NASA Technical Reports Server (NTRS)
Hooker, Stanford B. (Editor); Firestone, Elaine R. (Editor); Mcclain, Charles R.; Comiso, Josefino C.; Fraser, Robert S.; Firestone, James K.; Schieber, Brian D.; Yeh, Eueng-Nan; Arrigo, Kevin R.; Sullivan, Cornelius W.
1994-01-01
Although the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) Calibration and Validation Program relies on the scientific community for the collection of bio-optical and atmospheric correction data as well as for algorithm development, it does have the responsibility for evaluating and comparing the algorithms and for ensuring that the algorithms are properly implemented within the SeaWiFS Data Processing System. This report consists of a series of sensitivity and algorithm (bio-optical, atmospheric correction, and quality control) studies based on Coastal Zone Color Scanner (CZCS) and historical ancillary data undertaken to assist in the development of SeaWiFS specific applications needed for the proper execution of that responsibility. The topics presented are as follows: (1) CZCS bio-optical algorithm comparison, (2) SeaWiFS ozone data analysis study, (3) SeaWiFS pressure and oxygen absorption study, (4) pixel-by-pixel pressure and ozone correction study for ocean color imagery, (5) CZCS overlapping scenes study, (6) a comparison of CZCS and in situ pigment concentrations in the Southern Ocean, (7) the generation of ancillary data climatologies, (8) CZCS sensor ringing mask comparison, and (9) sun glint flag sensitivity study.
NASA Technical Reports Server (NTRS)
Hooker, Stanford B. (Editor); Mcclain, Charles R.; Firestone, James K.; Westphal, Todd L.; Yeh, Eueng-Nan; Ge, Yuntao; Firestone, Elaine R.
1994-01-01
This document provides an overview of the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) Bio-Optical Archive and Storage System (SeaBASS), which will serve as a repository for numerous data sets of interest to the SeaWiFS Science Team and other approved investigators in the oceanographic community. The data collected will be those data sets suitable for the development and evaluation of bio-optical algorithms which include results from SeaWiFS Intercalibration Round-Robin Experiments (SIRREXs), prelaunch characterization of the SeaWiFS instrument by its manufacturer -- Hughes/Santa Barbara Research Center (SBRC), Marine Optical Characterization Experiment (MOCE) cruises, Marine Optical Buoy (MOBY) deployments and refurbishments, and field studies of other scientists outside of NASA. The primary goal of the data system is to provide a simple mechanism for querying the available archive and requesting specific items, while assuring that the data is made available only to authorized users. The design, construction, and maintenance of SeaBASS is the responsibility of the SeaWiFS Calibration and Validation Team (CVT). This report is concerned with documenting the execution of this task by the CVT and consists of a series of chapters detailing the various data sets involved. The topics presented are as follows: 1) overview of the SeaBASS file architecture, 2) the bio-optical data system, 3) the historical pigment database, 4) the SIRREX database, and 5) the SBRC database.
NASA Technical Reports Server (NTRS)
Cota, Glenn F.
2001-01-01
The overall goal of this effort is to acquire a large bio-optical database, encompassing most environmental variability in the Arctic, to develop algorithms for phytoplankton biomass and production and other optically active constituents. A large suite of bio-optical and biogeochemical observations have been collected in a variety of high latitude ecosystems at different seasons. The Ocean Research Consortium of the Arctic (ORCA) is a collaborative effort between G.F. Cota of Old Dominion University (ODU), W.G. Harrison and T. Platt of the Bedford Institute of Oceanography (BIO), S. Sathyendranath of Dalhousie University and S. Saitoh of Hokkaido University. ORCA has now conducted 12 cruises and collected over 500 in-water optical profiles plus a variety of ancillary data. Observational suites typically include apparent optical properties (AOPs), inherent optical property (IOPs), and a variety of ancillary observations including sun photometry, biogeochemical profiles, and productivity measurements. All quality-assured data have been submitted to NASA's SeaWIFS Bio-Optical Archive and Storage System (SeaBASS) data archive. Our algorithm development efforts address most of the potential bio-optical data products for the Sea-Viewing Wide Field-of-view Sensor (SeaWiFS), Moderate Resolution Imaging Spectroradiometer (MODIS), and GLI, and provides validation for a specific areas of concern, i.e., high latitudes and coastal waters.
SeaWiFS technical report series. Volume 5: Ocean optics protocols for SeaWiFS validation
NASA Technical Reports Server (NTRS)
Mueller, James L.; Austin, Roswell W.; Hooker, Stanford B. (Editor); Firestone, Elaine R. (Editor)
1992-01-01
Protocols are presented for measuring optical properties, and other environmental variables, to validate the radiometric performance of the Sea-viewing Wide Field-of-view Sensor (SeaWiFS), and to develop and validate bio-optical algorithms for use with SeaWiFS data. The protocols are intended to establish foundations for a measurement strategy to verify the challenging SeaWiFS accuracy goals of 5 percent in water-leaving radiances and 35 percent in chlorophyll alpha concentration. The protocols first specify the variables which must be measured, and briefly review rationale. Subsequent chapters cover detailed protocols for instrument performance specifications, characterizing and calibration instruments, methods of making measurements in the field, and methods of data analysis. These protocols were developed at a workshop sponsored by the SeaWiFS Project Office (SPO) and held at the Naval Postgraduate School in Monterey, California (9-12 April, 1991). This report is the proceedings of that workshop, as interpreted and expanded by the authors and reviewed by workshop participants and other members of the bio-optical research community. The protocols are a first prescription to approach unprecedented measurement accuracies implied by the SeaWiFS goals, and research and development are needed to improve the state-of-the-art in specific areas. The protocols should be periodically revised to reflect technical advances during the SeaWiFS Project cycle.
NASA Technical Reports Server (NTRS)
Stumpf, Richard P.; Arnone, Robert A.; Gould, Richard W., Jr.; Ransibrahmanakul, Varis; Tester, Patricia A.
2003-01-01
SeaWiFS has the ability to enhance our understanding of many oceanographic processes. However, its utility in the coastal zone has been limited by valid bio-optical algorithms and by the determination of accurate water reflectances, particularly in the blue bands (412-490 nm), which have a significant impact on the effectiveness of all bio-optical algorithms. We have made advances in three areas: algorithm development (Table 16.1), field data collection, and data applications.
NASA Technical Reports Server (NTRS)
Muller-Karger, Frank; Hu, Chuanmin; Akl, John P.; Varela, Ramon
2001-01-01
Between 1997 and 2000, this Sensor Intercomparison and Merger for Biological and Interdisciplinary Oceanic Studies (SIMBIOS) investigation collected bio-optical measurements in the Southeastern Caribbean Sea and the tropical western Atlantic to help understand the color of coastal and continental shelf waters. Specifically, bio-optical data were collected to complement an oceanographic time series maintained within the Cariaco Basin, a site affected by seasonal coastal upwelling. Bio-optical data were also collected within the plume of the Orinoco River during seasonal extremes in discharge. This program focused on providing data to the Sea-Viewing Wide Field-of-view Sensor (SeaWiFS) and SIMBIOS Projects for validating SeaWiFS products. The data are unique in that they provide a substantial number of observations on repeated seasonal cycles for the SeaWIFS Bio-Optical Archive and Storage System (SeaBASS) bio-optical database. An important aspect of this SIMBIOS investigation was a focus on proper interpretation of ocean color remote sensing data from coastal and continental shelf environments. With this goal in mind, ocean color satellite data from a variety and locations and from different satellite sensors were examined to understand spatial and temporal variability in pigment concentrations, and also to conduct an in-depth study of current atmospheric correction and bio-optical algorithms.
SeaWiFS Technical Report Series. Volume 29; The SeaWiFS CZCS-Type Pigment Algorithm
NASA Technical Reports Server (NTRS)
Hooker, Stanford B. (Editor); Firestone, Elaine R. (Editor); Aiken, James; Moore, Gerald F.; Trees, Charles C.; Clark, Dennis K.
1995-01-01
The Sea-viewing Wide Field-of-view Sensor (SeaWiFS) mission will provide operational ocean color that will be superior to the previous Coastal Zone Color Sensor (CZCS) proof-of-concept mission. An algorithm is needed that exploits the full functionality of SeaWiFS whilst remaining compatible in concept with algorithms used for the CZCS. This document describes the theoretical rationale of radiance band-ratio methods for determining chlorophyll-a and other important biogeochemical parameters, and their implementation for the SeaWIFS mission. Pigment interrelationships are examined to explain the success of the CZCS algorithms. In the context where chlorophyll-a absorbs only weakly at 520 nm, the success of the 520 nm to 550 nm CZCS band ratio needs to be explained. This is explained by showing that in pigment data from a range of oceanic provinces chlorophyll-a (absorbing at less than 490 nm), carotenoids (absorbing at greater than 460 nm), and total pigment are highly correlated. Correlations within pigment groups particularly photoprotectant and photosynthetic carotenoids are less robust. The sources of variability in optical data are examined using the NIMBUS Experiment Team (NET) bio-optical data set and bio-optical model. In both the model and NET data, the majority of the variance in the optical data is attributed to variability in pigment (chlorophyll-a), and total particulates, with less than 5% of the variability resulting from pigment assemblage. The relationships between band ratios and chlorophyll is examined analytically, and a new formulation based on a dual hyperbolic model is suggested which gives a better calibration curve than the conventional log-log linear regression fit. The new calibration curve shows the 490:555 ratio is the best single-band ratio and is the recommended CZCS-type pigment algorithm. Using both the model and NET data, a number of multiband algorithms are developed; the best of which is an algorithm based on the 443:555 and 490:555 ratios. From model data, the form of potential algorithms for other products, such as total particulates and dissolved organic matter (DOM), are suggested.
SeaWiFS Technical Report Series. Volume 29: SeaWiFS CZCS-type pigment algorithm
NASA Technical Reports Server (NTRS)
Hooker, Stanford B. (Editor); Firestone, Elaine R. (Editor); Aiken, James; Moore, Gerald F.; Trees, Charles C.; Clark, Dennis K.
1995-01-01
The Sea-viewing Wide Field-of-view Sensor (SeaWiFS) mission will provide operational ocean color that will be superior to the previous Coastal Zone Color Sensor (CZCS) proof-of-concept mission. an algorithm is needed that exploits the full functionality of SeaWiFS whilst remaining compatible in concept with algorithms used for the CZCS. This document describes the theoretical rationale of radiance band-radio methods for determining chlorophyll alpha and other important biogeochemical parameters, and their implementation for the SeaWiFS mission. Pigment interrelationships are examined to explain the success of the CZCS algorithms. In the context where chlorophyll alpha absorbs only weakly at 520 nm, the success of the 520 nm to 550 nm CZCS band ratio needs to be explained. This is explained by showing that in pigment data from a range of oceanic provinces chlorophyll alpha (absorbing at less than 490 nm), carotenoids (absorbing at greater than 460 nm), and total pigment are highly correlated. Correlations within pigment groups particularly photoprotectant and photosynthetic carotenoids are less robust. The sources of variability in optical data re examined using the NIMBUS Experiment Team (NET) bio-optical data set and bio-optical model. In both the model and NET data, the majority of the variance in the optical data is attributed to variability in pigment (chlorophyll alpha, and total particulates, with less than 5% of the variability resulting from pigment assemblage. The relationships between band ratios and chlorophyll is examined analytically, and a new formulation based on a dual hyperbolic model is suggested which gives a better calibration curve than the conventional log-log linear regression fit. The new calibration curve shows that 490:555 ratio is the best single-band ratio and is the recommended CZCS-type pigment algorithm. Using both the model and NET data, a number of multiband algorithms are developed; the best of which is an algorithm based on the 443:555 and 490:555 ratios. From model data, the form of potential algorithms for other products, such as total particulates and dissolved organic matter (DOM), are suggested.
NASA Technical Reports Server (NTRS)
Brow, Chirstopher; Subramaniam, Ajit; Culver, Mary; Brock, John C.
2000-01-01
Monitoring the health of U.S. coastal waters is an important goal of the National Oceanic and Atmospheric Administration (NOAA). Satellite sensors are capable of providing daily synoptic data of large expanses of the U.S. coast. Ocean color sensor, in particular, can be used to monitor the water quality of coastal waters on an operational basis. To appraise the validity of satellite-derived measurements, such as chlorophyll concentration, the bio-optical algorithms used to derive them must be evaluated in coastal environments. Towards this purpose, over 21 cruises in diverse U.S. coastal waters have been conducted. Of these 21 cruises, 12 have been performed in conjunction with and under the auspices of the NASA/SIMBIOS Project. The primary goal of these cruises has been to obtain in-situ measurements of downwelling irradiance, upwelling radiance, and chlorophyll concentrations in order to evaluate bio-optical algorithms that estimate chlorophyll concentration. In this Technical Memorandum, we evaluate the ability of five bio-optical algorithms, including the current SeaWiFS algorithm, to estimate chlorophyll concentration in surface waters of the South Atlantic Bight (SAB). The SAB consists of a variety of environments including coastal and continental shelf regimes, Gulf Stream waters, and the Sargasso Sea. The biological and optical characteristics of the region is complicated by temporal and spatial variability in phytoplankton composition, primary productivity, and the concentrations of colored dissolved organic matter (CDOM) and suspended sediment. As such, the SAB is an ideal location to test the robustness of algorithms for coastal use.
NASA Technical Reports Server (NTRS)
Hooker, Stanford B. (Editor); Firestone, Elaine R. (Editor); Acker, James G. (Editor); Mueller, James L.; Austin, Roswell W.
1995-01-01
This report presents protocols for measuring optical properties, and other environmental variables, to validate the radiometric performance of the Sea-viewing Wide Field-of-view Sensor (SeaWiFS), and to develop and validate bio-optical algorithms for use with SeaWiFS data. The protocols are intended to establish foundations for a measurement strategy to verify the challenging SeaWiFS uncertainty goals of 5 percent in water-leaving radiances and 35 percent in chlorophyll alpha concentration. The protocols first specify the variables which must be measured, and briefly review the rationale for measuring each variable. Subsequent chapters cover detailed protocols for instrument performance specifications, characterizing and calibrating instruments, methods of making measurements in the field, and methods of data analysis. These protocols were developed at a workshop sponsored by the SeaWiFS Project Office (SPO) and held at the Naval Postgraduate School in Monterey, California (9-12 April 1991). This report began as the proceedings of the workshop, as interpreted and expanded by the authors and reviewed by workshop participants and other members of the bio-optical research community. The protocols are an evolving prescription to allow the research community to approach the unprecedented measurement uncertainties implied by the SeaWiFS goals; research and development are needed to improve the state-of-the-art in specific areas. These protocols should be periodically revised to reflect technical advances during the SeaWiFS Project cycle. The present edition (Revision 1) incorporates new protocols in several areas, including expanded protocol descriptions for Case-2 waters and other improvements, as contributed by several members of the SeaWiFS Science Team.
Bio-Optical Measurement and Modeling of the California Current and Polar Oceans. Chapter 13
NASA Technical Reports Server (NTRS)
Mitchell, B. Greg
2001-01-01
This Sensor Intercomparison and Merger for Biological and Interdisciplinary Oceanic Studies (SIMBIOS) project contract supports in situ ocean optical observations in the California Current, Southern Ocean, Indian Ocean as well as merger of other in situ data sets we have collected on various global cruises supported by separate grants or contracts. The principal goals of our research are to validate standard or experimental products through detailed bio-optical and biogeochemical measurements, and to combine ocean optical observations with advanced radiative transfer modeling to contribute to satellite vicarious radiometric calibration and advanced algorithm development. In collaboration with major oceanographic ship-based observation programs funded by various agencies (CalCOFI, US JGOFS, NOAA AMLR, INDOEX and Japan/East Sea) our SIMBIOS effort has resulted in data from diverse bio-optical provinces. For these global deployments we generate a high-quality, methodologically consistent, data set encompassing a wide-range of oceanic conditions. Global data collected in recent years have been integrated with our on-going CalCOFI database and have been used to evaluate Sea-Viewing Wide Field-of-view Sensor (SeaWiFS) algorithms and to carry out validation studies. The combined database we have assembled now comprises more than 700 stations and includes observations for the clearest oligotrophic waters, highly eutrophic blooms, red-tides and coastal case two conditions. The data has been used to validate water-leaving radiance estimated with SeaWiFS as well as bio optical algorithms for chlorophyll pigments. The comprehensive data is utilized for development of experimental algorithms (e.g., high-low latitude pigment transition, phytoplankton absorption, and cDOM).
NASA Technical Reports Server (NTRS)
Brown, Christopher W.; Subramaniam, Ajit; Culver, Mary; Brock, John C.
2001-01-01
Monitoring the health of US coastal waters is an important goal of the National Oceanic and Atmospheric Administration (NOAA). Satellite sensors are capable of providing daily synoptic data of large expanses of the US coast. Ocean color sensors, in particular, can be used to monitor the water quality of coastal waters on an operational basis. To appraise the validity of satellite-derived measurements, such as chlorophyll concentration, the bio-optical algorithms used to derive them must be evaluated in coastal environments. Towards this purpose, over 21 cruises in diverse US coastal waters have been conducted. Of these 21 cruises, 12 have been performed in conjunction with and under the auspices of the NASA/Sensor Intercomparison and Merger for Biological and Interdisciplinary Oceanic Studies (SIMBIOS) Project. The primary goal of these cruises has been to obtain in-situ measurements of downwelling irradiance, upwelling radiance, and chlorophyll concentrations in order to evaluate bio-optical algorithms that estimate chlorophyll concentration. In this Technical Memorandum, we evaluate the ability of five bio-optical algorithms, including the current Sea-Viewing Wide Field-of-view Sensor (SeaWiFS) algorithm, to estimate chlorophyll concentration in surface waters of the South Atlantic Bight (SAB). The SAB consists of a variety of environments including coastal and continental shelf regimes, Gulf Stream waters, and the Sargasso Sea. The biological and optical characteristics of the region is complicated by temporal and spatial variability in phytoplankton composition, primary productivity, and the concentrations of colored dissolved organic matter (CDOM) and suspended sediment. As such, the SAB is an ideal location to test the robustness of algorithms for coastal use.
NASA Astrophysics Data System (ADS)
Blondeau-Patissier, D.; Tilstone, G. H.; Martinez-Vicente, V.; Moore, G. F.
2004-09-01
In this paper, we compare bio-physical marine products from SeaWiFS, MODIS and a novel bio-optical absorption model with in situ measurements of chlorophyll-a (Chla) concentrations, total suspended material (TSM) concentrations, normalized water-leaving radiances (nLw) and absorption coefficients of coloured dissolved organic matter (aCDOM), total particulate (atotal) and phytoplankton (aphy) for 26 satellite match-ups in three Northern European seas. Cruises were undertaken in 2002 and 2003 in phytoplankton dominated open ocean waters of the Celtic Sea and optically complex waters of the Western English Channel (WEC) and North Sea. For all environments, Chla concentrations varied from 0.4 to 7.8 mg m-3, TSM from 0.2 to 6.0 mg l-1 and aCDOM at 440 nm from 0.02 to 0.30 m-1. SeaWiFS OC4v4, with the Remote Sensing Data Analysis Service (RSDAS) atmospheric correction for turbid waters, showed the most accurate retrieval of in situ Chla (RMS = 0.24; n = 26), followed by MODIS chlor_a_3 (RMS = 0.40; n = 26). This suggested that improving the atmospheric correction over optically complex waters results in more accurate Chla concentrations compared to those obtained using more complicated Chla algorithms. We found that the SeaWiFS OC4v4 and the MODIS chlor_a_2 switching band ratio algorithms, which mainly use longer wavebands than 443 nm, were less affected by CDOM. They were both more accurate than chlor_MODIS in the higher CDOM waters of the North Sea. Compared to MODIS the absorption model was better at retrieving atotal (RMS = 0.39; n = 78) and aCDOM (RMS = 0.79; n = 12) in all study areas and TSM in the WEC (RMS = 0.04; n = 10) but it underestimated Chla concentrations (RMS = 0.45; n = 26). The results are discussed in terms of atmospheric correction, sensor characteristics and the functioning and performance of Chla algorithms. This paper was presented at the Institute of Physics Meeting on Underwater Optics held during Photonex 03 at Warwick, UK, in October 2003. Four companion papers from this conference were published in Journal of Optics A: Pure and Applied Optics, volume 6, issue 7 (July 2004), on pages 684, 690, 698 and 703.
Inversion Schemes to Retrieve Atmospheric and Oceanic Parameters from SeaWiFS Data
NASA Technical Reports Server (NTRS)
Deschamps, P.-Y.; Frouin, R.
1997-01-01
The investigation focuses on two key issues in satellite ocean color remote sensing, namely the presence of whitecaps on the sea surface and the validity of the aerosol models selected for the atmospheric correction of SeaWiFS data. Experiments were designed and conducted at the Scripps Institution of Oceanography to measure the optical properties of whitecaps and to study the aerosol optical properties in a typical mid-latitude coastal environment. CIMEL Electronique sunphotometers, now integrated in the AERONET network, were also deployed permanently in Bermuda and in Lanai, calibration/validation sites for SeaWiFS and MODIS. Original results were obtained on the spectral reflectance of whitecaps and on the choice of aerosol models for atmospheric correction schemes and the type of measurements that should be made to verify those schemes. Bio-optical algorithms to remotely sense primary productivity from space were also evaluated, as well as current algorithms to estimate PAR at the earth's surface.
Optical data collected in coastal waters off South Florida and in the Caribbean Sea between January 2009 and December 2010 were used to evaluate products derived with three bio-optical inversion algorithms applied to MOIDS/Aqua, MODIS/Terra, and SeaWiFS satellite observations. Th...
NASA Technical Reports Server (NTRS)
Werdell, P. Jeremy; Fargion, Giulietta S. (Editor); McClain, Charles R. (Editor); Bailey, Sean W.
2002-01-01
Satellite ocean color missions require an abundance of high-quality in situ measurements for bio-optical and atmospheric algorithm development and post-launch product validation and sensor calibration. To facilitate the assembly of a global data set, the NASA Sea-viewing Wide Field-of-view (SeaWiFS) Project developed the Seafaring Bio-optical Archive and Storage System (SeaBASS), a local repository for in situ data regularly used in their scientific analyses. The system has since been expanded to contain data sets collected by the NASA Sensor Intercalibration and Merger for Biological and Interdisciplinary Oceanic Studies (SIMBIOS) Project, as part of NASA Research Announcements NRA-96-MTPE-04 and NRA-99-OES-99. SeaBASS is a well moderated and documented hive for bio-optical data with a simple, secure mechanism for locating and extracting data based on user inputs. Its holdings are available to the general public with the exception of the most recently collected data sets. Extensive quality assurance protocols, comprehensive data and system documentation, and the continuation of an archive and relational database management system (RDBMS) suitable for bio-optical data all contribute to the continued success of SeaBASS. This document provides an overview of the current operational SeaBASS system.
SeaWiFS calibration and validation plan, volume 3
NASA Technical Reports Server (NTRS)
Hooker, Stanford B. (Editor); Firestone, Elaine R. (Editor); Mcclain, Charles R.; Esaias, Wayne E.; Barnes, William; Guenther, Bruce; Endres, Daniel; Mitchell, B. Greg; Barnes, Robert
1992-01-01
The Sea-viewing Wide Field-of-view Sensor (SeaWiFS) will be the first ocean-color satellite since the Nimbus-7 Coastal Zone Color Scanner (CZCS), which ceased operation in 1986. Unlike the CZCS, which was designed as a proof-of-concept experiment, SeaWiFS will provide routine global coverage every 2 days and is designed to provide estimates of photosynthetic concentrations of sufficient accuracy for use in quantitative studies of the ocean's primary productivity and biogeochemistry. A review of the CZCS mission is included that describes that data set's limitations and provides justification for a comprehensive SeaWiFS calibration and validation program. To accomplish the SeaWiFS scientific objectives, the sensor's calibration must be constantly monitored, and robust atmospheric corrections and bio-optical algorithms must be developed. The plan incorporates a multi-faceted approach to sensor calibration using a combination of vicarious (based on in situ observations) and onboard calibration techniques. Because of budget constraints and the limited availability of ship resources, the development of the operational algorithms (atmospheric and bio-optical) will rely heavily on collaborations with the Earth Observing System (EOS), the Moderate Resolution Imaging Spectrometer (MODIS) oceans team, and projects sponsored by other agencies, e.g., the U.S. Navy and the National Science Foundation (NSF). Other elements of the plan include the routine quality control of input ancillary data (e.g., surface wind, surface pressure, ozone concentration, etc.) used in the processing and verification of the level-0 (raw) data to level-1 (calibrated radiances), level-2 (derived products), and level-3 (gridded and averaged derived data) products.
Fuzzy Classification of Ocean Color Satellite Data for Bio-optical Algorithm Constituent Retrievals
NASA Technical Reports Server (NTRS)
Campbell, Janet W.
1998-01-01
The ocean has been traditionally viewed as a 2 class system. Morel and Prieur (1977) classified ocean water according to the dominant absorbent particle suspended in the water column. Case 1 is described as having a high concentration of phytoplankton (and detritus) relative to other particles. Conversely, case 2 is described as having inorganic particles such as suspended sediments in high concentrations. Little work has gone into the problem of mixing bio-optical models for these different water types. An approach is put forth here to blend bio-optical algorithms based on a fuzzy classification scheme. This scheme involves two procedures. First, a clustering procedure identifies classes and builds class statistics from in-situ optical measurements. Next, a classification procedure assigns satellite pixels partial memberships to these classes based on their ocean color reflectance signature. These membership assignments can be used as the basis for a weighting retrievals from class-specific bio-optical algorithms. This technique is demonstrated with in-situ optical measurements and an image from the SeaWiFS ocean color satellite.
Bio-Optical Measurement and Modeling of the California Current and Polar Oceans
NASA Technical Reports Server (NTRS)
Mitchell, B. Greg; Fargion, Giulietta S. (Technical Monitor)
2001-01-01
The principal goals of our research are to validate standard or experimental products through detailed bio-optical and biogeochemical measurements, and to combine ocean optical observations with advanced radiative transfer modeling to contribute to satellite vicarious radiometric calibration and advanced algorithm development. To achieve our goals requires continued efforts to execute complex field programs globally, as well as development of advanced ocean optical measurement protocols. We completed a comprehensive set of ocean optical observations in the California Current, Southern Ocean, Indian Ocean requiring a large commitment to instrument calibration, measurement protocols, data processing and data merger. We augmented separately funded projects of our own, as well as others, to acquire ill situ data sets we have collected on various global cruises supported by separate grants or contracts. In collaboration with major oceanographic ship-based observation programs funded by various agencies (CalCOFI, US JGOFS, NOAA AMLR, INDOEX and Japan/East Sea) our SIMBIOS effort has resulted in data from diverse bio-optical provinces. For these global deployments we generate a high-quality, methodologically consistent, data set encompassing a wide-range of oceanic conditions. Global data collected in recent years have been integrated with our on-going CalCOFI database and have been used to evaluate SeaWiFS algorithms and to carry out validation studies. The combined database we have assembled now comprises more than 700 stations and includes observations for the clearest oligotrophic waters, highly eutrophic blooms, red-tides and coastal case 2 conditions. The data has been used to validate water-leaving radiance estimated with SeaWiFS as well as bio-optical algorithms for chlorophyll pigments. The comprehensive data is utilized for development of experimental algorithms (e.g. high-low latitude pigment transition, phytoplankton absorption, and cDOM). During this period we completed 9 peer-reviewed publications in high quality journals, and presented aspects of our work at more than 10 scientific conferences.
NASA Technical Reports Server (NTRS)
Brown, Christopher W.; Brock, John C.
1998-01-01
The successful launch of the National Space Development Agency of Japan (NASDA) Ocean Color and Temperature Sensor (OCTS) in August 1996, and the launch of Orbital Science Corporation's (OSC) Sea-viewing Wide-Field-of-view Sensor (SeaWiFS) in August 1997 signaled the beginning of a new era for ocean color research and application. These data may be used to remotely evaluate 1) water quality, 2) transport of sediments and adhered pollutants, 3) primary production, upon which commercial shellfish and finfish populations depend for food, and 4) harmful algal blooms which pose a threat to public health and economies of affected areas. Several US government agencies have recently expressed interest in monitoring U.S. coastal waters using optical remote sensing. This renewed interest is broadly driven by 1) resource management concerns over the impact of coastward shifts in population and land use on the ecosystems of estuaries, wetlands, nearshore benthic environments and fisheries, 2) recognition of the need to understand short time scale global change due to urbanization of sensitive land-margin ecosystems, and 3) national security issues. Satellite ocean color sensors have the potential to furnish data at the appropriate time and space scales to evaluate and resolve these concerns and problems. In this draft technical memorandum, we outline our progress during the first year of our SIMBIOS project to evaluate ocean color bio-optical algorithms and products generated using OCTS and SeaWiFS data in coastal US waters.
NASA Astrophysics Data System (ADS)
Tanaka, T.; Franz, B. A.; Acker, J. G.; Asanuma, I.; Bailey, S.; Eplee, R. E.; Fukushima, H.; Gales, J. M.; Maritorena, S.; Mitomi, Y.; Murakami, H.; O'Reilly, J. E.; Shen, S.; Smith, P.; Wang, M.; Wilding, J.; Woodford, B.
2001-12-01
As a payload on the ADEOS spacecraft, the Ocean Color and Temperature Scanner (OCTS) was launched and operated by the National Space Development Agency (NASDA) of Japan in August of 1996. The OCTS instrument began routine imaging in November of 1996, making it the first operational mission dedicated to the acquisition and monitoring of oceanic chlorophyll concentration on a global scale. Although the ADEOS spacecraft suffered a catastrophic failure less than eleven months after launch, the data collected during the OCTS mission lifetime is of great value to the Earth science community, as it can provide important information on the baseline state of the worlds oceans prior to the El Nino event of 1997-1998. The second global ocean color mission to be launched was the Sea-viewing Wide Field-of-view Sensor (SeaWiFS), which has been collecting global data continuously since September of 1997. The unfortunate gap between the end of OCTS operations and the start of SeaWiFS operations makes direct sensor to sensor comparisons impossible, thus leaving considerable uncertainty in any effort to extend the SeaWiFS global ocean color timeseries back to the pre-1997 El Nino period, or to study the propagation of Kelvin and Rossby waves associated with the transition into El Nino. This uncertainty can result from relative differences in instrument calibrations, as well as differences in the atmospheric correction and bio-optical algorithms employed. The focus of the present work is to minimize the potential differences in the atmospheric correction and bio-optical algorithms between the two sensors, by reprocessing the entire OCTS GAC mission archive using the same software and algorithms employed for standard SeaWiFS processing. The data processing stream will be presented, and OCTS-specific modifications to the algorithms will be discussed. Statistical comparisons between OCTS and SeaWiFS will be shown, and remaining processing issues will be highlighted. Finally, the OCTS product list and data distribution procedures will be provided.
Remote Sensing of Ocean Color in the High Arctic
NASA Technical Reports Server (NTRS)
Cota, G. F.; Platt, T.; Harrison, W. G.
1997-01-01
With four years of NASA SeaWiFS funding I established a completely new capability and expertise for in-water optical measurements nearly from scratch and with very little optical background. My first-year budget included only capital for a profiling spectral radiometer. Over the next 30 months we conducted six cruises and collected almost 300 optical profiles in challenging environments; many were collected from 21' launches. I also changed institutions during this period: it is very disruptive to move, set up a new lab, and hire and train new people, etc. We also did not have access to NASA funds for almost a year during the move because of difficulties in subcontracting and/or transferring funds. Nevertheless, we delivered data sets from six bio-optical cruises from three high latitude regions, although only two or three cruises from two areas were promised for our SeaWiFS research. The three Canadian Arctic field programs comprise the most comprehensive high latitude bio-optical and biogeochemical data sets in existence. Optical and pigment data from all six cruises have been submitted to NASA and are being included in the algorithm development test set. Additional data are still being submitted.
Assessment of satellite derived diffuse attenuation coefficients ...
Optical data collected in coastal waters off South Florida and in the Caribbean Sea between January 2009 and December 2010 were used to evaluate products derived with three bio-optical inversion algorithms applied to MOIDS/Aqua, MODIS/Terra, and SeaWiFS satellite observations. The products included the diffuse attenuation coefficient at 490 nm (Kd_490) and for the visible range (Kd_PAR), and euphotic depth (Zeu, corresponding to 1% of the surface incident photosynthetically available radiation or PAR). Above-water hyperspectral reflectance data collected over optically shallow waters of the Florida Keys between June 1997 and August 2011 were used to help understand algorithm performance over optically shallow waters. The in situ data covered a variety of water types in South Florida and the Caribbean Sea, ranging from deep clear waters, turbid coastal waters, and optically shallow waters (Kd_490 range of ~0.03 – 1.29m-1). An algorithm based on Inherent Optical Properties (IOPs) showed the best performance (RMSD < 13% and R2 ~1.0 for MODIS/Aqua and SeaWiFS). Two algorithms based on empirical regressions performed well for offshore clear waters, but underestimated Kd_490 and Kd_PAR in coastal waters due to high turbidity or shallow bottom contamination. Similar results were obtained when only in situ data were used to evaluate algorithm performance. The excellent agreement between satellite-derived remote sensing reflectance (Rrs) and in situ Rrs suggested that
Remote Sensing of Particulate Organic Carbon Pools in the High-Latitude Oceans
NASA Technical Reports Server (NTRS)
Stramski, Dariusz; Stramska, Malgorzata
2005-01-01
The general goal of this project was to characterize spatial distributions at basin scales and variability on monthly to interannual timescales of particulate organic carbon (POC) in the high-latitude oceans. The primary objectives were: (1) To collect in situ data in the north polar waters of the Atlantic and in the Southern Ocean, necessary for the derivation of POC ocean color algorithms for these regions. (2) To derive regional POC algorithms and refine existing regional chlorophyll (Chl) algorithms, to develop understanding of processes that control bio-optical relationships underlying ocean color algorithms for POC and Chl, and to explain bio-optical differentiation between the examined polar regions and within the regions. (3) To determine basin-scale spatial patterns and temporal variability on monthly to interannual scales in satellite-derived estimates of POC and Chl pools in the investigated regions for the period of time covered by SeaWiFS and MODIS missions.
SeaWiFS Postlaunch Calibration and Validation Analyses
NASA Technical Reports Server (NTRS)
Hooker, Stanford B. (Editor); Firestone, Elaine (Editor); McClain, Charles R.; Barnes, Robert A.; Eplee, Robert E., Jr.; Franz, Bryan A.; Hsu, N. Christina; Patt, Frederick S.; Pietras, Christophe M.; Robinson, Wayne D.
2000-01-01
The effort to resolve data quality issues and improve on the initial data evaluation methodologies of the SeaWiFS Project was an extensive one. These evaluations have resulted, to date, in three major reprocessings of the entire data set where each reprocessing addressed the data quality issues that could be identified up to the time of the reprocessing. Three volumes of the SeaWiFS Postlaunch Technical Report Series (Volumes 9, 10, and 11) are needed to document the improvements implemented since launch. Volume 10 continues the sequential presentation of postlaunch data analysis and algorithm descriptions begun in Volume 9. Chapter 1 of Volume 10 describes an absorbing aerosol index, similar to that produced by the Total Ozone Mapping Spectrometer (TOMS) Project, which is used to flag pixels contaminated by absorbing aerosols, such as, dust and smoke. Chapter 2 discusses the algorithm being used to remove SeaWiFS out-of-band radiance from the water-leaving radiances. Chapter 3 provides an itemization of all significant changes in the processing algorithms for each of the first three reprocessings. Chapter 4 shows the time series of global clear water and deep-water (depths greater than 1,000m) bio-optical and atmospheric properties (normalized water-leaving radiances, chlorophyll, atmospheric optical depth, etc.) based on the eight-day composites as a check on the sensor calibration stability. Chapter 5 examines the variation in the derived products with scan angle using high resolution data around Hawaii to test for residual scan modulation effects and atmospheric correction biases. Chapter 6 provides a methodology for evaluating the atmospheric correction algorithm and atmospheric derived products using ground-based observations. Similarly, Chapter 7 presents match-up comparisons of coincident satellite and in situ data to determine the accuracy of the water-leaving radiances, chlorophyll a, and K(490) products.
NASA Technical Reports Server (NTRS)
Dickey, Tommy; Dobeck, Laura; Sigurdson, David; Zedler, Sarah; Manov, Derek; Yu, Xuri
2001-01-01
It has been recognized that optical moorings are important platforms for the validation of Sea-Viewing Wide Field-of-view Sensor (SeaWiFS). It was recommended that optical moorings be maintained in order to: (1) provide long-term time series comparisons between in situ and SeaWIFS measurements of normalized water-leaving radiance; (2) develop and test algorithms for pigment biomass and phytoplankton primary productivity; and (3) provide long-term, virtually continuous in situ observations which can be used to determine and optimize the accuracy of derived satellite products. These applications require the use of in situ radiometers for long periods of time to evaluate and correct for inherent satellite undersampling (aliasing and biasing) and degradation of satellite color sensors (e.g., drifts as experienced by the Coastal Zone Color Scanner). The Bermuda Testbed Mooring (BTM) program was initiated in 1994 at a site located about 80km southeast of Bermuda in waters of about 4530 m depth. In August 1997, with NASA's support, we started to provide the Sensor Intercomparison and Merger for Biological and Interdisciplinary Oceanic Studies (SIMBIOS) program with large volumes of high frequency, long-term time-series bio-optical data from the BTM for SeaWiFS satellite ocean color groundtruthing and algorithm development. This NASA supported portion of the BTM activity spanned three years and covered five BTM deployments. During these three years, the quality of radiometric data has improved dramatically. Excellent agreement between BTM moored data and both SeaWiFS and nearby ship profile radiometric data demonstrate that technical advances in the moored optical observations have reduced the major difficulties that moored platforms face: biofouling and less frequent calibration.
SeaWiFS Postlaunch Technical Report Series. Volume 3; The SeaBOARR-98 Field Campaign
NASA Technical Reports Server (NTRS)
Zibordi, Giuseppe; Lazin, Gordana; McLean, Scott; Firestone, Elaine R. (Editor); Hooker, Stanford B. (Editor)
1999-01-01
This report documents the scientific activities during the first Sea-viewing Wide Field-of-view Sensor (SeaWiFS) Bio-Optical Algorithm Round-Robin (SeaBOARR-98) experiment, which took place from 5-17 July 1998, at the Acqua Alta Oceanographic Tower (AAOT) in the northern Adriatic Sea off the coast of Italy. The ultimate objective of the SeaBOARR activity is to evaluate the effect of different measurement protocols on bio-optical algorithms using data from a variety of field campaigns. The SeaBOARR-98 field campaign was concerned with collecting a high quality data set of simultaneous in-water and above-water radiometric measurements. The deployment goals documented in this report were to: a) use four different surface glint correction methods to compute water-leaving radiances, L W (lambda), from above-water data; b) use two different in-water profiling systems and three different methods to compute L W (lambda) from in-water data (one making measurements at a fixed distance from the tower, 7.5 m, and the other at variable distances up to 29 m away); c) use instruments with a common calibration history to minimize intercalibration uncertainties; d) monitor the calibration drift of the instruments in the field with a second generation SeaWiFS Quality Monitor (SQM-II), to separate differences in methods from changes in instrument performance; and e) compare the L W (lambda) values estimated from the above-water and in-water measurements. In addition to describing the instruments deployed and the data collected, a preliminary analysis of the data is presented, and the kind of follow-on work that is needed to completely assess the estimation of L W (lambda) from above-water and in-water measurements is discussed.
Cal/Val Study for Geostationary Ocean Color Imager
NASA Astrophysics Data System (ADS)
Ryu, J.; Moon, J.; Min, J.; Cho, S.; Ahn, Y.
2009-12-01
GOCI, the first Geostationary Ocean Color Imager, shall be operated in a staring-frame capture mode onboard its Communication Ocean and Meteorological Satellite (COMS) and tentatively scheduled for launch in 2010. The mission concept includes eight visible-to-near-infrared bands, 0.5 km pixel resolution, and a coverage region of 2,500 × 2,500 km2 centered at Korea. The GOCI is expected to provide SeaWiFS quality observations for a single study area with imaging interval of 1 hour from 10 am to 5 pm. Due to optically more complex waters of GOCI swath area, we developed new atmospheric correction and bio-optical algorithms for GOCI. The 1st objective is to compare and validate the water-leaving radiance using the radiometric data from spectroradiometer installed in Ieodo and Gaegeocho ocean research station. The 2nd objective is to calibrate and validate the bio-optical product by GDPS using the Dokdo buoy and in situ measurements. As the result of comparison of spectrum shape using the remote reflectance normalized 555 nm, most of all data was well matched. Validation result of local bio-optical algorithms installed in GDPS showed the less than 20 %.
SeaWiFS Postlaunch Calibration and Validation Analyses
NASA Technical Reports Server (NTRS)
Hooker, Stanford B. (Editor); Firestone, Elaine R. (Editor); McClain, Charles R.; Ainsworth, Ewa J.; Barnes, Robert A.; Eplee, Robert E., Jr.; Patt, Frederick S.; Robinson, Wayne D.; Wang, Menghua; Bailey, Sean W.
2000-01-01
The effort to resolve data quality issues and improve on the initial data evaluation methodologies of the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) Project was an extensive one. These evaluations have resulted, to date, in three major reprocessings of the entire data set where each reprocessing addressed the data quality issues that could be identified up to the time of each reprocessing. The number of chapters (21) needed to document this extensive work in the SeaWiFS Postlaunch Technical Report Series requires three volumes. The chapters in Volumes 9, 10, and 11 are in a logical order sequencing through sensor calibration, atmospheric correction, masks and flags, product evaluations, and bio-optical algorithms. The first chapter of Volume 9 is an overview of the calibration and validation program, including a table of activities from the inception of the SeaWiFS Project. Chapter 2 describes the fine adjustments of sensor detector knee radiances, i.e., radiance levels where three of the four detectors in each SeaWiFS band saturate. Chapters 3 and 4 describe the analyses of the lunar and solar calibration time series, respectively, which are used to track the temporal changes in radiometric sensitivity in each band. Chapter 5 outlines the procedure used to adjust band 7 relative to band 8 to derive reasonable aerosol radiances in band 7 as compared to those in band 8 in the vicinity of Lanai, Hawaii, the vicarious calibration site. Chapter 6 presents the procedure used to estimate the vicarious calibration gain adjustment factors for bands 1-6 using the waterleaving radiances from the Marine Optical Buoy (MOBY) offshore of Lanai. Chapter 7 provides the adjustments to the coccolithophore flag algorithm which were required for improved performance over the prelaunch version. Chapter 8 is an overview of the numerous modifications to the atmospheric correction algorithm that have been implemented. Chapter 9 describes the methodology used to remove artifacts of sun glint contamination for portions of the imagery outside the sun glint mask. Finally, Chapter 10 explains a modification to the ozone interpolation method to account for actual time differences between the SeaWiFS and Total Ozone Mapping Spectrometer (TOMS) orbits.
Evaluation of Bio-optical Algorithms for Chlorophyll Mapping in the Southwestern Atlantic
NASA Astrophysics Data System (ADS)
Garcia, V. M.; Garcia, C. A.; Signorini, S.; McClain, C. R.
2005-05-01
Efforts have been made over the past decade to study bio-optical properties of seawater in the Southwestern Atlantic for mapping chlorophyll concentration from space. Coastal regions deserve a greater attention due to the optical complexity from continental influence. Here we present an attempt to derive reliable bio-optical chlorophyll algorithms in the shelf region 25-40o S and 60-45o W. This area is subject to large optical interference by continental runoffs from La Plata River and Patos Lagoon. Spectral upwelling radiance and surface chlorophyll concentration data have been collected in the past years and have been used to generate a regional version of the NASA's OC2v4 model. The regional 2-band algorithm (termed OC2-LP), reduces chlorophyll positive bias to 11% as compared to the global SeaWiFS OC4v4 algorithm (bias = 27%). However, OC2-LP remains with an overall inaccuracy of over 40% in chlorophyll concentration, as calculated by the absolute percentage difference between in-situ and model-derived values. In-situ chlorophyll data from two cruises to the study region (La Plata I - winter of 2003 and La Plata II - summer of 2004) have been used to test the accuracy of the derived algorithm as well as the global version. A marked seasonal difference was found, where both OC4v4 and OC2-LP overestimate chlorophyll in summer at a higher magnitude than in the winter. These results indicate the need for other approaches rather than use of empirical band-ratio models in coastal waters of this region.
NASA Technical Reports Server (NTRS)
Firestone, Elaine R. (Editor); Hooker, Stanford B. (Editor)
1995-01-01
The Sea-viewing Wide Field-of-view Sensor (SeaWiFS) is the follow-on ocean color instrument to the Coastal Zone Color Scanner (CZCS), which ceased operations in 1986, after an eight-year mission. SeaWiFS is expected to be launched in 1995, on the SeaStar satellite, being built by Orbital Sciences Corporation (OSC). The SeaWiFS Project at the National Aeronautics and Space Administration's (NASA) Goddard Space Flight Center (GSFC), has undertaken the responsibility of documenting all aspects of this mission, which is critical to the ocean color and marine science communities. This documentation, entitled the SeaWiFS Technical Report Series, is in the form of NASA Technical Memorandum Number 104566. All reports published are volumes within the series. This particular volume serves as a reference, or guidebook, to the previous 23 volumes and consists of 6 sections including: an errata, an addendum (summaries of various SeaWiFS Working Group Bio-optical Algorithm and Protocols Subgroups Workshops, and other auxiliary information), an index to key words and phrases, a list of all references cited, and lists of acronyms and symbols used. It is the editors' intention to publish a cumulative index of this type after every five volumes in the series. Each index covers the topics published in all previous editions, that is, each new index will include all of the information contained in the preceding indices.
NASA Technical Reports Server (NTRS)
Hooker, Stanford B. (Editor); Firestone, Elaine R. (Editor)
1995-01-01
The Sea-viewing Wide Field-of-view Sensor (SeaWiFS) is the follow-on ocean color instrument to the Coastal Zone Color Scanner (CZCS), which ceased operations in 1986, after an eight-year mission. SeaWiFS is expected to be launched in 1995, on the SeaStar satellite, being built by Orbital Sciences Corporation (OSC). The SeaWiFS Project at the National Aeronautics and Space Administration's (NASA) Goddard Space Flight Center (GSFC), has undertaken the responsibility of documenting all aspects of this mission, which is critical to the ocean color and marine science communities. This documentation, entitled the SeaWiFS Technical Report Series, is the form of NASA Technical Memorandum Number 104566. All reports published are volumes within the series. This particular volume serves as a reference, or guidebook, to the previous 23 volumes and consists of 6 sections including: an errata, an addendum (summaries of various SeaWiFS Working Group Bio-optical Algorithm and Protocols Subgroups Workshops, and other auxiliary information), an index to key words and phrases, a list of all references cited, and lists of acronyms and symbols used. It is the editors' intention to publish a cumulative index of this type after every five volumes in the series. Each index covers the topics published in all previous editions, that is, each new index will include all of the information contained in the preceeding indices.
NASA Technical Reports Server (NTRS)
Firestone, Elaine R. (Editor); Hooker, Stanford B. (Editor)
1995-01-01
The Sea-viewing Wide field-of-view Sensor (SeaWiFS) is the follow-on ocean color instrument to the Coastal Zone Color Scanner (CZCS) which ceased operations in 1986 after an eight-year mission. SeaWiFS is expected to be launched in 1995 on the SeaStar satellite, being built by Orbital Sciences Corporation (OSC). The SeaWiFS Project at the National Aeronautics and Space Administration's (NASA) Goddard Space Flight Center (GSFC), has undertaken the responsibility of documenting all aspects of this mission, which is critical to the ocean color and marine science communities. This documentation, entitled the SeaWiFS Technical Report Series, is in the form of NASA Technical Memorandum Number 104566. All reports published are volumes within the series. This particular volume serves as a reference, or guidebook, to the previous 17 volumes and consists of 6 sections including: an errata, an addendum (summaries of various SeaWiFS Working Group Bio-optical Algorithm and Protocols Subgroups Workshops, and other auxiliary information), an index to key words and phrases, a list of all references cited, and lists of acronyms and symbols used. It is the editor's intention to publish a cumulative index of this type after every five volumes in the series. Each index covers the topics published in all previous editions, that is, each new index includes all of the information contained in the preceding indices.
NASA Technical Reports Server (NTRS)
Firestone, Elaine R. (Editor); Hooker, Stanford B. (Editor)
1993-01-01
The Sea-viewing Wide Field-of-view Sensor (SeaWiFS) is the follow-on ocean color instrument to the Coastal Zone Color Scanner (CZCS), which ceased operations in 1986, after an 8-year mission. SeaWiFS is expected to be launched in 1994, on the SeaStar satellite, being built by Orbital Sciences Corporation (OSC). The SeaWiFS Project at the National Aeronautics and Space Administration's (NASA) Goddard Space Flight Center (GSFC) has undertaken the responsibility of documenting all aspects of this mission, which is critical to the ocean color and marine science communities. This documentation, entitled the SeaWiFS Technical Report Series, is in the form of NASA Technical Memorandum Number 104566. All reports published are volumes within the series. This particular volume serves as a reference, or guidebook, to the previous 11 volumes and consists of 6 sections including: an errata, an addendum (a summary of the SeaWiFS Working Group Bio-optical Algorithm and Protocols Subgroups Workshops), an index to keywords and phrases, a list of all references cited, and lists of acronyms and symbols used. It is the editors' intention to publish a cumulative index of this type after every five volumes in the series. This will cover the topics published in all previous editions of the indices, that is, each new index will include all of the information contained in the preceding indices.
NASA Technical Reports Server (NTRS)
Abbott, Mark R.
1998-01-01
The objectives of the last six months were: Continue analysis of Hawaii Ocean Time-series (HOT) bio-optical mooring data, Recover instrumentation from JGOFS cruises in the Southern Ocean and analyze data Maintain documentation of MOCEAN algorithms and software for use by MOCEAN and GLI teams Continue chemostat experiments on the relationship of fluorescence quantum yield to environmental factors. Continue to develop and expand browser-based information system for in situ bio-optical data Work Analysis of Field Data from Hawaii We are continuing to analyze bio-optical data collected at the Hawaii Ocean Time Series mooring. The HOT bio-optical mooring was recovered in May 1998. After retrieving the data, the sensor package was serviced and redeployed. We now have over 18 months of data. These are being analyzed as part of a larger study of mesoscale processes at this JGOFS time series site. We have had some failures in the data logger which have affected the fluorescence channels. These are being repaired. We also had an instrument housing failure, and minor modifications have been made to avoid subsequent problems. In addition, Ricardo Letelier is funded as part of the SeaWiFS calibrator/validation effort (through a subcontract from the University of Hawaii, Dr. John Porter), and he is collecting bio-optical and fluorescence data as part of the HOT activity.
NASA Technical Reports Server (NTRS)
D'Sa Eurico J.; Miller, Richard L.; DelCastillo, Carlos
2006-01-01
During the passage of a cold front in March 2002, bio-optical properties examined in coastal waters impacted by the Mississippi River indicated westward advective flows and increasing river discharge containing a larger nonalgal particle content contributed significantly to surface optical variability. A comparison of seasonal data from three cruises indicated spectral models of absorption and scattering to be generally consistent with other coastal environments, while their parameterization in terms of chlorophyll a concentration (Chl) showed seasonal variability. The exponential slope of the colored dissolved organic matter (CDOM) averaged 0.0161 plus or minus 0.00054 per nanometer, and for nonalgal absorption it averaged 0.011 per nanometer with deviations from general trends observed due to anomalous water properties. Although the phytoplankton specific absorption coefficients varied over a wide range (0.02 to 0.1 square meters (mg Chl) sup -1)) being higher in offshore surface waters, values of phytoplankton absorption spectra at the SeaWiFS wavebands were highly correlated to modeled values. The normalized scattering spectral shapes and the mean spectrum were in agreement to observations in other coastal waters, while the backscattering ratios were on average lower in phytoplankton dominated surface waters (0.0101 plus or minus 0.002) and higher in near-bottom waters (0.0191 plus or minus 0.0045) with low Chl. Average percent differences in remote sensing reflectance R (sub rs) derived form modeled and in-eater radiometric measurements were highest in the blue wavebands (52%) and at sampling stations with a ore stratified water column. Estimates of Chl and CDOM absorption derived from SeaWiFS images generated using regional empirical algorithms were highly correlated to in situ data.
Ocean Observations with EOS/MODIS: Algorithm Development and Post Launch Studies
NASA Technical Reports Server (NTRS)
Gordon, Howard R.; Conboy, B. (Technical Monitor)
1999-01-01
Significant accomplishments made during the present reporting period include: 1) Installed spectral optimization algorithm in the SeaDas image processing environment and successfully processed SeaWiFS imagery. The results were superior to the standard SeaWiFS algorithm (the MODIS prototype) in a turbid atmosphere off the US East Coast, but similar in a clear (typical) oceanic atmosphere; 2) Inverted ACE-2 LIDAR measurements coupled with sun photometer-derived aerosol optical thickness to obtain the vertical profile of aerosol optical thickness. The profile was validated with simultaneous aircraft measurements; and 3) Obtained LIDAR and CIMEL measurements of typical maritime and mineral dust-dominated marine atmosphere in the U.S. Virgin Islands. Contemporaneous SeaWiFS imagery were also acquired.
NASA Astrophysics Data System (ADS)
Brajard, J.; Moulin, C.; Thiria, S.
2008-10-01
This paper presents a comparison of the atmospheric correction accuracy between the standard sea-viewing wide field-of-view sensor (SeaWiFS) algorithm and the NeuroVaria algorithm for the ocean off the Indian coast in March 1999. NeuroVaria is a general method developed to retrieve aerosol optical properties and water-leaving reflectances for all types of aerosols, including absorbing ones. It has been applied to SeaWiFS images of March 1999, during an episode of transport of absorbing aerosols coming from pollutant sources in India. Water-leaving reflectances and aerosol optical thickness estimated by the two methods were extracted along a transect across the aerosol plume for three days. The comparison showed that NeuroVaria allows the retrieval of oceanic properties in the presence of absorbing aerosols with a better spatial and temporal stability than the standard SeaWiFS algorithm. NeuroVaria was then applied to the available SeaWiFS images over a two-week period. NeuroVaria algorithm retrieves ocean products for a larger number of pixels than the standard one and eliminates most of the discontinuities and artifacts associated with the standard algorithm in presence of absorbing aerosols.
NASA Astrophysics Data System (ADS)
Yan, Banghua; Stamnes, Knut; Toratani, Mitsuhiro; Li, Wei; Stamnes, Jakob J.
2002-10-01
For the atmospheric correction of ocean-color imagery obtained over Case I waters with the Sea-Viewing Wide Field-of-View Sensor (SeaWiFS) instrument the method currently used to relax the black-pixel assumption in the near infrared (NIR) relies on (1) an approximate model for the nadir NIR remote-sensing reflectance and (2) an assumption that the water-leaving radiance is isotropic over the upward hemisphere. Radiance simulations based on a comprehensive radiative-transfer model for the coupled atmosphere-ocean system and measurements of the nadir remote-sensing reflectance at 670 nm compiled in the SeaWiFS Bio-optical Algorithm Mini-Workshop (SeaBAM) database are used to assess the validity of this method. The results show that (1) it is important to improve the flexibility of the reflectance model to provide more realistic predictions of the nadir NIR water-leaving reflectance for different ocean regions and (2) the isotropic assumption should be avoided in the retrieval of ocean color, if the chlorophyll concentration is larger than approximately 6, 10, and 40 mg m-3 when the aerosol optical depth is approximately 0.05, 0.1, and 0.3, respectively. Finally, we extend our scope to Case II ocean waters to gain insight and enhance our understanding of the NIR aspects of ocean color. The results show that the isotropic assumption is invalid in a wider range than in Case I waters owing to the enhanced water-leaving reflectance resulting from oceanic sediments in the NIR wavelengths.
Satellite Ocean Biology: Past, Present, Future
NASA Technical Reports Server (NTRS)
McClain, Charles R.
2012-01-01
Since 1978 when the first satellite ocean color proof-of-concept sensor, the Nimbus-7 Coastal Zone Color Scanner, was launched, much progress has been made in refining the basic measurement concept and expanding the research applications of global satellite time series of biological and optical properties such as chlorophyll-a concentrations. The seminar will review the fundamentals of satellite ocean color measurements (sensor design considerations, on-orbit calibration, atmospheric corrections, and bio-optical algorithms), scientific results from the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) and Moderate resolution Imaging Spectroradiometer (MODIS) missions, and the goals of future NASA missions such as PACE, the Aerosol, Cloud, Ecology (ACE), and Geostationary Coastal and Air Pollution Events (GeoCAPE) missions.
10 Years of Asian Dust Storm Observations from SeaWiFS: Source, Pathway, and Interannual Variability
NASA Technical Reports Server (NTRS)
Hsu, N. Christina; Tsay, S.-C.; King, M.D.; Jeong, M.-J.
2008-01-01
In this paper, we will demonstrate the capability of a new satellite algorithm to retrieve aerosol optical thickness and single scattering albedo over bright-reflecting surfaces such as urban areas and deserts. Such retrievals have been difficult to perform using previously available algorithms that use wavelengths from the mid-visible to the near IR because they have trouble separating the aerosol signal from the contribution due to the bright surface reflectance. The new algorithm, called Deep Blue, utilizes blue-wavelength measurements from instruments such as SeaWiFS and MODIS to infer the properties of aerosols, since the surface reflectance over land in the blue part of the spectrum is much lower than for longer wavelength channels. We have validated the satellite retrieved aerosol optical thickness with data from AERONET sunphotometers over desert and semi-desert regions. The comparisons show reasonable agreements between these two. These new satellite products will allow scientists to determine quantitatively the aerosol properties near sources using high spatial resolution measurements from SeaWiFS and MODIS-like instruments. The multiyear satellite measurements (1998 - 2007) from SeaWiFS will be utilized to investigate the interannual variability of source, pathway, and dust loading associated with these dust outbreaks in East Asia. The monthly averaged aerosol optical thickness during the springtime from SeaWiFS will also be compared with the MODIS Deep Blue products.
Bio-Optical and Geochemical Properties of the South Atlantic Subtropical Gyre
NASA Technical Reports Server (NTRS)
Signorini, S. R.; Hooker, Stanford B.; McClain, Charles R.
2003-01-01
An investigation of the bio-optical properties of the South Atlantic subtropical gyre (SASG) was conducted using data primarily from the UK Atlantic Meridional Transect (AMT) program and SeaWiFS. The AMT cruises extend from the UK to the Falklands Islands (sailing on the RRS James Clark Ross) with the purpose of improving our knowledge of surface layer hydrography, biogeochemical processes, ecosystem dynamics and food webs across basin scales in the Atlantic Ocean. Two objectives of the AMT program relevant to this study are the characterization of biogeochemical provinces and the analysis of optical and pigment parameters in connection with remote sensing ocean color data. The primary focus of this NASA Technical Memorandum is on the variability of the vertical distribution of phytoplankton pigments and associated absorption properties across the SASG, and their relevance to remote sensing algorithms. Therefore, a subset of the AMT data within the SASG from all available cruises was used in the analyses. One of the challenges addressed here is the determination of the SASG geographic boundaries. One of the major problems is to reconcile the properties of biogeochemical provinces. We use water mass analysis, dynamics of ocean currents, and meridional gradients of bio-optical properties, to identify the SASG boundaries.
Decadal Changes in Global Ocean Annual Primary Production
NASA Technical Reports Server (NTRS)
Gregg, Watson; Conkright, Margarita E.; Behrenfeld, Michael J.; Ginoux, Paul; Casey, Nancy W.; Koblinsky, Chester J. (Technical Monitor)
2002-01-01
The Sea-viewing Wide Field-of-View Sensor (SeaWiFS) has produced the first multi-year time series of global ocean chlorophyll observations since the demise of the Coastal Zone Color Scanner (CZCS) in 1986. Global observations from 1997-present from SeaWiFS combined with observations from 1979-1986 from the CZCS should in principle provide an opportunity to observe decadal changes in global ocean annual primary production, since chlorophyll is the primary driver for estimates of primary production. However, incompatibilities between algorithms have so far precluded quantitative analysis. We have developed and applied compatible processing methods for the CZCS, using modern advances in atmospheric correction and consistent bio-optical algorithms to advance the CZCS archive to comparable quality with SeaWiFS. We applied blending methodologies, where in situ data observations are incorporated into the CZCS and SeaWiFS data records, to provide improvement of the residuals. These re-analyzed, blended data records provide maximum compatibility and permit, for the first time, a quantitative analysis of the changes in global ocean primary production in the early-to-mid 1980's and the present, using synoptic satellite observations. An intercomparison of the global and regional primary production from these blended satellite observations is important to understand global climate change and the effects on ocean biota. Photosynthesis by chlorophyll-containing phytoplankton is responsible for biotic uptake of carbon in the oceans and potentially ultimately from the atmosphere. Global ocean annual primary decreased from the CZCS record to SeaWiFS, by nearly 6% from the early 1980s to the present. Annual primary production in the high latitudes was responsible for most of the decadal change. Conversely, primary production in the low latitudes generally increased, with the exception of the tropical Pacific. The differences and similarities of the two data records provide evidence of how the Earth's climate may be changing and how ocean biota respond. Furthermore, the results have implications for the ocean carbon cycle.
Bio-Optical Measurements at Ocean Boundaries in Support of SIMBIOS. Chapter 7
NASA Technical Reports Server (NTRS)
Chavez, Francisco P.; Strutton, Peter G.; Schlining, Brian M.
2001-01-01
The equatorial Pacific is a major component of global biogeochemical cycles, due to upwelling that occurs from the coast of South America to beyond 180 deg. This upwelling has significant implications for global CO2 fluxes, as well as primary and secondary production. In addition, this region of the world's oceans represents a large oceanic province over which validation data for Sea-Viewing Wide Field-of-view Sensor (SeaWiFS) are necessary. This project consists of a mooring program and supporting cruise-based measurements aimed at quantifying the spectrum of biological and chemical variability in the equatorial Pacific and obtaining validation data for SeaWiFS. The project has the following general objectives: (1) to understand the relationships between physical forcing, primary production, nutrient supply and the exchange of carbon dioxide between ocean and atmosphere in the equatorial Pacific; (2) to describe the biological and chemical responses to climate and ocean variability; (3) to describe the spatial, seasonal and inter-annual variability in near surface plant pigments, primary production, carbon dioxide and nutrient distributions; and (4) to obtain near real-time bio-optical measurements for validation of SeaWiFS and subsequent ocean color sensors.
NASA Technical Reports Server (NTRS)
Hooker, Stanford B. (Editor); Firestone, Elaine R. (Editor); OReilly, John E.; Maritorena, Stephane; OBrien, Margaret C.; Siegel, David A.; Toole, Dierdre; Mueller, James L.; Mitchell, B. Greg; Kahru, Mati;
2000-01-01
Volume 11 continues the sequential presentation of postlaunch data analysis and algorithm descriptions begun in Volume 9. Chapters 1 and 2 present the OC2 (version 2) and OC4 (version 4) chlorophyll a algorithms used in the SeaWiFS data second and third reprocessings, August 1998 and May 2000, respectively. Chapter 3 describes a revision of the K(490) algorithm designed to use water-leaving radiances at 490 nm which was implemented for the third reprocessing. Finally, Chapter 4 is an analysis of in situ radiometer calibration data over several years at the University of California, Santa Barbara (UCSB) to establish the temporal consistency of their in-water optical measurements.
Bio-Optical Properties of the Arabian Sea as Determined by In-Situ and SeaWifs Data
NASA Technical Reports Server (NTRS)
Trees, Charles C.
1998-01-01
The overall objective of this work was to characterize optical and fluorescence properties in the euphotic zone during two British Ocean Flux Study (BOFS) Arabian Sea cruises. This was later expanded in 1995 to include three U.S. Joint Global Ocean Flux Study (JGOFS) Arabian Sea Cruises. The region was to be divided into one or more "bio-optical provinces", within each of which a single set of regression models was to be developed to relate the vertical distribution of irradiance attenuation and normalized fluorescence (SF and NF) to remote sensing reflectance and diffuse attenuation coefficient [K(490)]. The working hypothesis was that over relatively large spatial and temporal scales, the vertical profiles of bio-optical properties were predictable.
Regional to Global Assessments of Phytoplankton Dynamics From The SeaWiFS Mission
NASA Technical Reports Server (NTRS)
Siegel, David; Behrenfeld, Michael; Maritorena, Stephanie; McClain, Charles R.; Antoine, David; Bailey, Sean W.; Bontempi, Paula S.; Boss, Emmanuel S.; Dierssen, Heidi M.; Doney, Scott C.;
2013-01-01
Photosynthetic production of organic matter by microscopic oceanic phytoplankton fuels ocean ecosystems and contributes roughly half of the Earth's net primary production. For 13 years, the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) mission provided the first consistent, synoptic observations of global ocean ecosystems. Changes in the surface chlorophyll concentration, the primary biological property retrieved from SeaWiFS, have traditionally been used as a metric for phytoplankton abundance and its distribution largely reflects patterns in vertical nutrient transport. On regional to global scales, chlorophyll concentrations covary with sea surface temperature (SST) because SST changes reflect light and nutrient conditions. However, the oceanmay be too complex to be well characterized using a single index such as the chlorophyll concentration. A semi-analytical bio-optical algorithm is used to help interpret regional to global SeaWiFS chlorophyll observations from using three independent, well-validated ocean color data products; the chlorophyll a concentration, absorption by CDM and particulate backscattering. First, we show that observed long-term, global-scale trends in standard chlorophyll retrievals are likely compromised by coincident changes in CDM. Second, we partition the chlorophyll signal into a component due to phytoplankton biomass changes and a component caused by physiological adjustments in intracellular chlorophyll concentrations to changes in mixed layer light levels. We show that biomass changes dominate chlorophyll signals for the high latitude seas and where persistent vertical upwelling is known to occur, while physiological processes dominate chlorophyll variability over much of the tropical and subtropical oceans. The SeaWiFS data set demonstrates complexity in the interpretation of changes in regional to global phytoplankton distributions and illustrates limitations for the assessment of phytoplankton dynamics using chlorophyll retrievals alone.
Refinement of Protocols for Measuring the Apparent Optical Properties of Seawater. Chapter 8
NASA Technical Reports Server (NTRS)
Hooker, Stanford B.; Zibordi, Giuseppe; Berthon, Jean-Francois; Nirek, Andre; Antoine, David
2003-01-01
Ocean color satellite missions, like the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) or the Moderate Resolution Imaging Spectroradiometer (MODIS) projects, are tasked with acquiring a global ocean color data set, validating and monitoring the accuracy and quality of the data, processing the radiometric data into geophysical units using a set of atmospheric and bio-optical algorithms, and distributing the final products to the scientific community. The long-standing requirement of the SeaWiFS Project, for example, is to produce spectral water-leaving radiances, LW(lambda), to within 5% absolute (lambda denotes wavelength) and chlorophyll a concentrations to within 35% (Hooker and Esaias 1993), and most ocean color sensors have the same or similar requirements. Although a diverse set of activities are required to ensure the accuracy requirements are met (Hooker and McClain 2000), the perspective here is with field observations. The accurate determination of upper ocean apparent optical properties (AOPs) is essential for the vicarious calibration of ocean color data and the validation of the derived data products, because the sea-truth measurements are used to evaluate the satellite observations (Hooker and McClain 2000). The uncertainties with in situ AOP measurements have various sources: a) the sampling procedures used in the field, including the environmental conditions encountered; b) the absolute characterization of the radiometers in the laboratory; c) the conversion of the light signals to geophysical units in a processing scheme, and d) the stability of the radiometers in the harsh environment they are subjected to during transport and use. Assuming ideal environmental conditions, so this aspect can be neglected, the SeaWiFS ground-truth uncertainty budget can only be satisfied if each uncertainty is on the order of 1-2%, or what is generally referred to as 1% radiometry. In recent years, progress has been made in estimating the magnitude of some of these uncertainties and in defining procedures for minimizing them. For the SeaWiFS Project, the first step was to convene a workshop to draft the SeaWiFS Ocean Optics Protocols (hereafter referred to as the Protocols). The Protocols initially adhered to the Joint Global Ocean Flux Study (JGOFS) sampling procedures (JGOFS 1991) and defined the standards for optical measurements to be used in SeaWiFS calibration and validation activities (Mueller and Austin 1992). Over time, the Protocols were revised (Mueller and Austin 1995), and then recurringly updated on essentially an annual basis (Mueller 2000, 2002, and 2003) as part of the Sensor Inter-comparison and Merger for Biological and Interdisciplinary Oceanic Studies (SIMBIOS) project. 98
Validation of MERIS Ocean Color Algorithms in the Mediterranean Sea
NASA Astrophysics Data System (ADS)
Marullo, S.; D'Ortenzio, F.; Ribera D'Alcalà, M.; Ragni, M.; Santoleri, R.; Vellucci, V.; Luttazzi, C.
2004-05-01
Satellite ocean color measurements can contribute, better than any other source of data, to quantify the spatial and time variability of ocean productivity and, tanks to the success of several satellite missions starting with CZCS up to SeaWiFS, MODIS and MERIS, it is now possible to start doing the investigation of interannual variations and compare level of production during different decades ([1],[2]). The interannual variability of the ocean productivity at global and regional scale can be correctly measured providing that chlorophyll estimate are based on well calibrated algorithms in order to avoid regional biases and instrumental time shifts. The calibration and validation of Ocean Color data is then one of the most important tasks of several research projects worldwide ([3], [4]). Algorithms developed to retrieve chlorophyll concentration need a specific effort to define the error ranges associated to the estimates. In particular, the empirical algorithms, calculated on regression with in situ data, require independent records to verify the degree of uncertainties associated. In addition several evidences demonstrated that regional algorithms can improve the accuracy of the satellite chlorophyll estimates [5]. In 2002, Santoleri et al. (SIMBIOS) first showed a significant overestimation of the SeaWiFS derived chlorophyll concentration in Mediterranean Sea when the standard global NASA algorithms (OC4v2 and OC4v4) are used. The same authors [6] proposed two preliminary new algorithms for the Mediterranean Sea (L-DORMA and NL-DORMA) on a basis of a bio-optical data set collected in the basin from 1998 to 2000. In 2002 Bricaud et al., [7] analyzing other bio-optical data collected in the Mediterranean, confirmed the overestimation of the chlorophyll concentration in oligotrophic conditions and proposed a new regional algorithm to be used in case of low concentrations. Recently, the number of in situ observations in the basin was increased, permitting a first evaluation of the DORMA algorithms with data not used for the algorithms empirical coefficient retrieval and an extensive validation of the new MERIS algorithm. Up to now two possible explanations of the fact that the oligotrophic waters of the Mediterranean Sea are greener than would result from their phytoplankton content alone have been proposed. Claustre et al. [8] suggested that the observed distortion effect on the blue to green ratio can be due to the presence of Saharan dust in the upper layers that enhance absorption in the blue and backscattering in the green. DOR2002 also proposed a tentative explanation of the observed distortion effect based on the hypothesis that enhanced CaCO3 concentration, due to relative abundance of coccolithophores in the oligotrophic waters of the Mediterranean Sea, can cause similar results. In this note, we show a first analysis of the performances of two regional Mediterranean OC algorithms based on SeaWiFS bands (the NL-DORMA and Bricaud et al. 2002 algorithms), the standard OC4v4 NASA algorithm and the MERIS algorithm currently used to produce chlorophyll maps for case I waters. Finally we revisit the Claustre et al. (2002) and DOR2002 hypothesis in the light of new measurements recently published by Malinverno et al. [9] and the results of the ADIOS project of EC.
NASA Astrophysics Data System (ADS)
Churilova, T.; Suslin, V.; Berseneva, G.; Georgieva, L.
At present time for the analysis and prediction of marine ecosystem state Chlorophyll and Primary production models based on optical satellite data are widely used. However, the SeaWiFS algorithms providing the transformation of color images to chlorophyll maps give inaccurate estimation of chlorophyll "a" (Chl "a") concentration in the Black Sea - an overestimation approximately two times in summer and an underestimation - ~1,5 times during the large diatom bloom in winter-spring. A development of the regional Chl "a" algorithm requires an estimation of spectral characteristics of all light absorbing components and their relationships with Chl "a" concentration. With this aim bio-optical monitoring was organized in two fixed stations in deep-water central western part of the Black Sea and in shelf waters near the Crimea. The weekly monitoring in deep-waters region allowed to determine phytoplankton community succession: seasonal dynamics of size and taxonomic structure, development of large diatoms blooming in March and coccolithophores - in June. The significant variability in pigment concentration and species content of phytoplankton is accompanied by high variability in shape of the phytoplankton absorption spectra and in values of chl a-specific absorption coefficients. This variability had seasonal character depending mostly on the optical status of phytoplankton cells and partly on taxonomic structure of phytoplankton. The pigment packaging parameter fluctuated from 0.64-0.68 (October-December) to 0.95-0.97 (April-May). The package effect depended on intracellular pigment concentration and the size and geometry of cells, which change significantly over the year, because of extremely different environmental conditions. The relationships between phytoplankton specific absorption coefficients (at 412, 443, 490, 510, 555, 678 nm) and Chl "a" concentration have been described by power functions. The contribution of detritus to total particulate absorption significantly varied and correlated with Chl "a" concentration. The main light-absorbing component in the Black Sea is colored dissolved organic matter (CDOM), its absorption at 443 nm is 50-70 % to total particulate and CDOM absorption. Special attention should be given to shelf regions. The comparison of bio-optical data for the open part with those for the shelf region showed pronounced differences: a) the relationships between phytoplankton specific absorption coefficients and Chl "a" concentrations (at 412, 443, 490, 510, 555 nm) are different; b) in the shelf waters relative absorption by detritus was higher and weakly correlated with Chl "a" in comparison with deep-water part of the Sea. Obtained relationships have been used for development of regional algorithms to estimate Chl "a" concentration. The new regional algorithm allowed to get more correct values of Chl "a" in comparison with standard SeaWiFS algorithm.
Plumes and Blooms: Observations, Analysis and Modeling for SIMBIOS
NASA Technical Reports Server (NTRS)
Siegel, D. A.; Maritorena, S.; Nelson, N. B.
2003-01-01
The goal of the Plumes and Blooms (PnB) project is to develop, validate and apply to imagery state-of-theart ocean color algorithms for quantifying sediment plumes and phytoplankton blooms for the Case I1 environment of the Santa Barbara Channel. We conduct monthly to twice-monthly transect observations across the Santa Barbara Channel to develop an algorithm development and product validation data set. The PnB field program started in the summer of 1996. At each of the 7 PnB stations, a complete verification bio-geo-optical data set is collected. Included are redundant measures of apparent optical properties (remote sensing reflectance and diffuse attenuation spectra), as well as in situ profiles of spectral absorption, beam attenuation and backscattering coefficients. Water samples are analyzed for component in vivo absorption spectra, fluorometric chlorophyll, phytoplankton pigment (by the SDSU CHORS laboratory), and inorganic nutrient concentrations (Table 1). A primary goal is to use the PnB field data set to objectively tune semi-analytical models of ocean color for this site and apply them using available satellite imagery (SeaWiFS and MODIS). In support of this goal, we have also been addressing SeaWiFS ocean color and AVHRR SST imagery (Otero and Siegel, 2003). We also are using the PnB data set to address time/space variability of water masses in the Santa Barbara Channel and its relationship to the 1997/1998 El Niiio. However, the comparison between PnB field observations and satellite estimates of primary products has been disappointing. We find that field estimates of water-leaving radiance, LwN(h), correspond poorly to satellite estimates for both SeaWiFS and MODIS local area coverage imagery. We believe this is due to poor atmospheric correction due to complex mixtures of aerosol types found in these near-coastal regions. Last, we remain active in outreach activities.
Plumes and Blooms: Modeling the Case II Waters of the Santa Barbara Channel. Chapter 15
NASA Technical Reports Server (NTRS)
Siegel, D. A.; Maritorena, S.; Nelson, N. B.
2003-01-01
The goal of the Plumes and Blooms (PnB) project is to develop, validate and apply to imagery state-of-the-art ocean color algorithms for quantifying sediment plumes and phytoplankton blooms for the Case II environment of the Santa Barbara Channel. We conduct monthly to twice-monthly transect observations across the Santa Barbara Channel to develop an algorithm development and product validation data set. The PnB field program started in the summer of 1996. At each of the 7 PnB stations, a complete verification bio-geo-optical data set is collected. Included are redundant measures of apparent optical properties (remote sensing reflectance and diffuse attenuation spectra), as well as in situ profiles of spectral absorption, beam attenuation and backscattering coefficients. Water samples are analyzed for component in vivo absorption spectra, fluorometric chlorophyll, phytoplankton pigment (by the SDSU CHORS laboratory), and inorganic nutrient concentrations. A primary goal is to use the PnB field data set to objectively tune semi-analytical models of ocean color for this site and apply them using available satellite imagery (SeaWiFS and MODIS). In support of this goal, we have also been addressing SeaWiFS ocean color and AVHRR SST imagery. We also are using the PnB data set to address time/space variability of water masses in the Santa Barbara Channel and its relationship to the 1997/1998 El Nino. However, the comparison between PnB field observations and satellite estimates of primary products has been disappointing. We find that field estimates of water-leaving radiance, L(sub wN)(lambda), correspond poorly to satellite estimates for both SeaWiFS and MODIS local area coverage imagery. We believe this is due to poor atmospheric correction due to complex mixtures of aerosol types found in these near-coastal regions. Last, we remain active in outreach activities.
Chang, Chih-Hua
2015-03-09
This paper proposes new inversion algorithms for the estimation of Chlorophyll-a concentration (Chla) and the ocean's inherent optical properties (IOPs) from the measurement of remote sensing reflectance (Rrs). With in situ data from the NASA bio-optical marine algorithm data set (NOMAD), inversion algorithms were developed by the novel gene expression programming (GEP) approach, which creates, manipulates and selects the most appropriate tree-structured functions based on evolutionary computing. The limitations and validity of the proposed algorithms are evaluated by simulated Rrs spectra with respect to NOMAD, and a closure test for IOPs obtained at a single reference wavelength. The application of GEP-derived algorithms is validated against in situ, synthetic and satellite match-up data sets compiled by NASA and the International Ocean Color Coordinate Group (IOCCG). The new algorithms are able to provide Chla and IOPs retrievals to those derived by other state-of-the-art regression approaches and obtained with the semi- and quasi-analytical algorithms, respectively. In practice, there are no significant differences between GEP, support vector regression, and multilayer perceptron model in terms of the overall performance. The GEP-derived algorithms are successfully applied in processing the images taken by the Sea Wide Field-of-view Sensor (SeaWiFS), generate Chla and IOPs maps which show better details of developing algal blooms, and give more information on the distribution of water constituents between different water bodies.
NASA Technical Reports Server (NTRS)
Pan, Xiaoju; Mannino, Antonio; Russ, Mary E.; Hooker, Stanford B.
2008-01-01
At present, satellite remote sensing of coastal water quality and constituent concentration is subject to large errors as compared to the capability of satellite sensors in oceanic waters. In this study, field measurements collected on a series of cruises within U.S. southern Middle Atlantic Bight (SMAB) were applied to improve retrievals of satellite ocean color products in order to examine the factors that regulate the bio-optical properties within the continental shelf waters of the SMAB. The first objective was to develop improvements in satellite retrievals of absorption coefficients of phytoplankton (a(sub ph)), colored dissolved organic matter (CDOM) (a(sub g)), non-pigmented particles (a(sub d)), and non-pigmented particles plus CDOM (a(sub dg)), and chlorophyll a concentration ([Chl_a]). Several algorithms were compared to derive constituent absorption coefficients from remote sensing reflectance (R(sub rs)) ratios. The validation match-ups showed that the mean absolute percent differences (MAPD) were typically less than 35%, although higher errors were found for a(sub d) retrievals. Seasonal and spatial variability of satellite-derived absorption coefficients and [Chl_a] was apparent and consistent with field data. CDOM is a major contributor to the bio-optical properties of the SMAB, accounting for 35-70% of total light absorption by particles plus CDOM at 443 nm, as compared to 30-45% for phytoplankton and 0-20% for non-pigmented particles. The overestimation of [Chl_a] from the operational satellite algorithms may be attributed to the strong CDOM absorption in this region. River discharge is important in controlling the bio-optical environment, but cannot explain all of the regional and seasonal variability of biogeochemical constituents in the SMAB.
Bio-Optical Measurements in Upwelling Ecosystems in Support of SIMBIOS. Chapter 4
NASA Technical Reports Server (NTRS)
Chavez, Francisco P.; Strutton, Peter G.; Kuwahara, Victor S.; Mahoney, Kevin L.; Drake, Eric
2003-01-01
The upwelling region of the equatorial Pacific Ocean, which spans one quarter of the earth s circumference, strongly impacts global biogeochemistry. This upwelling system has significant implications for global CO2 fluxes (Tans et al., 1990; Takahashi et al., 1997; Feely et al., 1999), as well as primary and secondary production (Chavez and Barber, 1987; Chavez and Toggweiler, 1995; Chavez et al., 1996; Dugdale and Wilkerson, 1998; Chavez et al., 1999; Strutton and Chavez, 2000). In addition, the region represents a vast oceanic (case 1) region over which validation data for SeaWiFS are needed. This project consists of an optical mooring program and cruise-based measurements focused on measuring biological and chemical variability in the equatorial Pacific and obtaining validation data for SeaWiFS.
NASA Technical Reports Server (NTRS)
Wang, Menghua
2003-01-01
The primary focus of this proposed research is for the atmospheric correction algorithm evaluation and development and satellite sensor calibration and characterization. It is well known that the atmospheric correction, which removes more than 90% of sensor-measured signals contributed from atmosphere in the visible, is the key procedure in the ocean color remote sensing (Gordon and Wang, 1994). The accuracy and effectiveness of the atmospheric correction directly affect the remotely retrieved ocean bio-optical products. On the other hand, for ocean color remote sensing, in order to obtain the required accuracy in the derived water-leaving signals from satellite measurements, an on-orbit vicarious calibration of the whole system, i.e., sensor and algorithms, is necessary. In addition, it is important to address issues of (i) cross-calibration of two or more sensors and (ii) in-orbit vicarious calibration of the sensor-atmosphere system. The goal of these researches is to develop methods for meaningful comparison and possible merging of data products from multiple ocean color missions. In the past year, much efforts have been on (a) understanding and correcting the artifacts appeared in the SeaWiFS-derived ocean and atmospheric produces; (b) developing an efficient method in generating the SeaWiFS aerosol lookup tables, (c) evaluating the effects of calibration error in the near-infrared (NIR) band to the atmospheric correction of the ocean color remote sensors, (d) comparing the aerosol correction algorithm using the singlescattering epsilon (the current SeaWiFS algorithm) vs. the multiple-scattering epsilon method, and (e) continuing on activities for the International Ocean-Color Coordinating Group (IOCCG) atmospheric correction working group. In this report, I will briefly present and discuss these and some other research activities.
NASA Astrophysics Data System (ADS)
Hsu, N.
2005-12-01
The environment in Southwest Asia exhibits one of the most complex situations for aerosol remote sensing from space. Several air masses with different aerosol characteristics commonly converge in this region. In particular, there are often fine mode pollution particles generated from oil industry activities in the Persian Gulf colliding with coarse mode dust particles lifted from desert sources in the surrounding areas. During the course of the UAE field campaign (August-October, 2004), we provided near-real time information, calculated using the Deep Blue algorithm, of satellite aerosol optical thickness and Angstrom exponent over the Southwest Asia region, including the Arabian Peninsula, Iran, Afghanistan, Pakistan, and part of north Africa. In this paper, we will present results of aerosol characteristics retrieved from SeaWiFS and MODIS over the Arabian Peninsula, Persian Gulf, and the Arabian Sea during the UAE experiment. The spectral surface reflectance data base constructed using satellite reflectance from MODIS and SeaWiFS employed in our algorithm will be discussed. We will also compare the resulting satellite retrieved aerosol optical thickness and Angstrom exponent with those obtained from the ground based sun photometers from AERONET in the region. Finally, we will discuss the changes in shortwave and longwave fluxes at the top of atmosphere in response to changes in aerosol optical thickness (i.e. aerosol forcing).
NASA Technical Reports Server (NTRS)
Abbott, Mark R.
1998-01-01
The objective of the last six months were: (1) Continue analysis of Hawaii Ocean Time-series (HOT) bio-optical mooring data, and Southern Ocean bio-optical drifter data; (2) Complete development of documentation of MOCEAN algorithms and software for use by MOCEAN team and GLI team; (3) Deploy instrumentation during JGOFS cruises in the Southern Ocean; (4) Participate in test cruise for Fast Repetition Rate (FRR) fluorometer; (5) Continue chemostat experiments on the relationship of fluorescence quantum yield to environmental factors; and (6) Continue to develop and expand browser-based information system for in situ bio-optical data. We are continuing to analyze bio-optical data collected at the Hawaii Ocean Time Series mooring as well as data from bio-optical drifters that were deployed in the Southern Ocean. A draft manuscript has now been prepared and is being revised. A second manuscript is also in preparation that explores the vector wind fields derived from NSCAT measurements. The HOT bio-optical mooring was recovered in December 1997. After retrieving the data, the sensor package was serviced and redeployed. We have begun preliminary analysis of these data, but we have only had the data for 3 weeks. However, all of the data were recovered, and there were no obvious anomalies. We will add second sensor package to the mooring when it is serviced next spring. In addition, Ricardo Letelier is funded as part of the SeaWiFS calibration/validation effort (through a subcontract from the University of Hawaii, Dr. John Porter), and he will be collecting bio-optical and fluorescence data as part of the HOT activity. This will provide additional in situ measurements for MODIS validation. As noted in the previous quarterly report, we have been analyzing data from three bio-optical drifters that were deployed in the Southern Ocean in September 1996. We presented results on chlorophyll and drifter speed. For the 1998 Ocean Sciences meeting, a paper will be presented on this data set, focusing on the diel variations in fluorescence quantum yield. Briefly, there are systematic patterns in the apparent quantum yield of fluorescence (defined as the slope of the line relating fluorescence/chlorophyll and incoming solar radiation). These systematic variations appear to be related to changes in the circulation of the Antarctic Polar Front which force nutrients into the upper ocean. A more complete analysis will be provided in the next Quarterly report.
Bio-Optical Properties of the Arabian Sea as Determined by In Situ and Sea WiFS Data
NASA Technical Reports Server (NTRS)
Trees, Charles C.
1997-01-01
The overall objective of this work was to characterize optical and fluorescence properties in the euphotic zone during two British Ocean Flux Study (BOFS) Arabian Sea cruises. This was later expanded in 1995 to include three U.S. JGOFS Arabian Sea Cruises. The region was to be divided into one or more "bio-optical provinces," within each of which a single set of regression models was to be developed to relate the vertical distribution of irradiance attenuation and normalized fluorescence (SF and NF) to remote sensing reflectance and diffuse attenuation coefficient. The working hypothesis was that over relatively large spatial and temporal scales, the vertical profiles of bio-optical properties were predictable. The specific technical objectives were: (1) To characterize the vertical distribution of the inherent and apparent optical properties by measuring downwelling and upwelling irradiances, upwelling radiances, scalar irradiance of PAR, and beam transmissions at each station - from these data, spectral diffuse attenuation coefficients, irradiance reflectances, remote sensing reflectances, surface-leaving radiances and beam attenuation coefficients were determined; (2) To characterize the spectral absorption of total particulate, detrital, and dissolved organic material at each station from discrete water samples; (3) To describe the vertical distribution of photoadaptive properties in the water column by measuring profiles of stimulated (SF) and natural (NF) fluorescence and examining relationships between SF and NF as a function of diffuse optical depth, pigment biomass and primary productivity; and (4) To establish locally derived, in-water algorithms relating remote sensing reflectance spectra to diffuse attenuation coefficients, phytoplankton pigment concentrations and primary productivity, through intercomparisons with in situ measurements, for application to SeaWiFS data.
NASA Astrophysics Data System (ADS)
McClain, Charles R.; Feldman, Gene C.; Hooker, Stanford B.
2004-01-01
The Sea-viewing Wide Field-of-view Sensor (SeaWiFS) Project Office was formally initiated at the NASA Goddard Space Flight Center in 1990. Seven years later, the sensor was launched by Orbital Sciences Corporation under a data-buy contract to provide 5 years of science quality data for global ocean biogeochemistry research. To date, the SeaWiFS program has greatly exceeded the mission goals established over a decade ago in terms of data quality, data accessibility and usability, ocean community infrastructure development, cost efficiency, and community service. The SeaWiFS Project Office and its collaborators in the scientific community have made substantial contributions in the areas of satellite calibration, product validation, near-real time data access, field data collection, protocol development, in situ instrumentation technology, operational data system development, and desktop level-0 to level-3 processing software. One important aspect of the SeaWiFS program is the high level of science community cooperation and participation. This article summarizes the key activities and approaches the SeaWiFS Project Office pursued to define, achieve, and maintain the mission objectives. These achievements have enabled the user community to publish a large and growing volume of research such as those contributed to this special volume of Deep-Sea Research. Finally, some examples of major geophysical events (oceanic, atmospheric, and terrestrial) captured by SeaWiFS are presented to demonstrate the versatility of the sensor.
NASA Technical Reports Server (NTRS)
Wang, Menghua; Franz, Bryan A.
1998-01-01
One of the primary goals of the NASA Sensor Intercomparison and Merger for Biological and Interdisciplinary Oceanic Studies (SIMBIOS) project is to develop methods for meaningful comparison and possible merging of data products from multiple ocean color missions. The Modular Optoelectronic Scanner (MOS) is a German instrument that was launched in the spring of 1996 on the Indian IRS-P3 satellite. With the successful launch of NASA's Sea-viewing Wide Field-of-view Sensor (SeaWiFS) in the summer of 1997, there are now two ocean color missions in concurrent operation and there is interest within the scientific community to compare data from these two sensors. In this paper, we describe our efforts to retrieve ocean optical properties from both SeaWiFS and MOS using consistent methods. We first briefly review the atmospheric correction, which removes more than 90% of the observed radiances in the visible, and then describe how the atmospheric correction algorithm used for the SeaWiFS data can be modified for application to other ocean color sensors. Next, since the retrieved water-leaving radiances in the visible between MOS and SeaWiFS are significantly different, we developed a vicarious intercalibration method to recalibrate the MOS spectral bands based on the optical properties of the ocean and atmosphere derived from the coincident SeaWiFS measurements. We present and discuss the MOS retrieved ocean optical properties before and after the vicarious calibration, and demonstrate the efficacy of this approach. We show that it is possible and efficient to vicariously intercalibrate sensors between one and another.
Marine Optical Characterizations
NASA Technical Reports Server (NTRS)
Clark, Dennis K.
1996-01-01
The team's major emphasis during this reporting period has been focused on the completion of the operational versions of the Marine Optical Buoys (MOBY's). Other work areas consisted of designing and testing bio-optical instrumentation, evaluating several of the SeaWiFS bio-optical protocols, processing data collected during field experiments, and reprocessing several of the Marine Optical Characteristics Experiment (MOCE) 2 and 3 bio-optical data sets. The team conducted one trip to the operations site in Honolulu, Hawaii, making necessary preparations for future field experiments. Part of the team also traveled to Moss Landing Marine Laboratories, Salinas, CA, and to American Holographic Co. Fitchburg MA, to assist with the fabrication of the next generation Marine Optical Buoys. Technical memoranda are being written to address the remote sensing reflectance, and instrument self-shading protocols. During the Ocean Color 96 meeting discussions with the Spanish on acquiring research vessel support during the MODIS validation period were conducted. A proposal will be generated towards this purpose for an experiment to be conducted off the North African coast during the summer of 1999.
Apparent Optical Properties in Waters Influenced by the Mississippi River
NASA Technical Reports Server (NTRS)
D'Sa, E.; Miller, R. L.; McKee, B. A.; Trzaska, R.
2002-01-01
In-water downwelling irradiance (E(sub d)) and upwelling radiance (L(sub u)) were measured in coastal waters influenced by the Mississippi River at wavelengths corresponding to SeaWiFS spectral bands in April of 2000. Results of derived apparent optical properties (AOP's) such as spectral diffise attenuation coefficient for downwelling irradiance (K(sub d)) suggest that they are mainly influenced by phytoplankton chlorophyll. Large variations in chlorophyll concentrations (0.2 to greater than 10 mg per cubic meters) correspond to variations in K(sub d) at 443 nm ranging from about 0.1 to greater than 1.5 per meter. Attenuation values at 443 nm generally peaked (or were minimal at 555 nm) at depths where chlorophyll concentrations were high. Above water remote sensing reflectance R(sub rs) (443) derived from E(sub d) and L(sub u) shows good agreement to surface chlorophyll. Ratios of remote sensing reflectance, R(sub rs)(443/R(sub rs)(555)versus chlorophyll suggests a potential for obtaining a suitable bio-optical algorithm for the region influenced by the Mississippi River.
NASA Astrophysics Data System (ADS)
Sayer, A. M.; Hsu, N. C.; Lee, J.; Bettenhausen, C.; Kim, W. V.; Smirnov, A.
2018-01-01
The Suomi National Polar-Orbiting Partnership (S-NPP) satellite, launched in late 2011, carries the Visible Infrared Imaging Radiometer Suite (VIIRS) and several other instruments. VIIRS has similar characteristics to prior satellite sensors used for aerosol optical depth (AOD) retrieval, allowing the continuation of space-based aerosol data records. The Deep Blue algorithm has previously been applied to retrieve AOD from Sea-viewing Wide Field-of-view Sensor (SeaWiFS) and Moderate Resolution Imaging Spectroradiometer (MODIS) measurements over land. The SeaWiFS Deep Blue data set also included a SeaWiFS Ocean Aerosol Retrieval (SOAR) algorithm to cover water surfaces. As part of NASA's VIIRS data processing, Deep Blue is being applied to VIIRS data over land, and SOAR has been adapted from SeaWiFS to VIIRS for use over water surfaces. This study describes SOAR as applied in version 1 of NASA's S-NPP VIIRS Deep Blue data product suite. Several advances have been made since the SeaWiFS application, as well as changes to make use of the broader spectral range of VIIRS. A preliminary validation against Maritime Aerosol Network (MAN) measurements suggests a typical uncertainty on retrieved 550 nm AOD of order ±(0.03+10%), comparable to existing SeaWiFS/MODIS aerosol data products. Retrieved Ångström exponent and fine-mode AOD fraction are also well correlated with MAN data, with small biases and uncertainty similar to or better than SeaWiFS/MODIS products.
Problems in Assessment of the UV Penetration into Natural Waters from Space-based Measurements
NASA Technical Reports Server (NTRS)
Vasilkov, Alexander P.; Herman, Jay; Krotkov, Nickolay A.; Kahru, Mati; Mitchell, B. Greg; Hsu, Christina; Bhartia, P. K. (Technical Monitor)
2002-01-01
Satellite instruments currently provide global maps of surface UV (ultraviolet) irradiance by combining backscattered radiance data with radiative transfer models. The models are often limited by uncertainties in physical input parameters of the atmosphere and surface. Global mapping of the underwater UV irradiance creates further challenges for the models. The uncertainties in physical input parameters become more serious because of the presence of absorbing and scattering quantities caused by biological processes within the oceans. In this paper we summarize the problems encountered in the assessment of the underwater UV irradiance from space-based measurements, and propose approaches to resolve the problems. We have developed a radiative transfer scheme for computation of the UV irradiance in the atmosphere-ocean system. The scheme makes use of input parameters derived from satellite instruments such as TOMS (Total Ozone Mapping Spectrometer) and SeaWiFS (Sea-viewing Wide Field-of-view Sensor). The major problem in assessment of the surface UV irradiance is to accurately quantify the effects of clouds. Unlike the standard TOMS UV algorithm, we use the cloud fraction products available from SeaWiFS and MODIS (Moderate Resolution Imaging Spectrometer) to calculate instantaneous surface flux at the ocean surface. Daily UV doses can be calculated by assuming a model of constant cloudiness throughout the day. Both SeaWiFS and MODIS provide some estimates of seawater optical properties in the visible. To calculate the underwater UV flux the seawater optical properties must be extrapolated down to shorter wavelengths. Currently, the problem of accurate extrapolation of visible data down to the UV spectral range is not solved completely, and there are few available measurements. The major difficulty is insufficient correlation between photosynthetic and photoprotective pigments of phytoplankton absorbing in the visible and UV respectively. We propose to empirically parameterize seawater absorption in the UV on a basis of available data sets of bio-optical measurements from a variety of ocean waters. Another problem is the lack of reliable data on pure seawater absorption in the UV. Laboratory measurements of the UV absorption of both pure water and pure seawater are required.
NASA Technical Reports Server (NTRS)
Mueller, James L.
2001-01-01
This Sensor Intercomparison and Merger for Biological and Interdisciplinary Oceanic Studies (SIMBIOS) contract supports acquisition of match up radiometric and bio-optical data for validation of Sea-Viewing Wide Field-of-view Sensor (SeaWiFS) and other ocean color satellites, and evaluation of uncertainty budgets and protocols for in situ measurements of normalized water leaving radiances.
NASA Astrophysics Data System (ADS)
Hsu, N.; Tsay, S.; Jeong, M.; Holben, B.
2006-12-01
Among the many components that contribute to air pollution, airborne mineral dust plays an important role due to its biogeochemical impact on the ecosystem and its radiative-forcing effect on the climate system. In East Asia, dust storms frequently accompany the cold and dry air masses that occur as part of spring-time cold front systems. China's capital, Beijing, and other large cities are on the primary pathway of these dust storm plumes, and their passage over such popu-lation centers causes flight delays, pushes grit through windows and doors, and forces people indoors. Furthermore, during the spring these anthropogenic and natural air pollutants, once generated over the source regions, can be transported out of the boundary layer into the free troposphere and can travel thousands of kilometers across the Pacific into the United States and beyond. In this paper, we will demonstrate the capability of a new satellite algorithm to retrieve aerosol optical thickness and single scattering albedo over bright-reflecting surfaces such as urban areas and deserts. Such retrievals have been dif-ficult to perform using previously available algorithms that use wavelengths from the mid-visible to the near IR because they have trouble separating the aerosol signal from the contribution due to the bright surface reflectance. The new algorithm, called Deep Blue, utilizes blue-wavelength measurements from instruments such as SeaWiFS and MODIS to infer the properties of aerosols, since the surface reflectance over land in the blue part of the spectrum is much lower than for longer wavelength channels. We have validated the satellite retrieved aerosol optical thickness with data from AERONET sunphotometers over desert and semi-desert regions. The compari-sons show reasonable agreements between these two. These new satellite prod-ucts will allow scientists to determine quantitatively the aerosol properties near sources using high spatial resolution measurements from SeaWiFS and MODIS-like instruments. The multiyear satellite measurements since 1998 from SeaWiFS will be utilized to investigate the interannual variability of source, pathway, and dust loading associated with these dust outbreaks in East Asia. The monthly av-eraged aerosol optical thickness during the springtime from SeaWiFS will also be compared with the MODIS Deep Blue products.
NASA Technical Reports Server (NTRS)
Hsu, N. Christina
2007-01-01
Among the many components that contribute to air pollution, airborne mineral dust plays an important role due to its biogeochemical impact on the ecosystem and its radiative-forcing effect on the climate system. In East Asia, dust storms frequently accompany the cold and dry air masses that occur as part of springtime cold front systems. China's capital, Beijing, and other large cities are on the primary pathway of these dust storm plumes, and their passage over such population centers causes flight delays, pushes grit through windows and doors, and forces people indoors. Furthermore, during the spring these anthropogenic and natural air pollutants, once generated over the source regions, can be transported out of the boundary layer into the free troposphere and can travel thousands of kilometers across the Pacific into the United States and beyond. In this paper, we will demonstrate the capability of a new satellite algorithm to retrieve aerosol optical thickness and single scattering albedo over bright-reflecting surfaces such as urban areas and deserts. Such retrievals have been difficult to perform using previously available algorithms that use wavelengths from the mid-visible to the near IR because they have trouble separating the aerosol signal from the contribution due to the bright surface reflectance. The new algorithm, called Deep Blue, utilizes blue-wavelength measurements from instruments such as SeaWiFS and MODIS to infer the properties of aerosols, since the surface reflectance over land in the blue part of the spectrum is much lower than for longer wavelength channels. We have validated the satellite retrieved aerosol optical thickness with data from AERONET sunphotometers over desert and semi-desert regions. The comparisons show reasonable agreements between these two. These new satellite products will allow scientists to determine quantitatively the aerosol properties near sources using high spatial resolution measurements from SeaWiFS and MODIS-like instruments. The multiyear satellite measurements since 1998 from SeaWiFS will be utilized to investigate the interannual variability of source, pathway, and dust loading associated with these dust outbreaks in East Asia. The monthly averaged aerosol optical thickness during the springtime from SeaWiFS will also be compared with the MODIS Deep Blue products.
NASA Technical Reports Server (NTRS)
Hsu, N. Christina; Tsay, S.-C.; Bettenhausen, C.; Salustro, C.; Jeong, M. J.
2010-01-01
Among the many components that contribute to air pollution, airborne mineral dust plays an important role due to its biogeochernical impact on the ecosystem and its radiative-forcing effect on the climate system. In East Asia, dust storms frequently accompany the cold and dry air masses that occur as part of springtime cold front systems. China's capital, Beijing, and other large cities are on the primary pathway of these dust storm plumes, and their passage over such population centers causes flight delays, pushes grit through windows and doors, and forces people indoors. Furthermore, during the spring these anthropogenic and natural air pollutants, once generated over the source regions, can be transported out of the boundary layer into the free troposphere and can travel thousands of kilometers across the Pacific into the United States and beyond. In this paper, we will demonstrate the capability of a new satellite algorithm to retrieve aerosol optical thickness and single scattering albedo over bright reflecting surfaces such as urban areas and deserts. Such retrievals have been difficult to perform using previously available algorithms that use wavelengths from the mid-visible to the near IR because they have trouble separating the aerosol signal from the contribution due to the bright surface reflectance. The new algorithm, called Deep Blue, utilizes blue-wavelength measurements from instruments such as SeaWiFS and MODIS to infer the properties of aerosols, since the surface reflectance over land in the blue part of the spectrum is much lower than for longer wavelength channels. We have validated the satellite retrieved aerosol optical thickness with data from AERONET sunphotometers over desert and semi-desert regions. The comparisons show reasonable agreements between these two. These new satellite products will allow scientists to determine quantitatively the aerosol properties near sources using high spatial resolution measurements from SeaWiFS and MODIS-like instruments. The multiyear satellite measurements since 1998 from SeaWiFS will be utilized to investigate the interannual variability of source, pathway, and dust loading associated with these dust outbreaks in East Asia. The monthly averaged aerosol optical thickness during the springtime from SeaWiFS will also be compared with the MODIS Deep Blue products.
NASA Technical Reports Server (NTRS)
Hooker, Stanford B. (Editor); Firestone, Elaine R. (Editor); Barlow, Ray; Sessions, Heather; Silulwane, Nonkqubela; Engel, Hermann; Aiken, James; Fishwick, James; Martinez-Vicente, Victor; Morel, Andre
2003-01-01
This report documents the scientific activities on board the South African Fisheries Research Ship (FRS) Africana during an ocean color calibration and validation cruise in the Benguela upwelling ecosystem (BEN-CAL), 4-17 October 2002. The cruise, denoted Afncana voyage 170, was staged in the southern Benguela between Cape Town and the Orange River within the region 14-18.5 deg E,29-34 deg S, with 15 scientists participat- ing from seven different international organizations. Uniquely in October 2002, four high-precision ocean color sensors were operational, and these included the Moderate Resolution Imaging Spectroradiometer (MODIS) instruments on the Aqua and Terra spacecraft, the Medium Resolution Imaging Spectrometer (MERIS), and the Sea-viewing Wide Field-of-view Sensor (SeaWiFS). SeaWiFS imagery was transmitted daily to the ship to assist in choosing the vessel's course and selecting stations for bio-optical deployments. There were four primary objectives of the cruise. The first was to conduct bio-optical measurements with above- and in-water optical instruments to vicariously calibrate the satellite sensors. The second was to interrelate diverse measurements of the apparent optical properties (AOPs) at satellite sensor wavelengths with inherent optical properties (IOPs) and bio-optically active constituents of seawater such as particles, pigments, and dissolved compounds. The third was to determine the interrelationships between optical properties, phytoplankton pigment composition, photosynthetic rates, and primary production, while the fourth objective was to collect samples for a second pigment round-robin intercalibration experiment. Weather conditions were generally very favorable, and a range of hyperspectral and fixed wavelength AOP instruments were deployed during daylight hours. Various IOP instruments were used to determine the absorption, attenuation, scattering, and backscattering properties of particulate matter and dissolved substances, while a Fast Repetition Rate Fluorometer (FRRF) was deployed to acquire data on phytoplankton photosynthetic activity. Hydrographic profiling was conducted routinely during the cruise, and seawater samples were collected for measurements of salinity, oxygen, inorganic nutrients, pigments, particulate organic carbon, suspended particulate material, and primary production. Location of stations and times of optical deployments were selected to coincide with satellite overpasses whenever possible, and to cover a large range in trophic conditions.
Test of the Semi-Analytical Case 1 and Gelbstoff Case 2 SeaWiFS Algorithm with a Global Data Set
NASA Technical Reports Server (NTRS)
Carder, Kendall L.
1997-01-01
The algorithm-development activities at USF during the second half of 1997 have concentrated on data collection and theoretical modeling. Six abstracts were submitted for presentation at the AGU conference in San Diego, California during February 9-13, 1998. Four papers were submitted to JGR and Applied Optics for publication.
Ocean Optics Protocols for Satellite Ocean Color Sensor Validation. Revised
NASA Technical Reports Server (NTRS)
Fargion, Giulietta S.; Mueller, James L.
2000-01-01
The document stipulates protocols for measuring bio-optical and radiometric data for the Sensor Intercomparison and Merger for Biological and Interdisciplinary Oceanic Studies (SIMBIOS) Project activities and algorithm development. This document supersedes the earlier version (Mueller and Austin 1995) published as Volume 25 in the SeaWiFS Technical Report Series. This document marks a significant departure from, and improvement on, theformat and content of Mueller and Austin (1995). The authorship of the protocols has been greatly broadened to include experts specializing in some key areas. New chapters have been added to provide detailed and comprehensive protocols for stability monitoring of radiometers using portable sources, abovewater measurements of remote-sensing reflectance, spectral absorption measurements for discrete water samples, HPLC pigment analysis and fluorometric pigment analysis. Protocols were included in Mueller and Austin (1995) for each of these areas, but the new treatment makes significant advances in each topic area. There are also new chapters prescribing protocols for calibration of sun photometers and sky radiance sensors, sun photometer and sky radiance measurements and analysis, and data archival. These topic areas were barely mentioned in Mueller and Austin (1995).
Bio-Optical and Remote Sensing Observations in Chesapeake Bay. Chapter 7
NASA Technical Reports Server (NTRS)
Harding, Lawrence W., Jr.; Magnuson, Andrea
2003-01-01
The high temporal and spatial resolution of satellite ocean color observations will prove invaluable for monitoring the health of coastal ecosystems where physical and biological variability demands sampling scales beyond that possible by ship. However, ocean color remote sensing of Case 2 waters is a challenging undertaking due to the optical complexity of the water. The focus of this SIMBIOS support has been to provide in situ optical measurements from Chesapeake Bay (CB) and adjacent mid-Atlantic bight (MAB) waters for use in algorithm development and validation efforts to improve the satellite retrieval of chlorophyll (chl a) in Case 2 waters. CB provides a valuable site for validation of data from ocean color sensors for a number of reasons. First, the physical dimensions of the Bay (> 6,500 km2) make retrievals from satellites with a spatial resolution of approx. 1 km (i.e., SeaWiFS) or less (i.e., MODIS) reasonable for most of the ecosystem. Second, CB is highly influenced by freshwater flow from major rivers, making it a classic Case 2 water body with significant concentrations of chlorophyll, particulates and chromophoric dissolved organic matter (CDOM) that highly impact the shape of reflectance spectra.
Sea WiFS Postlaunch Technical Report Series. Volume 8; The SeaBOARR-99 Field Campaign
NASA Technical Reports Server (NTRS)
Hooker, Stanford B. (Editor); Firestone, Elaine R. (Editor); Lazin, Gordana (Editor)
2000-01-01
This report documents the scientific activities during the second Sea-viewing Wide Field-of-view Sensor (Sea- WIFS) Bio-Optical Algorithm Round-Robin (SeaBOARR-99) field campaign, which took place from 2 May to 7 June 1999 on board the Royal Research Ship James Clark Ross during the eighth Atlantic Meridional Transect cruise (AMT-8). The ultimate objective of the SeaBOARR activity is to evaluate the effect of different measurement protocols on bio-optical algorithms using data from a variety of field campaigns. The SeaBOARR-99 field campaign was concerned with collecting a high quality data set of simultaneous in-water and above-water radiometric measurements. The deployment goals documented in this report were to: a) use four different surface glint correction methods to compute water-leaving radiances, Lw(lambda), from above-water data; b) use two different in-water profiling systems and three different methods to compute Lw(lambda) from in-water data; c) use instruments with a common calibration history to minimize intercalibration uncertainties; d) monitor the calibration stability of the instruments in the field with the original SeaWiFS Quality Monitor (SQM) and a commercial, second-generation device called the SQM-II, thereby allowing a distinction between differences in methods from changes in instrument performance; and e) compare the Lw(lambda) values estimated from the above- water and in- water measurements. In addition to describing the instruments deployed and the data collected, a preliminary analysis of part of the SeaBOARR-99 data set is presented (using only the data collected during clear sky, calm sea, and Case-I waters).
NASA Technical Reports Server (NTRS)
Hsu, Christina N.; Tsay, Si-Chee; Herman, R.; Holben, Brent; Bhartia, P. K. (Technical Monitor)
2002-01-01
The primary goal of the ACE (Aerosol Characterization Experiment)-Asia mission is to increase our understanding of how atmospheric aerosol particles over the Asian-Pacific region affect the Earth climate system. In support of the day-to-day flight planning of ACE-Asia, we built a near real-time system to provide satellite data from the polar-orbiting instruments Earth Probe TOMS (Total Ozone Mapping Spectrometer) (in the form of absorbing aerosol index) and SeaWiFS (Sea-Viewing Wide Field-of-View Sensor) (in the form of aerosol optical thickness and Angstrom exponent). The results were available via web access. These satellite data provide a 'big picture' of aerosol distribution in the region, which is complementary to the ground based measurements. In this paper, we will briefly discuss the algorithms used to generate these data. The retrieved aerosol optical thickness and Angstrom exponent from SeaWiFS will be compared with those obtained from various AERONET (Aerosol Robotic Network) sites over the Asian-Pacific region. The TOMS aerosol index will also be compared with AERONET aerosol optical thickness over different aerosol conditions. Finally, we will discuss the climate implication of our studies using the combined satellite and AERONET observations.
NASA Astrophysics Data System (ADS)
Jolliff, Jason K.; Kindle, John C.; Penta, Bradley; Helber, Robert; Lee, Zhongping; Shulman, Igor; Arnone, Robert; Rowley, Clark D.
2008-03-01
Three years of Sea-viewing Wide Field-of-view Sensor (SeaWiFS) ocean color data were combined with three-dimensional thermal fields generated by the U.S. Navy's Modular Ocean Data Assimilation System (MODAS) in order to examine the interdependencies between bio-optical fields and their relationship to seasonal and mesoscale changes in upper ocean thermal structure. The combined data set suggests that the oceanic boundary layer within the Gulf of Mexico may be broadly defined by two seasonally occurring bio-thermal periods. A winter mixing period, characterized by net heat losses to the atmosphere, deepening of the isothermal layer depth, and annual maxima of satellite-estimated colored detrital matter (CDM) absorption coefficients and surface pigment concentration, was followed by a thermally stratified period characterized by net surface ocean heating, reduced isothermal layer depths, and annual minima in surface bio-optical fields. Variability in the interdependencies of ocean color products was used to diagnose an attendant shift in the size-structure of surface phytoplankton communities as well as identify CDM as the constituent responsible for the majority of blue-light absorption in Gulf of Mexico surface waters. The mesoscale circulation, as resolved by MODAS thermal fields into cold and warm-core eddies, appears to significantly modulate the seasonal bio-optical cycle of CDM absorption and surface pigment concentration. An empirical model was developed to describe CDM absorption as a function of upper ocean thermal energy. The model accounted for nearly half the variance in the satellite-estimate of this bio-optical variable. Large mismatches between the model and satellite data implied episodes of shelf water export to the deep Gulf of Mexico.
NASA Technical Reports Server (NTRS)
Moore, Timothy; Dowell, Mark; Franz, Bryan A.
2012-01-01
A generalized coccolithophore bloom classifier has been developed for use with ocean color imagery. The bloom classifier was developed using extracted satellite reflectance data from SeaWiFS images screened by the default bloom detection mask. In the current application, we extend the optical water type (OWT) classification scheme by adding a new coccolithophore bloom class formed from these extracted reflectances. Based on an in situ coccolithophore data set from the North Atlantic, the detection levels with the new scheme were between 1,500 and 1,800 coccolithophore cellsmL and 43,000 and 78,000 lithsmL. The detected bloom area using the OWT method was an average of 1.75 times greater than the default bloom detector based on a collection of SeaWiFS 1 km imagery. The versatility of the scheme is shown with SeaWiFS, MODIS Aqua, CZCS and MERIS imagery at the 1 km scale. The OWT scheme was applied to the daily global SeaWiFS imagery mission data set (years 19972010). Based on our results, average annual coccolithophore bloom area was more than two times greater in the southern hemisphere compared to the northern hemi- sphere with values of 2.00 106 km2 and 0.75 106 km2, respectively. The new algorithm detects larger bloom areas in the Southern Ocean compared to the default algorithm, and our revised global annual average of 2.75106 km2 is dominated by contributions from the Southern Ocean.
The Bermuda Bio-Optics Program (BBOP). Chapter 16
NASA Technical Reports Server (NTRS)
Siegel, David A.
2001-01-01
The Bermuda Bio-Optics Project (BBOP) is a collaborative effort between the Institute for Computational Earth System Science (ICESS) at the University of California at Santa Barbara (UCSB) and the Bermuda Biological Station for Research (BBSR). This research program is designed to characterize light availability and utilization in the Sargasso Sea, and to provide an optical link by which biogeochemical observations may be used to evaluate bio-optical models for pigment concentration, primary production, and sinking particle fluxes from satellite-based ocean color sensors. The BBOP time-series was initiated in 1992, and is carried out in conjunction with the US JGOFS Bermuda Atlantic Time-series Study (BATS) at the Bermuda Biological Station for Research. The BATS program itself has been observing biogeochemical processes (primary productivity, particle flux at and elemental cycles) in the mesotrophic waters of the Sargasso Sea since 1988. Closely affiliated with BBOP and BATS is a separate NASA-funded study of the spatial variability of biogeochemical processes in the Sargasso Sea using high-resolution Advanced Very High Resolution Radiometer (AVHRR) and Sea-Viewing Wide Field-of-view Sensor (SeaWiFS) data collected at Bermuda. The collaboration between BATS and BBOP measurements has resulted in a unique data set that addresses not only the SIMBIOS goals but also the broader issues of important factors controlling the carbon cycle.
Bermuda Bio Optics Project. Chapter 14
NASA Technical Reports Server (NTRS)
Nelson, Norm
2003-01-01
The Bermuda BioOptics Project (BBOP) is a collaborative effort between the Institute for Computational Earth System Science (ICESS) at the University of California at Santa Barbara (UCSB) and the Bermuda Biological Station for Research (BBSR). This research program is designed to characterize light availability and utilization in the Sargasso Sea, and to provide an optical link by which biogeochemical observations may be used to evaluate bio-optical models for pigment concentration, primary production, and sinking particle fluxes from satellite-based ocean color sensors. The BBOP time-series was initiated in 1992, and is carried out in conjunction with the U.S. JGOFS Bermuda Atlantic Time-series Study (BATS) at the Bermuda Biological Station for Research. The BATS program itself has been observing biogeochemical processes (primary productivity, particle flux and elemental cycles) in the mesotrophic waters of the Sargasso Sea since 1988. Closely affiliated with BBOP and BATS is a separate NASA-funded study of the spatial variability of biogeochemical processes in the Sargasso Sea using high-resolution AVHRR and SeaWiFS data collected at Bermuda (N. Nelson, P.I.). The collaboration between BATS and BBOP measurements has resulted in a unique data set that addresses not only the SIMBIOS goals but also the broader issues of important factors controlling the carbon cycle.
The Bermuda BioOptics Project (BBOP) Years 9-11
NASA Technical Reports Server (NTRS)
Maritorena, S.; Siegel, D. A.; Nelson, Norm B.
2004-01-01
The Bermuda BioOptics Project (BBOP) is a collaborative effort between the Institute for Computational Earth System Science (ICESS) at the University of California at Santa Barbara (UCSB) and the Bermuda Biological Station for Research (BBSR). This research program is designed to characterize light availability and utilization in the Sargasso Sea, and to provide an optical link by which biogeochemical observations may be used to evaluate bio-optical models for pigment concentration, primary production, and sinking particle fluxes from satellite-based ocean color sensors. The BBOP time-series was initiated in 1992, and is carried out in conjunction with the U.S. JGOFS Bermuda Atlantic Time-series Study (BATS) at the Bermuda Biological Station for Research. The BATS program itself has been observing biogeochemical processes (primary productivity, particle flux and elemental cycles) in the mesotrophic waters of the Sargasso Sea since 1988. Closely affiliated with BBOP and BATS is a separate NASA-funded study of the spatial variability of biogeochemical processes in the Sargasso Sea using high-resolution AVHRR and SeaWiFS data collected at Bermuda. The collaboration between BATS and BBOP measurements has resulted in a unique data set that addresses not only the SIMBIOS goals but also the broader issues of important factors controlling the carbon cycle.
USDA-ARS?s Scientific Manuscript database
Bio-optical algorithms have been applied to monitor water quality in surface water systems. Empirical algorithms, such as Ritchie (2008), Gons (2008), and Gilerson (2010), have been applied to estimate the chlorophyll-a (chl-a) concentrations. However, the performance of each algorithm severely degr...
Global Long-Term SeaWiFS Deep Blue Aerosol Products available at NASA GES DISC
NASA Technical Reports Server (NTRS)
Shen, Suhung; Sayer, A. M.; Bettenhausen, Corey; Wei, Jennifer C.; Ostrenga, Dana M.; Vollmer, Bruce E.; Hsu, Nai-Yung; Kempler, Steven J.
2012-01-01
Long-term climate data records about aerosols are needed in order to improve understanding of air quality, radiative forcing, and for many other applications. The Sea-viewing Wide Field-of-view Sensor (SeaWiFS) provides a global well-calibrated 13- year (1997-2010) record of top-of-atmosphere radiance, suitable for use in retrieval of atmospheric aerosol optical depth (AOD). Recently, global aerosol products derived from SeaWiFS with Deep Blue algorithm (SWDB) have become available for the entire mission, as part of the NASA Making Earth Science data records for Use in Research for Earth Science (MEaSUREs) program. The latest Deep Blue algorithm retrieves aerosol properties not only over bright desert surfaces, but also vegetated surfaces, oceans, and inland water bodies. Comparisons with AERONET observations have shown that the data are suitable for quantitative scientific use [1],[2]. The resolution of Level 2 pixels is 13.5x13.5 km2 at the center of the swath. Level 3 daily and monthly data are composed by using best quality level 2 pixels at resolution of both 0.5ox0.5o and 1.0ox1.0o. Focusing on the southwest Asia region, this presentation shows seasonal variations of AOD, and the result of comparisons of 5-years (2003- 2007) of AOD from SWDB (Version 3) and MODIS Aqua (Version 5.1) for Dark Target (MYD-DT) and Deep Blue (MYD-DB) algorithms.
SeaWiFS technical report series. Volume 28: SeaWiFS algorithms, part 1
NASA Technical Reports Server (NTRS)
Hooker, Stanford B. (Editor); Firestone, Elaine R. (Editor); Acker, James G. (Editor); Mcclain, Charles R.; Arrigo, Kevin; Esaias, Wayne E.; Darzi, Michael; Patt, Frederick S.; Evans, Robert H.; Brown, James W.
1995-01-01
This document provides five brief reports that address several algorithm investigations sponsored by the Calibration and Validation Team (CVT) within the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) Project. This volume, therefore, has been designated as the first in a series of algorithm volumes. Chapter 1 describes the initial suite of masks, used to prevent further processing of contaminated radiometric data, and flags, which are employed to mark data whose quality (due to a variety of factors) may be suspect. In addition to providing the mask and flag algorithms, this chapter also describes the initial strategy for their implementation. Chapter 2 evaluates various strategies for the detection of clouds and ice in high latitude (polar and sub-polar regions) using Coastal Zone Color Scanner (CZCS) data. Chapter 3 presents an algorithm designed for detecting and masking coccolithosphore blooms in the open ocean. Chapter 4 outlines a proposed scheme for correcting the out-of-band response when SeaWiFS is in orbit. Chapter 5 gives a detailed description of the algorithm designed to apply sensor calibration data during the processing of level-1b data.
Long-term Satellite Observations of Asian Dust Storm: Source, Pathway, and Interannual Variability
NASA Technical Reports Server (NTRS)
Hsu, N. Christina
2008-01-01
Among the many components that contribute to air pollution, airborne mineral dust plays an important role due to its biogeochemical impact on the ecosystem and its radiative-forcing effect on the climate system. In East Asia, dust storms frequently accompany the cold and dry air masses that occur as part of springtime cold front systems. Outbreaks of Asian dust storms occur often in the arid and semi-arid areas of northwestern China -about 1.6x10(exp 6) square kilometers including the Gobi and Taklimakan deserts- with continuous expanding of spatial coverage. These airborne dust particles, originating in desert areas far from polluted regions, interact with anthropogenic sulfate and soot aerosols emitted from Chinese megacities during their transport over the mainland. Adding the intricate effects of clouds and marine aerosols, dust particles reaching the marine environment can have drastically different properties than those from their sources. Furthermore, these aerosols, once generated over the source regions, can be transported out of the boundary layer into the free troposphere and can travel thousands of kilometers across the Pacific into the United States and beyond. In this paper, we will demonstrate the capability of a new satellite algorithm to retrieve aerosol properties (e.g., optical thickness, single scattering albedo) over bright-reflecting surfaces such as urban areas and deserts. Such retrievals have been difficult to perform using previously available algorithms that use wavelengths from the mid-visible to the near IR because they have trouble separating the aerosol signal from the contribution due to the bright surface reflectance. This new algorithm, called Deep Blue, utilizes blue-wavelength measurements from instruments such as SeaWiFS and MODIS to infer the properties of aerosols, since the surface reflectance over land in the blue part of the spectrum is much lower than for longer wavelength channels. Reasonable agreements have been achieved between Deep Blue retrievals of aerosol optical thickness and those directly from AERONET sunphotometers over desert and semi-desert regions. New Deep Blue products will allow scientists to determine quantitatively the aerosol properties near sources using high spatial resolution measurements from SeaWiFS and MODIS-like instruments. Long-term satellite measurements (1998 - 2007) from SeaWiFS will be utilized to investigate the interannual variability of source, pathway, and dust loading associated with the Asian dust storm outbreaks. In addition, monthly averaged aerosol optical thickness during the springtime from SeaWiFS will also be compared with the MODIS Deep Blue products.
USDA-ARS?s Scientific Manuscript database
Several bio-optical algorithms were developed to estimate the chlorophyll-a (Chl-a) and phycocyanin (PC) concentrations in inland waters. This study aimed at identifying the influence of the algorithm parameters and wavelength bands on output variables and searching optimal parameter values. The opt...
SeaWiFS Technical Report Series. Volume 41; Case Studies for SeaWiFS Calibration and Validation
NASA Technical Reports Server (NTRS)
Yeh, Eueng-nan; Barnes, Robert A.; Darzi, Michael; Kumar, Lakshmi; Early, Edward A.; Johnson, B. Carol; Mueller, James L.; Trees, Charles C.
1997-01-01
This document provides brief reports, or case studies, on a number of investigations sponsored by the Calibration and Validation Team (CVT) within the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) Project. Chapter I describes the calibration and characterization of the GSFC sphere, which was used in the recent recalibration of the SeaWiFS instrument. Chapter 2 presents a revision of the diffuse attenuation coefficient, K(490), algorithm based on the SeaWiFS wavelengths. Chapter 3 provides an implementation scheme for an algorithm to remove out-of-band radiance when using a sensor calibration based on a finite width (truncated) spectral response function, e.g., between the 1% transmission points. Chapter 4 describes the implementation schemes for the stray light quality flag (local area coverage [LAC] and global area coverage [GAC]) and the LAC stray light correction.
Algorithm Updates for the Fourth SeaWiFS Data Reprocessing
NASA Technical Reports Server (NTRS)
Hooker, Stanford, B. (Editor); Firestone, Elaine R. (Editor); Patt, Frederick S.; Barnes, Robert A.; Eplee, Robert E., Jr.; Franz, Bryan A.; Robinson, Wayne D.; Feldman, Gene Carl; Bailey, Sean W.
2003-01-01
The efforts to improve the data quality for the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) data products have continued, following the third reprocessing of the global data set in May 2000. Analyses have been ongoing to address all aspects of the processing algorithms, particularly the calibration methodologies, atmospheric correction, and data flagging and masking. All proposed changes were subjected to rigorous testing, evaluation and validation. The results of these activities culminated in the fourth reprocessing, which was completed in July 2002. The algorithm changes, which were implemented for this reprocessing, are described in the chapters of this volume. Chapter 1 presents an overview of the activities leading up to the fourth reprocessing, and summarizes the effects of the changes. Chapter 2 describes the modifications to the on-orbit calibration, specifically the focal plane temperature correction and the temporal dependence. Chapter 3 describes the changes to the vicarious calibration, including the stray light correction to the Marine Optical Buoy (MOBY) data and improved data screening procedures. Chapter 4 describes improvements to the near-infrared (NIR) band correction algorithm. Chapter 5 describes changes to the atmospheric correction and the oceanic property retrieval algorithms, including out-of-band corrections, NIR noise reduction, and handling of unusual conditions. Chapter 6 describes various changes to the flags and masks, to increase the number of valid retrievals, improve the detection of the flag conditions, and add new flags. Chapter 7 describes modifications to the level-la and level-3 algorithms, to improve the navigation accuracy, correct certain types of spacecraft time anomalies, and correct a binning logic error. Chapter 8 describes the algorithm used to generate the SeaWiFS photosynthetically available radiation (PAR) product. Chapter 9 describes a coupled ocean-atmosphere model, which is used in one of the changes described in Chapter 4. Finally, Chapter 10 describes a comparison of results from the third and fourth reprocessings along the US. Northeast coast.
The Bermuda BioOptics Project (BBOP) Years 9-11
NASA Technical Reports Server (NTRS)
Nelson, Norm
2003-01-01
The Bermuda BioOptics Project (BBOP) is a collaborative effort between the Institute for Computational Earth System Science (ICESS) at the University of California at Santa Barbara (UCSB) and the Bermuda Biological Station for Research (BBSR). This research program is designed to characterize light availability and utilization in the Sargasso Sea, and to provide an optical link by which biogeochemical observations may be used to evaluate bio-optical models for pigment concentration, primary production, and sinking particle fluxes from satellite-based ocean color sensors. The BBOP time-series was initiated in 1992, and is carried out in conjunction with the U.S. JGOFS Bermuda Atlantic Time-series Study (BATS) at the Bermuda Biological Station for Research. The BATS program itself has been observing biogeochemical processes (primary productivity, particle flux and elemental cycles) in the mesotrophic waters of the Sargasso Sea since 1988. Closely affiliated with BBOP and BATS is a separate NASA-funded study of the spatial variability of biogeochemical processes in the Sargasso Sea using high-resolution AVHRR and SeaWiFS data collected at Bermuda. The collaboration between BATS and BBOP measurements has resulted in a unique data set that addresses not only the SIMBIOS goals but also the broader issues of important factors controlling the carbon cycle. This final report addresses specific research activities, research results, and lists of presentations and papers submitted for publication.
SeaWiFS Postlaunch Technical Report Series. Volume 1; The SeaWiFS Transfer Radiometer (SXR)
NASA Technical Reports Server (NTRS)
Hooker, Stanford B. (Editor); Firestone, Elaine R. (Editor); Johnson, B. Carol; Cromer, Christopher L.
1998-01-01
The SeaWiFS Transfer Radiometer (SXR) was built for the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) Project as part of an Interagency Agreement with the National Aeronautics and Space Administration (NASA). The SXR is a multichannel radiometer designed to verify and compare measurements of spectral radiance at six discrete wavelengths in the visible and near infrared for various calibration sources in the SeaWiFS Project. In addition, the SXR is used to compare these sources to standards of spectral radiance maintained at the National Institute of Standards and Technology (NIST). The SXR was designed, built, and thoroughly characterized in the Optical Technology Division at NIST. A unique optical design provides six independent optical paths, each equipped with a temperature stabilized interference filter and silicon photodiode. A separate beam path through the input lens is used to visually align the SXR. The entrance windows for each channel overlap at the source, with each channel sampling a unique solid angle within the field of view of the SXR; this allows for simultaneous sampling of all channels. The combined standard relative uncertainty of spectral radiance measurements with the SXR is estimated to be between 0.6% and 1.3%. This report describes the design and construction of the SXR in detail, and gives the results of the optical characterization and calibrations done at NIST. The SXR has been used for several intercomparisons which include several SeaWiFS Intercalibration Round-Robin Experiments (SIRREXs); those done at the Marine Optical Buoy (MOBY) laboratories in Honolulu, Hawaii; at the NEC Corporation in Yokohama, Japan; and Orbital Sciences Corporation (OSC) in Germantown, Maryland. Thorough optical characterization and calibration of the SXR was essential to the successful application of the radiometer for these measurements.
NASA Astrophysics Data System (ADS)
Melesse, Assefa; Hajigholizadeh, Mohammad; Blakey, Tara
2017-04-01
In this study, Landsat 8 and Sea-Viewing Wide Field-of-View Sensor (SeaWIFS) sensors were used to model the spatiotemporal changes of four water quality parameters: Landsat 8 (turbidity, chlorophyll-a (chl-a), total phosphate, and total nitrogen) and Sea-Viewing Wide Field-of-View Sensor (SeaWIFS) (algal blooms). The study was conducted in Florda bay, south Florida and model outputs were compared with in-situ observed data. The Landsat 8 based study found that, the predictive models to estimate chl-a and turbidity concentrations, developed through the use of stepwise multiple linear regression (MLR), gave high coefficients of determination in dry season (wet season) (R2 = 0.86(0.66) for chl-a and R2 = 0.84(0.63) for turbidity). Total phosphate and TN were estimated using best-fit multiple linear regression models as a function of Landsat TM and OLI,127 and ground data and showed a high coefficient of determination in dry season (wet season) (R2 = 0.74(0.69) for total phosphate and R2 = 0.82(0.82) for TN). Similarly, the ability of SeaWIFS for chl-a retrieval from optically shallow coastal waters by applying algorithms specific to the pixels' benthic class was evaluated. Benthic class was determined through satellite image-based classification methods. It was found that benthic class based chl-a modeling algorithm was better than the existing regionally-tuned approach. Evaluation of the residuals indicated the potential for further improvement to chl-a estimation through finer characterization of benthic environments. Key words: Landsat, SeaWIFS, water quality, Florida bay, Chl-a, turbidity
The bio-optical signatures of harmful algal blooms can be used to define ocean color satellite algorithms. We characterized the bio-optical properties of nutrient-replete cultures of the red tide dinoflagellate Gymnodinium breve and the diatom Thalassiosira weissflogii. We cultur...
A real-time photo-realistic rendering algorithm of ocean color based on bio-optical model
NASA Astrophysics Data System (ADS)
Ma, Chunyong; Xu, Shu; Wang, Hongsong; Tian, Fenglin; Chen, Ge
2016-12-01
A real-time photo-realistic rendering algorithm of ocean color is introduced in the paper, which considers the impact of ocean bio-optical model. The ocean bio-optical model mainly involves the phytoplankton, colored dissolved organic material (CDOM), inorganic suspended particle, etc., which have different contributions to absorption and scattering of light. We decompose the emergent light of the ocean surface into the reflected light from the sun and the sky, and the subsurface scattering light. We establish an ocean surface transmission model based on ocean bidirectional reflectance distribution function (BRDF) and the Fresnel law, and this model's outputs would be the incident light parameters of subsurface scattering. Using ocean subsurface scattering algorithm combined with bio-optical model, we compute the scattering light emergent radiation in different directions. Then, we blend the reflection of sunlight and sky light to implement the real-time ocean color rendering in graphics processing unit (GPU). Finally, we use two kinds of radiance reflectance calculated by Hydrolight radiative transfer model and our algorithm to validate the physical reality of our method, and the results show that our algorithm can achieve real-time highly realistic ocean color scenes.
SeaWiFS technical report series. Volume 4: An analysis of GAC sampling algorithms. A case study
NASA Technical Reports Server (NTRS)
Yeh, Eueng-Nan (Editor); Hooker, Stanford B. (Editor); Hooker, Stanford B. (Editor); Mccain, Charles R. (Editor); Fu, Gary (Editor)
1992-01-01
The Sea-viewing Wide Field-of-view Sensor (SeaWiFS) instrument will sample at approximately a 1 km resolution at nadir which will be broadcast for reception by realtime ground stations. However, the global data set will be comprised of coarser four kilometer data which will be recorded and broadcast to the SeaWiFS Project for processing. Several algorithms for degrading the one kilometer data to four kilometer data are examined using imagery from the Coastal Zone Color Scanner (CZCS) in an effort to determine which algorithm would best preserve the statistical characteristics of the derived products generated from the one kilometer data. Of the algorithms tested, subsampling based on a fixed pixel within a 4 x 4 pixel array is judged to yield the most consistent results when compared to the one kilometer data products.
SeaWiFS Science Algorithm Flow Chart
NASA Technical Reports Server (NTRS)
Darzi, Michael
1998-01-01
This flow chart describes the baseline science algorithms for the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) Data Processing System (SDPS). As such, it includes only processing steps used in the generation of the operational products that are archived by NASA's Goddard Space Flight Center (GSFC) Distributed Active Archive Center (DAAC). It is meant to provide the reader with a basic understanding of the scientific algorithm steps applied to SeaWiFS data. It does not include non-science steps, such as format conversions, and places the greatest emphasis on the geophysical calculations of the level-2 processing. Finally, the flow chart reflects the logic sequences and the conditional tests of the software so that it may be used to evaluate the fidelity of the implementation of the scientific algorithm. In many cases however, the chart may deviate from the details of the software implementation so as to simplify the presentation.
Near-Real-Time Detection and Monitoring of Dust Events by Satellite (SeaWIFS, MODIS, and TOMS)
NASA Technical Reports Server (NTRS)
Hsu, N. Christina; Tsay, Si-Chee; Herman, Jay R.; Kaufman, Yoram
2002-01-01
Over the last few years satellites have given us increasingly detailed information on the size, location, and duration of dust events around the world. These data not only provide valuable feedback to the modelling community as to the fidelity of their aerosol models but are also finding increasing use in near real-time applications. In particular, the ability to locate and track the development of aerosol dust clouds on a near real-time basis is being used by scientists and government to provide warning of air pollution episodes over major urban area. This ability has also become a crucial component of recent coordinated campaigns to study the characteristics of tropospheric aerosols such as dust and their effect on climate. One such recent campaign was ACE-Asia, which was designed to obtain the comprehensive set of ground, aircraft, and satellite data necessary to provide a detailed understanding of atmospheric aerosol particles over the Asian-Pacific region. As part of ACE-Asia, we developed a near real-time data processing and access system to provide satellite data from the polar-orbiting instruments Earth Probe TOMS (in the form of absorbing aerosol index) and SeaWiFS (in the form of aerosol optical thickness, AOT, and Angstrom exponent). The results were available via web access. The location and movement information provided by these data were used both in support of the day-to-day flight planning of ACE-Asia and as input into aerosol transport models. While near real-time SeaWiFS data processing can be performed using either the normal global data product or data obtained via direct broadcast to receiving stations close to the area of interest, near real-time MODIS processing of data to provide aerosol retrievals is currently only available using its direct broadcast capability. In this paper, we will briefly discuss the algorithms used to generate these data. The retrieved aerosol optical thickness and Angstrom exponent from SeaWiFS will be compared with those obtained from various AERONET sites over the Asian-Pacific region. The TOMS aerosol index will also be compared with AERONET aerosol optical thickness over different aerosol conditions, and comparisons between the MODIS and SeaWiFS data will also be presented. Finally, we will discuss the climate implication of our studies using the combined satellite and AERONET observations.
NASA Technical Reports Server (NTRS)
Hsu, N. Christina; Tsay, S.-C.; Bettenhausen, C.; Sayer, A.
2011-01-01
Among the many components that contribute to air pollution, airborne mineral dust plays an important role due to its biogeochemical impact on the ecosystem and its radiative-forcing effect on the climate system. In East Asia, dust storms frequently accompany the cold and dry air masses that occur as part of springtime cold front systems. China's capital, Beijing, and other large cities are on the primary pathway of these dust storm plumes, and their passage over such population centers causes flight delays, pushes grit through windows and doors, and forces peop Ie indoors. Furthermore, during the spring these anthropogenic and natural air pollutants, once generated over the source regions, can be tran sported out of the boundary layer into the free troposphere and can travel thousands of kilometers across the Pacific into the United States and beyond. In this paper, we will demonstrate the capability of a new satellite algorithm to retrieve aerosol optical thickness and single scattering albedo over brightreflecting surfaces such as urban areas and deserts. Such retrievals have been difficult to perform using previously available algorithms that use wavelengths from the mid-visible to the near IR because they have trouble separating the aerosol signal from the contribution due to the bright surface reflectance. The new algorithm, called Deep Blue, utilizes blue-wavelength measurements from instruments such as Sea WiFS and MODIS to infer the properties of aerosols, since the surface reflectance over land in the blue part of the spectrum is much lower than for longer wavelength channels. We have validated the satellite retrieved aerosol optical thickness with data from AERONET sunphotometers over desert and semi-desert regions. The comparisons show reasonable agreements between these two. These new satellite products will allow scientists to determine quantitatively the aerosol properties near sources using high spatial resolution measurements from Sea WiFS and MODISlike instruments. The multiyear satellite measurements since 1998 from SeaWiFS will be utilized to investigate the interannual variability of source, pathway, and dust loading associated with these dust outbreaks in East Asia. The monthly averaged aerosol optical thickness during the springtime from SeaWiFS will also be compared with the MODIS Deep Blue products.
NASA Technical Reports Server (NTRS)
Mannino, A.; Hooker, S. B.; Hyde, K.; Novak, M. G.; Pan, X.; Friedrichs, M.; Cahill, B.; Wilkin, J.
2011-01-01
Estuaries and the coastal ocean experience a high degree of variability in the composition and concentration of particulate and dissolved organic matter (DOM) as a consequence of riverine and estuarine fluxes of terrigenous DOM, sediments, detritus and nutrients into coastal waters and associated phytoplankton blooms. Our approach integrates biogeochemical measurements, optical properties and remote sensing to examine the distributions and inventories of organic carbon in the U.S. Middle Atlantic Bight and Gulf of Maine. Algorithms developed to retrieve colored DOM (CDOM), Dissolved (DOC) and Particulate Organic Carbon (POC) from NASA's MODIS-Aqua and SeaWiFS satellite sensors are applied to quantify the distributions and inventories of DOC and POC. Horizontal fluxes of DOC and POC from the continental margin to the open ocean are estimated from SeaWiFS and MODIS-Aqua distributions of DOC and POC and horizontal divergence fluxes obtained from the Northeastern North Atlantic ROMS model. SeaWiFS and MODIS imagery reveal the importance of estuarine outflow to the export of CDOM and DOC to the coastal ocean and a net community production of DOC on the shelf.
Bio-Optical Measurement and Modeling of the California Current and Southern Oceans
NASA Technical Reports Server (NTRS)
Mitchell, B. Gregg; Mitchell, B. Greg
2003-01-01
The SIMBIOS project's principal goals are to validate standard or experimental ocean color products through detailed bio-optical and biogeochemical measurements, and to combine Ocean optical observations with modeling to contribute to satellite vicarious radiometric calibration and algorithm development.
NASA Technical Reports Server (NTRS)
Falkowski, Paul G.; Behrenfeld, Michael J.; Esaias, Wayne E.; Balch, William; Campbell, Janet W.; Iverson, Richard L.; Kiefer, Dale A.; Morel, Andre; Yoder, James A.; Hooker, Stanford B. (Editor);
1998-01-01
Two issues regarding primary productivity, as it pertains to the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) Program and the National Aeronautics and Space Administration (NASA) Mission to Planet Earth (MTPE) are presented in this volume. Chapter 1 describes the development of a science plan for deriving primary production for the world ocean using satellite measurements, by the Ocean Primary Productivity Working Group (OPPWG). Chapter 2 presents discussions by the same group, of algorithm classification, algorithm parameterization and data availability, algorithm testing and validation, and the benefits of a consensus primary productivity algorithm.
NASA Astrophysics Data System (ADS)
Ghulam Saber, Md; Arif Shahriar, Kh; Ahmed, Ashik; Hasan Sagor, Rakibul
2016-10-01
Particle swarm optimization (PSO) and invasive weed optimization (IWO) algorithms are used for extracting the modeling parameters of materials useful for optics and photonics research community. These two bio-inspired algorithms are used here for the first time in this particular field to the best of our knowledge. The algorithms are used for modeling graphene oxide and the performances of the two are compared. Two objective functions are used for different boundary values. Root mean square (RMS) deviation is determined and compared.
Woerd, Hendrik J van der; Wernand, Marcel R
2015-10-09
The colours from natural waters differ markedly over the globe, depending on the water composition and illumination conditions. The space-borne "ocean colour" instruments are operational instruments designed to retrieve important water-quality indicators, based on the measurement of water leaving radiance in a limited number (5 to 10) of narrow (≈10 nm) bands. Surprisingly, the analysis of the satellite data has not yet paid attention to colour as an integral optical property that can also be retrieved from multispectral satellite data. In this paper we re-introduce colour as a valuable parameter that can be expressed mainly by the hue angle (α). Based on a set of 500 synthetic spectra covering a broad range of natural waters a simple algorithm is developed to derive the hue angle from SeaWiFS, MODIS, MERIS and OLCI data. The algorithm consists of a weighted linear sum of the remote sensing reflectance in all visual bands plus a correction term for the specific band-setting of each instrument. The algorithm is validated by a set of 603 hyperspectral measurements from inland-, coastal- and near-ocean waters. We conclude that the hue angle is a simple objective parameter of natural waters that can be retrieved uniformly for all space-borne ocean colour instruments.
Marine optical characterizations
NASA Technical Reports Server (NTRS)
Clark, Dennis K.; Ge, Yuntao; Hovey, Phil; King, ED; Stengel, Eric; Yuen, Marilyn; Koval, Larisa
1995-01-01
During the past three months, the MOCE Team conducted two field experiments in Mill Creek,Chesapeake Bay, from July 24 to August 4, and at the MOBY operations site at Snug Harbor, Honolulu, Hawaii, from August 15-30, prepared two technical memoranda, and continued MOCE-2 and MOCE-3 data reduction. The primary purposes of the experiments were to test the SeaWiFS 'remote sensing reflectance' protocol, obtain turbid water data for ocean color satellite algorithm development, perform calibration for both Near Infrared (NIR) and Visible Rainbow Spectrometer system, continue assembling the operational Marine Optical Buoy, and to test the MOBY cellular phone communications link at the Lanai mooring site.
An Overview of SIMBIOS Program Activities and Accomplishments. Chapter 1
NASA Technical Reports Server (NTRS)
Fargion, Giulietta S.; McClain, Charles R.
2003-01-01
The SIMBIOS Program was conceived in 1994 as a result of a NASA management review of the agency's strategy for monitoring the bio-optical properties of the global ocean through space-based ocean color remote sensing. At that time, the NASA ocean color flight manifest included two data buy missions, the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) and Earth Observing System (EOS) Color, and three sensors, two Moderate Resolution Imaging Spectroradiometers (MODIS) and the Multi-angle Imaging Spectro-Radiometer (MISR), scheduled for flight on the EOS-Terra and EOS-Aqua satellites. The review led to a decision that the international assemblage of ocean color satellite systems provided ample redundancy to assure continuous global coverage, with no need for the EOS Color mission. At the same time, it was noted that non-trivial technical difficulties attended the challenge (and opportunity) of combining ocean color data from this array of independent satellite systems to form consistent and accurate global bio-optical time series products. Thus, it was announced at the October 1994 EOS Interdisciplinary Working Group meeting that some of the resources budgeted for EOS Color should be redirected into an intercalibration and validation program (McClain et al., 2002).
Wang, Menghua
2006-12-10
The current ocean color data processing system for the Sea-viewing Wide Field-of-View Sensor (SeaWiFS) and the moderate resolution imaging spectroradiometer (MODIS) uses the Rayleigh lookup tables that were generated using the vector radiative transfer theory with inclusion of the polarization effects. The polarization effects, however, are not accounted for in the aerosol lookup tables for the ocean color data processing. I describe a study of the aerosol polarization effects on the atmospheric correction and aerosol retrieval algorithms in the ocean color remote sensing. Using an efficient method for the multiple vector radiative transfer computations, aerosol lookup tables that include polarization effects are generated. Simulations have been carried out to evaluate the aerosol polarization effects on the derived ocean color and aerosol products for all possible solar-sensor geometries and the various aerosol optical properties. Furthermore, the new aerosol lookup tables have been implemented in the SeaWiFS data processing system and extensively tested and evaluated with SeaWiFS regional and global measurements. Results show that in open oceans (maritime environment), the aerosol polarization effects on the ocean color and aerosol products are usually negligible, while there are some noticeable effects on the derived products in the coastal regions with nonmaritime aerosols.
NASA Astrophysics Data System (ADS)
Wang, Danshi; Zhang, Min; Li, Ze; Song, Chuang; Fu, Meixia; Li, Jin; Chen, Xue
2017-09-01
A bio-inspired detector based on the artificial neural network (ANN) and genetic algorithm is proposed in the context of a coherent optical transmission system. The ANN is designed to mitigate 16-quadrature amplitude modulation system impairments, including linear impairment: Gaussian white noise, laser phase noise, in-phase/quadrature component imbalance, and nonlinear impairment: nonlinear phase. Without prior information or heuristic assumptions, the ANN, functioning as a machine learning algorithm, can learn and capture the characteristics of impairments from observed data. Numerical simulations were performed, and dispersion-shifted, dispersion-managed, and dispersion-unmanaged fiber links were investigated. The launch power dynamic range and maximum transmission distance for the bio-inspired method were 2.7 dBm and 240 km greater, respectively, than those of the maximum likelihood estimation algorithm. Moreover, the linewidth tolerance of the bio-inspired technique was 170 kHz greater than that of the k-means method, demonstrating its usability for digital signal processing in coherent systems.
Ocean observations with EOS/MODIS: Algorithm development and post launch studies
NASA Technical Reports Server (NTRS)
Gordon, Howard R.
1995-01-01
Several significant accomplishments were made during the present reporting period. (1) Initial simulations to understand the applicability of the MODerate Resolution Imaging Spectrometer (MODIS) 1380 nm band for removing the effects of stratospheric aerosols and thin cirrus clouds were completed using a model for an aged volcanic aerosol. The results suggest that very simple procedures requiring no a priori knowledge of the optical properties of the stratospheric aerosol may be as effective as complex procedures requiring full knowledge of the aerosol properties, except the concentration which is estimated from the reflectance at 1380 nm. The limitations of this conclusion will be examined in the next reporting period; (2) The lookup tables employed in the implementation of the atmospheric correction algorithm have been modified in several ways intended to improve the accuracy and/or speed of processing. These have been delivered to R. Evans for implementation into the MODIS prototype processing algorithm for testing; (3) A method was developed for removal of the effects of the O2 'A' absorption band from SeaWiFS band 7 (745-785 nm). This is important in that SeaWiFS imagery will be used as a test data set for the MODIS atmospheric correction algorithm over the oceans; and (4) Construction of a radiometer, and associated deployment boom, for studying the spectral reflectance of oceanic whitecaps at sea was completed. The system was successfully tested on a cruise off Hawaii on which whitecaps were plentiful during October-November. This data set is now under analysis.
Validating and improving long-term aerosol data records from SeaWiFS
NASA Astrophysics Data System (ADS)
Bettenhausen, C.; Hsu, N. C.; Sayer, A. M.; Huang, J.; Gautam, R.
2011-12-01
Natural and anthropogenic aerosols influence the radiative balance of the Earth through direct and indirect interactions with incoming solar radiation. However, the quantification of these interactions and their ultimate effect on the Earth's climate still have large uncertainties. This is partly due to the limitations of current satellite data records which include short satellite lifetimes, retrieval algorithm uncertainty, or insufficient calibration accuracy. We have taken the first steps in overcoming this hurdle with the production and public release of an aerosol data record using the radiances from the Sea-viewing Wide Field-of-View Sensor (SeaWiFS). SeaWiFS was launched in late 1997 and provided exceptionally well-calibrated top-of-atmosphere radiance data until December 2010, more than 13 years. We have partnered this data with an expanded Deep Blue aerosol retrieval algorithm. In accordance with Deep Blue's original focus, the latest algorithm retrieves aerosol properties not only over bright desert surfaces, but also over oceans and vegetated surfaces. With this combination of a long time series and global algorithm, we can finally identify the changing patterns of regional aerosol loading and provide insight into long-term variability and trends of aerosols on regional and global scales. In this work, we provide an introduction to SeaWiFS, the current algorithms, and our aerosol data records. We have validated the data over land and ocean with ground measurements from the Aerosol Robotic Network (AERONET) and compared them with other satellites such as MODIS and MISR. Looking ahead to the next data release, we will also provide details on the implemented and planned algorithm improvements, and subsequent validation results.
van der Woerd, Hendrik J.; Wernand, Marcel R.
2015-01-01
The colours from natural waters differ markedly over the globe, depending on the water composition and illumination conditions. The space-borne “ocean colour” instruments are operational instruments designed to retrieve important water-quality indicators, based on the measurement of water leaving radiance in a limited number (5 to 10) of narrow (≈10 nm) bands. Surprisingly, the analysis of the satellite data has not yet paid attention to colour as an integral optical property that can also be retrieved from multispectral satellite data. In this paper we re-introduce colour as a valuable parameter that can be expressed mainly by the hue angle (α). Based on a set of 500 synthetic spectra covering a broad range of natural waters a simple algorithm is developed to derive the hue angle from SeaWiFS, MODIS, MERIS and OLCI data. The algorithm consists of a weighted linear sum of the remote sensing reflectance in all visual bands plus a correction term for the specific band-setting of each instrument. The algorithm is validated by a set of 603 hyperspectral measurements from inland-, coastal- and near-ocean waters. We conclude that the hue angle is a simple objective parameter of natural waters that can be retrieved uniformly for all space-borne ocean colour instruments. PMID:26473859
Bio-optical water quality dynamics observed from MERIS in Pensacola Bay, Florida
Observed bio-optical water quality data collected from 2009 to 2011 in Pensacola Bay, Florida were used to develop empirical remote sensing retrieval algorithms for chlorophyll a (Chla), colored dissolved organic matter (CDOM), and suspended particulate matter (SPM). Time-series ...
Algorithm-development activities
NASA Technical Reports Server (NTRS)
Carder, Kendall L.
1994-01-01
The task of algorithm-development activities at USF continues. The algorithm for determining chlorophyll alpha concentration, (Chl alpha) and gelbstoff absorption coefficient for SeaWiFS and MODIS-N radiance data is our current priority.
The Sensitivity of SeaWiFS Ocean Color Retrievals to Aerosol Amount and Type
NASA Technical Reports Server (NTRS)
Kahn, Ralph A.; Sayer, Andrew M.; Ahmad, Ziauddin; Franz, Bryan A.
2016-01-01
As atmospheric reflectance dominates top-of-the-atmosphere radiance over ocean, atmospheric correction is a critical component of ocean color retrievals. This paper explores the operational Sea-viewing Wide Field-of-View Sensor (SeaWiFS) algorithm atmospheric correction with approximately 13 000 coincident surface-based aerosol measurements. Aerosol optical depth at 440 nm (AOD(sub 440)) is overestimated for AOD below approximately 0.1-0.15 and is increasingly underestimated at higher AOD; also, single-scattering albedo (SSA) appears overestimated when the actual value less than approximately 0.96.AOD(sub 440) and its spectral slope tend to be overestimated preferentially for coarse-mode particles. Sensitivity analysis shows that changes in these factors lead to systematic differences in derived ocean water-leaving reflectance (Rrs) at 440 nm. The standard SeaWiFS algorithm compensates for AOD anomalies in the presence of nonabsorbing, medium-size-dominated aerosols. However, at low AOD and with absorbing aerosols, in situ observations and previous case studies demonstrate that retrieved Rrs is sensitive to spectral AOD and possibly also SSA anomalies. Stratifying the dataset by aerosol-type proxies shows the dependence of the AOD anomaly and resulting Rrs patterns on aerosol type, though the correlation with the SSA anomaly is too subtle to be quantified with these data. Retrieved chlorophyll-a concentrations (Chl) are affected in a complex way by Rrs differences, and these effects occur preferentially at high and low Chl values. Absorbing aerosol effects are likely to be most important over biologically productive waters near coasts and along major aerosol transport pathways. These results suggest that future ocean color spacecraft missions aiming to cover the range of naturally occurring and anthropogenic aerosols, especially at wavelengths shorter than 440 nm, will require better aerosol amount and type constraints.
NASA Technical Reports Server (NTRS)
Abbott, Mark R.
1996-01-01
The objectives of the last six months were: (1) Complete sensitivity analysis of fluorescence; line height algorithms (2) Deliver fluorescence algorithm code and test data to the University of Miami for integration; (3) Complete analysis of bio-optical data from Southern Ocean cruise; (4) Conduct laboratory experiments based on analyses of field data; (5) Analyze data from bio-optical mooring off Hawaii; (6) Develop calibration/validation plan for MODIS fluorescence data; (7) Respond to the Japanese Research Announcement for GLI; and (8) Continue to review plans for EOSDIS and assist ECS contractor.
NASA Technical Reports Server (NTRS)
Hooker, Stanford B. (Editor); Firestone, Elaine R. (Editor); Acker, James G. (Editor); Campbell, Janet W.; Blaisdell, John M.; Darzi, Michael
1995-01-01
The level-3 data products from the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) are statistical data sets derived from level-2 data. Each data set will be based on a fixed global grid of equal-area bins that are approximately 9 x 9 sq km. Statistics available for each bin include the sum and sum of squares of the natural logarithm of derived level-2 geophysical variables where sums are accumulated over a binning period. Operationally, products with binning periods of 1 day, 8 days, 1 month, and 1 year will be produced and archived. From these accumulated values and for each bin, estimates of the mean, standard deviation, median, and mode may be derived for each geophysical variable. This report contains two major parts: the first (Section 2) is intended as a users' guide for level-3 SeaWiFS data products. It contains an overview of level-0 to level-3 data processing, a discussion of important statistical considerations when using level-3 data, and details of how to use the level-3 data. The second part (Section 3) presents a comparative statistical study of several binning algorithms based on CZCS and moored fluorometer data. The operational binning algorithms were selected based on the results of this study.
NASA Technical Reports Server (NTRS)
Hsu, N. C.; Gautam, R.; Sayer, A. M.; Bettenhausen, C.; Li, C.; Jeong, M. J.; Tsay, S. C.; Holben, B. N.
2012-01-01
Both sensor calibration and satellite retrieval algorithm play an important role in the ability to determine accurately long-term trends from satellite data. Owing to the unprecedented accuracy and long-term stability of its radiometric calibration, the SeaWiFS measurements exhibit minimal uncertainty with respect to sensor calibration. In this study, we take advantage of this well-calibrated set of measurements by applying a newly-developed aerosol optical depth (AOD) retrieval algorithm over land and ocean to investigate the distribution of AOD, and to identify emerging patterns and trends in global and regional aerosol loading during its 13-year mission. Our results indicate that the averaged AOD trend over global ocean is weakly positive from 1998 to 2010 and comparable to that observed by MODIS but opposite in sign to that observed by AVHRR during overlapping years. On a smaller scale, different trends are found for different regions. For example, large upward trends are found over the Arabian Peninsula that indicate a strengthening of the seasonal cycle of dust emission and transport processes over the whole region as well as over downwind oceanic regions. In contrast, a negative-neutral tendency is observed over the desert/arid Saharan region as well as in the associated dust outflow over the north Atlantic. Additionally, we found decreasing trends over the eastern US and Europe, and increasing trends over countries such as China and India that are experiencing rapid economic development. In general, these results are consistent with those derived from ground-based AERONET measurements.
NASA Technical Reports Server (NTRS)
Mitchell, B. Greg; Kahru, Mati; Marra, John (Technical Monitor)
2002-01-01
Support for this project was used to develop satellite ocean color and temperature indices (SOCTI) for the California Current System (CCS) using the historic record of CZCS West Coast Time Series (WCTS), OCTS, WiFS and AVHRR SST. The ocean color satellite data have been evaluated in relation to CalCOFI data sets for chlorophyll (CZCS) and ocean spectral reflectance and chlorophyll OCTS and SeaWiFS. New algorithms for the three missions have been implemented based on in-water algorithm data sets, or in the case of CZCS, by comparing retrieved pigments with ship-based observations. New algorithms for absorption coefficients, diffuse attenuation coefficients and primary production have also been evaluated. Satellite retrievals are being evaluated based on our large data set of pigments and optics from CalCOFI.
The Airborne Ocean Color Imager - System description and image processing
NASA Technical Reports Server (NTRS)
Wrigley, Robert C.; Slye, Robert E.; Klooster, Steven A.; Freedman, Richard S.; Carle, Mark; Mcgregor, Lloyd F.
1992-01-01
The Airborne Ocean Color Imager was developed as an aircraft instrument to simulate the spectral and radiometric characteristics of the next generation of satellite ocean color instrumentation. Data processing programs have been developed as extensions of the Coastal Zone Color Scanner algorithms for atmospheric correction and bio-optical output products. The latter include several bio-optical algorithms for estimating phytoplankton pigment concentration, as well as one for the diffuse attenuation coefficient of the water. Additional programs have been developed to geolocate these products and remap them into a georeferenced data base, using data from the aircraft's inertial navigation system. Examples illustrate the sequential data products generated by the processing system, using data from flightlines near the mouth of the Mississippi River: from raw data to atmospherically corrected data, to bio-optical data, to geolocated data, and, finally, to georeferenced data.
NASA Technical Reports Server (NTRS)
Hooker, Stanford B. (Editor); Acker, James G. (Editor); Firestone, Elaine R. (Editor); Mcclain, Charles R.; Fraser, Robert S.; Mclean, James T.; Darzi, Michael; Firestone, James K.; Patt, Frederick S.; Schieber, Brian D.
1994-01-01
This document provides brief reports, or case studies, on a number of investigations and data set development activities sponsored by the Calibration and Validation Team (CVT) within the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) Project. Chapter 1 is a comparison with the atmospheric correction of Coastal Zone Color Scanner (CZCS) data using two independent radiative transfer formulations. Chapter 2 is a study on lunar reflectance at the SeaWiFS wavelengths which was useful in establishing the SeaWiFS lunar gain. Chapter 3 reports the results of the first ground-based solar calibration of the SeaWiFS instrument. The experiment was repeated in the fall of 1993 after the instrument was modified to reduce stray light; the results from the second experiment will be provided in the next case studies volume. Chapter 4 is a laboratory experiment using trap detectors which may be useful tools in the calibration round-robin program. Chapter 5 is the original data format evaluation study conducted in 1992 which outlines the technical criteria used in considering three candidate formats, the hierarchical data format (HDF), the common data format (CDF), and the network CDF (netCDF). Chapter 6 summarizes the meteorological data sets accumulated during the first three years of CZCS operation which are being used for initial testing of the operational SeaWiFS algorithms and systems and would be used during a second global processing of the CZCS data set. Chapter 7 describes how near-real time surface meteorological and total ozone data required for the atmospheric correction algorithm will be retrieved and processed. Finally, Chapter 8 is a comparison of surface wind products from various operational meteorological centers and field observations. Surface winds are used in the atmospheric correction scheme to estimate glint and foam radiances.
Effects of Cross-Shelf Physical Forcing on Satellite Bio-Optical Properties
NASA Astrophysics Data System (ADS)
Ladner, S. D.; Teague, W. J.; Mitchell, D. A.; Goode, W. A.; Gould, R. W.; Arnone, R. A.
2005-05-01
Our goal is to determine the effects of cross-shelf physical forcing on the optical properties in the northern Gulf of Mexico using in situ optical profiles and surface ocean color satellite images from SeaWiFS. The Naval Research Laboratory at Stennis Space Center is conducting an extensive monitoring program in the Northeast Gulf of Mexico west of the Desoto Canyon. During the Slope to Shelf Energetics and Exchange Dynamics (SEED) project, 14 bottom mounted Acoustic Doppler Current Profilers (ADCP's) were deployed from May-December 2004 along the shelf break at depths ranging from 60 to 1000 meters to improve understanding of cross-shelf exchange processes. Analysis of the May current data indicate abnormal events, including 30 cm/s off-shelf currents throughout the water column and a 3° Celsius elevation in bottom temperature. Coincident optical profiles were collected in May (absorption, scattering coefficients) and are compared with currents and physical properties (temperature, salinity). Similar subsurface abnormalities with stronger currents occurred in September during the passing of Hurricane Ivan over the mooring sites. We will show a time series of near-surface current speeds and their effect on the surface-satellite optical properties over the entire SEED sampling exercise.
Carvalho, Gustavo A.; Minnett, Peter J.; Banzon, Viva F.; Baringer, Warner; Heil, Cynthia A.
2011-01-01
We present a simple algorithm to identify Karenia brevis blooms in the Gulf of Mexico along the west coast of Florida in satellite imagery. It is based on an empirical analysis of collocated matchups of satellite and in situ measurements. The results of this Empirical Approach is compared to those of a Bio-optical Technique – taken from the published literature – and the Operational Method currently implemented by the NOAA Harmful Algal Bloom Forecasting System for K. brevis blooms. These three algorithms are evaluated using a multi-year MODIS data set (from July, 2002 to October, 2006) and a long-term in situ database. Matchup pairs, consisting of remotely-sensed ocean color parameters and near-coincident field measurements of K. brevis concentration, are used to assess the accuracy of the algorithms. Fair evaluation of the algorithms was only possible in the central west Florida shelf (i.e. between 25.75°N and 28.25°N) during the boreal Summer and Fall months (i.e. July to December) due to the availability of valid cloud-free matchups. Even though the predictive values of the three algorithms are similar, the statistical measure of success in red tide identification (defined as cell counts in excess of 1.5 × 104 cells L−1) varied considerably (sensitivity—Empirical: 86%; Bio-optical: 77%; Operational: 26%), as did their effectiveness in identifying non-bloom cases (specificity—Empirical: 53%; Bio-optical: 65%; Operational: 84%). As the Operational Method had an elevated frequency of false-negative cases (i.e. presented low accuracy in detecting known red tides), and because of the considerable overlap between the optical characteristics of the red tide and non-bloom population, only the other two algorithms underwent a procedure for further inspecting possible detection improvements. Both optimized versions of the Empirical and Bio-optical algorithms performed similarly, being equally specific and sensitive (~70% for both) and showing low levels of uncertainties (i.e. few cases of false-negatives and false-positives: ~30%)—improved positive predictive values (~60%) were also observed along with good negative predictive values (~80%). PMID:22180667
Penetration of UV Radiation in the Earth's Oceans
NASA Technical Reports Server (NTRS)
Mitchell, B. Greg; Lubin, Dan
2005-01-01
This project was a collaboration between SIO/UCSD and NASA/GSFC to develop a global estimation of the penetration of UV light into open ocean waters, and into coastal waters. We determined the ocean UV reflectance spectra seen by satellites above the atmosphere by combining existing sophisticated radiative transfer models with in situ UV Visible data sets to improve coupled radiance estimates both underwater and within the atmosphere. Results included improved estimates of surface spectral irradiance, 0.3-1.0 micron, and estimates of photosynthetic inhibition, DNA mutation, and CO production. Data sets developed under this proposal have been made publicly available via submission to the SeaWiFS Bio-Optical Archive and Storage System. Numerous peer-reviewed publications and conference proceedings and abstracts resulted from the work supported by this research award.
NASA Astrophysics Data System (ADS)
Hu, C.; Le, C.; English, D.; Cannizzaro, J.; Kovach, C.
2012-12-01
Significant advances have been made in ocean color remote sensing of water turbidity and water clarity of estuarine waters, yet accurate estimate of the water column chlorophyll-a concentrations (Chla in mg m-3) has been problematic. Here, a novel empirical Chla algorithm was developed and validated for MODIS and SeaWiFS observations between 1998 and 2011 for Tampa Bay, the largest estuary (~1000 km2) in the state of Florida, USA. The algorithm showed robust performance with two independent datasets, with relative mean uncertainties of ~30% and ~50% and RMS uncertainties of ~40% and ~65%,respectively, for Chla ranging between 1.0 and > 30.0 mg m-3. Together with other bio-optical parameters measured from this moderately turbid estuary, these data showed that although the total light absorption in the blue-green wavelengths is dominated by dissolved organic matter, the variability in light penetration (or water clarity) is mainly determined by particulate absorption rather than CDOM absorption. Thus, nutrient reduction management actions that reduce phytoplankton blooms can effectively increase the light availability on the bottom. Long-term Chla time series from SeaWiFS and MODIS observations showed both seasonal and inter-annual variations. On average, river discharge could explain ~60% of the seasonal changes and ~90% of the inter-annual changes, with the latter mainly driven by climate variability (e.g. El Niño and La Niño years) and anomaly events (e.g. tropical cyclones). Significant correlation was found between monthly mean Chla anomalies and monthly Multivariate ENSO Index (MEI) (Pearson correlation coefficient = 0.43, p<0.01, N=147), with high Chla associated with El Niño and lower Chla associated with La Niño. Further, a Water Quality Decision Matrix (WQDM) has been established from the satellite-based Chla and water clarity estimates. The WQDM provides complementary and more reliable information to the existing WQDM based on less synoptic and less frequent field measurements. These results support the decision making efforts of the management agencies that regulate nutrient discharge to the bay, and similar approaches may be established for other estuaries where field data are much more limited than for TampaBay.
Remote sensing of oligotrophic waters: model divergence at low chlorophyll concentrations.
Mehrtens, Hela; Martin, Thomas
2002-11-20
The performance of the OC2 Sea-viewing Wide Field-of-view Sensor (SeaWiFS) algorithm based on 490- and 555-nm water-leaving radiances at low chlorophyll contents is compared with those of semianalytical models and a Monte Carlo radiative transfer model. We introduce our model, which uses two particle phase functions and scattering coefficient parameterizations to achieve a backscattering ratio that varies with chlorophyll concentration. We discuss the various parameterizations and compare them with existent measurements. The SeaWiFS algorithm could be confirmed within an accuracy of 35% over a chlorophyll range from 0.1 to 1 mg m(-3), whereas for lower chlorophyll concentrations we found a significant overestimation of the OC2 algorithm.
NASA Technical Reports Server (NTRS)
Vasilkov, Alexander; Krotkov, Nickolay; Herman, Jay; McClain, Charles; Arrigo, Kevin; Robinson, Wayne
1999-01-01
The global stratospheric ozone-layer depletion results In an increase in biologically harmful ultraviolet (UV) radiation reaching the surface and penetrating to ecologically significant depths in natural waters. Such an increase can be estimated on a global scale by combining satellite estimates of UV irradiance at the ocean surface from the Total Ozone Mapping Spectrometer (TOMS) satellite instrument with the SeaWIFS satellite ocean-color measurements in the visible spectral region. In this paper we propose a model of seawater optical properties in the UV spectral region based on the Case I water model in the visible range. The inputs to the model are standard monthly SeaWiFS products: chlorophyll concentration and the diffuse attenuation coefficient at 490nm. Penetration of solar UV radiation to different depths in open ocean waters is calculated using the RT (radiative transfer) quasi-single scattering approximation (QSSA). The accuracy of the QSSA approximation in the water is tested using more accurate codes. The sensitivity study of the underwater UV irradiance to atmospheric and oceanic optical properties have shown that the main environmental parameters controlling the absolute levels of the UVB (280-320nm) and DNA-weighted irradiance underwater are: solar-zenith angle, cloud transmittance, water optical properties, and total ozone. Weekly maps of underwater UV irradiance and DNA-weighted exposure are calculated using monthly-mean SeaWiFS chlorophyll and diffuse attenuation coefficient products, daily SeaWiFS cloud fraction data, and the TOMS-derived surface UV irradiance daily maps. The final products include global maps of weekly-average UVB irradiance and DNA-weighted daily exposures at 3m and 10m, and depths where the UVB irradiance and DNA-weighted dose rate at local noon are equal to 10% of their surface values.
Evaluation of Long-term Aerosol Data Records from SeaWiFS over Land and Ocean
NASA Astrophysics Data System (ADS)
Bettenhausen, C.; Hsu, C.; Jeong, M.; Huang, J.
2010-12-01
Deserts around the globe produce mineral dust aerosols that may then be transported over cities, across continents, or even oceans. These aerosols affect the Earth’s energy balance through direct and indirect interactions with incoming solar radiation. They also have a biogeochemical effect as they deliver scarce nutrients to remote ecosystems. Large dust storms regularly disrupt air traffic and are a general nuisance to those living in transport regions. In the past, measuring dust aerosols has been incomplete at best. Satellite retrieval algorithms were limited to oceans or vegetated surfaces and typically neglected desert regions due to their high surface reflectivity in the mid-visible and near-infrared wavelengths, which have been typically used for aerosol retrievals. The Deep Blue aerosol retrieval algorithm was developed to resolve these shortcomings by utilizing the blue channels from instruments such as the Sea-Viewing Wide-Field-of-View Sensor (SeaWiFS) and the Moderate Resolution Imaging Spectroradiometer (MODIS) to infer aerosol properties over these highly reflective surfaces. The surface reflectivity of desert regions is much lower in the blue channels and thus it is easier to separate the aerosol and surface signals than at the longer wavelengths used in other algorithms. More recently, the Deep Blue algorithm has been expanded to retrieve over vegetated surfaces and oceans as well. A single algorithm can now follow dust from source to sink. In this work, we introduce the SeaWiFS instrument and the Deep Blue aerosol retrieval algorithm. We have produced global aerosol data records over land and ocean from 1997 through 2009 using the Deep Blue algorithm and SeaWiFS data. We describe these data records and validate them with data from the Aerosol Robotic Network (AERONET). We also show the relative performance compared to the current MODIS Deep Blue operational aerosol data in desert regions. The current results are encouraging and this dataset will be useful to future studies in understanding the effects of dust aerosols on global processes, long-term aerosol trends, quantifying dust emissions, transport, and inter-annual variability.
NASA Technical Reports Server (NTRS)
Levy, R. C.; Kaufman, Y. J.
1999-01-01
Atmospheric aerosol has uncertain impacts on the global climate system, as well as on atmospheric and bio-geo-chemical processes of regional and local scales. EOS-MODIS is one example of a satellite sensor designed to improve understanding of the aerosols' type, size and distribution at all temporal and spatial scales. Ocean scientists also plan to use data from EOS-MODIS to assess the temporal and spatial coverage of in-water chlorophyll. MODIS is the first sensor planned to observe the combined ocean-atmosphere system with a wide spectral range (from 410 to 2200 nm). Dust aerosol and salt aerosol have similar spectral signals for wavelengths longer than 550 nm, but because dust selectively absorbs blue light, they have divergent signals in the blue wavelength regions (412 to 490 nm). Chlorophyll also selectively absorbs blue radiation, so that varying chlorophyll concentrations produces a highly varying signal in the blue regions, but less variability in the green, and almost no signal in the red to mid-infrared regions. Thus, theoretically, it may be difficult to differentiate dust and salt in the presence of unknown chlorophyll in the ocean. This study attempts to address the cases in which aerosol and chlorophyll signals can and cannot be separated. For the aerosol spectra, we use the aerosol lookup table from the operational MODIS aerosol-over-ocean algorithm, and for chlorophyll spectra, we use the SeaBAM data set (created for SeaWiFS). We compare the signals using Principal Component Analysis and attempt to retrieve both chlorophyll and aerosol properties using a variant of the operational MODIS aerosol-over-ocean algorithm. Results show that for small optical depths, less than 0.5, it is not possible to differentiate between dust and salt and to determine the chlorophyll concentration at the same time. For larger aerosol optical depths, the chlorophyll signals are comparatively insignificant, and we can hope to distinguish between dust and salt.
Scales of variability of bio-optical properties as observed from near-surface drifters
NASA Technical Reports Server (NTRS)
Abbott, Mark R.; Brink, Kenneth H.; Booth, C. R.; Blasco, Dolors; Swenson, Mark S.; Davis, Curtiss O.; Codispoti, L. A.
1995-01-01
A drifter equipped with bio-optical sensors and an automated water sampler was deployed in the California Current as part of the coastal transition zone program to study the biological, chemical, and physical dynamics of the meandering filaments. During deployments in 1987 and 1988, measurements were made of fluorescence, downwelling irradiance, upwelling radiance, and beam attenuation using several bio-optical sensors. Samples were collected by an automated sampler for later analysis of nutrients and phytoplankton species compositon. Large-scale spatial and temporal changes in the bio-optical and biological properties of the region were driven by changes in phytoplankton species composition which, in turn, were associated with the meandering circulation. Variance spectra of the bio-optical paramenters revealed fluctuations on both diel and semidiurnal scales, perhaps associated with solar variations and internal tides, respectively. Offshore, inertial-scale fluctuations were apparent in the variance spectra of temperature, fluorescence, and beam attenuation. Although calibration samples can help remove some of these variations, these results suggest that the use of bio-optical data from unattended platforms such as moorings and drifters must be analyzed carefully. Characterization of the scaled of phytoplankton variability must account for the scales of variability in the algorithms used to convert bio-optical measurments into biological quantities.
NASA Astrophysics Data System (ADS)
Churilova, T.; Suslin, V.
2012-04-01
Satellite observations of ocean color provide a unique opportunity in oceanography to assess productivity of the sea on different spatial and temporal scales. However it has been shown that the standard SeaWiFS algorithm generally overestimates summer chlorophyll concentration and underestimates pigment content during spring phytoplankton bloom in comparison with in situ measurements. It is required to develop regional algorithms which are based on biooptical characteristics typical for the Sea and consequently could be used for correct transformation of spectral features of water-leaving radiance to chlorophyll a concentrations (Chl), light absorption features of suspended and dissolved organic matter (CDM), downwelling light attenuation coefficient/euphotic zone depth (PAR1%) and rate of primary synthesis of organic substances (PP). The numerous measurements of light absorption spectra of phytoplankton, non-algal particles and coloured dissolved organic matter carried out since 1996 in different seasons and regions of the Black Sea allowed to make a parameterization of the light absorption by all optically active components. Taking into account regional peculiarities of the biooptical parameters, their difference between seasons, shallow and deep-waters, their depth-dependent variability within photosynthetic zone regional spectral models for estimation of chlorophyll a concentration (Chl Model), colored dissolved and suspended organic matter absorption (CDM Model), downwelling irradiance (PAR Model) and primary production (PP Model) have been developed based on satellite data. Test of validation of models showed appropriate accuracy of the models. The developed models have been applied for estimation of spatial/temporal variability of chlorophyll a, dissolved organic matter concentrations, waters transparency, euphotic zone depth and primary production based on SeaWiFS data. Two weeks averaged maps of spatial distribution of these parameters have been composed for period from 1998 to 2009 (most of them presented on site http://blackseacolor.com/browser3.html). Comparative analysis of long-term series (since 1998) of these parameters with subsurface water temperature (SST) and solar radiance of the sea surface (PAR-0m) revealed the key factors determining the seasonal and inter-annual variations of Chl, PAR1%, CDM, PP. The seasonal dynamics of these parameters were more pronounced compared with inter-annual variability. The later was related to climate effect. In deep-waters region relatively lower SST during cold winters were forcing more intensive winter-spring phytoplankton bloom. In north-western shelf inter-annual variability in river (Danube) run off, which was related to climate change as well, determined year-to-year changing in Chl, CDM, PAR1%, and PP.
Rabe, Benjamin; Peeken, Ilka; Bracher, Astrid
2018-01-01
As consequences of global warming sea-ice shrinking, permafrost thawing and changes in fresh water and terrestrial material export have already been reported in the Arctic environment. These processes impact light penetration and primary production. To reach a better understanding of the current status and to provide accurate forecasts Arctic biogeochemical and physical parameters need to be extensively monitored. In this sense, bio-optical properties are useful to be measured due to the applicability of optical instrumentation to autonomous platforms, including satellites. This study characterizes the non-water absorbers and their coupling to hydrographic conditions in the poorly sampled surface waters of the central and eastern Arctic Ocean. Over the entire sampled area colored dissolved organic matter (CDOM) dominates the light absorption in surface waters. The distribution of CDOM, phytoplankton and non-algal particles absorption reproduces the hydrographic variability in this region of the Arctic Ocean which suggests a subdivision into five major bio-optical provinces: Laptev Sea Shelf, Laptev Sea, Central Arctic/Transpolar Drift, Beaufort Gyre and Eurasian/Nansen Basin. Evaluating ocean color algorithms commonly applied in the Arctic Ocean shows that global and regionally tuned empirical algorithms provide poor chlorophyll-a (Chl-a) estimates. The semi-analytical algorithms Generalized Inherent Optical Property model (GIOP) and Garver-Siegel-Maritorena (GSM), on the other hand, provide robust estimates of Chl-a and absorption of colored matter. Applying GSM with modifications proposed for the western Arctic Ocean produced reliable information on the absorption by colored matter, and specifically by CDOM. These findings highlight that only semi-analytical ocean color algorithms are able to identify with low uncertainty the distribution of the different optical water constituents in these high CDOM absorbing waters. In addition, a clustering of the Arctic Ocean into bio-optical provinces will help to develop and then select province-specific ocean color algorithms. PMID:29304182
Gonçalves-Araujo, Rafael; Rabe, Benjamin; Peeken, Ilka; Bracher, Astrid
2018-01-01
As consequences of global warming sea-ice shrinking, permafrost thawing and changes in fresh water and terrestrial material export have already been reported in the Arctic environment. These processes impact light penetration and primary production. To reach a better understanding of the current status and to provide accurate forecasts Arctic biogeochemical and physical parameters need to be extensively monitored. In this sense, bio-optical properties are useful to be measured due to the applicability of optical instrumentation to autonomous platforms, including satellites. This study characterizes the non-water absorbers and their coupling to hydrographic conditions in the poorly sampled surface waters of the central and eastern Arctic Ocean. Over the entire sampled area colored dissolved organic matter (CDOM) dominates the light absorption in surface waters. The distribution of CDOM, phytoplankton and non-algal particles absorption reproduces the hydrographic variability in this region of the Arctic Ocean which suggests a subdivision into five major bio-optical provinces: Laptev Sea Shelf, Laptev Sea, Central Arctic/Transpolar Drift, Beaufort Gyre and Eurasian/Nansen Basin. Evaluating ocean color algorithms commonly applied in the Arctic Ocean shows that global and regionally tuned empirical algorithms provide poor chlorophyll-a (Chl-a) estimates. The semi-analytical algorithms Generalized Inherent Optical Property model (GIOP) and Garver-Siegel-Maritorena (GSM), on the other hand, provide robust estimates of Chl-a and absorption of colored matter. Applying GSM with modifications proposed for the western Arctic Ocean produced reliable information on the absorption by colored matter, and specifically by CDOM. These findings highlight that only semi-analytical ocean color algorithms are able to identify with low uncertainty the distribution of the different optical water constituents in these high CDOM absorbing waters. In addition, a clustering of the Arctic Ocean into bio-optical provinces will help to develop and then select province-specific ocean color algorithms.
Satellite Monitoring of Long-Range Transport of Asian Dust Storms from Sources to Sinks
NASA Astrophysics Data System (ADS)
Hsu, N.; Tsay, S.; Jeong, M.; King, M.; Holben, B.
2007-05-01
Among the many components that contribute to air pollution, airborne mineral dust plays an important role due to its biogeochemical impact on the ecosystem and its radiative-forcing effect on the climate system. In East Asia, dust storms frequently accompany the cold and dry air masses that occur as part of spring-time cold front systems. China's capital, Beijing, and other large cities are on the primary pathway of these dust storm plumes, and their passage over such popu-lation centers causes flight delays, pushes grit through windows and doors, and forces people indoors. Furthermore, during the spring these anthropogenic and natural air pollutants, once generated over the source regions, can be transported out of the boundary layer into the free troposphere and can travel thousands of kilometers across the Pacific into the United States and beyond. In this paper, we will demonstrate the capability of a new satellite algorithm to retrieve aerosol optical thickness and single scattering albedo over bright-reflecting surfaces such as urban areas and deserts. Such retrievals have been dif-ficult to perform using previously available algorithms that use wavelengths from the mid-visible to the near IR because they have trouble separating the aerosol signal from the contribution due to the bright surface reflectance. The new algorithm, called Deep Blue, utilizes blue-wavelength measurements from instruments such as SeaWiFS and MODIS to infer the properties of aerosols, since the surface reflectance over land in the blue part of the spectrum is much lower than for longer wavelength channels. Deep Blue algorithm has recently been integrated into the MODIS processing stream and began to provide aerosol products over land as part of the opera-tional MYD04 products. In this talk, we will show the comparisons of the MODIS Deep Blue products with data from AERONET sunphotometers on a global ba-sis. The results indicate reasonable agreements between these two. These new satellite products will allow scientists to determine quantitatively the aerosol properties near sources and their evolution along transport pathway using high spatial resolution measurements from SeaWiFS and MODIS-like instruments. We will also utilize the multiyear satellite measurements from MODIS and SeaWiFS to investigate the interannual variability of source strength, pathway, and radia-tive forcing associated with these dust outbreaks in East Asia.
SeaWiFS technical report series. Volume 1: An overview of SeaWiFS and ocean color
NASA Technical Reports Server (NTRS)
Hooker, Stanford B. (Editor); Firestone, Elaine R. (Editor); Esaias, Wayne E.; Feldman, Gene C.; Gregg, Watson W.; Mcclain, Charles R.
1992-01-01
The purpose of this series of technical reports is to provide current documentation of the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) Project activities, instrument performance, algorithms, and operations. This documentation is necessary to ensure that critical information related to the quality and calibration of the satellite data is available to the scientific community. SeaWiFS will bring to the ocean community a welcomed and improved renewal of the ocean color remote sensing capability lost when the Nimbus-7 Coastal Zone Color Scanner (CZCS) ceased operating in 1986. The goal of SeaWiFS, scheduled to be launched in August 1993, is to examine oceanic factors that affect global change. Because of the role of phytoplankton in the global carbon cycle, data obtained from SeaWiFS will be used to assess the ocean's role in this cycle, as well as other biogeochemical cycles. SeaWiFS data will be used to help elucidate the magnitude and variability of the annual cycle of primary production by marine phytoplankton and to determine the distribution and timing of spring blooms. The observations will help to visualize the dynamics of ocean and costal currents, the physics of mixing, and the relationships between ocean physics and large-scale patterns of productivity. The data will help fill the gap in ocean biological observations between those of the CZCS and the upcoming Moderate Resolution Imaging Spectrometer (MODIS) on the Earth Observing System-A (EOS-A) satellite.
Interpretation of the coastal zone color scanner signature of the Orinoco River plume
NASA Technical Reports Server (NTRS)
Hochman, Herschel T.; Mueller-Karger, F. E.; Walsh, John J.
1994-01-01
The Caribbean Sea is an area that traditionally has been considered oligotrophic, even though the Orinoco River contributes large quantities of fresh water, nutrients, and other dissolved material to this region during the wet boreal (fall) season. Little is known about the impact of this seasonal river plume, which extends from Venezuela to Puetro Rico shortly after maximum discharge. Here, we present results from a study of the bio-optical characteristics of the Orinoco River plume during the rainy season. The objective was to determine whether the coastal zone color scanner (CZCS) and the follow-on sea-viewing wide-field-of-view sensor (SeaWiFS) satellite instrument can be used to assess the concentrations of substances in large river plumes. Recent in situ shipboard measurements were compared to values from representative historical CZCS images using established bio-optical models. Our goal was to deconvolve the signatures of colored dissolved organic carbon and phytoplankton pigments within satellite images of the Orinoco River plume. We conclude that the models may be used for case 2 waters and that as much as 50 percent of the remotely sensored chlorophyll biomass within the plume is an artifact due to the presence of dissolved organic carbon. Dissolved organic carbon originates from a number of sources, including decay of dead organisms, humic materials from the soil, and gelbstoff.
Worldwide Ocean Optics Database (WOOD)
2002-09-30
attenuation estimated from diffuse attenuation and backscatter data). Error estimates will also be provided for the computed results. Extensive algorithm...empirical algorithms (e.g., beam attenuation estimated from diffuse attenuation and backscatter data). Error estimates will also be provided for the...properties, including diffuse attenuation, beam attenuation, and scattering. Data from ONR-funded bio-optical cruises will be given priority for loading
Moore, Timothy S; Dowell, Mark D; Bradt, Shane; Verdu, Antonio Ruiz
2014-03-05
Bio-optical models are based on relationships between the spectral remote sensing reflectance and optical properties of in-water constituents. The wavelength range where this information can be exploited changes depending on the water characteristics. In low chlorophyll- a waters, the blue/green region of the spectrum is more sensitive to changes in chlorophyll- a concentration, whereas the red/NIR region becomes more important in turbid and/or eutrophic waters. In this work we present an approach to manage the shift from blue/green ratios to red/NIR-based chlorophyll- a algorithms for optically complex waters. Based on a combined in situ data set of coastal and inland waters, measures of overall algorithm uncertainty were roughly equal for two chlorophyll- a algorithms-the standard NASA OC4 algorithm based on blue/green bands and a MERIS 3-band algorithm based on red/NIR bands-with RMS error of 0.416 and 0.437 for each in log chlorophyll- a units, respectively. However, it is clear that each algorithm performs better at different chlorophyll- a ranges. When a blending approach is used based on an optical water type classification, the overall RMS error was reduced to 0.320. Bias and relative error were also reduced when evaluating the blended chlorophyll- a product compared to either of the single algorithm products. As a demonstration for ocean color applications, the algorithm blending approach was applied to MERIS imagery over Lake Erie. We also examined the use of this approach in several coastal marine environments, and examined the long-term frequency of the OWTs to MODIS-Aqua imagery over Lake Erie.
NASA Technical Reports Server (NTRS)
Brewin, Robert J.W.; Sathyendranath, Shubha; Muller, Dagmar; Brockmann, Carsten; Deschamps, Pierre-Yves; Devred, Emmanuel; Doerffer, Roland; Fomferra, Norman; Franz, Bryan; Grant, Mike;
2013-01-01
Satellite-derived remote-sensing reflectance (Rrs) can be used for mapping biogeochemically relevant variables, such as the chlorophyll concentration and the Inherent Optical Properties (IOPs) of the water, at global scale for use in climate-change studies. Prior to generating such products, suitable algorithms have to be selected that are appropriate for the purpose. Algorithm selection needs to account for both qualitative and quantitative requirements. In this paper we develop an objective methodology designed to rank the quantitative performance of a suite of bio-optical models. The objective classification is applied using the NASA bio-Optical Marine Algorithm Dataset (NOMAD). Using in situ Rrs as input to the models, the performance of eleven semianalytical models, as well as five empirical chlorophyll algorithms and an empirical diffuse attenuation coefficient algorithm, is ranked for spectrally-resolved IOPs, chlorophyll concentration and the diffuse attenuation coefficient at 489 nm. The sensitivity of the objective classification and the uncertainty in the ranking are tested using a Monte-Carlo approach (bootstrapping). Results indicate that the performance of the semi-analytical models varies depending on the product and wavelength of interest. For chlorophyll retrieval, empirical algorithms perform better than semi-analytical models, in general. The performance of these empirical models reflects either their immunity to scale errors or instrument noise in Rrs data, or simply that the data used for model parameterisation were not independent of NOMAD. Nonetheless, uncertainty in the classification suggests that the performance of some semi-analytical algorithms at retrieving chlorophyll is comparable with the empirical algorithms. For phytoplankton absorption at 443 nm, some semi-analytical models also perform with similar accuracy to an empirical model. We discuss the potential biases, limitations and uncertainty in the approach, as well as additional qualitative considerations for algorithm selection for climate-change studies. Our classification has the potential to be routinely implemented, such that the performance of emerging algorithms can be compared with existing algorithms as they become available. In the long-term, such an approach will further aid algorithm development for ocean-colour studies.
NASA Technical Reports Server (NTRS)
Acker, James G.; Hooker, Stanford B.; Firestone, Elaine R.
1994-01-01
The Sea-viewing Wide Field-of-view Sensor (SeaWiFS) mission is based on the scientific heritage of the Coastal Zone Color Scanner (CZCS), a proof-of-concept instrument carried on the National Aeronautics and Space Administration (NASA) NIMBUS-7 environmental satellite for the purpose of measuring upwelling radiance from the ocean surface. The CZCS mission provided the first observations of ocean color from space, and over the mission lifetime of 1978-1986, allowed oceanographers an initial opportunity to observe the variable patterns of global biological productivity. One of the key elements of the CZCS mission was the formation of the CZCS NIMBUS Experiment Team (NET), a group of optical physicists and biological oceanographers. The CZCS NET was designated to validate the accuracy of the CZCS radiometric measurements and to connect the instrument's measurements to standard measures of oceanic biological productivity and optical seawater clarity. In the period following the cessation of CZCS observations, some of the insight and experience gained by the CZCS NET activity has dissipated as several proposed follow-on sensors failed to achieve active status. The Sea WiFS mission will be the first dedicated orbital successor to CZCS it in turn precedes observations by the Moderate Resolution Imaging Spectroradiometer (MODIS) of the Earth Observing System (EOS). Since the CZCS NET experience is an important model for Sea WiFS and MODIS surface truth efforts, this document is intended to provide a comprehensive review of the validation of oceanographic data for the first orbital ocean color sensor mission. This document also summarizes the history of the CZCS NET activities. The references listed in the Bibliography are a listing of published scientific research which relied upon the CZCS BET algorithms, or research which was conducted on the basis of CZCS mission elements.
SeaWiFS Postlaunch Technical Report Series. Volume 2; AMT-5 Cruise Report
NASA Technical Reports Server (NTRS)
Hooker, Stanford B. (Editor); Firestone, Elaine R. (Editor); Aiken, James; Cummings, Denise G.; Gibb, Stuart W.; Rees, Nigel W.; Woodd-Walker, Rachel; Woodward, E. Malcolm S.; Woolfenden, James; Berthon, Jean-Francois;
1998-01-01
This report documents the scientific activities on board the Royal Research Ship (RRS) James Clark Ross (JCR) during the fifth Atlantic Meridional Transect (AMT-5), 14 September to 17 October 1997. There are three objectives of the AMT Program. The first is to derive an improved understanding of the links between biogeochemical processes, biogenic gas exchange, air-sea interactions, and the effects on, and responses of, oceanic ecosystems to climate change. The second is to investigate the functional roles of biological particles and processes that influence ocean color in ecosystem dynamics. The Program relates directly to algorithm development and the validation of remotely-sensed observations of ocean color. Because the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) instrument achieved operational status during the cruise (on 18 September), AMT-5 was designated the SeaWiFS Atlantic Characterization Experiment (SeaACE) and was the only major research cruise involved in the validation of SeaWiFS data during the first 100 days of operations. The third objective involved the near-real time reporting of in situ light and pigment observations to the SeaWiFS Project, so the performance of the satellite sensor could be determined.
Accuracy assessment of satellite Ocean colour products in coastal waters.
NASA Astrophysics Data System (ADS)
Tilstone, G.; Lotliker, A.; Groom, S.
2012-04-01
The use of Ocean Colour Remote Sensing to monitor phytoplankton blooms in coastal waters is hampered by the absorption and scattering from substances in the water that vary independently of phytoplankton. In this paper we compare different ocean colour algorithms available for SeaWiFS, MODIS and MERIS with in situ observations of Remote Sensing Reflectance, Chlorophyll-a (Chla), Total Suspended Material and Coloured Dissolved Organic Material in coastal waters of the Arabian Sea, Bay of Bengal, North Sea and Western English Channel, which have contrasting inherent optical properties. We demonstrate a clustering method on specific-Inherent Optical Properties (sIOP) that gives accurate water quality products from MERIS data (HYDROPT) and also test the recently developed ESA CoastColour MERIS products. We found that for coastal waters of the Bay of Bengal, OC5 gave the most accurate Chla, for the Arabian Sea GSM and OC3M Chla were more accurate and for the North Sea and Western English Channel, MERIS HYDROPT were more accurate than standard algorithms. The reasons for these differences will be discussed. A Chla time series from 2002-2011 will be presented to illustrate differences in algorithms between coastal regions and inter- and intra-annual variability in phytoplankton blooms
MODIS and SeaWIFS on-orbit lunar calibration
Sun, Jielun; Eplee, R.E.; Xiong, X.; Stone, T.; Meister, G.; McClain, C.R.
2008-01-01
The Moon plays an important role in the radiometric stability monitoring of the NASA Earth Observing System's (EOS) remote sensors. The MODIS and SeaWIFS are two of the key instruments for NASA's EOS missions. The MODIS Protoflight Model (PFM) on-board the Terra spacecraft and the MODIS Flight Model 1 (FM1) on-board the Aqua spacecraft were launched on December 18, 1999 and May 4, 2002, respectively. They view the Moon through the Space View (SV) port approximately once a month to monitor the long-term radiometric stability of their Reflective Solar Bands (RSB). SeaWIFS was launched on-board the OrbView-2 spacecraft on August 1, 1997. The SeaWiFS lunar calibrations are obtained once a month at a nominal phase angle of 7??. The lunar irradiance observed by these instruments depends on the viewing geometry. The USGS photometric model of the Moon (the ROLO model) has been developed to provide the geometric corrections for the lunar observations. For MODIS, the lunar view responses with corrections for the viewing geometry are used to track the gain change for its reflective solar bands (RSB). They trend the system response degradation at the Angle Of Incidence (AOI) of sensor's SV port. With both the lunar observation and the on-board Solar Diffuser (SD) calibration, it is shown that the MODIS system response degradation is wavelength, mirror side, and AOI dependent. Time-dependent Response Versus Scan angle (RVS) Look-Up Tables (LUT) are applied in MODIS RSB calibration and lunar observations play a key role in RVS derivation. The corrections provided by the RVS in the Terra and Aqua MODIS data from the 412 nm band are as large as 16% and 13%, respectively. For SeaWIFS lunar calibrations, the spacecraft is pitched across the Moon so that the instrument views the Moon near nadir through the same optical path as it views the Earth. The SeaWiFS system gain changes for its eight bands are calibrated using the geometrically-corrected lunar observations. The radiometric corrections to the SeaWiFS data, after more than ten years on orbit, are 19% at 865 nm, 8% at 765 nm, and 1-3% in the other bands. In this report, the lunar calibration algorithms are reviewed and the RSB gain changes observed by the lunar observations are shown for all three sensors. The lunar observations for the three instruments are compared using the USGS photometric model. The USGS lunar model facilitates the cross calibration of instruments with different spectra bandpasses whose measurements of the Moon differ in time and observing geometry.
Description of algorithms for processing Coastal Zone Color Scanner (CZCS) data
NASA Technical Reports Server (NTRS)
Zion, P. M.
1983-01-01
The algorithms for processing coastal zone color scanner (CZCS) data to geophysical units (pigment concentration) are described. Current public domain information for processing these data is summarized. Calibration, atmospheric correction, and bio-optical algorithms are presented. Three CZCS data processing implementations are compared.
Moore, Timothy S.; Dowell, Mark D.; Bradt, Shane; Verdu, Antonio Ruiz
2014-01-01
Bio-optical models are based on relationships between the spectral remote sensing reflectance and optical properties of in-water constituents. The wavelength range where this information can be exploited changes depending on the water characteristics. In low chlorophyll-a waters, the blue/green region of the spectrum is more sensitive to changes in chlorophyll-a concentration, whereas the red/NIR region becomes more important in turbid and/or eutrophic waters. In this work we present an approach to manage the shift from blue/green ratios to red/NIR-based chlorophyll-a algorithms for optically complex waters. Based on a combined in situ data set of coastal and inland waters, measures of overall algorithm uncertainty were roughly equal for two chlorophyll-a algorithms—the standard NASA OC4 algorithm based on blue/green bands and a MERIS 3-band algorithm based on red/NIR bands—with RMS error of 0.416 and 0.437 for each in log chlorophyll-a units, respectively. However, it is clear that each algorithm performs better at different chlorophyll-a ranges. When a blending approach is used based on an optical water type classification, the overall RMS error was reduced to 0.320. Bias and relative error were also reduced when evaluating the blended chlorophyll-a product compared to either of the single algorithm products. As a demonstration for ocean color applications, the algorithm blending approach was applied to MERIS imagery over Lake Erie. We also examined the use of this approach in several coastal marine environments, and examined the long-term frequency of the OWTs to MODIS-Aqua imagery over Lake Erie. PMID:24839311
SeaWiFS long-term solar diffuser reflectance trend analysis
NASA Astrophysics Data System (ADS)
Eplee, Robert E., Jr.; Patt, Frederick S.; Barnes, Robert A.; McClain, Charles R.
2006-08-01
The NASA Ocean Biology Processing Group's Calibration and Validation (Cal/Val) Team implemented daily solar calibrations of SeaWiFS to look for step-function changes in the instrument response and has used these calibrations to supplement the monthly lunar calibrations in monitoring the radiometric stability of SeaWiFS during its first year of on-orbit operations. The Team has undertaken an analysis of the mission-long solar calibration time series, with the lunar-derived radiometric corrections over time applied, to assess the long-term degradation of the solar diffuser reflectance over nine years on orbit. The SeaWiFS diffuser is an aluminum plate coated with YB71 paint. The bidirectional reflectance distribution function of the diffuser was not fully characterized before launch, so the Cal/Val Team has implemented a regression of the solar incidence angles and the drift in the node of the satellite's orbit against the diffuser time series to correct for solar incidence angle effects. An exponential function with a time constant of 200 days yields the best fit to the diffuser time series. The decrease in diffuser reflectance over the mission is wavelength-dependent, ranging from 9% in the blue (412 nm) to 5% in the red and near infrared (670-865 nm). The degradation of diffuser reflctance is similar to that observed for SeaWiFS radiometric response itself from lunar calibration time series for bands 1-5 (412-555 nm), though the magnitude of the change is four times larger for the diffuser. Evidently, the same optical degradation process has affected both the telescope optics and the solar diffuser in the blue and green. The Cal/Val Team has developed a methodology for computing the signal-to-noise ratio (SNR) for SeaWiFS on orbit from the diffuser time series. The on-orbit change in the SNR for each band over the nine-year mission is less than 7%. The on-orbit performance of the SeaWiFS solar diffuser should offer insight into the long-term on-orbit performance of solar diffusers on other instruments, such as MODIS, VIIRS, and ABI.
Analysis of Photosynthetic Rate and Bio-Optical Components from Ocean Color Imagery
NASA Technical Reports Server (NTRS)
Kiefer, Dale A.; Stramski, Dariusz
1997-01-01
Our research over the last 5 years indicates that the successful transformation of ocean color imagery into maps of bio-optical properties will require continued development and testing of algorithms. In particular improvements in the accuracy of predicting from ocean color imagery the concentration of the bio-optical components of sea as well as the rate of photosynthesis will require progress in at least three areas: (1) we must improve mathematical models of the growth and physiological acclimation of phytoplankton; (2) we must better understand the sources of variability in the absorption and backscattering properties of phytoplankton and associated microparticles; and (3) we must better understand how the radiance distribution just below the sea surface varies as a function sun and sky conditions and inherent optical properties.
NASA Astrophysics Data System (ADS)
Brotas, Vanda; Valente, André; Couto, André B.; Grant, Mike; Chuprin, Andrei; Jackson, Thomas; Groom, Steve; Sathyendranath, Shubha
2014-05-01
Ocean colour (OC) is an Oceanic Essential Climate Variable, which is used by climate modellers and researchers. The European Space Agency (ESA) Climate Change Initiative project, is the ESA response for the need of climate-quality satellite data, with the goal of providing stable, long-term, satellite-based ECV data products. The ESA Ocean Colour CCI focuses on the production of Ocean Colour ECV uses remote sensing reflectances to derive inherent optical properties and chlorophyll a concentration from ESA's MERIS (2002-2012) and NASA's SeaWiFS (1997 - 2010) and MODIS (2002-2012) sensor archives. This work presents an integrated approach by setting up a global database of in situ measurements and by inter-comparing OC-CCI products with pre-cursor datasets. The availability of in situ databases is fundamental for the validation of satellite derived ocean colour products. A global distribution in situ database was assembled, from several pre-existing datasets, with data spanning between 1997 and 2012. It includes in-situ measurements of remote sensing reflectances, concentration of chlorophyll-a, inherent optical properties and diffuse attenuation coefficient. The database is composed from observations of the following datasets: NOMAD, SeaBASS, MERMAID, AERONET-OC, BOUSSOLE and HOTS. The result was a merged dataset tuned for the validation of satellite-derived ocean colour products. This was an attempt to gather, homogenize and merge, a large high-quality bio-optical marine in situ data, as using all datasets in a single validation exercise increases the number of matchups and enhances the representativeness of different marine regimes. An inter-comparison analysis between OC-CCI chlorophyll-a product and satellite pre-cursor datasets was done with single missions and merged single mission products. Single mission datasets considered were SeaWiFS, MODIS-Aqua and MERIS; merged mission datasets were obtained from the GlobColour (GC) as well as the Making Earth Science Data Records for Use in Research Environments (MEaSUREs). OC-CCI product was found to be most similar to SeaWiFS record, and generally, the OC-CCI record was most similar to records derived from single mission than merged mission initiatives. Results suggest that CCI product is a more consistent dataset than other available merged mission initiatives. In conclusion, climate related science, requires long term data records to provide robust results, OC-CCI product proves to be a worthy data record for climate research, as it combines multi-sensor OC observations to provide a >15-year global error-characterized record.
Global and Regional Evaluation of Over-Land Spectral Aerosol Optical Depth Retrievals from SeaWiFS
NASA Technical Reports Server (NTRS)
Sayer, A. M.; Hsu, N. C.; Bettenhausen, C.; Jeong, M. J.; Holben, B. N.; Zhang, J.
2012-01-01
This study evaluates a new spectral aerosol optical depth (AOD) dataset derived from Sea-viewing Wide Field-of-view Sensor (Sea WiFS) measurements over land. First, the data are validated against Aerosol Robotic Network (AERONET) direct-sun AOD measurements, and found to compare well on a global basis. If only data with the highest quality flag are used, the correlation is 0.86 and 72% of matchups fall within an expected absolute uncertainty of 0.05 + 20% (for the wavelength of 550 nm). The quality is similar at other wavelengths and stable over the 13-year (1997-2010) mission length. Performance tends to be better over vegetated, low-lying terrain with typical AOD of 0.3 or less, such as found over much of North America and Eurasia. Performance tends to be poorer for low-AOD conditions near backscattering geometries, where Sea WiFS overestimates AOD, or optically-thick cases of absorbing aerosol, where SeaWiFS tends to underestimate AOD. Second, the SeaWiFS data are compared with midvisible AOD derived from the Moderate Resolution Imaging Spectrometer (MODIS) and Multiangle Imaging Spectroradiometer (MISR). All instruments show similar spatial and seasonal distributions of AOD, although there are regional and seasonal offsets between them. At locations where AERONET data are available, these offsets are largely consistent with the known validation characteristics of each dataset. With the results of this study in mind, the SeaWiFS over-land AOD record should be suitable for quantitative scientific use.
Atmospheric correction of SeaWiFS imagery for turbid coastal and inland waters.
Ruddick, K G; Ovidio, F; Rijkeboer, M
2000-02-20
The standard SeaWiFS atmospheric correction algorithm, designed for open ocean water, has been extended for use over turbid coastal and inland waters. Failure of the standard algorithm over turbid waters can be attributed to invalid assumptions of zero water-leaving radiance for the near-infrared bands at 765 and 865 nm. In the present study these assumptions are replaced by the assumptions of spatial homogeneity of the 765:865-nm ratios for aerosol reflectance and for water-leaving reflectance. These two ratios are imposed as calibration parameters after inspection of the Rayleigh-corrected reflectance scatterplot. The performance of the new algorithm is demonstrated for imagery of Belgian coastal waters and yields physically realistic water-leaving radiance spectra. A preliminary comparison with in situ radiance spectra for the Dutch Lake Markermeer shows significant improvement over the standard atmospheric correction algorithm. An analysis is made of the sensitivity of results to the choice of calibration parameters, and perspectives for application of the method to other sensors are briefly discussed.
Retrieval of chlorophyll from remote-sensing reflectance in the china seas.
He, M X; Liu, Z S; Du, K P; Li, L P; Chen, R; Carder, K L; Lee, Z P
2000-05-20
The East China Sea is a typical case 2 water environment, where concentrations of phytoplankton pigments, suspended matter, and chromophoric dissolved organic matter (CDOM) are all higher than those in the open oceans, because of the discharge from the Yangtze River and the Yellow River. By using a hyperspectral semianalytical model, we simulated a set of remote-sensing reflectance for a variety of chlorophyll, suspended matter, and CDOM concentrations. From this simulated data set, a new algorithm for the retrieval of chlorophyll concentration from remote-sensing reflectance is proposed. For this method, we took into account the 682-nm spectral channel in addition to the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) channels. When this algorithm was applied to a field data set, the chlorophyll concentrations retrieved through the new algorithm were consistent with field measurements to within a small error of 18%, in contrast with that of 147% between the SeaWiFS ocean chlorophyll 2 algorithm and the in situ observation.
Bio-geo-optical data collected in the Neuse River Estuary, North Carolina, USA were used to develop a semi-empirical optical algorithm for assessing inherent optical properties associated with water quality components (WQCs). Three wavelengths (560, 665 and 709 nm) were explored ...
Extending the Deep Blue aerosol record from SeaWiFS and MODIS to NPP-VIIRS
NASA Technical Reports Server (NTRS)
Sayer, Andrew M.; Hsu, Nai-Yung Christina; Bettenhausen, Corey; Lee, Jaehwa
2015-01-01
Deep Blue expands AOD coverage to deserts and other bright surfaces. Using multiple similar satellite sensors enables us to obtain a long data record. The Deep Blue family consists of three separate aerosol optical depth (AOD) retrieval algorithms: 1. Bright Land: Surface reflectance database, BRDF correction. AOD retrieved separately at each of 412, 470/490, (650) nm. SSA retrieved for heavy dust events. 2. Dark Land: Spectral/directional surface reflectance relationship. AOD retrieved separately at 470/490 and 650 nm. 3. Water: Surface BRDF including glint, foam, underlight. Multispectral inversion (Not present in MODISdataset) All report the AOD at 550 nm, and Ångström exponent (AE).
NASA Technical Reports Server (NTRS)
Mannino, Antonio; Novak, Michael G.; Hooker, Stanford B.; Hyde, Kimberly; Aurin, Dick
2014-01-01
An extensive set of field measurements have been collected throughout the continental margin of the northeastern U.S. from 2004 to 2011 to develop and validate ocean color satellite algorithms for the retrieval of the absorption coefficient of chromophoric dissolved organic matter (aCDOM) and CDOM spectral slopes for the 275:295 nm and 300:600 nm spectral range (S275:295 and S300:600). Remote sensing reflectance (Rrs) measurements computed from in-water radiometry profiles along with aCDOM() data are applied to develop several types of algorithms for the SeaWiFS and MODIS-Aqua ocean color satellite sensors, which involve least squares linear regression of aCDOM() with (1) Rrs band ratios, (2) quasi-analytical algorithm-based (QAA based) products of total absorption coefficients, (3) multiple Rrs bands within a multiple linear regression (MLR) analysis, and (4) diffuse attenuation coefficient (Kd). The relative error (mean absolute percent difference; MAPD) for the MLR retrievals of aCDOM(275), aCDOM(355), aCDOM(380), aCDOM(412) and aCDOM(443) for our study region range from 20.4-23.9 for MODIS-Aqua and 27.3-30 for SeaWiFS. Because of the narrower range of CDOM spectral slope values, the MAPD for the MLR S275:295 and QAA-based S300:600 algorithms are much lower ranging from 9.9 and 8.3 for SeaWiFS, respectively, and 8.7 and 6.3 for MODIS, respectively. Seasonal and spatial MODIS-Aqua and SeaWiFS distributions of aCDOM, S275:295 and S300:600 processed with these algorithms are consistent with field measurements and the processes that impact CDOM levels along the continental shelf of the northeastern U.S. Several satellite data processing factors correlate with higher uncertainty in satellite retrievals of aCDOM, S275:295 and S300:600 within the coastal ocean, including solar zenith angle, sensor viewing angle, and atmospheric products applied for atmospheric corrections. Algorithms that include ultraviolet Rrs bands provide a better fit to field measurements than algorithms without the ultraviolet Rrs bands. This suggests that satellite sensors with ultraviolet capability could provide better retrievals of CDOM. Because of the strong correlations between CDOM parameters and DOM constituents in the coastal ocean, satellite observations of CDOM parameters can be applied to study the distributions, sources and sinks of DOM, which are relevant for understanding the carbon cycle, modeling the Earth system, and to discern how the Earth is changing.
NASA Astrophysics Data System (ADS)
Tang, Qingxin; Bo, Yanchen; Zhu, Yuxin
2016-04-01
Merging multisensor aerosol optical depth (AOD) products is an effective way to produce more spatiotemporally complete and accurate AOD products. A spatiotemporal statistical data fusion framework based on a Bayesian maximum entropy (BME) method was developed for merging satellite AOD products in East Asia. The advantages of the presented merging framework are that it not only utilizes the spatiotemporal autocorrelations but also explicitly incorporates the uncertainties of the AOD products being merged. The satellite AOD products used for merging are the Moderate Resolution Imaging Spectroradiometer (MODIS) Collection 5.1 Level-2 AOD products (MOD04_L2) and the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) Deep Blue Level 2 AOD products (SWDB_L2). The results show that the average completeness of the merged AOD data is 95.2%,which is significantly superior to the completeness of MOD04_L2 (22.9%) and SWDB_L2 (20.2%). By comparing the merged AOD to the Aerosol Robotic Network AOD records, the results show that the correlation coefficient (0.75), root-mean-square error (0.29), and mean bias (0.068) of the merged AOD are close to those (the correlation coefficient (0.82), root-mean-square error (0.19), and mean bias (0.059)) of the MODIS AOD. In the regions where both MODIS and SeaWiFS have valid observations, the accuracy of the merged AOD is higher than those of MODIS and SeaWiFS AODs. Even in regions where both MODIS and SeaWiFS AODs are missing, the accuracy of the merged AOD is also close to the accuracy of the regions where both MODIS and SeaWiFS have valid observations.
NASA Astrophysics Data System (ADS)
Hsu, N. C.; Gautam, R.; Sayer, A. M.; Bettenhausen, C.; Li, C.; Jeong, M. J.; Tsay, S.-C.; Holben, B. N.
2012-09-01
Both sensor calibration and satellite retrieval algorithm play an important role in the ability to determine accurately long-term trends from satellite data. Owing to the unprecedented accuracy and long-term stability of its radiometric calibration, SeaWiFS measurements exhibit minimal uncertainty with respect to sensor calibration. In this study, we take advantage of this well-calibrated set of measurements by applying a newly-developed aerosol optical depth (AOD) retrieval algorithm over land and ocean to investigate the distribution of AOD, and to identify emerging patterns and trends in global and regional aerosol loading during its 13-yr mission. Our correlation analysis between climatic indices (such as ENSO) and AOD suggests strong relationships for Saharan dust export as well as biomass-burning activity in the tropics, associated with large-scale feedbacks. The results also indicate that the averaged AOD trend over global ocean is weakly positive from 1998 to 2010 and comparable to that observed by MODIS but opposite in sign to that observed by AVHRR during overlapping years. On regional scales, distinct tendencies are found for different regions associated with natural and anthropogenic aerosol emission and transport. For example, large upward trends are found over the Arabian Peninsula that indicate a strengthening of the seasonal cycle of dust emission and transport processes over the whole region as well as over downwind oceanic regions. In contrast, a negative-neutral tendency is observed over the desert/arid Saharan region as well as in the associated dust outflow over the north Atlantic. Additionally, we found decreasing trends over the eastern US and Europe, and increasing trends over countries such as China and India that are experiencing rapid economic development. In general, these results are consistent with those derived from ground-based AERONET measurements.
NASA Astrophysics Data System (ADS)
Green, Rebecca E.; Gould, Richard W., Jr.; Ko, Dong S.
2008-06-01
We developed statistically-based, optical models to estimate tripton (sediment/detrital) and colored dissolved organic matter (CDOM) absorption coefficients ( a sd, a g) from physical hydrographic and atmospheric properties. The models were developed for northern Gulf of Mexico shelf waters using multi-year satellite and physical data. First, empirical algorithms for satellite-derived a sd and a g were developed, based on comparison with a large data set of cruise measurements from northern Gulf shelf waters; these algorithms were then applied to a time series of ocean color (SeaWiFS) satellite imagery for 2002-2005. Unique seasonal timing was observed in satellite-derived optical properties, with a sd peaking most often in fall/winter on the shelf, in contrast to summertime peaks observed in a g. Next, the satellite-derived values were coupled with the physical data to form multiple regression models. A suite of physical forcing variables were tested for inclusion in the models: discharge from the Mississippi River and Mobile Bay, Alabama; gridded fields for winds, precipitation, solar radiation, sea surface temperature and height (SST, SSH); and modeled surface salinity and currents (Navy Coastal Ocean Model, NCOM). For satellite-derived a sd and a g time series (2002-2004), correlation and stepwise regression analyses revealed the most important physical forcing variables. Over our region of interest, the best predictors of tripton absorption were wind speed, river discharge, and SST, whereas dissolved absorption was best predicted by east-west wind speed, river discharge, and river discharge lagged by 1 month. These results suggest the importance of vertical mixing (as a function of winds and thermal stratification) in controlling a sd distribution patterns over large regions of the shelf, in comparison to advection as the most important control on a g. The multiple linear regression models for estimating a sd and a g were applied on a pixel-by-pixel basis and results were compared to monthly SeaWiFS composite imagery. The models performed well in resolving seasonal and interannual optical variability in model development years (2002-2004) (mean error of 32% for a sd and 29% for a g) and in predicting shelfwide optical patterns in a year independent of model development (2005; mean error of 41% for a sd and 46% for a g). The models provide insight into the dominant processes controlling optical distributions in this region, and they can be used to predict the optical fields from the physical properties at monthly timescales.
NASA Astrophysics Data System (ADS)
Montes-Hugo, M.; Bouakba, H.; Arnone, R.
2014-06-01
The understanding of phytoplankton dynamics in the Gulf of the Saint Lawrence (GSL) is critical for managing major fisheries off the Canadian East coast. In this study, the accuracy of two atmospheric correction techniques (NASA standard algorithm, SA, and Kuchinke's spectral optimization, KU) and three ocean color inversion models (Carder's empirical for SeaWiFS (Sea-viewing Wide Field-of-View Sensor), EC, Lee's quasi-analytical, QAA, and Garver- Siegel-Maritorena semi-empirical, GSM) for estimating the phytoplankton absorption coefficient at 443 nm (aph(443)) and the chlorophyll concentration (chl) in the GSL is examined. Each model was validated based on SeaWiFS images and shipboard measurements obtained during May of 2000 and April 2001. In general, aph(443) estimates derived from coupling KU and QAA models presented the smallest differences with respect to in situ determinations as measured by High Pressure liquid Chromatography measurements (median absolute bias per cruise up to 0.005, RMSE up to 0.013). A change on the inversion approach used for estimating aph(443) values produced up to 43.4% increase on prediction error as inferred from the median relative bias per cruise. Likewise, the impact of applying different atmospheric correction schemes was secondary and represented an additive error of up to 24.3%. By using SeaDAS (SeaWiFS Data Analysis System) default values for the optical cross section of phytoplankton (i.e., aph(443) = aph(443)/chl = 0.056 m2mg-1), the median relative bias of our chl estimates as derived from the most accurate spaceborne aph(443) retrievals and with respect to in situ determinations increased up to 29%.
Evaluation and Validation of Case 2 Algorithms in Chesapeake Bay
NASA Technical Reports Server (NTRS)
Harding, Lawrence W., Jr.; Magnuson, Adrea
2004-01-01
The high temporal and spatial resolution of satellite ocean color observations will prove invaluable for monitoring the health of coastal ecosystems where physical and biological variability demands sampling scales beyond that possible by ship. However, ocean color remote sensing of Case 2 waters is a challenging undertaking due to the optical complexity of the water. The focus of this SIMBIOS support has been to provide in situ optical measurements form Chesapeake Bay (CB) and adjacent mid-Atlantic bight (MAB) waters for use in algorithm development and validation efforts to improve the satellite retrieval of chlorophyll (chl a) in Case 2 waters. CB provides a valuable site for validation of data from ocean color sensors for a number of reasons. First, the physical dimensions of the Bay (greater than 6,500 square kilometers) make retrievals from satellites with a spatial resolution of approximately 1 kilometer (i.e., SeaWiFS) or less (i.e., MODIS) reasonable for most of the ecosystem. Second, CB is highly influenced by freshwater flow from major rivers, making it a classic Case 2 water body with significant concentrations of chlorophyll, particulates and chromophoric dissolved organic matter (CDOM) that highly impact the shape of reflectance spectra. Finally, past and ongoing research efforts provided an expensive data set of optical observations that support the goal of this project.
Temporal variability in SeaWiFS derived apparent optical properties in European seas
NASA Astrophysics Data System (ADS)
Vantrepotte, V.; Mélin, F.
2010-02-01
The 10-year record of ocean color data provided by the SeaWiFS mission is an important asset for monitoring and research activities conducted on the optically complex European seas. This study makes use of the SeaWiFS data set of normalized water leaving radiances LWN to study the major characteristics of temporal variability associated with optical properties across the entire European domain. Specifically, the time series of LWN and associated band ratios are decomposed into terms representing a fixed seasonal cycle, irregular variations and trends, and the contribution of these components to the total variance is described for the various basins. The diversity of the European waters is fully reflected by the range of results varying with regions and wavelengths. Generally, the Mediterranean and Baltic seas appear as two end-members with, respectively, high and low contributions of the seasonal component to the total variance. The existence of linear trends affecting the satellite products is also explored for each basin. By focusing the analysis on LWN and band ratios, the validity of the results is not limited by the varying levels of uncertainty that characterize derived products such as the concentration of chlorophyll a in optically complex waters. Statistically significant, and in some cases large, trends are detected in the Atlantic Ocean west of the European western shelf, the central North Sea, the English Channel, the Black Sea, the northern Adriatic, and various regions of the Mediterranean Sea and the northern Baltic Sea, revealing changes in the concentrations of optically significant constituents in these regions.
Surface Waves as Major Controls on Particle Backscattering in Southern California Coastal Waters
NASA Astrophysics Data System (ADS)
Henderikx Freitas, F.; Fields, E.; Maritorena, S.; Siegel, D.
2016-02-01
Satellite observations of particle loads and optical backscattering coefficients (bbp) in the Southern California Bight (SCB) have been thought to be driven by episodic inputs from storm runoff. Here we show however that surface waves have a larger role in controlling remotely sensed bbp values than previously considered. More than 14 years of 2-km resolution SeaWiFS, MODIS and MERIS satellite imagery spectrally-merged with the Garver-Siegel-Maritorena bio-optical model were used to assess the relative importance of terrestrial runoff and surface wave forcings in determining changes in particle load in the SCB. The space-time distributions of particle backscattering at 443nm and chlorophyll concentration estimates from the model were analyzed using Empirical Orthogonal Function analysis, and patterns were compared with several environmental variables. While offshore values of bbp are tightly related to chlorophyll concentrations, as expected for productive Case-1 waters, values of bbp in a 10km band near the coast are primarily modulated by surface waves. The relationship with waves holds throughout all seasons and is most apparent around the 40m isobath, but extends offshore until about 100m in depth. Riverine inputs are associated with elevated bbp near the coast mostly during the larger El Nino events of 1997/1998 and 2005. These findings are consistent with bio-optical glider and field observations from the Santa Barbara Channel taken as part of the Santa Barbara Coastal Long-Term Ecological Research and Plumes and Blooms programs. The implication of surface waves determining bbp variability beyond the surf zone has large consequences for the life cycle of many marine organisms, as well as for the interpretation of remote sensing signals near the coast.
Global Aerosol Radiative Forcing Derived from Sea WiFS-Inferred Aerosol Optical Properties
NASA Technical Reports Server (NTRS)
Chou, Ming-Dah; Chan, Pui-King; Wang, Menghua
1999-01-01
Aerosol optical properties inferred from the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) radiance measurements are used to compute the aerosol shortwave radiative forcing using a radiative transfer model. The aerosol optical thickness at the wavelength of 865-nm is taken from the SeaWIFS archive. It is found that the nominal optical thickness over oceans ranges from 0.1 to 0.2. Using a maritime aerosol model and the radiances measured at the various SeaWiFS channels, the Angstrom exponent is determined to be 0.2174, the single-scattering albedo to be 0.995, and the asymmetry factor to be 0.786. The radiative transfer model has eight bands in the visible and ultraviolet spectral regions and three bands in the near infrared. It includes the absorption due to aerosols, water vapor, carbon dioxide, and oxygen, and the scattering due to aerosols and gases (Rayleigh scattering). The radiative forcing is computed over global oceans for four months (January, April, July, and October, 1998) to represent four seasons. It is found that the aerosol radiative forcing is large and changes significantly with seasons near the continents with large-scale forest fires and desert dust. Averaged over oceans and the four months, the aerosol radiative forcing is approximately 7 W/sq m at the top of the atmosphere. This large radiative forcing is expected to have a significant cooling effect on the Earth's climate as implied from simulations of a number of general circulation models.
SeaWiFS technical report series. Volume 10: Modeling of the SeaWiFS solar and lunar observations
NASA Technical Reports Server (NTRS)
Woodward, Robert H.; Barnes, Robert A.; Mcclain, Charles R.; Esaias, Wayne E.; Barnes, William L.; Mecherikunnel, Ann T.; Hooker, Stanford B. (Editor); Firestone, Elaine R. (Editor)
1993-01-01
Post-launch stability monitoring of the Sea-viewing Wide Field-of-view Sensor (SeaWifs) will include periodic sweeps of both an onboard solar diffuser plate and the moon. The diffuser views will provide short-term checks and the lunar views will monitor long-term trends in the instrument's radiometric stability. Models of the expected sensor response to these observations were created on the SeaWiFS computer at the National Aeronautics and Space Administration's (NASA) Goddard Space Flight Center (GSFC) using the Interactive Data Language (IDL) utility with a graphical user interface (GUI). The solar model uses the area of intersecting circles to simulate the ramping of sensor response while viewing the diffuser. This model is compared with preflight laboratory scans of the solar diffuser. The lunar model reads a high-resolution lunar image as input. The observations of the moon are simulated with a bright target recovery algorithm that includes ramping and ringing functions. Tests using the lunar model indicate that the integrated radiance of the entire lunar surface provides a more stable quantity than the mean of radiances from centralized pixels. The lunar model is compared to ground-based scans by the SeaWiFS instrument of a full moon in December 1992. Quality assurance and trend analyses routines for calibration and for telemetry data are also discussed.
Variability in global ocean phytoplankton distribution over 1979-2007
NASA Astrophysics Data System (ADS)
Masotti, I.; Alvain, S.; Moulin, C.; Antoine, D.
2009-04-01
Recently, reanalysis of long-term ocean color data (CZCS and SeaWiFS; Antoine et al., 2005) has shown that world ocean average phytoplankton chlorophyll levels show an increase of 20% over the last two decades. It is however unknown whether this increase is associated with a change in the distribution of phytoplankton groups or if it simply corresponds to an increase of the productivity. Within the framework of the GLOBPHY project, the distribution of the phytoplankton groups was monitored by applying the PHYSAT method (Alvain et al., 2005) to the historical ocean color data series from CZCS, OCTS and SeaWiFS sensors. The PHYSAT algorithm allows identification of several phytoplankton, like nanoeucaryotes, prochlorococcus, synechococcus and diatoms. Because both sensors (OCTS-SeaWiFS) are very similar, OCTS data were processed with the standard PHYSAT algorithm to cover the 1996-1997 period during which a large El Niño event occurred, just before the SeaWiFS era. Our analysis of this dataset (1996-2006) evidences a strong variability in the distribution of phytoplankton groups at both regional and global scales. In the equatorial region (0°-5°S), a three-fold increase of nanoeucaryotes frequency was detected in opposition to a two-fold decrease of synechococcus during the early stages of El Niño conditions (May-June 1997, OCTS). The impact of this El Niño is however not confined to the Equatorial Pacific and has affected the global ocean. The processing of CZCS data with PHYSAT has required several adaptations of this algorithm due to the lower performances and the reduced number of spectral bands of the sensor. Despites higher uncertainties, the phytoplankton groups distribution obtained with CZCS is globally consistent with that of SeaWiFS. A comparison of variability in global phytoplankton distribution between 1979-1982 (CZCS) and 1999-2002 (SeaWiFS) suggests an increase in nanoeucaryotes at high latitudes (>40°) and in the equatorial region (10°S-10°N ) for prochlorococcus and synechococcus during 1999-2002. Our results show variability in global ocean phytoplankton distribution over a 20-year timescale. Strong variability observed over the inter-annual and inter-decadal scales are shown and tentatively explained using environmental variables.
NASA Astrophysics Data System (ADS)
Phillips, Stephen Robert; Costa, Maycira
2017-12-01
The use of standard ocean colour reflectance based algorithms to derive surface chlorophyll may have limited applicability for optically dynamic coastal waters due to the pre-defined coefficients based on global datasets. Reflectance based algorithms adjusted to regional optical water characteristics are a promising alternative. A class-based definition of optically diverse coastal waters was investigated as a first step towards the development of temporal and spatial constrained reflectance based algorithms for optically variable coastal waters. A large set of bio-optical data were collected as part of five research cruises and bi-weekly trips aboard a ship of opportunity in the west coast of Canada, to assess the spatial and temporal variability of above-water reflectance in this contrasted coastal environment. To accomplish this, in situ biophysical and optical measurements were collected in conjunction with above-water hyperspectral remote sensing reflectance (Rrs) at 145 stations. The concentrations of measured biophysical data varied considerably; chlorophyll a (Chla) (mean = 1.64, range: 0.10-7.20 μg l-1), total suspended matter (TSM) (3.09, 0.82-20.69 mg l-1), and absorption by chromophoric dissolved organic matter (CDOM) (acdom(443 nm)) (0.525, 0.007-3.072 m-1), thus representing the spatio-temporal variability of the Salish Sea. Optically, a similar large range was also found; particulate scattering (bp(650 nm)) (1.316, 0.250-7.450 m-1), particulate backscattering (bbp(650 nm)) (0.022, 0.005-0.097 m-1), total beam attenuation coefficient (ct(650)) (1.675, 0.371-9.537 m-1) and particulate absorption coefficient (ap(650 nm)) (0.345, 0.048-2.020 m-1). An empirical orthogonal function (EOF) analysis revealed that Rrs variability was highly correlated to bp (r = 0.90), bbp (r = 0.82) and concentration of TSM (r = 0.80), which highlighted the dominant role of water turbidity in this region. Hierarchical clustering analysis was applied to the normalized Rrs spectra to define optical water classes. Class 1 was defined by the highest Rrs values, particularly above 570 nm, indicating more turbid waters; Class 2 was dominated by high Chla and TSM concentrations, which is shown by high Rrs at 570 nm as well as fluorescence and absorption peaks; Class 3 shows strong fluorescence signatures accompanied by low TSM influence; and Class 4 is most representative of clear waters with a less defined absorption peak around 440 nm. By understanding the bio-optical factors which control the variability of the Rrs spectra this study aims to develop a sub-regional characterization of this coastal region aiming to improve bio-optical algorithms in this complex coastal area.
Sensor-independent approach to the vicarious calibration of satellite ocean color radiometry.
Franz, Bryan A; Bailey, Sean W; Werdell, P Jeremy; McClain, Charles R
2007-08-01
The retrieval of ocean color radiometry from space-based sensors requires on-orbit vicarious calibration to achieve the level of accuracy desired for quantitative oceanographic applications. The approach developed by the NASA Ocean Biology Processing Group (OBPG) adjusts the integrated instrument and atmospheric correction system to retrieve normalized water-leaving radiances that are in agreement with ground truth measurements. The method is independent of the satellite sensor or the source of the ground truth data, but it is specific to the atmospheric correction algorithm. The OBPG vicarious calibration approach is described in detail, and results are presented for the operational calibration of SeaWiFS using data from the Marine Optical Buoy (MOBY) and observations of clear-water sites in the South Pacific and southern Indian Ocean. It is shown that the vicarious calibration allows SeaWiFS to reproduce the MOBY radiances and achieve good agreement with radiometric and chlorophyll a measurements from independent in situ sources. We also find that the derived vicarious gains show no significant temporal or geometric dependencies, and that the mission-average calibration reaches stability after approximately 20-40 high-quality calibration samples. Finally, we demonstrate that the performance of the vicariously calibrated retrieval system is relatively insensitive to the assumptions inherent in our approach.
Bio-Optics of the Chesapeake Bay from Measurements and Radiative Transfer Calculations
NASA Technical Reports Server (NTRS)
Tzortziou, Maria; Herman, Jay R.; Gallegos, Charles L.; Neale, Patrick J.; Subramaniam, Ajit; Harding, Lawrence W., Jr.; Ahmad, Ziauddin
2005-01-01
We combined detailed bio-optical measurements and radiative transfer (RT) modeling to perform an optical closure experiment for optically complex and biologically productive Chesapeake Bay waters. We used this experiment to evaluate certain assumptions commonly used when modeling bio-optical processes, and to investigate the relative importance of several optical characteristics needed to accurately model and interpret remote sensing ocean-color observations in these Case 2 waters. Direct measurements were made of the magnitude, variability, and spectral characteristics of backscattering and absorption that are critical for accurate parameterizations in satellite bio-optical algorithms and underwater RT simulations. We found that the ratio of backscattering to total scattering in the mid-mesohaline Chesapeake Bay varied considerably depending on particulate loading, distance from land, and mixing processes, and had an average value of 0.0128 at 530 nm. Incorporating information on the magnitude, variability, and spectral characteristics of particulate backscattering into the RT model, rather than using a volume scattering function commonly assumed for turbid waters, was critical to obtaining agreement between RT calculations and measured radiometric quantities. In situ measurements of absorption coefficients need to be corrected for systematic overestimation due to scattering errors, and this correction commonly employs the assumption that absorption by particulate matter at near infrared wavelengths is zero.
The SeaDAS Processing and Analysis System: SeaWiFS, MODIS, and Beyond
NASA Astrophysics Data System (ADS)
MacDonald, M. D.; Ruebens, M.; Wang, L.; Franz, B. A.
2005-12-01
The SeaWiFS Data Analysis System (SeaDAS) is a comprehensive software package for the processing, display, and analysis of ocean data from a variety of satellite sensors. Continuous development and user support by programmers and scientists for more than a decade has helped to make SeaDAS the most widely used software package in the world for ocean color applications, with a growing base of users from the land and sea surface temperature community. Full processing support for past (CZCS, OCTS, MOS) and present (SeaWiFS, MODIS) sensors, and anticipated support for future missions such as NPP/VIIRS, enables end users to reproduce the standard ocean archive product suite distributed by NASA's Ocean Biology Processing Group (OBPG), as well as a variety of evaluation and intermediate ocean, land, and atmospheric products. Availability of the processing algorithm source codes and a software build environment also provide users with the tools to implement custom algorithms. Recent SeaDAS enhancements include synchronization of MODIS processing with the latest code and calibration updates from the MODIS Calibration Support Team (MCST), support for all levels of MODIS processing including Direct Broadcast, a port to the Macintosh OS X operating system, release of the display/analysis-only SeaDAS-Lite, and an extremely active web-based user support forum.
NASA Technical Reports Server (NTRS)
Mueller, J. L. (Editor); Fargion, Giuletta S. (Editor); McClain, Charles R. (Editor); Pegau, Scott; Zaneveld, J. Ronald V.; Mitchell, B. Gregg; Kahru, Mati; Wieland, John; Stramska, Malgorzat
2003-01-01
This document stipulates protocols for measuring bio-optical and radiometric data for the Sensor Intercomparison and Merger for Biological and Interdisciplinary Oceanic Studies (SIMBIOS) Project activities and algorithm development. The document is organized into 6 separate volumes as Ocean Optics Protocols for Satellite Ocean Color Sensor Validation, Revision 4. Volume I: Introduction, Background and Conventions; Volume II: Instrument Specifications, Characterization and Calibration; Volume III: Radiometric Measurements and Data Analysis Methods; Volume IV: Inherent Optical Properties: Instruments, Characterization, Field Measurements and Data Analysis Protocols; Volume V: Biogeochemical and Bio-Optical Measurements and Data Analysis Methods; Volume VI: Special Topics in Ocean Optics Protocols and Appendices. The earlier version of Ocean Optics Protocols for Satellite Ocean Color Sensor Validation, Revision 3 (Mueller and Fargion 2002, Volumes 1 and 2) is entirely superseded by the six volumes of Revision 4 listed above.
NASA Technical Reports Server (NTRS)
Mueller, J. L.; Fargion, G. S.; McClain, C. R. (Editor); Pegau, S.; Zanefeld, J. R. V.; Mitchell, B. G.; Kahru, M.; Wieland, J.; Stramska, M.
2003-01-01
This document stipulates protocols for measuring bio-optical and radiometric data for the Sensor Intercomparision and Merger for Biological and Interdisciplinary Oceanic Studies (SIMBIOS) Project activities and algorithm development. The document is organized into 6 separate volumes as Ocean Optics Protocols for Satellite Ocean Color Sensor Validation, Revision 4. Volume I: Introduction, Background, and Conventions; Volume II: Instrument Specifications, Characterization and Calibration; Volume III: Radiometric Measurements and Data Analysis Methods; Volume IV: Inherent Optical Properties: Instruments, Characterization, Field Measurements and Data Analysis Protocols; Volume V: Biogeochemical and Bio-Optical Measurements and Data Analysis Methods; Volume VI: Special Topics in Ocean Optics Protocols and Appendices. The earlier version of Ocean Optics Protocols for Satellite Ocean Color Sensor Validation, Revision 3 is entirely superseded by the six volumes of Revision 4 listed above.
NASA Technical Reports Server (NTRS)
Mueller, J. L. (Editor); Fargion, Giulietta S. (Editor); McClain, Charles R. (Editor)
2003-01-01
This document stipulates protocols for measuring bio-optical and radiometric data for the Sensor Intercomparison and Merger for Biological and Interdisciplinary Oceanic Studies (SIMBIOS) Project activities and algorithm development. The document is organized into 6 separate volumes as Ocean Optics Protocols for Satellite Ocean Color Sensor Validation, Revision 4. Volume I: Introduction, Background and Conventions; Volume II: Instrument Specifications, Characterization and Calibration; Volume III: Radiometric Measurements and Data Analysis Methods; Volume IV: Inherent Optical Properties: Instruments, Characterization, Field Measurements and Data Analysis Protocols; Volume V: Biogeochemical and Bio-Optical Measurements and Data Analysis Methods; Volume VI: Special Topics in Ocean Optics Protocols and Appendices. The earlier version of Ocean Optics Protocols for Satellite Ocean Color Sensor Validation, Revision 3 (Mueller and Fargion 2002, Volumes 1 and 2) is entirely superseded by the six volumes of Revision 4 listed above.
NASA Technical Reports Server (NTRS)
Hooker, Stanford B. (Editor); Firestone, Elaine R. (Editor); McClain, Charles R.; Darzi, Michael; Barnes, Robert A.; Eplee, Robert E.; Firestone, James K.; Patt, Frederick S.; Robinson, Wayne D.; Schieber, Brian D.;
1996-01-01
This document provides five brief reports that address several quality control procedures under the auspices of the Calibration and Validation Element (CVE) within the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) Project. Chapter 1 describes analyses of the 32 sensor engineering telemetry streams. Anomalies in any of the values may impact sensor performance in direct or indirect ways. The analyses are primarily examinations of parameter time series combined with statistical methods such as auto- and cross-correlation functions. Chapter 2 describes how the various onboard (solar and lunar) and vicarious (in situ) calibration data will be analyzed to quantify sensor degradation, if present. The analyses also include methods for detecting the influence of charged particles on sensor performance such as might be expected in the South Atlantic Anomaly (SAA). Chapter 3 discusses the quality control of the ancillary environmental data that are routinely received from other agencies or projects which are used in the atmospheric correction algorithm (total ozone, surface wind velocity, and surface pressure; surface relative humidity is also obtained, but is not used in the initial operational algorithm). Chapter 4 explains the procedures for screening level-, level-2, and level-3 products. These quality control operations incorporate both automated and interactive procedures which check for file format errors (all levels), navigation offsets (level-1), mask and flag performance (level-2), and product anomalies (all levels). Finally, Chapter 5 discusses the match-up data set development for comparing SeaWiFS level-2 derived products with in situ observations, as well as the subsequent outlier analyses that will be used for evaluating error sources.
NASA Astrophysics Data System (ADS)
Cao, F.; Tzortziou, M.; Hu, C.; Najjar, R.
2016-02-01
Tidal wetlands and estuaries are dynamic features of coastal ocean and play critical roles in the global carbon cycle. Exchanges of dissolved organic carbon (DOC) between tidal wetlands and adjacent estuaries have important implications for carbon sequestration in tidal wetlands as well as biogeochemical cycling of wetlands derived material in the coastal zones. Recent studies demonstrated that the absorption coefficients of chromophoric dissolved organic matter at λ= 275 and 295 nm, which can be derived from satellite ocean color observations, can be used to accurately retrieve dissolved organic carbon (DOC) in some coastal waters. Based on a synthesis of existing field observations collected covering wide spatial and temporal variability in the Mid-Atlantic Bight and the Gulf of Mexico, here we developed and validated new empirical models to estimate coastal DOC from remotely sensed bio-optical properties of the surface water. We focused on the interfaces between tidal wetland-estuary and estuary-shelf water domains. The DOC algorithms were applied to SeaWiFs and MODIS observations to generate long-term climatological DOC distributions from 1998 to 2014. Empirical orthogonal function analysis revealed strong seasonality and spatial gradients in the satellite retrieved DOC in the tidal wetlands and estuaries. Combined with field observations and biogeochemical models, satellite retrievals can be used to scale up carbon fluxes from individual marshes and sub-estuaries to the whole estuarine system, and improve understanding of biogeochemical exchanges between terrestrial and aquatic ecosystems.
A new bio-optical algorithm for the remote sensing of algal blooms in complex ocean waters
NASA Astrophysics Data System (ADS)
Shanmugam, Palanisamy
2011-04-01
A new bio-optical algorithm has been developed to provide accurate assessments of chlorophyll a (Chl a) concentration for detection and mapping of algal blooms from satellite data in optically complex waters, where the presence of suspended sediments and dissolved substances can interfere with phytoplankton signal and thus confound conventional band ratio algorithms. A global data set of concurrent measurements of pigment concentration and radiometric reflectance was compiled and used to develop this algorithm that uses the normalized water-leaving radiance ratios along with an algal bloom index (ABI) between three visible bands to determine Chl a concentrations. The algorithm is derived using Sea-viewing Wide Field-of-view Sensor bands, and it is subsequently tuned to be applicable to Moderate Resolution Imaging Spectroradiometer (MODIS)/Aqua data. When compared with large in situ data sets and satellite matchups in a variety of coastal and ocean waters the present algorithm makes good retrievals of the Chl a concentration and shows statistically significant improvement over current global algorithms (e.g., OC3 and OC4v4). An examination of the performance of these algorithms on several MODIS/Aqua images in complex waters of the Arabian Sea and west Florida shelf shows that the new algorithm provides a better means for detecting and differentiating algal blooms from other turbid features, whereas the OC3 algorithm has significant errors although yielding relatively consistent results in clear waters. These findings imply that, provided that an accurate atmospheric correction scheme is available to deal with complex waters, the current MODIS/Aqua, MERIS and OCM data could be extensively used for quantitative and operational monitoring of algal blooms in various regional and global waters.
NASA Technical Reports Server (NTRS)
Hooker, Stanford B. (Editor); Firestone, Elaine R. (Editor); Mueller, James L.; Mclean, James T.; Johnson, B. Carol; Westphal, Todd L.; Cooper, John W.
1994-01-01
The results of the second Sea-viewing Wide Field-of-view Sensor (SeaWiFS) Intercalibration Round-Robin Experiment (SIRREX-2), which was held at the Center for Hydro-Optics and Remote Sensing (CHORS) at San Diego State University on 14-25 Jun. 1993 are presented. SeaWiFS is an ocean color radiometer that is scheduled for launch in 1994. The SIRREXs are part of the SeaWiFS Calibration and Validation Program that includes the GSFC, CHORS, NIST, and several other laboratories. GSFC maintains the radiometric scales (spectral radiance and irradiance) for the SeaWiFS program using spectral irradiance standards lamps, which are calibrated by NIST. The purpose of each SIRREX is to assure that the radiometric scales which are realized by the laboratories who participate in the SeaWiFS Calibration and Validation Program are correct; that is, the uncertainties of the radiometric scales are such that measurements of normalized water-leaving radiance using oceanographic radiometers have uncertainties of 5%. SIRREX-1 demonstrated, from the internal consistency of the results, that the program goals would not be met without improvements to the instrumentation. The results of SIRREX-2 demonstrate that spectral irradiance scales realized using the GSFC standard irradiance lamp (F269) are consistent with the program goals, as the uncertainty of these measurements is assessed to be about 1%. However, this is not true for the spectral radiance scales, where again the internal consistency of the results is used to assess the uncertainty. This is attributed to inadequate performance and characterization of the instrumentation. For example, spatial nonuniformities, spectral features, and sensitivity to illumination configuration were observed in some of the integrating sphere sources. The results of SIRREX-2 clearly indicate the direction for future work, with the main emphasis on instrument characterization and the assessment of the measurement uncertainties so that the results may be stated in a more definitive manner.
Remote sensing of particle backscattering in Chesapeake Bay: a 6-year SeaWiFS retrospective view
Zawada, D.G.; Hu, C.; Clayton, T.; Chen, Z.; Brock, J.C.; Muller-Karger, F. E.
2007-01-01
Traditional field techniques to monitor water quality in large estuaries, such as boat-based surveys and autonomous moored sensors, generally provide limited spatial coverage. Satellite imagery potentially can be used to address both of these limitations. Here, we show that satellite-based observations are useful for inferring total-suspended-solids (TSS) concentrations in estuarine areas. A spectra-matching optimization algorithm was used to estimate the particle backscattering coefficient at 400 nm, bbp(400), in Chesapeake Bay from Sea-viewing Wide-Field-of-view Sensor (SeaWiFS) satellite imagery. These estimated values of bbp(400) were compared to in situ measurements of TSS for the study period of September 1997–December 2003. Contemporaneous SeaWiFS bbp(400) values and TSS concentrations were positively correlated (N = 340, r2 = 0.4, P bp(400) values served as a reasonable first-order approximation for synoptically mapping TSS. Overall, large-scale patterns of SeaWiFS bbp(400) appeared to be consistent with expectations based on field observations and historical reports of TSS. Monthly averages indicated that SeaWiFS bbp(400) was typically largest in winter (>0.049 m−1, November–February) and smallest in summer (−1, June–August), regardless of the amount of riverine discharge to the bay. The study period also included Hurricanes Floyd and Isabel, which caused large-scale turbidity events and changes in the water quality of the bay. These results demonstrate that this technique can provide frequent synoptic assessments of suspended solids concentrations in Chesapeake Bay and other coastal regions.
Improving chlorophyll-a retrievals and cross-sensor consistency through the OCI algorithm concept
NASA Astrophysics Data System (ADS)
Feng, L.; Hu, C.; Lee, Z.; Franz, B. A.
2016-02-01
Abstract: The recently developed band-subtraction based OCI chlorophyll-a algorithm is more tolerant than the band-ratio OCx algorithms to errors from atmospheric correction and other sources in oligotrophic oceans (Chl ≤ 0.25 mg m-3), and it has been implemented by NASA as the default algorithm to produce global Chl data from all ocean color missions. However, two areas still require improvements in its current implementation. Firstly, the originally proposed algorithm switch between oligotrophic and more productive waters has been changed from 0.25 - 0.3 mg m-3 to 0.15 - 0.2 mg m-3 to account for the observed discontinuity in data statistics. Additionally, the algorithm does not account for variable proportions of colored dissolved organic matter (CDOM) in different ocean basins. Here, new step-wise regression equations with fine-tuned regression coefficients are used to improve raise the algorithm switch zone and to improve data statistics as well as retrieval accuracy. A new CDOM index (CDI) based on three spectral bands (412, 443 and 490 nm) is used as a weighting factor to adjust the algorithm for the optical disparities between different oceans. The updated Chl OCI algorithm is then evaluated for its overall accuracy using field observations through the SeaBASS data archive, and for its cross-sensor consistency using multi-sensor observations over the global oceans. Keywords: Chlorophyll-a, Remote sensing, Ocean color, OCI, OCx, CDOM, MODIS, SeaWiFS, VIIRS
Remote sensing estimation of colored dissolved organic matter (CDOM) in optically shallow waters
NASA Astrophysics Data System (ADS)
Li, Jiwei; Yu, Qian; Tian, Yong Q.; Becker, Brian L.
2017-06-01
It is not well understood how bottom reflectance of optically shallow waters affects the algorithm performance of colored dissolved organic matters (CDOM) retrieval. This study proposes a new algorithm that considers bottom reflectance in estimating CDOM absorption from optically shallow inland or coastal waters. The field sampling was conducted during four research cruises within the Saginaw River, Kawkawlin River and Saginaw Bay of Lake Huron. A stratified field sampling campaign collected water samples, determined the depth at each sampling location and measured optical properties. The sampled CDOM absorption at 440 nm broadly ranged from 0.12 to 8.46 m-1. Field sample analysis revealed that bottom reflectance does significantly change water apparent optical properties. We developed a CDOM retrieval algorithm (Shallow water Bio-Optical Properties algorithm, SBOP) that effectively reduces uncertainty by considering bottom reflectance in shallow waters. By incorporating the bottom contribution in upwelling radiances, the SBOP algorithm was able to explain 74% of the variance of CDOM values (RMSE = 0.22 and R2 = 0.74). The bottom effect index (BEI) was introduced to efficiently separate optically shallow and optically deep waters. Based on the BEI, an adaptive approach was proposed that references the amount of bottom effect in order to identify the most suitable algorithm (optically shallow water algorithm [SBOP] or optically deep water algorithm [QAA-CDOM]) to improve CDOM estimation (RMSE = 0.22 and R2 = 0.81). Our results potentially help to advance the capability of remote sensing in monitoring carbon pools at the land-water interface.
Global Distributions of Mineral Dust Properties from SeaWiFS and MODIS: From Sources to Sinks
NASA Technical Reports Server (NTRS)
Hsu, N. Christina; Bettenhausen, C.; Sayer, A.
2011-01-01
The impact of natural and anthropogenic sources of mineral dust has gained increasing attention from scientific communities in recent years. Indeed, these airborne dust particles, once lifted over the source regions, can be transported out of the boundary layer into the free troposphere and can travel thousands of kilometers across the oceans resulting in important biogeochemical impacts on the ecosystem. Due to the relatively short lifetime (a few hours to about a week), the distributions of these mineral dust particles vary extensively in both space and time. Consequently, satellite observations are needed over both source and sink regions for continuous temporal and spatial sampling of aerosol properties. With the launch of SeaWiFS in 1997, Terra/MODIS in 1999, and Aqua/MODIS in 2002, high quality comprehensive aerosol climatology is becoming feasible for the first time. As a result of these unprecedented satellite data records, studies of the radiative and biogeochemical effects due to dust aerosols are now possible. In this study, we will show the comparisons of satellite retrieved aerosol optical thickness using Deep Blue algorithm with data from AERONET sunphotometers over desert and semi-desert regions as well as vegetated areas. Our results indicate reasonable agreements between these two. These new satellite products will allow scientists to determine quantitatively the aerosol properties near sources using high spatial resolution measurements from Sea WiFS and MODIS-like instruments. The multiyear satellite measurements since 1997 from Sea WiFS will be compared with those retrieved from MODIS and MISR, and will be utilized to investigate the interannual variability of source, pathway, and dust loading associated with the dust outbreaks over the entire globe. Finally, the trends observed over the last decade based upon the SeaWiFS time series in the amounts of tropospheric aerosols due to natural and anthropogenic sources (such as changes in the frequency of dust storms) will be discussed.
Inversion of oceanic constituents in case I and II waters with genetic programming algorithms.
Chami, Malik; Robilliard, Denis
2002-10-20
A stochastic inverse technique based on agenetic programming (GP) algorithm was developed toinvert oceanic constituents from simulated data for case I and case II water applications. The simulations were carried out with the Ordre Successifs Ocean Atmosphere (OSOA) radiative transfer model. They include the effects of oceanic substances such as algal-related chlorophyll, nonchlorophyllous suspended matter, and dissolved organic matter. The synthetic data set also takes into account the directional effects of particles through a variation of their phase function that makes the simulated data realistic. It is shown that GP can be successfully applied to the inverse problem with acceptable stability in the presence of realistic noise in the data. GP is compared with neural network methodology for case I waters; GP exhibits similar retrieval accuracy, which is greater than for traditional techniques such as band ratio algorithms. The application of GP to real satellite data [a Sea-viewing Wide Field-of-view Sensor (SeaWiFS)] was also carried out for case I waters as a validation. Good agreement was obtained when GP results were compared with the SeaWiFS empirical algorithm. For case II waters the accuracy of GP is less than 33%, which remains satisfactory, at the present time, for remote-sensing purposes.
Plumes and Blooms: Observations, Analysis and Modeling for SIMBIOS
NASA Technical Reports Server (NTRS)
Maritorena, S.; Siegel, D. A.; Nelson, N. B.
2004-01-01
The goal of the Plumes and Blooms (PnB) project is to develop, validate and apply to imagery state-of-the-art ocean color algorithms for quantifying sediment plumes and phytoplankton blooms for the Case II environment of the Santa Barbara Channel. We conduct monthly to twice-monthly transect observations across the Santa Barbara Channel to develop an algorithm development and product validation data set. A primary goal is the use the PnB field data set to objectively tune semi-analytical models of ocean color for this site and apply them using available satellite imagery (SeaWiFS and MODIS). However, the comparison between PnB field observations and satellite estimates of primary products has been disappointing. We find that field estimates of water-leaving radiance correspond poorly to satellite estimates for both SeaWiFS and MODIS local area coverage imagery. We believe this is due to poor atmospheric correction due to complex mixtures of aerosol types found in these near-coastal regions.
Bertrand, Olivier J. N.; Lindemann, Jens P.; Egelhaaf, Martin
2015-01-01
Avoiding collisions is one of the most basic needs of any mobile agent, both biological and technical, when searching around or aiming toward a goal. We propose a model of collision avoidance inspired by behavioral experiments on insects and by properties of optic flow on a spherical eye experienced during translation, and test the interaction of this model with goal-driven behavior. Insects, such as flies and bees, actively separate the rotational and translational optic flow components via behavior, i.e. by employing a saccadic strategy of flight and gaze control. Optic flow experienced during translation, i.e. during intersaccadic phases, contains information on the depth-structure of the environment, but this information is entangled with that on self-motion. Here, we propose a simple model to extract the depth structure from translational optic flow by using local properties of a spherical eye. On this basis, a motion direction of the agent is computed that ensures collision avoidance. Flying insects are thought to measure optic flow by correlation-type elementary motion detectors. Their responses depend, in addition to velocity, on the texture and contrast of objects and, thus, do not measure the velocity of objects veridically. Therefore, we initially used geometrically determined optic flow as input to a collision avoidance algorithm to show that depth information inferred from optic flow is sufficient to account for collision avoidance under closed-loop conditions. Then, the collision avoidance algorithm was tested with bio-inspired correlation-type elementary motion detectors in its input. Even then, the algorithm led successfully to collision avoidance and, in addition, replicated the characteristics of collision avoidance behavior of insects. Finally, the collision avoidance algorithm was combined with a goal direction and tested in cluttered environments. The simulated agent then showed goal-directed behavior reminiscent of components of the navigation behavior of insects. PMID:26583771
Radiometric calibration of SeaWiFS in the near infrared
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martiny, Nadege; Frouin, Robert; Santer, Richard
2005-12-20
The radiometric calibration of the Sea-Viewing Wide-Field-of-View Sensor (SeaWiFS) in the near infrared (band 8, centered on 865 nm) is evaluated by use of ground-based radiometer measurements of solar extinction and sky radiance in the Sun's principal plane at two sites, one located 13 km off Venice, Italy, and the other on the west coast of Lanai Island, Hawaii. The aerosol optical thickness determined from solar extinction is used in an iterative scheme to retrieve the pseudo aerosol phase function, i.e., the product of single-scattering albedo and phase function, in which sky radiance is corrected for multiple scattering effects. Nomore » assumption about the aerosol model is required. The aerosol parameters are the inputs into a radiation-transfer code used to compute the SeaWiFS radiance. The calibration method has a theoretical inaccuracy of plus or minus 2.0-3.6%, depending on the solar zenith angle and the SeaWiFS geometry. The major source of error is in the calibration of the ground-based radiometer operated in radiance mode, assumed to be accurate to {+-}2%. The establishment of strict criteria for atmospheric stability, angular geometry, and surface conditions resulted in selection of only 26 days for the analysis during 1999-2000 (Venice site) and 1998-2001 (Lanai site). For these days the measured level-1B radiance from the SeaWiFS Project Office was generally lower than the corresponding simulated radiance in band 8 by 7.0% on average, {+-}2.8%.« less
Evaluation of atmospheric correction algorithms for processing SeaWiFS data
NASA Astrophysics Data System (ADS)
Ransibrahmanakul, Varis; Stumpf, Richard; Ramachandran, Sathyadev; Hughes, Kent
2005-08-01
To enable the production of the best chlorophyll products from SeaWiFS data NOAA (Coastwatch and NOS) evaluated the various atmospheric correction algorithms by comparing the satellite derived water reflectance derived for each algorithm with in situ data. Gordon and Wang (1994) introduced a method to correct for Rayleigh and aerosol scattering in the atmosphere so that water reflectance may be derived from the radiance measured at the top of the atmosphere. However, since the correction assumed near infrared scattering to be negligible in coastal waters an invalid assumption, the method over estimates the atmospheric contribution and consequently under estimates water reflectance for the lower wavelength bands on extrapolation. Several improved methods to estimate near infrared correction exist: Siegel et al. (2000); Ruddick et al. (2000); Stumpf et al. (2002) and Stumpf et al. (2003), where an absorbing aerosol correction is also applied along with an additional 1.01% calibration adjustment for the 412 nm band. The evaluation show that the near infrared correction developed by Stumpf et al. (2003) result in an overall minimum error for U.S. waters. As of July 2004, NASA (SEADAS) has selected this as the default method for the atmospheric correction used to produce chlorophyll products.
SeaShark and Starfish opertional data processing schemes for AVHRR and SeaWiFs
NASA Astrophysics Data System (ADS)
Flowerdew, R. J.; Corlyon, Anaa M.; Greer, W. A. D.; Newby, Steve J.; Winder, C. P.
1997-02-01
SeaShark is an operational software package for processing, archiving and cataloguing AVHRR and SeaWiFS data using an operator friendly GUI. Upon receipt of a customer order, it produces standard AVHRR data products, including Sea Surface Temperature (SST) and it has recently been modified to include SeaWiFS level 2 data processing. This uses an atmospheric correction scheme developed by the Plymouth Marine Laboratory, UK (PML) that builds upon the standard Gordon and Wang approach to be applicable over both case 1 and case 2 waters. Higher level products are then generated using PML algorithms, including chlorophyll a, a CZCS-type pigment, Kd, and suspended particulate matter. Outputs are in CEOS-compatible format. The software also produces fast delivery products (FDPs) of chlorophyll a and SST. These FDPs are combined in the StarFish software package to provide maps indicating potential location of phytoplankton and the preferred thermal environment of certain pelagic fish species. Fishing vessels may obtain these maps over Inmarsat, allowing them to achieve a greater efficiency hence lower cost.
NASA Astrophysics Data System (ADS)
Loisel, H.; Nicolas, J.-M.; Merien, D.; Claustre, H.; Sciandra, A.; Becu, G.; Deschamps, P.-Y.
Since the success of the first ocean color instrument, the Coastal Zone Color Sen- sor (CZCS), the interpretation of ocean color in terms of phytoplankton pigment (the chlorophyll, Chl) is now well recognized. The chlorophyll data, as detected from space, are now currently used to constraint oceanic biological models. New gener- ation of biological models now integrate explicitly 2 or more species of plankton, as well as dissolved organic and particulate matter, DOC and POC, respectively. The as- sessment of such information from the Sea-viewing Wide Field-of-view Sensor and inverse modeling will be discussed. In the frame of the POMME (Programme Océan Multidisciplinaire Méso-Echelle) project we will present the seasonal variability of the absorption, a, the backscattering, bb, and the scattering, b, coefficients as retrieved from SeaWiFS observations over the POMME area. These optical parameters will be compared with in situ measurements made during winter, spring and summer 2001, and biological information derived from these optical properties retrieved at different wavelengths will be presented.
NASA Technical Reports Server (NTRS)
Gao, Bo-Cai; Montes, Marcos J.; Davis, Curtiss O.
2003-01-01
This SIMBIOS contract supports several activities over its three-year time-span. These include certain computational aspects of atmospheric correction, including the modification of our hyperspectral atmospheric correction algorithm Tafkaa for various multi-spectral instruments, such as SeaWiFS, MODIS, and GLI. Additionally, since absorbing aerosols are becoming common in many coastal areas, we are making the model calculations to incorporate various absorbing aerosol models into tables used by our Tafkaa atmospheric correction algorithm. Finally, we have developed the algorithms to use MODIS data to characterize thin cirrus effects on aerosol retrieval.
SeaWiFS technical report series. Volume 31: Stray light in the SeaWiFS radiometer
NASA Technical Reports Server (NTRS)
Hooker, Stanford B. (Editor); Firestone, Elaine R. (Editor); Acker, James G. (Editor); Barnes, Robert A.; Holmes, Alan W.; Esaias, Wayne E.
1995-01-01
Some of the measurements from the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) will not be useful as ocean measurements. For the ocean data set, there are procedures in place to mask the SeaWiFS measurements of clouds and ice. Land measurements will also be masked using a geographic technique based on each measurment's latitude and longitude. Each of these masks involves a source of light much brighter than the ocean. Because of stray light in the SeaWiFS radiometer, light from these bright sources can contaminate ocean measurements located a variable number of pixels away from a bright source. In this document, the sources of stray light in the sensor are examined, and a method is developed for masking measurements near bright targets for stray light effects. In addition, a procedure is proposed for reducing the effects of stray light in the flight data from SeaWiFS. This correction can also reduce the number of pixels masked for stray light. Without these corrections, local area scenes must be masked 10 pixels before and after bright targets in the along-scan direction. The addition of these corrections reduces the along-scan masks to four pixels before and after bright sources. In the along-track direction, the flight data are not corrected, and are masked two pixels before and after. Laboratory measurements have shown that stray light within the instrument changes in a direct ratio to the intensity of the bright source. The measurements have also shown that none of the bands show peculiarities in their stray light response. In other words, the instrument's response is uniform from band to band. The along-scan correction is based on each band's response to a 1 pixel wide bright sources. Since these results are based solely on preflight laboratory measurements, their successful implementation requires compliance with two additional criteria. First, since SeaWiFS has a large data volume, the correction and masking procedures must be such that they can be converted into computationally fast algorithms. Second, they must be shown to operate properly on flight data. The laboratory results, and the corrections and masking procedures that derive from them, should be considered as zeroeth order estimates of the effects that will be found on orbit.
NASA Astrophysics Data System (ADS)
Tao, Bangyi; Mao, Zhihua; Lei, Hui; Pan, Delu; Bai, Yan; Zhu, Qiankun; Zhang, Zhenglong
2017-03-01
A new bio-optical algorithm based on the green and red bands of the Medium Resolution Imaging Spectrometer (MERIS) is developed to differentiate the harmful algal blooms of Prorocentrum donghaiense Lu (P. donghaiense) from diatom blooms in the East China Sea (ECS). Specifically, a novel green-red index (GRI), actually an indicator for a(510) of bloom waters, is retrieved from a semianalytical bio-optical model based on the green and red bands of phytoplankton-absorption and backscattering spectra. In addition, a MERIS-based diatom index (DIMERIS) is derived by adjusting a Moderate Resolution Imaging Spectroradiometer (MODIS) diatom index algorithm to the MERIS bands. Finally, bloom types are effectively differentiated in the feature spaces of the green-red index and DIMERIS. Compared with three previous MERIS-based quasi-analytical algorithm (QAA) algorithms and three existing classification methods, the proposed GRI and classification method have the best discrimination performance when using the MERIS data. Further validations of the algorithm by using several MERIS image series and near-concurrent in situ observations indicate that our algorithm yields the best classification accuracy and thus can be used to reliably detect and classify P. donghaiense and diatom blooms in the ECS. This is the first time that the MERIS data have been used to identify bloom types in the ECS. Our algorithm can also be used for the successor of the MERIS, the Ocean and Land Color Instrument, which will aid the long-term observation of species succession in the ECS.
Ocean-color Satellites and the Phytoplankton-dust Connection
NASA Technical Reports Server (NTRS)
Stegmann, P. M.
2000-01-01
Results of a time series of satellite measurements of aerosol radiance made with two ocean-color sensors are presented. Data from the Coastal Zone Color Scanner (CZCS) were collected from 1978 to 1986. The follow-on sensor, the Sea-viewing Wide Field-of-view Sensor (SeaWiFS), has been transmitting data since September 1997. Both CZCS and SeaWiFS images successfully depicted regions of well-known, large-scale mineral aerosol plumes, the seasonality of which corresponds to that found by other satellite and land-based platforms. Aerosol radiance extractions were made for two subregions in the North Atlantic, both of which are recipients of regular mineral aerosol deposits originating from northwest Africa. In the almost eight-year time series obtained with CZCS, the annual cycle in both subregions follows a similar pattern each year and agrees well with results from the published literature. However, there is interannual variability and the observed fluctuations may be linked to climatic shifts associated with the North Atlantic Oscillation. The SeaWiFS annual cycle of aerosol radiance in both subregions closely followed that found in the CZCS climatology; SeaWiFS-measured aerosol optical thickness mirrors aerosol radiance to a high degree. The higher temporal resolution offered by the SeaWiFS data demonstrates the sporadic nature of dust events throughout the entire year and not only during the high dust season.
Monitoring terrestrial dissolved organic carbon export at land-water interfaces using remote sensing
NASA Astrophysics Data System (ADS)
Yu, Q.; Li, J.; Tian, Y. Q.
2017-12-01
Carbon flux from land to oceans and lakes is a crucial component of carbon cycling. However, this lateral carbon flow at land-water interface is often neglected in the terrestrial carbon cycle budget, mainly because observations of the carbon dynamics are very limited. Monitoring CDOM/DOC dynamics using remote sensing and assessing DOC export from land to water remains a challenge. Current CDOM retrieval algorithms in the field of ocean color are not simply applicable to inland aquatic ecosystems since they were developed for coarse resolution ocean-viewing imagery and less complex water types in open-sea. We developed a new semi-analytical algorithm, called SBOP (Shallow water Bio-Optical Properties algorithm) to adapt to shallow inland waters. SBOP was first developed and calibrated based on in situ hyperspectral radiometer data. Then we applied it to the Landsat-8 OLI images and evaluated the effectiveness of the multispectral images on inversion of CDOM absorption based on our field sampling at the Saginaw Bay in the Lake Huron. The algorithm performances (RMSE = 0.17 and R2 = 0.87 in the Saginaw Bay; R2 = 0.80 in the northeastern US lakes) is promising and we conclude the CDOM absorption can be derived from Landsat-8 OLI image in both optically deep and optically shallow waters with high accuracy. Our method addressed challenges on employing appropriate atmospheric correction, determining bottom reflectance influence for shallow waters, and improving for bio-optical properties retrieval, as well as adapting to both hyperspectral and the multispectral remote sensing imagery. Over 100 Landsat-8 images in Lake Huron, northeastern US lakes, and the Arctic major rivers were processed to understand the CDOM spatio-temporal dynamics and its associated driving factors.
High Spectral Resolution MODIS Algorithms for Ocean Chlorophyll in Case II Waters
NASA Technical Reports Server (NTRS)
Carder, Kendall L.
2004-01-01
The Case 2 chlorophyll a algorithm is based on a semi-analytical, bio-optical model of remote sensing reflectance, R(sub rs)(lambda), where R(sub rs)(lambda) is defined as the water-leaving radiance, L(sub w)(lambda), divided by the downwelling irradiance just above the sea surface, E(sub d)(lambda,0(+)). The R(sub rs)(lambda) model (Section 3) has two free variables, the absorption coefficient due to phytoplankton at 675 nm, a(sub phi)(675), and the absorption coefficient due to colored dissolved organic matter (CDOM) or gelbstoff at 400 nm, a(sub g)(400). The R(rs) model has several parameters that are fixed or can be specified based on the region and season of the MODIS scene. These control the spectral shapes of the optical constituents of the model. R(sub rs)(lambda(sub i)) values from the MODIS data processing system are placed into the model, the model is inverted, and a(sub phi)(675), a(sub g)(400) (MOD24), and chlorophyll a (MOD21, Chlor_a_3) are computed. Algorithm development is initially focused on tropical, subtropical, and summer temperate environments, and the model is parameterized in Section 4 for three different bio-optical domains: (1) high ratios of photoprotective pigments to chlorophyll and low self-shading, which for brevity, we designate as 'unpackaged'; (2) low ratios and high self-shading, which we designate as 'packaged'; and (3) a transitional or global-average type. These domains can be identified from space by comparing sea-surface temperature to nitrogen-depletion temperatures for each domain (Section 5). Algorithm errors of more than 45% are reduced to errors of less than 30% with this approach, with the greatest effect occurring at the eastern and polar boundaries of the basins. Section 6 provides an expansion of bio-optical domains into high-latitude waters. The 'fully packaged' pigment domain is introduced in this section along with a revised strategy for implementing these variable packaging domains. Chlor_a_3 values derived semi-analytically and Chlor_a_2 values derived empirically using the O Reilly et al. OC3M algorithm from MODIS Terra radiances are compared to field chlorophyll-a concentrations in Sections 7 and 8.
NASA Technical Reports Server (NTRS)
Hooker, Stanford B. (Editor); Firestone, Elaine R. (Editor); Siegel, David A.; Obrien, Margaret C.; Sorensen, Jen C.; Konnoff, Daniel A.; Brody, Eric A.; Mueller, James L.; Davis, Curtiss O.; Rhea, W. Joseph
1995-01-01
The accurate determination of upper ocean apparent optical properties (AOP's) is essential for the vicarious calibration of the sea-viewing wide field-of-view sensor (SeaWiFS) instrument and the validation of the derived data products. To evaluate the role that data analysis methods have upon values of derived AOP's, the first Data Analysis Round-Robin (DARR-94) workshop was sponsored by the SeaWiFS Project during 21-23 July, 1994. The focus of this intercomparison study was the estimation of the downwelling irradiance spectrum just beneath the sea surface, E(sub d)(0(sup -), lambda); the upwelling nadir radiance just beneath the sea surface, L(sub u)(0(sup -), lambda); and the vertical profile of the diffuse attenuation coefficient spectrum, K(sub d)(z, lambda). In the results reported here, different methodologies from four research groups were applied to an identical set of 10 spectroradiometry casts in order to evaluate the degree to which data analysis methods influence AOP estimation, and whether any general improvements can be made. The overall results of DARR-94 are presented in Chapter 1 and the individual methods of the four groups are presented in Chapters 2-5. The DARR-94 results do not show a clear winner among data analysis methods evaluated. It is apparent, however, that some degree of outlier rejection is required in order to accurately estimate L(sub u)(0(sup -), lambda) or E(sub d)(0(sup -), lambda). Furthermore, the calculation, evaluation and exploitation of confidence intervals for the AOP determinations needs to be explored. That is, the SeaWiFS calibration and validation problem should be recast in statistical terms where the in situ AOP values are statistical estimates with known confidence intervals.
Observations of Ocean Primary Productivity Using MODIS
NASA Technical Reports Server (NTRS)
Esaias, Wayne E.; Abbott, Mark R.; Koblinsky, Chester J. (Technical Monitor)
2001-01-01
Measuring the magnitude and variability of oceanic net primary productivity (NPP) represents a key advancement toward our understanding of the dynamics of marine ecosystems and the role of the ocean in the global carbon cycle. MODIS observations make two new contributions in addition to continuing the bio-optical time series begun with Orbview-2's SeaWiFS sensor. First, MODIS provides weekly estimates of global ocean net primary productivity on weekly and annual time periods, and annual empirical estimates of carbon export production. Second, MODIS provides additional insight into the spatial and temporal variations in photosynthetic efficiency through the direct measurements of solar-stimulated chlorophyll fluorescence. The two different weekly productivity indexes (first developed by Behrenfeld & Falkowski and by Yoder, Ryan and Howard) are used to derive daily productivity as a function of chlorophyll biomass, incident daily surface irradiance, temperature, euphotic depth, and mixed layer depth. Comparisons between these two estimates using both SeaWiFS and MODIS data show significant model differences in spatial distribution after allowance for the different integration depths. Both estimates are strongly dependence on the accuracy of the chlorophyll determination. In addition, an empirical approach is taken on annual scales to estimate global NPP and export production. Estimates of solar stimulated fluorescence efficiency from chlorophyll have been shown to be inversely related to photosynthetic efficiency by Abbott and co-workers. MODIS provides the first global estimates of oceanic chlorophyll fluorescence, providing an important proof of concept. MODIS observations are revealing spatial patterns of fluorescence efficiency which show expected variations with phytoplankton photo-physiological parameters as measured during in-situ surveys. This has opened the way for research into utilizing this information to improve our understanding of oceanic NPP variability. Deriving the ocean bio-optical properties places severe demands on instrument performance (especially band to band precision) and atmospheric correction. Improvements in MODIS instrument characterization and calibration over the first 16 mission months have greatly improved the accuracy of the chlorophyll input fields and FLH, and therefore the estimates of NPP and fluorescence efficiency. Annual estimates now show the oceanic NPP accounts for 40-50% of the global total NPP, with significant interannual variations related to large scale ocean processes. Spatial variations in ocean NPP, and exported production, have significant effects on exchange of CO2 between the ocean and atmosphere. Further work is underway to improve both the primary productivity model functions, and to refine our understanding of the relationships between fluorescence efficiency and NPP estimates. We expect that the MODIS instruments will prove extremely useful in assessing the time dependencies of oceanic carbon uptake and effects of iron enrichment, within the global carbon cycle.
Development of Finer Spatial Resolution Optical Properties from MODIS
2008-02-04
infrared (SWIR) channels at 1240 nm and 2130 run. The increased resolution spectral Rrs channels are input into bio-optical algorithms (Quasi...processes. Additionally, increased resolution is required for validation of ocean color products in coastal regions due to the shorter spatial scales of...with in situ Rrs data to determine the "best" method in coastal regimes. We demonstrate that finer resolution is required for validation of coastal
Contemporaneous disequilibrium of bio-optical properties in the Southern Ocean
NASA Astrophysics Data System (ADS)
Kahru, Mati; Lee, Zhongping; Mitchell, B. Greg
2017-03-01
Significant changes in satellite-detected net primary production (NPP, mg C m-2 d-1) were observed in the Southern Ocean during 2011-2016: an increase in the Pacific sector and a decrease in the Atlantic sector. While no clear physical forcing was identified, we hypothesize that the changes in NPP were associated with changes in the phytoplankton community and reflected in the concomitant bio-optical properties. Satellite algorithms for chlorophyll a concentration (Chl a, mg m-3) use a combination of estimates of the remote sensing reflectance Rrs(λ) that are statistically fitted to a global reference data set. In any particular region or point in space/time the estimate produced by the global "mean" algorithm can deviate from the true value. Reflectance anomaly (RA) is supposed to remove the first-order variability in Rrs(λ) associated with Chl a and reveal bio-optical properties that are due to the composition of phytoplankton and associated materials. Time series of RA showed variability at multiple scales, including the life span of the sensor, multiyear and annual. Models of plankton functional types using estimated Chl a as input cannot be expected to correctly resolve regional and seasonal anomalies due to biases in the Chl a estimate that they are based on. While a statistical model using RA(λ) time series can predict the times series of NPP with high accuracy (R2 = 0.82) in both Pacific and Atlantic regions, the underlying mechanisms in terms of phytoplankton groups and the associated materials remain elusive.
NASA Astrophysics Data System (ADS)
Mueller, James L.; Trees, Charles C.; Arnone, Robert A.
1990-09-01
The Coastal Zone Color Scannez (ZCS) and associated atmospheric and in-water algorithms have allowed synoptic analyses of regional and large scale variability of bio-optical properties [phytoplankton pigments and diffuse auenuation coefficient K(490)}. Austin and Petzold (1981) developed a robust in-water K(490) algorithm which related the diffuse attenuation coefficient at one optical depth [1/K(490)] to the ratio of the water-leaving radiances at 443 and 550 nm. Their regression analysis included diffuse attenuation coefficients K(490) up to 0.40 nm, but excluded data from estuarine areas, and other Case II waters, where the optical properties are not predominantly determined by phytoplankton. In these areas, errors are induced in the retrieval of remote sensing K(490) by extremely low water-leaving radiance at 443 nm [Lw(443) as viewed at the sensor may only be 1 or 2 digital counts], and improved cury can be realized using algorithms based on wavelengths where Lw(λ) is larger. Using ocean optical profiles quired by the Visibility Laboratory, algorithms are developed to predict K(490) from ratios of water leaving radiances at 520 and 670, as well as 443 and 550 nm.
NASA Astrophysics Data System (ADS)
Son, Young-Sun; Kim, Hyun-cheol
2018-05-01
Chlorophyll (Chl) concentration is one of the key indicators identifying changes in the Arctic marine ecosystem. However, current Chl algorithms are not accurate in the Arctic Ocean due to different bio-optical properties from those in the lower latitude oceans. In this study, we evaluated the current Chl algorithms and analyzed the cause of the error in the western coastal waters of Svalbard, which are known to be sensitive to climate change. The NASA standard algorithms showed to overestimate the Chl concentration in the region. This was due to the high non-algal particles (NAP) absorption and colored dissolved organic matter (CDOM) variability at the blue wavelength. In addition, at lower Chl concentrations (0.1-0.3 mg m-3), chlorophyll-specific absorption coefficients were ∼2.3 times higher than those of other Arctic oceans. This was another reason for the overestimation of Chl concentration. OC4 algorithm-based regionally tuned-Svalbard Chl (SC4) algorithm for retrieving more accurate Chl estimates reduced the mean absolute percentage difference (APD) error from 215% to 49%, the mean relative percentage difference (RPD) error from 212% to 16%, and the normalized root mean square (RMS) error from 211% to 68%. This region has abundant suspended matter due to the melting of tidal glaciers. We evaluated the performance of total suspended matter (TSM) algorithms. Previous published TSM algorithms generally overestimated the TSM concentration in this region. The Svalbard TSM-single band algorithm for low TSM range (ST-SB-L) decreased the APD and RPD errors by 52% and 14%, respectively, but the RMS error still remained high (105%).
Phycoerythrin Signatures in the Littoral Zone
2000-09-30
grey-green pigment allophycocyanin alsways present in the core of the PBS and the blue-green pigment phycocyanin (PC) always present in the proximal...and different spectral forms of Synechococcus can be obtained from optical data, particularly hyperspectral data. IMPACT/ APPLICATION It is commonly...projects, “Spectral Signatures of Optical Processes” (NRL 6.1 core funding) and “ Applications of the SeaWiFS for coastal monitoring of harmful algal
An Evaluation of Oceanographic Optical Instruments and Deployment Methodologies
NASA Technical Reports Server (NTRS)
Hooker, Stanford B.; Maritorena, Stephane
1999-01-01
The primary objective of the Sea-viewing, Wide Field-of-view Sensor (SeaWiFS) Project is to produce water- leaving radiances with an uncertainty of 5% in clear-water regions and chlorophyll a concentrations within +/- 35% over the range of 0.05-50 mg/cu m. Any global mission, like SeaWiFS, requires validation data be submitted from a wide variety of investigators which places a significant challenge on quantifying the total uncertainty associated with the in situ measurements, because each investigator follows slightly different practices when it comes to implementing all of the steps associated with collecting field data, even those with a prescribed set of protocols. This study uses data from multiple cruises to quantify the uncertainties associated with implementing data collection procedures while utilizing differing in-water optical instruments and deployment methods. A comprehensive approach is undertaken and includes: (1) the use of a portable light source and in-water intercomparisons to monitor the stability of the field radiometers, (2) alternative methods for acquiring reference measurements, and (3) different techniques for making in-water profiles. The only system to meet the 5% radiometric objective of the SeaWiFS Project was a free-fall profiler using (relatively inexpensive) modular components, although a more sophisticated (and comparatively expensive) profiler using integral components was very close and only 1% higher. A relatively inexpensive system deployed with a winch and crane was also close, but the ship shadow contamination problem increased the total uncertainty to approximately 6.5%.
Ship and satellite bio-optical research in the California Bight
NASA Technical Reports Server (NTRS)
Smith, R. C.; Baker, K. S.
1982-01-01
Mesoscale biological patterns and processes in productive coastal waters were studied. The physical and biological processes leading to chlorophyll variability were investigated. The ecological and evolutionary significance of this variability, and its relation to the prediction of fish recruitment and marine mammal distributions was studied. Seasonal primary productivity (using chlorophyll as an indication of phytoplankton biomass) for the entire Southern California Bight region was assessed. Complementary and contemporaneous ship and satellite (Nimbus 7-CZCS) bio-optical data from the Southern California Bight and surrounding waters were obtained and analyzed. These data were also utilized for the development of multi-platform sampling strategies and the optimization of algorithms for the estimation of phytoplankton biomass and primary production from satellite imagery.
NASA Technical Reports Server (NTRS)
Essias, Wayne E.; Abbott, Mark; Carder, Kendall; Campbell, Janet; Clark, Dennis; Evans, Robert; Brown, Otis; Kearns, Ed; Kilpatrick, Kay; Balch, W.
2003-01-01
Simplistic models relating global satellite ocean color, temperature, and light to ocean net primary production (ONPP) are sensitive to the accuracy and limitations of the satellite estimate of chlorophyll and other input fields, as well as the primary productivity model. The standard MODIS ONPP product uses the new semi-analytic chlorophyll algorithm as its input for two ONPP indexes. The three primary MODIS chlorophyll Q estimates from MODIS, as well as the SeaWiFS 4 chlorophyll product, were used to assess global and regional performance in estimating ONPP for the full mission, but concentrating on 2001. The two standard ONPP algorithms were examined with 8-day and 39 kilometer resolution to quantify chlorophyll algorithm dependency of ONPP. Ancillary data (MLD from FNMOC, MODIS SSTD1, and PAR from the GSFC DAO) were identical. The standard MODIS ONPP estimates for annual production in 2001 was 59 and 58 GT C for the two ONPP algorithms. Differences in ONPP using alternate chlorophylls were on the order of 10% for global annual ONPP, but ranged to 100% regionally. On all scales the differences in ONPP were smaller between MODIS and SeaWiFS than between ONPP models, or among chlorophyll algorithms within MODIS. Largest regional ONPP differences were found in the Southern Ocean (SO). In the SO, application of the semi-analytic chlorophyll resulted in not only a magnitude difference in ONPP (2x), but also a temporal shift in the time of maximum production compared to empirical algorithms when summed over standard oceanic areas. The resulting increase in global ONPP (6-7 GT) is supported by better performance of the semi-analytic chlorophyll in the SO and other high chlorophyll regions. The differences are significant in terms of understanding regional differences and dynamics of ocean carbon transformations.
NASA Technical Reports Server (NTRS)
Stramska, Malgorzata; Stramski, Dariusz
2005-01-01
We use satellite data from Sea-viewing Wide Field-of-view Sensor (SeaWiFS) to investigate distributions of particulate organic carbon (POC) concentration in surface waters of the north polar Atlantic Ocean during the spring summer season (April through August) over a 6-year period from 1998 through 2003. By use of field data collected at sea, we developed regional relationships for the purpose of estimating POC from remote-sensing observations of ocean color. Analysis of several approaches used in the POC algorithm development and match-up analysis of coincident in situ derived and satellite-derived estimates of POC resulted in selection of an algorithm that is based on the blue-to-green ratio of remote-sensing reflectance R(sub rs) (or normalized water-leaving radiance L(sub wn)). The application of the selected algorithm to a 6-year record of SeaWiFS monthly composite data of L(sub wn) revealed patterns of seasonal and interannual variability of POC in the study region. For example, the results show a clear increase of POC throughout the season. The lowest values, generally less than 200 mg per cubic meters, and at some locations often less than 50 mg per cubic meters, were observed in April. In May and June, POC can exceed 300 or even 400 mg per cubic meters in some parts of the study region. Patterns of interannual variability are intricate, as they depend on the geographic location within the study region and particular time of year (month) considered. By comparing the results averaged over the entire study region and the entire season (April through August) for each year separately, we found that the lowest POC occurred in 2001 and the highest POC occurred in 2002 and 1999.
FDTD method and models in optical education
NASA Astrophysics Data System (ADS)
Lin, Xiaogang; Wan, Nan; Weng, Lingdong; Zhu, Hao; Du, Jihe
2017-08-01
In this paper, finite-difference time-domain (FDTD) method has been proposed as a pedagogical way in optical education. Meanwhile, FDTD solutions, a simulation software based on the FDTD algorithm, has been presented as a new tool which helps abecedarians to build optical models and to analyze optical problems. The core of FDTD algorithm is that the time-dependent Maxwell's equations are discretized to the space and time partial derivatives, and then, to simulate the response of the interaction between the electronic pulse and the ideal conductor or semiconductor. Because the solving of electromagnetic field is in time domain, the memory usage is reduced and the simulation consequence on broadband can be obtained easily. Thus, promoting FDTD algorithm in optical education is available and efficient. FDTD enables us to design, analyze and test modern passive and nonlinear photonic components (such as bio-particles, nanoparticle and so on) for wave propagation, scattering, reflection, diffraction, polarization and nonlinear phenomena. The different FDTD models can help teachers and students solve almost all of the optical problems in optical education. Additionally, the GUI of FDTD solutions is so friendly to abecedarians that learners can master it quickly.
Lessons learned and way forward from 6 years of Aerosol_cci
NASA Astrophysics Data System (ADS)
Popp, Thomas; de Leeuw, Gerrit; Pinnock, Simon
2017-04-01
Within the ESA Climate Change Initiative (CCI) Aerosol_cci (2010 - 2017) conducts intensive work to improve and qualify algorithms for the retrieval of aerosol information from European sensors. Meanwhile, several validated (multi-) decadal time series of different aerosol parameters from complementary sensors are available: Aerosol Optical Depth (AOD), stratospheric extinction profiles, a qualitative Absorbing Aerosol Index (AAI), fine mode AOD, mineral dust AOD; absorption information and aerosol layer height are in an evaluation phase and the multi-pixel GRASP algorithm for the POLDER instrument is used for selected regions. Validation (vs. AERONET, MAN) and inter-comparison to other satellite datasets (MODIS, MISR, SeaWIFS) proved the high quality of the available datasets comparable to other satellite retrievals and revealed needs for algorithm improvement (for example for higher AOD values) which were taken into account in an iterative evolution cycle. The datasets contain pixel level uncertainty estimates which were also validated and improved in the reprocessing. The use of an ensemble method was tested, where several algorithms are applied to the same sensor. The presentation will summarize and discuss the lessons learned from the 6 years of intensive collaboration and highlight major achievements (significantly improved AOD quality, fine mode AOD, dust AOD, pixel level uncertainties, ensemble approach); also limitations and remaining deficits shall be discussed. An outlook will discuss the way forward for the continuous algorithm improvement and re-processing together with opportunities for time series extension with successor instruments of the Sentinel family and the complementarity of the different satellite aerosol products.
Results of the Second SeaWiFS Data Analysis Round Robin, March 2000 (DARR-00)
NASA Technical Reports Server (NTRS)
Hooker, Stanford B. (Editor); Firestone, Elaine R. (Editor); Zibordi, Giuseppe; Berthon, Jean-Francois; D'Alimonte, Davide; Maritorena, Stephane; McLean, Scott; Sildam, Juri; McClain, Charles R. (Technical Monitor)
2001-01-01
The accurate determination of upper ocean apparent optical properties (AOPs) is essential for the vicarious calibration of the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) instrument and the validation of the derived data products. To evaluate the importance of data analysis methods upon derived AOP values, the Second Data Analysis Round Robin (DARR-00) activity was planned during the latter half of 1999 and executed during March 2000. The focus of the study was the intercomparison of several standard AOP parameters: (1) the upwelled radiance immediately below the sea surface, L(sub u)(0(-),lambda); (2) the downward irradiance immediately below the sea surface, E(sub d)(0(-),lambda); (3) the diffuse attenuation coefficients from the upwelling radiance and the downward irradiance profiles, L(sub L)(lambda) and K(sub d)(lambda), respectively; (4) the incident solar irradiance immediately above the sea surface, E(sub d)(0(+),lambda); (5) the remote sensing reflectance, R(sub rs)(lambda); (6) the normalized water-leaving radiance, [L(sub W)(lambda)](sub N); (7) the upward irradiance immediately below the sea surface, E(sub u)(0(-)), which is used with the upwelled radiance to derive the nadir Q-factor immediately below the sea surface, Q(sub n)(0(-),lambda); and (8) ancillary parameters like the solar zenith angle, theta, and the total chlorophyll concentration, C(sub Ta), derived from the optical data through statistical algorithms. In the results reported here, different methodologies from three research groups were applied to an identical set of 40 multispectral casts in order to evaluate the degree to which differences in data analysis methods influence AOP estimation, and whether any general improvements can be made. The overall results of DARR-00 are presented in Chapter 1 and the individual methods used by the three groups and their data processors are presented in Chapters 2-4.
NASA Astrophysics Data System (ADS)
Gao, M.; Zhai, P.; Franz, B. A.; Hu, Y.; Knobelspiesse, K. D.; Xu, F.; Ibrahim, A.
2017-12-01
Ocean color remote sensing in coastal waters remains a challenging task due to the complex optical properties of aerosols and ocean water properties. It is highly desirable to develop an advanced ocean color and aerosol retrieval algorithm for coastal waters, to advance our capabilities in monitoring water quality, improve our understanding of coastal carbon cycle dynamics, and allow for the development of more accurate circulation models. However, distinguishing the dissolved and suspended material from absorbing aerosols over coastal waters is challenging as they share similar absorption spectrum within the deep blue to UV range. In this paper we report a research algorithm on aerosol and ocean color retrieval with emphasis on coastal waters. The main features of our algorithm include: 1) combining co-located measurements from a hyperspectral ocean color instrument (OCI) and a multi-angle polarimeter (MAP); 2) using the radiative transfer model for coupled atmosphere and ocean system (CAOS), which is based on the highly accurate and efficient successive order of scattering method; and 3) incorporating a generalized bio-optical model with direct accounting of the total absorption of phytoplankton, CDOM and non-algal particles(NAP), and the total scattering of phytoplankton and NAP for improved description of ocean light scattering. The non-linear least square fitting algorithm is used to optimize the bio-optical model parameters and the aerosol optical and microphysical properties including refractive indices and size distributions for both fine and coarse modes. The retrieved aerosol information is used to calculate the atmospheric path radiance, which is then subtracted from the OCI observations to obtain the water leaving radiance contribution. Our work aims to maximize the use of available information from the co-located dataset and conduct the atmospheric correction with minimal assumptions. The algorithm will contribute to the success of current MAP instruments, such as the Research Scanning Polarimeter (RSP), and future ocean color missions, such as the Plankton, Aerosol, Cloud, and ocean Ecosystem (PACE) mission, by enabling retrieval of ocean biogeochemical properties under optically-complex atmospheric and oceanic conditions.
NASA Technical Reports Server (NTRS)
Limbacher, James A.; Kahn, Ralph A.
2017-01-01
As aerosol amount and type are key factors in the 'atmospheric correction' required for remote-sensing chlorophyll alpha concentration (Chl) retrievals, the Multi-angle Imaging SpectroRadiometer (MISR) can contribute to ocean color analysis despite a lack of spectral channels optimized for this application. Conversely, an improved ocean surface constraint should also improve MISR aerosol-type products, especially spectral single-scattering albedo (SSA) retrievals. We introduce a coupled, self-consistent retrieval of Chl together with aerosol over dark water. There are time-varying MISR radiometric calibration errors that significantly affect key spectral reflectance ratios used in the retrievals. Therefore, we also develop and apply new calibration corrections to the MISR top-of-atmosphere (TOA) reflectance data, based on comparisons with coincident MODIS (Moderate Resolution Imaging Spectroradiometer) observations and trend analysis of the MISR TOA bidirectional reflectance factors (BRFs) over three pseudo-invariant desert sites. We run the MISR research retrieval algorithm (RA) with the corrected MISR reflectances to generate MISR-retrieved Chl and compare the MISR Chl values to a set of 49 coincident SeaBASS (SeaWiFS Bio-optical Archive and Storage System) in situ observations. Where Chl(sub in situ) less than 1.5 mg m(exp -3), the results from our Chl model are expected to be of highest quality, due to algorithmic assumption validity. Comparing MISR RA Chl to the 49 coincident SeaBASS observations, we report a correlation coefficient (r) of 0.86, a root-mean-square error (RMSE) of 0.25, and a median absolute error (MAE) of 0.10. Statistically, a two-sample Kolmogorov- Smirnov test indicates that it is not possible to distinguish between MISR Chl and available SeaBASS in situ Chl values (p greater than 0.1). We also compare MODIS-Terra and MISR RA Chl statistically, over much broader regions. With about 1.5 million MISR-MODIS collocations having MODIS Chl less than 1.5 mg m(exp -3), MISR and MODIS show very good agreement: r = 0.96, MAE = 0.09, and RMSE = 0.15. The new dark water aerosol/Chl RA can retrieve Chl in low-Chl, case I waters, independent of other imagers such as MODIS, via a largely physical algorithm, compared to the commonly applied statistical ones. At a minimum, MISR's multi-angle data should help reduce uncertainties in the MODIS-Terra ocean color retrieval where coincident measurements are made, while also allowing for a more robust retrieval of particle properties such as spectral single-scattering albedo.
NASA Astrophysics Data System (ADS)
Limbacher, James A.; Kahn, Ralph A.
2017-04-01
As aerosol amount and type are key factors in the atmospheric correction
required for remote-sensing chlorophyll a concentration (Chl) retrievals, the Multi-angle Imaging SpectroRadiometer (MISR) can contribute to ocean color analysis despite a lack of spectral channels optimized for this application. Conversely, an improved ocean surface constraint should also improve MISR aerosol-type products, especially spectral single-scattering albedo (SSA) retrievals. We introduce a coupled, self-consistent retrieval of Chl together with aerosol over dark water. There are time-varying MISR radiometric calibration errors that significantly affect key spectral reflectance ratios used in the retrievals. Therefore, we also develop and apply new calibration corrections to the MISR top-of-atmosphere (TOA) reflectance data, based on comparisons with coincident MODIS (Moderate Resolution Imaging Spectroradiometer) observations and trend analysis of the MISR TOA bidirectional reflectance factors (BRFs) over three pseudo-invariant desert sites. We run the MISR research retrieval algorithm (RA) with the corrected MISR reflectances to generate MISR-retrieved Chl and compare the MISR Chl values to a set of 49 coincident SeaBASS (SeaWiFS Bio-optical Archive and Storage System) in situ observations. Where Chlin situ < 1.5 mg m-3, the results from our Chl model are expected to be of highest quality, due to algorithmic assumption validity. Comparing MISR RA Chl to the 49 coincident SeaBASS observations, we report a correlation coefficient (r) of 0.86, a root-mean-square error (RMSE) of 0.25, and a median absolute error (MAE) of 0.10. Statistically, a two-sample Kolmogorov-Smirnov test indicates that it is not possible to distinguish between MISR Chl and available SeaBASS in situ Chl values (p > 0.1). We also compare MODIS-Terra and MISR RA Chl statistically, over much broader regions. With about 1.5 million MISR-MODIS collocations having MODIS Chl < 1.5 mg m-3, MISR and MODIS show very good agreement: r = 0. 96, MAE = 0.09, and RMSE = 0.15. The new dark water aerosol/Chl RA can retrieve Chl in low-Chl, case I waters, independent of other imagers such as MODIS, via a largely physical algorithm, compared to the commonly applied statistical ones. At a minimum, MISR's multi-angle data should help reduce uncertainties in the MODIS-Terra ocean color retrieval where coincident measurements are made, while also allowing for a more robust retrieval of particle properties such as spectral single-scattering albedo.
NASA Technical Reports Server (NTRS)
Hu, Chuanmin; Lee, Zhongping; Franz, Bryan
2011-01-01
A new empirical algorithm is proposed to estimate surface chlorophyll-a concentrations (Chl) in the global ocean for Chl less than or equal to 0.25 milligrams per cubic meters (approximately 77% of the global ocean area). The algorithm is based on a color index (CI), defined as the difference between remote sensing reflectance (R(sub rs), sr(sup -1) in the green and a reference formed linearly between R(sub rs) in the blue and red. For low Chl waters, in situ data showed a tighter (and therefore better) relationship between CI and Chl than between traditional band-ratios and Chl, which was further validated using global data collected concurrently by ship-borne and SeaWiFS satellite instruments. Model simulations showed that for low Chl waters, compared with the band-ratio algorithm, the CI-based algorithm (CIA) was more tolerant to changes in chlorophyll-specific backscattering coefficient, and performed similarly for different relative contributions of non-phytoplankton absorption. Simulations using existing atmospheric correction approaches further demonstrated that the CIA was much less sensitive than band-ratio algorithms to various errors induced by instrument noise and imperfect atmospheric correction (including sun glint and whitecap corrections). Image and time-series analyses of SeaWiFS and MODIS/Aqua data also showed improved performance in terms of reduced image noise, more coherent spatial and temporal patterns, and consistency between the two sensors. The reduction in noise and other errors is particularly useful to improve the detection of various ocean features such as eddies. Preliminary tests over MERIS and CZCS data indicate that the new approach should be generally applicable to all existing and future ocean color instruments.
NASA Technical Reports Server (NTRS)
Abbott, Mark R.
1998-01-01
The objectives of the last six months were: (1) Revise the algorithms for the Fluorescence Line Height (FLH) and Chlorophyll Fluorescence Efficiency (CFE) products, especially the data quality flags; (2) Revise the MOCEAN validation plan; (3) Deploy and recover bio-optical instrumentation at the Hawaii Ocean Time-series (HOT) site as part of the Joint Global Ocean Flux Study (JGOFS); (4) Prepare for field work in the Antarctic Polar Frontal Zone as part of JGOFS; (5) Submit manuscript on bio-optical time scales as estimated from Lagrangian drifters; (6) Conduct chemostat experiments on fluorescence; (7) Interface with the Global Imager (GLI) science team; and (8) Continue development of advanced data system browser. We are responsible for the delivery of two at-launch products for AM-1: Fluorescence line height (FLH) and chlorophyll fluorescence efficiency (CFE). We also considered revising the input chlorophyll, which is used to determine the degree of binning. We have refined the quality flags for the Version 2 algorithms. We have acquired and installed a Silicon Graphics Origin 200. We are working with the University of Miami team to develop documentation that will describe how the MODIS ocean components are linked together.
Decadal Changes in Global Ocean Chlorophyll
NASA Technical Reports Server (NTRS)
Gregg, Watson W.; Conkright, Margarita E.; Koblinsky, Chester J. (Technical Monitor)
2001-01-01
The global ocean chlorophyll archive produced by the Coastal Zone Color Scanner (CZCS) was revised using compatible algorithms with the Sea-viewing Wide Field-of-view Sensor (SeaWIFS), and both were blended with in situ data. This methodology permitted a quantitative comparison of decadal changes in global ocean chlorophyll from the CZCS (1979-1986) and SeaWiFS (Sep. 1997-Dec. 2000) records. Global seasonal means of ocean chlorophyll decreased over the two observational segments, by 8% in winter to 16% in autumn. Chlorophyll in the high latitudes was responsible for most of the decadal change. Conversely, chlorophyll concentrations in the low latitudes increased. The differences and similarities of the two data records provide evidence of how the Earth's climate may be changing and how ocean biota respond. Furthermore, the results have implications for the ocean carbon cycle.
Monitoring the North Atlantic using ocean colour data
NASA Astrophysics Data System (ADS)
Fuentes-Yaco, C.; Caverhill, C.; Maass, H.; Porter, C.; White, GN, III
2016-04-01
The Remote Sensing Unit (RSU) at the Bedford Institute of Oceanography (BIO) has been monitoring the North Atlantic using ocean colour products for decades. Optical sensors used include CZCS, POLDER, SeaWiFS, MODIS/Aqua and MERIS. The monitoring area is defined by the Atlantic Zone Monitoring Program (AZMP) but certain products extend into Arctic waters, and all-Canadian waters which include the Pacific coast. RSU provides Level 3 images for various products in several formats and a range of temporal and spatial resolutions. Basic statistics for pre-defined areas of interest are compiled for each product. Climatologies and anomaly maps are also routinely produced, and custom products are delivered by request. RSU is involved in the generation of Level 4 products, such as characterizing the phenology of spring and fall phytoplankton blooms, computing primary production, using ocean colour to aid in EBSA (Ecologically and Biologically Significant Area) definition and developing habitat suitability maps. Upcoming operational products include maps of diatom distribution, biogeochemical province boundaries, and products from sensors such as VIIRS (Visible Infrared Imaging Radiometer Suite), OLCI (Ocean Land Colour Instrument), and PACE (Pre-Aerosol, Clouds and ocean Ecosystem) hyperspectral microsatellite mission.
NASA Astrophysics Data System (ADS)
von Hoyningen-Huene, W.; Yoon, J.; Vountas, M.; Istomina, L. G.; Rohen, G.; Dinter, T.; Kokhanovsky, A. A.; Burrows, J. P.
2010-05-01
For the determination of aerosol optical thickness (AOT) Bremen AErosol Retrieval (BAER) has been developed. Method and main influences on the aerosol retrieval are described together with validation and results. The retrieval separates the spectral aerosol reflectance from surface and Rayleigh path reflectance for the shortwave range of the measured spectrum of top-of-atmosphere reflectance less than 0.670 μm. The advantage of MERIS (Medium Resolution Imaging Spectrometer on ENVISAT) and SeaWiFS (Sea viewing Wide Fiels Sensor on OrbView-2) observations are the existence of several spectral channels in the blue and visible range enabling the spectral determination of AOT in 7 (or 6) channels (0.412-0.670 μm) and additionally channels in the NIR, which can be used to characterize the surface properties. A dynamical spectral surface reflectance model for different surface types is used to obtain the spectral surface reflectance for this separation. Normalized differential vegetation index (NDVI), taken from the satellite observations, is the model input. Further surface BRDF is considered by the Raman-Pinty-Verstraete (RPV) model. Spectral AOT is obtained from aerosol reflectance using look-up-tables, obtained from radiative transfer calculations with given aerosol phase functions and single scattering albedos either from aerosol models, given by OPAC or from experimental campaigns. Validations of the obtained AOT retrieval results with AERONET data over Europe gave a preference for experimental phase functions derived from almucantar measurements. Finally long-term observations of SeaWiFS have been investigated for trends in AOT.
NASA Astrophysics Data System (ADS)
Hu, Chuanmin; Lee, Zhongping; Muller-Karger, Frank E.; Carder, Kendall L.
2003-05-01
A spectra-matching optimization algorithm, designed for hyperspectral sensors, has been implemented to process SeaWiFS-derived multi-spectral water-leaving radiance data. The algorithm has been tested over Southwest Florida coastal waters. The total spectral absorption and backscattering coefficients can be well partitioned with the inversion algorithm, resulting in RMS errors generally less than 5% in the modeled spectra. For extremely turbid waters that come from either river runoff or sediment resuspension, the RMS error is in the range of 5-15%. The bio-optical parameters derived in this optically complex environment agree well with those obtained in situ. Further, the ability to separate backscattering (a proxy for turbidity) from the satellite signal makes it possible to trace water movement patterns, as indicated by the total absorption imagery. The derived patterns agree with those from concurrent surface drifters. For waters where CDOM overwhelmingly dominates the optical signal, however, the procedure tends to regard CDOM as the sole source of absorption, implying the need for better atmospheric correction and for adjustment of some model coefficients for this particular region.
Volume 14: The first SeaWiFS intercalibration round-robin experiment, SIRREX-1, July 1992
NASA Technical Reports Server (NTRS)
Mueller, James L.; Hooker, Stanford B. (Editor); Firestone, Elaine R. (Editor)
1993-01-01
The results of the first Sea-viewing Wide Field-of-view Sensor (SeaWiFS) Intercalibration Round-Robin Experiment (SIRREX-1), which was held at the Center for Hydro-Optics and Remote Sensing (CHORS) at San Diego State University (SDSU) on 27-31 July 1992 are presetend. Oceanographic radiometers to be used in the SeaWiFS Calibration and Validation Program will be calibrated by individuals from the National Aeronautics and Space Administration's (NASA's) Goddard Space Flight Center (GSFC), CHORS, and seven other laboratories. The purpose of the SIRREX experiments is to assure the radiometric standards used in all of these laboratories are referenced to the same scales of spectral irradiance and radiance, which will be maintained by GSFC and periodically recalibrated by the National Institute of Standards and Technology (NIST). The spectral irradiance scale of GSFC's FEL lamp number F269 (recalibrated by NIST in October 1992) was transferred to lamps belonging to the 9 participating laboratories; l set of lamp transfer measurements (involving 4 of the lamps) was precise to within less than 1 percent and meets SeaWiFS goals, but a second set (involving another 14 lamps) did not. The spectral radiance scale of the GSFC 40-inch integrating sphere source was transferred to integrating sphere radiance sources belonging to four of the other laboratories. Reflectance plaques, used for irradiance-to-radiance transfer by five of the laboratories, were compared, but spectral bidirectional reflectance distribution functions (BRDF's) were not determined quantitatively. Also reported are results of similar comparisons (in October 1992) between the GSFC scales of spectral irradiance and radiance and those used by the Hughes/Santa Barbara Research Center (SBRC) to calibrate and characterize the SeaWiFS instrument. This first set of intercalibration round-robin experiments was a valuable learning experience for all participants, and led to several important procedural changes, which will be implemented in the second SIRREX, to be held at CHORS in June 1993.
Stray-Light Correction of the Marine Optical Buoy
NASA Technical Reports Server (NTRS)
Brown, Steven W.; Johnson, B. Carol; Flora, Stephanie J.; Feinholz, Michael E.; Yarbrough, Mark A.; Barnes, Robert A.; Kim, Yong Sung; Lykke, Keith R.; Clark, Dennis K.
2003-01-01
In ocean-color remote sensing, approximately 90% of the flux at the sensor originates from atmospheric scattering, with the water-leaving radiance contributing the remaining 10% of the total flux. Consequently, errors in the measured top-of-the atmosphere radiance are magnified a factor of 10 in the determination of water-leaving radiance. Proper characterization of the atmosphere is thus a critical part of the analysis of ocean-color remote sensing data. It has always been necessary to calibrate the ocean-color satellite sensor vicariously, using in situ, ground-based results, independent of the status of the pre-flight radiometric calibration or the utility of on-board calibration strategies. Because the atmosphere contributes significantly to the measured flux at the instrument sensor, both the instrument and the atmospheric correction algorithm are simultaneously calibrated vicariously. The Marine Optical Buoy (MOBY), deployed in support of the Earth Observing System (EOS) since 1996, serves as the primary calibration station for a variety of ocean-color satellite instruments, including the Sea-viewing Wide Field-of-view Sensor (SeaWiFS), the Moderate Resolution Imaging Spectroradiometer (MODIS), the Japanese Ocean Color Temperature Scanner (OCTS) , and the French Polarization and Directionality of the Earth's Reflectances (POLDER). MOBY is located off the coast of Lanai, Hawaii. The site was selected to simplify the application of the atmospheric correction algorithms. Vicarious calibration using MOBY data allows for a thorough comparison and merger of ocean-color data from these multiple sensors.
NASA Astrophysics Data System (ADS)
von Hoyningen-Huene, W.; Yoon, J.; Vountas, M.; Istomina, L. G.; Rohen, G.; Dinter, T.; Kokhanovsky, A. A.; Burrows, J. P.
2011-02-01
For the determination of aerosol optical thickness (AOT) Bremen AErosol Retrieval (BAER) has been developed. Method and main features on the aerosol retrieval are described together with validation and results. The retrieval separates the spectral aerosol reflectance from surface and Rayleigh path reflectance for the shortwave range of the measured spectrum of top-of-atmosphere reflectance for wavelength less than 0.670 μm. The advantage of MERIS (Medium Resolution Imaging Spectrometer on the Environmental Satellite - ENVISAT - of the European Space Agency - ESA) and SeaWiFS (Sea viewing Wide Field Sensor on OrbView-2 spacecraft) observations is the availability of several spectral channels in the blue and visible range enabling the spectral determination of AOT in 7 (or 6) channels (0.412-0.670 μm) and additionally channels in the NIR, which can be used to characterize the surface properties. A dynamical spectral surface reflectance model for different surface types is used to obtain the spectral surface reflectance for this separation. The normalized differential vegetation index (NDVI), taken from the satellite observations, is the model input. Further surface bi-directional reflectance distribution function (BRDF) is considered by the Raman-Pinty-Verstraete (RPV) model. Spectral AOT is obtained from aerosol reflectance using look-up-tables, obtained from radiative transfer calculations with given aerosol phase functions and single scattering albedos either from aerosol models, given by model package "optical properties of aerosol components" (OPAC) or from experimental campaigns. Validations of the obtained AOT retrieval results with data of Aerosol Robotic Network (AERONET) over Europe gave a preference for experimental phase functions derived from almucantar measurements. Finally long-term observations of SeaWiFS have been investigated for 11 year trends in AOT. Western European regions have negative trends with decreasing AOT with time. For the investigated Asian region increasing AOT have been found.
Uncertainty Assessment of the SeaWiFS On-Orbit Calibration
NASA Technical Reports Server (NTRS)
Eplee, Robert E., Jr.; Meister, Gerhard; Patt, Frederick S.; Franz, Bryan A.; McClain, Charles R.
2011-01-01
Ocean color climate data records require water-leaving radiances with 5% absolute and 1% relative accuracies as input. Because of the amplification of any sensor calibration errors by the atmospheric correction, the 1% relative accuracy requirement translates into a 0.1% long-term radiometric stability requirement for top-of-the atmosphere radiances. The rigorous on-orbit calibration program developed and implemented for SeaWiFS by the NASA Ocean Biology Processing Group (OBPG) Calibration and Validation Team (CVT) has allowed the CVT to maintain the stability of the radiometric calibration of SeaWiFS at 0.13% or better over the mission. The uncertainties in the resulting calibrated top-of-the-atmosphere (TOA) radiances can be addressed in terms of accuracy (biases in the measurements), precision (scatter in the measurements), and stability (repeatability of the measurements). The calibration biases of lunar observations relative to the USGS RObotic Lunar Observatory (ROLO) photometric model of the Moon are 2-3%. The biases from the vicarious calibration against the Marine Optical Buoy (MOBY) are 1-2%. The precision of the calibration derived from the solar calibration signal-tonoise ratios are 0.16%, from the lunar residuals are 0.13%, and from the vicarious gains are 0.10%. The long-term stability of the TOA radiances, derived from the lunar time series, is 0.13%. The stability of the vicariouslycalibrated TOA radiances, incorporating the uncertainties in the MOBY measurements and the atmospheric correction, is 0.30%. These results allow the OBPG to produce climate data records from the SeaWiFS ocean color data.
The NOAA-NASA CZCS Reanalysis Effort
NASA Technical Reports Server (NTRS)
Gregg, Watson W.; Conkright, Margarita E.; OReilly, John E.; Patt, Frederick S.; Wang, Meng-Hua; Yoder, James; Casey-McCabe, Nancy; Koblinsky, Chester J. (Technical Monitor)
2001-01-01
Satellite observations of global ocean chlorophyll span over two decades. However, incompatibilities between processing algorithms prevent us from quantifying natural variability. We applied a comprehensive reanalysis to the Coastal Zone Color Scanner (CZCS) archive, called the NOAA-NASA CZCS Reanalysis (NCR) Effort. NCR consisted of 1) algorithm improvement (AI), where CZCS processing algorithms were improved using modernized atmospheric correction and bio-optical algorithms, and 2) blending, where in situ data were incorporated into the CZCS AI to minimize residual errors. The results indicated major improvement over the previously available CZCS archive. Global spatial and seasonal patterns of NCR chlorophyll indicated remarkable correspondence with modern sensors, suggesting compatibility. The NCR permits quantitative analyses of interannual and interdecadal trends in global ocean chlorophyll.
NASA Astrophysics Data System (ADS)
Lyon, P. E.; Arnone, R.
2006-12-01
The Naval Research Laboratory at Stennis Space Center (NRLSSC) is preparing to produce optical products for Naval operations support from the National Polar-orbiting Operational Environmental Satellite System (NPOESS). This effort will leverage existing hardware and software systems in place at NRLSSC which are currently used to produce optical products from current sensors SeaWiFS and MODIS Aqua/Terra. This effort is part of an inter agency collaboration between NASA, NOAA, IPO, NRL and the prime contractor for NPOESS, Northrop Grumman / Raytheon. This poster presents an outline of the NRLSSC's plan for achieving the best possible optical products from NPOESS.
NASA Technical Reports Server (NTRS)
Mannino, Antonio; Russ, Mary E.; Hooker, Stanford B.
2007-01-01
In coastal ocean waters, distributions of dissolved organic carbon (DOC) and chromophoric dissolved organic matter (CDOM) vary seasonally and interannually due to multiple source inputs and removal processes. We conducted several oceanographic cruises within the continental margin of the U.S. Middle Atlantic Bight (MAB) to collect field measurements in order to develop algorithms to retrieve CDOM and DOC from NASA's MODIS-Aqua and SeaWiFS satellite sensors. In order to develop empirical algorithms for CDOM and DOC, we correlated the CDOM absorption coefficient (a(sub cdom)) with in situ radiometry (remote sensing reflectance, Rrs, band ratios) and then correlated DOC to Rrs band ratios through the CDOM to DOC relationships. Our validation analyses demonstrate successful retrieval of DOC and CDOM from coastal ocean waters using the MODIS-Aqua and SeaWiFS satellite sensors with mean absolute percent differences from field measurements of < 9 %for DOC, 20% for a(sub cdom)(355)1,6 % for a(sub cdom)(443), and 12% for the CDOM spectral slope. To our knowledge, the algorithms presented here represent the first validated algorithms for satellite retrieval of a(sub cdom) DOC, and CDOM spectral slope in the coastal ocean. The satellite-derived DOC and a(sub cdom) products demonstrate the seasonal net ecosystem production of DOC and photooxidation of CDOM from spring to fall. With accurate satellite retrievals of CDOM and DOC, we will be able to apply satellite observations to investigate interannual and decadal-scale variability in surface CDOM and DOC within continental margins and monitor impacts of climate change and anthropogenic activities on coastal ecosystems.
SeaWiFS Technical Report Series. Volume 39; SeaWiFS Calibration Topics
NASA Technical Reports Server (NTRS)
Hooker, Stanford B. (Editor); Firestone, Elaine R. (Editor); Barnes, Robert A.; Yeh, Eueng-nan; Eplee, Robert E.
1996-01-01
For Earth-observing satellite instruments, it was standard to consider each instrument band to have a spectral response that is infinitely narrow, i.e., to have a response from a single wavelength. The Sea-viewing Wide Field-of-view Sensor (SeaWiFS) bands, however, have nominal spectral bandwidths of 20 and 40nm. These bandwidths affect the SeaWiFS measurements on orbit. The effects are also linked to the manner in which the instrument was calibrated and to the spectral shape of the radiance that SeaWiFS views. Currently, SeaWiFS is calibrated such that the digital counts from each instrument band are linked to the Earth-exiting radiance at an individual center wavelength. Before launch, SeaWiFS will be recalibrated so that the digital counts from each band will be linked to the Earth-exiting radiance integrated over the spectral response of that band. In this technical memorandum, the effects of the instrument calibration and the source spectral shape on SeaWiFS measurements, including the in-band and out-of-band responses, and the center wavelengths are discussed.
NASA Technical Reports Server (NTRS)
Hooker, Stanford B. (Editor); Firestone, Elaine R. (Editor); Johnson, B. Carol; Early, Edward E.; Eplee, Robert E., Jr.; Barnes, Robert A.; Caffrey, Robert T.
1999-01-01
The Sea-viewing Wide Field-of-view Sensor (SeaWiFS) was originally calibrated by the instrument's manufacturer, Santa Barbara Research Center (SBRC), in November 1993. In preparation for an August 1997 launch, the SeaWiFS Project and the National Institute of Standards and Technology (NIST) undertook a second calibration of SeaWiFS in January and April 1997 at the facility of the spacecraft integrator, Orbital Sciences Corporation (OSC). This calibration occurred in two phases, the first after the final thermal vacuum test, and the second after the final vibration test of the spacecraft. For the calibration, SeaWiFS observed an integrating sphere from the National Aeronautics and Space Administration (NASA) Goddard Space Flight Center (GSFC) at four radiance levels. The spectral radiance of the sphere at these radiance levels was also measured by the SeaWiFS Transfer Radiometer (SXR). In addition, during the calibration, SeaWiFS and the SXR observed the sphere at 16 radiance levels to determine the linearity of the SeaWiFS response. As part of the calibration analysis, the GSFC sphere was also characterized using a GSFC spectroradiometer. The 1997 calibration agrees with the initial 1993 calibration to within +/- 4%. The new calibration coefficients, computed before and after the vibration test, agree to within 0.5%. The response of the SeaWiFS channels in each band is linear to better than 1%. In order to compare to previous and current methods, the SeaWiFS radiometric responses are presented in two ways: using the nominal center wave-lengths for the eight bands; and using band-averaged spectral radiances. The band-averaged values are used in the flight calibration table. An uncertainty analysis for the calibration coefficients is also presented.
BOUSSOLE: A Joint CNRS-INSU, ESA, CNES, and NASA Ocean Color Calibration and Validation Activity
NASA Technical Reports Server (NTRS)
Antoine, David; Chami, Malik; Claustre, Herve; d'Ortenzio, Fabrizio; Morel, Andre; Becu, Guislain; Gentili, Bernard; Louis, Francis; Ras, Josephine; Roussier, Emmanuel;
2006-01-01
This report presents the Bouee pour l'acquisition de Series Optiques a Long Terme (BOUSSOLE) project, the primary objectives of which are to provide a long-term time series of optical properties in support of a) calibration and validation activities associated with satellite ocean color missions, and b) bio-optical research in oceanic waters. The following are included in the report: 1) an introduction to the rationale for establishing the project; 2) a definition of vicarious calibration and the specific requirements attached to it; 3) the organization of the project and the characteristics of the measurement site--in the northwestern Mediterranean Sea; 4) a qualitative overview of the collected data; 5) details about the buoy that was specifically designed and built for this project; 6) data collection protocols and data processing techniques; 7) a quantitative summary of the collected data, and a discussion of some sample results, including match-up analyses for the currently operational ocean color sensors, namely MERIS, SeaWiFS, and MODIS; and 8) preliminary results of the vicarious radiometric calibration of MERIS, including a tentative uncertainty budget. The results of this match-up analysis allow performance comparisons of various ocean color sensors to be performed, demonstrating the ability of the BOUSSOLE activity, i.e., combining a dedicated platform and commercial-off-the-shelf instrumentation, to provide data qualified to monitor the quality of ocean color products on the long term.
Navigation Algorithms for the SeaWiFS Mission
NASA Technical Reports Server (NTRS)
Hooker, Stanford B. (Editor); Firestone, Elaine R. (Editor); Patt, Frederick S.; McClain, Charles R. (Technical Monitor)
2002-01-01
The navigation algorithms for the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) were designed to meet the requirement of 1-pixel accuracy-a standard deviation (sigma) of 2. The objective has been to extract the best possible accuracy from the spacecraft telemetry and avoid the need for costly manual renavigation or geometric rectification. The requirement is addressed by postprocessing of both the Global Positioning System (GPS) receiver and Attitude Control System (ACS) data in the spacecraft telemetry stream. The navigation algorithms described are separated into four areas: orbit processing, attitude sensor processing, attitude determination, and final navigation processing. There has been substantial modification during the mission of the attitude determination and attitude sensor processing algorithms. For the former, the basic approach was completely changed during the first year of the mission, from a single-frame deterministic method to a Kalman smoother. This was done for several reasons: a) to improve the overall accuracy of the attitude determination, particularly near the sub-solar point; b) to reduce discontinuities; c) to support the single-ACS-string spacecraft operation that was started after the first mission year, which causes gaps in attitude sensor coverage; and d) to handle data quality problems (which became evident after launch) in the direct-broadcast data. The changes to the attitude sensor processing algorithms primarily involved the development of a model for the Earth horizon height, also needed for single-string operation; the incorporation of improved sensor calibration data; and improved data quality checking and smoothing to handle the data quality issues. The attitude sensor alignments have also been revised multiple times, generally in conjunction with the other changes. The orbit and final navigation processing algorithms have remained largely unchanged during the mission, aside from refinements to data quality checking. Although further improvements are certainly possible, future evolution of the algorithms is expected to be limited to refinements of the methods presented here, and no substantial changes are anticipated.
Ocean observations with EOS/MODIS: Algorithm Development and Post Launch Studies
NASA Technical Reports Server (NTRS)
Gordon, Howard R.
1998-01-01
Significant accomplishments made during the present reporting period: (1) We expanded our "spectral-matching" algorithm (SMA), for identifying the presence of absorbing aerosols and simultaneously performing atmospheric correction and derivation of the ocean's bio-optical parameters, to the point where it could be added as a subroutine to the MODIS water-leaving radiance algorithm; (2) A modification to the SMA that does not require detailed aerosol models has been developed. This is important as the requirement for realistic aerosol models has been a weakness of the SMA; and (3) We successfully acquired micro pulse lidar data in a Saharan dust outbreak during ACE-2 in the Canary Islands.
Sampling Biases in MODIS and SeaWiFS Ocean Chlorophyll Data
NASA Technical Reports Server (NTRS)
Gregg, Watson W.; Casey, Nancy W.
2007-01-01
Although modem ocean color sensors, such as MODIS and SeaWiFS are often considered global missions, in reality it takes many days, even months, to sample the ocean surface enough to provide complete global coverage. The irregular temporal sampling of ocean color sensors can produce biases in monthly and annual mean chlorophyll estimates. We quantified the biases due to sampling using data assimilation to create a "truth field", which we then sub-sampled using the observational patterns of MODIS and SeaWiFS. Monthly and annual mean chlorophyll estimates from these sub-sampled, incomplete daily fields were constructed and compared to monthly and annual means from the complete daily fields of the assimilation model, at a spatial resolution of 1.25deg longitude by 0.67deg latitude. The results showed that global annual mean biases were positive, reaching nearly 8% (MODIS) and >5% (SeaWiFS). For perspective the maximum interannual variability in the SeaWiFS chlorophyll record was about 3%. Annual mean sampling biases were low (<3%) in the midlatitudes (between -40deg and 40deg). Low interannual variability in the global annual mean sampling biases suggested that global scale trend analyses were valid. High latitude biases were much higher than the global annual means, up to 20% as a basin annual mean, and over 80% in some months. This was the result of the high solar zenith angle exclusion in the processing algorithms. Only data where the solar angle is <75deg are permitted, in contrast to the assimilation which samples regularly over the entire area and month. High solar zenith angles do not facilitate phytoplankton photosynthesis and consequently low chlorophyll concentrations occurring here are missed by the data sets. Ocean color sensors selectively sample in locations and times of favorable phytoplankton growth, producing overestimates of chlorophyll. The biases derived from lack of sampling in the high latitudes varied monthly, leading to artifacts in the apparent seasonal cycle from ocean color sensors. A false secondary peak in chlorophyll occurred in May-August, which resulted from lack of sampling in the Antarctic.
An Automated Method for Navigation Assessment for Earth Survey Sensors Using Island Targets
NASA Technical Reports Server (NTRS)
Patt, F. S.; Woodward, R. H.; Gregg, W. W.
1997-01-01
An automated method has been developed for performing navigation assessment on satellite-based Earth sensor data. The method utilizes islands as targets which can be readily located in the sensor data and identified with reference locations. The essential elements are an algorithm for classifying the sensor data according to source, a reference catalogue of island locations, and a robust pattern-matching algorithm for island identification. The algorithms were developed and tested for the Sea-viewing Wide Field-of-view Sensor (SeaWiFS), an ocean colour sensor. This method will allow navigation error statistics to be automatically generated for large numbers of points, supporting analysis over large spatial and temporal ranges.
Automated navigation assessment for earth survey sensors using island targets
NASA Technical Reports Server (NTRS)
Patt, Frederick S.; Woodward, Robert H.; Gregg, Watson W.
1997-01-01
An automated method has been developed for performing navigation assessment on satellite-based Earth sensor data. The method utilizes islands as targets which can be readily located in the sensor data and identified with reference locations. The essential elements are an algorithm for classifying the sensor data according to source, a reference catalog of island locations, and a robust pattern-matching algorithm for island identification. The algorithms were developed and tested for the Sea-viewing Wide Field-of-view Sensor (SeaWiFS), an ocean color sensor. This method will allow navigation error statistics to be automatically generated for large numbers of points, supporting analysis over large spatial and temporal ranges.
1 kHz 2D Visual Motion Sensor Using 20 × 20 Silicon Retina Optical Sensor and DSP Microcontroller.
Liu, Shih-Chii; Yang, MinHao; Steiner, Andreas; Moeckel, Rico; Delbruck, Tobi
2015-04-01
Optical flow sensors have been a long running theme in neuromorphic vision sensors which include circuits that implement the local background intensity adaptation mechanism seen in biological retinas. This paper reports a bio-inspired optical motion sensor aimed towards miniature robotic and aerial platforms. It combines a 20 × 20 continuous-time CMOS silicon retina vision sensor with a DSP microcontroller. The retina sensor has pixels that have local gain control and adapt to background lighting. The system allows the user to validate various motion algorithms without building dedicated custom solutions. Measurements are presented to show that the system can compute global 2D translational motion from complex natural scenes using one particular algorithm: the image interpolation algorithm (I2A). With this algorithm, the system can compute global translational motion vectors at a sample rate of 1 kHz, for speeds up to ±1000 pixels/s, using less than 5 k instruction cycles (12 instructions per pixel) per frame. At 1 kHz sample rate the DSP is 12% occupied with motion computation. The sensor is implemented as a 6 g PCB consuming 170 mW of power.
Importance of solar subsurface heating in ocean general circulation models
NASA Astrophysics Data System (ADS)
Rochford, Peter A.; Kara, A. Birol; Wallcraft, Alan J.; Arnone, Robert A.
2001-12-01
The importance of subsurface heating on surface mixed layer properties in an ocean general circulation model (OGCM) is examined using attenuation of solar irradiance with depth below the ocean surface. The depth-dependent attenuation of subsurface heating is given by global monthly mean fields for the attenuation of photosynthetically available radiation (PAR), kPAR. These global fields of kPAR are derived from Sea-viewing Wide Field-of-view Sensor (SeaWiFS) data on the spectral diffuse attenuation coefficient at 490 nm (k490), and have been processed to have the smoothly varying and continuous coverage necessary for use in OGCM applications. These monthly fields provide the first complete global data sets of subsurface optical fields that can be used for OGCM applications of subsurface heating and bio-optical processes. The effect on global OGCM prediction of sea surface temperature (SST) and surface mixed layer depth (MLD) is examined when solar heating, as given by monthly mean kPAR and PAR fields, is included in the model. It is found that subsurface heating yields a marked increase in the SST predictive skill of the OGCM at low latitudes. No significant improvement in MLD predictive skill is obtained when including subsurface heating. Use of the monthly mean kPAR produces an SST decrease of up to 0.8°C and a MLD increase of up to only 4-5 m for climatological surface forcing, with this primarily confined to the equatorial regions. Remarkably, a constant kPAR value of 0.06 m-1, which is indicative of optically clear open ocean conditions, is found to serve very well for OGCM prediction of SST and MLD over most of the global ocean.
NOAA-NASA Coastal Zone Color Scanner reanalysis effort.
Gregg, Watson W; Conkright, Margarita E; O'Reilly, John E; Patt, Frederick S; Wang, Menghua H; Yoder, James A; Casey, Nancy W
2002-03-20
Satellite observations of global ocean chlorophyll span more than two decades. However, incompatibilities between processing algorithms prevent us from quantifying natural variability. We applied a comprehensive reanalysis to the Coastal Zone Color Scanner (CZCS) archive, called the National Oceanic and Atmospheric Administration and National Aeronautics and Space Administration (NOAA-NASA) CZCS reanalysis (NCR) effort. NCR consisted of (1) algorithm improvement (AI), where CZCS processing algorithms were improved with modernized atmospheric correction and bio-optical algorithms and (2) blending where in situ data were incorporated into the CZCS AI to minimize residual errors. Global spatial and seasonal patterns of NCR chlorophyll indicated remarkable correspondence with modern sensors, suggesting compatibility. The NCR permits quantitative analyses of interannual and interdecadal trends in global ocean chlorophyll.
NASA Technical Reports Server (NTRS)
Franz, B. A.; Behrenfeld, M. J.; Siegel, D. A.; Werdell, P. J.
2014-01-01
Marine phytoplankton are responsible for roughly half the net primary production (NPP) on Earth, fixing atmospheric CO2 into food that fuels global ocean ecosystems and drives the ocean's biogeochemical cycles. Phytoplankton growth is highly sensitive to variations in ocean physical properties, such as upper ocean stratification and light availability within this mixed layer. Satellite ocean color sensors, such as the Sea-viewing Wide Field-of-view Sensor (SeaWiFS; McClain 2009) and Moderate Resolution Imaging Spectroradiometer (MODIS; Esaias 1998), provide observations of sufficient frequency and geographic coverage to globally monitor physically-driven changes in phytoplankton distributions. In practice, ocean color sensors retrieve the spectral distribution of visible solar radiation reflected upward from beneath the ocean surface, which can then be related to changes in the photosynthetic phytoplankton pigment, chlorophyll- a (Chla; measured in mg m-3). Here, global Chla data for 2013 are evaluated within the context of the 16-year continuous record provided through the combined observations of SeaWiFS (1997-2010) and MODIS on Aqua (MODISA; 2002-present). Ocean color measurements from the recently launched Visible and Infrared Imaging Radiometer Suite (VIIRS; 2011-present) are also considered, but results suggest that the temporal calibration of the VIIRS sensor is not yet sufficiently stable for quantitative global change studies. All MODISA (version 2013.1), SeaWiFS (version 2010.0), and VIIRS (version 2013.1) data presented here were produced by NASA using consistent Chla algorithms.
NASA Astrophysics Data System (ADS)
Jamet, C.; Loisel, H.; Dessailly, D.
2012-10-01
The diffuse attenuation coefficient, Kd(λ) is a fundamental radiometric parameter that is used to assess the light availability in the water column. A neural network approach is developed to assess Kd(λ) at any visible wavelengths from the remote sensing reflectances as measured by the SeaWiFS satellite sensor. The neural network (NN) inversion is trained using a combination of simulated and in-situ data sets covering a broad range ofKd(λ), between 0.0073 m-1 at 412 nm and 12.41 m-1at 510 nm. The performance of the retrieval is evaluated against two data sets, one consisting of mainly synthetic data while the other one contains in-situ data only and is compared to those obtained with previous published empirical (NASA, Morel and Maritorena (2001) and Zhang and Fell (2007)) and semi-analytical (Lee et al., 2005b) algorithms. On the in-situ data set from the COASTLOOC campaign, the retrieval accuracy of the present algorithm is quite similar to published algorithms for oligotrophic and mesotrophic ocean waters. But for Kd(490) > 0.25 m-1, the NN approach allows to retrieve Kd(490) with a much better accuracy than the four other methods. The results are consistent when compared with other SeaWiFS wavelengths. This new inversion is as suitable in the open ocean waters as in the turbid waters. The work here is straightforwardly applicable to the MERIS sensor and with few changes to the MODIS-AQUA sensor. The algorithm in matlab and C code is provided as auxiliary material.
Joint; Groom
2000-07-30
A new generation of ocean colour satellites is now operational, with frequent observation of the global ocean. This paper reviews the potential to estimate marine primary production from satellite images. The procedures involved in retrieving estimates of phytoplankton biomass, as pigment concentrations, are discussed. Algorithms are applied to SeaWiFS ocean colour data to indicate seasonal variations in phytoplankton biomass in the Celtic Sea, on the continental shelf to the south west of the UK. Algorithms to estimate primary production rates from chlorophyll concentration are compared and the advantages and disadvantage discussed. The simplest algorithms utilise correlations between chlorophyll concentration and production rate and one equation is used to estimate daily primary production rates for the western English Channel and Celtic Sea; these estimates compare favourably with published values. Primary production for the central Celtic Sea in the period April to September inclusive is estimated from SeaWiFS data to be 102 gC m(-2) in 1998 and 93 gC m(-2) in 1999; published estimates, based on in situ incubations, are ca. 80 gC m(-2). The satellite data demonstrate large variations in primary production between 1998 and 1999, with a significant increase in late summer in 1998 which did not occur in 1999. Errors are quantified for the estimation of primary production from simple algorithms based on satellite-derived chlorophyll concentration. These data show the potential to obtain better estimates of marine primary production than are possible with ship-based methods, with the ability to detect short-lived phytoplankton blooms. In addition, the potential to estimate new production from satellite data is discussed.
SeaWiFS Technical Report Series. Volume 8: Proceedings of the First SeaWiFS Science Team Meeting
NASA Technical Reports Server (NTRS)
Hooker, Stanford B. (Editor); Esaias, Wayne E.; Rexrode, Lisa A.; Firestone, Elaine R. (Editor)
1993-01-01
The first meeting of the SeaWiFS Science Team was held in preparation for a launch of the SeaStar satellite carrying the SeaWiFS ocean color scanner in the October 1993 time frame. The primary goals of the meeting were: (1) to brief Science Team members, agency representatives, and international collaborators on the status of the mission by representatives from the SeaWiFS Project, the prime contractor Orbital Sciences Corporation (OSC), and the Goddard Distributed Active Archive Center (DAAC); (2) to provide for briefings on the science investigations undertaken by Science Team members and to solicit comments and recommendations from meeting attendees for improvements; and (3) to improve coordination of research and validation activities both inter- and intra-nationally with respect to collection, validation, and application of ocean color data from the SeaWiFS mission. Presentations and recommendations are summarized.
NASA Technical Reports Server (NTRS)
Gregg, Watson W.; Casey, Nancy W.; O'Reilly, John E.; Esaias, Wayne E.
2009-01-01
A new empirical approach is developed for ocean color remote sensing. Called the Empirical Satellite Radiance-In situ Data (ESRID) algorithm, the approach uses relationships between satellite water-leaving radiances and in situ data after full processing, i.e., at Level-3, to improve estimates of surface variables while relaxing requirements on post-launch radiometric re-calibration. The approach is evaluated using SeaWiFS chlorophyll, which is the longest time series of the most widely used ocean color geophysical product. The results suggest that ESRID 1) drastically reduces the bias of ocean chlorophyll, most impressively in coastal regions, 2) modestly improves the uncertainty, and 3) reduces the sensitivity of global annual median chlorophyll to changes in radiometric re-calibration. Simulated calibration errors of 1% or less produce small changes in global median chlorophyll (less than 2.7%). In contrast, the standard NASA algorithm set is highly sensitive to radiometric calibration: similar 1% calibration errors produce changes in global median chlorophyll up to nearly 25%. We show that 0.1% radiometric calibration error (about 1% in water-leaving radiance) is needed to prevent radiometric calibration errors from changing global annual median chlorophyll more than the maximum interannual variability observed in the SeaWiFS 9-year record (+/- 3%), using the standard method. This is much more stringent than the goal for SeaWiFS of 5% uncertainty for water leaving radiance. The results suggest ocean color programs might consider less emphasis of expensive efforts to improve post-launch radiometric re-calibration in favor of increased efforts to characterize in situ observations of ocean surface geophysical products. Although the results here are focused on chlorophyll, in principle the approach described by ESRID can be applied to any surface variable potentially observable by visible remote sensing.
NASA Technical Reports Server (NTRS)
2002-01-01
In the last five years, scientists have been able to monitor our changing planet in ways never before possible. The Sea-viewing Wide Field-of-View Sensor (SeaWiFS), aboard the OrbView-2 satellite, has given researchers an unprecedented view of the biological engine that drives life on Earth-the countless forms of plants that cover the land and fill the oceans. 'There is no question the Earth is changing. SeaWiFS has enabled us, for the first time, to monitor the biological consequences of that change-to see how the things we do, as well as natural variability, affect the Earth's ability to support life,' said Gene Carl Feldman, SeaWiFS project manager at NASA's Goddard Space Flight Center, Greenbelt, Md. SeaWiFS data, based on continuous daily global observations, have helped scientists make a more accurate assessment of the oceans' role in the global carbon cycle. The data provide a key parameter in a number of ecological and environmental studies as well as global climate-change modeling. The images of the Earth's changing land, ocean and atmosphere from SeaWiFS have documented many previously unrecognized phenomena. The image above shows the global biosphere from June 2002 measured by SeaWiFS. Data in the oceans is chlorophyll concentration, a measure of the amount of phytoplankton (microscopic plants) living in the ocean. On land SeaWiFS measures Normalized Difference Vegetation Index, an indication of the density of plant growth. For more information and images, read: SeaWiFS Sensor Marks Five Years Documenting Earth'S Dynamic Biosphere Image courtesy SeaWiFS project and copyright Orbimage.
NASA Technical Reports Server (NTRS)
Cao, Fang; Fichot, Cedric G.; Hooker, Stanford B.; Miller, William L.
2014-01-01
Photochemical processes driven by high-energy ultraviolet radiation (UVR) in inshore, estuarine, and coastal waters play an important role in global bio geochemical cycles and biological systems. A key to modeling photochemical processes in these optically complex waters is an accurate description of the vertical distribution of UVR in the water column which can be obtained using the diffuse attenuation coefficients of down welling irradiance (Kd()). The Sea UV Sea UVc algorithms (Fichot et al., 2008) can accurately retrieve Kd ( 320, 340, 380,412, 443 and 490 nm) in oceanic and coastal waters using multispectral remote sensing reflectances (Rrs(), Sea WiFS bands). However, SeaUVSeaUVc algorithms are currently not optimized for use in optically complex, inshore waters, where they tend to severely underestimate Kd(). Here, a new training data set of optical properties collected in optically complex, inshore waters was used to re-parameterize the published SeaUVSeaUVc algorithms, resulting in improved Kd() retrievals for turbid, estuarine waters. Although the updated SeaUVSeaUVc algorithms perform best in optically complex waters, the published SeaUVSeaUVc models still perform well in most coastal and oceanic waters. Therefore, we propose a composite set of SeaUVSeaUVc algorithms, optimized for Kd() retrieval in almost all marine systems, ranging from oceanic to inshore waters. The composite algorithm set can retrieve Kd from ocean color with good accuracy across this wide range of water types (e.g., within 13 mean relative error for Kd(340)). A validation step using three independent, in situ data sets indicates that the composite SeaUVSeaUVc can generate accurate Kd values from 320 490 nm using satellite imagery on a global scale. Taking advantage of the inherent benefits of our statistical methods, we pooled the validation data with the training set, obtaining an optimized composite model for estimating Kd() in UV wavelengths for almost all marine waters. This optimized composite set of SeaUVSeaUVc algorithms will provide the optical community with improved ability to quantify the role of solar UV radiation in photochemical and photobiological processes in the ocean.
NASA Technical Reports Server (NTRS)
2002-01-01
Hot, dry weather has contributed to a string of fires that burned in Greece during the first two weeks of July 2000. Smoke from one of these fires is streaming across Greece and out into the Aegean Sea in this image taken July 13, 2000, by the Sea-viewing Wide Field of view Sensor (SeaWiFS). For more about SeaWiFS, visit the SeaWiFS home page. Provided by the SeaWiFS Project, NASA/Goddard Space Flight Center, and ORBIMAGE
SeaWiFS technical report series. Volume 9: The simulated SeaWiFS data set, version 1
NASA Technical Reports Server (NTRS)
Gregg, Watson W.; Chen, Frank C.; Mezaache, Ahmed L.; Chen, Judy D.; Whiting, Jeffrey A.; Hooker, Stanford B. (Editor); Firestone, Elaine R. (Editor); Indest, A. W. (Editor)
1993-01-01
Data system development activities for the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) must begin well before the scheduled 1994 launch. To assist in these activities, it is essential to develop a simulated SeaWiFS data set as soon as possible. Realism is of paramount importance in this data set, including SeaWiFS spectral bands, orbital and scanning characteristics, and known data structures. Development of the simulated data set can assist in identification of problem areas that can be addressed and solved before the actual data are received. This paper describes the creation of the first version of the simulated SeaWiFS data set. The data set includes the spectral band, orbital, and scanning characteristics of the SeaWiFS sensor and SeaStar spacecraft. The information is output in the data structure as it is stored onboard. Thus, it is a level-0 data set which can be taken from start to finish through a prototype data system. The data set is complete and correct at the time of printing, although the values in the telemetry fields are left blank. The structure of the telemetry fields, however, is incorporated. Also, no account for clouds has been included. However, this version facilitates early prototyping activities by the SeaWiFS data system, providing a realistic data set to assess performance.
NASA Technical Reports Server (NTRS)
2002-01-01
An extratropical storm can be seen swirling over the North Pacific just south of Alaska. This SeaWiFS image was collected yesterday at 23:20 GMT. Credit: Provided by the SeaWiFS Project, NASA/Goddard Space Flight Center, and ORBIMAGE
NASA Technical Reports Server (NTRS)
Turpie, Kevin R.; Eplee, Robert E., Jr.; Franz, Bryan A.; Del Castillo, Carlos
2014-01-01
Launched in late 2011, the Visible Infrared Imaging Radiometer Suite (VIIRS) aboard the Suomi National Polar-orbiting Partnership (NPP) spacecraft is being evaluated by NASA to determine whether this sensor can continue the ocean color data record established through the Sea-Viewing Wide Field-of-view Sensor (SeaWiFS) and the MODerate resolution Imaging Spectroradiometer (MODIS). To this end, Goddard Space Flight Center generated evaluation ocean color data products using calibration techniques and algorithms established by NASA during the SeaWiFS and MODIS missions. The calibration trending was subjected to some initial sensitivity and uncertainty analyses. Here we present an introductory assessment of how the NASA-produced time series of ocean color is influenced by uncertainty in trending instrument response over time. The results help quantify the uncertainty in measuring regional and global biospheric trends in the ocean using satellite remote sensing, which better define the roles of such records in climate research.
NASA Technical Reports Server (NTRS)
Hooker, Stanford B. (Editor); Firestone, Elaine R. (Editor); Acker, James G. (Editor); Mueller, J. L.; Fraser, R. S.; Biggar, S. F.; Thome, K. J.; Slater, P. N.; Holmes, A. W.; Barnes, R. A.
1995-01-01
This document provides brief reports, or case studies, on a number of investigations sponsored by the Calibration and Validation Team (CVT) within the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) Project. Chapter I describes a comparison of the irradiance immersion coefficients determined for several different marine environmental radiometers (MERs). Chapter 2 presents an analysis of how light absorption by atmospheric oxygen will influence the radiance measurements in band 7 of the SeaWiFS instrument. Chapter 3 gives the results of the second ground-based solar calibration of the instrument, which was undertaken after the sensor was modified to reduce the effects of internal stray light. (The first ground-based solar calibration of SeaWiFS is described in Volume 19 in the SeaWiFS Technical Report Series.) Chapter 4 evaluates the effects of ship shadow on subsurface irradiance and radiance measurements deployed from the deck of the R/V Weatherbird 11 in the Atlantic Ocean near Bermuda. Chapter 5 illustrates the various ways in which a single data day of SeaWiFS observations can be defined, and why the spatial definition is superior to the temporal definition for operational usage.
SeaWiFS Technical Report Series. Volume 22: Prelaunch Acceptance Report for the SeaWiFS Radiometer
NASA Technical Reports Server (NTRS)
Hooker, Stanford B. (Editor); Firestone, Elaine R. (Editor); Acker, James G. (Editor); Barnes, Robert A.; Barnes, William L.; Esaias, Wayne E.; Mcclain, Charles R.
1994-01-01
The final acceptance, or rejection, of the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) will be determined by the instrument's on-orbit operation. There is, however, an extensive set of laboratory measurements describing the operating characteristics of the radiometer. Many of the requirements in the Ocean Color Data Mission (OCDM) specifications can be checked only by laboratory measurements. Here, the calibration review panel examines the laboratory characterization and calibration of SeaWiFS in the light of the OCDM performance specification. Overall, the performance of the SeaWiFS instrument meets or exceeds the requirements of the OCDM contract in all but a few unimportant details. The detailed results of this examination are presented here by following the outline of the specifications, as found in the Contract. The results are presented in the form of requirements and compliance pairs. These results give conclusions on many, but not all, of the performance specifications. The acceptance by this panel of the performance of SeaWiFS must only be considered as an intermediate conclusion. The ultimate acceptance (or rejection) of the SeaWiFS data set will rely on the measurements made by the instrument on orbit.
Remote Sensing Reflectance and Inherent Optical Properties in the Mid-mesohaline Chesapeake Bay
NASA Technical Reports Server (NTRS)
Tzortziou, Maria; Subramaniam, Ajit; Herman, Jay R.; Gallegos, Charles L.; Neal, Patrick J.; Harding, Lawrence W., Jr.
2006-01-01
We used an extensive set of bio-optical data and radiative transfer (RT) model simulations of radiation fields to investigate relationships between inherent optical properties and remotely sensed quantities in the optically complex, mid-mesohaline Chesapeake Bay waters. Field observations showed that the chlorophyll algorithms used by the MODIS (MODerate resolution Imaging Spectroradiometer) ocean color sensor (i.e. Chlor_a, chlor_MODIS, chlor_a_3 products) do not perform accurately in these Case 2 waters. This is because, when applied to waters with high concentrations of chlorophyll, all MODIS algorithms are based on empirical relationships between chlorophyll concentration and blue-green wavelength remote sensing reflectance (Rrs) ratios that do not account for the typically strong blue-wavelength absorption by non-covarying, dissolved and non-algal particulate components. Stronger correlation was observed between chlorophyll concentration and Rrs ratios in the red (i.e. Rrs(677)/Rrs(554)) where dissolved and non-algal particulate absorption become exponentially smaller. Regionally-specific algorithms that are based on the phytoplankton optical properties in the red wavelength region provide a better basis for satellite monitoring of phytoplankton blooms in these Case 2 waters. Good optical closure was obtained between independently measured Rrs spectra and the optical properties of backscattering, b(sub b), and absorption, a, over the wide range of in-water conditions observed in the Chesapeake Bay. Observed variability in the quantity f/Q (proportionality factor in the relationship between Rrs and the water inherent optical properties ratio b(sub b)/(a+b(sub b)) was consistent with RT model calculations for the specific measurement geometry and water bio-optical characteristics. Data and model results showed that f/Q values in these Case 2 coastal waters are not considerably different from those estimated in previous studies for Case 1 waters. Variation in surface backscattering significantly affected Rrs magnitude across the visible spectrum and was most strongly correlated (R(sup 2)=0.88) with observed variability in Rrs at 670 nm. Surface values of particulate backscattering were strongly correlated with non-algal particulate absorption, a(sub nap), in the blue wavelengths (R(sup 2)=0.83). These results, along with the measured values of backscattering fraction magnitude and non-algal particulate absorption spectral slope, suggest that suspended non-algal particles with high inorganic content are the major water constituents regulating b(sub b) variability in the mid-mesohaline Chesapeake Bay. Remote retrieval of surface b(sub b) and (a(sub nap), from Rrs(670) can be used in regionally-specific satellite algorithms to separate contribution by non-algal particles and dissolved organic matter to total light absorption in the blue, and monitor non-algal suspended particle concentration and distribution in these Case 2 waters.
SeaWiFS Technical Report Series. Volume 40; SeaWiFS Calibration Topics
NASA Technical Reports Server (NTRS)
Barnes, Robert A.; Eplee, Robert E., Jr.; Yeh, Eueng-nan; Esaias, Wayne E.
1997-01-01
For Earth-observing satellite instruments, it was standard to consider each instrument band to have a spectral response that is infinitely narrow, i.e., to have a response from a single wavelength. The SeaWiFS bands, however, have nominal spectral bandwidths of 20 and 40 nm. These bandwidths effect the SeaWiFS measurements on orbit. The effects are also linked to the manner in which the instrument was calibrated and to the spectral shape of the radiance that SeaWiFS views. The spectral shape of that radiance will not be well known on orbit. In this technical memorandum, two source spectra are examined. The first is a 12,000 K Planck function, and the second is based on the modeling results of H. Gordon at the University of Miami. By comparing these spectra, the best available corrections to the SeaWiFS measurements for source spectral shape, plus estimates of the uncertainties in these corrections, can be tabulated.
Aerosol Climate Time Series in ESA Aerosol_cci
NASA Astrophysics Data System (ADS)
Popp, Thomas; de Leeuw, Gerrit; Pinnock, Simon
2016-04-01
Within the ESA Climate Change Initiative (CCI) Aerosol_cci (2010 - 2017) conducts intensive work to improve algorithms for the retrieval of aerosol information from European sensors. Meanwhile, full mission time series of 2 GCOS-required aerosol parameters are completely validated and released: Aerosol Optical Depth (AOD) from dual view ATSR-2 / AATSR radiometers (3 algorithms, 1995 - 2012), and stratospheric extinction profiles from star occultation GOMOS spectrometer (2002 - 2012). Additionally, a 35-year multi-sensor time series of the qualitative Absorbing Aerosol Index (AAI) together with sensitivity information and an AAI model simulator is available. Complementary aerosol properties requested by GCOS are in a "round robin" phase, where various algorithms are inter-compared: fine mode AOD, mineral dust AOD (from the thermal IASI spectrometer, but also from ATSR instruments and the POLDER sensor), absorption information and aerosol layer height. As a quasi-reference for validation in few selected regions with sparse ground-based observations the multi-pixel GRASP algorithm for the POLDER instrument is used. Validation of first dataset versions (vs. AERONET, MAN) and inter-comparison to other satellite datasets (MODIS, MISR, SeaWIFS) proved the high quality of the available datasets comparable to other satellite retrievals and revealed needs for algorithm improvement (for example for higher AOD values) which were taken into account for a reprocessing. The datasets contain pixel level uncertainty estimates which were also validated and improved in the reprocessing. For the three ATSR algorithms the use of an ensemble method was tested. The paper will summarize and discuss the status of dataset reprocessing and validation. The focus will be on the ATSR, GOMOS and IASI datasets. Pixel level uncertainties validation will be summarized and discussed including unknown components and their potential usefulness and limitations. Opportunities for time series extension with successor instruments of the Sentinel family will be described and the complementarity of the different satellite aerosol products (e.g. dust vs. total AOD, ensembles from different algorithms for the same sensor) will be discussed.
NASA Astrophysics Data System (ADS)
Mascarenhas, V. J.; Voß, D.; Wollschlaeger, J.; Zielinski, O.
2017-05-01
Optically active constituents (OACs) in addition to water molecules attenuate light via processes of absorption and scattering and thereby determine underwater light availability. An analysis of their optical properties helps in determining the contribution of each of these to light attenuation. With an aim to study the bio-optical variability, absorption budget and 1% spectral light availability, hydrographical (temperature and salinity), and hyperspectral optical (downwelling irradiance and upwelling radiance) profiles were measured along fjord transects in Sognefjord and Trondheimsfjord, Norway. Optical water quality observations were also performed using Secchi disc and Forel-Ule scale. In concurrence, water samples were collected and analyzed via visible spectrophotometry, fluorometry, and gravimetry to quantify and derive inherent optical properties of the water constituents. An absorption model (R2 = 0.91, n = 36, p < 0.05) as a function of OACs is developed for Sognefjord using multiple regression analysis. Influenced by glacial meltwater, Sognefjord had higher concentration of inorganic suspended matter, while Trondheimsfjord had higher concentrations of CDOM. Increase in turbidity caused increased attenuation of light upstream, as a result of which the euphotic depth decreased from outer to inner fjord sections. Triangular representation of absorption budget revealed dominant absorption by CDOM at 443-555 nm, while that by phytoplankton at 665 nm. Sognefjord however exhibited much greater optical complexity. A significantly strong correlation between salinity and acdom440 is used to develop an algorithm to estimate acdom440 using salinity in Trondheimsfjord.
Mapping CDOM Concentration in Waters Influenced by the Mississippi River Plume
NASA Technical Reports Server (NTRS)
Miller, Richard L.; DelCastillo, Carlos E.; Powell, Rodney T.; DSa, Eurico; Spiering, Bruce
2002-01-01
Colored dissolved organic matter (CDOM) is often an important component of the organic carbon pool in river-dominated coastal margins. CDOM directly influences remote sensing applications through its strong absorption in the UV and blue regions of the spectrum. This effect can complicate the use of chlorophyll a retrieval algorithms and phytoplankton production models that are based on remotely sensed ocean color. As freshwater input is the principle source of CDOM in coastal margins, CDOM distribution can often be described by conservative mixing with open ocean waters and may serve as an optical tracer of riverine water. Hence, there is considerable interest in the ability to accurately measure and map CDOM concentrations as well as understand the processes that govern the optical properties and distribution of CDOM in coastal environments. We are examining CDOM dynamics in the waters influenced by the Mississippi River plume. Our program incorporates discrete samples, flow-through measurements, and remote sensing. CDOM absorption spectra of discrete samples are measured at sea using a portable, multiple pathlength waveguide system. A SAFire multi-spectral fluorescence meter provides spectral characterization of CDOM (fluorescence and absorption) using a ship flow-through system for continuous surface mapping. In situ reflectance spectra are obtained by a hand held spectroradiometer. Remotely sensed images are obtained from the SeaWiFS and CRIS (Coastal Research Imaging Spectrometer) instruments. We describe here the instruments used, sampling protocols employed, and the relationships derived between in situ measurements and remotely sensed data for this optically complex environment.
NASA Astrophysics Data System (ADS)
Hsu, N. Y. C.; Sayer, A. M.; Lee, J.; Kim, W. V.
2017-12-01
The impacts of natural and anthropogenic sources of air pollution on climate and human health have continued to gain attention from the scientific community. In order to facilitate these effects, high quality consistent long-term global aerosol data records from satellites are essential. Several EOS-era instruments (e.g., SeaWiFS, MODIS, and MISR) are able to provide such information with a high degree of fidelity. However, with the aging MODIS sensors and the launch of the VIIRS instrument on Suomi NPP in late 2011, the continuation of long-term aerosol data records suitable for climate studies from MODIS to VIIRS is needed urgently. Recently, we have successfully modified our MODIS Deep Blue algorithm to process the VIIRS data. Extensive works were performed in refining the surface reflectance determination scheme to account for the wavelength differences between MODIS and VIIRS. Better aerosol models (including non-spherical dust) are also now implemented in our VIIRS algorithm compared to the MODIS C6 algorithm. We will show the global (land and ocean) distributions of various aerosol products from Version 1 of the VIIRS Deep Blue data set. The preliminary validation results of these new VIIRS Deep Blue aerosol products using data from AERONET sunphotometers over land and ocean will be discussed. We will also compare the monthly averaged Deep Blue aerosol optical depth (AOD) from VIIRS with the MODIS C6 products to investigate if any systematic biases may exist between MODIS C6 and VIIRS AOD. The Version 1 VIIRS Deep Blue aerosol products are currently scheduled to be released to the public in 2018.
Characterization of Asian Dust Properties Near Source Region During ACE-Asia
NASA Technical Reports Server (NTRS)
Tsay, Si-Chee; Hsu, N. Christina; King, Michael D.; Kaufman, Yoram J.; Herman, Jay R.
2004-01-01
Asian dust typically originates in desert areas far from polluted urban regions. During transport, dust layers can interact with anthropogenic sulfate and soot aerosols from heavily polluted urban areas. Added to the complex effects of clouds and natural marine aerosols, dust particles reaching the marine environment can have drastically different properties than those from the source. Thus, understanding the unique temporal and spatial variations of Asian aerosols is of special importance in regional-to-global climate issues such as radiative forcing, the hydrological cycle, and primary biological productivity in the mid-Pacific Ocean. During ACE-Asia campaign, we have acquired ground- based (temporal) and satellite (spatial) measurements to infer aerosol physical/optical/radiative properties, column precipitable water amount, and surface reflectivity over this region. The inclusion of flux measurements permits the determination of aerosol radiative flux in addition to measurements of loading and optical depth. At the time of the Terra/MODIS, SeaWiFS, TOMS and other satellite overpasses, these ground-based observations can provide valuable data to compare with satellite retrievals over land. In this paper, we will demonstrate new capability of the Deep Blue algorithm to track the evolution of the Asian dust storm from sources to sinks. Although there are large areas often covered by clouds in the dust season in East Asia, this algorithm is able to distinguish heavy dust from clouds over the entire regions. Examination of the retrieved daily maps of dust plumes over East Asia clearly identifies the sources contributing to the dust loading in the atmosphe. We have compared the satellite retrieved aerosol optical thickness to the ground-based measurements and obtained a reasonable agreement between these two. Our results also indicate that there is a large difference in the retrieved value of spectral single scattering albedo of windblown dust between different sources in East Asia.
SeaWiFS: Mississippi Sediments in the Gulf of Mexico
NASA Technical Reports Server (NTRS)
2002-01-01
This SeaWiFS image collected on January 15, 2002 clearly shows the discharge from the Mississippi River into the Gulf of Mexico. In summertime, much of the sea floor under the brownish colored water goes without dissolved oxygen. Credit: Provided by the SeaWiFS Project, NASA/Goddard Space Flight Center, and ORBIMAGE
SeaWiFS: Asian Dust over the Western United States
NASA Technical Reports Server (NTRS)
2002-01-01
This SeaWiFS image, captured on April 15, 2001, shows dust from the Asian continent over the United States. Atmospheric aerosoles are much easier to see over water than over land, so you can best see the haze offshore. Credit: Provided by the SeaWiFS Project, NASA/Goddard Space Flight Center, and ORBIMAGE
Green, Rebecca E.; Bower, Amy S.; Lugo-Fernández, Alexis
2014-01-01
Profiling floats equipped with bio-optical sensors well complement ship-based and satellite ocean color measurements by providing highly-resolved time-series data on the vertical structure of biogeochemical processes in oceanic waters. This is the first study to employ an autonomous profiling (APEX) float in the Gulf of Mexico for measuring spatiotemporal variability in bio-optics and hydrography. During the 17-month deployment (July 2011 to December 2012), the float mission collected profiles of temperature, salinity, chlorophyll fluorescence, particulate backscattering (bbp), and colored dissolved organic matter (CDOM) fluorescence from the ocean surface to a depth of 1,500 m. Biogeochemical variability was characterized by distinct depth trends and local “hot spots”, including impacts from mesoscale processes associated with each of the water masses sampled, from ambient deep waters over the Florida Plain, into the Loop Current, up the Florida Canyon, and eventually into the Florida Straits. A deep chlorophyll maximum (DCM) occurred between 30 and 120 m, with the DCM depth significantly related to the unique density layer ρ = 1023.6 (R2 = 0.62). Particulate backscattering, bbp, demonstrated multiple peaks throughout the water column, including from phytoplankton, deep scattering layers, and resuspension. The bio-optical relationship developed between bbp and chlorophyll (R2 = 0.49) was compared to a global relationship and could significantly improve regional ocean-color algorithms. Photooxidation and autochthonous production contributed to CDOM distributions in the upper water column, whereas in deep water, CDOM behaved as a semi-conservative tracer of water masses, demonstrating a tight relationship with density (R2 = 0.87). In the wake of the Deepwater Horizon oil spill, this research lends support to the use of autonomous drifting profilers as a powerful tool for consideration in the design of an expanded and integrated observing network for the Gulf of Mexico. PMID:24992646
Aerosol Climate Time Series Evaluation In ESA Aerosol_cci
NASA Astrophysics Data System (ADS)
Popp, T.; de Leeuw, G.; Pinnock, S.
2015-12-01
Within the ESA Climate Change Initiative (CCI) Aerosol_cci (2010 - 2017) conducts intensive work to improve algorithms for the retrieval of aerosol information from European sensors. By the end of 2015 full mission time series of 2 GCOS-required aerosol parameters are completely validated and released: Aerosol Optical Depth (AOD) from dual view ATSR-2 / AATSR radiometers (3 algorithms, 1995 - 2012), and stratospheric extinction profiles from star occultation GOMOS spectrometer (2002 - 2012). Additionally, a 35-year multi-sensor time series of the qualitative Absorbing Aerosol Index (AAI) together with sensitivity information and an AAI model simulator is available. Complementary aerosol properties requested by GCOS are in a "round robin" phase, where various algorithms are inter-compared: fine mode AOD, mineral dust AOD (from the thermal IASI spectrometer), absorption information and aerosol layer height. As a quasi-reference for validation in few selected regions with sparse ground-based observations the multi-pixel GRASP algorithm for the POLDER instrument is used. Validation of first dataset versions (vs. AERONET, MAN) and inter-comparison to other satellite datasets (MODIS, MISR, SeaWIFS) proved the high quality of the available datasets comparable to other satellite retrievals and revealed needs for algorithm improvement (for example for higher AOD values) which were taken into account for a reprocessing. The datasets contain pixel level uncertainty estimates which are also validated. The paper will summarize and discuss the results of major reprocessing and validation conducted in 2015. The focus will be on the ATSR, GOMOS and IASI datasets. Pixel level uncertainties validation will be summarized and discussed including unknown components and their potential usefulness and limitations. Opportunities for time series extension with successor instruments of the Sentinel family will be described and the complementarity of the different satellite aerosol products (e.g. dust vs. total AOD, ensembles from different algorithms for the same sensor) will be discussed.
Coastal Atmosphere and Sea Time Series (CoASTS)
NASA Technical Reports Server (NTRS)
Hooker, Stanford B. (Editor); Firestone, Elaine R. (Editor); Berthon, Jean-Francoise; Zibordi, Giuseppe; Doyle, John P.; Grossi, Stefania; vanderLinde, Dirk; Targa, Cristina; McClain, Charles R. (Technical Monitor)
2002-01-01
In this document, the first three years of a time series of bio-optical marine and atmospheric measurements are presented and analyzed. These measurements were performed from an oceanographic tower in the northern Adriatic Sea within the framework of the Coastal Atmosphere and Sea Time Series (CoASTS) project, an ocean color calibration and validation activity. The data set collected includes spectral measurements of the in-water apparent (diffuse attenuation coefficient, reflectance, Q-factor, etc.) and inherent (absorption and scattering coefficients) optical properties, as well as the concentrations of the main optical components (pigment and suspended matter concentrations). Clear seasonal patterns are exhibited by the marine quantities on which an appreciable short-term variability (on the order of a half day to one day) is superimposed. This short-term variability is well correlated with the changes in salinity at the surface resulting from the southward transport of freshwater coming from the northern rivers. Concentrations of chlorophyll alpha and total suspended matter span more than two orders of magnitude. The bio-optical characteristics of the measurement site pertain to both Case-I (about 64%) and Case-II (about 36%) waters, based on a relationship between the beam attenuation coefficient at 660nm and the chlorophyll alpha concentration. Empirical algorithms relating in-water remote sensing reflectance ratios and optical components or properties of interest (chlorophyll alpha, total suspended matter, and the diffuse attenuation coefficient) are presented.
A Novel Scoring Metrics for Quality Assurance of Ocean Color Observations
NASA Astrophysics Data System (ADS)
Wei, J.; Lee, Z.
2016-02-01
Interpretation of the ocean bio-optical properties from ocean color observations depends on the quality of the ocean color data, specifically the spectrum of remote sensing reflectance (Rrs). The in situ and remotely measured Rrs spectra are inevitably subject to errors induced by instrument calibration, sea-surface correction and atmospheric correction, and other environmental factors. Great efforts have been devoted to the ocean color calibration and validation. Yet, there exist no objective and consensus criteria for assessment of the ocean color data quality. In this study, the gap is filled by developing a novel metrics for such data quality assurance and quality control (QA/QC). This new QA metrics is not intended to discard "suspicious" Rrs spectra from available datasets. Rather, it takes into account the Rrs spectral shapes and amplitudes as a whole and grades each Rrs spectrum. This scoring system is developed based on a large ensemble of in situ hyperspectral remote sensing reflectance data measured from various aquatic environments and processed with robust procedures. This system is further tested with the NASA bio-Optical Marine Algorithm Data set (NOMAD), with results indicating significant improvements in the estimation of bio-optical properties when Rrs spectra marked with higher quality assurance are used. This scoring system is further verified with simulated data and satellite ocean color data in various regions, and we envision higher quality ocean color products with the implementation of such a quality screening system.
Deep Blue Retrievals of Asian Aerosol Properties During ACE-Asia
NASA Technical Reports Server (NTRS)
Hsu, N. Christina; Tsay, Si-Cee; King, Michael D.; Herman, Jay R.
2006-01-01
During the ACE-Asia field campaign, unprecedented amounts of aerosol property data in East Asia during springtime were collected from an array of aircraft, shipboard, and surface instruments. However, most of the observations were obtained in areas downwind of the source regions. In this paper, the newly developed satellite aerosol algorithm called "Deep Blue" was employed to characterize the properties of aerosols over source regions using radiance measurements from the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) and Moderate Resolution Imaging Spectroradiometer (MODIS). Based upon the ngstr m exponent derived from the Deep Blue algorithm, it was demonstrated that this new algorithm is able to distinguish dust plumes from fine-mode pollution particles even in complex aerosol environments such as the one over Beijing. Furthermore, these results were validated by comparing them with observations from AERONET sites in China and Mongolia during spring 2001. These comparisons show that the values of satellite-retrieved aerosol optical thickness from Deep Blue are generally within 20%-30% of those measured by sunphotometers. The analyses also indicate that the roles of mineral dust and anthropogenic particles are comparable in contributing to the overall aerosol distributions during spring in northern China, while fine-mode particles are dominant over southern China. The spring season in East Asia consists of one of the most complex environments in terms of frequent cloudiness and wide ranges of aerosol loadings and types. This paper will discuss how the factors contributing to this complexity influence the resulting aerosol monthly averages from various satellite sensors and, thus, the synergy among satellite aerosol products.
SeaWiFS Postlaunch Technical Report Series. Volume 6; Cumulative Index: Volumes 1-5
NASA Technical Reports Server (NTRS)
Firestone, Elaine R. (Editor); Hooker, Stanford B. (Editor)
2000-01-01
The Sea-viewing Wide Field-of-view Sensor (SeaWiFS) is the follow-on ocean color instrument to the Coastal Zone Color Scanner (CZCS), which ceased operations in 1986, after an eight-year mission. SeaWiFS was launched on 1 August 1997, on the OrbView-2 satellite, built by Orbital Sciences Corporation (OSC). The SeaWiFS Project at the National Aeronautics and Space Administration (NASA) Goddard Space Flight Center (GSFC) undertook the responsibility of documenting all aspects of this mission, which is critical to the ocean color and marine science communities. The start of this documentation was titled the SeaWiFS Technical Report Series, which ended after 43 volumes were published. A follow-on series was started, titled the SeaWiFS Postlaunch Technical Report Series. This particular volume serves as a reference, or guidebook, to the previous five volumes and consists of four sections including an errata, an index to key words and phrases, a list of acronyms used, and a list of all references cited. The editors will publish a cumulative index of this type after every five volumes.
SeaWiFS Postlaunch Technical Report Series Cumulative Index
NASA Technical Reports Server (NTRS)
Hooker, Stanford B. (Editor); Firestone, Elaine R. (Editor)
2001-01-01
The Sea-viewing Wide Field-of-view Sensor (SeaWiFS) is the follow-on ocean color instrument to the Coastal Zone Color Scanner (CZCS), which ceased operations in 1986, after an eight-year mission. SeaWiFS was launched on 1 August 1997, onboard the OrbView-2 satellite, built by Orbital Sciences Corporation (OSC). The SeaWiFS Project at the National Aeronautics and Space Administration (NASA) Goddard Space Flight Center (GSFC), undertook the responsibility of documenting all aspects of this mission, which is critical to the ocean color and marine science communities. The start of this documentation was titled the SeaWiFS Technical Report Series, which ended after 43 volumes were published. A follow-on series was started, titled the SeaWiFS Postlaunch Technical Report Series. This particular volume of the so-called "Postlaunch Series" serves as a reference, or guidebook, to the previous 11 volumes and consists of 5 sections including an errata, an addendum, an index to key words and phrases, a list of acronyms used, and a list of all references cited. The editors will publish a cumulative index of this type after every five volumes.
Bio-inspired multi-mode optic flow sensors for micro air vehicles
NASA Astrophysics Data System (ADS)
Park, Seokjun; Choi, Jaehyuk; Cho, Jihyun; Yoon, Euisik
2013-06-01
Monitoring wide-field surrounding information is essential for vision-based autonomous navigation in micro-air-vehicles (MAV). Our image-cube (iCube) module, which consists of multiple sensors that are facing different angles in 3-D space, can be applied to the wide-field of view optic flows estimation (μ-Compound eyes) and to attitude control (μ- Ocelli) in the Micro Autonomous Systems and Technology (MAST) platforms. In this paper, we report an analog/digital (A/D) mixed-mode optic-flow sensor, which generates both optic flows and normal images in different modes for μ- Compound eyes and μ-Ocelli applications. The sensor employs a time-stamp based optic flow algorithm which is modified from the conventional EMD (Elementary Motion Detector) algorithm to give an optimum partitioning of hardware blocks in analog and digital domains as well as adequate allocation of pixel-level, column-parallel, and chip-level signal processing. Temporal filtering, which may require huge hardware resources if implemented in digital domain, is remained in a pixel-level analog processing unit. The rest of the blocks, including feature detection and timestamp latching, are implemented using digital circuits in a column-parallel processing unit. Finally, time-stamp information is decoded into velocity from look-up tables, multiplications, and simple subtraction circuits in a chip-level processing unit, thus significantly reducing core digital processing power consumption. In the normal image mode, the sensor generates 8-b digital images using single slope ADCs in the column unit. In the optic flow mode, the sensor estimates 8-b 1-D optic flows from the integrated mixed-mode algorithm core and 2-D optic flows with an external timestamp processing, respectively.
Comparison of SeaWiFS measurements of the Moon with the U.S. Geological Survey lunar model.
Barnes, Robert A; Eplee, Robert E; Patt, Frederick S; Kieffer, Hugh H; Stone, Thomas C; Meister, Gerhard; Butler, James J; McClain, Charles R
2004-11-01
The Sea-Viewing Wide-Field-of-View Sensor (SeaWiFS) has made monthly observations of the Moon since 1997. Using 66 monthly measurements, the SeaWiFS calibration team has developed a correction for the instrument's on-orbit response changes. Concurrently, a lunar irradiance model has been developed by the U.S. Geological Survey (USGS) from extensive Earth-based observations of the Moon. The lunar irradiances measured by SeaWiFS are compared with the USGS model. The comparison shows essentially identical response histories for SeaWiFS, with differences from the model of less than 0.05% per thousand days in the long-term trends. From the SeaWiFS experience we have learned that it is important to view the entire lunar image at a constant phase angle from measurement to measurement and to understand, as best as possible, the size of each lunar image. However, a constant phase angle is not required for using the USGS model. With a long-term satellite lunar data set it is possible to determine instrument changes at a quality level approximating that from the USGS lunar model. However, early in a mission, when the dependence on factors such as phase and libration cannot be adequately determined from satellite measurements alone, the USGS model is critical to an understanding of trends in instruments that use the Moon for calibration. This is the case for SeaWiFS.
Changes in the Radiometric Sensitivity of SeaWiFS
NASA Technical Reports Server (NTRS)
McClain, Charles R.; Barnes, Robert A.; Eplee, Robert E., Jr.; Patt, Frederick S.
1998-01-01
We report on the lunar and solar measurements used to determine the changes in the radiometric sensitivity of the Sea-viewing Wide Field-of-view Sensor (SeaWiFS). Radiometric sensitivity is defined as the output from the instrument (or from one of the instrument bands) per unit spectral radiance at the instrument's input aperture. Knowledge of the long-term repeatability of the SeaWiFS measurements is crucial to maintaining the quality of the ocean scenes derived from measurements by the instrument. For SeaWiFS bands 1 through 6 (412 nm through 670 rim), the change in radiometric sensitivity is less than 0.2% for the period from November 1997 through November 1998. For band 7 (765 nm), the change is about 1.5%, and for band 8 (865 nm) about 5%. The rates of change of bands 7 and 8, which were linear with time for the first eight months of lunar measurements, are now slowing. The scatter in the data points about the trend lines in this analysis is less than 0.3% for all eight SeaWiFS bands. These results are based on monthly measurements of the moon. Daily solar measurements using an onboard diffuser show that the radiometric sensitivities of the SeaWiFS bands have changed smoothly during the time intervals between lunar measurements. Since SeaWiFS measurements have continued past November 1998, the results presented here are considered as a snapshot of the instrument performance as of that date.
Approach to developing numeric water quality criteria for ...
Human activities on land increase nutrient loads to coastal waters, which can increase phytoplankton production and biomass and potentially cause harmful ecological effects. States can adopt numeric water quality criteria into their water quality standards to protect the designated uses of their coastal waters from eutrophication impacts. The first objective of this study was to provide an approach for developing numeric water quality criteria for coastal waters based on archived SeaWiFS ocean color satellite data. The second objective was to develop an approach for transferring water quality criteria assessments to newer ocean color satellites such as MODIS and MERIS. Spatial and temporal measures of SeaWiFS, MODIS, and MERIS chlorophyll-a (ChlRS-a, mg m-3) were resolved across Florida’s coastal waters between 1998 and 2009. Annual geometric means of SeaWiFS ChlRS-a were evaluated to determine a quantitative reference baseline from the 90th percentile of the annual geometric means. A method for transferring to multiple ocean color sensors was implemented with SeaWiFS as the reference instrument. The ChlRS-a annual geometric means for each coastal segment from MODIS and MERIS were regressed against SeaWiFS to provide a similar response among all three satellites. Standardization factors for each coastal segment were calculated based on differences between 90th percentiles from SeaWiFS to MODIS and SeaWiFS to MERIS. This transfer approach allowed for futu
Primary analysis of the ocean color remote sensing data of the HY-1B/COCTS
NASA Astrophysics Data System (ADS)
He, Xianqiang; Bai, Yan; Pan, Delu; Zhu, Qiankun; Gong, Fang
2009-01-01
China had successfully launched her second ocean color satellite HY-1B on 11 Apr., 2007, which was the successor of the HY-1A satellite launched on 15 May, 2002. There were two sensors onboard HY-1B, named the Chinese Ocean Color and Temperature Scanner (COCTS) and the Coastal Zone Imager (CZI) respectively, and COCTS was the main sensor. COCTS had not only eight visible and near-infrared wave bands similar to the SeaWiFS, but also two more thermal infrared wave bands to measure the sea surface temperature. Therefore, COCTS had broad application potentiality, such as fishery resource protection and development, coastal monitoring and management and marine pollution monitoring. In this paper, the main characteristics of COCTS were described firstly. Then, using the crosscalibration method, the vicarious calibration of COCTS was carried out by the synchronous remote sensing data of SeaWiFS, and the results showed that COCTS had well linear responses for the visible light bands with the correlation coefficients more than 0.98, however, the performances of the near infrared wavelength bands were not good as visible light bands. Using the vicarious calibration result, the operational atmospheric correction (AC) algorithm of COCTS was developed based on the exact Rayleigh scattering look-up table (LUT), aerosol scattering LUT and atmosphere diffuse transmission LUT generated by the coupled ocean-atmospheric vector radiative transfer numerical model named PCOART. The AC algorithm had been validated by the simulated radiance data at the top-of-atmosphere, and the results showed the errors of the water-leaving reflectance retrieved by the AC algorithm were less than 0.0005, which met the requirement of the exactly atmospheric correction of ocean color remote sensing. Finally, the AC algorithm was applied to the HY-1B/COCTS remote sensing data, and the corresponding ocean color remote sensing products have been generated.
NASA Technical Reports Server (NTRS)
Ahmad, Ziauddin; Franz, Bryan A.; McClain, Charles R.; Kwiatkowska, Ewa J.; Werdell, Jeremy; Shettle, Eric P.; Holben, Brent N.
2010-01-01
We describe the development of a new suite of aerosol models for the retrieval of atmospheric and oceanic optical properties from the SeaWiFs and MODIS sensors, including aerosol optical thickness (tau), angstrom coefficient (alpha), and water-leaving radiance (L(sub w)). The new aerosol models are derived from Aerosol Robotic Network (AERONET) observations and have bimodal lognormal distributions that are narrower than previous models used by the Ocean Biology Processing Group. We analyzed AERONET data over open ocean and coastal regions and found that the seasonal variability in the modal radii, particularly in the coastal region, was related to the relative humidity, These findings were incorporated into the models by making the modal radii, as well as the refractive indices, explicitly dependent on relative humidity, From those findings, we constructed a new suite of aerosol models. We considered eight relative humidity values (30%, 50%, 70%, 75%, 80%, 85%, 90%. and 95%) and, for each relative humidity value, we constructed ten distributions by varying the fine-mode fraction from zero to 1. In all. 80 distributions (8Rh x 10 fine-mode fractions) were created to process the satellite data. We. also assumed that the coarse-mode particles were nonabsorbing (sea salt) and that all observed absorptions were entirely due to fine-mode particles. The composition of fine mode was varied to ensure that the new models exhibited the same spectral dependence of single scattering albedo as observed in the AERONET data,
Bio-Optics Based Sensation Imaging for Breast Tumor Detection Using Tissue Characterization
Lee, Jong-Ha; Kim, Yoon Nyun; Park, Hee-Jun
2015-01-01
The tissue inclusion parameter estimation method is proposed to measure the stiffness as well as geometric parameters. The estimation is performed based on the tactile data obtained at the surface of the tissue using an optical tactile sensation imaging system (TSIS). A forward algorithm is designed to comprehensively predict the tactile data based on the mechanical properties of tissue inclusion using finite element modeling (FEM). This forward information is used to develop an inversion algorithm that will be used to extract the size, depth, and Young's modulus of a tissue inclusion from the tactile data. We utilize the artificial neural network (ANN) for the inversion algorithm. The proposed estimation method was validated by a realistic tissue phantom with stiff inclusions. The experimental results showed that the proposed estimation method can measure the size, depth, and Young's modulus of a tissue inclusion with 0.58%, 3.82%, and 2.51% relative errors, respectively. The obtained results prove that the proposed method has potential to become a useful screening and diagnostic method for breast cancer. PMID:25785306
NASA Astrophysics Data System (ADS)
Cherukuru, Nagur; Ford, Phillip W.; Matear, Richard J.; Oubelkheir, Kadija; Clementson, Lesley A.; Suber, Ken; Steven, Andrew D. L.
2016-10-01
Dissolved Organic Carbon (DOC) is an important component in the global carbon cycle. It also plays an important role in influencing the coastal ocean biogeochemical (BGC) cycles and light environment. Studies focussing on DOC dynamics in coastal waters are data constrained due to the high costs associated with in situ water sampling campaigns. Satellite optical remote sensing has the potential to provide continuous, cost-effective DOC estimates. In this study we used a bio-optics dataset collected in turbid coastal waters of Moreton Bay (MB), Australia, during 2011 to develop a remote sensing algorithm to estimate DOC. This dataset includes data from flood and non-flood conditions. In MB, DOC concentration varied over a wide range (20-520 μM C) and had a good correlation (R2 = 0.78) with absorption due to coloured dissolved organic matter (CDOM) and remote sensing reflectance. Using this data set we developed an empirical algorithm to derive DOC concentrations from the ratio of Rrs(412)/Rrs(488) and tested it with independent datasets. In this study, we demonstrate the ability to estimate DOC using remotely sensed optical observations in turbid coastal waters.
SeaWiFS Third Anniversary Global Biosphere
NASA Technical Reports Server (NTRS)
2002-01-01
September 18,2000 is the third anniversary of the start of regular SeaWiFS operations of this remarkable planet called Earth. This SeaWiFS image is of the Global Biosphere depicting the ocean's long-term average phytoplankton chlorophyll concentration acquired between September 1997 and August 2000 combined with the SeaWiFS-derived Normalized Difference Vegetation Index (NDVI) over land during July 2000.
NASA Technical Reports Server (NTRS)
Li, Jing; Carlson, Barbara E.; Lacis, Andrew A.
2013-01-01
Many remote sensing techniques and passive sensors have been developed to measure global aerosol properties. While instantaneous comparisons between pixel-level data often reveal quantitative differences, here we use Empirical Orthogonal Function (EOF) analysis, also known as Principal Component Analysis, to demonstrate that satellite-derived aerosol optical depth (AOD) data sets exhibit essentially the same spatial and temporal variability and are thus suitable for large-scale studies. Analysis results show that the first four EOF modes of AOD account for the bulk of the variance and agree well across the four data sets used in this study (i.e., Aqua MODIS, Terra MODIS, MISR, and SeaWiFS). Only SeaWiFS data over land have slightly different EOF patterns. Globally, the first two EOF modes show annual cycles and are mainly related to Sahara dust in the northern hemisphere and biomass burning in the southern hemisphere, respectively. After removing the mean seasonal cycle from the data, major aerosol sources, including biomass burning in South America and dust in West Africa, are revealed in the dominant modes due to the different interannual variability of aerosol emissions. The enhancement of biomass burning associated with El Niño over Indonesia and central South America is also captured with the EOF technique.
Benetz, B A; Diaconu, E; Bowlin, S J; Oak, S S; Laing, R A; Lass, J H
1999-01-01
Compare corneal endothelial image analysis by Konan SP8000 and Bio-Optics Bambi image-analysis systems. Corneal endothelial images from 98 individuals (191 eyes), ranging in age from 4 to 87 years, with a normal slit-lamp examination and no history of ocular trauma, intraocular surgery, or intraocular inflammation were obtained by the Konan SP8000 noncontact specular microscope. One observer analyzed these images by using the Konan system and a second observer by using the Bio-Optics Bambi system. Three methods of analyses were used: a fixed-frame method to obtain cell density (for both Konan and Bio-Optics Bambi) and a "dot" (Konan) or "corners" (Bio-Optics Bambi) method to determine morphometric parameters. The cell density determined by the Konan fixed-frame method was significantly higher (157 cells/mm2) than the Bio-Optics Bambi fixed-frame method determination (p<0.0001). However, the difference in cell density, although still statistically significant, was smaller and reversed comparing the Konan fixed-frame method with both Konan dot and Bio-Optics Bambi comers method (-74 cells/mm2, p<0.0001; -55 cells/mm2, p<0.0001, respectively). Small but statistically significant morphometric analyses differences between Konan and Bio-Optics Bambi were seen: cell density, +19 cells/mm2 (p = 0.03); cell area, -3.0 microm2 (p = 0.008); and coefficient of variation, +1.0 (p = 0.003). There was no statistically significant difference between these two methods in the percentage of six-sided cells detected (p = 0.55). Cell densities measured by the Konan fixed-frame method were comparable with Konan and Bio-Optics Bambi's morphometric analysis, but not with the Bio-Optics Bambi fixed-frame method. The two morphometric analyses were comparable with minimal or no differences for the parameters that were studied. The Konan SP8000 endothelial image-analysis system may be useful for large-scale clinical trials determining cell loss; its noncontact system has many clinical benefits (including patient comfort, safety, ease of use, and short procedure time) and provides reliable cell-density calculations.
Time-of-Travel Methods for Measuring Optical Flow on Board a Micro Flying Robot
Vanhoutte, Erik; Mafrica, Stefano; Ruffier, Franck; Bootsma, Reinoud J.; Serres, Julien
2017-01-01
For use in autonomous micro air vehicles, visual sensors must not only be small, lightweight and insensitive to light variations; on-board autopilots also require fast and accurate optical flow measurements over a wide range of speeds. Using an auto-adaptive bio-inspired Michaelis–Menten Auto-adaptive Pixel (M2APix) analog silicon retina, in this article, we present comparative tests of two optical flow calculation algorithms operating under lighting conditions from 6×10−7 to 1.6×10−2 W·cm−2 (i.e., from 0.2 to 12,000 lux for human vision). Contrast “time of travel” between two adjacent light-sensitive pixels was determined by thresholding and by cross-correlating the two pixels’ signals, with measurement frequency up to 5 kHz for the 10 local motion sensors of the M2APix sensor. While both algorithms adequately measured optical flow between 25 ∘/s and 1000 ∘/s, thresholding gave rise to a lower precision, especially due to a larger number of outliers at higher speeds. Compared to thresholding, cross-correlation also allowed for a higher rate of optical flow output (99 Hz and 1195 Hz, respectively) but required substantially more computational resources. PMID:28287484
NASA Technical Reports Server (NTRS)
Hooker, Stanford B. (Editor); Firestone, Elaine R. (Editor)
1992-01-01
The Sea-viewing Wide Field-of-view Sensor (SeaWiFS) is the follow-on ocean color instrument to the Coastal Zone Color Scanner (CZCS), which ceased operations in 1986, after an eight year mission. SeaWiFS is expected to be launched in August 1993, on the Sea Star satellite, being built by Orbital Sciences Corporation (OSC). The SeaWiFS Project at the NASA/Goddard Space Flight Center (GSFC) has undertaken the responsibility of documenting all aspects of this mission, which is critical to the ocean color and marine science communities. This documentation, entitled the SeaWiFS Technical Report Series, is in the form of NASA Technical Memoranda Number 104566. All reports published are volumes within the series. This volume serves as a reference, or guidebook, to the previous five volumes and consists of four main sections including an index to key words and phrases, a list of all references cited, and lists of acronyms and symbols used. It is our intention to publish a summary index of this type after every five volumes in the series. This will cover the topics published in all previous editions of the indices, that is, each new index will include all of the information contained in the preceding indices.
SeaWiFS technical report series. Volume 22: Prelaunch acceptance report for the SeaWFS radiometer
NASA Technical Reports Server (NTRS)
Hooker, Stanford B. (Editor); Firestone, Elaine, R. (Editor); Barnes, Robert A.; Barnes, William L.; Esaias, Wayne E.; Mcclain, Charles R.; Acker, James G. (Editor)
1994-01-01
The final acceptance, or rejection, of the Sea-viewing Wide field-of-view Sensor (SeaWiFS) will be determined by the instrument's on-orbit operation. There is, however, an extensive set of laboratory measurements describing the operating characteristics of the radiometer. Many of the requirements in the Ocean Color Data Mission (OCDM) specifications can be checked only by laboratory measurements. Here, the calibration review panel (composed of the authors of this technical memorandum) examines the laboratory characterization and calibration of SeaWiFS in the light of the OCDM performance specification. Overall, the performance of the SeaWiFS instrument meets or exceeds the requirements of the OCDM contract in all but a few unimportant details. The detailed results of this examination are presented here by following the outline of the specifications, as found in the Contract. The results are presented in the form of requirements and compliance pairs. These results give conclusions on many, but not all, of the performance specifications. The acceptance of this panel of the performance of SeaWiFS must only be considered as an intermediate conclusion. The ultimate acceptance (or rejection) of the SeaWiFS data set will rely on the measurements made by the instrument on orbit.
NASA Technical Reports Server (NTRS)
Barnes, Robert A.; Holmes, Alan W.; Barnes, William L.; Esaias, Wayne E.; Mcclain, Charles R.; Svitek, Tomas; Hooker, Stanford B.; Firestone, Elaine R.; Acker, James G.
1994-01-01
Based on the operating characteristics of the Sea-viewing Wide Field-of-view Sensor (SeaWiFS), calibration equations have been developed that allow conversion of the counts from the radiometer into Earth-existing radiances. These radiances are the geophysical properties the instrument has been designed to measure. SeaWiFS uses bilinear gains to allow high sensitivity measurements of ocean-leaving radiances and low sensitivity measurements of radiances from clouds, which are much brighter than the ocean. The calculation of these bilinear gains is central to the calibration equations. Several other factors within these equations are also included. Among these are the spectral responses of the eight SeaWiFS bands. A band's spectral response includes the ability of the band to isolate a portion of the electromagnetic spectrum and the amount of light that lies outside of that region. The latter is termed out-of-band response. In the calibration procedure, some of the counts from the instrument are produced by radiance in the out-of-band region. The number of those counts for each band is a function of the spectral shape of the source. For the SeaWiFS calibration equations, the out-of-band responses are converted from those for the laboratory source into those for a source with the spectral shape of solar flux. The solar flux, unlike the laboratory calibration, approximates the spectral shape of the Earth-existing radiance from the oceans. This conversion modifies the results from the laboratory radiometric calibration by 1-4 percent, depending on the band. These and other factors in the SeaWiFS calibration equations are presented here, both for users of the SeaWiFS data set and for researchers making ground-based radiance measurements in support of Sea WiFS.
Evaluation of bio-optical algorithms to remotely sense marine primary production from space
NASA Technical Reports Server (NTRS)
Berthelot, Beatrice; Deschamps, Pierre-Yves
1994-01-01
In situ bio-optical measurements from several oceanographic campaigns were analyzed to derive a direct relationship between water column primary production P (sub t) ocean color as expressed by the ratio of reflectances R (sub 1) at 440 nm and R (sub 3) at 550 nm and photosynthetically available radiation (PAR). The study is restricted to the Morel case I waters for which the following algorithm is proposed: log (P(sub f)) = -4.286 - 1.390 log (R(sub 1)/R(sub3)) + 0.621 log (PAR), with P(sub t) in g C m(exp -2)/d and PAR in J m(exp -2)/d. Using this algorithm the rms accuracy of primary production estimate is 0.17 on a logarithmic scale, i.e., a factor of 1.5. Using spectral reflectance measurements in the entire visible spectral range, the central wavelength, spectral bandwidth, and radiometric noise level requirements are investigated for the channels to be used by an ocean color space mission dedicated to estimating global marine primary production and the associated carbon fluxes. Nearly all the useful information is provided by two channels centered at 440 nm and 550 nm, but the accuracy of primary production estimate appears weakly sensitive to spectral bandwidth, which, consequently, may be enlarged by several tens of nanometers. The sensitivity to radiometric noise, on the contrary, is strong, and a noise equivalent reflectance of 0.005 degraded the accuracy on the primary production estimate by a factor 2 (0.14-0.25 on a logarithmic scale). The results should be applicable to evaluating the primary production of oligotrophic and mesotrophic waters, which constitute most of the open ocean.
Coastal Algorithms and On-Demand Processing- The Lessons Learnt from CoastColour for Sentinel 3
NASA Astrophysics Data System (ADS)
Brockmann, Carsten; Doerffer, Roland; Boettcher, Martin; Kramer, Uwe; Zuhlke, Marco; Pinnock, Simon
2015-12-01
The ESA DUE CoastColour Project has been initiated to provide water quality products for important costal zones globally. A new 5 component bio-optical model was developed and used in a 3-step approach for regional processing of ocean colour data. The L1P step consists of radiometric and geometric system corrections, and top-of-atmosphere pixel classification including cloud screening, sun glint risk masking or detection of floating vegetation. The second step includes the atmospheric correction and is providing the L2R product, which comprises marine reflectances with error characterisation and normalisation. The third step is the in-water processing which produces IOPs, attenuation coefficient and water constituent concentrations. Each of these steps will benefit from the additional bands on OLCI. The 5 component bio-optical model will already be used in the standard ESA processing of OLCI, and also part of the pixel classification methods will be part of the standard products. Other algorithm adaptation are in preparation. Another important advantage of the CoastColour approach is the highly configurable processing chain which allows adaptation to the individual characteristics of the area of interest, temporal window, algorithm parametrisation and processing chain configuration. This flexibility is made available to data users through the CoastColour on-demand processing service. The complete global MERIS Full and Reduced Resolution data archive is accessible, covering the time range from 17. May 2002 until 08. April 2012, which is almost 200TB of in-put data available online. The CoastColour on-demand processing service can serve as a model for hosted processing, where the software is moved to the data instead of moving the data to the users, which will be a challenge with the large amount of data coming from Sentinel 3.
NASA Technical Reports Server (NTRS)
2002-01-01
The Ross Sea has been somewhat cloud free lately, providing SeaWiFS with views such as this one from December 26, 2001. Note the deep green water; this is a highly productive part of the world'd oceans. Also note the ice gathered around McMurdo Sound. The ice is making it difficult for penguins to reach their food supply. Credit: Provided by the SeaWiFS Project, NASA/Goddard Space Flight Center, and ORBIMAGE
NASA Technical Reports Server (NTRS)
Hooker, Stanford B. (Editor); Firestone, Elaine R. (Editor); Acker, James G. (Editor); Mueller, James L.; Johnson, B. Carol; Cromer, Christopher L.; McLean, James T.; Biggar, Stuart F.
1996-01-01
This report presents results of the third Sea-viewing Wide Field-of-view Sensor (SeaWiFS) Intercalibration Round- Robin Experiment (SIRREX-3), which was held at the San Diego State University (SDSU) Center for Hydro-Optics and Remote Sensing (CHORS) on 19-30 September 1994. Spectral irradiances of FEL lamps belonging to each participant were intercompared by reference to the National Institute of Standards and Technology (NIST) scale of spectral irradiance using secondary standard lamps F268, F269, and F182, with a Type A uncertainty between 1.1-1.5%. This level of uncertainty was achieved despite difficulties with lamp F269. The average spectral irradiances of FEL lamps, compared in both SIRREX-2 and SIRREX-3, differed between the two experiments by 1.5%, which probably indicates that the values assigned to the secondary standard lamp at the time of SIRREX-2 were in error. With two exceptions, spectral radiance values of integrating sphere sources were measured during SIRREX-3 with uncertainties in temporal stability of less than 0.3% and absolute uncertainties of 1.5-2.0%. This is a significant improvement over similar intercomparisons in SIRREX- I and SIRREX-2. Plaque reflectances were intercompared with an uncertainty of about 1-2%, but the absolute uncertainty is undefined. Although this is an improvement over results of previous SIRREXS, the sources and magnitude of uncertainty associated with transfers of spectral radiance using plaques requires further evaluation in future experiments.
Stamnes, S; Hostetler, C; Ferrare, R; Burton, S; Liu, X; Hair, J; Hu, Y; Wasilewski, A; Martin, W; van Diedenhoven, B; Chowdhary, J; Cetinić, I; Berg, L K; Stamnes, K; Cairns, B
2018-04-01
We present an optimal-estimation-based retrieval framework, the microphysical aerosol properties from polarimetry (MAPP) algorithm, designed for simultaneous retrieval of aerosol microphysical properties and ocean color bio-optical parameters using multi-angular total and polarized radiances. Polarimetric measurements from the airborne NASA Research Scanning Polarimeter (RSP) were inverted by MAPP to produce atmosphere and ocean products. The RSP MAPP results are compared with co-incident lidar measurements made by the NASA High-Spectral-Resolution Lidar HSRL-1 and HSRL-2 instruments. Comparisons are made of the aerosol optical depth (AOD) at 355 and 532 nm, lidar column-averaged measurements of the aerosol lidar ratio and Ångstrøm exponent, and lidar ocean measurements of the particulate hemispherical backscatter coefficient and the diffuse attenuation coefficient. The measurements were collected during the 2012 Two-Column Aerosol Project (TCAP) campaign and the 2014 Ship-Aircraft Bio-Optical Research (SABOR) campaign. For the SABOR campaign, 73% RSP MAPP retrievals fall within ±0.04 AOD at 532 nm as measured by HSRL-1, with an R value of 0.933 and root-mean-square deviation of 0.0372. For the TCAP campaign, 53% of RSP MAPP retrievals are within 0.04 AOD as measured by HSRL-2, with an R value of 0.927 and root-mean-square deviation of 0.0673. Comparisons with HSRL-2 AOD at 355 nm during TCAP result in an R value of 0.959 and a root-mean-square deviation of 0.0694. The RSP retrievals using the MAPP optimal estimation framework represent a key milestone on the path to a combined lidar + polarimeter retrieval using both HSRL and RSP measurements.
NASA Technical Reports Server (NTRS)
Guild, Liane; Kudela, Raphael; Hooker, Stanford; Morrow, John; Russell, Philip; Palacios, Sherry; Livingston, John M.; Negrey, Kendra; Torres-Perez, Juan; Broughton, Jennifer
2014-01-01
NASA has a continuing requirement to collect high-quality in situ data for the vicarious calibration of current and next generation ocean color satellite sensors and to validate the algorithms that use the remotely sensed observations. Recent NASA airborne missions over Monterey Bay, CA, have demonstrated novel above- and in-water measurement capabilities supporting a combined airborne sensor approach (imaging spectrometer, microradiometers, and a sun photometer). The results characterize coastal atmospheric and aquatic properties through an end-to-end assessment of image acquisition, atmospheric correction, algorithm application, plus sea-truth observations from state-of-the-art instrument systems. The primary goal is to demonstrate the following in support of calibration and validation exercises for satellite coastal ocean color products: 1) the utility of a multi-sensor airborne instrument suite to assess the bio-optical properties of coastal California, including water quality; and 2) the importance of contemporaneous atmospheric measurements to improve atmospheric correction in the coastal zone. The imaging spectrometer (Headwall) is optimized in the blue spectral domain to emphasize remote sensing of marine and freshwater ecosystems. The novel airborne instrument, Coastal Airborne In-situ Radiometers (C-AIR) provides measurements of apparent optical properties with high dynamic range and fidelity for deriving exact water leaving radiances at the land-ocean boundary, including radiometrically shallow aquatic ecosystems. Simultaneous measurements supporting empirical atmospheric correction of image data are accomplished using the Ames Airborne Tracking Sunphotometer (AATS-14). Flight operations are presented for the instrument payloads using the Center for Interdisciplinary Remotely-Piloted Aircraft Studies (CIRPAS) Twin Otter flown over Monterey Bay during the seasonal fall algal bloom in 2011 (COAST) and 2013 (OCEANIA) to support bio-optical measurements of phytoplankton for coastal zone research.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stamnes, S.; Hostetler, C.; Ferrare, R.
We present an optimal estimation based retrieval framework, the Microphysical Aerosol Properties from Polarimetry (MAPP) algorithm, designed for simultaneous retrieval of aerosol microphysical properties and ocean color bio-optical parameters using multi-angular polarized radiances. Polarimetric measurements from the airborne NASA Research Scanning Polarimeter (RSP) were inverted by MAPP to produce atmosphere and ocean products. The RSP MAPP results are compared with co-incident lidar measurements made by the NASA High Spectral Resolution Lidar HSRL-1 and HSRL-2 instruments. Comparisons are made of the aerosol optical depth (AOD) at 355, 532, and 1064 nm, lidar column-averaged measurements of the aerosol lidar ratio and Ã…ngstrømmore » exponent, and lidar ocean measurements of the particulate hemispherical backscatter coefficient and the diffuse attenuation coefficient. The measurements were collected during the 2012 Two-Column Aerosol Project (TCAP) campaign and the 2014 Ship-Aircraft Bio- Optical Research (SABOR) campaign. For the SABOR campaign, 71% RSP MAPP retrievals fall within 0.04 AOD at 532 nm as measured by HSRL-1, with an R value of 0.925 and root-mean-square deviation of 0.04. For the TCAP campaign, 55% of RSP MAPP retrievals are within 0.04 AOD as measured by HSRL-2, with an R value of 0.925 and root-mean-square deviation of 0.07. Comparisons with HSRL-2 AOD at 355 nm during TCAP result in an R value of 0.96 and a root-mean-square deviation of also 0.07. The RSP retrievals using the MAPP optimal estimation framework represent a key milestone on the path to a combined lidar+polarimeter retrieval using both HSRL and RSP measurements.« less
2014-12-01
two-dimensional graphs and tabular results of the various seawater properties’ data collected by the Naval Oceanographic Office using SEAGLIDER...glides in the western Pacific Ocean from March 2008 through November 2011 2) to perform an analysis of the individual seawater properties to determine...and bio-optical seawater properties to one another to discover if optical and/or bio-optical properties can be inferred from given vertical
Yang, Wei; Chen, Jin; Mausushita, Bunki
2009-01-01
In the present study, a novel retrieval method for estimating chlorophyll-a concentration in case II waters based on bio-optical model was proposed and was tested with the data measured in the laboratory. A series of reflectance spectra, with which the concentration of each sample constituent (for example chlorophyll-a, NPSS etc.) was obtained from accurate experiments, were used to calculate the absorption and backscattering coefficients of the constituents of the case II waters. Then non-negative least square method was applied to calculate the concentration of chlorophyll-a and non-phytoplankton suspended sediments (NPSS). Green algae was firstly collected from the Kasumigaura lake in Japan and then cultured in the laboratory. The reflectance spectra of waters with different amounts of phytoplankton and NPSS were measured in the dark room using FieldSpec Pro VNIR (Analytical Spectral Devises Inc. , Boulder, CO, USA). In order to validate whether this method can be applied in multispectral data (for example Landsat TM), the spectra measured in the laboratory were resampled with Landsat TM bands 1, 2, 3 and 4. Different combinations of TM bands were compared to derive the most appropriate wavelength for detecting chlorophyll-a in case II water for green algae. The results indicated that the combination of TM bands 2, 3 and 4 achieved much better accuracy than other combinations, and the estimated concentration of chlorophyll-a was significantly more accurate than empirical methods. It is expected that this method can be directly applied to the real remotely sensed image because it is based on bio-optical model.
An Assessment of SeaWiFS and MODIS Ocean Coverage
NASA Technical Reports Server (NTRS)
Woodward, Robert H.; Gregg, Watson W.
1998-01-01
Ocean coverages of SeaWiFS and MODIS were assessed for three seasons by considering monthly mean values of surface winds speeds and cloud cover. Mean and maximum coverages combined SeaWiFS and MODIS by considering combined coverages for ten-degree increments of the MODIS orbital mean anomaly. From this analysis the mean and maximum combined coverages for SeaWiFS and MODIS were determined for one and four-day periods for spring, summer, and winter seasons. Loss of coverage due to Sun glint and cloud cover were identified for both the individual and combined cases. Our analyses indicate that MODIS will enhance ocean coverage for all three seasons examined. ne combined SeaWiFS/MODIS show an increase of coverage of 42.2% to 48.7% over SeaWiFS alone for the three seasons studied; the increase in maximum one day coverage ranges from 47.5% to 52.0%. The increase in four-day coverage for the combined case ranged from 31.0% to 35.8% for mean coverage and 33.1 % to 39.2% for maximum coverage. We computed meridional distributions of coverages by binning the data into five-degree latitude bands. Our analysis shows a strong seasonal dependence of coverage. In general the meridional analysis indicates that increase in coverages for SeaWiFS/MODIS over SeaWiFS alone are greatest near the solar declination.
NASA Technical Reports Server (NTRS)
Firestone, Elaine R. (Editor); Hooker, Stanford B.
1998-01-01
The Sea-viewing Wide Field-of-view Sensor (SeaWiFS) is the follow-on ocean color instrument to the Coastal Zone Color Scanner (CZCS), which ceased operations in 1986, after an eight-year mission. SeaWiFS was launched on 1 August 1997, on the SeaStar satellite, built by Orbital Sciences Corporation (OSC). The SeaWiFS Project at the National Aeronautics and Space Administration (NASA) Goddard Space Flight Center (GSFC), undertook the responsibility of documenting all aspects of this mission, which is critical to the ocean color and marine science communities. This documentation, entitled the SeaWiFS Technical Report Series, is in the form of NASA Technical Memorandum Number 104566 and 1998-104566. All reports published are volumes within the series. This particular volume, which is the last of the so-called Prelaunch Series serves as a reference, or guidebook, to the previous 42 volumes and consists of 6 sections including: an addenda, an errata, an index to key words and phrases, lists of acronyms and symbols used, and a list of all references cited. The editors have published a cumulative index of this type after every five volumes. Each index covers the reference topics published in all previous editions, that is, each new index includes all of the information contained in the preceding indexes with the exception of any addenda.
NASA Astrophysics Data System (ADS)
Li, J.; Yu, Q.; Tian, Y. Q.
2017-12-01
The DOC flux from land to the Arctic Ocean has remarkable implication on the carbon cycle, biogeochemical & ecological processes in the Arctic. This lateral carbon flux is required to be monitored with high spatial & temporal resolution. However, the current studies in the Arctic regions were obstructed by the factors of the low spatial coverages. The remote sensing could provide an alternative bio-optical approach to field sampling for DOC dynamics monitoring through the observation of the colored dissolved organic matter (CDOM). The DOC and CDOM were found highly correlated based on the analysis of the field sampling data from the Arctic-GRO. These provide the solid foundation of the remote sensing observation. In this study, six major Arctic Rivers (Yukon, Kolyma, Lena, Mackenzie, Ob', Yenisey) were selected to derive the CDOM dynamics along four years. Our newly developed SBOP algorithm was applied to the large Landsat-8 OLI image data (nearly 100 images) for getting the high spatial resolution results. The SBOP algorithm is the first approach developing for the Shallow Water Bio-optical properties estimation. The CDOM absorption derived from the satellite images were verified with the field sampling results with high accuracy (R2 = 0.87). The distinct CDOM dynamics were found in different Rivers. The CDOM absorptions were found highly related to the hydrological activities and the terrestrially environmental dynamics. Our study helps to build the reliable system for studying the carbon cycle at Arctic regions.
NASA Astrophysics Data System (ADS)
Watanabe, Fernanda Sayuri Yoshino; Alcântara, Enner; Stech, José Luiz
2018-07-01
In this research, we have investigated whether the chlorophyll-a (chl a) retrieval algorithms based on OLCI Sentinel-3A bands are suitable for cyanobacteria-dominated waters. Phytoplankton assemblages model optical properties of the water, influencing the performance of bio-optical algorithms. Understanding these processes is important to improve the prediction of photoactive pigments in order to use them as a proxy for trophic state and harmful algal bloom. So that, both empirical and semi-analytical approaches designed for different inland waters were tested. In addition, empirical models were tuned based on dataset collected in situ. The study was conducted in the Funil hydroelectric reservoir, where chl a ranged from 2.33 to 208.68 mg m-3 in May 2012 (austral fall) and 4.37 to 306.03 mg m-3 in October 2012 (austral spring). OLCI Sentinel-3A bands were tested in existing algorithms developed for other sensors and new band combinations were compared to analyze the errors produced. Normalized Difference Chlorophyll Index (NDCI) exhibited the best performance, with a Normalized Root Mean Square Error (NRMSE) of 9.30%. Result showed that wavelength at 665 nm is adequate to estimate chl a, although the maximum pigment absorption band is shifted due to phycocyanin fluorescence at approximately 650 nm.
Phytoplankton off the Coast of Washington State
NASA Technical Reports Server (NTRS)
2002-01-01
Clear weather over the Pacific Northwest yesterday gave the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) a good view of this mountain region of the United States. Also, there are several phytoplankton blooms visible offshore. The white areas hugging the California coastline toward the bottom of the image are low-level stratus clouds. SeaWiFS acquired this true-color scene on October 3, 2001. Image courtesy the SeaWiFS Project, NASA/Goddard Space Flight Center, and ORBIMAGE
Photobiology of Symbiodinium revisited: bio-physical and bio-optical signatures
NASA Astrophysics Data System (ADS)
Hennige, S. J.; Suggett, D. J.; Warner, M. E.; McDougall, K. E.; Smith, D. J.
2009-03-01
Light is often the most abundant resource within the nutrient-poor waters surrounding coral reefs. Consequently, zooxanthellae ( Symbiodinium spp.) must continually photoacclimate to optimise productivity and ensure coral success. In situ coral photobiology is becoming dominated by routine assessments using state-of-the-art non-invasive bio-optical or chlorophyll a fluorescence (bio-physical) techniques. Multiple genetic types of Symbiodinium are now known to exist; however, little focus has been given as to how these types differ in terms of characteristics that are observable using these techniques. Therefore, this investigation aimed to revisit and expand upon a pivotal study by Iglesias-Prieto and Trench (1994) by comparing the photoacclimation characteristics of different Symbiodinium types based on their bio-physical (chlorophyll a fluorescence, reaction centre counts) and bio-optical (optical absorption, pigment concentrations) ‘signatures’. Signatures described here are unique to Symbiodinium type and describe phenotypic responses to set conditions, and hence are not suitable to describe taxonomic structure of in hospite Symbiodinium communities. In this study, eight Symbiodinium types from clades and sub-clades (A-B, F) were grown under two PFDs (Photon Flux Density) and examined. The photoacclimation response by Symbiodinium was highly variable between algal types for all bio-physical and for many bio-optical measurements; however, a general preference to modifying reaction centre content over effective antennae-absorption was observed. Certain bio-optically derived patterns, such as light absorption, were independent of algal type and, when considered per photosystem, were matched by reaction centre stoichiometry. Only by better understanding genotypic and phenotypic variability between Symbiodinium types can future studies account for the relative taxonomic and physiological contribution by Symbiodinium to coral acclimation.
SeaWiFS: Western North American Smoke
NASA Technical Reports Server (NTRS)
2002-01-01
In this SeaWiFS image captured on August 16, 2001, smoke from several wildfires is clearly visible over the Western United States and Canada. Credit: Jacques Descloitres, MODIS Land Rapid Response Team
SeaWiFS Postlaunch Technical Report Series Cumulative Index: Volumes 1-23
NASA Technical Reports Server (NTRS)
Hooker, Stanford B. (Editor); Firestone, Elaine R. (Editor)
2003-01-01
The Sea-viewing Wide Field-of-view Sensor (SeaWiFS) is the follow-on ocean color instrument to the Coastal Zone Color Scanner (CZCS), which ceased operations in 1986, after an eight-year mission. SeaWiFS was launched on 1 August 1997, onboard the OrbView-2 satellite, built by Orbital Sciences Corporation (OSC). The SeaWiFS Project at the National Aeronautics and Space Administration (NASA) Goddard Space Flight Center (GSFC), undertook the responsibility of documenting all aspects of this mission, which is critical to the ocean color and marine science communities. The start of this documentation was titled the SeaWiFS Technical Report Series, which ended after 43 volumes were published. A follow-on series was started, titled the Sea WiFS Postlaunch Technical Report Series. This particular volume of the so-called Postlaunch Series serves as a reference, or guidebook, to the previous 23 volumes and consists of 4 sections including an errata, an index to key words and phrases, a list of acronyms used, and a list of all references cited. The editors will publish a cumulative index of this type after every five volumes.
A Global Observatory of Lake Water Quality
NASA Astrophysics Data System (ADS)
Tyler, Andrew N.; Hunter, Peter D.; Spyrakos, Evangelos; Neil, Claire; Simis, Stephen; Groom, Steve; Merchant, Chris J.; Miller, Claire A.; O'Donnell, Ruth; Scott, E. Marian
2017-04-01
Our planet's surface waters are a fundamental resource encompassing a broad range of ecosystems that are core to global biogeochemical cycling, biodiversity and food and energy security. Despite this, these same waters are impacted by multiple natural and anthropogenic pressures and drivers of environmental change. The complex interaction between physical, chemical and biological processes in surface waters poses significant challenges for in situ monitoring and assessment and this often limits our ability to adequately capture the dynamics of aquatic systems and our understanding of their status, functioning and response to pressures. Recent developments in the availability of satellite platforms for Earth observation (including ESA's Copernicus Programme) offers an unprecedented opportunity to deliver measures of water quality at a global scale. The UK NERC-funded GloboLakes project is a five-year research programme investigating the state of lakes and their response to climatic and other environmental drivers of change through the realization of a near-real time satellite based observatory (Sentinel-3) and archive data processing (MERIS, SeaWiFS) to produce a 20-year time-series of observed ecological parameters and lake temperature for more than 1000 lakes globally. However, the diverse and complex optical properties of lakes mean that algorithm performance often varies markedly between different water types. The GloboLakes project is overcoming this challenge by developing a processing chain whereby algorithms are dynamically selected according to the optical properties of the lake under observation. The development and validation of the GloboLakes processing chain has been supported by access to extensive in situ data from more than thirty partners around the world that are now held in the LIMNADES community-owned data repository developed under the auspices of GloboLakes. This approach has resulted in a step-change in our ability to produce regional and global water quality products for optically-complex waters complete with greatly improved uncertainty estimates. The value of these data and the future scientific opportunities they provide will be illustrated with examples of how it can be used to improve our understanding of the impact of global environmental change on inland, transitional and near-shore coastal waters.
Optical bio-sniffer for methyl mercaptan in halitosis.
Mitsubayashi, Kohji; Minamide, Takeshi; Otsuka, Kimio; Kudo, Hiroyuki; Saito, Hirokazu
2006-07-28
An optical bio-sniffer for methyl mercaptan (MM) one of major odorous chemicals in halitosis (bad breath) was constructed by immobilizing monoamine oxidase type A (MAO-A) onto a tip of a fiber optic oxygen sensor (od: 1.59 mm) with an oxygen sensitive ruthenium organic complex (excitation: 470 nm, fluorescent: 600 nm). A flow cell for circulating buffer solution was applied to rinse and clean the tip of the device like nasal mucosa. In order to amplify the bio-sniffer output, a substrate regeneration cycle caused by coupling MAO-A with l-ascorbic acid (AsA) as reducing reaction with reagent system was applied to the sensor system. After evaluating the sensor characteristics using a gas flow measurement system with a gas generator, the optical bio-sniffer was applied to expired gases from healthy male volunteers for halitosis analysis as a physiological application. The optical bio-sniffer was applied to detect the oxygen consumption induced by MAO-A enzymatic reaction (and AsA chemical reduction) with gaseous MM application. The bio-sniffer was calibrated against MM vapor from 8.7 to 11500 ppb with correlation coefficient of 0.977, including a MM threshold (200 ppb) of pathologic halitosis and the human sense of smell level 3.5 (10.0 ppb), with good gas-selectivity based on the MAO-A substrate specificity. As the result of the physiological application, the optical bio-sniffer could successfully monitor the MM level change in breath samples during daytime, which is consistent with the previously reported results.
NASA Astrophysics Data System (ADS)
Sarkisov, Sergey S.; Kukhtareva, Tatiana; Kukhtarev, Nickolai V.; Curley, Michael J.; Edwards, Vernessa; Creer, Marylyn
2013-03-01
There is a great need for rapid detection of bio-hazardous species particularly in applications to food safety and biodefense. It has been recently demonstrated that the colonies of various bio-species could be rapidly detected using culture-specific and reproducible patterns generated by scattered non-coherent light. However, the method heavily relies on a digital pattern recognition algorithm, which is rather complex, requires substantial computational power and is prone to ambiguities due to shift, scale, or orientation mismatch between the analyzed pattern and the reference from the library. The improvement could be made, if, in addition to the intensity of the scattered optical wave, its phase would be also simultaneously recorded and used for the digital holographic pattern recognition. In this feasibility study the research team recorded digital Gabor-type (in-line) holograms of colonies of micro-organisms, such as Salmonella with a laser diode as a low-coherence light source and a lensless high-resolution (2.0x2.0 micron pixel pitch) digital image sensor. The colonies were grown in conventional Petri dishes using standard methods. The digitally recorded holograms were used for computational reconstruction of the amplitude and phase information of the optical wave diffracted on the colonies. Besides, the pattern recognition of the colony fragments using the cross-correlation between the digital hologram was also implemented. The colonies of mold fungi Altenaria sp, Rhizophus, sp, and Aspergillus sp have been also generating nano-colloidal silver during their growth in specially prepared matrices. The silver-specific plasmonic optical extinction peak at 410-nm was also used for rapid detection and growth monitoring of the fungi colonies.
Prahm, Cosima; Eckstein, Korbinian; Ortiz-Catalan, Max; Dorffner, Georg; Kaniusas, Eugenijus; Aszmann, Oskar C
2016-08-31
Controlling a myoelectric prosthesis for upper limbs is increasingly challenging for the user as more electrodes and joints become available. Motion classification based on pattern recognition with a multi-electrode array allows multiple joints to be controlled simultaneously. Previous pattern recognition studies are difficult to compare, because individual research groups use their own data sets. To resolve this shortcoming and to facilitate comparisons, open access data sets were analysed using components of BioPatRec and Netlab pattern recognition models. Performances of the artificial neural networks, linear models, and training program components were compared. Evaluation took place within the BioPatRec environment, a Matlab-based open source platform that provides feature extraction, processing and motion classification algorithms for prosthetic control. The algorithms were applied to myoelectric signals for individual and simultaneous classification of movements, with the aim of finding the best performing algorithm and network model. Evaluation criteria included classification accuracy and training time. Results in both the linear and the artificial neural network models demonstrated that Netlab's implementation using scaled conjugate training algorithm reached significantly higher accuracies than BioPatRec. It is concluded that the best movement classification performance would be achieved through integrating Netlab training algorithms in the BioPatRec environment so that future prosthesis training can be shortened and control made more reliable. Netlab was therefore included into the newest release of BioPatRec (v4.0).
NASA Astrophysics Data System (ADS)
Alsahli, Mohammad M. M.
Kuwait sea surface temperature (SST) and water clarity are important water characteristics that influence the entire Kuwait coastal ecosystem. The spatial and temporal distributions of these important water characteristics should be well understood to obtain a better knowledge about this productive coastal environment. The aim of this project was therefore to study the spatial and temporal distributions of: Kuwait SST using Moderate Resolution Imaging Spectroradiometer (MODIS) images collected from January 2003 to July 2007; and Kuwait Secchi Disk Depth (SDD), a water clarity measure, using Sea-viewing Wide Field-of-view Sensor (SeaWiFS) and MODIS data collected from November 1998 to October 2004 and January 2003 to June 2007, respectively. Kuwait SST was modeled based on the linear relationship between level 2 MODIS SST data and in situ SST data. MODIS SST images showed a significant relationship with in situ SST data ( r2= 0.98, n = 118, RMSE = 0.7°C). Kuwait SST images derived from MODIS data exhibited three spatial patterns of Kuwait SST across the year that were mainly attributed to the northwestern counterclockwise water circulation of the Arabian Gulf, and wind direction and intensity. The temporal variation of Kuwait SST was greatly influenced by the seasonal variation of solar intensity and air temperatures. Kuwait SDD was measured through two steps: first, computing the diffuse light attenuation coefficient at 490 nm, Kd(490), and 488 nm, Kd(488), derived from SeaWiFS and MODIS, respectively, using a semi-analytical algorithm; second, establishing two SDD models based on the empirical relationship of Kd(490) and Kd(488) with in situ SDD data. Kd(490) and Kd(488) showed a significant relationship with in situ SDD data ( r2= 0.67 and r2= 0.68, respectively). Kuwait SDD images showed distinct spatial and temporal patterns of Kuwait water clarity that were mainly attributed to three factors: the Shatt Al-Arab discharge, water circulation, and coastal currents. The SeaWiFS and MODIS data compared to in situ measurements provided a comprehensive view of the studied seawater characteristics that improved their overall estimation within Kuwait's waters. Also, the near-real-time availability of SeaWiFS and MODIS data and their highly temporal resolution make them a very advantageous tool for studying coastal environments. Thus, I recommend involving this method in monitoring Kuwait coastal environments.
Case study: Optimizing fault model input parameters using bio-inspired algorithms
NASA Astrophysics Data System (ADS)
Plucar, Jan; Grunt, Onřej; Zelinka, Ivan
2017-07-01
We present a case study that demonstrates a bio-inspired approach in the process of finding optimal parameters for GSM fault model. This model is constructed using Petri Nets approach it represents dynamic model of GSM network environment in the suburban areas of Ostrava city (Czech Republic). We have been faced with a task of finding optimal parameters for an application that requires high amount of data transfers between the application itself and secure servers located in datacenter. In order to find the optimal set of parameters we employ bio-inspired algorithms such as Differential Evolution (DE) or Self Organizing Migrating Algorithm (SOMA). In this paper we present use of these algorithms, compare results and judge their performance in fault probability mitigation.
Zhen, Chen; QuiuLi, Zhang; YuanQi, An; Casado, Verónica Vocero; Fan, Yuan
2016-01-01
Currently, conventional enzyme immunoassays which use manual gold immunoassays and colloidal tests (GICTs) are used as screening tools to detect Treponema pallidum (syphilis), hepatitis B virus (HBV), hepatitis C virus (HCV), human immunodeficiency virus type 1 (HIV-1), and HIV-2 in patients undergoing surgery. The present observational, cross-sectional study compared the sensitivity, specificity, and work flow characteristics of the conventional algorithm with manual GICTs with those of a newly proposed algorithm that uses the automated Bio-Flash technology as a screening tool in patients undergoing gastrointestinal (GI) endoscopy. A total of 956 patients were examined for the presence of serological markers of infection with HIV-1/2, HCV, HBV, and T. pallidum. The proposed algorithm with the Bio-Flash technology was superior for the detection of all markers (100.0% sensitivity and specificity for detection of anti-HIV and anti-HCV antibodies, HBV surface antigen [HBsAg], and T. pallidum) compared with the conventional algorithm based on the manual method (80.0% sensitivity and 98.6% specificity for the detection of anti-HIV, 75.0% sensitivity for the detection of anti-HCV, 94.7% sensitivity for the detection of HBsAg, and 100% specificity for the detection of anti-HCV and HBsAg) in these patients. The automated Bio-Flash technology-based screening algorithm also reduced the operation time by 85.0% (205 min) per day, saving up to 24 h/week. In conclusion, the use of the newly proposed screening algorithm based on the automated Bio-Flash technology can provide an advantage over the use of conventional algorithms based on manual methods for screening for HIV, HBV, HCV, and syphilis before GI endoscopy. PMID:27707942
Jun, Zhou; Zhen, Chen; QuiuLi, Zhang; YuanQi, An; Casado, Verónica Vocero; Fan, Yuan
2016-12-01
Currently, conventional enzyme immunoassays which use manual gold immunoassays and colloidal tests (GICTs) are used as screening tools to detect Treponema pallidum (syphilis), hepatitis B virus (HBV), hepatitis C virus (HCV), human immunodeficiency virus type 1 (HIV-1), and HIV-2 in patients undergoing surgery. The present observational, cross-sectional study compared the sensitivity, specificity, and work flow characteristics of the conventional algorithm with manual GICTs with those of a newly proposed algorithm that uses the automated Bio-Flash technology as a screening tool in patients undergoing gastrointestinal (GI) endoscopy. A total of 956 patients were examined for the presence of serological markers of infection with HIV-1/2, HCV, HBV, and T. pallidum The proposed algorithm with the Bio-Flash technology was superior for the detection of all markers (100.0% sensitivity and specificity for detection of anti-HIV and anti-HCV antibodies, HBV surface antigen [HBsAg], and T. pallidum) compared with the conventional algorithm based on the manual method (80.0% sensitivity and 98.6% specificity for the detection of anti-HIV, 75.0% sensitivity for the detection of anti-HCV, 94.7% sensitivity for the detection of HBsAg, and 100% specificity for the detection of anti-HCV and HBsAg) in these patients. The automated Bio-Flash technology-based screening algorithm also reduced the operation time by 85.0% (205 min) per day, saving up to 24 h/week. In conclusion, the use of the newly proposed screening algorithm based on the automated Bio-Flash technology can provide an advantage over the use of conventional algorithms based on manual methods for screening for HIV, HBV, HCV, and syphilis before GI endoscopy. Copyright © 2016 Jun et al.
Nano-Bio Quantum Technology for Device-Specific Materials
NASA Technical Reports Server (NTRS)
Choi, Sang H.
2009-01-01
The areas discussed are still under development: I. Nano structured materials for TE applications a) SiGe and Be.Te; b) Nano particles and nanoshells. II. Quantum technology for optical devices: a) Quantum apertures; b) Smart optical materials; c) Micro spectrometer. III. Bio-template oriented materials: a) Bionanobattery; b) Bio-fuel cells; c) Energetic materials.
Monitoring abnormal bio-optical and physical properties in the Gulf of Mexico
NASA Astrophysics Data System (ADS)
Arnone, Robert; Jones, Brooke
2017-05-01
The dynamic bio-optical and physical ocean properties within the Gulf of Mexico (GoM) have been identified by the Ocean Weather Laboratory. Ocean properties from VIIRS satellite (Chlorophyll and Bio-Optics and SST) and ocean-circulation models (currents, SST and salinity) were used to identify regions of dynamic changing properties. The degree of environmental change is defined by the dynamic anomaly of bio-optical and physical environmental properties (DAP). A Mississippi River plume event (Aug 2015) that extended to Key West was used to demonstrate the anomaly products. Locations where normal and abnormal ocean properties occur determine ecological and physical hotspots in the GoM, which can be used for adaptive sampling of ocean processes. Methods are described to characterize the weekly abnormal environmental properties using differences with a previous baseline 8 week mean with a 2 week lag. The intensity of anomaly is quantified using levels of standard deviation of the baseline and can be used to recognize ocean events and provide decision support for adaptive sampling. The similarities of the locations of different environmental property anomalies suggest interaction between the bio-optical and physical properties. A coral bleaching event at the Flower Garden Banks Marine Protected Area is represented by the salinity anomaly. Results identify ocean regions for sampling to reduce data gaps and improve monitoring of bio-optical and physical properties.
NASA Technical Reports Server (NTRS)
Watson, Gregg W.
2000-01-01
The Sea-Viewing Wide Field-of-view Sensor (SeaWiFS) has observed 2.5 years of routine global chlorophyll observations from space. The mission was launched into a record El Nino event, which eventually gave way to one of the most intensive and longest-lasting La Nina events ever recorded. The SeaWiFS chlorophyll record captured the response of ocean phytoplankton to these significant events in the tropical Indo-Pacific basins, but also indicated significant interannual variability unrelated to the El Nino/La Nina events. This included large variability in the North Atlantic and Pacific basins, in the North Central and equatorial Atlantic, and milder patterns in the North Central Pacific. This SeaWiFS record was tracked with a coupled physical/biogeochemical/radiative model of the global oceans using near-real-time forcing data such as wind stresses, sea surface temperatures, and sea ice. This provided an opportunity to offer physically and biogeochemically meaningful explanations of the variability observed in the SeaWiFS data set, since the causal mechanisms and interrelationships of the model are completely understood. The coupled model was able to represent the seasonal distributions of chlorophyll during the SeaWiFS era, and was capable of differentiating among the widely different processes and dynamics occurring in the global oceans. The model was also reasonably successful in representing the interannual signal, especially when it was large, such as, the El Nino and La Nina events in the tropical Pacific and Indian Oceans. The model provided different phytoplankton group responses for the different events in these regions: diatoms were predominant in the tropical Pacific during the La Nina but other groups were predominant during El Nino. The opposite condition occurred in the tropical Indian Ocean. Both situations were due to the different responses of the basins to El Nino. The interannual variability in the North Atlantic, which was exhibited in SeaWiFS data as a decline in the spring/summer bloom in 1999 relative to 1998, resulted in the model from a more slowly shoaling mixed layer, allowing herbivore populations to keep pace with increasing phytoplankton populations. However, several aspects of the interannual cycle were not well-represented by the model. Explanations ranged from inherent model deficiencies, to monthly averaging of forcing fields, to biases in SeaWiFS atmospheric correction procedures.
A real-time spectral mapper as an emerging diagnostic technology in biomedical sciences.
Epitropou, George; Kavvadias, Vassilis; Iliou, Dimitris; Stathopoulos, Efstathios; Balas, Costas
2013-01-01
Real time spectral imaging and mapping at video rates can have tremendous impact not only on diagnostic sciences but also on fundamental physiological problems. We report the first real-time spectral mapper based on the combination of snap-shot spectral imaging and spectral estimation algorithms. Performance evaluation revealed that six band imaging combined with the Wiener algorithm provided high estimation accuracy, with error levels lying within the experimental noise. High accuracy is accompanied with much faster, by 3 orders of magnitude, spectral mapping, as compared with scanning spectral systems. This new technology is intended to enable spectral mapping at nearly video rates in all kinds of dynamic bio-optical effects as well as in applications where the target-probe relative position is randomly and fast changing.
The bio-optical properties of CDOM as descriptor of lake stratification.
Bracchini, Luca; Dattilo, Arduino Massimo; Hull, Vincent; Loiselle, Steven Arthur; Martini, Silvia; Rossi, Claudio; Santinelli, Chiara; Seritti, Alfredo
2006-11-01
Multivariate statistical techniques are used to demonstrate the fundamental role of CDOM optical properties in the description of water masses during the summer stratification of a deep lake. PC1 was linked with dissolved species and PC2 with suspended particles. In the first principal component that the role of CDOM bio-optical properties give a better description of the stratification of the Salto Lake with respect to temperature. The proposed multivariate approach can be used for the analysis of different stratified aquatic ecosystems in relation to interaction between bio-optical properties and stratification of the water body.
Bio-optical properties of coastal waters in the Eastern English Channel
NASA Astrophysics Data System (ADS)
Vantrepotte, Vincent; Brunet, Christophe; Mériaux, Xavier; Lécuyer, Eric; Vellucci, Vincenzo; Santer, Richard
2007-03-01
Strong tidal currents, shallow water and numerous freshwater inputs characterize the coastal waters of the eastern English Channel. These case 2 waters were investigated through an intensive sampling effort in 2000 aiming to study the distribution and variability of the Chromophoric Dissolved Organic Matter (CDOM), Non-Algal Particles (NAP) and phytoplankton absorption at the mesoscale. Four cruises were carried out in February, March, May and July and more than 80 stations each cruise were sampled for hydrographical, chemical and bio-optical analyses. Results showed two distinct situations, the winter period characterized by the strong dominance of CDOM absorption over the particulate matter, and the spring-summer period when phytoplankton and CDOM represented the same contribution. Meteorology was the main factor driving the bio-optical properties of the water column in winter whereas in spring-summer the biological activity seemed to be the more active driving force. The algal community composition in term of dominant cell size and, therefore pigment packaging, is the main factor driving the phytoplankton specific absorption in the water column. Photoprotective pigments did not significantly influence algal absorption, due to turbid and highly mixed water masses. This feature also explained the bio-optical homogeneity found along the water column. On the mesoscale, distinct bio-optical provinces were defined in relation with the observed bio-hydrographical variability.
Modis, SeaWIFS, and Pathfinder funded activities
NASA Technical Reports Server (NTRS)
Evans, Robert H.
1995-01-01
MODIS (Moderate Resolution Imaging Spectrometer), SeaWIFS (Sea-viewing Wide Field Sensor), Pathfinder, and DSP (Digital Signal Processor) objectives are summarized. An overview of current progress is given for the automatic processing database, client/server status, matchup database, and DSP support.
NASA Technical Reports Server (NTRS)
2002-01-01
Korea and the Sea of Japan are obscured by swirls of pollution in this image taken by the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) on November 23, 2001. Image courtesy the SeaWiFS Project, NASA/Goddard Space Flight Center, and ORBIMAGE
Analysis Of AVIRIS Data From LEO-15 Using Tafkaa Atmospheric Correction
NASA Technical Reports Server (NTRS)
Montes, Marcos J.; Gao, Bo-Cai; Davis, Curtiss O.; Moline, Mark
2004-01-01
We previously developed an algorithm named Tafkaa for atmospheric correction of remote sensing ocean color data from aircraft and satellite platforms. The algorithm allows quick atmospheric correction of hyperspectral data using lookup tables generated with a modified version of Ahmad & Fraser s vector radiative transfer code. During the past few years we have extended the capabilities of the code. Current modifications include the ability to account for within scene variation in solar geometry (important for very long scenes) and view geometries (important for wide fields of view). Additionally, versions of Tafkaa have been made for a variety of multi-spectral sensors, including SeaWiFS and MODIS. In this proceeding we present some initial results of atmospheric correction of AVIRIS data from the 2001 July Hyperspectral Coastal Ocean Dynamics Experiment (HyCODE) at LEO-15.
Global trends in ocean phytoplankton: a new assessment using revised ocean colour data.
Gregg, Watson W; Rousseaux, Cécile S; Franz, Bryan A
2017-01-01
A recent revision of the NASA global ocean colour record shows changes in global ocean chlorophyll trends. This new 18-year time series now includes three global satellite sensors, the Sea-viewing Wide Field of view Sensor (SeaWiFS), Moderate Resolution Imaging Spectroradiometer (MODIS-Aqua), and Visible Infrared Imaging Radiometer Suite (VIIRS). The major changes are radiometric drift correction, a new algorithm for chlorophyll, and a new sensor VIIRS. The new satellite data record shows no significant trend in global annual median chlorophyll from 1998 to 2015, in contrast to a statistically significant negative trend from 1998 to 2012 in the previous version. When revised satellite data are assimilated into a global ocean biogeochemical model, no trend is observed in global annual median chlorophyll. This is consistent with previous findings for the 1998-2012 time period using the previous processing version and only two sensors (SeaWiFS and MODIS). Detecting trends in ocean chlorophyll with satellites is sensitive to data processing options and radiometric drift correction. The assimilation of these data, however, reduces sensitivity to algorithms and radiometry, as well as the addition of a new sensor. This suggests the assimilation model has skill in detecting trends in global ocean colour. Using the assimilation model, spatial distributions of significant trends for the 18-year record (1998-2015) show recent decadal changes. Most notable are the North and Equatorial Indian Oceans basins, which exhibit a striking decline in chlorophyll. It is exemplified by declines in diatoms and chlorophytes, which in the model are large and intermediate size phytoplankton. This decline is partially compensated by significant increases in cyanobacteria, which represent very small phytoplankton. This suggests the beginning of a shift in phytoplankton composition in these tropical and subtropical Indian basins.
2016-03-28
PROPERTIES FOR BIO -IMAGING AND PHOTO-THERMAL APPLICATIONS ANTHONY B. POLITO III, Maj, USAF, BSC, PhD, MT(ASCP)SBB March 2016 Final Report for March...HIGH CELLULAR UPTAKE IN VITRO WHILE PRESERVING OPTICAL PROPERTIES FOR BIO -IMAGING AND PHOTO-THERMAL APPLICATIONS. 5a. CONTRACT NUMBER 5b...These findings identify MTAB-TA GNRs as prime candidates for use in nano-based bio -imaging and photo-thermal applications. 15. SUBJECT TERMS
Rao, Akshay; Elara, Mohan Rajesh; Elangovan, Karthikeyan
This paper aims to develop a local path planning algorithm for a bio-inspired, reconfigurable crawling robot. A detailed description of the robotic platform is first provided, and the suitability for deployment of each of the current state-of-the-art local path planners is analyzed after an extensive literature review. The Enhanced Vector Polar Histogram algorithm is described and reformulated to better fit the requirements of the platform. The algorithm is deployed on the robotic platform in crawling configuration and favorably compared with other state-of-the-art local path planning algorithms.
NASA Technical Reports Server (NTRS)
Patt, Frederick S.; Hoisington, Charles M.; Gregg, Watson W.; Coronado, Patrick L.; Hooker, Stanford B. (Editor); Firestone, Elaine R. (Editor); Indest, A. W. (Editor)
1993-01-01
An analysis of orbit propagation models was performed by the Mission Operations element of the Sea-viewing Wide Field-of-View Sensor (SeaWiFS) Project, which has overall responsibility for the instrument scheduling. The orbit propagators selected for this analysis are widely available general perturbations models. The analysis includes both absolute accuracy determination and comparisons of different versions of the models. The results show that all of the models tested meet accuracy requirements for scheduling and data acquisition purposes. For internal Project use the SGP4 propagator, developed by the North American Air Defense (NORAD) Command, has been selected. This model includes atmospheric drag effects and, therefore, provides better accuracy. For High Resolution Picture Transmission (HRPT) ground stations, which have less stringent accuracy requirements, the publicly available Brouwer-Lyddane models are recommended. The SeaWiFS Project will make available portable source code for a version of this model developed by the Data Capture Facility (DCF).
NASA Astrophysics Data System (ADS)
Suslin, V. V.; Slabakova, V. K.; Churilova, T. Ya.
2017-11-01
Vertical diffuse attenuation coefficient, Kd(490), is one of the key parameter required for water quality modeling, hydrodynamic and biological processes in the sea. We showed that standard level-2 product of Kd(490) was underestimated in comparison with Kd(490) values simulated by the regional model during the diatom bloom in the Black Sea. Using data of SeaWiFS, MERIS and MODIS color scanners, a regional relationship between the model value of Kd(490) and the ratio of remote sensing reflectances has been obtained. Based on the bulgarian argo-bio-buoy dataset, the relationship between the attenuation coefficient of photosynthetically active radiation and attenuation coefficient at a wavelength of 490 nm is obtained. The simplified model, below as the S-model, of the diffuse attenuation coefficient spectrum for downwelling irradiance in the Black Sea upper layer is described. As a consequence of the S-model, the link between the depth of the euphotic zone and Kd(490) has been obtained. It is shown that the Kd(490) values, retrieved from ocean color data with using the regional link and from argo-bio-buoy measurements at depths between 6-20 m, are close to each other.
NASA Technical Reports Server (NTRS)
Palacios, Sherry L.; Schafer, Chris; Broughton, Jennifer; Guild, Liane S.; Kudela, Raphael M.
2013-01-01
There is a need in the Biological Oceanography community to discriminate among phytoplankton groups within the bulk chlorophyll pool to understand energy flow through ecosystems, to track the fate of carbon in the ocean, and to detect and monitor-for harmful algal blooms (HABs). The ocean color community has responded to this demand with the development of phytoplankton functional type (PFT) discrimination algorithms. These PFT algorithms fall into one of three categories depending on the science application: size-based, biogeochemical function, and taxonomy. The new PFT algorithm Phytoplankton Detection with Optics (PHYDOTax) is an inversion algorithm that discriminates taxon-specific biomass to differentiate among six taxa found in the California Current System: diatoms, dinoflagellates, haptophytes, chlorophytes, cryptophytes, and cyanophytes. PHYDOTax was developed and validated in Monterey Bay, CA for the high resolution imaging spectrometer, Spectroscopic Aerial Mapping System with On-board Navigation (SAMSON - 3.5 nm resolution). PHYDOTax exploits the high spectral resolution of an imaging spectrometer and the improved spatial resolution that airborne data provides for coastal areas. The objective of this study was to apply PHYDOTax to a relatively lower resolution imaging spectrometer to test the algorithm's sensitivity to atmospheric correction, to evaluate capability with other sensors, and to determine if down-sampling spectral resolution would degrade its ability to discriminate among phytoplankton taxa. This study is a part of the larger Hyperspectral Infrared Imager (HyspIRI) airborne simulation campaign which is collecting Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) imagery aboard NASA's ER-2 aircraft during three seasons in each of two years over terrestrial and marine targets in California. Our aquatic component seeks to develop and test algorithms to retrieve water quality properties (e.g. HABs and river plumes) in both marine and in-land water bodies. Results presented are from the 10 April 2013 overflight of the Monterey Bay region and focus primarily on the first objective - sensitivity to atmospheric correction. On-going and future work will continue to evaluate if PHYDOTax can be applied to historical (SeaWiFS and MERIS), existing (MODIS, VIIRS, and HICO), and future (PACE, GEO-CAPE, and HyspIRI) satellite sensors. Demonstration of cross-platform continuity may aid in calibration and validation efforts of these sensors.
NASA Astrophysics Data System (ADS)
Tilstone, Gavin H.; Lotliker, Aneesh A.; Miller, Peter I.; Ashraf, P. Muhamed; Kumar, T. Srinivasa; Suresh, T.; Ragavan, B. R.; Menon, Harilal B.
2013-08-01
The use of ocean colour remote sensing to facilitate the monitoring of phytoplankton biomass in coastal waters is hampered by the high variability in absorption and scattering from substances other than phytoplankton. The eastern Arabian Sea coastal shelf is influenced by river run-off, winter convection and monsoon upwelling. Bio-optical parameters were measured along this coast from March 2009 to June 2011, to characterise the optical water type and validate three Chlorophyll-a (Chla) algorithms applied to Moderate Resolution Imaging Spectroradiometer on Aqua (MODIS-Aqua) data against in situ measurements. Ocean Colour 3 band ratio (OC3M), Garver-Siegel-Maritorena Model (GSM) and Generalized Inherent Optical Property (GIOP) Chla algorithms were evaluated. OC3M performed better than GSM and GIOP in all regions and overall, was within 11% of in situ Chla. GSM was within 24% of in situ Chla and GIOP on average was 55% lower. OC3M was less affected by errors in remote sensing reflectance Rrs(λ) and by spectral variations in absorption coefficient (aCDOM(λ)) of coloured dissolved organic material (CDOM) and total suspended matter (TSM) compared to the other algorithms. A nine year Chla time series from 2002 to 2011 was generated to assess regional differences between OC3M and GSM. This showed that in the north eastern shelf, maximum Chla occurred during the winter monsoon from December to February, where GSM consistently gave higher Chla compared to OC3M. In the south eastern shelf, maximum Chla occurred in June to July during the summer monsoon upwelling, and OC3M yielded higher Chla compared to GSM. OC3M currently provides the most accurate Chla estimates for the eastern Arabian Sea coastal waters.
NASA Technical Reports Server (NTRS)
Myint, S. W.; Walker, N. D.
2002-01-01
The ability to quantify suspended sediment concentrations accurately over both time and space using satellite data has been a goal of many environmental researchers over the past few decades This study utilizes data acquired by the NOAA Advanced Very High Resolution Radiometer (AVHRR) and the Orbview-2 Sea-viewing wide field-of-view (SeaWiFS) ocean colour sensor, coupled with field measurements to develop statistical models for the estimation of near-surface suspended sediment and suspended solids "Ground truth" water samples were obtained via helicopter, small boat and automatic water sampler within a few hours of satellite overpasses The NOAA AVHRR atmospheric correction was modified for the high levels of turbidity along the Louisiana coast. Models were developed based on the field measurements and reflectance/radiance measurements in the visible and near infrared Channels of NOAA-14 and Orbview-2 SeaWiFS. The best models for predicting surface suspended sediment concentrations were obtained with a NOAA AVHRR Channel 1 (580-680nm) cubic model, Channel 2 (725-1100 nm) linear mod$ and SeaWiFs Channel 6 (660-68Onm) power modeL The suspended sediment models developed using SeaWiFS Channel 5 (545-565 nm) were inferior, a result that we attribute mainly to the atmospheric correction technique, the shallow depth of the water samples and absorption effects from non-sediment water constituents.
BioInt: an integrative biological object-oriented application framework and interpreter.
Desai, Sanket; Burra, Prasad
2015-01-01
BioInt, a biological programming application framework and interpreter, is an attempt to equip the researchers with seamless integration, efficient extraction and effortless analysis of the data from various biological databases and algorithms. Based on the type of biological data, algorithms and related functionalities, a biology-specific framework was developed which has nine modules. The modules are a compilation of numerous reusable BioADTs. This software ecosystem containing more than 450 biological objects underneath the interpreter makes it flexible, integrative and comprehensive. Similar to Python, BioInt eliminates the compilation and linking steps cutting the time significantly. The researcher can write the scripts using available BioADTs (following C++ syntax) and execute them interactively or use as a command line application. It has features that enable automation, extension of the framework with new/external BioADTs/libraries and deployment of complex work flows.
Interactive Learning Environment for Bio-Inspired Optimization Algorithms for UAV Path Planning
ERIC Educational Resources Information Center
Duan, Haibin; Li, Pei; Shi, Yuhui; Zhang, Xiangyin; Sun, Changhao
2015-01-01
This paper describes the development of BOLE, a MATLAB-based interactive learning environment, that facilitates the process of learning bio-inspired optimization algorithms, and that is dedicated exclusively to unmanned aerial vehicle path planning. As a complement to conventional teaching methods, BOLE is designed to help students consolidate the…
Dias, Gisele Cristina; Morimoto, Juliana Massami; Marchioni, Dirce Maria Lobo; Colli, Célia
2018-01-01
Predictive iron bioavailability (FeBio) methods aimed at evaluating the association between diet and body iron have been proposed, but few studies explored their validity and practical usefulness in epidemiological studies. In this cross-sectional study involving 127 women (18–42 years) with presumably steady-state body iron balance, correlations were checked among various FeBio estimates (probabilistic approach and meal-based and diet-based algorithms) and serum ferritin (SF) concentrations. Iron deficiency was defined as SF < 15 µg/L. Pearson correlation, Friedman test, and linear regression were employed. Iron intake and prevalence of iron deficiency were 10.9 mg/day and 12.6%. Algorithm estimates were strongly correlated (0.69≤ r ≥0.85; p < 0.001), although diet-based models (8.5–8.9%) diverged from meal-based models (11.6–12.8%; p < 0.001). Still, all algorithms underestimated the probabilistic approach (17.2%). No significant association was found between SF and FeBio from Monsen (1978), Reddy (2000), and Armah (2013) algorithms. Nevertheless, there was a 30–37% difference in SF concentrations between women stratified at extreme tertiles of FeBio from Hallberg and Hulthén (2000) and Collings’ (2013) models. The results demonstrate discordance of FeBio from probabilistic approach and algorithm methods while suggesting two models with best performances to rank individuals according to their bioavailable iron intakes. PMID:29883384
NASA Astrophysics Data System (ADS)
Organelli, E.; Claustre, H.; Serra, R.; Bricaud, A.; Schmechtig, C.; D'Ortenzio, F.; Poteau, A.; Mangin, A.; Leymarie, E.; Obolensky, G.; Prieur, L. M.; Dall'Olmo, G.; Xing, X.
2016-02-01
Thanks to a new generation of Bio-Argo floats equipped with sensors for PAR (Photosynthetically Available Irradiance) and downward irradiance measurements at selected wavelengths (i.e., 380, 412 and 490 nm), the number of radiometric measurements has been dramatically increasing and data are available for diverse open ocean systems, including winter periods with harsh seas when ships can hardly sample. More than 6500 radiometric profiles have so far been acquired around solar noon in the upper 250 m of the ocean. These radiometric profiles, acquired simultaneously to other key biogeochemical and bio-optical variables (chlorophyll a, CDOM, light backscattering), represent a fruitful data source for validation of Ocean Color (OC) products. Two different strategies can be implemented: direct validation of satellite OC products and identification of regions characterized by bio-optical anomalies. Diffuse attenuation coefficients (Kd) derived from these profiles, after a specifically developed quality control, are used for these purposes.A good agreement is observed between satellite-derived Kd values at 490 nm and their Bio-Argo counterparts. However, satellite overestimates low in situ Kd values found in very clear waters (e.g., Atlantic and Pacific Sub-Tropical Gyres). The analysis of the spectral Kd variability in the surface ocean shows the potential of Bio-Argo floats in identifying those regions with optical properties departing from global bio-optical relationships. Divergences of the ratio between Kd values at 380 nm and those at 490 nm from global bio-optical models are observed in areas such as the Mediterranean Sea and the North Atlantic in winter. This might cause difficulties in retrieving biogeochemical parameters from satellite data. Hence, delineation of "anomalous" regions by Bio-Argo floats represents a useful strategy for planning dedicated cruises, setting mooring buoys or using CAL/VAL floats in order to improve Ocean Color applications.
Optical Properties of a Bio-Inspired Gradient Refractive Index Polymer Lens
2008-07-21
Optical properties of a bio-inspired gradient refractive index polymer lens G. Beadie,1,* James S. Shirk,1 A. Rosenberg,1 Paul A. Lane,1 E. Fleet,1...of magnitude less than the homogeneous glass lens. ©2008 Optical Society of America OCIS codes: (110.2760) Gradient-index lenses; (160.5470...H. von Helmholtz, A. Gullstrand, J. von Kries, and W. Nagel, Helmholtz’s Treatise on Physiological Optics (The Optical Society of America, Rochester
Spider Silk: Mother Nature's Bio-Superlens
NASA Astrophysics Data System (ADS)
Monks, James N.; Yan, Bing; Hawkins, Nicholas; Vollrath, Fritz; Wang, Zengbo
2016-09-01
This paper demonstrates a possible new microfiber bio near field lens that uses minor ampullate spider silk,spun from the Nephila edulis spider, to create a real time image of a surface using near field optical techniques. The microfiber bio lens is the world's first natural superlens created by exploring biological materials. The resolution of the surface image overcomes the diffraction limit, with the ability to resolve patterns at 100 nm under a standard white light source in reflection mode. This resolution offers further developments in superlens technology and paves the way for new bio optics.
Multi-Sensor Registration of Earth Remotely Sensed Imagery
NASA Technical Reports Server (NTRS)
LeMoigne, Jacqueline; Cole-Rhodes, Arlene; Eastman, Roger; Johnson, Kisha; Morisette, Jeffrey; Netanyahu, Nathan S.; Stone, Harold S.; Zavorin, Ilya; Zukor, Dorothy (Technical Monitor)
2001-01-01
Assuming that approximate registration is given within a few pixels by a systematic correction system, we develop automatic image registration methods for multi-sensor data with the goal of achieving sub-pixel accuracy. Automatic image registration is usually defined by three steps; feature extraction, feature matching, and data resampling or fusion. Our previous work focused on image correlation methods based on the use of different features. In this paper, we study different feature matching techniques and present five algorithms where the features are either original gray levels or wavelet-like features, and the feature matching is based on gradient descent optimization, statistical robust matching, and mutual information. These algorithms are tested and compared on several multi-sensor datasets covering one of the EOS Core Sites, the Konza Prairie in Kansas, from four different sensors: IKONOS (4m), Landsat-7/ETM+ (30m), MODIS (500m), and SeaWIFS (1000m).
Zhang, Chen; Sun, Chao; Gao, Liqiang; Zheng, Nenggan; Chen, Weidong; Zheng, Xiaoxiang
2013-01-01
Bio-robots based on brain computer interface (BCI) suffer from the lack of considering the characteristic of the animals in navigation. This paper proposed a new method for bio-robots' automatic navigation combining the reward generating algorithm base on Reinforcement Learning (RL) with the learning intelligence of animals together. Given the graded electrical reward, the animal e.g. the rat, intends to seek the maximum reward while exploring an unknown environment. Since the rat has excellent spatial recognition, the rat-robot and the RL algorithm can convergent to an optimal route by co-learning. This work has significant inspiration for the practical development of bio-robots' navigation with hybrid intelligence.
Raman spectroscopic characterization of urine of normal and cervical cancer subjects
NASA Astrophysics Data System (ADS)
Pappu, Raja; Prakasarao, Aruna; Dornadula, Koteeswaran; Singaravelu, Ganesan
2017-02-01
Cervical cancer is the fourth most common malignancy in female worldwide; the present method for diagnosis is the biopsy, Pap smear, colposcopy etc. To overcome the drawbacks of diagnosis an alternative technique is required, optical spectroscopy is a new technique where the discrimination of normal and cancer subjects provides valuable potential information in the diagnostic oncology at an early stage. Raman peaks in the spectra suggest interesting differences in various bio molecules. In this regard, non invasive optical detection of cervical cancer using urine samples by Raman Spectroscopy combined with LDA diagnostic algorithm yields an accuracy of 100% for original and cross validated group respectively. As the results were appreciable it is necessary to carry out the analysis for more number of samples to explore the facts hidden at different stages during the development of cervical cancer.
NASA Astrophysics Data System (ADS)
Vasefi, Fartash; MacKinnon, Nicholas; Farkas, Daniel L.
2014-03-01
We have developed a multimode imaging dermoscope that combines polarization and hyperspectral imaging with a computationally rapid analytical model. This approach employs specific spectral ranges of visible and near infrared wavelengths for mapping the distribution of specific skin bio-molecules. This corrects for the melanin-hemoglobin misestimation common to other systems, without resorting to complex and computationally intensive tissue optical models that are prone to inaccuracies due to over-modeling. Various human skin measurements including a melanocytic nevus, and venous occlusion conditions were investigated and compared with other ratiometric spectral imaging approaches. Access to the broad range of hyperspectral data in the visible and near-infrared range allows our algorithm to flexibly use different wavelength ranges for chromophore estimation while minimizing melanin-hemoglobin optical signature cross-talk.
Zhang, Yu; Tang, Xiaoyun; Zhang, Yaxun; Su, Wenjie; Liu, Zhihai; Yang, Xinghua; Zhang, Jianzhong; Yang, Jun; Oh, Kyunghwan; Yuan, Libo
2018-06-15
We proposed and experimentally demonstrated 3-dimensional dark traps for low refractive index bio-cells using a single optical fiber Bessel beam. The Bessel beam was produced by concatenating single-mode fiber and a step index multimode fiber, which was then focused by a high refractive index glass microsphere integrated on the fiber end facet. The focused Bessel beam provided two dark fields along the axial direction, where stable trapping of low refractive index bio-cells was realized in a high refractive index liquid bath. The all-fiber and seamlessly integrated structure of the proposed scheme can find ample potential as a micro-optical probe in in situ characterization and manipulation of multiple bio-cells with refractive indices lower than that of the liquid bath.
NASA Astrophysics Data System (ADS)
Smirnov, Alexander; Petrenko, Maksym; Ichoku, Charles; Holben, Brent N.
2017-10-01
The paper reports on the current status of the Maritime Aerosol Network (MAN) which is a component of the Aerosol Robotic Network (AERONET). A public domain web-based data archive dedicated to MAN activity can be found at https://aeronet.gsfc.nasa.gov/new_web/maritime_aerosol_network.html . Since 2006 over 450 cruises were completed and the data archive consists of more than 6000 measurement days. In this work, we present MAN observations collocated with MODIS Terra, MODIS Aqua, MISR, POLDER, SeaWIFS, OMI, and CALIOP spaceborne aerosol products using a modified version of the Multi-Sensor Aerosol Products Sampling System (MAPSS) framework. Because of different spatio-temporal characteristics of the analyzed products, the number of MAN data points collocated with spaceborne retrievals varied between 1500 matchups for MODIS to 39 for CALIOP (as of August 2016). Despite these unavoidable sampling biases, latitudinal dependencies of AOD differences for all satellite sensors, except for SeaWIFS and POLDER, showed positive biases against ground truth (i.e. MAN) in the southern latitudes (<50° S), and substantial scatter in the Northern Atlantic "dust belt" (5°-15° N). Our analysis did not intend to determine whether satellite retrievals are within claimed uncertainty boundaries, but rather show where bias exists and corrections are needed.
Bio-optical Measurement in the California Current
NASA Technical Reports Server (NTRS)
Mitchell, B. Greg
2005-01-01
We measured the optical and bio-geochemical properties during the autumn 2004 CalCOFI cruise. Calibration of in situ radiometry instruments We maintain NIST-traceable calibration of our PRR-800/8 10 radiometers. SIRREX-linked calibrations for our PRR-800/8 10 have been accomplished by Biospherical Instruments, Inc. (BSI) and SDSU Center for Hydro Optics and Remote Sensing (CHORS) since May 1993.
A bio-optical model for integration into ecosystem models for the Ligurian Sea
NASA Astrophysics Data System (ADS)
Bengil, Fethi; McKee, David; Beşiktepe, Sükrü T.; Sanjuan Calzado, Violeta; Trees, Charles
2016-12-01
A bio-optical model has been developed for the Ligurian Sea which encompasses both deep, oceanic Case 1 waters and shallow, coastal Case 2 waters. The model builds on earlier Case 1 models for the region and uses field data collected on the BP09 research cruise to establish new relationships for non-biogenic particles and CDOM. The bio-optical model reproduces in situ IOPs accurately and is used to parameterize radiative transfer simulations which demonstrate its utility for modeling underwater light levels and above surface remote sensing reflectance. Prediction of euphotic depth is found to be accurate to within ∼3.2 m (RMSE). Previously published light field models work well for deep oceanic parts of the Ligurian Sea that fit the Case 1 classification. However, they are found to significantly over-estimate euphotic depth in optically complex coastal waters where the influence of non-biogenic materials is strongest. For these coastal waters, the combination of the bio-optical model proposed here and full radiative transfer simulations provides significantly more accurate predictions of euphotic depth.
NASA Astrophysics Data System (ADS)
Estapa, M. L.
2016-02-01
Autonomous, bio-optical profiling floats are poised to broaden the number and spatiotemporal resolution of observations of the ocean's biological pump. Here, we used multiple optical sensors aboard two bio-optical profiling floats (Navis BGCi, Sea-Bird) deployed in the Sargasso Sea to derive in situ proxies for particulate carbon (PC) flux, sub-mixed layer net community production (NCP) and to drive a model of net primary production (NPP). Profiles were collected at approximately 2-day resolution, and drift-phase PC flux observations were collected at subdaily resolution at a rotating cycle of observation depths between 150 and 1000 m. The magnitudes of NPP, PC flux, and their annually-averaged ratio were generally consistent with observations at the nearby Bermuda Atlantic Timeseries Study (BATS) site. PC flux and the export ratio were enhanced in the autumn as well as in the spring, and varied over short timescales possibly due to the influence of mesoscale eddies. The relatively shallow park depths and short profile cycle lengths allow us to identify ephemeral, subsurface bio-optical features and compare them to measured fluxes and satellite-observed surface properties.
Optical bio-sniffer for ethanol vapor using an oxygen-sensitive optical fiber.
Mitsubayashi, Kohji; Kon, Takuo; Hashimoto, Yuki
2003-11-30
An optical bio-sniffer for ethanol was constructed by immobilizing alcohol oxidase (AOD) onto a tip of a fiber optic oxygen sensor with a tube-ring, using an oxygen sensitive ruthenium organic complex (excitation, 470 nm; fluorescent, 600 nm). A reaction unit for circulating buffer solution was applied to the tip of the device. After the experiment in the liquid phase, the sniffer-device was applied for gas analysis using a gas flow measurement system with a gas generator. The optical device was applied to detect the oxygen consumption induced by AOD enzymatic reaction with alcohol application. The sensor in the liquid phase was used to measure ethanol solution from 0.50 to 9.09 mmol/l. Then, the bio-sniffer was calibrated against ethanol vapor from 0.71 to 51.49 ppm with good gas-selectivity based on the AOD substrate specificity. The bio-sniffer with the reaction unit was also used to monitor the concentration change of gaseous ethanol by rinsing and cleaning the fiber tip and the enzyme membrane with buffer solution.
Water-leaving contribution to polarized radiation field over ocean.
Zhai, Peng-Wang; Knobelspiesse, Kirk; Ibrahim, Amir; Franz, Bryan A; Hu, Yongxiang; Gao, Meng; Frouin, Robert
2017-08-07
The top-of-atmosphere (TOA) radiation field from a coupled atmosphere-ocean system (CAOS) includes contributions from the atmosphere, surface, and water body. Atmospheric correction of ocean color imagery is to retrieve water-leaving radiance from the TOA measurement, from which ocean bio-optical properties can be obtained. Knowledge of the absolute and relative magnitudes of water-leaving signal in the TOA radiation field is important for designing new atmospheric correction algorithms and developing retrieval algorithms for new ocean biogeochemical parameters. In this paper we present a systematic sensitivity study of water-leaving contribution to the TOA radiation field, from 340 nm to 865 nm, with polarization included. Ocean water inherent optical properties are derived from bio-optical models for two kinds of waters, one dominated by phytoplankton (PDW) and the other by non-algae particles (NDW). In addition to elastic scattering, Raman scattering and fluorescence from dissolved organic matter in ocean waters are included. Our sensitivity study shows that the polarized reflectance is minimized for both CAOS and ocean signals in the backscattering half plane, which leads to numerical instability when calculating water leaving relative contribution, the ratio between polarized water leaving and CAOS signals. If the backscattering plane is excluded, the water-leaving polarized signal contributes less than 9% to the TOA polarized reflectance for PDW in the whole spectra. For NDW, the polarized water leaving contribution can be as much as 20% in the wavelength range from 470 to 670 nm. For wavelengths shorter than 452 nm or longer than 865 nm, the water leaving contribution to the TOA polarized reflectance is in general smaller than 5% for NDW. For the TOA total reflectance, the water-leaving contribution has maximum values ranging from 7% to 16% at variable wavelengths from 400 nm to 550 nm from PDW. The water leaving contribution to the TOA total reflectance can be as large as 35% for NDW, which is in general peaked at 550 nm. Both the total and polarized reflectances from water-leaving contributions approach zero in the ultraviolet and near infrared bands. These facts can be used as constraints or guidelines when estimating the water leaving contribution to the TOA reflectance for new atmospheric correction algorithms for ocean color imagery.
Water-Leaving Contribution to Polarized Radiation Field Over Ocean
NASA Technical Reports Server (NTRS)
Zhai, Peng-Wang; Knobelspiesse, Kirk D.; Ibrahim, Amir; Franz, Bryan A.; Hu, Yongxiang; Gao, Meng; Frouin, Robert
2017-01-01
The top-of-atmosphere (TOA) radiation field from a coupled atmosphere-ocean system (CAOS) includes contributions from the atmosphere, surface, and water body. Atmo-spheric correction of ocean color imagery is to retrieve water-leaving radiance from the TOA measurement, from which ocean bio-optical properties can be obtained. Knowledge of the ab-solute and relative magnitudes of water-leaving signal in the TOA radiation field is important for designing new atmospheric correction algorithms and developing retrieval algorithms for new ocean biogeochemical parameters. In this paper we present a systematic sensitivity study of water-leaving contribution to the TOA radiation field, from 340 nm to 865 nm, with polarization included. Ocean water inherent optical properties are derived from bio-optical models for two kinds of waters, one dominated by phytoplankton (PDW) and the other by non-algae particles (NDW). In addition to elastic scattering, Raman scattering and fluorescence from dissolved organic matter in ocean waters are included. Our sensitivity study shows that the polarized reflectance is minimized for both CAOS and ocean signals in the backscattering half plane, which leads to numerical instability when calculating water leaving relative contribution, the ratio between polarized water leaving and CAOS signals. If the backscattering plane is excluded, the water-leaving polarized signal contributes less than 9% to the TOA polarized reflectance for PDW in the whole spectra. For NDW, the polarized water leaving contribution can be as much as 20% in the wavelength range from 470 to 670 nm. For wavelengths shorter than 452 nm or longer than 865 nm, the water leaving contribution to the TOA polarized reflectance is in general smaller than 5% for NDW. For the TOA total reflectance, the water-leaving contribution has maximum values ranging from 7% to 16% at variable wavelengths from 400 nm to 550 nm from PDW. The water leaving contribution to the TOA total reflectance can be as large as 35%for NDW, which is in general peaked at 550 nm. Both the total and polarized reflectances from water-leaving contributions approach zero in the ultraviolet and near infrared bands. These facts can be used as constraints or guidelines when estimating the water leaving contribution to the TOA reflectance for new atmospheric correction algorithms for ocean color imagery.
NASA Astrophysics Data System (ADS)
Cowles, T. J.; Barth, J. A.; Wingard, C. E.; Desiderio, R. A.; Letelier, R. M.; Pierce, S. D.
2002-12-01
Mesoscale mapping of the hydrographic and bio-optical properties of the Northern California Current System was conducted during spring and summer 2000, 2001, and 2002 off the Oregon coast. A towed, undulating vehicle carried a CTD, two fluorometers, a multi-wavelength absorption and attenuation meter (ac-9), and a PAR sensor. In addition, an ac-9 and a Fast Repetition Rate fluorometer (FRRf) collected bio-optical data on surface waters throughout the mesoscale surveys. Multiple onshore-offshore transect lines provided repeated crossings of velocity jet and frontal boundaries, and allowed resolution of physical and bio-optical parameters on horizontal scales of 1km or less and on vertical scales of 1-2m. Our multi-year results permit assessment of the linkages and the degree of coupling between physical and bio-optical patterns during strong upwelling and strong downwelling events, as well as during low-wind relaxation intervals. The location of the coastal jet and the upwelling front fluctuated considerably under the variable forcing regime, with more extensive mesoscale structure in all parameters in late summer relative to spring, as current meanders developed around subsurface topography (Heceta Bank) and moved offshore near Cape Blanco. Sharp horizontal gradients in autotrophic biomass were observed across the boundaries of the coastal jet and the upwelling front, with chlorophyll levels often in excess of 5-10 mg m-3 on the inshore side of the fronts. Horizontal gradients also were observed in the spectral slope of attenuation and dissolved absorption as well as in the physiological properties of the autotrophic assemblages (as determined with FRRf). Details of the spatial correlations of physical and bio-optical parameters will be presented.
NASA Astrophysics Data System (ADS)
Huang, Xiaokun; Zhang, You; Wang, Jing
2017-03-01
Four-dimensional (4D) cone-beam computed tomography (CBCT) enables motion tracking of anatomical structures and removes artifacts introduced by motion. However, the imaging time/dose of 4D-CBCT is substantially longer/higher than traditional 3D-CBCT. We previously developed a simultaneous motion estimation and image reconstruction (SMEIR) algorithm, to reconstruct high-quality 4D-CBCT from limited number of projections to reduce the imaging time/dose. However, the accuracy of SMEIR is limited in reconstructing low-contrast regions with fine structure details. In this study, we incorporate biomechanical modeling into the SMEIR algorithm (SMEIR-Bio), to improve the reconstruction accuracy at low-contrast regions with fine details. The efficacy of SMEIR-Bio is evaluated using 11 lung patient cases and compared to that of the original SMEIR algorithm. Qualitative and quantitative comparisons showed that SMEIR-Bio greatly enhances the accuracy of reconstructed 4D-CBCT volume in low-contrast regions, which can potentially benefit multiple clinical applications including the treatment outcome analysis.
Recent Trends in Global Ocean Chlorophyll
NASA Technical Reports Server (NTRS)
Gregg, Watson; Casey, Nancy
2004-01-01
Recent analyses of SeaWiFS data have shown that global ocean chlorophyll has increased more than 5% since 1998. The North Pacific ocean basin has increased nearly 19%. To understand the causes of these trends we have applied the newly developed NASA Ocean Biogeochemical Assimilation Model (OBAM), which is driven in mechanistic fashion by surface winds, sea surface temperature, atmospheric iron deposition, sea ice, and surface irradiance. The mode1 utilizes chlorophyll from SeaWiFS in a daily assimilation. The model has in place many of the climatic variables that can be expected to produce the changes observed in SeaWiFS data. Ths enables us to diagnose the model performance, the assimilation performance, and possible causes for the increase in chlorophyll.
Imaging of Biological Tissues by Visible Light CDI
NASA Astrophysics Data System (ADS)
Karpov, Dmitry; Dos Santos Rolo, Tomy; Rich, Hannah; Fohtung, Edwin
Recent advances in the use of synchrotron and X-ray free electron laser (XFEL) based coherent diffraction imaging (CDI) with application to material sciences and medicine proved the technique to be efficient in recovering information about the samples encoded in the phase domain. The current state-of-the-art algorithms of reconstruction are transferable to optical frequencies, which makes laser sources a reasonable milestone both in technique development and applications. Here we present first results from table-top laser CDI system for imaging of biological tissues and reconstruction algorithms development and discuss approaches that are complimenting the data quality improvement that is applicable to visible light frequencies due to it's properties. We demonstrate applicability of the developed methodology to a wide class of soft bio-matter and condensed matter systems. This project is funded by DOD-AFOSR under Award No FA9550-14-1-0363 and the LANSCE Professorship at LANL.
NASA Astrophysics Data System (ADS)
Shi, Chong; Nakajima, Teruyuki
2018-03-01
Retrieval of aerosol optical properties and water-leaving radiance over ocean is challenging since the latter mostly accounts for ˜ 10 % of the satellite-observed signal and can be easily influenced by the atmospheric scattering. Such an effort would be more difficult in turbid coastal waters due to the existence of optically complex oceanic substances or high aerosol loading. In an effort to solve such problems, we present an optimization approach for the simultaneous determination of aerosol optical thickness (AOT) and normalized water-leaving radiance (nLw) from multispectral satellite measurements. In this algorithm, a coupled atmosphere-ocean radiative transfer model combined with a comprehensive bio-optical oceanic module is used to jointly simulate the satellite-observed reflectance at the top of atmosphere and water-leaving radiance just above the ocean surface. Then, an optimal estimation method is adopted to retrieve AOT and nLw iteratively. The algorithm is validated using Aerosol Robotic Network - Ocean Color (AERONET-OC) products selected from eight OC sites distributed over different waters, consisting of observations that covered glint and non-glint conditions from the Moderate Resolution Imaging Spectroradiometer (MODIS) instrument. Results show a good consistency between retrieved and in situ measurements at each site. It is demonstrated that more accurate AOTs are determined based on the simultaneous retrieval method, particularly in shorter wavelengths and sunglint conditions, where the averaged percentage difference (APD) of retrieved AOT is generally reduced by approximate 10 % in visible bands compared with those derived from the standard atmospheric correction (AC) scheme, since all the spectral measurements can be used jointly to increase the information content in the inversion of AOT, and the wind speed is also simultaneously retrieved to compensate the specular reflectance error estimated from the rough ocean surface model. For the retrieval of nLw, atmospheric overcorrection can be avoided in order to have a significant improvement of the inversion of nLw at 412 nm. Furthermore, generally better estimates of band ratios of nLw(443) / nLw(554) and nLw(488) / nLw(554) are obtained using the simultaneous retrieval approach with lower root mean square errors and relative differences than those derived from the standard AC approach in comparison to the AERONET-OC products, as well as the APD values of retrieved Chl which decreased by about 5 %. On the other hand, the standard AC scheme yields a more accurate retrieval of nLw at 488 nm, prompting a further optimization of the oceanic bio-optical module of the current model.
Bio-Optical Instrumentation for Mapping of the Upper Ocean Using SeaSoar
1998-01-01
Bio-Optical Instrumentation for Mapping of the Upper Ocean Using SeaSoar Burton H. Jones Wrigley Institute of Environmental Science and Department of... Environmental Science and,Department of Biological Sciences,Los Angeles,CA,90089-0371 8. PERFORMING ORGANIZATION REPORT NUMBER 9. SPONSORING/MONITORING
Assessment of NPP VIIRS Ocean Color Data Products: Hope and Risk
NASA Technical Reports Server (NTRS)
Turpie, Kevin R.; Meister, Gerhard; Eplee, Gene; Barnes, Robert A.; Franz, Bryan; Patt, Frederick S.; Robinson, Wayne d.; McClain, Charles R.
2010-01-01
For several years, the NASA/Goddard Space Flight Center (GSFC) NPP VIIRS Ocean Science Team (VOST) provided substantial scientific input to the NPP project regarding the use of Visible Infrared Imaging Radiometer Suite (VIIRS) to create science quality ocean color data products. This work has culminated into an assessment of the NPP project and the VIIRS instrument's capability to produce science quality Ocean Color data products. The VOST concluded that many characteristics were similar to earlier instruments, including SeaWiFS or MODIS Aqua. Though instrument performance and calibration risks do exist, it was concluded that programmatic and algorithm issues dominate concerns. Keywords: NPP, VIIRS, Ocean Color, satellite remote sensing, climate data record.
The development and validation of command schedules for SeaWiFS
NASA Astrophysics Data System (ADS)
Woodward, Robert H.; Gregg, Watson W.; Patt, Frederick S.
1994-11-01
An automated method for developing and assessing spacecraft and instrument command schedules is presented for the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) project. SeaWiFS is to be carried on the polar-orbiting SeaStar satellite in 1995. The primary goal of the SeaWiFS mission is to provide global ocean chlorophyll concentrations every four days by employing onboard recorders and a twice-a-day data downlink schedule. Global Area Coverage (GAC) data with about 4.5 km resolution will be used to produce the global coverage. Higher resolution (1.1 km resolution) Local Area Coverage (LAC) data will also be recorded to calibrate the sensor. In addition, LAC will be continuously transmitted from the satellite and received by High Resolution Picture Transmission (HRPT) stations. The methods used to generate commands for SeaWiFS employ numerous hierarchical checks as a means of maximizing coverage of the Earth's surface and fulfilling the LAC data requirements. The software code is modularized and written in Fortran with constructs to mirror the pre-defined mission rules. The overall method is specifically developed for low orbit Earth-observing satellites with finite onboard recording capabilities and regularly scheduled data downlinks. Two software packages using the Interactive Data Language (IDL) for graphically displaying and verifying the resultant command decisions are presented. Displays can be generated which show portions of the Earth viewed by the sensor and spacecraft sub-orbital locations during onboard calibration activities. An IDL-based interactive method of selecting and testing LAC targets and calibration activities for command generation is also discussed.
Data Report for Calibration of a Bio-Optical Model for Narragansett Bay
Bio-optical models describe the quality and quantity of the light field at various depths in the water column. The absorption and scattering of light within the water column are wavelength dependent. The behavior of light also varies depending on the specific dissolved and partic...
NASA Technical Reports Server (NTRS)
2002-01-01
This SeaWiFS true-color image acquired over Southern Africa on Sept. 4, 2000, shows a thick shroud of smoke and haze blanketing much of the southern half of the continent. The smoke in this scene is being generated by a tremendous number of fires burning over a large area across the countries of Angola, Zambia, Mozambique, Zimbabwe, Botswana, and the Northern Province of South Africa. In this image, the smoke (grey pixels) is easily distinguished from clouds (bright white pixels). Refer to the Images and Data section for a larger scale view of the fires in Southern Africa. Data from both the SeaWiFS and Terra satellites are being used by an international team of scientists participating in the SAFARI field experiment. The objective of SAFARI is to measure the effects of windblown smoke and dust on air quality and the Earth's radiant energy budget. This image was produced using SeaWiFS channels 6, 5, and 1 (centered at 670 nm, 555 nm , and 412 nm, respectively). The data were acquired and provided by the Satellite Applications Center in Pretoria, South Africa. Image courtesy Gene Feldman, SeaWiFS Project and Orbital Sciences
Assimilation of SeaWiFS Ocean Chlorophyll Data into a Three-Dimensional Global Ocean Model
NASA Technical Reports Server (NTRS)
Gregg, Watson W.
2005-01-01
Assimilation of satellite ocean color data is a relatively new phenomenon in ocean sciences. However, with routine observations from the Sea-viewing Wide Field-of-view Sensor (SeaWiFS), launched in late 1997, and now with new data from the Moderate Resolution Imaging Spectroradometer (MODIS) Aqua, there is increasing interest in ocean color data assimilation. Here SeaWiFS chlorophyll data were assimilated with an established thre-dimentional global ocean model. The assimilation improved estimates of hlorophyll and primary production relative to a free-run (no assimilation) model. This represents the first attempt at ocean color data assimilation using NASA satellites in a global model. The results suggest the potential of assimilation of satellite ocean chlorophyll data for improving models.
Ultrafast time-stretch imaging at 932 nm through a new highly-dispersive fiber
Wei, Xiaoming; Kong, Cihang; Sy, Samuel; Ko, Ho; Tsia, Kevin K.; Wong, Kenneth K. Y.
2016-01-01
Optical glass fiber has played a key role in the development of modern optical communication and attracted the biotechnology researcher’s great attention because of its properties, such as the wide bandwidth, low attenuation and superior flexibility. For ultrafast optical imaging, particularly, it has been utilized to perform MHz time-stretch imaging with diffraction-limited resolutions, which is also known as serial time-encoded amplified microscopy (STEAM). Unfortunately, time-stretch imaging with dispersive fibers has so far mostly been demonstrated at the optical communication window of 1.5 μm due to lack of efficient dispersive optical fibers operating at the shorter wavelengths, particularly at the bio-favorable window, i.e., <1.0 μm. Through fiber-optic engineering, here we demonstrate a 7.6-MHz dual-color time-stretch optical imaging at bio-favorable wavelengths of 932 nm and 466 nm. The sensitivity at such a high speed is experimentally identified in a slow data-streaming manner. To the best of our knowledge, this is the first time that all-optical time-stretch imaging at ultrahigh speed, high sensitivity and high chirping rate (>1 ns/nm) has been demonstrated at a bio-favorable wavelength window through fiber-optic engineering. PMID:28018737
Ultrafast time-stretch imaging at 932 nm through a new highly-dispersive fiber.
Wei, Xiaoming; Kong, Cihang; Sy, Samuel; Ko, Ho; Tsia, Kevin K; Wong, Kenneth K Y
2016-12-01
Optical glass fiber has played a key role in the development of modern optical communication and attracted the biotechnology researcher's great attention because of its properties, such as the wide bandwidth, low attenuation and superior flexibility. For ultrafast optical imaging, particularly, it has been utilized to perform MHz time-stretch imaging with diffraction-limited resolutions, which is also known as serial time-encoded amplified microscopy (STEAM). Unfortunately, time-stretch imaging with dispersive fibers has so far mostly been demonstrated at the optical communication window of 1.5 μm due to lack of efficient dispersive optical fibers operating at the shorter wavelengths, particularly at the bio-favorable window, i.e., <1.0 μm. Through fiber-optic engineering, here we demonstrate a 7.6-MHz dual-color time-stretch optical imaging at bio-favorable wavelengths of 932 nm and 466 nm. The sensitivity at such a high speed is experimentally identified in a slow data-streaming manner. To the best of our knowledge, this is the first time that all-optical time-stretch imaging at ultrahigh speed, high sensitivity and high chirping rate (>1 ns/nm) has been demonstrated at a bio-favorable wavelength window through fiber-optic engineering.
Dutheil, Julien; Gaillard, Sylvain; Bazin, Eric; Glémin, Sylvain; Ranwez, Vincent; Galtier, Nicolas; Belkhir, Khalid
2006-04-04
A large number of bioinformatics applications in the fields of bio-sequence analysis, molecular evolution and population genetics typically share input/output methods, data storage requirements and data analysis algorithms. Such common features may be conveniently bundled into re-usable libraries, which enable the rapid development of new methods and robust applications. We present Bio++, a set of Object Oriented libraries written in C++. Available components include classes for data storage and handling (nucleotide/amino-acid/codon sequences, trees, distance matrices, population genetics datasets), various input/output formats, basic sequence manipulation (concatenation, transcription, translation, etc.), phylogenetic analysis (maximum parsimony, markov models, distance methods, likelihood computation and maximization), population genetics/genomics (diversity statistics, neutrality tests, various multi-locus analyses) and various algorithms for numerical calculus. Implementation of methods aims at being both efficient and user-friendly. A special concern was given to the library design to enable easy extension and new methods development. We defined a general hierarchy of classes that allow the developer to implement its own algorithms while remaining compatible with the rest of the libraries. Bio++ source code is distributed free of charge under the CeCILL general public licence from its website http://kimura.univ-montp2.fr/BioPP.
NASA Astrophysics Data System (ADS)
Kheireddine, Malika; Ouhssain, Mustapha; Calleja, Maria Ll.; Morán, Xosé Anxelu G.; Sarma, Y. V. B.; Tiwari, Surya P.; Jones, Burton H.
2018-03-01
The absorption coefficient of chromophoric dissolved organic matter (CDOM) is a major variable used in developing robust bio-optical models and understanding biogeochemical processes. Over the last decade, the optical properties of CDOM in the open sea have been intensely studied. However, their variations in clear water are poorly documented, particularly in the Red Sea, owing to the absence of in situ measurements. We performed several cruises in the Red Sea to investigate the spatial distribution of the absorption coefficient of CDOM. The spectral absorption coefficients were determined from 400 nm to 740 nm using a WETLabs ac-s hyper-spectral spectrophotometer. In general, we found a latitudinal gradient in the CDOM absorption coefficient at 443 nm (aCDOM(443)) from south to north that is likely influenced by the exchange of water through the strait of Bab-el-Mandeb and the thermohaline circulation of the Red Sea. However, high aCDOM(443) values were observed in the northern Red Sea due to the existence of a sub-mesoscale feature that may induce an increase in phytoplankton production and lead to CDOM production. The aCDOM(443) covaried with the chlorophyll a concentration ([Chl a],) despite a high scatter. Furthermore, the aCDOM(443) for a given [Chl a] concentration was higher than those predicted by global ocean bio-optical models. This study advances our understanding of CDOM concentration in the Red Sea and may help improve the accuracy of the algorithms used to obtain CDOM absorption from ocean color.
NASA Technical Reports Server (NTRS)
Hooker, Stanford B. (Editor); Firestone, Elaine R. (Editor); Barnes, Robert A.; Eplee, Robert E., Jr.; Biggar, Stuart F.; Thome, Kurtis J.; Zalewski, Edward F.; Slater, Philip N.; Holmes, Alan W.
1999-01-01
The solar radiation-based calibration (SRBC) of the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) was performed on 1 November 1993. Measurements were made outdoors in the courtyard of the instrument manufacturer. SeaWiFS viewed the solar irradiance reflected from the sensor's diffuser in the same manner as viewed on orbit. The calibration included measurements using a solar radiometer designed to determine the transmittances of principal atmospheric constituents. The primary uncertainties in the outdoor measurements are the transmission of the atmosphere and the reflectance of the diffuser. Their combined uncertainty is about 5 or 6%. The SRBC also requires knowledge of the extraterrestrial solar spectrum. Four solar models are used. When averaged over the responses of the SeaWiFS bands, the irradiance models agree at the 3.6% level, with the greatest difference for SeaWiFS band 8. The calibration coefficients from the SRBC are lower than those from the laboratory calibration of the instrument in 1997. For a representative solar model, the ratios of the SRBC coefficients to laboratory values average 0.962 with a standard deviation of 0.012. The greatest relative difference is 0.946 for band 8. These values are within the estimated uncertainties of the calibration measurements. For the transfer-to-orbit experiment, the measurements in the manufacturer's courtyard are used to predict the digital counts from the instrument on its first day on orbit (August 1, 1997). This experiment requires an estimate of the relative change in the diffuser response for the period between the launch of the instrument and its first solar measurements on orbit (September 9, 1997). In relative terms, the counts from the instrument on its first day on orbit averaged 1.3% higher than predicted, with a standard deviation of 1.2% and a greatest difference of 2.4% or band 7. The estimated uncertainty for the transfer-to-orbit experiment is about 3 or 4%.
SeaWiFS long-term solar diffuser reflectance and sensor noise analyses.
Eplee, Robert E; Patt, Frederick S; Barnes, Robert A; McClain, Charles R
2007-02-10
The NASA Ocean Biology Processing Group's Calibration and Validation (Cal/Val) team has undertaken an analysis of the mission-long Sea-Viewing Wide Field-of-View Sensor (SeaWiFS) solar calibration time series to assess the long-term degradation of the solar diffuser reflectance over 9 years on orbit. The SeaWiFS diffuser is an aluminum plate coated with YB71 paint. The bidirectional reflectance distribution function of the diffuser was not fully characterized before launch, so the Cal/Val team has implemented a regression of the solar incidence angles and the drift in the node of the satellite's orbit against the diffuser time series to correct for solar incidence angle effects. An exponential function with a time constant of 200 days yields the best fit to the diffuser time series. The decrease in diffuser reflectance over the mission is wavelength dependent, ranging from 9% in the blue (412 nm) to 5% in the red and near infrared (670-865 nm). The Cal/Val team has developed a methodology for computing the signal-to-noise ratio (SNR) for SeaWiFS on orbit from the diffuser time series corrected for both the varying solar incidence angles and the diffuser reflectance degradation. A sensor noise model is used to compare on-orbit SNRs computed for radiances reflected from the diffuser with prelaunch SNRs measured at typical radiances specified for the instrument. To within the uncertainties in the measurements, the SNRs for SeaWiFS have not changed over the mission. The on-orbit performance of the SeaWiFS solar diffuser should offer insight into the long-term on-orbit performance of solar diffusers on other instruments, such as the Moderate-Resolution Imaging Spectrometer [currently flying on the Earth Observing System (EOS) Terra and Aqua satellites], the Visible and Infrared Radiometer Suite [scheduled to fly on the NASA National Polar-orbiting Operational Environmental Satellite System (NPOESS) and NPOESS Preparatory Project (NPP) satellites] and the Advanced Baseline Imager [scheduled to fly on the National Oceanic and Atmospheric Administration Geostationary Environmental Operational Satellite Series R (GOES-R) satellites].
SeaWiFS long-term solar diffuser reflectance and sensor noise analyses
NASA Astrophysics Data System (ADS)
Eplee, Robert E., Jr.; Patt, Frederick S.; Barnes, Robert A.; McClain, Charles R.
2007-02-01
The NASA Ocean Biology Processing Group's Calibration and Validation (Cal/Val) team has undertaken an analysis of the mission-long Sea-Viewing Wide Field-of-View Sensor (SeaWiFS) solar calibration time series to assess the long-term degradation of the solar diffuser reflectance over 9 years on orbit. The SeaWiFS diffuser is an aluminum plate coated with YB71 paint. The bidirectional reflectance distribution function of the diffuser was not fully characterized before launch, so the Cal/Val team has implemented a regression of the solar incidence angles and the drift in the node of the satellite's orbit against the diffuser time series to correct for solar incidence angle effects. An exponential function with a time constant of 200 days yields the best fit to the diffuser time series. The decrease in diffuser reflectance over the mission is wavelength dependent, ranging from 9% in the blue (412 nm) to 5% in the red and near infrared (670-865 nm). The Cal/Val team has developed a methodology for computing the signal-to-noise ratio (SNR) for SeaWiFS on orbit from the diffuser time series corrected for both the varying solar incidence angles and the diffuser reflectance degradation. A sensor noise model is used to compare on-orbit SNRs computed for radiances reflected from the diffuser with prelaunch SNRs measured at typical radiances specified for the instrument. To within the uncertainties in the measurements, the SNRs for SeaWiFS have not changed over the mission. The on-orbit performance of the SeaWiFS solar diffuser should offer insight into the long-term on-orbit performance of solar diffusers on other instruments, such as the Moderate-Resolution Imaging Spectrometer [currently flying on the Earth Observing System (EOS) Terra and Aqua satellites], the Visible and Infrared Radiometer Suite [scheduled to fly on the NASA National Polar-orbiting Operational Environmental Satellite System (NPOESS) and NPOESS Preparatory Project (NPP) satellites] and the Advanced Baseline Imager [scheduled to fly on the National Oceanic and Atmospheric Administration Geostationary Environmental Operational Satellite Series R (GOES-R) satellites].
Biochemical gas sensor (bio-sniffer) for ultrahigh-sensitive gaseous formaldehyde monitoring.
Kudo, Hiroyuki; Suzuki, Yuki; Gessei, Tomoko; Takahashi, Daishi; Arakawa, Takahiro; Mitsubayashi, Kohji
2010-10-15
An ultrahigh-sensitive fiber-optic biochemical gas sensor (bio-sniffer) for continuous monitoring of indoor formaldehyde was constructed and tested. The bio-sniffer measures gaseous formaldehyde as fluorescence of nicotinamide adenine dinucleotide (NADH), which is the product of formaldehyde dehydrogenase (FALDH) reaction. The bio-sniffer device was constructed by attaching a flow cell with a FALDH immobilized membrane onto a fiber-optic NADH measurement system. The NADH measurement system utilizes an ultraviolet-light emitting diode (UV-LED) with peak emission of 335 nm as an excitation light source. The excitation light was introduced to an optical fiber probe, and fluorescence emission of neighboring NADH, which was produced by applying formaldehyde vapor to the FALDH membrane, was concentrically measured with a photomultiplier tube. Assessment of the bio-sniffer was carried out using a standard gas generator. Response, calibration range and selectivity to other chemical substances were investigated. Circulating phosphate buffer, which contained NAD+, available for continuous monitoring of formaldehyde vapor. The calibration range of the bio-sniffer was 2.5 ppb to 10 ppm, which covers the guideline value of the World Health Organization (80 ppb). High selectivity to other gaseous substances due to specific activity of FALDH was also confirmed. Considering its high sensitivity, a possible application of the bio-sniffer is continuous indoor formaldehyde monitoring to provide healthy residential atmosphere. Copyright © 2010 Elsevier B.V. All rights reserved.
Phytoplankton global mapping from space with a support vector machine algorithm
NASA Astrophysics Data System (ADS)
de Boissieu, Florian; Menkes, Christophe; Dupouy, Cécile; Rodier, Martin; Bonnet, Sophie; Mangeas, Morgan; Frouin, Robert J.
2014-11-01
In recent years great progress has been made in global mapping of phytoplankton from space. Two main trends have emerged, the recognition of phytoplankton functional types (PFT) based on reflectance normalized to chlorophyll-a concentration, and the recognition of phytoplankton size class (PSC) based on the relationship between cell size and chlorophyll-a concentration. However, PFTs and PSCs are not decorrelated, and one approach can complement the other in a recognition task. In this paper, we explore the recognition of several dominant PFTs by combining reflectance anomalies, chlorophyll-a concentration and other environmental parameters, such as sea surface temperature and wind speed. Remote sensing pixels are labeled thanks to coincident in-situ pigment data from GeP&CO, NOMAD and MAREDAT datasets, covering various oceanographic environments. The recognition is made with a supervised Support Vector Machine classifier trained on the labeled pixels. This algorithm enables a non-linear separation of the classes in the input space and is especially adapted for small training datasets as available here. Moreover, it provides a class probability estimate, allowing one to enhance the robustness of the classification results through the choice of a minimum probability threshold. A greedy feature selection associated to a 10-fold cross-validation procedure is applied to select the most discriminative input features and evaluate the classification performance. The best classifiers are finally applied on daily remote sensing datasets (SeaWIFS, MODISA) and the resulting dominant PFT maps are compared with other studies. Several conclusions are drawn: (1) the feature selection highlights the weight of temperature, chlorophyll-a and wind speed variables in phytoplankton recognition; (2) the classifiers show good results and dominant PFT maps in agreement with phytoplankton distribution knowledge; (3) classification on MODISA data seems to perform better than on SeaWIFS data, (4) the probability threshold screens correctly the areas of smallest confidence such as the interclass regions.
Water Constituents in the North-western Black Sea from Optical Remote Sensing and In situ Data
NASA Astrophysics Data System (ADS)
Barale, V.; Cipollini, P.; Davidov, A.; Melin, F.
2002-03-01
Satellite-based optical observations of surface waters have been used to assess the main environmental interactions in the north-western Black Sea, as a contribution to the EROS 21 project. Such observations allow evaluations of the presence and abundance of water constituents (primarily phytoplankton pigments), providing essential information on the processes which are taking place in the area and on their spatial and temporal scales. An analysis of ocean colour imagery was performed, using historical data collected by the CZCS (1978-1986), and by the MOS before, during and after the EROS 21 oceanographic cruise which took place in April/May 1997. The time series of CZCS-derived parameters (i.e. chlorophyll-like pigment concentration) originates from the archive generated by the OCEAN project. The MOS data were processed to apply sensor calibration, to correct for atmospheric contamination so as to assess water-leaving radiances for each visible channel, and to estimate geophysical parameters such as pigment concentration and in-water optical depth, which is correlated to suspended matter concentration. The atmospheric correction was performed with a novel algorithm developed especially for MOS application. The bio-optical algorithms used to derive in-water parameters were obtained by comparison with the concurrent in situ measurements of optically active parameters collected in the north-western Black Sea in the framework of the EROS 21 project. The multi-satellite data set highlights the differences between western and eastern sub-basins, inshore and offshore domains, northern and southern near-coastal areas. In the Danube delta area, the water constituents trace complex interactions of near-coastal and basin-wide features of the Black Sea.
NASA Astrophysics Data System (ADS)
Li, Hao; He, Xianqiang; Bai, Yan; Chen, Xiaoyan; Gong, Fang; Zhu, Qiankun; Hu, Zifeng
2016-10-01
Numerous empirical algorithms have been operationally used to retrieve the global ocean chlorophyll-a concentration (Chla) from ocean color satellite data, e.g., the OC4V4 algorithm for SeaWiFS and OC3M for MODIS. However, the algorithms have been established and validated based on the in situ data mainly measured under low to moderate solar zenith angle (<70°). Currently, with the development of the geostationary satellite ocean color remote sensing which observes from early morning to later afternoon, it is necessary to know whether the empirical Chla algorithms could be applied to high solar zenith angle. In this study, the performances of seven widely-used Chla algorithms under high solar zenith angles, i.e., OC2, OC3M, OC3V, OC4V4, CLARK, OCI, and YOC algorithms, were evaluated using the NOMAD global in situ ocean color dataset. The results showed that the performances of all the seven algorithms decreased significantly under high solar zenith angles as compared to those under low-moderate solar zenith angles. For instance, for the OC4V4 algorithm, the relative percent difference (RPD) and root-mean-square error (RMSE) were 13.78% and 1.66 μg/l for the whole dataset, and 3.95% and 1.49 μg/l for the solar zenith angles ranged from 30° to 40°, respectively. However, the RPD and RMSE increased to 30.45% and 6.10μg/l for solar zenith angle larger than 70°.
Epitaxial Ba2IrO4 thin-films grown on SrTiO3 substrates by pulsed laser deposition
NASA Astrophysics Data System (ADS)
Nichols, J.; Korneta, O. B.; Terzic, J.; Cao, G.; Brill, J. W.; Seo, S. S. A.
2014-03-01
We have synthesized epitaxial Ba2IrO4 (BIO) thin-films on SrTiO3 (001) substrates by pulsed laser deposition and studied their electronic structure by dc-transport and optical spectroscopic experiments. We have observed that BIO thin-films are insulating but close to the metal-insulator transition boundary with significantly smaller transport and optical gap energies than its sister compound, Sr2IrO4. Moreover, BIO thin-films have both an enhanced electronic bandwidth and electronic-correlation energy. Our results suggest that BIO thin-films have great potential for realizing the interesting physical properties predicted in layered iridates.
Compressive Sensing Based Bio-Inspired Shape Feature Detection CMOS Imager
NASA Technical Reports Server (NTRS)
Duong, Tuan A. (Inventor)
2015-01-01
A CMOS imager integrated circuit using compressive sensing and bio-inspired detection is presented which integrates novel functions and algorithms within a novel hardware architecture enabling efficient on-chip implementation.
Parametrization and calibration of a quasi-analytical algorithm for tropical eutrophic waters
NASA Astrophysics Data System (ADS)
Watanabe, Fernanda; Mishra, Deepak R.; Astuti, Ike; Rodrigues, Thanan; Alcântara, Enner; Imai, Nilton N.; Barbosa, Cláudio
2016-11-01
Quasi-analytical algorithm (QAA) was designed to derive the inherent optical properties (IOPs) of water bodies from above-surface remote sensing reflectance (Rrs). Several variants of QAA have been developed for environments with different bio-optical characteristics. However, most variants of QAA suffer from moderate to high negative IOP prediction when applied to tropical eutrophic waters. This research is aimed at parametrizing a QAA for tropical eutrophic water dominated by cyanobacteria. The alterations proposed in the algorithm yielded accurate absorption coefficients and chlorophyll-a (Chl-a) concentration. The main changes accomplished were the selection of wavelengths representative of the optically relevant constituents (ORCs) and calibration of values directly associated with the pigments and detritus plus colored dissolved organic material (CDM) absorption coefficients. The re-parametrized QAA eliminated the retrieval of negative values, commonly identified in other variants of QAA. The calibrated model generated a normalized root mean square error (NRMSE) of 21.88% and a mean absolute percentage error (MAPE) of 28.27% for at(λ), where the largest errors were found at 412 nm and 620 nm. Estimated NRMSE for aCDM(λ) was 18.86% with a MAPE of 31.17%. A NRMSE of 22.94% and a MAPE of 60.08% were obtained for aφ(λ). Estimated aφ(665) and aφ(709) was used to predict Chl-a concentration. aφ(665) derived from QAA for Barra Bonita Hydroelectric Reservoir (QAA_BBHR) was able to predict Chl-a accurately, with a NRMSE of 11.3% and MAPE of 38.5%. The performance of the Chl-a model was comparable to some of the most widely used empirical algorithms such as 2-band, 3-band, and the normalized difference chlorophyll index (NDCI). The new QAA was parametrized based on the band configuration of MEdium Resolution Imaging Spectrometer (MERIS), Sentinel-2A and 3A and can be readily scaled-up for spatio-temporal monitoring of IOPs in tropical waters.
NASA Astrophysics Data System (ADS)
Robles-Gonzalez, Cristina; Fernandez-Renau, Alix; Lopez Gordillo, Noelia; Sevilla, Angel Garcia; Suarez, Juana Santana
2010-12-01
Since 1997, the INTA-CREPAD (Centre for REception, Processing, Archiving and Dissemination of Earth Observation Data) program distributes freely some of the most demanded low-resolution remote sensing products: SST, Ocean Chl-a, NDVI, AOD... The data input for such products are captured at the Canary Space Station (Centro Espacial de Canarias, CEC). The data sensors received at the station and used in the CREPAD program are AVHRR, SEAWIFS and MODIS. In this study SST and AOD retrieved by CREPAD algorithms from AVHRR and the SEADAS derived SST and AOD from MODIS have compared. SST values agree very well within 0.1±0.5oC and the coefficient of correlation of the images is 0.9. AOD validation gives good results taking into account the differences in the algorithms used. Mean AOD difference at 0.630 μm is 0.01±0.05 and the correlation coefficient is 0.6.
Applications of satellite ocean color sensors for monitoring and predicting harmful algal blooms
Stumpf, Richard P.
2001-01-01
The new satellite ocean color sensors offer a means of detecting and monitoring algal blooms in the ocean and coastal zone. Beginning with SeaWiFS (Sea Wide Field-of-view Sensor) in September 1997, these sensors provide coverage every 1 to 2 days with 1-km pixel view at nadir. Atmospheric correction algorithms designed for the coastal zone combined with regional chlorophyll algorithms can provide good and reproducible estimates of chlorophyll, providing the means of monitoring various algal blooms. Harmful algal blooms (HABs) caused by Karenia brevis in the Gulf of Mexico are particularly amenable to remote observation. The Gulf of Mexico has relatively clear water and K. brevis, in bloom conditions, tends to produce a major portion of the phytoplankton biomass. A monitoring program has begun in the Gulf of Mexico that integrates field data from state monitoring programs with satellite imagery, providing an improved capability for the monitoring of K. brevis blooms.
Performance metrics for the assessment of satellite data products: an ocean color case study
Seegers, Bridget N.; Stumpf, Richard P.; Schaeffer, Blake A.; Loftin, Keith A.; Werdell, P. Jeremy
2018-01-01
Performance assessment of ocean color satellite data has generally relied on statistical metrics chosen for their common usage and the rationale for selecting certain metrics is infrequently explained. Commonly reported statistics based on mean squared errors, such as the coefficient of determination (r2), root mean square error, and regression slopes, are most appropriate for Gaussian distributions without outliers and, therefore, are often not ideal for ocean color algorithm performance assessment, which is often limited by sample availability. In contrast, metrics based on simple deviations, such as bias and mean absolute error, as well as pair-wise comparisons, often provide more robust and straightforward quantities for evaluating ocean color algorithms with non-Gaussian distributions and outliers. This study uses a SeaWiFS chlorophyll-a validation data set to demonstrate a framework for satellite data product assessment and recommends a multi-metric and user-dependent approach that can be applied within science, modeling, and resource management communities. PMID:29609296
NASA Astrophysics Data System (ADS)
Pérez, Gonzalo L.; Galí, Martí; Royer, Sarah-Jeanne; Sarmento, Hugo; Gasol, Josep M.; Marrasé, Cèlia; Simó, Rafel
2016-08-01
We investigated the peculiar bio-optical characteristics of the Mediterranean Sea focusing on the spectral diffuse attenuation coefficient [Kd (λ)] and its relationship with chlorophyll a concentration (Chl a), complemented with measurements of light absorption by chromophoric dissolved organic matter (CDOM) and the optical properties of particulate material. The non-water absorption budget showed that CDOM was the largest contributor in the 300-600 nm range (>60% of the absorption at 443 nm in the euphotic layer), increasing to 80% within the first optical depth (FOD). This translated into CDOM accounting for >50% of KdBio (λ) (the irradiance attenuation coefficient caused by all non-water absorptions) between 320 and 555 nm and throughout both layers (FOD and euphotic). Indeed, we tested three Chl a-based bio-optical models and all three underestimated Kd (λ), evidencing the importance of CDOM beside Chl a to fully account for light attenuation. The Morel & Maritorena (2001) model (M&M 01) underestimated Kd (λ) in the UV and blue spectral regions within the FOD layer, showing lower differences with increasing wavelengths. The Morel et al. (2007a) model (BGS 07) also underestimated Kd (λ) in the FOD layer, yet it performed much better in the 380-555 nm range. In the euphotic layer, the Morel (1988) model (JGR 88) underestimated Kd (λ) showing higher differences at 412 and 443 nm and also performed better at higher wavelengths. Observed euphotic layer depths (Z1%) were 28 m shallower than those predicted with the M&M 01 empirical relationship, further highlighting the role of CDOM in the bio-optical peculiarity of Mediterranean Sea. In situ measurements of the CDOM index (Φ), an indicator of the deviation of the CDOM-Chl a average relationship for Case 1 waters, gave a mean of 5.9 in the FOD, consistent with simultaneous estimates from MODIS (4.8±0.4). The implications of the bio-optical anomaly for ecological and biogeochemical inferences in the Mediterranean Sea are discussed.
NASA Astrophysics Data System (ADS)
Salinas Cortijo, S.; Chew, B.; Liew, S.
2009-12-01
Aerosol optical depth combined with the Angstrom exponent and its derivative, are often used as a qualitative indicator of aerosol particle size, with Angstrom exp. values greater than 2 indicating small (fine mode) particles associated with urban pollution and bio-mass burning. Around this region, forest fires are a regular occurrence during the dry season, specially near the large land masses of Sumatra and Borneo. The practice of clearing land by burning the primary and sometimes secondary forest, results in a smog-like haze covering large areas of regional cities such as cities Singapore, Kuala Lumpur and sometimes the south of Thailand, often reducing visibility and increasing health problems for the local population. In Singapore, the sources of aerosols are mostly from fossil fuel burning (energy stations, incinerators, urban transport etc.) and from the industrial and urban areas. The proximity to the sea adds a possible oceanic source. However, as stated above and depending on the time of the year, there can be a strong bio-mass component coming from forest fires from various regions of the neighboring countries. Bio-mass related aerosol particles are typically characterized by showing a large optical depth and small, sub-micron particle size distributions. In this work, we analyze three years of direct Sun measurements performed with a multi-channel Cimel Sun-Photometer (part of the AERONET network) located at our site. In order to identify bio-mass burning events in this region, we perform a spectral discrimination between coarse and fine mode optical depth; subsequently, the fine mode parameters such as optical depth, optical ratio and fine mode Angstrom exponents (and its derivative) are used to identify possible bio-mass related events within the data set.
SeaWiFS: The Western United States and Mexico
NASA Technical Reports Server (NTRS)
2002-01-01
The linear patterns in the clouds over the Pacific suggest contrail origins. Subtle variations in cloud density reveal vortex street downwind (southeast) of Mexico's Guadalupe Island. The Great Salt Lake in Utah is divided into two very different colored bodies of water by a railroad causeway. The southern Gulf of California continues to bloom brightly. Credit: Provided by the SeaWiFS Project, NASA/Goddard Space Flight Center, and ORBIMAGE
The Remote Sensing of Mineral Aerosols and Their Impact on Phytoplankton Productivity using Sea WiFS
NASA Technical Reports Server (NTRS)
Stegmann, Petra M.
1998-01-01
The main objective of this proposal was to use SeaWiFs data to study the relationship between aerosols found in aeollan dust and photosynthesis of phytoplankton in open ocean surface waters. This project was a collaborative effort between myself and Dr. Neil Tindale at Texas A&M University and followed on our earlier funded proposal which had been designed as a proof-of-concept study to determine if ocean color sensors such as the Coastal Zone Color Scanner (CZCS) could be used to detect and map large-scale mineral aerosol plumes. Despite the large spatial and temporal gaps inherent in the CZCS data coverage, our results from this initial study indicated that an ocean color sensor could indeed be used to detect aerosols. These encouraging results led us to propose in this proposal the use of SeaWiFS data to study mineral aerosol transport and its impact on phytoplankton production. This proposal orignally intended to make use of SeaWiFS images, but as the launch delay of SeaWiFS dragged on, we had to make do with other satellite data sets. Thus, the focus of this proposal became the CSCS image archive instead. I detail my results and accomplishments with this data set.
Aerosol Radiative Forcing Derived From SeaWIFS - Retrieved Aerosol Optical Properties
NASA Technical Reports Server (NTRS)
Chou, Mong-Dah; Chan, Pui-King; Wang, Menghua; Einaudi, Franco (Technical Monitor)
2000-01-01
To understand climatic implications of aerosols over global oceans, the aerosol optical properties retrieved from the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) are analyzed, and the effects of the aerosols on the Earth's radiation budgets (aerosol radiative forcing, ARF) are computed using a radiative transfer model. It is found that the distribution of the SeaWiFS-retrieved aerosol optical thickness is distinctively zonal. The maximum in the equatorial region coincides with the Intertropical Convergence Zone, and the maximum in the Southern Hemispheric high latitudes coincides with the region of prevailing westerlies. The minimum aerosol optical thickness is found in the subtropical high pressure regions, especially in the Southern Hemisphere. These zonal patterns clearly demonstrate the influence of atmospheric circulation on the oceanic aerosol distribution. Over global oceans, aerosols reduce the annual mean net downward solar flux by 5.4 W m-2 at the top of the atmosphere and by 6.1 W m-2 at the surface. The largest ARF is found in the tropical Atlantic, Arabian Sea, Bay of Bengal, the coastal regions of Southeast and East Asia, and the Southern Hemispheric high latitudes. During the period of the Indonesian big fires (September-December 1997), the cooling due to aerosols is greater than 15 W m-2 at the top of the atmosphere and greater than 30 W m(exp -1) at the surface in the vicinity of the maritime continents. The atmosphere receives extra solar radiation by greater than 15 W m(exp -1) over a large area. These large changes in radiative fluxes are expected to have enhanced the atmospheric stability, weakened the atmospheric circulation, and augmented the drought condition during that period. It would be very instructive to simulate the regional climatic. The model-calculated clear sky solar flux at the top of the atmosphere is compared with that derived from the Clouds and the Earth's Radiant Energy System (CERES). The net downward solar flux of CERES is systematically larger than the model calculations by -3 W M-2. In the equatorial region, the CERES-derived net downward solar flux is even larger than the model calculations without including aerosols. It is possible that the CERES incorrectly identified regions of high humidity and high aerosol concentration as being cloud contaminated and, hence, overestimated the clear sky net downward solar flux.
A new bio-inspired optimisation algorithm: Bird Swarm Algorithm
NASA Astrophysics Data System (ADS)
Meng, Xian-Bing; Gao, X. Z.; Lu, Lihua; Liu, Yu; Zhang, Hengzhen
2016-07-01
A new bio-inspired algorithm, namely Bird Swarm Algorithm (BSA), is proposed for solving optimisation applications. BSA is based on the swarm intelligence extracted from the social behaviours and social interactions in bird swarms. Birds mainly have three kinds of behaviours: foraging behaviour, vigilance behaviour and flight behaviour. Birds may forage for food and escape from the predators by the social interactions to obtain a high chance of survival. By modelling these social behaviours, social interactions and the related swarm intelligence, four search strategies associated with five simplified rules are formulated in BSA. Simulations and comparisons based on eighteen benchmark problems demonstrate the effectiveness, superiority and stability of BSA. Some proposals for future research about BSA are also discussed.
2013-04-30
Syst., 40, 171-212. doi:10.1016/S0924-7963(03)00018-6. Cane, M. A., A. Kaplan, R. N. Miller, B. Tang , E. Hackcrt, and A. J. Busalacchi (1996...Fluoromctric determination of chlorophyll, J. Cons. Cons. Int. Explor. Mer.,30,3-\\5. Hu, J., K. Fennel, J. P. Mattcrn, and J. Wilkin (2012), Data
NASA Technical Reports Server (NTRS)
2002-01-01
As the clouds allowed during the past two months, the Sea-viewing Wide field-of-View Sensor (SeaWiFS) recorded the changing colors of eastern U.S. and Canadian vegetation. This series of true-color images from the fall of 2000 shows the deciduous forests of the region change from dark green to bright red and orange, and begin to drop their leaves. Image provided by the SeaWiFS Project, NASA/Goddard Space Flight Center, and ORBIMAGE
Smoke over Montana and Wyoming
NASA Technical Reports Server (NTRS)
2002-01-01
California was not the only western state affected by fire during the last weekend of July. Parts of Montana and Wyoming were covered by a thick pall of smoke on July 30, 2000. This true-color image was captured by the Sea-viewing Wide Field-of-view Sensor (SeaWiFS). It is much easier to distinguish smoke from cloud in the color SeaWiFS imagery than the black and white Geostationary Operational Environmental Satellite (GOES) imagery. However, GOES provides almost continuous coverage (animation of Sequoia National Forest fire) and has thermal infrared bands (Extensive Fires in the Western U.S.) which detect the heat from fires. On Monday July 31, 2000, eight fires covering 105,000 acres were burning in Montana, and three fires covering 12,000 acres were burning in Wyoming. Image provided by the SeaWiFS Project, NASA/Goddard Space Flight Center, and ORBIMAGE
Calibration Adjustments to the MODIS Aqua Ocean Color Bands
NASA Technical Reports Server (NTRS)
Meister, Gerhard
2012-01-01
After the end of the SeaWiFS mission in 2010 and the MERIS mission in 2012, the ocean color products of the MODIS on Aqua are the only remaining source to continue the ocean color climate data record until the VIIRS ocean color products become operational (expected for summer 2013). The MODIS on Aqua is well beyond its expected lifetime, and the calibration accuracy of the short wavelengths (412nm and 443nm) has deteriorated in recent years_ Initially, SeaWiFS data were used to improve the MODIS Aqua calibration, but this solution was not applicable after the end of the SeaWiFS mission_ In 2012, a new calibration methodology was applied by the MODIS calibration and support team using desert sites to improve the degradation trending_ This presentation presents further improvements to this new approach. The 2012 reprocessing of the MODIS Aqua ocean color products is based on the new methodology.
Mafrica, Stefano; Servel, Alain; Ruffier, Franck
2016-11-10
Here we present a novel bio-inspired optic flow (OF) sensor and its application to visual guidance and odometry on a low-cost car-like robot called BioCarBot. The minimalistic OF sensor was robust to high-dynamic-range lighting conditions and to various visual patterns encountered thanks to its M 2 APIX auto-adaptive pixels and the new cross-correlation OF algorithm implemented. The low-cost car-like robot estimated its velocity and steering angle, and therefore its position and orientation, via an extended Kalman filter (EKF) using only two downward-facing OF sensors and the Ackerman steering model. Indoor and outdoor experiments were carried out in which the robot was driven in the closed-loop mode based on the velocity and steering angle estimates. The experimental results obtained show that our novel OF sensor can deliver high-frequency measurements ([Formula: see text]) in a wide OF range (1.5-[Formula: see text]) and in a 7-decade high-dynamic light level range. The OF resolution was constant and could be adjusted as required (up to [Formula: see text]), and the OF precision obtained was relatively high (standard deviation of [Formula: see text] with an average OF of [Formula: see text], under the most demanding lighting conditions). An EKF-based algorithm gave the robot's position and orientation with a relatively high accuracy (maximum errors outdoors at a very low light level: [Formula: see text] and [Formula: see text] over about [Formula: see text] and [Formula: see text]) despite the low-resolution control systems of the steering servo and the DC motor, as well as a simplified model identification and calibration. Finally, the minimalistic OF-based odometry results were compared to those obtained using measurements based on an inertial measurement unit (IMU) and a motor's speed sensor.
NASA Astrophysics Data System (ADS)
Brown, John Edward Murray
Aspects of the hydrological cycle over the Bay of Bengal, the Andaman Sea, and their respective catchment areas are analyzed with a focus on seasonal and inter-annual variability. Taking an Earth System Sciences approach, this study examines the coupled terrestrial, oceanographic, and atmospheric processes involved in the region using various satellite remote sensing data sets. The Bay of Bengal was selected due to its unique combination of forcing mechanisms at work: (1) low latitude - high insolation regime, (2) monsoonal reversal of winds and currents, (3) immense quantities of freshwater input from river runoff and precipitation leading to strong surface stratification in the ocean, (4) occasional tropical cyclones and low pressure systems, and (5) equatorial oceanic forcing. The performance of two satellite-derived precipitation products were compared to weather station observations for 2002 and 2003 and evaluated for their potential as input for hydrological land surface models. Despite certain limitations these products reproduced well the monsoonal progression of rainfall and the natural variability of daily rainfall accumulation. They were found to be quite adequate for large, continental scale watershed modeling. River discharge estimates were generated for 2001 and 2002 using NASA's Land Information System, a University of Washington river routing model and a University of New Hampshire artificial river network. The routed model output performed well against measured observations for the Ganges/Brahmaputra combined river basin, but underestimated peak discharge periods at the height of the summer monsoon. Results for the other major river basins compared favorably with the available, but limited climatology. The oceanic response to the large riverine flux was examined using SeaWiFS ocean color imagery. A time series of bio-optical properties such as chlorophyll concentration, absorption by colored dissolved organic material, and backscatter from river sediments tracked the zone of the river influence into the central Bay. High, positive correlations of these properties with river discharge were found to be limited to the east coast of India down to the mouth of the Godavari and Krishna rivers and in the Gulf of Marataban off the mouth of the Irrawaddy and Salween rivers. Scatter plots and imagery enhancement techniques were employed to classify specific bio-optical provinces in terms of riverine, coastal shelf, and open ocean water masses. It was concluded that the spatial and temporal distribution of the inorganic component can be used to trace river plumes and fronts while the distribution of the organic component does not necessarily mirror the inorganic component as they are influenced by different processes. Within this Earth System Science framework, several avenues are available for further study.
Phytoplankton production in the Sargasso Sea as determined using optical mooring data
NASA Technical Reports Server (NTRS)
Waters, K. J.; Smith, R. C.; Marra, J.
1994-01-01
Optical measurements from an untended mooring provide high-frequency observations of in-water optical properties and permit the estimation of important biological parameters continuously as a function of time. A 9-month time series, composed of three separate deployments, of optical data from the BIOWATT 1987 deep-sea mooring located in the oligotrophic waters of the Sargasso Sea at 34 deg N, 70 deg W are presented. These data have been tested using several bio-optical models for the purpose of providing a continuous estimate of phytoplankton productivity. The data are discussed in the context of contemporaneous shipboard observations and for future ocean color satellite observations. We present a continuous estimation of phytoplankton productivity for the 9-month time series. Results from the first 70-day deployment are emphasized to demonstrate the utility of optical observations as proxy measures of biological parameters, to present preliminary analysis, and to compare our bio-optical observations with concurrent physical observations. The bio-optical features show variation in response to physical forcings including diel variations of incident solar irradiance, episodic changes corresponding to wind forcing, variability caused by advective mesoscale eddy events in the vicinity of the mooring, and seasonal variability corresponding to changes in solar radiation, shoaling of the mixed layer depth, and succession of phytoplankton populations.
NASA Astrophysics Data System (ADS)
Organelli, Emanuele; Claustre, Hervé; Bricaud, Annick; Barbieux, Marie; Uitz, Julia; D'Ortenzio, Fabrizio; Dall'Olmo, Giorgio
2017-05-01
Identification of oceanic regions characterized by particular optical properties is extremely important for ocean color applications. The departure from globally established bio-optical models (i.e., anomaly) introduces uncertainties in the retrieval of biogeochemical quantities from satellite observations. Thanks to an array of 105 Biogeochemical Argo floats acquiring almost daily downward irradiance measurements at selected wavelengths in the UV and blue region of the spectrum, we reexamined the natural variability of the spectral diffuse attenuation coefficients, Kd(λ), among the world's oceans and compared them to previously established bio-optical models. The analysis of 2847 measurements of Kd(λ) at 380 and 490 nm, within the first optical depth, provided a classification of the examined regions into three groups. The first one included the Black Sea, a water body characterized by a very high content of colored dissolved organic matter (CDOM). The second group was essentially composed by the subtropical gyres (Atlantic and Pacific Oceans), with optical properties consistent with previous models (i.e., no anomalies). High latitude (North Atlantic and Southern oceans) and temperate (Mediterranean Sea) seas formed the third group, in which optical properties departed from existing bio-optical models. Annual climatologies of the Kd(380)/Kd(490) ratio evidenced a persistent anomaly in the Mediterranean Sea, that we attributed to a higher-than-average CDOM contribution to total light absorption. In the North Atlantic subpolar gyre, anomalies were observed only in wintertime and were also attributed to high CDOM concentrations. In the Southern Ocean, the anomaly was likely related to high phytoplankton pigment packaging rather than to CDOM.
Towards a long-term chlorophyll-a data record in a turbid estuary using MODIS observations
NASA Astrophysics Data System (ADS)
Le, Chengfeng; Hu, Chuanmin; English, David; Cannizzaro, Jennifer; Chen, Zhiqiang; Feng, Lian; Boler, Richard; Kovach, Charles
2013-02-01
Despite recent advances in using satellite data for continuous monitoring of estuarine water quality parameters such as turbidity and water clarity, estimating chlorophyll-a concentrations (Chla) has remained problematic due to the optical complexity of estuarine waters and imperfect atmospheric correction. This poses a significant challenge to the community as synoptic and frequent Chla “measurements” from satellites are in high demand by various government agencies and environmental groups to help make management decisions. Here, using 10 years of in situ and Moderate Resolution Imaging Spectroradiometer (MODIS) measurements from a moderately sized, turbid estuary, Tampa Bay (Florida, USA), we developed and validated a new algorithm specifically designed for retrieving Chla from MODIS data. The algorithm takes the red-to-green remote-sensing reflectance (Rrs(λ)) band ratio of [Rrs(667) + Rrs(678)]/[Rrs(531) + Rrs(547)] as the independent variable, and estimates Chla through the non-linear regression function: Ln(Chla) = 1.91Ln(x) + 3.40 (R2 = 0.87, N = 97, p < 0.01, 1.5 < Chla < 80 mg m-3) where ‘x' is the band ratio. Validation of the algorithm using two independent datasets collected by different groups and near-concurrent MODIS measurements showed robust algorithm performance for Chla within this range, with mean relative errors of 25.8% and 41.7% for the two datasets. Time-series analyses at representative stations using both in situ and MODIS Chla also showed general agreement, with instances of noticeable discrepancy attributed to different measurement frequencies. The algorithm was implemented to establish a 10-year Chla data record for Tampa Bay in order to serve as a baseline for monitoring future phytoplankton bloom events. The 10-year Chla data record showed substantial variability in both space and time, with generally higher Chla observed during the wet season and in upper bay segments, and Chla minima observed in all bay segments during May and June. These spatial and temporal distributions appear to be regulated primarily by wind and river discharge, which also explain the significant declining trend in Chla since 2005. The established 10-year MODIS-based Chla data record provides complementary information to existing field-based monitoring programs, helping to make nutrient reduction management decisions. Furthermore, preliminary tests of the algorithm for the Chesapeake Bay and for Sea-viewing Wide Field-of-view Sensor (SeaWiFS) measurements suggest possible applicability of the proposed approach to other estuaries and satellite ocean color sensors.
NASA Astrophysics Data System (ADS)
Stamnes, S.; Hostetler, C. A.; Ferrare, R. A.; Hair, J. W.; Burton, S. P.; Liu, X.; Hu, Y.; Stamnes, K. H.; Chowdhary, J.; Brian, C.
2017-12-01
The SABOR (Ship-Aircraft Bio-Optical Research) campaign was conducted during the summer of 2014, in the Atlantic Ocean, over the Chesapeake Bay and the eastern coastal region of the United States. The NASA GISS Research Scanning Polarimeter, a multi-angle, multi-spectral polarimeter measured the upwelling polarized radiances from a B200 aircraft. We present results from the new "MAPP" algorithm for RSP that is based on optimal estimation and that can retrieve simultaneous aerosol microphysical properties (including effective radius, single-scattering albedo, and real refractive index) and ocean color products using accurate radiative transfer and Mie calculations. The algorithm was applied to data collected during SABOR to retrieve aerosol microphysics and ocean products for all Aerosols-Above-Ocean (AAO) scenes. The RSP MAPP products are compared against collocated aerosol extinction and backscatter profiles collected by the NASA LaRC airborne High Spectral Resolution Lidar (HSRL-1), including lidar depth profiles of the ocean diffuse attenuation coefficient and the hemispherical backscatter coefficient.
Evaluation of Airborne l- Band Multi-Baseline Pol-Insar for dem Extraction Beneath Forest Canopy
NASA Astrophysics Data System (ADS)
Li, W. M.; Chen, E. X.; Li, Z. Y.; Jiang, C.; Jia, Y.
2018-04-01
DEM beneath forest canopy is difficult to extract with optical stereo pairs, InSAR and Pol-InSAR techniques. Tomographic SAR (TomoSAR) based on different penetration and view angles could reflect vertical structure and ground structure. This paper aims at evaluating the possibility of TomoSAR for underlying DEM extraction. Airborne L-band repeat-pass Pol-InSAR collected in BioSAR 2008 campaign was applied to reconstruct the 3D structure of forest. And sum of kronecker product and algebraic synthesis algorithm were used to extract ground structure, and phase linking algorithm was applied to estimate ground phase. Then Goldstein cut-branch approach was used to unwrap the phases and then estimated underlying DEM. The average difference between the extracted underlying DEM and Lidar DEM is about 3.39 m in our test site. And the result indicates that it is possible for underlying DEM estimation with airborne L-band repeat-pass TomoSAR technique.
StrBioLib: a Java library for development of custom computationalstructural biology applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chandonia, John-Marc
2007-05-14
Summary: StrBioLib is a library of Java classes useful fordeveloping software for computational structural biology research.StrBioLib contains classes to represent and manipulate proteinstructures, biopolymer sequences, sets of biopolymer sequences, andalignments between biopolymers based on either sequence or structure.Interfaces are provided to interact with commonly used bioinformaticsapplications, including (PSI)-BLAST, MODELLER, MUSCLE, and Primer3, andtools are provided to read and write many file formats used to representbioinformatic data. The library includes a general-purpose neural networkobject with multiple training algorithms, the Hooke and Jeeves nonlinearoptimization algorithm, and tools for efficient C-style string parsingand formatting. StrBioLib is the basis for the Pred2ary secondarystructure predictionmore » program, is used to build the ASTRAL compendium forsequence and structure analysis, and has been extensively tested throughuse in many smaller projects. Examples and documentation are available atthe site below.Availability: StrBioLib may be obtained under the terms ofthe GNU LGPL license from http://strbio.sourceforge.net/Contact:JMChandonia@lbl.gov« less
Developing a hybrid dictionary-based bio-entity recognition technique.
Song, Min; Yu, Hwanjo; Han, Wook-Shin
2015-01-01
Bio-entity extraction is a pivotal component for information extraction from biomedical literature. The dictionary-based bio-entity extraction is the first generation of Named Entity Recognition (NER) techniques. This paper presents a hybrid dictionary-based bio-entity extraction technique. The approach expands the bio-entity dictionary by combining different data sources and improves the recall rate through the shortest path edit distance algorithm. In addition, the proposed technique adopts text mining techniques in the merging stage of similar entities such as Part of Speech (POS) expansion, stemming, and the exploitation of the contextual cues to further improve the performance. The experimental results show that the proposed technique achieves the best or at least equivalent performance among compared techniques, GENIA, MESH, UMLS, and combinations of these three resources in F-measure. The results imply that the performance of dictionary-based extraction techniques is largely influenced by information resources used to build the dictionary. In addition, the edit distance algorithm shows steady performance with three different dictionaries in precision whereas the context-only technique achieves a high-end performance with three difference dictionaries in recall.
StrBioLib: a Java library for development of custom computational structural biology applications.
Chandonia, John-Marc
2007-08-01
StrBioLib is a library of Java classes useful for developing software for computational structural biology research. StrBioLib contains classes to represent and manipulate protein structures, biopolymer sequences, sets of biopolymer sequences, and alignments between biopolymers based on either sequence or structure. Interfaces are provided to interact with commonly used bioinformatics applications, including (psi)-blast, modeller, muscle and Primer3, and tools are provided to read and write many file formats used to represent bioinformatic data. The library includes a general-purpose neural network object with multiple training algorithms, the Hooke and Jeeves non-linear optimization algorithm, and tools for efficient C-style string parsing and formatting. StrBioLib is the basis for the Pred2ary secondary structure prediction program, is used to build the astral compendium for sequence and structure analysis, and has been extensively tested through use in many smaller projects. Examples and documentation are available at the site below. StrBioLib may be obtained under the terms of the GNU LGPL license from http://strbio.sourceforge.net/
Developing a hybrid dictionary-based bio-entity recognition technique
2015-01-01
Background Bio-entity extraction is a pivotal component for information extraction from biomedical literature. The dictionary-based bio-entity extraction is the first generation of Named Entity Recognition (NER) techniques. Methods This paper presents a hybrid dictionary-based bio-entity extraction technique. The approach expands the bio-entity dictionary by combining different data sources and improves the recall rate through the shortest path edit distance algorithm. In addition, the proposed technique adopts text mining techniques in the merging stage of similar entities such as Part of Speech (POS) expansion, stemming, and the exploitation of the contextual cues to further improve the performance. Results The experimental results show that the proposed technique achieves the best or at least equivalent performance among compared techniques, GENIA, MESH, UMLS, and combinations of these three resources in F-measure. Conclusions The results imply that the performance of dictionary-based extraction techniques is largely influenced by information resources used to build the dictionary. In addition, the edit distance algorithm shows steady performance with three different dictionaries in precision whereas the context-only technique achieves a high-end performance with three difference dictionaries in recall. PMID:26043907
Invited Review Article: Review of centrifugal microfluidic and bio-optical disks
Nolte, David D.
2009-01-01
Spinning biodisks have advantages that make them attractive for specialized biochip applications. The two main classes of spinning biodisks are microfluidic disks and bio-optical compact disks (BioCD). Microfluidic biodisks take advantage of noninertial pumping for lab-on-a-chip devices using noninertial valves and switches under centrifugal and Coriolis forces to distribute fluids about the disks. BioCDs use spinning-disk interferometry, under the condition of common-path phase quadrature, to perform interferometric label-free detection of molecular recognition and binding. The optical detection of bound molecules on a disk is facilitated by rapid spinning that enables high-speed repetitive sampling to eliminate 1∕f noise through common-mode rejection of intensity fluctuations and extensive signal averaging. Multiple quadrature classes have been developed, such as microdiffraction, in-line, phase contrast, and holographic adaptive optics. Thin molecular films are detected through the surface dipole density with a surface height sensitivity for the detection of protein spots that is approximately 1 pm. This sensitivity easily resolves a submonolayer of solid-support immobilized antibodies and their antigen targets. Fluorescence and light scattering provide additional optical detection techniques on spinning disks. Immunoassays have been applied to haptoglobin using protein A∕G immobilization of antibodies and to prostate specific antigen. Small protein spots enable scalability to many spots per disk for high-throughput and highly multiplexed immonoassays. PMID:19895047
A system to measure the data quality of spectral remote-sensing reflectance of aquatic environments
NASA Astrophysics Data System (ADS)
Wei, Jianwei; Lee, Zhongping; Shang, Shaoling
2016-11-01
Spectral remote-sensing reflectance (Rrs, sr-1) is the key for ocean color retrieval of water bio-optical properties. Since Rrs from in situ and satellite systems are subject to errors or artifacts, assessment of the quality of Rrs data is critical. From a large collection of high quality in situ hyperspectral Rrs data sets, we developed a novel quality assurance (QA) system that can be used to objectively evaluate the quality of an individual Rrs spectrum. This QA scheme consists of a unique Rrs spectral reference and a score metric. The reference system includes Rrs spectra of 23 optical water types ranging from purple blue to yellow waters, with an upper and a lower bound defined for each water type. The scoring system is to compare any target Rrs spectrum with the reference and a score between 0 and 1 will be assigned to the target spectrum, with 1 for perfect Rrs spectrum and 0 for unusable Rrs spectrum. The effectiveness of this QA system is evaluated with both synthetic and in situ Rrs spectra and it is found to be robust. Further testing is performed with the NOMAD data set as well as with satellite Rrs over coastal and oceanic waters, where questionable or likely erroneous Rrs spectra are shown to be well identifiable with this QA system. Our results suggest that applications of this QA system to in situ data sets can improve the development and validation of bio-optical algorithms and its application to ocean color satellite data can improve the short-term and long-term products by objectively excluding questionable Rrs data.
Contribution to a bio-optical model for remote sensing of Lena River water
NASA Astrophysics Data System (ADS)
Örek, H.; Doerffer, R.; Röttgers, R.; Boersma, M.; Wiltshire, K. H.
2013-11-01
Bio-optical measurements and sampling were carried out in the delta of the Lena River (northern Siberia, Russia) between 26 June and 4 July 2011. The aim of this study was to determine the inherent optical properties of the Lena water, i.e., absorption, attenuation, and scattering coefficients, during the period of maximum runoff. This aimed to contribute to the development of a bio-optical model for use as the basis for optical remote sensing of coastal water of the Arctic. In this context the absorption by CDOM (colored dissolved organic matter) and particles, and the concentrations of total suspended matter, phytoplankton-pigments, and carbon were measured. CDOM was found to be the most dominant parameter affecting the optical properties of the river, with an absorption coefficient of 4.5-5 m-1 at 442 nm, which was almost four times higher than total particle absorption values at visible wavelength range. The wavelenght-dependence of absorption of the different water constituents was chracterized by determining the semi logarithmic spectral slope. Mean CDOM, and detritus slopes were 0.0149 nm-1(standard deviation (stdev) = 0.0003, n = 18), and 0.0057 nm-1 (stdev = 0.0017, n = 19), respectively, values which are typical for water bodies with high concentrations of dissolved and particulate carbon. Mean chlorophyll a and total suspended matter were 1.8 mg m-3 (stdev = 0.734 n = 18) and 31.9 g m-3 (stdev = 19.94, n = 27), respectively. DOC (dissolved organic carbon) was in the range 8-10 g m-3 and the total particulate carbon (PC) in the range 0.25-1.5 g m-3. The light penetration depth (Secchi disc depth) was in the range 30-90 cm and was highly correlated with the suspended matter concentration. The period of maximum river runoff in June was chosen to obtain bio-optical data when maximum water constituents are transported into the Laptev Sea. However, we are aware that more data from other seasons and other years need to be collected to establish a general bio-optical model of the Lena water and conclusively characterize the light climate with respect to primary production.
NASA Astrophysics Data System (ADS)
Lisker, Joseph S.
1999-01-01
A new conception of the scientific problem of information exchange in the system plant-man-environment is developed. The laser-optical methods and the system are described which allow computer automated investigation of bio-objects without damaging their vital function. The results of investigation of optical-physiological features of plants and seeds are presented. The effects of chlorophyll well and IR beg are discovered for plants and also the effects os water pumping and protein transformations are shown for seeds. The perspectives of the use of the optical methods and equipment suggested to solve scientific problems of agriculture are discussed.
NASA Astrophysics Data System (ADS)
Fromm, Michael; Bevilacqua, Richard; Servranckx, René; Rosen, James; Thayer, Jeffrey P.; Herman, Jay; Larko, David
2005-04-01
We report observations and analysis of a pyro-cumulonimbus event in the midst of a boreal forest fire blowup in Northwest Territories Canada, near Norman Wells, on 3-4 August 1998. We find that this blowup caused a five-fold increase in lower stratospheric aerosol burden, as well as multiple reports of anomalous enhancements of tropospheric gases and aerosols across Europe 1 week later. Our observations come from solar occultation satellites (POAM III and SAGE II), nadir imagers (GOES, AVHRR, SeaWiFS, DMSP), TOMS, lidar, and backscattersonde. First, we provide a detailed analysis of the 3 August eruption of extreme pyro-convection. This includes identifying the specific pyro-cumulonimbus cells that caused the lower stratospheric aerosol injection, and a meteorological analysis. Next, we characterize the altitude, composition, and opacity of the post-convection smoke plume on 4-7 August. Finally, the stratospheric impact of this injection is analyzed. Satellite images reveal two noteworthy pyro-cumulonimbus phenomena: (1) an active-convection cloud top containing enough smoke to visibly alter the reflectivity of the cloud anvil in the Upper Troposphere Lower Stratosphere (UTLS) and (2) a smoke plume, that endured for at least 2 hours, atop an anvil. The smoke pall deposited by the Norman Wells pyro-convection was a very large, optically dense, UTLS-level plume on 4 August that exhibited a mesoscale cyclonic circulation. An analysis of plume color/texture from SeaWiFS data, aerosol index, and brightness temperature establishes the extreme altitude and "pure" smoke composition of this unique plume. We show what we believe to be a first-ever measurement of strongly enhanced ozone in the lower stratosphere mingled with smoke layers. We conclude that two to four extreme pyro-thunderstorms near Norman Wells created a smoke injection of hemispheric scope that substantially increased stratospheric optical depth, transported aerosols 7 km above the tropopause (above ˜430 K potential temperature), and also perturbed lower stratospheric ozone.
NASA Astrophysics Data System (ADS)
Darmenova, Kremena; Sokolik, Irina N.; Darmenov, Anton
2005-01-01
This study presents a detailed examination of east Asian dust events during March-April of 2001, by combining satellite multisensor observation (Total Ozone Mapping Spectrometer (TOMS), Moderate-Resolution Imaging Spectroradiometer (MODIS), and Sea-Viewing Wide Field-of-View Sensor (SeaWiFS)) meteorological data from weather stations in China and Mongolia and the Pennsylania State University/National Center for Atmospheric Research Mesoscale Modeling System (MM5) driven by the National Centers for Environmental Prediction Reanalysis data. The main goal is to determine the extent to which the routine surface meteorological observations (including visibility) and satellite data can be used to characterize the spatiotemporal distribution of dust plumes at a range of scales. We also examine the potential of meteorological time series for constraining the dust emission schemes used in aerosol transport models. Thirty-five dust events were identified in the source region during March and April of 2001 and characterized on a case-by-case basis. The midrange transport routes were reconstructed on the basis of visibility observations and observed and MM5-predicted winds with further validation against satellite data. We demonstrate that the combination of visibility data, TOMS aerosol index, MODIS aerosol optical depth over the land, and a qualitative analysis of MODIS and SeaWiFS imagery enables us to constrain the regions of origin of dust outbreaks and midrange transport, though various limitations of individual data sets were revealed in detecting dust over the land. Only two long-range transport episodes were found. The transport routes and coverage of these dust episodes were reconstructed by using MODIS aerosol optical depth and TOMS aerosol index. Our analysis reveals that over the oceans the presence of persistent clouds poses a main problem in identifying the regions affected by dust transport, so only partial reconstruction of dust transport routes reaching the west coast of the United States was possible.
NASA Astrophysics Data System (ADS)
Upputuri, Paul Kumar; Pramanik, Manojit
2018-02-01
Phase shifting white light interferometry (PSWLI) has been widely used for optical metrology applications because of their precision, reliability, and versatility. White light interferometry using monochrome CCD makes the measurement process slow for metrology applications. WLI integrated with Red-Green-Blue (RGB) CCD camera is finding imaging applications in the fields optical metrology and bio-imaging. Wavelength dependent refractive index profiles of biological samples were computed from colour white light interferograms. In recent years, whole-filed refractive index profiles of red blood cells (RBCs), onion skin, fish cornea, etc. were measured from RGB interferograms. In this paper, we discuss the bio-imaging applications of colour CCD based white light interferometry. The approach makes the measurement faster, easier, cost-effective, and even dynamic by using single fringe analysis methods, for industrial applications.
Spectral variability of sea surface skylight reflectance and its effect on ocean color.
Cui, Ting-Wei; Song, Qing-Jun; Tang, Jun-Wu; Zhang, Jie
2013-10-21
In this study, sea surface skylight spectral reflectance ρ(λ) was retrieved by means of the non-linear spectral optimization method and a bio-optical model. The spectral variability of ρ(λ) was found to be mainly influenced by the uniformity of the incident skylight, and a model is proposed to predict the ρ(λ) spectral dependency based on skylight reflectance at 750 nm. It is demonstrated that using the spectrally variable ρ(λ), rather than a constant, yields an improved agreement between the above-water remote sensing reflectance R(rs)(λ) estimates and concurrent profiling ones. The findings of this study highlight the necessity to re-process the relevant historical above-water data and update ocean color retrieval algorithms accordingly.
NASA Astrophysics Data System (ADS)
Hames, J. B.; Ali, K.
2013-12-01
Millions of people visit the beaches of South Carolina every year and the increasing utilization of the coastal waters is leading to the deterioration of water quality and the marine ecosystem. Ecological stress on these environments is reflected by the increase in the frequency and severity of Harmful Algal Blooms (HABs). This was evident during recent summer seasons particularly in the shallow nearshore waters of Long Bay, South Carolina, an open coast embayment on the South Atlantic Bight. These aspects threaten human and marine life. The early detection of HABs in the coastal waters requires more efficient and accurate monitoring tools. Remote sensing provides synoptic view of the entire Long Bay waters at high temporal coverage and allows resource managers to effectively map and monitor algal bloom development, near real time. Various remote sensing (RS) algorithms have been developed but were mostly calibrated to low resolution global data and or other specific sites. In the summer of 2013, a suite of measurements and water samples were collected from 15 locations along the nearshore waters of Long Bay using the Grice Laboratory R/V. In this study, we evaluate the efficiency of 10 bio-optical blue-green and NIR-red based RS models applied to GER 1500 hyper spectral reflectance data to predict chlorophyll a, a proxy for phytoplankton density, in the Long Bay waters of SC. Efficiency of the algorithms performance in the study site were tested through a least squares regression and residual analysis. Results show that among the selected suite of algorithms the blue green models by Darecki and Stramski (2004) produced R2 of 0.68 with RMSE=0.39μg/l, Oc4v4 model by O'Reilly et al. (2000) gave R2 of 0.62 with RMSE=0.73ug/l, and the Oc2v4 also by O'Reilly et al (2000) gave R2 of 0.69 with RMSE=0.65. Among the NIR-red models, Moses et al (2009) two-band algorithm produced R2 of 0.75 and RMSE=1.79, and the three-band version generated R2 of 0.81 and RMSE=2.25ug/l. This suggests that the global RS models have the potential to monitor water quality parameters in the region but may require calibration for higher accuracy in Long Bay, SC.
NASA Astrophysics Data System (ADS)
Ruske, S. T.; Topping, D. O.; Foot, V. E.; Kaye, P. H.; Stanley, W. R.; Morse, A. P.; Crawford, I.; Gallagher, M. W.
2016-12-01
Characterisation of bio-aerosols has important implications within Environment and Public Health sectors. Recent developments in Ultra-Violet Light Induced Fluorescence (UV-LIF) detectors such as the Wideband Integrated bio-aerosol Spectrometer (WIBS) and the newly introduced Multiparameter bio-aerosol Spectrometer (MBS) has allowed for the real time collection of fluorescence, size and morphology measurements for the purpose of discriminating between bacteria, fungal Spores and pollen. This new generation of instruments has enabled ever-larger data sets to be compiled with the aim of studying more complex environments, yet the algorithms used for specie classification remain largely invalidated. It is therefore imperative that we validate the performance of different algorithms that can be used for the task of classification, which is the focus of this study. For unsupervised learning we test Hierarchical Agglomerative Clustering with various different linkages. For supervised learning, ten methods were tested; including decision trees, ensemble methods: Random Forests, Gradient Boosting and AdaBoost; two implementations for support vector machines: libsvm and liblinear; Gaussian methods: Gaussian naïve Bayesian, quadratic and linear discriminant analysis and finally the k-nearest neighbours algorithm. The methods were applied to two different data sets measured using a new Multiparameter bio-aerosol Spectrometer. We find that clustering, in general, performs slightly worse than the supervised learning methods correctly classifying, at best, only 72.7 and 91.1 percent for the two data sets. For supervised learning the gradient boosting algorithm was found to be the most effective, on average correctly classifying 88.1 and 97.8 percent of the testing data respectively across the two data sets. We discuss the wider relevance of these results with regards to challenging existing classification in real-world environments.
Nadine Gobron; Bernard Pinty; Ophélie Aussedat; Jing M. Chen; Warren B. Cohen; Rasmus Fensholt; Valery Gond; Karl Fred Huemmrich; Thomas Lavergne; Frédéric Méline; Jeffrey L. Privette; Inge Sandholt; Malcolm Taberner; David P. Turner; Michael M. Verstraete; Jean-Luc Widlowski
2006-01-01
This paper discusses the quality and the accuracy of the Joint Research Center (JRC) fraction of absorbed photosynthetically active radiation (FAPAR) products generated from an analysis of Sea-viewing Wide Field-of-view Sensor (SeaWiFS) data. The FAPAR value acts as an indicator of the presence and state of the vegetation and it can be estimated from remote sensing...
NASA Technical Reports Server (NTRS)
1999-01-01
Under a data purchase agreement with Goddard Space Flight Center, Orbital Sciences Corporation has been able to contract building of the Sea-Viewing Wide-Field-of-View Sensor (SeaWIFS). Orbital Sciences was then able commercialized the data that the satellite produces. These data are used to create daily fish finding maps, allowing fishing fleets to focus on locations where many commercially important surface feeding fish, like tuna and swordfish, congregate. In agriculture and forestry, SeaWIFS' images offer an alternative to direct on-site inspection or expensive serial photography.
NASA Astrophysics Data System (ADS)
Mizubayashi, Keiko; Kuwahara, Victor S.; Segaran, Thirukanthan C.; Zaleha, Kassim; Effendy, A. W. M.; Kushairi, M. R. M.; Toda, Tatsuki
2013-07-01
The East coast of Peninsular Malaysia is strongly influenced by the North-East (NE) monsoon, and may significantly influence the optical environment of coral-reef ecosystems. However, our knowledge of temporal variability, including episodic events, of environmental factors in Asian tropical regions is still limited. The objectives of this study were to (1) observe temporal variability in ultraviolet radiation (UVR) and photosynthetically active radiation (PAR) attenuation and (2) determine the bio-optical factors regulating the optical environment in shallow coral-reef waters. Downwelling UVR and PAR irradiance and in situ bio-optical factors were measured monthly near Bidong Island on the East coast of Peninsular Malaysia from June 2010 to June 2011. The NE monsoon was recognized between November 2010 and January 2011. The highest diffuse attenuation coefficient at 305 nm was 2.05 ± 0.03 m-1 in a coral-reef area on December 2010. The most significant bio-optical factor at 305, 380, 440 nm during the NE monsoon season was CDOM (89 ± 8% at 305 nm, 84 ± 9% at 380 nm and 49 ± 17% at 440 nm). All UVR attenuation coefficients showed significant correlations with the CDOM absorption coefficients (aCDOM). CDOM with relatively low S275-295 during the NE monsoon season (0.0177 ± 0.0020 nm-1) suggests terrestrial sources, which is also supported by the correlation between salinity and aCDOM(305). A significant correlation between S275-295 and the carbon specific absorbance coefficient (a*(305)) suggest the potential to measure DOC optically in these waters. The high CDOM during the NE monsoon season may have an important role to reduce harmful UVR exposure reaching benthic communities.
NASA Astrophysics Data System (ADS)
Franco, Renato A. M.; Hernandez, Fernando B. T.; Teixeira, Antonio H. C.
2014-10-01
Water productivity (WP) of various classes of soil usage from watersheds was estimated using the SAFER - Simple Algorithm For Evapotranspiration Retrieving - algorithm and the Monteith equation to estimate the parameters of biomass production (BIO). Monteith's equation is used to quantify the absorbed photosynthetically active radiation (APAR) and Actual Evapotranspiration (ET) was estimated with the SAFER algorithm. The objective of the research is to analyze the spatial-temporal water productivity in watersheds with different uses and soil occupation during the period from 1996 to 2010, in conditions of drought and using the Monteith model to estimate the production of BIO and using the SAFER model for ET. Results indicated an increase of 153.2% in ET value during the period 1997-2010, showing that the irrigated areas were responsible for this increase in ET values. In September 2000, image of day of year (DOY) 210 showed high values of BIO, with averages of 80.67 kg ha-1d-1. In the year 2010 (DOY:177), the mean value of BIO was 62.90 kg ha-1d-1, with an irrigated area with a maximum value of 227.5 kg ha-1d-1. The highest incremental values of BIO is verified from the start of irrigated areas equal to the value of ET, because there is a relationship between BIO and ET. The maximum water productivity (WP) value occurred in June/2001, with 3,08 kg m-3, the second highest value was in 2010 (DOY:177), with a value of 2,97 kg m-3. Irrigated agriculture show the highest WP value, with maximum value of 6.7 kg m-3. The lowest WP was obtained for DOY 267, because of the dry season with condition of low soil moisture.
Simulation of optical signaling among nano-bio-sensors: enhancing of bioimaging contrast.
SalmanOgli, A; Behzadi, S; Rostami, A
2014-09-01
In this article, the nanoparticle-dye systems is designed and simulated to illustrate the possibility of enhancement in optical imaging contrast. For this, the firefly optimization technique is used as an optical signaling mechanism among agents (nanoparticle-dye) because fireflies attract together due to their flashing light and optical signaling that is produced by a process of bioluminescence (also it has been investigated that other parameters such as neural response and brain function have essential role in attracting fireflies to each other). The first parameter is coincided with our work, because the nanoparticle-dye systems have ability to augment of received light and its amplification cause that the designed complex system act as a brightness particle. This induced behavior of nanoparticles can be considered as an optical communication and signaling. Indeed by functionalization of nanoparticles and then due to higher brightness of the tumor site because of active targeting, the other particles can be guided to reach toward the target point and the signaling among agents is done by optical relation similar to firefly nature. Moreover, the fundamental of this work is the use of surface plasmon resonance and plasmons hybridization, in which photonic signals can be manipulated on the nanoscale and can be used in biomedical applications such as electromagnetic field enhancement. Finally, it can be mentioned that by simultaneously using plasmon hybridization, near-field augmentation, and firefly algorithm, the optical imaging contrast can be impressively improved.
Bio-Optics and Bio-Inspired Optical Materials.
Tadepalli, Sirimuvva; Slocik, Joseph M; Gupta, Maneesh K; Naik, Rajesh R; Singamaneni, Srikanth
2017-10-25
Through the use of the limited materials palette, optimally designed micro- and nanostructures, and tightly regulated processes, nature demonstrates exquisite control of light-matter interactions at various length scales. In fact, control of light-matter interactions is an important element in the evolutionary arms race and has led to highly engineered optical materials and systems. In this review, we present a detailed summary of various optical effects found in nature with a particular emphasis on the materials and optical design aspects responsible for their optical functionality. Using several representative examples, we discuss various optical phenomena, including absorption and transparency, diffraction, interference, reflection and antireflection, scattering, light harvesting, wave guiding and lensing, camouflage, and bioluminescence, that are responsible for the unique optical properties of materials and structures found in nature and biology. Great strides in understanding the design principles adapted by nature have led to a tremendous progress in realizing biomimetic and bioinspired optical materials and photonic devices. We discuss the various micro- and nanofabrication techniques that have been employed for realizing advanced biomimetic optical structures.
Real-time processing of EMG signals for bionic arm purposes
NASA Astrophysics Data System (ADS)
Olid Dominguez, Ferran; Wawrzyniak, Zbigniew M.
2016-09-01
This paper is connected with the problem of prostheses, that have always been a necessity for the human being. Bio-physiological signals from muscles, electromyographic signals have been collected, analyzed and processed in order to implement a real-time algorithm which is capable of differentiation of two different states of a bionic hand: open and closed. An algorithm for real-time electromyographic signal processing with almost no false positives is presented and it is explained that in bio-physiological experiments proper signal processing is of great importance.
Xian, Zhiwen; Hu, Xiaoping; Lian, Junxiang; Zhang, Lilian; Cao, Juliang; Wang, Yujie; Ma, Tao
2014-09-15
Navigation plays a vital role in our daily life. As traditional and commonly used navigation technologies, Inertial Navigation System (INS) and Global Navigation Satellite System (GNSS) can provide accurate location information, but suffer from the accumulative error of inertial sensors and cannot be used in a satellite denied environment. The remarkable navigation ability of animals shows that the pattern of the polarization sky can be used for navigation. A bio-inspired POLarization Navigation Sensor (POLNS) is constructed to detect the polarization of skylight. Contrary to the previous approach, we utilize all the outputs of POLNS to compute input polarization angle, based on Least Squares, which provides optimal angle estimation. In addition, a new sensor calibration algorithm is presented, in which the installation angle errors and sensor biases are taken into consideration. Derivation and implementation of our calibration algorithm are discussed in detail. To evaluate the performance of our algorithms, simulation and real data test are done to compare our algorithms with several exiting algorithms. Comparison results indicate that our algorithms are superior to the others and are more feasible and effective in practice.
Novel bio-inspired smart control for hazard mitigation of civil structures
NASA Astrophysics Data System (ADS)
Kim, Yeesock; Kim, Changwon; Langari, Reza
2010-11-01
In this paper, a new bio-inspired controller is proposed for vibration mitigation of smart structures subjected to ground disturbances (i.e. earthquakes). The control system is developed through the integration of a brain emotional learning (BEL) algorithm with a proportional-integral-derivative (PID) controller and a semiactive inversion (Inv) algorithm. The BEL algorithm is based on the neurologically inspired computational model of the amygdala and the orbitofrontal cortex. To demonstrate the effectiveness of the proposed hybrid BEL-PID-Inv control algorithm, a seismically excited building structure equipped with a magnetorheological (MR) damper is investigated. The performance of the proposed hybrid BEL-PID-Inv control algorithm is compared with that of passive, PID, linear quadratic Gaussian (LQG), and BEL control systems. In the simulation, the robustness of the hybrid BEL-PID-Inv control algorithm in the presence of modeling uncertainties as well as external disturbances is investigated. It is shown that the proposed hybrid BEL-PID-Inv control algorithm is effective in improving the dynamic responses of seismically excited building structure-MR damper systems.
Clinical application of bio ceramics
NASA Astrophysics Data System (ADS)
Anu, Sharma; Gayatri, Sharma
2016-05-01
Ceramics are the inorganic crystalline material. These are used in various field such as biomedical, electrical, electronics, aerospace, automotive and optical etc. Bio ceramics are the one of the most active areas of research. Bio ceramics are the ceramics which are biocompatible. The unique properties of bio ceramics make them an attractive option for medical applications and offer some potential advantages over other materials. During the past three decades, a number of major advances have been made in the field of bio ceramics. This review focuses on the use of these materials in variety of clinical scenarios.
Clinical application of bio ceramics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anu, Sharma, E-mail: issaranu@gmail.com; Gayatri, Sharma, E-mail: sharmagayatri@gmail.com
Ceramics are the inorganic crystalline material. These are used in various field such as biomedical, electrical, electronics, aerospace, automotive and optical etc. Bio ceramics are the one of the most active areas of research. Bio ceramics are the ceramics which are biocompatible. The unique properties of bio ceramics make them an attractive option for medical applications and offer some potential advantages over other materials. During the past three decades, a number of major advances have been made in the field of bio ceramics. This review focuses on the use of these materials in variety of clinical scenarios.
Patterns and Variability in Global Ocean Chlorophyll: Satellite Observations and Modeling
NASA Technical Reports Server (NTRS)
Gregg, Watson
2004-01-01
Recent analyses of SeaWiFS data have shown that global ocean chlorophyll has increased more than 4% since 1998. The North Pacific ocean basin has increased nearly 19%. These trend analyses follow earlier results showing decadal declines in global ocean chlorophyll and primary production. To understand the causes of these changes and trends we have applied the newly developed NASA Ocean Biogeochemical Assimilation Model (OBAM), which is driven in mechanistic fashion by surface winds, sea surface temperature, atmospheric iron deposition, sea ice, and surface irradiance. The model utilizes chlorophyll from SeaWiFS in a daily assimilation. The model has in place many of the climatic variables that can be expected to produce the changes observed in SeaWiFS data. This enables us to diagnose the model performance, the assimilation performance, and possible causes for the increase in chlorophyll. A full discussion of the changes and trends, possible causes, modeling approaches, and data assimilation will be the focus of the seminar.
Solar Spectral Radiative Forcing Due to Dust Aerosol During the Puerto Rico Dust Experiment
NASA Technical Reports Server (NTRS)
Pilewskie, P.; Bergstrom, R.; Rabbette, M.; Livingston, J.; Russell, P.; Gore, Warren J. (Technical Monitor)
2000-01-01
During the Puerto Rico Dust Experiment (PRIDE) upwelling and downwelling solar spectral irradiance was measured on board the SPAWAR Navajo and downwelling solar spectral flux was measured at a surface site using the NASA Ames Solar Spectral Flux Radiometer. These data will be used to determine the net solar radiative forcing of dust aerosol and to quantify the solar spectral radiative energy budget in the presence of elevated aerosol loading. We will assess the variability in spectral irradiance using formal principal component analysis procedures and relate the radiative variability to aerosol microphysical properties. Finally, we will characterize the sea surface reflectance to improve aerosol optical depth retrievals from the AVHRR satellite and to validate SeaWiFS ocean color products.
NASA Astrophysics Data System (ADS)
Garraffo, Z. D.; Nadiga, S.; Krasnopolsky, V.; Mehra, A.; Bayler, E. J.; Kim, H. C.; Behringer, D.
2016-02-01
A Neural Network (NN) technique is used to produce consistent global ocean color estimates, bridging multiple satellite ocean color missions by linking ocean color variability - primarily driven by biological processes - with the physical processes of the upper ocean. Satellite-derived surface variables - sea-surface temperature (SST) and sea-surface height (SSH) fields - are used as signatures of upper-ocean dynamics. The NN technique employs adaptive weights that are tuned by applying statistical learning (training) algorithms to past data sets, providing robustness with respect to random noise, accuracy, fast emulations, and fault-tolerance. This study employs Sea-viewing Wide Field-of-View Sensor (SeaWiFS) chlorophyll-a data for 1998-2010 in conjunction with satellite SSH and SST fields. After interpolating all data sets to the same two-degree latitude-longitude grid, the annual mean was removed and monthly anomalies extracted . The NN technique wass trained for even years of that period and tested for errors and bias for the odd years. The NN output are assessed for: (i) bias, (ii) variability, (iii) root-mean-square error (RMSE), and (iv) cross-correlation. A Jacobian is evaluated to estimate the impact of each input (SSH, SST) on the NN chlorophyll-a estimates. The differences between an ensemble of NNs vs a single NN are examined. After the NN is trained for the SeaWiFS period, the NN is then applied and validated for 2005-2015, a period covered by other satellite missions — the Moderate Resolution Imaging Spectroradiometer (MODIS AQUA) and the Visible Imaging Infrared Radiometer Suite (VIIRS).
NASA Technical Reports Server (NTRS)
Hooker, Stanford B. (Editor); Zibordi, Giuseppe; Berthon, Jean-Francois; Bailey, Sean W.; Pietras, Christophe M.; Firestone, Elaine R. (Editor)
2000-01-01
This report documents the scientific activities that took place at the Acqua Alta Oceanographic Tower (AAOT) in the northern Adriatic Sea off the coast of Italy from 2-6 August 1999. The ultimate objective of the field campaign was to evaluate the capabilities of a new instrument called the SeaWiFS Photometer Revision for Incident Surface Measurements (SeaPRISM). SeaPRISM is based on a CE-318 sun photometer made by CIMEL Electronique (Paris, France). The CE-318 is an automated, robotic system which measures the direct sun irradiance plus the sky radiance in the sun plane and in the almucantar plane. The data are transmitted over a satellite link, and this remote operation capability has made the device very useful for atmospheric measurements. The revision to the CE-318 that makes the instrument potentially useful for SeaWiFS calibration and validation activities is to include a capability for measuring the radiance leaving the sea surface in wavelengths suitable for the determination of chlorophyll a concentration. The initial evaluation of this new capability involved above- and in-water measurement protocols. An intercomparison of the water-leaving radiances derived from SeaPRISM and an in-water system showed the overall spectral agreement was approximately 8.6%, but the blue-green channels intercompared at the 5% level. A blue-green band ratio comparison was at the 4% level.
NASA Technical Reports Server (NTRS)
Hooker, Stanford B. (Editor); Firestone, Elaine R. (Editor); Johnson, B. Carol; Yoon, Howard W.; Bruce, Sally S.; Shaw, Ping-Shine; Thompson, Ambler; Hooker, Stanford B.; Barnes, Robert A.; Eplee, Robert E., Jr.;
1999-01-01
This report documents the fifth Sea-viewing Wide Field-of-view Sensor (SeaWiFS) Intercalibration Round-Robin Experiment (SIRREX-5), which was held at the National Institute of Standards and Technology (NIST) on 23-30 July 1996. The agenda for SIRREX-5 was established based on recommendations made during SIRREX-4. For the first time in a SIRREX activity, instrument intercomparisons were performed at field sites, which were near NIST. The goals of SIRREX-5 were to continue the emphasis on training and the implementation of standard measurement practices, investigate the calibration methods and measurement chains in use by the oceanographic community, provide opportunities for discussion, and intercompare selected instruments. As at SIRREX-4, the day was divided between morning lectures and afternoon laboratory exercises. A set of core laboratory sessions were performed: 1) in-water radiant flux measurements; 2) in-air radiant flux measurements; 3) spectral radiance responsivity measurements using the plaque method; 4) device calibration or stability monitoring with portable field sources; and 5) various ancillary exercises designed to illustrate radiometric concepts. Before, during, and after SIRREX-5, NIST calibrated the SIRREX-5 participating radiometers for radiance and irradiance responsivity. The Facility for Automated Spectroradiometric Calibrations (FASCAL) was scheduled for spectral irradiance calibrations for standard lamps during SIRREX-5. Three lamps from the SeaWiFS community were submitted and two were calibrated.
Combining Satellite Ocean Color and Hydrodynamic Model Uncertainties in Bio-Optical Forecasts
2014-04-03
observed chlorophyll distribution for that day (MODIS Image for October 17, 2011), without regard to sign, I.e., IFigs. 11(c)-11(a)l. Black pixels indicate...time using the current field from the model. Uncertainties in both the satellite chlorophyll values and the currents from the circulation model impact...ensemole techniques to partition the chlorophyll uncertainties into components due to atmospheric correction and bio-optical inversion. By combining
The atmospheric correction algorithm for HY-1B/COCTS
NASA Astrophysics Data System (ADS)
He, Xianqiang; Bai, Yan; Pan, Delu; Zhu, Qiankun
2008-10-01
China has launched her second ocean color satellite HY-1B on 11 Apr., 2007, which carried two remote sensors. The Chinese Ocean Color and Temperature Scanner (COCTS) is the main sensor on HY-1B, and it has not only eight visible and near-infrared wavelength bands similar to the SeaWiFS, but also two more thermal infrared bands to measure the sea surface temperature. Therefore, COCTS has broad application potentiality, such as fishery resource protection and development, coastal monitoring and management and marine pollution monitoring. Atmospheric correction is the key of the quantitative ocean color remote sensing. In this paper, the operational atmospheric correction algorithm of HY-1B/COCTS has been developed. Firstly, based on the vector radiative transfer numerical model of coupled oceanatmosphere system- PCOART, the exact Rayleigh scattering look-up table (LUT), aerosol scattering LUT and atmosphere diffuse transmission LUT for HY-1B/COCTS have been generated. Secondly, using the generated LUTs, the exactly operational atmospheric correction algorithm for HY-1B/COCTS has been developed. The algorithm has been validated using the simulated spectral data generated by PCOART, and the result shows the error of the water-leaving reflectance retrieved by this algorithm is less than 0.0005, which meets the requirement of the exactly atmospheric correction of ocean color remote sensing. Finally, the algorithm has been applied to the HY-1B/COCTS remote sensing data, and the retrieved water-leaving radiances are consist with the Aqua/MODIS results, and the corresponding ocean color remote sensing products have been generated including the chlorophyll concentration and total suspended particle matter concentration.
NASA Astrophysics Data System (ADS)
Kramer, S. J.; Sosik, H. M.; Roesler, C. S.
2016-02-01
Satellite remote sensing of ocean color allows for estimates of phytoplankton biomass on broad spatial and temporal scales. Recently, a variety of approaches have been offered for determining phytoplankton taxonomic composition or phytoplankton functional types (PFTs) from remote sensing reflectance. These bio-optical algorithms exploit spectral differences to discriminate waters dominated by different types of cells. However, the efficacy of these models remains difficult to constrain due to limited datasets for detailed validation. In this study, we examined the region around the Martha's Vineyard Coastal Observatory (MVCO), a near-shore location on the New England shelf with optically complex coastal waters. This site offers many methods for detailed validation of ocean color algorithms: an AERONET-OC above-water radiometry system provides sea-truth ocean color observations; time series of absorption and backscattering coefficients are measured; and phytoplankton composition is assessed with a combination of continuous in situ flow cytometry and intermittent discrete sampling for HPLC pigments. Our analysis showed that even models originally parameterized for the Northwest Atlantic perform poorly in capturing the variability in relationships between optical properties and water constituents at coastal sites such as MVCO. We refined models with local parameterizations of variability in absorption and backscattering coefficients, and achieved much better agreement of modeled and observed relationships between predicted spectral reflectance, chlorophyll concentration, and indices of phytoplankton composition such as diatom dominance. Applying these refined models to satellite remote sensing imagery offers the possibility of describing large-scale variations in phytoplankton community structure both at MVCO and on the surrounding shelf over space and time.
NASA Technical Reports Server (NTRS)
DelCastillo, Carlos E.; Coble, Paula G.; Conmy, Robyn N.; Mueller-Karger, Frank E.; Vanderbloomen, Lisa; Vargo, Gabriel A.
2000-01-01
We performed multispectral in-situ fluorescence measurement of colored dissolved organic matter and chlorophyll in surface water of the West Florida Shelf using West Labs Spectral absorption and Fluorescence Instrument (SAFIre). Continuous measurements underway allowed us to simultaneously map the dispersion of riverine organic material and chlorophyll on the shelf. By using two fluorescence emission ratios we were able to differentiate between riverine and marine CDOM. Our data also showed unusually high concentrations of CDOM offshore. These were attributed to an intrusion of the Mississippi River Plume. We performed limited comparisons between in-situ chlorophyll concentrations measured with SAFIre and chlorophyll values obtained from SeaWiFS satellite data using OC4 and MODIS algorithm. Our results show that, although both algorithms overestimated chlorophyll, MODIS performed better than OC4, particularly in areas with high CDOM concentrations. Analysis of the relationship between chlorophyll and CDOM concentrations within the study area showed regional variability causes by differences in river source.
NASA Technical Reports Server (NTRS)
Guild, Liane S.; Hooker, Stanford B.; Kudela, Raphael; Morrow, John; Russell, Philip; Myers, Jeffrey; Dunagan, Stephen; Palacios, Sherry; Livingston, John; Negrey, Kendra;
2015-01-01
Worldwide, coastal marine ecosystems are exposed to land-based sources of pollution and sedimentation from anthropogenic activities including agriculture and coastal development. Ocean color products from satellite sensors provide information on chlorophyll (phytoplankton pigment), sediments, and colored dissolved organic material. Further, ship-based in-water measurements and emerging airborne measurements provide in situ data for the vicarious calibration of current and next generation satellite ocean color sensors and to validate the algorithms that use the remotely sensed observations. Recent NASA airborne missions over Monterey Bay, CA, have demonstrated novel above- and in-water measurement capabilities supporting a combined airborne sensor approach (imaging spectrometer, microradiometers, and a sun photometer). The results characterize coastal atmospheric and aquatic properties through an end-to-end assessment of image acquisition, atmospheric correction, algorithm application, plus sea-truth observations from state-of-the-art instrument systems. The primary goal of the airborne missions was to demonstrate the following in support of calibration and validation exercises for satellite coastal ocean color products: 1) the utility of a multi-sensor airborne instrument suite to assess the bio-optical properties of coastal California, including water quality; and 2) the importance of contemporaneous atmospheric measurements to improve atmospheric correction in the coastal zone. Utilizing an imaging spectrometer optimized in the blue to green spectral domain enables higher signal for detection of the relatively dark radiance measurements from marine and freshwater ecosystem features. The novel airborne instrument, Coastal Airborne In-situ Radiometers (C-AIR) provides measurements of apparent optical properties with high dynamic range and fidelity for deriving exact water leaving radiances at the land-ocean boundary, including radiometrically shallow aquatic ecosystems. Simultaneous measurements supporting empirical atmospheric correction of image data were accomplished using the Ames Airborne Tracking Sunphotometer (AATS-14). Flight operations are presented for the instrument payloads using the CIRPAS Twin Otter flown over Monterey Bay during the seasonal fall algal bloom in 2011 (COAST) and 2013 (OCEANIA) to support bio-optical measurements of phytoplankton for coastal zone research. Further, this airborne capability can be responsive to first flush rain events that deliver higher concentrations of sediments and pollution to coastal waters via watersheds and overland flow.
Segmentation of 830- and 1310-nm LASIK corneal optical coherence tomography images
NASA Astrophysics Data System (ADS)
Li, Yan; Shekhar, Raj; Huang, David
2002-05-01
Optical coherence tomography (OCT) provides a non-contact and non-invasive means to visualize the corneal anatomy at micron scale resolution. We obtained corneal images from an arc-scanning (converging) OCT system operating at a wavelength of 830nm and a fan-shaped-scanning high-speed OCT system with an operating wavelength of 1310nm. Different scan protocols (arc/fan) and data acquisition rates, as well as wavelength dependent bio-tissue backscatter contrast and optical absorption, make the images acquired using the two systems different. We developed image-processing algorithms to automatically detect the air-tear interface, epithelium-Bowman's layer interface, laser in-situ keratomileusis (LASIK) flap interface, and the cornea-aqueous interface in both kinds of images. The overall segmentation scheme for 830nm and 1310nm OCT images was similar, although different strategies were adopted for specific processing approaches. Ultrasound pachymetry measurements of the corneal thickness and Placido-ring based corneal topography measurements of the corneal curvature were made on the same day as the OCT examination. Anterior/posterior corneal surface curvature measurement with OCT was also investigated. Results showed that automated segmentation of OCT images could evaluate anatomic outcome of LASIK surgery.
NASA Technical Reports Server (NTRS)
Hsu, N. Christina; Bettenhausen, Corey; Sawyer, Andrew; Tsay, Si-Chee
2012-01-01
The impact of natural and anthropogenic sources of aerosols has gained increasing attention from scientific communities in recent years. Indeed, tropospheric aerosols not only perturb radiative energy balance by interacting with solar and terrestrial radiation, but also by changing cloud properties and lifetime. Furthermore, these anthropogenic and natural air particles, once generated over the source regions, can be transported out of the boundary layer into the free troposphere and can travel thousands of kilometers across oceans and continents resulting in important biogeochemical impacts on the ecosystem. With the launch of SeaWiFS in 1997, Terra/MODIS in 1999, and Aqua/MODIS in 2002, high quality comprehensive aerosol climatology is becoming feasible for the first time. As a result of these unprecedented data records, studies of the radiative and biogeochemical effects due to tropospheric aerosols are now possible. In this talk, we will demonstrate how this newly available SeaWiFS/MODIS aerosol climatology can provide an important piece of puzzles in reducing the uncertainty of estimated climatic forcing due to aerosols. We will start with the global distribution of aerosol loading and their variabilities over both land and ocean on short- and long-term temporal scales observed over the last decade. The recent progress made in Deep Blue aerosol algorithm on improving accuracy of these Sea WiFS / MODIS aerosol products in particular over land will be discussed. The impacts on quantifying physical and optical processes of aerosols over source regions of adding the Deep Blue products of aerosol properties over bright-reflecting surfaces into Sea WiFS / MODIS as well as VIIRS data suite will also be addressed. We will also show the intercomparison results of SeaWiFS/MODIS retrieved aerosol optical thickness with data from ground based AERONET sunphotometers over land and ocean as well as with other satellite measurements. The trends observed in global aerosol loadings of both natural and anthropogenic sources based upon more than a decade of combined MODIS/SeaWiFS data (1997-2011) will be discussed. We will also address the importance of various key issues such as differences in spatial-temporal sampling rates and observation time between different satellite measurements could potentially impact these intercomparisons results, especially for using the monthly mean data, and thus on estimates of long-term aerosol trends.
Ahn, Jae-Hyun; Park, Young-Je; Kim, Wonkook; Lee, Boram
2016-12-26
An estimation of the aerosol multiple-scattering reflectance is an important part of the atmospheric correction procedure in satellite ocean color data processing. Most commonly, the utilization of two near-infrared (NIR) bands to estimate the aerosol optical properties has been adopted for the estimation of the effects of aerosols. Previously, the operational Geostationary Color Ocean Imager (GOCI) atmospheric correction scheme relies on a single-scattering reflectance ratio (SSE), which was developed for the processing of the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) data to determine the appropriate aerosol models and their aerosol optical thicknesses. The scheme computes reflectance contributions (weighting factor) of candidate aerosol models in a single scattering domain then spectrally extrapolates the single-scattering aerosol reflectance from NIR to visible (VIS) bands using the SSE. However, it directly applies the weight value to all wavelengths in a multiple-scattering domain although the multiple-scattering aerosol reflectance has a non-linear relationship with the single-scattering reflectance and inter-band relationship of multiple scattering aerosol reflectances is non-linear. To avoid these issues, we propose an alternative scheme for estimating the aerosol reflectance that uses the spectral relationships in the aerosol multiple-scattering reflectance between different wavelengths (called SRAMS). The process directly calculates the multiple-scattering reflectance contributions in NIR with no residual errors for selected aerosol models. Then it spectrally extrapolates the reflectance contribution from NIR to visible bands for each selected model using the SRAMS. To assess the performance of the algorithm regarding the errors in the water reflectance at the surface or remote-sensing reflectance retrieval, we compared the SRAMS atmospheric correction results with the SSE atmospheric correction using both simulations and in situ match-ups with the GOCI data. From simulations, the mean errors for bands from 412 to 555 nm were 5.2% for the SRAMS scheme and 11.5% for SSE scheme in case-I waters. From in situ match-ups, 16.5% for the SRAMS scheme and 17.6% scheme for the SSE scheme in both case-I and case-II waters. Although we applied the SRAMS algorithm to the GOCI, it can be applied to other ocean color sensors which have two NIR wavelengths.
Dhanalakshmi, A; Palanimurugan, A; Natarajan, B
2018-09-01
Mono, di and polysaccharides of glucose (C 6 H 12 O 6 ), sucrose (C 12 H 24 O 12 ) and starch (C 6 H 12 O 6 ) n bio-template ZnO nanoparticles (NPs) has prepared by chemical precipitation method. Saccharides bio-template ZnO (SBts-ZnO) NPs were efficiently prepared for their structural and optical properties were examined by using XRD, FE-SEM, AFM, FTIR, UV and PL techniques. All the samples are polycrystalline nature with a preferential orientation depending on the (1 0 1) plane. The reduction of crystalline size by utilizing glucose, sucrose and starch bio-template of ZnO NPs. FE-SEM images revealed that the spherical and nano-rods like morphologies for ZnO and SBts-ZnO NPs respectively. AFM recorded images shows spherical features that confirmed and also the morphological changes were noticed with the addition of polymers. Interaction of bio-templated saccharides (glucose G 1 , sucrose S 2 & starch S n ) molecules was proved by FTIR study. Optical absorbance and emission behaviours were investigated using UV-Vis and photoluminescence techniques. The antibacterial study revealed that SBts-ZnO have excellent antibacterial effect than ZnO. The S n -ZnO sample has potent antibacterial activity against the Proteus vulgaris followed by Klebsiella pneumoniae, Escherichia coli and Staphylococcus aureus. Copyright © 2018 Elsevier B.V. All rights reserved.
Forest Fires in Russia and Northern China
NASA Technical Reports Server (NTRS)
2002-01-01
Smoke plumes from forest fires scattered along the border between the Russian Far East and northern China are clearly visible in this true-color image from the Sea-viewing Wide-Field-of-view Sensor (SeaWiFS) on June 16, 2000. Fires in Siberia occur every summer, and severe outbreaks occur every ten years or so, with the most recent in 1998. The fires are ignited by lightning, and are so remote that it is impossible to fight them effectively. Provided by the SeaWiFS Project, NASA/Goddard Space Flight Center, and ORBIMAGE
Convergence Zone over the Patagonian Shelf
NASA Technical Reports Server (NTRS)
2002-01-01
The bright waters off the east coast of Argentina mark the convergence of the Malvinas and Brazil Currents. The interaction of the two currents brings nutrients from the dark ocean depths to the sunlit surface, resulting in dense blooms of phytoplankton, especially in the spring and early summer. The Sea-viewing Wide Field-of-view Sensor (SeaWiFS) imaged the area on November 29, 2001. For more information, read Convergence Zones: Where the Action Is Image courtesy the SeaWiFS Project, NASA/Goddard Space Flight Center, and ORBIMAGE
Learning from Bees: An Approach for Influence Maximization on Viral Campaigns
Sankar, C. Prem; S., Asharaf
2016-01-01
Maximisation of influence propagation is a key ingredient to any viral marketing or socio-political campaigns. However, it is an NP-hard problem, and various approximate algorithms have been suggested to address the issue, though not largely successful. In this paper, we propose a bio-inspired approach to select the initial set of nodes which is significant in rapid convergence towards a sub-optimal solution in minimal runtime. The performance of the algorithm is evaluated using the re-tweet network of the hashtag #KissofLove on Twitter associated with the non-violent protest against the moral policing spread to many parts of India. Comparison with existing centrality based node ranking process the proposed method significant improvement on influence propagation. The proposed algorithm is one of the hardly few bio-inspired algorithms in network theory. We also report the results of the exploratory analysis of the network kiss of love campaign. PMID:27992472
New Secure E-mail System Based on Bio-Chaos Key Generation and Modified AES Algorithm
NASA Astrophysics Data System (ADS)
Hoomod, Haider K.; Radi, A. M.
2018-05-01
The E-mail messages exchanged between sender’s Mailbox and recipient’s Mailbox over the open systems and insecure Networks. These messages may be vulnerable to eavesdropping and itself poses a real threat to the privacy and data integrity from unauthorized persons. The E-mail Security includes the following properties (Confidentiality, Authentication, Message integrity). We need a safe encryption algorithm to encrypt Email messages such as the algorithm Advanced Encryption Standard (AES) or Data Encryption Standard DES, as well as biometric recognition and chaotic system. The proposed E-mail system security uses modified AES algorithm and uses secret key-bio-chaos that consist of biometric (Fingerprint) and chaotic system (Lu and Lorenz). This modification makes the proposed system more sensitive and random. The execution time for both encryption and decryption of the proposed system is much less from original AES, in addition to being compatible with all Mail Servers.
Malloch, L; Kadivar, K; Putz, J; Levett, P N; Tang, J; Hatchette, T F; Kadkhoda, K; Ng, D; Ho, J; Kim, J
2013-12-01
The CLSI-M53-A, Criteria for Laboratory Testing and Diagnosis of Human Immunodeficiency Virus (HIV) Infection; Approved Guideline includes an algorithm in which samples that are reactive on a 4th generation EIA screen proceed to a supplemental assay that is able to confirm and differentiate between antibodies to HIV-1 and HIV-2. The recently CE-marked Bio-Rad Geenius HIV-1/2 Confirmatory Assay was evaluated as an alternative to the FDA-approved Bio-Rad Multispot HIV-1/HIV-2 Rapid Test which has been previously validated for use in this new algorithm. This study used reference samples submitted to the Canadian - NLHRS and samples from commercial sources. Data was tabulated in 2×2 tables for statistical analysis; sensitivity, specificity, predictive values, kappa and likelihood ratios. The overall performance of the Geenius and Multispot was very high; sensitivity (100%, 100%), specificity (96.3%, 99.1%), positive (45.3, 181) and negative (0, 0) likelihood ratios respectively, high kappa (0.96) and low bias index (0.0068). The ability to differentiate HIV-1 (99.2%, 100%) and HIV-2 (98.1%, 98.1%) Ab was also very high. The Bio-Rad Geenius HIV-1/2 Confirmatory Assay is a suitable alternative to the validated Multispot for use in the second stage of CLSI M53 algorithm-I. The Geenius has additional features including traceability and sample and cassette barcoding that improve the quality management/assurance of HIV testing. It is anticipated that the CLSI M53 guideline and assays such as the Geenius will reduce the number of indeterminate test results previously associated with the HIV-1 WB and improve the ability to differentiate HIV-2 infections. Crown Copyright © 2013. Published by Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Davis, Curtiss O.; Rhea, W. Joseph
1990-01-01
Twenty-three vertical profiles of the bio-optical properties of the ocean were made during a research cruise on the R/V Thomas Washington, June 24 to July 21, 1988, as part of the Coastal Transition Zone Program off Point Arena, California. A summary is given, to provide investigators with an overview of the data collected. The entire data set is available in digital form for interested researchers.
Optical and laser spectroscopic diagnostics for energy applications
NASA Astrophysics Data System (ADS)
Tripathi, Markandey Mani
The continuing need for greater energy security and energy independence has motivated researchers to develop new energy technologies for better energy resource management and efficient energy usage. The focus of this dissertation is the development of optical (spectroscopic) sensing methodologies for various fuels, and energy applications. A fiber-optic NIR sensing methodology was developed for predicting water content in bio-oil. The feasibility of using the designed near infrared (NIR) system for estimating water content in bio-oil was tested by applying multivariate analysis to NIR spectral data. The calibration results demonstrated that the spectral information can successfully predict the bio-oil water content (from 16% to 36%). The effect of ultraviolet (UV) light on the chemical stability of bio-oil was studied by employing laser-induced fluorescence (LIF) spectroscopy. To simulate the UV light exposure, a laser in the UV region (325 nm) was employed for bio-oil excitation. The LIF, as a signature of chemical change, was recorded from bio-oil. From this study, it was concluded that phenols present in the bio-oil show chemical instability, when exposed to UV light. A laser-induced breakdown spectroscopy (LIBS)-based optical sensor was designed, developed, and tested for detection of four important trace impurities in rocket fuel (hydrogen). The sensor can simultaneously measure the concentrations of nitrogen, argon, oxygen, and helium in hydrogen from storage tanks and supply lines. The sensor had estimated lower detection limits of 80 ppm for nitrogen, 97 ppm for argon, 10 ppm for oxygen, and 25 ppm for helium. A chemiluminescence-based spectroscopic diagnostics were performed to measure equivalence ratios in methane-air premixed flames. A partial least-squares regression (PLS-R)-based multivariate sensing methodology was investigated. It was found that the equivalence ratios predicted with the PLS-R-based multivariate calibration model matched with the experimentally measured equivalence ratios within 7 %. A comparative study was performed for equivalence ratios measurement in atmospheric premixed methane-air flames with ungated LIBS and chemiluminescence spectroscopy. It was reported that LIBS-based calibration, which carries spectroscopic information from a "point-like-volume," provides better predictions of equivalence ratios compared to chemiluminescence-based calibration, which is essentially a "line-of-sight" measurement.
The design of red-blue 3D video fusion system based on DM642
NASA Astrophysics Data System (ADS)
Fu, Rongguo; Luo, Hao; Lv, Jin; Feng, Shu; Wei, Yifang; Zhang, Hao
2016-10-01
Aiming at the uncertainty of traditional 3D video capturing including camera focal lengths, distance and angle parameters between two cameras, a red-blue 3D video fusion system based on DM642 hardware processing platform is designed with the parallel optical axis. In view of the brightness reduction of traditional 3D video, the brightness enhancement algorithm based on human visual characteristics is proposed and the luminance component processing method based on YCbCr color space is also proposed. The BIOS real-time operating system is used to improve the real-time performance. The video processing circuit with the core of DM642 enhances the brightness of the images, then converts the video signals of YCbCr to RGB and extracts the R component from one camera, so does the other video and G, B component are extracted synchronously, outputs 3D fusion images finally. The real-time adjustments such as translation and scaling of the two color components are realized through the serial communication between the VC software and BIOS. The system with the method of adding red-blue components reduces the lost of the chrominance components and makes the picture color saturation reduce to more than 95% of the original. Enhancement algorithm after optimization to reduce the amount of data fusion in the processing of video is used to reduce the fusion time and watching effect is improved. Experimental results show that the system can capture images in near distance, output red-blue 3D video and presents the nice experiences to the audience wearing red-blue glasses.
Inversion Schemes to Retrieve Atmospheric and Oceanic Parameters from SeaWiFS Data
NASA Technical Reports Server (NTRS)
Frouin, Robert; Deschamps, Pierre-Yves
1997-01-01
Firstly, we have analyzed atmospheric transmittance and sky radiance data connected at the Scripps Institution of Oceanography pier, La Jolla during the winters of 1993 and 1994. Aerosol optical thickness at 870 nm was generally low in La Jolla, with most values below 0.1 after correction for stratospheric aerosols. For such low optical thickness, variability in aerosol scattering properties cannot be determined, and a mean background model, specified regionally under stable stratospheric component, may be sufficient for ocean color remote sensing, from space. For optical thicknesses above 0. 1, two modes of variability characterized by Angstrom exponents of 1.2 and 0.5 and corresponding, to Tropospheric and Maritime models, respectively, were identified in the measurements. The aerosol models selected for ocean color remote sensing, allowed one to fit, within measurement inaccuracies, the derived values of Angstrom exponent and 'pseudo' phase function (the product of single scattering albedo and phase function), key atmospheric correction parameters. Importantly, the 'pseudo' phase function can be derived from measurements of the Angstrom exponent. Shipborne sun photometer measurements at the time of satellite overpass are usually sufficient to verify atmospheric correction for ocean color.
NASA Astrophysics Data System (ADS)
Wozniak, Monika; Baird, Mark; Schroeder, Thomas; Clementson, Lesley; Jones, Emlyn
2017-04-01
The water column optical properties from an observation station located at the end of a 5.8 km long jetty in the coastal waters of the Great Barrier Reef World Heritage Area (18.52 S, 146.39 E) were studied. Due to the location of the Lucinda Jetty Coastal Observatory (LJCO), at the interface of large riverine nutrient and sediment sources and clear open ocean waters, it is an optically variable and interesting region. LJCO is the only Southern Hemisphere ocean colour validation site integrated into NASA's AERONET-OC global network of ground-based radiometers. LJCO has a 3 years long time series (2014-2016) of continuous in-water optical measurements of absorption (AC-S), scattering (AC-S) and backscattering (BB-9) spectra together with water-leaving radiance spectra (SeaPRISM) acquired above the water surface and concentration of water components (WQM). Further HPLC and spectrophotometrically-retrieved absorption and scattering were determined fortnightly. These detailed bio-optical observations are rarely available as a time-series for model assessment. We use these data to quantify the relationship between optical properties and water constituents and to developing a more accurate optical model for coastal, optically complex water like GBR model. Pigment analysis show that studied area is dominated by alternatively freshwater and oceanic phytoplankton species depending on weather condition, tides and season. Absorption spectra at 440 nm and 550 nm are dominated by detritus but also have a significant CDOM contribution, which influences reflectance values in that range of spectrum and negatively affects wavebands used in satellite and remote algorithms for water constituents. These emergent features are compared to the model outputs, demonstrating when the model produces accurate optical signals with realistic process representation.
Application of DIRI dynamic infrared imaging in reconstructive surgery
NASA Astrophysics Data System (ADS)
Pawlowski, Marek; Wang, Chengpu; Jin, Feng; Salvitti, Matthew; Tenorio, Xavier
2006-04-01
We have developed the BioScanIR System based on QWIP (Quantum Well Infrared Photodetector). Data collected by this sensor are processed using the DIRI (Dynamic Infrared Imaging) algorithms. The combination of DIRI data processing methods with the unique characteristics of the QWIP sensor permit the creation of a new imaging modality capable of detecting minute changes in temperature at the surface of the tissue and organs associated with blood perfusion due to certain diseases such as cancer, vascular disease and diabetes. The BioScanIR System has been successfully applied in reconstructive surgery to localize donor flap feeding vessels (perforators) during the pre-surgical planning stage. The device is also used in post-surgical monitoring of skin flap perfusion. Since the BioScanIR is mobile; it can be moved to the bedside for such monitoring. In comparison to other modalities, the BioScanIR can localize perforators in a single, 20 seconds scan with definitive results available in minutes. The algorithms used include (FFT) Fast Fourier Transformation, motion artifact correction, spectral analysis and thermal image scaling. The BioScanIR is completely non-invasive and non-toxic, requires no exogenous contrast agents and is free of ionizing radiation. In addition to reconstructive surgery applications, the BioScanIR has shown promise as a useful functional imaging modality in neurosurgery, drug discovery in pre-clinical animal models, wound healing and peripheral vascular disease management.
SeaWiFS long-term solar diffuser reflectance and sensor noise analyses
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eplee, Robert E. Jr.; Patt, Frederick S.; Barnes, Robert A.
The NASA Ocean Biology Processing Group's Calibration and Validation(Cal/Val) team has undertaken an analysis of the mission-long Sea-Viewing Wide Field-of-View Sensor (SeaWiFS)solar calibration time series to assess the long-term degradation of the solar diffuser reflectance over 9 years on orbit. The SeaWiFS diffuser is an aluminum plate coated with YB71 paint. The bidirectional reflectance distribution function of the diffuser was not fully characterized before launch,so the Cal/Val team has implemented a regression of the solar incidence angles and the drift in the node of the satellite's orbit against the diffuser time series to correct for solar incidence angle effects. Anmore » exponential function with a time constant of 200 days yields the best fit to the diffuser time series.The decrease in diffuser reflectance over the mission is wavelength dependent,ranging from 9% in the blue(412 nm) to 5% in the red and near infrared(670-865 nm). The Cal/Val team has developed a methodology for computing the signal-to-noise ratio (SNR) for SeaWiFS on orbit from the diffuser time series corrected for both the varying solar incidence angles and the diffuser reflectance degradation. A sensor noise model is used to compare on-orbit SNRs computed for radiances reflected from the diffuser with prelaunch SNRs measured at typical radiances specified for the instrument. To within the uncertainties in the measurements, the SNRs for SeaWiFS have not changed over the mission. The on-orbit performance of the SeaWiFS solar diffuser should offer insight into the long-term on-orbit performance of solar diffusers on other instruments, such as the Moderate-Resolution Imaging Spectrometer [currently flying on the Earth Observing System (EOS) Terra and Aqua satellites], the Visible and Infrared Radiometer Suite [scheduled to fly on the NASA National Polar-orbiting Operational Environmental Satellite System (NPOESS) and NPOESS Preparatory Project (NPP) satellites] and the Advanced Baseline Imager [scheduled to fly on the National Oceanic and Atmospheric Administration Geostationary Environmental Operational Satellite Series R (GOES-R) satellites].« less
Xian, Zhiwen; Hu, Xiaoping; Lian, Junxiang; Zhang, Lilian; Cao, Juliang; Wang, Yujie; Ma, Tao
2014-01-01
Navigation plays a vital role in our daily life. As traditional and commonly used navigation technologies, Inertial Navigation System (INS) and Global Navigation Satellite System (GNSS) can provide accurate location information, but suffer from the accumulative error of inertial sensors and cannot be used in a satellite denied environment. The remarkable navigation ability of animals shows that the pattern of the polarization sky can be used for navigation. A bio-inspired POLarization Navigation Sensor (POLNS) is constructed to detect the polarization of skylight. Contrary to the previous approach, we utilize all the outputs of POLNS to compute input polarization angle, based on Least Squares, which provides optimal angle estimation. In addition, a new sensor calibration algorithm is presented, in which the installation angle errors and sensor biases are taken into consideration. Derivation and implementation of our calibration algorithm are discussed in detail. To evaluate the performance of our algorithms, simulation and real data test are done to compare our algorithms with several exiting algorithms. Comparison results indicate that our algorithms are superior to the others and are more feasible and effective in practice. PMID:25225872
Bio-isolated dc operational amplifier. [for bioelectric measurements
NASA Technical Reports Server (NTRS)
Lee, R. D. (Inventor)
1974-01-01
A bio-isolated dc operational amplifier is described for use in making bioelectrical measurements of a patient while providing isolation of the patient from electrical shocks. The circuit contains a first operational amplifier coupled to the patient with its output coupled in a forward loop through a first optic coupler to a second operational amplifier. The output of the second operational amplifier is coupled to suitable monitoring circuitry via a feedback circuit including a second optic coupler to the input of the first operational amplifier.
Bio-optical profile data report coastal transition zone program, R/V Point Sur, June 15-28, 1987
NASA Technical Reports Server (NTRS)
Davis, Curtiss O.; Rhea, W. Joseph
1990-01-01
Twenty vertical profiles of the bio-optical properties of the ocean were made during a research cruise on the R/V Point Sur, June 15 to 28, 1987, as part of the Coastal Transition Zone Program off Point Arena, California. Extracted chlorophyll values were also measured at some stations to provide calibration data for the in situ fluorometer. This summary provides investigators with an overview of the data collected. The entire data set is available in digital form.
NASA Technical Reports Server (NTRS)
Collins, Donald J.; Tran, An Van
1990-01-01
Time series measurements of the incident surface downwelling irradiance and vertical profiles of the bio-optical properties of the ocean were studied during the 29th cruise of the Southern California Bight Study (SCBS) during the period of August 20-25, 1988. A summary of these data is presented to permit investigators an overview of the data collected. The data are available in digital form for scientific investigators.
Using Bio-Optics to Reveal Phytoplankton Physiology from a Wirewalker Autonomous Platform
NASA Technical Reports Server (NTRS)
Omand, M. M.; Cetinic, I.; Lucas, A. J.
2017-01-01
Rapid, wave-powered profiling of bio-optical properties from an autonomous Wirewalker platform provides useful insights into phytoplankton physiology, including the patterns of diel growth, phytoplankton mortality, nonphotochemical quenching of chlorophyll a fluorescence, and natural (sun-induced) fluorescence of mixed communities. Methods are proposed to quantify each of these processes. Such autonomous measurements of phytoplankton physiological rates and responses open up new possibilities for studying phytoplankton in situ, over longer periods, and under a broader range of environmental conditions.
Quality and Consistency of the NASA Ocean Color Data Record
NASA Technical Reports Server (NTRS)
Franz, Bryan A.
2012-01-01
The NASA Ocean Biology Processing Group (OBPG) recently reprocessed the multimission ocean color time-series from SeaWiFS, MODIS-Aqua, and MODIS-Terra using common algorithms and improved instrument calibration knowledge. Here we present an analysis of the quality and consistency of the resulting ocean color retrievals, including spectral water-leaving reflectance, chlorophyll a concentration, and diffuse attenuation. Statistical analysis of satellite retrievals relative to in situ measurements will be presented for each sensor, as well as an assessment of consistency in the global time-series for the overlapping periods of the missions. Results will show that the satellite retrievals are in good agreement with in situ measurements, and that the sensor ocean color data records are highly consistent over the common mission lifespan for the global deep oceans, but with degraded agreement in higher productivity, higher complexity coastal regions.
Validation of an In-Water, Tower-Shading Correction Scheme
NASA Technical Reports Server (NTRS)
Hooker, Stanford B. (Editor); Firestone, Elaine R. (Editor); Doyle, John P.; Zibordi, Giuseppe; vanderLinde, Dirk
2003-01-01
Large offshore structures used for the deployment of optical instruments can significantly perturb the intensity of the light field surrounding the optical measurement point, where different portions of the visible spectrum are subject to different shadowing effects. These effects degrade the quality of the acquired optical data and can reduce the accuracy of several derived quantities, such as those obtained by applying bio-optical algorithms directly to the shadow-perturbed data. As a result, optical remote sensing calibration and validation studies can be impaired if shadowing artifacts are not fully accounted for. In this work, the general in-water shadowing problem is examined for a particular case study. Backward Monte Carlo (MC) radiative transfer computations- performed in a vertically stratified, horizontally inhomogeneous, and realistic ocean-atmosphere system are shown to accurately simulate the shadow-induced relative percent errors affecting the radiance and irradiance data profiles acquired close to an oceanographic tower. Multiparameter optical data processing has provided adequate representation of experimental uncertainties allowing consistent comparison with simulations. The more detailed simulations at the subsurface depth appear to be essentially equivalent to those obtained assuming a simplified ocean-atmosphere system, except in highly stratified waters. MC computations performed in the simplified system can be assumed, therefore, to accurately simulate the optical measurements conducted under more complex sampling conditions (i.e., within waters presenting moderate stratification at most). A previously reported correction scheme, based on the simplified MC simulations, and developed for subsurface shadow-removal processing of in-water optical data taken close to the investigated oceanographic tower, is then validated adequately under most experimental conditions. It appears feasible to generalize the present tower-specific approach to solve other optical sensor shadowing problems pertaining to differently shaped deployment platforms, and also including surrounding structures and instrument casings.
NASA Technical Reports Server (NTRS)
2002-01-01
2000 continues to be the worst fire season in the United States in decades. By August 8, 2000, fires in Montana and Idaho had burned more than 250,000 acres. Resources were stretched so thin that Army and Marine soldiers were recruited to help fight the fires. President Clinton visited Payette National Forest to lend moral support to the firefighters. Dense smoke from Idaho and western Montana is visible stretching all the way to North and South Dakota in this image from the Sea-viewing Wide Field-of-view Sensor (SeaWiFS). The image was taken on August 7, 2000. Although the primary mission of SeaWiFS is to measure the biology of the ocean, it also provides stunning color imagery of the Earth's surface. For more information about fires in the U.S., visit the National Interagency Fire Center. To learn more about using satellites to monitor fires, visit Global Fire Monitoring and New Technology for Monitoring Fires from Space in the Earth Observatory. Provided by the SeaWiFS Project, NASA/Goddard Space Flight Center, and ORBIMAGE
Requirements for an Advanced Ocean Radiometer
NASA Technical Reports Server (NTRS)
Meister, Gerhard; McClain, Charles R.; Ahmad, Ziauddin; Bailey, Sean W.; Barnes, Robert A.; Brown, Steven; Eplee, Robert E.; Franz, Bryan; Holmes, Alan; Monosmith, W. Bryan;
2011-01-01
This document suggests requirements for an advanced ocean radiometer, such as e.g. the ACE (Aerosol/Cloud/Ecosystem) ocean radiometer. The ACE ocean biology mission objectives have been defined in the ACE Ocean Biology white paper. The general requirements presented therein were chosen as the basis for the requirements provided in this document, which have been transformed into specific, testable requirements. The overall accuracy goal for the advanced ocean radiometer is that the total radiometric uncertainties are 0.5% or smaller for all bands. Specific mission requirements of SeaWiFS, MODIS, and VIIRS were often used as a model for the requirements presented here, which are in most cases more demanding than the heritage requirements. Experience with on-orbit performance and calibration (from SeaWiFS and MODIS) and prelaunch testing (from SeaWiFS, MODIS, and VIIRS) were important considerations when formulating the requirements. This document describes requirements in terms of the science data products, with a focus on qualities that can be verified by prelaunch radiometric characterization. It is expected that a more comprehensive requirements document will be developed during mission formulation
Characterization of MODIS and SeaWiFS Solar Diffuser On-Orbit Degradation
NASA Technical Reports Server (NTRS)
Xiong, X.; Eplee, R. E., Jr.; Sun, J.; Patt, F. S.; Angal, A.; McClain, C. R.
2009-01-01
MODIS has 20 reflective solar bands (RSB), covering the VIS, NIR, and SWIR spectral regions. They are calibrated on-orbit using a solar diffuser (SD) panel, made of space-grade Spectralon. The SD bi-directional reflectance factor (BRF) was characterized pre-launch by the instrument vendor reference to the NIST reflectance standard. Its on-orbit degradation is tracked by an on-board solar diffuser stability monitor (SDSM). The SeaWifS on-orbit calibration strategy uses monthly lunar observations to monitor the long-term radiometric stability of the instrument and applies daily observations of its solar diffuser (an aluminum plate coated with YB71 paint) to track the short-term changes in the instrument response. This paper provides an overview of MODIS and SeaWiFS SD observations, applications, and approaches used to track their on-orbit degradations. Results from sensors are presented with emphasis on the spectral dependence and temporal trends of the SD degradation. Lessons and challenges from the use of SD for sensor on-orbit calibration are also discussed.
Temporal Variations in the Photosynthetic Biosphere
NASA Technical Reports Server (NTRS)
Behrenfeld, Michael; Randerson, James; McClain, Charles; Feldman, Gene; Los, Sietse; Tucker, Compton; Falkowski, Paul; Field, Christopher; Frouin, Robert; Esaias, Wayne;
2000-01-01
In this report, we describe results from the first three years of global Sea-Viewing Wide Field-of-view Sensor (SeaWiFS) ocean chlorophyll and land plant measurements. This time period covered the end of one of the largest El Nino events in the past century and a strong La Nina. During this transition, terrestrial plant photosynthesis exhibited only a small change, whereas a significant increase in oceanic photosynthesis was observed. Latitudinal distributions of ocean production indicated that this increase in photosynthesis during the La Nina was distributed in the equatorial belt as well as in high production areas. The analysis also illustrated the large 'missing bloom' in ocean phytoplankton in the southern ocean. While land photosynthesis remained fairly steady during the third year of SeaWiFS measurements, ocean phytoplankton production continued to increase, albeit at a lower rate than from 1997 to 1999. Our results represent the first quantification of interannual variability in global scale ocean productivity. Significant Findings: An increase in ocean production during the first three years of the SeaWiFS mission; a strong hemispheric difference in the latitudinal distribution of ocean photosynthesis.
Ghosh, A
1988-08-01
Lanczos and conjugate gradient algorithms are important in computational linear algebra. In this paper, a parallel pipelined realization of these algorithms on a ring of optical linear algebra processors is described. The flow of data is designed to minimize the idle times of the optical multiprocessor and the redundancy of computations. The effects of optical round-off errors on the solutions obtained by the optical Lanczos and conjugate gradient algorithms are analyzed, and it is shown that optical preconditioning can improve the accuracy of these algorithms substantially. Algorithms for optical preconditioning and results of numerical experiments on solving linear systems of equations arising from partial differential equations are discussed. Since the Lanczos algorithm is used mostly with sparse matrices, a folded storage scheme to represent sparse matrices on spatial light modulators is also described.
2002-09-30
integrated observation system that is being coupled to a data assimilative hydrodynamic bio-optical ecosystem model. The system was used adaptively to develop hyperspectral remote sensing techniques in optically complex nearshore coastal waters.
Handelman, Amir; Lapshina, Nadezda; Apter, Boris; Rosenman, Gil
2018-02-01
Bio-nanophotonics is a wide field in which advanced optical materials, biomedicine, fundamental optics, and nanotechnology are combined and result in the development of biomedical optical chips. Silk fibers or synthetic bioabsorbable polymers are the main light-guiding components. In this work, an advanced concept of integrated bio-optics is proposed, which is based on bioinspired peptide optical materials exhibiting wide optical transparency, nonlinear and electrooptical properties, and effective passive and active waveguiding. Developed new technology combining bottom-up controlled deposition of peptide planar wafers of a large area and top-down focus ion beam lithography provides direct fabrication of peptide optical integrated circuits. Finding a deep modification of peptide optical properties by reconformation of biological secondary structure from native phase to β-sheet architecture is followed by the appearance of visible fluorescence and unexpected transition from a native passive optical waveguiding to an active one. Original biocompatibility, switchable regimes of waveguiding, and multifunctional nonlinear optical properties make these new peptide planar optical materials attractive for application in emerging technology of lab-on-biochips, combining biomedical photonic and electronic circuits toward medical diagnosis, light-activated therapy, and health monitoring. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Image processing of underwater multispectral imagery
Zawada, D. G.
2003-01-01
Capturing in situ fluorescence images of marine organisms presents many technical challenges. The effects of the medium, as well as the particles and organisms within it, are intermixed with the desired signal. Methods for extracting and preparing the imagery for analysis are discussed in reference to a novel underwater imaging system called the low-light-level underwater multispectral imaging system (LUMIS). The instrument supports both uni- and multispectral collections, each of which is discussed in the context of an experimental application. In unispectral mode, LUMIS was used to investigate the spatial distribution of phytoplankton. A thin sheet of laser light (532 nm) induced chlorophyll fluorescence in the phytoplankton, which was recorded by LUMIS. Inhomogeneities in the light sheet led to the development of a beam-pattern-correction algorithm. Separating individual phytoplankton cells from a weak background fluorescence field required a two-step procedure consisting of edge detection followed by a series of binary morphological operations. In multispectral mode, LUMIS was used to investigate the bio-assay potential of fluorescent pigments in corals. Problems with the commercial optical-splitting device produced nonlinear distortions in the imagery. A tessellation algorithm, including an automated tie-point-selection procedure, was developed to correct the distortions. Only pixels corresponding to coral polyps were of interest for further analysis. Extraction of these pixels was performed by a dynamic global-thresholding algorithm.
BioPig: a Hadoop-based analytic toolkit for large-scale sequence data.
Nordberg, Henrik; Bhatia, Karan; Wang, Kai; Wang, Zhong
2013-12-01
The recent revolution in sequencing technologies has led to an exponential growth of sequence data. As a result, most of the current bioinformatics tools become obsolete as they fail to scale with data. To tackle this 'data deluge', here we introduce the BioPig sequence analysis toolkit as one of the solutions that scale to data and computation. We built BioPig on the Apache's Hadoop MapReduce system and the Pig data flow language. Compared with traditional serial and MPI-based algorithms, BioPig has three major advantages: first, BioPig's programmability greatly reduces development time for parallel bioinformatics applications; second, testing BioPig with up to 500 Gb sequences demonstrates that it scales automatically with size of data; and finally, BioPig can be ported without modification on many Hadoop infrastructures, as tested with Magellan system at National Energy Research Scientific Computing Center and the Amazon Elastic Compute Cloud. In summary, BioPig represents a novel program framework with the potential to greatly accelerate data-intensive bioinformatics analysis.
Nano ZnO embedded in Chitosan matrix for vibration sensor application
NASA Astrophysics Data System (ADS)
Praveen, E.; Murugan, S.; Jayakumar, K.
2015-06-01
Biopolymer Chitosan is embedded with various concentration of ZnO nano particle and such a bio-nano composite electret has been fabricated by casting method. The morphological, structural, optical and electrical characterization of the bio-nano composite electret film have been carried out. Isolation and piezoelectric measurements of bio-nano composite have also been carried out indicating the possibility of using it as a mechanical sensor element.
Validating and Improving Long-Term Aerosol Data Records from SeaWiFS
NASA Technical Reports Server (NTRS)
Bettenhausen, Corey; Hsu, N. Christina; Sayer, Andrew; Huang, Jinhfeng; Gautam, Ritesh
2011-01-01
Natural and anthropogenic aerosols influence the radiative balance of the Earth through direct and indirect interactions with incoming solar radiation. However, the quantification of these interactions and their ultimate effect on the Earth's climate still have large uncertainties. This is partly due to the limitations of current satellite data records which include short satellite lifetimes, retrieval algorithm uncertainty, or insufficient calibration accuracy. We have taken the first steps in overcoming this hurdle with the production and public release of an aerosol data record using the radiances from the Sea-viewing Wide Field-of-View Sensor (Sea WiFS). Sea WiFS was launched in late 1997 and provided exceptionally well-calibrated top-of-atmosphere radiance data until December 2010, more than 13 years. We have partnered this data with an expanded Deep Blue aerosol retrieval algorithm. In accordance with Deep Blue's original focus, the latest algorithm retrieves aerosol properties not only over bright desert surfaces, but also over oceans and vegetated surfaces. With this combination of a long time series and global algorithm, we can finally identify the changing patterns of regional aerosol loading and provide insight into longterm variability and trends of aerosols on regional and global scales. In this work, we provide an introduction to Sea WiFS, the current algorithms, and our aerosol data records. We have validated the data over land and ocean with ground measurements from the Aerosol Robotic Network (AERONET) and compared them with other satellites such as MODIS and MISR. Looking ahead to the next data release, we will also provide details on the implemented and planned algorithm improvements, and subsequent validation results.
NASA Astrophysics Data System (ADS)
Blondeau-Patissier, David; Gower, James F. R.; Dekker, Arnold G.; Phinn, Stuart R.; Brando, Vittorio E.
2014-04-01
The need for more effective environmental monitoring of the open and coastal ocean has recently led to notable advances in satellite ocean color technology and algorithm research. Satellite ocean color sensors' data are widely used for the detection, mapping and monitoring of phytoplankton blooms because earth observation provides a synoptic view of the ocean, both spatially and temporally. Algal blooms are indicators of marine ecosystem health; thus, their monitoring is a key component of effective management of coastal and oceanic resources. Since the late 1970s, a wide variety of operational ocean color satellite sensors and algorithms have been developed. The comprehensive review presented in this article captures the details of the progress and discusses the advantages and limitations of the algorithms used with the multi-spectral ocean color sensors CZCS, SeaWiFS, MODIS and MERIS. Present challenges include overcoming the severe limitation of these algorithms in coastal waters and refining detection limits in various oceanic and coastal environments. To understand the spatio-temporal patterns of algal blooms and their triggering factors, it is essential to consider the possible effects of environmental parameters, such as water temperature, turbidity, solar radiation and bathymetry. Hence, this review will also discuss the use of statistical techniques and additional datasets derived from ecosystem models or other satellite sensors to characterize further the factors triggering or limiting the development of algal blooms in coastal and open ocean waters.
Ghezzi, Diego; Vazquez, Rebeca Martinez; Osellame, Roberto; Valtorta, Flavia; Pedrocchi, Alessandra; Valle, Giuseppe Della; Ramponi, Roberta; Ferrigno, Giancarlo; Cerullo, Giulio
2008-10-23
Flash photolysis of caged compounds is one of the most powerful approaches to investigate the dynamic response of living cells. Monolithically integrated devices suitable for optical uncaging are in great demand since they greatly simplify the experiments and allow their automation. Here we demonstrate the fabrication of an integrated bio-photonic device for the optical release of caged compounds. Such a device is fabricated using femtosecond laser micromachining of a glass substrate. More in detail, femtosecond lasers are used both to cut the substrate in order to create a pit for cell growth and to inscribe optical waveguides for spatially selective uncaging of the compounds present in the culture medium. The operation of this monolithic bio-photonic device is tested using both free and caged fluorescent compounds to probe its capability of multipoint release and optical sensing. Application of this device to the study of neuronal network activity can be envisaged.
NASA Astrophysics Data System (ADS)
Nechad, Bouchra; Alvera-Azcaràte, Aida; Ruddick, Kevin; Greenwood, Naomi
2011-08-01
In situ measurements of total suspended matter (TSM) over the period 2003-2006, collected with two autonomous platforms from the Centre for Environment, Fisheries and Aquatic Sciences (Cefas) measuring the optical backscatter (OBS) in the southern North Sea, are used to assess the accuracy of TSM time series extracted from satellite data. Since there are gaps in the remote sensing (RS) data, due mainly to cloud cover, the Data Interpolating Empirical Orthogonal Functions (DINEOF) is used to fill in the TSM time series and build a continuous daily "recoloured" dataset. The RS datasets consist of TSM maps derived from MODIS imagery using the bio-optical model of Nechad et al. (Rem Sens Environ 114: 854-866, 2010). In this study, the DINEOF time series are compared to the in situ OBS measured in moderately to very turbid waters respectively in West Gabbard and Warp Anchorage, in the southern North Sea. The discrepancies between instantaneous RS, DINEOF-filled RS data and Cefas data are analysed in terms of TSM algorithm uncertainties, space-time variability and DINEOF reconstruction uncertainty.
NASA Astrophysics Data System (ADS)
Chowdhary, J.; Brian, C.; Stamnes, S.; Hostetler, C. A.; Cetinic, I.; Slade, W. H.; Hu, Y.
2017-12-01
Ocean spectra typically contribute less than 10% to top-of-atmosphere (TOA) radiance observations in the visible (VIS). The remaining 90% of TOA radiance originates from scattering in the atmosphere which needs to be removed (i.e. corrected) but varies substantially with the aerosol present at the time of observation. The traditional approach for atmospheric correction (AC), used for ocean color sensors such as SeaWiFS, MODIS, and VIIRS, estimates aerosol scattering properties from TOA radiance observations in the near-infrared/short-wave infrared (NIR/SWIR) where the ocean becomes dark. The aerosol model is subsequently used to compute the atmospheric scattering contribution to the TOA radiance in the VIS. The final step is to subtract this computed scattering contribution from the real (i.e. observed) TOA radiance. As an alternative to the traditional approach for AC, we retrieve the atmosphere (i.e., aerosol) and ocean (i.e., color) properties simultaneously from measurements in the VIS. To separate the information content for the atmosphere and ocean, we use lidar measurements and multi-angle polarization measurements. Lidar and polarimeter measurements are powerful tools to enhance the ocean product retrievals from conventional ocean color sensors, and are under consideration to accompany future generation ocean color sensors. Here, we present results of simultaneous atmosphere-ocean retrievals using collocated airborne lidar and polarimeter data that were acquired during the Ship-Aircraft Bio-Optical Research (SABOR) campaign. We discuss 2 hydrosol models (which differ in number of free parameters) that were used for these inversions. We then compare our ocean retrievals with measurements obtained from the accompanying cruise ship. Finally, we touch upon a next generation of hydrosol models that accommodates the unique sensitivity of ocean lidar profiles to plankton morphology.
The Fourth SeaWiFS HPLC Analysis Round-Robin Experiment (SeaHARRE-4)
NASA Technical Reports Server (NTRS)
Hooker, Stanford B.; Thomas, Crystal S.; van Heukelem, Laurie; Schlueter, louise; Russ, Mary E.; Ras, Josephine; Claustre, Herve; Clementson, Lesley; Canuti, Elisabetta; Berthon, Jean-Francois;
2010-01-01
Ten international laboratories specializing in the determination of marine pigment concentrations using high performance liquid chromatography (HPLC) were intercompared using in situ samples and a mixed pigment sample. Although prior Sea-viewing Wide Field-of-view Sensor (SeaWiFS) High Performance Liquid Chromatography (HPLC) Round-Robin Experiment (SeaHARRE) activities conducted in open-ocean waters covered a wide dynamic range in productivity, and some of the samples were collected in the coastal zone, none of the activities involved exclusively coastal samples. Consequently, SeaHARRE-4 was organized and executed as a strictly coastal activity and the field samples were collected from primarily eutrophic waters within the coastal zone of Denmark. The more restrictive perspective limited the dynamic range in chlorophyll concentration to approximately one and a half orders of magnitude (previous activities covered more than two orders of magnitude). The method intercomparisons were used for the following objectives: a) estimate the uncertainties in quantitating individual pigments and higher-order variables formed from sums and ratios; b) confirm if the chlorophyll a accuracy requirements for ocean color validation activities (approximately 25%, although 15% would allow for algorithm refinement) can be met in coastal waters; c) establish the reduction in uncertainties as a result of applying QA procedures; d) show the importance of establishing a properly defined referencing system in the computation of uncertainties; e) quantify the analytical benefits of performance metrics, and f) demonstrate the utility of a laboratory mix in understanding method performance. In addition, the remote sensing requirements for the in situ determination of total chlorophyll a were investigated to determine whether or not the average uncertainty for this measurement is being satisfied.
Remote sensing of phytoplankton chlorophyll-a concentration by use of ridge function fields.
Pelletier, Bruno; Frouin, Robert
2006-02-01
A methodology is presented for retrieving phytoplankton chlorophyll-a concentration from space. The data to be inverted, namely, vectors of top-of-atmosphere reflectance in the solar spectrum, are treated as explanatory variables conditioned by angular geometry. This approach leads to a continuum of inverse problems, i.e., a collection of similar inverse problems continuously indexed by the angular variables. The resolution of the continuum of inverse problems is studied from the least-squares viewpoint and yields a solution expressed as a function field over the set of permitted values for the angular variables, i.e., a map defined on that set and valued in a subspace of a function space. The function fields of interest, for reasons of approximation theory, are those valued in nested sequences of subspaces, such as ridge function approximation spaces, the union of which is dense. Ridge function fields constructed on synthetic yet realistic data for case I waters handle well situations of both weakly and strongly absorbing aerosols, and they are robust to noise, showing improvement in accuracy compared with classic inversion techniques. The methodology is applied to actual imagery from the Sea-Viewing Wide Field-of-View Sensor (SeaWiFS); noise in the data are taken into account. The chlorophyll-a concentration obtained with the function field methodology differs from that obtained by use of the standard SeaWiFS algorithm by 15.7% on average. The results empirically validate the underlying hypothesis that the inversion is solved in a least-squares sense. They also show that large levels of noise can be managed if the noise distribution is known or estimated.
Cross-Discipline Bio-Nanostructured Enhanced Photonic Multimode-Sensor Science
2017-05-23
experimental study aimed to combine soft material science with nanotechnology and multi-physics modeling to produce adaptable bio-nanostructure based on...degradation through optical analysis and tracking programs Protein and DNA engineering . - The properties of proteins to be used in sensors were studies
Zhou, Jun; Huang, Yunyun; Chen, Chaoyan; Xiao, Aoxiang; Guo, Tuan; Guan, Bai-Ou
2018-05-11
Interfacing bio-recognition elements to optical materials is a longstanding challenge to manufacture sensitive biosensors and inexpensive diagnostic devices. In this work, a graphene oxide (GO) interface has been constructed between silica microfiber and bio-recognition elements to develop an improved γ-aminobutyric acid (GABA) sensing approach. The GO interface, which was located at the site with the strongest evanescent field on the microfiber surface, improved the detection sensitivity by providing a larger platform for more bio-recognition element immobilization, and amplifying surface refractive index change caused by combination between bio-recognition elements and target molecules. Owing to the interface improvement, the microfiber has a three times improved sensitivity of 1.03 nm/log M for GABA detection, and hence a lowest limit of detection of 2.91 × 10-18 M, which is 7 orders of magnitude higher than that without the GO interface. Moreover, the micrometer-sized footprint and non-radioactive nature enable easy implantation in human brains for in vivo applications.
NASA Astrophysics Data System (ADS)
Boniatti, Rosiana; Bandeira, Aline L.; Crespi, Ângela E.; Aguzzoli, Cesar; Baumvol, Israel J. R.; Figueroa, Carlos A.
2013-09-01
The interaction of bio-ethanol on steel surfaces modified by plasma-assisted diffusion technologies is studied for the first time. The influence of surface microstructure and chemical composition on corrosion behaviour of AISI 4140 low-alloy steel in fuel-grade bio-ethanol was investigated. The steel surfaces were modified by plasma nitro-carburizing followed plasma oxidizing. X-ray diffraction, scanning electron microscopy, optical microscopy, X-ray dispersive spectroscopy, and glow-discharge optical emission spectroscopy were used to characterize the modified surface before and after immersion tests in bio-ethanol up to 77 days. The main corrosion mechanism is pit formation. The pit density and pit size were measured in order to quantify the corrosion resistance which was found to depend more strongly on microstructure and morphology of the oxide layer than on its thickness. The best corrosion protection was observed for samples post-oxidized at 480 °C and 90 min.
SWIM: A Semi-Analytical Ocean Color Inversion Algorithm for Optically Shallow Waters
NASA Technical Reports Server (NTRS)
McKinna, Lachlan I. W.; Werdell, P. Jeremy; Fearns, Peter R. C. S.; Weeks, Scarla J.; Reichstetter, Martina; Franz, Bryan A.; Shea, Donald M.; Feldman, Gene C.
2014-01-01
Ocean color remote sensing provides synoptic-scale, near-daily observations of marine inherent optical properties (IOPs). Whilst contemporary ocean color algorithms are known to perform well in deep oceanic waters, they have difficulty operating in optically clear, shallow marine environments where light reflected from the seafloor contributes to the water-leaving radiance. The effect of benthic reflectance in optically shallow waters is known to adversely affect algorithms developed for optically deep waters [1, 2]. Whilst adapted versions of optically deep ocean color algorithms have been applied to optically shallow regions with reasonable success [3], there is presently no approach that directly corrects for bottom reflectance using existing knowledge of bathymetry and benthic albedo.To address the issue of optically shallow waters, we have developed a semi-analytical ocean color inversion algorithm: the Shallow Water Inversion Model (SWIM). SWIM uses existing bathymetry and a derived benthic albedo map to correct for bottom reflectance using the semi-analytical model of Lee et al [4]. The algorithm was incorporated into the NASA Ocean Biology Processing Groups L2GEN program and tested in optically shallow waters of the Great Barrier Reef, Australia. In-lieu of readily available in situ matchup data, we present a comparison between SWIM and two contemporary ocean color algorithms, the Generalized Inherent Optical Property Algorithm (GIOP) and the Quasi-Analytical Algorithm (QAA).
A grid layout algorithm for automatic drawing of biochemical networks.
Li, Weijiang; Kurata, Hiroyuki
2005-05-01
Visualization is indispensable in the research of complex biochemical networks. Available graph layout algorithms are not adequate for satisfactorily drawing such networks. New methods are required to visualize automatically the topological architectures and facilitate the understanding of the functions of the networks. We propose a novel layout algorithm to draw complex biochemical networks. A network is modeled as a system of interacting nodes on squared grids. A discrete cost function between each node pair is designed based on the topological relation and the geometric positions of the two nodes. The layouts are produced by minimizing the total cost. We design a fast algorithm to minimize the discrete cost function, by which candidate layouts can be produced efficiently. A simulated annealing procedure is used to choose better candidates. Our algorithm demonstrates its ability to exhibit cluster structures clearly in relatively compact layout areas without any prior knowledge. We developed Windows software to implement the algorithm for CADLIVE. All materials can be freely downloaded from http://kurata21.bio.kyutech.ac.jp/grid/grid_layout.htm; http://www.cadlive.jp/ http://kurata21.bio.kyutech.ac.jp/grid/grid_layout.htm; http://www.cadlive.jp/
Bio-Photonic Detection of Various Cellular Cultures
NASA Astrophysics Data System (ADS)
Hann, Patrick; Garzon, Maria; Pfeiffer, Erik; Lofland, Samuel; Knoesel, Ernst
2008-03-01
Since it is non-invasive, there has been increased research in the field of bio-optics. Many biological systems display an unusual phenomenon, delayed luminescence, produced by what is known as bio-photons. We present an apparatus and procedure for the detection of these ultra-weak photonic emissions using a single photon detection device. The results of bread yeast, saccramyces, and algae will be presented and compared to other reports in the literature
Bio-Photons of Various Cellular Cultures and Tissues
NASA Astrophysics Data System (ADS)
Hann, Patrick; Knoesel, Ernst; Garzon, Maria; Lofland, Samuel; Pfieffer, Erik
2008-04-01
Since it is non-invasive, there has been increased research in the field of bio-optics. Many biological systems display an unusual phenomenon, delayed luminescence, produced by what is known as bio-photons. We present an apparatus and procedure for the detection of these ultra-weak photonic emissions using a single photon detection device. The results of bread yeast, saccramyces, and algae will be presented and compared to other reports in the literature.
Constraint programming based biomarker optimization.
Zhou, Manli; Luo, Youxi; Sun, Guoquan; Mai, Guoqin; Zhou, Fengfeng
2015-01-01
Efficient and intuitive characterization of biological big data is becoming a major challenge for modern bio-OMIC based scientists. Interactive visualization and exploration of big data is proven to be one of the successful solutions. Most of the existing feature selection algorithms do not allow the interactive inputs from users in the optimizing process of feature selection. This study investigates this question as fixing a few user-input features in the finally selected feature subset and formulates these user-input features as constraints for a programming model. The proposed algorithm, fsCoP (feature selection based on constrained programming), performs well similar to or much better than the existing feature selection algorithms, even with the constraints from both literature and the existing algorithms. An fsCoP biomarker may be intriguing for further wet lab validation, since it satisfies both the classification optimization function and the biomedical knowledge. fsCoP may also be used for the interactive exploration of bio-OMIC big data by interactively adding user-defined constraints for modeling.
New Coccolithophore Bloom in Bering Sea
NASA Technical Reports Server (NTRS)
2002-01-01
For the fourth year in a row it appears as if there is a bloom of coccolithophores-marine single-celled plants with calcite scales-in the Bering Sea off the coast of Alaska. Similar blooms were rare before 1997, but they have appeared every year since then. Scientists believe the coccolithophore blooms are the result of changing wind patterns in the region. Weaker than normal winds fail to mix the water of the Bering Sea, resulting in the growth of coccolithophores instead of other types of phytoplankton. Seabird populations have also been changing as a result of this climate change. The Sea-Viewing Wide Field-of-View Sensor (SeaWiFS), flying aboard the OrbView-2 satellite, saw the coccolith-brightened waters of the Bering Sea in 1997, 1998, and 1999. The waters have looked fairly bright again this winter and spring, as seen in this SeaWiFS image acquired April 29, 2000. But scientists are unsure whether this year's phenomenon is caused by living coccolithophorids, re-suspended coccoliths, or something else. Like all phytoplankton, coccolithophores contain chlorophyll and have the tendency to multiply rapidly near the surface. Yet, in large numbers, coccolithophores periodically shed their tiny scales, called 'coccoliths,' by the bucketful into the surrounding waters. The calcium-rich coccoliths turn the normally dark water a bright, milky aquamarine, making coccolithophore blooms easy to spot in satellite imagery. The edge of the whitish cloud in the water seen in this image is roughly 50 kilometers off the West Coast of Alaska. For more information see: SeaWiFS home page Changing Currents Color the Bering Sea a New Shade of Blue Image courtesy SeaWiFS project
NASA Astrophysics Data System (ADS)
Glover, David M.; Doney, Scott C.; Oestreich, William K.; Tullo, Alisdair W.
2018-01-01
Mesoscale (10-300 km, weeks to months) physical variability strongly modulates the structure and dynamics of planktonic marine ecosystems via both turbulent advection and environmental impacts upon biological rates. Using structure function analysis (geostatistics), we quantify the mesoscale biological signals within global 13 year SeaWiFS (1998-2010) and 8 year MODIS/Aqua (2003-2010) chlorophyll a ocean color data (Level-3, 9 km resolution). We present geographical distributions, seasonality, and interannual variability of key geostatistical parameters: unresolved variability or noise, resolved variability, and spatial range. Resolved variability is nearly identical for both instruments, indicating that geostatistical techniques isolate a robust measure of biophysical mesoscale variability largely independent of measurement platform. In contrast, unresolved variability in MODIS/Aqua is substantially lower than in SeaWiFS, especially in oligotrophic waters where previous analysis identified a problem for the SeaWiFS instrument likely due to sensor noise characteristics. Both records exhibit a statistically significant relationship between resolved mesoscale variability and the low-pass filtered chlorophyll field horizontal gradient magnitude, consistent with physical stirring acting on large-scale gradient as an important factor supporting observed mesoscale variability. Comparable horizontal length scales for variability are found from tracer-based scaling arguments and geostatistical decorrelation. Regional variations between these length scales may reflect scale dependence of biological mechanisms that also create variability directly at the mesoscale, for example, enhanced net phytoplankton growth in coastal and frontal upwelling and convective mixing regions. Global estimates of mesoscale biophysical variability provide an improved basis for evaluating higher resolution, coupled ecosystem-ocean general circulation models, and data assimilation.
NASA Technical Reports Server (NTRS)
Clark, Dennis K.; Yarbrough, Mark A.; Feinholz, Mike; Flora, Stephanie; Broenkow, William; Kim, Yong Sung; Johnson, B. Carol; Brown, Steven W.; Yuen, Marilyn; Mueller, James L.
2003-01-01
The Marine Optical Buoy (MOBY) is the centerpiece of the primary ocean measurement site for calibration of satellite ocean color sensors based on independent in situ measurements. Since late 1996, the time series of normalized water-leaving radiances L(sub WN)(lambda) determined from the array of radiometric sensors attached to MOBY are the primary basis for the on-orbit calibrations of the USA Sea-viewing Wide Field-of-view Sensor (SeaWiFS), the Japanese Ocean Color and Temperature Sensor (OCTS), the French Polarization Detection Environmental Radiometer (POLDER), the German Modular Optoelectronic Scanner on the Indian Research Satellite (IRS1-MOS), and the USA Moderate Resolution Imaging Spectrometer (MODIS). The MOBY vicarious calibration L(sub WN)(lambda) reference is an essential element in the international effort to develop a global, multi-year time series of consistently calibrated ocean color products using data from a wide variety of independent satellite sensors. A longstanding goal of the SeaWiFS and MODIS (Ocean) Science Teams is to determine satellite-derived L(sub WN)(labda) with a relative combined standard uncertainty of 5 %. Other satellite ocean color projects and the Sensor Intercomparison for Marine Biology and Interdisciplinary Oceanic Studies (SIMBIOS) project have also adopted this goal, at least implicitly. Because water-leaving radiance contributes at most 10 % of the total radiance measured by a satellite sensor above the atmosphere, a 5 % uncertainty in L(sub WN)(lambda) implies a 0.5 % uncertainty in the above-atmosphere radiance measurements. This level of uncertainty can only be approached using vicarious-calibration approaches as described below. In practice, this means that the satellite radiance responsivity is adjusted to achieve the best agreement, in a least-squares sense, for the L(sub WN)(lambda) results determined using the satellite and the independent optical sensors (e.g. MOBY). The end result of this approach is to implicitly absorb unquantified, but systematic, errors in the atmospheric correction, incident solar flux, and satellite sensor calibration into a single correction factor to produce consistency with the in situ data.
Byrska-Bishop, Marta; Wallace, John; Frase, Alexander T; Ritchie, Marylyn D
2018-01-01
Abstract Motivation BioBin is an automated bioinformatics tool for the multi-level biological binning of sequence variants. Herein, we present a significant update to BioBin which expands the software to facilitate a comprehensive rare variant analysis and incorporates novel features and analysis enhancements. Results In BioBin 2.3, we extend our software tool by implementing statistical association testing, updating the binning algorithm, as well as incorporating novel analysis features providing for a robust, highly customizable, and unified rare variant analysis tool. Availability and implementation The BioBin software package is open source and freely available to users at http://www.ritchielab.com/software/biobin-download Contact mdritchie@geisinger.edu Supplementary information Supplementary data are available at Bioinformatics online. PMID:28968757
Characterizing Aerosols over Southeast Asia using the AERONET Data Synergy Tool
NASA Technical Reports Server (NTRS)
Giles, David M.; Holben, Brent N.; Eck, Thomas F.; Slutsker, Ilya; Slutsker, Ilya; Welton, Ellsworth, J.; Chin, Mian; Kucsera, Thomas; Schmaltz, Jeffery E.; Diehl, Thomas;
2007-01-01
Biomass burning, urban pollution and dust aerosols have significant impacts on the radiative forcing of the atmosphere over Asia. In order to better quanti@ these aerosol characteristics, the Aerosol Robotic Network (AERONET) has established over 200 sites worldwide with an emphasis in recent years on the Asian continent - specifically Southeast Asia. A total of approximately 15 AERONET sun photometer instruments have been deployed to China, India, Pakistan, Thailand, and Vietnam. Sun photometer spectral aerosol optical depth measurements as well as microphysical and optical aerosol retrievals over Southeast Asia will be analyzed and discussed with supporting ground-based instrument, satellite, and model data sets, which are freely available via the AERONET Data Synergy tool at the AERONET web site (http://aeronet.gsfc.nasa.gov). This web-based data tool provides access to groundbased (AERONET and MPLNET), satellite (MODIS, SeaWiFS, TOMS, and OMI) and model (GOCART and back trajectory analyses) databases via one web portal. Future development of the AERONET Data Synergy Tool will include the expansion of current data sets as well as the implementation of other Earth Science data sets pertinent to advancing aerosol research.
Bio-mimic optimization strategies in wireless sensor networks: a survey.
Adnan, Md Akhtaruzzaman; Abdur Razzaque, Mohammd; Ahmed, Ishtiaque; Isnin, Ismail Fauzi
2013-12-24
For the past 20 years, many authors have focused their investigations on wireless sensor networks. Various issues related to wireless sensor networks such as energy minimization (optimization), compression schemes, self-organizing network algorithms, routing protocols, quality of service management, security, energy harvesting, etc., have been extensively explored. The three most important issues among these are energy efficiency, quality of service and security management. To get the best possible results in one or more of these issues in wireless sensor networks optimization is necessary. Furthermore, in number of applications (e.g., body area sensor networks, vehicular ad hoc networks) these issues might conflict and require a trade-off amongst them. Due to the high energy consumption and data processing requirements, the use of classical algorithms has historically been disregarded. In this context contemporary researchers started using bio-mimetic strategy-based optimization techniques in the field of wireless sensor networks. These techniques are diverse and involve many different optimization algorithms. As far as we know, most existing works tend to focus only on optimization of one specific issue of the three mentioned above. It is high time that these individual efforts are put into perspective and a more holistic view is taken. In this paper we take a step in that direction by presenting a survey of the literature in the area of wireless sensor network optimization concentrating especially on the three most widely used bio-mimetic algorithms, namely, particle swarm optimization, ant colony optimization and genetic algorithm. In addition, to stimulate new research and development interests in this field, open research issues, challenges and future research directions are highlighted.
NegBio: a high-performance tool for negation and uncertainty detection in radiology reports.
Peng, Yifan; Wang, Xiaosong; Lu, Le; Bagheri, Mohammadhadi; Summers, Ronald; Lu, Zhiyong
2018-01-01
Negative and uncertain medical findings are frequent in radiology reports, but discriminating them from positive findings remains challenging for information extraction. Here, we propose a new algorithm, NegBio, to detect negative and uncertain findings in radiology reports. Unlike previous rule-based methods, NegBio utilizes patterns on universal dependencies to identify the scope of triggers that are indicative of negation or uncertainty. We evaluated NegBio on four datasets, including two public benchmarking corpora of radiology reports, a new radiology corpus that we annotated for this work, and a public corpus of general clinical texts. Evaluation on these datasets demonstrates that NegBio is highly accurate for detecting negative and uncertain findings and compares favorably to a widely-used state-of-the-art system NegEx (an average of 9.5% improvement in precision and 5.1% in F1-score). https://github.com/ncbi-nlp/NegBio.
BioImageXD: an open, general-purpose and high-throughput image-processing platform.
Kankaanpää, Pasi; Paavolainen, Lassi; Tiitta, Silja; Karjalainen, Mikko; Päivärinne, Joacim; Nieminen, Jonna; Marjomäki, Varpu; Heino, Jyrki; White, Daniel J
2012-06-28
BioImageXD puts open-source computer science tools for three-dimensional visualization and analysis into the hands of all researchers, through a user-friendly graphical interface tuned to the needs of biologists. BioImageXD has no restrictive licenses or undisclosed algorithms and enables publication of precise, reproducible and modifiable workflows. It allows simple construction of processing pipelines and should enable biologists to perform challenging analyses of complex processes. We demonstrate its performance in a study of integrin clustering in response to selected inhibitors.
NASA Astrophysics Data System (ADS)
Lee, Woong-Bi; Kim, Cheolsun; Ju, Gun Wu; Lee, Yong Tak; Lee, Heung-No
2016-05-01
Miniature spectrometers have been widely developed in various academic and industrial applications such as bio-medical, chemical and environmental engineering. As a family of spectrometers, optical filter-array based spectrometers fabricated using CMOS or Nano technology provide miniaturization, superior portability and cost effectiveness. In filterarray based spectrometers, the resolution which represents the ability how closely resolve two neighboring spectra, depends on the number of filters and the characteristics of the transmission functions (TFs) of the filters. In practice, due to the small-size and low-cost fabrication, the number of filters is limited and the shape of the TF of each filter is nonideal. As a development of modern digital signal processing (DSP), the spectrometers are equipped with DSP algorithms not only to alleviate distortions due to unexpected noise or interferences among filters but also reconstruct the original signal spectrum. For a high-resolution spectrum reconstruction by the DSP, the TFs of the filters need to be sufficiently uncorrelated with each other. In this paper, we present a design of optical thin-film filters which have the uncorrelated TFs. Each filter consists of multiple layers of high- and low-refractive index materials deposited on a substrate. The proposed design helps the DSP algorithm to improve resolution with a small number of filters. We demonstrate that a resolution of 5 nm within a range from 500 nm to 1100 nm can be achieved with only 64 filters.
Real-time optical flow estimation on a GPU for a skied-steered mobile robot
NASA Astrophysics Data System (ADS)
Kniaz, V. V.
2016-04-01
Accurate egomotion estimation is required for mobile robot navigation. Often the egomotion is estimated using optical flow algorithms. For an accurate estimation of optical flow most of modern algorithms require high memory resources and processor speed. However simple single-board computers that control the motion of the robot usually do not provide such resources. On the other hand, most of modern single-board computers are equipped with an embedded GPU that could be used in parallel with a CPU to improve the performance of the optical flow estimation algorithm. This paper presents a new Z-flow algorithm for efficient computation of an optical flow using an embedded GPU. The algorithm is based on the phase correlation optical flow estimation and provide a real-time performance on a low cost embedded GPU. The layered optical flow model is used. Layer segmentation is performed using graph-cut algorithm with a time derivative based energy function. Such approach makes the algorithm both fast and robust in low light and low texture conditions. The algorithm implementation for a Raspberry Pi Model B computer is discussed. For evaluation of the algorithm the computer was mounted on a Hercules mobile skied-steered robot equipped with a monocular camera. The evaluation was performed using a hardware-in-the-loop simulation and experiments with Hercules mobile robot. Also the algorithm was evaluated using KITTY Optical Flow 2015 dataset. The resulting endpoint error of the optical flow calculated with the developed algorithm was low enough for navigation of the robot along the desired trajectory.
Iitani, Kenta; Chien, Po-Jen; Suzuki, Takuma; Toma, Koji; Arakawa, Takahiro; Iwasaki, Yasuhiko; Mitsubayashi, Kohji
2018-02-23
Volatile organic compounds (VOCs) exhaled in breath have huge potential as indicators of diseases and metabolisms. Application of breath analysis for disease screening and metabolism assessment is expected since breath samples can be noninvasively collected and measured. In this research, a highly sensitive and selective biochemical gas sensor (bio-sniffer) for gaseous acetaldehyde (AcH) was developed. In the AcH bio-sniffer, a reverse reaction of alcohol dehydrogenase (ADH) was employed for reducing AcH to ethanol and simultaneously consuming a coenzyme, reduced form of nicotinamide adenine dinucleotide (NADH). The concentration of AcH can be quantified by fluorescence detection of NADH that was consumed by reverse reaction of ADH. The AcH bio-sniffer was composed of an ultraviolet light-emitting diode (UV-LED) as an excitation light source, a photomultiplier tube (PMT) as a fluorescence detector, and an optical fiber probe, and these three components were connected with a bifurcated optical fiber. A gas-sensing region of the fiber probe was developed with a flow-cell and an ADH-immobilized membrane. In the experiment, after optimization of the enzyme reaction conditions, the selectivity and dynamic range of the AcH bio-sniffer were investigated. The AcH bio-sniffer showed a short measurement time (within 2 min) and a broad dynamic range for determination of gaseous AcH, 0.02-10 ppm, which encompassed a typical AcH concentration in exhaled breath (1.2-6.0 ppm). Also, the AcH bio-sniffer exhibited a high selectivity to gaseous AcH based on the specificity of ADH. The sensor outputs were observed only from AcH-contained standard gaseous samples. Finally, the AcH bio-sniffer was applied to measure the concentration of AcH in exhaled breath from healthy subjects after ingestion of alcohol. As a result, a significant difference of AcH concentration between subjects with different aldehyde dehydrogenase type 2 (ALDH2) phenotypes was observed. The AcH bio-sniffer can be used for breath measurement, and further, an application of breath analysis-based disease screening or metabolism assessment can be expected due to the versatility of its detection principle, which allows it to measure other VOCs by using NADH-dependent dehydrogenases.
Optical Properties of Plasmonic Nanostructures for Bio-Imaging and Bio-Sensing Applications
NASA Astrophysics Data System (ADS)
Kravets, Vira V.
Kravets, Vira V. (Ph.D., Physics). Optical properties of plasmonic nanostructures for bio-imaging and bio-sensing applications. Dissertation directed by Associate Professor Anatoliy Pinchuk. ABSTRACT. This dissertation explores the physics of free electron excitations in gold nanoparticle chains, silver nanoparticle colloids, and thin gold films. Electron excitations in nanostructures (surface plasmons, SP) are responsible for unique optical properties, which are applied in bio-sensing and bio-imaging applications. For gold nanoparticle chains, the effect of SP on resonance light absorption was studied experimentally and theoretically. Mainly, how the spectral position of the absorption peak depends on inter-particle distances. This dependence is used in “molecular rulers”, providing spatial resolution below the Rayleigh limit. The underlying theory is based on particle interaction via scattered dipole fields. Often in literature only the near-field component of the scattered field is considered. Here, I show that middle and far fields should not be neglected for calculation of extinction by particle chains. In silver nanoparticles, SP excitations produce two independent effects: (a) the intrinsic fluorescence of the particles, and (b) the enhancement of a molecule’s fluorescence by a particle’s surface. The mechanism of (a) is deduced by studying how fluorescence depends on particle size. For (b), I show that fluorescence of a dye molecule on the surface of a nanoparticle is enhanced, when compared to that of the free-standing dye. I demonstrate that the dye’s fluorescent quantum yield is dependent on the particle’s size, making labeled silver nanoparticles attractive candidates as bio-imaging agents. Labeled nanoparticles are applied to cell imaging, and their bio-compatibility with two cell lines is evaluated here. Finally, in gold films under attenuated total internal reflection (ATR) conditions, the SP create a propagating wave (SP-polariton, SPP) when coupled with the incident light. Because of the sensitivity of SPPs to the medium adjacent to the gold film surface, they are widely applied in bio-sensing applications. A toolbox for the description of sputter-deposited gold films is presented here: it employs three experimental techniques (ATR, transmittance and atomic force microscopy) in combination with the effective medium theory for double-layered film model. Our findings have allowed for the avoidance of superficial fitting parameters in our model.
BioLayout(Java): versatile network visualisation of structural and functional relationships.
Goldovsky, Leon; Cases, Ildefonso; Enright, Anton J; Ouzounis, Christos A
2005-01-01
Visualisation of biological networks is becoming a common task for the analysis of high-throughput data. These networks correspond to a wide variety of biological relationships, such as sequence similarity, metabolic pathways, gene regulatory cascades and protein interactions. We present a general approach for the representation and analysis of networks of variable type, size and complexity. The application is based on the original BioLayout program (C-language implementation of the Fruchterman-Rheingold layout algorithm), entirely re-written in Java to guarantee portability across platforms. BioLayout(Java) provides broader functionality, various analysis techniques, extensions for better visualisation and a new user interface. Examples of analysis of biological networks using BioLayout(Java) are presented.
Multi-layer service function chaining scheduling based on auxiliary graph in IP over optical network
NASA Astrophysics Data System (ADS)
Li, Yixuan; Li, Hui; Liu, Yuze; Ji, Yuefeng
2017-10-01
Software Defined Optical Network (SDON) can be considered as extension of Software Defined Network (SDN) in optical networks. SDON offers a unified control plane and makes optical network an intelligent transport network with dynamic flexibility and service adaptability. For this reason, a comprehensive optical transmission service, able to achieve service differentiation all the way down to the optical transport layer, can be provided to service function chaining (SFC). IP over optical network, as a promising networking architecture to interconnect data centers, is the most widely used scenarios of SFC. In this paper, we offer a flexible and dynamic resource allocation method for diverse SFC service requests in the IP over optical network. To do so, we firstly propose the concept of optical service function (OSF) and a multi-layer SFC model. OSF represents the comprehensive optical transmission service (e.g., multicast, low latency, quality of service, etc.), which can be achieved in multi-layer SFC model. OSF can also be considered as a special SF. Secondly, we design a resource allocation algorithm, which we call OSF-oriented optical service scheduling algorithm. It is able to address multi-layer SFC optical service scheduling and provide comprehensive optical transmission service, while meeting multiple optical transmission requirements (e.g., bandwidth, latency, availability). Moreover, the algorithm exploits the concept of Auxiliary Graph. Finally, we compare our algorithm with the Baseline algorithm in simulation. And simulation results show that our algorithm achieves superior performance than Baseline algorithm in low traffic load condition.
Papanikolaou, Yannis; Tsoumakas, Grigorios; Laliotis, Manos; Markantonatos, Nikos; Vlahavas, Ioannis
2017-09-22
In this paper we present the approach that we employed to deal with large scale multi-label semantic indexing of biomedical papers. This work was mainly implemented within the context of the BioASQ challenge (2013-2017), a challenge concerned with biomedical semantic indexing and question answering. Our main contribution is a MUlti-Label Ensemble method (MULE) that incorporates a McNemar statistical significance test in order to validate the combination of the constituent machine learning algorithms. Some secondary contributions include a study on the temporal aspects of the BioASQ corpus (observations apply also to the BioASQ's super-set, the PubMed articles collection) and the proper parametrization of the algorithms used to deal with this challenging classification task. The ensemble method that we developed is compared to other approaches in experimental scenarios with subsets of the BioASQ corpus giving positive results. In our participation in the BioASQ challenge we obtained the first place in 2013 and the second place in the four following years, steadily outperforming MTI, the indexing system of the National Library of Medicine (NLM). The results of our experimental comparisons, suggest that employing a statistical significance test to validate the ensemble method's choices, is the optimal approach for ensembling multi-label classifiers, especially in contexts with many rare labels.
NASA Astrophysics Data System (ADS)
Potlov, A. Yu.; Frolov, S. V.; Proskurin, S. G.
2018-04-01
Optical structure disturbances localization algorithm for time-resolved diffuse optical tomography of biological objects is described. The key features of the presented algorithm are: the initial approximation for the spatial distribution of the optical characteristics based on the Homogeneity Index and the assumption that all the absorbing and scattering inhomogeneities in an investigated object are spherical and have the same absorption and scattering coefficients. The described algorithm can be used in the brain structures diagnosis, in traumatology and optical mammography.
NASA Technical Reports Server (NTRS)
2002-01-01
This Sea-viewing Wide Field-of-view Sensor (SeaWiFS) image of the Bay of Campeche, acquired January 17, 2001, shows a 300-kilometer long smoke plume streaming towards the northwest from around 19.4o North and 92o West, the location of the Akal oil field. In the lower right (southeast) corner of the image is the country of El Salvador, site of a magnitude 7.6 earthquake on January 13, 2001. On the Pacific side of Southern Mexico, the productive waters of the Gulf of Tehuantepec are visible. Provided by the SeaWiFS Project, NASA/Goddard Space Flight Center, and ORBIMAGE
2014-01-25
Virtual Special Issue Gulf of Mexico Modelling – Lessons from the spill Simulating surface oil transport during the Deepwater Horizon oil spill ...ocean surface materials. The Deepwater Horizon oil spill in the Gulf of Mexico provided a test case for the Bio-Optical Forecasting (BioCast) system...addition of explicit sources and sinks of surface oil concentrations provides a framework for increasingly complex oil spill modeling efforts that extend
McTwo: a two-step feature selection algorithm based on maximal information coefficient.
Ge, Ruiquan; Zhou, Manli; Luo, Youxi; Meng, Qinghan; Mai, Guoqin; Ma, Dongli; Wang, Guoqing; Zhou, Fengfeng
2016-03-23
High-throughput bio-OMIC technologies are producing high-dimension data from bio-samples at an ever increasing rate, whereas the training sample number in a traditional experiment remains small due to various difficulties. This "large p, small n" paradigm in the area of biomedical "big data" may be at least partly solved by feature selection algorithms, which select only features significantly associated with phenotypes. Feature selection is an NP-hard problem. Due to the exponentially increased time requirement for finding the globally optimal solution, all the existing feature selection algorithms employ heuristic rules to find locally optimal solutions, and their solutions achieve different performances on different datasets. This work describes a feature selection algorithm based on a recently published correlation measurement, Maximal Information Coefficient (MIC). The proposed algorithm, McTwo, aims to select features associated with phenotypes, independently of each other, and achieving high classification performance of the nearest neighbor algorithm. Based on the comparative study of 17 datasets, McTwo performs about as well as or better than existing algorithms, with significantly reduced numbers of selected features. The features selected by McTwo also appear to have particular biomedical relevance to the phenotypes from the literature. McTwo selects a feature subset with very good classification performance, as well as a small feature number. So McTwo may represent a complementary feature selection algorithm for the high-dimensional biomedical datasets.
Chen, Meilian; Jaffé, Rudolf
2014-09-15
Dissolved organic carbon (DOC) measurements and optical properties were applied to assess the photo- and bio-reactivity of dissolved organic matter (DOM) from different sources, including biomass leaching, soil leaching and surface waters in a subtropical wetland ecosystem. Samples were exposed to light and/or dark incubated through controlled laboratory experiments. Changes in DOC, ultraviolet (UV-Vis) visible absorbance, and excitation-emission matrix (EEM) fluorescence combined with parallel factor analysis (PARAFAC) were performed to assess sample degradation. Degradation experiments showed that while significant amounts of DOC were consumed during bio-incubation for biomass leachates, a higher degree of bio-recalcitrance for soil leachate and particularly surface waters was displayed. Photo- and bio-humification transformations were suggested for sawgrass, mangrove, and seagrass leachates, as compared to substantial photo-degradation and very little to almost no change after bio-incubation for the other samples. During photo-degradation in most cases the EEM-PARAFAC components displayed photo-decay as compared to a few cases which featured photo-production. In contrast during bio-incubation most EEM-PARAFAC components proved to be mostly bio-refractory although some increases and decreases in abundance were also observed. Furthermore, the sequential photo- followed by bio-degradation showed, with some exceptions, a "priming effect" of light exposure on the bio-degradation of DOM, and the combination of these two processes resulted in a DOM composition more similar to that of the natural surface water for the different sub-environments. In addition, for leachate samples there was a general enrichment of one of the EEM-PARAFAC humic-like component (Ex/Em: <260(305)/416 nm) during photo-degradation and an enrichment of a microbial humc-like component (Ex/Em: <260(325)/406 nm and of a tryptophan-like component (Ex/Em: 300/342 nm) during the bio-degradation process. This study exemplifies the effectiveness of optical property and EEM-PARAFAC in the assessment of DOM reactivity and highlights the importance of the coupling of photo- and bio-degradation processes in DOM degradation. Copyright © 2014 Elsevier Ltd. All rights reserved.
Bio-Inspired Distributed Decision Algorithms for Anomaly Detection
2017-03-01
TERMS DIAMoND, Local Anomaly Detector, Total Impact Estimation, Threat Level Estimator 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT UU...21 4.2 Performance of the DIAMoND Algorithm as a DNS-Server Level Attack Detection and Mitigation...with 6 Nodes ........................................................................................ 13 8 Hierarchical 2- Level Topology
An epidemic model for biological data fusion in ad hoc sensor networks
NASA Astrophysics Data System (ADS)
Chang, K. C.; Kotari, Vikas
2009-05-01
Bio terrorism can be a very refined and a catastrophic approach of attacking a nation. This requires the development of a complete architecture dedicatedly designed for this purpose which includes but is not limited to Sensing/Detection, Tracking and Fusion, Communication, and others. In this paper we focus on one such architecture and evaluate its performance. Various sensors for this specific purpose have been studied. The accent has been on use of Distributed systems such as ad-hoc networks and on application of epidemic data fusion algorithms to better manage the bio threat data. The emphasis has been on understanding the performance characteristics of these algorithms under diversified real time scenarios which are implemented through extensive JAVA based simulations. Through comparative studies on communication and fusion the performance of channel filter algorithm for the purpose of biological sensor data fusion are validated.
Integrated Bio-Entity Network: A System for Biological Knowledge Discovery
Bell, Lindsey; Chowdhary, Rajesh; Liu, Jun S.; Niu, Xufeng; Zhang, Jinfeng
2011-01-01
A significant part of our biological knowledge is centered on relationships between biological entities (bio-entities) such as proteins, genes, small molecules, pathways, gene ontology (GO) terms and diseases. Accumulated at an increasing speed, the information on bio-entity relationships is archived in different forms at scattered places. Most of such information is buried in scientific literature as unstructured text. Organizing heterogeneous information in a structured form not only facilitates study of biological systems using integrative approaches, but also allows discovery of new knowledge in an automatic and systematic way. In this study, we performed a large scale integration of bio-entity relationship information from both databases containing manually annotated, structured information and automatic information extraction of unstructured text in scientific literature. The relationship information we integrated in this study includes protein–protein interactions, protein/gene regulations, protein–small molecule interactions, protein–GO relationships, protein–pathway relationships, and pathway–disease relationships. The relationship information is organized in a graph data structure, named integrated bio-entity network (IBN), where the vertices are the bio-entities and edges represent their relationships. Under this framework, graph theoretic algorithms can be designed to perform various knowledge discovery tasks. We designed breadth-first search with pruning (BFSP) and most probable path (MPP) algorithms to automatically generate hypotheses—the indirect relationships with high probabilities in the network. We show that IBN can be used to generate plausible hypotheses, which not only help to better understand the complex interactions in biological systems, but also provide guidance for experimental designs. PMID:21738677
Atmospheric correction of AVIRIS data in ocean waters
NASA Technical Reports Server (NTRS)
Terrie, Gregory; Arnone, Robert
1992-01-01
Hyperspectral data offers unique capabilities for characterizing the ocean environment. The spectral characterization of the composition of ocean waters can be organized into biological and terrigenous components. Biological photosynthetic pigments in ocean waters have unique spectral ocean color signatures which can be associated with different biological species. Additionally, suspended sediment has different scattering coefficients which result in ocean color signatures. Measuring the spatial distributions of these components in the maritime environments provides important tools for understanding and monitoring the ocean environment. These tools have significant applications in pollution, carbon cycle, current and water mass detection, location of fronts and eddies, sewage discharge and fate etc. Ocean color was used from satellite for describing the spatial variability of chlorophyll, water clarity (K(sub 490)), suspended sediment concentration, currents etc. Additionally, with improved atmospheric correction methods, ocean color results produced global products of spectral water leaving radiance (L(sub W)). Ocean color results clearly indicated strong applications for characterizing the spatial and temporal variability of bio-optical oceanography. These studies were largely the results of advanced atmospheric correction techniques applied to multispectral imagery. The atmosphere contributes approximately 80 percent - 90 percent of the satellite received radiance in the blue-green portion of the spectrum. In deep ocean waters, maximum transmission of visible radiance is achieved at 490nm. Conversely, nearly all of the light is absorbed by the water at wavelengths greater than about 650nm and thus appears black. These spectral ocean properties are exploited by algorithms developed for the atmospheric correction used in satellite ocean color processing. The objective was to apply atmospheric correction techniques that were used for procesing satellite Coastal Zone Color Scanner (CZCS) data to AVIRIS data. Quantitative measures of L(sub W) from AVIRIS are compared with ship ground truth data and input into bio-optical models.
Merging Ocean Color Data from Multiple Missions. Chapter 12
NASA Technical Reports Server (NTRS)
Gregg, Watson W.
2001-01-01
Oceanic phytoplankton may play an important role in the cycling of carbon on the Earth, through the uptake of carbon dioxide in the process of photosynthesis. Although they are ubiquitous in the global oceans, their abundances and dynamics are difficult to estimate, primarily due to the vast spatial extent of the oceans and the short time scales over which their abundances can change. Consequently, the effects of oceanic phytoplankton on biogeochemical cycling, climate change, and fisheries are not well known. In response to the potential importance of phytoplankton in the global carbon cycle and the lack of comprehensive data, the National Aeronautics and Space Administration (NASA) and the international community have established high priority satellite missions designed to acquire and produce high quality ocean color data. Seven of the missions are routine global observational missions: the Ocean Color and Temperature Sensor (OCTS), the Polarization and Directionality of the Earth's Reflectances sensor (POLDER), Sea-viewing Wide Field-of-view Sensor (SeaWiFS), Moderate Resolution Imaging Spectrometer-AM (MODIS-AM), Medium Resolution Imaging Spectrometer (MERIS), Global Imager (GLI), and MODIS-PM. In addition, there are several other missions capable of providing ocean color data on smaller scales. Most of these missions contain the spectral band complement considered necessary to derive oceanic pigment concentrations (i.e., phytoplankton abundance) and other related parameters. Many contain additional bands that can provide important ancillary information about the optical and biological state of the oceans. Any individual ocean color mission is limited in ocean coverage due to sun glint and clouds. For example, one of the first proposed missions, the SeaWiFS, can provide about 45% coverage of the global ocean in four days and only about 15% in one day.
Bio-optical properties of Porsnagerfjorden (Norway) waters based on data collected in 2014 and 2015
NASA Astrophysics Data System (ADS)
Białogrodzka, Jagoda; Stramska, Małgorzata; Burska, Dorota; Ficek, Dariusz; Stoń-Egiert, Joanna; Winogradow, Aleksandra
2016-04-01
Oceanographic data collected in the Arctic are valuable in view of the role of this region in the studies on global climate change and the fact that historically the number of in situ measurements is relatively low. Porsangerfjorden, Norway, is an example of oceanic basin with case 2 water according to the optical classification. Optical data from coastal seas are difficult in interpretation because the concentrations of optically important components can be high, variable, and not covarying with each other. Porsanger Fjord can be divided into three basins: inner, middle and outer, where physical and bio-optical properties of water masses differ. We collected optical data and water samples for phytoplankton pigments, dissolved organic matter, particulate (POC) and dissolved (DOC) organic carbon, and particulate inorganic carbon (PIC) during our two summer expeditions in 2014 and 2015. In this presentation we focus on data collected with WETLabs' ac-9 and ac-s spectrophotometers and ECO-Triplet and ECO-Triplet-w fluorometers. Concurrently with in situ optical measurements water samples were collected in situ and soon afterwards they were filtered in the laboratory at the station, stored and transported for further processing in Poland. Our analysis includes 146 of in situ measurements and discrete water samples: 62 of POC, 52 of PIC, 33 of DOC, 68 of dissolved organic matter and 89 of phytoplankton pigments. During our analysis we compare chlorophyll (Chl_a), dissolved organic matter (CDOM) and carbon concentrations with in situ collected inherent optical properties of sea water to find empirical proxies allowing to estimate various water component concentrations from optical data. Application of these proxies to available bio-optical data allowed us to derive spatial distribution of these water constituents and their variability. This work was funded by the Norway Grants (NCBR contract No. 201985, project NORDFLUX).
Impact of phytoplankton community structure and function on marine particulate optical properties
NASA Astrophysics Data System (ADS)
McFarland, Malcolm Neil
Phytoplankton are an ecologically important and diverse group of organisms whose distribution, abundance, and population dynamics vary significantly over small spatial (cm) and temporal (minutes) scales in the coastal ocean. Our inability to observe phytoplankton community structure and function at these small scales has severely limited our understanding of the fundamental ecological and evolutionary mechanisms that drive phytoplankton growth, mortality, adaptation and speciation. The goal of this dissertation was to enhance our understanding of phytoplankton ecology by improving in situ observational techniques based on the optical properties of cells, colonies, populations, and communities. Field and laboratory studies were used to determine the effects of phytoplankton species composition, morphology, and physiology on the inherent optical properties of communities and to explore the adaptive significance of bio-optically important cellular characteristics. Initial field studies found a strong association between species composition and the relative magnitude and shape of particulate absorption, scattering, and attenuation coefficient spectra. Subsequent field studies using scanning flow cytometry to directly measure optically important phytoplankton and non-algal particle characteristics demonstrated that the size and pigment content of large (>20 microm) phytoplankton cells and colonies vary significantly with the slope of particulate attenuation and absorption spectra, and with the ratio of particulate scattering to absorption. These relationships enabled visualization of phytoplankton community composition and mortality over small spatial and temporal scales derived from high resolution optical measurements acquired with an autonomous profiling system. Laboratory studies with diverse uni-algal cultures showed that morphological and physiological characteristics of cells and colonies can account for ˜30% of the optical variation observed in natural communities and that complex morphologies and low intracellular pigment concentrations minimize pigment self-shading that could otherwise limit bio-optical fitness. These results demonstrate that optical properties reveal detailed information about the distribution, abundance, morphology, and physiology of phytoplankton that can help explain their ecological dynamics over small spatial scales and the bio-optical function of diverse forms in the ocean.
Breast Cancer Diagnostic System Final Report CRADA No. TC02098.0
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rubenchik, A. M.; DaSilva, L. B.
This was a collaborative effort between Lawrence Livermore National Security, LLC (formerly The Regents of the University of California)/Lawrence Liver more National Laboratory (LLNL) and BioTelligent, Inc. together with a Russian Institution (BioFil, Ltd.), to develop a new system ( diagnostic device, operating procedures, algorithms and software) to accurately distinguish between benign and malignant breast tissue (Breast Cancer Diagnostic System, BCDS).
Customization of Protein Single Nanowires for Optical Biosensing.
Sun, Yun-Lu; Sun, Si-Ming; Wang, Pan; Dong, Wen-Fei; Zhang, Lei; Xu, Bin-Bin; Chen, Qi-Dai; Tong, Li-Min; Sun, Hong-Bo
2015-06-24
An all-protein single-nanowire optical biosensor is constructed by a facile and general femtosecond laser direct writing approach with nanoscale structural customization. As-formed protein single nanowires show excellent optical properties (fine waveguiding performance and bio-applicable transmission windows), and are utilized as evanescent optical nanobiosensors for label-free biotin detection. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Ghezzi, Diego; Vazquez, Rebeca Martinez; Osellame, Roberto; Valtorta, Flavia; Pedrocchi, Alessandra; Valle, Giuseppe Della; Ramponi, Roberta; Ferrigno, Giancarlo; Cerullo, Giulio
2008-01-01
Flash photolysis of caged compounds is one of the most powerful approaches to investigate the dynamic response of living cells. Monolithically integrated devices suitable for optical uncaging are in great demand since they greatly simplify the experiments and allow their automation. Here we demonstrate the fabrication of an integrated bio-photonic device for the optical release of caged compounds. Such a device is fabricated using femtosecond laser micromachining of a glass substrate. More in detail, femtosecond lasers are used both to cut the substrate in order to create a pit for cell growth and to inscribe optical waveguides for spatially selective uncaging of the compounds present in the culture medium. The operation of this monolithic bio-photonic device is tested using both free and caged fluorescent compounds to probe its capability of multipoint release and optical sensing. Application of this device to the study of neuronal network activity can be envisaged. PMID:27873888
Compact surface plasmon resonance biosensor utilizing an injection-molded prism
NASA Astrophysics Data System (ADS)
Chen, How-Foo; Chen, Chih-Han; Chang, Yun-Hsiang; Chuang, Hsin-Yuan
2016-05-01
Targeting at a low cost and accessible diagnostic device in clinical practice, a compact surface plasmon resonance (SPR) biosensor with a large dynamic range in high sensitivity is designed to satisfy commercial needs in food safety, environmental bio-pollution monitoring, and fast clinical diagnosis. The core component integrates an optical coupler, a sample-loading plate, and angle-tuning reflectors is injection-molded as a free-from prism made of plastic optics. This design makes a matching-oil-free operation during operation. The disposability of this low-cost component ensures testing or diagnosis without cross contamination in bio-samples.
Bio-Mimic Optimization Strategies in Wireless Sensor Networks: A Survey
Adnan, Md. Akhtaruzzaman; Razzaque, Mohammd Abdur; Ahmed, Ishtiaque; Isnin, Ismail Fauzi
2014-01-01
For the past 20 years, many authors have focused their investigations on wireless sensor networks. Various issues related to wireless sensor networks such as energy minimization (optimization), compression schemes, self-organizing network algorithms, routing protocols, quality of service management, security, energy harvesting, etc., have been extensively explored. The three most important issues among these are energy efficiency, quality of service and security management. To get the best possible results in one or more of these issues in wireless sensor networks optimization is necessary. Furthermore, in number of applications (e.g., body area sensor networks, vehicular ad hoc networks) these issues might conflict and require a trade-off amongst them. Due to the high energy consumption and data processing requirements, the use of classical algorithms has historically been disregarded. In this context contemporary researchers started using bio-mimetic strategy-based optimization techniques in the field of wireless sensor networks. These techniques are diverse and involve many different optimization algorithms. As far as we know, most existing works tend to focus only on optimization of one specific issue of the three mentioned above. It is high time that these individual efforts are put into perspective and a more holistic view is taken. In this paper we take a step in that direction by presenting a survey of the literature in the area of wireless sensor network optimization concentrating especially on the three most widely used bio-mimetic algorithms, namely, particle swarm optimization, ant colony optimization and genetic algorithm. In addition, to stimulate new research and development interests in this field, open research issues, challenges and future research directions are highlighted. PMID:24368702
Bio-optical sensor for brain activity measurement based on whispering gallery modes
NASA Astrophysics Data System (ADS)
Ali, Amir R.; Massoud, Yasmin M.
2017-05-01
In this paper, a high-resolution bio-optical sensor is developed for brain activity measurement. The aim is to develop an optical sensor with enough sensitivity to detect small electric field perturbations caused by neuronal action potential. The sensing element is a polymeric dielectric micro-resonator fabricated in a spherical shape with a few hundred microns in diameter. They are made of optical quality polymers that are soft which make them mechanically compatible with tissue. The sensors are attached to or embedded in optical fibers which serve as input/output conduits for the sensors. Hundreds or even thousands of spheres can be attached to a single fiber to detect and transmit signals at different locations. The high quality factor for the optical resonator makes it significantly used in such bio-medical applications. The sensing phenomenon is based on whispering gallery modes (WGM) shifts of the optical sensor. To mimic the brain signals, the spherical resonator is immersed in a homogeneous electrical field that is created by applying potential difference across two metallic plates. One of the plates has a variable voltage while the volt on the other plate kept fixed. Any small perturbations of the potential difference (voltage) lead to change in the electric field intensity. In turn the sensor morphology will be affected due to the change in the electrostriction force acting on it causing change in its WGM. By tracking these WGM shift on the transmission spectrum, the induced potential difference (voltage change) could be measured. Results of a mathematical model simulation agree well with the preliminary experiments. Also, the results show that the brain activity could be measured using this principle.
NASA Astrophysics Data System (ADS)
Kuo, Ju-Nan; Chen, Wei-Lun; Jywe, Wen-Yuh
2009-08-01
We present a bio-detection system integrated with an adjustable micro-concave mirror. The bio-detection system consists of an adjustable micro-concave mirror, micro flow cytometer chip and optical detection module. The adjustable micro-concave mirror can be fabricated with ease using commercially available MEMS foundry services (such as multiuser MEMS processes, MUMPs) and its curvature can be controlled utilizing thermal or electrical effects. Experimental results show that focal lengths of the micro-concave mirror ranging from 313.5 to 2275.0 μm are achieved. The adjustable micro-concave mirror can be used to increase the efficiency of optical detection and provide a high signal-to-noise ratio. The developed micro-concave mirror is integrated with a micro flow cytometer for cell counting applications. Successful counting of fluorescent-labeled beads is demonstrated using the developed method.
Li, Hong; Liu, Mingyong; Zhang, Feihu
2017-01-01
This paper presents a multi-objective evolutionary algorithm of bio-inspired geomagnetic navigation for Autonomous Underwater Vehicle (AUV). Inspired by the biological navigation behavior, the solution was proposed without using a priori information, simply by magnetotaxis searching. However, the existence of the geomagnetic anomalies has significant influence on the geomagnetic navigation system, which often disrupts the distribution of the geomagnetic field. An extreme value region may easily appear in abnormal regions, which makes AUV lost in the navigation phase. This paper proposes an improved bio-inspired algorithm with behavior constraints, for sake of making AUV escape from the abnormal region. First, the navigation problem is considered as the optimization problem. Second, the environmental monitoring operator is introduced, to determine whether the algorithm falls into the geomagnetic anomaly region. Then, the behavior constraint operator is employed to get out of the abnormal region. Finally, the termination condition is triggered. Compared to the state-of- the-art, the proposed approach effectively overcomes the disturbance of the geomagnetic abnormal. The simulation result demonstrates the reliability and feasibility of the proposed approach in complex environments.
Li, Hong; Liu, Mingyong; Zhang, Feihu
2017-01-01
This paper presents a multi-objective evolutionary algorithm of bio-inspired geomagnetic navigation for Autonomous Underwater Vehicle (AUV). Inspired by the biological navigation behavior, the solution was proposed without using a priori information, simply by magnetotaxis searching. However, the existence of the geomagnetic anomalies has significant influence on the geomagnetic navigation system, which often disrupts the distribution of the geomagnetic field. An extreme value region may easily appear in abnormal regions, which makes AUV lost in the navigation phase. This paper proposes an improved bio-inspired algorithm with behavior constraints, for sake of making AUV escape from the abnormal region. First, the navigation problem is considered as the optimization problem. Second, the environmental monitoring operator is introduced, to determine whether the algorithm falls into the geomagnetic anomaly region. Then, the behavior constraint operator is employed to get out of the abnormal region. Finally, the termination condition is triggered. Compared to the state-of- the-art, the proposed approach effectively overcomes the disturbance of the geomagnetic abnormal. The simulation result demonstrates the reliability and feasibility of the proposed approach in complex environments. PMID:28747884
NASA Technical Reports Server (NTRS)
Thomas, Andrew C.; Chai, F.; Townsend, D. W.; Xue, H.
2002-01-01
The goals of this project were to acquire, process, QC, archive and analyze SeaWiFS chlorophyll fields over the Gulf of Maine and Scotia Shelf region. The focus of the analysis effort was to calculate and quantify seasonality and interannual. variability of SeaWiFS-measured phytoplankton biomass in the study area and compare these to physical forcing and hydrography. An additional focus within this effort was on regional differences within the heterogeneous biophysical regions of the Gulf of Maine / Scotia Shelf. Overall goals were approached through the combined use of SeaWiFS and AVHRR data and the development of a coupled biology-physical numerical model.
NASA Astrophysics Data System (ADS)
Salinas Cortijo, S. V.; Chew, B. N.; Muller, A.; Liew, S.
2013-12-01
Aerosol optical depth combined with the Angstrom exponent and its derivative, are often used as a qualitative indicator of aerosol type and particle size regime. In Singapore, the sources of aerosols are mostly from fossil fuel burning (energy stations, incinerators, urban transport etc.) and from industrial and urban areas. However, depending on the time of the year (July-October), there can be a strong bio-mass component originated from uncontrolled forest/plantation fires from the neighboring land masses of Sumatra and Borneo. Unlike urban/fossil fuel aerosols, smoke or bio-mass related aerosol particles are typically characterized by showing a large optical depth and small, sub-micron particle size distributions. Trans-boundary smoke episodes has become an annual phenomenon in this region. Severe episodes were recorded in 1997 and 2006 and other minor episodes happened during 2002, 2004, 2010 and more recently on 2013. On August-September 2012, as part of CRISP participation on the August-September ground campaign of the Southeast Asia Composition, Cloud Climate Coupling Regional Study (SEAC4RS), a Distributed Regional Aerosol Gridded Observation Networks (DRAGON) set of six CIMEL CE-318A automatic Sun-tracking photometers have been deployed at sites located at North (Yishun ITE), East (Temasek Poly), West (NUS and Pandan Reservoir), Central (NEA) and South (St. John's island) of Singapore. In order to fully discriminate bio-mass burning events over other local sources, we perform a spectral discrimination of fine/coarse mode particle regime to all DRAGON sites; subsequently, the fine mode parameters such as optical depth, optical ratio and fine mode Angstrom exponent are used to identify possible bio-mass related events within the data set. Spatio-temporal relationship between sites are also investigated.
Modelling of internal architecture of kinesin nanomotor as a machine language.
Khataee, H R; Ibrahim, M Y
2012-09-01
Kinesin is a protein-based natural nanomotor that transports molecular cargoes within cells by walking along microtubules. Kinesin nanomotor is considered as a bio-nanoagent which is able to sense the cell through its sensors (i.e. its heads and tail), make the decision internally and perform actions on the cell through its actuator (i.e. its motor domain). The study maps the agent-based architectural model of internal decision-making process of kinesin nanomotor to a machine language using an automata algorithm. The applied automata algorithm receives the internal agent-based architectural model of kinesin nanomotor as a deterministic finite automaton (DFA) model and generates a regular machine language. The generated regular machine language was acceptable by the architectural DFA model of the nanomotor and also in good agreement with its natural behaviour. The internal agent-based architectural model of kinesin nanomotor indicates the degree of autonomy and intelligence of the nanomotor interactions with its cell. Thus, our developed regular machine language can model the degree of autonomy and intelligence of kinesin nanomotor interactions with its cell as a language. Modelling of internal architectures of autonomous and intelligent bio-nanosystems as machine languages can lay the foundation towards the concept of bio-nanoswarms and next phases of the bio-nanorobotic systems development.