Sentinel, NEOCam, and a Cubesat constellation. The performance is measured against two different NEO distributions, the Bottke et al. distribution of general NEOs, and the Veres et al. distribution of Earth-impacting NEO. The results of the comparison show simplified relative performance metrics, including the expected number of NEOs visible in the search volumes and the initial detection rates expected for each system. Although these simplified comparisons do not capture all of the details, they give considerable insight into the physical factors limiting performance. Multiple asteroid thermal models are considered, including FRM, NEATM, and a new generalized form of FRM. I describe issues with how IR albedo and emissivity have been estimated in previous studies, which may render them inaccurate. A thermal model for tumbling asteroids is also developed and suggests that tumbling asteroids may be surprisingly difficult for IR telescopes to observe.

  16. An image-based search for pulsars among Fermi unassociated LAT sources

    NASA Astrophysics Data System (ADS)

    Frail, D. A.; Ray, P. S.; Mooley, K. P.; Hancock, P.; Burnett, T. H.; Jagannathan, P.; Ferrara, E. C.; Intema, H. T.; de Gasperin, F.; Demorest, P. B.; Stovall, K.; McKinnon, M. M.

    2018-03-01

    We describe an image-based method that uses two radio criteria, compactness, and spectral index, to identify promising pulsar candidates among Fermi Large Area Telescope (LAT) unassociated sources. These criteria are applied to those radio sources from the Giant Metrewave Radio Telescope all-sky survey at 150 MHz (TGSS ADR1) found within the error ellipses of unassociated sources from the 3FGL catalogue and a preliminary source list based on 7 yr of LAT data. After follow-up interferometric observations to identify extended or variable sources, a list of 16 compact, steep-spectrum candidates is generated. An ongoing search for pulsations in these candidates, in gamma rays and radio, has found 6 ms pulsars and one normal pulsar. A comparison of this method with existing selection criteria based on gamma-ray spectral and variability properties suggests that the pulsar discovery space using Fermi may be larger than previously thought. Radio imaging is a hitherto underutilized source selection method that can be used, as with other multiwavelength techniques, in the search for Fermi pulsars.

  17. Landscape Analysis and Algorithm Development for Plateau Plagued Search Spaces

    DTIC Science & Technology

    2011-02-28

    Final Report for AFOSR #FA9550-08-1-0422 Landscape Analysis and Algorithm Development for Plateau Plagued Search Spaces August 1, 2008 to November 30...focused on developing high level general purpose algorithms , such as Tabu Search and Genetic Algorithms . However, understanding of when and why these... algorithms perform well still lags. Our project extended the theory of certain combi- natorial optimization problems to develop analytical

  18. Experimental search for high-temperature ferroelectric perovskites guided by two-step machine learning.

    PubMed

    Balachandran, Prasanna V; Kowalski, Benjamin; Sehirlioglu, Alp; Lookman, Turab

    2018-04-26

    Experimental search for high-temperature ferroelectric perovskites is a challenging task due to the vast chemical space and lack of predictive guidelines. Here, we demonstrate a two-step machine learning approach to guide experiments in search of xBi[Formula: see text]O 3 -(1 - x)PbTiO 3 -based perovskites with high ferroelectric Curie temperature. These involve classification learning to screen for compositions in the perovskite structures, and regression coupled to active learning to identify promising perovskites for synthesis and feedback. The problem is challenging because the search space is vast, spanning ~61,500 compositions and only 167 are experimentally studied. Furthermore, not every composition can be synthesized in the perovskite phase. In this work, we predict x, y, Me', and Me″ such that the resulting compositions have both high Curie temperature and form in the perovskite structure. Outcomes from both successful and failed experiments then iteratively refine the machine learning models via an active learning loop. Our approach finds six perovskites out of ten compositions synthesized, including three previously unexplored {Me'Me″} pairs, with 0.2Bi(Fe 0.12 Co 0.88 )O 3 -0.8PbTiO 3 showing the highest measured Curie temperature of 898 K among them.

  19. Search for general relativistic effects in table-top displacement metrology

    NASA Technical Reports Server (NTRS)

    Halverson, Peter G.; Macdonald, Daniel R.; Diaz, Rosemary T.

    2004-01-01

    As displacement metrology accuracy improves, general relativistic effects will become noticeable. Metrology gauges developed for the Space Interferometry Mission were used to search for locally anisotropic space-time, with a null result at the 10 to the negative tenth power level.

  20. Competitive Swarm Optimizer Based Gateway Deployment Algorithm in Cyber-Physical Systems.

    PubMed

    Huang, Shuqiang; Tao, Ming

    2017-01-22

    Wireless sensor network topology optimization is a highly important issue, and topology control through node selection can improve the efficiency of data forwarding, while saving energy and prolonging lifetime of the network. To address the problem of connecting a wireless sensor network to the Internet in cyber-physical systems, here we propose a geometric gateway deployment based on a competitive swarm optimizer algorithm. The particle swarm optimization (PSO) algorithm has a continuous search feature in the solution space, which makes it suitable for finding the geometric center of gateway deployment; however, its search mechanism is limited to the individual optimum (pbest) and the population optimum (gbest); thus, it easily falls into local optima. In order to improve the particle search mechanism and enhance the search efficiency of the algorithm, we introduce a new competitive swarm optimizer (CSO) algorithm. The CSO search algorithm is based on an inter-particle competition mechanism and can effectively avoid trapping of the population falling into a local optimum. With the improvement of an adaptive opposition-based search and its ability to dynamically parameter adjustments, this algorithm can maintain the diversity of the entire swarm to solve geometric K -center gateway deployment problems. The simulation results show that this CSO algorithm has a good global explorative ability as well as convergence speed and can improve the network quality of service (QoS) level of cyber-physical systems by obtaining a minimum network coverage radius. We also find that the CSO algorithm is more stable, robust and effective in solving the problem of geometric gateway deployment as compared to the PSO or Kmedoids algorithms.

  1. Possible use of the 'Pi of the Sky' system in a space situational awareness program

    NASA Astrophysics Data System (ADS)

    Wawrzaszek, Roman; Wawer, Piotr; Sokolowski, Marcin; Nawrocki, Krzysztof; Pietrzak, Robert; Malek, Katarzyna; Zaremba, Marcin; Piotrowski, Lech W.

    2009-06-01

    The "Pi of the Sky" system was initially created for searching of optical partners of gamma ray bursts [5,7]. The system is located in Chile and consists of two CCD cameras on a common mounting base [1]. Currently, it performs various astronomical observations [1,5,7,8]. Among others, system also records passages of satellites and fragments of Earth's artificial satellites, so called "space debris". Since now, this kind of data was identify as a disturbing transient signal and team members usually focus on identify and eliminating it. Handle of this problem is especially important, because software algorithm which search for optical companion of gamma ray bursts focus on transient phenomena events. On the other hand, comparison of the "Pi of the Sky" system parameters with different facilities which are used for space debris searching and monitoring shows, that its properties are similar to some of those systems. It means, that it should be possible, to obtain valuable data of artificial satellites motion analyzing "Pi of the Sky" data. Moreover, expected in the near future system upgraded to 6 small telescopes equipped totally with 24 CCD detectors system [1] will cover a major part of the sky (field of view of each detector equals 20 x 20 degrees) which gives possibility of visual measurements objects up to 16 magnitude. It will be an unusual advantage in the field of system categories with that size. In the paper, we would like to shortly describe a space debris community activities, present properties of selected systems which are using for space debris surveys and finally examples of observational data will be presented.

  2. Web Image Search Re-ranking with Click-based Similarity and Typicality.

    PubMed

    Yang, Xiaopeng; Mei, Tao; Zhang, Yong Dong; Liu, Jie; Satoh, Shin'ichi

    2016-07-20

    In image search re-ranking, besides the well known semantic gap, intent gap, which is the gap between the representation of users' query/demand and the real intent of the users, is becoming a major problem restricting the development of image retrieval. To reduce human effects, in this paper, we use image click-through data, which can be viewed as the "implicit feedback" from users, to help overcome the intention gap, and further improve the image search performance. Generally, the hypothesis visually similar images should be close in a ranking list and the strategy images with higher relevance should be ranked higher than others are widely accepted. To obtain satisfying search results, thus, image similarity and the level of relevance typicality are determinate factors correspondingly. However, when measuring image similarity and typicality, conventional re-ranking approaches only consider visual information and initial ranks of images, while overlooking the influence of click-through data. This paper presents a novel re-ranking approach, named spectral clustering re-ranking with click-based similarity and typicality (SCCST). First, to learn an appropriate similarity measurement, we propose click-based multi-feature similarity learning algorithm (CMSL), which conducts metric learning based on clickbased triplets selection, and integrates multiple features into a unified similarity space via multiple kernel learning. Then based on the learnt click-based image similarity measure, we conduct spectral clustering to group visually and semantically similar images into same clusters, and get the final re-rank list by calculating click-based clusters typicality and withinclusters click-based image typicality in descending order. Our experiments conducted on two real-world query-image datasets with diverse representative queries show that our proposed reranking approach can significantly improve initial search results, and outperform several existing re-ranking approaches.

  3. Seismo-induced effects in the near-earth space: Combined ground and space investigations as a contribution to earthquake prediction

    NASA Astrophysics Data System (ADS)

    Sgrigna, V.; Buzzi, A.; Conti, L.; Picozza, P.; Stagni, C.; Zilpimiani, D.

    2007-02-01

    The paper aims at giving a few methodological suggestions in deterministic earthquake prediction studies based on combined ground-based and space observations of earthquake precursors. Up to now what is lacking is the demonstration of a causal relationship with explained physical processes and looking for a correlation between data gathered simultaneously and continuously by space observations and ground-based measurements. Coordinated space and ground-based observations imply available test sites on the Earth surface to correlate ground data, collected by appropriate networks of instruments, with space ones detected on board of LEO satellites. At this purpose a new result reported in the paper is an original and specific space mission project (ESPERIA) and two instruments of its payload. The ESPERIA space project has been performed for the Italian Space Agency and three ESPERIA instruments (ARINA and LAZIO particle detectors, and EGLE search-coil magnetometer) have been built and tested in space. The EGLE experiment started last April 15, 2005 on board the ISS, within the ENEIDE mission. The launch of ARINA occurred on June 15, 2006, on board the RESURS DK-1 Russian LEO satellite. As an introduction and justification to these experiments the paper clarifies some basic concepts and critical methodological aspects concerning deterministic and statistic approaches and their use in earthquake prediction. We also take the liberty of giving the scientific community a few critical hints based on our personal experience in the field and propose a joint study devoted to earthquake prediction and warning.

  4. Optimizing random searches on three-dimensional lattices

    NASA Astrophysics Data System (ADS)

    Yang, Benhao; Yang, Shunkun; Zhang, Jiaquan; Li, Daqing

    2018-07-01

    Search is a universal behavior related to many types of intelligent individuals. While most studies have focused on search in two or infinite-dimensional space, it is still missing how search can be optimized in three-dimensional space. Here we study random searches on three-dimensional (3d) square lattices with periodic boundary conditions, and explore the optimal search strategy with a power-law step length distribution, p(l) ∼l-μ, known as Lévy flights. We find that compared to random searches on two-dimensional (2d) lattices, the optimal exponent μopt on 3d lattices is relatively smaller in non-destructive case and remains similar in destructive case. We also find μopt decreases as the lattice length in z direction increases under high target density. Our findings may help us to understand the role of spatial dimension in search behaviors.

  5. Target intersection probabilities for parallel-line and continuous-grid types of search

    USGS Publications Warehouse

    McCammon, R.B.

    1977-01-01

    The expressions for calculating the probability of intersection of hidden targets of different sizes and shapes for parallel-line and continuous-grid types of search can be formulated by vsing the concept of conditional probability. When the prior probability of the orientation of a widden target is represented by a uniform distribution, the calculated posterior probabilities are identical with the results obtained by the classic methods of probability. For hidden targets of different sizes and shapes, the following generalizations about the probability of intersection can be made: (1) to a first approximation, the probability of intersection of a hidden target is proportional to the ratio of the greatest dimension of the target (viewed in plane projection) to the minimum line spacing of the search pattern; (2) the shape of the hidden target does not greatly affect the probability of the intersection when the largest dimension of the target is small relative to the minimum spacing of the search pattern, (3) the probability of intersecting a target twice for a particular type of search can be used as a lower bound if there is an element of uncertainty of detection for a particular type of tool; (4) the geometry of the search pattern becomes more critical when the largest dimension of the target equals or exceeds the minimum spacing of the search pattern; (5) for elongate targets, the probability of intersection is greater for parallel-line search than for an equivalent continuous square-grid search when the largest dimension of the target is less than the minimum spacing of the search pattern, whereas the opposite is true when the largest dimension exceeds the minimum spacing; (6) the probability of intersection for nonorthogonal continuous-grid search patterns is not greatly different from the probability of intersection for the equivalent orthogonal continuous-grid pattern when the orientation of the target is unknown. The probability of intersection for an elliptically shaped target can be approximated by treating the ellipse as intermediate between a circle and a line. A search conducted along a continuous rectangular grid can be represented as intermediate between a search along parallel lines and along a continuous square grid. On this basis, an upper and lower bound for the probability of intersection of an elliptically shaped target for a continuous rectangular grid can be calculated. Charts have been constructed that permit the values for these probabilities to be obtained graphically. The use of conditional probability allows the explorationist greater flexibility in considering alternate search strategies for locating hidden targets. ?? 1977 Plenum Publishing Corp.

  6. Building an Open Data Portal for the European Space Agency Climate Change Initiative based on an Iterative Development Methodology and Linked Data Technologies

    NASA Astrophysics Data System (ADS)

    Kershaw, P.; Bennett, V. L.; Stephens, A.; Wilson, A.; Waterfall, A. M.; Petrie, R.; Iwi, A.; Donegan, S.; Juckes, M. N.; Parton, G.

    2016-12-01

    The Climate Change Initiative (CCI) programme was initiated by the European Space Agency (ESA) in 2009 to address the GCOS Essential Climate Variable (ECV) requirements to provide stable, long-term, satellite-based data products to characterise the climate system and its changes. CEDA, working as part of a project consortium, were awarded the contract to build the Open Data Portal, consisting collectively of a central archive and single point of access for dissemination of the data to the international user community. Reflecting climate and earth observation community requirements, the system needed to support a range of access services in use by this domain and specifically, to integrate into existing infrastructure in the form of the Earth System Grid Federation (ESGF). This range of requirements together with the heterogeneity of the ECV datasets presented significant challenges. However, the use of Linked Data technologies and an iterative approach to data model development and data publishing have been instrumental in meeting the objectives and building a cohesive system. The portal supports data discovery based on the OGC CSW specification and on ESGF's powerful faceted search. These services provide complementary content at different levels of granularity and it therefore became clear that a common data model was needed. Key terms are defined in vocabularies serialised in SKOS and OWL and are accessible from a central vocabulary server to provide a single authoritative source for applications consuming metadata content. Exploiting the vocabulary service therefore, it has been possible to develop an innovative solution tagging ISO 19115 records for the CSW with the equivalent vocabulary terms used for the ESGF faceted search system. In this way it has been possible to create a rich user interface for the portal combining search results from both search services and the ability to dynamically populate facet selection and context-based help information from the vocabulary service.

  7. Path Planning for Non-Circular, Non-Holonomic Robots in Highly Cluttered Environments.

    PubMed

    Samaniego, Ricardo; Lopez, Joaquin; Vazquez, Fernando

    2017-08-15

    This paper presents an algorithm for finding a solution to the problem of planning a feasible path for a slender autonomous mobile robot in a large and cluttered environment. The presented approach is based on performing a graph search on a kinodynamic-feasible lattice state space of high resolution; however, the technique is applicable to many search algorithms. With the purpose of allowing the algorithm to consider paths that take the robot through narrow passes and close to obstacles, high resolutions are used for the lattice space and the control set. This introduces new challenges because one of the most computationally expensive parts of path search based planning algorithms is calculating the cost of each one of the actions or steps that could potentially be part of the trajectory. The reason for this is that the evaluation of each one of these actions involves convolving the robot's footprint with a portion of a local map to evaluate the possibility of a collision, an operation that grows exponentially as the resolution is increased. The novel approach presented here reduces the need for these convolutions by using a set of offline precomputed maps that are updated, by means of a partial convolution, as new information arrives from sensors or other sources. Not only does this improve run-time performance, but it also provides support for dynamic search in changing environments. A set of alternative fast convolution methods are also proposed, depending on whether the environment is cluttered with obstacles or not. Finally, we provide both theoretical and experimental results from different experiments and applications.

  8. Robust watermarking scheme for binary images using a slice-based large-cluster algorithm with a Hamming Code

    NASA Astrophysics Data System (ADS)

    Chen, Wen-Yuan; Liu, Chen-Chung

    2006-01-01

    The problems with binary watermarking schemes are that they have only a small amount of embeddable space and are not robust enough. We develop a slice-based large-cluster algorithm (SBLCA) to construct a robust watermarking scheme for binary images. In SBLCA, a small-amount cluster selection (SACS) strategy is used to search for a feasible slice in a large-cluster flappable-pixel decision (LCFPD) method, which is used to search for the best location for concealing a secret bit from a selected slice. This method has four major advantages over the others: (a) SBLCA has a simple and effective decision function to select appropriate concealment locations, (b) SBLCA utilizes a blind watermarking scheme without the original image in the watermark extracting process, (c) SBLCA uses slice-based shuffling capability to transfer the regular image into a hash state without remembering the state before shuffling, and finally, (d) SBLCA has enough embeddable space that every 64 pixels could accommodate a secret bit of the binary image. Furthermore, empirical results on test images reveal that our approach is a robust watermarking scheme for binary images.

  9. KSC-08pd1348

    NASA Image and Video Library

    2008-05-12

    CAPE CANAVERAL, Fla. -- A representative of the 301st Rescue Squadron and a volunteer (in the stretcher) from the NASA Vehicle Integration Test Team office get ready to demonstrate rescue equipment on the HH-60G helicopter that is used by participants in the Mode VIII exercise being conducted at Patrick Air Force Base, Fla. In support of, and with logistical support from, NASA, USSTRATCOM is hosting a major exercise involving Department of Defense, Department of Homeland Security, search and rescue (SAR) forces, including the 45th Space Wing at Patrick Air Force Base, which support space shuttle astronaut bailout contingency operations, known as Mode VIII. This exercise tests SAR capabilities to locate, recover and provide medical treatment for astronauts following a space shuttle launch phase open-ocean bailout. Participants include members of the U.S. Navy, U.S. Coast Guard, U.S. Air Force, and NASA's Kennedy Space Center and Johnson Space Center. This will be the 15th Mode VIII exercise conducted in the past 20 years. Photo credit: NASA/Kim Shiflett

  10. KSC-08pd1347

    NASA Image and Video Library

    2008-05-12

    CAPE CANAVERAL, Fla. -- A representative of the 301st Rescue Squadron and a volunteer from the NASA Vehicle Integration Test Team office get ready to demonstrate rescue equipment that is used by participants in the Mode VIII exercise being conducted at Patrick Air Force Base. In the background is an HH-60G helicopter. In support of, and with logistical support from, NASA, USSTRATCOM is hosting a major exercise involving Department of Defense, Department of Homeland Security, search and rescue (SAR) forces, including the 45th Space Wing at Patrick Air Force Base, which support space shuttle astronaut bailout contingency operations, known as Mode VIII. This exercise tests SAR capabilities to locate, recover and provide medical treatment for astronauts following a space shuttle launch phase open-ocean bailout. Participants include members of the U.S. Navy, U.S. Coast Guard, U.S. Air Force, and NASA's Kennedy Space Center and Johnson Space Center. This will be the 15th Mode VIII exercise conducted in the past 20 years. Photo credit: NASA/Kim Shiflett

  11. Search for neutral minimal supersymmetric standard model Higgs bosons decaying to tau pairs in pp collisions at √s=7 TeV.

    PubMed

    Chatrchyan, S; Khachatryan, V; Sirunyan, A M; Tumasyan, A; Adam, W; Bergauer, T; Dragicevic, M; Erö, J; Fabjan, C; Friedl, M; Frühwirth, R; Ghete, V M; Hammer, J; Hänsel, S; Hoch, M; Hörmann, N; Hrubec, J; Jeitler, M; Kasieczka, G; Kiesenhofer, W; Krammer, M; Liko, D; Mikulec, I; Pernicka, M; Rohringer, H; Schöfbeck, R; Strauss, J; Teischinger, F; Wagner, P; Waltenberger, W; Walzel, G; Widl, E; Wulz, C-E; Mossolov, V; Shumeiko, N; Suarez Gonzalez, J; Benucci, L; De Wolf, E A; Janssen, X; Maes, T; Mucibello, L; Ochesanu, S; Roland, B; Rougny, R; Selvaggi, M; Van Haevermaet, H; Van Mechelen, P; Van Remortel, N; Blekman, F; Blyweert, S; D'Hondt, J; Devroede, O; Gonzalez Suarez, R; Kalogeropoulos, A; Maes, J; Maes, M; Van Doninck, W; Van Mulders, P; Van Onsem, G P; Villella, I; Charaf, O; Clerbaux, B; De Lentdecker, G; Dero, V; Gay, A P R; Hammad, G H; Hreus, T; Marage, P E; Thomas, L; Vander Velde, C; Vanlaer, P; Adler, V; Cimmino, A; Costantini, S; Grunewald, M; Klein, B; Lellouch, J; Marinov, A; McCartin, J; Ryckbosch, D; Thyssen, F; Tytgat, M; Vanelderen, L; Verwilligen, P; Walsh, S; Zaganidis, N; Basegmez, S; Bruno, G; Caudron, J; Ceard, L; Cortina Gil, E; De Favereau De Jeneret, J; Delaere, C; Favart, D; Giammanco, A; Grégoire, G; Hollar, J; Lemaitre, V; Liao, J; Militaru, O; Ovyn, S; Pagano, D; Pin, A; Piotrzkowski, K; Schul, N; Beliy, N; Caebergs, T; Daubie, E; Alves, G A; Damiao, D De Jesus; Pol, M E; Souza, M H G; Carvalho, W; Da Costa, E M; Martins, C De Oliveira; De Souza, S Fonseca; Mundim, L; Nogima, H; Oguri, V; Da Silva, W L Prado; Santoro, A; Do Amaral, S M Silva; Sznajder, A; De Araujo, F Torres Da Silva; Dias, F A; Tomei, T R Fernandez Perez; Gregores, E M; Lagana, C; Marinho, F; Mercadante, P G; Novaes, S F; Padula, Sandra S; Darmenov, N; Dimitrov, L; Genchev, V; Iaydjiev, P; Piperov, S; Rodozov, M; Stoykova, S; Sultanov, G; Tcholakov, V; Trayanov, R; Vankov, I; Dimitrov, A; Hadjiiska, R; Karadzhinova, A; Kozhuharov, V; Litov, L; Mateev, M; Pavlov, B; Petkov, P; Bian, J G; Chen, G M; Chen, H S; Jiang, C H; Liang, D; Liang, S; Meng, X; Tao, J; Wang, J; Wang, J; Wang, X; Wang, Z; Xiao, H; Xu, M; Zang, J; Zhang, Z; Ban, Y; Guo, S; Guo, Y; Li, W; Mao, Y; Qian, S J; Teng, H; Zhang, L; Zhu, B; Zou, W; Cabrera, A; Moreno, B Gomez; Rios, A A Ocampo; Oliveros, A F Osorio; Sanabria, J C; Godinovic, N; Lelas, D; Lelas, K; Plestina, R; Polic, D; Puljak, I; Antunovic, Z; Dzelalija, M; Brigljevic, V; Duric, S; Kadija, K; Morovic, S; Attikis, A; Galanti, M; Mousa, J; Nicolaou, C; Ptochos, F; Razis, P A; Finger, M; Finger, M; Assran, Y; Khalil, S; Mahmoud, M A; Hektor, A; Kadastik, M; Müntel, M; Raidal, M; Rebane, L; Azzolini, V; Eerola, P; Fedi, G; Czellar, S; Härkönen, J; Heikkinen, A; Karimäki, V; Kinnunen, R; Kortelainen, M J; Lampén, T; Lassila-Perini, K; Lehti, S; Lindén, T; Luukka, P; Mäenpää, T; Tuominen, E; Tuominiemi, J; Tuovinen, E; Ungaro, D; Wendland, L; Banzuzi, K; Korpela, A; Tuuva, T; Sillou, D; Besancon, M; Choudhury, S; Dejardin, M; Denegri, D; Fabbro, B; Faure, J L; Ferri, F; Ganjour, S; Gentit, F X; Givernaud, A; Gras, P; de Monchenault, G Hamel; Jarry, P; Locci, E; Malcles, J; Marionneau, M; Millischer, L; Rander, J; Rosowsky, A; Shreyber, I; Titov, M; Verrecchia, P; Baffioni, S; Beaudette, F; Benhabib, L; Bianchini, L; Bluj, M; Broutin, C; Busson, P; Charlot, C; Dahms, T; Dobrzynski, L; Elgammal, S; de Cassagnac, R Granier; Haguenauer, M; Miné, P; Mironov, C; Ochando, C; Paganini, P; Sabes, D; Salerno, R; Sirois, Y; Thiebaux, C; Wyslouch, B; Zabi, A; Agram, J-L; Andrea, J; Bloch, D; Bodin, D; Brom, J-M; Cardaci, M; Chabert, E C; Collard, C; Conte, E; Drouhin, F; Ferro, C; Fontaine, J-C; Gelé, D; Goerlach, U; Greder, S; Juillot, P; Karim, M; Le Bihan, A-C; Mikami, Y; Van Hove, P; Fassi, F; Mercier, D; Baty, C; Beauceron, S; Beaupere, N; Bedjidian, M; Bondu, O; Boudoul, G; Boumediene, D; Brun, H; Chierici, R; Contardo, D; Depasse, P; El Mamouni, H; Fay, J; Gascon, S; Ille, B; Kurca, T; Le Grand, T; Lethuillier, M; Mirabito, L; Perries, S; Sordini, V; Tosi, S; Tschudi, Y; Verdier, P; Lomidze, D; Anagnostou, G; Edelhoff, M; Feld, L; Heracleous, N; Hindrichs, O; Jussen, R; Klein, K; Merz, J; Mohr, N; Ostapchuk, A; Perieanu, A; Raupach, F; Sammet, J; Schael, S; Sprenger, D; Weber, H; Weber, M; Wittmer, B; Ata, M; Bender, W; Dietz-Laursonn, E; Erdmann, M; Frangenheim, J; Hebbeker, T; Hinzmann, A; Hoepfner, K; Klimkovich, T; Klingebiel, D; Kreuzer, P; Lanske, D; Magass, C; Merschmeyer, M; Meyer, A; Papacz, P; Pieta, H; Reithler, H; Schmitz, S A; Sonnenschein, L; Steggemann, J; Teyssier, D; Tonutti, M; Bontenackels, M; Davids, M; Duda, M; Flügge, G; Geenen, H; Giffels, M; Ahmad, W Haj; Heydhausen, D; Kress, T; Kuessel, Y; Linn, A; Nowack, A; Perchalla, L; Pooth, O; Rennefeld, J; Sauerland, P; Stahl, A; Thomas, M; Tornier, D; Zoeller, M H; Martin, M Aldaya; Behrenhoff, W; Behrens, U; Bergholz, M; Bethani, A; Borras, K; Cakir, A; Campbell, A; Castro, E; Dammann, D; Eckerlin, G; Eckstein, D; Flossdorf, A; Flucke, G; Geiser, A; Hauk, J; Jung, H; Kasemann, M; Katkov, I; Katsas, P; Kleinwort, C; Kluge, H; Knutsson, A; Krämer, M; Krücker, D; Kuznetsova, E; Lange, W; Lohmann, W; Mankel, R; Marienfeld, M; Melzer-Pellmann, I-A; Meyer, A B; Mnich, J; Mussgiller, A; Olzem, J; Pitzl, D; Raspereza, A; Raval, A; Rosin, M; Schmidt, R; Schoerner-Sadenius, T; Sen, N; Spiridonov, A; Stein, M; Tomaszewska, J; Walsh, R; Wissing, C; Autermann, C; Blobel, V; Bobrovskyi, S; Draeger, J; Enderle, H; Gebbert, U; Kaschube, K; Kaussen, G; Klanner, R; Lange, J; Mura, B; Naumann-Emme, S; Nowak, F; Pietsch, N; Sander, C; Schettler, H; Schleper, P; Schröder, M; Schum, T; Schwandt, J; Stadie, H; Steinbrück, G; Thomsen, J; Barth, C; Bauer, J; Buege, V; Chwalek, T; De Boer, W; Dierlamm, A; Dirkes, G; Feindt, M; Gruschke, J; Hackstein, C; Hartmann, F; Heinrich, M; Held, H; Hoffmann, K H; Honc, S; Komaragiri, J R; Kuhr, T; Martschei, D; Mueller, S; Müller, Th; Niegel, M; Oberst, O; Oehler, A; Ott, J; Peiffer, T; Piparo, D; Quast, G; Rabbertz, K; Ratnikov, F; Ratnikova, N; Renz, M; Saout, C; Scheurer, A; Schieferdecker, P; Schilling, F-P; Schmanau, M; Schott, G; Simonis, H J; Stober, F M; Troendle, D; Wagner-Kuhr, J; Weiler, T; Zeise, M; Zhukov, V; Ziebarth, E B; Daskalakis, G; Geralis, T; Karafasoulis, K; Kesisoglou, S; Kyriakis, A; Loukas, D; Manolakos, I; Markou, A; Markou, C; Mavrommatis, C; Ntomari, E; Petrakou, E; Gouskos, L; Mertzimekis, T J; Panagiotou, A; Stiliaris, E; Evangelou, I; Foudas, C; Kokkas, P; Manthos, N; Papadopoulos, I; Patras, V; Triantis, F A; Aranyi, A; Bencze, G; Boldizsar, L; Hajdu, C; Hidas, P; Horvath, D; Kapusi, A; Krajczar, K; Sikler, F; Veres, G I; Vesztergombi, G; Beni, N; Molnar, J; Palinkas, J; Szillasi, Z; Veszpremi, V; Raics, P; Trocsanyi, Z L; Ujvari, B; Bansal, S; Beri, S B; Bhatnagar, V; Dhingra, N; Gupta, R; Jindal, M; Kaur, M; Kohli, J M; Mehta, M Z; Nishu, N; Saini, L K; Sharma, A; Singh, A P; Singh, J B; Singh, S P; Ahuja, S; Bhattacharya, S; Choudhary, B C; Gupta, P; Jain, S; Jain, S; Kumar, A; Ranjan, K; Shivpuri, R K; Choudhury, R K; Dutta, D; Kailas, S; Kumar, V; Mohanty, A K; Pant, L M; Shukla, P; Aziz, T; Guchait, M; Gurtu, A; Maity, M; Majumder, D; Majumder, G; Mazumdar, K; Mohanty, G B; Saha, A; Sudhakar, K; Wickramage, N; Banerjee, S; Dugad, S; Mondal, N K; Arfaei, H; Bakhshiansohi, H; Etesami, S M; Fahim, A; Hashemi, M; Jafari, A; Khakzad, M; Mohammadi, A; Najafabadi, M Mohammadi; Mehdiabadi, S Paktinat; Safarzadeh, B; Zeinali, M; Abbrescia, M; Barbone, L; Calabria, C; Colaleo, A; Creanza, D; De Filippis, N; De Palma, M; Fiore, L; Iaselli, G; Lusito, L; Maggi, G; Maggi, M; Manna, N; Marangelli, B; My, S; Nuzzo, S; Pacifico, N; Pierro, G A; Pompili, A; Pugliese, G; Romano, F; Roselli, G; Selvaggi, G; Silvestris, L; Trentadue, R; Tupputi, S; Zito, G; Abbiendi, G; Benvenuti, A C; Bonacorsi, D; Braibant-Giacomelli, S; Brigliadori, L; Capiluppi, P; Castro, A; Cavallo, F R; Cuffiani, M; Dallavalle, G M; Fabbri, F; Fanfani, A; Fasanella, D; Giacomelli, P; Giunta, M; Marcellini, S; Masetti, G; Meneghelli, M; Montanari, A; Navarria, F L; Odorici, F; Perrotta, A; Primavera, F; Rossi, A M; Rovelli, T; Siroli, G; Travaglini, R; Albergo, S; Cappello, G; Chiorboli, M; Costa, S; Tricomi, A; Tuve, C; Barbagli, G; Ciulli, V; Civinini, C; D'Alessandro, R; Focardi, E; Frosali, S; Gallo, E; Gonzi, S; Lenzi, P; Meschini, M; Paoletti, S; Sguazzoni, G; Tropiano, A; Benussi, L; Bianco, S; Colafranceschi, S; Fabbri, F; Piccolo, D; Fabbricatore, P; Musenich, R; Benaglia, A; De Guio, F; Di Matteo, L; Ghezzi, A; Malvezzi, S; Martelli, A; Massironi, A; Menasce, D; Moroni, L; Paganoni, M; Pedrini, D; Ragazzi, S; Redaelli, N; Sala, S; Tabarelli de Fatis, T; Tancini, V; Buontempo, S; Montoya, C A Carrillo; Cavallo, N; De Cosa, A; Fabozzi, F; Iorio, A O M; Lista, L; Merola, M; Paolucci, P; Azzi, P; Bacchetta, N; Bellan, P; Bisello, D; Branca, A; Carlin, R; Checchia, P; De Mattia, M; Dorigo, T; Dosselli, U; Fanzago, F; Gasparini, F; Gasparini, U; Lacaprara, S; Lazzizzera, I; Margoni, M; Mazzucato, M; Meneguzzo, A T; Nespolo, M; Perrozzi, L; Pozzobon, N; Ronchese, P; Simonetto, F; Torassa, E; Tosi, M; Vanini, S; Zotto, P; Zumerle, G; Baesso, P; Berzano, U; Ratti, S P; Riccardi, C; Torre, P; Vitulo, P; Viviani, C; Biasini, M; Bilei, G M; Caponeri, B; Fanò, L; Lariccia, P; Lucaroni, A; Mantovani, G; Menichelli, M; Nappi, A; Romeo, F; Santocchia, A; Taroni, S; Valdata, M; Azzurri, P; Bagliesi, G; Bernardini, J; Boccali, T; Broccolo, G; Castaldi, R; D'Agnolo, R T; Dell'Orso, R; Fiori, F; Foà, L; Giassi, A; Kraan, A; Ligabue, F; Lomtadze, T; Martini, L; Messineo, A; Palla, F; Segneri, G; Serban, A T; Spagnolo, P; Tenchini, R; Tonelli, G; Venturi, A; Verdini, P G; Barone, L; Cavallari, F; Del Re, D; Di Marco, E; Diemoz, M; Franci, D; Grassi, M; Longo, E; Nourbakhsh, S; Organtini, G; Pandolfi, F; Paramatti, R; Rahatlou, S; Amapane, N; Arcidiacono, R; Argiro, S; Arneodo, M; Biino, C; Botta, C; Cartiglia, N; Castello, R; Costa, M; Demaria, N; Graziano, A; Mariotti, C; Marone, M; Maselli, S; Migliore, E; Mila, G; Monaco, V; Musich, M; Obertino, M M; Pastrone, N; Pelliccioni, M; Romero, A; Ruspa, M; Sacchi, R; Sola, V; Solano, A; Staiano, A; Vilela Pereira, A; Belforte, S; Cossutti, F; Della Ricca, G; Gobbo, B; Montanino, D; Penzo, A; Heo, S G; Nam, S K; Chang, S; Chung, J; Kim, D H; Kim, G N; Kim, J E; Kong, D J; Park, H; Ro, S R; Son, D; Son, D C; Son, T; Kim, Zero; Kim, J Y; Song, S; Choi, S; Hong, B; Jeong, M S; Jo, M; Kim, H; Kim, J H; Kim, T J; Lee, K S; Moon, D H; Park, S K; Rhee, H B; Seo, E; Shin, S; Sim, K S; Choi, M; Kang, S; Kim, H; Park, C; Park, I C; Park, S; Ryu, G; Choi, Y; Choi, Y K; Goh, J; Kim, M S; Kwon, E; Lee, J; Lee, S; Seo, H; Yu, I; Bilinskas, M J; Grigelionis, I; Janulis, M; Martisiute, D; Petrov, P; Sabonis, T; Castilla-Valdez, H; De La Cruz-Burelo, E; Lopez-Fernandez, R; Magaña Villalba, R; Sánchez-Hernández, A; Villasenor-Cendejas, L M; Carrillo Moreno, S; Vazquez Valencia, F; Salazar Ibarguen, H A; Casimiro Linares, E; Morelos Pineda, A; Reyes-Santos, M A; Krofcheck, D; Tam, J; Butler, P H; Doesburg, R; Silverwood, H; Ahmad, M; Ahmed, I; Asghar, M I; Hoorani, H R; Khan, W A; Khurshid, T; Qazi, S; Brona, G; Cwiok, M; Dominik, W; Doroba, K; Kalinowski, A; Konecki, M; Krolikowski, J; Frueboes, T; Gokieli, R; Górski, M; Kazana, M; Nawrocki, K; Romanowska-Rybinska, K; Szleper, M; Wrochna, G; Zalewski, P; Almeida, N; Bargassa, P; David, A; Faccioli, P; Parracho, P G Ferreira; Gallinaro, M; Musella, P; Nayak, A; Ribeiro, P Q; Seixas, J; Varela, J; Afanasiev, S; Belotelov, I; Bunin, P; Golutvin, I; Kamenev, A; Karjavin, V; Kozlov, G; Lanev, A; Moisenz, P; Palichik, V; Perelygin, V; Shmatov, S; Smirnov, V; Volodko, A; Zarubin, A; Golovtsov, V; Ivanov, Y; Kim, V; Levchenko, P; Murzin, V; Oreshkin, V; Smirnov, I; Sulimov, V; Uvarov, L; Vavilov, S; Vorobyev, A; Vorobyev, A; Andreev, Yu; Dermenev, A; Gninenko, S; Golubev, N; Kirsanov, M; Krasnikov, N; Matveev, V; Pashenkov, A; Toropin, A; Troitsky, S; Epshteyn, V; Gavrilov, V; Kaftanov, V; Kossov, M; Krokhotin, A; Lychkovskaya, N; Popov, V; Safronov, G; Semenov, S; Stolin, V; Vlasov, E; Zhokin, A; Boos, E; Dubinin, M; Dudko, L; Ershov, A; Gribushin, A; Kodolova, O; Lokhtin, I; Markina, A; Obraztsov, S; Perfilov, M; Petrushanko, S; Sarycheva, L; Savrin, V; Snigirev, A; Andreev, V; Azarkin, M; Dremin, I; Kirakosyan, M; Leonidov, A; Rusakov, S V; Vinogradov, A; Azhgirey, I; Bitioukov, S; Grishin, V; Kachanov, V; Konstantinov, D; Korablev, A; Krychkine, V; Petrov, V; Ryutin, R; Slabospitsky, S; Sobol, A; Tourtchanovitch, L; Troshin, S; Tyurin, N; Uzunian, A; Volkov, A; Adzic, P; Djordjevic, M; Krpic, D; Milosevic, J; Aguilar-Benitez, M; Alcaraz Maestre, J; Arce, P; Battilana, C; Calvo, E; Cepeda, M; Cerrada, M; Chamizo Llatas, M; Colino, N; De La Cruz, B; Delgado Peris, A; Diez Pardos, C; Domínguez Vázquez, D; Fernandez Bedoya, C; Fernández Ramos, J P; Ferrando, A; Flix, J; Fouz, M C; Garcia-Abia, P; Gonzalez Lopez, O; Goy Lopez, S; Hernandez, J M; Josa, M I; Merino, G; Puerta Pelayo, J; Redondo, I; Romero, L; Santaolalla, J; Soares, M S; Willmott, C; Albajar, C; Codispoti, G; de Trocóniz, J F; Cuevas, J; Fernandez Menendez, J; Folgueras, S; Gonzalez Caballero, I; Lloret Iglesias, L; Vizan Garcia, J M; Brochero Cifuentes, J A; Cabrillo, I J; Calderon, A; Chuang, S H; Duarte Campderros, J; Felcini, M; Fernandez, M; Gomez, G; Gonzalez Sanchez, J; Jorda, C; Lobelle Pardo, P; Lopez Virto, A; Marco, J; Marco, R; Martinez Rivero, C; Matorras, F; Munoz Sanchez, F J; Piedra Gomez, J; Rodrigo, T; Rodríguez-Marrero, A Y; Ruiz-Jimeno, A; Scodellaro, L; Sobron Sanudo, M; Vila, I; Vilar Cortabitarte, R; Abbaneo, D; Auffray, E; Auzinger, G; Baillon, P; Ball, A H; Barney, D; Bell, A J; Benedetti, D; Bernet, C; Bialas, W; Bloch, P; Bocci, A; Bolognesi, S; Bona, M; Breuker, H; Bunkowski, K; Camporesi, T; Cerminara, G; Coarasa Perez, J A; Curé, B; D'Enterria, D; De Roeck, A; Di Guida, S; Elliott-Peisert, A; Frisch, B; Funk, W; Gaddi, A; Gennai, S; Georgiou, G; Gerwig, H; Gigi, D; Gill, K; Giordano, D; Glege, F; Garrido, R Gomez-Reino; Gouzevitch, M; Govoni, P; Gowdy, S; Guiducci, L; Hansen, M; Hartl, C; Harvey, J; Hegeman, J; Hegner, B; Hoffmann, H F; Honma, A; Innocente, V; Janot, P; Kaadze, K; Karavakis, E; Lecoq, P; Lourenço, C; Mäki, T; Malberti, M; Malgeri, L; Mannelli, M; Masetti, L; Maurisset, A; Meijers, F; Mersi, S; Meschi, E; Moser, R; Mozer, M U; Mulders, M; Nesvold, E; Nguyen, M; Orimoto, T; Orsini, L; Perez, E; Petrilli, A; Pfeiffer, A; Pierini, M; Pimiä, M; Polese, G; Racz, A; Antunes, J Rodrigues; Rolandi, G; Rommerskirchen, T; Rovelli, C; Rovere, M; Sakulin, H; Schäfer, C; Schwick, C; Segoni, I; Sharma, A; Siegrist, P; Simon, M; Sphicas, P; Spiropulu, M; Stoye, M; Tropea, P; Tsirou, A; Vichoudis, P; Voutilainen, M; Zeuner, W D; Bertl, W; Deiters, K; Erdmann, W; Gabathuler, K; Horisberger, R; Ingram, Q; Kaestli, H C; König, S; Kotlinski, D; Langenegger, U; Meier, F; Renker, D; Rohe, T; Sibille, J; Starodumov, A; Bortignon, P; Caminada, L; Chanon, N; Chen, Z; Cittolin, S; Dissertori, G; Dittmar, M; Eugster, J; Freudenreich, K; Grab, C; Hervé, A; Hintz, W; Lecomte, P; Lustermann, W; Marchica, C; Del Arbol, P Martinez Ruiz; Meridiani, P; Milenovic, P; Moortgat, F; Nägeli, C; Nef, P; Nessi-Tedaldi, F; Pape, L; Pauss, F; Punz, T; Rizzi, A; Ronga, F J; Rossini, M; Sala, L; Sanchez, A K; Sawley, M-C; Stieger, B; Tauscher, L; Thea, A; Theofilatos, K; Treille, D; Urscheler, C; Wallny, R; Weber, M; Wehrli, L; Weng, J; Aguiló, E; Amsler, C; Chiochia, V; De Visscher, S; Favaro, C; Rikova, M Ivova; Mejias, B Millan; Otiougova, P; Regenfus, C; Robmann, P; Schmidt, A; Snoek, H; Chang, Y H; Chen, K H; Kuo, C M; Li, S W; Lin, W; Liu, Z K; Lu, Y J; Mekterovic, D; Volpe, R; Wu, J H; Yu, S S; Bartalini, P; Chang, P; Chang, Y H; Chang, Y W; Chao, Y; Chen, K F; Hou, W-S; Hsiung, Y; Kao, K Y; Lei, Y J; Lu, R-S; Shiu, J G; Tzeng, Y M; Wang, M; Adiguzel, A; Bakirci, M N; Cerci, S; Dozen, C; Dumanoglu, I; Eskut, E; Girgis, S; Gokbulut, G; Guler, Y; Gurpinar, E; Hos, I; Kangal, E E; Karaman, T; Topaksu, A Kayis; Nart, A; Onengut, G; Ozdemir, K; Ozturk, S; Polatoz, A; Sogut, K; Cerci, D Sunar; Tali, B; Topakli, H; Uzun, D; Vergili, L N; Vergili, M; Zorbilmez, C; Akin, I V; Aliev, T; Bilmis, S; Deniz, M; Gamsizkan, H; Guler, A M; Ocalan, K; Ozpineci, A; Serin, M; Sever, R; Surat, U E; Yildirim, E; Zeyrek, M; Deliomeroglu, M; Demir, D; Gülmez, E; Isildak, B; Kaya, M; Kaya, O; Ozkorucuklu, S; Sonmez, N; Levchuk, L; Bostock, F; Brooke, J J; Cheng, T L; Clement, E; Cussans, D; Frazier, R; Goldstein, J; Grimes, M; Hansen, M; Hartley, D; Heath, G P; Heath, H F; Jackson, J; Kreczko, L; Metson, S; Newbold, D M; Nirunpong, K; Poll, A; Senkin, S; Smith, V J; Ward, S; Basso, L; Bell, K W; Belyaev, A; Brew, C; Brown, R M; Camanzi, B; Cockerill, D J A; Coughlan, J A; Harder, K; Harper, S; Kennedy, B W; Olaiya, E; Petyt, D; Radburn-Smith, B C; Shepherd-Themistocleous, C H; Tomalin, I R; Womersley, W J; Worm, S D; Bainbridge, R; Ball, G; Ballin, J; Beuselinck, R; Buchmuller, O; Colling, D; Cripps, N; Cutajar, M; Davies, G; Della Negra, M; Ferguson, W; Fulcher, J; Futyan, D; Gilbert, A; Bryer, A Guneratne; Hall, G; Hatherell, Z; Hays, J; Iles, G; Jarvis, M; Karapostoli, G; Lyons, L; Macevoy, B C; Magnan, A-M; Marrouche, J; Mathias, B; Nandi, R; Nash, J; Nikitenko, A; Papageorgiou, A; Pesaresi, M; Petridis, K; Pioppi, M; Raymond, D M; Rogerson, S; Rompotis, N; Rose, A; Ryan, M J; Seez, C; Sharp, P; Sparrow, A; Tapper, A; Tourneur, S; Acosta, M Vazquez; Virdee, T; Wakefield, S; Wardle, N; Wardrope, D; Whyntie, T; Barrett, M; Chadwick, M; Cole, J E; Hobson, P R; Khan, A; Kyberd, P; Leslie, D; Martin, W; Reid, I D; Teodorescu, L; Hatakeyama, K; Bose, T; Jarrin, E Carrera; Fantasia, C; Heister, A; St John, J; Lawson, P; Lazic, D; Rohlf, J; Sperka, D; Sulak, L; Avetisyan, A; Bhattacharya, S; Chou, J P; Cutts, D; Ferapontov, A; Heintz, U; Jabeen, S; Kukartsev, G; Landsberg, G; Narain, M; Nguyen, D; Segala, M; Sinthuprasith, T; Speer, T; Tsang, K V; Breedon, R; Sanchez, M Calderon De La Barca; Chauhan, S; Chertok, M; Conway, J; Cox, P T; Dolen, J; Erbacher, R; Friis, E; Ko, W; Kopecky, A; Lander, R; Liu, H; Maruyama, S; Miceli, T; Nikolic, M; Pellett, D; Robles, J; Salur, S; Schwarz, T; Searle, M; Smith, J; Squires, M; Tripathi, M; Sierra, R Vasquez; Veelken, C; Andreev, V; Arisaka, K; Cline, D; Cousins, R; Deisher, A; Duris, J; Erhan, S; Farrell, C; Hauser, J; Ignatenko, M; Jarvis, C; Plager, C; Rakness, G; Schlein, P; Tucker, J; Valuev, V; Babb, J; Chandra, A; Clare, R; Ellison, J; Gary, J W; Giordano, F; Hanson, G; Jeng, G Y; Kao, S C; Liu, F; Liu, H; Long, O R; Luthra, A; Nguyen, H; Shen, B C; Stringer, R; Sturdy, J; Sumowidagdo, S; Wilken, R; Wimpenny, S; Andrews, W; Branson, J G; Cerati, G B; Dusinberre, E; Evans, D; Golf, F; Holzner, A; Kelley, R; Lebourgeois, M; Letts, J; Mangano, B; Padhi, S; Palmer, C; Petrucciani, G; Pi, H; Pieri, M; Ranieri, R; Sani, M; Sharma, V; Simon, S; Tu, Y; Vartak, A; Wasserbaech, S; Würthwein, F; Yagil, A; Yoo, J; Barge, D; Bellan, R; Campagnari, C; D'Alfonso, M; Danielson, T; Flowers, K; Geffert, P; Incandela, J; Justus, C; Kalavase, P; Koay, S A; Kovalskyi, D; Krutelyov, V; Lowette, S; McColl, N; Pavlunin, V; Rebassoo, F; Ribnik, J; Richman, J; Rossin, R; Stuart, D; To, W; Vlimant, J R; Apresyan, A; Bornheim, A; Bunn, J; Chen, Y; Gataullin, M; Ma, Y; Mott, A; Newman, H B; Rogan, C; Shin, K; Timciuc, V; Traczyk, P; Veverka, J; Wilkinson, R; Yang, Y; Zhu, R Y; Akgun, B; Carroll, R; Ferguson, T; Iiyama, Y; Jang, D W; Jun, S Y; Liu, Y F; Paulini, M; Russ, J; Vogel, H; Vorobiev, I; Cumalat, J P; Dinardo, M E; Drell, B R; Edelmaier, C J; Ford, W T; Gaz, A; Heyburn, B; Lopez, E Luiggi; Nauenberg, U; Smith, J G; Stenson, K; Ulmer, K A; Wagner, S R; Zang, S L; Agostino, L; Alexander, J; Cassel, D; Chatterjee, A; Das, S; Eggert, N; Gibbons, L K; Heltsley, B; Hopkins, W; Khukhunaishvili, A; Kreis, B; Kaufman, G Nicolas; Patterson, J R; Puigh, D; Ryd, A; Salvati, E; Shi, X; Sun, W; Teo, W D; Thom, J; Thompson, J; Vaughan, J; Weng, Y; Winstrom, L; Wittich, P; Biselli, A; Cirino, G; Winn, D; Abdullin, S; Albrow, M; Anderson, J; Apollinari, G; Atac, M; Bakken, J A; Banerjee, S; Bauerdick, L A T; Beretvas, A; Berryhill, J; Bhat, P C; Bloch, I; Borcherding, F; Burkett, K; Butler, J N; Chetluru, V; Cheung, H W K; Chlebana, F; Cihangir, S; Cooper, W; Eartly, D P; Elvira, V D; Esen, S; Fisk, I; Freeman, J; Gao, Y; Gottschalk, E; Green, D; Gunthoti, K; Gutsche, O; Hanlon, J; Harris, R M; Hirschauer, J; Hooberman, B; Jensen, H; Johnson, M; Joshi, U; Khatiwada, R; Klima, B; Kousouris, K; Kunori, S; Kwan, S; Leonidopoulos, C; Limon, P; Lincoln, D; Lipton, R; Lykken, J; Maeshima, K; Marraffino, J M; Mason, D; McBride, P; Miao, T; Mishra, K; Mrenna, S; Musienko, Y; Newman-Holmes, C; O'Dell, V; Pordes, R; Prokofyev, O; Saoulidou, N; Sexton-Kennedy, E; Sharma, S; Spalding, W J; Spiegel, L; Tan, P; Taylor, L; Tkaczyk, S; Uplegger, L; Vaandering, E W; Vidal, R; Whitmore, J; Wu, W; Yang, F; Yumiceva, F; Yun, J C; Acosta, D; Avery, P; Bourilkov, D; Chen, M; De Gruttola, M; Di Giovanni, G P; Dobur, D; Drozdetskiy, A; Field, R D; Fisher, M; Fu, Y; Furic, I K; Gartner, J; Kim, B; Konigsberg, J; Korytov, A; Kropivnitskaya, A; Kypreos, T; Matchev, K; Mitselmakher, G; Muniz, L; Prescott, C; Remington, R; Schmitt, M; Scurlock, B; Sellers, P; Skhirtladze, N; Snowball, M; Wang, D; Yelton, J; Zakaria, M; Ceron, C; Gaultney, V; Kramer, L; Lebolo, L M; Linn, S; Markowitz, P; Martinez, G; Mesa, D; Rodriguez, J L; Adams, T; Askew, A; Bandurin, D; Bochenek, J; Chen, J; Diamond, B; Gleyzer, S V; Haas, J; Hagopian, S; Hagopian, V; Jenkins, M; Johnson, K F; Prosper, H; Quertenmont, L; Sekmen, S; Veeraraghavan, V; Baarmand, M M; Dorney, B; Guragain, S; Hohlmann, M; Kalakhety, H; Ralich, R; Vodopiyanov, I; Adams, M R; Anghel, I M; Apanasevich, L; Bai, Y; Bazterra, V E; Betts, R R; Callner, J; Cavanaugh, R; Dragoiu, C; Gauthier, L; Gerber, C E; Hofman, D J; Khalatyan, S; Kunde, G J; Lacroix, F; Malek, M; O'Brien, C; Silvestre, C; Smoron, A; Strom, D; Varelas, N; Akgun, U; Albayrak, E A; Bilki, B; Clarida, W; Duru, F; Lae, C K; McCliment, E; Merlo, J-P; Mermerkaya, H; Mestvirishvili, A; Moeller, A; Nachtman, J; Newsom, C R; Norbeck, E; Olson, J; Onel, Y; Ozok, F; Sen, S; Wetzel, J; Yetkin, T; Yi, K; Barnett, B A; Blumenfeld, B; Bonato, A; Eskew, C; Fehling, D; Giurgiu, G; Gritsan, A V; Guo, Z J; Hu, G; Maksimovic, P; Rappoccio, S; Swartz, M; Tran, N V; Whitbeck, A; Baringer, P; Bean, A; Benelli, G; Grachov, O; Kenny Iii, R P; Murray, M; Noonan, D; Sanders, S; Wood, J S; Zhukova, V; Barfuss, A F; Bolton, T; Chakaberia, I; Ivanov, A; Khalil, S; Makouski, M; Maravin, Y; Shrestha, S; Svintradze, I; Wan, Z; Gronberg, J; Lange, D; Wright, D; Baden, A; Boutemeur, M; Eno, S C; Ferencek, D; Gomez, J A; Hadley, N J; Kellogg, R G; Kirn, M; Lu, Y; Mignerey, A C; Rossato, K; Rumerio, P; Santanastasio, F; Skuja, A; Temple, J; Tonjes, M B; Tonwar, S C; Twedt, E; Alver, B; Bauer, G; Bendavid, J; Busza, W; Butz, E; Cali, I A; Chan, M; Dutta, V; Everaerts, P; Ceballos, G Gomez; Goncharov, M; Hahn, K A; Harris, P; Kim, Y; Klute, M; Lee, Y-J; Li, W; Loizides, C; Luckey, P D; Ma, T; Nahn, S; Paus, C; Ralph, D; Roland, C; Roland, G; Rudolph, M; Stephans, G S F; Stöckli, F; Sumorok, K; Sung, K; Wenger, E A; Xie, S; Yang, M; Yilmaz, Y; Yoon, A S; Zanetti, M; Cooper, S I; Cushman, P; Dahmes, B; De Benedetti, A; Dudero, P R; Franzoni, G; Haupt, J; Klapoetke, K; Kubota, Y; Mans, J; Rekovic, V; Rusack, R; Sasseville, M; Singovsky, A; Cremaldi, L M; Godang, R; Kroeger, R; Perera, L; Rahmat, R; Sanders, D A; Summers, D; Bloom, K; Bose, S; Butt, J; Claes, D R; Dominguez, A; Eads, M; Keller, J; Kelly, T; Kravchenko, I; Lazo-Flores, J; Malbouisson, H; Malik, S; Snow, G R; Baur, U; Godshalk, A; Iashvili, I; Jain, S; Kharchilava, A; Kumar, A; Shipkowski, S P; Smith, K; Alverson, G; Barberis, E; Baumgartel, D; Boeriu, O; Chasco, M; Reucroft, S; Swain, J; Trocino, D; Wood, D; Zhang, J; Anastassov, A; Kubik, A; Odell, N; Ofierzynski, R A; Pollack, B; Pozdnyakov, A; Schmitt, M; Stoynev, S; Velasco, M; Won, S; Antonelli, L; Berry, D; Hildreth, M; Jessop, C; Karmgard, D J; Kolb, J; Kolberg, T; Lannon, K; Luo, W; Lynch, S; Marinelli, N; Morse, D M; Pearson, T; Ruchti, R; Slaunwhite, J; Valls, N; Wayne, M; Ziegler, J; Bylsma, B; Durkin, L S; Gu, J; Hill, C; Killewald, P; Kotov, K; Ling, T Y; Rodenburg, M; Williams, G; Adam, N; Berry, E; Elmer, P; Gerbaudo, D; Halyo, V; Hebda, P; Hunt, A; Jones, J; Laird, E; Pegna, D Lopes; Marlow, D; Medvedeva, T; Mooney, M; Olsen, J; Piroué, P; Quan, X; Saka, H; Stickland, D; Tully, C; Werner, J S; Zuranski, A; Acosta, J G; Huang, X T; Lopez, A; Mendez, H; Oliveros, S; Vargas, J E Ramirez; Zatserklyaniy, A; Alagoz, E; Barnes, V E; Bolla, G; Borrello, L; Bortoletto, D; Everett, A; Garfinkel, A F; Gutay, L; Hu, Z; Jones, M; Koybasi, O; Kress, M; Laasanen, A T; Leonardo, N; Liu, C; Maroussov, V; Merkel, P; Miller, D H; Neumeister, N; Shipsey, I; Silvers, D; Svyatkovskiy, A; Yoo, H D; Zablocki, J; Zheng, Y; Jindal, P; Parashar, N; Boulahouache, C; Cuplov, V; Ecklund, K M; Geurts, F J M; Padley, B P; Redjimi, R; Roberts, J; Zabel, J; Betchart, B; Bodek, A; Chung, Y S; Covarelli, R; de Barbaro, P; Demina, R; Eshaq, Y; Flacher, H; Garcia-Bellido, A; Goldenzweig, P; Gotra, Y; Han, J; Harel, A; Miner, D C; Orbaker, D; Petrillo, G; Vishnevskiy, D; Zielinski, M; Bhatti, A; Ciesielski, R; Demortier, L; Goulianos, K; Lungu, G; Malik, S; Mesropian, C; Yan, M; Atramentov, O; Barker, A; Duggan, D; Gershtein, Y; Gray, R; Halkiadakis, E; Hidas, D; Hits, D; Lath, A; Panwalkar, S; Patel, R; Richards, A; Rose, K; Schnetzer, S; Somalwar, S; Stone, R; Thomas, S; Cerizza, G; Hollingsworth, M; Spanier, S; Yang, Z C; York, A; Asaadi, J; Eusebi, R; Gilmore, J; Gurrola, A; Kamon, T; Khotilovich, V; Montalvo, R; Nguyen, C N; Osipenkov, I; Pakhotin, Y; Pivarski, J; Safonov, A; Sengupta, S; Tatarinov, A; Toback, D; Weinberger, M; Akchurin, N; Bardak, C; Damgov, J; Jeong, C; Kovitanggoon, K; Lee, S W; Roh, Y; Sill, A; Volobouev, I; Wigmans, R; Yazgan, E; Appelt, E; Brownson, E; Engh, D; Florez, C; Gabella, W; Issah, M; Johns, W; Kurt, P; Maguire, C; Melo, A; Sheldon, P; Snook, B; Tuo, S; Velkovska, J; Arenton, M W; Balazs, M; Boutle, S; Cox, B; Francis, B; Hirosky, R; Ledovskoy, A; Lin, C; Neu, C; Yohay, R; Gollapinni, S; Harr, R; Karchin, P E; Lamichhane, P; Mattson, M; Milstène, C; Sakharov, A; Anderson, M; Bachtis, M; Bellinger, J N; Carlsmith, D; Dasu, S; Efron, J; Flood, K; Gray, L; Grogg, K S; Grothe, M; Hall-Wilton, R; Herndon, M; Klabbers, P; Klukas, J; Lanaro, A; Lazaridis, C; Leonard, J; Loveless, R; Mohapatra, A; Palmonari, F; Reeder, D; Ross, I; Savin, A; Smith, W H; Swanson, J; Weinberg, M

    2011-06-10

    A search for neutral minimal supersymmetric standard model (MSSM) Higgs bosons in pp collisions at the LHC at a center-of-mass energy of 7 TeV is presented. The results are based on a data sample corresponding to an integrated luminosity of 36  pb(-1) recorded by the CMS experiment. The search uses decays of the Higgs bosons to tau pairs. No excess is observed in the tau-pair invariant-mass spectrum. The resulting upper limits on the Higgs boson production cross section times branching fraction to tau pairs, as a function of the pseudoscalar Higgs boson mass, yield stringent new bounds in the MSSM parameter space.

  12. New approaches to optimization in aerospace conceptual design

    NASA Technical Reports Server (NTRS)

    Gage, Peter J.

    1995-01-01

    Aerospace design can be viewed as an optimization process, but conceptual studies are rarely performed using formal search algorithms. Three issues that restrict the success of automatic search are identified in this work. New approaches are introduced to address the integration of analyses and optimizers, to avoid the need for accurate gradient information and a smooth search space (required for calculus-based optimization), and to remove the restrictions imposed by fixed complexity problem formulations. (1) Optimization should be performed in a flexible environment. A quasi-procedural architecture is used to conveniently link analysis modules and automatically coordinate their execution. It efficiently controls a large-scale design tasks. (2) Genetic algorithms provide a search method for discontinuous or noisy domains. The utility of genetic optimization is demonstrated here, but parameter encodings and constraint-handling schemes must be carefully chosen to avoid premature convergence to suboptimal designs. The relationship between genetic and calculus-based methods is explored. (3) A variable-complexity genetic algorithm is created to permit flexible parameterization, so that the level of description can change during optimization. This new optimizer automatically discovers novel designs in structural and aerodynamic tasks.

  13. Search for general relativistic effects in table-top displacement metrology

    NASA Technical Reports Server (NTRS)

    Halverson, Peter G.; Diaz, Rosemary T.; Macdonald, Daniel R.

    2004-01-01

    As displacement metrology accuracy improves, general relativistic effects will become noticeable. Metrology gauges developed for the Space Interferometry Mission, were used to search for locally anisotropic space-time, with a null result at the 10 to the negative 10th power level.

  14. Dynamic Grover search: applications in recommendation systems and optimization problems

    NASA Astrophysics Data System (ADS)

    Chakrabarty, Indranil; Khan, Shahzor; Singh, Vanshdeep

    2017-06-01

    In the recent years, we have seen that Grover search algorithm (Proceedings, 28th annual ACM symposium on the theory of computing, pp. 212-219, 1996) by using quantum parallelism has revolutionized the field of solving huge class of NP problems in comparisons to classical systems. In this work, we explore the idea of extending Grover search algorithm to approximate algorithms. Here we try to analyze the applicability of Grover search to process an unstructured database with a dynamic selection function in contrast to the static selection function used in the original work (Grover in Proceedings, 28th annual ACM symposium on the theory of computing, pp. 212-219, 1996). We show that this alteration facilitates us to extend the application of Grover search to the field of randomized search algorithms. Further, we use the dynamic Grover search algorithm to define the goals for a recommendation system based on which we propose a recommendation algorithm which uses binomial similarity distribution space giving us a quadratic speedup over traditional classical unstructured recommendation systems. Finally, we see how dynamic Grover search can be used to tackle a wide range of optimization problems where we improve complexity over existing optimization algorithms.

  15. An Experience Oriented-Convergence Improved Gravitational Search Algorithm for Minimum Variance Distortionless Response Beamforming Optimum.

    PubMed

    Darzi, Soodabeh; Tiong, Sieh Kiong; Tariqul Islam, Mohammad; Rezai Soleymanpour, Hassan; Kibria, Salehin

    2016-01-01

    An experience oriented-convergence improved gravitational search algorithm (ECGSA) based on two new modifications, searching through the best experiments and using of a dynamic gravitational damping coefficient (α), is introduced in this paper. ECGSA saves its best fitness function evaluations and uses those as the agents' positions in searching process. In this way, the optimal found trajectories are retained and the search starts from these trajectories, which allow the algorithm to avoid the local optimums. Also, the agents can move faster in search space to obtain better exploration during the first stage of the searching process and they can converge rapidly to the optimal solution at the final stage of the search process by means of the proposed dynamic gravitational damping coefficient. The performance of ECGSA has been evaluated by applying it to eight standard benchmark functions along with six complicated composite test functions. It is also applied to adaptive beamforming problem as a practical issue to improve the weight vectors computed by minimum variance distortionless response (MVDR) beamforming technique. The results of implementation of the proposed algorithm are compared with some well-known heuristic methods and verified the proposed method in both reaching to optimal solutions and robustness.

  16. Hierarchical heuristic search using a Gaussian mixture model for UAV coverage planning.

    PubMed

    Lin, Lanny; Goodrich, Michael A

    2014-12-01

    During unmanned aerial vehicle (UAV) search missions, efficient use of UAV flight time requires flight paths that maximize the probability of finding the desired subject. The probability of detecting the desired subject based on UAV sensor information can vary in different search areas due to environment elements like varying vegetation density or lighting conditions, making it likely that the UAV can only partially detect the subject. This adds another dimension of complexity to the already difficult (NP-Hard) problem of finding an optimal search path. We present a new class of algorithms that account for partial detection in the form of a task difficulty map and produce paths that approximate the payoff of optimal solutions. The algorithms use the mode goodness ratio heuristic that uses a Gaussian mixture model to prioritize search subregions. The algorithms search for effective paths through the parameter space at different levels of resolution. We compare the performance of the new algorithms against two published algorithms (Bourgault's algorithm and LHC-GW-CONV algorithm) in simulated searches with three real search and rescue scenarios, and show that the new algorithms outperform existing algorithms significantly and can yield efficient paths that yield payoffs near the optimal.

  17. Concept similarity and related categories in information retrieval using formal concept analysis

    NASA Astrophysics Data System (ADS)

    Eklund, P.; Ducrou, J.; Dau, F.

    2012-11-01

    The application of formal concept analysis to the problem of information retrieval has been shown useful but has lacked any real analysis of the idea of relevance ranking of search results. SearchSleuth is a program developed to experiment with the automated local analysis of Web search using formal concept analysis. SearchSleuth extends a standard search interface to include a conceptual neighbourhood centred on a formal concept derived from the initial query. This neighbourhood of the concept derived from the search terms is decorated with its upper and lower neighbours representing more general and special concepts, respectively. SearchSleuth is in many ways an archetype of search engines based on formal concept analysis with some novel features. In SearchSleuth, the notion of related categories - which are themselves formal concepts - is also introduced. This allows the retrieval focus to shift to a new formal concept called a sibling. This movement across the concept lattice needs to relate one formal concept to another in a principled way. This paper presents the issues concerning exploring, searching, and ordering the space of related categories. The focus is on understanding the use and meaning of proximity and semantic distance in the context of information retrieval using formal concept analysis.

  18. KSC-08pd1383

    NASA Image and Video Library

    2008-05-14

    CAPE CANAVERAL, Fla. -- Off Florida's central east coast, a support boat from a rescue training exercise, known as Mode VIII, returns to the Freedom Star, one of NASA's solid rocket booster retrieval ships from NASA's Kennedy Space Center. In support of, and with logistical support from, NASA, USSTRATCOM is hosting a major exercise involving Department of Defense, Department of Homeland Security, search and rescue (SAR) forces, including the 45th Space Wing at Patrick Air Force Base, which support space shuttle astronaut bailout contingency operations, known as Mode VIII. This exercise tests SAR capabilities to locate, recover and provide medical treatment for astronauts following a space shuttle launch phase open-ocean bailout. Participants include members of the U.S. Navy, U.S. Coast Guard, U.S. Air Force, and NASA's Kennedy Space Center and Johnson Space Center. Photo credit: NASA/Dimitri Gerondidakis

  19. Exhaustive geographic search with mobile robots along space-filling curves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spires, S.V.; Goldsmith, S.Y.

    1998-03-01

    Swarms of mobile robots can be tasked with searching a geographic region for targets of interest, such as buried land mines. The authors assume that the individual robots are equipped with sensors tuned to the targets of interest, that these sensors have limited range, and that the robots can communicate with one another to enable cooperation. How can a swarm of cooperating sensate robots efficiently search a given geographic region for targets in the absence of a priori information about the target`s locations? Many of the obvious approaches are inefficient or lack robustness. One efficient approach is to have themore » robots traverse a space-filling curve. For many geographic search applications, this method is energy-frugal, highly robust, and provides guaranteed coverage in a finite time that decreases as the reciprocal of the number of robots sharing the search task. Furthermore, it minimizes the amount of robot-to-robot communication needed for the robots to organize their movements. This report presents some preliminary results from applying the Hilbert space-filling curve to geographic search by mobile robots.« less

  20. KSC-08pd1364

    NASA Image and Video Library

    2008-05-14

    CAPE CANAVERAL, Fla. -- In a U.S. Coast Guard rescue boat off Florida's central east coast, participants in a rescue training exercise, known as Mode VIII, put on astronauts' launch-and-entry suits. In support of, and with logistical support from, NASA, USSTRATCOM is hosting a major exercise involving Department of Defense, Department of Homeland Security, search and rescue (SAR) forces, including the 45th Space Wing at Patrick Air Force Base, which support space shuttle astronaut bailout contingency operations, known as Mode VIII. This exercise tests SAR capabilities to locate, recover and provide medical treatment for astronauts following a space shuttle launch phase open-ocean bailout. Participants include members of the U.S. Navy, U.S. Coast Guard, U.S. Air Force, and NASA's Kennedy Space Center and Johnson Space Center. Photo credit: NASA/Dimitri Gerondidakis

  1. KSC-08pd1387

    NASA Image and Video Library

    2008-05-14

    CAPE CANAVERAL, Fla. -- Off Florida's central east coast, support boats from a training exercise, known as Mode VIII, return to the U.S. Coast Guard cutter Kingfisher, from Port Canaveral, Fla. In support of, and with logistical support from, NASA, USSTRATCOM is hosting a major exercise involving Department of Defense, Department of Homeland Security, search and rescue (SAR) forces, including the 45th Space Wing at Patrick Air Force Base, which support space shuttle astronaut bailout contingency operations, known as Mode VIII. This exercise tests SAR capabilities to locate, recover and provide medical treatment for astronauts following a space shuttle launch phase open-ocean bailout. Participants include members of the U.S. Navy, U.S. Coast Guard, U.S. Air Force, and NASA's Kennedy Space Center and Johnson Space Center. Photo credit: NASA/Dimitri Gerondidakis

  2. KSC-08pd1367

    NASA Image and Video Library

    2008-05-14

    CAPE CANAVERAL, Fla. -- Participants in a rescue training exercise, known as Mode VIII, are successfully launched from a U.S. Coast Guard rescue boat off Florida's central east coast. In support of, and with logistical support from, NASA, USSTRATCOM is hosting a major exercise involving Department of Defense, Department of Homeland Security, search and rescue (SAR) forces, including the 45th Space Wing at Patrick Air Force Base, which support space shuttle astronaut bailout contingency operations, known as Mode VIII. This exercise tests SAR capabilities to locate, recover and provide medical treatment for astronauts following a space shuttle launch phase open-ocean bailout. Participants include members of the U.S. Navy, U.S. Coast Guard, U.S. Air Force, and NASA's Kennedy Space Center and Johnson Space Center. Photo credit: NASA/Dimitri Gerondidakis

  3. KSC-08pd1378

    NASA Image and Video Library

    2008-05-14

    CAPE CANAVERAL, Fla. -- In a rescue training exercise, known as Mode VIII, off Florida's central east coast, an HH-60G helicopter lifts the stretcher bearing a participant. In support of, and with logistical support from, NASA, USSTRATCOM is hosting a major exercise involving Department of Defense, Department of Homeland Security, search and rescue (SAR) forces, including the 45th Space Wing at Patrick Air Force Base, which support space shuttle astronaut bailout contingency operations, known as Mode VIII. This exercise tests SAR capabilities to locate, recover and provide medical treatment for astronauts following a space shuttle launch phase open-ocean bailout. Participants include members of the U.S. Navy, U.S. Coast Guard, U.S. Air Force, and NASA's Kennedy Space Center and Johnson Space Center. Photo credit: NASA/Dimitri Gerondidakis

  4. KSC-08pd1366

    NASA Image and Video Library

    2008-05-14

    CAPE CANAVERAL, Fla. -- Participants in a rescue training exercise, known as Mode VIII, are successfully launched from a U.S. Coast Guard rescue boat off Florida's central east coast. In support of, and with logistical support from, NASA, USSTRATCOM is hosting a major exercise involving Department of Defense, Department of Homeland Security, search and rescue (SAR) forces, including the 45th Space Wing at Patrick Air Force Base, which support space shuttle astronaut bailout contingency operations, known as Mode VIII. This exercise tests SAR capabilities to locate, recover and provide medical treatment for astronauts following a space shuttle launch phase open-ocean bailout. Participants include members of the U.S. Navy, U.S. Coast Guard, U.S. Air Force, and NASA's Kennedy Space Center and Johnson Space Center. Photo credit: NASA/Dimitri Gerondidakis

  5. KSC-08pd1368

    NASA Image and Video Library

    2008-05-14

    CAPE CANAVERAL, Fla. -- Participants in a rescue training exercise, known as Mode VIII, are successfully launched from a U.S. Coast Guard rescue boat off Florida's central east coast. In support of, and with logistical support from, NASA, USSTRATCOM is hosting a major exercise involving Department of Defense, Department of Homeland Security, search and rescue (SAR) forces, including the 45th Space Wing at Patrick Air Force Base, which support space shuttle astronaut bailout contingency operations, known as Mode VIII. This exercise tests SAR capabilities to locate, recover and provide medical treatment for astronauts following a space shuttle launch phase open-ocean bailout. Participants include members of the U.S. Navy, U.S. Coast Guard, U.S. Air Force, and NASA's Kennedy Space Center and Johnson Space Center. Photo credit: NASA/Dimitri Gerondidakis

  6. KSC-08pd1371

    NASA Image and Video Library

    2008-05-14

    CAPE CANAVERAL, Fla. -- An Air Force HC-130 rescue tanker flies over the target area off Florida's central east coast during a rescue training exercise, known as Mode VIII. In support of, and with logistical support from, NASA, USSTRATCOM is hosting a major exercise involving Department of Defense, Department of Homeland Security, search and rescue (SAR) forces, including the 45th Space Wing at Patrick Air Force Base, which support space shuttle astronaut bailout contingency operations, known as Mode VIII. This exercise tests SAR capabilities to locate, recover and provide medical treatment for astronauts following a space shuttle launch phase open-ocean bailout. Participants include members of the U.S. Navy, U.S. Coast Guard, U.S. Air Force, and NASA's Kennedy Space Center and Johnson Space Center. Photo credit: NASA/Dimitri Gerondidakis

  7. KSC-08pd1373

    NASA Image and Video Library

    2008-05-14

    CAPE CANAVERAL, Fla. -- A U.S. Coast Guard HU-25 Falcon jet flies over a rescue boat during a training exercise, known as Mode VIII, off Florida's central east coast. In support of, and with logistical support from, NASA, USSTRATCOM is hosting a major exercise involving Department of Defense, Department of Homeland Security, search and rescue (SAR) forces, including the 45th Space Wing at Patrick Air Force Base, which support space shuttle astronaut bailout contingency operations, known as Mode VIII. This exercise tests SAR capabilities to locate, recover and provide medical treatment for astronauts following a space shuttle launch phase open-ocean bailout. Participants include members of the U.S. Navy, U.S. Coast Guard, U.S. Air Force, and NASA's Kennedy Space Center and Johnson Space Center. Photo credit: NASA/Dimitri Gerondidakis

  8. KSC-08pd1372

    NASA Image and Video Library

    2008-05-14

    CAPE CANAVERAL, Fla. -- A U.S. Coast Guard HU-25 Falcon jet flies overhead during a rescue training exercise, known as Mode VIII, off Florida's central east coast. In support of, and with logistical support from, NASA, USSTRATCOM is hosting a major exercise involving Department of Defense, Department of Homeland Security, search and rescue (SAR) forces, including the 45th Space Wing at Patrick Air Force Base, which support space shuttle astronaut bailout contingency operations, known as Mode VIII. This exercise tests SAR capabilities to locate, recover and provide medical treatment for astronauts following a space shuttle launch phase open-ocean bailout. Participants include members of the U.S. Navy, U.S. Coast Guard, U.S. Air Force, and NASA's Kennedy Space Center and Johnson Space Center. Photo credit: NASA/Dimitri Gerondidakis

  9. KSC-08pd1370

    NASA Image and Video Library

    2008-05-14

    CAPE CANAVERAL, Fla. -- Participants take part in a rescue training exercise, known as Mode VIII, off Florida's central east coast while a U.S. Coast Guard HU-25 Falcon jet flies overhead. In support of, and with logistical support from, NASA, USSTRATCOM is hosting a major exercise involving Department of Defense, Department of Homeland Security, search and rescue (SAR) forces, including the 45th Space Wing at Patrick Air Force Base, which support space shuttle astronaut bailout contingency operations, known as Mode VIII. This exercise tests SAR capabilities to locate, recover and provide medical treatment for astronauts following a space shuttle launch phase open-ocean bailout. Participants include members of the U.S. Navy, U.S. Coast Guard, U.S. Air Force, and NASA's Kennedy Space Center and Johnson Space Center. Photo credit: NASA/Dimitri Gerondidakis

  10. KSC-08pd1379

    NASA Image and Video Library

    2008-05-14

    CAPE CANAVERAL, Fla. -- In a rescue training exercise, known as Mode VIII, off Florida's central east coast, a participant is lifted out of the water with a harness from an HH-60G helicopter. In support of, and with logistical support from, NASA, USSTRATCOM is hosting a major exercise involving Department of Defense, Department of Homeland Security, search and rescue (SAR) forces, including the 45th Space Wing at Patrick Air Force Base, which support space shuttle astronaut bailout contingency operations, known as Mode VIII. This exercise tests SAR capabilities to locate, recover and provide medical treatment for astronauts following a space shuttle launch phase open-ocean bailout. Participants include members of the U.S. Navy, U.S. Coast Guard, U.S. Air Force, and NASA's Kennedy Space Center and Johnson Space Center. Photo credit: NASA/Dimitri Gerondidakis

  11. KSC-08pd1386

    NASA Image and Video Library

    2008-05-14

    CAPE CANAVERAL, Fla. -- Off Florida's central east coast, members of the rescue team in a training exercise, known as Mode VIII, stay alert aboard the U.S. Coast Guard cutter Kingfisher, from Port Canaveral, Fla. In support of, and with logistical support from, NASA, USSTRATCOM is hosting a major exercise involving Department of Defense, Department of Homeland Security, search and rescue (SAR) forces, including the 45th Space Wing at Patrick Air Force Base, which support space shuttle astronaut bailout contingency operations, known as Mode VIII. This exercise tests SAR capabilities to locate, recover and provide medical treatment for astronauts following a space shuttle launch phase open-ocean bailout. Participants include members of the U.S. Navy, U.S. Coast Guard, U.S. Air Force, and NASA's Kennedy Space Center and Johnson Space Center. Photo credit: NASA/Dimitri Gerondidakis

  12. KSC-08pd1377

    NASA Image and Video Library

    2008-05-14

    CAPE CANAVERAL, Fla. -- In a rescue training exercise, known as Mode VIII, off Florida's central east coast, an HH-60G helicopter lifts the stretcher bearing a participant. In support of, and with logistical support from, NASA, USSTRATCOM is hosting a major exercise involving Department of Defense, Department of Homeland Security, search and rescue (SAR) forces, including the 45th Space Wing at Patrick Air Force Base, which support space shuttle astronaut bailout contingency operations, known as Mode VIII. This exercise tests SAR capabilities to locate, recover and provide medical treatment for astronauts following a space shuttle launch phase open-ocean bailout. Participants include members of the U.S. Navy, U.S. Coast Guard, U.S. Air Force, and NASA's Kennedy Space Center and Johnson Space Center. Photo credit: NASA/Dimitri Gerondidakis

  13. KSC-08pd1376

    NASA Image and Video Library

    2008-05-14

    CAPE CANAVERAL, Fla. -- In a training exercise, known as Mode VIII, off Florida's central east coast, an HH-60G helicopter rescues a participant from the Atlantic Ocean. In support of, and with logistical support from, NASA, USSTRATCOM is hosting a major exercise involving Department of Defense, Department of Homeland Security, search and rescue (SAR) forces, including the 45th Space Wing at Patrick Air Force Base, which support space shuttle astronaut bailout contingency operations, known as Mode VIII. This exercise tests SAR capabilities to locate, recover and provide medical treatment for astronauts following a space shuttle launch phase open-ocean bailout. Participants include members of the U.S. Navy, U.S. Coast Guard, U.S. Air Force, and NASA's Kennedy Space Center and Johnson Space Center. Photo credit: NASA/Dimitri Gerondidakis

  14. KSC-08pd1375

    NASA Image and Video Library

    2008-05-14

    CAPE CANAVERAL, Fla. -- In a training exercise, known as Mode VIII, off Florida's central east coast, an HH-60G helicopter executes a rescue maneuver of a participant. In support of, and with logistical support from, NASA, USSTRATCOM is hosting a major exercise involving Department of Defense, Department of Homeland Security, search and rescue (SAR) forces, including the 45th Space Wing at Patrick Air Force Base, which support space shuttle astronaut bailout contingency operations, known as Mode VIII. This exercise tests SAR capabilities to locate, recover and provide medical treatment for astronauts following a space shuttle launch phase open-ocean bailout. Participants include members of the U.S. Navy, U.S. Coast Guard, U.S. Air Force, and NASA's Kennedy Space Center and Johnson Space Center. Photo credit: NASA/Dimitri Gerondidakis

  15. KSC-08pd1365

    NASA Image and Video Library

    2008-05-14

    CAPE CANAVERAL, Fla. -- In a U.S. Coast Guard rescue boat off Florida's central east coast, participants in a rescue training exercise, known as Mode VIII, are ready to be launched into the Atlantic Ocean. In support of, and with logistical support from, NASA, USSTRATCOM is hosting a major exercise involving Department of Defense, Department of Homeland Security, search and rescue (SAR) forces, including the 45th Space Wing at Patrick Air Force Base, which support space shuttle astronaut bailout contingency operations, known as Mode VIII. This exercise tests SAR capabilities to locate, recover and provide medical treatment for astronauts following a space shuttle launch phase open-ocean bailout. Participants include members of the U.S. Navy, U.S. Coast Guard, U.S. Air Force, and NASA's Kennedy Space Center and Johnson Space Center. Photo credit: NASA/Dimitri Gerondidakis

  16. KSC-08pd1363

    NASA Image and Video Library

    2008-05-14

    CAPE CANAVERAL, Fla. -- In a U.S. Coast Guard rescue boat off Florida's central east coast, participants in a rescue training exercise, known as Mode VIII, put on astronauts' launch-and-entry suits. In support of, and with logistical support from, NASA, USSTRATCOM is hosting a major exercise involving Department of Defense, Department of Homeland Security, search and rescue (SAR) forces, including the 45th Space Wing at Patrick Air Force Base, which support space shuttle astronaut bailout contingency operations, known as Mode VIII. This exercise tests SAR capabilities to locate, recover and provide medical treatment for astronauts following a space shuttle launch phase open-ocean bailout. Participants include members of the U.S. Navy, U.S. Coast Guard, U.S. Air Force, and NASA's Kennedy Space Center and Johnson Space Center. Photo credit: NASA/Dimitri Gerondidakis

  17. KSC-08pd1380

    NASA Image and Video Library

    2008-05-14

    CAPE CANAVERAL, Fla. -- In a rescue training exercise, known as Mode VIII, off Florida's central east coast, a participant is lifted out of the water with a harness from an HH-60G helicopter. In support of, and with logistical support from, NASA, USSTRATCOM is hosting a major exercise involving Department of Defense, Department of Homeland Security, search and rescue (SAR) forces, including the 45th Space Wing at Patrick Air Force Base, which support space shuttle astronaut bailout contingency operations, known as Mode VIII. This exercise tests SAR capabilities to locate, recover and provide medical treatment for astronauts following a space shuttle launch phase open-ocean bailout. Participants include members of the U.S. Navy, U.S. Coast Guard, U.S. Air Force, and NASA's Kennedy Space Center and Johnson Space Center. Photo credit: NASA/Dimitri Gerondidakis

  18. KSC-08pd1369

    NASA Image and Video Library

    2008-05-14

    CAPE CANAVERAL, Fla. -- An Air Force HC-130 rescue tanker flies over the target area off Florida's central east coast during a rescue training exercise, known as Mode VIII. In support of, and with logistical support from, NASA, USSTRATCOM is hosting a major exercise involving Department of Defense, Department of Homeland Security, search and rescue (SAR) forces, including the 45th Space Wing at Patrick Air Force Base, which support space shuttle astronaut bailout contingency operations, known as Mode VIII. This exercise tests SAR capabilities to locate, recover and provide medical treatment for astronauts following a space shuttle launch phase open-ocean bailout. Participants include members of the U.S. Navy, U.S. Coast Guard, U.S. Air Force, and NASA's Kennedy Space Center and Johnson Space Center. Photo credit: NASA/Dimitri Gerondidakis

  19. Novel Chemical Space Exploration via Natural Products

    PubMed Central

    Rosén, Josefin; Gottfries, Johan; Muresan, Sorel; Backlund, Anders; Oprea, Tudor I.

    2009-01-01

    Natural products (NPs) are a rich source of novel compound classes and new drugs. In the present study we have used the chemical space navigation tool ChemGPS-NP to evaluate the chemical space occupancy by NPs and bioactive medicinal chemistry compounds from the database WOMBAT. The two sets differ notable in coverage of chemical space, and tangible lead-like NPs were found to cover regions of chemical space that lack representation in WOMBAT. Property based similarity calculations were performed to identify NP neighbours of approved drugs. Several of the NPs revealed by this method, were confirmed to exhibit the same activity as their drug neighbours. The identification of leads from a NP starting point may prove a useful strategy for drug discovery, in the search for novel leads with unique properties. PMID:19265440

  20. Lessons Learned to Date in Developing the Virtual Space Physics Observatory

    NASA Astrophysics Data System (ADS)

    Cornwell, C.; Roberts, D. A.; King, J.; Smith, A.

    2005-12-01

    We now have an operational Virtual Space Physics Observatory that provides users the ability to search for and retrieve data from hundreds of space and solar physics data products based on specific terms or a Google-like interface. Lessons learned in building VSPO include: (a) A very close and highly interactive collaboration between scientists and information technologists in the definition and development of services is essential. (b) Constructing a Data Model acceptable to a broad community is very important but very difficult. Variations in usage are inevitable and must be dealt with through translations; this is especially true for the description of variables within data products. (c) Higher-order queries (searches based on events, positions, comparisons of measurements, etc.) are possible, and have been implemented in various systems; currently we see these as being separate from the basic data finding and retrieval services. (d) Building a Virtual Observatory is often more a matter of the tedious details of product descriptions than an exercise in implementing fancy middleware. Paying a knowledgeable third party to build registries can be more efficient than working directly with providers, and automated tools can help but do not solve all the problems. (e) The success of the VO effort in space and solar physics, as elsewhere, will depend on whether the scientific communities involved use and critique the services so that they will come to meet a real need for the integration of resources to solve new scientific problems of perceived importance.

  1. Expedite random structure searching using objects from Wyckoff positions

    NASA Astrophysics Data System (ADS)

    Wang, Shu-Wei; Hsing, Cheng-Rong; Wei, Ching-Ming

    2018-02-01

    Random structure searching has been proved to be a powerful approach to search and find the global minimum and the metastable structures. A true random sampling is in principle needed yet it would be highly time-consuming and/or practically impossible to find the global minimum for the complicated systems in their high-dimensional configuration space. Thus the implementations of reasonable constraints, such as adopting system symmetries to reduce the independent dimension in structural space and/or imposing chemical information to reach and relax into low-energy regions, are the most essential issues in the approach. In this paper, we propose the concept of "object" which is either an atom or composed of a set of atoms (such as molecules or carbonates) carrying a symmetry defined by one of the Wyckoff positions of space group and through this process it allows the searching of global minimum for a complicated system to be confined in a greatly reduced structural space and becomes accessible in practice. We examined several representative materials, including Cd3As2 crystal, solid methanol, high-pressure carbonates (FeCO3), and Si(111)-7 × 7 reconstructed surface, to demonstrate the power and the advantages of using "object" concept in random structure searching.

  2. A data structure and algorithm for fault diagnosis

    NASA Technical Reports Server (NTRS)

    Bosworth, Edward L., Jr.

    1987-01-01

    Results of preliminary research on the design of a knowledge based fault diagnosis system for use with on-orbit spacecraft such as the Hubble Space Telescope are presented. A candidate data structure and associated search algorithm from which the knowledge based system can evolve is discussed. This algorithmic approach will then be examined in view of its inability to diagnose certain common faults. From that critique, a design for the corresponding knowledge based system will be given.

  3. Conceptual Design of a Robotic Loader System for Remote Missile Launchers.

    DTIC Science & Technology

    1985-09-01

    artifcial intelligence were sur- veyed in order to assess their space applicability and to identify areas which can be developed/adapted to European...such data bases as NTIS and COMPENDEX. The second computer aided search was done through the U. S. Army information services at Redstone Arsenal...Lockheed Corporation. The first DIALOG data base explored was NTIS (National Technical Information Services, U.S. Dept. of Commerce), which contains

  4. EEG/ERP adaptive noise canceller design with controlled search space (CSS) approach in cuckoo and other optimization algorithms.

    PubMed

    Ahirwal, M K; Kumar, Anil; Singh, G K

    2013-01-01

    This paper explores the migration of adaptive filtering with swarm intelligence/evolutionary techniques employed in the field of electroencephalogram/event-related potential noise cancellation or extraction. A new approach is proposed in the form of controlled search space to stabilize the randomness of swarm intelligence techniques especially for the EEG signal. Swarm-based algorithms such as Particles Swarm Optimization, Artificial Bee Colony, and Cuckoo Optimization Algorithm with their variants are implemented to design optimized adaptive noise canceler. The proposed controlled search space technique is tested on each of the swarm intelligence techniques and is found to be more accurate and powerful. Adaptive noise canceler with traditional algorithms such as least-mean-square, normalized least-mean-square, and recursive least-mean-square algorithms are also implemented to compare the results. ERP signals such as simulated visual evoked potential, real visual evoked potential, and real sensorimotor evoked potential are used, due to their physiological importance in various EEG studies. Average computational time and shape measures of evolutionary techniques are observed 8.21E-01 sec and 1.73E-01, respectively. Though, traditional algorithms take negligible time consumption, but are unable to offer good shape preservation of ERP, noticed as average computational time and shape measure difference, 1.41E-02 sec and 2.60E+00, respectively.

  5. Spinoff from a Moon Boot (Dynacoil)

    NASA Technical Reports Server (NTRS)

    1986-01-01

    Three dimensional "space" material used in the Apollo lunar suit has been encapsulated in a polyurethane foam carrier and forms the base of the Dynacoil Athletic shoe cushioning system. Kangaroos USA, Inc. developed the system after a search by ARAC. The shoes lose almost none of their shock absorbing capabilities and have superior stability and motion control.

  6. Rapid Acquisition but Slow Extinction of an Attentional Bias in Space

    ERIC Educational Resources Information Center

    Jiang, Yuhong V.; Swallow, Khena M.; Rosenbaum, Gail M.; Herzig, Chelsey

    2013-01-01

    Substantial research has focused on the allocation of spatial attention based on goals or perceptual salience. In everyday life, however, people also direct attention using their previous experience. Here we investigate the pace at which people incidentally learn to prioritize specific locations. Participants searched for a T among Ls in a visual…

  7. Segmentation of Pollen Tube Growth Videos Using Dynamic Bi-Modal Fusion and Seam Carving.

    PubMed

    Tambo, Asongu L; Bhanu, Bir

    2016-05-01

    The growth of pollen tubes is of significant interest in plant cell biology, as it provides an understanding of internal cell dynamics that affect observable structural characteristics such as cell diameter, length, and growth rate. However, these parameters can only be measured in experimental videos if the complete shape of the cell is known. The challenge is to accurately obtain the cell boundary in noisy video images. Usually, these measurements are performed by a scientist who manually draws regions-of-interest on the images displayed on a computer screen. In this paper, a new automated technique is presented for boundary detection by fusing fluorescence and brightfield images, and a new efficient method of obtaining the final cell boundary through the process of Seam Carving is proposed. This approach takes advantage of the nature of the fusion process and also the shape of the pollen tube to efficiently search for the optimal cell boundary. In video segmentation, the first two frames are used to initialize the segmentation process by creating a search space based on a parametric model of the cell shape. Updates to the search space are performed based on the location of past segmentations and a prediction of the next segmentation.Experimental results show comparable accuracy to a previous method, but significant decrease in processing time. This has the potential for real time applications in pollen tube microscopy.

  8. FBC: a flat binary code scheme for fast Manhattan hash retrieval

    NASA Astrophysics Data System (ADS)

    Kong, Yan; Wu, Fuzhang; Gao, Lifa; Wu, Yanjun

    2018-04-01

    Hash coding is a widely used technique in approximate nearest neighbor (ANN) search, especially in document search and multimedia (such as image and video) retrieval. Based on the difference of distance measurement, hash methods are generally classified into two categories: Hamming hashing and Manhattan hashing. Benefitting from better neighborhood structure preservation, Manhattan hashing methods outperform earlier methods in search effectiveness. However, due to using decimal arithmetic operations instead of bit operations, Manhattan hashing becomes a more time-consuming process, which significantly decreases the whole search efficiency. To solve this problem, we present an intuitive hash scheme which uses Flat Binary Code (FBC) to encode the data points. As a result, the decimal arithmetic used in previous Manhattan hashing can be replaced by more efficient XOR operator. The final experiments show that with a reasonable memory space growth, our FBC speeds up more than 80% averagely without any search accuracy loss when comparing to the state-of-art Manhattan hashing methods.

  9. Space shuttle search and rescue experiment using synthetic aperture radar

    NASA Technical Reports Server (NTRS)

    Sivertson, W. E., Jr.; Larson, R. W.; Zelenka, J. S.

    1977-01-01

    The feasibility of a synthetic aperture radar for search and rescue applications was demonstrated with aircraft experiments. One experiment was conducted using the ERIM four-channel radar and several test sites in the Michigan area. In this test simple corner-reflector targets were successfully imaged. Results from this investigation were positive and indicate that the concept can be used to investigate new approaches focused on the development of a global search and rescue system. An orbital experiment to demonstrate the application of synthetic aperture radar to search and rescue is proposed using the space shuttle.

  10. Towards a List of Molecules as Potential Biosignature Gases for the Search for Life on Exoplanets

    NASA Astrophysics Data System (ADS)

    Seager, Sara; Bains, William; Petkowski, Janusz

    2015-12-01

    Thousands of exoplanets are known to orbit nearby stars. Plans for the next generation of space-based and ground-based telescopes are fueling the anticipation that a precious few habitable planets can be identified in the coming decade. Even more highly anticipated is the chance to find signs of life on these habitable planets by way of biosignature gases. But which gases should we search for? We expand on the search of possible biosignature gases and go beyond those studied so far, which include O2, O3, N2O, and CH4, as well as secondary metabolites: methanethiol (CH3SH), dimethyl sulfide ((CH3)2S), methyl chloride (CH3Cl), and carbonyl sulfide (CSO).We present the results of a project to map the chemical space of life’s metabolic products. We have constructed a systematic survey of all possible stable volatile molecules (up to N=6 non-H atoms), and identified those made by life on Earth. Some (such as methyl chloride) are made by Earth life in sufficiently substantial quantities to be candidate biosignatures in an Earth-like exoplanet’s atmosphere; some, such as stibine (SbH3), are produced only in trace amounts. Some entire categories of molecules are not made by Earth life (such as the silanes); these and other absences from the list of biogenic volatiles point to functional patterns in biochemical space. Such patterns may be different for different biochemistry, and so we cannot rule out any small, stable molecule as a candidate biosignature gas. Our goal is for the community to use the list to study the chemicals that might be potential biosignature gases on exoplanets with atmospheres and surface environments different from Earth’s.

  11. Plausible combinations: An improved method to evaluate the covariate structure of Cormack-Jolly-Seber mark-recapture models

    USGS Publications Warehouse

    Bromaghin, Jeffrey F.; McDonald, Trent L.; Amstrup, Steven C.

    2013-01-01

    Mark-recapture models are extensively used in quantitative population ecology, providing estimates of population vital rates, such as survival, that are difficult to obtain using other methods. Vital rates are commonly modeled as functions of explanatory covariates, adding considerable flexibility to mark-recapture models, but also increasing the subjectivity and complexity of the modeling process. Consequently, model selection and the evaluation of covariate structure remain critical aspects of mark-recapture modeling. The difficulties involved in model selection are compounded in Cormack-Jolly- Seber models because they are composed of separate sub-models for survival and recapture probabilities, which are conceptualized independently even though their parameters are not statistically independent. The construction of models as combinations of sub-models, together with multiple potential covariates, can lead to a large model set. Although desirable, estimation of the parameters of all models may not be feasible. Strategies to search a model space and base inference on a subset of all models exist and enjoy widespread use. However, even though the methods used to search a model space can be expected to influence parameter estimation, the assessment of covariate importance, and therefore the ecological interpretation of the modeling results, the performance of these strategies has received limited investigation. We present a new strategy for searching the space of a candidate set of Cormack-Jolly-Seber models and explore its performance relative to existing strategies using computer simulation. The new strategy provides an improved assessment of the importance of covariates and covariate combinations used to model survival and recapture probabilities, while requiring only a modest increase in the number of models on which inference is based in comparison to existing techniques.

  12. Improving the efficiency of branch-and-bound complete-search NMR assignment using the symmetry of molecules and spectra

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bernal, Andrés; Patiny, Luc; Castillo, Andrés M.

    2015-02-21

    Nuclear magnetic resonance (NMR) assignment of small molecules is presented as a typical example of a combinatorial optimization problem in chemical physics. Three strategies that help improve the efficiency of solution search by the branch and bound method are presented: 1. reduction of the size of the solution space by resort to a condensed structure formula, wherein symmetric nuclei are grouped together; 2. partitioning of the solution space based on symmetry, that becomes the basis for an efficient branching procedure; and 3. a criterion of selection of input restrictions that leads to increased gaps between branches and thus faster pruningmore » of non-viable solutions. Although the examples chosen to illustrate this work focus on small-molecule NMR assignment, the results are generic and might help solving other combinatorial optimization problems.« less

  13. ExoDat Information System at CeSAM

    NASA Astrophysics Data System (ADS)

    Agneray, F.; Moreau, C.; Chabaud, P.; Damiani, C.; Deleuil, M.

    2014-05-01

    CoRoT (Convection Rotation and planetary transits) is a space based mission led by French space agency (CNES) in association with French and international laboratories. One of CoRoT's goal is to detect exoplanets by the transit method. The Exoplanet Database (Exodat) is a VO compliant information system for the CoRoT exoplanet program. The main functions of ExoDat are to provide a source catalog for the observation fields and targets selection; to characterize the CoRoT targets (spectral type, variability , contamination...);and to support follow up programs. ExoDat is built using the AstroNomical Information System (ANIS) developed by the CeSAM (Centre de donneeS Astrophysique de Marseille). It offers download of observation catalogs and additional services like: search, extract and display data by using a combination of criteria, object list, and cone-search interfaces. Web services have been developed to provide easy access for user's softwares and pipelines.

  14. Solving optimization problems by the public goods game

    NASA Astrophysics Data System (ADS)

    Javarone, Marco Alberto

    2017-09-01

    We introduce a method based on the Public Goods Game for solving optimization tasks. In particular, we focus on the Traveling Salesman Problem, i.e. a NP-hard problem whose search space exponentially grows increasing the number of cities. The proposed method considers a population whose agents are provided with a random solution to the given problem. In doing so, agents interact by playing the Public Goods Game using the fitness of their solution as currency of the game. Notably, agents with better solutions provide higher contributions, while those with lower ones tend to imitate the solution of richer agents for increasing their fitness. Numerical simulations show that the proposed method allows to compute exact solutions, and suboptimal ones, in the considered search spaces. As result, beyond to propose a new heuristic for combinatorial optimization problems, our work aims to highlight the potentiality of evolutionary game theory beyond its current horizons.

  15. The CHEOPS (characterising exoplanet satellite) mission: telescope optical design, development status and main technical and programmatic challenges

    NASA Astrophysics Data System (ADS)

    Beck, T.; Gambicorti, L.; Broeg, C.; Cessa, V.; Fortier, A.; Piazza, D.; Ehrenreich, D.; Magrin, D.; Plesseria, J. Y.; Peter, G.; Pagano, I.; Steller, M.; Kovacs, Z.; Ragazzoni, R.; Wildi, F.; Benz, W.

    2017-09-01

    CHEOPS (CHaracterising ExOPlanet Satellite) is the first ESA Small Mission as part of the ESA Cosmic Vision program 2015-2025 and it is planned launch readiness end of 2017. The mission lead is performed in a partnership between Switzerland, led by the University of Bern, and the European Space Agency with important contributions from Austria, Belgium, France, Germany, Hungary, Italy, Portugal, Spain, Sweden, and the United Kingdom. The CHEOPS mission will be the first space telescope dedicated to search for exoplanetary transits on bright stars already known to host planets by performing ultrahigh precision photometry on bright starts whose mass has been already estimated through spectroscopic surveys on ground based observations. The number of exoplanets in the mass range 1-30 MEarth for which both mass and radius are known with a good precision is extremely limited also considering the last two decades of high-precision radial velocity measurement campaigns and the highly successful space missions dedicated to exoplanets transit searches (CoRoT and Kepler).

  16. Mishap Investigation Team (MIT) - Barksdale AFB, Louisiana

    NASA Technical Reports Server (NTRS)

    Stepaniak, Philip

    2005-01-01

    The Shuttle Program is organized to support a Shuttle mishap using the resources of the MIT. The afternoon of Feb. 1, 2003, the MIT deployed to Barksdale AFB. This location became the investigative center and interim storage location for crewmembers received from the Lufkin Disaster Field Office (DFO). Working under the leadership of the MIT Lead, the medical team executed a short-term plan that included search, recovery, and identification including coordination with the Armed Forces Institute of Pathology Temporary operations was set up at Barksdale Air Force Base for two weeks. During this time, coordination with the DFO field recovery teams, AFIP personnel, and the crew surgeons was on going. In addition, the crewmember families and NASA management were updated daily. The medical team also dealt with public reports and questions concerning biological and chemical hazards, which were coordinated with SPACEHAB, Inc., Kennedy Space Center (KSC) Medical Operations and the Johnson Space Center (JSC) Space Medicine office. After operations at Barksdale were concluded the medical team transitioned back to Houston and a long-term search, recovery and identification plan was developed.

  17. A predictive framework for evaluating models of semantic organization in free recall

    PubMed Central

    Morton, Neal W; Polyn, Sean M.

    2016-01-01

    Research in free recall has demonstrated that semantic associations reliably influence the organization of search through episodic memory. However, the specific structure of these associations and the mechanisms by which they influence memory search remain unclear. We introduce a likelihood-based model-comparison technique, which embeds a model of semantic structure within the context maintenance and retrieval (CMR) model of human memory search. Within this framework, model variants are evaluated in terms of their ability to predict the specific sequence in which items are recalled. We compare three models of semantic structure, latent semantic analysis (LSA), global vectors (GloVe), and word association spaces (WAS), and find that models using WAS have the greatest predictive power. Furthermore, we find evidence that semantic and temporal organization is driven by distinct item and context cues, rather than a single context cue. This finding provides important constraint for theories of memory search. PMID:28331243

  18. An improved stochastic fractal search algorithm for 3D protein structure prediction.

    PubMed

    Zhou, Changjun; Sun, Chuan; Wang, Bin; Wang, Xiaojun

    2018-05-03

    Protein structure prediction (PSP) is a significant area for biological information research, disease treatment, and drug development and so on. In this paper, three-dimensional structures of proteins are predicted based on the known amino acid sequences, and the structure prediction problem is transformed into a typical NP problem by an AB off-lattice model. This work applies a novel improved Stochastic Fractal Search algorithm (ISFS) to solve the problem. The Stochastic Fractal Search algorithm (SFS) is an effective evolutionary algorithm that performs well in exploring the search space but falls into local minimums sometimes. In order to avoid the weakness, Lvy flight and internal feedback information are introduced in ISFS. In the experimental process, simulations are conducted by ISFS algorithm on Fibonacci sequences and real peptide sequences. Experimental results prove that the ISFS performs more efficiently and robust in terms of finding the global minimum and avoiding getting stuck in local minimums.

  19. Behavior and neural basis of near-optimal visual search

    PubMed Central

    Ma, Wei Ji; Navalpakkam, Vidhya; Beck, Jeffrey M; van den Berg, Ronald; Pouget, Alexandre

    2013-01-01

    The ability to search efficiently for a target in a cluttered environment is one of the most remarkable functions of the nervous system. This task is difficult under natural circumstances, as the reliability of sensory information can vary greatly across space and time and is typically a priori unknown to the observer. In contrast, visual-search experiments commonly use stimuli of equal and known reliability. In a target detection task, we randomly assigned high or low reliability to each item on a trial-by-trial basis. An optimal observer would weight the observations by their trial-to-trial reliability and combine them using a specific nonlinear integration rule. We found that humans were near-optimal, regardless of whether distractors were homogeneous or heterogeneous and whether reliability was manipulated through contrast or shape. We present a neural-network implementation of near-optimal visual search based on probabilistic population coding. The network matched human performance. PMID:21552276

  20. Privacy preserving index for encrypted electronic medical records.

    PubMed

    Chen, Yu-Chi; Horng, Gwoboa; Lin, Yi-Jheng; Chen, Kuo-Chang

    2013-12-01

    With the development of electronic systems, privacy has become an important security issue in real-life. In medical systems, privacy of patients' electronic medical records (EMRs) must be fully protected. However, to combine the efficiency and privacy, privacy preserving index is introduced to preserve the privacy, where the EMR can be efficiently accessed by this patient or specific doctor. In the literature, Goh first proposed a secure index scheme with keyword search over encrypted data based on a well-known primitive, Bloom filter. In this paper, we propose a new privacy preserving index scheme, called position index (P-index), with keyword search over the encrypted data. The proposed index scheme is semantically secure against the adaptive chosen keyword attack, and it also provides flexible space, lower false positive rate, and search privacy. Moreover, it does not rely on pairing, a complicate computation, and thus can search over encrypted electronic medical records from the cloud server efficiently.

  1. SHiP: a new facility to search for heavy neutrinos and study ντ properties

    NASA Astrophysics Data System (ADS)

    De Serio, M.; SHiP Collaboration

    2016-05-01

    SHiP (Search for Hidden Particles) is a newly designed fixed target facility, proposed at the CERN SPS accelerator, with the aim of complementing searches for New Physics at LHC by searching for light long-lived exotic particles with masses below a few GeV/c2. The sensitivity to Heavy Neutrinos will allow for the first time probing a region of the parameter space where Baryogenesis and active neutrino masses and oscillation could also be explained. A dedicated detector, based on OPERA-like bricks, will provide the first observation of the tau anti-neutrino. Moreover, ντ and ν¯τ cross-sections will be measured with a statistics 1000 times larger than currently available data and will allow extracting the F4 and F5 structure functions, never measured so far. Charm physics studies will be performed with significantly improved accuracy with respect to past experiments.

  2. Task planning and control synthesis for robotic manipulation in space applications

    NASA Technical Reports Server (NTRS)

    Sanderson, A. C.; Peshkin, M. A.; Homem-De-mello, L. S.

    1987-01-01

    Space-based robotic systems for diagnosis, repair and assembly of systems will require new techniques of planning and manipulation to accomplish these complex tasks. Results of work in assembly task representation, discrete task planning, and control synthesis which provide a design environment for flexible assembly systems in manufacturing applications, and which extend to planning of manipulatiuon operations in unstructured environments are summarized. Assembly planning is carried out using the AND/OR graph representation which encompasses all possible partial orders of operations and may be used to plan assembly sequences. Discrete task planning uses the configuration map which facilitates search over a space of discrete operations parameters in sequential operations in order to achieve required goals in the space of bounded configuration sets.

  3. Simulating first order optical systems—algorithms for and composition of discrete linear canonical transforms

    NASA Astrophysics Data System (ADS)

    Healy, John J.

    2018-01-01

    The linear canonical transforms (LCTs) are a parameterised group of linear integral transforms. The LCTs encompass a number of well-known transformations as special cases, including the Fourier transform, fractional Fourier transform, and the Fresnel integral. They relate the scalar wave fields at the input and output of systems composed of thin lenses and free space, along with other quadratic phase systems. In this paper, we perform a systematic search of all algorithms based on up to five stages of magnification, chirp multiplication and Fourier transforms. Based on that search, we propose a novel algorithm, for which we present numerical results. We compare the sampling requirements of three algorithms. Finally, we discuss some issues surrounding the composition of discrete LCTs.

  4. Habitable zones around low mass stars and the search for extraterrestrial life.

    PubMed

    Kasting, J F

    1997-06-01

    Habitable planets are likely to exist around stars not too different from the Sun if current theories about terrestrial climate evolution are correct. Some of these planets may have evolved life, and some of the inhabited planets may have evolved O2-rich atmospheres. Such atmospheres could be detected spectroscopically on planets around nearby stars using a space-based interferometer to search for the 9.6 micron band of O3. Planets with O2-rich atmospheres that lie within the habitable zone around their parent star are, in all probability, inhabited.

  5. The TESS Science Processing Operations Center

    NASA Technical Reports Server (NTRS)

    Jenkins, Jon; Twicken, Joseph D.; McCauliff, Sean; Campbell, Jennifer; Sanderfer, Dwight; Lung, David; Mansouri-Samani, Masoud; Girouard, Forrest; Tenenbaum, Peter; Klaus, Todd; hide

    2016-01-01

    The Transiting Exoplanet Survey Satellite (TESS) will conduct a search for Earth’s closest cousins starting in late 2017. TESS will discover approx.1,000 small planets and measure the masses of at least 50 of these small worlds. The Science Processing Operations Center (SPOC) is being developed based on the Kepler science pipeline and will generate calibrated pixels and light curves on the NAS Pleiades supercomputer. The SPOC will search for periodic transit events and generate validation products for the transit-like features in the light curves. All TESS SPOC data products will be archived to the Mikulski Archive for Space Telescopes.

  6. High Redshift Supernova Search

    Science.gov Websites

    ;on schedule." Before-and-after pictures (and Hubble Space Telescope picture) of a high-redshift High Redshift Supernova Search Home Page of the Supernova Cosmology Project This is the Lawrence Foretell Fate of the Universe." Pictures from the ground and from the Hubble Space Telescope: [PDF

  7. Estimating meme fitness in adaptive memetic algorithms for combinatorial problems.

    PubMed

    Smith, J E

    2012-01-01

    Among the most promising and active research areas in heuristic optimisation is the field of adaptive memetic algorithms (AMAs). These gain much of their reported robustness by adapting the probability with which each of a set of local improvement operators is applied, according to an estimate of their current value to the search process. This paper addresses the issue of how the current value should be estimated. Assuming the estimate occurs over several applications of a meme, we consider whether the extreme or mean improvements should be used, and whether this aggregation should be global, or local to some part of the solution space. To investigate these issues, we use the well-established COMA framework that coevolves the specification of a population of memes (representing different local search algorithms) alongside a population of candidate solutions to the problem at hand. Two very different memetic algorithms are considered: the first using adaptive operator pursuit to adjust the probabilities of applying a fixed set of memes, and a second which applies genetic operators to dynamically adapt and create memes and their functional definitions. For the latter, especially on combinatorial problems, credit assignment mechanisms based on historical records, or on notions of landscape locality, will have limited application, and it is necessary to estimate the value of a meme via some form of sampling. The results on a set of binary encoded combinatorial problems show that both methods are very effective, and that for some problems it is necessary to use thousands of variables in order to tease apart the differences between different reward schemes. However, for both memetic algorithms, a significant pattern emerges that reward based on mean improvement is better than that based on extreme improvement. This contradicts recent findings from adapting the parameters of operators involved in global evolutionary search. The results also show that local reward schemes outperform global reward schemes in combinatorial spaces, unlike in continuous spaces. An analysis of evolving meme behaviour is used to explain these findings.

  8. Dynamic optimization of ISR sensors using a risk-based reward function applied to ground and space surveillance scenarios

    NASA Astrophysics Data System (ADS)

    DeSena, J. T.; Martin, S. R.; Clarke, J. C.; Dutrow, D. A.; Newman, A. J.

    2012-06-01

    As the number and diversity of sensing assets available for intelligence, surveillance and reconnaissance (ISR) operations continues to expand, the limited ability of human operators to effectively manage, control and exploit the ISR ensemble is exceeded, leading to reduced operational effectiveness. Automated support both in the processing of voluminous sensor data and sensor asset control can relieve the burden of human operators to support operation of larger ISR ensembles. In dynamic environments it is essential to react quickly to current information to avoid stale, sub-optimal plans. Our approach is to apply the principles of feedback control to ISR operations, "closing the loop" from the sensor collections through automated processing to ISR asset control. Previous work by the authors demonstrated non-myopic multiple platform trajectory control using a receding horizon controller in a closed feedback loop with a multiple hypothesis tracker applied to multi-target search and track simulation scenarios in the ground and space domains. This paper presents extensions in both size and scope of the previous work, demonstrating closed-loop control, involving both platform routing and sensor pointing, of a multisensor, multi-platform ISR ensemble tasked with providing situational awareness and performing search, track and classification of multiple moving ground targets in irregular warfare scenarios. The closed-loop ISR system is fullyrealized using distributed, asynchronous components that communicate over a network. The closed-loop ISR system has been exercised via a networked simulation test bed against a scenario in the Afghanistan theater implemented using high-fidelity terrain and imagery data. In addition, the system has been applied to space surveillance scenarios requiring tracking of space objects where current deliberative, manually intensive processes for managing sensor assets are insufficiently responsive. Simulation experiment results are presented. The algorithm to jointly optimize sensor schedules against search, track, and classify is based on recent work by Papageorgiou and Raykin on risk-based sensor management. It uses a risk-based objective function and attempts to minimize and balance the risks of misclassifying and losing track on an object. It supports the requirement to generate tasking for metric and feature data concurrently and synergistically, and account for both tracking accuracy and object characterization, jointly, in computing reward and cost for optimizing tasking decisions.

  9. Doubling down on phosphorylation as a variable peptide modification.

    PubMed

    Cooper, Bret

    2016-09-01

    Some mass spectrometrists believe that searching for variable PTMs like phosphorylation of serine or threonine when using database-search algorithms to interpret peptide tandem mass spectra will increase false-positive matching. The basis for this is the premise that the algorithm compares a spectrum to both a nonphosphorylated peptide candidate and a phosphorylated candidate, which is double the number of candidates compared to a search with no possible phosphorylation. Hence, if the search space doubles, false-positive matching could increase accordingly as the algorithm considers more candidates to which false matches could be made. In this study, it is shown that the search for variable phosphoserine and phosphothreonine modifications does not always double the search space or unduly impinge upon the FDR. A breakdown of how one popular database-search algorithm deals with variable phosphorylation is presented. Published 2016. This article is a U.S. Government work and is in the public domain in the USA.

  10. Behavioral, psychiatric, and sociological problems of long-duration space missions

    NASA Technical Reports Server (NTRS)

    Kanas, N. A.; Fedderson, W. E.

    1971-01-01

    A literature search was conducted in an effort to isolate the problems that might be expected on long-duration space missions. Primary sources of the search include short-term space flights, submarine tours, Antarctic expeditions, isolation-chamber tests, space-flight simulators, and hypodynamia studies. Various stressors are discussed including weightlessness and low sensory input; circadian rhythms (including sleep); confinement, isolation, and monotony; and purely psychiatric and sociological considerations. Important aspects of crew selection are also mentioned. An attempt is made to discuss these factors with regard to a prototype mission to Mars.

  11. A Rapid Aerodynamic Design Procedure Based on Artificial Neural Networks

    NASA Technical Reports Server (NTRS)

    Rai, Man Mohan

    2001-01-01

    An aerodynamic design procedure that uses neural networks to model the functional behavior of the objective function in design space has been developed. This method incorporates several improvements to an earlier method that employed a strategy called parameter-based partitioning of the design space in order to reduce the computational costs associated with design optimization. As with the earlier method, the current method uses a sequence of response surfaces to traverse the design space in search of the optimal solution. The new method yields significant reductions in computational costs by using composite response surfaces with better generalization capabilities and by exploiting synergies between the optimization method and the simulation codes used to generate the training data. These reductions in design optimization costs are demonstrated for a turbine airfoil design study where a generic shape is evolved into an optimal airfoil.

  12. Weather prediction using a genetic memory

    NASA Technical Reports Server (NTRS)

    Rogers, David

    1990-01-01

    Kanaerva's sparse distributed memory (SDM) is an associative memory model based on the mathematical properties of high dimensional binary address spaces. Holland's genetic algorithms are a search technique for high dimensional spaces inspired by evolutional processes of DNA. Genetic Memory is a hybrid of the above two systems, in which the memory uses a genetic algorithm to dynamically reconfigure its physical storage locations to reflect correlations between the stored addresses and data. This architecture is designed to maximize the ability of the system to scale-up to handle real world problems.

  13. Feasibility of feature-based indexing, clustering, and search of clinical trials: A case study of breast cancer trials from ClinicalTrials.gov

    PubMed Central

    Boland, Mary Regina; Miotto, Riccardo; Gao, Junfeng; Weng, Chunhua

    2013-01-01

    Summary Background When standard therapies fail, clinical trials provide experimental treatment opportunities for patients with drug-resistant illnesses or terminal diseases. Clinical Trials can also provide free treatment and education for individuals who otherwise may not have access to such care. To find relevant clinical trials, patients often search online; however, they often encounter a significant barrier due to the large number of trials and in-effective indexing methods for reducing the trial search space. Objectives This study explores the feasibility of feature-based indexing, clustering, and search of clinical trials and informs designs to automate these processes. Methods We decomposed 80 randomly selected stage III breast cancer clinical trials into a vector of eligibility features, which were organized into a hierarchy. We clustered trials based on their eligibility feature similarities. In a simulated search process, manually selected features were used to generate specific eligibility questions to filter trials iteratively. Results We extracted 1,437 distinct eligibility features and achieved an inter-rater agreement of 0.73 for feature extraction for 37 frequent features occurring in more than 20 trials. Using all the 1,437 features we stratified the 80 trials into six clusters containing trials recruiting similar patients by patient-characteristic features, five clusters by disease-characteristic features, and two clusters by mixed features. Most of the features were mapped to one or more Unified Medical Language System (UMLS) concepts, demonstrating the utility of named entity recognition prior to mapping with the UMLS for automatic feature extraction. Conclusions It is feasible to develop feature-based indexing and clustering methods for clinical trials to identify trials with similar target populations and to improve trial search efficiency. PMID:23666475

  14. Feasibility of feature-based indexing, clustering, and search of clinical trials. A case study of breast cancer trials from ClinicalTrials.gov.

    PubMed

    Boland, M R; Miotto, R; Gao, J; Weng, C

    2013-01-01

    When standard therapies fail, clinical trials provide experimental treatment opportunities for patients with drug-resistant illnesses or terminal diseases. Clinical Trials can also provide free treatment and education for individuals who otherwise may not have access to such care. To find relevant clinical trials, patients often search online; however, they often encounter a significant barrier due to the large number of trials and in-effective indexing methods for reducing the trial search space. This study explores the feasibility of feature-based indexing, clustering, and search of clinical trials and informs designs to automate these processes. We decomposed 80 randomly selected stage III breast cancer clinical trials into a vector of eligibility features, which were organized into a hierarchy. We clustered trials based on their eligibility feature similarities. In a simulated search process, manually selected features were used to generate specific eligibility questions to filter trials iteratively. We extracted 1,437 distinct eligibility features and achieved an inter-rater agreement of 0.73 for feature extraction for 37 frequent features occurring in more than 20 trials. Using all the 1,437 features we stratified the 80 trials into six clusters containing trials recruiting similar patients by patient-characteristic features, five clusters by disease-characteristic features, and two clusters by mixed features. Most of the features were mapped to one or more Unified Medical Language System (UMLS) concepts, demonstrating the utility of named entity recognition prior to mapping with the UMLS for automatic feature extraction. It is feasible to develop feature-based indexing and clustering methods for clinical trials to identify trials with similar target populations and to improve trial search efficiency.

  15. Competitive Swarm Optimizer Based Gateway Deployment Algorithm in Cyber-Physical Systems

    PubMed Central

    Huang, Shuqiang; Tao, Ming

    2017-01-01

    Wireless sensor network topology optimization is a highly important issue, and topology control through node selection can improve the efficiency of data forwarding, while saving energy and prolonging lifetime of the network. To address the problem of connecting a wireless sensor network to the Internet in cyber-physical systems, here we propose a geometric gateway deployment based on a competitive swarm optimizer algorithm. The particle swarm optimization (PSO) algorithm has a continuous search feature in the solution space, which makes it suitable for finding the geometric center of gateway deployment; however, its search mechanism is limited to the individual optimum (pbest) and the population optimum (gbest); thus, it easily falls into local optima. In order to improve the particle search mechanism and enhance the search efficiency of the algorithm, we introduce a new competitive swarm optimizer (CSO) algorithm. The CSO search algorithm is based on an inter-particle competition mechanism and can effectively avoid trapping of the population falling into a local optimum. With the improvement of an adaptive opposition-based search and its ability to dynamically parameter adjustments, this algorithm can maintain the diversity of the entire swarm to solve geometric K-center gateway deployment problems. The simulation results show that this CSO algorithm has a good global explorative ability as well as convergence speed and can improve the network quality of service (QoS) level of cyber-physical systems by obtaining a minimum network coverage radius. We also find that the CSO algorithm is more stable, robust and effective in solving the problem of geometric gateway deployment as compared to the PSO or Kmedoids algorithms. PMID:28117735

  16. Ice photochemistry as a source of amino acids and other organic molecules in meteorites, and implications for the origin of life and the search for life in the Solar System

    NASA Technical Reports Server (NTRS)

    Bernstein, Max

    2005-01-01

    The tons of extraterrestrial organic material that come to the Earth every day probably helped to made the Earth habitable, and possibly played a role in the origin of life. At the astrochemistry lab (http://www.astrochem.orq) we investigate the formation and distribution of organic molecules in space and consider the impact such molecules may have on the habitability of planets and the search for life in the Solar System. The organic compounds in meteorites include amino acids, aromatics of various sorts including purine and pyrimidine bases, and fatty acids that form bi-layer vesicles. The origin of many of these species remains mysterious, but in recent years we and others have performed experiments that suggest low temperature radiation chemistry could account for the presence and deuterium enrichment of many of these molecules. . I will present our laboratory experiments that show the viability of low temperature radiation chemistry as a source of organic molecules such as;amino acids (Nature, 2002, 416, 401-403), amphiphiles (Astrobiology, 2003, 2, 371, Proc. Nat. Acad. Sci. 2001, 98, 815), quinones (Science, 1999, 283, 1135) and other functionalized aromatic compounds (Meteoritics, 2001, 36, 351 ; Astrophysical Journal., 2003, 582, L25), some of which were invoked as potential biomarkers in the Alan Hills 84001 Martian meteorite. Understanding how components of proteins and DNA could form in sterile space environments is also of relevance to our search for life elsewhere in the Solar System, the great task now ahead of NASA. If we find evidence of Life elsewhere in the Solar System it will probably be in form of chemical biomarkers, quintessentially biological molecules that indicate the presence of micro-organisms. While most people think of molecules such as amino acids, and nucleo-bases as good candidate biomarkers, these molecules are produced non-biotically in space and are expected to be present on the surface of other planets even in the absence of Life. Understanding the range of non-biological organic molecules which could act as false biomarkers in space is a prerequisite for any reasonable search for Life on other worlds.

  17. An ESA roadmap for geobiology in space exploration

    NASA Astrophysics Data System (ADS)

    Cousins, Claire R.; Cockell, Charles S.

    2016-01-01

    Geobiology, and in particular mineral-microbe interactions, has a significant role to play in current and future space exploration. This includes the search for biosignatures in extraterrestrial environments, and the human exploration of space. Microorganisms can be exploited to advance such exploration, such as through biomining, maintenance of life-support systems, and testing of life-detection instrumentation. In view of these potential applications, a European Space Agency (ESA) Topical Team "Geobiology in Space Exploration" was developed to explore these applications, and identify research avenues to be investigated to support this endeavour. Through community workshops, a roadmap was produced, with which to define future research directions via a set of 15 recommendations spanning three key areas: Science, Technology, and Community. These roadmap recommendations identify the need for research into: (1) new terrestrial space-analogue environments; (2) community level microbial-mineral interactions; (3) response of biofilms to the space environment; (4) enzymatic and biochemical mineral interaction; (5) technical refinement of instrumentation for space-based microbiology experiments, including precursor flight tests; (6) integration of existing ground-based planetary simulation facilities; (7) integration of fieldsite biogeography with laboratory- and field-based research; (8) modification of existing planetary instruments for new geobiological investigations; (9) development of in situ sample preparation techniques; (10) miniaturisation of existing analytical methods, such as DNA sequencing technology; (11) new sensor technology to analyse chemical interaction in small volume samples; (12) development of reusable Lunar and Near Earth Object experimental platforms; (13) utility of Earth-based research to enable the realistic pursuit of extraterrestrial biosignatures; (14) terrestrial benefits and technological spin-off from existing and future space-based geobiology investigations; and (15) new communication avenues between space agencies and terrestrial research organisations to enable this impact to be developed.

  18. Charges on Strange Quark Nuggets in Space

    NASA Technical Reports Server (NTRS)

    Abers, E. S.; Bhatia, A. K.; Dicus, D. A.; Repko, W. W.; Rosenbaum, D. C.; Teplitz, V. L.

    2007-01-01

    Since Witten's seminal 1984 paper on the subject, searches for evidence of strange quark nuggets (SQNs) have proven unsuccessful. In the absence of experimental evidence ruling out SQNs, the validity of theories introducing mechanisms that increase their stability should continue to be tested. To stimulate electromagnetic SQN searches, particularly space searches, we estimate the net charge that would develop on an SQN in space exposed to various radiation baths (and showers) capable of liberating their less strongly bound electrons, taking into account recombination with ambient electrons. We consider, in particular, the cosmic background radiation, radiation from the sun, and diffuse galactic and extragalactic gamma-ray backgrounds. A possible dramatic signal of SQNs in explosive astrophysical events is noted.

  19. A 3π Search for Planet Nine at 3.4 μm with WISE and NEOWISE

    NASA Astrophysics Data System (ADS)

    Meisner, A. M.; Bromley, B. C.; Kenyon, S. J.; Anderson, T. E.

    2018-04-01

    The recent “Planet Nine” hypothesis has led to many observational and archival searches for this giant planet proposed to orbit the Sun at hundreds of astronomical units. While trans-Neptunian object searches are typically conducted in the optical, models suggest Planet Nine could be self-luminous and potentially bright enough at ∼3–5 μm to be detected by the Wide-field Infrared Survey Explorer (WISE). We have previously demonstrated a Planet Nine search methodology based on time-resolved WISE coadds, allowing us to detect moving objects much fainter than would be possible using single-frame extractions. In the present work, we extend our 3.4 μm (W1) search to cover more than three-quarters of the sky and incorporate four years of WISE observations spanning a seven-year time period. This represents the deepest and widest-area WISE search for Planet Nine to date. We characterize the spatial variation of our survey’s sensitivity and rule out the presence of Planet Nine in the parameter space searched at W1 < 16.7 in high Galactic latitude regions (90% completeness).

  20. Vehicle-triggered video compression/decompression for fast and efficient searching in large video databases

    NASA Astrophysics Data System (ADS)

    Bulan, Orhan; Bernal, Edgar A.; Loce, Robert P.; Wu, Wencheng

    2013-03-01

    Video cameras are widely deployed along city streets, interstate highways, traffic lights, stop signs and toll booths by entities that perform traffic monitoring and law enforcement. The videos captured by these cameras are typically compressed and stored in large databases. Performing a rapid search for a specific vehicle within a large database of compressed videos is often required and can be a time-critical life or death situation. In this paper, we propose video compression and decompression algorithms that enable fast and efficient vehicle or, more generally, event searches in large video databases. The proposed algorithm selects reference frames (i.e., I-frames) based on a vehicle having been detected at a specified position within the scene being monitored while compressing a video sequence. A search for a specific vehicle in the compressed video stream is performed across the reference frames only, which does not require decompression of the full video sequence as in traditional search algorithms. Our experimental results on videos captured in a local road show that the proposed algorithm significantly reduces the search space (thus reducing time and computational resources) in vehicle search tasks within compressed video streams, particularly those captured in light traffic volume conditions.

  1. A Web Based Approach to Integrate Space Culture and Education

    NASA Astrophysics Data System (ADS)

    Gerla, F.

    2002-01-01

    Our intention is to dedicate a large section of our web site to space education. As the national User Support and Operation Center (USOC) for the International Space Station, MARS Center is also willing to provide material, such as videos and data, for educational purposes. In order to base our initiative on authoritative precedents, our first step has been a comparative analysis between different space agency education web sites, such as ESA and NASA. As is well known, Internet is a powerful reality, capable of connecting people all over the world and rendering public a huge amount of information. The first problem, then, is to organize this information, in order to use the web as an efficient education tool. That is why studies such as User Modeling (UM), Human Computer Interaction (HCI) and Semantic Web have become more important in Information Technology and Science. Traditional search engines are unable to provide an optimal retrieval of contents really searched for by users. Semantic Web is a valid alternative: according to its theories, web information should be represented using metadata language. Users should be able and enabled to successfully search, obtain and study new information from web. Forging knowledge in an intelligent manner, preventing users from making errors, and making this formidable quantity of information easily available have also been the starting points for HCI methodologies for defining Adaptable Interfaces. Here the information is divided into different sets, on the basis of the intended user profile, in order to prevent users from getting lost. Realized as an adaptable interface, an education web site can help users to effectively retrieve the information necessary for their scopes (teaching for a teacher and learning for a student). For students it's a great advantage to use interfaces designed on the basis of their age and scholastic level. Indeed, an adaptable interface is intended not just for students, but also for teachers, who can use it to prepare their lessons, retrieve information and organize the didactic material in order to support their lessons. We think it important to use a user centered "psychology" based on UM: we have to know the needs and expectations of the students. Our intent is to use usability tests not just to prove the site effectiveness and clearness, but also to investigate aesthetical preferences of children and young people. Physics, mathematics, chemistry are just some of the difficult learning fields connected with space technologies. Space culture is a potentially never-ending field, and our scope will be to lead students by hand in this universe of knowledge. This paper will present MARS activities in the framework of the above methodologies aimed at implementing a web based approach to integrate space culture and education. The activities are already in progress and some results will be presented in the final paper.

  2. Methodology for the AutoRegressive Planet Search (ARPS) Project

    NASA Astrophysics Data System (ADS)

    Feigelson, Eric; Caceres, Gabriel; ARPS Collaboration

    2018-01-01

    The detection of periodic signals of transiting exoplanets is often impeded by the presence of aperiodic photometric variations. This variability is intrinsic to the host star in space-based observations (typically arising from magnetic activity) and from observational conditions in ground-based observations. The most common statistical procedures to remove stellar variations are nonparametric, such as wavelet decomposition or Gaussian Processes regression. However, many stars display variability with autoregressive properties, wherein later flux values are correlated with previous ones. Providing the time series is evenly spaced, parametric autoregressive models can prove very effective. Here we present the methodology of the Autoregessive Planet Search (ARPS) project which uses Autoregressive Integrated Moving Average (ARIMA) models to treat a wide variety of stochastic short-memory processes, as well as nonstationarity. Additionally, we introduce a planet-search algorithm to detect periodic transits in the time-series residuals after application of ARIMA models. Our matched-filter algorithm, the Transit Comb Filter (TCF), replaces the traditional box-fitting step. We construct a periodogram based on the TCF to concentrate the signal of these periodic spikes. Various features of the original light curves, the ARIMA fits, the TCF periodograms, and folded light curves at peaks of the TCF periodogram can then be collected to provide constraints for planet detection. These features provide input into a multivariate classifier when a training set is available. The ARPS procedure has been applied NASA's Kepler mission observations of ~200,000 stars (Caceres, Dissertation Talk, this meeting) and will be applied in the future to other datasets.

  3. Understanding Innovation Engines: Automated Creativity and Improved Stochastic Optimization via Deep Learning.

    PubMed

    Nguyen, A; Yosinski, J; Clune, J

    2016-01-01

    The Achilles Heel of stochastic optimization algorithms is getting trapped on local optima. Novelty Search mitigates this problem by encouraging exploration in all interesting directions by replacing the performance objective with a reward for novel behaviors. This reward for novel behaviors has traditionally required a human-crafted, behavioral distance function. While Novelty Search is a major conceptual breakthrough and outperforms traditional stochastic optimization on certain problems, it is not clear how to apply it to challenging, high-dimensional problems where specifying a useful behavioral distance function is difficult. For example, in the space of images, how do you encourage novelty to produce hawks and heroes instead of endless pixel static? Here we propose a new algorithm, the Innovation Engine, that builds on Novelty Search by replacing the human-crafted behavioral distance with a Deep Neural Network (DNN) that can recognize interesting differences between phenotypes. The key insight is that DNNs can recognize similarities and differences between phenotypes at an abstract level, wherein novelty means interesting novelty. For example, a DNN-based novelty search in the image space does not explore in the low-level pixel space, but instead creates a pressure to create new types of images (e.g., churches, mosques, obelisks, etc.). Here, we describe the long-term vision for the Innovation Engine algorithm, which involves many technical challenges that remain to be solved. We then implement a simplified version of the algorithm that enables us to explore some of the algorithm's key motivations. Our initial results, in the domain of images, suggest that Innovation Engines could ultimately automate the production of endless streams of interesting solutions in any domain: for example, producing intelligent software, robot controllers, optimized physical components, and art.

  4. rasbhari: Optimizing Spaced Seeds for Database Searching, Read Mapping and Alignment-Free Sequence Comparison.

    PubMed

    Hahn, Lars; Leimeister, Chris-André; Ounit, Rachid; Lonardi, Stefano; Morgenstern, Burkhard

    2016-10-01

    Many algorithms for sequence analysis rely on word matching or word statistics. Often, these approaches can be improved if binary patterns representing match and don't-care positions are used as a filter, such that only those positions of words are considered that correspond to the match positions of the patterns. The performance of these approaches, however, depends on the underlying patterns. Herein, we show that the overlap complexity of a pattern set that was introduced by Ilie and Ilie is closely related to the variance of the number of matches between two evolutionarily related sequences with respect to this pattern set. We propose a modified hill-climbing algorithm to optimize pattern sets for database searching, read mapping and alignment-free sequence comparison of nucleic-acid sequences; our implementation of this algorithm is called rasbhari. Depending on the application at hand, rasbhari can either minimize the overlap complexity of pattern sets, maximize their sensitivity in database searching or minimize the variance of the number of pattern-based matches in alignment-free sequence comparison. We show that, for database searching, rasbhari generates pattern sets with slightly higher sensitivity than existing approaches. In our Spaced Words approach to alignment-free sequence comparison, pattern sets calculated with rasbhari led to more accurate estimates of phylogenetic distances than the randomly generated pattern sets that we previously used. Finally, we used rasbhari to generate patterns for short read classification with CLARK-S. Here too, the sensitivity of the results could be improved, compared to the default patterns of the program. We integrated rasbhari into Spaced Words; the source code of rasbhari is freely available at http://rasbhari.gobics.de/.

  5. Never Use the Complete Search Space: a Concept to Enhance the Optimization Procedure for Monitoring Networks

    NASA Astrophysics Data System (ADS)

    Bode, F.; Reuschen, S.; Nowak, W.

    2015-12-01

    Drinking-water well catchments include many potential sources of contaminations like gas stations or agriculture. Finding optimal positions of early-warning monitoring wells is challenging because there are various parameters (and their uncertainties) that influence the reliability and optimality of any suggested monitoring location or monitoring network.The overall goal of this project is to develop and establish a concept to assess, design and optimize early-warning systems within well catchments. Such optimal monitoring networks need to optimize three competing objectives: a high detection probability, which can be reached by maximizing the "field of vision" of the monitoring network, a long early-warning time such that there is enough time left to install counter measures after first detection, and the overall operating costs of the monitoring network, which should ideally be reduced to a minimum. The method is based on numerical simulation of flow and transport in heterogeneous porous media coupled with geostatistics and Monte-Carlo, scenario analyses for real data, respectively, wrapped up within the framework of formal multi-objective optimization using a genetic algorithm.In order to speed up the optimization process and to better explore the Pareto-front, we developed a concept that forces the algorithm to search only in regions of the search space where promising solutions can be expected. We are going to show how to define these regions beforehand, using knowledge of the optimization problem, but also how to define them independently of problem attributes. With that, our method can be used with and/or without detailed knowledge of the objective functions.In summary, our study helps to improve optimization results in less optimization time by meaningful restrictions of the search space. These restrictions can be done independently of the optimization problem, but also in a problem-specific manner.

  6. KSC-2009-1623

    NASA Image and Video Library

    2009-02-06

    VANDENBERG AIR FORCE BASE, Calif. -- The United Launch Alliance Delta II rocket carrying NASA's NOAA-N Prime satellite lifts off Space Launch Complex 2 at Vandenberg Air Force Base in California at 2:22 a.m. PST Feb. 6, 2009. The countdown and launch were managed by Kennedy Space Center’s Launch Services Program. Built for NASA by Lockheed Martin, the satellite will improve weather forecasting and monitor the world for environmental events, as well as for distress signals for the Search and Rescue Satellite-Aided Tracking System. NOAA-N Prime is the fifth and last in the National Oceanic and Atmospheric Administration’s current series of five polar-orbiting satellites with improved imaging and sounding capabilities. Photo credit: NASA/Carleton Bailie, VAFB-ULA

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bosler, Peter A.; Roesler, Erika L.; Taylor, Mark A.

    This study discusses the problem of identifying extreme climate events such as intense storms within large climate data sets. The basic storm detection algorithm is reviewed, which splits the problem into two parts: a spatial search followed by a temporal correlation problem. Two specific implementations of the spatial search algorithm are compared: the commonly used grid point search algorithm is reviewed, and a new algorithm called Stride Search is introduced. The Stride Search algorithm is defined independently of the spatial discretization associated with a particular data set. Results from the two algorithms are compared for the application of tropical cyclonemore » detection, and shown to produce similar results for the same set of storm identification criteria. Differences between the two algorithms arise for some storms due to their different definition of search regions in physical space. The physical space associated with each Stride Search region is constant, regardless of data resolution or latitude, and Stride Search is therefore capable of searching all regions of the globe in the same manner. Stride Search's ability to search high latitudes is demonstrated for the case of polar low detection. Wall clock time required for Stride Search is shown to be smaller than a grid point search of the same data, and the relative speed up associated with Stride Search increases as resolution increases.« less

  8. Boosting association rule mining in large datasets via Gibbs sampling.

    PubMed

    Qian, Guoqi; Rao, Calyampudi Radhakrishna; Sun, Xiaoying; Wu, Yuehua

    2016-05-03

    Current algorithms for association rule mining from transaction data are mostly deterministic and enumerative. They can be computationally intractable even for mining a dataset containing just a few hundred transaction items, if no action is taken to constrain the search space. In this paper, we develop a Gibbs-sampling-induced stochastic search procedure to randomly sample association rules from the itemset space, and perform rule mining from the reduced transaction dataset generated by the sample. Also a general rule importance measure is proposed to direct the stochastic search so that, as a result of the randomly generated association rules constituting an ergodic Markov chain, the overall most important rules in the itemset space can be uncovered from the reduced dataset with probability 1 in the limit. In the simulation study and a real genomic data example, we show how to boost association rule mining by an integrated use of the stochastic search and the Apriori algorithm.

  9. Electroweak symmetry breaking and collider signatures in the next-to-minimal composite Higgs model

    NASA Astrophysics Data System (ADS)

    Niehoff, Christoph; Stangl, Peter; Straub, David M.

    2017-04-01

    We conduct a detailed numerical analysis of the composite pseudo-Nambu-Goldstone Higgs model based on the next-to-minimal coset SO(6)/SO(5) ≅ SU(4)/Sp(4), featuring an additional SM singlet scalar in the spectrum, which we allow to mix with the Higgs boson. We identify regions in parameter space compatible with all current exper-imental constraints, including radiative electroweak symmetry breaking, flavour physics, and direct searches at colliders. We find the additional scalar, with a mass predicted to be below a TeV, to be virtually unconstrained by current LHC data, but potentially in reach of run 2 searches. Promising indirect searches include rare semi-leptonic B decays, CP violation in B s mixing, and the electric dipole moment of the neutron.

  10. Trading efficiency for effectiveness in similarity-based indexing for image databases

    NASA Astrophysics Data System (ADS)

    Barros, Julio E.; French, James C.; Martin, Worthy N.; Kelly, Patrick M.

    1995-11-01

    Image databases typically manage feature data that can be viewed as points in a feature space. Some features, however, can be better expressed as a collection of points or described by a probability distribution function (PDF) rather than as a single point. In earlier work we introduced a similarity measure and a method for indexing and searching the PDF descriptions of these items that guarantees an answer equivalent to sequential search. Unfortunately, certain properties of the data can restrict the efficiency of that method. In this paper we extend that work and examine trade-offs between efficiency and answer quality or effectiveness. These trade-offs reduce the amount of work required during a search by reducing the number of undesired items fetched without excluding an excessive number of the desired ones.

  11. KSC-08pd1362

    NASA Image and Video Library

    2008-05-14

    CAPE CANAVERAL, Fla. -- In a U.S. Coast Guard boat off Florida's central east coast, astronaut Richard Mastracchio adjusts his launch-and-entry suit to participate in a rescue training exercise, known as Mode VIII. Behind him is astronaut Paulo Nespoli. In support of, and with logistical support from, NASA, USSTRATCOM is hosting a major exercise involving Department of Defense, Department of Homeland Security, search and rescue (SAR) forces, including the 45th Space Wing at Patrick Air Force Base, which support space shuttle astronaut bailout contingency operations, known as Mode VIII. This exercise tests SAR capabilities to locate, recover and provide medical treatment for astronauts following a space shuttle launch phase open-ocean bailout. Participants include members of the U.S. Navy, U.S. Coast Guard, U.S. Air Force, and NASA's Kennedy Space Center and Johnson Space Center. Photo credit: NASA/Dimitri Gerondidakis

  12. KSC-08pd1385

    NASA Image and Video Library

    2008-05-14

    CAPE CANAVERAL, Fla. -- Off Florida's central east coast, a member of the rescue team in a training exercise, known as Mode VIII, keeps watch for the returning support crew from the U.S. Coast Guard cutter Kingfisher, from Port Canaveral, Fla. In support of, and with logistical support from, NASA, USSTRATCOM is hosting a major exercise involving Department of Defense, Department of Homeland Security, search and rescue (SAR) forces, including the 45th Space Wing at Patrick Air Force Base, which support space shuttle astronaut bailout contingency operations, known as Mode VIII. This exercise tests SAR capabilities to locate, recover and provide medical treatment for astronauts following a space shuttle launch phase open-ocean bailout. Participants include members of the U.S. Navy, U.S. Coast Guard, U.S. Air Force, and NASA's Kennedy Space Center and Johnson Space Center. Photo credit: NASA/Dimitri Gerondidakis

  13. The topography of the environment alters the optimal search strategy for active particles

    PubMed Central

    Volpe, Giovanni

    2017-01-01

    In environments with scarce resources, adopting the right search strategy can make the difference between succeeding and failing, even between life and death. At different scales, this applies to molecular encounters in the cell cytoplasm, to animals looking for food or mates in natural landscapes, to rescuers during search and rescue operations in disaster zones, and to genetic computer algorithms exploring parameter spaces. When looking for sparse targets in a homogeneous environment, a combination of ballistic and diffusive steps is considered optimal; in particular, more ballistic Lévy flights with exponent α≤1 are generally believed to optimize the search process. However, most search spaces present complex topographies. What is the best search strategy in these more realistic scenarios? Here, we show that the topography of the environment significantly alters the optimal search strategy toward less ballistic and more Brownian strategies. We consider an active particle performing a blind cruise search for nonregenerating sparse targets in a 2D space with steps drawn from a Lévy distribution with the exponent varying from α=1 to α=2 (Brownian). We show that, when boundaries, barriers, and obstacles are present, the optimal search strategy depends on the topography of the environment, with α assuming intermediate values in the whole range under consideration. We interpret these findings using simple scaling arguments and discuss their robustness to varying searcher’s size. Our results are relevant for search problems at different length scales from animal and human foraging to microswimmers’ taxis to biochemical rates of reaction. PMID:29073055

  14. The topography of the environment alters the optimal search strategy for active particles

    NASA Astrophysics Data System (ADS)

    Volpe, Giorgio; Volpe, Giovanni

    2017-10-01

    In environments with scarce resources, adopting the right search strategy can make the difference between succeeding and failing, even between life and death. At different scales, this applies to molecular encounters in the cell cytoplasm, to animals looking for food or mates in natural landscapes, to rescuers during search and rescue operations in disaster zones, and to genetic computer algorithms exploring parameter spaces. When looking for sparse targets in a homogeneous environment, a combination of ballistic and diffusive steps is considered optimal; in particular, more ballistic Lévy flights with exponent α≤1 are generally believed to optimize the search process. However, most search spaces present complex topographies. What is the best search strategy in these more realistic scenarios? Here, we show that the topography of the environment significantly alters the optimal search strategy toward less ballistic and more Brownian strategies. We consider an active particle performing a blind cruise search for nonregenerating sparse targets in a 2D space with steps drawn from a Lévy distribution with the exponent varying from α=1 to α=2 (Brownian). We show that, when boundaries, barriers, and obstacles are present, the optimal search strategy depends on the topography of the environment, with α assuming intermediate values in the whole range under consideration. We interpret these findings using simple scaling arguments and discuss their robustness to varying searcher's size. Our results are relevant for search problems at different length scales from animal and human foraging to microswimmers' taxis to biochemical rates of reaction.

  15. Grover's unstructured search by using a transverse field

    NASA Astrophysics Data System (ADS)

    Jiang, Zhang; Rieffel, Eleanor; Wang, Zhihui

    2017-04-01

    We design a circuit-based quantum algorithm to search for a needle in a haystack, giving the same quadratic speedup achieved by Grover's original algorithm. In our circuit-based algorithm, the problem Hamiltonian (oracle) and a transverse field (instead of Grover's diffusion operator) are applied to the system alternatively. We construct a periodic time sequence such that the resultant unitary drives a closed transition between two states, which have high degrees of overlap with the initial state (even superposition of all states) and the target state, respectively. Let N =2n be the size of the search space. The transition rate in our algorithm is of order Θ(1 /√{ N}) , and the overlaps are of order Θ(1) , yielding a nearly optimal query complexity of T =√{ N}(π / 2√{ 2}) . Our algorithm is inspired by a class of algorithms proposed by Farhi et al., namely the Quantum Approximate Optimization Algorithm (QAOA); our method offers a route to optimizing the parameters in QAOA by restricting them to be periodic in time.

  16. Toward a detailed understanding of search trajectories in fragment assembly approaches to protein structure prediction

    PubMed Central

    Handl, Julia; Lovell, Simon C.

    2016-01-01

    ABSTRACT Energy functions, fragment libraries, and search methods constitute three key components of fragment‐assembly methods for protein structure prediction, which are all crucial for their ability to generate high‐accuracy predictions. All of these components are tightly coupled; efficient searching becomes more important as the quality of fragment libraries decreases. Given these relationships, there is currently a poor understanding of the strengths and weaknesses of the sampling approaches currently used in fragment‐assembly techniques. Here, we determine how the performance of search techniques can be assessed in a meaningful manner, given the above problems. We describe a set of techniques that aim to reduce the impact of the energy function, and assess exploration in view of the search space defined by a given fragment library. We illustrate our approach using Rosetta and EdaFold, and show how certain features of these methods encourage or limit conformational exploration. We demonstrate that individual trajectories of Rosetta are susceptible to local minima in the energy landscape, and that this can be linked to non‐uniform sampling across the protein chain. We show that EdaFold's novel approach can help balance broad exploration with locating good low‐energy conformations. This occurs through two mechanisms which cannot be readily differentiated using standard performance measures: exclusion of false minima, followed by an increasingly focused search in low‐energy regions of conformational space. Measures such as ours can be helpful in characterizing new fragment‐based methods in terms of the quality of conformational exploration realized. Proteins 2016; 84:411–426. © 2016 The Authors Proteins: Structure, Function, and Bioinformatics Published by Wiley Periodicals, Inc. PMID:26799916

  17. Searching for globally optimal functional forms for interatomic potentials using genetic programming with parallel tempering.

    PubMed

    Slepoy, A; Peters, M D; Thompson, A P

    2007-11-30

    Molecular dynamics and other molecular simulation methods rely on a potential energy function, based only on the relative coordinates of the atomic nuclei. Such a function, called a force field, approximately represents the electronic structure interactions of a condensed matter system. Developing such approximate functions and fitting their parameters remains an arduous, time-consuming process, relying on expert physical intuition. To address this problem, a functional programming methodology was developed that may enable automated discovery of entirely new force-field functional forms, while simultaneously fitting parameter values. The method uses a combination of genetic programming, Metropolis Monte Carlo importance sampling and parallel tempering, to efficiently search a large space of candidate functional forms and parameters. The methodology was tested using a nontrivial problem with a well-defined globally optimal solution: a small set of atomic configurations was generated and the energy of each configuration was calculated using the Lennard-Jones pair potential. Starting with a population of random functions, our fully automated, massively parallel implementation of the method reproducibly discovered the original Lennard-Jones pair potential by searching for several hours on 100 processors, sampling only a minuscule portion of the total search space. This result indicates that, with further improvement, the method may be suitable for unsupervised development of more accurate force fields with completely new functional forms. Copyright (c) 2007 Wiley Periodicals, Inc.

  18. The Telecommunications and Data Acquisition Report

    NASA Technical Reports Server (NTRS)

    Posner, E. C. (Editor)

    1986-01-01

    This publication, one of a series formerly titled The Deep Space Network (DSN) Progress Report, documents DSN progress in flight project support, tracking and data acquisition research and technology, network engineering, hardware and software implementation, and operations. In addition, developments in Earth-based radio technology as applied to geodynamics, astrophysics, and the radio search for extraterrestrial intelligence are reported.

  19. The Telecommunications and Data Acquisition Report

    NASA Technical Reports Server (NTRS)

    Posner, E. C. (Editor)

    1988-01-01

    This publication, one of a series formerly titled The Deep Space Network Progress Report, documents DSN progress in flight project support, tracking and data acquisition research and technology, network engineering, hardware and software implementation, and operations. In addition, developments in earth-based radio technology as applied to geodynamics, astrophysics, and the radio search for extraterrestrial intelligence are reported.

  20. Accelerating Information Retrieval from Profile Hidden Markov Model Databases.

    PubMed

    Tamimi, Ahmad; Ashhab, Yaqoub; Tamimi, Hashem

    2016-01-01

    Profile Hidden Markov Model (Profile-HMM) is an efficient statistical approach to represent protein families. Currently, several databases maintain valuable protein sequence information as profile-HMMs. There is an increasing interest to improve the efficiency of searching Profile-HMM databases to detect sequence-profile or profile-profile homology. However, most efforts to enhance searching efficiency have been focusing on improving the alignment algorithms. Although the performance of these algorithms is fairly acceptable, the growing size of these databases, as well as the increasing demand for using batch query searching approach, are strong motivations that call for further enhancement of information retrieval from profile-HMM databases. This work presents a heuristic method to accelerate the current profile-HMM homology searching approaches. The method works by cluster-based remodeling of the database to reduce the search space, rather than focusing on the alignment algorithms. Using different clustering techniques, 4284 TIGRFAMs profiles were clustered based on their similarities. A representative for each cluster was assigned. To enhance sensitivity, we proposed an extended step that allows overlapping among clusters. A validation benchmark of 6000 randomly selected protein sequences was used to query the clustered profiles. To evaluate the efficiency of our approach, speed and recall values were measured and compared with the sequential search approach. Using hierarchical, k-means, and connected component clustering techniques followed by the extended overlapping step, we obtained an average reduction in time of 41%, and an average recall of 96%. Our results demonstrate that representation of profile-HMMs using a clustering-based approach can significantly accelerate data retrieval from profile-HMM databases.

  1. KSC-08pd0915

    NASA Image and Video Library

    2008-04-07

    CAPE CANAVERAL, Fla. -- After meeting with NASA officials about their involvement in the second annual Space & Air Show at Kennedy Space Center Nov. 8-9, Blue Angel pilots Lt. Frank Weisser and Lt. Dan McShane fly over the Launch Complex 39 area in their U.S. Navy F-18 Hornet as they return to their home base in Pensacola, Fla. The air show will be only the second time the Blue Angels have performed at Kennedy. Their precision flight team will perform high-speed passes, fast rolls, mirror formations, tight turns and their signature Delta formation showcasing the capabilities of the powerful aircraft. The 2008 Space & Air Show will include aircraft displays and space-related exhibits on the ground and plenty of action in the skies over Kennedy. Returning to the show is the 920th Rescue Wing, an Air Force Reserve Command combat search and rescue unit based at Patrick Air Force Base in Central Florida. Also, more than 20 astronauts and special guests will be on hand to personally meet guests, pose for photos and sign memorabilia. Photo credit: NASA/Dimitri Gerondidakis

  2. KSC-08pd0919

    NASA Image and Video Library

    2008-04-07

    CAPE CANAVERAL, Fla. -- After meeting with NASA officials about their involvement in the second annual Space & Air Show at Kennedy Space Center Nov. 8-9, Blue Angel pilots Lt. Frank Weisser and Lt. Dan McShane board their U.S. Navy F-18 Hornet as they prepare to return to their home base in Pensacola, Fla. The air show will be only the second time the Blue Angels have performed at Kennedy. Their precision flight team will perform high-speed passes, fast rolls, mirror formations, tight turns and their signature Delta formation showcasing the capabilities of the powerful aircraft. The 2008 Space & Air Show will include aircraft displays and space-related exhibits on the ground and plenty of action in the skies over Kennedy. Returning to the show is the 920th Rescue Wing, an Air Force Reserve Command combat search and rescue unit based at Patrick Air Force Base in Central Florida. Also, more than 20 astronauts and special guests will be on hand to personally meet guests, pose for photos and sign memorabilia. Photo credit: NASA/Kim Shiflett

  3. KSC-08pd0922

    NASA Image and Video Library

    2008-04-07

    CAPE CANAVERAL, Fla. -- After meeting with NASA officials about their involvement in the second annual Space & Air Show at Kennedy Space Center Nov. 8-9, Blue Angel pilots Lt. Frank Weisser and Lt. Dan McShane prepare for takeoff of their U.S. Navy F-18 Hornet from the Shuttle Landing Facility for the return flight to their home base in Pensacola, Fla. The air show will be only the second time the Blue Angels have performed at Kennedy. Their precision flight team will perform high-speed passes, fast rolls, mirror formations, tight turns and their signature Delta formation showcasing the capabilities of the powerful aircraft. The 2008 Space & Air Show will include aircraft displays and space-related exhibits on the ground and plenty of action in the skies over Kennedy. Returning to the show is the 920th Rescue Wing, an Air Force Reserve Command combat search and rescue unit based at Patrick Air Force Base in Central Florida. Also, more than 20 astronauts and special guests will be on hand to personally meet guests, pose for photos and sign memorabilia. Photo credit: NASA/Kim Shiflett

  4. KSC-08pd0913

    NASA Image and Video Library

    2008-04-07

    CAPE CANAVERAL, Fla. -- After meeting with NASA officials about their involvement in the second annual Space & Air Show at Kennedy Space Center Nov. 8-9, Blue Angel pilots Lt. Frank Weisser and Lt. Dan McShane take a last look at the center from their U.S. Navy F-18 Hornet as they return to their home base in Pensacola, Fla. The air show will be only the second time the Blue Angels have performed at Kennedy. Their precision flight team will perform high-speed passes, fast rolls, mirror formations, tight turns and their signature Delta formation showcasing the capabilities of the powerful aircraft. The 2008 Space & Air Show will include aircraft displays and space-related exhibits on the ground and plenty of action in the skies over Kennedy. Returning to the show is the 920th Rescue Wing, an Air Force Reserve Command combat search and rescue unit based at Patrick Air Force Base in Central Florida. Also, more than 20 astronauts and special guests will be on hand to personally meet guests, pose for photos and sign memorabilia. Photo credit: NASA/Dimitri Gerondidakis

  5. KSC-08pd0921

    NASA Image and Video Library

    2008-04-07

    CAPE CANAVERAL, Fla. -- After meeting with NASA officials about their involvement in the second annual Space & Air Show at Kennedy Space Center Nov. 8-9, Blue Angel pilots Lt. Frank Weisser and Lt. Dan McShane prepare for takeoff of their U.S. Navy F-18 Hornet from the Shuttle Landing Facility for the return flight to their home base in Pensacola, Fla. The air show will be only the second time the Blue Angels have performed at Kennedy. Their precision flight team will perform high-speed passes, fast rolls, mirror formations, tight turns and their signature Delta formation showcasing the capabilities of the powerful aircraft. The 2008 Space & Air Show will include aircraft displays and space-related exhibits on the ground and plenty of action in the skies over Kennedy. Returning to the show is the 920th Rescue Wing, an Air Force Reserve Command combat search and rescue unit based at Patrick Air Force Base in Central Florida. Also, more than 20 astronauts and special guests will be on hand to personally meet guests, pose for photos and sign memorabilia. Photo credit: NASA/Kim Shiflett

  6. KSC-08pd0914

    NASA Image and Video Library

    2008-04-07

    CAPE CANAVERAL, Fla. -- After meeting with NASA officials about their involvement in the second annual Space & Air Show at Kennedy Space Center Nov. 8-9, Blue Angel pilots Lt. Frank Weisser and Lt. Dan McShane take a last look at the center from their U.S. Navy F-18 Hornet as they return to their home base in Pensacola, Fla. The air show will be only the second time the Blue Angels have performed at Kennedy. Their precision flight team will perform high-speed passes, fast rolls, mirror formations, tight turns and their signature Delta formation showcasing the capabilities of the powerful aircraft. The 2008 Space & Air Show will include aircraft displays and space-related exhibits on the ground and plenty of action in the skies over Kennedy. Returning to the show is the 920th Rescue Wing, an Air Force Reserve Command combat search and rescue unit based at Patrick Air Force Base in Central Florida. Also, more than 20 astronauts and special guests will be on hand to personally meet guests, pose for photos and sign memorabilia. Photo credit: NASA/Dimitri Gerondidakis

  7. KSC-08pd0920

    NASA Image and Video Library

    2008-04-07

    CAPE CANAVERAL, Fla. -- After meeting with NASA officials about their involvement in the second annual Space & Air Show at Kennedy Space Center Nov. 8-9, Blue Angel pilots Lt. Frank Weisser and Lt. Dan McShane board their U.S. Navy F-18 Hornet as they prepare to return to their home base in Pensacola, Fla. The air show will be only the second time the Blue Angels have performed at Kennedy. Their precision flight team will perform high-speed passes, fast rolls, mirror formations, tight turns and their signature Delta formation showcasing the capabilities of the powerful aircraft. The 2008 Space & Air Show will include aircraft displays and space-related exhibits on the ground and plenty of action in the skies over Kennedy. Returning to the show is the 920th Rescue Wing, an Air Force Reserve Command combat search and rescue unit based at Patrick Air Force Base in Central Florida. Also, more than 20 astronauts and special guests will be on hand to personally meet guests, pose for photos and sign memorabilia. Photo credit: NASA/Kim Shiflett

  8. KSC-08pd0923

    NASA Image and Video Library

    2008-04-07

    CAPE CANAVERAL, Fla. -- After meeting with NASA officials about their involvement in the second annual Space & Air Show at Kennedy Space Center Nov. 8-9, Blue Angel pilots Lt. Frank Weisser and Lt. Dan McShane take off from the Shuttle Landing Facility aboard their U.S. Navy F-18 Hornet for the return flight to their home base in Pensacola, Fla. The air show will be only the second time the Blue Angels have performed at Kennedy. Their precision flight team will perform high-speed passes, fast rolls, mirror formations, tight turns and their signature Delta formation showcasing the capabilities of the powerful aircraft. The 2008 Space & Air Show will include aircraft displays and space-related exhibits on the ground and plenty of action in the skies over Kennedy. Returning to the show is the 920th Rescue Wing, an Air Force Reserve Command combat search and rescue unit based at Patrick Air Force Base in Central Florida. Also, more than 20 astronauts and special guests will be on hand to personally meet guests, pose for photos and sign memorabilia. Photo credit: NASA/Kim Shiflett

  9. KSC-08pd0924

    NASA Image and Video Library

    2008-04-07

    CAPE CANAVERAL, Fla. -- After meeting with NASA officials about their involvement in the second annual Space & Air Show at Kennedy Space Center Nov. 8-9, Blue Angel pilots Lt. Frank Weisser and Lt. Dan McShane take off from the Shuttle Landing Facility aboard their U.S. Navy F-18 Hornet for the return flight to their home base in Pensacola, Fla. The air show will be only the second time the Blue Angels have performed at Kennedy. Their precision flight team will perform high-speed passes, fast rolls, mirror formations, tight turns and their signature Delta formation showcasing the capabilities of the powerful aircraft. The 2008 Space & Air Show will include aircraft displays and space-related exhibits on the ground and plenty of action in the skies over Kennedy. Returning to the show is the 920th Rescue Wing, an Air Force Reserve Command combat search and rescue unit based at Patrick Air Force Base in Central Florida. Also, more than 20 astronauts and special guests will be on hand to personally meet guests, pose for photos and sign memorabilia. Photo credit: NASA/Kim Shiflett

  10. Short- and medium-range 3D sensing for space applications

    NASA Astrophysics Data System (ADS)

    Beraldin, J. A.; Blais, Francois; Rioux, Marc; Cournoyer, Luc; Laurin, Denis G.; MacLean, Steve G.

    1997-07-01

    This paper focuses on the characteristics and performance of a laser range scanner (LARS) with short and medium range 3D sensing capabilities for space applications. This versatile laser range scanner is a precision measurement tool intended to complement the current Canadian Space Vision System (CSVS). Together, these vision systems are intended to be used during the construction of the International Space Station (ISS). Integration of the LARS to the CSVS will allow 3D surveying of a robotic work-site, identification of known objects from registered range and intensity images, and object detection and tracking relative to the orbiter and ISS. The data supplied by the improved CSVS will be invaluable in Orbiter rendez-vous and in assisting the Orbiter/ISS Remote Manipulator System operators. The major advantages of the LARS over conventional video-based imaging are its ability to operate with sunlight shining directly into the scanner and its immunity to spurious reflections and shadows which occur frequently in space. Because the LARS is equipped with two high-speed galvanometers to steer the laser beam, any spatial location within the field of view of the camera can be addressed. This level of versatility enables the LARS to operate in two basic scan pattern modes: (1) variable scan resolution mode and (2) raster scan mode. In the variable resolution mode, the LARS can search and track targets and geometrical features on objects located within a field of view of 30 degrees X 30 degrees and with corresponding range from about 0.5 m to 2000 m. This flexibility allows implementations of practical search and track strategies based on the use of Lissajous patterns for multiple targets. The tracking mode can reach a refresh rate of up to 137 Hz. The raster mode is used primarily for the measurement of registered range and intensity information of large stationary objects. It allows among other things: target-based measurements, feature-based measurements, and, image-based measurements like differential inspection in 3D space and surface reflectance monitoring. The digitizing and modeling of human subjects, cargo payloads, and environments are also possible with the LARS. A number of examples illustrating the many capabilities of the LARS are presented in this paper.

  11. The Application of Computer-Aided Discovery to Spacecraft Site Selection

    NASA Astrophysics Data System (ADS)

    Pankratius, V.; Blair, D. M.; Gowanlock, M.; Herring, T.

    2015-12-01

    The selection of landing and exploration sites for interplanetary robotic or human missions is a complex task. Historically it has been labor-intensive, with large groups of scientists manually interpreting a planetary surface across a variety of datasets to identify potential sites based on science and engineering constraints. This search process can be lengthy, and excellent sites may get overlooked when the aggregate value of site selection criteria is non-obvious or non-intuitive. As planetary data collection leads to Big Data repositories and a growing set of selection criteria, scientists will face a combinatorial search space explosion that requires scalable, automated assistance. We are currently exploring more general computer-aided discovery techniques in the context of planetary surface deformation phenomena that can lend themselves to application in the landing site search problem. In particular, we are developing a general software framework that addresses key difficulties: characterizing a given phenomenon or site based on data gathered from multiple instruments (e.g. radar interferometry, gravity, thermal maps, or GPS time series), and examining a variety of possible workflows whose individual configurations are optimized to isolate different features. The framework allows algorithmic pipelines and hypothesized models to be perturbed or permuted automatically within well-defined bounds established by the scientist. For example, even simple choices for outlier and noise handling or data interpolation can drastically affect the detectability of certain features. These techniques aim to automate repetitive tasks that scientists routinely perform in exploratory analysis, and make them more efficient and scalable by executing them in parallel in the cloud. We also explore ways in which machine learning can be combined with human feedback to prune the search space and converge to desirable results. Acknowledgements: We acknowledge support from NASA AIST NNX15AG84G (PI V. Pankratius)

  12. DNA translocation by human uracil DNA glycosylase: the case of single-stranded DNA and clustered uracils.

    PubMed

    Schonhoft, Joseph D; Stivers, James T

    2013-04-16

    Human uracil DNA glycosylase (hUNG) plays a central role in DNA repair and programmed mutagenesis of Ig genes, requiring it to act on sparsely or densely spaced uracil bases located in a variety of contexts, including U/A and U/G base pairs, and potentially uracils within single-stranded DNA (ssDNA). An interesting question is whether the facilitated search mode of hUNG, which includes both DNA sliding and hopping, changes in these different contexts. Here we find that hUNG uses an enhanced local search mode when it acts on uracils in ssDNA, and also, in a context where uracils are densely clustered in duplex DNA. In the context of ssDNA, hUNG performs an enhanced local search by sliding with a mean sliding length larger than that of double-stranded DNA (dsDNA). In the context of duplex DNA, insertion of high-affinity abasic product sites between two uracil lesions serves to significantly extend the apparent sliding length on dsDNA from 4 to 20 bp and, in some cases, leads to directionally biased 3' → 5' sliding. The presence of intervening abasic product sites mimics the situation where hUNG acts iteratively on densely spaced uracils. The findings suggest that intervening product sites serve to increase the amount of time the enzyme remains associated with DNA as compared to nonspecific DNA, which in turn increases the likelihood of sliding as opposed to falling off the DNA. These findings illustrate how the search mechanism of hUNG is not predetermined but, instead, depends on the context in which the uracils are located.

  13. Space Science Enterprise Strategy

    NASA Technical Reports Server (NTRS)

    2003-01-01

    The 2003 Space Science Enterprise Strategy represents the efforts of hundreds of scientists, staff, and educators, as well as collaboration with the other NASA Enterprises. It reveals the progress we have made, our plans for the near future, and our opportunity to support the Agency's Mission to "explore the universe and search for life." Space science has made spectacular advances in the recent past, from the first baby pictures of the universe to the discovery of water ice on Mars. Each new discovery impels us to ask new questions or regard old ones in new ways. How did the universe begin? How did life arise? Are we alone? These questions continue to inspire all of us to keep exploring and searching. And, as we get closer to answers, we will continue to share our findings with the science community, educators, and the public as broadly and as rapidly as possible. In this Strategy, you will find science objectives that define NASA's quest for discovery. You will also find the framework of programs, such as flight missions and ground-based research, that will enable us to achieve these objectives. This Strategy is founded on recommendations from the community, as well as lessons learned from past programs, and maps the stepping-stones to the future of space science.

  14. Federated Space-Time Query for Earth Science Data Using OpenSearch Conventions

    NASA Technical Reports Server (NTRS)

    Lynnes, Chris; Beaumont, Bruce; Duerr, Ruth; Hua, Hook

    2009-01-01

    This slide presentation reviews a Space-time query system that has been developed to assist the user in finding Earth science data that fulfills the researchers needs. It reviews the reasons why finding Earth science data can be so difficult, and explains the workings of the Space-Time Query with OpenSearch and how this system can assist researchers in finding the required data, It also reviews the developments with client server systems.

  15. SpaceX TESS Liftoff

    NASA Image and Video Library

    2018-04-18

    A SpaceX Falcon 9 rocket lifts off from Space Launch Complex 40 at Cape Canaveral Air Force Station in Florida, carrying NASA's Transiting Exoplanet Survey Satellite (TESS). Liftoff was at 6:51 p.m. EDT. TESS will search for planets outside of our solar system. The mission will find exoplanets that periodically block part of the light from their host stars, events called transits. The satellite will survey the nearest and brightest stars for two years to search for transiting exoplanets.

  16. Maxillary incisors changes during space closure with conventional and skeletal anchorage methods: a systematic review.

    PubMed

    Jayaratne, Yasas Shri Nalaka; Uribe, Flavio; Janakiraman, Nandakumar

    2017-01-01

    The objective of this systematic review was to compare the antero-posterior, vertical and angular changes of maxillary incisors with conventional anchorage control techniques and mini-implant based space closure methods. The electronic databases Pubmed, Scopus, ISI Web of knowledge, Cochrane Library and Open Grey were searched for potentially eligible studies using a set of predetermined keywords. Full texts meeting the inclusion criteria as well as their references were manually searched. The primary outcome data (linear, angular, and vertical maxillary incisor changes) and secondary outcome data (overbite changes, soft tissue changes, biomechanical factors, root resorption and treatment duration) were extracted from the selected articles and entered into spreadsheets based on the type of anchorage used. The methodological quality of each study was assessed. Six studies met the inclusion criteria. The amount of incisor retraction was greater with buccally placed mini-implants than conventional anchorage techniques. The incisor retraction with indirect anchorage from palatal mini-implants was less when compared with buccally placed mini-implants. Incisor intrusion occurred with buccal mini-implants, whereas extrusion was seen with conventional anchorage. Limited data on the biomechanical variables or adverse effects such as root resorption were reported in these studies. More RCT's that take in to account relevant biomechanical variables and employ three-dimensional quantification of tooth movements are required to provide information on incisor changes during space closure.

  17. Exploring the combinatorial space of complete pathways to chemicals.

    PubMed

    Wang, Lin; Ng, Chiam Yu; Dash, Satyakam; Maranas, Costas D

    2018-04-06

    Computational pathway design tools often face the challenges of balancing the stoichiometry of co-metabolites and cofactors, and dealing with reaction rule utilization in a single workflow. To this end, we provide an overview of two complementary stoichiometry-based pathway design tools optStoic and novoStoic developed in our group to tackle these challenges. optStoic is designed to determine the stoichiometry of overall conversion first which optimizes a performance criterion (e.g. high carbon/energy efficiency) and ensures a comprehensive search of co-metabolites and cofactors. The procedure then identifies the minimum number of intervening reactions to connect the source and sink metabolites. We also further the pathway design procedure by expanding the search space to include both known and hypothetical reactions, represented by reaction rules, in a new tool termed novoStoic. Reaction rules are derived based on a mixed-integer linear programming (MILP) compatible reaction operator, which allow us to explore natural promiscuous enzymes, engineer candidate enzymes that are not already promiscuous as well as design de novo enzymes. The identified biochemical reaction rules then guide novoStoic to design routes that expand the currently known biotransformation space using a single MILP modeling procedure. We demonstrate the use of the two computational tools in pathway elucidation by designing novel synthetic routes for isobutanol. © 2018 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.

  18. Modeling Efficient Serial Visual Search

    DTIC Science & Technology

    2012-08-01

    parafovea size) to explore the parameter space associated with serial search efficiency. Visual search as a paradigm has been studied meticulously for...continues (Over, Hooge , Vlaskamp, & Erkelens, 2007). Over et al. (2007) found that participants initially attended to general properties of the search environ...the efficiency of human serial visual search. There were three parameters that were manipulated in the modeling of the visual search process in this

  19. Recursive Branching Simulated Annealing Algorithm

    NASA Technical Reports Server (NTRS)

    Bolcar, Matthew; Smith, J. Scott; Aronstein, David

    2012-01-01

    This innovation is a variation of a simulated-annealing optimization algorithm that uses a recursive-branching structure to parallelize the search of a parameter space for the globally optimal solution to an objective. The algorithm has been demonstrated to be more effective at searching a parameter space than traditional simulated-annealing methods for a particular problem of interest, and it can readily be applied to a wide variety of optimization problems, including those with a parameter space having both discrete-value parameters (combinatorial) and continuous-variable parameters. It can take the place of a conventional simulated- annealing, Monte-Carlo, or random- walk algorithm. In a conventional simulated-annealing (SA) algorithm, a starting configuration is randomly selected within the parameter space. The algorithm randomly selects another configuration from the parameter space and evaluates the objective function for that configuration. If the objective function value is better than the previous value, the new configuration is adopted as the new point of interest in the parameter space. If the objective function value is worse than the previous value, the new configuration may be adopted, with a probability determined by a temperature parameter, used in analogy to annealing in metals. As the optimization continues, the region of the parameter space from which new configurations can be selected shrinks, and in conjunction with lowering the annealing temperature (and thus lowering the probability for adopting configurations in parameter space with worse objective functions), the algorithm can converge on the globally optimal configuration. The Recursive Branching Simulated Annealing (RBSA) algorithm shares some features with the SA algorithm, notably including the basic principles that a starting configuration is randomly selected from within the parameter space, the algorithm tests other configurations with the goal of finding the globally optimal solution, and the region from which new configurations can be selected shrinks as the search continues. The key difference between these algorithms is that in the SA algorithm, a single path, or trajectory, is taken in parameter space, from the starting point to the globally optimal solution, while in the RBSA algorithm, many trajectories are taken; by exploring multiple regions of the parameter space simultaneously, the algorithm has been shown to converge on the globally optimal solution about an order of magnitude faster than when using conventional algorithms. Novel features of the RBSA algorithm include: 1. More efficient searching of the parameter space due to the branching structure, in which multiple random configurations are generated and multiple promising regions of the parameter space are explored; 2. The implementation of a trust region for each parameter in the parameter space, which provides a natural way of enforcing upper- and lower-bound constraints on the parameters; and 3. The optional use of a constrained gradient- search optimization, performed on the continuous variables around each branch s configuration in parameter space to improve search efficiency by allowing for fast fine-tuning of the continuous variables within the trust region at that configuration point.

  20. A Fast, Minimalist Search Tool for Remote Sensing Data

    NASA Astrophysics Data System (ADS)

    Lynnes, C. S.; Macharrie, P. G.; Elkins, M.; Joshi, T.; Fenichel, L. H.

    2005-12-01

    We present a tool that emphasizes speed and simplicity in searching remotely sensed Earth Science data. The tool, nicknamed "Mirador" (Spanish for a scenic overlook), provides only four freetext search form fields, for Keywords, Location, Data Start and Data Stop. This contrasts with many current Earth Science search tools that offer highly structured interfaces in order to ensure precise, non-zero results. The disadvantages of the structured approach lie in its complexity and resultant learning curve, as well as the time it takes to formulate and execute the search, thus discouraging iterative discovery. On the other hand, the success of the basic Google search interface shows that many users are willing to forgo high search precision if the search process is fast enough to enable rapid iteration. Therefore, we employ several methods to increase the speed of search formulation and execution. Search formulation is expedited by the minimalist search form, with only one required field. Also, a gazetteer enables the use of geographic terms as shorthand for latitude/longitude coordinates. The search execution is accelerated by initially presenting dataset results (returned from a Google Mini appliance) with an estimated number of "hits" for each dataset based on the user's space-time constraints. The more costly file-level search is executed against a PostGres database only when the user "drills down", and then covering only the fraction of the time period needed to return the next page of results. The simplicity of the search form makes the tool easy to learn and use, and the speed of the searches enables an iterative form of data discovery.

  1. Quantum Search in Hilbert Space

    NASA Technical Reports Server (NTRS)

    Zak, Michail

    2003-01-01

    A proposed quantum-computing algorithm would perform a search for an item of information in a database stored in a Hilbert-space memory structure. The algorithm is intended to make it possible to search relatively quickly through a large database under conditions in which available computing resources would otherwise be considered inadequate to perform such a task. The algorithm would apply, more specifically, to a relational database in which information would be stored in a set of N complex orthonormal vectors, each of N dimensions (where N can be exponentially large). Each vector would constitute one row of a unitary matrix, from which one would derive the Hamiltonian operator (and hence the evolutionary operator) of a quantum system. In other words, all the stored information would be mapped onto a unitary operator acting on a quantum state that would represent the item of information to be retrieved. Then one could exploit quantum parallelism: one could pose all search queries simultaneously by performing a quantum measurement on the system. In so doing, one would effectively solve the search problem in one computational step. One could exploit the direct- and inner-product decomposability of the unitary matrix to make the dimensionality of the memory space exponentially large by use of only linear resources. However, inasmuch as the necessary preprocessing (the mapping of the stored information into a Hilbert space) could be exponentially expensive, the proposed algorithm would likely be most beneficial in applications in which the resources available for preprocessing were much greater than those available for searching.

  2. On space-based SETI

    NASA Technical Reports Server (NTRS)

    Stuiver, Willem

    1990-01-01

    Space-based antenna systems for the search of signals from extra-terrestrial intelligence are discussed. Independent studies of the ecliptic solar-sailing transfer problem from the geosynchronous departure orbit to Sun-Earth collinear transterrestrial liberation point were conducted. They were based on a relatively simple mathematical model describing attitude-controlled spacecraft motion in the ecliptic plane as governed by solar and terrestrial gravitational attraction together with the solar radiation pressure. The resulting equations of motion were integrated numerically for a relevant range of values of spacecraft area-to-mass ratio and for an appropriate spacecraft attitude-control law known to lead to Earth escape. Experimentation with varying initial conditions in the departure orbit, and with attitude-control law modification after having achieved Earth escape, established the feasibility of component deployment by means of solar sailing. Details are presented.

  3. Data Mining and Optimization Tools for Developing Engine Parameters Tools

    NASA Technical Reports Server (NTRS)

    Dhawan, Atam P.

    1998-01-01

    This project was awarded for understanding the problem and developing a plan for Data Mining tools for use in designing and implementing an Engine Condition Monitoring System. From the total budget of $5,000, Tricia and I studied the problem domain for developing ail Engine Condition Monitoring system using the sparse and non-standardized datasets to be available through a consortium at NASA Lewis Research Center. We visited NASA three times to discuss additional issues related to dataset which was not made available to us. We discussed and developed a general framework of data mining and optimization tools to extract useful information from sparse and non-standard datasets. These discussions lead to the training of Tricia Erhardt to develop Genetic Algorithm based search programs which were written in C++ and used to demonstrate the capability of GA algorithm in searching an optimal solution in noisy datasets. From the study and discussion with NASA LERC personnel, we then prepared a proposal, which is being submitted to NASA for future work for the development of data mining algorithms for engine conditional monitoring. The proposed set of algorithm uses wavelet processing for creating multi-resolution pyramid of the data for GA based multi-resolution optimal search. Wavelet processing is proposed to create a coarse resolution representation of data providing two advantages in GA based search: 1. We will have less data to begin with to make search sub-spaces. 2. It will have robustness against the noise because at every level of wavelet based decomposition, we will be decomposing the signal into low pass and high pass filters.

  4. An Experience Oriented-Convergence Improved Gravitational Search Algorithm for Minimum Variance Distortionless Response Beamforming Optimum

    PubMed Central

    Darzi, Soodabeh; Tiong, Sieh Kiong; Tariqul Islam, Mohammad; Rezai Soleymanpour, Hassan; Kibria, Salehin

    2016-01-01

    An experience oriented-convergence improved gravitational search algorithm (ECGSA) based on two new modifications, searching through the best experiments and using of a dynamic gravitational damping coefficient (α), is introduced in this paper. ECGSA saves its best fitness function evaluations and uses those as the agents’ positions in searching process. In this way, the optimal found trajectories are retained and the search starts from these trajectories, which allow the algorithm to avoid the local optimums. Also, the agents can move faster in search space to obtain better exploration during the first stage of the searching process and they can converge rapidly to the optimal solution at the final stage of the search process by means of the proposed dynamic gravitational damping coefficient. The performance of ECGSA has been evaluated by applying it to eight standard benchmark functions along with six complicated composite test functions. It is also applied to adaptive beamforming problem as a practical issue to improve the weight vectors computed by minimum variance distortionless response (MVDR) beamforming technique. The results of implementation of the proposed algorithm are compared with some well-known heuristic methods and verified the proposed method in both reaching to optimal solutions and robustness. PMID:27399904

  5. Unexpected series of regular frequency spacing of δ Scuti stars in the non-asymptotic regime. II. Sample-Echelle diagrams and rotation

    DOE PAGES

    Paparo, M.; Benko, J. M.; Hareter, M.; ...

    2016-06-17

    A sequence search method was developed for searching for regular frequency spacing in δ Scuti stars by visual inspection (VI) and algorithmic search. The sample contains 90 δ Scuti stars observed by CoRoT. An example is given to represent the VI. The algorithm (SSA) is described in detail. The data treatment of the CoRoT light curves, the criteria for frequency filtering, and the spacings derived by two methods (i.e., three approaches: VI, SSA, and FT) are given for each target. Echelle diagrams are presented for 77 targets for which at least one sequence of regular spacing was identified. Comparing the spacing and the shifts between pairs of echelle ridges revealed that at least one pair of echelle ridges is shifted to midway between the spacing for 22 stars. The estimated rotational frequencies compared to the shifts revealed rotationally split doublets, triplets, and multiplets not only for single frequencies, but for the complete echelle ridges in 31 δ Scuti stars. Furthermore, using several possible assumptions for the origin of the spacings, we derived the large separation (more » $${\\rm{\\Delta }}\

  6. Unexpected series of regular frequency spacing of δ Scuti stars in the non-asymptotic regime. II. Sample-Echelle diagrams and rotation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paparo, M.; Benko, J. M.; Hareter, M.

    A sequence search method was developed for searching for regular frequency spacing in δ Scuti stars by visual inspection (VI) and algorithmic search. The sample contains 90 δ Scuti stars observed by CoRoT. An example is given to represent the VI. The algorithm (SSA) is described in detail. The data treatment of the CoRoT light curves, the criteria for frequency filtering, and the spacings derived by two methods (i.e., three approaches: VI, SSA, and FT) are given for each target. Echelle diagrams are presented for 77 targets for which at least one sequence of regular spacing was identified. Comparing the spacing and the shifts between pairs of echelle ridges revealed that at least one pair of echelle ridges is shifted to midway between the spacing for 22 stars. The estimated rotational frequencies compared to the shifts revealed rotationally split doublets, triplets, and multiplets not only for single frequencies, but for the complete echelle ridges in 31 δ Scuti stars. Furthermore, using several possible assumptions for the origin of the spacings, we derived the large separation (more » $${\\rm{\\Delta }}\

  7. Adaptive matching of the iota ring linear optics for space charge compensation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Romanov, A.; Bruhwiler, D. L.; Cook, N.

    Many present and future accelerators must operate with high intensity beams when distortions induced by space charge forces are among major limiting factors. Betatron tune depression of above approximately 0.1 per cell leads to significant distortions of linear optics. Many aspects of machine operation depend on proper relations between lattice functions and phase advances, and can be i proved with proper treatment of space charge effects. We implement an adaptive algorithm for linear lattice re matching with full account of space charge in the linear approximation for the case of Fermilab’s IOTA ring. The method is based on a searchmore » for initial second moments that give closed solution and, at the same predefined set of goals for emittances, beta functions, dispersions and phase advances at and between points of interest. Iterative singular value decomposition based technique is used to search for optimum by varying wide array of model parameters« less

  8. THE ROLE OF SEARCHING SERVICES IN AN ACQUISITIONS PROGRAM.

    ERIC Educational Resources Information Center

    LUECK, ANTOINETTE L.; AND OTHERS

    A USER PRESENTS HIS POINT OF VIEW ON LITERATURE SEARCHING THROUGH THE MAJOR SEARCHING SERVICES IN THE OVERALL PROGRAM OF ACQUISITIONS FOR THE ENGINEERING STAFF OF THE AIR FORCE AERO PROPULSION LABORATORY. THESE MAJOR SEARCHING SERVICES INCLUDE THE DEFENSE DOCUMENTATION CENTER (DDC), THE NATIONAL AERONAUTICS AND SPACE ADMINISTRATION (NASA), THE…

  9. The metric on field space, functional renormalization, and metric–torsion quantum gravity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reuter, Martin, E-mail: reuter@thep.physik.uni-mainz.de; Schollmeyer, Gregor M., E-mail: schollmeyer@thep.physik.uni-mainz.de

    Searching for new non-perturbatively renormalizable quantum gravity theories, functional renormalization group (RG) flows are studied on a theory space of action functionals depending on the metric and the torsion tensor, the latter parameterized by three irreducible component fields. A detailed comparison with Quantum Einstein–Cartan Gravity (QECG), Quantum Einstein Gravity (QEG), and “tetrad-only” gravity, all based on different theory spaces, is performed. It is demonstrated that, over a generic theory space, the construction of a functional RG equation (FRGE) for the effective average action requires the specification of a metric on the infinite-dimensional field manifold as an additional input. A modifiedmore » FRGE is obtained if this metric is scale-dependent, as it happens in the metric–torsion system considered.« less

  10. Cardiovascular instrumentation for spaceflight

    NASA Technical Reports Server (NTRS)

    Schappell, R. T.; Polhemus, J. T.; Ganiaris, N. J.

    1976-01-01

    The observation mechanisms dealing with pressure, flow, morphology, temperature, etc. are discussed. The approach taken in the performance of this study was to (1) review ground and space-flight data on cardiovascular function, including earlier related ground-based and space-flight animal studies, Mercury, Gemini, Apollo, Skylab, and recent bed-rest studies, (2) review cardiovascular measurement parameters required to assess individual performance and physiological alternations during space flight, (3) perform an instrumentation survey including a literature search as well as personal contact with the applicable investigators, (4) assess instrumentation applicability with respect to the established criteria, and (5) recommend future research and development activity. It is concluded that, for the most part, the required instrumentation technology is available but that mission-peculiar criteria will require modifications to adapt the applicable instrumentation to a space-flight configuration.

  11. Detection of multiple airborne targets from multisensor data

    NASA Astrophysics Data System (ADS)

    Foltz, Mark A.; Srivastava, Anuj; Miller, Michael I.; Grenander, Ulf

    1995-08-01

    Previously we presented a jump-diffusion based random sampling algorithm for generating conditional mean estimates of scene representations for the tracking and recongition of maneuvering airborne targets. These representations include target positions and orientations along their trajectories and the target type associated with each trajectory. Taking a Bayesian approach, a posterior measure is defined on the parameter space by combining sensor models with a sophisticated prior based on nonlinear airplane dynamics. The jump-diffusion algorithm constructs a Markov process which visits the elements of the parameter space with frequencies proportional to the posterior probability. It consititutes both the infinitesimal, local search via a sample path continuous diffusion transform and the larger, global steps through discrete jump moves. The jump moves involve the addition and deletion of elements from the scene configuration or changes in the target type assoviated with each target trajectory. One such move results in target detection by the addition of a track seed to the inference set. This provides initial track data for the tracking/recognition algorithm to estimate linear graph structures representing tracks using the other jump moves and the diffusion process, as described in our earlier work. Target detection ideally involves a continuous research over a continuum of the observation space. In this work we conclude that for practical implemenations the search space must be discretized with lattice granularity comparable to sensor resolution, and discuss how fast Fourier transforms are utilized for efficient calcuation of sufficient statistics given our array models. Some results are also presented from our implementation on a networked system including a massively parallel machine architecture and a silicon graphics onyx workstation.

  12. Physics and astrophysics from a lunar base; Proceedings of the 1st NASA Workshop, Stanford, CA, May 19, 20, 1989

    NASA Technical Reports Server (NTRS)

    Potter, A. E. (Editor); Wilson, T. L. (Editor)

    1990-01-01

    The present conference on physics and astrophysics from a lunar base encompasses space physics, cosmic ray physics, neutrino physics, experiments in gravitation and general relativity, gravitational radiation physics, cosmic background radiation, particle astrophysics, surface physics, and the physics of gamma rays and X-rays. Specific issues addressed include space-plasma physics research at a lunar base, prospects for neutral particle imaging, the atmosphere as particle detector, medium- and high-energy neutrino physics from a lunar base, muons on the moon, a search for relic supernovae antineutrinos, and the use of clocks in satellites orbiting the moon to test general relativity. Also addressed are large X-ray-detector arrays for physics experiments on the moon, and the measurement of proton decay, arcsec-source locations, halo dark matter and elemental abundances above 10 exp 15 eV at a lunar base.

  13. Stride search: A general algorithm for storm detection in high-resolution climate data

    DOE PAGES

    Bosler, Peter A.; Roesler, Erika L.; Taylor, Mark A.; ...

    2016-04-13

    This study discusses the problem of identifying extreme climate events such as intense storms within large climate data sets. The basic storm detection algorithm is reviewed, which splits the problem into two parts: a spatial search followed by a temporal correlation problem. Two specific implementations of the spatial search algorithm are compared: the commonly used grid point search algorithm is reviewed, and a new algorithm called Stride Search is introduced. The Stride Search algorithm is defined independently of the spatial discretization associated with a particular data set. Results from the two algorithms are compared for the application of tropical cyclonemore » detection, and shown to produce similar results for the same set of storm identification criteria. Differences between the two algorithms arise for some storms due to their different definition of search regions in physical space. The physical space associated with each Stride Search region is constant, regardless of data resolution or latitude, and Stride Search is therefore capable of searching all regions of the globe in the same manner. Stride Search's ability to search high latitudes is demonstrated for the case of polar low detection. Wall clock time required for Stride Search is shown to be smaller than a grid point search of the same data, and the relative speed up associated with Stride Search increases as resolution increases.« less

  14. A procedure of multiple period searching in unequally spaced time-series with the Lomb-Scargle method

    NASA Technical Reports Server (NTRS)

    Van Dongen, H. P.; Olofsen, E.; VanHartevelt, J. H.; Kruyt, E. W.; Dinges, D. F. (Principal Investigator)

    1999-01-01

    Periodogram analysis of unequally spaced time-series, as part of many biological rhythm investigations, is complicated. The mathematical framework is scattered over the literature, and the interpretation of results is often debatable. In this paper, we show that the Lomb-Scargle method is the appropriate tool for periodogram analysis of unequally spaced data. A unique procedure of multiple period searching is derived, facilitating the assessment of the various rhythms that may be present in a time-series. All relevant mathematical and statistical aspects are considered in detail, and much attention is given to the correct interpretation of results. The use of the procedure is illustrated by examples, and problems that may be encountered are discussed. It is argued that, when following the procedure of multiple period searching, we can even benefit from the unequal spacing of a time-series in biological rhythm research.

  15. MISSE in the Materials and Processes Technical Information System (MAPTIS )

    NASA Technical Reports Server (NTRS)

    Burns, DeWitt; Finckenor, Miria; Henrie, Ben

    2013-01-01

    Materials International Space Station Experiment (MISSE) data is now being collected and distributed through the Materials and Processes Technical Information System (MAPTIS) at Marshall Space Flight Center in Huntsville, Alabama. MISSE data has been instrumental in many programs and continues to be an important source of data for the space community. To facilitate great access to the MISSE data the International Space Station (ISS) program office and MAPTIS are working to gather this data into a central location. The MISSE database contains information about materials, samples, and flights along with pictures, pdfs, excel files, word documents, and other files types. Major capabilities of the system are: access control, browsing, searching, reports, and record comparison. The search capabilities will search within any searchable files so even if the desired meta-data has not been associated data can still be retrieved. Other functionality will continue to be added to the MISSE database as the Athena Platform is expanded

  16. PowerPlay: Training an Increasingly General Problem Solver by Continually Searching for the Simplest Still Unsolvable Problem

    PubMed Central

    Schmidhuber, Jürgen

    2013-01-01

    Most of computer science focuses on automatically solving given computational problems. I focus on automatically inventing or discovering problems in a way inspired by the playful behavior of animals and humans, to train a more and more general problem solver from scratch in an unsupervised fashion. Consider the infinite set of all computable descriptions of tasks with possibly computable solutions. Given a general problem-solving architecture, at any given time, the novel algorithmic framework PowerPlay (Schmidhuber, 2011) searches the space of possible pairs of new tasks and modifications of the current problem solver, until it finds a more powerful problem solver that provably solves all previously learned tasks plus the new one, while the unmodified predecessor does not. Newly invented tasks may require to achieve a wow-effect by making previously learned skills more efficient such that they require less time and space. New skills may (partially) re-use previously learned skills. The greedy search of typical PowerPlay variants uses time-optimal program search to order candidate pairs of tasks and solver modifications by their conditional computational (time and space) complexity, given the stored experience so far. The new task and its corresponding task-solving skill are those first found and validated. This biases the search toward pairs that can be described compactly and validated quickly. The computational costs of validating new tasks need not grow with task repertoire size. Standard problem solver architectures of personal computers or neural networks tend to generalize by solving numerous tasks outside the self-invented training set; PowerPlay’s ongoing search for novelty keeps breaking the generalization abilities of its present solver. This is related to Gödel’s sequence of increasingly powerful formal theories based on adding formerly unprovable statements to the axioms without affecting previously provable theorems. The continually increasing repertoire of problem-solving procedures can be exploited by a parallel search for solutions to additional externally posed tasks. PowerPlay may be viewed as a greedy but practical implementation of basic principles of creativity (Schmidhuber, 2006a, 2010). A first experimental analysis can be found in separate papers (Srivastava et al., 2012a,b, 2013). PMID:23761771

  17. Reducing a Knowledge-Base Search Space When Data Are Missing

    NASA Technical Reports Server (NTRS)

    James, Mark

    2007-01-01

    This software addresses the problem of how to efficiently execute a knowledge base in the presence of missing data. Computationally, this is an exponentially expensive operation that without heuristics generates a search space of 1 + 2n possible scenarios, where n is the number of rules in the knowledge base. Even for a knowledge base of the most modest size, say 16 rules, it would produce 65,537 possible scenarios. The purpose of this software is to reduce the complexity of this operation to a more manageable size. The problem that this system solves is to develop an automated approach that can reason in the presence of missing data. This is a meta-reasoning capability that repeatedly calls a diagnostic engine/model to provide prognoses and prognosis tracking. In the big picture, the scenario generator takes as its input the current state of a system, including probabilistic information from Data Forecasting. Using model-based reasoning techniques, it returns an ordered list of fault scenarios that could be generated from the current state, i.e., the plausible future failure modes of the system as it presently stands. The scenario generator models a Potential Fault Scenario (PFS) as a black box, the input of which is a set of states tagged with priorities and the output of which is one or more potential fault scenarios tagged by a confidence factor. The results from the system are used by a model-based diagnostician to predict the future health of the monitored system.

  18. KSC-08pd0912

    NASA Image and Video Library

    2008-04-07

    CAPE CANAVERAL, Fla. -- Blue Angel pilots Lt. Frank Weisser and Lt. Dan McShane arrive at NASA's Kennedy Space Center. Behind them is one of the U.S. Navy F-18 Hornets flown by the Blue Angels. The pilots flew into Kennedy to begin preparations for their involvement in the second annual Space & Air Show at Kennedy Space Center Nov. 8-9. The air show will be only the second time the Blue Angels have performed at Kennedy. Their precision flight team will perform high-speed passes, fast rolls, mirror formations, tight turns and their signature Delta formation showcasing the capabilities of the powerful aircraft. The 2008 Space & Air Show will include aircraft displays and space-related exhibits on the ground and plenty of action in the skies over Kennedy. Returning to the show is the 920th Rescue Wing, an Air Force Reserve Command combat search and rescue unit based at Patrick Air Force Base in Central Florida. Also, more than 20 astronauts and special guests will be on hand to personally meet guests, pose for photos and sign memorabilia. Photo credit: NASA/Kim Shiflett

  19. KSC-08pd0916

    NASA Image and Video Library

    2008-04-07

    CAPE CANAVERAL, Fla. -- Blue Angel pilots Lt. Frank Weisser and Lt. Dan McShane arrive at NASA's Kennedy Space Center. Behind them is one of the U.S. Navy F-18 Hornets flown by the Blue Angels. The pilots flew into Kennedy to begin preparations for their involvement in the second annual Space & Air Show at Kennedy Space Center Nov. 8-9. The air show will be only the second time the Blue Angels have performed at Kennedy. Their precision flight team will perform high-speed passes, fast rolls, mirror formations, tight turns and their signature Delta formation showcasing the capabilities of the powerful aircraft. The 2008 Space & Air Show will include aircraft displays and space-related exhibits on the ground and plenty of action in the skies over Kennedy. Returning to the show is the 920th Rescue Wing, an Air Force Reserve Command combat search and rescue unit based at Patrick Air Force Base in Central Florida. Also, more than 20 astronauts and special guests will be on hand to personally meet guests, pose for photos and sign memorabilia. Photo credit: NASA/Kim Shiflett

  20. KSC-08pd0917

    NASA Image and Video Library

    2008-04-07

    CAPE CANAVERAL, Fla. -- Blue Angel pilots Lt. Frank Weisser and Lt. Dan McShane pose for the media in front of one of the U.S. Navy F-18 Hornets flown by the Blue Angels. The pilots flew into NASA's Kennedy Space Center to begin preparations for their involvement in the second annual Space & Air Show at Kennedy Space Center Nov. 8-9. The air show will be only the second time the Blue Angels have performed at Kennedy. Their precision flight team will perform high-speed passes, fast rolls, mirror formations, tight turns and their signature Delta formation showcasing the capabilities of the powerful aircraft. The 2008 Space & Air Show will include aircraft displays and space-related exhibits on the ground and plenty of action in the skies over Kennedy. Returning to the show is the 920th Rescue Wing, an Air Force Reserve Command combat search and rescue unit based at Patrick Air Force Base in Central Florida. Also, more than 20 astronauts and special guests will be on hand to personally meet guests, pose for photos and sign memorabilia. Photo credit: NASA/Kim Shiflett

  1. KSC-08pd0911

    NASA Image and Video Library

    2008-04-07

    CAPE CANAVERAL, Fla. -- A U.S. Navy F-18 Hornet taxis on the Shuttle Landing Facility runway at NASA's Kennedy Space Center. Aboard are Blue Angel pilots Lt. Frank Weisser and Lt. Dan McShane. They flew into Kennedy to begin preparations for their involvement in the second annual Space & Air Show at Kennedy Space Center Nov. 8-9. The air show will be only the second time the Blue Angels have performed at Kennedy. Their precision flight team will perform high-speed passes, fast rolls, mirror formations, tight turns and their signature Delta formation showcasing the capabilities of the powerful aircraft. The 2008 Space & Air Show will include aircraft displays and space-related exhibits on the ground and plenty of action in the skies over Kennedy. Returning to the show is the 920th Rescue Wing, an Air Force Reserve Command combat search and rescue unit based at Patrick Air Force Base in Central Florida. Also, more than 20 astronauts and special guests will be on hand to personally meet guests, pose for photos and sign memorabilia. Photo credit: NASA/Kim Shiflett

  2. KSC-08pd0910

    NASA Image and Video Library

    2008-04-07

    CAPE CANAVERAL, Fla. -- A U.S. Navy F-18 Hornet lands at the Shuttle Landing Facility at NASA's Kennedy Space Center. Aboard are Blue Angel pilots Lt. Frank Weisser and Lt. Dan McShane. They flew into Kennedy to begin preparations for their involvement in the second annual Space & Air Show at Kennedy Space Center Nov. 8-9. The air show will be only the second time the Blue Angels have performed at Kennedy. Their precision flight team will perform high-speed passes, fast rolls, mirror formations, tight turns and their signature Delta formation showcasing the capabilities of the powerful aircraft. The 2008 Space & Air Show will include aircraft displays and space-related exhibits on the ground and plenty of action in the skies over Kennedy. Returning to the show is the 920th Rescue Wing, an Air Force Reserve Command combat search and rescue unit based at Patrick Air Force Base in Central Florida. Also, more than 20 astronauts and special guests will be on hand to personally meet guests, pose for photos and sign memorabilia. Photo credit: NASA/Kim Shiflett

  3. Alpha Magnetic Spectrometer on the International Space Station

    NASA Astrophysics Data System (ADS)

    Ting, Samuel

    2010-02-01

    The Alpha Magnetic Spectrometer (AMS) is a multi-purpose, large acceptance, precision magnetic spectrometer to be installed on the International Space Station (ISS) via Space Shuttle STS-134, currently scheduled to launch on July 29, 2010. AMS is a US DOE-lead international collaboration involving 16 countries and 60 institutes. AMS will measure gamma rays, charged particles and nuclei to the TeV region. Some of the physics objectives are to search for the origin of dark matter, search for the existence of antimatter, search for the existence of strangelets, and precision study of cosmic rays and gamma rays. The construction of the detector was completed mostly in Europe and Asia. It will be the only large physical science experiment on the ISS. )

  4. Clustering methods for the optimization of atomic cluster structure

    NASA Astrophysics Data System (ADS)

    Bagattini, Francesco; Schoen, Fabio; Tigli, Luca

    2018-04-01

    In this paper, we propose a revised global optimization method and apply it to large scale cluster conformation problems. In the 1990s, the so-called clustering methods were considered among the most efficient general purpose global optimization techniques; however, their usage has quickly declined in recent years, mainly due to the inherent difficulties of clustering approaches in large dimensional spaces. Inspired from the machine learning literature, we redesigned clustering methods in order to deal with molecular structures in a reduced feature space. Our aim is to show that by suitably choosing a good set of geometrical features coupled with a very efficient descent method, an effective optimization tool is obtained which is capable of finding, with a very high success rate, all known putative optima for medium size clusters without any prior information, both for Lennard-Jones and Morse potentials. The main result is that, beyond being a reliable approach, the proposed method, based on the idea of starting a computationally expensive deep local search only when it seems worth doing so, is capable of saving a huge amount of searches with respect to an analogous algorithm which does not employ a clustering phase. In this paper, we are not claiming the superiority of the proposed method compared to specific, refined, state-of-the-art procedures, but rather indicating a quite straightforward way to save local searches by means of a clustering scheme working in a reduced variable space, which might prove useful when included in many modern methods.

  5. SpaceX TESS Liftoff

    NASA Image and Video Library

    2018-04-18

    A SpaceX Falcon 9 rocket soars upward after lifting off from Space Launch Complex 40 at Cape Canaveral Air Force Station in Florida, carrying NASA's Transiting Exoplanet Survey Satellite (TESS). Liftoff was at 6:51 p.m. EDT. TESS will search for planets outside of our solar system. The mission will find exoplanets that periodically block part of the light from their host stars, events called transits. The satellite will survey the nearest and brightest stars for two years to search for transiting exoplanets.

  6. Using and comparing metaheuristic algorithms for optimizing bidding strategy viewpoint of profit maximization of generators

    NASA Astrophysics Data System (ADS)

    Mousavi, Seyed Hosein; Nazemi, Ali; Hafezalkotob, Ashkan

    2015-03-01

    With the formation of the competitive electricity markets in the world, optimization of bidding strategies has become one of the main discussions in studies related to market designing. Market design is challenged by multiple objectives that need to be satisfied. The solution of those multi-objective problems is searched often over the combined strategy space, and thus requires the simultaneous optimization of multiple parameters. The problem is formulated analytically using the Nash equilibrium concept for games composed of large numbers of players having discrete and large strategy spaces. The solution methodology is based on a characterization of Nash equilibrium in terms of minima of a function and relies on a metaheuristic optimization approach to find these minima. This paper presents some metaheuristic algorithms to simulate how generators bid in the spot electricity market viewpoint of their profit maximization according to the other generators' strategies, such as genetic algorithm (GA), simulated annealing (SA) and hybrid simulated annealing genetic algorithm (HSAGA) and compares their results. As both GA and SA are generic search methods, HSAGA is also a generic search method. The model based on the actual data is implemented in a peak hour of Tehran's wholesale spot market in 2012. The results of the simulations show that GA outperforms SA and HSAGA on computing time, number of function evaluation and computing stability, as well as the results of calculated Nash equilibriums by GA are less various and different from each other than the other algorithms.

  7. Using the HHT to Search for Gravitational Waves

    NASA Technical Reports Server (NTRS)

    Camp, Jordan

    2008-01-01

    Gravitational waves are a consequence of Einstein's theory of general relativity applied to the motion of very dense and massive objects such as black holes and neutron stars. Their detection will reveal a wealth of information about these mysterious objects that cannot be obtained with electromagnetic probes. Two projects are underway to attempt the detection of gravitational waves: NASA's Laser Interferometer Space Antenna (LISA), a space based mission being designed to search for waves from supermassive black holes at the centers of galaxies, and the NSF's Laser Interferometer Gravitational Wave Observatory (LIGO), a ground based facility that is now searching for waves from supernovae. pulsars, and the coalescence of black hole and neutron star systems. Because general relativity is an inherently non-linear theory, many of the predicted source waveforms show strong frequency modulation. In addition, the LIGO and LISA detectors are highly sensitive devices that produce a variety of non-linear transient noise features. Thus the unique capabilities of the HHT. the extraction of intrawave modulation and the characterization of non-linear and non-stationary signals, have a natural application to both signal detection and experimental characterization of the detectors. In this talk I will give an overview of the status of the field. including some of the expected sources of gravitational waves, and I will also describe the LISA and LIGO detectors. Then I will describe some applications of the HHT to waveform detection and detector noise characterization.

  8. Adaptive Shape Kernel-Based Mean Shift Tracker in Robot Vision System

    PubMed Central

    2016-01-01

    This paper proposes an adaptive shape kernel-based mean shift tracker using a single static camera for the robot vision system. The question that we address in this paper is how to construct such a kernel shape that is adaptive to the object shape. We perform nonlinear manifold learning technique to obtain the low-dimensional shape space which is trained by training data with the same view as the tracking video. The proposed kernel searches the shape in the low-dimensional shape space obtained by nonlinear manifold learning technique and constructs the adaptive kernel shape in the high-dimensional shape space. It can improve mean shift tracker performance to track object position and object contour and avoid the background clutter. In the experimental part, we take the walking human as example to validate that our method is accurate and robust to track human position and describe human contour. PMID:27379165

  9. Vector boson fusion in the inert doublet model

    NASA Astrophysics Data System (ADS)

    Dutta, Bhaskar; Palacio, Guillermo; Restrepo, Diego; Ruiz-Álvarez, José D.

    2018-03-01

    In this paper we probe the inert Higgs doublet model at the LHC using vector boson fusion (VBF) search strategy. We optimize the selection cuts and investigate the parameter space of the model and we show that the VBF search has a better reach when compared with the monojet searches. We also investigate the Drell-Yan type cuts and show that they can be important for smaller charged Higgs masses. We determine the 3 σ reach for the parameter space using these optimized cuts for a luminosity of 3000 fb-1 .

  10. End-to-End Trade-space Analysis for Designing Constellation Missions

    NASA Astrophysics Data System (ADS)

    LeMoigne, J.; Dabney, P.; Foreman, V.; Grogan, P.; Hache, S.; Holland, M. P.; Hughes, S. P.; Nag, S.; Siddiqi, A.

    2017-12-01

    Multipoint measurement missions can provide a significant advancement in science return and this science interest coupled with many recent technological advances are driving a growing trend in exploring distributed architectures for future NASA missions. Distributed Spacecraft Missions (DSMs) leverage multiple spacecraft to achieve one or more common goals. In particular, a constellation is the most general form of DSM with two or more spacecraft placed into specific orbit(s) for the purpose of serving a common objective (e.g., CYGNSS). Because a DSM architectural trade-space includes both monolithic and distributed design variables, DSM optimization is a large and complex problem with multiple conflicting objectives. Over the last two years, our team has been developing a Trade-space Analysis Tool for Constellations (TAT-C), implemented in common programming languages for pre-Phase A constellation mission analysis. By evaluating alternative mission architectures, TAT-C seeks to minimize cost and maximize performance for pre-defined science goals. This presentation will describe the overall architecture of TAT-C including: a User Interface (UI) at several levels of details and user expertise; Trade-space Search Requests that are created from the Science requirements gathered by the UI and validated by a Knowledge Base; a Knowledge Base to compare the current requests to prior mission concepts to potentially prune the trade-space; a Trade-space Search Iterator which, with inputs from the Knowledge Base, and, in collaboration with the Orbit & Coverage, Reduction & Metrics, and Cost& Risk modules, generates multiple potential architectures and their associated characteristics. TAT-C leverages the use of the Goddard Mission Analysis Tool (GMAT) to compute coverage and ancillary data, modeling orbits to balance accuracy and performance. The current version includes uniform and non-uniform Walker constellations as well as Ad-Hoc and precessing constellations, and its cost model represents an aggregate model consisting of Cost Estimating Relationships (CERs) from widely accepted models. The current GUI automatically generates graphics representing metrics such as average revisit time or coverage as a function of cost. The end-to-end system will be demonstrated as part of the presentation.

  11. End-to-End Trade-Space Analysis for Designing Constellation

    NASA Technical Reports Server (NTRS)

    Le Moigne, Jacqueline; Dabney, Philip; Foreman, Veronica; Grogan, Paul T.; Hache, Sigfried; Holland, Matthew; Hughes, Steven; Nag, Sreeja; Siddiqi, Afreen

    2017-01-01

    Multipoint measurement missions can provide a significant advancement in science return and this science interest coupled with as many recent technological advances are driving a growing trend in exploring distributed architectures for future NASA missions. Distributed Spacecraft Missions (DSMs) leverage multiple spacecraft to achieve one or more common goals. In particular, a constellation is the most general form of DSM with two or more spacecraft placed into specific orbit(s) for the purpose of serving a common objective (e.g., CYGNSS). Because a DSM architectural trade-space includes both monolithic and distributed design variables, DSM optimization is a large and complex problem with multiple conflicting objectives. Over the last two years, our team has been developing a Trade-space Analysis Tool for Constellations (TAT-C), implemented in common programming languages for pre-Phase A constellation mission analysis. By evaluating alternative mission architectures, TAT-C seeks to minimize cost and maximize performance for pre-defined science goals. This presentation will describe the overall architecture of TAT-C including: a User Interface (UI) at several levels of details and user expertise; Trade-space Search Requests that are created from the Science requirements gathered by the UI and validated by a Knowledge Base; a Knowledge Base to compare the current requests to prior mission concepts to potentially prune the trade-space; a Trade-space Search Iterator which, with inputs from the Knowledge Base, and, in collaboration with the Orbit & Coverage, Reduction & Metrics, and Cost& Risk modules, generates multiple potential architectures and their associated characteristics. TAT-C leverages the use of the Goddard Mission Analysis Tool (GMAT) to compute coverage and ancillary data, modeling orbits to balance accuracy and performance. The current version includes uniform and non-uniform Walker constellations as well as Ad-Hoc and precessing constellations, and its cost model represents an aggregate model consisting of Cost Estimating Relationships (CERs) from widely accepted models. The current GUI automatically generates graphics representing metrics such as average revisit time or coverage as a function of cost. The end-to-end system will be demonstrated as part of the presentation.

  12. Performance comparison of some evolutionary algorithms on job shop scheduling problems

    NASA Astrophysics Data System (ADS)

    Mishra, S. K.; Rao, C. S. P.

    2016-09-01

    Job Shop Scheduling as a state space search problem belonging to NP-hard category due to its complexity and combinational explosion of states. Several naturally inspire evolutionary methods have been developed to solve Job Shop Scheduling Problems. In this paper the evolutionary methods namely Particles Swarm Optimization, Artificial Intelligence, Invasive Weed Optimization, Bacterial Foraging Optimization, Music Based Harmony Search Algorithms are applied and find tuned to model and solve Job Shop Scheduling Problems. To compare about 250 Bench Mark instances have been used to evaluate the performance of these algorithms. The capabilities of each these algorithms in solving Job Shop Scheduling Problems are outlined.

  13. The use of x-ray pulsar-based navigation method for interplanetary flight

    NASA Astrophysics Data System (ADS)

    Yang, Bo; Guo, Xingcan; Yang, Yong

    2009-07-01

    As interplanetary missions are increasingly complex, the existing unique mature interplanetary navigation method mainly based on radiometric tracking techniques of Deep Space Network can not meet the rising demands of autonomous real-time navigation. This paper studied the applications for interplanetary flights of a new navigation technology under rapid development-the X-ray pulsar-based navigation for spacecraft (XPNAV), and valued its performance with a computer simulation. The XPNAV is an excellent autonomous real-time navigation method, and can provide comprehensive navigation information, including position, velocity, attitude, attitude rate and time. In the paper the fundamental principles and time transformation of the XPNAV were analyzed, and then the Delta-correction XPNAV blending the vehicles' trajectory dynamics with the pulse time-of-arrival differences at nominal and estimated spacecraft locations within an Unscented Kalman Filter (UKF) was discussed with a background mission of Mars Pathfinder during the heliocentric transferring orbit. The XPNAV has an intractable problem of integer pulse phase cycle ambiguities similar to the GPS carrier phase navigation. This article innovatively proposed the non-ambiguity assumption approach based on an analysis of the search space array method to resolve pulse phase cycle ambiguities between the nominal position and estimated position of the spacecraft. The simulation results show that the search space array method are computationally intensive and require long processing time when the position errors are large, and the non-ambiguity assumption method can solve ambiguity problem quickly and reliably. It is deemed that autonomous real-time integrated navigation system of the XPNAV blending with DSN, celestial navigation, inertial navigation and so on will be the development direction of interplanetary flight navigation system in the future.

  14. ‘Sciencenet’—towards a global search and share engine for all scientific knowledge

    PubMed Central

    Lütjohann, Dominic S.; Shah, Asmi H.; Christen, Michael P.; Richter, Florian; Knese, Karsten; Liebel, Urban

    2011-01-01

    Summary: Modern biological experiments create vast amounts of data which are geographically distributed. These datasets consist of petabytes of raw data and billions of documents. Yet to the best of our knowledge, a search engine technology that searches and cross-links all different data types in life sciences does not exist. We have developed a prototype distributed scientific search engine technology, ‘Sciencenet’, which facilitates rapid searching over this large data space. By ‘bringing the search engine to the data’, we do not require server farms. This platform also allows users to contribute to the search index and publish their large-scale data to support e-Science. Furthermore, a community-driven method guarantees that only scientific content is crawled and presented. Our peer-to-peer approach is sufficiently scalable for the science web without performance or capacity tradeoff. Availability and Implementation: The free to use search portal web page and the downloadable client are accessible at: http://sciencenet.kit.edu. The web portal for index administration is implemented in ASP.NET, the ‘AskMe’ experiment publisher is written in Python 2.7, and the backend ‘YaCy’ search engine is based on Java 1.6. Contact: urban.liebel@kit.edu Supplementary Material: Detailed instructions and descriptions can be found on the project homepage: http://sciencenet.kit.edu. PMID:21493657

  15. Trade-Space Analysis Tool for Constellations (TAT-C)

    NASA Technical Reports Server (NTRS)

    Le Moigne, Jacqueline; Dabney, Philip; de Weck, Olivier; Foreman, Veronica; Grogan, Paul; Holland, Matthew; Hughes, Steven; Nag, Sreeja

    2016-01-01

    Traditionally, space missions have relied on relatively large and monolithic satellites, but in the past few years, under a changing technological and economic environment, including instrument and spacecraft miniaturization, scalable launchers, secondary launches as well as hosted payloads, there is growing interest in implementing future NASA missions as Distributed Spacecraft Missions (DSM). The objective of our project is to provide a framework that facilitates DSM Pre-Phase A investigations and optimizes DSM designs with respect to a-priori Science goals. In this first version of our Trade-space Analysis Tool for Constellations (TAT-C), we are investigating questions such as: How many spacecraft should be included in the constellation? Which design has the best costrisk value? The main goals of TAT-C are to: Handle multiple spacecraft sharing a mission objective, from SmallSats up through flagships, Explore the variables trade space for pre-defined science, cost and risk goals, and pre-defined metrics Optimize cost and performance across multiple instruments and platforms vs. one at a time.This paper describes the overall architecture of TAT-C including: a User Interface (UI) interacting with multiple users - scientists, missions designers or program managers; an Executive Driver gathering requirements from UI, then formulating Trade-space Search Requests for the Trade-space Search Iterator first with inputs from the Knowledge Base, then, in collaboration with the Orbit Coverage, Reduction Metrics, and Cost Risk modules, generating multiple potential architectures and their associated characteristics. TAT-C leverages the use of the Goddard Mission Analysis Tool (GMAT) to compute coverage and ancillary data, streamlining the computations by modeling orbits in a way that balances accuracy and performance.TAT-C current version includes uniform Walker constellations as well as Ad-Hoc constellations, and its cost model represents an aggregate model consisting of Cost Estimating Relationships (CERs) from widely accepted models. The Knowledge Base supports both analysis and exploration, and the current GUI prototype automatically generates graphics representing metrics such as average revisit time or coverage as a function of cost.

  16. Trade-space Analysis for Constellations

    NASA Astrophysics Data System (ADS)

    Le Moigne, J.; Dabney, P.; de Weck, O. L.; Foreman, V.; Grogan, P.; Holland, M. P.; Hughes, S. P.; Nag, S.

    2016-12-01

    Traditionally, space missions have relied on relatively large and monolithic satellites, but in the past few years, under a changing technological and economic environment, including instrument and spacecraft miniaturization, scalable launchers, secondary launches as well as hosted payloads, there is growing interest in implementing future NASA missions as Distributed Spacecraft Missions (DSM). The objective of our project is to provide a framework that facilitates DSM Pre-Phase A investigations and optimizes DSM designs with respect to a-priori Science goals. In this first version of our Trade-space Analysis Tool for Constellations (TAT-C), we are investigating questions such as: "How many spacecraft should be included in the constellation? Which design has the best cost/risk value?" The main goals of TAT-C are to: Handle multiple spacecraft sharing a mission objective, from SmallSats up through flagships, Explore the variables trade space for pre-defined science, cost and risk goals, and pre-defined metrics Optimize cost and performance across multiple instruments and platforms vs. one at a time. This paper describes the overall architecture of TAT-C including: a User Interface (UI) interacting with multiple users - scientists, missions designers or program managers; an Executive Driver gathering requirements from UI, then formulating Trade-space Search Requests for the Trade-space Search Iterator first with inputs from the Knowledge Base, then, in collaboration with the Orbit & Coverage, Reduction & Metrics, and Cost& Risk modules, generating multiple potential architectures and their associated characteristics. TAT-C leverages the use of the Goddard Mission Analysis Tool (GMAT) to compute coverage and ancillary data, streamlining the computations by modeling orbits in a way that balances accuracy and performance. TAT-C current version includes uniform Walker constellations as well as Ad-Hoc constellations, and its cost model represents an aggregate model consisting of Cost Estimating Relationships (CERs) from widely accepted models. The Knowledge Base supports both analysis and exploration, and the current GUI prototype automatically generates graphics representing metrics such as average revisit time or coverage as a function of cost.

  17. Efficient Spatiotemporal Clutter Rejection and Nonlinear Filtering-based Dim Resolved and Unresolved Object Tracking Algorithms

    NASA Astrophysics Data System (ADS)

    Tartakovsky, A.; Tong, M.; Brown, A. P.; Agh, C.

    2013-09-01

    We develop efficient spatiotemporal image processing algorithms for rejection of non-stationary clutter and tracking of multiple dim objects using non-linear track-before-detect methods. For clutter suppression, we include an innovative image alignment (registration) algorithm. The images are assumed to contain elements of the same scene, but taken at different angles, from different locations, and at different times, with substantial clutter non-stationarity. These challenges are typical for space-based and surface-based IR/EO moving sensors, e.g., highly elliptical orbit or low earth orbit scenarios. The algorithm assumes that the images are related via a planar homography, also known as the projective transformation. The parameters are estimated in an iterative manner, at each step adjusting the parameter vector so as to achieve improved alignment of the images. Operating in the parameter space rather than in the coordinate space is a new idea, which makes the algorithm more robust with respect to noise as well as to large inter-frame disturbances, while operating at real-time rates. For dim object tracking, we include new advancements to a particle non-linear filtering-based track-before-detect (TrbD) algorithm. The new TrbD algorithm includes both real-time full image search for resolved objects not yet in track and joint super-resolution and tracking of individual objects in closely spaced object (CSO) clusters. The real-time full image search provides near-optimal detection and tracking of multiple extremely dim, maneuvering objects/clusters. The super-resolution and tracking CSO TrbD algorithm provides efficient near-optimal estimation of the number of unresolved objects in a CSO cluster, as well as the locations, velocities, accelerations, and intensities of the individual objects. We demonstrate that the algorithm is able to accurately estimate the number of CSO objects and their locations when the initial uncertainty on the number of objects is large. We demonstrate performance of the TrbD algorithm both for satellite-based and surface-based EO/IR surveillance scenarios.

  18. SPACE WARPS - I. Crowdsourcing the discovery of gravitational lenses

    NASA Astrophysics Data System (ADS)

    Marshall, Philip J.; Verma, Aprajita; More, Anupreeta; Davis, Christopher P.; More, Surhud; Kapadia, Amit; Parrish, Michael; Snyder, Chris; Wilcox, Julianne; Baeten, Elisabeth; Macmillan, Christine; Cornen, Claude; Baumer, Michael; Simpson, Edwin; Lintott, Chris J.; Miller, David; Paget, Edward; Simpson, Robert; Smith, Arfon M.; Küng, Rafael; Saha, Prasenjit; Collett, Thomas E.

    2016-01-01

    We describe SPACE WARPS, a novel gravitational lens discovery service that yields samples of high purity and completeness through crowdsourced visual inspection. Carefully produced colour composite images are displayed to volunteers via a web-based classification interface, which records their estimates of the positions of candidate lensed features. Images of simulated lenses, as well as real images which lack lenses, are inserted into the image stream at random intervals; this training set is used to give the volunteers instantaneous feedback on their performance, as well as to calibrate a model of the system that provides dynamical updates to the probability that a classified image contains a lens. Low-probability systems are retired from the site periodically, concentrating the sample towards a set of lens candidates. Having divided 160 deg2 of Canada-France-Hawaii Telescope Legacy Survey imaging into some 430 000 overlapping 82 by 82 arcsec tiles and displaying them on the site, we were joined by around 37 000 volunteers who contributed 11 million image classifications over the course of eight months. This stage 1 search reduced the sample to 3381 images containing candidates; these were then refined in stage 2 to yield a sample that we expect to be over 90 per cent complete and 30 per cent pure, based on our analysis of the volunteers performance on training images. We comment on the scalability of the SPACE WARPS system to the wide field survey era, based on our projection that searches of 105 images could be performed by a crowd of 105 volunteers in 6 d.

  19. Take off with NASA's Kepler Mission!: The Search for Other "Earths"

    ERIC Educational Resources Information Center

    Koch, David; DeVore, Edna K.; Gould, Alan; Harman, Pamela

    2009-01-01

    Humans have long wondered about life in the universe. Are we alone? Is Earth unique? What is it that makes our planet a habitable one, and are there others like Earth? NASA's Kepler Mission seeks the answers to these questions. Kepler is a space-based, specially designed 0.95 m aperture telescope. Launching in 2009, Kepler is NASA's first mission…

  20. Searching for Dark Energy with the Whole World's Supernova Dataset |

    Science.gov Websites

    room at the top for dynamical theories. One of the six new distant supernovae included in the Supernova ) with follow-up observations by the Hubble Space Telescope (bottom). Two views of one of the six new refinements compares ground-based infrared observations (in this case by Japan's Subaru Telescope on Mauna Kea

  1. Searching for "A Third Space": A Creative Pathway towards International PhD Students' Academic Acculturation

    ERIC Educational Resources Information Center

    Elliot, Dely Lazarte; Baumfield, Vivienne; Reid, Kate

    2016-01-01

    Undertaking a PhD is a challenging endeavour. Pursuing a doctoral education in a "foreign" context tends to increase the demands of this intellectual venture. The nature of research-based PhD programmes, often characterised by a lack of formal curricula where academic supervision lasts several years, may add another layer of complexity.…

  2. Improved Multispectral Skin Detection and its Application to Search Space Reduction for Dismount Detection Based on Histograms of Oriented Gradients

    DTIC Science & Technology

    2010-03-01

    2-29 2.7.4 Normalized Difference Skin Index (NDSI) . . . . 2-30 2.7.5 Normalized Difference Vegetation Index ( NDVI ) 2-31 2.7.6...C-1 C.2 NDVI Method . . . . . . . . . . . . . . . . . . . . . . . C-4 Bibliography... NDVI ,NDSI) and (NDGRI,NDSI) values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-6 4.3. Joint distributions of ( NDVI ,NDSI) and

  3. Genetic algorithm enhanced by machine learning in dynamic aperture optimization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Yongjun; Cheng, Weixing; Yu, Li Hua

    With the aid of machine learning techniques, the genetic algorithm has been enhanced and applied to the multi-objective optimization problem presented by the dynamic aperture of the National Synchrotron Light Source II (NSLS-II) Storage Ring. During the evolution processes employed by the genetic algorithm, the population is classified into different clusters in the search space. The clusters with top average fitness are given “elite” status. Intervention on the population is implemented by repopulating some potentially competitive candidates based on the experience learned from the accumulated data. These candidates replace randomly selected candidates among the original data pool. The average fitnessmore » of the population is therefore improved while diversity is not lost. Maintaining diversity ensures that the optimization is global rather than local. The quality of the population increases and produces more competitive descendants accelerating the evolution process significantly. When identifying the distribution of optimal candidates, they appear to be located in isolated islands within the search space. Some of these optimal candidates have been experimentally confirmed at the NSLS-II storage ring. Furthermore, the machine learning techniques that exploit the genetic algorithm can also be used in other population-based optimization problems such as particle swarm algorithm.« less

  4. Human versus Robots in the Discovery and Crystallization of Gigantic Polyoxometalates.

    PubMed

    Duros, Vasilios; Grizou, Jonathan; Xuan, Weimin; Hosni, Zied; Long, De-Liang; Miras, Haralampos N; Cronin, Leroy

    2017-08-28

    The discovery of new gigantic molecules formed by self-assembly and crystal growth is challenging as it combines two contingent events; first is the formation of a new molecule, and second its crystallization. Herein, we construct a workflow that can be followed manually or by a robot to probe the envelope of both events and employ it for a new polyoxometalate cluster, Na 6 [Mo 120 Ce 6 O 366 H 12 (H 2 O) 78 ]⋅200 H 2 O (1) which has a trigonal-ring type architecture (yield 4.3 % based on Mo). Its synthesis and crystallization was probed using an active machine-learning algorithm developed by us to explore the crystallization space, the algorithm results were compared with those obtained by human experimenters. The algorithm-based search is able to cover ca. 9 times more crystallization space than a random search and ca. 6 times more than humans and increases the crystallization prediction accuracy to 82.4±0.7 % over 77.1±0.9 % from human experimenters. © 2017 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  5. Genetic algorithm enhanced by machine learning in dynamic aperture optimization

    NASA Astrophysics Data System (ADS)

    Li, Yongjun; Cheng, Weixing; Yu, Li Hua; Rainer, Robert

    2018-05-01

    With the aid of machine learning techniques, the genetic algorithm has been enhanced and applied to the multi-objective optimization problem presented by the dynamic aperture of the National Synchrotron Light Source II (NSLS-II) Storage Ring. During the evolution processes employed by the genetic algorithm, the population is classified into different clusters in the search space. The clusters with top average fitness are given "elite" status. Intervention on the population is implemented by repopulating some potentially competitive candidates based on the experience learned from the accumulated data. These candidates replace randomly selected candidates among the original data pool. The average fitness of the population is therefore improved while diversity is not lost. Maintaining diversity ensures that the optimization is global rather than local. The quality of the population increases and produces more competitive descendants accelerating the evolution process significantly. When identifying the distribution of optimal candidates, they appear to be located in isolated islands within the search space. Some of these optimal candidates have been experimentally confirmed at the NSLS-II storage ring. The machine learning techniques that exploit the genetic algorithm can also be used in other population-based optimization problems such as particle swarm algorithm.

  6. Genetic algorithm enhanced by machine learning in dynamic aperture optimization

    DOE PAGES

    Li, Yongjun; Cheng, Weixing; Yu, Li Hua; ...

    2018-05-29

    With the aid of machine learning techniques, the genetic algorithm has been enhanced and applied to the multi-objective optimization problem presented by the dynamic aperture of the National Synchrotron Light Source II (NSLS-II) Storage Ring. During the evolution processes employed by the genetic algorithm, the population is classified into different clusters in the search space. The clusters with top average fitness are given “elite” status. Intervention on the population is implemented by repopulating some potentially competitive candidates based on the experience learned from the accumulated data. These candidates replace randomly selected candidates among the original data pool. The average fitnessmore » of the population is therefore improved while diversity is not lost. Maintaining diversity ensures that the optimization is global rather than local. The quality of the population increases and produces more competitive descendants accelerating the evolution process significantly. When identifying the distribution of optimal candidates, they appear to be located in isolated islands within the search space. Some of these optimal candidates have been experimentally confirmed at the NSLS-II storage ring. Furthermore, the machine learning techniques that exploit the genetic algorithm can also be used in other population-based optimization problems such as particle swarm algorithm.« less

  7. Space Surveillance Catalog growth during SBIRS low deployment.

    NASA Astrophysics Data System (ADS)

    Hoult, C. P.; Wright, R. P.

    The Space Surveillance Catalog is a database of all Resident Space Objects (RSOs) on Earth orbit. It is expected to grow in the future as more RSOs accumulate on orbit. Potentially still more dramatic growth could follow the deployment of the Space Based Infrared System Low Earth Orbit Component (SBTRS Low). SBIRS Low, currently about to enter development, offers the potential to detect and acquire much smaller debris RSOs than can be seen by the current ground-based Space Surveillance Network (SSN). SBIRS Low will host multicolor infrared/visible sensors on each satellite in a proliferated constellation on low Earth orbit, and if appropriately tasked, these sensors could provide significant space surveillance capability. Catalog growth during SBIRS Low deployment was analyzed using a highly aggregated code that numerically integrates the Markov equations governing the state transitions of RSOs from uncataloged to cataloged, and back again. It was assumed that all newly observed debris RSOs will be detected as by-products of routine Catalog maintenance, not including any post breakup searches, and if sufficient sensor resources are available, be acquired into the Catalog. Debris over the entire low to high altitude regime were considered.

  8. Exploration of complex visual feature spaces for object perception

    PubMed Central

    Leeds, Daniel D.; Pyles, John A.; Tarr, Michael J.

    2014-01-01

    The mid- and high-level visual properties supporting object perception in the ventral visual pathway are poorly understood. In the absence of well-specified theory, many groups have adopted a data-driven approach in which they progressively interrogate neural units to establish each unit's selectivity. Such methods are challenging in that they require search through a wide space of feature models and stimuli using a limited number of samples. To more rapidly identify higher-level features underlying human cortical object perception, we implemented a novel functional magnetic resonance imaging method in which visual stimuli are selected in real-time based on BOLD responses to recently shown stimuli. This work was inspired by earlier primate physiology work, in which neural selectivity for mid-level features in IT was characterized using a simple parametric approach (Hung et al., 2012). To extend such work to human neuroimaging, we used natural and synthetic object stimuli embedded in feature spaces constructed on the basis of the complex visual properties of the objects themselves. During fMRI scanning, we employed a real-time search method to control continuous stimulus selection within each image space. This search was designed to maximize neural responses across a pre-determined 1 cm3 brain region within ventral cortex. To assess the value of this method for understanding object encoding, we examined both the behavior of the method itself and the complex visual properties the method identified as reliably activating selected brain regions. We observed: (1) Regions selective for both holistic and component object features and for a variety of surface properties; (2) Object stimulus pairs near one another in feature space that produce responses at the opposite extremes of the measured activity range. Together, these results suggest that real-time fMRI methods may yield more widely informative measures of selectivity within the broad classes of visual features associated with cortical object representation. PMID:25309408

  9. Automatic relative RPC image model bias compensation through hierarchical image matching for improving DEM quality

    NASA Astrophysics Data System (ADS)

    Noh, Myoung-Jong; Howat, Ian M.

    2018-02-01

    The quality and efficiency of automated Digital Elevation Model (DEM) extraction from stereoscopic satellite imagery is critically dependent on the accuracy of the sensor model used for co-locating pixels between stereo-pair images. In the absence of ground control or manual tie point selection, errors in the sensor models must be compensated with increased matching search-spaces, increasing both the computation time and the likelihood of spurious matches. Here we present an algorithm for automatically determining and compensating the relative bias in Rational Polynomial Coefficients (RPCs) between stereo-pairs utilizing hierarchical, sub-pixel image matching in object space. We demonstrate the algorithm using a suite of image stereo-pairs from multiple satellites over a range stereo-photogrammetrically challenging polar terrains. Besides providing a validation of the effectiveness of the algorithm for improving DEM quality, experiments with prescribed sensor model errors yield insight into the dependence of DEM characteristics and quality on relative sensor model bias. This algorithm is included in the Surface Extraction through TIN-based Search-space Minimization (SETSM) DEM extraction software package, which is the primary software used for the U.S. National Science Foundation ArcticDEM and Reference Elevation Model of Antarctica (REMA) products.

  10. New upper limit on strange quark matter abundance in cosmic rays with the PAMELA space experiment.

    PubMed

    Adriani, O; Barbarino, G C; Bazilevskaya, G A; Bellotti, R; Boezio, M; Bogomolov, E A; Bongi, M; Bonvicini, V; Bottai, S; Bruno, A; Cafagna, F; Campana, D; Carlson, P; Casolino, M; Castellini, G; De Donato, C; De Santis, C; De Simone, N; Di Felice, V; Formato, V; Galper, A M; Karelin, A V; Koldashov, S V; Koldobskiy, S; Krutkov, S Y; Kvashnin, A N; Leonov, A; Malakhov, V; Marcelli, L; Martucci, M; Mayorov, A G; Menn, W; Mergè, M; Mikhailov, V V; Mocchiutti, E; Monaco, A; Mori, N; Munini, R; Osteria, G; Palma, F; Panico, B; Papini, P; Pearce, M; Picozza, P; Ricci, M; Ricciarini, S B; Sarkar, R; Scotti, V; Simon, M; Sparvoli, R; Spillantini, P; Stozhkov, Y I; Vacchi, A; Vannuccini, E; Vasilyev, G; Voronov, S A; Yurkin, Y T; Zampa, G; Zampa, N

    2015-09-11

    In this work we present results of a direct search for strange quark matter (SQM) in cosmic rays with the PAMELA space spectrometer. If this state of matter exists it may be present in cosmic rays as particles, called strangelets, having a high density and an anomalously high mass-to-charge (A/Z) ratio. A direct search in space is complementary to those from ground-based spectrometers. Furthermore, it has the advantage of being potentially capable of directly identifying these particles, without any assumption on their interaction model with Earth's atmosphere and the long-term stability in terrestrial and lunar rocks. In the rigidity range from 1.0 to ∼1.0×10^{3}  GV, no such particles were found in the data collected by PAMELA between 2006 and 2009. An upper limit on the strangelet flux in cosmic rays was therefore set for particles with charge 1≤Z≤8 and mass 4≤A≤1.2×10^{5}. This limit as a function of mass and as a function of magnetic rigidity allows us to constrain models of SQM production and propagation in the Galaxy.

  11. Development of a Google-based search engine for data mining radiology reports.

    PubMed

    Erinjeri, Joseph P; Picus, Daniel; Prior, Fred W; Rubin, David A; Koppel, Paul

    2009-08-01

    The aim of this study is to develop a secure, Google-based data-mining tool for radiology reports using free and open source technologies and to explore its use within an academic radiology department. A Health Insurance Portability and Accountability Act (HIPAA)-compliant data repository, search engine and user interface were created to facilitate treatment, operations, and reviews preparatory to research. The Institutional Review Board waived review of the project, and informed consent was not required. Comprising 7.9 GB of disk space, 2.9 million text reports were downloaded from our radiology information system to a fileserver. Extensible markup language (XML) representations of the reports were indexed using Google Desktop Enterprise search engine software. A hypertext markup language (HTML) form allowed users to submit queries to Google Desktop, and Google's XML response was interpreted by a practical extraction and report language (PERL) script, presenting ranked results in a web browser window. The query, reason for search, results, and documents visited were logged to maintain HIPAA compliance. Indexing averaged approximately 25,000 reports per hour. Keyword search of a common term like "pneumothorax" yielded the first ten most relevant results of 705,550 total results in 1.36 s. Keyword search of a rare term like "hemangioendothelioma" yielded the first ten most relevant results of 167 total results in 0.23 s; retrieval of all 167 results took 0.26 s. Data mining tools for radiology reports will improve the productivity of academic radiologists in clinical, educational, research, and administrative tasks. By leveraging existing knowledge of Google's interface, radiologists can quickly perform useful searches.

  12. Universal approximators for multi-objective direct policy search in water reservoir management problems: a comparative analysis

    NASA Astrophysics Data System (ADS)

    Giuliani, Matteo; Mason, Emanuele; Castelletti, Andrea; Pianosi, Francesca

    2014-05-01

    The optimal operation of water resources systems is a wide and challenging problem due to non-linearities in the model and the objectives, high dimensional state-control space, and strong uncertainties in the hydroclimatic regimes. The application of classical optimization techniques (e.g., SDP, Q-learning, gradient descent-based algorithms) is strongly limited by the dimensionality of the system and by the presence of multiple, conflicting objectives. This study presents a novel approach which combines Direct Policy Search (DPS) and Multi-Objective Evolutionary Algorithms (MOEAs) to solve high-dimensional state and control space problems involving multiple objectives. DPS, also known as parameterization-simulation-optimization in the water resources literature, is a simulation-based approach where the reservoir operating policy is first parameterized within a given family of functions and, then, the parameters optimized with respect to the objectives of the management problem. The selection of a suitable class of functions to which the operating policy belong to is a key step, as it might restrict the search for the optimal policy to a subspace of the decision space that does not include the optimal solution. In the water reservoir literature, a number of classes have been proposed. However, many of these rules are based largely on empirical or experimental successes and they were designed mostly via simulation and for single-purpose reservoirs. In a multi-objective context similar rules can not easily inferred from the experience and the use of universal function approximators is generally preferred. In this work, we comparatively analyze two among the most common universal approximators: artificial neural networks (ANN) and radial basis functions (RBF) under different problem settings to estimate their scalability and flexibility in dealing with more and more complex problems. The multi-purpose HoaBinh water reservoir in Vietnam, accounting for hydropower production and flood control, is used as a case study. Preliminary results show that the RBF policy parametrization is more effective than the ANN one. In particular, the approximated Pareto front obtained with RBF control policies successfully explores the full tradeoff space between the two conflicting objectives, while most of the ANN solutions results to be Pareto-dominated by the RBF ones.

  13. Constrained Burn Optimization for the International Space Station

    NASA Technical Reports Server (NTRS)

    Brown, Aaron J.; Jones, Brandon A.

    2017-01-01

    In long-term trajectory planning for the International Space Station (ISS), translational burns are currently targeted sequentially to meet the immediate trajectory constraints, rather than simultaneously to meet all constraints, do not employ gradient-based search techniques, and are not optimized for a minimum total deltav (v) solution. An analytic formulation of the constraint gradients is developed and used in an optimization solver to overcome these obstacles. Two trajectory examples are explored, highlighting the advantage of the proposed method over the current approach, as well as the potential v and propellant savings in the event of propellant shortages.

  14. Heuristics in Problem Solving: The Role of Direction in Controlling Search Space

    ERIC Educational Resources Information Center

    Chu, Yun; Li, Zheng; Su, Yong; Pizlo, Zygmunt

    2010-01-01

    Isomorphs of a puzzle called m+m resulted in faster solution times and an easily reproduced solution path in a labeled version of the problem compared to a more difficult binary version. We conjecture that performance is related to a type of heuristic called direction that not only constrains search space in the labeled version, but also…

  15. Dynamic Harmony Search with Polynomial Mutation Algorithm for Valve-Point Economic Load Dispatch

    PubMed Central

    Karthikeyan, M.; Sree Ranga Raja, T.

    2015-01-01

    Economic load dispatch (ELD) problem is an important issue in the operation and control of modern control system. The ELD problem is complex and nonlinear with equality and inequality constraints which makes it hard to be efficiently solved. This paper presents a new modification of harmony search (HS) algorithm named as dynamic harmony search with polynomial mutation (DHSPM) algorithm to solve ORPD problem. In DHSPM algorithm the key parameters of HS algorithm like harmony memory considering rate (HMCR) and pitch adjusting rate (PAR) are changed dynamically and there is no need to predefine these parameters. Additionally polynomial mutation is inserted in the updating step of HS algorithm to favor exploration and exploitation of the search space. The DHSPM algorithm is tested with three power system cases consisting of 3, 13, and 40 thermal units. The computational results show that the DHSPM algorithm is more effective in finding better solutions than other computational intelligence based methods. PMID:26491710

  16. Dynamic Harmony Search with Polynomial Mutation Algorithm for Valve-Point Economic Load Dispatch.

    PubMed

    Karthikeyan, M; Raja, T Sree Ranga

    2015-01-01

    Economic load dispatch (ELD) problem is an important issue in the operation and control of modern control system. The ELD problem is complex and nonlinear with equality and inequality constraints which makes it hard to be efficiently solved. This paper presents a new modification of harmony search (HS) algorithm named as dynamic harmony search with polynomial mutation (DHSPM) algorithm to solve ORPD problem. In DHSPM algorithm the key parameters of HS algorithm like harmony memory considering rate (HMCR) and pitch adjusting rate (PAR) are changed dynamically and there is no need to predefine these parameters. Additionally polynomial mutation is inserted in the updating step of HS algorithm to favor exploration and exploitation of the search space. The DHSPM algorithm is tested with three power system cases consisting of 3, 13, and 40 thermal units. The computational results show that the DHSPM algorithm is more effective in finding better solutions than other computational intelligence based methods.

  17. On computing the global time-optimal motions of robotic manipulators in the presence of obstacles

    NASA Technical Reports Server (NTRS)

    Shiller, Zvi; Dubowsky, Steven

    1991-01-01

    A method for computing the time-optimal motions of robotic manipulators is presented that considers the nonlinear manipulator dynamics, actuator constraints, joint limits, and obstacles. The optimization problem is reduced to a search for the time-optimal path in the n-dimensional position space. A small set of near-optimal paths is first efficiently selected from a grid, using a branch and bound search and a series of lower bound estimates on the traveling time along a given path. These paths are further optimized with a local path optimization to yield the global optimal solution. Obstacles are considered by eliminating the collision points from the tessellated space and by adding a penalty function to the motion time in the local optimization. The computational efficiency of the method stems from the reduced dimensionality of the searched spaced and from combining the grid search with a local optimization. The method is demonstrated in several examples for two- and six-degree-of-freedom manipulators with obstacles.

  18. Searching for and characterising extrasolar Earth-like planets and moons

    NASA Astrophysics Data System (ADS)

    Schneider, Jean

    2002-10-01

    The physical bases of the detection and characterisation of extrasolar Earth-like planets and moons in the reflected light and thermal emission regimes are reviewed. They both have their advantages and disadvantages, including artefacts, in the determination of planet physical parameters (mass, size, albedo, surface and atmospheric conditions etc.). After a short panorama of detection methods and the first findings, new perspectives for these different aspects are also presented. Finally brief account of the ground based programmes and space-based projects and their potentialities for Earth-like planets is made and discussed.

  19. Mobile medical visual information retrieval.

    PubMed

    Depeursinge, Adrien; Duc, Samuel; Eggel, Ivan; Müller, Henning

    2012-01-01

    In this paper, we propose mobile access to peer-reviewed medical information based on textual search and content-based visual image retrieval. Web-based interfaces designed for limited screen space were developed to query via web services a medical information retrieval engine optimizing the amount of data to be transferred in wireless form. Visual and textual retrieval engines with state-of-the-art performance were integrated. Results obtained show a good usability of the software. Future use in clinical environments has the potential of increasing quality of patient care through bedside access to the medical literature in context.

  20. Searching through synaesthetic colors.

    PubMed

    Laeng, Bruno

    2009-10-01

    Synaesthesia can be characterized by illusory colors being elicited automatically when one reads an alphanumeric symbol. These colors can affect attention; synaesthetes can show advantages in visual search of achromatic symbols that normally cause slow searches. However, some studies have failed to find these advantages, challenging the conclusion that synaesthetic colors influence attention in a manner similar to the influence of perceptual colors. In the present study, we investigated 2 synaesthetes who reported colors localized in space over alphanumeric symbols' shapes. The Euclidian distance in CIE xyY color space between two synaesthetic colors was computed for each specific visual search, so that the relationship between color distance (CD) and efficiency of search could be explored with simple regression analyses. Target-to-distractors color salience systematically predicted the speed of search, but the CD between a target or distractors and the physically presented achromatic color did not. When the synaesthetic colors of a target and distractors were nearly complementary, searches resembled popout performance with real colors. Control participants who performed searches for the same symbols (which were colored according to the synaesthetic colors) showed search functions very similar to those shown by the synaesthetes for the physically achromatic symbols.

Top