Sample records for secchi disk transparency

  1. Seafarer citizen scientist ocean transparency data as a resource for phytoplankton and climate research.

    PubMed

    Seafarers, Secchi Disk; Lavender, Samantha; Beaugrand, Gregory; Outram, Nicholas; Barlow, Nigel; Crotty, David; Evans, Jake; Kirby, Richard

    2017-01-01

    The oceans' phytoplankton that underpin the marine food chain appear to be changing in abundance due to global climate change. Here, we compare the first four years of data from a citizen science ocean transparency study, conducted by seafarers using home-made Secchi Disks and a free Smartphone application called Secchi, with contemporaneous satellite ocean colour measurements. Our results show seafarers collect useful Secchi Disk measurements of ocean transparency that could help future assessments of climate-induced changes in the phytoplankton when used to extend historical Secchi Disk data.

  2. Seafarer citizen scientist ocean transparency data as a resource for phytoplankton and climate research

    PubMed Central

    Seafarers, Secchi Disk; Lavender, Samantha; Beaugrand, Gregory; Crotty, David; Evans, Jake

    2017-01-01

    The oceans’ phytoplankton that underpin the marine food chain appear to be changing in abundance due to global climate change. Here, we compare the first four years of data from a citizen science ocean transparency study, conducted by seafarers using home-made Secchi Disks and a free Smartphone application called Secchi, with contemporaneous satellite ocean colour measurements. Our results show seafarers collect useful Secchi Disk measurements of ocean transparency that could help future assessments of climate-induced changes in the phytoplankton when used to extend historical Secchi Disk data. PMID:29211734

  3. Secchi disk observation with spectral-selective glasses in blue and green waters.

    PubMed

    Lee, Zhongping; Shang, Shaoling; Lin, Gong; Liu, Tongtong; Liu, Yangyang; Du, Keping; Luis, Kelly

    2017-08-21

    Radiative transfer modeling of Secchi disk observations has historically been based on conjugated signals of eye response and radiance, where water's attenuation in the entire visible band is included in the attenuation when deciding the Secchi disk depth in water. Aas et al. [Ocean Sci.10(2), 177 (2014)Remote Sens. Environ.169, 139 (2015)] hypothesized that it is actually the attenuation in water's transparent window that matters to the observation of a Secchi disk in water. To test this hypothesis, observations of Secchi disks in blue and green waters were conducted via naked eyes, blue-pass glasses, and green-pass glasses. Measurement results indicate that for blue waters, the observed Secchi depths via naked eyes match the depths obtained with blue-pass glasses and much deeper than the depths with green-pass glasses, although the green-pass glasses match the highest response of human eyes. These observations experimentally support the hypothesis that our eye-brain system uses the contrast information in the transparent window to make a judgement decision regarding sighting a Secchi disk in water.

  4. Use of thematic mapper imagery to assess water quality, trophic state, and macrophyte distributions in Massachusetts lakes

    USGS Publications Warehouse

    Waldron, Marcus C.; Steeves, Peter A.; Finn, John T.

    2001-01-01

    During the spring and summer of 1996, 1997, and 1998, measurements of phytoplankton- chlorophyll concentration, Secchi disk transparency, and color were made at 97 Massachusetts lakes within 24 hours of Landsat Thematic Mapper imaging of the lakes in an effort to assess water quality and trophic state. Spatial distributions of floating, emergent, and submerged macrophytes were mapped in 49 of the lakes at least once during the 3-year period. The maps were digitized and used to assign pixels in the thematic mapper images to one of four vegetation cover classes-open water, 1-50 percent floating-and-emergent-vegetation cover, 51-100 percent floating-and-emergent-vegetation cover, and submerged vegetation at any density. The field data were collected by teams of U.S. Geological Survey and Massachusetts Department of Environmental Management staff and by 76 volunteers. Side-by-side sampling by U.S. Geological Survey and volunteer field teams resulted in statistically similar chlorophyll determinations, Secchi disk readings, and temperature measurements, but concurrent color determinations were not similar, possibly due to contamination of sample bottles issued to the volunteers.Attempts to develop predictive relations between phytoplankton-chlorophyll concentration, Secchi disk transparency, lake color, dissolved organic carbon, and various combinations of thematic mapper bands 1, 2, 3, and 4 digital numbers were unsuccessful, primarily because of the extremely low concentrations of chlorophyll in the lakes studied, and also because of the highly variable dissolved organic carbon concentrations.Predictive relations were developed between Secchi disk transparency and phytoplankton-chlorophyll concentration, and between color and dissolved organic carbon concentration. Phytoplankton-chlorophyll concentration was inversely correlated with Secchi disk transparency during all three sampling periods. The relations were very similar in 1996 and 1997 and indicated that 62 to 67 percent of the variability in Secchi disk transparency could be explained by the chlorophyll concentration. Analysis of color and dissolved organic carbon concentrations in water samples collected by U.S. Geological Survey field teams in 1996-98 indicated that 91 percent of the variance in color in Massachusetts lakes can be explained by variations in dissolved organic carbon.Areas of open-water, submerged vegetation, and two surface-vegetation-cover classes predicted from Thematic Mapper images acquired in the summer of 1996 closely matched the areas observed in a set of field observations. However, the same analysis applied to a set of data acquired in the summer of 1997 resulted in somewhat less reliable predictions, and an attempt to predict 1996 vegetation-cover areas using the relations developed in the 1997 analysis was unsuccessful.

  5. Table Rock Lake Water-Clarity Assessment Using Landsat Thematic Mapper Satellite Data

    USGS Publications Warehouse

    Krizanich, Gary; Finn, Michael P.

    2009-01-01

    Water quality of Table Rock Lake in southwestern Missouri is assessed using Landsat Thematic Mapper satellite data. A pilot study uses multidate satellite image scenes in conjunction with physical measurements of secchi disk transparency collected by the Lakes of Missouri Volunteer Program to construct a regression model used to estimate water clarity. The natural log of secchi disk transparency is the dependent variable in the regression and the independent variables are Thematic Mapper band 1 (blue) reflectance and a ratio of the band 1 and band 3 (red) reflectance. The regression model can be used to reliably predict water clarity anywhere within the lake. A pixel-level lake map of predicted water clarity or computed trophic state can be produced from the model output. Information derived from this model can be used by water-resource managers to assess water quality and evaluate effects of changes in the watershed on water quality.

  6. CLADOCERAN BODY LENGTH AND ASSESSMENT OF SECCHI DISK TRANSPARENCY IN NORTHEASTERN U.S. LAKES. (R826591)

    EPA Science Inventory

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  7. Drivers of change for lakewater clarity

    Treesearch

    Lawrence A. Baker; Johanna E. Schussler; Stephanie A. Snyder

    2008-01-01

    Lakes in the Upper Midwest have undergone extensive lakeshore development over the past 30 years, raising concerns about eutrophication. We examined 11 case study lakes in Minnesota that had undergone substantial shoreline development over the past 30 years to evaluate drivers of change in clarity. Relationships between current Secchi disk transparency (SDT) and the...

  8. Detecting chlorophyll, Secchi disk depth and surface temperature in a sub-alpine lake using Landsat imagery.

    PubMed

    Giardino, C; Pepe, M; Brivio, P A; Ghezzi, P; Zilioli, E

    2001-03-14

    Some bio-physical parameters, such as chlorophyll a concentration, Secchi disk depth and water surface temperature were mapped in the sub-alpine Lake Iseo (Italy) using Landsat Thematic Mapper (TM) data acquired on the 7 March 1997. In order to adequately investigate the water-leaving radiance, TM data were atmospherically corrected using a partially image-based method, and the atmospheric transmittance was measured in synchrony with the satellite passage. An empirical approach of relating atmospherically corrected TM spectral reflectance values to in situ measurements, collected during the satellite data acquisition, was used. The models developed were used to map the chlorophyll concentration and Secchi disk depth throughout the lake. Both models gave high determination coefficients (R2 = 0.99 for chlorophyll and R2 = 0.85 for the Secchi disk) and the spatial distribution of chlorophyll concentration and Secchi disk depth was mapped with contour intervals of 1 mg/m3 and 1 m, respectively. A scene-independent procedure was used to derive the surface temperature of the lake from the TM data with a root mean square error of 0.3 degrees C.

  9. Water-quality data for Smith and Bybee Lakes, Portland, Oregon, June to November, 1982

    USGS Publications Warehouse

    Clifton, Daphne G.

    1983-01-01

    Water-quality monitoring at Smith and Bybee Lakes included measurement of water temperature, dissolved oxygen concentration and percent saturation, pH, specific conductance, lake depth, alkalinity, dissolved carbon, total dissolved solids, secchi disk light transparency, nutrients, and chlorophyll a and b. In addition, phytoplankton, zooplankton, and benthic invertebrate populations were identified and enumerated. Lakebed sediment was analyzed for particle size, volatile solids, immediate oxygen demand, trace metals, total organic carbon, nutrients, and organic constituents. (USGS)

  10. Abundance of Ohio shrimp (Macrobrachium ohione) and Glass shrimp (Palaemonetes kadiakensis) in the unimpounded Upper Mississippi River

    USGS Publications Warehouse

    Barko, V.A.; Hrabik, R.A.

    2004-01-01

    Large rivers of the United States have been altered by construction and maintenance of navigation channels, which has resulted in habitat loss and degradation. Using 7 y of Long Term Resource Monitoring Program data collected from the unimpounded upper Mississippi River, we investigated Ohio and Glass Shrimp abundance collected from four physical habitats of the unimpounded upper Mississippi River: main channel border, main channel border with wing dike, open side channel and closed side channel. Our objective was to assess associations between Ohio and Glass Shrimp abundance, environmental measurements and the four habitats to better understand the ecology of these species in a channelized river system. Ohio Shrimp were most abundant in the open side channels, while Glass Shrimp were most abundant in the main channel border wing dike habitat. Thirty-two percent of the variance in Glass Shrimp abundance was explained by year 1995, year 1998, water temperature, depth of gear deployment, Secchi disk transparency and river elevation. Approximately 8% of variation in Ohio Shrimp abundance was explained by Secchi disk transparency. Catch-per-unit-effort (CPUE) was greatest in 1998 for Glass Shrimp but lowest in 1997. Conversely, CPUE was greatest in 1996 for Ohio Shrimp and lowest in 2000. Both species exhibited inter-annual variability in CPUE. Long-term impacts of river modifications on aquatic invertebrates have not been well documented in many large, river systems and warrants further study. The findings from this study provide ecological information on Glass and Ohio Shrimp in a channelized river system.

  11. Predicting water quality by relating secchi-disk transparency and chlorophyll a measurements to Landsat satellite imagery for Michigan inland lakes, 2001-2006

    USGS Publications Warehouse

    Fuller, L.M.; Minnerick, R.J.

    2007-01-01

    The State of Michigan has more than 11,000 inland lakes; approximately 3,500 of these lakes are greater than 25 acres. The USGS, in cooperation with the Michigan Department of Environmental Quality (MDEQ), has been monitoring the quality of inland lakes in Michigan through the Lake Water Quality Assessment monitoring program. Approximately 100 inland lakes will be sampled per year from 2001 to 2015. Volunteers coordinated by MDEQ started sampling lakes in 1974, and continue to sample to date approximately 250 inland lakes each year through the Cooperative Lakes Monitoring Program (CLMP), Michigan’s volunteer lakes monitoring program. Despite this sampling effort, it is still impossible to physically collect the necessary water-quality measurements for all 3,500 Michigan inland lakes. Therefore, a technique was used by USGS, modeled after Olmanson and others (2001), in cooperation with MDEQ that uses satellite remote sensing to predict water quality in unsampled inland lakes greater than 25 acres. Water-quality characteristics that are associated with water clarity can be predicted for Michigan inland lakes by relating sampled measurements of secchi-disk transparency (SDT) and chlorophyll a concentrations (Chl-a), to satellite imagery. The trophic state index (TSI) which is an indicator of the biological productivity can be calculated based on SDT measurements, Chl-a concentrations, and total phosphorus (TP) concentrations measured near the lake’s surface. Through this process, unsampled inland lakes within the fourteen Landsat satellite scenes encompassing Michigan can be translated into estimated TSI from either predicted SDT or Chl-a (fig. 1).

  12. Lake transparency: a window into decadal variations in dissolved organic carbon concentrations in Lakes of Acadia National Park, Maine

    USGS Publications Warehouse

    Roesler, Collin S.; Culbertson, Charles W.

    2016-01-01

    A forty year time series of Secchi depth observations from approximately 25 lakes in Acadia National Park, Maine, USA, evidences large variations in transparency between lakes but relatively little seasonal cycle within lakes. However, there are coherent patterns over the time series, suggesting large scale processes are responsible. It has been suggested that variations in colored dissolved organic matter (CDOM) are primarily responsible for the variations in transparency, both between lakes and over time and further that CDOM is a robust optical proxy for dissolved organic carbon (DOC). Here we present a forward model of Secchi depth as a function of DOC based upon first principles and bio-optical relationships. Inverting the model to estimate DOC concentration from Secchi depth observations compared well with the measured DOC concentrations collected since 1995 (RMS error < 1.3 mg C l-1). This inverse model allows the time series of DOC to be extended back to the mid 1970s when only Secchi depth observations were collected, and thus provides a means for investigating lake response to climate forcing, changing atmospheric chemistry and watershed characteristics, including land cover and land use.

  13. The effects of season and sand mining activities on thermal regime and water quality in a large shallow tropical lake.

    PubMed

    Sharip, Zati; Zaki, Ahmad Taqiyuddin Ahmad

    2014-08-01

    Thermal structure and water quality in a large and shallow lake in Malaysia were studied between January 2012 and June 2013 in order to understand variations in relation to water level fluctuations and in-stream mining activities. Environmental variables, namely temperature, turbidity, dissolved oxygen, pH, electrical conductivity, chlorophyll-A and transparency, were measured using a multi-parameter probe and a Secchi disk. Measurements of environmental variables were performed at 0.1 m intervals from the surface to the bottom of the lake during the dry and wet seasons. High water level and strong solar radiation increased temperature stratification. River discharges during the wet season, and unsustainable sand mining activities led to an increased turbidity exceeding 100 NTU, and reduced transparency, which changed the temperature variation and subsequently altered the water quality pattern.

  14. Relationship between Secchi disc readings and light penetration in Lake Huron

    USGS Publications Warehouse

    Beeton, Alfred M.

    1958-01-01

    Fifty-seven paired photometer and Secchi disc measurements made at 18 stations in Saginaw Bay and Lake Huron support the view that a counter-clockwise current usually occurs in the Bay with more transparent Lake Huron water flowing in along the northwest shore and less transparent Bay water flowing out along the southeast shore. The average percentage transmission of surface light intensity, at the Secchi disc depth, was 14.7 percent. Discrepancies in the relationship of disc readings to percentage transmission of surface light are related to the condition of the sky and sea. It is suggested that these discrepancies can best be explained on the basis of the spectral sensitivity of the human eye and its response to surface glare.

  15. Evaluation of light penetration on Navigation Pools 8 and 13 of the Upper Mississippi River

    USGS Publications Warehouse

    Giblin, Shawn; Hoff, Kraig; Fischer, Jim; Dukerschein, Terry

    2010-01-01

    The availability of light can have a dramatic affect on macrophyte and phytoplankton abundance in virtually all aquatic ecosystems. The Long Term Resource Monitoring Program and other monitoring programs often measure factors that affect light extinction (nonvolatile suspended solids, volatile suspended solids, and chlorophyll) and correlates of light extinction (turbidity and Secchi depth), but rarely do they directly measure light extinction. Data on light extinction, Secchi depth, transparency tube, turbidity, total suspended solids, and volatile suspended solids were collected during summer 2003 on Pools 8 and 13 of the Upper Mississippi River. Regressions were developed to predict light extinction based upon Secchi depth, transparency tube, turbidity, and total suspended solids. Transparency tube, Secchi depth, and turbidity all showed strong relations with light extinction and can effectively predict light extinction. Total suspended solids did not show as strong a relation to light extinction. Volatile suspended solids had a greater affect on light extinction than nonvolatile suspended solids. The data were compared to recommended criteria established for light extinction, Secchi depth, total suspended solids, and turbidity by the Upper Mississippi River Conservation Committee to sustain submersed aquatic vegetation in the Upper Mississippi River. During the study period, the average condition in Pool 8 met or exceeded all of the criteria whereas the average condition in Pool 13 failed to meet any of the criteria. This report provides river managers with an effective tool to predict light extinction based upon readily available data.

  16. Integrated satellite data fusion and mining for monitoring lake water quality status of the Albufera de Valencia in Spain.

    PubMed

    Doña, Carolina; Chang, Ni-Bin; Caselles, Vicente; Sánchez, Juan M; Camacho, Antonio; Delegido, Jesús; Vannah, Benjamin W

    2015-03-15

    Lake eutrophication is a critical issue in the interplay of water supply, environmental management, and ecosystem conservation. Integrated sensing, monitoring, and modeling for a holistic lake water quality assessment with respect to multiple constituents is in acute need. The aim of this paper is to develop an integrated algorithm for data fusion and mining of satellite remote sensing images to generate daily estimates of some water quality parameters of interest, such as chlorophyll a concentrations and water transparency, to be applied for the assessment of the hypertrophic Albufera de Valencia. The Albufera de Valencia is the largest freshwater lake in Spain, which can often present values of chlorophyll a concentration over 200 mg m(-3) and values of transparency (Secchi Disk, SD) as low as 20 cm. Remote sensing data from Moderate Resolution Imaging Spectroradiometer (MODIS) and Landsat Thematic Mapper (TM) and Enhance Thematic Mapper (ETM+) images were fused to carry out an integrative near-real time water quality assessment on a daily basis. Landsat images are useful to study the spatial variability of the water quality parameters, due to its spatial resolution of 30 m, in comparison to the low spatial resolution (250/500 m) of MODIS. While Landsat offers a high spatial resolution, the low temporal resolution of 16 days is a significant drawback to achieve a near real-time monitoring system. This gap may be bridged by using MODIS images that have a high temporal resolution of 1 day, in spite of its low spatial resolution. Synthetic Landsat images were fused for dates with no Landsat overpass over the study area. Finally, with a suite of ground truth data, a few genetic programming (GP) models were derived to estimate the water quality using the fused surface reflectance data as inputs. The GP model for chlorophyll a estimation yielded a R(2) of 0.94, with a Root Mean Square Error (RMSE) = 8 mg m(-3), and the GP model for water transparency estimation using Secchi disk showed a R(2) of 0.89, with an RMSE = 4 cm. With this effort, the spatiotemporal variations of water transparency and chlorophyll a concentrations may be assessed simultaneously on a daily basis throughout the lake for environmental management. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Predicting Secchi disk depth from average beam attenuation in a deep, ultra-clear lake

    USGS Publications Warehouse

    Larson, G.L.; Hoffman, R.L.; Hargreaves, B.R.; Collier, R.W.

    2007-01-01

    We addressed potential sources of error in estimating the water clarity of mountain lakes by investigating the use of beam transmissometer measurements to estimate Secchi disk depth. The optical properties Secchi disk depth (SD) and beam transmissometer attenuation (BA) were measured in Crater Lake (Crater Lake National Park, Oregon, USA) at a designated sampling station near the maximum depth of the lake. A standard 20 cm black and white disk was used to measure SD. The transmissometer light source had a nearly monochromatic wavelength of 660 nm and a path length of 25 cm. We created a SD prediction model by regression of the inverse SD of 13 measurements recorded on days when environmental conditions were acceptable for disk deployment with BA averaged over the same depth range as the measured SD. The relationship between inverse SD and averaged BA was significant and the average 95% confidence interval for predicted SD relative to the measured SD was ??1.6 m (range = -4.6 to 5.5 m) or ??5.0%. Eleven additional sample dates tested the accuracy of the predictive model. The average 95% confidence interval for these sample dates was ??0.7 m (range = -3.5 to 3.8 m) or ??2.2%. The 1996-2000 time-series means for measured and predicted SD varied by 0.1 m, and the medians varied by 0.5 m. The time-series mean annual measured and predicted SD's also varied little, with intra-annual differences between measured and predicted mean annual SD ranging from -2.1 to 0.1 m. The results demonstrated that this prediction model reliably estimated Secchi disk depths and can be used to significantly expand optical observations in an environment where the conditions for standardized SD deployments are limited. ?? 2007 Springer Science+Business Media B.V.

  18. Processing multispectral data obtained by orbital platforms of the LANDSAT series for studies of water quality in Guanabara Bay. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Dejesusparada, N. (Principal Investigator); Verdesio, J. J.

    1981-01-01

    The relationship existing between Guanabara Bay water quality ground truth parameters and LANDSAT MSS video data was investigated. The parameters considered were: chorophyll content, water transparency usng the Secchi disk, salinity, and dissolved ammonia. Data from two overflights was used, and methods of processing digital data were compared. Linear and nonlinear regression analyses were utilized, comparing original data with processed data by using the correlation coefficient and the estimation mean error. It was determined that better quality data are obtained by using radiometric correction programs with a physical basis, contrast ratio, and normalization. Incidental locations of floating vegetation, changes in bottom depth, oil slicks, and ships at anchor were made.

  19. The blue-to-green reflectance ratio and lake water quality

    NASA Technical Reports Server (NTRS)

    Piech, K. R.; Schott, J. R.; Stewart, K. M.

    1978-01-01

    Correlations between the relative values of the blue and green reflectances of a lake and water quality indices, such as depth of photic zone, Secchi disk transparency, attenuation coefficient, and chlorophyll concentration, have been observed during an intensive satellite, aircraft, and surface vessel study of Lake Ontario and Conesus Lake. Determinations of blue and green reflectances from Skylab S190A color imagery are in excellent agreement with values obtained from small-scale color imagery from aircraft. Further, the accuracy of the satellite data appears within that required for extrapolation to the water quality indices. The study has also determined that changes in chlorophyll, lignin, and humic acid concentration can be discriminated by the behavior of the blue-to-green reflectance ratio and the reflectances of the green and red bands.

  20. SIMULATION OF DISSOLVED OXYGEN PROFILES IN A TRANSPARENT, DIMICTIC LAKE

    EPA Science Inventory

    Thrush Lake is a small, highly transparent lake in northeastern Minnesota. rom 1986 to 1991, vertical profiles of water temperature, dissolved oxygen, chlorophyll a concentration, underwater light irradiance, and Secchi depths were measured at monthly intervals during the ice-fre...

  1. N:P ratios, light limitation, and cyanobacterial dominance in a subtropical lake impacted by non-point source nutrient pollution.

    PubMed

    Havens, Karl E; James, R Thomas; East, Therese L; Smith, Val H

    2003-01-01

    A long-term (28-year) data set was used to investigate historical changes in concentrations of phosphorus (P), nitrogen (N), N:P ratios, and Secchi disk transparency in a shallow subtropical lake (Lake Okeechobee, Florida, USA). The aim was to evaluate changes in the risk of N2-fixing cyanobacterial blooms, which have infrequently occurred in the lake's pelagic zone. Predictions regarding bloom risk were based on previously published N:P ratio models. Temporal trends in the biomass of cyanobacteria were evaluated using phytoplankton data collected in 1974, 1989-1992, and 1997-2000. Concentrations of pelagic total P increased from near 50 microg l-1 in the mid-1970s to over 100 microg l-1 in the late 1990s. Coincidentally, the total N:P (mass) ratio decreased from 30:1 to below 15:1, and soluble N:P ratio decreased from 15:1 to near 6:1, in the lake water. Published empirical models predict that current conditions favor cyanobacteria. The observations confirm this prediction: cyanobacteria presently account for 50-80% of total phytoplankton biovolume. The historical decrease in TN:TP ratio in the lake can be attributed to a decreased TN:TP ratio in the inflow water and to a decline in the lake's assimilation of P, relative to N. Coincident with these declines in total and soluble N:P ratios, Secchi disk transparency declined from 0.6 m to near 0.3 m, possibly due to increased mineral turbidity in the lake water. Empirical models predict that under the turbid, low irradiance conditions that prevail in this lake, non-heterocystous cyanobacteria should dominate the phytoplankton. Our observations confirmed this prediction: non-N2-fixing taxa (primarily Oscillatoria and Lyngbya spp.) typically dominated the cyanobacteria community during the last decade. The only exception was a year with very low water levels, when heterocystous N2-fixing Anabaena became dominant. In the near-shore regions of this shallow lake, low N:P ratios potentially favor blooms of N2-fixing cyanobacteria, but their occurrence in the pelagic zone is restricted by low irradiance and lack of stable stratification.

  2. Predicting water quality by relating secchi-disk transparency and chlorophyll a measurements to satellite imagery for Michigan Inland Lakes, August 2002

    USGS Publications Warehouse

    Fuller, L.M.; Aichele, Stephen S.; Minnerick, R.J.

    2004-01-01

    Inland lakes are an important economic and environmental resource for Michigan. The U.S. Geological Survey and the Michigan Department of Environmental Quality have been cooperatively monitoring the quality of selected lakes in Michigan through the Lake Water Quality Assessment program. Through this program, approximately 730 of Michigan's 11,000 inland lakes will be monitored once during this 15-year study. Targeted lakes will be sampled during spring turnover and again in late summer to characterize water quality. Because more extensive and more frequent sampling is not economically feasible in the Lake Water Quality Assessment program, the U.S. Geological Survey and Michigan Department of Environmental Quality investigate the use of satellite imagery as a means of estimating water quality in unsampled lakes. Satellite imagery has been successfully used in Minnesota, Wisconsin, and elsewhere to compute the trophic state of inland lakes from predicted secchi-disk measurements. Previous attempts of this kind in Michigan resulted in a poorer fit between observed and predicted data than was found for Minnesota or Wisconsin. This study tested whether estimates could be improved by using atmospherically corrected satellite imagery, whether a more appropriate regression model could be obtained for Michigan, and whether chlorophyll a concentrations could be reliably predicted from satellite imagery in order to compute trophic state of inland lakes. Although the atmospheric-correction did not significantly improve estimates of lake-water quality, a new regression equation was identified that consistently yielded better results than an equation obtained from the literature. A stepwise regression was used to determine an equation that accurately predicts chlorophyll a concentrations in northern Lower Michigan.

  3. Presence and distribution of nitrate and selected pesticides in surficial-sand aquifers and selected lakes, 1983-94, East Otter Tail County, Minnesota

    USGS Publications Warehouse

    Smith, Shannon E.; Ruhl, James E.

    1995-01-01

    Lake water was sampled from 11 sites on Little Pine, Big Pine, Rush, and Otter Tail Lakes. Nitrate-nitrogen concentrations were all below the detection limit (0.05 mg/L). The concentration of triazine herbicide compounds, as determined by immunoassay, was at or below the detection limit (0.10 ug/L) at all 11 sites. Dissolved oxygen concentrations at the sites ranged from 7.3 to 10.1 mg/L at the water surface, and from 5.3 to 9.7 mg/L at depth. Secchi disk transparency readings ranged from 4.0 to 7.4 feet. Total phosphorus concentrations were generally near or below the detection limit (0.01 mg/L) except at one site where the water had a total phosphorus concentration of 0.06 mg/L.

  4. Silver concentrations and selected hydrologic data in the Upper Colorado River basin, 1991-92

    USGS Publications Warehouse

    Johncox, D.A.

    1993-01-01

    The U.S. Geological Survey, in cooperation with the Colorado River Water Conservation District and the Northern Colorado Water Conservancy District, collected water and sediment samples in May and September 1991 and 1992 from nine stream-sampling sites and three lake-sampling sites within the Upper Colorado River Basin upstream from Kremmling, Colorado. Data were collected to determine the present (1992) conditions of the Upper Colorado River Basin regarding silver concentrations in the water and sediment. Lake-water and stream-water samples were analyzed for concentrations of total recoverable silver, dissolved silver, and suspended solids. Lake- and stream-bottom material was analyzed for concentrations of total recoverable silver. Additional data collected were streamflow, specific conductance, pH, and water temperature. Transparency (Secchi-disk measurements) also was measured in the lakes.

  5. Water quality in the tidal Potomac River and Estuary, hydrologic data report, 1979 water year

    USGS Publications Warehouse

    Blanchard, Stephen F.; Hahl, D.C.

    1981-01-01

    This report contains data on the physical and chemical properties measured during the 1979 water year for the tidal Potomac River and estuary. Data were collected routinely at five major stations and periodically at 14 intervening stations. Each major station represents a cross section through which the transport of selected dissolved and suspended materials will be computed. The intervening stations represent locations at which data were collected for special studies such as: salt water migration, dissolved oxygen dynamics, and other synoptic studies. About 960 samples were analyzed for silicate, Kjeldhal nitrogen, nitrite, phosphorus, chlorophyll and suspended sediment, with additional samples analyzed for organic carbon, calcium, magnesium, sodium, bicarbonate, sulfate, potassium, chloride, fluoride, seston and dissolved solids residue. In addition, about 1400 in-situ measurements of dissolved oxygen, specific conductance, temperature, and Secchi disk transparency are reported. (USGS)

  6. A summary of selected early results from the ERTS-1 menhaden experiment

    NASA Technical Reports Server (NTRS)

    Stevenson, W. H. (Principal Investigator); Kemmerer, A. J.; Benigno, J. A.; Reese, G. B.; Minkler, F. C.

    1973-01-01

    The author has identified the following significant results. Imagery from ERTS-1 satellite was used in conjunction with aerial photographically-sensed menhaden distribution information, sea truth oceanographic measurements, and commercial fishing information from a 8685 square kilometer study area in the north-central portion of the Gulf of Mexico to demonstrate relationships between selected oceanographic parameters and menhaden distribution, ERTS-1 imagery and menhaden distribution, and ERTS-1 imagery and oceanographic parameters. ERTS-1, MSS band 5 imagery density levels correlated with photographically detected menhaden distribution patterns and could be explained based on sea truth Secchi disc transparency and water depth measurements. These two parameters, together with surface salinity, Forel-Ule color, and chlorophyll-a also were found to correlate significantly with menhaden distribution. Eight empirical models were developed which provided menhaden distribution predictions for the study area on combinations of Secchi disc transparency, water depth, surface salinity, and Forel-Ule color measurements.

  7. Water quality of the tidal Potomac River and estuary hydrologic data report, 1980 water year

    USGS Publications Warehouse

    Blanchard, Stephen; Coupe, R.H.; Woodward, J.C.

    1982-01-01

    This report contains data on the physical and chemical properties measured in the Tidal Potomac River and Estuary during the 1980 Water Year. Data were collected routinely at five stations, and periodically at 17 stations including three stations near the mouth of the Potomac River in Chesapeake Bay. Each of the five stations represent a cross section through which the transport of selected dissolved and suspended materials can be computed. The remaining stations represent locations at which data were collected for special synoptic studies such as salt water migration, and dissolved oxygen dynamics. Routinely, samples were analyzed for silica, nitrogen, phosphorus, chlorophyll-a, pheophytin, and suspended sediment. Additional samples were analyzed for organic carbon, calcium, manganese, magnesium, sodium, alkalinity, sulfate, iron, potassium, chloride, fluoride, seston, algal growth potential, adenosine triphosphate, nitrifying bacteria and dissolved-solids residue. In addition, solar radiation measurements and in-situ measurements of dissolved oxygen, specific conductance, pH, temperature, and Secchi disk transparency are reported. (USGS)

  8. Turbid water measurements of remote sensing penetration depth at visible and near-infrared wavelength

    NASA Technical Reports Server (NTRS)

    Morris, W. D.; Witte, W. G.; Whitlock, C. H.

    1980-01-01

    Remote sensing of water quality is dicussed. Remote sensing penetration depth is a function both of water type and wavelength. Results of three tests to help demonstrate the magnitude of this dependence are presented. The water depth to which the remote-sensor data was valid was always less than that of the Secchi disk depth, although not always the same fraction of that depth. The penetration depths were wavelength dependent and showed the greatest variation for the water type with largest Secchi depth. The presence of a reflective plate, simulating a reflective subsurface, increased the apparent depth of light penetration from that calculated for water of infinite depth.

  9. Predicting lake trophic state by relating Secchi-disk transparency measurements to Landsat-satellite imagery for Michigan inland lakes, 2003-05 and 2007-08

    USGS Publications Warehouse

    Fuller, L.M.; Jodoin, R.S.; Minnerick, R.J.

    2011-01-01

    Inland lakes are an important economic and environmental resource for Michigan. The U.S. Geological Survey and the Michigan Department of Natural Resources and Environment have been cooperatively monitoring the quality of selected lakes in Michigan through the Lake Water Quality Assessment program. Sampling for this program began in 2001; by 2010, 730 of Michigan’s 11,000 inland lakes are expected to have been sampled once. Volunteers coordinated by the Michigan Department of Natural Resources and Environment began sampling lakes in 1974 and continue to sample (in 2010) approximately 250 inland lakes each year through the Michigan Cooperative Lakes Monitoring Program. Despite these sampling efforts, it still is impossible to physically collect measurements for all Michigan inland lakes; however, Landsat-satellite imagery has been used successfully in Minnesota, Wisconsin, Michigan, and elsewhere to predict the trophic state of unsampled inland lakes greater than 20 acres by producing regression equations relating in-place Secchi-disk measurements to Landsat bands. This study tested three alternatives to methods previously used in Michigan to improve results for predicted statewide Trophic State Index (TSI) computed from Secchi-disk transparency (TSI (SDT)). The alternative methods were used on 14 Landsat-satellite scenes with statewide TSI (SDT) for two time periods (2003– 05 and 2007–08). Specifically, the methods were (1) satellitedata processing techniques to remove areas affected by clouds, cloud shadows, haze, shoreline, and dense vegetation for inland lakes greater than 20 acres in Michigan; (2) comparison of the previous method for producing a single open-water predicted TSI (SDT) value (which was based on an area of interest (AOI) and lake-average approach) to an alternative Gethist method for identifying open-water areas in inland lakes (which follows the initial satellite-data processing and targets the darkest pixels, representing the deepest water, before regression equations are created); and (3) checking to see whether the predicted TSI (SDT) values compared well between two regression equations, one previously used in Michigan and an alternative equation from the hydrologic literature. The combination of improved satellite-data processing techniques and the Gethist method to identify open-water areas in inland lakes during 2003–05 and 2007–08 provided a stronger relation and statistical significance between predicted TSI (SDT) and measured TSI than did the AOI lake-average method; differences in results for the two methods were significant at the 99-percent confidence level. With regard to the comparison of the regression equations, there were no statistically significant differences at the 95-percent confidence level between results from the two equations. The previously used equation, in combination with the Gethist method, yielded coefficient of determination (R2) values of 0.71 and 0.77 for the periods 2003–05 and 2007–08, respectively. The alternative equation, in combination with the Gethist method, yielded R2 values of 0.74 and 0.75 for 2003–05 and 2007–08, respectively. Predicted TSI (SDT) and measured TSI (SDT) values for lakes used in the regression equations compared well, with R2 values of 0.95 and 0.96 for predicted TSI (SDT) for 2003–05 and 2007–08, respectively. The R2 values for statewide predicted TSI (SDT) for all inland lakes with available open-water areas for 2003–05 and 2007–08 were 0.91 and 0.93, respectively. Although the two equations predicted similar trophic-state classes, the alternative equation is planned to be used for future prediction of TSI (SDT) values for Michigan inland lakes, to promote consistency in comparing predicted values between States and for potential use in trend analysis.

  10. Limnology in the Upper Paraná River floodplain: large-scale spatial and temporal patterns, and the influence of reservoirs.

    PubMed

    Roberto, M C; Santana, N N; Thomaz, S M

    2009-06-01

    Knowledge of abiotic limnological factors is important to monitor changes caused by humans, and to explain the structure and dynamics of populations and communities in a variety of inland water ecosystems. In this study, we used a long term data-set (eight years) collected in 10 habitats with different features (river channels, and connected and isolated lakes) to describe the spatial and temporal patterns of some of the principal limnological factors. In general, the degree of connectivity of the lakes, together with the rivers to which the lakes are connected, were important determinants of their limnological characteristics. These differences are expected, because rivers entering the floodplain come from different geological regions and are subject to different human impacts. At large spatial scales, these differences contribute to the increased habitat diversity of the floodplain and thus to its high biodiversity. With regard to temporal variation, Secchi-disk transparency increased, and total phosphorus decreased in the Paraná River main channel during the last 20 years. Although these changes are directly attributed to the several reservoir cascades located upstream, the closing of the Porto Primavera dam in 1998 enhanced this effect. The increase in water transparency explains biotic changes within the floodplain. The lower-phosphorus Paraná River water probably dilutes concentrations of this element in the floodplain waterbodies during major floods, with future consequences for their productivity.

  11. Physical and chemical properties of water and sediments, Grand Portage and Wauswaugoning Bays, Lake Superior, Grand Portage Indian Reservation, northeastern Minnesota, 1993-96

    USGS Publications Warehouse

    Ruhl, J.F.

    1997-01-01

    This report is a compilation of data on the physical and chemical properties of water and sediments in Grand Portage and Wauswaugoning Bays of Lake Superior along the shoreline of the Grand Portage Indian Reservation. The data were collected during 1993-96 by the U.S. Geological Survey in cooperation with the Grand Portage Indian Reservation. The data include: (1) temperature, pH, and specific conductance measurements and dissolved oxygen concentrations; (2) Secchi disk transparency, alkalinity, and turbidity measurements; (3) fecal Coliform and fecal Streptococcal bacteria colony counts (per 100 milliliters of sample water); (4) major and minor ion, nutrient, and trace-metal concentrations; (5) dissolved and suspended residue concentrations; (6) pesticide, phenol, and asbestos concentrations; (7) suspended sediment trace-metal concentrations; and (8) bottom sediment trace-metal concentrations. Water samples were collected from nine sites; suspended and bottom sediment samples were collected from five sites. The data in this report can be used to evaluate present water-quality conditions and as a reference to monitor potential long-term changes in these conditions.

  12. Trophic status and assessment of non-point nutrient enrichment of Lake Crescent Olympic National Park

    USGS Publications Warehouse

    Boyle, Terence P.; Beeson, David R.

    1991-01-01

    A limited effort study was conducted in Lake Crescent, Olympic National Park to determine the trophic status and assess whether non-point nutrients were leaching into the lake and affecting biological resources. The concentration of chlorophyll a, total nitrogen concentration, and Secchi disk transparency used as parameters of the Trophic Status Index revealed that Lake Crescent in Olympic National Park was in the oligotrophic range. Evaluation of the nitrogen to phosphorous ration revealed that nitrogen was the nutrient limiting to overall lake productivity. Single species and community bioassays indicated that other nutrients, possibly iron, had some secondary control over community composition of the algal community. Assessment of six near-shore sites for the presence and effects of non-point nutrients revealed that La Poel Point which formerly was the site of a resort had slightly higher algal bioassay and periphyton response than the other sites. No conditions that would require immediate action by resource management of Olympic National Park were identified. The general recommendations for a long term lake monitoring plan are discussed.

  13. Water quality of the tidal Potomac River and Estuary; hydrologic data report, 1981 water year, with a section on collection and analysis of chlorophyll-a

    USGS Publications Warehouse

    Blanchard, Stephen F.; Coupe, Richard H.; Woodward, Joan C.

    1982-01-01

    This report contains data on the physical and chemical properties measured in the Tidal Potomac River and Estuary during the 1981 water year. Data were collected at least weekly at five stations, and periodically at 15 stations and at two other stations near the mouth of the Potomac River in Chesapeake Bay. Each of the five stations represent a cross section at which the transport of selected dissolved and suspended materials can be computed. The remaining 17 stations are locations at which data were collected for special studies of selected phenomena, such as salt water migration and dissolved oxygen dynamics. Samples were routinely analyzed for chlorophyll-a, nitrogen, pheophytin, phosphorus, silica and suspended sediment. Additional samples were analyzed for adenosine triphosphate, algal growth potential, alkalinity, calcium, chloride, dissolved-solids residue, fluoride, iron, manganese, magnesium, nitrifying bacteria, organic carbon, potassium, seston, sodium, and sulfate. In addition, in-situ measurements of dissolved oxygen, specific conductance, pH, temperature, solar radiation, and secchi disk transparency were made. (USGS)

  14. Thermal, chemical, and optical properties of Crater Lake, Oregon

    USGS Publications Warehouse

    Larson, G.L.; Hoffman, R.L.; McIntire, D.C.; Buktenica, M.W.; Girdner, S.F.

    2007-01-01

    Crater Lake covers the floor of the Mount Mazama caldera that formed 7700 years ago. The lake has a surface area of 53 km2 and a maximum depth of 594 m. There is no outlet stream and surface inflow is limited to small streams and springs. Owing to its great volume and heat, the lake is not covered by snow and ice in winter unlike other lakes in the Cascade Range. The lake is isothermal in winter except for a slight increase in temperature in the deep lake from hyperadiabatic processes and inflow of hydrothermal fluids. During winter and spring the water column mixes to a depth of about 200-250 m from wind energy and convection. Circulation of the deep lake occurs periodically in winter and spring when cold, near-surface waters sink to the lake bottom; a process that results in the upwelling of nutrients, especially nitrate-N, into the upper strata of the lake. Thermal stratification occurs in late summer and fall. The maximum thickness of the epilimnion is about 20 m and the metalimnion extends to a depth of about 100 m. Thus, most of the lake volume is a cold hypolimnion. The year-round near-bottom temperature is about 3.5??C. Overall, hydrothermal fluids define and temporally maintain the basic water quality characteristics of the lake (e.g., pH, alkalinity and conductivity). Total phosphorus and orthophosphate-P concentrations are fairly uniform throughout the water column, where as total Kjeldahl-N and ammonia-N are highest in concentration in the upper lake. Concentrations of nitrate-N increase with depth below 200 m. No long-term changes in water quality have been detected. Secchi disk (20-cm) clarity varied seasonally and annually, but was typically highest in June and lowest in August. During the current study, August Secchi disk clarity readings averaged about 30 m. The maximum individual clarity reading was 41.5 m in June 1997. The lowest reading was 18.1 m in July 1995. From 1896 (white-dinner plate) to 2003, the average August Secchi disk reading was about 30 m. No long-term changes in the Secchi disk clarity were observed. Average turbidity of the water column (2-550 m) between June and September from 1991 to 2000 as measured by a transmissometer ranged between 88.8% and 90.7%. The depth of 1% of the incident solar radiation during thermal stratification varied annually between 80 m and 100 m. Both of these measurements provided additional evidence about the exceptional clarity of Crater Lake. ?? 2007 Springer Science+Business Media B.V.

  15. Seasonal variations in zooplankton abundances in the Iturbide reservoir (Isidro Fabela, State of Mexico, Mexico).

    PubMed

    Sarma, S S S; Osnaya-Espinosa, Lidia Rosario; Aguilar-Acosta, Claudia Romina; Nandini, S

    2011-07-01

    This studywas undertaken to quantify the seasonal variations of zooplankton (rotifers, cladocerans and copepods) and selected physico-chemical variables (temperature, pH, conductivity, Secchi disc transparency, dissolved oxygen, ammonia, nitrate and phosphate concentrations) in the Iturbide dam. Monthly zooplankton samples (50 l filtered through 50 microm mesh, in duplicates from each of the 4 stations) were collected from February 2008 to January 2009. Simultaneously physico-chemical variables were measured. The zooplankton samples were fixed in 4% formalin in the field. In general, the temperature ranged from 9 to 16 degrees C, rarely exceeding 20 degrees C. Secchi transparency was nearly 100% since the reservoir was shallow (< 2 m) even during the rainy seasons. Dissolved oxygen was generally high, 13-18 mg l(-1). Nitrate levels (10 to 170 microg l(-1)) were low while phosphates were relatively high (9 to 35 microg l(-1)). The Iturbide reservoir was dominated by rotifer species. We encountered in all, 55 taxa of rotifers, 9 cladocerans and 2 copepods. The rotifer families Trichocercidae and Notommatidae had the highest number of species (7 each) followed by Colurellidae and Lecanidae (6 and 5 species, respectively). Trichocerca elongata, Ascomorpha ovalis, K. americana, K. cochlearis, Lepadella patella and Pompholyx sulcata were the dominant rotifers during the study period. On an annual average, rotifer density ranged between 50-200 ind.(-1). Among crustaceans Chydorus brevilabris and Macrothrix triserialis were most abundant. The maximal density of these cladocerans was about 50 ind. l(-1). Copepods were much lower in numbers (< 20 ind. l(-1)). In general the density of zooplankton was higher during summer months (April to July) than during winter. Shannon-Wiener diversity index varied from 1.0 to 4.3 depending on the site and the sampling period. Based on the data of Secchi transparency and nutrient concentrations, the Iturbide reservoir appeared to be mesotrophic.

  16. Landsat ETM+ Secchi Disc Transparency (SDT) retrievals for Rawal Lake, Pakistan

    NASA Astrophysics Data System (ADS)

    Butt, Mohsin Jamil; Nazeer, Majid

    2015-10-01

    Satellite imagery holds significant potential for monitoring regional lake water clarity. This study addresses the use of satellite data and ground observations for the assessment of Rawal Lake water clarity in Pakistan. Satellite data from Landsat sensor for the years 2009-2013 are used to model Secchi Disc Transparency (SDT). Landsat images within ±3 days of the measured SDT data is used for the development of a regression model. The results of this study show that ETM+ band3 and band1/band3 ratio is the reliable predictor of SDT with R2 values of 0.725 and 0.793 respectively. The modeled SDT is further used to estimate the Trophic State Index (TSI) and trophic condition of Rawal Lake. In addition, the in situ Chlorophyll-a (Chl-a) and Total Phosphorus (TP) concentration are used to calculate the TSI of the Lake. The Mann-Kendall (MK) statistical test shows that the increasing trend in TSI based on SDT is significant (τ = 0.523). The trophic condition of Rawal Lake indicates that the Lake falls under the hypereutrophic category, that is, highly polluted and extremely unhealthy for the purpose of drinking.

  17. LANDSAT/coastal processes

    NASA Technical Reports Server (NTRS)

    James, W. P. (Principal Investigator); Hill, J. M.; Bright, J. B.

    1977-01-01

    The author has identified the following significant results. Correlations between the satellite radiance values water color, Secchi disk visibility, turbidity, and attenuation coefficients were generally good. The residual was due to several factors including systematic errors in the remotely sensed data, errors, small time and space variations in the water quality measurements, and errors caused by experimental design. Satellite radiance values were closely correlated with the optical properties of the water.

  18. Enhance field water-color measurements with a Secchi disk and its implication for fusion of active and passive ocean-color remote sensing.

    PubMed

    Lee, Zhongping; Shang, Shaoling; Du, Keping; Liu, Bingyi; Lin, Gong; Wei, Jianwei; Li, Xiaolong

    2018-05-01

    Inversion of the total absorption (a) and backscattering coefficients of bulk water through a fusion of remote sensing reflectance (R rs ) and Secchi disk depth (Z SD ) is developed. An application of such a system to a synthesized wide-range dataset shows a reduction of ∼3 folds in the uncertainties of inverted a(λ) (in a range of ∼0.01-6.8  m -1 ) from R rs (λ) for the 350-560 nm range. Such a fusion is further proposed to process concurrent active (ocean LiDAR) and passive (ocean-color) measurements, which can lead to nearly "exact" analytical inversion of an R rs spectrum. With such a fusion, it is found that the uncertainty in the inverted total a in the 350-560 nm range could be reduced to ∼2% for the synthesized data, which can thus significantly improve the derivation of a coefficients of other varying components. Although the inclusion of Z SD places an extra constraint in the inversion of R rs , no apparent improvement over the quasi-analytical algorithm (QAA) was found when the fusion of Z SD and R rs was applied to a field dataset, which calls for more accurate determination of the absorption coefficients from water samples.

  19. Effect of intense short rainfall events on coastal water quality parameters from remote sensing data

    NASA Astrophysics Data System (ADS)

    Corbari, Chiara; Lassini, Fabio; Mancini, Marco

    2016-07-01

    Strong rainfall events, especially during summer, in small river basins cause spills in the sea that often compromise the quality of coastal waters. The goal of this paper is then to study the changes of coastal waters quality as a result of intense rainfall events during the bathing season through the use of remote sensing data. These analyses are performed at the outlets of small watersheds which are not usually affected by high sediment transport as in the case of large basins which are persistently affected by intense solid transport which does not allow retrieving a reliable correlation between rainfall events and water quality parameters. Four small watersheds in different Italian regions on the Mediterranean Sea are selected for this study. The remotely sensed parameters of turbidity, total suspend solids and secchi disk depth, are retrieved from MODIS data. Secchi disk depths are also compared to available ground data during the summer seasons between 2003 and 2006 showing good correlations. Then the spatial and temporal changes of these parameters are analyzed after intense short storm events. Increases of turbidity and total suspend solids are found to be around 35 NTU and 20 mg L-1 respectively depending on the intensity of the rainfall event and on the distance from the shoreline. Moreover the recovery of water quality after the rain event is reached after two or three days.

  20. Water resources of the Red Lake Indian Reservation, northwestern Minnesota

    USGS Publications Warehouse

    Ruhl, J.F.

    1991-01-01

    The quality of ground water is suitable for drinking and other household uses, and the quality of the surface water generally meets U.S. Environmental Protection Agency criteria necessary for the maintenance of aquatic life. The major ions in both ground and surface water are calcium, magnesium, and bicarbonate. Lower and Upper Red Lakes are eutrophic to mesotrophic on the basis of their summer Secchi disk-transparency readings, which ranged from 2.6 to 8.2 feet. The concentration of total organic carbon in samples from Lower and Upper Red Lakes and four streams were below or, in the case of one stream, about equal to 30 milligrams per liter, which is indicative of water little affected by human activities. The sample with the highest organic carbon content was collected from a stream that drained peatlands, which were probably sources of organic matter in the runoff. The concentration of nitrite plus nitrate in samples collected from Lower and Upper Red Lakes in late summer was below 0.01 milligrams per liter, which is characteristic of water uncontaminated by animal wastes. Total phosphorus in these samples ranged from 0.01 to 0.02 milligrams per liter. Most of this phosphorus was in the particulate organic fraction because of the abundance of phytoplankton.

  1. Factors related to Secchi depths and their stability over time as determined from a probability sample of US lakes.

    PubMed

    Bachmann, Roger W; Hoyer, Mark V; Croteau, Amanda C; Canfield, Daniel E

    2017-05-01

    A probabilistic sample of lakes in the 48 coterminous US lakes was made by the United States Environmental Protection Agency in the 2007 National Lakes Assessment. Because of the statistical design, the results of our analyses of Secchi depths (SD) apply to a population of 45,265 lakes. We found statistically significant differences in mean Secchi depths between natural (1.57 m) and man-made lakes (1.18 m). The most important variable correlated with SD was turbidity, an optical measure related to suspended particles in the water column. For most lakes, chlorophyll a was highly correlated with both turbidity and SD, but several lakes had more turbidity and lower SD than expected based on chlorophyll a alone, indicating that non-algal suspended solids were an important factor. On an ecoregion basis, the non-algal suspended solids in the lake waters were related to the average levels of suspended solids in streams located in that ecoregion, and the non-algal suspended solids were more important in man-made than natural lakes. Phosphorus and nitrogen were directly correlated with chlorophyll a and turbidity and inversely correlated with SD. Based on diatom-inferred Secchi depths for the tops and bottoms of sediment cores from lakes in Ecoregions VIII and VII (excluding lakes in Minnesota) representing 40% of the natural lakes in the US, there has been no decrease in water transparency in that population of lakes in the past 70 or more years when the US population increased by 134%. We do not have information to determine if the other 60% of lakes have or have not changed.

  2. Use of Landsat data to predict the trophic state of Minnesota lakes

    NASA Technical Reports Server (NTRS)

    Lillesand, T. M.; Johnson, W. L.; Deuell, R. L.; Lindstrom, O. M.; Meisner, D. E.

    1983-01-01

    Near-concurrent Landsat Multispectral Scanner (MSS) and ground data were obtained for 60 lakes distributed in two Landsat scene areas. The ground data included measurement of secchi disk depth, chlorophyll-a, total phosphorous, turbidity, color, and total nitrogen, as well as Carlson Trophic State Index (TSI) values derived from the first three parameters. The Landsat data best correlated with the TSI values. Prediction models were developed to classify some 100 'test' lakes appearing in the two analysis scenes on the basis of TSI estimates. Clouds, wind, poor image data, small lake size, and shallow lake depth caused some problems in lake TSI prediction. Overall, however, the Landsat-predicted TSI estimates were judged to be very reliable for the secchi-derived TSI estimation, moderately reliable for prediction of the chlorophyll-a TSI, and unreliable for the phosphorous value. Numerous Landsat data extraction procedures were compared, and the success of the Landsat TSI prediction models was a strong function of the procedure employed.

  3. Light from the Waves

    NASA Technical Reports Server (NTRS)

    2002-01-01

    For many years limnologists have been looking for an alternative to the Secchi disk. In the mid to late 1970s, Lillesand (then at Minnesota) along with colleagues in Wisconsin began to toy with the idea of using remote sensing satellites to observe lake quality from space. They reasoned that if water quality information could be extracted from images taken by orbiting satellites, the number of lakes monitored could be greatly expanded. For several years, the scientists experimented with data from early Landsat missions, but the data provided only very rough estimates of water quality. 'We were able to get accurate measurements of water clarity only after Landsat Thematic Mapper (TM) data became available,' says Lillesand. Since 1972 the Landsat program has launched a series of Earth observation satellites into orbit, collecting image data of our planet's surface. The sensors on the first three satellites in the series, launched in the 1970s, had a coarse spatial resolution (80 meters), and only four spectral bands. Later versions of Landsat have carried improved sensors-the Thematic Mapper instrument on Landsats 4 and 5, and the Enhanced Thematic Mapper Plus on the most recent of the series, Landsat 7, launched in 1999. The Thematic Mapper and the Enhanced Thematic Mapper instruments acquire images in seven different wavelengths of radiation reflected or emitted from the surface of the Earth. The wavelengths are in the visible, reflective infrared and thermal infrared parts of the spectrum. With a spatial resolution of 30 meters, the images are well suited for mapping and monitoring large features such as lakes. 'It was the higher resolution and the addition of the blue band on the Thematic Mapper that gave us clearer results,' says Lillesand. The researchers found that when the amount of blue light reflecting off of the lake was high and the red light was low, the lake generally had high water quality. 'It's common sense. When you look at a clear lake from a distance it appears blue,' says Lillesand. Lakes loaded with algae and sediments, on the other hand, reflect less blue light and more red light. He further explains that the scientists first acquired Landsat Thematic Mapper data of the lakes with known Secchi depths. They then analyzed the satellite data to see if they could arrive at an image that displayed lake clarity as accurately as the Secchi disk measurements. In the end, Lillesand and his colleagues were able to retrieve water clarity maps and measurements from the satellite imagery that were as accurate as Secchi disk measurements. For roughly ten years, this knowledge was put to little use. Then, in the late 1990s, researchers at the University of Minnesota launched a pilot project to measure the water quality of the lakes around the Minneapolis/St. Paul metropolitan area. With a single Landsat TM image, they obtained coverage of all the lakes in the seven-county region. They put the images of the lakes through an analysis similar to that developed a decade earlier and classified lake water quality measurements for over 500 lakes. They tested the Landsat water quality readings against Secchi measurements of sample lakes, and the two sets of data matched up very closely. 'With the Landsat images we ended up getting water quality measurements of 10 times as many lakes as we would have with the Secchi disk data,' says Brezonik. The Minnesota team then dusted off archived Landsat images dating back to the early 1970s and ran them through the same procedure. They found that most of the lakes around the seven-county metro area have not changed in quality over the past 25 years, with somewhat more (7 percent) increasing than decreasing (3 percent) in quality. The results proved so successful that a team of scientists led by Brezonik and Marvin Bauer, director of the University of Minnesota Remote Sensing and Geospatial Analysis Laboratory, expanded the survey to the entire state. The statewide project was funded in part by NASA's Upper Midwest Regional Earth Science Applications Center (RESAC), which was established to monitor and analyze the natural resources in the Upper Great Lakes region. For the statewide water quality map, the researchers assembled the best of two year's worth of cloud-free Landsat images taken of Minnesota. 'We were able to get water clarity readings on 100 percent of the lakes larger than 20 acres using the satellite data,' Brezonik says. Of the 12,700 bodies of water classified as lakes in Minnesota, roughly 10,000 are larger than 20 acres. Once again, the readings matched up with the Secchi disk records. 'When we put the map together, we did see a very strong north-south pattern in Minnesota,' says Brezonik. In the northeast Minnesota the lakes are very clear and the water quality is high. Moving south and southwest, the water clarity and quality diminishes. He believes there are two major reasons for this pattern. The first is that most of the farms and the people in Minnesota are in the southern half of the state. Nutrient-rich run-off from farms and urban developments has caused algae to grow. In the northeast, dense forests where fewer people live surround the lakes. He says the second reason is that the lakes in the south are generally shallower than those in the north. Deeper lakes generally absorb excess sediment and nutrients better. Though the team has not yet finished analyzing archived data from the past, Brezonik believes that the lakes have probably maintained the same level of quality over the past 15 years.

  4. Remote Heat Flux Using a Self Calibration Multiwavelength Pyrometer and a Transparent Material

    NASA Technical Reports Server (NTRS)

    Ng, Daniel

    1998-01-01

    A self calibrating multiwavelength pyrometer was used to conduct remote heat flux measurements using a transparent sapphire disk by determining the sapphire disk's front and back surface temperatures. Front surface temperature (Tfs) was obtained from detection of surface emitted radiation at long wavelengths (k = 6 gm). Back surface temperature (Tbs) was obtained from short wavelength (1 to 5 gm) radiation transmitted through the sapphire disk. The thermal conductivity of the sapphire disk and the heat transfer coefficients h, and h2 of its surfaces are determined experimentally. An analysis of the heat flux measurement is presented.

  5. Monitoring and modeling water temperature and trophic status of a shallow Mediterranean lake

    NASA Astrophysics Data System (ADS)

    Giadrossich, Filippo; Bueche, Thomas; Pulina, Silvia; Marrosu, Roberto; Padedda, Bachisio Mario; Mariani, Maria Antonietta; Vetter, Mark; Cohen, Denis; Pirastru, Mario; Niedda, Marcello; Lugliè, Antonella

    2017-04-01

    Lakes are sensitive to changes in climate and human activities. Over the last few decades, Mediterranean lakes have experienced various problems due to the current climate change (drought, flood, warming, salt accumulation, water quality changes, etc.), often amplified by water use, intensification of land use activities, and pollution. The overall impact of these changes on water resources is still an open question. In this study we monitor the trophic status and the dynamics of water temperature of Lake Baratz, the only natural lake in Sardinia, Italy, characterized by high salinity and shallow depth. We extend the research carried out in the past 8 years by integrating new physical, chemical and biological data using a multidisciplinary approach that combines hydrological and biological dynamics. In particular, the lake water balance and the thermal and hydrochemical regime are studied with a lake dynamic model (the General Lake Model or GLM) which combine the energy budget method for estimating lake evaporation, and a physically-based rainfall-runoff simulator for estimating lake inflow, calibrated with measurements at the cross section of the main inlet stream. The trophic state of the lake was evaluated applying the OCDE Probability Distribution Diagrams method, which requires nutrient concentrations in the lake (total phosphorus), phytoplankton chlorophyll a and Secchi disk transparency data. We collected field data from a raft station and a land station, measuring net solar radiation, air temperature and relative humidity, precipitation, wind velocity, atmospheric pressure, and temperature from thermistors submerged in the uppermost three centimeters of water and beneath the lake surface at depths of 1, 2, 3, 4, 5, 6, and 8 m. Samples for nutrients and chlorophyll a analyses were collected at the same above mentioned depths close to the raft station using a Niskin bottle. Temperature, salinity, pH, and dissolved oxygen were measured using a multi-parametric probe. Water temperature is modelled with a unidimensional model. The validation of the model is verified by comparing recorded with simulated data. The results show a good fit of the modelled water temperature, with a mean error of 0.11 °C and a root mean square error of 1.31 °C. The largest of the mean error values is recorded in the bottom layers (0.71 °C), while in central (thermocline) and surface layers the average error is negligible. Total phosphorus values confirmed the eutrophic state of the lake (>35 mg P m-3). On the contrary, chlorophyll a and Secchi disk data indicated a more probable mesotrophic state. This frame highlights the necessity of further investigations on the responses of the lake's biological community to the different hydrological regimes in the different years.

  6. Biotic and abiotic factors influencing zooplankton vertical distribution in Lake Huron

    USGS Publications Warehouse

    Nowicki, Carly J.; Bunnell, David B.; Armenio, Patricia M.; Warner, David M.; Vanderploeg, Henry A.; Cavaletto, Joann F.; Mayer, Christine M.; Adams, Jean V.

    2017-01-01

    The vertical distribution of zooplankton can have substantial influence on trophic structure in freshwater systems, particularly by determining spatial overlap for predator/prey dynamics and influencing energy transfer. The zooplankton community in some of the Laurentian Great Lakes has undergone changes in composition and declines in total biomass, especially after 2003. Mechanisms underlying these zooplankton changes remain poorly understood, in part, because few studies have described their vertical distributions during daytime and nighttime conditions or evaluated the extent to which predation, resources, or environmental conditions could explain their distribution patterns. Within multiple 24-h periods during July through October 2012 in Lake Huron, we conducted daytime and nighttime sampling of zooplankton, and measured food (chlorophyll-a), temperature, light (Secchi disk depth), and planktivory (biomass of Bythotrephes longimanus and Mysis diluviana). We used linear mixed models to determine whether the densities for 22 zooplankton taxa varied between day and night in the epi-, meta-, and hypolimnion. For eight taxa, higher epilimnetic densities were observed at night than during the day; general linear models revealed these patterns were best explained by Mysis diluviana (four taxa), Secchi disk depth (three taxa), epilimnetic water temperature (three taxa), chlorophyll (one taxon), and biomass of Bythotrephes longimanus (one taxon). By investigating the potential effects of both biotic and abiotic variables on the vertical distribution of crustacean zooplankton and rotifers, we provide descriptions of the Lake Huron zooplankton community and discuss how future changes in food web dynamics or climate change may alter zooplankton distribution in freshwater environments.

  7. Landsat Thematic Mapper monitoring of turbid inland water quality

    NASA Technical Reports Server (NTRS)

    Lathrop, Richard G., Jr.

    1992-01-01

    This study reports on an investigation of water quality calibration algorithms under turbid inland water conditions using Landsat Thematic Mapper (TM) multispectral digital data. TM data and water quality observations (total suspended solids and Secchi disk depth) were obtained near-simultaneously and related using linear regression techniques. The relationships between reflectance and water quality for Green Bay and Lake Michigan were compared with results for Yellowstone and Jackson Lakes, Wyoming. Results show similarities in the water quality-reflectance relationships, however, the algorithms derived for Green Bay - Lake Michigan cannot be extrapolated to Yellowstone and Jackson Lake conditions.

  8. Landsat - What is operational in water resources

    NASA Technical Reports Server (NTRS)

    Middleton, E. M.; Munday, J. C., Jr.

    1981-01-01

    Applications of Landsat data in hydrology and water quality measurement were examined to determine which applications are operational. In hydrology, the principal applications have been surface water inventory, and land cover analysis for (1) runoff modeling and (2) abatement planning for non-point pollution and erosion. In water quality measurement, the principal applications have been: (1) trophic state assessment, and (2) measurement of turbidity and suspended sediment. The following applications were found to be operational: mapping of surface water, snow cover, and land cover (USGS Level 1) for watershed applications; measurement of turbidity, Secchi disk depth, suspended sediment concentration, and water depth.

  9. A simple photometric factor in perceived depth order of bistable transparency patterns.

    PubMed

    Fukiage, Taiki; Oishi, Takeshi; Ikeuchi, Katsushi

    2014-05-05

    Previous studies on perceptual transparency defined the photometric condition in which perceived depth ordering between two surfaces becomes ambiguous. Even under this bistable transparency condition, it is known that depth-order perceptions are often biased toward one specific interpretation (Beck, Prazdny, & Ivry, 1984; Delogu, Fedorov, Belardinelli, & van Leeuwen, 2010; Kitaoka, 2005; Oyama & Nakahara, 1960). In this study, we examined what determines the perceived depth ordering for bistable transparency patterns using stimuli that simulated two partially overlapping disks resulting in four regions: a (background), b (portion of right disk), p (portion of left disk), and q (shared region). In contrast to the previous theory that proposed contributions of contrast against the background region (i.e., contrast at contour b/a and contrast at contour p/a) to perceived depth order in bistable transparency patterns, the present study demonstrated that contrast against the background region has little influence on perceived depth order compared with contrast against the shared region (i.e., contrast at contour b/q and contrast at contour p/q). In addition, we found that the perceived depth ordering is well predicted by a simpler model that takes into consideration only relative size of lightness difference against the shared region. Specifically, the probability that the left disk is perceived as being in front is proportional to (|b - q| - |p - q|) / (|b - q| + |p - q|) calculated based on lightness.

  10. Limnology of Sawtooth Valley Lakes in 1995

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luecke, C.; Slater, M.; Budy, P.

    1996-05-01

    Included in this section of the report on limnology of Lakes in the Snake River Plain are descriptions of the limnological characteristics of the four lakes in reference to their potential effect of growth and survival of juvenile sockeye salmon. Physical parameters included light penetration, Secchi transparency, and water temperature; chemical parameters included oxygen, and both dissolved and particulate forms of nitrogen and phosphorus. Phytoplankton parameters included chlorophyll concentration, biovolume of dominant taxa, and rates of primary production; zooplankton parameters included density and biomass estimate, length frequencies, and the number of eggs carried by female cladocerans. 11 figs., 5 tabs.

  11. Data on the distribution and abundance of submersed aquatic vegetation in the tidal Potomac River, Maryland, Virginia, and the District of Columbia, 1985

    USGS Publications Warehouse

    Rybicki, N.B.; Anderson, R.T.; Shapiro, J.M.; Jones, C.L.; Carter, Virginia

    1986-01-01

    This report summarizes data on the distribution and abundance of submersed aquatic vegetation collected in the tidal Potomac River during 1985. Plant species were identified and dry weight determined for selected sites. Information on competition between Hydrilla verticillata and other species was measured. Water-quality characteristics measured include temperature, specific conductance, dissolved oxygen, pH, and transparency as indicated by Secchi depth. A map was made of the distribution of submersed aquatic vegetation based on transect samples and a complete shoreline survey. (USGS)

  12. Variations of transparency derived from GOCI in the Bohai Sea and the Yellow Sea.

    PubMed

    Mao, Ying; Wang, Shengqiang; Qiu, Zhongfeng; Sun, Deyong; Bilal, Muhammad

    2018-04-30

    Secchi disk depth (Z sd ), represents water transparency which is an intuitive indicator of water quality and can be used to derive inherent optical properties, chlorophyll-a concentrations, and primary productivity. In this study, the Z sd was derived from the Geostationary Ocean Color Imager (GOCI) data over the Bohai Sea (BHS) and the Yellow Sea (YS) using a regional tuned model. To validate the GOCI derived Z sd observations, in situ data, were collected for the BHS and YS regions. Results showed a good agreement between the GOCI derived Z sd observations and in situ measurements with a determination coefficient of 0.90, root mean square error of 2.17 m and mean absolute percent error of 24.56%. Results for diurnal variations showed an increasing trend of Z sd at the first and then decreasing, and all the maxima of Z sd in the central areas of the BHS and YS were found in the midday. For seasonal variations, higher values of Z sd , both in range and intensity, were observed in summer compared with those in winter. The reasons to explain the variations of Z sd have also been explored. Solar zenith angle (SOLZ) has an impact on the daily dynamics of Z sd , due to the influence of SOLZ on the attenuation of light radiation in water. The influence level of SOLZ on Z sd is largely determined by the water bodies' composition. The significant seasonal variations are mainly controlled by the stability of the water column stratification, because it can lead to the sediment resuspension and influence the growth and distribution of phytoplankton. Runoff and sediment discharge are not the main factors that impact the seasonal dynamics of Z sd. Tidal currents and mean currents may have influences on the variations of Z sd . However, due to the lack of in situ measurements to support, further studies are still needed.

  13. Deteriorating water clarity in shallow waters: Evidence from long term MODIS and in-situ observations

    NASA Astrophysics Data System (ADS)

    Shi, Kun; Zhang, Yunlin; Zhu, Guangwei; Qin, Boqiang; Pan, Delu

    2018-06-01

    Water clarity (Secchi disk depth: SDD), as a proxy of water transparency, provides important information on the light availability to the water or lake ecosystem. Shallow lakes have been experienced dramatic environmental and climatic change. This study demonstrated using combination of long-term MODIS and in-situ measurements to track the dynamics of SDD with these environmental and climate changes in shallow water environments. We selected a typical turbid shallow Lake Taihu as our case study. Based on MODIS-Aqua data, an empirical model for estimating SDD was developed and validated. Subsequently, we employed the proposed model to derive the spatial and temporal SDD distribution patterns of Lake Taihu from 2003 to 2015. Combining MODIS-derived SDD time series of 2003-2015 and long-term in-situ SDD observations dated back to 1993, we elucidated SDD long-term variation trends and driving mechanism. Deteriorating water clarity from the long-term SDD observations indicated that Lake Taihu became more and more turbid and water quality was decreasing. Increasing in cyanobacterial bloom area, as a result of decreasing in wind speed and eutrophication, may partially be responsible for the decreasing trend. A predicted future decrease in the wind speed in Lake Taihu region could enhance the formation of cyanobacterial blooms and consequently lead to a further decrease in water clarity. This study suggested that coupling remote sensing monitoring and long-term in-situ observations could provide robust evidence and new insights to elucidate long-term dynamics in aquatic ecosystem evolution.

  14. An investigation to improve the Menhaden fishery prediction and detection model through the application of ERTS-A data

    NASA Technical Reports Server (NTRS)

    Maughan, P. M. (Principal Investigator)

    1973-01-01

    The author has identified the following significant results. Linear regression of secchi disc visibility against number of sets yielded significant results in a number of instances. The variability seen in the slope of the regression lines is due to the nonuniformity of sample size. The longer the period sampled, the larger the total number of attempts. Further, there is no reason to expect either the influence of transparency or of other variables to remain constant throughout the season. However, the fact that the data for the entire season, variable as it is, was significant at the 5% level, suggests its potential utility for predictive modeling. Thus, this regression equation will be considered representative and will be utilized for the first numerical model. Secchi disc visibility was also regressed against number of sets for the three day period September 27-September 29, 1972 to determine if surface truth data supported the intense relationship between ERTS-1 identified turbidity and fishing effort previously discussed. A very negative correlation was found. These relationship lend additional credence to the hypothesis that ERTS imagery, when utilized as a source of visibility (turbidity) data, may be useful as a predictive tool.

  15. First direct detection of a Keplerian rotating disk around the Be star α Arae using AMBER/VLTI

    NASA Astrophysics Data System (ADS)

    Meilland, A.; Stee, P.; Vannier, M.; Millour, F.; Domiciano de Souza, A.; Malbet, F.; Martayan, C.; Paresce, F.; Petrov, R. G.; Richichi, A.; Spang, A.

    2007-03-01

    Aims:We aim to study the geometry and kinematics of the disk around the Be star α Arae as a function of wavelength, especially across the Brγ emission line. The main purpose of this paper is to understand the nature of the disk rotation around Be stars. Methods: We use the AMBER/VLTI instrument operating in the K-band, which provides a gain by a factor of 5 in spatial resolution compared to previous MIDI/VLTI observations. Moreover, it is possible to combine the high angular resolution provided with the (medium) spectral resolution of AMBER to study the kinematics of the inner part of the disk and to infer its rotation law. Results: For the first time, we obtain direct evidence that the disk is in Keplerian rotation, answering a question that has existed since the discovery of the first Be star γ Cas by Father Secchi in 1866. We also present the global geometry of the disk, showing that it is compatible with a thin disk and polar enhanced winds modeled with the SIMECA code. We found that the disk around α Arae is compatible with a dense equatorial matter confined to the central region, whereas a polar wind is contributing along the rotational axis of the central star. Between these two regions, the density must be low enough to reproduce the large visibility modulus (small extension) obtained for two of the four VLTI baselines. Moreover, we obtain that α Arae is rotating very close to its critical rotation. This scenario is also compatible with the previous MIDI measurements. Based on observations collected at the European Southern Observatory, Paranal, Chile, within the science demonstration time programme 074.A-9026(A).

  16. Response of fishes to floodplain connectivity during and following a 500-year flood event in the unimpounded upper Mississippi River

    USGS Publications Warehouse

    Barko, V.A.; Herzog, D.P.; O'Connell, M. T.

    2006-01-01

    We examined data collected on fish assemblage structure among three differing floodplain types (broad, moderate, and narrow) during the 1993 flood in the unimpounded reach of the upper Mississippi River. This 500 year flood event provided a unique opportunity to investigate fish-floodplain function because the main river channel is otherwise typically disjunct from approximately 82% of its floodplain by an extensive levee system. Fishes were sampled during three separate periods, and 42 species of adult and young-of-the-year (YOY) fishes were captured. Analysis of similarity (ANOSIM) revealed a significant and distinguishable difference between both adult and YOY assemblage structure among the three floodplain types. Analysis of variance revealed that Secchi transparency, turbidity, water velocity, and dissolved oxygen were significantly different among the floodplain types. However, only depth of gear deployment and Secchi transparency were significantly correlated with adult assemblage structure. None of these variables were significantly correlated with YOY assemblage structure. The numerically abundant families (adult and YOY catches combined) on the floodplain included Centrarchidae, Ictularidae, and Cyprinidae. Both native and non-native fishes were captured on the floodplain, and several of the numerically abundant species that were captured on the floodplain peaked in catch-per-unit-effort 1-3 years after the 1993 flood event. This suggests that some species may have used flooded terrestrial habitat for spawning, feeding, or both. The findings from our study provide much needed insight into fish-floodplain function in a temperate, channelized river system and suggest that lateral connectivity of the main river channel to less degraded reaches of its floodplain should become a management priority not only to maintain faunal biodiversity but also potentially reduce the impacts of non-native species in large river systems.

  17. Impacts of population growth and economic development on water quality of a lake: case study of Lake Victoria Kenya water.

    PubMed

    Juma, Dauglas Wafula; Wang, Hongtao; Li, Fengting

    2014-04-01

    Anthropogenic-induced water quality pollution is a major environmental problem in freshwater ecosystems today. As a result of this, eutrophication of lakes occurs. Population and economic development are key drivers of water resource pollution. To evaluate how growth in the riparian population and in the gross domestic product (GDP) with unplanned development affects the water quality of the lake, this paper evaluates Lake Victoria Kenyan waters basin. Waters quality data between 1990 and 2012 were analyzed along with reviews of published literature, papers, and reports. The nitrate-nitrogen (NO3-N), soluble phosphorus (PO4-P), chlorophyll a, and Secchi transparencies were evaluated as they are key water quality indicators. The NO3-N increased from 10 μg l(-1) in 1990 to 98 μg 1(-1) in 2008, while PO4-P increased from 4 μg l(-1) in 1990 to 57 μg l(-1) in 2008. The population and economic growth of Kenya are increasing with both having minimums in 1990 of 24.143 million people and 12.18 billion US dollars, to maximums in 2010 of 39.742 million people and 32.163 billion US dollars, respectively. A Secchi transparency is reducing with time, indicating an increasing pollution. This was confirmed by an increase in aquatic vegetation using an analysis of moderate resolution imaging spectroradiometer (MODIS) images of 2000 and 2012 of Kenyan waters. This study found that increasing population and GDP increases pollution discharge thus polluting lakes. One of major factors causing lake water pollution is the unplanned or poor waste management policy and service.

  18. Valuable water

    NASA Astrophysics Data System (ADS)

    Carlowicz, Michael

    In some places, money flows with water. Studying both the water quality and property values around 22 lakes in south-central Maine, Kevin Boyle and Holly James of the University of Maine and Roy Bouchard of the Maine Department of Environmental Protection have found that good water quality makes waterfront property even more valuable. To gauge water quality, the researchers used Secchi disks to measure the clarity of the water at depth. They also reviewed 543 lakefront property sales between 1990 and 1994 to determine how values correlated with changing water conditions. The group also considered such factors as lake frontage, sizes of the houses and lots, and size of the lake.

  19. LANDSAT digital data for water pollution and water quality studies in Southern Scandinavia

    NASA Technical Reports Server (NTRS)

    Hellden, U.; Akersten, I.

    1977-01-01

    Spectral diagrams, illustrating the spectral characteristics of different water types, were constructed by means of simple statistical analysis of the various reflectance properties of water areas in Southern Scandinavia as registered by LANDSAT-1. There were indications that water whose spectral reproduction is dominated by chlorophyllous matter (phytoplankton) can be distinguished from water dominated by nonchlorophyllous matter. Differences between lakes, as well as the patchiness of individual lakes, concerning secchi disc transparency could be visualized after classification and reproduction in black and white and in color by means of line printer, calcomp plotter (CRT), and ink jet plotter respectively.

  20. Comparison of Methods to Determine Algal Concentrations in Freshwater Lakes

    NASA Astrophysics Data System (ADS)

    Georgian, S. E.; Halfman, J. D.

    2008-12-01

    Algal populations are extremely important to the ecological health of freshwater lake systems. As lakes become eutrophic (highly productive) through nutrient loading, sediment accumulation rates increase, bottom waters become anoxic in the mid-to late summer, the opacity of the water column decreases, and significantly decreases the lake's potential as a drinking water source and places respiratory stress on aquatic animals. One indicator of eutrophication is increasing algal concentrations over annual time frames. Algal concentrations can be measured by the concentration of chlorophyll a, or less directly by fluorescence, secchi disk depth, and turbidity by backscattering and total suspended solids. Here, we present a comparison of these methods using data collected on Honeoye, Canandaigua, Keuka, Seneca, Cayuga, Owasco, Skaneateles, and Otisco, the largest Finger Lakes of western and central New York State during the 2008 field season. A total of 124 samples were collected from at least two mid-lake, deep-water sites in each lake monthly through the 2008 field season (May-Oct); Seneca Lake was sampled weekly at four sites and Cayuga Lake every two weeks at six sites. Secchi depths, CTD profiles and surface water samples were collected at each site. Chlorophyll a was measured by spectrophotometer in the lab after filtration at 0.45 um and digestion of the residue in acetone. Water samples were also filtered through pre-weighed glass-fiber filters for total suspended solids concentrations. A SBE-25 SeaLogger CTD collected profiles of turbidity and fluorescence with WetLabs ECO FL-NTU. Surface CTD values were used in the comparison. The strongest linear correlations were detected between chlorophyll-a and fluorescence (r2 = 0.65), and total suspended solids and turbidity (r2 = 0.63). Weaker correlations were detected between secchi depths and chlorophyll-a (r2 = 0.42), and secchi depths and turbidity (r2 = 0.46). The weakest correlations were detected between secchi depths and fluorescence (r2 = 0.29), total suspended solids and fluorescence (r2 = 0.29), chlorophyll-a and turbidity (r2 = 0.34) and fluorescence and turbidity (r2 = 0.25). The results suggest that water clarity in these lakes was controlled by both inorganic and organic (algal) suspended matter, and each method typically focuses on either the organic or inorganic fractions of the total suspended sediment population. Interestingly, fluorescence profiles revealed algal peaks at depth in the epilimnion and occasionally in the upper hypolimnion of these lakes. The peak in fluorescence was shallower in algal-rich lakes. Thus, lake monitoring protocols and assessments should include all of these parameters to adequately quantify the type and concentration of suspended matter, and expand from surface samples to integrate the entire water column.

  1. Father Secchi Goes to Washington

    NASA Astrophysics Data System (ADS)

    McCarthy, M. F.

    1994-12-01

    In 1848 a small group of Jesuit refugees arrived at Georgetown College near Washington, D.C. Among them was a young priest, Angelo Secchi, who had finished theology studies in Rome, but had not been able to complete his final examinations. This done successfully, Secchi turned to astronomy and the new facilities of the Georgetown College Observatory, directed by its founder, Fr. James Curley. During his two years in Washington, Secchi studied physics, wrote an article on Electrical Rheometry for the Smithsonian Institution, and formed a friendship with Matthew Fontaine Maury of the U.S. Navy, who headed the Chart Service and in 1844 was named superintendent of the National Observatory. This was later named the U.S. Naval Observatory. Secchi's friendships formed during the Washington visit proved most helpful for relations between European astronomers and U.S. colleagues. Secchi, after his return to Rome constructed the Observatory of the Collegio Romano atop the baroque Church of St. Ignatius in Rome and began his work in spectral classification of stars.

  2. LANDSAT menhaden and thread herring resources investigation. [Gulf of Mexico

    NASA Technical Reports Server (NTRS)

    Kemmerer, A. J. (Principal Investigator); Brucks, J. T.; Butler, J. A.; Faller, K. H.; Holley, H. J.; Leming, T. D.; Savastano, K. J.; Vanselous, T. M.

    1977-01-01

    The author has identified the following significant results. The relationship between the distribution of menhaden and selected oceanographic parameters (water color, turbidity, and possibly chlorophyll concentrations) was established. Similar relationships for thread herring were not established nor were relationships relating to the abundance of either species. Use of aircraft and LANDSAT remote sensing instruments to measure or infer a set of basic oceanographic parameters was evaluated. Parameters which could be accurately inferred included surface water temperature, salinity, and color. Water turbidity (Secchi disk) was evaluated as marginally inferrable from the LANDSAT MSS data and chlorophyll-a concentrations as less than marginal. These evaluations considered the parameters only as experienced in the two test areas using available sensors and statistical techniques.

  3. Do larval fishes exhibit diel drift patterns in a large, turbid river?

    USGS Publications Warehouse

    Reeves, K.S.; Galat, D.L.

    2010-01-01

    Previous research suggested larval fishes do not exhibit a diel drift cycle in turbid rivers (transparency <30 cm). We evaluated this hypothesis in the turbid, lower Missouri River, Missouri. We also reviewed diel patterns of larval drift over a range of transparencies in rivers worldwide. Larval fishes were collected from the Missouri River primary channel every 4 h per 24-h period during spring-summer 2002. Water transparency was measured during this period and summarized for previous years. Diel drift patterns were analyzed at the assemblage level and lower taxonomic levels for abundant groups. Day and night larval fish catch-per-unit-effort (CPUE) was compared for the entire May through August sampling period and spring (May - June) and summer (July - August) seasons separately. There were no significant differences between day and night CPUE at the assemblage level for the entire sampling period or for the spring and summer seasons. However, Hiodon alosoides, Carpiodes/Ictiobus spp. and Macrhybopsis spp. exhibited a diel cycle of abundance within the drift. This pattern was evident although mean Secchi depth (transparency) ranged from 4 to 25 cm during the study and was <30 cm from May through August over the previous nine years. Larval diel drift studies from 48 rivers excluding the Missouri River indicated the primary drift period for larval fishes was at night in 38 rivers and during the day for five, with the remaining rivers showing no pattern. Water transparency was reported for 10 rivers with six being <30 cm or 'low'. Two of these six turbid rivers exhibited significant diel drift patterns. The effect of water transparency on diel drift of larval fishes appears taxa-specific and patterns of abundant taxa could mask patterns of rare taxa when analyzed only at the assemblage level. ?? 2010 Blackwell Verlag, Berlin.

  4. A classification of freshwater Louisiana lakes based on water quality and user perception data.

    PubMed

    Burden, D G; Malone, R F

    1987-09-01

    An index system developed for Louisiana lakes was based on correlations between measurable water quality parameters and perceived lake quality. Support data was provided by an extensive monitoring program of 30 lakes coordinated with opinion surveys undertaken during summer 1984. Lakes included in the survey ranged from 4 to 735 km(2) in surface area with mean depths ranging from 0.5 to 8.0 m. Water quality data indicated most of these lakes are eutrophic, although many have productive fisheries and are considered recreational assets. Perception ratings of fishing quality and its associated water quality were obtained by distributing approximately 1200 surveys to Louisiana Bass Club Associaton members. The ability of Secchi disc transparency, total organic carbon, total Kjeldahl nitrogen, total phosphorus, and chlorophyll a to discriminate between perception classes was examined using probability distributions and multivariate analyses. Secchi disc and total organic carbon best reflected perceived lake conditions; however, these parameters did not provide the discrimination necessary for developing a quantitative risk assessment of lake trophic state. Consequently, an interim lakes index system was developed based on total organic carbon and perceived lake conditions. The developed index system will aid State officials in interpretating and evaluating regularly collected lake quality data, recognizing potential problem areas, and identifying proper management policies for protecting fisheries usage within the State.

  5. Nutrient additions by waterfowl to lakes and reservoirs: predicting their effects on productivity and water quality

    USGS Publications Warehouse

    Manny, Bruce A.; Johnson, W.C.; Wetzel, R.G.

    1994-01-01

    Lakes and reservoirs provide water for human needs and habitat for aquatic birds. Managers of such waters may ask whether nutrients added by waterfowl degrade water quality. For lakes and reservoirs where primary productivity is limited by phosphorus (P), we developed a procedure that integrates annual P loads from waterfowl and other external sources, applies a nutrient load-response model, and determines whether waterfowl that used the lake or reservoir degraded water quality. Annual P loading by waterfowl can be derived from a figure in this report, using the days per year that each kind spent on any lake or reservoir. In our example, over 6500 Canada geese (Branta canadensis) and 4200 ducks (mostly mallards, Anas platyrhynchos) added 4462 kg of carbon (C), 280 kg of nitrogen (N), and 88 kg of P y-1 to Wintergreen Lake in southwestern Michigan, mostly during their migration. These amounts were 69% of all C, 27% of all N, and 70% of all P that entered the lake from external sources. Loads from all external sources totaled 840 mg P m-2 y-1. Application of a nutrient load-response model to this concentration, the hydraulic load (0.25 m y-1), and the water residence time (9.7 y) of Wintergreen Lake yielded an average annual concentration of total P in the lake of 818 mg m-3 that classified the lake as hypertrophic. This trophic classification agreed with independent measures of primary productivity, chlorophyll-a, total P, total N, and Secchi disk transparency made in Wintergreen Lake. Our procedure showed that waterfowl caused low water quality in Wintergreen Lake.

  6. Dissolved oxygen stratification and response to thermal structure and long-term climate change in a large and deep subtropical reservoir (Lake Qiandaohu, China).

    PubMed

    Zhang, Yunlin; Wu, Zhixu; Liu, Mingliang; He, Jianbo; Shi, Kun; Zhou, Yongqiang; Wang, Mingzhu; Liu, Xiaohan

    2015-05-15

    From January 2010 to March 2014, detailed depth profiles of water temperature, dissolved oxygen (DO), and chromophoric dissolved organic matter (CDOM) were collected at three sites in Lake Qiandaohu, a large, deep subtropical reservoir in China. Additionally, we assessed the changes in DO stratification over the past 61 years (1953-2013) based on our empirical models and long-term air temperature and transparency data. The DO concentration never fell below 2 mg/L, the critical value for anoxia, and the DO depth profiles were closely linked to the water temperature depth profiles. In the stable stratification period in summer and autumn, the significant increase in CDOM in the metalimnion explained the decrease in DO due to the oxygen consumed by CDOM. Well-developed oxygen stratification was detected at the three sites in spring, summer and autumn and was associated with thermal stratification. Oxycline depth was significantly negatively correlated with daily air temperature and thermocline thickness but significantly positively correlated with thermocline depth during the stratification weakness period (July-February). However, there were no significant correlations among these parameters during the stratification formation period (March-June). The increase of 1.67 °C in yearly average daily air temperature between 1980 and 2013 and the decrease of 0.78 m in Secchi disk depth caused a decrease of 1.65 m and 2.78 m in oxycline depth, respectively, facilitating oxygen stratification and decreasing water quality. Therefore, climate warming has had a substantial effect on water quality through changing the DO regime in Lake Qiandaohu. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Water-quality data for the Ohio River from New Cumberland Dam to Pike Island Dam, West Virginia and Ohio, June-November 1992

    USGS Publications Warehouse

    Miller, Kimberly F.; Faulkenburg, C.W.; Chambers, D.B.; Waldron, M.C.

    1995-01-01

    This report contains water-quality data for the Ohio River, collected during the summer and fall of 1992, from river mile 51.1 (3.3 miles upstream from New Cumberland Dam) to river mile 84.0 (0.2 miles upstream from Pike Island Dam). The data were collected to assess the effects of hydropower development on water quality. Water quality was determined by a combination of repeated synoptic field measurements and laboratory analyses. Synoptic measurements were made along a longitudinal transect with 18 mid-channel sampling sites; cross-sectional transects of water quality were measured at 5 of these sites. Water-quality measurements also were made at two sites located on the back-channel (Ohio) side of Browns Island. Water temperature, dissolved oxygen concentration, pH, and specific conductance were measured at each longitudinal-transect and back-channel sampling site. Longitudinal-transect and back-channel stations were sampled at three depths (about 3.3 feet below the surface of the water, middle of the water column, and near the bottom of the river). Cross-sectional transects consisted of three or four detailed vertical pro- files of the same characteristics. Water samples were collected from three depths at the mid-channel vertical profile in each cross-sectional transect and were analyzed for concentrations of phyto- plankton photosynthetic pigments chlorophyll a and chlorophyll b. Estimates of the depth of light penetration (Secchi disk transparency) were made at pigment-sampling locations whenever light and river-surface conditions were appropriate. Synoptic sampling usually was completed in 12 hours or less and was repeated seven times between June 25 and November 6, 1992.

  8. Bay of Fundy verification of a system for multidate Landsat measurement of suspended sediment

    NASA Technical Reports Server (NTRS)

    Munday, J. C., Jr.; Afoldi, T. T.; Amos, C. L.

    1981-01-01

    A system for automated multidate Landsat CCT MSS measurement of suspended sediment concentration (S) has been implemented and verified on nine sets (108 points) of data from the Bay of Fundy, Canada. The system employs 'chromaticity analysis' to provide automatic pixel-by-pixel adjustment of atmospheric variations, permitting reference calibration data from one or several dates to be spatially and temporally extrapolated to other regions and to other dates. For verification, each data set was used in turn as test data against the remainder as a calibration set: the average absolute error was 44 percent of S over the range 1-1000 mg/l. The system can be used to measure chlorophyll (in the absence of atmospheric variations), Secchi disk depth, and turbidity.

  9. Active Enhancement of Slow Light Based on Plasmon-Induced Transparency with Gain Materials.

    PubMed

    Zhang, Zhaojian; Yang, Junbo; He, Xin; Han, Yunxin; Zhang, Jingjing; Huang, Jie; Chen, Dingbo; Xu, Siyu

    2018-06-03

    As a plasmonic analogue of electromagnetically induced transparency (EIT), plasmon-induced transparency (PIT) has drawn more attention due to its potential of realizing on-chip sensing, slow light and nonlinear effect enhancement. However, the performance of a plasmonic system is always limited by the metal ohmic loss. Here, we numerically report a PIT system with gain materials based on plasmonic metal-insulator-metal waveguide. The corresponding phenomenon can be theoretically analyzed by coupled mode theory (CMT). After filling gain material into a disk cavity, the system intrinsic loss can be compensated by external pump beam, and the PIT can be greatly fueled to achieve a dramatic enhancement of slow light performance. Finally, a double-channel enhanced slow light is introduced by adding a second gain disk cavity. This work paves way for a potential new high-performance slow light device, which can have significant applications for high-compact plasmonic circuits and optical communication.

  10. Dependence of laser radiation intensity on the elastic deformation of a revolving optical disk with a reflective coating

    NASA Astrophysics Data System (ADS)

    Gladyshev, V. O.; Portnov, D. I.

    2016-12-01

    The physical mechanism of alteration of intensity of linearly polarized monochromatic electromagnetic radiation with λ = 630 nm in a revolving dielectric disk with a mirror coating is examined. The effect is induced by elastic deformation due to the revolution and by thermoelastic deformation of the optically transparent disk. These deformations result in birefringence, the polarization plane rotation, and a 30-40% change in the intensity of reflected radiation.

  11. Effects of smallmouth buffalo, Ictiobus bubalus biomass on water transparency, nutrients, and productivity in shallow experimental ponds

    USGS Publications Warehouse

    Goetz, Daniel B.; Kroger, Robert; Miranda, Leandro E.

    2014-01-01

    The smallmouth buffalo Ictiobus bubalus is a native benthivore to floodplain lakes in the Yazoo River Basin, USA. Based on evidence from other benthivorous fish studies we hypothesized high biomasses of I. bubalus contribute to poor water quality conditions. We tested this hypothesis in shallow (< 1.5 m) 0.05 ha earthen ponds at three stocking biomasses over a 10-week period during the summer of 2012. The most notable results from the permutational multivariate analysis of variance suggest I. bubalus at high and moderate biomasses significantly (p < 0.05) enhanced turbidity and suspended solid levels while decreasing Secchi depth. Our results suggest that effects of I. bubalus on water clarity may have considerable ecological implications in natural habitats such as shallow floodplain lakes.

  12. Trophic state in Voyageurs National Park lakes before and after implementation of a revised water-level management plan

    USGS Publications Warehouse

    Christensen, Victoria G.; Maki, Ryan P.

    2015-01-01

    We compiled Secchi depth, total phosphorus, and chlorophyll a (Chla) data from Voyageurs National Park lakes and compared datasets before and after a new water-level management plan was implemented in January 2000. Average Secchi depth transparency improved (from 1.9 to 2.1 m, p = 0.020) between 1977-1999 and 2000-2011 in Kabetogama Lake for August samples only and remained unchanged in Rainy, Namakan, and Sand Point Lakes, and Black Bay in Rainy Lake. Average open-water season Chla concentration decreased in Black Bay (from an average of 13 to 6.0 μg/l, p = 0.001) and Kabetogama Lake (from 9.9 to 6.2 μg/l, p = 0.006) between 1977-1999 and 2000-2011. Trophic state index decreased significantly in Black Bay from 59 to 51 (p = 0.006) and in Kabetogama Lake from 57 to 50 (p = 0.006) between 1977-1999 and 2000-2011. Trophic state indices based on Chla indicated that after 2000, Sand Point, Namakan, and Rainy Lakes remained oligotrophic, whereas eutrophication has decreased in Kabetogama Lake and Black Bay. Although nutrient inputs from inflows and internal sources are still sufficient to produce annual cyanobacterial blooms and may inhibit designated water uses, trophic state has decreased for Kabetogama Lake and Black Bay and there has been no decline in lake ecosystem health since the implementation of the revised water-level management plan.

  13. Using CHEMTAX to evaluate seasonal and interannual dynamics of the phytoplankton community off the South-west coast of Portugal

    NASA Astrophysics Data System (ADS)

    Goela, P. C.; Danchenko, S.; Icely, J. D.; Lubian, L. M.; Cristina, S.; Newton, A.

    2014-12-01

    CHEMTAX was used to assess the relative contribution of the main phytoplankton classes to the total concentration of Chlorophyll a (Chl a) from the waters off SW coast of Portugal. Sampling campaigns were carried out during all seasons from 2008 to 2012, at three stations located 2, 10 and 18 km from the coast. Samples were taken from the surface, mid-Secchi and Secchi depth, for the determination of Chl a and other phytoplanktonic pigments by HPLC. Supporting data were also obtained including dissolved inorganic nutrients, salinity, transparency, temperature and upwelling indices. The CHEMTAX results were also related to microscopy counts and also spectral analysis of absorption of other samples from the same sampling campaigns. The pigment results showed that diatoms dominated from early spring to summer, coinciding with upwelling conditions, while cryptophytes, prymnesiophytes and prasinophytes dominated in autumn and winter, coinciding with seasonal stratification. Although the contribution of cyanobacteria to total Chl a was generally low, there were occasional sampling campaigns where it was exceptionally high, but these appeared not to be related to upwelling. Dinoflagellates and chrysophytes were minority groups although the pigment marker peridinin that was used to distinguish dinoflagellates was not adequate for distinguishing all the members of this group. CHEMTAX was particularly useful for discriminating between the smaller (0-20 μm) classes of the microplankton that could not be easily identified by microscopy.

  14. High-density optical disk readout using a blue laser diode and a transparent plastic substrate with 0.3-mm thickness

    NASA Astrophysics Data System (ADS)

    Park, Kyung-Chan; Lee, TaekSoo; Kim, Hyung-Nam; Jeong, SeongYun; Ahn, Seong-Keun; Kim, Jin-Yong; Lee, Jun-Seok; Kim, Ji-Byung; Lee, SeongWon; Lee, Dong C.; Asai, Ikuo

    2000-09-01

    We prepared and tested a disc that has a transparent plastic substrate of 0.3 mm thickness to confirm the readout capability using a blue laser diode. And the test results of injection molding for the plastic substrate of 0.3 mm thickness are shown.

  15. Towards Transparent Throughput Elasticity for IaaS Cloud Storage: Exploring the Benefits of Adaptive Block-Level Caching

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nicolae, Bogdan; Riteau, Pierre; Keahey, Kate

    Storage elasticity on IaaS clouds is a crucial feature in the age of data-intensive computing, especially when considering fluctuations of I/O throughput. This paper provides a transparent solution that automatically boosts I/O bandwidth during peaks for underlying virtual disks, effectively avoiding over-provisioning without performance loss. The authors' proposal relies on the idea of leveraging short-lived virtual disks of better performance characteristics (and thus more expensive) to act during peaks as a caching layer for the persistent virtual disks where the application data is stored. Furthermore, they introduce a performance and cost prediction methodology that can be used both independently tomore » estimate in advance what trade-off between performance and cost is possible, as well as an optimization technique that enables better cache size selection to meet the desired performance level with minimal cost. The authors demonstrate the benefits of their proposal both for microbenchmarks and for two real-life applications using large-scale experiments.« less

  16. Effects of smallmouth buffalo, Ictiobus bubalus biomass on water transparency, nutrients, and productivity in shallow experimental ponds.

    PubMed

    Goetz, D; Kröger, R; Miranda, L E

    2014-05-01

    The smallmouth buffalo Ictiobus bubalus is a native benthivore to floodplain lakes in the Yazoo River Basin, USA. Based on evidence from other benthivorous fish studies we hypothesized high biomasses of I. bubalus contribute to poor water quality conditions. We tested this hypothesis in shallow (<1.5 m) 0.05 ha earthen ponds at three stocking biomasses over a 10-week period during the summer of 2012. The most notable results from the permutational multivariate analysis of variance suggest I. bubalus at high and moderate biomasses significantly (p < 0.05) enhanced turbidity and suspended solid levels while decreasing Secchi depth. Our results suggest that effects of I. bubalus on water clarity may have considerable ecological implications in natural habitats such as shallow floodplain lakes.

  17. The use of LANDSAT-1 imagery for water quality studies in southern Scandinavia

    NASA Technical Reports Server (NTRS)

    Hellden, U.

    1975-01-01

    The possibilities of using LANDSAT-1 images for environmental studies, with special references to water quality studies, were investigated by selecting test areas in southern Scandinavia. The MSS images of different bands are compared under the magnification of an Interpretoscope and densitometric analyses are performed in a Schnell-photometer. The possibility of tracing pollution plumes is studied in the Oresund outside Copenhagen. The effect of different sewers and the circulation of the polluted water is analyzed in various situations. The variation in reflectivity of a great number of lakes in South and Middle Sweden is studied by means of densitometric analyses and significant regional differences are found. The correlation with in situ measurements of water quality (turbidity and secchi disc transparency) of the sampled lakes (made by the National Swedish Environment Protection Board) is fairly good.

  18. New Views of the Solar Corona from STEREO and SDO

    NASA Astrophysics Data System (ADS)

    Vourlidas, A.

    2012-01-01

    In the last few years, we have been treated to an unusual visual feast of solar observations of the corona in EUV wavelengths. The observations from the two vantage points of STEREO/SECCHI are now capturing the entire solar atmosphere simultaneously in four wavelengths. The SDO/AIA images provide us with arcsecond resolution images of the full visible disk in ten wavelengths. All these data are captured with cadences of a few seconds to a few minutes. In this talk, I review some intriguing results from our first attempts to deal with these observations which touch upon the problems of coronal mass ejection initiation and solar wind generation. I will also discuss data processing techniques that may help us recover even more information from the images. The talk will contain a generous portion of beautiful EUV images and movies of the solar corona.

  19. Terahertz plasmon-induced transparency based on asymmetric dual-disk resonators coupled to a semiconductor InSb waveguide and its biosensor application

    NASA Astrophysics Data System (ADS)

    Shahamat, Yadollah; Vahedi, Mohammad

    2017-06-01

    An ultracompact double eight-shaped plasmonic structure for the realization of plasmon-induced transparency (PIT) in the terahertz (THz) region has been studied. The device consists of a semiconductor-insulator-semiconductor bus waveguide coupled to the dual-disk resonators. Indium antimonide is employed to excite SPP in the THz region. The transmission characteristics of the proposed device are simulated numerically by the finite-difference time-domain method. In addition, a theoretical analysis based on the coupled-mode theory for transmission features is presented and compared with the numerical results. Results are in good agreement. Also, the dependence of PIT frequency characteristics on the radius of the outer disk is discussed in detail. In addition, by removing one of the outer disk resonators, double-PIT peaks can be observed in the transmission spectrum, and the physical mechanism of the appeared peaks is investigated. Finally, an application of the proposed structure for distinguishing different states of DNA molecules is discussed. Results show that the maximum sensitivity with 654 GHz/RIU-1 could be obtained for a single PIT structure. The frequency shifts equal to 37 and 99 GHz could be observed for the denatured and the hybridized DNA states, respectively.

  20. Water quality and phytoplankton of the tidal Potomac River, August-November 1983

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Woodward, J.C.; Manning, P.D.; Shultz, D.J.

    1984-01-01

    In the summer of 1983, a prolonged blue-green algal bloom, consisting predominantly of Microcystis, occurred in the Potomac River downstream of Washington, DC. Ten longitudinal sampling trips were made between August 3 and November 9, 1983, primarily in the freshwater tidal Potomac River between Memorial Bridge and Quantico, Va. Samples were depth-integrated and composited across the river at each major station and analyzed for dissolved and total nitrogen species, dissolved and total phosphorus species, dissolved silica, chlorophyll-a, pheophytin, and suspended sediment. In addition, phytoplankton were enumerated and identified. Point samples were taken for chlorophyll-a and pheophytin, and measurements were mademore » of dissolved oxygen, pH, conductance, temperature, and Secchi disc transparency. Some supplementary data are presented from points between major stations and in tributaries to the tidal Potomac River. 14 refs., 3 figs., 8 tabs.« less

  1. Estimation of a Trophic State Index for selected inland lakes in Michigan, 1999–2013

    USGS Publications Warehouse

    Fuller, Lori M.; Jodoin, Richard S.

    2016-03-11

    A 15-year estimated Trophic State Index (eTSI) for Michigan inland lakes is available, and it spans seven datasets, each representing 1 to 3 years of data from 1999 to 2013. On average, 3,000 inland lake eTSI values are represented in each of the datasets by a process that relates field-measured Secchi-disk transparency (SDT) to Landsat satellite imagery to provide eTSI values for unsampled inland lakes. The correlation between eTSI values and field-measured Trophic State Index (TSI) values from SDT was strong as shown by R2 values from 0.71 to 0.83. Mean eTSI values ranged from 42.7 to 46.8 units, which when converted to estimated SDT (eSDT) ranged from 8.9 to 12.5 feet for the datasets. Most eTSI values for Michigan inland lakes are in the mesotrophic TSI class. The Environmental Protection Agency (EPA) Level III Ecoregions were used to illustrate and compare the spatial distribution of eTSI classes for Michigan inland lakes. Lakes in the Northern Lakes and Forests, North Central Hardwood Forests, and Southern Michigan/Northern Indiana Drift Plains ecoregions are predominantly in the mesotrophic TSI class. The Huron/Erie Lake Plains and Eastern Corn Belt Plains ecoregions, had predominantly eutrophic class lakes and also the highest percent of hypereutrophic lakes than other ecoregions in the State. Data from multiple sampling programs—including data collected by volunteers with the Cooperative Lakes Monitoring Program (CLMP) through the Michigan Department of Environmental Quality (MDEQ), and the 2007 National Lakes Assessment (NLA)—were compiled to compare the distribution of lake TSI classes between each program. The seven eTSI datasets are available for viewing and download with eSDT from the Michigan Lake Water Clarity Interactive Map Viewer at http://mi.water.usgs.gov/projects/RemoteSensing/index.html.

  2. Diffusion on Viscous Fluids, Existence and Asymptotic Properties of Solutions,

    DTIC Science & Technology

    1983-09-01

    Matematica - Politecuico di Milano (1982). 11.* P. Secchi "On the Initial Value ProbleM for the Nquations of Notion of Viscous Incompressible Fluids In...of two viscous Incompressible Fluids’, preprint DepartLmento dl matematica - Politecuico di Milano (1982). -15- 11. P. Secchi 00n the XnitiaI Value

  3. STEREO SECCHI and S/WAVES Observations of Spacecraft Debris Caused by Micron-Size Interplanetary Dust Impacts

    NASA Astrophysics Data System (ADS)

    St. Cyr, O. C.; Kaiser, M. L.; Meyer-Vernet, N.; Howard, R. A.; Harrison, R. A.; Bale, S. D.; Thompson, W. T.; Goetz, K.; Maksimovic, M.; Bougeret, J.-L.; Wang, D.; Crothers, S.

    2009-05-01

    Early in the STEREO mission observers noted that the white-light instruments of the SECCHI suite were detecting significantly more spacecraft-related “debris” than any previously flown coronagraphic instruments. Comparison of SECCHI “debris storms” with S/WAVES indicates that almost all are coincident with the most intense transient emissions observed by the radio and plasma waves instrument. We believe the debris is endogenous ( i.e., from the spacecraft thermal blanketing), and the storms appear to be caused by impacts of large interplanetary dust grains that are detected by S/WAVES. Here we report the observations, compare them to interplanetary dust distributions, and document a reminder for future spacebased coronagraphic instrument builders.

  4. California Least Tern Foraging Ecology in Southern California: A Review of Foraging Behavior Relative to Proposed Dredging Locations

    DTIC Science & Technology

    2016-05-01

    Communication. B. Hoffman. ERDC/EL CR-16-3 19 locations, including areas where active dredging was occurring. Secchi disc readings ranged from 0.5 to 1.3...low numbers of CLT dives were also recorded during other days of dredge disposal when turbidity readings , via Secchi disc, were similar to readings

  5. Water quality of lakes and streams in Voyageurs National Park, northern Minnesota, 1977-84

    USGS Publications Warehouse

    Payne, G.A.

    1991-01-01

    Water-quality investigations in six interconnected lakes that comprise most of the surface area of Voyageurs National Park in northern Minnesota revealed substantial differences in water-quality. Three large lakes; Sand Point, Namakan, and Rainy, near the eastern and northern boundaries of the Park; are oligotrophic to mesotrophic, having low dissolved solids and alkalinity, and dimictic circulation. In contrast, Kabetogama Lake, Black Bay, and Sullivan Bay, near the western and southern boundaries of the Park, were eutrophic, having higher dissolved solids and alkalinity, and polymictic circulation. Chemical characteristics of the three lakes along the eastern and northern boundary were similar to those of the Namakan River--a major source of inflow that drains an extensive area of exposed bedrock and thin noncalcareous drift east of the Park. The lake and embayments along the western and southern boundary receive inflow from two streams that drain an area west and south of the Park that is overlain by calcareous drift. Samples from one of these streams contained dissolved-solids concentrations about five times, and total alkalinity concentrations about eight times concentrations measured in the Namakan River. The nutrient-enriched lakes and embayments had high algal productivity that produced blooms of blue-green algae in some years. Annual patterns in the levels of trophic-state indicators revealed that the shallow, polymictic lakes experienced seasonal increases in totalphosphorus concentrations in their euphotic zones that did not occur in the deeper, dimictic lakes; this indicates a link between the frequent recirculation of these lakes and internal cycling of phosphorus. Secchi-disk transparency was limited by organic color in Sand Point, Namakan, and Rainy Lakes, and resuspended bottom material reduced transparency in Black Bay. Waters in the large lakes and embayments met nearly all U.S. Environmental Protection Agency criteria for protection of freshwater aquatic life, recreation, and drinking water. Some sites exceeded criteria because of oil and grease, phenols, sulfide, and ammonia. Reconnaissance sampling of 19 small lakes in remote areas of the Park indicated that most of them are sharply stratified and had very low dissolved solids and alkalinity concentrations (4.0-29 milligrams per liter total alkalinity). Thirteen of the lakes could be classified as moderately sensitive to acid precipitation, and two could be classified extremely sensitive. About half of the interior lakes had low nutrient concentrations (10-30 micrograms per liter total phosphorus) and low algal productivity (0.1- 2.0 micrograms per liter chlorophyll a). Five of the lakes had a marked reduction in trophic state from spring to summer. The Namakan River is the largest source of inflow to the Park and was found to have better quality than its receiving waters based on dissolved solids and nutrient concentrations, algal productivity, and transparency. The Ash River was found to deliver water that generally was poorer in quality than its receiving waters.

  6. Analysis of the spatio-temporal variability of seawater quality in the southeastern Arabian Gulf.

    PubMed

    Mezhoud, Nahla; Temimi, Marouane; Zhao, Jun; Al Shehhi, Maryam Rashed; Ghedira, Hosni

    2016-05-15

    In this study, seawater quality measurements, including salinity, sea surface temperature (SST), chlorophyll-a (Chl-a), Secchi disk depth (SDD), pH, and dissolved oxygen (DO), were made from June 2013 to November 2014 at 52 stations in the southeastern Arabian Gulf. Significant variability was noticed for all collected parameters. Salinity showed a decreasing trend, and Chl-a, DO, pH, and SDD demonstrated increasing trends from shallow onshore stations to deep offshore ones, which could be attributed to variations of ocean circulation and meteorological conditions from onshore to offshore waters, and the likely effects of desalination plants along the coast. Salinity and temperature were high in summer and low in winter while Chl-a, SDD, pH, and DO indicated an opposite trend. The CTD profiles showed vertically well-mixed structures. Qualitative analysis of phytoplankton showed a high diversity of species without anomalous species found except in Ras Al Khaimah stations where diatoms were the dominating ones. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Secchi, Angelo (1818-78)

    NASA Astrophysics Data System (ADS)

    Murdin, P.

    2000-11-01

    Born in Reggio Emilia, became a Jesuit and was exiled with the rest of the order by Mazzini's Roman Republic. After a period at Georgetown Observatory, he returned to Italy in 1849 as director of the Roman College Observatory, constructing a new observatory dome on top of the main pillars of the incomplete church of Saint Ignazio. Secchi used its telescopes for solar and stellar research, one of ...

  8. Urgency for sustainable development in coastal urban areas with reference to weather pattern, land use, and water quality.

    PubMed

    Sheela, A M; Letha, J; Swarnalatha, K; Baiju, K V; Sankar, Divya

    2014-05-01

    Water pollution is one of the most critical problems affecting mankind. Weather pattern and land use of catchment area have significant role in quality of water bodies. Due to climate change, there is frequent variation in weather pattern all over the world. There is also rapid change in land use due to increase in population and urbanization. The study was carried out to analyze the effect of change in weather pattern during the monsoon periods of 2008 and 2012 on water quality of a tropical coastal lake system. The nature and extent of variation in different water quality parameters namely electrical conductivity (EC), magnesium (Mg), sodium (Na), chloride (Cl), sulphate (SO4), turbidity, Secchi disk depth, biochemical oxygen demand (BOD), phosphate (PO4), calcium (Ca), and water temperature as well as the effect of various land use activities in the lake basin on water quality have also been studied. There is significant reduction in precipitation, EC, Mg, Na, Cl, SO4, turbidity, and Secchi disk depths whereas a significant rise in the BOD, PO4, Ca, and water temperature were observed in 2012. This significant reduction in electrical conductivity during 2012 revealed that because of less precipitation, the lake was separated from the sea by the sandbar during most of the monsoon period and thereby interrupted the natural flushing process. This caused the accumulation of organic matter including phosphate and thereby resulting reduction in clarity and chlorophyll-a (algae) in the lake. The unsustainable development activities of Thiruvanathapuram city are mainly responsible for the degradation of water bodies. The lack of maintenance and augmentation activities namely replacement of old pipes and periodical cleaning of pipe lines of the old sewer system in the city results in the bypass of sewage into water bodies. Because of the existence of the old sewerage system, no effort has been taken by the individual establishment/house of the city to provide their own treatment system for sewage and sullage and the untreated wastes are discharged into these old sewer pipes and ultimately the wastes reach the water bodies. In this context, decentralized treatment of sewage, sullage, and garbage by individual houses/establishments/hotels/hospitals is a better option for the developing countries. With the rapid developmental activities, and due to the variation of precipitation due to climate change, it is highly essential to provide proper waste treatment/augmentation facilities in urban lake system because a slight variation in the weather pattern can result in serious implications in the already polluted water bodies.

  9. Electromagnetically induced transparency with hybrid silicon-plasmonic traveling-wave resonators

    NASA Astrophysics Data System (ADS)

    Ketzaki, Dimitra A.; Tsilipakos, Odysseas; Yioultsis, Traianos V.; Kriezis, Emmanouil E.

    2013-09-01

    Spectral filtering and electromagnetically induced transparency (EIT) with hybrid silicon-plasmonic traveling-wave resonators are theoretically investigated. The rigorous three-dimensional vector finite element method simulations are complemented with temporal coupled mode theory. We show that ring and disk resonators with sub-micron radii can efficiently filter the lightwave with minimal insertion loss and high quality factors (Q). It is shown that disk resonators feature reduced radiation losses and are thus advantageous. They exhibit unloaded quality factors as high as 1000 in the telecom spectral range, resulting in all-pass filtering components with sharp resonances. By cascading two slightly detuned resonators and providing an additional route for resonator interaction (i.e., a second bus waveguide), a response reminiscent of EIT is observed. The EIT transmission peak can be shaped by means of resonator detuning and interelement separation. Importantly, the respective Q can become higher than that of the single-resonator structure. Thus, the possibility of exploiting this peak in switching applications relying on the thermo-optic effect is, finally, assessed.

  10. Relationships between colored dissolved organic matter and dissolved organic carbon in different coastal gradients of the Baltic Sea.

    PubMed

    Harvey, E Therese; Kratzer, Susanne; Andersson, Agneta

    2015-06-01

    Due to high terrestrial runoff, the Baltic Sea is rich in dissolved organic carbon (DOC), the light-absorbing fraction of which is referred to as colored dissolved organic matter (CDOM). Inputs of DOC and CDOM are predicted to increase with climate change, affecting coastal ecosystems. We found that the relationships between DOC, CDOM, salinity, and Secchi depth all differed between the two coastal areas studied; the W Gulf of Bothnia with high terrestrial input and the NW Baltic Proper with relatively little terrestrial input. The CDOM:DOC ratio was higher in the Gulf of Bothnia, where CDOM had a greater influence on the Secchi depth, which is used as an indicator of eutrophication and hence important for Baltic Sea management. Based on the results of this study, we recommend regular CDOM measurements in monitoring programmes, to increase the value of concurrent Secchi depth measurements.

  11. Dynamically tunable electromagnetically-induced-transparency-like resonances in graphene nanoring and nanodisk hybrid metamaterials

    NASA Astrophysics Data System (ADS)

    Chen, De-Chao; Li, Hong-Ju; Xia, Sheng-Xuan; Qin, Meng; Zhai, Xiang; Wang, Ling-Ling

    2017-08-01

    A tunable electromagnetically-induced-transparency-like (EIT-like) device is proposed numerically and theoretically in the mid-infrared region, which is composed of periodically patterned ring and disk graphene. Distinguished from the commonly used three-level system, the hybridization of the plasmon mode is applied to describing and explaining the EIT-like phenomenon in the proposed systems. What is more, further researches have revealed that the spectral position of the transparency window can be tuned not only by geometrically changing the couple distance in graphene nanostructures, but also by dynamically altering the radius of the graphene nanodisk and the chemical potential of the graphene. At the transparency window, there exist large optical delays, which can slow down the speed of light in vacuum. This work may pave the way to the development of applications including tunable sensors, slow-light devices, and optical switches.

  12. Combining lake and watershed characteristics with Landsat TM data for remote estimation of regional lake clarity

    USGS Publications Warehouse

    McCullough, Ian M.; Loftin, Cyndy; Sader, Steven A.

    2012-01-01

    Water clarity is a reliable indicator of lake productivity and an ideal metric of regional water quality. Clarity is an indicator of other water quality variables including chlorophyll-a, total phosphorus and trophic status; however, unlike these metrics, clarity can be accurately and efficiently estimated remotely on a regional scale. Remote sensing is useful in regions containing a large number of lakes that are cost prohibitive to monitor regularly using traditional field methods. Field-assessed lakes generally are easily accessible and may represent a spatially irregular, non-random sample of a region. We developed a remote monitoring program for Maine lakes >8 ha (1511 lakes) to supplement existing field monitoring programs. We combined Landsat 5 Thematic Mapper (TM) and Landsat 7 Enhanced Thematic Mapper Plus (ETM+) brightness values for TM bands 1 (blue) and 3 (red) to estimate water clarity (secchi disk depth) during 1990–2010. Although similar procedures have been applied to Minnesota and Wisconsin lakes, neither state incorporates physical lake variables or watershed characteristics that potentially affect clarity into their models. Average lake depth consistently improved model fitness, and the proportion of wetland area in lake watersheds also explained variability in clarity in some cases. Nine regression models predicted water clarity (R2 = 0.69–0.90) during 1990–2010, with separate models for eastern (TM path 11; four models) and western Maine (TM path 12; five models that captured differences in topography and landscape disturbance. Average absolute difference between model-estimated and observed secchi depth ranged 0.65–1.03 m. Eutrophic and mesotrophic lakes consistently were estimated more accurately than oligotrophic lakes. Our results show that TM bands 1 and 3 can be used to estimate regional lake water clarity outside the Great Lakes Region and that the accuracy of estimates is improved with additional model variables that reflect physical lake characteristics and watershed conditions.

  13. Sources and cycling of major ions and nutrients in Devils Lake, North Dakota

    USGS Publications Warehouse

    Lent, R.M.

    1994-01-01

    Devils Lake is a saline lake in a large, closed drainage basin in northeastern North Dakota. Previous studies determined that major-ion and nutrient concentrations in Devils Lake are strongly affected by microbially mediated sulfate reduction and dissolution of sulfate and carbonate minerals in the bottom sediments. These studies documented substantial spatial variability in the magnitude of calculated benthic fluxes coincident with the horizontal salinity gradient in Devils Lake. The purpose of the present study is to evaluate seasonal variability in benthic-flux rates, and to understand the effect of these fluxes on the major-ion and nutrient chemistries in Devils Lake between May and October 1991. During the study period, the water column was well mixed, and specific conductance, pH, and temperature did not vary with depth. Dissolved oxygen was enriched near the lake surface due to photosynthesis. Major-ion concentrations and nutrient concentrations did not vary with depth. Because the water-quality data were obtained during open-water periods, the vertical profiles reflect well-mixed conditions. However, the first and last profiles for the study period did document near-bottom maxima of major cations. Secchi-disk depth varied from 0.82 meter on May 7,1991, to 2.13 meters on June 5, 1991. The mean Secchi-disk depth during the study period was 1.24 meters. Seasonal variations in Secchi-disk depths were attributed to variations in primary productivity and phytoplankton communities. Nutrient cycles in Devils Lake were evaluated using gross primary productivity rate data, sediment trap data, and major-ion and nutrient benthic-flux rate data. Gross primary productivity rate was smallest in May (0.076 gram of carbon per square meter per day) and largest in September (1.8 grams of carbon per square meter per day). Average gross primary productivity for the study period was 0.87 gram of carbon per square meter per day. Average gross primary productivity is consistent with historic data from Devils Lake and with data from other eutrophic lakes.The average flux of organic carbon for the study period was 12 grams per square meter per day. The calculated carbon to nitrogen to phosphorus ratio (317:25:1) is similar to the Redfield ratio (106:16:1); therefore, most organic matter probably is derived from lacustrine phytoplankton.Calculated benthic-flux rates indicated that bottom sediments are important sources of majorions and nutrients to Devils Lake. Only one of the cores collected during this study indicated a net sulfate flux from the lake into the sediments. Seasonal variations in major-ion and nutrient benthic fluxes generally were small. However, there were important differences between the calculated benthic fluxes for this study and the calculated benthic fluxes for 1990. Calculated benthic fluxes of bicarbonate, ammonia, and phosphorus for this study were smaller than calculated benthic fluxes for 1990. The large differences between fluxes for 1990 and 1991 were attributed to calm, stratified water-column conditions in 1990 and well-mixed water-column conditions in 1991.The role of benthic fluxes in the chemical mass balances in Devils Lake was evaluated by calculating response times for major ions and nutrients in Devils Lake. The calculated response times for major ions in Devils Lake ranged from 6.7 years for bicarbonate to 34 years for sulfur (as 804). The response times for major ions are significantly shorter than previous estimates that did not include benthic fluxes. In addition, the relatively short response times for nitrogen (4.2 years) and phosphorus (0.95 year) indicate that nutrients are recycled rapidly between bottom sediments and the lake. During the study period, benthic fluxes were the dominant source of major ions and nutrients to Devils Lake and greatly reduced the response times of all major ions and nutrients for Devils Lake. As a result, bottom-sediment processes appear to buffer major-ion and nutrient concentrations in the lake. Any future attempt to evaluate water quality in Devils Lake should include the effects of bottom-sediment processes.

  14. Access to the Arts through Assistive Technology.

    ERIC Educational Resources Information Center

    Frame, Charles

    Personnel in the rehabilitation field have come to recognize the possibilities and implications of computers as assistive technology for disabled persons. This manual provides information on how to adapt the Unicorn Board, Touch Talker/Light Talker overlays, the Adaptive Firmware Card setup disk, and Trace-Transparent Access Module (T-TAM) to…

  15. Water-quality data for the Ohio River from New Cumberland Dam to Pike Island Dam, West Virginia and Ohio, May-October 1993

    USGS Publications Warehouse

    Miller, K.F.; Messinger, Terence; Waldron, M.C.; Faulkenburg, C.W.

    1996-01-01

    This report contains water-quality data for the Ohio River from river mile 51.1 (3.3 miles upstream from New Cumberland Dam) to river mile 84.0 (0.2 miles upstream from Pike Island Dam) that were collected during the summer and fall of 1993. The data were collected to establish the water quality of the Ohio River and to use in assessing the proposed effects of hydropower development on the water quality of the Ohio River. Water quality was determined by a combination of repeated synoptic field measurements, continuous-record monitoring, and laboratory analyses. Synoptic measurements were made along a longitudinal transect with 18 mid-channel sampling sites; cross-sectional transects of water-quality measurements were made at 5 of these sites. Water-quality measurements also were made at two sites located on the back-channel (Ohio) side of Browns Island. At each longitudinal-transect and back-channel sampling site, measurements were made of specific conductance, pH, water temperature, and dissolved oxygen conentration. Longitudinal-transect and back-channel stations were sampled at four depths (at the surface, about 3.3 feet below the surface, middle of the water column, and near the bottom of the river). Cross-sectional transects consisted of three to four detailed vertical profiles of the same characteristics. Water samples were collected from three depths at the mid-channel vertical profile in each cross-sectional transect and were analyzed for concentrations of phytoplankton photosynthetic pigments chlorophyll a and chlorophyll b. Estimates of the depth of light penetration (Secchi-disk transparency) were made at pigment-sampling locations whenever light and river-surface conditions were appropriate. Synoptic sampling usually was completed in 12 hours or less and was repeated 10 times from May through October 1993. Continuous-record monitoring of water quality consisted of hourly measurements of specific conductance, pH, water temperature, and dissolved oxygen concentration, made at a depth of 6.6 feet upstream and downstream of New Cumberland Dam. Continuous monitors were operated from May through October 1993.

  16. Water-quality data for the Ohio River from Willow Island Dam to Belleville Dam, West Virginia and Ohio, May-October 1993

    USGS Publications Warehouse

    Miller, K.F.

    1996-01-01

    This report contains water-quality data for the Ohio River from river mile 160.6 (1.1 mile upstream from Willow Island Dam) to river mile 203.6 (0.3 mile upstream from Belleville Dam) that were collected during the summer and fall of 1993. The data were collected to establish the water quality of the Ohio River and to use in assessing the proposed effects of hydropower development on the water quality of the Ohio River. Water quality was monitored by a combination of synoptic field measurements, laboratory analyses, and continuous- record monitoring. Field measurements of water- quality characteristics were made along a longitudinal transect with 24 mid-channel sampling sites; cross-sectional transects of water-quality measurements were made at six of these sites. Water-quality measurements also were made at six sites located on the back-channel (West Virginia) sides of Marietta, Muskingum, and Blennerhassett Islands. At each longitudinal-transect and back- channel sampling site, measurements of specific conductance, pH, water temperature, and dissolved oxygen concentration were made at three depths (about 3.3 feet below the surface of the water, middle of the water column, and near the bottom of the river). Cross-sectional transects consisted of three to four detailed vertical profiles of the same characteristics. Water samples were collected at three depths in the mid-channel vertical profile in each cross-sectional transect and were analyzed for concentrations of phytoplankton chlorophyll a and chlorophyll b. Estimates of the depth of light penetration (Secchi disk transparency) were made at phytoplankton- pigment-sampling locations whenever light and river-surface conditions were appropriate. Each synoptic sampling event was completed in 2 days or less. The entire network was sampled 10 times from May 24 to October 27, 1993. Continuous-record monitoring of water quality consisted of hourly measurments of specific conductance, pH, water temperature, and dissolved oxygen concentration that were made at a depth of 6.6 feet at the ends of the upstream and downstream wingwalls at Willow Island Dam. Continuous-record monitors were operated from May through October 1993.

  17. Time-dependent disk accretion in X-ray Nova MUSCAE 1991

    NASA Astrophysics Data System (ADS)

    Mineshige, Shin; Hirano, Akira; Kitamoto, Shunji; Yamada, Tatsuya T.; Fukue, Jun

    1994-05-01

    We propose a new model for X-ray spectral fitting of binary black hole candidates. In this model, it is assumed that X-ray spectra are composed of a Comptonized blackbody (hard component) and a disk blackbody spectra (soft component), in which the temperature gradient of the disk, q identically equal to -d log T/d log r, is left as a fitting parameter. With this model, we have fitted X-ray spectra of X-ray Nova Muscae 1991 obtained by Ginga. The fitting shows that a hot cloud, which Compton up-scatters soft photons from the disk, gradually shrank and became transparent after the main peak. The temperature gradient turns out to be fairly constant and is q approximately 0.75, the value expected for a Newtonian disk model. To reproduce this value with a relativistic disk model, a small inclination angle, i approximately equal to 0 deg to 15 deg, is required. It seems, however, that the q-value temporarily decreased below 0.75 at the main flare, and q increased in a transient fashion at the second peak (or the reflare) occurring approximately 70 days after the main peak. Although statistics are poor, these results, if real, would indicate that the disk brightening responsible for the main and secondary peaks are initiated in the relatively inner portions of the disk.

  18. Generalized scaling of seasonal thermal stratification in lakes

    NASA Astrophysics Data System (ADS)

    Shatwell, T.; Kirillin, G.

    2016-12-01

    The mixing regime is fundamental to the biogeochemisty and ecology of lakes because it determines the vertical transport of matter such as gases, nutrients, and organic material. Whereas shallow lakes are usually polymictic and regularly mix to the bottom, deep lakes tend to stratify seasonally, separating surface water from deep sediments and deep water from the atmosphere. Although empirical relationships exist to predict the mixing regime, a physically based, quantitative criterion is lacking. Here we review our recent research on thermal stratification in lakes at the transition between polymictic and stratified regimes. Using the mechanistic balance between potential and kinetic energy in terms of the Richardson number, we derive a generalized physical scaling for seasonal stratification in a closed lake basin. The scaling parameter is the critical mean basin depth that delineates polymictic and seasonally stratified lakes based on lake water transparency (Secchi depth), lake length, and an annual mean estimate for the Monin-Obukhov length. We validated the scaling on available data of 374 global lakes using logistic regression and found it to perform better than other criteria including a conventional open basin scaling or a simple depth threshold. The scaling has potential applications in estimating large scale greenhouse gas fluxes from lakes because the required inputs, like water transparency and basin morphology, can be acquired using the latest remote sensing technologies. The generalized scaling is universal for freshwater lakes and allows the seasonal mixing regime to be estimated without numerically solving the heat transport equations.

  19. Jefferson Lab Mass Storage and File Replication Services

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ian Bird; Ying Chen; Bryan Hess

    Jefferson Lab has implemented a scalable, distributed, high performance mass storage system - JASMine. The system is entirely implemented in Java, provides access to robotic tape storage and includes disk cache and stage manager components. The disk manager subsystem may be used independently to manage stand-alone disk pools. The system includes a scheduler to provide policy-based access to the storage systems. Security is provided by pluggable authentication modules and is implemented at the network socket level. The tape and disk cache systems have well defined interfaces in order to provide integration with grid-based services. The system is in production andmore » being used to archive 1 TB per day from the experiments, and currently moves over 2 TB per day total. This paper will describe the architecture of JASMine; discuss the rationale for building the system, and present a transparent 3rd party file replication service to move data to collaborating institutes using JASMine, XM L, and servlet technology interfacing to grid-based file transfer mechanisms.« less

  20. Coupling of lithium niobate disk resonators to integrated waveguides

    NASA Astrophysics Data System (ADS)

    Berneschi, S.; Cosi, F.; Nunzi Conti, G.; Pelli, S.; Soria, S.; Righini, G. C.; Dispenza, M.; Secchi, A.

    2011-01-01

    Whispering gallery mode (WGM) disk resonators fabricated in single crystals can have high Q factors within their transparency bandwidth and may have application both in fundamental and applied optics. Lithium niobate (LN) resonators thanks to their electro-optical properties may be used in particular as tunable filters, modulators, and delay lines. A critical step toward the actual application of these devices is the implementation of a robust and efficient coupling system. High index prisms are typically used for this purpose. In this work we demonstrate coupling to high-Q WGM LN disks from an integrated optical LN waveguide. The waveguides are made by proton exchange in X-cut LN. The disks with diameters of about 5 mm and thickness of 1 mm are made from commercial Z-cut LN wafers by core drilling a cylinder and thereafter polishing the edges into a spheroidal profile. Both resonance linewidth and cavity photon lifetime measurements were performed to calculate the Q factor of the resonator, which is in excess of 108.

  1. Variability of Secchi disk readings in an exceptionally clear and deep caldera lake

    USGS Publications Warehouse

    Larson, Gary L.; Buktenica, M.W.

    1998-01-01

    SUMMARY: The Peromyscus leucopus on a 17-acre study area were live-trapped, marked, and released over a seven-day period. On the three following nights intensive snap-trapping was done on the central acre of the study plot. The animals caught by snap traps in the central acre represented the population of the central acre and several surrounding acres. By the currently accepted methods of interpreting snap-trap data, the population per acre would be considered to be 23 adults. The live-trap data show that the true population was between six and seven adults per acre. Modern methods of live-trapping are shown to be valid for population studies. Two methods are presented for the conversion of live-trap data into per acre figures. Errors involved in the current use of snap-trap data are discussed and snap-trap methods are shown to be invalid for determining actual population numbers. It should be practical to use a snap-trap quadrant technique to obtain a relative measure or index figure for small mammal populations.

  2. A Comprehensive Review on Water Quality Parameters Estimation Using Remote Sensing Techniques.

    PubMed

    Gholizadeh, Mohammad Haji; Melesse, Assefa M; Reddi, Lakshmi

    2016-08-16

    Remotely sensed data can reinforce the abilities of water resources researchers and decision makers to monitor waterbodies more effectively. Remote sensing techniques have been widely used to measure the qualitative parameters of waterbodies (i.e., suspended sediments, colored dissolved organic matter (CDOM), chlorophyll-a, and pollutants). A large number of different sensors on board various satellites and other platforms, such as airplanes, are currently used to measure the amount of radiation at different wavelengths reflected from the water's surface. In this review paper, various properties (spectral, spatial and temporal, etc.) of the more commonly employed spaceborne and airborne sensors are tabulated to be used as a sensor selection guide. Furthermore, this paper investigates the commonly used approaches and sensors employed in evaluating and quantifying the eleven water quality parameters. The parameters include: chlorophyll-a (chl-a), colored dissolved organic matters (CDOM), Secchi disk depth (SDD), turbidity, total suspended sediments (TSS), water temperature (WT), total phosphorus (TP), sea surface salinity (SSS), dissolved oxygen (DO), biochemical oxygen demand (BOD) and chemical oxygen demand (COD).

  3. A Comprehensive Review on Water Quality Parameters Estimation Using Remote Sensing Techniques

    PubMed Central

    Gholizadeh, Mohammad Haji; Melesse, Assefa M.; Reddi, Lakshmi

    2016-01-01

    Remotely sensed data can reinforce the abilities of water resources researchers and decision makers to monitor waterbodies more effectively. Remote sensing techniques have been widely used to measure the qualitative parameters of waterbodies (i.e., suspended sediments, colored dissolved organic matter (CDOM), chlorophyll-a, and pollutants). A large number of different sensors on board various satellites and other platforms, such as airplanes, are currently used to measure the amount of radiation at different wavelengths reflected from the water’s surface. In this review paper, various properties (spectral, spatial and temporal, etc.) of the more commonly employed spaceborne and airborne sensors are tabulated to be used as a sensor selection guide. Furthermore, this paper investigates the commonly used approaches and sensors employed in evaluating and quantifying the eleven water quality parameters. The parameters include: chlorophyll-a (chl-a), colored dissolved organic matters (CDOM), Secchi disk depth (SDD), turbidity, total suspended sediments (TSS), water temperature (WT), total phosphorus (TP), sea surface salinity (SSS), dissolved oxygen (DO), biochemical oxygen demand (BOD) and chemical oxygen demand (COD). PMID:27537896

  4. The correlation and quantification of airborne spectroradiometer data to turbidity measurements at Lake Powell, Utah

    NASA Technical Reports Server (NTRS)

    Merry, C. J.

    1979-01-01

    A water sampling program was accomplished at Lake Powell, Utah, during June 1975 for correlation to multispectral data obtained with a 500-channel airborne spectroradiometer. Field measurements were taken of percentage of light transmittance, surface temperature, pH and Secchi disk depth. Percentage of light transmittance was also measured in the laboratory for the water samples. Analyses of electron micrographs and suspended sediment concentration data for four water samples located at Hite Bridge, Mile 168, Mile 150 and Bullfrog Bay indicated differences in the composition and concentration of the particulate matter. Airborne spectroradiometer multispectral data were analyzed for the four sampling locations. The results showed that: (1) as the percentage of light transmittance of the water samples decreased, the reflected radiance increased; and (2) as the suspended sediment concentration (mg/l) increased, the reflected radiance increased in the 1-80 mg/l range. In conclusion, valuable qualitative information was obtained on surface turbidity for the Lake Powell water spectra. Also, the reflected radiance measured at a wavelength of 0.58 micron was directly correlated to the suspended sediment concentration.

  5. A new mechanism of failure on polymers

    NASA Technical Reports Server (NTRS)

    Fedors, R. F.

    1974-01-01

    Transparent laminates containing imbedded crystals of various ionic and nonionic substances were prepared and their swelling in distilled water was observed. It was found that under certain conditions, disk-shaped cracks formed around the swollen pockets containing a dissolving crystal. Such cracks can form before equilibrium swelling is reached and may severely damage the elastomer.

  6. Physical, chemical, and biological characteristics of Pueblo Reservoir, Colorado, 1985-89

    USGS Publications Warehouse

    Lewis, Michael E.; Edelmann, Patrick

    1994-01-01

    Physical, chemical, and biological characteristics of Pueblo Reservoir are described on the basis of data collected from spring 1985 through fall 1989. Also included are discussions of water quality of the upper Arkansas River Basin and the reservoir as they relate to reservoir operations. Pueblo Reservoir is a multipurpose, main-stem reservoir on the Arkansas River about 6 miles west of Pueblo, Colorado. At the top of its conservation pool, the reservoir is more than 9 miles long and ranges in depth from a few feet at the inflow to about 155 feet at the dam. Pueblo Reservoir derives most of its contents from the Arkansas River, which comprises native and transmountain flow. With respect to water temperature, the reservoir typically was well mixed to weakly stratified during the early spring and gradually became strongly stratified by May. The strong thermal stratification and underflow of the Arkansas River generally persisted into August, at which time the reservoir surface began to cool and the reservoir subsequently underwent fall turnover. Following fall turnover, the reservoir was stratified to some degree in the shallow upstream part and well mixed in the deeper middle and downstream parts. Reservoir residence times were affected by the extent of stratification present. When the reservoir was well mixed, residence times were as long as several months. During the summer when the reservoir was strongly stratified, reservoir releases were large, and when underflow was the prevalent flow pattern of the Arkansas River, reservoir residence times were as short as 30 days.Most particulate matter settled from the water column between the inflow and a distance of about 5 miles downstream. On occasions of large streamflows and sediment loads from the Arkansas River, particulate matter was transported completely through the reservoir. Water transparency, as measured with a Secchi disk, increased in a downstream direction from the reservoir inflow. The increase probably was a result of sediment settling from the water column in the upstream part of the reservoir. Secchi-disk depths in December through April were larger than those in May through November. Secchi-disk depths were small between May through August as inflow sediment loads and reservoir biomass increased. In the fall, Secchi-disk depths remained small possibly as the result of resuspension of sediment and detritus within the water column. Dissolved-oxygen concentrations generally were near supersaturation near the reservoir surface. Dissolved-oxygen concentrations decreased with increasing depth. On several occasions during the summer, dissolved oxygen became completely depleted in the hypolimnion of the downstream part of the reservoir. The most extensive period of anoxia that was measured was in August 1988; the bottom 12 to 30 feet of the downstream end of the reservoir was anoxic. Fall turnover typically resulted in well-oxygenated conditions throughout the water column from September or October through the spring. Values of pH ranged from 7.5 to 9.0 and typically were largest near the surface and decreased with depth.Dissolved-solids concentrations in the reservoir primarily are affected by dissolved solids in the inflow from the Arkansas River. Concentrations are largest during periods of decreased streamflows, September through April, and decrease with increasing streamflows in May through August. The median dissolved-solids concentration increased from 224 milligrams per liter at the inflow to 262 milligrams per liter at the outflow. However, a statistical analysis of dissolved solids indicated the apparent increase in dissolved-solids concentrations between the inflow and outflow was not significant. Calcium, sulfate, and bicarbonate are the major dissolved ions in Pueblo Reservoir.Concentrations of the major nutrients, nitrogen and phosphorus, varied within the reservoir because of settling of particulate matter, uptake by phytoplankton near the reservoir surface, and releases from the reservoir bottom sediments. Phosphorus was indicated to be a potentially growth-limiting nutrient in the reservoir because of its relatively small concentrations. During 1986 and 1987, the reservoir retained about 35 percent (359 tons) of the total nitrogen load and about 83 percent (203 tons) of the total phosphorus load. Settling of particulate matter from the water column and uptake by phytoplankton are the major nutrient sinks in the reservoir.Barium, iron, manganese, and zinc were the major trace elements in Pueblo Reservoir. Traceelement concentrations in the reservoir varied because of seasonality of trace-element concentrations in the Arkansas River, settling of particulate matter, and flux of trace elements from the bottom sediments. The aquatic-life standard in Pueblo Reservoir for total-recoverable iron (1,000 micrograms per liter) and the public water-supply standard for dissolved manganese (50 micrograms per liter) were exceeded on several occasions during the summer. Elevated concentrations of totalrecoverable iron and dissolved manganese in the Arkansas River during summer runoff contributed to exceedances in the upper part of the reservoir. Flux of manganese from the reservoir bottom sediments during periods of low or depleted dissolved-oxygen concentrations contributed to exceedances in the deeper, downstream parts of the reservoir. Concentrations of lead, mercury, and zinc were elevated in the reservoir bottom sediments and may be the result of metal-mine drainage in the upper Arkansas River Basin. Median concentrations of total organic carbon ranged from 3.1 to 4.5 milligrams per liter in May through September and from 2.5 to 3.5 milligrams per liter in October through April. Totalorganic-carbon concentrations in the reservoir were largest in the summer when streamflows and total-organic-carbon concentrations are largest in the Arkansas River. Total-organic-carbon concentrations in the reservoir decrease downstream from the reservoir inflow because of settling of particulate organic carbon. Levels of gross-alpha and gross-beta radioactivity generally were relatively low. In 7 of 31 samples collected, dissolved gross-alpha radioactivity, as natural uranium, exceeded 5 picocuries per liter, the level at which additional radiochemical analyses are recommended for drinking-water supplies. Potential sources of uranium in Pueblo Reservoir include weathering of exposed uranium ore deposits in the upper Arkansas River Basin and a uranium milling operation near Canon City.Phytoplankton densities and biovolumes measured during the winter, spring, and fall generally were indicative of a small to moderate algal biomass. Phytoplankton production tended to be largest during the summer. During the summer, phytoplankton densities and biovolumes generally were indicative of a moderate to large algal biomass. However, excessive algal production and biomass periodically occurred during the spring, summer, and fall. Three species of phytoplankton that are specifically associated with taste-and-odor problems in drinking water were identified on several occasions in water samples collected from Pueblo Reservoir. Reservoir operations and hydrodynamics can substantially affect processes that affect reservoir water quality. Stratification, underflow, and hypolimnetic withdrawals affect concentrations of dissolved solids, availability of nutrients, and concentrations of metals in the reservoir. Stratification impedes the mixing of epilimnetic and hypolimnetic waters, and the prevalent underflow that occurs during the summer results in a decrease in the potential dilution of inflowing river water with reservoir water. The underflow also decreases the maximum available nutrient load to the euphotic zone, which can, in turn, offset the maximum algal growth potential. Increased dissolved-solids, nutrient, and metal concentrations that occur in the hypolimnion during the summer are partially offset by hypolimnetic withdrawals.

  7. 3D Modeling of CMEs observed with STEREO

    NASA Astrophysics Data System (ADS)

    Bosman, E.; Bothmer, V.

    2012-04-01

    From January 2007 until end of 2010, 565 typical large-scale coronal mass ejections (CMEs) have been identified in the SECCHI/COR2 synoptic movies of the STEREO Mission. A subset comprising 114 CME events, selected based on the CME's brightness appearance in the SECCHI/COR2 images, has been modeled through the Graduated Cylindrical Shell (GCS) Model developed by Thernisien et al. (2006). This study presents an overview of the GCS forward-modeling results and an interpretation of the CME characteristics in relationship to their solar source region properties and solar cycle appearances.

  8. Extinction in SC galaxies

    NASA Astrophysics Data System (ADS)

    Giovanelli, Riccardo; Haynes, Martha P.; Salzer, John J.; Wegner, Gary; da Costa, Luiz N.; Freudling, Wolfram

    1994-06-01

    We analyze the photometric properties of a sample of Sbc-Sc galaxies with known redshifts, single-dish H I profiles, and Charge Coupled Device (CCD) I band images. We derive laws that relate the measured isophotal radius at muI = 23.5, magnitude, scale length, and H I flux to the face-on aspect. We find spiral galaxies to be substantially less transparent than suggested in most previous determinations, but not as opaque as claimed by Valentijn (1990). Regions in the disk farther than two or three scale lengths from the center are close to completely transparent. In addition to statistically derived relations for the inclination dependence of photometric parameters, we present the results of a modeling exercise that utilizes the 'triplex' model of Disney et al. (1989) to obtain upper limits of the disk opacity. Within the framework of that model, and with qualitative consideration of the effects of scattering on extinction, we estimate late spiral disks at I band to have central optical depths tauI(0) less than 5 and dust absorbing layers with scale heights on the order of half that of the stellar component or less. We discuss our results in light of previous determinations of internal extinction relations and point out the substantial impact of internal extinction on the scatter of the Tully-Fisher relation. We also find that the visual diameters by which large catalogs are constructed (UGC, ESO-Uppsala) are nearly proportional to face-on isophotal diameters.

  9. Managing People's Data

    NASA Technical Reports Server (NTRS)

    Le, Diana; Cooper, David M. (Technical Monitor)

    1994-01-01

    Just imagine a mass storage system that consists of a machine with 2 CPUs, 1 Gigabyte (GB) of memory, 400 GB of disk space, 16800 cartridge tapes in the automated tape silos, 88,000 tapes located in the vault, and the software to manage the system. This system is designed to be a data repository; it will always have disk space to store all the incoming data. Currently 9.14 GB of new data per day enters the system with this rate doubling each year. To assure there is always disk space available for new data, the system. has to move data reside from the expensive disk to a much less expensive medium such as the 3480 cartridge tapes. Once the data is archived to tape, it should be able to move back to disk when someone wants to access it and the data movement should be transparent to the user. Now imagine all the tasks that a system administrator must perform to keep this system running 24 hour a day, 7 days a week. Since the filesystem maintains the illusion of unlimited disk space, data that comes to the system must get moved to tapes in an efficient manner. This paper will describe the mass storage system running at the Numerical Aerodynamic Simulation (NAS) at NASA Ames Research Center in both software and hardware aspects, then it will describe all of the tasks the system administrator has to perform on this system.

  10. Giant enhancement of Faraday rotation due to electromagnetically induced transparency in all-dielectric magneto-optical metasurfaces.

    PubMed

    Christofi, Aristi; Kawaguchi, Yuma; Alù, Andrea; Khanikaev, Alexander B

    2018-04-15

    In this Letter we introduce a new class of Fano-resonant all-dielectric metasurfaces for enhanced, high figure of merit magneto-optical response. The metasurfaces are formed by an array of magneto-optical bismuth-substituted yttrium iron garnet nano-disks embedded into a low-index matrix. The strong field enhancement in the magneto-optical disks, which results in over an order of magnitude enhancement of Faraday rotation, is achieved by engineering two (electric and magnetic) resonances. It is shown that while enhancement of rotation also takes place for spectrally detuned resonances, the resonant excitation inevitably results in stronger reflection and low figure of merit of the device. We demonstrate that this can be circumvented by overlapping electric and magnetic resonances of the nanodisks, yielding a sharp electromagnetically induced transparency peak in the transmission spectrum, which is accompanied by gigantic Faraday rotation. Our results show that one can simultaneously obtain a large Faraday rotation enhancement along with almost 100% transmittance in an all-dielectric metasurface as thin as 300 nm. A simple analytical model based on coupled-mode theory is introduced to explain the effects observed in first-principle finite element method simulations.

  11. Comparison of CME three-dimensional parameters derived from single and multi-spacecraft

    NASA Astrophysics Data System (ADS)

    LEE, Harim; Moon, Yong-Jae; Na, Hyeonock; Jang, Soojeong

    2014-06-01

    Several geometrical models (e.g., cone and flux rope models) have been suggested to infer three-dimensional parameters of CMEs using multi-view observations (STEREO/SECCHI) and single-view observations (SOHO/LASCO). To prepare for when only single view observations are available, we have made a test whether the cone model parameters from single-view observations are consistent with those from multi-view ones. For this test, we select 35 CMEs which are identified as CMEs, whose angular widths are larger than 180 degrees, by one spacecraft and as limb CMEs by the other ones. For this we use SOHO/LASCO and STEREO/SECCHI data during the period from 2010 December to 2011 July when two spacecraft were separated by 90±10 degrees. In this study, we compare the 3-D parameters of these CMEs from three different methods: (1) a triangulation method using STEREO/SECCHI and SOHO/LASCO data, (2) a Graduated Cylindrical Shell (GCS) flux rope model using STEREO/SECCHI data, and (3) an ice cream cone model using SOHO/LASCO data. The parameters used for comparison are radial velocities, angular widths and source location (angle γ between the propagation direction and the plan of the sky). We find that the radial velocities and the γ-values from three methods are well correlated with one another (CC > 0.8). However, angular widths from the three methods are somewhat different with the correlation coefficients of CC > 0.4. We also find that the correlation coefficients between the locations from the three methods and the active region locations are larger than 0.9, implying that most of the CMEs are radially ejected.

  12. Temporal variations of water quality and the taxonomic structures of phytoplankton and zooplankton assemblages in mountain lakes, Mount Rainier National Park, Washington USA

    USGS Publications Warehouse

    Larson, Gary L.; McIntire, C.D.; Jacobs, Ruth W.; Truitt, R.

    1999-01-01

    A synoptic inventory of physical and chemical properties and plankton assemblages of 27 mountain lakes was conducted at Mount Rainier National Park in 1988. From 1990–1993, die opportunity was presented to resurvey six of these lakes to determine inter-annual change within die set of characteristics surveyed in 1988. If changes were evident, a second objective was to provide guidance to park management about the value of a long-term lake monitoring program.Secchi-disk clarity, water temperature, and pH of the lakes in 1988 were within the range of values obtained between 1990 and 1993. Conductivities and concentration of nutrients in some lakes were not consistent in 1990–1993 with the values recorded in 1988. Although the dominant phytoplankton taxa in die lakes varied among years, die taxa in individual lakes were in consistent among years, with die exception of two lakes. Rotifer assemblages were consistent among years, but most of die lakes exhibited dramatic changes in some years, as did crustacean zooplankton assemblages. Suggestions were made about die need for a long-term monitoring program to evaluate die status and trends of park lakes.

  13. Intercomparison of the LASCO-C2, SECCHI-COR1, SECCHI-COR2, and Mk4 Coronagraphs

    NASA Technical Reports Server (NTRS)

    Frazin, Richard A.; Vasquez, Alberto M.; Thompson, William T.; Hewett, Russell J.; Lamy, Philippe; Llebaria, Antoine; Vourlidas, Angelos; Burkepile, Joan

    2012-01-01

    In order to assess the reliability and consistency of white-light coronagraph measurements, we report on quantitative comparisons between polarized brightness [pB] and total brightness [B] images taken by the following white-light coronagraphs: LASCO-C2 on SOHO, SECCHI-COR1 and -COR2 on STEREO, and the ground-based MLSO-Mk4. The data for this comparison were taken on 16 April 2007, when both STEREO spacecraft were within 3.1 deg. of Earth’s heliographic longitude, affording essentially the same view of the Sun for all of the instruments. Due to the difficulties of estimating stray-light backgrounds in COR1 and COR2, only Mk4 and C2 produce reliable coronal-hole values (but not at overlapping heights), and these cannot be validated without rocket flights or ground-based eclipse measurements. Generally, the agreement between all of the instruments’ pB values is within the uncertainties in bright streamer structures, implying that measurements of bright CMEs also should be trustworthy. Dominant sources of uncertainty and stray light are discussed, as is the design of future coronagraphs from the perspective of the experiences with these instruments.

  14. Water Quality, Physical Habitat, and Biology of the Kijik River Basin, Lake Clark National Park and Preserve, Alaska, 2004-2005

    USGS Publications Warehouse

    Brabets, Timothy P.; Ourso, Robert T.

    2006-01-01

    The U.S. Geological Survey and the National Park Service conducted a water-quality investigation of the Kijik River Basin in Lake Clark National Park and Preserve from June 2004 to March 2005. The Kijik River Basin was studied because it has a productive sockeye salmon run that is important to the larger Kvichak River watershed. Water-quality, physical habitat, and biological characteristics were assessed. Water type throughout the Kijik River Basin is calcium bicarbonate although Little Kijik River above Kijik Lake does have slightly higher concentrations of sulfate and chloride. Alkalinity concentrations are generally less than 28 milligrams per liter, indicating a low buffering capacity of these waters. Lachbuna Lake traps much of the suspended sediment from the glacier streams in the headwaters of the basin as evidenced by low secchi-disc transparency of 1 to 2 meters and low suspended sediment concentrations in the Kijik River downstream from the lake. Kijik Lake is a fed by clearwater streams and has secchi-disc readings ranging from 11 to 15 meters. Streambed sediments collected from four surface sites analyzed for trace elements indicated that arsenic concentrations at all sites were above proposed guidelines. However, arsenic concentrations are due to the local geology, not anthropogenic factors. Benthic macroinvertebrate qualitative multi-habitat samples collected from two sites on the Little Kijik River and two sites on the main stem of the Kijik River indicated a total of 69 taxa present among the four sites. The class Insecta, made up the largest percentage of macroinvertebrates, totaling 70 percent of the families found. The insects were comprised of four orders; Diptera (flies and midges), Ephemeroptera (mayflies), Plecoptera (stoneflies), and Trichoptera (caddisflies). One-hundred twenty-two species of periphytic algae were identified in qualitative multi-habitat samples collected at the four stream sites. Eight species of non-motile, diatoms were collected from all four stream sites suggesting that the areas from which they were collected are relatively stable and unaffected by sedimentation.

  15. Biological Status Monitoring of European Fresh Water with Sentinel-2

    NASA Astrophysics Data System (ADS)

    Serra, Romain; Mangin, Antoine; Fanton d'Andon, Odile Hembise; Lauters, Francois; Thomasset, Franck; Martin-Lauzer, Francois-Regis

    2016-08-01

    Thanks to a widening range of sensors available, the observation of continental water quality for lakes and reservoirs is gaining more and more consistency and accuracy.Consistency because back in 2012, the only free sensor with a sufficient resolution (30m) was Landsat-7 which has truncated data since 2003 and a 16-day revisit time. But today, Landsat-8 and Sentinel-2A are now operating so depending on the latitude of interest, the combined revisit time dropped to 2 to 4 days which is more appropriate for such a monitoring (especially considering the cloud cover).Accuracy because Landsat-7 has a poor contrast over water whereas Landsat-8 and Sentinel-2A have a better radiometric sensitivity (more bit) and moreover Sentinel-2 offers additional spectral bands in the visible which are helpful for Chlorophyll-A concentration assessment. To sum up, with Sentinel-2, continental water quality monitoring capabilities are making a giant leap and it is important to exploit this potential the sooner. ACRI-HE has already built a strong basis to prepare Sentinel-2 by using Landsat data.Indeed, more than 600 lakes are already constantly monitored using Landsat data and their biological statuses are available on EyeOnWater (see eyeonwater.eu). Chlorophyll-A retrieval from (fresh) water leaving reflectances is the result of research activities conducted by ACRI-HE in parallel with EDF (Electricité de France) to respond to an emerging very demanding environmental monitoring through European regulations (typically the Water Framework Directive). Two parallel and complementary algorithms have thus been derived for Chlorophyll-a retrieval.Upstream of Eyeonwater, there is a complex and complete system automatically collecting images, extracting areas of interest around lakes, applying atmospheric correction (very sensitive part as atmosphere can contribute to 90% of the signal at sensor level) and then algorithms to retrieve water transparency (Secchi disk), turbidity and Chlorophyll-A concentration. A wide range of in-situ measurements was gathered to calibrate these algorithms. We present here a clear and operational system working with Sentinel-2-like data that retrieves water ecological quality parameters and provides quantified level of uncertainty. We believe that this system is of prime relevance to fulfil water quality monitoring duties at local, national and regional levels.

  16. 3D Observations techniques for the solar corona

    NASA Astrophysics Data System (ADS)

    Portier-Fozzani, F.; Papadopoulo, T.; Fermin, I.; Bijaoui, A.; Stereo/Secchi 3D Team; et al.

    In this talk, we will present a review of the different 3D techniques concerning observations of the solar corona made by EUV imageur (such as SOHO/EIT and STEREO/SECCHI) and by coronagraphs (SOHO/LASCO and STEREO/SECCHI). Tomographic reconstructions need magnetic extrapolation to constraint the model (classical triangle mash reconstruction, or more evoluated pixon method). For 3D reconstruction the other approach is stereovision. Stereoscopic techniques are built in a specific way to take into account the optical thin medium of the solar corona, which makes most of the classical stereo method not directly applicable. To improve such method we need to take into account how to describe an image by computer vision : an image is not only a set of intensities but its descriptions/representations in term of sub-objects is needed for the structures extractions and matching. We will describe optical flow methods to follow the structures, and decomposition in sub-areas depending of the solar cycle. After recalling results obtained with geometric loops reconstructions and their consequences for twist measurement and helicity evaluation, we will describe how we can mix pixel and conceptual recontruction for stereovision. We could then include epipolar geometry and Multiscale Vision Model (MVM) to enhance the reconstruction. These concepts are under development for STEREO/SECCHI.

  17. Evaluating suitability of MODIS-Terra images for reproducing historic sediment concentrations in water bodies: Lake Tana, Ethiopia

    NASA Astrophysics Data System (ADS)

    Kaba, Essayas; Philpot, William; Steenhuis, Tammo

    2014-02-01

    Government and NGO funded conservation programs are being implemented in developing countries with the potential benefit of reduced sediment inflow into fresh water lakes. However, these claims are difficult to verify due to limited historical sediment concentration data in lakes and rivers. Remote sensing can potentially aid in monitoring sediment concentration. With almost daily availability over the past ten years and consistent atmospheric correction applied to the images, Moderate Resolution Imaging Spectroradiometer (MODIS) 250 meter images are potential resources capable of monitoring future concentrations and reconstructing historical sediment concentration records. In this paper, site-specific relationships are developed between reflectance in near-infrared (NIR) images and three factors: total suspended solids (TSS), turbidity and Secchi depth for Lake Tana near the mouth of the Gumara River. The first two sampling campaigns on November 27, 2010 and May 13, 2011 are used in calibration. Reflectance in the NIR varies linearly with turbidity (R2 = 0.89) and TSS (R2 = 0.95). Secchi depth fit best to an exponential relation with R2 of 0.74. The relationships are validated using a third sample set collected on November 7, 2011 with RMSE of 11 Nephelometric Turbidity Units (NTU) for Turbidity, 16.5 mg l-1 for TSS and 0.12 meters for Secchi depth. The MAE was 10% for TSS, 14% for turbidity and 0.1% for Secchi depth. Using the relationship for TSS, a 10-year time series of sediment concentration in Lake Tana near the Gumara River was plotted. It was found that after the severe drought of 2002 and 2003 the concentration in the lake increased significantly. The results showed that MODIS images are potential cost effective tools to monitor suspended sediment concentration and obtain a past history of concentration for evaluating the effect of best management practices.

  18. STEREO SECCHI Observations of Space Debris: Are They Associated with S/WAVES Dust Detections?

    NASA Astrophysics Data System (ADS)

    St. Cyr, O. C.; Howard, R. A.; Wang, D.; Thompson, W. T.; Harrison, R. A.; Kaiser, M. L.

    2007-12-01

    White-light coronagraphs are optimized to reject stray light in order to accomplish their primary science objective - - the observation of coronal mass ejections (CMEs) and the corona. Because they were designed to detect these faint signals while pointing at the Sun, many spacebased coronagraphs in the past (Skylab, SMM, SOHO) have detected "debris" apparently associated with the vehicle. These appear to be sunlit particles very near the front of the telescope aperture (~meters). In at least one case, these earlier debris sightings were interpreted as deteriorating insulation from the thermal blankets on the spacecraft (St. Cyr and Warner, 1991ASPC...17..126S); and for the earlier Sklyab observations, the sightings were believed to be associated with water droplets (Eddy, "A New Sun: The Solar Results from Skylab", NASA SP-402, p119, 1979.) The STEREO SECCHI suite of white-light coronagraphs represents the most recent instantations of these specialized instruments, and for the first time we are able to track CMEs from their initiation at the Sun out to 1 A.U. Since observations commenced, the SECCHI white-light telescopes have been sporadically detecting debris particles. Most of the detections are individual or small numbers of bright objects in the field which therefore do not affect the primary science goals of the mission. But on several occasions in the eight months' of observation there have been "swarms" of these bright objects which completely obscure the field of view of one or more instrument for a brief period of time. Here we report on the intriguing possibility that the SECCHI debris sightings represent particles of thermal insulation, ejected from the spacecraft by interplanetary dust impacts. Because of the large field of view and high duty cycle of the Heliospheric Imagers on STEREO, we may be able to demonstrate that some of these have also been detected by STEREO S/WAVES as sporadic plasma emissions.

  19. Electromagnetically induced transparency metamaterial based on spoof localized surface plasmons at terahertz frequencies

    PubMed Central

    Liao, Zhen; Liu, Shuo; Ma, Hui Feng; Li, Chun; Jin, Biaobing; Cui, Tie Jun

    2016-01-01

    We numerically and experimentally demonstrate a plasmonic metamaterial whose unit cell is composed of an ultrathin metallic disk and four ultrathin metallic spiral arms at terahertz frequencies, which supports both spoof electric and magnetic localized surface plasmon (LSP) resonances. We show that the resonant wavelength is much larger than the size of the unit particle, and further find that the resonant wavelength is very sensitive to the particle’s geometrical dimensions and arrangements. It is clearly illustrated that the magnetic LSP resonance exhibits strong dependence to the incidence angle of terahertz wave, which enables the design of metamaterials to achieve an electromagnetically induced transparency effect in the terahertz frequencies. This work opens up the possibility to apply for the surface plasmons in functional devices in the terahertz band. PMID:27277417

  20. Development of chipscale chalcogenide glass based infrared chemical sensors

    NASA Astrophysics Data System (ADS)

    Hu, Juejun; Musgraves, J. David; Carlie, Nathan; Zdyrko, Bogdan; Luzinov, Igor; Agarwal, Anu; Richardson, Kathleen; Kimerling, Lionel

    2011-01-01

    In this paper, we review the design, processing, and characterization of novel planar infrared chemical sensors. Chalcogenide glasses are identified as the material of choice for sensing given their wide infrared transparency as well as almost unlimited capacity for composition alloying and property tailoring. Three generations of on-chip spectroscopic chemical sensor devices we have developed: waveguide evanescent sensors, micro-disk cavity-enhanced sensors and micro-cavity photothermal sensors are discussed.

  1. Optoelectronic-cache memory system architecture.

    PubMed

    Chiarulli, D M; Levitan, S P

    1996-05-10

    We present an investigation of the architecture of an optoelectronic cache that can integrate terabit optical memories with the electronic caches associated with high-performance uniprocessors and multiprocessors. The use of optoelectronic-cache memories enables these terabit technologies to provide transparently low-latency secondary memory with frame sizes comparable with disk pages but with latencies that approach those of electronic secondary-cache memories. This enables the implementation of terabit memories with effective access times comparable with the cycle times of current microprocessors. The cache design is based on the use of a smart-pixel array and combines parallel free-space optical input-output to-and-from optical memory with conventional electronic communication to the processor caches. This cache and the optical memory system to which it will interface provide a large random-access memory space that has a lower overall latency than that of magnetic disks and disk arrays. In addition, as a consequence of the high-bandwidth parallel input-output capabilities of optical memories, fault service times for the optoelectronic cache are substantially less than those currently achievable with any rotational media.

  2. Integration of remote sensing and geographic information systems for Great Lakes water quality monitoring

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lathrop, R.G. Jr.

    1988-01-01

    The utility of three operational satellite remote sensing systems, namely, the Landsat Thematic Mapper (TM), the SPOT High Resolution Visible (HRV) sensors and the NOAA Advanced Very High Resolution Radiometer (AVHRR), were evaluated as a means of estimating water quality and surface temperature. Empirical calibration through linear regression techniques was used to relate near-simultaneously acquired satellite radiance/reflectance data and water quality observations obtained in Green Bay and the nearshore waters of Lake Michigan. Four dates of TM and one date each of SPOT and AVHRR imagery/surface reference data were acquired and analyzed. Highly significant relationships were identified between the TMmore » and SPOT data and secchi disk depth, nephelometric turbidity, chlorophyll a, total suspended solids (TSS), absorbance, and surface temperature (TM only). The AVHRR data were not analyzed independently but were used for comparison with the TM data. Calibrated water quality image maps were input to a PC-based raster GIS package, EPPL7. Pattern interpretation and spatial analysis techniques were used to document the circulation dynamics and model mixing processes in Green Bay. A GIS facilitates the retrieval, query and spatial analysis of mapped information and provides the framework for an integrated operational monitoring system for the Great Lakes.« less

  3. STEREO OBSERVATIONS OF FAST MAGNETOSONIC WAVES IN THE EXTENDED SOLAR CORONA ASSOCIATED WITH EIT/EUV WAVES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kwon, Ryun-Young; Ofman, Leon; Kramar, Maxim

    2013-03-20

    We report white-light observations of a fast magnetosonic wave associated with a coronal mass ejection observed by STEREO/SECCHI/COR1 inner coronagraphs on 2011 August 4. The wave front is observed in the form of density compression passing through various coronal regions such as quiet/active corona, coronal holes, and streamers. Together with measured electron densities determined with STEREO COR1 and Extreme UltraViolet Imager (EUVI) data, we use our kinematic measurements of the wave front to calculate coronal magnetic fields and find that the measured speeds are consistent with characteristic fast magnetosonic speeds in the corona. In addition, the wave front turns outmore » to be the upper coronal counterpart of the EIT wave observed by STEREO EUVI traveling against the solar coronal disk; moreover, stationary fronts of the EIT wave are found to be located at the footpoints of deflected streamers and boundaries of coronal holes, after the wave front in the upper solar corona passes through open magnetic field lines in the streamers. Our findings suggest that the observed EIT wave should be in fact a fast magnetosonic shock/wave traveling in the inhomogeneous solar corona, as part of the fast magnetosonic wave propagating in the extended solar corona.« less

  4. Assessment of the Eutrophication-Related Environmental Parameters in Two Mediterranean Lakes by Integrating Statistical Techniques and Self-Organizing Maps.

    PubMed

    Hadjisolomou, Ekaterini; Stefanidis, Konstantinos; Papatheodorou, George; Papastergiadou, Evanthia

    2018-03-19

    During the last decades, Mediterranean freshwater ecosystems, especially lakes, have been under severe pressure due to increasing eutrophication and water quality deterioration. In this article, we compared the effectiveness of different data analysis methods by assessing the contribution of environmental parameters to eutrophication processes. For this purpose, principal components analysis (PCA), cluster analysis, and a self-organizing map (SOM) were applied, using water quality data from two transboundary lakes of North Greece. SOM is considered as an advanced and powerful data analysis tool because of its ability to represent complex and nonlinear relationships among multivariate data sets. The results of PCA and cluster analysis agreed with the SOM results, although the latter provided more information because of the visualization abilities regarding the parameters' relationships. Besides nutrients that were found to be a key factor for controlling chlorophyll-a (Chl - a), water temperature was related positively with algal production, while the Secchi disk depth parameter was found to be highly important and negatively related toeutrophic conditions. In general, the SOM results were more specific and allowed direct associations between the water quality variables. Our work showed that SOMs can be used effectively in limnological studies to produce robust and interpretable results, aiding scientists and managers to cope with environmental problems such as eutrophication.

  5. Aquatic vegetation in response to increased eutrophication and degraded light climate in Eastern Lake Taihu: Implications for lake ecological restoration.

    PubMed

    Zhang, Yunlin; Liu, Xiaohan; Qin, Boqiang; Shi, Kun; Deng, Jianming; Zhou, Yongqiang

    2016-04-04

    Terrestrial and aquatic ecosystem degradation is widely recognized as a major global environmental and development problem. Although great efforts have been made to prevent aquatic ecosystem degradation, the degree, extent and impacts of this phenomenon remain controversial and unclear, such as its driving mechanisms. Here, we present results from a 17-year field investigation (1998-2014) of water quality and a 12-year remote sensing mapping (2003-2014) of the aquatic vegetation presence frequency (VPF) in Eastern Lake Taihu, a macrophyte-dominated bay of Lake Taihu in China. In the past 17 years, nutrient concentrations and water level (WL) have significantly increased, but the Secchi disk depth (SDD) has significantly decreased. These changes were associated with increased lake eutrophication and a degraded underwater light climate that further inhibited the growth of aquatic vegetation. In Eastern Lake Taihu, increased nutrients, chlorophyll a and WL, and a decreased SDD were all significantly correlated with a decreased VPF. NH4(+)-N concentration and SDD/WL were the most important controlling factors for VPF. Therefore, increased anthropogenic nutrient inputs and a degraded underwater light climate surely result in a decreased VPF. These results elucidate the driving mechanism of aquatic vegetation degradation and will facilitate Lake Taihu ecological restoration.

  6. Aquatic vegetation in response to increased eutrophication and degraded light climate in Eastern Lake Taihu: Implications for lake ecological restoration

    NASA Astrophysics Data System (ADS)

    Zhang, Yunlin; Liu, Xiaohan; Qin, Boqiang; Shi, Kun; Deng, Jianming; Zhou, Yongqiang

    2016-04-01

    Terrestrial and aquatic ecosystem degradation is widely recognized as a major global environmental and development problem. Although great efforts have been made to prevent aquatic ecosystem degradation, the degree, extent and impacts of this phenomenon remain controversial and unclear, such as its driving mechanisms. Here, we present results from a 17-year field investigation (1998-2014) of water quality and a 12-year remote sensing mapping (2003-2014) of the aquatic vegetation presence frequency (VPF) in Eastern Lake Taihu, a macrophyte-dominated bay of Lake Taihu in China. In the past 17 years, nutrient concentrations and water level (WL) have significantly increased, but the Secchi disk depth (SDD) has significantly decreased. These changes were associated with increased lake eutrophication and a degraded underwater light climate that further inhibited the growth of aquatic vegetation. In Eastern Lake Taihu, increased nutrients, chlorophyll a and WL, and a decreased SDD were all significantly correlated with a decreased VPF. NH4+-N concentration and SDD/WL were the most important controlling factors for VPF. Therefore, increased anthropogenic nutrient inputs and a degraded underwater light climate surely result in a decreased VPF. These results elucidate the driving mechanism of aquatic vegetation degradation and will facilitate Lake Taihu ecological restoration.

  7. Redshift--Independent Distances of Spiral Galaxies: II. Internal Extinction at I Band

    NASA Astrophysics Data System (ADS)

    Giovanelli, R.; Haynes, M. P.; Salzer, J. J.; Wegner, G.; Dacosta, L. N.; Freudling, W.; Chamaraux, P.

    1993-12-01

    We analyze the photometric properties of a sample of 1450 Sbc--Sc galaxies with known redshifts, single--dish HI profiles and CCD I band images to derive laws that relate the measured isophotal radius at mu_I =23.5, magnitude, scale length and HI flux to the face--on aspect. Our results show that the central regions of spiral galaxies are substantially less transparent than most previous determinations suggest, but not as opaque as claimed by Valentijn (1990). Regions in the disk farther than two or three scale lengths from the center are close to completely transparent. In addition to statistically derived relations for the inclination dependence of photometric parameters, we present the results of a modelling exercise that utilizes the ``triplex'' model of Disney et al. (1989). Within the framework of that model, late spiral disks at I band have central optical depths on the order of tau_I ~ 5 and dust absorbing layers with scale heights on the order of half that of the stellar component. We discuss our results in light of previous determinations of internal extinction relations and point out the substantial impact of internal extinction on the scatter of the Tully--Fisher relation. We also find that the visual diameters by which large catalogs are constructed (UGC, ESO--Uppsala) are nearly proportional to face--on isophotal diameters.

  8. The Galley Parallel File System

    NASA Technical Reports Server (NTRS)

    Nieuwejaar, Nils; Kotz, David

    1996-01-01

    As the I/O needs of parallel scientific applications increase, file systems for multiprocessors are being designed to provide applications with parallel access to multiple disks. Many parallel file systems present applications with a conventional Unix-like interface that allows the application to access multiple disks transparently. The interface conceals the parallelism within the file system, which increases the ease of programmability, but makes it difficult or impossible for sophisticated programmers and libraries to use knowledge about their I/O needs to exploit that parallelism. Furthermore, most current parallel file systems are optimized for a different workload than they are being asked to support. We introduce Galley, a new parallel file system that is intended to efficiently support realistic parallel workloads. We discuss Galley's file structure and application interface, as well as an application that has been implemented using that interface.

  9. A meta-analysis of water quality and aquatic macrophyte responses in 18 lakes treated with lanthanum modified bentonite (Phoslock(®)).

    PubMed

    Spears, Bryan M; Mackay, Eleanor B; Yasseri, Said; Gunn, Iain D M; Waters, Kate E; Andrews, Christopher; Cole, Stephanie; De Ville, Mitzi; Kelly, Andrea; Meis, Sebastian; Moore, Alanna L; Nürnberg, Gertrud K; van Oosterhout, Frank; Pitt, Jo-Anne; Madgwick, Genevieve; Woods, Helen J; Lürling, Miquel

    2016-06-15

    Lanthanum (La) modified bentonite is being increasingly used as a geo-engineering tool for the control of phosphorus (P) release from lake bed sediments to overlying waters. However, little is known about its effectiveness in controlling P across a wide range of lake conditions or of its potential to promote rapid ecological recovery. We combined data from 18 treated lakes to examine the lake population responses in the 24 months following La-bentonite application (range of La-bentonite loads: 1.4-6.7 tonnes ha(-1)) in concentrations of surface water total phosphorus (TP; data available from 15 lakes), soluble reactive phosphorus (SRP; 14 lakes), and chlorophyll a (15 lakes), and in Secchi disk depths (15 lakes), aquatic macrophyte species numbers (6 lakes) and aquatic macrophyte maximum colonisation depths (4 lakes) across the treated lakes. Data availability varied across the lakes and variables, and in general monitoring was more frequent closer to the application dates. Median annual TP concentrations decreased significantly across the lakes, following the La-bentonite applications (from 0.08 mg L(-1) in the 24 months pre-application to 0.03 mg L(-1) in the 24 months post-application), particularly in autumn (0.08 mg L(-1) to 0.03 mg L(-1)) and winter (0.08 mg L(-1) to 0.02 mg L(-1)). Significant decreases in SRP concentrations over annual (0.019 mg L(-1) to 0.005 mg L(-1)), summer (0.018 mg L(-1) to 0.004 mg L(-1)), autumn (0.019 mg L(-1) to 0.005 mg L(-1)) and winter (0.033 mg L(-1) to 0.005 mg L(-1)) periods were also reported. P concentrations following La-bentonite application varied across the lakes and were correlated positively with dissolved organic carbon concentrations. Relatively weak, but significant responses were reported for summer chlorophyll a concentrations and Secchi disk depths following La-bentonite applications, the 75th percentile values decreasing from 119 μg L(-1) to 74 μg L(-1) and increasing from 398 cm to 506 cm, respectively. Aquatic macrophyte species numbers and maximum colonisation depths increased following La-bentonite application from a median of 5.5 species to 7.0 species and a median of 1.8 m to 2.5 m, respectively. The aquatic macrophyte responses varied significantly between lakes. La-bentonite application resulted in a general improvement in water quality leading to an improvement in the aquatic macrophyte community within 24 months. However, because, the responses were highly site-specific, we stress the need for comprehensive pre- and post-application assessments of processes driving ecological structure and function in candidate lakes to inform future use of this and similar products. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  10. The effects of grazers and light penetration on the survival of transplants of Vallisneria americana Michs in the tidal Potomac River, Maryland

    USGS Publications Warehouse

    Carter, V.; Rybicki, N.B.

    1985-01-01

    Poor light penetration and grazing are among the factors potentially responsible for the lack of submersed aquatic macrophytes in the tidal Potomac River. Between 1980 and 1983, plugs, springs and tubers of Vallisneria americana Michx were transplanted from the oligohaline Potomac Estuary to six sites in the freshwater tidal Potomac River. Transplants made in 1980 and 1981 were generally successful only when protected by full exclosures which prevented grazing. Grazing resulted in the removal of whole plants or clipping off of plant leaves in unprotected plots. Plants protected in the first year were permanently established, despite the occurrence of grazing in subsequent years, at Elodea Cove and Rosier Bluff, where light penetration was high (average 1% light level was 1.6-1.7 m). Plants were not permanent;y established at Goose Island, where light penetration was lower (average 1% light level was 1.4 m) and grazing occurred, or Neabsco Bay where light penetration was very low (average 1% light level was 1.0 m) and grazing may not have occurred. In 1983, Secchi depth transparencies in the upper tidal river were improved significantly compared to 1978-1981. Both protected and unprotected transplants thrived in 1983. ?? 1985.

  11. Long-term limnological data from the larger lakes of Yellowstone National Park, Wyoming, USA

    USGS Publications Warehouse

    Theriot, E.C.; Fritz, S.C.; Gresswell, Robert E.

    1997-01-01

    Long-term limnological data from the four largest lakes in Yellowstone National Park (Yellowstone, Lewis, Shoshone, Heart) are used to characterize their limnology and patterns of temporal and spatial variability. Heart Lake has distinctively high concentrations of dissolved materials, apparently reflecting high thermal inputs. Shoshone and Lewis lakes have the highest total SiO2 concentrations (averaging over 23.5 mg L-1), apparently as a result of the rhyolitic drainage basins. Within Yellowstone Lake spatial variability is low and ephemeral for most measured variables, except that the Southeast Arm has lower average Na concentrations. Seasonal variation is evident for Secchi transparency, pH, and total-SiO2 and probably reflects seasonal changes in phytoplankton biomass and productivity. Total dissolved solids (TDS) and total-SiO2 generally show a gradual decline from the mid-1970s through mid-1980s, followed by a sharp increase. Ratios of Kjeldahl-N to total-PO4 (KN:TP) suggest that the lakes, especially Shoshone, are often nitrogen limited. Kjeldahl-N is positively correlated with winter precipitation, but TP and total-SiO2 are counterintuitively negatively correlated with precipitation. We speculate that increased winter precipitation, rather than watershed fires, increases N-loading which, in turn, leads to increased demand for TP and total SiO2.

  12. An Optical Analysis of the Farrand VCASS (Visually Coupled Airborne Systems Simulator) Helmet-Mounted Display

    DTIC Science & Technology

    1983-10-01

    Intepretation of Pattern Resolution 64 %li .... 1. INTRODUCTION This report provides an overview of the optical system performance of the Visually Coupled...blue light. The revolving disk, which is covered with an oil film , has a thin transparent conductive coating that attracts the electron beam, which...proportionately with the location of the lens relative to the film when the image was originally recorded. Only "keystone" distortion is of concern in the

  13. ARC-1989-A89-7005

    NASA Image and Video Library

    1989-08-17

    August 17 to 19, 1989 Range : 11.5 million km (7.1 million mi.) to 7.9 million km (4.9 million mi.) Four black and white images of Neptune's largest satellite, Triton, show it's rotation between the first (upper left) image and the last (lower right). Resolution improves from about 200 km (124 miles) to 150 km (93 miles) per line pair. Triton's south pole lies in the dark area near the bottom of the disk. Dark spots, roughly 1,000 km (620 miles) across, occur near the equator, and show Triton rotation between images. The rotation appears to be synchronous with Triton's 5.88-day orbital period (i.e., Triton rotates on its axis in the same time it revolves around Neptune.) The spots' constant rotation rate and their visibility near the edge of the disk suggest the spots are surface features. Whatever atmosphere is present on Triton appears transparent enough that Voyager 2's cameras can see through it.

  14. The Galley Parallel File System

    NASA Technical Reports Server (NTRS)

    Nieuwejaar, Nils; Kotz, David

    1996-01-01

    Most current multiprocessor file systems are designed to use multiple disks in parallel, using the high aggregate bandwidth to meet the growing I/0 requirements of parallel scientific applications. Many multiprocessor file systems provide applications with a conventional Unix-like interface, allowing the application to access multiple disks transparently. This interface conceals the parallelism within the file system, increasing the ease of programmability, but making it difficult or impossible for sophisticated programmers and libraries to use knowledge about their I/O needs to exploit that parallelism. In addition to providing an insufficient interface, most current multiprocessor file systems are optimized for a different workload than they are being asked to support. We introduce Galley, a new parallel file system that is intended to efficiently support realistic scientific multiprocessor workloads. We discuss Galley's file structure and application interface, as well as the performance advantages offered by that interface.

  15. Seasonal and interannual variability in the taxonomic composition and production dynamics of phytoplankton assemblages in Crater Lake, Oregon

    USGS Publications Warehouse

    C. David, McIntire; Larson, Gary L.; Truitt, Robert E.

    2007-01-01

    Taxonomic composition and production dynamics of phytoplankton assemblages in Crater Lake, Oregon, were examined during time periods between 1984 and 2000. The objectives of the study were (1) to investigate spatial and temporal patterns in species composition, chlorophyll concentration, and primary productivity relative to seasonal patterns of water circulation; (2) to explore relationships between water column chemistry and the taxonomic composition of the phytoplankton; and (3) to determine effects of primary and secondary consumers on the phytoplankton assemblage. An analysis of 690 samples obtained on 50 sampling dates from 14 depths in the water column found a total of 163 phytoplankton taxa, 134 of which were identified to genus and 101 were identified to the species or variety level of classification. Dominant species by density or biovolume included Nitzschia gracilis, Stephanodiscus hantzschii, Ankistrodesmus spiralis, Mougeotia parvula, Dinobryon sertularia, Tribonema affine, Aphanocapsa delicatissima, Synechocystis sp., Gymnodinium inversum, and Peridinium inconspicuum. When the lake was thermally stratified in late summer, some of these species exhibited a stratified vertical distribution in the water column. A cluster analysis of these data also revealed a vertical stratification of the flora from the middle of the summer through the early fall. Multivariate test statistics indicated that there was a significant relationship between the species composition of the phytoplankton and a corresponding set of chemical variables measured for samples from the water column. In this case, concentrations of total phosphorus, ammonia, total Kjeldahl nitrogen, and alkalinity were associated with interannual changes in the flora; whereas pH and concentrations of dissolved oxygen, orthophosphate, nitrate, and silicon were more closely related to spatial variation and thermal stratification. The maximum chlorophyll concentration when the lake was thermally stratified in August and September was usually between depths of 100 m and 120 m. In comparison, the depth of maximum primary production ranged from 60 m to 80 m at this time of year. Regression analysis detected a weak negative relationship between chlorophyll concentration and Secchi disk depth, a measure of lake transparency. However, interannual changes in chlorophyll concentration and the species composition of the phytoplankton could not be explained by the removal of the septic field near Rim Village or by patterns of upwelling from the deep lake. An alternative trophic hypothesis proposes that the productivity of Crater Lake is controlled primarily by long-term patterns of climatic change that regulate the supply of allochthonous nutrients.

  16. Relationship among fish assemblages and main-channel-border physical habitats in the unimpounded Upper Mississippi River

    USGS Publications Warehouse

    Barko, V.A.; Herzog, D.P.; Hrabik, R.A.; Scheibe, J.S.

    2004-01-01

    Large rivers worldwide have been altered by the construction and maintenance of navigation channels, which include extensive bank revetments, wing dikes, and levees. Using 7 years of Long-Term Resource Monitoring Program (LTRMP) data collected from the unimpounded upper Mississippi River, we investigated assemblages in two main-channel-border physical habitats-those with wing dikes and those without wing dikes. Fishes were captured using daytime electrofishing, mini-fyke netting, large hoop netting, and small hoop netting. Our objectives were to (1) assess associations among fish species richness, physical measurements, and main-channel-border physical habitats using stepwise multiple regression and indicator variables; (2) identify abundant adult and young-of-year (age-0) families in both physical habitats to further investigate assemblage composition; and (3) calculate standardized species richness estimates within each physical habitat for adult and age-0 fishes to provide additional information on community structure. We found species richness was greater at wing dikes for both adult and age-0 fishes when compared with main channel borders. Stepwise multiple regression revealed significant relationships between adult species richness and passive gear deployment (e.g,, hoop nets and mini-fyke nets), physical habitat type, and river elevation, as well as interactions between physical habitat and passive gears, and physical habitat and transparency (i.e., Secchi depth). This model explained 56% of the variance in adult species richness. Approximately 15% of the variation in age-0 species richness was explained by the sample period, sample date, transparency, physical habitat, and depth of gear deployment. Long-term impacts of river modifications on fishes have not been well documented in many large river systems and warrant further study. The findings from this study provide baseline ecological information on fish assemblages using main channel borders in the unimpounded upper Mississippi River, information that will aid managers making channel maintenance decisions in large river systems.

  17. Application of LANDSAT to the surveillance and control of lake eutrophication in the Great Lakes basin. [Saginaw Bay, Michigan and Wisconsin

    NASA Technical Reports Server (NTRS)

    Rogers, R. H. (Principal Investigator)

    1976-01-01

    The author has identified the following significant results. Computer techniques were developed for mapping water quality parameters from LANDSAT data, using surface samples collected in an ongoing survey of water quality in Saginaw Bay. Chemical and biological parameters were measured on 31 July 1975 at 16 bay stations in concert with the LANDSAT overflight. Application of stepwise linear regression bands to nine of these parameters and corresponding LANDSAT measurements for bands 4 and 5 only resulted in regression correlation coefficients that varied from 0.94 for temperature to 0.73 for Secchi depth. Regression equations expressed with the pair of bands 4 and 5, rather than the ratio band 4/band 5, provided higher correlation coefficients for all the water quality parameters studied (temperature, Secchi depth, chloride, conductivity, total kjeldahl nitrogen, total phosphorus, chlorophyll a, total solids, and suspended solids).

  18. Kerr Reservoir LANDSAT experiment analysis for March 1981

    NASA Technical Reports Server (NTRS)

    Lecroy, S. R. (Principal Investigator)

    1982-01-01

    LANDSAT radiance data were used in an experiment conducted on the waters of Kerr Reservoir to determine if reliable algorithms could be developed that relate water quality parameters to remotely sensed data. A mix of different types of algorithms using the LANDSAT bands was generated to provide a thorough understanding of the relationships among the data involved. Except for secchi depth, the study demonstrated that for the ranges measured, the algorithms that satisfactorily represented the data encompass a mix of linear and nonlinear forms using only one LANDSAT band. Ratioing techniques did not improve the results since the initial design of the experiment minimized the errors against which this procedure is effective. Good correlations were found for total suspended solids, iron, turbidity, and secchi depth. Marginal correlations were discovered for nitrate and tannin + lignin. Quantification maps of Kerr Reservoir are presented for many of the water quality parameters using the developed algorithms.

  19. Estimation of water turbidity in Gorgan Bay, South-east of Caspian Sea by using IRS-LISS-III images.

    PubMed

    Aghighi, Hossein; Alimohammadi, Abbas; Saradjian, Mohammad Reza; Ashourloo, Davood

    2008-03-01

    In this research, usefulness of IRS-LISS-III data of Gorgan Bay, South-east of Caspian Sea located in North of Iran for water turbidity mapping, has been tested. After correction of geometric and radiometric errors, the resulting radiance data were used for examination of correlations between the remotely sensed and in situ water turbidity data simultaneously measured by the Secchi depth approach. Results of this research showed good relations between the Secchi depth and spectral data. The fitted statistical model was very significant (R2 = 0.77) and test of the model performance by independent samples was encouraging. Because of the low costs encountered with acquisition and processing of remotely sensed data, further research in larger scales for the purpose of more precise test of the approach for water turbidity mapping and monitoring is recommended.

  20. Satellite-based virtual buoy system to monitor coastal water quality

    NASA Astrophysics Data System (ADS)

    Hu, Chuanmin; Barnes, Brian B.; Murch, Brock; Carlson, Paul

    2014-05-01

    There is a pressing need to assess coastal and estuarine water quality state and anomaly events to facilitate coastal management, but such a need is hindered by lack of resources to conduct frequent ship-based or buoy-based measurements. Here, we established a virtual buoy system (VBS) to facilitate satellite data visualization and interpretation of water quality assessment. The VBS is based on a virtual antenna system (VAS) that obtains low-level satellite data and generates higher-level data products using both National Aeronautics and Space Administration standard algorithms and regionally customized algorithms in near real time. The VB stations are predefined and carefully chosen to cover water quality gradients in estuaries and coastal waters, where multiyear time series at monthly and weekly intervals are extracted for the following parameters: sea surface temperature (°C), chlorophyll-a concentration (mg m-3), turbidity (NTU), diffuse light attenuation at 490 nm [Kd(490), m-1] or secchi disk depth (m), absorption coefficient of colored dissolved organic matter (m-1), and bottom available light (%). The time-series data are updated routinely and provided in both ASCII and graphical formats via a user-friendly web interface where all information is available to the user through a simple click. The VAS and VBS also provide necessary infrastructure to implement peer-reviewed regional algorithms to generate and share improved water quality data products with the user community.

  1. Monitoring water quality in a hypereutrophic reservoir using Landsat ETM+ and OLI sensors: how transferable are the water quality algorithms?

    PubMed

    Deutsch, Eliza S; Alameddine, Ibrahim; El-Fadel, Mutasem

    2018-02-15

    The launch of the Landsat 8 in February 2013 extended the life of the Landsat program to over 40 years, increasing the value of using Landsat to monitor long-term changes in the water quality of small lakes and reservoirs, particularly in poorly monitored freshwater systems. Landsat-based water quality hindcasting often incorporate several Landsat sensors in an effort to increase the temporal range of observations; yet the transferability of water quality algorithms across sensors remains poorly examined. In this study, several empirical algorithms were developed to quantify chlorophyll-a, total suspended matter (TSM), and Secchi disk depth (SDD) from surface reflectance measured by Landsat 7 ETM+ and Landsat 8 OLI sensors. Sensor-specific multiple linear regression models were developed by correlating in situ water quality measurements collected from a semi-arid eutrophic reservoir with band ratios from Landsat ETM+ and OLI sensors, along with ancillary data (water temperature and seasonality) representing ecological patterns in algae growth. Overall, ETM+-based models outperformed (adjusted R 2 chlorophyll-a = 0.70, TSM = 0.81, SDD = 0.81) their OLI counterparts (adjusted R 2 chlorophyll-a = 0.50, TSM = 0.58, SDD = 0.63). Inter-sensor differences were most apparent for algorithms utilizing the Blue spectral band. The inclusion of water temperature and seasonality improved the power of TSM and SDD models.

  2. Assessment of the Eutrophication-Related Environmental Parameters in Two Mediterranean Lakes by Integrating Statistical Techniques and Self-Organizing Maps

    PubMed Central

    Stefanidis, Konstantinos; Papatheodorou, George

    2018-01-01

    During the last decades, Mediterranean freshwater ecosystems, especially lakes, have been under severe pressure due to increasing eutrophication and water quality deterioration. In this article, we compared the effectiveness of different data analysis methods by assessing the contribution of environmental parameters to eutrophication processes. For this purpose, principal components analysis (PCA), cluster analysis, and a self-organizing map (SOM) were applied, using water quality data from two transboundary lakes of North Greece. SOM is considered as an advanced and powerful data analysis tool because of its ability to represent complex and nonlinear relationships among multivariate data sets. The results of PCA and cluster analysis agreed with the SOM results, although the latter provided more information because of the visualization abilities regarding the parameters’ relationships. Besides nutrients that were found to be a key factor for controlling chlorophyll-a (Chl-a), water temperature was related positively with algal production, while the Secchi disk depth parameter was found to be highly important and negatively related toeutrophic conditions. In general, the SOM results were more specific and allowed direct associations between the water quality variables. Our work showed that SOMs can be used effectively in limnological studies to produce robust and interpretable results, aiding scientists and managers to cope with environmental problems such as eutrophication. PMID:29562675

  3. IOS: PDP 11/45 formatted input/output task stacker and processer. [In MACRO-II

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koschik, J.

    1974-07-08

    IOS allows the programer to perform formated Input/Output at assembly language level to/from any peripheral device. It runs under DOS versions V8-O8 or V9-19, reading and writing DOS-compatible files. Additionally, IOS will run, with total transparency, in an environment with memory management enabled. Minimum hardware required is a 16K PDP 11/45, Keyboard Device, DISK (DK,DF, or DC), and Line Frequency Clock. The source language is MACRO-11 (3.3K Decimal Words).

  4. Minerva: Cylindrical coordinate extension for Athena

    NASA Astrophysics Data System (ADS)

    Skinner, M. Aaron; Ostriker, Eve C.

    2013-02-01

    Minerva is a cylindrical coordinate extension of the Athena astrophysical MHD code of Stone, Gardiner, Teuben, and Hawley. The extension follows the approach of Athena's original developers and has been designed to alter the existing Cartesian-coordinates code as minimally and transparently as possible. The numerical equations in cylindrical coordinates are formulated to maintain consistency with constrained transport (CT), a central feature of the Athena algorithm, while making use of previously implemented code modules such as the Riemann solvers. Angular momentum transport, which is critical in astrophysical disk systems dominated by rotation, is treated carefully.

  5. The impact of a hydroelectric power plant on the sediment load in downstream water bodies, Svartisen, northern Norway.

    PubMed

    Bogen, J; Bønsnes, T E

    2001-02-05

    When the Svartisen hydroelectric power plant was put into operation, extensive sediment pollution was observed in the downstream fjord area. This paper discusses the impact of the power plant and the contribution from various sources of sediment. Computation of the sediment load was based on samples collected one to four times per day. Grain size distribution analyses of suspended sediments were carried out and used as input in a routing model to study the movement of sediments through the system. Suspended sediment delivered to the fjord before the power station was constructed was measured as 8360 metric tons as an annual mean for a 12-year period. During the years 1995-1996 when the power plant was operating, the total suspended load through the power station was measured as 32609 and 30254 metric tons, respectively. Grain size distribution analyses indicate a major change in the composition of the sediments from 9% clay before the power plant was operative to 50-60% clay afterwards. This change, together with the increase in sediment load, is believed to be one of the main causes of the drastic reduction in secchi depths in the fjord. The effect of the suspended sediment load on the fjord water turbidity was evaluated by co-plotting secchi depth and power station water discharge. Measurements during 1995 and 1996 showed that at the innermost of these locations the water failed to attain the minimum requirement of 2 m secchi depth. In later years secchi depths were above the specified level. In 1997 and 1998 the conditions improved. At the more distal locality, the conditions were acceptable with only a few exceptions. A routing model was applied to data acquired at a location 2 km from the power station in order to calculate the contributions from various sediment sources. This model indicated that the contribution from reservoir bed erosion dominated in 1994 but decreased significantly in 1995. Future operation of the power station will mostly take place with a high water level in the reservoir and is likely to result in acceptable water quality in the fjord. However, during periods of low drawdown, sediment pollution may again become a problem.

  6. Lake Ontario water quality during the 2003 and 2008 intensive field years and comparison with long-term trends

    USGS Publications Warehouse

    Holeck, K. T.; Rudstam, L. G.; Watkins, J. M.; Luckey, F. J.; Lantry, J. R.; Lantry, Brian F.; Trometer, E. S.; Koops, M. A.; Johnson, Terry B.

    2015-01-01

    Phosphorus loading declined between the 1970s and the 1990s, leading to oligotrophication of the offshore waters of Lake Ontario during that time period. Using lake-wide data from the intensive field years of 2003 and 2008 and from available long-term data sets on several trophic state indicators (total phosphorus [TP], soluble reactive silica [SRSi], chlorophyll a and Secchi disc transparency [SDT]), we tested the hypothesis that oligotrophication of the offshore waters of Lake Ontario has continued in the 2000s. Significant differences between 2003 and 2008 include higher spring (April) TP, SRSi, and SDT in 2008, lower summer (July–August) SDT in 2008, higher summer chlorophyll a in 2008, and lower fall (September) TP, SRSi, and chlorophyll a in 2008. The decline in SRSi from spring to summer was greater in 2008 than in 2003. Change point and regression analyses on the long-term data revealed no trend in spring TP since 1996, in summer chlorophyll a since 1994, in spring SDT since 1998, in spring SRSi or SRSi decline from spring to summer since 1999, or in summer SDT since 2001. Neither the comparison of the 2003 and 2008 surveys nor the analysis of the long-term data supported our hypothesis of continued oligotrophication of the offshore of Lake Ontario in the 2000s.

  7. Protracted storage of CR chondrules in a region of the disk transparent to galactic cosmic rays

    NASA Astrophysics Data System (ADS)

    Roth, Antoine S. G.; Metzler, Knut; Baumgartner, Lukas P.; Hofmann, Beda A.; Leya, Ingo

    2017-10-01

    Renazzo-type carbonaceous (CR) chondrites are accretionary breccias that formed last. As such they are ideal samples to study precompaction exposures to cosmic rays. Here, we present noble gas data for 24 chondrules and 3 dark inclusion samples (DIs) from Shişr 033 (CR2). The meteorite was selected based on the absence of implanted solar wind noble gases and an anomalous oxygen isotopic composition of the DIs; the oxygen isotopes match those in CV3 and CO3 chondrites. Our samples contain variable mixtures of galactic cosmic ray (GCR)-produced cosmogenic noble gases and trapped noble gases of presolar origin. Remarkably, all chondrules have cosmogenic 3He and 21Ne concentrations up to 4.3 and 7.1 times higher than the DIs, respectively. We derived an average 3He-21Ne cosmic ray exposure (CRE) age for Shişr 033 of 2.03 ± 0.20 Ma (2 SD) and excesses in cosmogenic 3He and 21Ne in chondrules (relative to the DIs) in the range (in 10-8 cm3STP/g) 3.99-7.76 and 0.94-1.71, respectively. Assuming present-day GCR flux density, the excesses translate into average precompaction 3He-21Ne CRE ages of 3.1-27.3 Ma depending on the exposure geometry. The data can be interpreted assuming a protracted storage of a single chondrule generation prior to the final assembly of the Shişr 033 parent body in a region of the disk transparent to GCRs.

  8. Performance of the Galley Parallel File System

    NASA Technical Reports Server (NTRS)

    Nieuwejaar, Nils; Kotz, David

    1996-01-01

    As the input/output (I/O) needs of parallel scientific applications increase, file systems for multiprocessors are being designed to provide applications with parallel access to multiple disks. Many parallel file systems present applications with a conventional Unix-like interface that allows the application to access multiple disks transparently. This interface conceals the parallism within the file system, which increases the ease of programmability, but makes it difficult or impossible for sophisticated programmers and libraries to use knowledge about their I/O needs to exploit that parallelism. Furthermore, most current parallel file systems are optimized for a different workload than they are being asked to support. We introduce Galley, a new parallel file system that is intended to efficiently support realistic parallel workloads. Initial experiments, reported in this paper, indicate that Galley is capable of providing high-performance 1/O to applications the applications that rely on them. In Section 3 we describe that access data in patterns that have been observed to be common.

  9. Stereoscopic Analysis of 19 May and 31 Aug 2007 Filament Eruptions

    NASA Technical Reports Server (NTRS)

    Liewer, Paulett; DeJong, E. M.; Hall, J. R.

    2008-01-01

    The presentation outline includes results from stereoscopic analysis of SECCHI/EUVI data for 19 May 2007 filament eruption, including the determined 3D trajectory of erupting filament, strong evidence for reconnection below erupting filament as consistent with standard model, and comparison of EUVI and H-alpha images during eruption; and results from stereoscopic analytic of 21 August 2007 filament eruption. Slide topics include standard model of filament eruption; 2007 May 19 STEREO A/SECCHI/EUVI 195 and 304 A: CME signatures and filament eruption, 3D reconstruction of erupting prominence; filament's relation to coronal magnetic fields; 3d reconstructions of filament eruption; height-time plot of eruption from 3D reconstructions; detailed pre-eruptions comparison of H-alpha and EUVI 304 at 12:42 UT; comparisons during the eruption; STEREO prominence and CME August 31, 2007; reconstructions of prominence and leading edges of both dark cavity and CME; and 3D reconstructions of prominence and leading edges.

  10. Development of integrated optical tracking sensor by planar optics

    NASA Astrophysics Data System (ADS)

    Kawano, Hiroyuki; Sasagawa, Tomohiro; Nishimae, Junichi; Sato, Yukio

    1999-03-01

    A compact and light weight optical tracking sensor for a large capacity flexible disk drive is demonstrated. The size of the optical element is no larger than 5.4 mm in length X 3.6 mm in width X 1.2 mm in height and the weight is only 18 mg. The application of the planar optical technique makes it possible to integrate all passive optical elements onto one transparent substrate. These features are useful for high- speed access, easy optical alignment, mass production, and miniaturization. The design and optical characteristics of the optical tracking sensor are described.

  11. On the uniqueness of motion of viscous gaseous stars

    NASA Astrophysics Data System (ADS)

    Secchi, Paolo

    1990-11-01

    The existence of solutions of the evolutionary equations of motion of a star regarded as a compressible viscous fluid with self-gravitation, bounded by a free surface, has recently been considered by Secchi (1990). In this paper, the uniqueness of the solutions cited is studied.

  12. Characteristics of EUV Coronal Jets Observed with STEREO/SECCHI

    NASA Astrophysics Data System (ADS)

    Nisticò, G.; Bothmer, V.; Patsourakos, S.; Zimbardo, G.

    2009-10-01

    In this paper we present the first comprehensive statistical study of EUV coronal jets observed with the SECCHI (Sun Earth Connection Coronal and Heliospheric Investigation) imaging suites of the two STEREO spacecraft. A catalogue of 79 polar jets is presented, identified from simultaneous EUV and white-light coronagraph observations, taken during the time period March 2007 to April 2008, when solar activity was at a minimum. The twin spacecraft angular separation increased during this time interval from 2 to 48 degrees. The appearances of the coronal jets were always correlated with underlying small-scale chromospheric bright points. A basic characterization of the morphology and identification of the presence of helical structure were established with respect to recently proposed models for their origin and temporal evolution. Though each jet appeared morphologically similar in the coronagraph field of view, in the sense of a narrow collimated outward flow of matter, at the source region in the low corona the jet showed different characteristics, which may correspond to different magnetic structures. A classification of the events with respect to previous jet studies shows that amongst the 79 events there were 37 Eiffel tower-type jet events, commonly interpreted as a small-scale (˜35 arc sec) magnetic bipole reconnecting with the ambient unipolar open coronal magnetic fields at its loop tops, and 12 lambda-type jet events commonly interpreted as reconnection with the ambient field happening at the bipole footpoints. Five events were termed micro-CME-type jet events because they resembled the classical coronal mass ejections (CMEs) but on much smaller scales. The remaining 25 cases could not be uniquely classified. Thirty-one of the total number of events exhibited a helical magnetic field structure, indicative for a torsional motion of the jet around its axis of propagation. A few jets are also found in equatorial coronal holes. In this study we present sample events for each of the jet types using both, STEREO A and STEREO B, perspectives. The typical lifetimes in the SECCHI/EUVI ( Extreme UltraViolet Imager) field of view between 1.0 to 1.7 R ⊙ and in SECCHI/COR1 field of view between 1.4 to 4 R ⊙ are obtained, and the derived speeds are roughly estimated. In summary, the observations support the assumption of continuous small-scale reconnection as an intrinsic feature of the solar corona, with its role for the heating of the corona, particle acceleration, structuring and acceleration of the solar wind remaining to be explored in more detail in further studies.

  13. Phytoplankton biomass and composition in a well-flushed, sub-tropical estuary: The contrasting effects of hydrology, nutrient loads and allochthonous influences.

    PubMed

    Hart, J A; Phlips, E J; Badylak, S; Dix, N; Petrinec, K; Mathews, A L; Green, W; Srifa, A

    2015-12-01

    The primary objective of this study was to examine trends in phytoplankton biomass and species composition under varying nutrient load and hydrologic regimes in the Guana Tolomato Matanzas estuary (GTM), a well-flushed sub-tropical estuary located on the northeast coast of Florida. The GTM contains both regions of significant human influence and pristine areas with only modest development, providing a test case for comparing and contrasting phytoplankton community dynamics under varying degrees of nutrient load. Water temperature, salinity, Secchi disk depth, nutrient concentrations and chlorophyll concentrations were determined on a monthly basis from 2002 to 2012 at three representative sampling sites in the GTM. In addition, microscopic analyses of phytoplankton assemblages were carried out monthly for a five year period from 2005 through 2009 at all three sites. Results of this study indicate that phytoplankton biomass and composition in the GTM are strongly influenced by hydrologic factors, such as water residence times and tidal exchanges of coastal waters, which in turn are affected by shifts in climatic conditions, most prominently rainfall levels. These influences are exemplified by the observation that the region of the GTM with the longest water residence times but lowest nutrient loads exhibited the highest phytoplankton peaks of autochthonous origin. The incursion of a coastal bloom of the toxic dinoflagellate Karenia brevis into the GTM in 2007 demonstrates the potential importance of allochthonous influences on the ecosystem. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Solar Energetic Particle Events and CME Accelerations in the Low Corona: MLSO Observations

    NASA Astrophysics Data System (ADS)

    St Cyr, O. C.; Kahler, S. W.; Richardson, I. G.; Cane, H. V.; Xie, H.; Burkepile, J.

    2016-12-01

    The low solar corona (< 2.5 Rs) is the region in which maximum coronal mass ejection (CME) acceleration occurs and where Type II radio observations suggest that shock formation occurs (Mäkelä et al., 2015). It is therefore a key region for investigations of solar energetic particle (SEP) acceleration by CME-driven shocks. Observations very low in the corona are necessary to detect the rapid CME accelerations leading to shock formation and to assess the speeds of CMEs through the middle corona. However, these observations cannot be made by space borne coronagraphs in which CME trajectories above the occulting disk are usually characterized by a single (constant) speed: e.g., 80% of the speeds in the compilation of SMM CMEs (Burkepile and St. Cyr, 1993) and SOHO LASCO CMEs (St. Cyr et al., 2000). The Mk3/Mk4/K-Cor coronameters at the Mauna Loa Solar Observatory are able to measure the initial accelerations of CMEs low in the corona (i.e., < 2 Rs). We examine a subset of CMEs that were associated with SEP events between 1980-present. The subset is based on the CME launch occurring between 16 UT - 01 UT - the MLSO observing window. In most cases, the CME accelerations are significantly larger than those measured by spaceborne coronagraphs (e.g., SMM, Solwind, LASCO, SECCHI). We will present the preliminary results of a comparison of the SEP parameters with initial CME accelerations in the MLSO coronagraph field of view.

  15. Tampa Bay Water Clarity Model (TBWCM): As a Predictive Tool

    EPA Science Inventory

    The Tampa Bay Water Clarity Model was developed as a predictive tool for estimating the impact of changing nutrient loads on water clarity as measured by secchi depth. The model combines a physical mixing model with an irradiance model and nutrient cycling model. A 10 segment bi...

  16. Optical model for the water characterization of the highly turbid water of the Winam Gulf (Victoria Lake)

    NASA Astrophysics Data System (ADS)

    Santini, F.; Cavalli, R. M.; Palombo, A.; Pignatti, S.

    2007-10-01

    The study, proposed within the framework of the cooperation with Kenyan Authorities, has been carried out on the Kenyan part of the Lake Victoria. This lake is one of the largest freshwater bodies of the world where, over the last few years, environmental challenges and human impact have perturbed the ecological balance. Pollution and sediments loads from the tributaries rivers and antrophic sources caused a worrying increase of the turbidity level of the lake water. Secchi transparency index has declined from 5 meters in the 1930s to less than one meter in the 1990s. With the aim of providing an inexpensive way to gather information linked to the water clarity and quality, a method for remotely sensed data interpretation, devoted to produce chl (chlorophyll), CDOM (coloured dissolved organic matter) and TSS (total suspended solids) maps, has been assessed. At this purpose a bio-optical model, based on radiative transfer theory in water bodies, has been refined. The method has been applied on an image acquired on January 2004 by ENVISAT/MERIS sensor just a week after an in situ campaign took place. During the in situ campaign a data set for model refinement and products validation has been collected. This data comprise surface radiometric quantity and samples for laboratory analyses. The comparison between the obtained maps and the data provided by the laboratory analysis showed a good correspondence, demonstrating the potentiality of remote observation in supporting the management of the water resources.

  17. Limnology of nine small lakes, Matanuska-Susitna Borough, Alaska, and the survival and growth rates of rainbow trout

    USGS Publications Warehouse

    Woods, P.F.

    1985-01-01

    The survival and growth rates of rainbow trout (Salmo gairdnieri) were concurrently measured with selected limnological characteristics in nine small (surface area < 25 sq hectometers) lakes in the Matanuska-Susitna Borough. The project goal was to develop empirical models for predicting rainbow trout growth rates from the following variables: total phosphorus concentration, chlorophyll a concentration, Secchi disc transparency, or the morphoedaphic index--a means of characterizing potential biological productivity. No suitable model could be developed from the data collected during 1982 and 1983. The lack of significant correlation was attributed in part to the wide variation in survival of rainbow trout. Winterkills, caused by severe depletion of dissolved oxygen, were suspected in four of the lakes. Varied levels of fishing pressure and competition with threespine stickleback (Gasterosteus aculeatus) also influenced survival of rainbow trout but their effects were overshadowed by winterkill. Predictive capability was also reduced because of inconsistencies in rankings generated by each of the four limnological variables chosen as indicators of potential biological productivity. A lake ranked low in productivity by one variable was commonly ranked high in productivity by another variable. The survivability of rainbow trout stocked in lakes such as these nine may be a more important indicator of potential biomass production than are indicators of lake fertility. Assessments of a lake 's susceptibility to winterkill and the degree of competition with threespine stickleback are suggested as important topics for additional research. (Author 's abstract)

  18. Preparation and characterization of conductive and transparent ruthenium dioxide sol-gel films.

    PubMed

    Allhusen, John S; Conboy, John C

    2013-11-27

    RuO2 conductive thin films were synthesized using the sol-gel method and deposited onto transparent insulating substrates. The optical transmission, film thickness, surface morphology and composition, resistivity, and spectroelectrochemical performance have been characterized. The optical transmission values of these films ranged from 70 to 89% in the visible region and from 56 to 88% in the infrared region. Resistivity values of the RuO2 sol-gel films varied from 1.02 × 10(-3) to 1.13 Ω cm and are highly dependent on the initial solution concentration of RuO2 in the sol-gel. The RuO2 sol-gel films were used as electrodes for the electrochemical oxidation and reduction of ferrocenemethanol. The electrochemical behavior of our novel RuO2 sol-gel films was compared to that of a standard platinum disk electrode and showed no appreciable differences in the half-wave potential (E1/2). The mechanical and chemical stability of the coatings was tested by physical abrasion and exposure to highly acidic, oxidizing Piranha solution. Repeated exposure to these extreme conditions did not result in any appreciable decline in electrochemical performance. Finally, the use of the novel RuO2 sol-gel conductive and transparent films was demonstrated in a spectroelectrochemistry experiment in which the oxidation and reduction of ferrocenemethanol was monitored via UV-vis spectroscopy as the applied potential was cycled.

  19. Impacts of land and water use on plankton diversity and water quality in small man-made reservoirs in the Limpopo basin, Zimbabwe: A preliminary investigation

    NASA Astrophysics Data System (ADS)

    Basima, Lefranc Busane; Senzanje, Aidan; Marshall, Brian; Shick, Katharine

    This paper reports on a study carried out from February to April 2005 in the southern part of Zimbabwe in the Mzingwane catchment, Limpopo basin to investigate the impacts of land and water use on the water quality and ecosystem health of eight small man-made reservoirs. Four of the reservoirs of were located in communal lands while the remaining four were located in the National Park Estates, considered pristine. Plankton community structure was identified in terms of abundance and diversity as an indirect assessment of water quality and ecosystem health. In addition, phosphorus, nitrogen, pH, transparency, electric conductivity and hardness were analysed. The results obtained indicate that a significant difference in abundance of phytoplankton groups was found between the communal lands and the National Park Estates ( P < 0.01). Though the highest phytoplankton abundance was observed in April, February showed the highest number of taxa (highest diversity). Chlorophytes was the major group in both periods with 29 genera in February and 20 in April followed by Diatoms with 17 genera in February and 12 in April. The zooplankton community was less diverse and less abundant and did not show any seasonality pattern. Phosphorus (0.022 ± 0.037 mg/l) and nitrogen (0.101 ± 0.027 mg/l) had similar trends in the study area during the study period. Transparency of water was very low (ca. 27 cm secchi depth) in 75% of the reservoirs with communal lands’ reservoirs having a whitish colour, likely reducing light penetration and therefore photosynthetic potential. Evidence from the study indicates that, at this time, activities in the communal lands are not significantly impacting the ecosystem health of reservoirs, as water quality characteristics and plankton diversity on communal lands were not significantly different from the pristine reservoirs in National Park. However, water managers are urged to continuously monitor the changes in land and water uses around these multipurpose reservoirs in order to prevent possible detrimental land and water uses that might occur in the future.

  20. Magnetic field gradient driven self-assembly of superparamagnetic nanoparticles using programmable magnetically-recorded templates

    NASA Astrophysics Data System (ADS)

    Ye, L.; Qi, B.; Lawton, T. G.; Mefford, O. T.; Rinaldi, C.; Garzon, S.; Crawford, T. M.

    2013-03-01

    Using the enormous magnetic field gradients (100 MT/m @ z =20 nm) present near the surface of magnetic recording media, we demonstrate the fabrication of diffraction gratings with lines consisting entirely of magnetic nanoparticles assembled from a colloidal fluid onto a disk drive medium, followed by transfer to a flexible and transparent polymer thin film. These nanomanufactured gratings have line spacings programmed with commercial magnetic recording and are inherently concave with radii of curvature controlled by varying the polymer film thickness. The diffracted intensity increases non-monotonically with the length of time the colloidal fluid remains on the disk surface. In addition to comparing longitudinal and perpendicular magnetic recording, a combination of spectral diffraction efficiency measurements, magnetometry, scanning electron microscopy and inductively coupled plasma atomic emmission spectroscopy of these gratings are employed to understand colloidal nanoparticle dynamics in this extreme gradient limit. Such experiments are necessary to optimize nanoparticle assembly and obtain uniform patterned features. This low-cost and sustainable approach to nanomanufacturing could enable low-cost, high-quality diffraction gratings as well as more complex polymer nanocomposite materials assembled with single-nanometer precision.

  1. SANs and Large Scale Data Migration at the NASA Center for Computational Sciences

    NASA Technical Reports Server (NTRS)

    Salmon, Ellen M.

    2004-01-01

    Evolution and migration are a way of life for provisioners of high-performance mass storage systems that serve high-end computers used by climate and Earth and space science researchers: the compute engines come and go, but the data remains. At the NASA Center for Computational Sciences (NCCS), disk and tape SANs are deployed to provide high-speed I/O for the compute engines and the hierarchical storage management systems. Along with gigabit Ethernet, they also enable the NCCS's latest significant migration: the transparent transfer of 300 Til3 of legacy HSM data into the new Sun SAM-QFS cluster.

  2. Long term records of lake clarity as an indicator for final ecosystem goods and services of lakes

    EPA Science Inventory

    We reviewed available long-term records of lake clarity (via secchi disc readings) as an indicator of final ecosystem goods and services of lakes. Lake water quality assessments are often based on biophysical indicators not explicitly or quantifiably linked to the ecosystem servi...

  3. The Longitudinal Properties of a Solar Energetic Particle Event Investigated Using Modern Solar Imaging

    DTIC Science & Technology

    2012-06-10

    and white light) and the longitudinal extent of the SEP event in the heliosphere. 15. SUBJECT TERMS 16. SECURITY CLASSIFICATION OF: 17. LIMITATION...The STEREO SECCHI data are pro- duced by a consortium of RAL (UK), NRL (USA), LMSAL (USA), GSFC (USA), MPS (Germany), CSL (Belgium), IOTA (France

  4. Sensitivity Monitoring of the SECCHI COR1 Telescopes on STEREO

    NASA Astrophysics Data System (ADS)

    Thompson, William T.

    2018-03-01

    Measurements of bright stars passing through the fields of view of the inner coronagraphs (COR1) on board the Solar Terrestrial Relations Observatory (STEREO) are used to monitor changes in the radiometric calibration over the course of the mission. Annual decline rates are found to be 0.648 ± 0.066%/year for COR1-A on STEREO Ahead and 0.258 ± 0.060%/year for COR1-B on STEREO Behind. These rates are consistent with decline rates found for other space-based coronagraphs in similar radiation environments. The theorized cause for the decline in sensitivity is darkening of the lenses and other optical elements due to exposure to high-energy solar particles and photons, although other causes are also possible. The total decline in the COR-B sensitivity when contact with Behind was lost on 1 October 2014 was 1.7%, while COR1-A was down by 4.4%. As of 1 November 2017, the COR1-A decline is estimated to be 6.4%. The SECCHI calibration routines will be updated to take these COR1 decline rates into account.

  5. Data dependence for the amplitude equation of surface waves

    NASA Astrophysics Data System (ADS)

    Secchi, Paolo

    2016-04-01

    We consider the amplitude equation for nonlinear surface wave solutions of hyperbolic conservation laws. This is an asymptotic nonlocal, Hamiltonian evolution equation with quadratic nonlinearity. For example, this equation describes the propagation of nonlinear Rayleigh waves (Hamilton et al. in J Acoust Soc Am 97:891-897, 1995), surface waves on current-vortex sheets in incompressible MHD (Alì and Hunter in Q Appl Math 61(3):451-474, 2003; Alì et al. in Stud Appl Math 108(3):305-321, 2002) and on the incompressible plasma-vacuum interface (Secchi in Q Appl Math 73(4):711-737, 2015). The local-in-time existence of smooth solutions to the Cauchy problem for the amplitude equation in noncanonical variables was shown in Hunter (J Hyperbolic Differ Equ 3(2):247-267, 2006), Secchi (Q Appl Math 73(4):711-737, 2015). In the present paper we prove the continuous dependence in strong norm of solutions on the initial data. This completes the proof of the well-posedness of the problem in the classical sense of Hadamard.

  6. CME Research and Space Weather Support for the SECCHI Experiments on the STEREO Mission

    DTIC Science & Technology

    2014-01-14

    Corbett, ed., Cambridge Univ. Press (2010) Kahler, S.W. and D. F. Webb, "Tracking Nonradial Motions and Azimuthal Expansions of Interplanetary CME...Imaging and In-situ Data from LASCO, STEREO and SMEI", Bull. AAS, 41(2), p. 855, 2009. Kahler S. and D. Webb, "Tracking Nonradial Motions and

  7. From toes to top-of-atmosphere: Fowler's Sneaker Depth index of water clarity for the Chesapeake Bay.

    PubMed

    Crooke, Benjamin; McKinna, Lachlan I W; Cetinić, Ivona

    2017-04-17

    Fowler's Sneaker Depth (FSD), analogous to the well known Secchi disk depth (Zsd), is a visually discerned citizen scientist metric used to assess water clarity in the Patuxent River estuary. In this study, a simple remote sensing algorithm was developed to derive FSD from space-borne spectroradiometric imagery. An empirical model was formed that estimates FSD from red-end remote sensing reflectances at 645 nm, Rrs(645). The model is based on a hyperbolic function relating water clarity to Rrs(645) that was established using radiative transfer modeling and fine tuned using in-water FSD measurements and coincident Rrs(645) data observed by NASA's Moderate Resolution Imaging Spectroradiometer aboard the Aqua spacecraft (MODISA). The resultant FSD algorithm was applied to Landsat-8 Operational Land Imager data to derive a short time-series for the Patuxent River estuary from January 2015 to June 2016. Satellite-derived FSD had an inverse, statistically significant relationship (p<0.005) with total suspended sediment concentration (TSS). Further, a distinct negative relationship between FSD and chlorophyll concentration was discerned during periods of high biomass (> 4 μg L-1). The complex nature of water quality in the mid-to-upper Chesapeake Bay was captured using a MODISA-based FSD time series (2002-2016). This study demonstrates how a citizen scientist-conceived observation can be coupled with remote sensing. With further refinement and validation, the FSD may be a useful tool for delivering scientifically relevant results and for informing and engaging local stakeholders and policy makers.

  8. Implications of Gamma-Ray Transparency Constraints in Blazars: Minimum Distances and Gamma-Ray Collimation

    NASA Technical Reports Server (NTRS)

    Becker, Peter A.; Kafatos, Menas

    1995-01-01

    We develop a general expression for the gamma - gamma absorption coefficient, alpha(sub gamma(gamma)) for gamma-rays propagating in an arbitrary direction at an arbitrary point in space above an X-ray-emitting accretion disk. The X-ray intensity is assumed to vary as a power law in energy and radius between the outer disk radius, R(sub 0), and the inner radius, R(sub ms) which is the radius of marginal stability for a Schwarzschild black hole. We use our result for alpha(sub gamma(gamma)) to calculate the gamma - gamma optical depth, tau(sub gamma(gamma)) for gamma - rays created at height z and propagating at angle Phi relative to the disk axis, and we show that for Phi = 0 and z greater than or approx equal to R(sub 0), tau(sub gamma(gamma)) proportional to Epsilon(sup alpha)z(sup -2(alpha) - 3), where alpha is the X-ray spectral index and Epsilon is the gamma - ray energy. As an application, we use our formalism to compute the minimum distance between the central black hole and the site of production of the gamma-rays detected by EGRET during the 1991 June flare of 3C 279. In order to obtain an upper limit, we assume that all of the X-rays observed contemporaneously by Ginga were emitted by the disk. Our results suggest that the observed gamma - rays may have originated within less than or approx equal to 45 GM/sq c from a black hole of mass greater than or approx equal to 10(exp 9) solar mass, perhaps in active plasma located above the central funnel of the accretion disk. This raises the possibility of establishing a direct connection between the production of the observed gamma - rays and the accretion of material onto the black hole. We also consider the variation of the optical depth as a function of the angle of propagation Phi. Our results indicate that the "focusing" of the gamma - rays along the disk axis due to pair production is strong enough to explain the observed degree of alignment in blazar sources. If the gamma - rays are produced isotropically in gamma - ray blazars, then these objects should appear as bright MeV sources when viewed along off-axis lines of sight.

  9. Abiotic control of underwater light in a drinking water reservoir: Photon budget analysis and implications for water quality monitoring

    NASA Astrophysics Data System (ADS)

    Watanabe, Shohei; Laurion, Isabelle; Markager, Stiig; Vincent, Warwick F.

    2015-08-01

    In optically complex inland waters, the underwater attenuation of photosynthetically active radiation (PAR) is controlled by a variable combination of absorption and scattering components of the lake or river water. Here we applied a photon budget approach to identify the main optical components affecting PAR attenuation in Lake St. Charles, a drinking water reservoir for Québec City, Canada. This analysis showed the dominant role of colored dissolved organic matter (CDOM) absorption (average of 44% of total absorption during the sampling period), but with large changes over depth in the absolute and relative contribution of the individual absorption components (water, nonalgal particulates, phytoplankton and CDOM) to PAR attenuation. This pronounced vertical variation occurred because of the large spectral changes in the light field with depth, and it strongly affected the average in situ diffuse absorption coefficients in the water column. For example, the diffuse absorption coefficient for pure-water in the ambient light field was 10-fold higher than the value previously measured in the blue open ocean and erroneously applied to lakes and coastal waters. Photon absorption budget calculations for a range of limnological conditions confirmed that phytoplankton had little direct influence on underwater light, even at chlorophyll a values above those observed during harmful algal blooms in the lake. These results imply that traditional measures of water quality such as Secchi depth and radiometric transparency do not provide a meaningful estimate of the biological state of the water column in CDOM-colored lakes and reservoirs.

  10. Three-Dimensional Properties of Coronal Mass Ejections from STEREO/SECCHI Observations

    NASA Astrophysics Data System (ADS)

    Bosman, E.; Bothmer, V.; Nisticò, G.; Vourlidas, A.; Howard, R. A.; Davies, J. A.

    2012-11-01

    We identify 565 coronal mass ejections (CMEs) between January 2007 and December 2010 in observations from the twin STEREO/SECCHI/COR2 coronagraphs aboard the STEREO mission. Our list is in full agreement with the corresponding SOHO/LASCO CME Catalog (http://cdaw.gsfc.nasa.gov/CME_list/) for events with angular widths of 45∘ and up. The monthly event rates behave similarly to sunspot rates showing a three- to fourfold rise between September 2009 and March 2010. We select 51 events with well-defined white-light structure and model them as three-dimensional (3D) flux ropes using a forward-modeling technique developed by Thernisien, Howard and Vourlidas (Astrophys. J. 652, 763 - 773, 2006). We derive their 3D properties and identify their source regions. We find that the majority of the CME flux ropes (82 %) lie within 30∘ of the solar equator. Also, 82 % of the events are displaced from their source region, to a lower latitude, by 25∘ or less. These findings provide strong support for the deflection of CMEs towards the solar equator reported in earlier observations, e.g. by Cremades and Bothmer ( Astron. Astrophys. 422, 307 - 322, 2004).

  11. Particle shape inhomogeneity and plasmon-band broadening of solar-control LaB6 nanoparticles

    NASA Astrophysics Data System (ADS)

    Machida, Keisuke; Adachi, Kenji

    2015-07-01

    An ensemble inhomogeneity of non-spherical LaB6 nanoparticles dispersion has been analyzed with Mie theory to account for the observed broad plasmon band. LaB6 particle shape has been characterized using small-angle X-ray scattering (SAXS) and electron tomography (ET). SAXS scattering intensity is found to vary exponentially with exponent -3.10, indicating the particle shape of disk toward sphere. ET analysis disclosed dually grouped distribution of nanoparticle dispersion; one is large-sized at small aspect ratio and the other is small-sized with scattered high aspect ratio, reflecting the dual fragmentation modes during the milling process. Mie extinction calculations have been integrated for 100 000 particles of varying aspect ratio, which were produced randomly by using the Box-Muller method. The Mie integration method has produced a broad and smooth absorption band expanded towards low energy, in remarkable agreement with experimental profiles by assuming a SAXS- and ET-derived shape distribution, i.e., a majority of disks with a little incorporation of rods and spheres for the ensemble. The analysis envisages a high potential of LaB6 with further-increased visible transparency and plasmon peak upon controlled particle-shape and its distribution.

  12. Time-resolved soft-x-ray studies of energy transport in layered and planar laser-driven targets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stradling, G.L.

    New low-energy x-ray diagnostic techniques are used to explore energy-transport processes in laser heated plasmas. Streak cameras are used to provide 15-psec time-resolution measurements of subkeV x-ray emission. A very thin (50 ..mu..g/cm/sup 2/) carbon substrate provides a low-energy x-ray transparent window to the transmission photocathode of this soft x-ray streak camera. Active differential vacuum pumping of the instrument is required. The use of high-sensitivity, low secondary-electron energy-spread CsI photocathodes in x-ray streak cameras is also described. Significant increases in sensitivity with only a small and intermittant decrease in dynamic range were observed. These coherent, complementary advances in subkeV, time-resolvedmore » x-ray diagnostic capability are applied to energy-transport investigations of 1.06-..mu..m laser plasmas. Both solid disk targets of a variety of Z's as well as Be-on-Al layered-disk targets were irradiated with 700-psec laser pulses of selected intensity between 3 x 10/sup 14/ W/cm/sup 2/ and 1 x 10/sup 15/ W/cm/sup 2/.« less

  13. Hydrologic, water-quality, and biological assessment of Laguna de las Salinas, Ponce, Puerto Rico, January 2003-September 2004

    USGS Publications Warehouse

    Soler-López, Luis R.; Gómez-Gómez, Fernando; Rodríguez-Martínez, Jesús

    2005-01-01

    The Laguna de Las Salinas is a shallow, 35-hectare, hypersaline lagoon (depth less than 1 meter) in the municipio of Ponce, located on the southern coastal plain of Puerto Rico. Hydrologic, water-quality, and biological data in the lagoon were collected between January 2003 and September 2004 to establish baseline conditions. During the study period, rainfall was about 1,130 millimeters, with much of the rain recorded during three distinct intense events. The lagoon is connected to the sea by a shallow, narrow channel. Subtle tidal changes, combined with low rainfall and high evaporation rates, kept the lagoon at salinities above that of the sea throughout most of the study. Water-quality properties measured on-site (temperature, pH, dissolved oxygen, specific conductance, and Secchi disk transparency) exhibited temporal rather than spatial variations and distribution. Although all physical parameters were in compliance with current regulatory standards for Puerto Rico, hyperthermic and hypoxic conditions were recorded during isolated occasions. Nutrient concentrations were relatively low and in compliance with current regulatory standards (less than 5.0 and 1.0 milligrams per liter for total nitrogen and total phosphorus, respectively). The average total nitrogen concentration was 1.9 milligrams per liter and the average total phosphorus concentration was 0.4 milligram per liter. Total organic carbon concentrations ranged from 12.0 to 19.0 milligrams per liter. Chlorophyll a was the predominant form of photosynthetic pigment in the water. The average chlorophyll a concentration was 13.4 micrograms per liter. Chlorophyll b was detected (detection limits 0.10 microgram per liter) only twice during the study. About 90 percent of the primary productivity in the Laguna de Las Salinas was generated by periphyton such as algal mats and macrophytes such as seagrasses. Of the average net productivity of 13.6 grams of oxygen per cubic meter per day derived from the diel study, the periphyton and macrophyes produced 12.3 grams per cubic meter per day; about 1.3 grams (about 10 percent) were produced by the phytoplankton (plant and algae component of plankton). The total respiration rate was 59.2 grams of oxygen per cubic meter per day. The respiration rate ascribed to the plankton (all organisms floating through the water column) averaged about 6.2 grams of oxygen per cubic meter per day (about 10 percent), whereas the respiration rate by all other organisms averaged 53.0 grams of oxygen per cubic meter per day (about 90 percent). Plankton gross productivity was 7.5 grams per cubic meter per day; the gross productivity of the entire community averaged 72.8 grams per cubic meter per day. Fecal coliform bacteria counts were generally less than 200 colonies per 100 milliliters; the highest concentration was 600 colonies per 100 milliliters.

  14. Limb darkening in Venus night-side disk as viewed from Akatsuki IR2

    NASA Astrophysics Data System (ADS)

    Satoh, Takehiko; Nakakushi, Takashi; Sato, Takao M.; Hashimoto, George L.

    2017-10-01

    Night-side hemisphere of Venus exhibits dark and bright regions as a result of spatially inhomogeneous cloud opacity which is illuminated by infrared radiation from deeper atmosphere. The 2-μm camera (IR2) onboard Akatsuki, Japan's Venus Climate Orbiter, is equipped with three narrow-band filters (1.735, 2.26, and 2.32 μm) to image Venus night-side disk in well-known transparency windows of CO2 atmosphere (Allen and Crawford 1984). In general, a cloud feature appears brightest when it is in the disk center and becomes darker as the zenith angle of emergent light increases. Such limb darkening was observed with Galileo/NIMS and mathematically approximated (Carlson et al., 1993). Limb-darkening correction helps to identify branches, in a 1.74-μm vs. 2.3-μm radiances scatter plot, each of which corresponds to a group of aerosols with similar properties. We analyzed Akatsuki/IR2 images to characterize the limb darkening for three night-side filters.There is, however, contamination from the intense day-side disk blurred by IR2's point spread function (PSF). It is found that infrared light can be multiplly reflected within the Si substrate of IR2 detector (1024x1024 pixels PtSi array), causing elongated tail in the actual PSF. We treated this in two different ways. One is to mathematically approximate the PSF (with a combination of modified Lorentz functions) and another is to differentiate 2.26-μm image from 2.32-μm image so that the blurred light pattern can directly be obtained. By comparing results from these two methods, we are able to reasonablly clean up the night-side images and limb darkening is extracted. Physical interpretation of limb darkening, as well as "true" time variations of cloud brightness will be presented/discussed.

  15. Coastal Secchi Depth Atlas

    DTIC Science & Technology

    1985-07-01

    ptical properties 5pley. I(-,8). Table 5. Chart 4-Percentage of one-degree squares. 13 f plankton aleae . 0 Table 6. Global coverage-Percentage of one...optical properties result from (e.g., Colorado River), typical in mountainous (tectonic) regions, 9. Hunghlo (Red)110 Mekong and/or organic sediments...typical in mountainous (tectonic) regions, 9. Hungho (Red) 160 Inadequate 10. Mekong 160 Sufficient larger-sized particles in suspension. The

  16. Developing Predictive Models for Algal Bloom Occurrence and Identifying Factors Controlling their Occurrence in the Charlotte County and Surroundings

    NASA Astrophysics Data System (ADS)

    Karki, S.; Sultan, M.; Elkadiri, R.; Chouinard, K.

    2017-12-01

    Numerous occurrences of harmful algal blooms (Karenia Brevis) were reported from Southwest Florida along the coast of Charlotte County, Florida. We are developing data-driven (remote sensing, field, and meteorological data) models to accomplish the following: (1) identify the factors controlling bloom development, (2) forecast bloom occurrences, and (3) make recommendations for monitoring variables that are found to be most indicative of algal bloom occurrences and for identifying optimum locations for monitoring stations. To accomplish these three tasks we completed/are working on the following steps. Firstly, we developed an automatic system for downloading and processing of ocean color data acquired through MODIS Terra and MODIS Aqua products using SeaDAS ocean color processing software. Examples of extracted variables include: chlorophyll a (OC3M), chlorophyll a Generalized Inherent Optical Property (GIOP), chlorophyll a Garver-Siegel- Maritorena (GSM), sea surface temperature (SST), Secchi disk depth, euphotic depth, turbidity index, wind direction and speed, colored dissolved organic material (CDOM). Secondly we are developing a GIS database and a web-based GIS to host the generated remote sensing-based products in addition to relevant meteorological and field data. Examples of the meteorological and field inputs include: precipitation amount and rates, concentrations of nitrogen, phosphorous, fecal coliform and Dissolved Oxygen (DO). Thirdly, we are constructing and validating a multivariate regression model and an artificial neural network model to simulate past algal bloom occurrences using the compiled archival remote sensing, meteorological, and field data. The validated model will then be used to predict the timing and location of algal bloom occurrences. The developed system, upon completion, could enhance the decision making process, improve the citizen's quality of life, and strengthen the local economy.

  17. Sensitivity of plankton indices to lake trophic conditions.

    PubMed

    Ochocka, A; Pasztaleniec, A

    2016-11-01

    Herein, we report the response of indices based on phytoplankton and zooplankton and their combination to different nutrient concentrations in lakes. The study was carried out in ten lakes in northeastern Poland. Integrated samples were collected from the epilimnion during the summer of 2012-2013. Secchi disk visibility (SD), total phosphorus (TP), total nitrogen (TN), and chlorophyll a were used as proxies for eutrophication. We calculated 16 plankton indices: two phytoplankton indices, six crustacean indices, five rotiferan indices, two zooplankton diversity indices, and one combined phytoplankton and zooplankton index. Among them, nine indices with the strongest correlations with TP were selected: percentage share of Crustacean species indicative of high trophy in the indicative group's numbers (IHT CRU ), percentage share of Rotifera species indicative of high trophy in the indicative group's numbers IHT ROT , Crustacean ratio of biomass to numbers B/N CRU , phytoplankton trophic index (TI TP+TN ), Margalef's index, percentage share of cyclopoid biomass in total biomass of Crustacea (CB), Rotifera numbers (N ROT ), biomass of Cyclopoida (B CY ), and ratio of the cyclopoid biomass to the biomass of Cladocera (CY/CL). The sensitivity of the normalized values of these indices to proxies of eutrophication was tested. IHT CRU , IHT ROT , and B/N CRU were the most sensitive and gave the strongest responses at lower TP concentrations (<35 μg/L). The phytoplankton trophic index, TI TP+TN , together with the zooplankton-based Margalef's index and CB were very sensitive in both low (<35 μg/L) and high (>60 μg/L) TP conditions. On the other hand, N ROT , B CY , and CY/CL were slightly sensitive at low TP concentrations while their reaction was notable at high TP concentrations. A similar pattern of response was observed for TN concentration and SD visibility.

  18. The solar and heliospheric imager (SoloHI) instrument for the solar orbiter mission

    NASA Astrophysics Data System (ADS)

    Howard, Russell A.; Vourlidas, Angelos; Korendyke, Clarence M.; Plunkett, Simon P.; Carter, Michael T.; Wang, Dennis; Rich, Nathan; McMullin, Donald R.; Lynch, Sean; Thurn, Adam; Clifford, Greg; Socker, Dennis G.; Thernisien, Arnaud F.; Chua, Damien; Linton, Mark G.; Keller, David; Janesick, James R.; Tower, John; Grygon, Mark; Hagood, Robert; Bast, William; Liewer, Paulett C.; DeJong, Eric M.; Velli, Marco M. C.; Mikic, Zoran; Bothmer, Volker; Rochus, Pierre; Halain, Jean-Philippe; Lamy, Philippe L.

    2013-09-01

    The SoloHI instrument for the ESA/NASA Solar Orbiter mission will track density fluctuations in the inner heliosphere, by observing visible sunlight scattered by electrons in the solar wind. Fluctuations are associated with dynamic events such as coronal mass ejections, but also with the "quiescent" solar wind. SoloHI will provide the crucial link between the low corona observations from the Solar Orbiter instruments and the in-situ measurements on Solar Orbiter and the Solar Probe Plus missions. The instrument is a visible-light telescope, based on the SECCHI/Heliospheric Imager (HI) currently flying on the STEREO mission. In this concept, a series of baffles reduce the scattered light from the solar disk and reflections from the spacecraft to levels below the scene brightness, typically by a factor of 1012. The fluctuations are imposed against a much brighter signal produced by light scattered by dust particles (the zodiacal light/F-corona). Multiple images are obtained over a period of several minutes and are summed on-board to increase the signal-to-noise ratio and to reduce the telemetry load. SoloHI is a single telescope with a 40⁰ field of view beginning at 5° from the Sun center. Through a series of Venus gravity assists, the minimum perihelia for Solar Orbiter will be reduced to about 60 Rsun (0.28 AU), and the inclination of the orbital plane will be increased to a maximum of 35° after the 7 year mission. The CMOS/APS detector is a mosaic of four 2048 x 1930 pixel arrays, each 2-side buttable with 11 μm pixels.

  19. Overview of the limnology of crater lake

    USGS Publications Warehouse

    Larson, G.L.

    1996-01-01

    Crater Lake occupies the collapsed caldera of volcanic Mount Mazama in Crater Lake National Park, Oregon. It is the deepest lake (589 m) in the United States and the 7th deepest lake in the world. The water column mixes to a depth of about 200 m in winter and spring from wind energy and cooling. The deep lake is mixed in winter and early spring each year when relatively cold water near the surface sinks and exchanges positions with water in the deep basins of the lake. The lake becomes thermally stratified in summer and early fall. The metalimnion extends to a depth of about 100 m; thus most of the water column is a cold hypolimnion. Secchi disk clarity measurements typically are in the upper-20-m range to the low-30-m range in summer and early fall. Concentrations of nutrients are low, although conductivity is relatively high owing to the inflow of hydrothermal fluids. Total chlorophyll is low in concentration, but typically maximal at a depth of 120 m during periods of thermal stratification. Primary production also is low, with the maximum levels occurring between the depth of 40 and 80 m. Phytoplankton taxa are spatially segregated from each other within the water column to a depth of 200 m in summer and early fall. The same generalization applies to the Zooplankton taxa. Water level, clarity, concentrations of total chlorophyll, primary production, and abundances of zooplankton and introduced kokanee salmon exhibit long-term fluctuations. Based primarily on a recent 10-year study of the lake, the lake is considered to be pristine, except for the consequences of fish introductions. ?? 1996 by the Northwest Scientific Association. All rights reserved.

  20. Overview of the limnology of Crater Lake

    USGS Publications Warehouse

    Larson, Gary L.

    1996-01-01

    Crater Lake occupies the collapsed caldera of volcanic Mount Mazama in Crater Lake National Park, Oregon. It is the deepest lake (589 m) in the United States and the 7th deepest lake in the world. The water column mixes to a depth of about 200 m in winter and spring from wind energy and cooling. The deep lake is mixed in winter and early spring each year when relatively cold water near the surface sinks and exchanges positions with water in the deep basins of the lake. The lake becomes thermally stratified in summer and early fall. The metalimnion extends to a depth of about 100 m; thus most of the water column is a cold hypolimnion. Secchi disk clarity measurements typically are in the upper-20-m range to the low-30-m range in summer and early fall. Concentrations of nutrients are low, although conductivity is relatively high owing to the inflow of hydrothermal fluids. Total chlorophyll is low in concentration, but typically maximal at a depth of 120 m during periods of thermal stratification. Primary production also is low, with the maximum levels occurring between the depth of 40 and 80 m. Phytoplankton taxa are spatially segregated from each other within the water column to a depth of 200 m in summer and early fall. The same generalization applies to the zooplankton taxa. Water level, clarity, concentrations of total chlorophyll, primary production, and abundances of zooplankton and introduced kokanee salmon exhibit long-term fluctuations. Based primarily on a recent 10-year study of the lake, the lake is considered to be pristine, except for the consequences of fish introductions.

  1. Temporal variation in methane emissions in a shallow lake at a southern mid latitude during high and low rainfall periods.

    PubMed

    Fusé, Victoria S; Priano, M Eugenia; Williams, Karen E; Gere, José I; Guzmán, Sergio A; Gratton, Roberto; Juliarena, M Paula

    2016-10-01

    The global methane (CH 4 ) emission of lakes is estimated at between 6 and 16 % of total natural CH 4 emissions. However, these values have a high uncertainty due to the wide variety of lakes with important differences in their morphological, biological, and physicochemical parameters and the relatively scarse data from southern mid-latitude lakes. For these reasons, we studied CH 4 fluxes and CH 4 dissolved in water in a typical shallow lake in the Pampean Wetland, Argentina, during four periods of consecutive years (April 2011-March 2015) preceded by different rainfall conditions. Other water physicochemical parameters were measured and meteorological data were reported. We identified three different states of the lake throughout the study as the result of the irregular alternation between high and low rainfall periods, with similar water temperature values but with important variations in dissolved oxygen, chemical oxygen demand, water turbidity, electric conductivity, and water level. As a consequence, marked seasonal and interannual variations occurred in CH 4 dissolved in water and CH 4 fluxes from the lake. These temporal variations were best reflected by water temperature and depth of the Secchi disk, as a water turbidity estimation, which had a significant double correlation with CH 4 dissolved in water. The mean CH 4 fluxes values were 0.22 and 4.09 mg/m 2 /h for periods with low and high water turbidity, respectively. This work suggests that water temperature and turbidity measurements could serve as indicator parameters of the state of the lake and, therefore, of its behavior as either a CH 4 source or sink.

  2. Decadal increase in seagrass biomass and temperature at the CARICOMP site in Bocas del Toro, Panama.

    PubMed

    López-Calderón, Jorge M; Guzmán, Hector M; Jácome, Gabriel E; Barnes, Penélope A G

    2013-12-01

    The Caribbean Coastal Marine Productivity Program (CARICOMP) was launched in 1993 to study regional long-term interactions between land and sea, taking standardized measurements of productivity and biomass of mangroves, coral reefs and seagrasses. Since 1999 continuous measurements of seagrass (Thalassia testudinum) parameters as well as environmental data have been recorded in Caribbean Panama. Replicate stations were selected near the Smithsonian Tropical Research Institute in Bocas del Toro. Sediment cores and quadrants were placed there to estimate biomass and productivity, respectively. Mean values for productivity, standing crop, turnover rate, total dry biomass, and Leaf Area Index were 1.74 gDW/m2/d, 66.6 gDW/m2, 2.62%/d, 1481 gDW/m2, and 4.65, respectively. Total dry biomass (shoots, rhizomes and roots) and LAI of T. testudinum increased significantly during the study period. Mean values for total rainfall, Secchi disk depth, sea surface temperature, and salinity were 3498 mm, 8.24 m, 28.79 degrees C, and 32.26 psu, respectively. Sea surface temperature was the only environmental variable with a statistically significant change, increasing from 1999 to 2010. Correlation between sea surface temperature and 7 testudinum parameters (total biomass and LAI) were both positive and significant. Human population has increased dramatically over the last ten years in Bocas del Toro region, increasing pressure (deforestation, runoff, wastewater) over coastal ecosystems (seagrasses, mangroves, coral reefs). Change in the abundance of 7 testudinum may be linked to ocean warming, as a consequence to satisfy plant's metabolic requirements, although other local factors need to be analyzed (reduced grazing and increased eutrophication). A further warming of the ocean could have a negative effect on T. testudinum population, increasing respiratory demands and microbial metabolism.

  3. Classifying Natural Waters with the Forel-Ule Colour Index System: Results, Applications, Correlations and Crowdsourcing.

    PubMed

    Garaba, Shungudzemwoyo P; Friedrichs, Anna; Voß, Daniela; Zielinski, Oliver

    2015-12-18

    Societal awareness of changes in the environment and climate has grown rapidly, and there is a need to engage citizens in gathering relevant scientific information to monitor environmental changes due to recognition that citizens are a potential source of critical information. The apparent colour of natural waters is one aspect of our aquatic environment that is easy to detect and an essential complementary optical water quality indicator. Here we present the results and explore the utility of the Forel-Ule colour index (FUI) scale as a proxy for different properties of natural waters. A FUI scale is used to distinguish the apparent colours of different natural surface water masses. Correlation analysis was completed in an effort to determine the constituents of natural waters related to FUI. Strong correlations with turbidity, Secchi-disk depth, and coloured dissolved organic material suggest the FUI is a good indicator of changes related to other constituents of water. The increase in the number of tools capable of determining the FUI colours, (i) ocean colour remote sensing products; (ii) a handheld scale; and (iii) a mobile device app, make it a versatile relative measure of water quality. It has the potential to provide higher spatial and temporal resolution of data for a modernized classification of optical water quality. This FUI colour system has been favoured by several scientists in the last century because it is affordable and easy to use and provides indicative information about the colour of water and the water constituents producing that colour. It is therefore within the scope of a growing interest in the application and usefulness of basic measurement methodologies with the potential to provide timely benchmark information about the environment to the public, scientists and policymakers.

  4. Classifying Natural Waters with the Forel-Ule Colour Index System: Results, Applications, Correlations and Crowdsourcing

    PubMed Central

    Garaba, Shungudzemwoyo P.; Friedrichs, Anna; Voß, Daniela; Zielinski, Oliver

    2015-01-01

    Societal awareness of changes in the environment and climate has grown rapidly, and there is a need to engage citizens in gathering relevant scientific information to monitor environmental changes due to recognition that citizens are a potential source of critical information. The apparent colour of natural waters is one aspect of our aquatic environment that is easy to detect and an essential complementary optical water quality indicator. Here we present the results and explore the utility of the Forel-Ule colour index (FUI) scale as a proxy for different properties of natural waters. A FUI scale is used to distinguish the apparent colours of different natural surface water masses. Correlation analysis was completed in an effort to determine the constituents of natural waters related to FUI. Strong correlations with turbidity, Secchi-disk depth, and coloured dissolved organic material suggest the FUI is a good indicator of changes related to other constituents of water. The increase in the number of tools capable of determining the FUI colours, (i) ocean colour remote sensing products; (ii) a handheld scale; and (iii) a mobile device app, make it a versatile relative measure of water quality. It has the potential to provide higher spatial and temporal resolution of data for a modernized classification of optical water quality. This FUI colour system has been favoured by several scientists in the last century because it is affordable and easy to use and provides indicative information about the colour of water and the water constituents producing that colour. It is therefore within the scope of a growing interest in the application and usefulness of basic measurement methodologies with the potential to provide timely benchmark information about the environment to the public, scientists and policymakers. PMID:26694444

  5. Three-Dimensional Structure and Evolution of Extreme-Ultraviolet Bright Points Observed by STEREO/SECCHI/EUVI

    NASA Technical Reports Server (NTRS)

    Kwon, Ryun Young; Chae, Jongchul; Davila, Joseph M.; Zhang, Jie; Moon, Yong-Jae; Poomvises, Watanachak; Jones, Shaela I.

    2012-01-01

    We unveil the three-dimensional structure of quiet-Sun EUV bright points and their temporal evolution by applying a triangulation method to time series of images taken by SECCHI/EUVI on board the STEREO twin spacecraft. For this study we examine the heights and lengths as the components of the three-dimensional structure of EUV bright points and their temporal evolutions. Among them we present three bright points which show three distinct changes in the height and length: decreasing, increasing, and steady. We show that the three distinct changes are consistent with the motions (converging, diverging, and shearing, respectively) of their photospheric magnetic flux concentrations. Both growth and shrinkage of the magnetic fluxes occur during their lifetimes and they are dominant in the initial and later phases, respectively. They are all multi-temperature loop systems which have hot loops (approx. 10(exp 6.2) K) overlying cooler ones (approx 10(exp 6.0) K) with cool legs (approx 10(exp 4.9) K) during their whole evolutionary histories. Our results imply that the multi-thermal loop system is a general character of EUV bright points. We conclude that EUV bright points are flaring loops formed by magnetic reconnection and their geometry may represent the reconnected magnetic field lines rather than the separator field lines.

  6. STEREO/SECCHI Stereoscopic Observations Constraining the Initiation of Polar Coronal Jets

    NASA Technical Reports Server (NTRS)

    Patsourakos, S.; Pariat, E.; Vourlidas, A.; Antiochos, S. K.; Wuelser, J. P.

    2008-01-01

    We report on the first stereoscopic observations of polar coronal jets made by the EUVI/SECCHI imagers on board the twin STEREO spacecraft. The significantly separated viewpoints (approximately 11 degrees ) allowed us to infer the 3D dynamics and morphology of a well-defined EUV coronal jet for the first time. Triangulations of the jet's location in simultaneous image pairs led to the true 3D position and thereby its kinematics. Initially the jet ascends slowly at approximately equal to 10-20 kilometers per second and then, after an apparent 'jump' takes place, it accelerates impulsively to velocities exceeding 300 kilometers per second with accelerations exceeding the solar gravity. Helical structure is the most important geometrical feature of the jet which shows evidence of untwisting. The jet structure appears strikingly different from each of the two STEREO viewpoints: face-on in the one viewpoint and edge-on in the other. This provides conclusive evidence that the observed helical structure is real and is not resulting from possible projection effects of single viewpoint observations. The clear demonstration of twisted structure in polar jets compares favorably with synthetic images from a recent MHD simulation of jets invoking magnetic untwisting as their driving mechanism. Therefore, the latter can be considered as a viable mechanism for the initiation of polar jets.

  7. Dissolved organic carbon and its potential predictors in eutrophic lakes.

    PubMed

    Toming, Kaire; Kutser, Tiit; Tuvikene, Lea; Viik, Malle; Nõges, Tiina

    2016-10-01

    Understanding of the true role of lakes in the global carbon cycle requires reliable estimates of dissolved organic carbon (DOC) and there is a strong need to develop remote sensing methods for mapping lake carbon content at larger regional and global scales. Part of DOC is optically inactive. Therefore, lake DOC content cannot be mapped directly. The objectives of the current study were to estimate the relationships of DOC and other water and environmental variables in order to find the best proxy for remote sensing mapping of lake DOC. The Boosted Regression Trees approach was used to clarify in which relative proportions different water and environmental variables determine DOC. In a studied large and shallow eutrophic lake the concentrations of DOC and coloured dissolved organic matter (CDOM) were rather high while the seasonal and interannual variability of DOC concentrations was small. The relationships between DOC and other water and environmental variables varied seasonally and interannually and it was challenging to find proxies for describing seasonal cycle of DOC. Chlorophyll a (Chl a), total suspended matter and Secchi depth were correlated with DOC and therefore are possible proxies for remote sensing of seasonal changes of DOC in ice free period, while for long term interannual changes transparency-related variables are relevant as DOC proxies. CDOM did not appear to be a good predictor of the seasonality of DOC concentration in Lake Võrtsjärv since the CDOM-DOC coupling varied seasonally. However, combining the data from Võrtsjärv with the published data from six other eutrophic lakes in the world showed that CDOM was the most powerful predictor of DOC and can be used in remote sensing of DOC concentrations in eutrophic lakes. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Real-time compression of raw computed tomography data: technology, architecture, and benefits

    NASA Astrophysics Data System (ADS)

    Wegener, Albert; Chandra, Naveen; Ling, Yi; Senzig, Robert; Herfkens, Robert

    2009-02-01

    Compression of computed tomography (CT) projection samples reduces slip ring and disk drive costs. A lowcomplexity, CT-optimized compression algorithm called Prism CTTM achieves at least 1.59:1 and up to 2.75:1 lossless compression on twenty-six CT projection data sets. We compare the lossless compression performance of Prism CT to alternative lossless coders, including Lempel-Ziv, Golomb-Rice, and Huffman coders using representative CT data sets. Prism CT provides the best mean lossless compression ratio of 1.95:1 on the representative data set. Prism CT compression can be integrated into existing slip rings using a single FPGA. Prism CT decompression operates at 100 Msamp/sec using one core of a dual-core Xeon CPU. We describe a methodology to evaluate the effects of lossy compression on image quality to achieve even higher compression ratios. We conclude that lossless compression of raw CT signals provides significant cost savings and performance improvements for slip rings and disk drive subsystems in all CT machines. Lossy compression should be considered in future CT data acquisition subsystems because it provides even more system benefits above lossless compression while achieving transparent diagnostic image quality. This result is demonstrated on a limited dataset using appropriately selected compression ratios and an experienced radiologist.

  9. Virtual file system for PSDS

    NASA Technical Reports Server (NTRS)

    Runnels, Tyson D.

    1993-01-01

    This is a case study. It deals with the use of a 'virtual file system' (VFS) for Boeing's UNIX-based Product Standards Data System (PSDS). One of the objectives of PSDS is to store digital standards documents. The file-storage requirements are that the files must be rapidly accessible, stored for long periods of time - as though they were paper, protected from disaster, and accumulative to about 80 billion characters (80 gigabytes). This volume of data will be approached in the first two years of the project's operation. The approach chosen is to install a hierarchical file migration system using optical disk cartridges. Files are migrated from high-performance media to lower performance optical media based on a least-frequency-used algorithm. The optical media are less expensive per character stored and are removable. Vital statistics about the removable optical disk cartridges are maintained in a database. The assembly of hardware and software acts as a single virtual file system transparent to the PSDS user. The files are copied to 'backup-and-recover' media whose vital statistics are also stored in the database. Seventeen months into operation, PSDS is storing 49 gigabytes. A number of operational and performance problems were overcome. Costs are under control. New and/or alternative uses for the VFS are being considered.

  10. Development of a standardized differential-reflective bioassay for microbial pathogens

    NASA Astrophysics Data System (ADS)

    Wilhelm, Jay; Auld, J. R. X.; Smith, James E.

    2008-04-01

    This research examines standardizing a method for the rapid/semi-automated identification of microbial contaminates. It introduces a method suited to test for food/water contamination, serology, urinalysis and saliva testing for any >1 micron sized molecule that can be effectively bound to an identifying marker with exclusivity. This optical biosensor method seeks to integrate the semi-manual distribution of a collected sample onto a "transparent" substrate array of binding sites that will then be applied to a standard optical data disk and run for analysis. The detection of most microbe species is possible in this platform because the relative scale is greater than the resolution of the standard-scale digital information on a standard CD or DVD. This paper explains the critical first stage in the advance of this detection concept. This work has concentrated on developing the necessary software component needed to perform highly sensitive small-scale recognition using the standard optical disk as a detection platform. Physical testing has made significant progress in demonstrating the ability to utilize a standard optical drive for the purposes of micro-scale detection through the exploitation of CIRC error correction. Testing has also shown a definable trend in the optimum scale and geometry of micro-arrayed attachment sites for the technology's concept to reach achievement.

  11. Effect of magnetic field on beta processes in a relativistic moderately degenerate plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ognev, I. S., E-mail: ognev@uniyar.ac.ru

    The effect of a magnetic field of arbitrary strength on the beta decay and crossing symmetric processes is analyzed. A covariant calculation technique is used to derive the expression for the squares of S-matrix elements of these reactions, which is also valid in reference frames in which the medium moves as a single whole along magnetic field lines. Simple analytic expressions obtained for the neutrino and antineutrino emissivities for a moderately degenerate plasma fully characterize the emissivity and absorbability of the studied medium. It is shown that the approximation used here is valid for core collapse supernovae and accretion disksmore » around black holes; beta processes in these objects are predominantly neutrino reactions. The analytic expressions obtained for the emissivities can serve as a good approximation for describing the interaction of electron neutrinos and antineutrinos with the medium of the objects in question and hold for an arbitrary magnetic field strength. Due to their simplicity, these expressions can be included in the magnetohydrodynamic simulation of supernovae and accretion disks to calculate neutrino and antineutrino transport in them. The rates of beta processes and the energy and momentum emitted in them are calculated for an optically transparent matter. It is shown that the macroscopic momentum transferred in the medium increases linearly with the magnetic field strength and can substantially affect the dynamics of supernovae and accretion disks in the regions of a degenerate matter. It is also shown that the rates of beta processes and the energy emission for a magnetic field strength of B ≲ 10{sup 15} G typical of supernovae and accretion disks are lower than in the absence of field. This suppression is stronger for reactions with neutrinos.« less

  12. Naval Research Laboratory Space Science Division Newsletter: 01/2007

    DTIC Science & Technology

    2007-04-20

    Temperature Solar Flare Images 5. SECCHI HI-1B First Light 6. NRL SEAP Student Receives Intel Science Talent Search Semifinalist Award 7. NASA...achieved first light on 28 OCT 2006. EIS is observing emission lines produced by highly ionized elements in the solar corona and transition region of...measurements of the solar corona and CMEs as they propagate through the inner heliosphere. STEREO launched October 25, 2006, and achieved first light in early

  13. Micromagnetic structure in Co-alloy thin films and its correlation with microstructure

    NASA Astrophysics Data System (ADS)

    Tang, Kai

    The development of magnetic hard disk recording has resulted in an increase of recording density in an accelerated pace. How to maintain the increasingly smaller bits with low noise presents a tremendous challenge to the recording media, which requires detailed study of micromagnetic structure of the media to understand the noise mechanism, and elucidation of the correlation between the micromagnetic structure and microstructure to systematically develop media materials and tailor their microstructure. Lorentz transmission electron microscopy (LTEM) is a high-resolution magnetic imaging technique. However, it requires uniformly thin specimens, which cannot be produced by conventional TEM specimen preparation methods. Consequently, its application to real computer magnetic hard disks has been limited. In this dissertation, a combined dimpling and chemical etching method is introduced to prepare specimens directly from the unmodified hard disks with the typical C/Co alloy/Cr/NiP/Al (substrate) structure. The specimens typically have 2000 μmsp2 or larger electron transparent areas of Co alloy/Cr films with uniform thickness, which are suitable for LTEM observation. This method is applicable to disks with both smooth and mechanically textured substrates. In this work, LTEM has been employed to study recorded patterns in real hard disks. Magnetic recording was performed on a standard spin stand. Bits of densities from 15 to 100 kfci were examined with head skew angles of 0sp° and 20sp°, respectively. We also compared tracks recorded on dc-erased disks with those on as-deposited disks. We observed magnetic ripples within the tracks and the inter-track regions, magnetic vortices of 0.1-0.2 mum in diameter at the bit-transitions, and curved magnetic domain walls in the track-edge regions resulting from the "dog-bone" shaped head field profile. Our results also indicate that the micromagnetic structure at the track edges is influenced by head skew and magnetization direction in the inter-track regions. The LTEM results are combined with MFM observations to provide further understanding. The study has concentrated on isotropic media on smooth substrates since low head-to-medium spacing required by high recording density demonstrates the need for this type of media. The recorded tracks are remanent magnetic states after a strong (head) magnetic field was applied. We also examined an ac-erased state, in which the effect of external field is removed. Magnetic vortices are identified, in which small crystal grains form magnetic clusters and these clusters then form closed-fluxed vortices. The size of these vortices is estimated to be around 1.0-1.5 mum, about 10 times larger than that found in the bit-transition regions. The smaller vortex sizes in the bit-transition regions may result from constraints from adjacent bits as well as the difference in magnetic processes generating these states. (Abstract shortened by UMI.)

  14. The aquatic optics of Lake Tahoe, California-Nevada

    NASA Astrophysics Data System (ADS)

    Swift, Theodore John

    The causes of visual clarity decline and variability in Lake Tahoe, USA, were investigated within the framework of hydrologic optics theory. Ultra-oligotrophic subalpine (1898 m elevation) Lake Tahoe is among the world's clearest, deepest (499 m) and largest (500 km2), representing a unique environmental and economic resource. University of California Davis has documented a ˜0.3 m y-1 trend of decreasing Secchi depth, with ˜3 m interannual variations. Previous work strongly suggested two seasonal modes due to independent processes: A June minimum is due primarily to tributary sediment discharge during snowmelt. A December minimum is due to the deepening mixed layer bringing up phytoplankton and other particles that form a deep particle maximum (DCM) well below the summer mixed layer and Secchi depth stratum. SEM and elemental analysis confirmed as much as 60 percent of near-surface suspended particles were of terrestrial inorganic origin in summer, with inorganic particles minimal (˜20 percent) in winter. Chromophoric dissolved organic matter (CDOM) light absorption in Tahoe is extremely low, comparable to pelagic marine waters, and plays a minor role in clarity loss in Tahoe. However, CDOM reduces ultraviolet light penetration. Mean absorption is 0.040 +/- 0.003 m-1 at 400 nm with 0.023 +/- 0.004 nm-1 exponential slope. The CDOM appears to be autochthonous (phytoplankton), rather than allocthonous (terrestrial humic substances). Chlorophyll-specific particulate absorption is similar to that found for temperate oceans, implying that ocean color models can be successfully applied to Lake Tahoe. Chlorophyll-specific diffuse attenuation along with increased scattering by sediments has caused an upward shift of the DCM from 60--90 m (early 1970s) to 40--70 m recently. Increased attenuation will reduce benthic relative to pelagic primary production. Since measurements in 1971, the lake's color has shifted slightly from blue towards green, though more seasonal measurements are needed to fully quantify the recent range of variation. A clarity model was developed that predicts Secchi depth and diffuse attenuation from inorganic particle and chlorophyll concentration. While organic particles are generally the numerical majority, inorganic particles cause ˜60% of clarity loss, algal-derived particles contribute ˜25%, with the remainder due to CDOM and pure water absorption.

  15. Evidence for a current sheet forming in the wake of a coronal mass ejection from multi-viewpoint coronagraph observations

    NASA Astrophysics Data System (ADS)

    Patsourakos, S.; Vourlidas, A.

    2011-01-01

    Context. Ray-like features observed by coronagraphs in the wake of coronal mass ejections (CMEs) are sometimes interpreted as the white light counterparts of current sheets (CSs) produced by the eruption. The 3D geometry of these ray-like features is largely unknown and its knowledge should clarify their association to the CS and place constraints on CME physics and coronal conditions. Aims: If these rays are related to field relaxation behind CMEs, therefore representing current sheets, then they should be aligned to the CME axis. With this study we test these important implications for the first time. Methods: An example of such a post-CME ray was observed by various coronagraphs, including these of the Sun Earth Connection Coronal and Heliospheric investigation (SECCHI) onboard the Solar Terrestrial Relations Observatory (STEREO) twin spacecraft and the Large Angle Spectrometric Coronagraph (LASCO) onboard the Solar and Heliospheric Observatory (SOHO). The ray was observed in the aftermath of a CME which occurred on 9 April 2008. The twin STEREO spacecraft were separated by about 48° on that day. This significant separation combined with a third “eye” view supplied by LASCO allow for a truly multi-viewpoint observation of the ray and of the CME. We applied 3D forward geometrical modeling to the CME and to the ray as simultaneously viewed by SECCHI-A and B and by SECCHI-A and LASCO, respectively. Results: We found that the ray can be approximated by a rectangular slab, nearly aligned with the CME axis, and much smaller than the CME in both terms of thickness and depth (≈0.05 and 0.15 R⊙ respectively). The ray electron density and temperature were substantially higher than their values in the ambient corona. We found that the ray and CME are significantly displaced from the associated post-CME flaring loops. Conclusions: The properties and location of the ray are fully consistent with the expectations of the standard CME theories for post-CME current sheets. Therefore, our multi-viewpoint observations supply strong evidence that the observed post-CME ray is indeed related to a post-CME current sheet. Movies are only available in electronic form at http://www.aanda.org

  16. Whispering-Gallery-Mode Tunable Narrow-Band-Pass Filter

    NASA Technical Reports Server (NTRS)

    Savchenkov, Anatoliy; Iltchenko, Vladimir; Matsko, Andrey; Maleki, Lute

    2004-01-01

    An experimental tunable, narrow-band-pass electro-optical filter is based on a whispering-gallery resonator. This device is a prototype of tunable filters needed for the further development of reconfigurable networking wavelength-division multiplexers and communication systems that utilize radio-frequency (more specifically, microwave) subcarrier signals on optical carrier signals. The characteristics of whispering-gallery resonators that make them attractive for such applications include high tuning speed, compactness, wide tuning range, low power consumption, and compatibility with single-mode optical fibers. In addition, relative to Fabry-Perot resonators, these devices offer advantages of greater robustness and lower cost. As described in several prior NASA Tech Briefs articles, a whispering-gallery resonator is a spheroidal, disk-like, or toroidal body made of a highly transparent material. It is so named because it is designed to exploit whispering-gallery electromagnetic modes, which are waveguide modes that propagate circumferentially and are concentrated in a narrow toroidal region centered on the equatorial plane and located near the outermost edge. The experimental whispering-gallery tunable filter (see figure) is made from a disk of Z-cut LiNbO3 of 4.8-mm diameter and 0.17-mm thickness. The perimeter of the disk is rounded to a radius of curvature of 100 m. Metal coats on the flat faces of the disk serve as electrodes for exploiting the electro-optical effect in LiNbO3 for tuning. There is no metal coat on the rounded perimeter region, where the whispering-gallery modes propagate. Light is coupled from an input optical fiber into the whispering-gallery modes by means of a diamond prism. Another diamond prism is used to couple light from the whispering-gallery modes to an output optical fiber. This device is designed and operated to exploit transverse magnetic (TM) whispering- gallery modes, rather than transverse electric (TE) modes because the resonance quality factors (Q values) of the TM modes are higher. If Q values were not of major concern, it would be better to use the TE modes because the electro-optical shifts of the TE modes are 3 times those of the TM modes.

  17. Laser-plasmas in the relativistic-transparency regime: Science and applications

    NASA Astrophysics Data System (ADS)

    Fernández, Juan C.; Cort Gautier, D.; Huang, Chengkung; Palaniyappan, Sasikumar; Albright, Brian J.; Bang, Woosuk; Dyer, Gilliss; Favalli, Andrea; Hunter, James F.; Mendez, Jacob; Roth, Markus; Swinhoe, Martyn; Bradley, Paul A.; Deppert, Oliver; Espy, Michelle; Falk, Katerina; Guler, Nevzat; Hamilton, Christopher; Hegelich, Bjorn Manuel; Henzlova, Daniela; Ianakiev, Kiril D.; Iliev, Metodi; Johnson, Randall P.; Kleinschmidt, Annika; Losko, Adrian S.; McCary, Edward; Mocko, Michal; Nelson, Ronald O.; Roycroft, Rebecca; Santiago Cordoba, Miguel A.; Schanz, Victor A.; Schaumann, Gabriel; Schmidt, Derek W.; Sefkow, Adam; Shimada, Tsutomu; Taddeucci, Terry N.; Tebartz, Alexandra; Vogel, Sven C.; Vold, Erik; Wurden, Glen A.; Yin, Lin

    2017-05-01

    Laser-plasma interactions in the novel regime of relativistically induced transparency (RIT) have been harnessed to generate intense ion beams efficiently with average energies exceeding 10 MeV/nucleon (>100 MeV for protons) at "table-top" scales in experiments at the LANL Trident Laser. By further optimization of the laser and target, the RIT regime has been extended into a self-organized plasma mode. This mode yields an ion beam with much narrower energy spread while maintaining high ion energy and conversion efficiency. This mode involves self-generation of persistent high magnetic fields (˜104 T, according to particle-in-cell simulations of the experiments) at the rear-side of the plasma. These magnetic fields trap the laser-heated multi-MeV electrons, which generate a high localized electrostatic field (˜0.1 T V/m). After the laser exits the plasma, this electric field acts on a highly structured ion-beam distribution in phase space to reduce the energy spread, thus separating acceleration and energy-spread reduction. Thus, ion beams with narrow energy peaks at up to 18 MeV/nucleon are generated reproducibly with high efficiency (≈5%). The experimental demonstration has been done with 0.12 PW, high-contrast, 0.6 ps Gaussian 1.053 μm laser pulses irradiating planar foils up to 250 nm thick at 2-8 × 1020 W/cm2. These ion beams with co-propagating electrons have been used on Trident for uniform volumetric isochoric heating to generate and study warm-dense matter at high densities. These beam plasmas have been directed also at a thick Ta disk to generate a directed, intense point-like Bremsstrahlung source of photons peaked at ˜2 MeV and used it for point projection radiography of thick high density objects. In addition, prior work on the intense neutron beam driven by an intense deuterium beam generated in the RIT regime has been extended. Neutron spectral control by means of a flexible converter-disk design has been demonstrated, and the neutron beam has been used for point-projection imaging of thick objects. The plans and prospects for further improvements and applications are also discussed.

  18. Laser-plasmas in the relativistic-transparency regime: science and applications

    DOE PAGES

    Fernandez, Juan Carlos; Gautier, Donald Cort; Huang, Chengkun; ...

    2017-05-30

    Laser-plasma interactions in the novel regime of relativistically induced transparency (RIT) have been harnessed to generate intense ion beams efficiently with average energies exceeding 10 MeV/nucleon (>100 MeV for protons) at “table-top” scales in experiments at the LANL Trident Laser. By further optimization of the laser and target, the RIT regime has been extended into a self-organized plasma mode. This mode yields an ion beam with much narrower energy spread while maintaining high ion energy and conversion efficiency. This mode involves self-generation of persistent high magnetic fields (~10 4 T, according to particle-in-cell simulations of the experiments) at the rear-sidemore » of the plasma. These magnetic fields trap the laser-heated multi-MeV electrons, which generate a high localized electrostatic field (~0.1 TV/m). After the laser exits the plasma, this electric field acts on a highly structured ion-beam distribution in phase space to reduce the energy spread, thus separating acceleration and energy-spread reduction. Thus, ion beams with narrow energy peaks at up to 18 MeV/nucleon are generated reproducibly with high efficiency (≈5%). The experimental demonstration has been done with 0.12 PW, high-contrast, 0.6 ps Gaussian 1.053 μm laser pulses irradiating planar foils up to 250 nm thick at 2–8 × 10 20 W/cm 2. These ion beams with co-propagating electrons have been used on Trident for uniform volumetric isochoric heating to generate and study warm-dense matter at high densities. These beam plasmas have been directed also at a thick Ta disk to generate a directed, intense point-like Bremsstrahlung source of photons peaked at ~2 MeV and used it for point projection radiography of thick high density objects. In addition, prior work on the intense neutron beam driven by an intense deuterium beam generated in the RIT regime has been extended. Neutron spectral control by means of a flexible converter-disk design has been demonstrated, and the neutron beam has been used for point-projection imaging of thick objects. Finally, we discuss the plans and prospects for further improvements and applications.« less

  19. Relations of biological indicators to nutrient data for lakes and streams in Pennsylvania and West Virginia, 1990-98

    USGS Publications Warehouse

    Brightbill, Robin A.; Koerkle, Edward H.

    2003-01-01

    The Clean Water Action Plan of 1998 provides a blueprint for federal agencies to work with states, tribes, and other stakeholders to protect and restore the Nation's water resources. The plan includes an initiative that addresses the nutrient-enrichment problem of lakes and streams across the United States. The U.S. Environmental Protection Agency (USEPA) is working to set nutrient criteria by nationwide nutrient ecoregions that are an aggregation of the Omernik level III ecoregions. Because low levels of nutrients are necessary for healthy streams and elevated concentrations can cause algal blooms that deplete available oxygen and kill off aquatic organisms, criteria levels are to be set, in part, using the relation between chlorophyll a and concentrations of total nitrogen and total phosphorus.Data from Pennsylvania and West Virginia, collected between 1990 and 1998, were analyzed for relations between chlorophyll a, nutrients, and other explanatory variables. Both phytoplankton and periphyton chlorophyll a concentrations from lakes and streams were analyzed separately within each of the USEPA nutrient ecoregions located within the boundaries of the two states. These four nutrient ecoregions are VII (Mostly Glaciated Dairy), VIII (Nutrient Poor, Largely Glaciated Upper Midwest and Northeast), IX (Southeastern Temperate Forested Plains and Hills), and XI (Central and Eastern Forested Uplands).Phytoplankton chlorophyll a concentrations in lakes were related to total nitrogen, total phosphorus, Secchi depth, concentration of dissolved oxygen, pH, water temperature, and specific conductivity. In nutrient ecoregion VII, nutrients were not significant predictors of chlorophyll a concentrations. Total nitrogen, Secchi depth, and pH were significantly related to phytoplankton chlorophyll a concentrations in nutrient ecoregion IX. Lake periphyton chlorophyll a concentrations from nutrient ecoregion XI were related to total phosphorus rather than total nitrogen, Secchi depth, and pH. In all cases, Secchi depth was inversely related to the chlorophyll a concentrations in a lake. Nutrient ecoregion VIII had too few samples for any type of analysis.Streams within the different nutrient ecoregions had many variables that were significantly related to periphyton chlorophyll a concentrations. These variables consisted of total nitrogen, total phosphorus, drainage area, percent forest cover, several macroinvertebrate indices, pH, basin slope, total residue, total suspended solids, and water temperature. Nutrients were not significantly related to periphyton chlorophyll a in streams within nutrient ecoregions VII or IX but were in nutrient ecoregion XI. Drainage area, percent forest cover, and several invertebrate indices were significant variables in nutrient ecoregion VII. Percent forest cover and several invertebrate indices had a negative relation with chlorophyll a concentrations in these streams. Percent forest cover and basin slope had a negative effect on periphyton in nutrient ecoregion IX streams. Light availability was more critical to periphyton growth in streams than nutrients.Ecoregion XI had enough samples to do seasonal analyses. Summer-season periphyton chlorophyll a concentrations in nutrient ecoregion XI streams were positively related to total phosphorus and drainage area but negatively related to percent forest cover. Summer-season phytoplankton in streams was related to different variables within the same nutrient ecoregion. Both total nitrogen and total phosphorus were positively related with chlorophyll a concentrations as well as basin slope, total residue, and total suspended solids but negatively related to pH. The winter stream phytoplankton chlorophyll a concentrations were related to water temperature only.

  20. Diffraction and unitarity

    NASA Astrophysics Data System (ADS)

    Dremin, I. M.

    2016-10-01

    I begin with a tribute to V.N. Gribov and then come to a particular problem which would be of interest for him. His first paper on reggeology was devoted to elastic scatterings of hadrons. Here, using the unitarity relation in combination with experimental data about the elastic scattering in the diffraction cone, I show how the shape and the darkness of the interaction region of colliding protons change with the increase of their energies. In particular, the collisions become fully absorptive at small impact parameters at LHC energies that results in some special features of inelastic processes as well. The possible evolution with increasing energy of the shape from the dark core at the LHC to the fully transparent one at higher energies is discussed. It implies that the terminology of the black disk would be replaced by the black torus.

  1. Diffraction and Unitarity

    NASA Astrophysics Data System (ADS)

    Dremin, I. M.

    I begin with a tribute to V.N. Gribov and then come to a particular problem which would be of interest for him. His first paper on reggeology was devoted to elastic scatterings of hadrons. Here, using the unitarity relation in combination with experimental data about the elastic scattering in the diffraction cone, I show how the shape and the darkness of the interaction region of colliding protons change with the increase of their energies. In particular, the collisions become fully absorptive at small impact parameters at LHC energies that results in some special features of inelastic processes as well. The possible evolution with increasing energy of the shape from the dark core at the LHC to the fully transparent one at higher energies is discussed. It implies that the terminology of the black disk would be replaced by the black torus.

  2. Physical, Chemical and Biological Data, CLIMAX I Expedition, 19 September-28 September 1968.

    DTIC Science & Technology

    1974-09-01

    Continous salinity, temperature, depth profiles (S/T/D) were taken in the late morning, near noon and early evening hours. Bottle casts for nutrients...chlorophyll-a and phaeo-pigment analyses were made in the late morning and early evening. Submarine photometer and secchi disc lowerings were made near ...September, was done at first in the center of the triangle, then for a short distance near one drogue only, and finally, between a pair of drogues

  3. Computer Mapping of Water Quality in Saginaw Bay with LANDSAT Digital Data

    NASA Technical Reports Server (NTRS)

    Rogers, R. H. (Principal Investigator); Shah, N. J.; Smith, V. E.; Mckeon, J. B.

    1976-01-01

    The author has identified the following significant results. LANDSAT digital data and ground truth measurements for Saginaw Bay (Lake Huron), Michigan, for 31 July 1975 were correlated by stepwise linear regression and the resulting equations used to estimate invisible water quality parameters in nonsampled areas. Chloride, conductivity, total Kjeldahl nitrogen, total phosphorus, and chlorophyll a were best correlated with the ratio of LANDSAT Band 4 to Band 5. Temperature and Secchi depth correlate best with Band 5.

  4. Tres Marias Reservoir, Minas Gerais State: Study of the dispersion of suspended sediments in surface waters using orbital images

    NASA Technical Reports Server (NTRS)

    Dejesusparada, N. (Principal Investigator); Sausen, T. M.

    1980-01-01

    Computer compatible tapes from LANDSAT were used to compartmentalize the Ires Marias reservoir according to respective grey level spectral response. Interactive and automatic, supervised classification, was executed from the IMAGE-100 system. From the simple correlation analysis and graphic representation, it is shown that grey tone levels are inversely proportional to Secchi Depth values. It is further shown that the most favorable period to conduct an analysis of this type is during the rainy season.

  5. Are 3-D coronal mass ejection parameters from single-view observations consistent with multiview ones?

    NASA Astrophysics Data System (ADS)

    Lee, Harim; Moon, Y.-J.; Na, Hyeonock; Jang, Soojeong; Lee, Jae-Ok

    2015-12-01

    To prepare for when only single-view observations are available, we have made a test whether the 3-D parameters (radial velocity, angular width, and source location) of halo coronal mass ejections (HCMEs) from single-view observations are consistent with those from multiview observations. For this test, we select 44 HCMEs from December 2010 to June 2011 with the following conditions: partial and full HCMEs by SOHO and limb CMEs by twin STEREO spacecraft when they were approximately in quadrature. In this study, we compare the 3-D parameters of the HCMEs from three different methods: (1) a geometrical triangulation method, the STEREO CAT tool developed by NASA/CCMC, for multiview observations using STEREO/SECCHI and SOHO/LASCO data, (2) the graduated cylindrical shell (GCS) flux rope model for multiview observations using STEREO/SECCHI data, and (3) an ice cream cone model for single-view observations using SOHO/LASCO data. We find that the radial velocities and the source locations of the HCMEs from three methods are well consistent with one another with high correlation coefficients (≥0.9). However, the angular widths by the ice cream cone model are noticeably underestimated for broad CMEs larger than 100° and several partial HCMEs. A comparison between the 3-D CME parameters directly measured from twin STEREO spacecraft and the above 3-D parameters shows that the parameters from multiview are more consistent with the STEREO measurements than those from single view.

  6. Morphological and kinematic evolution of three interacting coronal mass ejections of 2011 February 13-15

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mishra, Wageesh; Srivastava, Nandita, E-mail: wageesh@prl.res.in

    2014-10-10

    During 2011 February 13-15, three Earth-directed coronal mass ejections (CMEs) launched in succession were recorded as limb CMEs by STEREO/SECCHI coronagraphs (COR). These CMEs provided an opportunity to study their geometrical and kinematic evolution from multiple vantage points. In this paper, we examine the differences in geometrical evolution of slow and fast CMEs during their propagation in the heliosphere. We also study their interaction and collision using STEREO/SECCHI COR and Heliospheric Imager (HI) observations. We have found evidence of interaction and collision between the CMEs of February 15 and 14 in the COR2 and HI1 field of view (FOV), respectively,more » while the CME of February 14 caught up with the CME of February 13 in the HI2 FOV. By estimating the true mass of these CMEs and using their pre- and post-collision dynamics, the momentum and energy exchange between them during the collision phase are studied. We classify the nature of the observed collision between the CMEs of February 14 and 15 as inelastic, reaching close to the elastic regime. Relating imaging observations with in situ WIND measurements at L1, we find that the CMEs move adjacent to each other after their collision in the heliosphere and are recognized as distinct structures in in situ observations. Our results highlight the significance of HI observations in studying CME-CME collision for the purpose of improved space weather forecasting.« less

  7. Experiences From NASA/Langley's DMSS Project

    NASA Technical Reports Server (NTRS)

    1996-01-01

    There is a trend in institutions with high performance computing and data management requirements to explore mass storage systems with peripherals directly attached to a high speed network. The Distributed Mass Storage System (DMSS) Project at the NASA Langley Research Center (LaRC) has placed such a system into production use. This paper will present the experiences, both good and bad, we have had with this system since putting it into production usage. The system is comprised of: 1) National Storage Laboratory (NSL)/UniTree 2.1, 2) IBM 9570 HIPPI attached disk arrays (both RAID 3 and RAID 5), 3) IBM RS6000 server, 4) HIPPI/IPI3 third party transfers between the disk array systems and the supercomputer clients, a CRAY Y-MP and a CRAY 2, 5) a "warm spare" file server, 6) transition software to convert from CRAY's Data Migration Facility (DMF) based system to DMSS, 7) an NSC PS32 HIPPI switch, and 8) a STK 4490 robotic library accessed from the IBM RS6000 block mux interface. This paper will cover: the performance of the DMSS in the following areas: file transfer rates, migration and recall, and file manipulation (listing, deleting, etc.); the appropriateness of a workstation class of file server for NSL/UniTree with LaRC's present storage requirements in mind the role of the third party transfers between the supercomputers and the DMSS disk array systems in DMSS; a detailed comparison (both in performance and functionality) between the DMF and DMSS systems LaRC's enhancements to the NSL/UniTree system administration environment the mechanism for DMSS to provide file server redundancy the statistics on the availability of DMSS the design and experiences with the locally developed transparent transition software which allowed us to make over 1.5 million DMF files available to NSL/UniTree with minimal system outage

  8. Electrically tunable metasurface based on Mie-type dielectric resonators.

    PubMed

    Su, Zhaoxian; Zhao, Qian; Song, Kun; Zhao, Xiaopeng; Yin, Jianbo

    2017-02-21

    In this paper, we have designed a metasurface based on electrically tunable Mie-type resonators and theoretically demonstrated its tunable response to electromagnetic waves with varying frequency. The metasurface consists of disk-like ferroelectric resonators arrayed on a metal film and the upper surface of resonators is covered by ion gel film which is transparent for incident electromagnetic wave. Using the metal film and ion gel film as electrodes, the permittivity of the resonators can be adjusted by an external electric field and, as a result, the reflection phase of the resonators can be dynamically adjusted in a relatively wide range. By programmable controlling the electric field strength applied on resonators of metasurface, a 2π phase ramp can be realized and, thereby, the arbitrary reflection behavior of incident waves with varied frequency is obtained. Because of the tunability, this metasurface can also be used to design adaptive metasurface lens and carpet cloak.

  9. Stereo imaging velocimetry for microgravity applications

    NASA Technical Reports Server (NTRS)

    Miller, Brian B.; Meyer, Maryjo B.; Bethea, Mark D.

    1994-01-01

    Stereo imaging velocimetry is the quantitative measurement of three-dimensional flow fields using two sensors recording data from different vantage points. The system described in this paper, under development at NASA Lewis Research Center in Cleveland, Ohio, uses two CCD cameras placed perpendicular to one another, laser disk recorders, an image processing substation, and a 586-based computer to record data at standard NTSC video rates (30 Hertz) and reduce it offline. The flow itself is marked with seed particles, hence the fluid must be transparent. The velocimeter tracks the motion of the particles, and from these we deduce a multipoint (500 or more), quantitative map of the flow. Conceptually, the software portion of the velocimeter can be divided into distinct modules. These modules are: camera calibration, particle finding (image segmentation) and centroid location, particle overlap decomposition, particle tracking, and stereo matching. We discuss our approach to each module, and give our currently achieved speed and accuracy for each where available.

  10. Electrically tunable metasurface based on Mie-type dielectric resonators

    PubMed Central

    Su, Zhaoxian; Zhao, Qian; Song, Kun; Zhao, Xiaopeng; Yin, Jianbo

    2017-01-01

    In this paper, we have designed a metasurface based on electrically tunable Mie-type resonators and theoretically demonstrated its tunable response to electromagnetic waves with varying frequency. The metasurface consists of disk-like ferroelectric resonators arrayed on a metal film and the upper surface of resonators is covered by ion gel film which is transparent for incident electromagnetic wave. Using the metal film and ion gel film as electrodes, the permittivity of the resonators can be adjusted by an external electric field and, as a result, the reflection phase of the resonators can be dynamically adjusted in a relatively wide range. By programmable controlling the electric field strength applied on resonators of metasurface, a 2π phase ramp can be realized and, thereby, the arbitrary reflection behavior of incident waves with varied frequency is obtained. Because of the tunability, this metasurface can also be used to design adaptive metasurface lens and carpet cloak. PMID:28220861

  11. The nuclear window to the extragalactic universe

    NASA Astrophysics Data System (ADS)

    Erdmann, M.; Müller, G.; Urban, M.; Wirtz, M.

    2016-12-01

    We investigate two recent parameterizations of the galactic magnetic field with respect to their impact on cosmic nuclei traversing the field. We present a comprehensive study of the size of angular deflections, dispersion in the arrival probability distributions, multiplicity in the images of arrival on Earth, variance in field transparency, and influence of the turbulent field components. To remain restricted to ballistic deflections, a cosmic nucleus with energy E and charge Z should have a rigidity above E / Z = 6 EV. In view of the differences resulting from the two field parameterizations as a measure of current knowledge in the galactic field, this rigidity threshold may have to be increased. For a point source search with E/Z ≥ 60 EV, field uncertainties increase the required signal events for discovery moderately for sources in the northern and southern regions, but substantially for sources near the galactic disk.

  12. Electrical contact of wurtzite GaN mircrodisks on p-type GaN template

    NASA Astrophysics Data System (ADS)

    Tsai, Cheng-Da; Lo, Ikai; Wang, Ying-Chieh; Hsu, Yu-Chi; Shih, Cheng-Hung; Pang, Wen-Yuan; You, Shuo-Ting; Hu, Chia-Hsuan; Chou, Mitch M. C.; Yang, Chen-Chi; Lin, Yu-Chiao

    2015-03-01

    We developed a back processing to fabricate a secure electrical contact of wurtzite GaN microdisk on a transparent p-type GaN template with the orientation, [10-10]disk // [10-10]template. GaN microdisks were grown on LiAlO2 substrate by using plasma-assisted molecular beam epitaxy. In the further study, we analyzed the TEM specimen of a sample with annealed GaN microdisk/p-typed GaN template by selection area diffraction (SAD) to confirm the alignment of the microdisks with the template at the interface. From the I-V measurements performed on the samples, we obtained a threshold voltage of ~ 5.9 V for the current passing through the GaN microdisks with a resistance of ~ 45 K Ω. The electrical contact can be applied to the nanometer-scaled GaN light-emitting diode.

  13. Video Toroid Cavity Imager

    DOEpatents

    Gerald, II, Rex E.; Sanchez, Jairo; Rathke, Jerome W.

    2004-08-10

    A video toroid cavity imager for in situ measurement of electrochemical properties of an electrolytic material sample includes a cylindrical toroid cavity resonator containing the sample and employs NMR and video imaging for providing high-resolution spectral and visual information of molecular characteristics of the sample on a real-time basis. A large magnetic field is applied to the sample under controlled temperature and pressure conditions to simultaneously provide NMR spectroscopy and video imaging capabilities for investigating electrochemical transformations of materials or the evolution of long-range molecular aggregation during cooling of hydrocarbon melts. The video toroid cavity imager includes a miniature commercial video camera with an adjustable lens, a modified compression coin cell imager with a fiat circular principal detector element, and a sample mounted on a transparent circular glass disk, and provides NMR information as well as a video image of a sample, such as a polymer film, with micrometer resolution.

  14. Electrically tunable metasurface based on Mie-type dielectric resonators

    NASA Astrophysics Data System (ADS)

    Su, Zhaoxian; Zhao, Qian; Song, Kun; Zhao, Xiaopeng; Yin, Jianbo

    2017-02-01

    In this paper, we have designed a metasurface based on electrically tunable Mie-type resonators and theoretically demonstrated its tunable response to electromagnetic waves with varying frequency. The metasurface consists of disk-like ferroelectric resonators arrayed on a metal film and the upper surface of resonators is covered by ion gel film which is transparent for incident electromagnetic wave. Using the metal film and ion gel film as electrodes, the permittivity of the resonators can be adjusted by an external electric field and, as a result, the reflection phase of the resonators can be dynamically adjusted in a relatively wide range. By programmable controlling the electric field strength applied on resonators of metasurface, a 2π phase ramp can be realized and, thereby, the arbitrary reflection behavior of incident waves with varied frequency is obtained. Because of the tunability, this metasurface can also be used to design adaptive metasurface lens and carpet cloak.

  15. Granger Test to Determine Causes of Harmful algal Blooms in TaiLake during the Last Decade

    NASA Astrophysics Data System (ADS)

    Guo, W.; Wu, F.

    2016-12-01

    Eutrophication-driven harmful cyanobacteria blooms can threaten stability of lake ecosystems. A key to solving this problem is identifying the main cause of algal blooms so that appropriate remediation can be employed. A test of causality was used to analyze data for Meiling Bay in Tai Lake (Ch: Taihu) from 2000 to 2012. After filtration of data by use of the stationary test and the co-integration test, the Granger causality test and impulse response analysis were used to analyze potential bloom causes from physicochemical parameters to chlorophyll-a concentration. Results of stationary tests showed that logarithms of secchi disk depth (lnSD), suspended solids (lnSS), lnNH4-N/NOx-N and pH were determined to be stationary as a function of time and could not be considered to be causal for changes in biomass of phytoplankton observed during that period. Results of co-integration tests indicated existence of long-run co-integrating relationships among natural logarithms of chlorophyll-a (lnChl-a), water temperature (lnWT), total organic carbon (lnTOC) and ratio of nitrogen to phosphorus (lnN/P). The Granger causality test suggested that once thresholds for nutrients such as nitrogen and phosphorus had been reached, WT could increase the likelihood or severities of cyanobacteria blooms. An unidirectional Granger relationship from N/P to Chl-a was established, the result indicated that because concentrations of TN in Meiliang Bay had reached their thresholds, it no longer limited proliferation of cyanobacteria and TP should be controlled to reduce the likelihood of algae blooms. The impulse response analysis implied that lagging effects of water temperature and N/P ratio could influence the variation of Chla concentration at certain lag periods. The results can advance understanding of mechanisms on formation of harmful cyanobacteria blooms.

  16. Ecosystem responses to long-term nutrient management in an urban estuary: Tampa Bay, Florida, USA

    NASA Astrophysics Data System (ADS)

    Greening, H.; Janicki, A.; Sherwood, E. T.; Pribble, R.; Johansson, J. O. R.

    2014-12-01

    In subtropical Tampa Bay, Florida, USA, we evaluated restoration trajectories before and after nutrient management strategies were implemented using long-term trends in nutrient loading, water quality, primary production, and seagrass extent. Following citizen demands for action, reduction in wastewater nutrient loading of approximately 90% in the late 1970s lowered external total nitrogen (TN) loading by more than 50% within three years. Continuing nutrient management actions from public and private sectors were associated with a steadily declining TN load rate and with concomitant reduction in chlorophyll-a concentrations and ambient nutrient concentrations since the mid-1980s, despite an increase of more than 1 M people living within the Tampa Bay metropolitan area. Water quality (chlorophyll-a concentration, water clarity as indicated by Secchi disk depth, total nitrogen concentration and dissolved oxygen) and seagrass coverage are approaching conditions observed in the 1950s, before the large increases in human population in the watershed. Following recovery from an extreme weather event in 1997-1998, water clarity increased significantly and seagrass is expanding at a rate significantly different than before the event, suggesting a feedback mechanism as observed in other systems. Key elements supporting the nutrient management strategy and concomitant ecosystem recovery in Tampa Bay include: 1) active community involvement, including agreement about quantifiable restoration goals; 2) regulatory and voluntary reduction in nutrient loadings from point, atmospheric, and nonpoint sources; 3) long-term water quality and seagrass extent monitoring; and 4) a commitment from public and private sectors to work together to attain restoration goals. A shift from a turbid, phytoplankton-based system to a clear water, seagrass-based system that began in the 1980s following comprehensive nutrient loading reductions has resulted in a present-day Tampa Bay which looks and functions much like it did in the relatively pre-disturbance 1950s period.

  17. Tidally oriented vertical migration and position maintenance of zooplankton in a temperate estuary

    USGS Publications Warehouse

    Kimmerer, W.J.; Burau, J.R.; Bennett, W.A.

    1998-01-01

    In many estuaries, maxima in turbidity and abundance of several common species of zooplankton occur in the low salinity zone (LSZ) in the range of 0.5-6 practical salinity units (psu). Analysis of zooplankton abundance from monitoring in 1972-1987 revealed that historical maxima in abundance of the copepod Eurytemora affinis and the mysid Neomysis mercedis, and in turbidity as determined from Secchi disk data, were close to the estimated position of 2 psu bottom salinity. The copepod Sinocalanus doerrii had a maximum slightly landward of that of E. affinis. After 1987 these maxima decreased and shifted to a lower salinity, presumably because of the effects of grazing by the introduced clam Potamocorbula amurensis. At the same time, the copepod Pseudodiaptomus forbesi, the mysid Acanthomysis sp., and amphipods became abundant with peaks at salinity around 0.2-0.5 psu. Plausible mechanisms for maintenance of these persistent abundance peaks include interactions between variation in flow and abundance, either in the vertical or horizontal plane, or higher net population growth rate in the peaks than seaward of the peaks. In spring of 1994, a dry year, we sampled in and near the LSZ using a Lagrangian sampling scheme to follow selected isohalines while sampling over several complete tidal cycles. Acoustic Doppler current profilers were used to provide detailed velocity distributions to enable us to estimate longitudinal fluxes of organisms. Stratification was weak and gravitational circulation nearly absent in the LSZ. All of the common species of zooplankton migrated vertically in response to the tides, with abundance higher in the water column on the flood than on the ebb. Migration of mysids and amphipods was sufficient to override net seaward flow to produce a net landward flux of organisms. Migration of copepods, however, was insufficient to reverse or even greatly diminish the net seaward flux of organisms, implying alternative mechanisms of position maintenance.

  18. Toward Understanding the Early Stags of an Impulsively Accelerated Coronal Mass Ejection

    DTIC Science & Technology

    2010-08-09

    B. E., & Howard, R. A . 2009, ApJ, 702, 901 Wood, B. E., Karovska , M., Chen, J., Brueckner, G. E., Cook, J. W., & Howard, R. A . 1999, ApJ, 512, 484...ar X iv :1 00 8. 11 71 v1 [ as tr o- ph .S R ] 6 A ug 2 01 0 Astronomy & Astrophysics manuscript no. bubble c© ESO 2010 August 9, 2010 Toward...understanding the early stages of an impulsively accelerated coronal mass ejection SECCHI observations S. Patsourakos1, A . Vourlidas2, and B. Kliem3,4

  19. Oblique view of the lunar surface taken from Apollo 8 spacecraft

    NASA Image and Video Library

    1968-12-24

    AS08-17-2814 (21-27 Dec. 1968) --- This oblique view of the lunar surface taken from the Apollo 8 spacecraft looking westward across the Sea of Fertility into the Sea of Tranquility shows the terrain the astronauts will see as the approach Apollo Landing Site East 2. The landing site is at the horizon about one-third of the distance from the left to the right photograph margin. The prominent crater in the highlands near the center of the picture is Secchi, about 25 kilometers (15 statute miles) in diameter.

  20. Laser-plasmas in the relativistic-transparency regime: Science and applications

    PubMed Central

    Cort Gautier, D.; Palaniyappan, Sasikumar; Albright, Brian J.; Favalli, Andrea; Hunter, James F.; Mendez, Jacob; Roth, Markus; Deppert, Oliver; Espy, Michelle; Guler, Nevzat; Hamilton, Christopher; Hegelich, Bjorn Manuel; Henzlova, Daniela; Ianakiev, Kiril D.; Iliev, Metodi; Johnson, Randall P.; Kleinschmidt, Annika; Losko, Adrian S.; McCary, Edward; Mocko, Michal; Nelson, Ronald O.; Roycroft, Rebecca; Schanz, Victor A.; Schaumann, Gabriel; Schmidt, Derek W.; Sefkow, Adam; Taddeucci, Terry N.; Yin, Lin

    2017-01-01

    Laser-plasma interactions in the novel regime of relativistically induced transparency (RIT) have been harnessed to generate intense ion beams efficiently with average energies exceeding 10 MeV/nucleon (>100 MeV for protons) at “table-top” scales in experiments at the LANL Trident Laser. By further optimization of the laser and target, the RIT regime has been extended into a self-organized plasma mode. This mode yields an ion beam with much narrower energy spread while maintaining high ion energy and conversion efficiency. This mode involves self-generation of persistent high magnetic fields (∼104 T, according to particle-in-cell simulations of the experiments) at the rear-side of the plasma. These magnetic fields trap the laser-heated multi-MeV electrons, which generate a high localized electrostatic field (∼0.1 T V/m). After the laser exits the plasma, this electric field acts on a highly structured ion-beam distribution in phase space to reduce the energy spread, thus separating acceleration and energy-spread reduction. Thus, ion beams with narrow energy peaks at up to 18 MeV/nucleon are generated reproducibly with high efficiency (≈5%). The experimental demonstration has been done with 0.12 PW, high-contrast, 0.6 ps Gaussian 1.053 μm laser pulses irradiating planar foils up to 250 nm thick at 2–8 × 1020 W/cm2. These ion beams with co-propagating electrons have been used on Trident for uniform volumetric isochoric heating to generate and study warm-dense matter at high densities. These beam plasmas have been directed also at a thick Ta disk to generate a directed, intense point-like Bremsstrahlung source of photons peaked at ∼2 MeV and used it for point projection radiography of thick high density objects. In addition, prior work on the intense neutron beam driven by an intense deuterium beam generated in the RIT regime has been extended. Neutron spectral control by means of a flexible converter-disk design has been demonstrated, and the neutron beam has been used for point-projection imaging of thick objects. The plans and prospects for further improvements and applications are also discussed. PMID:28652684

  1. Using Whispering-Gallery-Mode Resonators for Refractometry

    NASA Technical Reports Server (NTRS)

    Matsko, Andrey; Savchenkov, Anatoliy; Strekalov, Dmitry; Iltchenko, Vladimir; Maleki, Lute

    2010-01-01

    A method of determining the refractive and absorptive properties of optically transparent materials involves a combination of theoretical and experimental analysis of electromagnetic responses of whispering-gallery-mode (WGM) resonator disks made of those materials. The method was conceived especially for use in studying transparent photorefractive materials, for which purpose this method affords unprecedented levels of sensitivity and accuracy. The method is expected to be particularly useful for measuring temporally varying refractive and absorptive properties of photorefractive materials at infrared wavelengths. Still more particularly, the method is expected to be useful for measuring drifts in these properties that are so slow that, heretofore, the properties were assumed to be constant. The basic idea of the method is to attempt to infer values of the photorefractive properties of a material by seeking to match (1) theoretical predictions of the spectral responses (or selected features thereof) of a WGM of known dimensions made of the material with (2) the actual spectral responses (or selected features thereof). Spectral features that are useful for this purpose include resonance frequencies, free spectral ranges (differences between resonance frequencies of adjacently numbered modes), and resonance quality factors (Q values). The method has been demonstrated in several experiments, one of which was performed on a WGM resonator made from a disk of LiNbO3 doped with 5 percent of MgO. The free spectral range of the resonator was approximately equal to 3.42 GHz at wavelengths in the vicinity of 780 nm, the smallest full width at half maximum of a mode was approximately equal to 50 MHz, and the thickness of the resonator in the area of mode localization was 30 microns. In the experiment, laser power of 9 mW was coupled into the resonator with an efficiency of 75 percent, and the laser was scanned over a frequency band 9 GHz wide at a nominal wavelength of approximately equal to 780 nm. Resonance frequencies were measured as functions of time during several hours of exposure to the laser light. The results of these measurements, plotted in the figure, show a pronounced collective frequency drift of the resonator modes. The size of the drift has been estimated to correspond to a change of 8.5 x 10(exp -5) in the effective ordinary index of refraction of the resonator material.

  2. Atmospheric Seeing and Transparency Robotic Observatory

    NASA Astrophysics Data System (ADS)

    Cline, J. D.; Castelaz, M. W.

    2002-12-01

    A robotic 12.7 cm telescope and camera (together called OVIEW) have been designed to do photometry of 50 of the brightest stars in the local sky 24 hours a day. Each star is imaged through a broadband 500 nm filter. Software automatically analyzes the brightness of the star and the stellar seeing disk. The results are published in real-time on a web page. Comparison of stellar brightness with known apparent magnitude is a measure of transparency with instrument resolution of one arcsecond. We will describe the observatory, software, and website. We will also describe other telescopes on the Optical Ridge at the Pisgah Astronomical Research Institute (PARI). On the same pier as OVIEW is a second robotic 12.7 cm telescope and camera that image the sun and moon. The solar and lunar images are published live on the Internet. Also on the Optical Ridge is a robotic 20 cm telescope. This telescope is operated by UNC-Chapel Hill and has been operating on the Optical Ridge for more than 2 years surveying the plane of the Milky Way for binary low mass stars. UNC-Chapel Hill also operates a 25 cm telescope with an IR camera for photometry of gamma ray burst optical afterglows. An additional 25 cm telescope with a new 3.2 megapixel CCD is used for undergraduate research and W UMa binary star photometry. We acknowledge the AAS Small Grant Program for partial support of the solar/lunar telescope.

  3. Physical and chemical limnology of Ides Cove near Rochester, New York, 1970-1982

    USGS Publications Warehouse

    Bubeck, R.C.; Staubitz, W.W.; Weidemann, A.D.; Spittal, L.P.

    1995-01-01

    Ides Cove is a small embayment on the western shore of Irondequoit Bay near Rochester, N.Y. In 1982, alum was applied to the cove to seal the bottom sediments and thereby decrease nutrient fluxes in an effort to assess the applicability of this technique to Irondequoit Bay. Published data were used to develop a baseline analysis of the chemical and physical limnology of Ides Cove prior to the alum treatment and to provide a basis for comparison and evaluation of post-treatment data. The baseline analysis also enables evaluation of trends in the nutrient status and mixing patterns in Ides Cove since the decrease of sewage inflows and use of road salt in the Irondequoit Bay and Ides Cove drainage basins during 1970-82. Data from 1970-72 and 1979-82 were used to construct partial and full-year depth profiles of several physical properties and chemical constituents of water in the cove; comparison of these profiles indicates a significant improvement in water quality between 1970 and 1982. The diversion of sewage out of the Irondequoit Creek drainage basin in the late 1970's resulted in an 80-percent decrease in total phosphate concentration and a 50- to 60-percent decrease in nitrogen (nitrate and ammonia) concentration in the cove. Indications of decreased primary productivity are associated with these lowered nutrient concentrations. Summer Secchi-disk transparency increased from 0.6 m (meters) in 1970-72 to 1.2 m in 1980-82; peak epilimnetic dissolved oxygen levels decreased from a range of 22 to 28 mg/L (milligrams per liter) to a range of 16 to 20 mg/L; and peak epilimnetic pH decreased from greater than 9.4 to between 8.8 and 9.0. The decrease in the use of road salt in the Irondequoit basin beginning in 1974 resulted in a decrease in chloride concentration and gradient (difference between the surface and bottom con- centration). The maximum annual chloride concentration in the epilimnion decreased from the 210-to-225-mg/L range in the spring of 1971-72 to the 140-to-l50-mg/L range in the spring of 1980-82, and the gradient between the hypolimnion and epilimnion during the spring decreased from the 80- to 160-mg/L range in 1971-72 to the O- to 90-mg/L range in 1980-82. Specific conductance values decreased similarly and indicate a comparable decrease in the density gradient from 1970-72 to 1980-82. The decrease in the density gradient resulted in an increase in the depth and duration of mixing in both the spring and fall of 1980-82, as illustrated by the profiles of physical properties, including temperature and specific conductance, and of chemical properties and constituents, including pH, alkalinity, dissolved oxygen, chloride, silica, and several species of nitrogen, phosphorus, and sulfur. These data indicate that Ides Cove, which was described as marginally meromictic in the early 1970's, had evolved by the early 1980's into a spring meromictic water body that underwent complete mixing in the fall and was approaching a consistent dimictic condition with spring and fall mixing. Thus, water quality and mixing patterns of the cove improved with the removal of sewage and the decrease in the use of road salt.

  4. STEREOSCOPIC DETERMINATION OF HEIGHTS OF EXTREME ULTRAVIOLET BRIGHT POINTS USING DATA TAKEN BY SECCHI/EUVI ABOARD STEREO

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kwon, Ryun-Young; Chae, Jongchul; Zhang Jie

    2010-05-01

    We measure the heights of EUV bright points (BPs) above the solar surface by applying a stereoscopic method to the data taken by the Solar TErrestrial RElations Observatory/SECCHI/Extreme UltraViolet Imager (EUVI). We have developed a three-dimensional reconstruction method for point-like features such as BPs using the simple principle that the position of a point in the three-dimensional space is specified as the intersection of two lines of sight. From a set of data consisting of EUVI 171 A, 195 A, 284 A, and 304 A images taken on 11 days arbitrarily selected during a period of 14 months, we havemore » identified and analyzed 210 individual BPs that were visible on all four passband images and smaller than 30 Mm. The BPs seen in the 304 A images have an average height of 4.4 Mm, and are often associated with the legs of coronal loops. In the 171 A, 195 A, and 284 A images the BPs appear loop-shaped, and have average heights of 5.1, 6.7, and 6.1 Mm, respectively. Moreover, there is a tendency that overlying loops are filled with hotter plasmas. The average heights of BPs in 171 A, 195 A, and 284 A passbands are roughly twice the corresponding average lengths. Our results support the notion that an EUV BP represents a system of small loops with temperature stratification like flaring loops, being consistent with the magnetic reconnection origin.« less

  5. Periodic Density Structures and the Origin of the Slow Solar Wind

    NASA Technical Reports Server (NTRS)

    Viall-Kepko, Nicholeen M.; Vourlidas, Angelos

    2015-01-01

    The source of the slow solar wind has challenged scientists for years. Periodic density structures (PDSs), observed regularly in the solar wind at 1 AU (Astronomical Unit), can be used to address this challenge. These structures have length scales of hundreds to several thousands of megameters and frequencies of tens to hundreds of minutes. Two lines of evidence indicate that PDSs are formed in the solar corona as part of the slow solar wind release and/or acceleration processes. The first is corresponding changes in compositional data in situ, and the second is PDSs observed in the inner Heliospheric Imaging data on board the Solar Terrestrial Relations Observatory (STEREO)/Sun Earth Connection Coronal and Heliospheric Investigation (SECCHI) suite. The periodic nature of these density structures is both a useful identifier as well as an important physical constraint on their origin. In this paper, we present the results of tracking periodic structures identified in the inner Heliospheric Imager in SECCHI back in time through the corresponding outer coronagraph (COR2) images. We demonstrate that the PDSs are formed around or below 2.5 solar radii-the inner edge of the COR2 field of view. We compute the occurrence rates of PDSs in 10 days of COR2 images both as a function of their periodicity and location in the solar corona, and we find that this set of PDSs occurs preferentially with a periodicity of approximately 90 minutes and occurs near streamers. Lastly, we show that their acceleration and expansion through COR2 is self-similar, thus their frequency is constant at distances beyond 2.5 solar radii.

  6. Computer mapping of turbidity and circulation patterns in Saginaw Bay, Michigan from LANDSAT data

    NASA Technical Reports Server (NTRS)

    Rogers, R. H. (Principal Investigator); Reed, L. E.; Smith, V. E.

    1975-01-01

    The author has identified the following significant results. LANDSAT was used as a basis for producing geometrically-corrected, color-coded imagery of turbidity and circulation patterns in Saginaw Bay, Michigan (Lake Huron). This imagery shows nine discrete categories of turbidity, as indicated by nine Secchi depths between 0.3 and 3.3 meters. The categorized imagery provided an economical basis for extrapolating water quality parameters from point samples to unsample areas. LANDSAT furnished a synoptic view of water mass boundaries that no amount of ground sampling or monitoring could provide.

  7. Application of remote sensing for fishery resources assessment and monitoring. [Gulf of Mexico

    NASA Technical Reports Server (NTRS)

    Savastano, K. J. (Principal Investigator)

    1975-01-01

    The author has identified the following significant results. The distribution and abundance of white marlin correlated with the chlorophyll, water temperature, and Secchi depth sea truth measurements. Results of correlation analyses for dolphin were inconclusive. Predicition models for white marlin were developed using stepwise multiple regression and discriminant function analysis techniques which demonstrated a potential for increasing the probability of game fishing success. The S190A and B imagery was density sliced/color enhanced with white marlin location superimposed on the image, but no density/white marlin relationship could be established.

  8. Seasonal dynamics of dissolved, particulate and microbial components of a tidal saltmarsh-dominated estuary under contrasting levels of freshwater discharge

    NASA Astrophysics Data System (ADS)

    Bittar, Thais B.; Berger, Stella A.; Birsa, Laura M.; Walters, Tina L.; Thompson, Megan E.; Spencer, Robert G. M.; Mann, Elizabeth L.; Stubbins, Aron; Frischer, Marc E.; Brandes, Jay A.

    2016-12-01

    Tidal Spartina-dominated saltmarshes and estuaries on the Southeast US coast are global hotspots of productivity. In coastal Georgia, tidal amplitudes and saltmarsh productivity are the highest along the Southeast US coast. Coastal Georgia is characterized by a humid subtropical seasonal climate, and inter-annual variability in precipitation, and freshwater discharge. The 2012-2013 timeframe encompassed contrasting levels of discharge for the Savannah River, a major Georgia river, with a 4.3-fold greater discharge in summer 2013 relative to summer 2012. In situ measurements of temperature, salinity, precipitation and Secchi depth, and water samples were collected weekly at high tide throughout 2012 and 2013 from the Skidaway River Estuary, a tidal saltmarsh-dominated estuary in coastal Georgia influenced by Savannah River hydrology. The effects of elevated discharge on the seasonal trends of water column components were evaluated. The shift from low discharge (2012) to high discharge (2013) led to decreased salinity in summer 2013, but no significant increases in inorganic nutrient (NH4, NOx, SiO2 and PO4) concentrations. Dissolved inorganic carbon (DIC) concentrations decreased, and DIC stable isotopic signatures (δ13C-DIC values) were depleted in summer 2013 relative to summer 2012. In 2013 dissolved organic carbon (DOC) concentrations, chromophoric and fluorescent dissolved organic matter (DOM: CDOM, FDOM) intensities, specific UV-absorbance (SUVA254) and relative humic-like fluorescence were all higher than in 2012, indicating that, as discharge increased in 2013, estuarine water became enriched in terrigenous DOM. Secchi depth and particulate organic carbon (POC) and nitrogen (PON) concentrations displayed clear seasonal patterns that were not significantly altered by discharge. However, δ13C-POC and δ15N-PON isotopic signatures indicated higher terrigenous contributions at elevated discharge. Discharge influenced cyanobacterial composition, but did not affect total abundance of phytoplankton (<52 μm) or chlorophyll-a concentrations, a proxy for phytoplankton biomass. Phytoplankton community dynamics were primarily seasonally-driven. Bacterioplankton abundance and community composition, based upon flow cytometry, were affected by discharge, possibly due to decreased salinity and/or increased inputs of terrigenous DOM. Seasonal patterns in inorganic nutrient, POC, PON and chlorophyll-a concentrations, and Secchi depth were not significantly influenced by the 2013 increase in discharge. For other components, most notably δ13C-DIC values, DOM and bacterioplankton, the influence of increased discharge in 2013 was superimposed upon their seasonal patterns. This study showed that in addition to tidal mixing and in situ saltmarsh and estuarine production and removal processes, the level of riverine freshwater discharge impacted the quantity and character of many water column components in this tidal saltmarsh ecosystem.

  9. Effect of esthetic core shades on the final color of IPS Empress all-ceramic crowns.

    PubMed

    Azer, Shereen S; Ayash, Ghada M; Johnston, William M; Khalil, Moustafa F; Rosenstiel, Stephen F

    2006-12-01

    Clinically relevant assessment of all-ceramic crowns supported by esthetic composite resin foundations has not been evaluated with regard to color reproducibility. This in vitro study quantitatively evaluated the influence of different shades of composite resin foundations and resin cement on the final color of a leucite-reinforced all-ceramic material. A total of 128 disks were fabricated; 64 (20 x 1 mm) were made of all-ceramic material (IPS Empress) and 64 (20 x 4 mm) of 4 different shades composite resin (Tetric Ceram). The ceramic and composite resin disks were luted using 2 shades (A3 and Transparent) of resin cement (Variolink II). Color was measured using a colorimeter configured with a diffuse illumination/0-degree viewing geometry, and Commission Internationale de l'Eclairage (CIE) L( *)a( *)b( *) values were directly calculated. Descriptive statistical analysis was performed, and color differences (DeltaE) for the average L( *), a( *) and b( *) color parameters were calculated. Repeated measures analysis of variance (ANOVA) was used to compare mean values and SDs between the different color combinations (alpha=.05). The CIE L( *)a( *)b( *) color coordinate values showed no significant differences for variation in color parameters due to the effect of the different composite resin shades (P=.24) or cement shades (P=.12). The mean color difference (DeltaE) value between the groups was 0.8. Within the limitations of this study, the use of different shades for composite resin cores and resin cements presented no statistically significant effect on the final color of IPS Empress all-ceramic material.

  10. Identifying the Source of Large-Scale Atmospheric Variability in Jupiter

    NASA Astrophysics Data System (ADS)

    Orton, Glenn

    2011-01-01

    We propose to use the unique mid-infrared filtered imaging and spectroscopic capabilities of the Subaru COMICS instrument to determine the mechanisms associated with recent unusual rapid albedo and color transformations of several of Jupiter's bands, particularly its South Equatorial Belt (SEB), as a means to understand the coupling between its dynamics and chemistry. These observations will characterize the temperature, degree of cloud cover, and distribution of minor gases that serve as indirect tracers of vertical motions in regions that will be undergoing unusual large-scale changes in dynamics and chemistry: the SEB, as well as regions near the equator and Jupiter's North Temperate Belt. COMICS is ideal for this investigation because of its efficiency in doing both imaging and spectroscopy, its 24.5-mum filter that is unique to 8-meter-class telescopes, its wide field of view that allows imaging of nearly all of Jupiter's disk, coupled with a high diffraction-limited angular resolution and optimal mid-infrared atmospheric transparency.

  11. SFT: Scalable Fault Tolerance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Petrini, Fabrizio; Nieplocha, Jarek; Tipparaju, Vinod

    2006-04-15

    In this paper we will present a new technology that we are currently developing within the SFT: Scalable Fault Tolerance FastOS project which seeks to implement fault tolerance at the operating system level. Major design goals include dynamic reallocation of resources to allow continuing execution in the presence of hardware failures, very high scalability, high efficiency (low overhead), and transparency—requiring no changes to user applications. Our technology is based on a global coordination mechanism, that enforces transparent recovery lines in the system, and TICK, a lightweight, incremental checkpointing software architecture implemented as a Linux kernel module. TICK is completely user-transparentmore » and does not require any changes to user code or system libraries; it is highly responsive: an interrupt, such as a timer interrupt, can trigger a checkpoint in as little as 2.5μs; and it supports incremental and full checkpoints with minimal overhead—less than 6% with full checkpointing to disk performed as frequently as once per minute.« less

  12. Cutaway line drawing of STS-34 middeck experiment Polymer Morphology (PM)

    NASA Technical Reports Server (NTRS)

    1989-01-01

    Cutaway line drawing shows components of STS-34 middeck experiment Polymer Morphology (PM). Generic Electronics Module (GEM) components include the control housing, circulating fans, hard disk, tape drives, computer boards, and heat exchanger. PM, a 3M-developed organic materials processing experiment, is designed to explore the effects of microgravity on polymeric materials as they are processed in space. The samples of polymeric materials being studied in the PM experiment are thin films (25 microns or less) approximately 25mm in diameter. The samples are mounted between two infrared transparent windows in a specially designed infrared cell that provides the capability of thermally processing the samples to 200 degrees Celsius with a high degree of thermal control. The samples are mounted on a carousel that allows them to be positioned, one at a time, in the infrared beam where spectra may be acquired. The GEM provides all carousel and sample cell control (SCC). The first flight of P

  13. The Athena Astrophysical MHD Code in Cylindrical Geometry

    NASA Astrophysics Data System (ADS)

    Skinner, M. A.; Ostriker, E. C.

    2011-10-01

    We have developed a method for implementing cylindrical coordinates in the Athena MHD code (Skinner & Ostriker 2010). The extension has been designed to alter the existing Cartesian-coordinates code (Stone et al. 2008) as minimally and transparently as possible. The numerical equations in cylindrical coordinates are formulated to maintain consistency with constrained transport, a central feature of the Athena algorithm, while making use of previously implemented code modules such as the eigensystems and Riemann solvers. Angular-momentum transport, which is critical in astrophysical disk systems dominated by rotation, is treated carefully. We describe modifications for cylindrical coordinates of the higher-order spatial reconstruction and characteristic evolution steps as well as the finite-volume and constrained transport updates. Finally, we have developed a test suite of standard and novel problems in one-, two-, and three-dimensions designed to validate our algorithms and implementation and to be of use to other code developers. The code is suitable for use in a wide variety of astrophysical applications and is freely available for download on the web.

  14. Thermally Stable Cellulose Nanocrystals toward High-Performance 2D and 3D Nanostructures.

    PubMed

    Jia, Chao; Bian, Huiyang; Gao, Tingting; Jiang, Feng; Kierzewski, Iain Michael; Wang, Yilin; Yao, Yonggang; Chen, Liheng; Shao, Ziqiang; Zhu, J Y; Hu, Liangbing

    2017-08-30

    Cellulose nanomaterials have attracted much attention in a broad range of fields such as flexible electronics, tissue engineering, and 3D printing for their excellent mechanical strength and intriguing optical properties. Economic, sustainable, and eco-friendly production of cellulose nanomaterials with high thermal stability, however, remains a tremendous challenge. Here versatile cellulose nanocrystals (DM-OA-CNCs) are prepared through fully recyclable oxalic acid (OA) hydrolysis along with disk-milling (DM) pretreatment of bleached kraft eucalyptus pulp. Compared with the commonly used cellulose nanocrystals from sulfuric acid hydrolysis, DM-OA-CNCs show several advantages including large aspect ratio, carboxylated surface, and excellent thermal stability along with high yield. We also successfully demonstrate the fabrication of high-performance films and 3D-printed patterns using DM-OA-CNCs. The high-performance films with high transparency, ultralow haze, and excellent thermal stability have the great potential for applications in flexible electronic devices. The 3D-printed patterns with porous structures can be potentially applied in the field of tissue engineering as scaffolds.

  15. X-ray and microwave observations of active regions

    NASA Technical Reports Server (NTRS)

    Webb, D. F.; Davis, J. M.; Kundu, M. R.; Velusamy, T.

    1983-01-01

    Coordinated high-resolution (1-3 arcsec) observations of two active solar regions (H 421 and H 419) on November 16, 1979, are reported: soft-X-ray filtergrams from a sounding rocket flight, VLA total-intensity and circular-polarization microwave (6-cm) radio maps, KPNO full-disk photospheric magnetograms, and BBSO H-alpha data. The images were converted to 4.8-arcsec/mm-scale transparencies and coaligned on the basis of sunspot positions for comparison. The two active regions are characterized in detail, and intensity, size, and polarization data for the brightest microwave components (BMC) are listed. It is found that 19 of the 32 BMC are farther than 5 arcsec from any sunspot, and that X-ray-emitting structures only rarely correspond to sunspots, or BMC. About one third of the BMC are located at the feet or legs of coronal loops smaller than about 50,000 km. The limitations implied by these obervations for proposed thermal-bremsstrahlung, thermal-gyro-resonance, and nonthermal microwave-emission mechanisms are discussed.

  16. Eurogrid: a new glideinWMS based portal for CDF data analysis

    NASA Astrophysics Data System (ADS)

    Amerio, S.; Benjamin, D.; Dost, J.; Compostella, G.; Lucchesi, D.; Sfiligoi, I.

    2012-12-01

    The CDF experiment at Fermilab ended its Run-II phase on September 2011 after 11 years of operations and 10 fb-1 of collected data. CDF computing model is based on a Central Analysis Farm (CAF) consisting of local computing and storage resources, supported by OSG and LCG resources accessed through dedicated portals. At the beginning of 2011 a new portal, Eurogrid, has been developed to effectively exploit computing and disk resources in Europe: a dedicated farm and storage area at the TIER-1 CNAF computing center in Italy, and additional LCG computing resources at different TIER-2 sites in Italy, Spain, Germany and France, are accessed through a common interface. The goal of this project is to develop a portal easy to integrate in the existing CDF computing model, completely transparent to the user and requiring a minimum amount of maintenance support by the CDF collaboration. In this paper we will review the implementation of this new portal, and its performance in the first months of usage. Eurogrid is based on the glideinWMS software, a glidein based Workload Management System (WMS) that works on top of Condor. As CDF CAF is based on Condor, the choice of the glideinWMS software was natural and the implementation seamless. Thanks to the pilot jobs, user-specific requirements and site resources are matched in a very efficient way, completely transparent to the users. Official since June 2011, Eurogrid effectively complements and supports CDF computing resources offering an optimal solution for the future in terms of required manpower for administration, support and development.

  17. The role of transparency in da Vinci stereopsis.

    PubMed

    Zannoli, Marina; Mamassian, Pascal

    2011-10-15

    The majority of natural scenes contains zones that are visible to one eye only. Past studies have shown that these monocular regions can be seen at a precise depth even though there are no binocular disparities that uniquely constrain their locations in depth. In the so-called da Vinci stereopsis configuration, the monocular region is a vertical line placed next to a binocular rectangular occluder. The opacity of the occluder has been mentioned to be a necessary condition to obtain da Vinci stereopsis. However, this opacity constraint has never been empirically tested. In the present study, we tested whether da Vinci stereopsis and perceptual transparency can interact using a classical da Vinci configuration in which the opacity of the occluder varied. We used two different monocular objects: a line and a disk. We found no effect of the opacity of the occluder on the perceived depth of the monocular object. A careful analysis of the distribution of perceived depth revealed that the monocular object was perceived at a depth that increased with the distance between the object and the occluder. The analysis of the skewness of the distributions was not consistent with a double fusion explanation, favoring an implication of occlusion geometry in da Vinci stereopsis. A simple model that includes the geometry of the scene could account for the results. In summary, the mechanism responsible to locate monocular regions in depth is not sensitive to the material properties of objects, suggesting that da Vinci stereopsis is solved at relatively early stages of disparity processing. Copyright © 2011 Elsevier Ltd. All rights reserved.

  18. Light attenuation and submersed macrophyte distribution in the tidal Potomac River and estuary

    USGS Publications Warehouse

    Carter, V.; Rybicki, N.B.

    1990-01-01

    Changing light availability may be responsible for the discontinuous distribution of submersed aquatic macrophytes in the freshwater tidal Potomac River. During the 1985-1986 growing seasons, light attenuation and chlorophyll a and suspended particulate material concentrations were measured in an unvegetated reach (B) and in two adjacent vegetated reaches (A and C). Light attenuation in reach B (the lower, fresh to oligohaline tidal river) was greater than that in reach A (the recently revegetated, upper, freshwater tidal river) in both years. Reach B light attenuation was greater than that in reach C (the vegetated, oligohaline to mesohaline transition zone of the Potomac Estuary) in 1985 and similar to that in reach C in 1986. In reach B, 5% of total below-surface light penetrated only an average of 1.3 m in 1985 and 1.0m in 1986, compared with 1.9 m and 1.4 m in reach A in 1985 and 1986, respectively. Water column chlorophyll a concentration controlled light availability in reaches A and B in 1985, whereas both chlorophyll a and suspended particulate material concentrations were highly correlated with attenuation in both reaches in 1986. Reach C light attenuation was correlated with suspended particulate material in 1986. The relationship between attenuation coefficient and Secchi depth was KPAR=1.38/Secchi depth. The spectral distribution of light at 1 m was shifted toward the red portion of the visible spectrum compared to surface light. Blue light was virtually absent at 1.0 m in reach B during July and August 1986. Tidal range is probably an important factor in determining light availability for submersed macrophyte propagule survival at the sediment-water interface in this shallow turbid system. ?? 1990 Estuarine Research Federation.

  19. Classification and Physical parameters EUV coronal jets with STEREO/SECCHI.

    NASA Astrophysics Data System (ADS)

    Nistico, Giuseppe; Bothmer, Volker; Patsourakos, Spiro; Zimbardo, Gaetano

    In this work we present observations of EUV coronal jets, detected with the SECCHI (Sun Earth Connection Coronal and Heliospheric Investigation) imaging suites of the two STEREO spacecraft. Starting from catalogues of polar and equatorial coronal hole jets (Nistico' et al., Solar Phys., 259, 87, 2009; Ann. Geophys. in press), identified from simultaneous EUV and white-light coronagraph observations, taken during the time period March 2007 to April 2008 when solar activity was at minimum, we perfom a detailed study of some events. A basic char-acterisation of the magnetic morphology and identification of the presence of helical structure were established with respect to recently proposed models for their origin and temporal evo-lution. A classification of the events with respect to previous jet studies shows that amongst the 79 events, identified into polar coronal holes, there were 37 Eiffel tower -type jet events commonly interpreted as a small-scale ( 35 arcsec) magnetic bipole reconnecting with the ambi-ent unipolar open coronal magnetic fields at its looptops, 12 lambda-type jet events commonly interpreted as reconnection with the ambient field happening at the bipoles footpoints. Five events were termed micro-CME type jet events because they resembled classical three-part structured coronal mass ejections (CMEs) but on much smaller scales. The remainig 25 cases could not be uniquely classified. Thirty-one of the total number of events exhibited a helical magnetic field structure, indicative for a torsional motion of the jet around its axis of propaga-tion. The jet events are found to be also present in equatorial coronal holes. We also present the 3-D reconstruction, temperature, velocity, and density measurements of a number of jets during their evolution.

  20. Sensitivity and cost considerations for the detection and eradication of marine pests in ports.

    PubMed

    Hayes, Keith R; Cannon, Rob; Neil, Kerry; Inglis, Graeme

    2005-08-01

    Port surveys are being conducted in Australia, New Zealand and around the world to confirm the presence or absence of particular marine pests. The most critical aspect of these surveys is their sensitivity-the probability that they will correctly identify a species as present if indeed it is present. This is not, however, adequately addressed in the relevant national and international standards. Simple calculations show that the sensitivity of port survey methods is closely related to their encounter rate-the average number of target individuals expected to be detected by the method. The encounter rate (which reflects any difference in relative pest density), divided by the cost of the method, provides one way to compare the cost-effectiveness of different survey methods. The most cost-effective survey method is site- and species-specific but, in general, will involve sampling from the habitat with the highest expected population of target individuals. A case study of Perna viridis in Trinity Inlet, Cairns, demonstrates that plankton trawls processed with gene probes provide the same level of sensitivity for a fraction of the cost associated with the next best available method-snorkel transects in bad visibility (secchi depth=0.72 m). Visibility and the adult/larvae ratio, however, are critical to these arguments. If visibility were good (secchi depth=10 m), the two approaches would be comparable. Diver deployed quadrats were at least three orders of magnitude less cost-effective in this case study. It is very important that environmental managers and scientists perform sensitivity calculations before embarking on port surveys to ensure the highest level of sensitivity is achieved for any given budget.

  1. A Heuristic Approach to Remove the Background Intensity on White-light Solar Images. I. STEREO /HI-1 Heliospheric Images

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stenborg, Guillermo; Howard, Russell A.

    White-light coronal and heliospheric imagers observe scattering of photospheric light from both dust particles (the F-Corona) and free electrons in the corona (the K-corona). The separation of the two coronae is thus vitally important to reveal the faint K-coronal structures (e.g., streamers, co-rotating interaction regions, coronal mass ejections, etc.). However, the separation of the two coronae is very difficult, so we are content in defining a background corona that contains the F- and as little K- as possible. For both the LASCO-C2 and LASCO-C3 coronagraphs aboard the Solar and Heliospheric Observatory ( SOHO ) and the white-light imagers of themore » SECCHI suite aboard the Solar Terrestrial Relationships Observatory ( STEREO ), a time-dependent model of the background corona is generated from about a month of similar images. The creation of such models is possible because the missions carrying these instruments are orbiting the Sun at about 1 au. However, the orbit profiles for the upcoming Solar Orbiter and Solar Probe Plus missions are very different. These missions will have elliptic orbits with a rapidly changing radial distance, hence invalidating the techniques in use for the SOHO /LASCO and STEREO /SECCHI instruments. We have been investigating techniques to generate background models out of just single images that could be used for the Solar Orbiter Heliospheric Imager and the Wide-field Imager for the Solar Probe Plus packages on board the respective spacecraft. In this paper, we introduce a state-of-the-art, heuristic technique to create the background intensity models of STEREO /HI-1 data based solely on individual images, report on new results derived from its application, and discuss its relevance to instrumental and operational issues.« less

  2. Properties of the Circumsolar Dust Distribution Determined from STEREO/SECCHI and Implications for PSP and SolO

    NASA Astrophysics Data System (ADS)

    Howard, R.; Stenborg, G.

    2017-12-01

    We have performed an analysis of the HI-1A instrument in the STEREO/SECCHI suite to determine the inclination and longitude of the ascending node of the plane of symmetry of the F-corona. The F-corona arises from sunlight scattered by the dust in orbit about the Sun. We find that the inclination and ascending node are not constant in the field of view of the HI-1A (4° to 24° elongation), but are functions of the elongation angle i.e. the distance to the Sun and are slightly different from the parameters determined from the Helios mission. These parameters are reflecting the gravitational influences of Jupiter, Venus and the Sun as well as Lorentz and Poynting-Robinson forces on the dust orbits. The center of symmetry is not the center of the Sun, but is offset by 0.5 Rsun from the center in the direction of the average position of Jupiter during the epoch studied: from 2007-2012. We also observe a slight difference in the inclination when it is north or south of the ecliptic. We suggest this may be due to remnant dust in the orbit of the Kreutz sun-grazing comets which occur at an average rate of one every 2-3 days. Finally, as the dust particles evaporate we expect to see the F-coronal brightness correspondingly decrease. The detectability of the decrease will depend on the amount of dust evaporating, but a 10% change in the density is easily detectable. If a dust free zone surrounding the Sun exists, it will affect the F-coronal intensities observed by PSP and SolO by an observable amount.

  3. Comparing Automatic CME Detections in Multiple LASCO and SECCHI Catalogs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hess, Phillip; Colaninno, Robin C., E-mail: phillip.hess.ctr@nrl.navy.mil, E-mail: robin.colaninno@nrl.navy.mil

    With the creation of numerous automatic detection algorithms, a number of different catalogs of coronal mass ejections (CMEs) spanning the entirety of the Solar and Heliospheric Observatory ( SOHO ) Large Angle Spectrometric Coronagraph (LASCO) mission have been created. Some of these catalogs have been further expanded for use on data from the Solar Terrestrial Earth Observatory ( STEREO ) Sun Earth Connection Coronal and Heliospheric Investigation (SECCHI) as well. We compare the results from different automatic detection catalogs (Solar Eruption Event Detection System (SEEDS), Computer Aided CME Tracking (CACTus), and Coronal Image Processing (CORIMP)) to ensure the consistency ofmore » detections in each. Over the entire span of the LASCO catalogs, the automatic catalogs are well correlated with one another, to a level greater than 0.88. Focusing on just periods of higher activity, these correlations remain above 0.7. We establish the difficulty in comparing detections over the course of LASCO observations due to the change in the instrument image cadence in 2010. Without adjusting catalogs for the cadence, CME detection rates show a large spike in cycle 24, despite a notable drop in other indices of solar activity. The output from SEEDS, using a consistent image cadence, shows that the CME rate has not significantly changed relative to sunspot number in cycle 24. These data, and mass calculations from CORIMP, lead us to conclude that any apparent increase in CME rate is a result of the change in cadence. We study detection characteristics of CMEs, discussing potential physical changes in events between cycles 23 and 24. We establish that, for detected CMEs, physical parameters can also be sensitive to the cadence.« less

  4. Shifts in coastal fish communities: Is eutrophication always beneficial for sticklebacks?

    NASA Astrophysics Data System (ADS)

    Gagnon, Karine; Gräfnings, Max; Boström, Christoffer

    2017-11-01

    Following declines of predatory fish, mesopredators such as sticklebacks have been linked to shifts in coastal trophic networks through both top-down (preying on mesograzers and facilitating algal blooms) and bottom-up (benefitting from eutrophicated conditions) processes. Here, we tested whether the association between eutrophication effects (filamentous algae and turbidity) and sticklebacks held true in the Finnish Archipelago Sea where predatory fish populations have remained stable. If so, sticklebacks should be more abundant in the middle archipelago, where eutrophic conditions have led to increased turbidity, higher filamentous algal loads, and decreased cover of submerged aquatic vegetation (SAV), than in the outer archipelago, where environmental conditions are better. We measured the spatial and seasonal variation of sticklebacks (three-spined Gasterosteus aculeatus and nine-spined Pungitius pungitius) in middle and outer archipelago sites, as well as environmental variables potentially affecting their abundance. Adults and juveniles of both species were more abundant in the outer than middle archipelago. The outer archipelago was characterized by greater Secchi depth throughout the summer and higher SAV cover in late summer. Secchi depth was positively correlated with stickleback abundance of both species, while SAV cover was also positively correlated in late summer. Filamentous algal cover was high in both the middle and outer archipelago, but not consistently associated with stickleback abundance throughout the summer. While sticklebacks have been thought to both contribute to, and benefit from, eutrophication, our results instead suggest that the resulting environmental changes may have adverse effects on sticklebacks, especially if predators are present. This may lead them to shift their breeding grounds and spatial distribution to less eutrophicated areas where lower turbidity and the resulting increased availability of SAV provide refuge from predators for juveniles, and higher quality breeding and feeding grounds for adults.

  5. System and Method for High-Speed Data Recording

    NASA Technical Reports Server (NTRS)

    Taveniku, Mikael B. (Inventor)

    2017-01-01

    A system and method for high speed data recording includes a control computer and a disk pack unit. The disk pack is provided within a shell that provides handling and protection for the disk packs. The disk pack unit provides cooling of the disks and connection for power and disk signaling. A standard connection is provided between the control computer and the disk pack unit. The disk pack units are self sufficient and able to connect to any computer. Multiple disk packs are connected simultaneously to the system, so that one disk pack can be active while one or more disk packs are inactive. To control for power surges, the power to each disk pack is controlled programmatically for the group of disks in a disk pack.

  6. Water quality determination by photographic analysis. [optical density and water turbidity

    NASA Technical Reports Server (NTRS)

    Klooster, S. A.; Scherz, J. P.

    1973-01-01

    Aerial reconnaissance techniques to extract water quality parameters from aerial photos are reported. The turbidity can be correlated with total suspended solids if the constituent parts of the effluent remain the same and the volumetric flow remains relatively constant. A monochromator is used for the selection of the bandwidths containing the most information. White reflectance panels are used to locate sampling points and eliminate inherent energy changes from lens flare, radial lens fall-off, and changing subject illumination. Misleading information resulting from bottom effects is avoided by the use of Secchi disc readings and proper choice of wavelength for analyzing the photos.

  7. LP-Stability for the Strong Solutions of the Navier-Stokes Equations in the Whole Space.

    DTIC Science & Technology

    1985-10-01

    VEIGA ET AL OCT 85 F/G 28/4 Ni II 2h8 12.5I II I 3L.2 2 gL 11111125 11111_L.4 1.6 MICR~OCOPY RESOLUTION TEST CHART...STABILITY FOR THE STRONG SOLUTIONS OF THE NAVIER-STOKES EQUATIONS IN THE WHOLE SPACE H. Beirao da Veiga and P. Secchi introduction. Consider the...34’" -’ + " " . ’ ~ . , .’,..-.- -’ ’ . - " + - " " ." " - - " ." . . .’’.." ",’ A *’". " " ,’ ’- - -’" REFERENCES [1] H. BEIRAO DA VEIGA , "Existence and asymptotic

  8. Eutrophication of Lake Tasaul, Romania-proposals for rehabilitation.

    PubMed

    Alexandrov, Mihaela Laurenta; Bloesch, Jürg

    2009-08-01

    Lake Tasaul on the Black Sea coast is highly eutrophic, but not strongly contaminated (heavy metals, PAHs, and organochlorine pesticides). Cyanophytes dominate phytoplankton by 67-94% and form frequent algal blooms. High primary production (up to 270 mg C(ass)/m(2).h) and algal biomass (maximum chlorophyll a concentration 417 microg/l) may be controlled by light, as Secchi depth is often below 1 m. The main tributary, Casimcea River, provides high quantities of suspended matter and about 3 tons TP/year and 660 tons TN/year. Based on chemical and biological analysis as well as fishery investigations, we provide recommendations for Lake Tasaul rehabilitation.

  9. Patterns of social association in the franciscana, Pontoporia blainvillei

    USGS Publications Warehouse

    Wells, Randall S.; Bordino, Pablo; Douglas, David C.

    2013-01-01

    Little is known from living animals about the social patterns of the franciscana, Pontoporia blainvillei, a small dolphin inhabiting a narrow strip of coastal waters off Argentina, Uruguay, and Brazil. These dolphins tend to be found in small groups, typically composed of two or three individuals (Bordino et al. 1999). Throughout much of the species' range, franciscanas encounter artisanal gill nets (Praderi 1989, Corcuera et al. 1994, Bertozzi and Zerbini 2002, Bordino et al. 2002, Secchi et al. 2003). Entanglement in these nets results in the deaths of thousands of individuals each year, at levels that are likely unsustainable (Bordino and Albareda 2004, Cappozzo et al. 2007).

  10. Tutorial: Performance and reliability in redundant disk arrays

    NASA Technical Reports Server (NTRS)

    Gibson, Garth A.

    1993-01-01

    A disk array is a collection of physically small magnetic disks that is packaged as a single unit but operates in parallel. Disk arrays capitalize on the availability of small-diameter disks from a price-competitive market to provide the cost, volume, and capacity of current disk systems but many times their performance. Unfortunately, relative to current disk systems, the larger number of components in disk arrays leads to higher rates of failure. To tolerate failures, redundant disk arrays devote a fraction of their capacity to an encoding of their information. This redundant information enables the contents of a failed disk to be recovered from the contents of non-failed disks. The simplest and least expensive encoding for this redundancy, known as N+1 parity is highlighted. In addition to compensating for the higher failure rates of disk arrays, redundancy allows highly reliable secondary storage systems to be built much more cost-effectively than is now achieved in conventional duplicated disks. Disk arrays that combine redundancy with the parallelism of many small-diameter disks are often called Redundant Arrays of Inexpensive Disks (RAID). This combination promises improvements to both the performance and the reliability of secondary storage. For example, IBM's premier disk product, the IBM 3390, is compared to a redundant disk array constructed of 84 IBM 0661 3 1/2-inch disks. The redundant disk array has comparable or superior values for each of the metrics given and appears likely to cost less. In the first section of this tutorial, I explain how disk arrays exploit the emergence of high performance, small magnetic disks to provide cost-effective disk parallelism that combats the access and transfer gap problems. The flexibility of disk-array configurations benefits manufacturer and consumer alike. In contrast, I describe in this tutorial's second half how parallelism, achieved through increasing numbers of components, causes overall failure rates to rise. Redundant disk arrays overcome this threat to data reliability by ensuring that data remains available during and after component failures.

  11. Herschel evidence for disk flattening or gas depletion in transitional disks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keane, J. T.; Pascucci, I.; Espaillat, C.

    Transitional disks are protoplanetary disks characterized by reduced near- and mid-infrared emission, with respect to full disks. This characteristic spectral energy distribution indicates the presence of an optically thin inner cavity within the dust disk believed to mark the disappearance of the primordial massive disk. We present new Herschel Space Observatory PACS spectra of [O I] 63.18 μm for 21 transitional disks. Our survey complements the larger Herschel GASPS program ({sup G}as in Protoplanetary Systems{sup )} by quadrupling the number of transitional disks observed with PACS in this wavelength. [O I] 63.18 μm traces material in the outer regions ofmore » the disk, beyond the inner cavity of most transitional disks. We find that transitional disks have [O I] 63.18 μm line luminosities ∼2 times fainter than their full disk counterparts. We self-consistently determine various stellar properties (e.g., bolometric luminosity, FUV excess, etc.) and disk properties (e.g., disk dust mass, etc.) that could influence the [O I] 63.18 μm line luminosity, and we find no correlations that can explain the lower [O I] 63.18 μm line luminosities in transitional disks. Using a grid of thermo-chemical protoplanetary disk models, we conclude that either transitional disks are less flared than full disks or they possess lower gas-to-dust ratios due to a depletion of gas mass. This result suggests that transitional disks are more evolved than their full disk counterparts, possibly even at large radii.« less

  12. Chemical and biological quality of selected lakes in Ohio, 1976 and 1977

    USGS Publications Warehouse

    Tobin, Robert L.; Youger, John D.

    1979-01-01

    Twenty-eight Ohio lakes (14 per year) were sampled by the U.S. Geological Survey and Ohio Environmental Protection Agency for the water-quality characteristics during the spring and summer of 1976 and 1977. Data items included: profiles of temperature, dissolved oxygen, pH, and specific conductance; physical, biological, nutrient, and organic characteristics; major and minor constituents; and physical and chemical data associated with major inflows. Light penetration (secchi disk) was greatest (21 feet) in Mogadore Reservoir and least (0.8 foot) in Stonelick Lake. Seasonal thermal gradients developed in most lakes greater than 17 feet in depth. Dissolved-oxygen saturation ranged from 220 percent in Summit Lake to zero percent in the bottom waters of all lakes having stable thermal gradients. Five-day BOD ranged from 0.3 milligrams per liter im Michael J. Kirwan Reservoir to more than 17 milligrams per liter in Nimisilia Reservoir. Anaerobic zones were frequently characterized by hydrogen sulfide and high concentrations of ammonia. All lakes had moderately hard to very hard waters. Calcium, bicarbonate, and sulfate were the principal constituents. Specific conductance ranged from 130 micromhos (Lake Logan) to 1250 micromhos (Summit Lake). Because of nutrient uptake and recycling, significant chemical and physical differences developed in different thermal strata. Pesticide residues and trace elements were not above the limits recommended by the Ohio Environmental Protection Agency. All counts of fecal colifrom bacteria were within State standards. Blue-green algae (Cyanophyta) dominated the phytoplankton communities of 18 lakes in spring and 26 lakes in summer. Algal counts from euphotic-zone composite samples ranged from 180 cells per milliliter in Killdeer Reservoir to 3,400,000 cells per milliliter in Kiser Lake. Maximum algal counts were greater than 100,000 cells per milliliter in 19 lakes. Streams ate a major source of macronutrients in Ohio lakes. The estimated discharge-weighted mean concentration for nitrite and total phosphorus in 62 inflow samples was 1.22 milligrams per liter as N and 0.12 milligrams per liter as P.

  13. Quantification of the association between intervertebral disk calcification and disk herniation in Dachshunds.

    PubMed

    Jensen, Vibeke F; Beck, Sarah; Christensen, Knud A; Arnbjerg, Jens

    2008-10-01

    To quantify the association between intervertebral disk calcification and disk herniation in Dachshunds. Longitudinal study. 61 Dachshunds that had been radiographically screened for calcification of intervertebral disks at 2 years of age in other studies. Thirty-seven of the dogs had survived to the time of the present study and were > or = 8 years of age; 24 others had not survived. Radiographic examination of 36 surviving dogs was performed, and information on occurrence of disk calcification at 2 years of age were obtained from records of all 61 Dachshunds. Information on occurrence of disk herniation between 2 and 8 years of age was obtained from owners via questionnaire. Associations between numbers of calcified disks and disk herniation were analyzed via maximum likelihood logistic regression. Disk calcification at 2 years of age was a significant predictor of clinical disk herniation (odds ratio per calcified disk, 1.42; 95% confidence interval, 1.19 to 1.81). Number of calcified disks in the full vertebral column was a better predictor than number of calcified disks between vertebrae T10 and L3. Numbers of calcified disks at > or = 8 years of age and at 2 years of age were significantly correlated. Number of calcified disks at 2 years of age was a good predictor of clinical disk herniation in Dachshunds. Because of the high heritability of disk calcification, it is possible that an effective reduction in occurrence of severe disk herniation in Dachshunds could be obtained by selective breeding against high numbers of calcified disks at 2 years of age.

  14. Aerodynamic and torque characteristics of enclosed Co/counter rotating disks

    NASA Astrophysics Data System (ADS)

    Daniels, W. A.; Johnson, B. V.; Graber, D. J.

    1989-06-01

    Experiments were conducted to determine the aerodynamic and torque characteristics of adjacent rotating disks enclosed in a shroud, in order to obtain an extended data base for advanced turbine designs such as the counterrotating turbine. Torque measurements were obtained on both disks in the rotating frame of reference for corotating, counterrotating and one-rotating/one-static disk conditions. The disk models used in the experiments included disks with typical smooth turbine geometry, disks with bolts, disks with bolts and partial bolt covers, and flat disks. A windage diaphragm was installed at mid-cavity for some experiments. The experiments were conducted with various amounts of coolant throughflow injected into the disk cavity from the disk hub or from the disk OD with swirl. The experiments were conducted at disk tangential Reynolds number up to 1.6 x 10 to the 7th with air as the working fluid. The results of this investigation indicated that the static shroud contributes a significant amount to the total friction within the disk system; the torque on counterrotating disks is essentially independent of coolant flow total rate, flow direction, and tangential Reynolds number over the range of conditions tested; and a static windage diaphragm reduces disk friction in counterrotating disk systems.

  15. Structural valve deterioration in a starr-edwards mitral caged-disk valve prosthesis.

    PubMed

    Aoyagi, Shigeaki; Tayama, Kei-Ichiro; Okazaki, Teiji; Shintani, Yusuke; Kono, Michitaka; Wada, Kumiko; Kosuga, Ken-Ichi; Mori, Ryusuke; Tanaka, Hiroyuki

    2013-01-01

    The durability of the Starr-Edwards (SE) mitral caged-disk valve, model 6520, is not clearly known, and structural valve deterioration in the SE disk valve is very rare. Replacement of the SE mitral disk valve was performed in 7 patients 23-40 years after implantation. Macroscopic examination of the removed disk valves showed no structural abnormalities in 3 patients, in whom the disk valves were removed at <26 years after implantation. Localized disk wear was found at the sites where the disk abutted the struts of the cage, in disk valves excised >36 years after implantation in 4 patients. Disk fracture, a longitudinal split in the disk along its circumference at the site of incorporation of the titanium ring, was detected in the valves removed 36 and 40 years after implantation, respectively, and many cracks were also observed on the outflow aspect of the disk removed 40 years after implantation. Disk fracture and localized disk wear were found in the SE mitral disk valves implanted >36 years previously. The present results suggest that SE mitral caged-disk valves implanted >20 years previously should be carefully followed up, and that those implanted >30 years previously should be electively replaced with modern prosthetic valves

  16. Improved turbine disk design to increase reliability of aircraft jet engines

    NASA Technical Reports Server (NTRS)

    Alver, A. S.; Wong, J. K.

    1975-01-01

    An analytical study was conducted on a bore entry cooled turbine disk for the first stage of the JT8D-17 high pressure turbine which had the potential to improve disk life over existing design. The disk analysis included the consideration of transient and steady state temperature, blade loading, creep, low cycle fatigue, fracture mechanics and manufacturing flaws. The improvement in life of the bore entry cooled turbine disk was determined by comparing it with the existing disk made of both conventional and advanced (Astroloy) disk materials. The improvement in crack initiation life of the Astroloy bore entry cooled disk is 87% and 67% over the existing disk made of Waspaloy and Astroloy, respectively. Improvement in crack propagation life is 124% over the Waspaloy and 465% over the Astroloy disks. The available kinetic energies of disk fragments calculated for the three disks indicate a lower fragment energy level for the bore entry cooled turbine disk.

  17. Floppy disk utility user's guide

    NASA Technical Reports Server (NTRS)

    Akers, J. W.

    1981-01-01

    The Floppy Disk Utility Program transfers programs between files on the hard disk and floppy disk. It also copies the data on one floppy disk onto another floppy disk and compares the data. The program operates on the Data General NOVA-4X under the Real Time Disk Operating System (RDOS).

  18. Accretion Disk Spectra of the Ultra-luminous X-ray Sources in Nearby Spiral Galaxies and Galactic Superluminal Jet Sources

    NASA Technical Reports Server (NTRS)

    White, Nicholas E. (Technical Monitor); Ebisawa, Ken; Zycki, Piotr; Kubota, Aya; Mizuno, Tsunefumi; Watarai, Ken-ya

    2003-01-01

    Ultra-luminous Compact X-ray Sources (ULXs) in nearby spiral galaxies and Galactic superluminal jet sources share the common spectral characteristic that they have unusually high disk temperatures which cannot be explained in the framework of the standard optically thick accretion disk in the Schwarzschild metric. On the other hand, the standard accretion disk around the Kerr black hole might explain the observed high disk temperature, as the inner radius of the Kerr disk gets smaller and the disk temperature can be consequently higher. However, we point out that the observable Kerr disk spectra becomes significantly harder than Schwarzschild disk spectra only when the disk is highly inclined. This is because the emission from the innermost part of the accretion disk is Doppler-boosted for an edge-on Kerr disk, while hardly seen for a face-on disk. The Galactic superluminal jet sources are known to be highly inclined systems, thus their energy spectra may be explained with the standard Kerr disk with known black hole masses. For ULXs, on the other hand, the standard Kerr disk model seems implausible, since it is highly unlikely that their accretion disks are preferentially inclined, and, if edge-on Kerr disk model is applied, the black hole mass becomes unreasonably large (greater than or approximately equal to 300 Solar Mass). Instead, the slim disk (advection dominated optically thick disk) model is likely to explain the observed super- Eddington luminosities, hard energy spectra, and spectral variations of ULXs. We suggest that ULXs are accreting black holes with a few tens of solar mass, which is not unexpected from the standard stellar evolution scenario, and their X-ray emission is from the slim disk shining at super-Eddington luminosities.

  19. Transitional Disks Associated with Intermediate-Mass Stars: Results of the SEEDS YSO Survey

    NASA Technical Reports Server (NTRS)

    Grady, C.; Fukagawa, M.; Maruta, Y.; Ohta, Y.; Wisniewski, J.; Hashimoto, J.; Okamoto, Y.; Momose, M.; Currie, T.; McElwain, M.; hide

    2014-01-01

    Protoplanetary disks are where planets form, grow, and migrate to produce the diversity of exoplanet systems we observe in mature systems. Disks where this process has advanced to the stage of gap opening, and in some cases central cavity formation, have been termed pre-transitional and transitional disks in the hope that they represent intermediate steps toward planetary system formation. Recent reviews have focussed on disks where the star is of solar or sub-solar mass. In contrast to the sub-millimeter where cleared central cavities predominate, at H-band some T Tauri star transitional disks resemble primordial disks in having no indication of clearing, some show a break in the radial surface brightness profile at the inner edge of the outer disk, while others have partially to fully cleared gaps or central cavities. Recently, the Meeus Group I Herbig stars, intermediate-mass PMS stars with IR spectral energy distributions often interpreted as flared disks, have been proposed to have transitional and pre-transitional disks similar to those associated with solar-mass PMS stars, based on thermal-IR imaging, and sub-millimeter interferometry. We have investigated their appearance in scattered light as part of the Strategic Exploration of Exoplanets and Disks with Subaru (SEEDS), obtaining H-band polarimetric imagery of 10 intermediate-mass stars with Meeus Group I disks. Augmented by other disks with imagery in the literature, the sample is now sufficiently large to explore how these disks are similar to and differ from T Tauri star disks. The disk morphologies seen in the Tauri disks are also found for the intermediate-mass star disks, but additional phenomena are found; a hallmark of these disks is remarkable individuality and diversity which does not simply correlate with disk mass or stellar properties, including age, including spiral arms in remnant envelopes, arms in the disk, asymmetrically and potentially variably shadowed outer disks, gaps, and one disk where only half of the disk is seen in scattered light at H. We will discuss our survey results in terms of spiral arm theory, dust trapping vortices, and systematic differences in the relative scale height of these disks compared to those around Solar-mass stars. For the disks with spiral arms we discuss the planet-hosting potential, and limits on where giant planets can be located. We also discuss the implications for imaging with extreme adaptive optics instruments. Grady is supported under NSF AST 1008440 and through the NASA Origins of Solar Systems program on NNG13PB64P. JPW is supported NSF AST 100314. 0) in marked contrast to protoplanetary disks, transitional disks exhibit wide range of structural features1) arm visibility correlated with relative scale height in disk2) asymmetric and possibly variable shadowing of outer portions some transitional disks3) confirm pre-transitional disk nature of Oph IRS 48, MWC 758, HD 169142, etc.

  20. Floppy disk utility user's guide

    NASA Technical Reports Server (NTRS)

    Akers, J. W.

    1980-01-01

    A floppy disk utility program is described which transfers programs between files on a hard disk and floppy disk. It also copies the data on one floppy disk onto another floppy disk and compares the data. The program operates on the Data General NOVA-4X under the Real Time Disk Operating System. Sample operations are given.

  1. THE KOZAI–LIDOV MECHANISM IN HYDRODYNAMICAL DISKS. II. EFFECTS OF BINARY AND DISK PARAMETERS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fu, Wen; Lubow, Stephen H.; Martin, Rebecca G., E-mail: wf5@rice.edu

    2015-07-01

    Martin et al. showed that a substantially misaligned accretion disk around one component of a binary system can undergo global damped Kozai–Lidov (KL) oscillations. During these oscillations, the inclination and eccentricity of the disk are periodically exchanged. However, the robustness of this mechanism and its dependence on the system parameters were unexplored. In this paper, we use three-dimensional hydrodynamical simulations to analyze how various binary and disk parameters affect the KL mechanism in hydrodynamical disks. The simulations include the effect of gas pressure and viscosity, but ignore the effects of disk self-gravity. We describe results for different numerical resolutions, binarymore » mass ratios and orbital eccentricities, initial disk sizes, initial disk surface density profiles, disk sound speeds, and disk viscosities. We show that the KL mechanism can operate for a wide range of binary-disk parameters. We discuss the applications of our results to astrophysical disks in various accreting systems.« less

  2. The Kozai-Lidov mechanism in hydrodynamical disks. II. Effects of binary and disk parameters

    DOE PAGES

    Fu, Wen; Lubow, Stephen H.; Martin, Rebecca G.

    2015-07-01

    Martin et al. (2014b) showed that a substantially misaligned accretion disk around one component of a binary system can undergo global damped Kozai–Lidov (KL) oscillations. During these oscillations, the inclination and eccentricity of the disk are periodically exchanged. However, the robustness of this mechanism and its dependence on the system parameters were unexplored. In this paper, we use three-dimensional hydrodynamical simulations to analyze how various binary and disk parameters affect the KL mechanism in hydrodynamical disks. The simulations include the effect of gas pressure and viscosity, but ignore the effects of disk self-gravity. We describe results for different numerical resolutions,more » binary mass ratios and orbital eccentricities, initial disk sizes, initial disk surface density profiles, disk sound speeds, and disk viscosities. We show that the KL mechanism can operate for a wide range of binary-disk parameters. We discuss the applications of our results to astrophysical disks in various accreting systems.« less

  3. European light dosimeter network (ELDONET): 1998 data

    NASA Astrophysics Data System (ADS)

    Häder, D.-P.; Lebert, M.; Colombetti, G.; Figueroa, F.

    2001-03-01

    The European light dosimeter network of over 40 stations has been established in Europe and other continents equipped with three-channel filter dosimeters to measure solar radiation in three channels, UV-B (280-315 nm), UV-A (315-400 nm) and photosynthetically active radiation (PAR). The recorded data have been evaluated, and the monthly doses in all three channels show a strong latitudinal dependence from northern Sweden to the Canary Islands. There are a few remarkable exceptions such as the data recorded at the high mountain station on the Zugspitze (German Alps) and unequal doses at stations at comparable latitudes which indicate the impact of local weather conditions and mean sunshine hours. While generally peak values are recorded in the months of June and July, the UV-B maxima are shifted later into the year, which is due to the antagonistic functions of decreasing solar angles and increasing transparency of the atmosphere as the total column ozone decreases in the second half of the year for the Northern Hemisphere. This is supported by comparison with modelled total column ozone and satellite-based measurements. Also the ratios of UV-B:UV-A and UV-B:PAR as well as UV-A:PAR peak during the summer months, with the exception of the northernmost station at Abisko (north Sweden) where the UV-A:PAR ratio peaks in the winter months which is due to the specific photoclimatic conditions north of the polar circle. The penetration of solar radiation into the water column was found to strongly depend on the transparency of the water column. In Gran Canaria more than 10% of the surface UV-B penetrated to 4-5 m depth. The path of the solar eclipse on 11 August 1999 could be followed in several stations with different degrees of occlusion of the sun disk.

  4. Towards a Global Evolutionary Model of Protoplanetary Disks

    NASA Astrophysics Data System (ADS)

    Bai, Xue-Ning

    2016-04-01

    A global picture of the evolution of protoplanetary disks (PPDs) is key to understanding almost every aspect of planet formation, where standard α-disk models have been continually employed for their simplicity. In the meantime, disk mass loss has been conventionally attributed to photoevaporation, which controls disk dispersal. However, a paradigm shift toward accretion driven by magnetized disk winds has taken place in recent years, thanks to studies of non-ideal magnetohydrodynamic effects in PPDs. I present a framework of global PPD evolution aiming to incorporate these advances, highlighting the role of wind-driven accretion and wind mass loss. Disk evolution is found to be largely dominated by wind-driven processes, and viscous spreading is suppressed. The timescale of disk evolution is controlled primarily by the amount of external magnetic flux threading the disks, and how rapidly the disk loses the flux. Rapid disk dispersal can be achieved if the disk is able to hold most of its magnetic flux during the evolution. In addition, because wind launching requires a sufficient level of ionization at the disk surface (mainly via external far-UV (FUV) radiation), wind kinematics is also affected by the FUV penetration depth and disk geometry. For a typical disk lifetime of a few million years, the disk loses approximately the same amount of mass through the wind as through accretion onto the protostar, and most of the wind mass loss proceeds from the outer disk via a slow wind. Fractional wind mass loss increases with increasing disk lifetime. Significant wind mass loss likely substantially enhances the dust-to-gas mass ratio and promotes planet formation.

  5. OCoc- from Ocean Colour to Organic Carbon

    NASA Astrophysics Data System (ADS)

    Heim, B.; Overduin, P. P.; Schirrmeister, L.; Doerffer, R.

    2009-04-01

    Enhanced permafrost warming and increased arctic river discharges have heightened concern about the input of terrigenous matter into Arctic coastal waters. Especially, large parts of the Central and Eastern Siberian coastline are characterized by highly erosive sedimentary ice-rich material. The ‘OCoc-from Ocean Colour to Organic Carbon' project (IPY-project 1176), funded by the German Research Foundation (DFG), is an Ocean Colour study joined with the Arctic Circum-polar Coastal Observatory Network Acco-Net (ACCO-Net: IPY-project 90) originating from the Arctic Coastal Dynamics ACD project . OCoc uses Ocean Colour satellite data for synoptic monitoring of the input of organic matter - from both fluvial and coastal sources - into the Arctic coastal waters. Initial results from the German-Russian Expedition Lena08 along the southeastern Laptev Sea Coast (Arctic Siberia, Russia) in August 2008 are presented. Ocean Colour MERIS Reduced Resolution (RR)-LIB data of the Laptev Sea Coast from August 2008 have been processed towards L2 parameters using Beam-Visat4.2© and the MERIS case2 regional processor for coastal application (C2R). C2R uses neural network procedures for the retrieval of water leaving reflectances and neural network procedures to derive the inherent optical properties (IOPs) from the water leaving reflectances. C2R output parameters are IOPs (absorption and backscattering coefficients), apparent optical properties (AOPs) (water leaving radiance reflectance, attenuation coefficient ‘k'), optical parameters such as the first attenuation depth (‘Z90') and calculated concentrations of chlorophyll, total suspended matter, and yellow substance absorption. Initial comparisons with Lena08-Expedition data (Secchi depths, cDOM) and water transparency data from former arctic cruises show that the MERIS-C2R optical parameters 'total absorption' and the first attenuation depth, 'Z90', seem adequately to represent true conditions. High attenuation values are the tracers for the organic-rich terrigenous input. The synoptic information of MERIS Ocean Colour products will provide valuable spatial and dynamical information on the Organic Carbon and sediment fluxes from the Siberian permafrost coast.

  6. Numerical Simulations of Naturally Tilted, Retrogradely Precessing, Nodal Superhumping Accretion Disks

    NASA Astrophysics Data System (ADS)

    Montgomery, M. M.

    2012-02-01

    Accretion disks around black hole, neutron star, and white dwarf systems are thought to sometimes tilt, retrogradely precess, and produce hump-shaped modulations in light curves that have a period shorter than the orbital period. Although artificially rotating numerically simulated accretion disks out of the orbital plane and around the line of nodes generate these short-period superhumps and retrograde precession of the disk, no numerical code to date has been shown to produce a disk tilt naturally. In this work, we report the first naturally tilted disk in non-magnetic cataclysmic variables using three-dimensional smoothed particle hydrodynamics. Our simulations show that after many hundreds of orbital periods, the disk has tilted on its own and this disk tilt is without the aid of radiation sources or magnetic fields. As the system orbits, the accretion stream strikes the bright spot (which is on the rim of the tilted disk) and flows over and under the disk on different flow paths. These different flow paths suggest the lift force as a source to disk tilt. Our results confirm the disk shape, disk structure, and negative superhump period and support the source to disk tilt, source to retrograde precession, and location associated with X-ray and He II emission from the disk as suggested in previous works. Our results identify the fundamental negative superhump frequency as the indicator of disk tilt around the line of nodes.

  7. Connecting the shadows: probing inner disk geometries using shadows in transitional disks

    NASA Astrophysics Data System (ADS)

    Min, M.; Stolker, T.; Dominik, C.; Benisty, M.

    2017-08-01

    Aims: Shadows in transitional disks are generally interpreted as signs of a misaligned inner disk. This disk is usually beyond the reach of current day high contrast imaging facilities. However, the location and morphology of the shadow features allow us to reconstruct the inner disk geometry. Methods: We derive analytic equations of the locations of the shadow features as a function of the orientation of the inner and outer disk and the height of the outer disk wall. In contrast to previous claims in the literature, we show that the position angle of the line connecting the shadows cannot be directly related to the position angle of the inner disk. Results: We show how the analytic framework derived here can be applied to transitional disks with shadow features. We use estimates of the outer disk height to put constraints on the inner disk orientation. In contrast with the results from Long et al. (2017, ApJ, 838, 62), we derive that for the disk surrounding HD 100453 the analytic estimates and interferometric observations result in a consistent picture of the orientation of the inner disk. Conclusions: The elegant consistency in our analytic framework between observation and theory strongly support both the interpretation of the shadow features as coming from a misaligned inner disk as well as the diagnostic value of near infrared interferometry for inner disk geometry.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Espaillat, C.; D'Alessio, P.; Hernandez, J.

    In the past few years, several disks with inner holes that are relatively empty of small dust grains have been detected and are known as transitional disks. Recently, Spitzer has identified a new class of 'pre-transitional disks' with gaps based on near-infrared photometry and mid-infrared spectra; these objects have an optically thick inner disk separated from an optically thick outer disk by an optically thin disk gap. A near-infrared spectrum provided the first confirmation of a gap in the pre-transitional disk of LkCa 15 by verifying that the near-infrared excess emission in this object was due to an optically thickmore » inner disk. Here, we investigate the difference between the nature of the inner regions of transitional and pre-transitional disks using the same veiling-based technique to extract the near-infrared excess emission above the stellar photosphere. However, in this work we use detailed disk models to fit the excess continua as opposed to the simple blackbody fits previously used. We show that the near-infrared excess emission of the previously identified pre-transitional disks of LkCa 15 and UX Tau A in the Taurus cloud as well as the newly identified pre-transitional disk of ROX 44 in Ophiuchus can be fit with an inner disk wall located at the dust destruction radius. We also present detailed modeling of the broadband spectral energy distributions of these objects, taking into account the effect of shadowing by the inner disk on the outer disk, but considering the finite size of the star, unlike other recent treatments. The near-infrared excess continua of these three pre-transitional disks, which can be explained by optically thick inner disks, are significantly different from that of the transitional disks of GM Aur, whose near-infrared excess continuum can be reproduced by emission from sub-micron-sized optically thin dust, and DM Tau, whose near-infrared spectrum is consistent with a disk hole that is relatively free of small dust. The structure of pre-transitional disks may be a sign of young planets forming in these disks and future studies of pre-transitional disks will provide constraints to aid in theoretical modeling of planet formation.« less

  9. Effect of Summon Preferred Food Source on feeding, tunneling, and bait station discovery by the formosan subterranean termite (Isoptera: Rhinotermitidae).

    PubMed

    Cornelius, Mary L; Lax, Alan R

    2005-04-01

    This study evaluated the effect of Summon Preferred Food Source on feeding, tunneling, and bait station discovery by the Formosan subterranean termite, Coptotermes formosanus Shiraki. Bioassays were conducted to determine whether Summon disks affected the aggregation and feeding behavior of termites and to determine whether the presence of Summon disks caused increased recruitment of termites to wood blocks. When termites encountered the disk, they immediately clustered on top of the disk. Termites were observed aggregating on top of the disk throughout the experiment. Consumption of Summon disks was significantly greater than consumption of cardboard disks in paired choice tests. The presence of a Summon disk on top of a wood block caused a significant increase in consumption of the wood block. Bioassays also were conducted to determine whether water extracts of Summon disks affected termite behavior. Consumption of filter paper disks treated with a water extract of Summon disks was significantly greater than consumption of control filter paper disks. Termites tunneled through sand treated with a water extract of Summon disks faster than they tunneled through untreated sand. In a field test, the rate of infestation of monitoring stations with a Summon disk was 3 times greater than the rate of infestations of stations without a disk.

  10. Coevolution of Binaries and Circumbinary Gaseous Disks

    NASA Astrophysics Data System (ADS)

    Fleming, David; Quinn, Thomas R.

    2018-04-01

    The recent discoveries of circumbinary planets by Kepler raise questions for contemporary planet formation models. Understanding how these planets form requires characterizing their formation environment, the circumbinary protoplanetary disk, and how the disk and binary interact. The central binary excites resonances in the surrounding protoplanetary disk that drive evolution in both the binary orbital elements and in the disk. To probe how these interactions impact both binary eccentricity and disk structure evolution, we ran N-body smooth particle hydrodynamics (SPH) simulations of gaseous protoplanetary disks surrounding binaries based on Kepler 38 for 10^4 binary orbital periods for several initial binary eccentricities. We find that nearly circular binaries weakly couple to the disk via a parametric instability and excite disk eccentricity growth. Eccentric binaries strongly couple to the disk causing eccentricity growth for both the disk and binary. Disks around sufficiently eccentric binaries strongly couple to the disk and develop an m = 1 spiral wave launched from the 1:3 eccentric outer Lindblad resonance (EOLR). This wave corresponds to an alignment of gas particle longitude of periastrons. We find that in all simulations, the binary semi-major axis decays due to dissipation from the viscous disk.

  11. Effects of Disk Warping on the Inclination Evolution of Star-Disk-Binary Systems

    NASA Astrophysics Data System (ADS)

    Zanazzi, J. J.; Lai, Dong

    2018-04-01

    Several recent studies have suggested that circumstellar disks in young stellar binaries may be driven into misalignement with their host stars due to secular gravitational interactions between the star, disk and the binary companion. The disk in such systems is twisted/warped due to the gravitational torques from the oblate central star and the external companion. We calculate the disk warp profile, taking into account of bending wave propagation and viscosity in the disk. We show that for typical protostellar disk parameters, the disk warp is small, thereby justifying the "flat-disk" approximation adopted in previous theoretical studies. However, the viscous dissipation associated with the small disk warp/twist tends to drive the disk toward alignment with the binary or the central star. We calculate the relevant timescales for the alignment. We find the alignment is effective for sufficiently cold disks with strong external torques, especially for systems with rapidly rotating stars, but is ineffective for the majority of star-disk-binary systems. Viscous warp driven alignment may be necessary to account for the observed spin-orbit alignment in multi-planet systems if these systems are accompanied by an inclined binary companion.

  12. Debris Disks in Aggregate: Using Hubble Space Telescope Coronagraphic Imagery to Understand the Scattered-Light Disk Detection Rate

    NASA Technical Reports Server (NTRS)

    Grady, Carol A.

    2011-01-01

    Despite more than a decade of coronagraphic imaging of debris disk candidate stars, only 16 have been imaged in scattered light. Since imaged disks provide our best insight into processes which sculpt disks, and can provide signposts of the presence of giant planets at distances which would elude radial velocity and transit surveys, we need to understand under what conditions we detect the disks in scattered light, how these disks differ from the majority of debris disks, and how to increase the yield of disks which are imaged with 0.1" angular resolution. In this talk, I will review what we have learned from a shallow HSTINICMOS NIR survey of debris disks, and present first results from our on-going HST /STIS optical imaging of bright scattered-light disks.

  13. The influence of disk's flexibility on coupling vibration of shaft disk blades systems

    NASA Astrophysics Data System (ADS)

    Yang, Chia-Hao; Huang, Shyh-Chin

    2007-03-01

    The coupling vibrations among shaft-torsion, disk-transverse and blade-bending in a shaft-disk-blades unit are investigated. The equations of motion for the shaft-disk-blades unit are first derived from the energy approach in conjunction with the assumed modes method. The effects of disk flexibility, blade's stagger angle and rotational speed upon the natural frequencies and mode shapes are particularly studied. Previous studies have shown that there were four types of coupling modes, the shaft-blade (SB), the shaft-disk-blades (SDBs), the disk-blades (DB) and the blade-blade (BB) in such a unit. The present research focuses on the influence of disk flexibility on the coupling behavior and discovers that disk's flexibility strongly affects the modes bifurcation and the transition of modes. At slightly flexible disk, the BB modes bifurcate into BB and DB modes. As disk goes further flexible, SB modes shift into SDB modes. If it goes furthermore, additional disk-predominating modes are generated and DB modes appear before the SDB mode. Examination of stagger angle β proves that at two extreme cases; at β=0° the shaft and blades coupled but not the disk, and at β=90° the disk and blades coupled but not the shaft. In between, coupling exists among three components. Increasing β may increase or decrease SB modes, depending on which, the disk or shaft's first mode, is more rigid. The natural frequencies of DB modes usually decrease with the increase of β. Rotation effects show that bifurcation, veering and merging phenomena occur due to disk flexibility. Disk flexibility is also observed to induce more critical speeds in the SDBs systems.

  14. OT1_ipascucc_1: Understanding the Origin of Transition Disks via Disk Mass Measurements

    NASA Astrophysics Data System (ADS)

    Pascucci, I.

    2010-07-01

    Transition disks are a distinguished group of few Myr-old systems caught in the phase of dispersing their inner dust disk. Three different processes have been proposed to explain this inside-out clearing: grain growth, photoevaporation driven by the central star, and dynamical clearing by a forming giant planet. Which of these processes lead to a transition disk? Distinguishing between them requires the combined knowledge of stellar accretion rates and disk masses. We propose here to use 43.8 hours of PACS spectroscopy to detect the [OI] 63 micron emission line from a sample of 21 well-known transition disks with measured mass accretion rates. We will use this line, in combination with ancillary CO millimeter lines, to measure their gas disk mass. Because gas dominates the mass of protoplanetary disks our approach and choice of lines will enable us to trace the bulk of the disk mass that resides beyond tens of AU from young stars. Our program will quadruple the number of transition disks currently observed with Herschel in this setting and for which disk masses can be measured. We will then place the transition and the ~100 classical/non-transition disks of similar age (from the Herschel KP "Gas in Protoplanetary Systems") in the mass accretion rate-disk mass diagram with two main goals: 1) reveal which gaps have been created by grain growth, photoevaporation, or giant planet formation and 2) from the statistics, determine the main disk dispersal mechanism leading to a transition disk.

  15. Gaps in Protoplanetary Disks as Signatures of Planets. III. Polarization

    NASA Astrophysics Data System (ADS)

    Jang-Condell, Hannah

    2017-01-01

    Polarimetric observations of T Tauri and Herbig Ae/Be stars are a powerful way to image protoplanetary disks. However, interpretation of these images is difficult because the degree of polarization is highly sensitive to the angle of scattering of stellar light off the disk surface. We examine how disks with and without gaps created by planets appear in scattered polarized light as a function of inclination angle. Isophotes of inclined disks without gaps are distorted in polarized light, giving the appearance that the disks are more eccentric or more highly inclined than they truly are. Apparent gap locations are unaffected by polarization, but the gap contrast changes. In face-on disks with gaps, we find that the brightened far edge of the gap scatters less polarized light than the rest of the disk, resulting in slightly decreased contrast between the gap trough and the brightened far edge. In inclined disks, gaps can take on the appearance of being localized “holes” in brightness rather than full axisymmetric structures. Photocenter offsets along the minor axis of the disk in both total intensity and polarized intensity images can be readily explained by the finite thickness of the disk. Alone, polarized scattered light images of disks do not necessarily reveal intrinsic disk structure. However, when combined with total intensity images, the orientation of the disk can be deduced and much can be learned about disk structure and dust properties.

  16. Turbine inter-disk cavity cooling air compressor

    DOEpatents

    Chupp, Raymond E.; Little, David A.

    1998-01-01

    The inter-disk cavity between turbine rotor disks is used to pressurize cooling air. A plurality of ridges extend radially outwardly over the face of the rotor disks. When the rotor disks are rotated, the ridges cause the inter-disk cavity to compress air coolant flowing through the inter-disk cavity en route to the rotor blades. The ridges eliminate the need for an external compressor to pressurize the air coolant.

  17. Redundant disk arrays: Reliable, parallel secondary storage. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Gibson, Garth Alan

    1990-01-01

    During the past decade, advances in processor and memory technology have given rise to increases in computational performance that far outstrip increases in the performance of secondary storage technology. Coupled with emerging small-disk technology, disk arrays provide the cost, volume, and capacity of current disk subsystems, by leveraging parallelism, many times their performance. Unfortunately, arrays of small disks may have much higher failure rates than the single large disks they replace. Redundant arrays of inexpensive disks (RAID) use simple redundancy schemes to provide high data reliability. The data encoding, performance, and reliability of redundant disk arrays are investigated. Organizing redundant data into a disk array is treated as a coding problem. Among alternatives examined, codes as simple as parity are shown to effectively correct single, self-identifying disk failures.

  18. Disks, Young Stars, and Radio Waves: The Quest for Forming Planetary Systems

    NASA Astrophysics Data System (ADS)

    Chandler, C. J.; Shepherd, D. S.

    2008-08-01

    Kant and Laplace suggested the Solar System formed from a rotating gaseous disk in the 18th century, but convincing evidence that young stars are indeed surrounded by such disks was not presented for another 200 years. As we move into the 21st century the emphasis is now on disk formation, the role of disks in star formation, and on how planets form in those disks. Radio wavelengths play a key role in these studies, currently providing some of the highest-spatial-resolution images of disks, along with evidence of the growth of dust grains into planetesimals. The future capabilities of EVLA and ALMA provide extremely exciting prospects for resolving disk structure and kinematics, studying disk chemistry, directly detecting protoplanets, and imaging disks in formation.

  19. A new solid-phase extraction disk based on a sheet of single-walled carbon nanotubes.

    PubMed

    Niu, Hong Yun; Cai, Ya Qi; Shi, Ya Li; Wei, Fu Sheng; Liu, Jie Min; Jiang, Gui Bin

    2008-11-01

    A new kind of solid-phase extraction disk based on a sheet of single-walled carbon nanotubes (SWCNTs) is developed in this study. The properties of such disks are tested, and different disks showed satisfactory reproducibility. One liter of aqueous solution can pass through the disk within 10-100 min while still allowing good recoveries. Two disks (DD-disk) can be stacked to enrich phthalate esters, bisphenol A (BPA), 4-n-nonylphenol (4-NP), 4-tert-octylphenol (4-OP) and chlorophenols from various volumes of solution. The results show that SWCNT disks have high extraction ability for all analytes. The SWCNT disk can extract polar chlorophenols more efficiently than a C(18) disk from water solution. Unlike the activated carbon disk, analytes adsorbed by the new disks can be eluted completely with 8-15 mL of methanol or acetonitrile. Finally, the DD-disk system is used to pretreat 1000-mL real-world water samples spiked with BPA, 4-OP and 4-NP. Detection limits of 7, 25, and 38 ng L(-1) for BPA, 4-OP, and 4-NP, respectively, were achieved under optimized conditions. The advantages of this new disk include its strong adsorption ability, its high flow rate and its easy preparation.

  20. Using Ice and Dust Lines to Constrain the Surface Densities of Protoplanetary Disks

    NASA Astrophysics Data System (ADS)

    Powell, Diana; Murray-Clay, Ruth; Schlichting, Hilke E.

    2017-05-01

    We present a novel method for determining the surface density of protoplanetary disks through consideration of disk “dust lines,” which indicate the observed disk radial scale at different observational wavelengths. This method relies on the assumption that the processes of particle growth and drift control the radial scale of the disk at late stages of disk evolution such that the lifetime of the disk is equal to both the drift timescale and growth timescale of the maximum particle size at a given dust line. We provide an initial proof of concept of our model through an application to the disk TW Hya and are able to estimate the disk dust-to-gas ratio, CO abundance, and accretion rate in addition to the total disk surface density. We find that our derived surface density profile and dust-to-gas ratio are consistent with the lower limits found through measurements of HD gas. The CO ice line also depends on surface density through grain adsorption rates and drift and we find that our theoretical CO ice line estimates have clear observational analogues. We further apply our model to a large parameter space of theoretical disks and find three observational diagnostics that may be used to test its validity. First, we predict that the dust lines of disks other than TW Hya will be consistent with the normalized CO surface density profile shape for those disks. Second, surface density profiles that we derive from disk ice lines should match those derived from disk dust lines. Finally, we predict that disk dust and ice lines will scale oppositely, as a function of surface density, across a large sample of disks.

  1. Near-infrared structure of fast and slow-rotating disk galaxies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schechtman-Rook, Andrew; Bershady, Matthew A., E-mail: andrew@astro.wisc.edu

    We investigate the stellar disk structure of six nearby edge-on spiral galaxies using high-resolution JHK {sub s}-band images and three-dimensional radiative transfer models. To explore how mass and environment shape spiral disks, we selected galaxies with rotational velocities between 69 km s{sup –1} 150 km s{sup –1}) galaxies, only NGC 4013 has the super-thin+thin+thick nested disk structure seen in NGC 891 and the Milky Way, albeit with decreased oblateness, while NGC 1055, a disturbed massive spiral galaxy, contains disks with h{sub z} ≲ 200 pc. NGC 4565, another fast-rotator, contains a prominent ring at a radius ∼5 kpc but nomore » super-thin disk. Despite these differences, all fast-rotating galaxies in our sample have inner truncations in at least one of their disks. These truncations lead to Freeman Type II profiles when projected face-on. Slow-rotating galaxies are less complex, lacking inner disk truncations and requiring fewer disk components to reproduce their light distributions. Super-thin disk components in undisturbed disks contribute ∼25% of the total K {sub s}-band light, up to that of the thin-disk contribution. The presence of super-thin disks correlates with infrared flux ratios; galaxies with super-thin disks have f{sub K{sub s}}/f{sub 60} {sub μm}≤0.12 for integrated light, consistent with super-thin disks being regions of ongoing star-formation. Attenuation-corrected vertical color gradients in (J – K {sub s}) correlate with the observed disk structure and are consistent with population gradients with young-to-intermediate ages closer to the mid-plane, indicating that disk heating—or cooling—is a ubiquitous phenomenon.« less

  2. An integrated solution for remote data access

    NASA Astrophysics Data System (ADS)

    Sapunenko, Vladimir; D'Urso, Domenico; dell'Agnello, Luca; Vagnoni, Vincenzo; Duranti, Matteo

    2015-12-01

    Data management constitutes one of the major challenges that a geographically- distributed e-Infrastructure has to face, especially when remote data access is involved. We discuss an integrated solution which enables transparent and efficient access to on-line and near-line data through high latency networks. The solution is based on the joint use of the General Parallel File System (GPFS) and of the Tivoli Storage Manager (TSM). Both products, developed by IBM, are well known and extensively used in the HEP computing community. Owing to a new feature introduced in GPFS 3.5, so-called Active File Management (AFM), the definition of a single, geographically-distributed namespace, characterised by automated data flow management between different locations, becomes possible. As a practical example, we present the implementation of AFM-based remote data access between two data centres located in Bologna and Rome, demonstrating the validity of the solution for the use case of the AMS experiment, an astro-particle experiment supported by the INFN CNAF data centre with the large disk space requirements (more than 1.5 PB).

  3. Interactive digital image manipulation system

    NASA Technical Reports Server (NTRS)

    Henze, J.; Dezur, R.

    1975-01-01

    The system is designed for manipulation, analysis, interpretation, and processing of a wide variety of image data. LANDSAT (ERTS) and other data in digital form can be input directly into the system. Photographic prints and transparencies are first converted to digital form with an on-line high-resolution microdensitometer. The system is implemented on a Hewlett-Packard 3000 computer with 128 K bytes of core memory and a 47.5 megabyte disk. It includes a true color display monitor, with processing memories, graphics overlays, and a movable cursor. Image data formats are flexible so that there is no restriction to a given set of remote sensors. Conversion between data types is available to provide a basis for comparison of the various data. Multispectral data is fully supported, and there is no restriction on the number of dimensions. In this way multispectral data collected at more than one point in time may simply be treated as a data collected with twice (three times, etc.) the number of sensors. There are various libraries of functions available to the user: processing functions, display functions, system functions, and earth resources applications functions.

  4. Three-dimensional ultrasonic trapping of micro-particles in water with a simple and compact two-element transducer

    NASA Astrophysics Data System (ADS)

    Franklin, A.; Marzo, A.; Malkin, R.; Drinkwater, B. W.

    2017-08-01

    We report a simple and compact piezoelectric transducer capable of stably trapping single and multiple micro-particles in water. A 3D-printed Fresnel lens is bonded to a two-element kerfless piezoceramic disk and actuated in a split-piston mode to produce an acoustic radiation force trap that is stable in three-dimensions. Polystyrene micro-particles in the Rayleigh regime (radius λ/14 to λ/7) are trapped at the focus of the lens (F# = 0.4) and manipulated in two-dimensions on an acoustically transparent membrane with a peak trap stiffness of 0.43 mN/m. Clusters of Rayleigh particles are also trapped and manipulated in three-dimensions, suspended in water against gravity. This transducer represents a significant simplification over previous acoustic devices used for micro-particle manipulation in liquids as it operates at relatively low frequency (688 kHz) and only requires a single electrical drive signal. This simplified device has potential for widespread use in applications such as micro-scale manufacturing and handling of cells or drug capsules in biomedical assays.

  5. Free-fall dynamics of a pair of rigidly linked disks

    NASA Astrophysics Data System (ADS)

    Kim, Taehyun; Chang, Jaehyeock; Kim, Daegyoum

    2018-03-01

    We investigate experimentally the free-fall motion of a pair of identical disks rigidly connected to each other. The three-dimensional coordinates of the pair of falling disks were constructed to quantitatively describe its trajectory, and the flow structure formed by the disk pair was identified by using dye visualization. The rigidly linked disk pair exhibits a novel falling pattern that creates a helical path with a conical configuration in which the lower disk rotates in a wider radius than the upper disk with respect to a vertical axis. The helical motion occurs consistently for the range of disk separation examined in this study. The dye visualization reveals that a strong, noticeable helical vortex core is generated from the outer tip of the lower disk during the helical motion. With an increasing length ratio, which is the ratio of the disk separation to the diameter of the disks, the nutation angle and the rate of change in the precession angle that characterize the combined helical and conical kinematics decrease linearly, whereas the pitch of the helical path increases linearly. Although all disk pairs undergo this helical motion, the horizontal-drift patterns of the disk pair depend on the length ratio.

  6. THICK DISKS OF EDGE-ON GALAXIES SEEN THROUGH THE SPITZER SURVEY OF STELLAR STRUCTURE IN GALAXIES (S{sup 4}G): LAIR OF MISSING BARYONS?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Comeron, Sebastien; Elmegreen, Bruce G.; Knapen, Johan H.

    Most, if not all, disk galaxies have a thin (classical) disk and a thick disk. In most models thick disks are thought to be a necessary consequence of the disk formation and/or evolution of the galaxy. We present the results of a study of the thick disk properties in a sample of carefully selected edge-on galaxies with types ranging from T = 3 to T = 8. We fitted one-dimensional luminosity profiles with physically motivated functions-the solutions of two stellar and one gaseous isothermal coupled disks in equilibrium-which are likely to yield more accurate results than other functions used inmore » previous studies. The images used for the fits come from the Spitzer Survey of Stellar Structure in Galaxies (S{sup 4}G). We found that thick disks are on average more massive than previously reported, mostly due to the selected fitting function. Typically, the thin and thick disks have similar masses. We also found that thick disks do not flare significantly within the observed range in galactocentric radii and that the ratio of thick-to-thin disk scale heights is higher for galaxies of earlier types. Our results tend to favor an in situ origin for most of the stars in the thick disk. In addition, the thick disk may contain a significant amount of stars coming from satellites accreted after the initial buildup of the galaxy and an extra fraction of stars coming from the secular heating of the thin disk by its own overdensities. Assigning thick disk light to the thin disk component may lead to an underestimate of the overall stellar mass in galaxies because of different mass-to-light ratios in the two disk components. On the basis of our new results, we estimate that disk stellar masses are between 10% and 50% higher than previously thought and we suggest that thick disks are a reservoir of 'local missing baryons'.« less

  7. Variation on the similar-size disk tower of hanoi puzzle

    NASA Astrophysics Data System (ADS)

    Zuchri, S.

    2017-02-01

    The famous Tower of Hanoi puzzle was invented by Edouard Lucas in 1883. This puzzle proposed three pegs, and the number of disks with different size. The puzzle starts with the disks in a neat stack in ascending order of size on one peg, the smallest at the top. The objective of the puzzle is to move the entire stack to another peg, by following these simple rules: (1) only one disk can be moved at a time; (2) Each move consists of taking the upper disk from one of the stacks and placing it on top of another stack; (2) No disk is placed on the top of a smaller disk and the minimum number of move is the goal of this puzzle. Many variations have been proposed as exercises and challenges. Some have more than three pegs and some with colours. This paper poses a new variation. There are two or more disks with similar size. The goal is to move each stack of the disk from its initial location to its final location. As usual, disk must be moved one at a time and a disk can never sit above a disk of smaller. Let n be a number of disks and there are p similar size disks. The disks are labelled from 1 to n - p + 1 in increasing order of size so the disk with similar size has the same label. If m is the label of the similar disks, so Mp(n; m) is the minimum number moves needed to move all the disks in original peg to destination peg. We have, M2(n; m) = 2n-1 + 2n-m-1 - 1 M3(n; m) = 2n-2 + 2n-m-1 - 1 The number moves needed to move if there are p1 similar size disks m1 and p2 similar size disks m2 is Mp1,p2 (n; m1, m2) = 2n-p1-p2 + 2[(p12-m1 + p22-m2 ) - (2-m1 + 2-m2 + 1] - 1

  8. Imaging the Disk and Jet of the Classical T Tauri Star AA Tau

    NASA Astrophysics Data System (ADS)

    Cox, Andrew; Grady, C.; Hammel, H. B.; Hornbeck, J.; Russell, R. W.; Sitko, M. L.; Woodgate, B. E.

    2013-01-01

    Previous studies of the classical T Tauri star AA Tau have interpreted the UX Orionis-like photo-polarimetric variability as being due to a warp in the inner disk caused by an inclined stellar magnetic dipole field. We test that these effects are macroscopically observable in the inclination and alignment of the disk. We use HST/STIS coronagraphic imagery to measure the V magnitude of the star for both STIS corona graphic observations, compare these data with optical photometry in the literature and find that unlike other classical T Tauri stars observed on the same HST program, the disk is most robustly detected at optical minimum light. We measure the outer disk radius, major axis position angle, and disk inclination, and find that the inner disk, as reported in the literature, is both mis-inclined and misaligned with respect to the outer disk. AA Tau drives a faint jet which is also misaligned with respect to the projection of the outer disk minor axis and which is poorly collimated near the star. The measured outer disk inclination, 71±1 degrees, is out of the inclination band suggested for stars with UX Orionis-like variability where no grain growth has occurred in the disk. The faintness of the disk, the small disk size, and visibility of the star and despite the high inclination, all indicate that the disk must have experienced grain growth and settling toward the disk midplane, which we verify by comparing the observed disk with model imagery from the literature.

  9. On Estimating the Mass of Keplerian Accretion Disks in H2O Maser Galaxies

    NASA Astrophysics Data System (ADS)

    Kuo, C. Y.; Reid, M. J.; Braatz, J. A.; Gao, F.; Impellizzeri, C. M. V.; Chien, W. T.

    2018-06-01

    H2O maser disks with Keplerian rotation in active galactic nuclei offer a clean way to determine accurate black hole mass and the Hubble constant. An important assumption made in using a Keplerian H2O maser disk for measuring black hole mass and the Hubble constant is that the disk mass is negligible compared to the black hole mass. A simple and useful model of Huré et al. can be used to test this assumption. In that work, the authors apply a linear disk model to a position–dynamical mass diagram and re-analyze position–velocity data from H2O maser disks associated with active galactic nuclei. They claim that a maser disk with nearly perfect Keplerian rotation could have a disk mass comparable to the black hole mass. This would imply that ignoring the effects of disk self-gravity can lead to large systematic errors in the measurement of black hole mass and the Hubble constant. We examine their methods and find that their large estimated disk masses of Keplerian disks are likely the result of their use of projected instead of three-dimensional position and velocity information. To place better constraints on the disk masses of Keplerian maser systems, we incorporate disk self-gravity into a three-dimensional Bayesian modeling program for maser disks and also evaluate constraints based on the physical conditions for disks that support water maser emission. We find that there is little evidence that disk masses are dynamically important at the ≲1% level compared to the black holes.

  10. Turbine inter-disk cavity cooling air compressor

    DOEpatents

    Chupp, R.E.; Little, D.A.

    1998-01-06

    The inter-disk cavity between turbine rotor disks is used to pressurize cooling air. A plurality of ridges extend radially outwardly over the face of the rotor disks. When the rotor disks are rotated, the ridges cause the inter-disk cavity to compress air coolant flowing through the inter-disk cavity en route to the rotor blades. The ridges eliminate the need for an external compressor to pressurize the air coolant. 5 figs.

  11. Damage Tolerant Design for Cold-Section Turbine Engine Disks

    DTIC Science & Technology

    1981-06-01

    Ti-6Al-4V Disks ......... .. 59 28. FIOO 2nd-Stage Fan Disk Designs ........ ................ .. 61 29. Fan Disk Tangential Stress Profile... 61 30. Life-Limiting Features of Damage-Tolerant Disk .......... ... 62 31. Disk Life Limits .... ...................... 62 32. Life Test...Stress Rati• Model ..... .......... .. 113 61 . Thick-Section Center-Notched Specimen ....... ............. .. 116 62. Bolthole Specimen

  12. Physics of planetary rings

    NASA Astrophysics Data System (ADS)

    Gorkavyi, N.

    2007-08-01

    It is difficult to enumerate all the surprises presented by the planetary rings. The Saturnian rings are stratified into thousands of ringlets and the Uranian rings are compressed into narrow streams, which for some reason or other differ from circular orbits like the wheel of an old bicycle. The edge of the rings is jagged and the rings themselves are pegged down under the gravitational pressure of the satellites, bending like a ship's wake. There are spiral waves, elliptical rings, strange interlacing of narrow ringlets, and to cap it all one has observed in the Neptunian ring system three dense, bright arcs - like bunches of sausages on a transparent string. For celestial mechanics this is a spectacle as unnatural as a bear's tooth in the necklace of the English queen. In the dynamics of planetary rings the physics of collective interaction was supplemented by taking collisions between particles into account. One was led to study a kinetic equation with a rather complex collision integral - because the collisions are inelastic - which later on made it possible, both by using the Chapman-Enskog method and by using the solution of the kinetic equation for a plasma in a magnetic field, to reduce it to a closed set of (hydrodynamical) moment equations [1]. The hydrodynamical instabilities lead to the growth of short-wavelength waves and large-scale structures of the Saturnian rings [1]. We have shown that the formation of the existing dense Uranian rings is connected with the capture of positively drifting ring particles in inner Lindblad resonances which arrest this drift [1]. After the formation of dense rings at the positions of satellite resonances the collective interaction between resonant particles is amplified and the rings can leave the resonance and drift away from the planet and the parent resonance. We can expect in the C ring an appreciable positive ballistic particle drift caused by the erosion of the B ring by micrometeorites. It is therefore natural to assume that the mechanism for the formation of the narrow Saturnian and Uranian rings is the same and that the elliptical Titan, Maxwell and Huygens ringlets are direct relations of the Uranian rings. A reliable theory of the planetary rings would enable us to consider from completely different perspective the evolution of other cosmic disk systems: protosatellite disks [2], zodiacal and protoplanetary disks [3-5]. In this review we also discuss numerical models of the 3D structure and infrared emission of circumstellar dust disks, incorporating all relevant physical processes. We review the resonant structures of a dusty disk induced by the presence of planets [3-5]. It is shown that the planet, via resonances and gravitational scattering, produces an asymmetric resonant dust belt with one or more clumps intermittent with one or a few off-center cavities. These features can serve as indicators of a planet embedded in the circumstellar dust disk and, moreover, can be used to determine its major orbital parameters and even the mass of the planet. The results of our study reveal a remarkable similarity with various types of highly asymmetric circumstellar disks observed with the James Clerk Maxwell Telescope and other telescopes around Epsilon Eridani and Vega. The proposed interpretation of the clumps in those disks as being resonant patterns is testable - it predicts the asymmetric design around the star to revolve by ∼ 1 deg/yr about Vega and 0.6-0.8 deg/yr about Epsilon Eri. Our simulations indicate that Vega may have a massive planet ∼ 2 Jupiter mass at a distance ∼ 80-100 AU [3,5], and Epsilon Eri may have a less massive planet ∼ 0.2 Jovian mass as a distance of 55-60 AU [3]. Dynamical model of the origin of the warping of the Beta Pictoris disk includes the gravitational influence of a planet with a mass of about 10 masses of Earth, at a distance of 70 AU, and a small inclination (2.5 deg) of the planetary orbit to the main dust disk. The optical image from the Hubble Space Telescope (STIS, observation of team by Sara Heap, our co-author) and results of our simulation of scattered light from warped disk will be compared [4]. The direct signatures of this planet were discovered on 2002 by Keck telescope observations. References: 1. Fridman, A.M. and Gorkavyi, N.N. Physics of Planetary Rings (Celestial Mechanics of a Continuous Media). Springer-Verlag, 1999, 436 p. 2. Gorkavyi, N.N., Taidakova, T.A. The Model for Formation of Jupiter, Saturn and Neptune Satellite Systems, Astronomy Letters., 1995, v. 21 (6). pp.939-945; Discovered Saturnian and undiscovered Neptuanian retrograde satellites, BAAS, v.33, N4, 1403; The New Model of the Origin of the Moon, BAAS, 2004, 36, #2 3. Ozernoy, L.M., Gorkavyi, N.N., Mather, J.C. & Taidakova, T. 2000, Signatures of Exo-solar Planets in Dust Debris Disks, ApJ, 537:L147-L151, 2000 July 10. 4. Gorkavyi, N.N., Heap S.R., Ozernoy, L.M., Taidakova, T.A., and Mather, J.C. Indicator of Exo-Solar Planet(s) in the Circumstellar Disk Around Beta Pictoris. In:"Planetary Systems in the Universe: Observation, Formation, and Evolution". Proc. IAU Symp. No. 202, 2004, ASP Conf. Series, p.331-334. 5. Gorkavyi, N., Taidakova, T. Outermost planets of Beta Pictoris, Vega and Epsilon Eridani: goals for direct imaging. In: "Direct Imaging of Exoplanets: Science and Techniques" (C. Aime and F. Vakili, eds.). Proc. IAU Coll. No. 200, 2005, p.47-51.

  13. Exploring Our Galaxy's Thick Disk

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2017-12-01

    What is the structure of the Milky Ways disk, and how did it form? A new study uses giant stars to explore these questions.A View from the InsideSchematic showing an edge-on, not-to-scale view of what we think the Milky Ways structurelookslike. The thick disk is shown in yellow and the thin disk is shown in green. [Gaba p]Spiral galaxies like ours are often observed to have disks consisting of two components: a thin disk that lies close to the galactic midplane, and a thick disk that extends above and below this. Past studies have suggested that the Milky Ways disk hosts the same structure, but our position embedded in the Milky Way makes this difficult to confirm.If we can measure the properties of a broad sample of distant tracer stars and use this to better understand the construction of the Milky Ways disk, then we can start to ask additional questions like, how did the disk components form? Formation pictures for the thick disk generally fall into two categories:Stars in the thick disk formed within the Milky Way either in situ or by migrating to their current locations.Stars in the thick disk formed in satellite galaxies around the Milky Way and then accreted when the satellites were disrupted.Scientists Chengdong Li and Gang Zhao (NAO Chinese Academy of Sciences, University of Chinese Academy of Sciences) have now used observations of giant stars which can be detected out to great distances due to their brightness to trace the properties of the Milky Ways thick disk and address the question of its origin.Best fits for the radial (top) and vertical (bottom) metallicity gradients of the thick-disk stars. [Adapted from Li Zhao 2017]Probing OriginsLi and Zhao used data from the Large Sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST) in China to examine a sample of 35,000 giant stars. The authors sorted these stars into different disk components halo, thin disk, and thick disk based on their kinematic properties, and then explored how the orbital and chemical properties of these stars differed in the different components.Li and Zhao found that the scale length for the thick disk is roughly the same as that of the thin disk ( 3 kpc), i.e., both disk components extend out to the same radial distance. The scale height found for the thick disk is 1 kpc, compared to the thin disks few hundred parsecs or so.The metallicity of the thick-disk stars is roughly constant with radius; this could be a consequence of radial migration of the stars within the disk, which blurs any metallicity distribution that might have once been there. The metallicity of the stars decreases with distance above or below the galactic midplane, however a result consistent with formation of the thick disk via heating or radial migration of stars formed within the galaxy.Orbital eccentricity distribution for the thick-disk stars. [Li Zhao 2017]Further supporting these formation scenarios, the orbital eccentricities of the stars in the authors thick-disk sample indicate that they were born in the Milky Way, not accreted from disrupted satellites.The authors acknowledge that the findings in this study may still be influenced by selection effects resulting from our viewpoint within our galaxy. Nonetheless, this is interesting new data to add to our understanding of the structure and origins of the Milky Ways disk.CitationChengdong Li and Gang Zhao 2017 ApJ 850 25. doi:10.3847/1538-4357/aa93f4

  14. Flares, Magnetic Reconnections and Accretion Disk Viscosity

    NASA Astrophysics Data System (ADS)

    Welsh, William

    2001-07-01

    Accretion disks are invoked to explain a host of astrophysical phenomena, from protostellar objects to AGN. And yet the mechanism allowing accretion disks to operate are completely unknown. This proposal seeks to observe the ``smoking gun'' signature of magnetically-driven viscosity in accretion disks. Magnetically-induced viscosity is a plausible and generally accepted hypothesis {for esthetic reasons}, but it is completely untested. Determining the cause of accretion disk viscosity is of major significance to all accretion-disk powered systems {e.g. CVs, X-ray binaries, AGN and protostellar disks}. These data will also firmly establish the importance of magnetic fields in accretion disks. Because of its known flaring properites, we will observe the accretion disk in EM Cyg simulataneously with STIS/FUV and CHANDRA. The simultaneous X-rays are absolutely necessary for the unambiguous detection of accretion disk magnetic reconnection flares.

  15. Magnetorotational instability in decretion disks of critically rotating stars and the outer structure of Be and Be/X-ray disks

    NASA Astrophysics Data System (ADS)

    Krtička, J.; Kurfürst, P.; Krtičková, I.

    2015-01-01

    Context. Evolutionary models of fast-rotating stars show that the stellar rotational velocity may approach the critical speed. Critically rotating stars cannot spin up more, therefore they lose their excess angular momentum through an equatorial outflowing disk. The radial extension of such disks is unknown, partly because we lack information about the radial variations of the viscosity. Aims: We study the magnetorotational instability, which is considered to be the origin of anomalous viscosity in outflowing disks. Methods: We used analytic calculations to study the stability of outflowing disks submerged in the magnetic field. Results: The magnetorotational instability develops close to the star if the plasma parameter is large enough. At large radii the instability disappears in the region where the disk orbital velocity is roughly equal to the sound speed. Conclusions: The magnetorotational instability is a plausible source of anomalous viscosity in outflowing disks. This is also true in the region where the disk radial velocity approaches the sound speed. The disk sonic radius can therefore be roughly considered as an effective outer disk radius, although disk material may escape from the star to the insterstellar medium. The radial profile of the angular momentum-loss rate already flattens there, consequently, the disk mass-loss rate can be calculated with the sonic radius as the effective disk outer radius. We discuss a possible observation determination of the outer disk radius by using Be and Be/X-ray binaries.

  16. Disk Alloy Development

    NASA Technical Reports Server (NTRS)

    Gabb, Tim; Gayda, John; Telesman, Jack

    2001-01-01

    The advanced powder metallurgy disk alloy ME3 was designed using statistical screening and optimization of composition and processing variables in the NASA HSR/EPM disk program to have extended durability at 1150 to 1250 "Fin large disks. Scaled-up disks of this alloy were produced at the conclusion of this program to demonstrate these properties in realistic disk shapes. The objective of the UEET disk program was to assess the mechanical properties of these ME3 disks as functions of temperature, in order to estimate the maximum temperature capabilities of this advanced alloy. Scaled-up disks processed in the HSR/EPM Compressor / Turbine Disk program were sectioned, machined into specimens, and tested in tensile, creep, fatigue, and fatigue crack growth tests by NASA Glenn Research Center, in cooperation with General Electric Engine Company and Pratt & Whitney Aircraft Engines. Additional sub-scale disks and blanks were processed and tested to explore the effects of several processing variations on mechanical properties. Scaled-up disks of an advanced regional disk alloy, Alloy 10, were used to evaluate dual microstructure heat treatments. This allowed demonstration of an improved balance of properties in disks with higher strength and fatigue resistance in the bores and higher creep and dwell fatigue crack growth resistance in the rims. Results indicate the baseline ME3 alloy and process has 1300 to 1350 O F temperature capabilities, dependent on detailed disk and engine design property requirements. Chemistry and process enhancements show promise for further increasing temperature capabilities.

  17. GAPS IN PROTOPLANETARY DISKS AS SIGNATURES OF PLANETS. III. POLARIZATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jang-Condell, Hannah

    2017-01-20

    Polarimetric observations of T Tauri and Herbig Ae/Be stars are a powerful way to image protoplanetary disks. However, interpretation of these images is difficult because the degree of polarization is highly sensitive to the angle of scattering of stellar light off the disk surface. We examine how disks with and without gaps created by planets appear in scattered polarized light as a function of inclination angle. Isophotes of inclined disks without gaps are distorted in polarized light, giving the appearance that the disks are more eccentric or more highly inclined than they truly are. Apparent gap locations are unaffected bymore » polarization, but the gap contrast changes. In face-on disks with gaps, we find that the brightened far edge of the gap scatters less polarized light than the rest of the disk, resulting in slightly decreased contrast between the gap trough and the brightened far edge. In inclined disks, gaps can take on the appearance of being localized “holes” in brightness rather than full axisymmetric structures. Photocenter offsets along the minor axis of the disk in both total intensity and polarized intensity images can be readily explained by the finite thickness of the disk. Alone, polarized scattered light images of disks do not necessarily reveal intrinsic disk structure. However, when combined with total intensity images, the orientation of the disk can be deduced and much can be learned about disk structure and dust properties.« less

  18. The onset of planet formation in brown dwarf disks.

    PubMed

    Apai, Dániel; Pascucci, Ilaria; Bouwman, Jeroen; Natta, Antonella; Henning, Thomas; Dullemond, Cornelis P

    2005-11-04

    The onset of planet formation in protoplanetary disks is marked by the growth and crystallization of sub-micrometer-sized dust grains accompanied by dust settling toward the disk mid-plane. Here, we present infrared spectra of disks around brown dwarfs and brown dwarf candidates. We show that all three processes occur in such cool disks in a way similar or identical to that in disks around low- and intermediate-mass stars. These results indicate that the onset of planet formation extends to disks around brown dwarfs, suggesting that planet formation is a robust process occurring in most young circumstellar disks.

  19. Head-Disk Interface Technology: Challenges and Approaches

    NASA Astrophysics Data System (ADS)

    Liu, Bo

    Magnetic hard disk drive (HDD) technology is believed to be one of the most successful examples of modern mechatronics systems. The mechanical beauty of magnetic HDD includes simple but super high accuracy positioning head, positioning technology, high speed and stability spindle motor technology, and head-disk interface technology which keeps the millimeter sized slider flying over a disk surface at nanometer level slider-disk spacing. This paper addresses the challenges and possible approaches on how to further reduce the slider disk spacing whilst retaining the stability and robustness level of head-disk systems for future advanced magnetic disk drives.

  20. On Magnetic Dynamos in Thin Accretion Disks around Compact and Young Stars

    NASA Technical Reports Server (NTRS)

    Stepinski, T. F.

    1993-01-01

    A variety of geometrically thin accretion disks commonly associated with such astronomical objects as X-ray binaries, cataclysmic variables, and protostars are likely to be seats of MHD dynamo actions. Thin disk geometry and the particular physical environment make accretion disk dynamos different from stellar, planetary, or even galactic dynamos. We discuss those particular features of disk dynamos with emphasis on the difference between protoplanetary disk dynamos and those associated with compact stars. We then describe normal mode solutions for thin disk dynamos and discuss implications for the dynamical behavior of dynamo-magnetized accretion disks.

  1. Dynamo magnetic field modes in thin astrophysical disks - An adiabatic computational approximation

    NASA Technical Reports Server (NTRS)

    Stepinski, T. F.; Levy, E. H.

    1991-01-01

    An adiabatic approximation is applied to the calculation of turbulent MHD dynamo magnetic fields in thin disks. The adiabatic method is employed to investigate conditions under which magnetic fields generated by disk dynamos permeate the entire disk or are localized to restricted regions of a disk. Two specific cases of Keplerian disks are considered. In the first, magnetic field diffusion is assumed to be dominated by turbulent mixing leading to a dynamo number independent of distance from the center of the disk. In the second, the dynamo number is allowed to vary with distance from the disk's center. Localization of dynamo magnetic field structures is found to be a general feature of disk dynamos, except in the special case of stationary modes in dynamos with constant dynamo number. The implications for the dynamical behavior of dynamo magnetized accretion disks are discussed and the results of these exploratory calculations are examined in the context of the protosolar nebula and accretion disks around compact objects.

  2. Investigation of selected disk systems

    NASA Technical Reports Server (NTRS)

    1976-01-01

    The large disk systems offered by IBM, UNIVAC, Digital Equipment Corporation, and Data General were examined. In particular, these disk systems were analyzed in terms of how well available operating systems take advantage of the respective disk controller's transfer rates, and to what degree all available data for optimizing disk usage is effectively employed. In the course of this analysis, generic functions and components of disk systems were defined and the capabilities of the surveyed disk system were investigated.

  3. Comparison of central axis and jet ring coolant supply for turbine disk cooling on a SSME-HPOTP model

    NASA Technical Reports Server (NTRS)

    Kim, Y. W.; Metzger, D. E.

    1992-01-01

    The test facility, test methods and results are presented for an experimental study modeling the cooling of turbine disks in the blade attachment regions with multiple impinging jets, in a configuration simulating the disk cooling method employed on the Space Shuttle Main Engine oxygen turbopump. The study's objective was to provide a comparison of detailed local convection heat transfer rates obtained for a single center-supply of disk coolant with those obtained with the present flight configuration where disk coolant is supplied through an array of 19 jets located near the disk outer radius. Specially constructed disk models were used in a program designed to evaluate possible benefits and identify any possible detrimental effects involved in employing an alternate disk cooling scheme. The study involved the design, construction and testing of two full scale rotating model disks, one plane and smooth for baseline testing and the second contoured to the present flight configuration, together with the corresponding plane and contoured stator disks. Local heat transfer rates are determined from the color display of encapsulated liquid crystals coated on the disk in conjunction with use of a computer vision system. The test program was composed of a wide variety of disk speeds, flowrates, and geometrical configurations, including testing for the effects of disk boltheads and gas ingestion from the gas path region radially outboard of the disk-cavity.

  4. DEVELOPMENT OF A LAMINATED DISK FOR THE SPIN TEK ROTARY MICROFILTER

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Herman, D.

    2011-06-03

    Funded by the Department of Energy Office of Environmental Management, EM-31, the Savannah River National Laboratory (SRNL) partnered with SpinTek Filtration{trademark} to develop a filter disk that would withstand a reverse pressure or flow during operation of the rotary microfilter. The ability to withstand a reverse pressure and flow eliminates a potential accident scenario that could have resulted in damage to the filter membranes. While the original welded filter disks have been shown to withstand and reverse pressure/flow in the static condition, the filter disk design discussed in this report will allow a reverse pressure/flow while the disks are rotating.more » In addition, the laminated disk increases the flexibility during filter startup and cleaning operations. The new filter disk developed by SRNL and SpinTek is manufactured with a more open structure significantly reducing internal flow restrictions in the disk. The prototype was tested at the University of Maryland and demonstrated to withstand the reverse pressure due to the centrifugal action of the rotary filter. The tested water flux of the disk was demonstrated to be 1.34 gpm in a single disk test. By comparison, the water flux of the current disk was 0.49 gpm per disk during a 25 disk test. The disk also demonstrated rejection of solids by filtering a 5 wt % Strontium Carbonate slurry with a filtrate clarity of less the 1.4 Nephelometric Turbidity Units (NTU) throughout the two hour test. The Savannah River National Laboratory (SRNL) has been working with SpinTek Filtration{trademark} to adapt the rotary microfilter for radioactive service in the Department of Energy (DOE) Complex. One potential weakness is the loose nature of the membrane on the filter disks. The current disk is constructed by welding the membrane at the outer edge of the disk. The seal for the center of the membrane is accomplished by an o-ring in compression for the assembled stack. The remainder of the membrane is free floating on the disk. This construction requires that a positive pressure be applied to the rotary filter tank to prevent the membrane from rising from the disk structure and potentially contacting the filter turbulence promoter. In addition, one accident scenario is a reverse flow through the filtrate line due to mis-alignment of valves resulting in the membrane rising from the disk structure. The structural integrity of the current disk has been investigated, and shown that the disk can withstand a significant reverse pressure in a static condition. However, the disk will likely incur damage if the filter stack is rotated during a reverse pressure. The development of a laminated disk would have several significant benefits for the operation of the rotary filter including the prevention of a compromise in filter disk integrity during a reverse flow accident, increasing operational flexibility, and increasing the self cleaning ability of the filter. A laminated disk would allow the filter rotor operation prior to a positive pressure in the filter tank. This would prevent the initial dead-head of the filter and prevent the resulting initial filter cake buildup. The laminated disk would allow rotor operation with cleaning fluid, eliminating the need for a recirculation pump. Additionally, a laminated disk would allow a reverse flow of fluid through the membrane pores removing trapped particles.« less

  5. Disk Detective Follow-Up Program

    NASA Astrophysics Data System (ADS)

    Kuchner, Marc

    As new data on exoplanets and young stellar associations arrive, we will want to know: which of these planetary systems and young stars have circumstellar disks? The vast allsky database of 747 million infrared sources from NASA's Wide-field Infrared Survey Explorer (WISE) mission can supply answers. WISE is a discovery tool intended to find targets for JWST, sensitive enough to detect circumstellar disks as far away as 3000 light years. The vast WISE archive already serves us as a roadmap to guide exoplanet searches, provide information on disk properties as new planets are discovered, and teach us about the many hotly debated connections between disks and exoplanets. However, because of the challenges of utilizing the WISE data, this resource remains underutilized as a tool for disk and planet hunters. Attempts to use WISE to find disks around Kepler planet hosts were nearly scuttled by confusion noise. Moreover, since most of the stars with WISE infrared excesses were too red for Hipparcos photometry, most of the disks sensed by WISE remain obscure, orbiting stars unlisted in the usual star databases. To remedy the confusion noise problem, we have begun a massive project to scour the WISE data archive for new circumstellar disks. The Disk Detective project (Kuchner et al. 2016) engages layperson volunteers to examine images from WISE, NASA's Two Micron All-Sky Survey (2MASS) and optical surveys to search for new circumstellar disk candidates via the citizen science website DiskDetective.org. Fueled by the efforts of > 28,000 citizen scientists, Disk Detective is the largest survey for debris disks with WISE. It has already uncovered 4000 disk candidates worthy of follow-up. However, most host stars of the new Disk Detective disk candidates have no known spectral type or distance, especially those with red colors: K and M stars and Young Stellar Objects. Others require further observations to check for false positives. The Disk Detective project is supported by NASA ADAP funds, which are not allowed to fund a major observational follow-up campaign. So here we propose a campaign of follow-up observations that will turn the unique, growing catalog of Disk Detective disk candidates into a reliable, publically-available treasure trove of new data on nearby disks in time to complement the upcoming new catalogs of planet hosts and stellar moving groups. We will use automated adaptive optics (AO) instruments to image disk candidates and check them for contamination from background objects. We will correlate our discoveries with the vast Gaia and LAMOST surveys to study disks in associations with other young stars. We will follow up disk candidates spectroscopically to remove more false positives. We will search for cold dust around our disk candidates with the James Clerk Maxwell Telescope (JCMT) and analyze data from the Gemini Planet Imager (GPI) to image young, nearby disk candidates. This follow up work will realize the full potential of the WISE mission as a roadmap to future exoplanet discoveries. It will yield contamination rates that will be crucial for interpreting all disk searches done with WISE. Our search will yield 2000 well-vetted nearby disks, including 60 that the Gaia mission will likely find to contain giant planets. This crucial follow-up work should be done now to take full advantage of Gaia during JWST's planned lifetime.

  6. Biomechanical influence of disk properties on the load transfer of healthy and degenerated disks using a poroelastic finite element model.

    PubMed

    Chagnon, Amélie; Aubin, Carl-Eric; Villemure, Isabelle

    2010-11-01

    Spine degeneration is a pathology that will affect 80% of the population. Since the intervertebral disks play an important role in transmitting loads through the spine, the aim of this study was to evaluate the biomechanical impact of disk properties on the load carried by healthy (Thompson grade I) and degenerated (Thompson grades III and IV) disks. A three-dimensional parametric poroelastic finite element model of the L4/L5 motion segment was developed. Grade I, grade II, and grade IV disks were modeled by altering the biomechanical properties of both the annulus and nucleus. Models were validated using published creep experiments, in which a constant compressive axial stress of 0.35 MPa was applied for 4 h. Pore pressure (PP) and effective stress (S(E)) were analyzed as a function of time following loading application (1 min, 5 min, 45 min, 125 min, and 245 min) and discal region along the midsagittal profile for each disk grade. A design of experiments was further implemented to analyze the influence of six disk parameters (disk height (H), fiber proportion (%F), drained Young's modulus (E(a),E(n)), and initial permeability (k(a),k(n)) of both the annulus and nucleus) on load-sharing for disk grades I and IV. Simulations of grade I, grade III, and grade IV disks agreed well with the available published experimental data. Disk height (H) had a significant influence (p<0.05) on the PP and S(E) during the entire loading history for both healthy and degenerated disk models. Young's modulus of the annulus (E(a)) significantly affected not only S(E) in the annular region for both disk grades in the initial creep response but also S(E) in the nucleus zone for degenerated disks with further creep response. The nucleus and annulus permeabilities had a significant influence on the PP distribution for both disk grades, but this effect occurred at earlier stages of loading for degenerated than for healthy disk models. This is the first study that investigates the biomechanical influence of both geometrical and material disk properties on the load transfer of healthy and degenerated disks. Disk height is a significant parameter for both healthy and degenerated disks during the entire loading. Changes in the annulus stiffness, as well as in the annulus and nucleus permeability, control load-sharing in different ways for healthy and degenerated disks.

  7. The Last Gasp of Gas Giant Planet Formation: A Spitzer Study of the 5 Myr Old Cluster NGC 2362

    NASA Astrophysics Data System (ADS)

    Currie, Thayne; Lada, Charles J.; Plavchan, Peter; Robitaille, Thomas P.; Irwin, Jonathan; Kenyon, Scott J.

    2009-06-01

    Expanding upon the Infrared Array Camera (IRAC) survey from Dahm & Hillenbrand, we describe Spitzer IRAC and Multiband Imaging Photometer for Spitzer observations of the populous, 5 Myr old open cluster NGC 2362. We analyze the mid-IR colors of cluster members and compared their spectral energy distributions (SEDs) to star+circumstellar disk models to constrain the disk morphologies and evolutionary states. Early/intermediate-type confirmed/candidate cluster members either have photospheric mid-IR emission or weak, optically thin IR excess emission at λ >= 24 μm consistent with debris disks. Few late-type, solar/subsolar-mass stars have primordial disks. The disk population around late-type stars is dominated by disks with inner holes (canonical "transition disks") and "homologously depleted" disks. Both types of disks represent an intermediate stage between primordial disks and debris disks. Thus, in agreement with previous results, we find that multiple paths for the primordial-to-debris disk transition exist. Because these "evolved primordial disks" greatly outnumber primordial disks, our results undermine standard arguments in favor of a lsim105 yr timescale for the transition based on data from Taurus-Auriga. Because the typical transition timescale is far longer than 105 yr, these data also appear to rule out standard ultraviolet photoevaporation scenarios as the primary mechanism to explain the transition. Combining our data with other Spitzer surveys, we investigate the evolution of debris disks around high/intermediate-mass stars and investigate timescales for giant planet formation. Consistent with Currie et al., the luminosity of 24 μm emission in debris disks due to planet formation peaks at ≈10-20 Myr. If the gas and dust in disks evolve on similar timescales, the formation timescale for gas giant planets surrounding early-type, high/intermediate-mass (gsim1.4 M sun) stars is likely 1-5 Myr. Most solar/subsolar-mass stars detected by Spitzer have SEDs that indicate their disks may be actively leaving the primordial disk phase. Thus, gas giant planet formation may also occur by ~5 Myr around solar/subsolar-mass stars as well.

  8. High-resolution 25 μm Imaging of the Disks around Herbig Ae/Be Stars

    NASA Astrophysics Data System (ADS)

    Honda, M.; Maaskant, K.; Okamoto, Y. K.; Kataza, H.; Yamashita, T.; Miyata, T.; Sako, S.; Fujiyoshi, T.; Sakon, I.; Fujiwara, H.; Kamizuka, T.; Mulders, G. D.; Lopez-Rodriguez, E.; Packham, C.; Onaka, T.

    2015-05-01

    We imaged circumstellar disks around 22 Herbig Ae/Be stars at 25 μm using Subaru/COMICS and Gemini/T-ReCS. Our sample consists of an equal number of objects from each of the two categories defined by Meeus et al.; 11 group I (flaring disk) and II (flat disk) sources. We find that group I sources tend to show more extended emission than group II sources. Previous studies have shown that the continuous disk is difficult to resolve with 8 m class telescopes in the Q band due to the strong emission from the unresolved innermost region of the disk. This indicates that the resolved Q-band sources require a hole or gap in the disk material distribution to suppress the contribution from the innermost region of the disk. As many group I sources are resolved at 25 μm, we suggest that many, but not all, group I Herbig Ae/Be disks have a hole or gap and are (pre-)transitional disks. On the other hand, the unresolved nature of many group II sources at 25 μm supports the idea that group II disks have a continuous flat disk geometry. It has been inferred that group I disks may evolve into group II through the settling of dust grains into the mid-plane of the protoplanetary disk. However, considering the growing evidence for the presence of a hole or gap in the disk of group I sources, such an evolutionary scenario is unlikely. The difference between groups I and II may reflect different evolutionary pathways of protoplanetary disks. Based on data collected at the Subaru Telescope, via the time exchange program between Subaru and the Gemini Observatory. The Subaru Telescope is operated by the National Astronomical Observatory of Japan.

  9. THE EVOLUTION OF INNER DISK GAS IN TRANSITION DISKS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoadley, K.; France, K.; McJunkin, M.

    2015-10-10

    Investigating the molecular gas in the inner regions of protoplanetary disks (PPDs) provides insight into how the molecular disk environment changes during the transition from primordial to debris disk systems. We conduct a small survey of molecular hydrogen (H{sub 2}) fluorescent emission, using 14 well-studied Classical T Tauri stars at two distinct dust disk evolutionary stages, to explore how the structure of the inner molecular disk changes as the optically thick warm dust dissipates. We simulate the observed Hi-Lyman α-pumped H{sub 2} disk fluorescence by creating a 2D radiative transfer model that describes the radial distributions of H{sub 2} emissionmore » in the disk atmosphere and compare these to observations from the Hubble Space Telescope. We find the radial distributions that best describe the observed H{sub 2} FUV emission arising in primordial disk targets (full dust disk) are demonstrably different than those of transition disks (little-to-no warm dust observed). For each best-fit model, we estimate inner and outer disk emission boundaries (r{sub in} and r{sub out}), describing where the bulk of the observed H{sub 2} emission arises in each disk, and we examine correlations between these and several observational disk evolution indicators, such as n{sub 13–31}, r{sub in,} {sub CO}, and the mass accretion rate. We find strong, positive correlations between the H{sub 2} radial distributions and the slope of the dust spectral energy distribution, implying the behavior of the molecular disk atmosphere changes as the inner dust clears in evolving PPDs. Overall, we find that H{sub 2} inner radii are ∼4 times larger in transition systems, while the bulk of the H{sub 2} emission originates inside the dust gap radius for all transitional sources.« less

  10. BREAKS IN THIN AND THICK DISKS OF EDGE-ON GALAXIES IMAGED IN THE SPITZER SURVEY OF STELLAR STRUCTURE IN GALAXIES (S{sup 4}G)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Comeron, Sebastien; Salo, Heikki; Laurikainen, Eija

    2012-11-10

    Breaks in the radial luminosity profiles of galaxies have until now been mostly studied averaged over disks. Here, we study separately breaks in thin and thick disks in 70 edge-on galaxies using imaging from the Spitzer Survey of Stellar Structure in Galaxies. We built luminosity profiles of the thin and thick disks parallel to midplanes and we found that thin disks often truncate (77%). Thick disks truncate less often (31%), but when they do, their break radius is comparable with that in the thin disk. This suggests either two different truncation mechanisms-one of dynamical origin affecting both disks simultaneously andmore » another one only affecting the thin disk-or a single mechanism that creates a truncation in one disk or in both depending on some galaxy property. Thin disks apparently antitruncate in around 40% of galaxies. However, in many cases, these antitruncations are an artifact caused by the superposition of a thin disk and a thick disk, with the latter having a longer scale length. We estimate the real thin disk antitruncation fraction to be less than 15%. We found that the ratio of the thick and thin stellar disk mass is roughly constant (0.2 < M{sub T} /M{sub t} < 0.7) for circular velocities v{sub c} > 120 km s{sup -1}, but becomes much larger at smaller velocities. We hypothesize that this is due to a combination of a high efficiency of supernova feedback and a slower dynamical evolution in lower-mass galaxies causing stellar thin disks to be younger and less massive than in higher-mass galaxies.« less

  11. Imaging the Disk and Jet of the Classical T Tauri Star AA Tau

    NASA Technical Reports Server (NTRS)

    Cox, Andrew W.; Grady, Carol A.; Hammel, Heidi B.; Hornbeck, Jeremy; Russell, Ray W.; Sitko, Michael L.; Woodgate, Bruce E.

    2013-01-01

    Previous studies of the classical T Tauri star AA Tau have interpreted the UX-Orionis-like photo-polarimetric variability as being due to a warp in the inner disk caused by an inclined stellar magnetic dipole field. We test that these effects are macroscopically observable in the inclination and alignment of the disk. We use Hubble Space Telescope (HST)/STIS coronagraphic imagery to measure the V magnitude of the star for both STIS coronagraphic observations, compare these data with optical photometry in the literature, and find that, unlike other classical T Tauri stars observed in the same HST program, the disk is most robustly detected in scattered light at stellar optical minimum light.We measure the outer disk radius, 1 inch.15 plus-minus 0 inch.10, major-axis position angle, and disk inclination and find that the inner disk, as reported in the literature, is both misinclined and misaligned with respect to the outer disk. AA Tau drives a faint jet, detected in both STIS observations and in follow-on Goddard Fabry-Perot imagery, which is also misaligned with respect to the projection of the outer disk minor axis and is poorly collimated near the star, but which can be traced 21 inches from the star in data from 2005. The measured outer disk inclination, 71deg plus-minus 1deg, is out of the range of inclinations suggested for stars with UX-Orionis-like variability when no grain growth has occurred in the disk. The faintness of the disk, small disk size, and detection of the star despite the high inclination all indicate that the dust disk must have experienced grain growth and settling toward the disk midplane, which we verify by comparing the observed disk with model imagery from the literature.

  12. TRANSITIONAL DISKS AND THEIR ORIGINS: AN INFRARED SPECTROSCOPIC SURVEY OF ORION A

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, K. H.; Watson, Dan M.; Manoj, P.

    Transitional disks are protoplanetary disks around young stars, with inner holes or gaps which are surrounded by optically thick outer, and often inner, disks. Here we present observations of 62 new transitional disks in the Orion A star-forming region. These were identified using the Spitzer Space Telescope's Infrared Spectrograph and followed up with determinations of stellar and accretion parameters using the Infrared Telescope Facility's SpeX. We combine these new observations with our previous results on transitional disks in Taurus, Chamaeleon I, Ophiuchus, and Perseus, and with archival X-ray observations. This produces a sample of 105 transitional disks of ''cluster'' agemore » 3 Myr or less, by far the largest hitherto assembled. We use this sample to search for trends between the radial structure in the disks and many other system properties, in order to place constraints on the possible origins of transitional disks. We see a clear progression of host-star accretion rate and the different disk morphologies. We confirm that transitional disks with complete central clearings have median accretion rates an order of magnitude smaller than radially continuous disks of the same population. Pre-transitional disks-those objects with gaps that separate inner and outer disks-have median accretion rates intermediate between the two. Our results from the search for statistically significant trends, especially related to M-dot , strongly support that in both cases the gaps are far more likely to be due to the gravitational influence of Jovian planets or brown dwarfs orbiting within the gaps, than to any of the photoevaporative, turbulent, or grain-growth processes that can lead to disk dissipation. We also find that the fraction of Class II YSOs which are transitional disks is large, 0.1-0.2, especially in the youngest associations.« less

  13. The Transitional Protoplanetary Disk Frequency as a Function of Age: Disk Evolution in the Coronet Cluster, Taurus, and Other 1--8 Myr-old Regions

    NASA Technical Reports Server (NTRS)

    Currie, Thayne; Sicilia-Aguilar, Auora

    2011-01-01

    We present Spitzer 3.6-24 micron photometry and spectroscopy for stars in the 1-3 Myr-old Coronet Cluster, expanding upon the survey of Sicilia-Aguilar et al. (2008). Using sophisticated radiative transfer models, we analyze these new data and those from Sicilia-Aguilar et al. (2008) to identify disks with evidence for substantial dust evolution consistent with disk clearing: transitional disks. We then analyze data in Taurus and others young clusters - IC 348, NGC 2362, and eta Cha -- to constrain the transitional disk frequency as a function of time. Our analysis confirms previous results finding evidence for two types of transitional disks -- those with inner holes and those that are homologously depleted. The percentage of disks in the transitional phase increases from approx.15-20% at 1-2 Myr to > 50% at 5-8 Myr; the mean transitional disk lifetime is closer to approx. 1 Myr than 0.1-0.5 Myr, consistent with previous studies by Currie et al. (2009) and Sicilia-Aguilar et al. (2009). In the Coronet Cluster and IC 348, transitional disks are more numerous for very low-mass M3--M6 stars than for more massive K5-M2 stars, while Taurus lacks a strong spectral type-dependent frequency. Assuming standard values for the gas-to-dust ratio and other disk properties, the lower limit for the masses of optically-thick primordial disks is Mdisk approx. 0.001-0.003 M*. We find that single color-color diagrams do not by themselves uniquely identify transitional disks or primordial disks. Full SED modeling is required to accurately assess disk evolution for individual sources and inform statistical estimates of the transitional disk population in large samples using mid-IR colors.

  14. ALMA Survey of Lupus Protoplanetary Disks. II. Gas Disk Radii

    NASA Astrophysics Data System (ADS)

    Ansdell, M.; Williams, J. P.; Trapman, L.; van Terwisga, S. E.; Facchini, S.; Manara, C. F.; van der Marel, N.; Miotello, A.; Tazzari, M.; Hogerheijde, M.; Guidi, G.; Testi, L.; van Dishoeck, E. F.

    2018-05-01

    We present Atacama Large Millimeter/Sub-Millimeter Array (ALMA) Band 6 observations of a complete sample of protoplanetary disks in the young (∼1–3 Myr) Lupus star-forming region, covering the 1.33 mm continuum and the 12CO, 13CO, and C18O J = 2–1 lines. The spatial resolution is ∼0.″25 with a medium 3σ continuum sensitivity of 0.30 mJy, corresponding to M dust ∼ 0.2 M ⊕. We apply Keplerian masking to enhance the signal-to-noise ratios of our 12CO zero-moment maps, enabling measurements of gas disk radii for 22 Lupus disks; we find that gas disks are universally larger than millimeter dust disks by a factor of two on average, likely due to a combination of the optically thick gas emission and the growth and inward drift of the dust. Using the gas disk radii, we calculate the dimensionless viscosity parameter, α visc, finding a broad distribution and no correlations with other disk or stellar parameters, suggesting that viscous processes have not yet established quasi-steady states in Lupus disks. By combining our 1.33 mm continuum fluxes with our previous 890 μm continuum observations, we also calculate the millimeter spectral index, α mm, for 70 Lupus disks; we find an anticorrelation between α mm and millimeter flux for low-mass disks (M dust ≲ 5), followed by a flattening as disks approach α mm ≈ 2, which could indicate faster grain growth in higher-mass disks, but may also reflect their larger optically thick components. In sum, this work demonstrates the continuous stream of new insights into disk evolution and planet formation that can be gleaned from unbiased ALMA disk surveys.

  15. IMAGING THE DISK AND JET OF THE CLASSICAL T TAURI STAR AA TAU

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cox, Andrew W.; Grady, Carol A.; Hammel, Heidi B.

    2013-01-01

    Previous studies of the classical T Tauri star AA Tau have interpreted the UX-Orionis-like photo-polarimetric variability as being due to a warp in the inner disk caused by an inclined stellar magnetic dipole field. We test that these effects are macroscopically observable in the inclination and alignment of the disk. We use Hubble Space Telescope (HST)/STIS coronagraphic imagery to measure the V magnitude of the star for both STIS coronagraphic observations, compare these data with optical photometry in the literature, and find that, unlike other classical T Tauri stars observed in the same HST program, the disk is most robustlymore » detected in scattered light at stellar optical minimum light. We measure the outer disk radius, 1.''15 {+-} 0.''10, major-axis position angle, and disk inclination and find that the inner disk, as reported in the literature, is both misinclined and misaligned with respect to the outer disk. AA Tau drives a faint jet, detected in both STIS observations and in follow-on Goddard Fabry-Perot imagery, which is also misaligned with respect to the projection of the outer disk minor axis and is poorly collimated near the star, but which can be traced 21'' from the star in data from 2005. The measured outer disk inclination, 71 Degree-Sign {+-} 1 Degree-Sign , is out of the range of inclinations suggested for stars with UX-Orionis-like variability when no grain growth has occurred in the disk. The faintness of the disk, small disk size, and detection of the star despite the high inclination all indicate that the dust disk must have experienced grain growth and settling toward the disk midplane, which we verify by comparing the observed disk with model imagery from the literature.« less

  16. THE NATURE OF TRANSITION CIRCUMSTELLAR DISKS. II. SOUTHERN MOLECULAR CLOUDS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Romero, Gisela A.; Schreiber, Matthias R.; Rebassa-Mansergas, Alberto

    2012-04-10

    Transition disk objects are pre-main-sequence stars with little or no near-IR excess and significant far-IR excess, implying inner opacity holes in their disks. Here we present a multifrequency study of transition disk candidates located in Lupus I, III, IV, V, VI, Corona Australis, and Scorpius. Complementing the information provided by Spitzer with adaptive optics (AO) imaging (NaCo, VLT), submillimeter photometry (APEX), and echelle spectroscopy (Magellan, Du Pont Telescopes), we estimate the multiplicity, disk mass, and accretion rate for each object in our sample in order to identify the mechanism potentially responsible for its inner hole. We find that our transitionmore » disks show a rich diversity in their spectral energy distribution morphology, have disk masses ranging from {approx}<1 to 10 M{sub JUP}, and accretion rates ranging from {approx}<10{sup -11} to 10{sup -7.7} M{sub Sun} yr{sup -1}. Of the 17 bona fide transition disks in our sample, three, nine, three, and two objects are consistent with giant planet formation, grain growth, photoevaporation, and debris disks, respectively. Two disks could be circumbinary, which offers tidal truncation as an alternative origin of the inner hole. We find the same heterogeneity of the transition disk population in Lupus III, IV, and Corona Australis as in our previous analysis of transition disks in Ophiuchus while all transition disk candidates selected in Lupus V, VI turned out to be contaminating background asymptotic giant branch stars. All transition disks classified as photoevaporating disks have small disk masses, which indicates that photoevaporation must be less efficient than predicted by most recent models. The three systems that are excellent candidates for harboring giant planets potentially represent invaluable laboratories to study planet formation with the Atacama Large Millimeter/Submillimeter Array.« less

  17. The Transitional Protoplanetary Disk Frequency as a Function of Age: Disk Evolution In the Coronet Cluster, Taurus, and Other 1-8 Myr Old Regions

    NASA Astrophysics Data System (ADS)

    Currie, Thayne; Sicilia-Aguilar, Aurora

    2011-05-01

    We present Spitzer 3.6-24 μm photometry and spectroscopy for stars in the 1-3 Myr old Coronet Cluster, expanding upon the survey of Sicilia-Aguilar et al. Using sophisticated radiative transfer models, we analyze these new data and those from Sicilia-Aguilar et al. to identify disks with evidence for substantial dust evolution consistent with disk clearing: transitional disks. We then analyze data in Taurus and others young clusters—IC 348, NGC 2362, and η Cha—to constrain the transitional disk frequency as a function of time. Our analysis confirms previous results finding evidence for two types of transitional disks—those with inner holes and those that are homologously depleted. The percentage of disks in the transitional phase increases from ~15%-20% at 1-2 Myr to >=50% at 5-8 Myr the mean transitional disk lifetime is closer to ~1 Myr than 0.1-0.5 Myr, consistent with previous studies by Currie et al. and Sicilia-Aguilar et al. In the Coronet Cluster and IC 348, transitional disks are more numerous for very low mass M3-M6 stars than for more massive K5-M2 stars, while Taurus lacks a strong spectral-type-dependent frequency. Assuming standard values for the gas-to-dust ratio and other disk properties, the lower limit for the masses of optically thick primordial disks is M disk ≈ 0.001-0.003 M sstarf. We find that single color-color diagrams do not by themselves uniquely identify transitional disks or primordial disks. Full spectral energy distribution modeling is required to accurately assess disk evolution for individual sources and inform statistical estimates of the transitional disk population in large samples using mid-IR colors.

  18. On the Star Formation Rate, Initial Mass Function, and Hubble Type of Disk Galaxies and the Age of the Universe

    NASA Astrophysics Data System (ADS)

    Sommer-Larsen, Jesper

    1996-01-01

    Evolutionary models for the disks of large disk galaxies, including effects of star formation, non-instantaneous gas recycling from stars, and infall of low-metallicity gas from the halo, have been calculated and compared with data for nearby, generally large disk galaxies on present disk star-formation rates (based on integrated Hα luminosities) as a function of disk gas fractions. The data were extracted from the work by Kennicutt, Tamblyn, & Congdon. The result of the comparison suggests that for disk galaxies the Hubble sequence is a disk age sequence, with early-type disks being the oldest and late types the youngest. Under the assumption of a minimum age of the Galactic disk of 10 Gyr, the mean age of Sa/Sab galaxies, and hence the age of the universe, is found to be at least 17±2 Gyr. It is furthermore found that the disk star-formation timescale is approximately independent of disk-galaxy type. Finally, it is found that the global initial mass function (IMF) in galactic disks is 2-3 times more weighted toward high-mass stars than the Scalo "best-fitting" model for the solar-neighborhood IMF. The more top-heavy model of Kennicutt provides a good fit to observation.

  19. Detailed Microstructural Characterization of the Disk Alloy ME3

    NASA Technical Reports Server (NTRS)

    Gabb, Timothy P.; Garg, Anita; Ellis, David L.; O'Connor, Kenneth M.

    2004-01-01

    The advanced powder metallurgy disk alloy ME3 was designed using statistical screening and optimization of composition and processing variables in the NASA/General Electric/Pratt & Whitney HSR/EPM disk program to have extended durability for large disks at maximum temperatures of 600 to 700 C. Scaled-up disks of this alloy were then produced at the conclusion of that program to demonstrate these properties in realistic disk shapes. The objective of the present study was to assess the microstructural characteristics of these ME3 disks at two consistent locations, in order to enable estimation of the variations in microstructure across each disk and across several disks of this advanced alloy. Scaled-up disks processed in the HSR/EPM Compressor/Turbine Disk program had been sectioned, machined into specimens, and tested in tensile, creep, fatigue, and fatigue crack growth tests by NASA Glenn Research Center, in cooperation with General Electric Engine Company and Pratt & Whitney Aircraft Engines. For this study, microstructures of grip sections from tensile specimens in the bore and rim were evaluated from these disks. The major and minor phases were identified and quantified using transmission electron microscopy (TEM). Particular attention was directed to the .' precipitates, which along with grain size can predominantly control the mechanical properties of superalloy disks.

  20. Indirect and Direct Signatures of Young Planets in Protoplanetary Disks

    NASA Astrophysics Data System (ADS)

    Zhu, Zhaohuan; Stone, James M.; Dong, Ruobing; Rafikov, Roman; Bai, Xue-Ning

    2015-12-01

    Directly finding young planets around protostars is challenging since protostars are highly variable and obscured by dust. However, young planets will interact with protoplanetary disks, inducing disk features such as gaps, spiral arms, and asymmetric features, which are much easier to be detected. Transitional disks, which are protoplanetary disks with gaps and holes, are excellent candidates for finding young planets. Although these disks have been studied extensively in observations (e.g. using Subaru, VLT, ALMA, EVLA), theoretical models still need to be developed to explain observations. We have constructed numerical simulations, including dust particle dynamics and MHD effects, to study planet-disk interaction, with an emphasis on explaining observations. Our simulations have successfully reproduced spiral arms, gaps and asymmetric features observed in transitional disks. Furthermore, by comparing with observations, we have constrained protoplanetary disk properties and pinpoint potential planets in these disks. We will present progress in constructing global simulations to study transitional disks, including using our recently developed Athena++ code with static-mesh-refinement for MHD. Finally we suggest that accreting circumplanetary disks can release an observable amount of energy and could be the key to detect young planets directly. We will discuss how JWST and next generation telescopes can help to find these young planets with circumplanetary disks.

  1. 76 FR 1180 - FDA Transparency Initiative: Improving Transparency to Regulated Industry

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-07

    ...] FDA Transparency Initiative: Improving Transparency to Regulated Industry AGENCY: Food and Drug... the Transparency Initiative, the Food and Drug Administration (FDA) is announcing the availability of a report entitled ``FDA Transparency Initiative: Improving Transparency to Regulated Industry.'' The...

  2. Hydrodynamical Modeling of Large Circumstellar Disks

    NASA Astrophysics Data System (ADS)

    Kurfürst, P.; Krtǐcka, J.

    2016-11-01

    Direct centrifugal ejection from a critically or near-critically rotating surface forms a gaseous equatorial decretion disk. Anomalous viscosity provides the efficient mechanism for transporting the angular momentum outwards. The outer part of the disk can extend up to a very large distance from the parent star. We study the evolution of density, radial and azimuthal velocity, and angular momentum loss rate of equatorial decretion disks out to very distant regions. We investigate how the physical characteristics of the disk depend on the distribution of temperature and viscosity. We also study the magnetorotational instability, which is considered to be the origin of anomalous viscosity in outflowing disks. We use analytical calculations to study the stability of outflowing disks submerged to the magnetic field. At large radii the instability disappears in the region where the disk orbital velocity is roughly equal to the sound speed. Therefore, the disk sonic radius can be roughly considered as an outer disk radius.

  3. The Disk and Jet of the Classical T Tauri Star AA Tau

    NASA Technical Reports Server (NTRS)

    Cox, A. W.; Grady, C. A.; Hamel, H.; Hornbeck, Jeremy; Russell, R.; Sitko, M.; Woodgate, B.

    2013-01-01

    Previous studies of the classical T Tauri star AA Tau have interpreted the UX Orionis-like photopolarimetric variability as being due to a warp in the inner disk caused by an inclined stellar magnetic dipolefield. We test that these effects are macroscopically observable in the inclination and alignment of the disk. We use the HST/STIS coronagraphic detection of the disk to measure the outer disk radius and inclination, and find that the inner disk is both misinclined and misaligned with respect to the outer disk. AA Tau drives a faint jet which is also misaligned with respect to the projection of the outer disk minor axis. The jet is also poorly collimated near the star. The measured inclination, 71+/-1deg, is above the inclination range suggested for stars with UX Orionis-like variability, indicating that dust grains in the disk have grown and settled toward the disk midplane.

  4. The role of the global magnetic field and thermal conduction on the structure of the accretion disks of all models

    NASA Astrophysics Data System (ADS)

    Farahinezhad, M.; Khesali, A. R.

    2018-05-01

    In this paper, the effects of global magnetic field and thermal conduction on the vertical structure of the accretion disks has been investigated. In this study, four types disks were examined: Gas pressure dominated the standard disk, while radiation pressure dominated the standard disk, ADAF disk, slim disk. Moreover, the general shape of the magnetic field, including toroidal and poloidal components, is considered. The magnetohydrodynamic equations were solved in spherical coordinates using self-similar assumptions in the radial direction. Following previous authors, the polar velocity vθ is non-zero and Trφ was considered as a dominant component of the stress tensor. The results show that the disk becomes thicker compared to the non-magnetic fields. It has also been shown that the presence of the thermal conduction in the ADAF model makes the disk thicker; the disk is expanded in the standard model.

  5. Long-term citizen-collected data reveal geographical patterns and temporal trends in lake water clarity

    USGS Publications Warehouse

    Lottig, Noah R.; Wagner, Tyler; Henry, Emily N.; Cheruvelil, Kendra Spence; Webster, Katherine E.; Downing, John A.; Stow, Craig A.

    2014-01-01

    We compiled a lake-water clarity database using publically available, citizen volunteer observations made between 1938 and 2012 across eight states in the Upper Midwest, USA. Our objectives were to determine (1) whether temporal trends in lake-water clarity existed across this large geographic area and (2) whether trends were related to the lake-specific characteristics of latitude, lake size, or time period the lake was monitored. Our database consisted of >140,000 individual Secchi observations from 3,251 lakes that we summarized per lake-year, resulting in 21,020 summer averages. Using Bayesian hierarchical modeling, we found approximately a 1% per year increase in water clarity (quantified as Secchi depth) for the entire population of lakes. On an individual lake basis, 7% of lakes showed increased water clarity and 4% showed decreased clarity. Trend direction and strength were related to latitude and median sample date. Lakes in the southern part of our study-region had lower average annual summer water clarity, more negative long-term trends, and greater inter-annual variability in water clarity compared to northern lakes. Increasing trends were strongest for lakes with median sample dates earlier in the period of record (1938–2012). Our ability to identify specific mechanisms for these trends is currently hampered by the lack of a large, multi-thematic database of variables that drive water clarity (e.g., climate, land use/cover). Our results demonstrate, however, that citizen science can provide the critical monitoring data needed to address environmental questions at large spatial and long temporal scales. Collaborations among citizens, research scientists, and government agencies may be important for developing the data sources and analytical tools necessary to move toward an understanding of the factors influencing macro-scale patterns such as those shown here for lake water clarity.

  6. Understanding Shock Dynamics in the Inner Heliosphere with Modeling and Type II Radio Data: the 2010-04-03 Event

    NASA Technical Reports Server (NTRS)

    Xie, Hong Na; Odstrcil, Dusan; Mays, L.; Cyr, O. C. St.; Gopalswamy, N.; Cremades, H.

    2012-01-01

    The 2010 April 03 solar event was studied using observations from STEREO SECCHI, SOHO LASCO, and Wind kilometric Type II data (kmTII) combined with WSA-Cone-ENLIL model simulations performed at the Community Coordinated Modeling Center (CCMC). In particular, we identified the origin of the coronal mass ejection (CME) using STEREO EUVI and SOHO EIT images. A flux-rope model was fit to the SECCHI A and B, and LASCO images to determine the CMEs direction, size, and actual speed. J-maps from STEREO COR2HI-1HI-2 and simulations fromCCMC were used to study the formation and evolution of the shock in the inner heliosphere. In addition, we also studied the time-distance profile of the shock propagation from kmTII radio burst observations. The J-maps together with in-situ datafrom the Wind spacecraft provided an opportunity to validate the simulation results andthe kmTII prediction. Here we report on a comparison of two methods of predictinginterplanetary shock arrival time: the ENLIL model and the kmTII method; andinvestigate whether or not using the ENLIL model density improves the kmTIIprediction. We found that the ENLIL model predicted the kinematics of shock evolutionwell. The shock arrival times (SAT) and linear-fit shock velocities in the ENLILmodel agreed well with those measurements in the J-maps along both the CME leading edge and the Sun-Earth line. The ENLIL model also reproduced most of the largescale structures of the shock propagation and gave the SAT prediction at Earth with an error of 17 hours. The kmTII method predicted the SAT at Earth with an error of 15 hours when using n0 4.16 cm3, the ENLIL model plasma density near Earth; but itimproved to 2 hours when using n0 6.64 cm3, the model density near the CMEleading edge at 1 AU.

  7. Long-Term Citizen-Collected Data Reveal Geographical Patterns and Temporal Trends in Lake Water Clarity

    PubMed Central

    Lottig, Noah R.; Wagner, Tyler; Norton Henry, Emily; Spence Cheruvelil, Kendra; Webster, Katherine E.; Downing, John A.; Stow, Craig A.

    2014-01-01

    We compiled a lake-water clarity database using publically available, citizen volunteer observations made between 1938 and 2012 across eight states in the Upper Midwest, USA. Our objectives were to determine (1) whether temporal trends in lake-water clarity existed across this large geographic area and (2) whether trends were related to the lake-specific characteristics of latitude, lake size, or time period the lake was monitored. Our database consisted of >140,000 individual Secchi observations from 3,251 lakes that we summarized per lake-year, resulting in 21,020 summer averages. Using Bayesian hierarchical modeling, we found approximately a 1% per year increase in water clarity (quantified as Secchi depth) for the entire population of lakes. On an individual lake basis, 7% of lakes showed increased water clarity and 4% showed decreased clarity. Trend direction and strength were related to latitude and median sample date. Lakes in the southern part of our study-region had lower average annual summer water clarity, more negative long-term trends, and greater inter-annual variability in water clarity compared to northern lakes. Increasing trends were strongest for lakes with median sample dates earlier in the period of record (1938–2012). Our ability to identify specific mechanisms for these trends is currently hampered by the lack of a large, multi-thematic database of variables that drive water clarity (e.g., climate, land use/cover). Our results demonstrate, however, that citizen science can provide the critical monitoring data needed to address environmental questions at large spatial and long temporal scales. Collaborations among citizens, research scientists, and government agencies may be important for developing the data sources and analytical tools necessary to move toward an understanding of the factors influencing macro-scale patterns such as those shown here for lake water clarity. PMID:24788722

  8. Biological invasion by a benthivorous fish reduced the cover and species richness of aquatic plants in most lakes of a large North American ecoregion.

    PubMed

    Bajer, Przemyslaw G; Beck, Marcus W; Cross, Timothy K; Koch, Justine D; Bartodziej, William M; Sorensen, Peter W

    2016-12-01

    Biological invasions are projected to be the main driver of biodiversity and ecosystem function loss in lakes in the 21st century. However, the extent of these future losses is difficult to quantify because most invasions are recent and confounded by other stressors. In this study, we quantified the outcome of a century-old invasion, the introduction of common carp to North America, to illustrate potential consequences of introducing non-native ecosystem engineers to lakes worldwide. We used the decline in aquatic plant richness and cover as an index of ecological impact across three ecoregions: Great Plains, Eastern Temperate Forests and Northern Forests. Using whole-lake manipulations, we demonstrated that both submersed plant cover and richness declined exponentially as carp biomass increased such that plant cover was reduced to <10% and species richness was halved in lakes in which carp biomass exceeded 190 kg ha -1 . Using catch rates amassed from 2000+ lakes, we showed that carp exceeded this biomass level in 70.6% of Great Plains lakes and 23.3% of Eastern Temperate Forests lakes, but 0% of Northern Forests lakes. Using model selection analysis, we showed that carp was a key driver of plant species richness along with Secchi depth, lake area and human development of lake watersheds. Model parameters showed that carp reduced species richness to a similar degree across lakes of various Secchi depths and surface areas. In regions dominated by carp (e.g., Great Plains), carp had a stronger impact on plant richness than human watershed development. Overall, our analysis shows that the introduction of common carp played a key role in driving a severe reduction in plant cover and richness in a majority of Great Plains lakes and a large portion of Eastern Temperate Forests lakes in North America. © 2016 John Wiley & Sons Ltd.

  9. Methane and carbon dioxide emissions from 40 lakes along a north–south latitudinal transect in Alaska

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sepulveda-Jauregui, A.; Walter Anthony, K. M.; Martinez-Cruz, K.

    Uncertainties in the magnitude and seasonality of various gas emission modes, particularly among different lake types, limit our ability to estimate methane (CH 4) and carbon dioxide (CO 2) emissions from northern lakes. Here we assessed the relationship between CH 4 and CO 2 emission modes in 40 lakes along a latitudinal transect in Alaska to physicochemical limnology and geographic characteristics, including permafrost soil type surrounding lakes. Emission modes included Direct Ebullition, Diffusion, Storage flux, and a newly identified Ice-Bubble Storage (IBS) flux. We found that all lakes were net sources of atmospheric CH 4 and CO 2, but themore » climate warming impact of lake CH 4 emissions was two times higher than that of CO 2. Ebullition and Diffusion were the dominant modes of CH 4 and CO 2 emissions respectively. IBS, ~ 10% of total annual CH 4 emissions, is the release to the atmosphere of seasonally ice-trapped bubbles when lake ice confining bubbles begins to melt in spring. IBS, which has not been explicitly accounted for in regional studies, increased the estimate of springtime emissions from our study lakes by 320%. Geographically, CH 4 emissions from stratified, dystrophic interior Alaska thermokarst (thaw) lakes formed in icy, organic-rich yedoma permafrost soils were 6-fold higher than from non-yedoma lakes throughout the rest of Alaska. Total CH 4 emission was correlated with concentrations of phosphate and total nitrogen in lake water, Secchi depth and lake area, with yedoma lakes having higher nutrient concentrations, shallower Secchi depth, and smaller lake areas. Our findings suggest that permafrost type plays important roles in determining CH 4 emissions from lakes by both supplying organic matter to methanogenesis directly from thawing permafrost and by enhancing nutrient availability to primary production, which can also fuel decomposition and methanogenesis.« less

  10. Methane and carbon dioxide emissions from 40 lakes along a north–south latitudinal transect in Alaska

    DOE PAGES

    Sepulveda-Jauregui, A.; Walter Anthony, K. M.; Martinez-Cruz, K.; ...

    2014-09-12

    Uncertainties in the magnitude and seasonality of various gas emission modes, particularly among different lake types, limit our ability to estimate methane (CH 4) and carbon dioxide (CO 2) emissions from northern lakes. Here we assessed the relationship between CH 4 and CO 2 emission modes in 40 lakes along a latitudinal transect in Alaska to physicochemical limnology and geographic characteristics, including permafrost soil type surrounding lakes. Emission modes included Direct Ebullition, Diffusion, Storage flux, and a newly identified Ice-Bubble Storage (IBS) flux. We found that all lakes were net sources of atmospheric CH 4 and CO 2, but themore » climate warming impact of lake CH 4 emissions was two times higher than that of CO 2. Ebullition and Diffusion were the dominant modes of CH 4 and CO 2 emissions respectively. IBS, ~ 10% of total annual CH 4 emissions, is the release to the atmosphere of seasonally ice-trapped bubbles when lake ice confining bubbles begins to melt in spring. IBS, which has not been explicitly accounted for in regional studies, increased the estimate of springtime emissions from our study lakes by 320%. Geographically, CH 4 emissions from stratified, dystrophic interior Alaska thermokarst (thaw) lakes formed in icy, organic-rich yedoma permafrost soils were 6-fold higher than from non-yedoma lakes throughout the rest of Alaska. Total CH 4 emission was correlated with concentrations of phosphate and total nitrogen in lake water, Secchi depth and lake area, with yedoma lakes having higher nutrient concentrations, shallower Secchi depth, and smaller lake areas. Our findings suggest that permafrost type plays important roles in determining CH 4 emissions from lakes by both supplying organic matter to methanogenesis directly from thawing permafrost and by enhancing nutrient availability to primary production, which can also fuel decomposition and methanogenesis.« less

  11. Influence of dreissenid mussels on catchability of benthic fishes in bottom trawls

    USGS Publications Warehouse

    Kocovsky, Patrick M.; Stapanian, Martin A.

    2011-01-01

    Inferring trends in true abundance of fish populations from catch per unit effort data requires either the knowledge of capture probability or the assumption that it is constant, both of which are unlikely contingencies. We developed and validated an index of catchability (a proxy measure for capture probability) from a long-term data set describing nearshore waters of western Lake Erie, and we used the index to test the hypothesis that catchability of four abundant benthic species captured in bottom trawls changed after the invasion of dreissenid mussels. We estimated daytime and nighttime catchability for 1972–1990 (predreissenid period) and 1991–2009 (dreissenid period); we then tested for differences between nighttime and daytime catchability in the predreissenid and dreissenid periods and the nighttime–daytime differential in catchability during the dreissenid period. We also tested relationships between Secchi depth and the catchability index via linear regression. Catchability indices for white perch Morone americana, yellow perch Perca flavescens, and trout-perch Percopsis omiscomaycus did not differ between daytime and nighttime during the predreissenid period. After establishment of dreissenids, all three of these species had lower daytime catchability than nighttime catchability and had positive nighttime–daytime differentials, indicating a shift toward higher nighttime catchability relative to daytime catchability. Changes in catchability indices for freshwater drum Aplodinotus grunniens were opposite the changes observed for the other three species, possibly because the freshwater drum is the only species that actively feeds on dreissenids. Catchability indices were negatively related to water clarity (Secchi depth) for three of the species. Our results are consistent with the hypothesis that catchability of the four most common benthic fish species captured in bottom trawls within nearshore waters of western Lake Erie changed after the dreissenid invasion because of increased water clarity and increased visibility, which led to greater daytime trawl avoidance.

  12. Magnetically Induced Disk Winds and Transport in the HL Tau Disk

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hasegawa, Yasuhiro; Flock, Mario; Turner, Neal J.

    2017-08-10

    The mechanism of angular momentum transport in protoplanetary disks is fundamental to understanding the distributions of gas and dust in the disks. The unprecedented ALMA observations taken toward HL Tau at high spatial resolution and subsequent radiative transfer modeling reveal that a high degree of dust settling is currently achieved in the outer part of the HL Tau disk. Previous observations, however, suggest a high disk accretion rate onto the central star. This configuration is not necessarily intuitive in the framework of the conventional viscous disk model, since efficient accretion generally requires a high level of turbulence, which can suppressmore » dust settling considerably. We develop a simplified, semi-analytical disk model to examine under what condition these two properties can be realized in a single model. Recent, non-ideal MHD simulations are utilized to realistically model the angular momentum transport both radially via MHD turbulence and vertically via magnetically induced disk winds. We find that the HL Tau disk configuration can be reproduced well when disk winds are properly taken into account. While the resulting disk properties are likely consistent with other observational results, such an ideal situation can be established only if the plasma β at the disk midplane is β {sub 0} ≃ 2 × 10{sup 4} under the assumption of steady accretion. Equivalently, the vertical magnetic flux at 100 au is about 0.2 mG. More detailed modeling is needed to fully identify the origin of the disk accretion and quantitatively examine plausible mechanisms behind the observed gap structures in the HL Tau disk.« less

  13. Inferring a Gap in the Group II Disk of the Herbig Ae/Be Star HD 142666

    NASA Astrophysics Data System (ADS)

    Ezra Rubinstein, Adam; Macías, Enrique; Espaillat, Catherine; Calvet, Nuria; Robinson, Connor; Zhang, Ke

    2018-01-01

    Disks around Herbig Ae/Be (HAeBe) stars have been classified into Group I or Group II, which are thought to be flared and flat disks respectively. Most Group I disks have been shown to have large gaps, suggesting ongoing planet formation, while no large gaps have been found in Group II disks. We analyzed the Group II disk of HD 142666 using irradiated accretion disk modeling of the broad-band spectral energy distribution along with the 1.3 millimeter spatial brightness distribution traced by Atacama Large Millimeter and Submillimeter Array (ALMA) observations. Our model is able to reproduce the available data, predicting a high degree of settling in the disk, which is consistent with the Group II classification of HD 142666. Although the ALMA observations did not have enough angular resolution to fully resolve the inner parts of the disk, the observed visibilities and synthesized image can only be reproduced when including a gap between ~5 to 12 au in our disk model. In addition, we also infer that the disk has an outer radius of ~65 au, which may be evidence of radial migration of dust or an unseen, low-mass companion that is truncating the outer disk. These results may suggest that Group II disks around HAeBe stars have gaps, possibly carved by young giant planets in the disk. Further ALMA observations of HD 142666 and other Group II disks are needed to discern if gaps are common in this class of objects, as well as to reveal their possible origin.

  14. Magnetically Induced Disk Winds and Transport in the HL Tau Disk

    NASA Astrophysics Data System (ADS)

    Hasegawa, Yasuhiro; Okuzumi, Satoshi; Flock, Mario; Turner, Neal J.

    2017-08-01

    The mechanism of angular momentum transport in protoplanetary disks is fundamental to understanding the distributions of gas and dust in the disks. The unprecedented ALMA observations taken toward HL Tau at high spatial resolution and subsequent radiative transfer modeling reveal that a high degree of dust settling is currently achieved in the outer part of the HL Tau disk. Previous observations, however, suggest a high disk accretion rate onto the central star. This configuration is not necessarily intuitive in the framework of the conventional viscous disk model, since efficient accretion generally requires a high level of turbulence, which can suppress dust settling considerably. We develop a simplified, semi-analytical disk model to examine under what condition these two properties can be realized in a single model. Recent, non-ideal MHD simulations are utilized to realistically model the angular momentum transport both radially via MHD turbulence and vertically via magnetically induced disk winds. We find that the HL Tau disk configuration can be reproduced well when disk winds are properly taken into account. While the resulting disk properties are likely consistent with other observational results, such an ideal situation can be established only if the plasma β at the disk midplane is β 0 ≃ 2 × 104 under the assumption of steady accretion. Equivalently, the vertical magnetic flux at 100 au is about 0.2 mG. More detailed modeling is needed to fully identify the origin of the disk accretion and quantitatively examine plausible mechanisms behind the observed gap structures in the HL Tau disk.

  15. Storage Media for Microcomputers.

    ERIC Educational Resources Information Center

    Trautman, Rodes

    1983-01-01

    Reviews computer storage devices designed to provide additional memory for microcomputers--chips, floppy disks, hard disks, optical disks--and describes how secondary storage is used (file transfer, formatting, ingredients of incompatibility); disk/controller/software triplet; magnetic tape backup; storage volatility; disk emulator; and…

  16. Disks around stars and the growth of planetary systems.

    PubMed

    Greaves, Jane S

    2005-01-07

    Circumstellar disks play a vital evolutionary role, providing a way to move gas inward and onto a young star. The outward transfer of angular momentum allows the star to contract without breaking up, and the remnant disk of gas and particles is the reservoir for forming planets. High-resolution spectroscopy is uncovering planetary dynamics and motion within the remnant disk, and imaging at infrared to millimeter wavelengths resolves disk structure over billions of years of evolution. Most stars are born with a disk, and models of planet formation need to form such bodies from the disk material within the disk's 10-million-year life-span.

  17. Recent Observational Progress on Accretion Disks Around Compact Objects

    NASA Astrophysics Data System (ADS)

    Miller, Jon M.

    2016-04-01

    Studies of accretion disks around black holes and neutron stars over the last ten years have made remarkable progress. Our understanding of disk evolution as a function of mass accretion rate is pushing toward a consensus on thin/thick disk transitions; an apparent switching between disk-driven outflow modes has emerged; and monitoring observations have revealed complex spectral energy distributions wherein disk reprocessing must be important. Detailed studies of disk winds, in particular, have the potential to reveal the basic physical processes that mediate disk accretion, and to connect with numerical simulations. This talk will review these developments and look ahead to the potential of Astro-H.

  18. The Study of Galactic Disk Kinematics with SCUSS and SDSS Data

    NASA Astrophysics Data System (ADS)

    Peng, Xiyan; Wu, Zhenyu; Qi, Zhaoxiang; Du, Cuihua; Ma, Jun; Zhou, Xu; Jia, Yunpeng; Wang, Songhu

    2018-07-01

    We derive chemical and kinematics properties of G and K dwarfs from the SCUSS and SDSS data. We aim to characterize and explore the properties of the Galactic disk in order to understand their origins and evolutions. A kinematics approach is used to separate Galactic stellar populations into the likely thin disk and thick disk sample. Then, we explore rotational velocity gradients with metallicity of the Galactic disks to provide constraints on the various formation models. We identify a negative gradient of the rotational velocity of the thin disk stars with [Fe/H], ‑18.2 ± 2.3 km s‑1 dex‑1. For the thick disk, we identify a positive gradient of the rotational velocity with [Fe/H], 41.7 ± 6.1 km s‑1 dex‑1. The eccentricity does not change with metallicity for the thin disk sample. Thick disk stars exhibit a trend of orbital eccentricity with metallicity (‑0.13 dex‑1). The thin disk shows a negative metallicity gradient with Galactocentric radial distance R, while the thick disk shows a flat radial metallicity gradient. Our results suggest that radial migration may play an important role in the formation and evolution of the thin disk.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nesvold, Erika R.; Naoz, Smadar; Vican, Laura

    The first indication of the presence of a circumstellar debris disk is usually the detection of excess infrared emission from the population of small dust grains orbiting the star. This dust is short-lived, requiring continual replenishment, and indicating that the disk must be excited by an unseen perturber. Previous theoretical studies have demonstrated that an eccentric planet orbiting interior to the disk will stir the larger bodies in the belt and produce dust via interparticle collisions. However, motivated by recent observations, we explore another possible mechanism for heating a debris disk: a stellar-mass perturber orbiting exterior to and inclined tomore » the disk and exciting the disk particles’ eccentricities and inclinations via the Kozai–Lidov mechanism. We explore the consequences of an exterior perturber on the evolution of a debris disk using secular analysis and collisional N -body simulations. We demonstrate that a Kozai–Lidov excited disk can generate a dust disk via collisions and we compare the results of the Kozai–Lidov excited disk with a simulated disk perturbed by an interior eccentric planet. Finally, we propose two observational tests of a dust disk that can distinguish whether the dust was produced by an exterior brown dwarf or stellar companion or an interior eccentric planet.« less

  20. MIGRATION TRAPS IN DISKS AROUND SUPERMASSIVE BLACK HOLES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bellovary, Jillian M.; Low, Mordecai-Mark Mac; McKernan, Barry

    Accretion disks around supermassive black holes (SMBHs) in active galactic nuclei (AGNs) contain stars, stellar mass black holes, and other stellar remnants, which perturb the disk gas gravitationally. The resulting density perturbations exert torques on the embedded masses causing them to migrate through the disk in a manner analogous to planets in protoplanetary disks. We determine the strength and direction of these torques using an empirical analytic description dependent on local disk gradients, applied to two different analytic, steady-state disk models of SMBH accretion disks. We find that there are radii in such disks where the gas torque changes sign,more » trapping migrating objects. Our analysis shows that major migration traps generally occur where the disk surface density gradient changes sign from positive to negative, around 20–300R{sub g}, where R{sub g} = 2GM/c{sup 2} is the Schwarzschild radius. At these traps, massive objects in the AGN disk can accumulate, collide, scatter, and accrete. Intermediate mass black hole formation is likely in these disk locations, which may lead to preferential gap and cavity creation at these radii. Our model thus has significant implications for SMBH growth as well as gravitational wave source populations.« less

  1. Check valve

    DOEpatents

    Upton, Hubert Allen; Garcia, Pablo

    1999-08-24

    A check valve for use in a GDCS of a nuclear reactor and having a motor driven disk including a rotatable armature for rotating the check valve disk over its entire range of motion is described. In one embodiment, the check valve includes a valve body having a coolant flow channel extending therethrough. The coolant flow channel includes an inlet end and an outlet end. A valve body seat is located on an inner surface of the valve body. The check valve further includes a disk assembly, sometimes referred to as the motor driven disc, having a counterweight and a disk shaped valve. The disk valve includes a disk base having a seat for seating with the valve body seat. The disk assembly further includes a first hinge pin member which extends at least partially through the disk assembly and is engaged to the disk. The disk valve is rotatable relative to the first hinge pin member. The check valve also includes a motor having a stator frame with a stator bore therein. An armature is rotatably positioned within the stator bore and the armature is coupled to the disk valve to cause the disk valve to rotate about its full range of motion.

  2. Check valve

    DOEpatents

    Upton, H.A.; Garcia, P.

    1999-08-24

    A check valve for use in a GDCS of a nuclear reactor and having a motor driven disk including a rotatable armature for rotating the check valve disk over its entire range of motion is described. In one embodiment, the check valve includes a valve body having a coolant flow channel extending therethrough. The coolant flow channel includes an inlet end and an outlet end. A valve body seat is located on an inner surface of the valve body. The check valve further includes a disk assembly, sometimes referred to as the motor driven disc, having a counterweight and a disk shaped valve. The disk valve includes a disk base having a seat for seating with the valve body seat. The disk assembly further includes a first hinge pin member which extends at least partially through the disk assembly and is engaged to the disk. The disk valve is rotatable relative to the first hinge pin member. The check valve also includes a motor having a stator frame with a stator bore therein. An armature is rotatably positioned within the stator bore and the armature is coupled to the disk valve to cause the disk valve to rotate about its full range of motion. 5 figs.

  3. Elastic and hydrodynamic torques on a colloidal disk within a nematic liquid crystal.

    PubMed

    Rovner, Joel B; Borgnia, Dan S; Reich, Daniel H; Leheny, Robert L

    2012-10-01

    The orientationally dependent elastic energy and hydrodynamic behavior of colloidal disks with homeotropic surface anchoring suspended in the nematic liquid crystal 4-cyano-4'-pentylbiphenyl (5CB) have been investigated. In the absence of external torques, the disks align with the normal of the disk face â parallel to the nematic director n[over ^]. When a magnetic field is applied, the disks rotate â by an angle θ so that the magnetic torque and the elastic torque caused by distortion of the nematic director field are balanced. Over a broad range of angles, the elastic torque increases linearly with θ in quantitative agreement with a theoretical prediction based on an electrostatic analogy. When the disks are rotated to angles θ>π/2, the resulting large elastic distortion makes the disk orientation unstable, and the director undergoes a topological transition in which θ→π-θ. In the transition, a defect loop is shed from the disk surface, and the disks spin so that â sweeps through π radians as the loop collapses back onto the disk. Additional measurements of the angular relaxation of disks to θ=0 following removal of the external torque show a quasi-exponential time dependence from which an effective drag viscosity for the nematic can be extracted. The scaling of the angular time dependence with disk radius and observations of disks rotating about â indicate that the disk motion affects the director field at surprisingly modest Ericksen numbers.

  4. Long-lived Eccentric modes in Protoplanetary Disks

    NASA Astrophysics Data System (ADS)

    Lee, Wing-Kit; Dempsey, Adam M.; Lithwick, Yoram

    2018-04-01

    A theory is developed to understand global eccentric modes that are slowly precessing in protoplanetary disks. Using the typical self-similar density profiles, we found that these modes are trapped in the disk and are not sensitive to the uncertain boundary condition at the disk edge. This is contrary to common wisdom that the modes can only exist in disks with very sharp outer edge. Because of their discrete spectrum, once excited, a perturbed disk can stay eccentric for a long time until the mode is viscously damped. The physics behind the mode trapping depends ultimately on the relative importance of gas pressure and self-gravity, which is characterized by g = 1/ (Q h), where h is the disk aspect ratio and Q is the Toomre stability parameter. A very low mass disk (g ≪ 1) is pressure-dominated and supports pressure modes, in which the eccentricity is highest at the disk edge. The modes are trapped by a turning point due to the density drop in the outer disk. For a more massive disk with g of order of unity (Q~1/h~10-100), prograde modes are supported. Unlike the pressure modes, these modes are trapped by Q-barriers and result in a bump in the radial eccentricity profile. As the mode trapping is a generic phenomenon for typical disk profiles, the free linear eccentric modes are likely to be present in protoplanetary disks with a wide range of disk mass.

  5. Conservative GRMHD simulations of moderately thin, tilted accretion disks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Teixeira, Danilo Morales; Fragile, P. Chris; Zhuravlev, Viacheslav V.

    2014-12-01

    This paper presents our latest numerical simulations of accretion disks that are misaligned with respect to the rotation axis of a Kerr black hole. In this work, we use a new, fully conservative version of the Cosmos++ general relativistic magnetohydrodynamics (GRMHD) code, coupled with an ad hoc cooling function designed to control the thickness of the disk. Together these allow us to simulate the thinnest tilted accretion disks ever using a GRMHD code. In this way, we are able to probe the regime where the dimensionless stress and scale height of the disk become comparable. We present results for bothmore » prograde and retrograde cases. The simulated prograde tilted disk shows no sign of Bardeen-Petterson alignment even in the innermost parts of the disk. The simulated retrograde tilted disk, however, does show modest alignment. The implication of these results is that the parameter space associated with Bardeen-Petterson alignment for prograde disks may be rather small, only including very thin disks. Unlike our previous work, we find no evidence for standing shocks in our simulated tilted disks. We ascribe this to the black hole spin, tilt angle, and disk scale height all being small in these simulations. We also add to the growing body of literature pointing out that the turbulence driven by the magnetorotational instability in global simulations of accretion disks is not isotropic. Finally, we provide a comparison between our moderately thin, untilted reference simulation and other numerical simulations of thin disks in the literature.« less

  6. Method of forming macro-structured high surface area transparent conductive oxide electrodes

    DOEpatents

    Forman, Arnold J.; Chen, Zhebo; Jaramillo, Thomas F.

    2016-01-05

    A method of forming a high surface area transparent conducting electrode is provided that includes depositing a transparent conducting thin film on a conductive substrate, where the transparent conducting thin film includes transparent conductive particles and a solution-based transparent conducting adhesive layer which serves to coat and bind together the transparent conducting particles, and heat treating the transparent conducting adhesion layer on the conductive substrate, where an increased surface area transparent conducting electrode is formed.

  7. The structure of disks around intermediate-mass young stars from mid-infrared interferometry. Evidence for a population of group II disks with gaps

    NASA Astrophysics Data System (ADS)

    Menu, J.; van Boekel, R.; Henning, Th.; Leinert, Ch.; Waelkens, C.; Waters, L. B. F. M.

    2015-09-01

    Context. The disks around Herbig Ae/Be stars are commonly divided into group I and group II based on their far-infrared spectral energy distribution, and the common interpretation for that is flared and flat disks. Our understanding of the evolution of these disks is rapidly changing. Recent observations suggest that many flaring disks have gaps, whereas flat disks are thought to be gapless. Aims: The different groups of objects can be expected to have different structural signatures in high-angular-resolution data, related to gaps, dust settling, and flaring. We aim to use such data to gain new insight into disk structure and evolution. Methods: Over the past 10 years, the MIDI instrument on the Very Large Telescope Interferometer has collected observations of several tens of protoplanetary disks. We modeled the large set of observations with simple geometric models and compared the characteristic sizes among the different objects. A population of radiative-transfer models was synthesized for interpreting the mid-infrared signatures. Results: Objects with similar luminosities show very different disk sizes in the mid-infrared. This may point to an intrinsic diversity or could also hint at different evolutionary stages of the disks. Restricting this to the young objects of intermediate mass, we confirm that most group I disks are in agreement with being transitional (i.e., they have gaps). We find that several group II objects have mid-infrared sizes and colors that overlap with sources classified as group I, transition disks. This suggests that these sources have gaps, which has been demonstrated for a subset of them. This may point to an intermediate population between gapless and transition disks. Conclusions: Flat disks with gaps are most likely descendants of flat disks without gaps. Potentially related to the formation of massive bodies, gaps may therefore even develop in disks in a far stage of grain growth and settling. The evolutionary implications of this new population could be twofold. Either gapped flat disks form a separate population of evolved disks or some of them may evolve further into flaring disks with large gaps. The latter transformation may be governed by the interaction with a massive planet, carving a large gap and dynamically exciting the grain population in the disk. Appendices A and B are available in electronic form at http://www.aanda.org

  8. Characterization of the Temperature Capabilities of Advanced Disk Alloy ME3

    NASA Technical Reports Server (NTRS)

    Gabb, Timothy P.; Telesman, Jack; Kantzos, Peter T.; OConnor, Kenneth

    2002-01-01

    The successful development of an advanced powder metallurgy disk alloy, ME3, was initiated in the NASA High Speed Research/Enabling Propulsion Materials (HSR/EPM) Compressor/Turbine Disk program in cooperation with General Electric Engine Company and Pratt & Whitney Aircraft Engines. This alloy was designed using statistical screening and optimization of composition and processing variables to have extended durability at 1200 F in large disks. Disks of this alloy were produced at the conclusion of the program using a realistic scaled-up disk shape and processing to enable demonstration of these properties. The objective of the Ultra-Efficient Engine Technologies disk program was to assess the mechanical properties of these ME3 disks as functions of temperature in order to estimate the maximum temperature capabilities of this advanced alloy. These disks were sectioned, machined into specimens, and extensively tested. Additional sub-scale disks and blanks were processed and selectively tested to explore the effects of several processing variations on mechanical properties. Results indicate the baseline ME3 alloy and process can produce 1300 to 1350 F temperature capabilities, dependent on detailed disk and engine design property requirements.

  9. Optical Tip Clearance Measurements as a Tool for Rotating Disk Characterization

    PubMed Central

    García, Iker; Zubia, Joseba; Beloki, Josu; Arrue, Jon; Durana, Gaizka; Aldabaldetreku, Gotzon

    2017-01-01

    An experimental investigation on the vibrational behavior of a rotating disk by means of three optical fiber sensors is presented. The disk, which is a scale model of the real disk of an aircraft engine, was assembled in a wind tunnel in order to simulate real operation conditions. The pressure difference between the upstream and downstream sides of the disk causes an airflow that might force the disk to vibrate. To characterize this vibration, a set of parameters was determined by measuring the tip clearance of the disk: the amplitude, the frequency and the number of nodal diameters in the disk. All this information allowed the design of an upgraded prototype of the disk, whose performance was also characterized by the same method. An optical system was employed for the measurements, in combination with a strain gauge mounted on the disk surface, which served to confirm the results obtained. The data of the strain gauge coincided closely with those provided by the optical fiber sensors, thus demonstrating the suitability of this innovative technique to evaluate the vibrational behavior of rotating disks. PMID:28098845

  10. Accretion Disks in Supersoft X-ray Sources

    NASA Technical Reports Server (NTRS)

    Popham, Robert; DiStefano, Rosanne

    1996-01-01

    We examine the role of the accretion disk in the steady-burning white dwarf model for supersoft sources. The accretion luminosity of the disk is quite small compared to the nuclear burning luminosity of the central source. Thus, in contrast to standard accretion disks, the main role of the disk is to reprocess the radiation from the white dwarf. We calculate models of accretion disks around luminous white dwarfs and compare the resulting disk fluxes to optical and UV observations of the LMC supersoft sources CAL 83, CAL 87, and RX J0513.9-6951. We find that if the white dwarf luminosity is near the upper end of the steady-burning region, and the flaring of the disk is included, then reprocessing by the disk can account for the UV fluxes and a substantial fraction of the optical fluxes of these systems. Reprocessing by the companion star can provide additional optical flux, and here too the disk plays an important role: since the disk is fairly thick, it shadows a significant fraction of the companion's surface.

  11. High power disk lasers: advances and applications

    NASA Astrophysics Data System (ADS)

    Havrilla, David; Holzer, Marco

    2011-02-01

    Though the genesis of the disk laser concept dates to the early 90's, the disk laser continues to demonstrate the flexibility and the certain future of a breakthrough technology. On-going increases in power per disk, and improvements in beam quality and efficiency continue to validate the genius of the disk laser concept. As of today, the disk principle has not reached any fundamental limits regarding output power per disk or beam quality, and offers numerous advantages over other high power resonator concepts, especially over monolithic architectures. With well over 1000 high power disk lasers installations, the disk laser has proven to be a robust and reliable industrial tool. With advancements in running cost, investment cost and footprint, manufacturers continue to implement disk laser technology with more vigor than ever. This paper will explain important details of the TruDisk laser series and process relevant features of the system, like pump diode arrangement, resonator design and integrated beam guidance. In addition, advances in applications in the thick sheet area and very cost efficient high productivity applications like remote welding, remote cutting and cutting of thin sheets will be discussed.

  12. Comparison of disk diffusion and agar dilution methods for gentamicin susceptibility testing of Neisseria gonorrhoeae.

    PubMed

    Gianecini, Ricardo; Oviedo, Claudia; Irazu, Lucia; Rodríguez, Marcelo; Galarza, Patricia

    2018-03-29

    Gentamicin is a promising antibiotic for the treatment of multidrug-resistant gonorrhea. The aim of this study was to analyze the suitability and reliably of disk diffusion to monitor the susceptibility to gentamicin. We studied 237 Neisseria gonorrhoeae isolates obtained in 2013 and 2015. Reference MICs were correlated with inhibition zone diameters (in millimeters) of gentamicin 10 µg disks manufactured by BBL and Oxoid. The Pearson correlation between disk diffusion and agar dilution was r = -.68 (P < 0.001) for BBL disk and r = -.71 (P < 0.001) for Oxoid disk. No very major or major discrepancies were detected. However, a high percentage of minor discrepancies was observed (44.7%, BBL disk) and (21.9%, Oxoid disk). By adjusting the susceptible breakpoint to S ≥ 17 mm, the minor discrepancies rate was reduced to 19.4% (BBL disk) and 10.1% (Oxoid disk). The disk diffusion may be a screening method in clinical laboratories to detect the gentamicin susceptibility of N. gonorrhoeae. Copyright © 2018 Elsevier Inc. All rights reserved.

  13. Foundations of Black Hole Accretion Disk Theory.

    PubMed

    Abramowicz, Marek A; Fragile, P Chris

    2013-01-01

    This review covers the main aspects of black hole accretion disk theory. We begin with the view that one of the main goals of the theory is to better understand the nature of black holes themselves. In this light we discuss how accretion disks might reveal some of the unique signatures of strong gravity: the event horizon, the innermost stable circular orbit, and the ergosphere. We then review, from a first-principles perspective, the physical processes at play in accretion disks. This leads us to the four primary accretion disk models that we review: Polish doughnuts (thick disks), Shakura-Sunyaev (thin) disks, slim disks, and advection-dominated accretion flows (ADAFs). After presenting the models we discuss issues of stability, oscillations, and jets. Following our review of the analytic work, we take a parallel approach in reviewing numerical studies of black hole accretion disks. We finish with a few select applications that highlight particular astrophysical applications: measurements of black hole mass and spin, black hole vs. neutron star accretion disks, black hole accretion disk spectral states, and quasi-periodic oscillations (QPOs).

  14. Evolution of protoplanetary disks from their taxonomy in scattered light: Group I vs. Group II

    NASA Astrophysics Data System (ADS)

    Garufi, A.; Meeus, G.; Benisty, M.; Quanz, S. P.; Banzatti, A.; Kama, M.; Canovas, H.; Eiroa, C.; Schmid, H. M.; Stolker, T.; Pohl, A.; Rigliaco, E.; Ménard, F.; Meyer, M. R.; van Boekel, R.; Dominik, C.

    2017-07-01

    Context. High-resolution imaging reveals a large morphological variety of protoplanetary disks. To date, no constraints on their global evolution have been found from this census. An evolutionary classification of disks was proposed based on their IR spectral energy distribution, with the Group I sources showing a prominent cold component ascribed to an earlier stage of evolution than Group II. Aims: Disk evolution can be constrained from the comparison of disks with different properties. A first attempt at disk taxonomy is now possible thanks to the increasing number of high-resolution images of Herbig Ae/Be stars becoming available. Methods: Near-IR images of six Group II disks in scattered light were obtained with VLT/NACO in polarimetric differential imaging, which is the most efficient technique for imaging the light scattered by the disk material close to the stars. We compare the stellar/disk properties of this sample with those of well-studied Group I sources available from the literature. Results: Three Group II disks are detected. The brightness distribution in the disk of HD 163296 indicates the presence of a persistent ring-like structure with a possible connection with the CO snowline. A rather compact (<100 AU) disk is detected around HD 142666 and AK Sco. A taxonomic analysis of 17 Herbig Ae/Be sources reveals that the difference between Group I and Group II is due to the presence or absence of a large disk cavity (≳5 AU). There is no evidence supporting the evolution from Group I to Group II. Conclusions: Group II disks are not evolved versions of the Group I disks. Within the Group II disks, very different geometries exist (both self-shadowed and compact). HD 163296 could be the primordial version of a typical Group I disk. Other Group II disks, like AK Sco and HD 142666, could be smaller counterparts of Group I unable to open cavities as large as those of Group I. Based on observations collected at the European Organisation for Astronomical Research in the Southern Hemisphere, Chile, under program number 095.C-0658(A).

  15. Childhood to adolescence: dust and gas clearing in protoplanetary disks

    NASA Astrophysics Data System (ADS)

    Brown, Joanna Margaret

    Disks are ubiquitous around young stars. Over time, disks dissipate, revealing planets that formed hidden by their natal dust. Since direct detection of young planets at small orbital radii is currently impossible, other tracers of planet formation must be found. One sign of disk evolution, potentially linked to planet formation, is the opening of a gap or inner hole in the disk. In this thesis, I have identified and characterized several cold disks with large inner gaps but retaining massive primordial outer disks. While cold disks are not common, with ~5% of disks showing signs of inner gaps, they provide proof that at least some disks evolve from the inside-out. These large gaps are equivalent to dust clearing from inside the Earth's orbit to Neptune's orbit or even the inner Kuiper belt. Unlike more evolved systems like our own, the central star is often still accreting and a large outer disk remains. I identified four cold disks in Spitzer 5-40 μm spectra and modeled these disks using a 2-D radiative transfer code to determine the gap properties. Outer gap radii of 20-45 AU were derived. However, spectrophotometric identification is indirect and model-dependent. To validate this interpretation, I observed three disks with a submillimeter interferometer and obtained the first direct images of the central holes. The images agree well with the gap sizes derived from the spectrophotometry. One system, LkH&alpha 330, has a very steep outer gap edge which seems more consistent with gravitational perturbation rather than gradual processes, such as grain growth and settling. Roughly 70% of cold disks show CO v=1&rarr 0 gas emission from the inner 1 AU and therefore are unlikely to have evolved due to photoevaporation. The derived rotation temperatures are significantly lower for the cold disks than disks without gaps. Unresolved (sub)millimeter photometry shows that cold disks have steeper colors, indicating that they are optically thin at these wavelengths, unlike their classical T Tauri star counterparts. The gaps are cleared of most ~100 μm sized grains as well as the ~10 μm sized grains visible in the mid-infrared as silicate emission features.

  16. Tracking the Disk Wind Behavior of MAXI J1305-704

    NASA Astrophysics Data System (ADS)

    Sinclair, Kimberly Poppy; Miller, Jon M.

    2017-01-01

    There is still much to be understood about black hole accretion disks and their relationship to black hole disk winds. In an attempt to better understand these relationships, we have analyzed the x-ray transient black hole binary MAXI J1305-704 during its outburst in 2012 in order to draw conclusions about the parameters of its disk. The source showed strong absorption signs, as detected by Chandra, on April 21, 2012. From this date on, we analyzed SWIFT observations of the source, using XSPEC from HEASOFT, in order to find strong signals of absorption. By modeling 67 successive observations over the period of 74 days, we were able to closely track the evolution of various disk properties, from inner disk temperature, to power law index, to column density. We could also analyze various parameter relationships in order to determine if there is a statistically significant correlation between any of the properties of a disk. We found that there are strong linear relationships between disk temperature & ionization, photon index & disk temperature, and photon index & ionization. These relationships seem to imply that the corona, in addition to the disk, may be driving the wind properties. Additionally, the counterintuitive relationship between disk temperature and ionization, where disk temperature increases as ionization decreases, seems to imply that there are mechanisms at play in the disk system that are not yet fully understood.

  17. Protostellar Disk Instabilities and the Formation of Substellar Companions

    NASA Astrophysics Data System (ADS)

    Pickett, Brian K.; Durisen, Richard H.; Cassen, Patrick; Mejia, Annie C.

    2000-09-01

    Recent numerical simulations of self-gravitating protostellar disks have suggested that gravitational instabilities can lead to the production of substellar companions. In these simulations, the disk is typically assumed to be locally isothermal; i.e., the initial, axisymmetric temperature in the disk remains everywhere unchanged. Such an idealized condition implies extremely efficient cooling for outwardly moving parcels of gas. While we have seen disk disruption in our own locally isothermal simulations of a small, massive protostellar disk, no long-lived companions formed as a result of the instabilities. Instead, thermal and tidal effects and the complex interactions of the disk material prevented permanent condensations from forming, despite the vigorous growth of spiral instabilities. In order to compare our results more directly with those of other authors, we here present three-dimensional evolutions of an older, larger, but less massive protostellar disk. We show that potentially long-lived condensations form only for the extreme of local isothermality, and then only when severe restrictions are placed on the natural tendency of the protostellar disk to expand in response to gravitational instabilities. A more realistic adiabatic evolution leads to vertical and radial expansion of the disk but no clump formation. We conclude that isothermal disk calculations cannot demonstrate companion formation by disk fragmentation but only suggest it at best. It will be necessary in future numerical work on this problem to treat the disk thermodynamics more realistically.

  18. The DiskMass Survey. II. Error Budget

    NASA Astrophysics Data System (ADS)

    Bershady, Matthew A.; Verheijen, Marc A. W.; Westfall, Kyle B.; Andersen, David R.; Swaters, Rob A.; Martinsson, Thomas

    2010-06-01

    We present a performance analysis of the DiskMass Survey. The survey uses collisionless tracers in the form of disk stars to measure the surface density of spiral disks, to provide an absolute calibration of the stellar mass-to-light ratio (Υ_{*}), and to yield robust estimates of the dark-matter halo density profile in the inner regions of galaxies. We find that a disk inclination range of 25°-35° is optimal for our measurements, consistent with our survey design to select nearly face-on galaxies. Uncertainties in disk scale heights are significant, but can be estimated from radial scale lengths to 25% now, and more precisely in the future. We detail the spectroscopic analysis used to derive line-of-sight velocity dispersions, precise at low surface-brightness, and accurate in the presence of composite stellar populations. Our methods take full advantage of large-grasp integral-field spectroscopy and an extensive library of observed stars. We show that the baryon-to-total mass fraction ({F}_bar) is not a well-defined observational quantity because it is coupled to the halo mass model. This remains true even when the disk mass is known and spatially extended rotation curves are available. In contrast, the fraction of the rotation speed supplied by the disk at 2.2 scale lengths (disk maximality) is a robust observational indicator of the baryonic disk contribution to the potential. We construct the error budget for the key quantities: dynamical disk mass surface density (Σdyn), disk stellar mass-to-light ratio (Υ^disk_{*}), and disk maximality ({F}_{*,max}^disk≡ V^disk_{*,max}/ V_c). Random and systematic errors in these quantities for individual galaxies will be ~25%, while survey precision for sample quartiles are reduced to 10%, largely devoid of systematic errors outside of distance uncertainties.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Currie, Thayne; Sicilia-Aguilar, Aurora

    We present Spitzer 3.6-24 {mu}m photometry and spectroscopy for stars in the 1-3 Myr old Coronet Cluster, expanding upon the survey of Sicilia-Aguilar et al. Using sophisticated radiative transfer models, we analyze these new data and those from Sicilia-Aguilar et al. to identify disks with evidence for substantial dust evolution consistent with disk clearing: transitional disks. We then analyze data in Taurus and others young clusters-IC 348, NGC 2362, and {eta} Cha-to constrain the transitional disk frequency as a function of time. Our analysis confirms previous results finding evidence for two types of transitional disks-those with inner holes and thosemore » that are homologously depleted. The percentage of disks in the transitional phase increases from {approx}15%-20% at 1-2 Myr to {>=}50% at 5-8 Myr; the mean transitional disk lifetime is closer to {approx}1 Myr than 0.1-0.5 Myr, consistent with previous studies by Currie et al. and Sicilia-Aguilar et al. In the Coronet Cluster and IC 348, transitional disks are more numerous for very low mass M3-M6 stars than for more massive K5-M2 stars, while Taurus lacks a strong spectral-type-dependent frequency. Assuming standard values for the gas-to-dust ratio and other disk properties, the lower limit for the masses of optically thick primordial disks is M{sub disk} {approx} 0.001-0.003 M{sub *}. We find that single color-color diagrams do not by themselves uniquely identify transitional disks or primordial disks. Full spectral energy distribution modeling is required to accurately assess disk evolution for individual sources and inform statistical estimates of the transitional disk population in large samples using mid-IR colors.« less

  20. The Long-Lived Disks in the η Chamaeleontis Cluster

    NASA Astrophysics Data System (ADS)

    Sicilia-Aguilar, Aurora; Bouwman, Jeroen; Juhász, Attila; Henning, Thomas; Roccatagliata, Veronica; Lawson, Warrick A.; Acke, Bram; Feigelson, Eric D.; Tielens, A. G. G. M.; Decin, Leen; Meeus, Gwendolyn

    2009-08-01

    We present Infrared Spectrograph spectra and revised Multiband Imaging Photometer photometry for the 18 members of the η Chamaeleontis cluster. Aged 8 Myr, the η Cha cluster is one of the few nearby regions within the 5-10 Myr age range, during which the disk fraction decreases dramatically and giant planet formation must come to an end. For the 15 low-mass members, we measure a disk fraction ~50%, high for their 8 Myr age, and four of the eight disks lack near-IR excesses, consistent with the empirical definition of "transition" disks. Most of the disks are comparable to geometrically flat disks. The comparison with regions of different ages suggests that at least some of the "transition" disks may represent the normal type of disk around low-mass stars. Therefore, their flattened structure and inner holes may be related to other factors (initial masses of the disk and the star, environment, binarity), rather than to pure time evolution. We analyze the silicate dust in the disk atmosphere, finding moderate crystalline fractions (~10%-30%) and typical grain sizes ~1-3 μm, without any characteristic trend in the composition. These results are common to other regions of different ages, suggesting that the initial grain processing occurs very early in the disk lifetime (<1 Myr). Large grain sizes in the disk atmosphere cannot be used as a proxy for age, but are likely related to higher disk turbulence. The dust mineralogy varies between the 8-12 μm and the 20-30 μm features, suggesting high temperature dust processing and little radial mixing. Finally, the analysis of IR and optical data on the B9 star η Cha reveals that it is probably surrounded by a young debris disk with a large inner hole, instead of being a classical Be star.

  1. Multilayer Disk Reduced Interlayer Crosstalk with Wide Disk-Fabrication Margin

    NASA Astrophysics Data System (ADS)

    Hirotsune, Akemi; Miyauchi, Yasushi; Endo, Nobumasa; Onuma, Tsuyoshi; Anzai, Yumiko; Kurokawa, Takahiro; Ushiyama, Junko; Shintani, Toshimichi; Sugiyama, Toshinori; Miyamoto, Harukazu

    2008-07-01

    To reduce interlayer crosstalk caused by the ghost spot which appears in a multilayer optical disk with more than three information layers, a multilayer disk structure which reduces interlayer crosstalk with a wide disk-fabrication margin was proposed in which the backward reflectivity of the information layers is sufficiently low. It was confirmed that the interlayer crosstalk caused by the ghost spot was reduced to less than the crosstalk from the adjacent layer by controlling backward reflectivity. The wide disk-fabrication margin of the proposed disk structure was indicated by experimentally confirming that the tolerance of the maximum deviation of the spacer-layer thickness is four times larger than that in the previous multilayer disk.

  2. Reliability model of disk arrays RAID-5 with data striping

    NASA Astrophysics Data System (ADS)

    Rahman, P. A.; D'K Novikova Freyre Shavier, G.

    2018-03-01

    Within the scope of the this scientific paper, the simplified reliability model of disk arrays RAID-5 (redundant arrays of inexpensive disks) and an advanced reliability model offered by the authors taking into the consideration nonzero time of the faulty disk replacement and different failure rates of disks in normal state of the disk array and in degraded and rebuild states are discussed. The formula obtained by the authors for calculation of the mean time to data loss (MTTDL) of the RAID-5 disk arrays on basis of the advanced model is also presented. Finally, the technique of estimation of the initial reliability parameters, which are used in the reliability model, and the calculation examples of the mean time to data loss of the RAID-5 disk arrays for the different number of disks are also given.

  3. Vertical Structure of NGC 4631

    NASA Astrophysics Data System (ADS)

    Ann, Hong Bae; Seo, Mira Seo; Baek, Su-Ja

    2011-02-01

    We present a deep CCD imaging in B and V bands which allows us to analyze the vertical structure of NGC 4631. We derive the scale heights of the thin and thick disks at a variety of positions along the major axis of the disk. The scale heights of the thin disk are nearly constant while those of the thick disk tend to increase with increasing galactocentric distance. The mean scale heights of the thin disk derived from B and V images are similar to each other (˜450 pc). Instead, those of the thick disk show a strong east-west asymmetry which is caused by the diffuse stellar emission that is most prominent in the north west regions above the disk plane. The ratio of scale heights (z_{thick}/z_{thin}) is about 2.5 in the east side of the disk. However, this ratio is greater than 4 for the thick disk above the disk plane in the west side of the galaxy.

  4. Stagger angle dependence of inertial and elastic coupling in bladed disks

    NASA Technical Reports Server (NTRS)

    Crawley, E. F.; Mokadam, D. R.

    1984-01-01

    Conditions which necessitate the inclusion of disk and shaft flexibility in the analysis of blade response in rotating blade-disk-shaft systems are derived in terms of nondimensional parameters. A simple semianalytical Rayleigh-Ritz model is derived in which the disk possesses all six rigid body degrees of freedom, which are elastically constrained by the shaft. Inertial coupling by the rigid body motion of the disk on a flexible shaft and out-of-plane elastic coupling due to disk flexure are included. Frequency ratios and mass ratios, which depend on the stagger angle, are determined for three typical rotors: a first stage high-pressure core compressor, a high bypass ratio fan, and an advanced turboprop. The stagger angle controls the degree of coupling in the blade-disk system. In the blade-disk-shaft system, the stagger angle determines whether blade-disk motion couples principally to the out-of-plane or in-plane motion of the disk on the shaft. The Ritz analysis shows excellent agreement with experimental results.

  5. Burst Testing and Analysis of Superalloy Disks With a Dual Grain Microstructure

    NASA Technical Reports Server (NTRS)

    Gayda, John; Kantzos, Pete

    2006-01-01

    Elastic-plastic finite element analyses of room temperature burst tests on four superalloy disks were conducted and reported in this paper. Two alloys, Rene 104 (General Electric Aircraft Engines) and Alloy 10 (Honeywell Engines & Systems), were studied. For both alloys an advanced dual microstructure disk, fine grain bore and coarse grain rim, were analyzed and compared with conventional disks with uniform microstructures, coarse grain for Rene 104 and fine grain for Alloy 10. The analysis and experimental data were in good agreement up to burst. At burst, the analysis underestimated the speed and growth of the Rene 104 disks, but overestimated the speed and growth of the Alloy 10 disks. Fractography revealed that the Alloy 10 disks displayed significant surface microcracking and coalescence in comparison to Rene 104 disks. This phenomenon may help explain the differences between the Alloy 10 disks and the Rene 104 disks, as well as the observed deviations between analytical and experimental data at burst.

  6. Developmental changes in the adhesive disk during Giardia differentiation.

    PubMed

    Palm, Daniel; Weiland, Malin; McArthur, Andrew G; Winiecka-Krusnell, Jadwiga; Cipriano, Michael J; Birkeland, Shanda R; Pacocha, Sarah E; Davids, Barbara; Gillin, Frances; Linder, Ewert; Svärd, Staffan

    2005-06-01

    Giardia lamblia is a protozoan parasite infecting the upper mammalian small intestine. Infection relies upon the ability of the parasite to attach to the intestine via a unique cytoskeletal organelle, the ventral disk. We determined the composition and structure of the disk throughout the life cycle of the parasite and identified a new disk protein, SALP-1. SALP-1 is an immunodominant protein related to striated fiber-assemblin (SFA). The disk is disassembled during encystation and stored as four fragments in the immobile cyst. Serial Analysis of Gene Expression (SAGE) showed that the mRNA levels of the disk proteins decreased in encystation but two-dimensional protein gels showed that the protein levels were more constant. The parasite emerges without a functional disk but the four disk fragments are quickly reassembled into two new disks on the dividing, early excysting form. Thus, disk proteins are stored within the cyst, ready to be used in the rapid steps of excystation.

  7. Inner Structure in the TW Hya Circumstellar Disk

    NASA Astrophysics Data System (ADS)

    Akeson, Rachel L.; Millan-Gabet, R.; Ciardi, D.; Boden, A.; Sargent, A.; Monnier, J.; McAlister, H.; ten Brummelaar, T.; Sturmann, J.; Sturmann, L.; Turner, N.

    2011-05-01

    TW Hya is a nearby (50 pc) young stellar object with an estimated age of 10 Myr and signs of active accretion. Previous modeling of the circumstellar disk has shown that the inner disk contains optically thin material, placing this object in the class of "transition disks". We present new near-infrared interferometric observations of the disk material and use these data, as well as previously published, spatially resolved data at 10 microns and 7 mm, to constrain disk models based on a standard flared disk structure. Our model demonstrates that the constraints imposed by the spatially resolved data can be met with a physically plausible disk but this requires a disk containing not only an inner gap in the optically thick disk as previously suggested, but also some optically thick material within this gap. Our model is consistent with the suggestion by previous authors of a planet with an orbital radius of a few AU. This work was conducted at the NASA Exoplanet Science Institute, California Institute of Technology.

  8. Course 6: Star Formation

    NASA Astrophysics Data System (ADS)

    Natta, A.

    Contents 1 Introduction 2 Collapse of molecular cores 2.1 Giant molecular clouds and cores 2.2 Conditions for collapse 2.3 Free-fall collapse 2.4 Collapse of an isothermal sphere of gas 2.5 Collapse of a slowly rotating core 3 Observable properties of protostars 3.1 Evidence of infall from molecular line profiles 3.2 SEDs of protostars 3.3 The line spectrumof a protostar 4 Protostellar and pre-main-sequence evolution 4.1 The protostellar phase 4.2 Pre-main-sequence evolution 4.3 The birthline 5 Circumstellar disks 5.1 Accretion disks 5.2 Properties of steady accretion disks 5.3 Reprocessing disks 5.4 Disk-star interaction 6 SEDs of disks 6.1 Power-law disks 6.2 Long-wavelength flux and disk mass 6.3 Comparison with TTS observations: Heating mechanism 7 Disk properties from observations 7.1 Mass accretion rate 7.2 Inner radius 7.3 Masses 7.4 Sizes 8 Disk lifetimes 8.1 Ground-based near and mid-infrared surveys 8.2 Mid-infrared ISOCAMsurveys 8.3 ISOPHOT 60 microm survey 8.4 Surveys at millimeter wavelengths 9 Disk evolution 9.1 Can we observe the early planet formation phase? 9.2 Evidence for grain growth 9.3 Evidence of planetesimals 9.4 Where is the diskmass? 10 Secondary or debris disks 11 Summary

  9. Evidence for Different Disk Mass Distributions between Early- and Late-type Be Stars in the BeSOS Survey

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arcos, C.; Kanaan, S.; Curé, M.

    The circumstellar disk density distributions for a sample of 63 Be southern stars from the BeSOS survey were found by modeling their H α emission line profiles. These disk densities were used to compute disk masses and disk angular momenta for the sample. Average values for the disk mass are 3.4 × 10{sup −9} and 9.5 × 10{sup −10} M {sub ⋆} for early (B0–B3) and late (B4–B9) spectral types, respectively. We also find that the range of disk angular momentum relative to the star is (150–200) J {sub ⋆}/ M {sub ⋆} and (100–150) J {sub ⋆}/ M {submore » ⋆}, again for early- and late-type Be stars, respectively. The distributions of the disk mass and disk angular momentum are different between early- and late-type Be stars at a 1% level of significance. Finally, we construct the disk mass distribution for the BeSOS sample as a function of spectral type and compare it to the predictions of stellar evolutionary models with rapid rotation. The observed disk masses are typically larger than the theoretical predictions, although the observed spread in disk masses is typically large.« less

  10. The SEEDS of Planet Formation: Observations of Transitional Disks

    NASA Technical Reports Server (NTRS)

    Grady, Carol A.

    2011-01-01

    As part of its 5-year study, the Strategic Exploration of Exoplanets and Disk Systems (SEEDS) has already observed a number of YSOs with circumstellar disks, including 13 0.5-8 Myr old A-M stars with indications that they host wide gaps or central cavities in their circumstellar disks in millimeter or far-IR observations, or from deficits in warm dust thermal emission. For 8 of the disks, the 0.15" inner working angle of HiCIAO+A0188 samples material in the millimeter or mid-IR identified cavity. In one case we report detection of a previously unrecognized wide gap. For the remaining 4 stars, the SEEDS data sample the outer disk: in 3 cases, we present the first NIR imagery of the disks. The data for the youngest sample members 1-2 Myr) closely resemble coeval primordial disks. After approximately 3 Myr, the transitional disks show a wealth of structure including spiral features, rings, divots, and in some cases, largely cleared gaps in the disks which are not seen in coeval primordial disks. Some of these structural features are predicted consequences of Jovian-mass planets having formed in the disk, while others are novel features. We discuss the implications for massive planet formation timescales and mechanisms.

  11. The SEEDS of Planet Formation: Observations of Transitional Disks

    NASA Technical Reports Server (NTRS)

    Grady, Carol

    2011-01-01

    As part of its 5-year study, the Strategic Exploration of Exoplanets and Disk Systems (SEEDS) has already observed a number of YSOs with circumstellar disks, including 13 0.5- 8 Myr old A-M stars with indications that they host wide gaps or central cavities in their circumstellar disks in millimeter or far-IR observations, or from deficits in warm dust thermal emission. For 8 of the disks, the 0.15" inner working angle of HiCIAO+A0188 samples material in the millimeter or mid-IR identified cavity. In one case we reprt detection of a previously unrecognized wide gap. For the remaining 4 stars, the SEEDS data sample the outer disk: in 3 cases, we present the first NIR imagery of the disks. The data for the youngest sample members (less than 1-2 Myr) closely resemble coeval primordial disks. After approximately 3 Myr, the transitional disks show a wealth of structure including spiral features, rings, divots, and in some cases, largely cleared gaps in the disks which are not seen in coeval primordial disks. Some of these structural features are predicted consequences of lovianmass planets having formed in the disk, while others are novel features. We discuss the implications for massive planet formation timescales and mechanisms.

  12. The Formation and Evolution of Galactic Disks with APOGEE and the Gaia Survey

    NASA Astrophysics Data System (ADS)

    Li, Chengdong; Zhao, Gang; Zhai, Meng; Jia, Yunpeng

    2018-06-01

    We explore the structure and evolutionary history of Galactic disks with Apache Point Observatory Galactic Evolution Experiment data release 13 (DR13 hereafter) and Gaia Tycho-Gaia Astrometric Solution data. We use the [α/M] ratio to allocate stars into particular Galactic components to elucidate the chemical and dynamical properties of the thin and thick disks. The spatial motions of the sample stars are obtained in Galactic Cartesian and cylindrical coordinates. We analyze the abundance trends and metallicity and [α/M] gradients of the thick and thin disks. We confirm the existence of metal-weak thick-disk stars in Galactic disks. A kinematical method is used to select the thin- and thick-disk stars for comparison. We calculate the scale length and scale height of the kinematically and chemically selected thick and thin disks based on the axisymmetric Jeans equation. We conclude that the scale length of the thick disk is approximately equal to that of the thin disk via a kinematical approach. For the chemical selection, this disparity is about 1 kpc. Finally, we get the stellar orbital parameters and try to unveil the formation scenario of the thick disk. We conclude that the gas-rich merger and radial migration are more reasonable formation scenarios for the thick disk.

  13. Lubricant distribution and its effect on slider air bearing performance over bit patterned media disk of disk drives

    NASA Astrophysics Data System (ADS)

    Wu, Lin

    2011-04-01

    The distribution dynamics of a thin lubricant film on a bit-patterned media disk and its effect on the performance of the ultralow flying air bearing slider of disk drives are studied by direct numerical simulations. Our analysis shows that the physics governing lubricant distribution dynamics changes when deep enough sub-100-nm nanostructures are patterned on the disk surface. Air shearing under the slider that dominates lubricant flow on a flat disk may become negligible on a bit-patterned media disk. Surface tension and disjoining pressure become dominant factors instead. Our results show that disks with nanoscale patterns/roughness may no longer be treated as flat, and the air bearing load may strongly depend not only on the geometric detail of disk patterns but also on how lubricants are distributed on the patterns when slider-disk clearance is reduced to sub-10-nm. Air bearing load and consequently the slider's flying attitude are affected by disk pattern geometry, average lubricant thickness, and material properties of lubricant such as the surface tension coefficient and Hamaker constant. The significantly expanded parameter space, upon which ultralow flying slider's dynamics depends, has to be seriously considered in evaluating the head/disk interface tribology performance of next generation patterned media magnetic recording systems.

  14. Quasi-periodic Behavior of Mini-disks in Binary Black Holes Approaching Merger

    NASA Astrophysics Data System (ADS)

    Bowen, Dennis B.; Mewes, Vassilios; Campanelli, Manuela; Noble, Scott C.; Krolik, Julian H.; Zilhão, Miguel

    2018-01-01

    We present the first magnetohydrodynamic simulation in which a circumbinary disk around a relativistic binary black hole feeds mass to individual accretion disks (“mini-disks”) around each black hole. Mass flow through the accretion streams linking the circumbinary disk to the mini-disks is modulated quasi-periodically by the streams’ interaction with a nonlinear m = 1 density feature, or “lump,” at the inner edge of the circumbinary disk: the stream supplying each mini-disk comes into phase with the lump at a frequency 0.74 times the binary orbital frequency. Because the binary is relativistic, the tidal truncation radii of the mini-disks are not much larger than their innermost stable circular orbits; consequently, the mini-disks’ inflow times are shorter than the conventional estimate and are comparable to the stream modulation period. As a result, the mini-disks are always in inflow disequilibrium, with their masses and spiral density wave structures responding to the stream’s quasi-periodic modulation. The fluctuations in each mini-disk’s mass are so large that as much as 75% of the total mini-disk mass can be contained within a single mini-disk. Such quasi-periodic modulation of the mini-disk structure may introduce distinctive time-dependent features in the binary’s electromagnetic emission.

  15. Radial Surface Density Profiles of Gas and Dust in the Debris Disk Around 49 Ceti

    NASA Technical Reports Server (NTRS)

    Hughes, A. Meredith; Lieman-Sifry, Jesse; Flaherty, Kevin M.; Daley, Cail M.; Roberge, Aki; Kospal, Agnes; Moor, Attila; Kamp, Inga; Wilner, David J.; Andrews, Sean M.; hide

    2017-01-01

    We present approximately 0".4 resolution images of CO(3-2) and associated continuum emission from the gas-bearing debris disk around the nearby A star 49 Ceti, observed with the Atacama Large Millimeter/Submillimeter Array (ALMA). We analyze the ALMA visibilities in tandem with the broadband spectral energy distribution to measure the radial surface density profiles of dust and gas emission from the system. The dust surface density decreases with radius between approximately 100 and 310 au, with a marginally significant enhancement of surface density at a radius of approximately 110 au. The SED requires an inner disk of small grains in addition to the outer disk of larger grains resolved by ALMA. The gas disk exhibits a surface density profile that increases with radius, contrary to most previous spatially resolved observations of circumstellar gas disks. While approximately 80% of the CO flux is well described by an axisymmetric power-law disk in Keplerian rotation about the central star, residuals at approximately 20% of the peak flux exhibit a departure from axisymmetry suggestive of spiral arms or a warp in the gas disk. The radial extent of the gas disk (approx. 220 au) is smaller than that of the dust disk (approx. 300 au), consistent with recent observations of other gasbearing debris disks. While there are so far only three broad debris disks with well characterized radial dust profiles at millimeter wavelengths, 49 Ceti's disk shows a markedly different structure from two radially resolved gas-poor debris disks, implying that the physical processes generating and sculpting the gas and dust are fundamentally different.

  16. High-Contrast NIR Polarization Imaging of MWC480

    NASA Technical Reports Server (NTRS)

    McElwain, M. W.; Kusakabe, N.; Hashimoto, J.; Kudo, T.; Kandori, R.; Miyama, S.; Morino, J.-I.; Suto, H.; Suzuki, R.; Tamura, M.; hide

    2012-01-01

    One of the key predictions of modeling from the IR excess of Herbig Ae stars is that for protoplanetary disks, where significant grain growth and settling has occurred, the dust disk has flattened to the point that it can be partially or largely shadowed by the innermost material at or near the dust sublimation radius. When the self-shadowing has already started, the outer disk is expected to be detected in scattered light only in the exceptional cases that the scale height of the dust disk at the sublimation radius is smaller than usual. High-contrast imaging combined with the IR spectral energy distribution allow us to measure the degree of flattening of the disk, as well as to determine the properties of the outer disk. We present polarimetric differential imaging in H band obtained with Subaru/HiCIAO of one such system, MWC 480. The HiCIAO data were obtained at a historic minimum of the NIR excess. The disk is detected in scattered light from 0".2-1"0 (27.4-137 AU). Together with the marginal detection of the disk from 1998 February 24 by HST / NICMOS, our data constrain the opening half angle for the disk to lie between 1.3 <= Theta <=2.2 deg. When compared with similar measures in CO for the gas disk from the literature, the dust disk subtends only approx 30% of the gas disk scale height (H/R approx 0. 03). Such a dust disk is a factor of 5-7 flatter than transitional disks, which have structural signatures that giant planets have formed.

  17. Intervertebral disk width in dogs with and without clinical signs of disk associated cervical spondylomyelopathy

    PubMed Central

    2012-01-01

    Background Disk-associated cervical spondylomyelopathy (DA-CSM) is a multifactorial neurological disorder in which progressive caudal cervical spinal cord compression is mainly caused by one or more intervertebral disk protrusions. The Doberman pinscher breed seems predisposed for this condition. The underlying cause and pathophysiology of DA-CSM are currently unknown. Recently, wider intervertebral disks have been put forward as a risk factor for development of clinically relevant DA-CSM. However, little is known about other factors affecting intervertebral disk width. Therefore the aim of this study was to assess the association between intervertebral disk width, measured on magnetic resonance imaging (MRI), and clinical status, age, gender and intervertebral disk location in dogs with and without clinical signs of DA-CSM. Methods Doberman pinschers with clinical signs of DA-CSM (N=17),clinically normal Doberman pinschers (N=20), and clinically normal English Foxhounds (N=17), underwent MRI of the cervical vertebral column. On sagittal T2-weighted images, intervertebral disk width was measured from C2-C3 to C6-C7. Intra –and interobserver agreement were assessed on a subset of 20 of the 54 imaging studies. Results Intervertebral disk width was not significantly different between Doberman pinschers with clinical signs of DA-CSM, clinically normal Doberman pinschers or clinically normal English Foxhounds (p=0.43). Intervertebral disk width was positively associated with increasing age (p=0.029). Each monthly increase in age resulted in an increase of disk width by 0.0057mm. Intervertebral disk width was not significantly affected by gender (p=0.056), but was significantly influenced by intervertebral disk location (p <0.0001). The assessed measurements were associated with a good intra –and interobserver agreement. Conclusions The present study does not provide evidence that wider intervertebral disks are associated with clinical status in dogs with and without DA-CSM. Instead, it seems that cervical intervertebral disk width in dogs is positively associated with increase in age. PMID:22839697

  18. Sulphur monoxide exposes a potential molecular disk wind from the planet-hosting disk around HD 100546

    NASA Astrophysics Data System (ADS)

    Booth, Alice S.; Walsh, Catherine; Kama, Mihkel; Loomis, Ryan A.; Maud, Luke T.; Juhász, Attila

    2018-03-01

    Sulphur-bearing volatiles are observed to be significantly depleted in interstellar and circumstellar regions. This missing sulphur is postulated to be mostly locked up in refractory form. With ALMA we have detected sulphur monoxide (SO), a known shock tracer, in the HD 100546 protoplanetary disk. Two rotational transitions: J = 77-66 (301.286 GHz) and J = 78-67 (304.078 GHz) are detected in their respective integrated intensity maps. The stacking of these transitions results in a clear 5σ detection in the stacked line profile. The emission is compact but is spectrally resolved and the line profile has two components. One component peaks at the source velocity and the other is blue-shifted by 5 km s-1. The kinematics and spatial distribution of the SO emission are not consistent with that expected from a purely Keplerian disk. We detect additional blue-shifted emission that we attribute to a disk wind. The disk component was simulated using LIME and a physical disk structure. The disk emission is asymmetric and best fit by a wedge of emission in the north-east region of the disk coincident with a "hot-spot" observed in the CO J = 3-2 line. The favoured hypothesis is that a possible inner disk warp (seen in CO emission) directly exposes the north-east side of the disk to heating by the central star, creating locally the conditions to launch a disk wind. Chemical models of a disk wind will help to elucidate why the wind is particularly highlighted in SO emission and whether a refractory source of sulphur is needed. An alternative explanation is that the SO is tracing an accretion shock from a circumplanetary disk associated with the proposed protoplanet embedded in the disk at 50 au. We also report a non-detection of SO in the protoplanetary disk around HD 97048.

  19. Dynamics of binary-disk interaction. 1: Resonances and disk gap sizes

    NASA Technical Reports Server (NTRS)

    Artymowicz, Pawel; Lubow, Stephen H.

    1994-01-01

    We investigate the gravitational interaction of a generally eccentric binary star system with circumbinary and circumstellar gaseous disks. The disks are assumed to be coplanar with the binary, geometrically thin, and primarily governed by gas pressure and (turbulent) viscosity but not self-gravity. Both ordinary and eccentric Lindblad resonances are primarily responsible for truncating the disks in binaries with arbitrary eccentricity and nonextreme mass ratio. Starting from a smooth disk configuration, after the gravitational field of the binary truncates the disk on the dynamical timescale, a quasi-equilibrium is achieved, in which the resonant and viscous torques balance each other and any changes in the structure of the disk (e.g., due to global viscous evolution) occur slowly, preserving the average size of the gap. We analytically compute the approximate sizes of disks (or disk gaps) as a function of binary mass ratio and eccentricity in this quasi-equilibrium. Comparing the gap sizes with results of direct simulations using the smoothed particle hydrodynamics (SPH), we obtain a good agreement. As a by-product of the computations, we verify that standard SPH codes can adequately represent the dynamics of disks with moderate viscosity, Reynolds number R approximately 10(exp 3). For typical viscous disk parameters, and with a denoting the binary semimajor axis, the inner edge location of a circumbinary disk varies from 1.8a to 2.6a with binary eccentricity increasing from 0 to 0.25. For eccentricities 0 less than e less than 0.75, the minimum separation between a component star and the circumbinary disk inner edge is greater than a. Our calculations are relevant, among others, to protobinary stars and the recently discovered T Tau pre-main-sequence binaries. We briefly examine the case of a pre-main-sequence spectroscopic binary GW Ori and conclude that circumbinary disk truncation to the size required by one proposed spectroscopic model cannot be due to Linblad resonances, even if the disk is nonviscous.

  20. Spitzer observations of NGC 2264: the nature of the disk population

    NASA Astrophysics Data System (ADS)

    Teixeira, P. S.; Lada, C. J.; Marengo, M.; Lada, E. A.

    2012-04-01

    Aims: NGC 2264 is a young cluster with a rich circumstellar disk population which makes it an ideal target for studying the evolution of stellar clusters. Our goal is to study the star formation history of NGC 2264 and to analyse the primordial disk evolution of its members. Methods: The study presented is based on data obtained with the Infrared Array Camera (IRAC) and the Multiband Imaging Photometer for Spitzer (MIPS) on board the Spitzer Space Telescope, combined with deep near-infrared (NIR) ground-based FLAMINGOS imaging and previously published optical data. Results: We build NIR dust extinction maps of the molecular cloud associated with the cluster, and determine it to have a mass of 2.1 × 103 M⊙ above an AV of 7 mag. Using a differential Ks-band luminosity function (KLF) of the cluster, we estimate the size of the population of NGC 2264, within the area observed by FLAMINGOS, to be 1436 ± 242 members. The star formation efficiency is ≥ ~25%. We identify the disk population and divide it into 3 groups based on their spectral energy distribution slopes from 3.6 μm to 8 μm and on the 24 μm excess emission: (i) optically thick inner disks, (ii) anaemic inner disks, and (iii) disks with inner holes, or transition disks. We analyse the spatial distribution of these sources and find that sources with thick disks segregate into sub-clusterings, whereas sources with anaemic disks do not. Furthermore, sources with anaemic disks are found to be unembedded (i.e., with AV < 3 mag), whereas the clustered sources with thick disks are still embedded within the parental cloud. Conclusions: NGC 2264 has undergone more than one star-forming event, where the anaemic and extincted thick disk population appear to have formed in separate episodes: the sources with anaemic disks are more evolved and have had time to disperse and populate a halo of the cluster. We also find tentative evidence of triggered star-formation in the Fox Fur Nebula. In terms of disk evolution, our findings support the emerging disk evolution paradigm of two distinct evolutionary paths for primordial optically thick disks: a homologous one where the disk emission decreases uniformly at NIR and mid-infrared (MIR) wavelengths, and a radially differential one where the emission from the inner region of the disk decreases more rapidly than from the outer region (forming transition disks).

  1. From stars to dust: looking into a circumstellar disk through chondritic meteorites.

    PubMed

    Connolly, Harold C

    2005-01-07

    One of the most fundamental questions in planetary science is, How did the solar system form? In this special issue, astronomical observations and theories constraining circumstellar disks, their lifetimes, and the formation of planetary to subplanetary objects are reviewed. At present, it is difficult to observe what is happening within disks and to determine if another disk environment is comparable to the early solar system disk environment (called the protoplanetary disk). Fortunately, we have chondritic meteorites, which provide a record of the processes that operated and materials present within the protoplanetary disk.

  2. Generation of a dynamo magnetic field in a protoplanetary accretion disk

    NASA Technical Reports Server (NTRS)

    Stepinski, T.; Levy, E. H.

    1987-01-01

    A new computational technique is developed that allows realistic calculations of dynamo magnetic field generation in disk geometries corresponding to protoplanetary and protostellar accretion disks. The approach is of sufficient generality to allow, in the future, a wide class of accretion disk problems to be solved. Here, basic modes of a disk dynamo are calculated. Spatially localized oscillatory states are found to occur in Keplerain disks. A physical interpretation is given that argues that spatially localized fields of the type found in these calculations constitute the basic modes of a Keplerian disk dynamo.

  3. Disk flexibility effects on the rotordynamics of the SSME high pressure turbopumps

    NASA Technical Reports Server (NTRS)

    Flowers, George T.

    1990-01-01

    Rotordynamical analyses are typically performed using rigid disk models. Studies of rotor models in which the effects of disk flexibility were included indicate that it may be an important effect for many systems. This issue is addressed with respect to the Space Shuttle Main Engine high pressure turbopumps. Finite element analyses were performed for a simplified free-free flexible disk rotor models and the modes and frequencies compared to those of a rigid disk model. Equations were developed to account for disk flexibility in rotordynamical analysis. Simulation studies were conducted to assess the influence of disk flexibility on the HPOTP. Some recommendations are given as to the importance of disk flexibility and for how this project should proceed.

  4. A high-speed, large-capacity, 'jukebox' optical disk system

    NASA Technical Reports Server (NTRS)

    Ammon, G. J.; Calabria, J. A.; Thomas, D. T.

    1985-01-01

    Two optical disk 'jukebox' mass storage systems which provide access to any data in a store of 10 to the 13th bits (1250G bytes) within six seconds have been developed. The optical disk jukebox system is divided into two units, including a hardware/software controller and a disk drive. The controller provides flexibility and adaptability, through a ROM-based microcode-driven data processor and a ROM-based software-driven control processor. The cartridge storage module contains 125 optical disks housed in protective cartridges. Attention is given to a conceptual view of the disk drive unit, the NASA optical disk system, the NASA database management system configuration, the NASA optical disk system interface, and an open systems interconnect reference model.

  5. The study of shielding influence of the disks placed coaxially on rotational oscillations of the cylinder in the airflow

    NASA Astrophysics Data System (ADS)

    Kiselev, Nikolay; Ryabinin, Anatoly

    2018-05-01

    The experimental study of shielding effects of the disk placed upstream of a cylinder is described. The disk reduces the drag of the cylinder and changes its dynamic characteristics. Two cylinders with different aspect ratio are studied. Without a disk, an elastically fixed cylinder in the airflow performs rotational oscillations with constant amplitude. The influence of the aerodynamic force on the damping of the oscillations depends on the disk diameter, the gap between disk and cylinder and aspect ratio of the cylinder. The disk reduces the amplitude of steady rotational oscillations or causes the damped rotational oscillations. A mathematical model is proposed for describing the rotational steady and damped oscillations of a cylinder with the disk.

  6. The performance of disk arrays in shared-memory database machines

    NASA Technical Reports Server (NTRS)

    Katz, Randy H.; Hong, Wei

    1993-01-01

    In this paper, we examine how disk arrays and shared memory multiprocessors lead to an effective method for constructing database machines for general-purpose complex query processing. We show that disk arrays can lead to cost-effective storage systems if they are configured from suitably small formfactor disk drives. We introduce the storage system metric data temperature as a way to evaluate how well a disk configuration can sustain its workload, and we show that disk arrays can sustain the same data temperature as a more expensive mirrored-disk configuration. We use the metric to evaluate the performance of disk arrays in XPRS, an operational shared-memory multiprocessor database system being developed at the University of California, Berkeley.

  7. The Effects of Stellar Irradiation on Gravitational Instabilities in Protoplanetary Disks

    NASA Astrophysics Data System (ADS)

    Cai, Kai; Durisen, R. H.; Zhu, Z.

    2009-01-01

    It has been suggested that giant protoplanets form in protoplanetary disks when the disks undergo rapid cooling and fragment into dense Jupiter-mass clumps under the disks' own self-gravity. Previous three-dimensional simulations of protoplanetary disks investigated the effects of envelope irradiation on the development of gravitational instabilities (GIs) in such disks. We found that the irradiation tends to suppress the nonlinear amplitude of GIs and no dense clumps form, arguing against direct formation of giant planets by disk instability in irradiated disks (Cai et al. 2008). In this work, by utilizing an improved radiative cooling scheme in the optically thin regions, we present some preliminary results from simulations with a variable irradiation temperature that mimics the effects of stellar irradiation. Comparisons with results from an envelope-irradiated disk suggest that stellar irradiation may be more effective in suppressing GIs than envelope irradiation.

  8. Identifying Likely Disk-hosting M dwarfs with Disk Detective

    NASA Astrophysics Data System (ADS)

    Silverberg, Steven; Wisniewski, John; Kuchner, Marc J.; Disk Detective Collaboration

    2018-01-01

    M dwarfs are critical targets for exoplanet searches. Debris disks often provide key information as to the formation and evolution of planetary systems around higher-mass stars, alongside the planet themselves. However, less than 300 M dwarf debris disks are known, despite M dwarfs making up 70% of the local neighborhood. The Disk Detective citizen science project has identified over 6000 new potential disk host stars from the AllWISE catalog over the past three years. Here, we present preliminary results of our search for new disk-hosting M dwarfs in the survey. Based on near-infrared color cuts and fitting stellar models to photometry, we have identified over 500 potential new M dwarf disk hosts, nearly doubling the known number of such systems. In this talk, we present our methodology, and outline our ongoing work to confirm systems as M dwarf disks.

  9. Evaluation of the vibrational behaviour of a rotating disk by optical tip-clearance measurements

    NASA Astrophysics Data System (ADS)

    García, Iker; Zubia, Joseba; Beloki, Josu; Arrue, Jon; Villatoro, Joel

    2015-05-01

    The results of an experimental investigation on the vibrational behaviour of a rotating disk are reported. This disk is a prototype that simulates a component of an aircraft engine. The air flow through the gap between the edge of the disk and the casing, produced because of the pressure difference between the upstream and downstream parts of the disk, might force the disk to flutter under certain circumstances. This situation is simulated in a wind tunnel. The main goal of the tests is to evaluate the vibrational behaviour of a rotating disk, obtaining the correspondence between the vibration frequencies of the disk and the pressure differences when the disk is rotating at diverse speeds. An innovative noncontact technique is utilised, which employs three optical sensors that are angularly equidistributed on the casing of the wind tunnel. In order to verify the results given by the optical sensors, a strain gauge was mounted on the surface of the rotating disk. The results show a perfect agreement between the vibration frequencies detected by both kinds of sensors, proving that the combination of both allows the calculation of the nodal diameter corresponding to the vibration of the disk.

  10. You’re Cut Off: HD and MHD Simulations of Truncated Accretion Disks

    NASA Astrophysics Data System (ADS)

    Hogg, J. Drew; Reynolds, Christopher S.

    2017-01-01

    Truncated accretion disks are commonly invoked to explain the spectro-temporal variability from accreting black holes in both small systems, i.e. state transitions in galactic black hole binaries (GBHBs), and large systems, i.e. low-luminosity active galactic nuclei (LLAGNs). In the canonical truncated disk model of moderately low accretion rate systems, gas in the inner region of the accretion disk occupies a hot, radiatively inefficient phase, which leads to a geometrically thick disk, while the gas in the outer region occupies a cooler, radiatively efficient phase that resides in the standard geometrically thin disk. Observationally, there is strong empirical evidence to support this phenomenological model, but a detailed understanding of the disk behavior is lacking. We present well-resolved hydrodynamic (HD) and magnetohydrodynamic (MHD) numerical models that use a toy cooling prescription to produce the first sustained truncated accretion disks. Using these simulations, we study the dynamics, angular momentum transport, and energetics of a truncated disk in the two different regimes. We compare the behaviors of the HD and MHD disks and emphasize the need to incorporate a full MHD treatment in any discussion of truncated accretion disk evolution.

  11. Thin disk lasers: history and prospects

    NASA Astrophysics Data System (ADS)

    Speiser, Jochen

    2016-04-01

    During the early 1990s, collaboration between the German Aerospace Center and the University of Stuttgart started to work on the Thin Disk concept. The core idea behind the thin disk design is the use of a thin, disk-shaped active medium that is cooled through one of the flat faces of the disk. This ensures a large surface-to-volume ratio and therefore provides very efficient thermal management. Today, the thin disk concept is used in various commercial lasers - ranging from compact, efficient low power systems to multi-kW lasers, including cw lasers and also pulsed (femtosecond to nanosecond) oscillators and amplifiers. The whole development of the Thin Disk laser was and will be accompanied by numerical modeling and optimization of the thermal and thermo-mechanic behavior of the disk and also the heat sink structure, mostly based on finite element models. For further increasing the energy and efficiency of pulsed Thin Disk lasers, the effects of amplified spontaneous emission (ASE) are a core issue. Actual efforts are oriented towards short pulse and ultra-short pulse amplifiers with (multi-)kW average power or Joule-class Thin Disk amplifiers, but also on new designs for cw thin disk MOPA designs.

  12. Fast disk array for image storage

    NASA Astrophysics Data System (ADS)

    Feng, Dan; Zhu, Zhichun; Jin, Hai; Zhang, Jiangling

    1997-01-01

    A fast disk array is designed for the large continuous image storage. It includes a high speed data architecture and the technology of data striping and organization on the disk array. The high speed data path which is constructed by two dual port RAM and some control circuit is configured to transfer data between a host system and a plurality of disk drives. The bandwidth can be more than 100 MB/s if the data path based on PCI (peripheral component interconnect). The organization of data stored on the disk array is similar to RAID 4. Data are striped on a plurality of disk, and each striping unit is equal to a track. I/O instructions are performed in parallel on the disk drives. An independent disk is used to store the parity information in the fast disk array architecture. By placing the parity generation circuit directly on the SCSI (or SCSI 2) bus, the parity information can be generated on the fly. It will affect little on the data writing in parallel on the other disks. The fast disk array architecture designed in the paper can meet the demands of the image storage.

  13. High-power disk lasers: advances and applications

    NASA Astrophysics Data System (ADS)

    Havrilla, David; Ryba, Tracey; Holzer, Marco

    2012-03-01

    Though the genesis of the disk laser concept dates to the early 90's, the disk laser continues to demonstrate the flexibility and the certain future of a breakthrough technology. On-going increases in power per disk, and improvements in beam quality and efficiency continue to validate the genius of the disk laser concept. As of today, the disk principle has not reached any fundamental limits regarding output power per disk or beam quality, and offers numerous advantages over other high power resonator concepts, especially over monolithic architectures. With about 2,000 high power disk lasers installations, and a demand upwards of 1,000 lasers per year, the disk laser has proven to be a robust and reliable industrial tool. With advancements in running cost, investment cost and footprint, manufacturers continue to implement disk laser technology with more vigor than ever. This paper will explain recent advances in disk laser technology and process relevant features of the laser, like pump diode arrangement, resonator design and integrated beam guidance. In addition, advances in applications in the thick sheet area and very cost efficient high productivity applications like remote welding, remote cutting and cutting of thin sheets will be discussed.

  14. Hydrocarbon Emission Rings in Protoplanetary Disks Induced by Dust Evolution

    NASA Astrophysics Data System (ADS)

    Bergin, Edwin A.; Du, Fujun; Cleeves, L. Ilsedore; Blake, G. A.; Schwarz, K.; Visser, R.; Zhang, K.

    2016-11-01

    We report observations of resolved C2H emission rings within the gas-rich protoplanetary disks of TW Hya and DM Tau using the Atacama Large Millimeter Array. In each case the emission ring is found to arise at the edge of the observable disk of millimeter-sized grains (pebbles) traced by submillimeter-wave continuum emission. In addition, we detect a C3H2 emission ring with an identical spatial distribution to C2H in the TW Hya disk. This suggests that these are hydrocarbon rings (I.e., not limited to C2H). Using a detailed thermo-chemical model we show that reproducing the emission from C2H requires a strong UV field and C/O > 1 in the upper disk atmosphere and outer disk, beyond the edge of the pebble disk. This naturally arises in a disk where the ice-coated dust mass is spatially stratified due to the combined effects of coagulation, gravitational settling and drift. This stratification causes the disk surface and outer disk to have a greater permeability to UV photons. Furthermore the concentration of ices that transport key volatile carriers of oxygen and carbon in the midplane, along with photochemical erosion of CO, leads to an elemental C/O ratio that exceeds unity in the UV-dominated disk. Thus the motions of the grains, and not the gas, lead to a rich hydrocarbon chemistry in disk surface layers and in the outer disk midplane.

  15. Tomographic Sounding of Protoplanetary and Transitional Disks: Using Inner Disk Variability at Near to Mid-IR Wavelengths to Probe Conditions in the Outer Disk

    NASA Technical Reports Server (NTRS)

    Grady, C. A.; Sitko, M.L.

    2013-01-01

    Spitzer synoptic monitoring of young stellar associations has demonstrated that variability among young stars and their disks is ubiquitous. The Spitzer studies have been limited by target visibility windows and cover only a short temporal baseline in years. A complementary approach is to focus on stars chosen for high-value observations (e.g. high-contrast imaging, interferometry, or access to wavelengths which are difficult to achieve from the ground) where the synoptic data can augment the imagery or interferometry as well as probing disk structure. In this talk, we discuss how synoptic data for two protoplanetary disks, MWC 480 and HD 163296, constrain the dust disk scale height, account for variable disk illumination, and can be used to locate emission features, such as the IR bands commonly associated with PAHs in the disk, as part of our SOFIA cycle 1 study. Similar variability is now known for several pre-transitional disks, where synoptic data can be used to identify inner disks which are not coplanar with the outer disk, and which may be relicts of giant planet-giant planet scattering events. Despite the logistical difficulties in arranging supporting, coordinated observations in tandem with high-value observations, such data have allowed us to place imagery in context, constrained structures in inner disks not accessible to direct imagery, and may be a tool for identifying systems where planet scattering events have occurred.

  16. Three-dimensional modeling of radiative disks in binaries

    NASA Astrophysics Data System (ADS)

    Picogna, G.; Marzari, F.

    2013-08-01

    Context. Circumstellar disks in binaries are perturbed by the companion gravity causing significant alterations of the disk morphology. Spiral waves due to the companion tidal force also develop in the vertical direction and affect the disk temperature profile. These effects may significantly influence the process of planet formation. Aims: We perform 3D numerical simulations of disks in binaries with different initial dynamical configurations and physical parameters. Our goal is to investigate their evolution and their propensity to grow planets. Methods: We use an improved version of the SPH code VINE modified to better account for momentum and energy conservation via variable smoothing and softening length. The energy equation includes a flux-limited radiative transfer algorithm. The disk cooling is obtained with the use of "boundary particles" populating the outer surfaces of the disk and radiating to infinity. We model a system made of star/disk + star/disk where the secondary star (and relative disk) is less massive than the primary. Results: The numerical simulations performed for different values of binary separation and disk density show that trailing spiral shock waves develop when the stars approach their pericenter. Strong hydraulic jumps occur at the shock front, in particular for small separation binaries, creating breaking waves, and a consistent mass stream between the two disks. Both shock waves and mass transfer cause significant heating of the disk. At apocenter these perturbations are reduced and the disks are cooled down and less eccentric. Conclusions: The disk morphology is substantially affected by the companion perturbations, in particular in the vertical direction. The hydraulic jumps may slow down or even halt the dust coagulation process. The disk is significantly heated up by spiral waves and mass transfer, and the high gas temperature may prevent the ice condensation by moving the "snow line" outward. The disordered motion triggered by the spiral waves may, on the other hand, favor direct formation of large planetesimals from pebbles. The strength of the hydraulic jumps, disk heating, and mass exchange depends on the binary separation, and for larger semi-major axes, the tidal spiral pattern is substantially reduced. The environment then appears less hostile to planet formation.

  17. Detection of relatively penicillin G-resistant Neisseria meningitidis by disk susceptibility testing.

    PubMed Central

    Campos, J; Mendelman, P M; Sako, M U; Chaffin, D O; Smith, A L; Sáez-Nieto, J A

    1987-01-01

    Beginning in 1985, relatively penicillin G-resistant (Penr) meningococci which did not produce beta-lactamase were isolated from the blood and cerebrospinal fluid of patients in Spain. We identified 16 Penr (mean MIC, 0.3 microgram/ml; range, 0.1 to 0.7 microgram/ml) and 12 penicillin-susceptible (Pens; mean MIC, less than or equal to 0.06 microgram/ml) strains of Neisseria meningitidis by the agar dilution technique using an inoculum of 10(4) CFU and questioned which disk susceptibility test would best differentiate these two populations. We compared the disk susceptibility of these strains using disks containing 2 (P2) and 10 (P10) U of penicillin G, 2 (Am2) and 10 (Am10) micrograms of ampicillin, and 1 microgram of oxacillin (OX1). We also investigated susceptibility with disks containing 30 micrograms of each of cephalothin (CF30), cefoxitin (FOX30), cefuroxime (CXM30), and cefotaxime (CTX30) and 75 micrograms of cefoperazone (CFP75) and determined by cluster analysis any correlation with the zone diameters obtained with P2 disks. Using the P2 and AM2 disks (in contrast to the P10 and AM10 disks), we correctly differentiated all the Penr from Pens isolates. In addition, the zone diameters with the P2 disk gave the best correlation with the penicillin G MIC determinations. All 16 Penr strains and 3 of 12 Pens strains showed zone diameters of 6 mm around OX1 disks, limiting the usefulness of OX1 disks. The zone diameters obtained with CF30, CXM30, and OX1 disks correlated with those obtained with the P2 disk, which suggests that these antibiotics have similar effects on these strains. In contrast, the data obtained with FOX30, CTX30, and CFP75 disks did not cluster with those obtained with the P2 disk, which suggests that there was a difference in the bacterial target or reflects their greater activity. We conclude that the P2 disk tests more readily identify Penr meningococci than do the standard P10 disk tests. PMID:3124729

  18. Protoplanetary Disks in Multiple Star Systems

    NASA Astrophysics Data System (ADS)

    Harris, Robert J.

    Most stars are born in multiple systems, so the presence of a stellar companion may commonly influence planet formation. Theory indicates that companions may inhibit planet formation in two ways. First, dynamical interactions can tidally truncate circumstellar disks. Truncation reduces disk lifetimes and masses, leaving less time and material for planet formation. Second, these interactions might reduce grain-coagulation efficiency, slowing planet formation in its earliest stages. I present three observational studies investigating these issues. First is a spatially resolved Submillimeter Array (SMA) census of disks in young multiple systems in the Taurus-Auriga star-forming region to study their bulk properties. With this survey, I confirmed that disk lifetimes are preferentially decreased in multiples: single stars have detectable millimeter-wave continuum emission twice as often as components of multiples. I also verified that millimeter luminosity (proportional to disk mass) declines with decreasing stellar separation. Furthermore, by measuring resolved-disk radii, I quantitatively tested tidal-truncation theories: results were mixed, with a few disks much larger than expected. I then switch focus to the grain-growth properties of disks in multiple star systems. By combining SMA, Combined Array for Research in Millimeter Astronomy (CARMA), and Jansky Very Large Array (VLA) observations of the circumbinary disk in the UZ Tau quadruple system, I detected radial variations in the grain-size distribution: large particles preferentially inhabit the inner disk. Detections of these theoretically predicted variations have been rare. I related this to models of grain coagulation in gas disks and find that our results are consistent with growth limited by radial drift. I then present a study of grain growth in the disks of the AS 205 and UX Tau multiple systems. By combining SMA, Atacama Large Millimeter/submillimeter Array (ALMA), and VLA observations, I detected radial variations of the grain-size distribution in the AS 205 A disk, but not in the UX Tau A disk. I find that some combination of radial drift and fragmentation limits growth in the AS 205 A disk. In the final chapter, I summarize my findings that, while multiplicity clearly influences bulk disk properties, it does not obviously inhibit grain growth. Other investigations are suggested.

  19. GAPS IN PROTOPLANETARY DISKS AS SIGNATURES OF PLANETS. II. INCLINED DISKS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jang-Condell, Hannah; Turner, Neal J.

    2013-07-20

    We examine the observational appearance of partial gaps being opened by planets in protoplanetary disks, considering the effects of the inclination relative to the line of sight. We model the disks with static {alpha}-models with detailed radiative transfer, parameterizing the shape and size of the partially cleared gaps based on the results of hydrodynamic simulations. As in previous work, starlight falling across the gap leads to high surface brightness contrasts. The gap's trough is darkened by both shadowing and cooling, relative to the uninterrupted disk. The gap's outer wall is brightened by direct illumination and also by heating, which puffsmore » it up so that it intercepts more starlight. In this paper, we examine the effects of inclination on resolved images of disks with and without gaps at a wide range of wavelengths. The scattering surface's offset from the disk midplane creates a brightness asymmetry along the axis of inclination, making the disk's near side appear brighter than the far side in scattered light. Finite disk thickness also causes the projected distances of equidistant points on the disk surface to be smaller on the near side of the disk as compared to the far side. Consequently, the gap shoulder on the near side of the disk should appear brighter and closer to the star than on the far side. However, if the angular resolution of the observation is coarser than the width of the brightened gap shoulder, then the gap shoulder on the far side may appear brighter because of its larger apparent size. We present a formula to recover the scale height and inclination angle of an imaged disk using simple geometric arguments and measuring disk asymmetries. Resolved images of circumstellar disks have revealed clearings and gaps, such as the transitional disk in LkCa 15. Models created using our synthetic imaging attempting to match the morphology of observed scattered light images of LkCa 15 indicate that the H-band flux deficit in the inner {approx}0.''5 of the disk can be explained with a planet if mass is greater than 0.5 Jupiter mass.« less

  20. Global Lakes Sentinel Services: Water Quality Parameters Retrieval in Lakes Using the MERIS and S3-OLCI Band Sets

    NASA Astrophysics Data System (ADS)

    Peters, Steef; Alikas, Krista; Hommersom, Annelies; Latt, Silver; Reinart, Anu; Giardino, Claudia; Bresciani, Mariano; Philipson, Petra; Ruescas, Ana; Stelzer, Kerstin; Schenk, Karin; Heege, Thomas; Gege, Peter; Koponen, Sampsa; Kallio, Karri; Zhang, Yunlin

    2015-12-01

    The European collaborative project GLaSS aims to prepare for the use of the data streams from Sentinel 2 and Sentinel 3. Its focus is on inland waters, since these are considered to be sentinels for land-use- and climate change and need to be monitored closely. One of the objectives of the project is to compare existing water quality algorithms and parameterizations on the basis of in-situ spectral observations and Hydrolight simulations. A first achievement of the project is the collection of over 400 Rrs spectra with accompanying data on CHL, TSM, aCDOM and Secchi depth. Especially the dataset on Lake CDOM measurements represents a rather unique reference dataset.

  1. Remote measurement of water color in coastal waters. [spectral radiance data used to obtain quantitative values for chlorophyll and turbidity

    NASA Technical Reports Server (NTRS)

    Weldon, J. W.

    1973-01-01

    An investigation was conducted to develop procedure to obtain quantitative values for chlorophyll and turbidity in coastal waters by observing the changes in spectral radiance of the backscattered spectrum. The technique under consideration consists of Examining Exotech model 20-D spectral radiometer data and determining which radiance ratios best correlated with chlorophyll and turbidity measurements as obtained from analyses of water samples and sechi visibility readings. Preliminary results indicate that there is a correlation between backscattered light and chlorophyll concentration and secchi visibility. The tests were conducted with the spectrometer mounted in a light aircraft over the Mississippi Sound at altitudes of 2.5K, 2.8K and 10K feet.

  2. Space Based Observations of Coronal Cavities in Conjunction with the Total Solar Eclipse of July 2010

    NASA Technical Reports Server (NTRS)

    Kucera, T. A.; Berger, T. E.; Druckmuller, M.; Dietzel, M.; Gibson, S. E.; Habbal, S. R.; Morgan, H.; Reeves, K. K.; Schmit, D. J.; Seaton, D. B.

    2010-01-01

    In conjunction with the total solar eclipse on July 11, 2010 we coordinated a campaign between ground and space based observations. Our specific goal was to augment the ground based measurement of corona) prominence cavity temperatures made using iron lines in the IR (Habbal et al. 2010 ApJ 719 1362) with measurements performed by space based instruments. Included in the campaign were Hinode/EIS, XRT and SOT, PROBA2/SWAP, SDO/AIA, SOHO/CDS and STEREO/SECCHI/EUVI, in addition to the ground based IR measurements. We plan to use a combination of line ratio and forward modeling techniques to investigate the density and temperature structure of the cavities at that time.

  3. KSC-06pd1136

    NASA Image and Video Library

    2006-06-15

    KENNEDY SPACE CENTER, FLA. - Astrotech Space Operations in Titusville, Fla., engineers install a solar array to one of two STEREO spacecraft. The high gain antenna can be seen at top. The black circle facing forward is the primary instrument Sun Earth Connection Coronal and Heliospheric Investigation (SECCHI), a suite of remote sensing instruments to image solar flares, with a protective cover that is removed before flight. STEREO consists of two spacecraft whose mission is the first to take measurements of the sun and solar wind in 3-D. This new view will improve our understanding of space weather and its impact on the Earth. Preparations are under way for a liftoff aboard a Delta rocket no earlier than July 22. Photo credit: NASA/George Shelton

  4. Hints for Small Disks around Very Low Mass Stars and Brown Dwarfs

    NASA Astrophysics Data System (ADS)

    Hendler, Nathanial P.; Mulders, Gijs D.; Pascucci, Ilaria; Greenwood, Aaron; Kamp, Inga; Henning, Thomas; Ménard, François; Dent, William R. F.; Evans, Neal J., II

    2017-06-01

    The properties of disks around brown dwarfs and very low mass stars (hereafter VLMOs) provide important boundary conditions on the process of planet formation and inform us about the numbers and masses of planets than can form in this regime. We use the Herschel Space Observatory PACS spectrometer to measure the continuum and [O I] 63 μm line emission toward 11 VLMOs with known disks in the Taurus and Chamaeleon I star-forming regions. We fit radiative transfer models to the spectral energy distributions of these sources. Additionally, we carry out a grid of radiative transfer models run in a regime that connects the luminosity of our sources with brighter T Tauri stars. We find that VLMO disks with sizes 1.3-78 au, smaller than typical T Tauri disks, fit well the spectral energy distributions assuming that disk geometry and dust properties are stellar mass independent. Reducing the disk size increases the disk temperature, and we show that VLMOs do not follow previously derived disk temperature-stellar luminosity relationships if the disk outer radius scales with stellar mass. Only 2 out of 11 sources are detected in [O I] despite a better sensitivity than was achieved for T Tauri stars, suggesting that VLMO disks are underluminous. Using thermochemical models, we show that smaller disks can lead to the unexpected [O I] 63 μm nondetections in our sample. The disk outer radius is an important factor in determining the gas and dust observables. Hence, spatially resolved observations with ALMA—to establish if and how disk radii scale with stellar mass—should be pursued further. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.

  5. Evolution of the protolunar disk: Dynamics, cooling timescale and implantation of volatiles onto the Earth

    NASA Astrophysics Data System (ADS)

    Charnoz, Sébastien; Michaut, Chloé

    2015-11-01

    It is thought that the Moon accreted from the protolunar disk that was assembled after the last giant impact on Earth. Due to its high temperature, the protolunar disk may act as a thermochemical reactor in which the material is processed before being incorporated into the Moon. Outstanding issues like devolatilisation and istotopic evolution are tied to the disk evolution, however its lifetime, dynamics and thermodynamics are unknown. Here, we numerically explore the long term viscous evolution of the protolunar disk using a one dimensional model where the different phases (vapor and condensed) are vertically stratified. Viscous heating, radiative cooling, phase transitions and gravitational instability are accounted for whereas Moon's accretion is not considered for the moment. The viscosity of the gas, liquid and solid phases dictates the disk evolution. We find that (1) the vapor condenses into liquid in ∼10 years, (2) a large fraction of the disk mass flows inward forming a hot and compact liquid disk between 1 and 1.7 Earth's radii, a region where the liquid is gravitationally stable and can accumulate, (3) the disk finally solidifies in 103 to 105 years. Viscous heating is never balanced by radiative cooling. If the vapor phase is abnormally viscous, due to magneto-rotational instability for instance, most of the disk volatile components are transported to Earth leaving a disk enriched in refractory elements. This opens a way to form a volatile-depleted Moon and would suggest that the missing Moon's volatiles are buried today into the Earth. The disk cooling timescale may be long enough to allow for planet/disk isotopic equilibration. However large uncertainties on the disk physics remain because of the complexity of its multi-phased structure.

  6. External Photoevaporation of the Solar Nebula. II. Effects on Disk Structure and Evolution with Non-uniform Turbulent Viscosity due to the Magnetorotational Instability

    NASA Astrophysics Data System (ADS)

    Kalyaan, A.; Desch, S. J.; Monga, N.

    2015-12-01

    The structure and evolution of protoplanetary disks, especially the radial flows of gas through them, are sensitive to a number of factors. One that has been considered only occasionally in the literature is external photoevaporation by far-ultraviolet (FUV) radiation from nearby, massive stars, despite the fact that nearly half of disks will experience photoevaporation. Another effect apparently not considered in the literature is a spatially and temporally varying value of α in the disk (where the turbulent viscosity ν is α times the sound speed C times the disk scale height H). Here we use the formulation of Bai & Stone to relate α to the ionization fraction in the disk, assuming turbulent transport of angular momentum is due to the magnetorotational instability. We calculate the ionization fraction of the disk gas under various assumptions about ionization sources and dust grain properties. Disk evolution is most sensitive to the surface area of dust. We find that typically α ≲ 10-5 in the inner disk (<2 AU), rising to ˜10-1 beyond 20 AU. This drastically alters the structure of the disk and the flow of mass through it: while the outer disk rapidly viscously spreads, the inner disk hardly evolves; this leads to a steep surface density profile ({{Σ }}\\propto {r}-< p> with < p> ≈ 2-5 in the 5-30 AU region) that is made steeper by external photoevaporation. We also find that the combination of variable α and external photoevaporation eventually causes gas as close as 3 AU, previously accreting inward, to be drawn outward to the photoevaporated outer edge of the disk. These effects have drastic consequences for planet formation and volatile transport in protoplanetary disks.

  7. Inner Disk Structure and Transport Mechanisms in the Transitional Disk around T Cha

    NASA Astrophysics Data System (ADS)

    Brown, Alexander

    2017-08-01

    To better understand how Earth-like planets form around low-mass stars, we propose to study the UV (HST), X-ray (XMM), and optical (LCOGT) variability of the young star T Cha. This variability is caused by obscuration of the star by clumpy material in the rim of its inner disk. Changing sight lines through the disk allow measurement of the temperature and column density of both molecular and atomic gas and the physical properties of the dust grains in the well-mixed inner disk, as well as determining the gas-to-dust ratio. The gas-to-dust ratio affects planetesimal growth and disk stability but is difficult to measure in local regions of disks. Three 5 orbit visits, separated by 3-7 days, are required for use of analysis techniques comprising both differential pair-method comparison of spectra with differing A_v (particularly important for determining the dust extinction curve, A_lambda, where removal of the foreground extinction requires multiple epochs) and detailed spectral fitting of gas absorption features at each epoch. The inner disk of T Cha is particularly interesting, because T Cha has a transitional disk with a large gap at 0.2-15 AU in the dust disk and allows study of the gas and dust structure in the terrestrial planet formation zone during this important rapid phase of protoplanetary disk evolution. Characterizing the high energy (UV/X-ray) radiation field is also essential for in-depth studies of the disk in other spectral regions. Results from these observations will have wide relevance to the modeling and understanding of protoplanetary disk structure and evolution, and the complex gas and dust physics and chemistry in disk surface layers.

  8. THE STRUCTURE OF PRE-TRANSITIONAL PROTOPLANETARY DISKS. II. AZIMUTHAL ASYMMETRIES, DIFFERENT RADIAL DISTRIBUTIONS OF LARGE AND SMALL DUST GRAINS IN PDS 70 {sup ,}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hashimoto, J.; Wisniewski, J.; Tsukagoshi, T.

    The formation scenario of a gapped disk, i.e., transitional disk, and its asymmetry is still under debate. Proposed scenarios such as disk-planet interaction, photoevaporation, grain growth, anticyclonic vortex, eccentricity, and their combinations would result in different radial distributions of the gas and the small (sub-μm size) and large (millimeter size) dust grains as well as asymmetric structures in a disk. Optical/near-infrared (NIR) imaging observations and (sub-)millimeter interferometry can trace small and large dust grains, respectively; therefore multi-wavelength observations could help elucidate the origin of complicated structures of a disk. Here we report Submillimeter Array observations of the dust continuum atmore » 1.3 mm and {sup 12}CO J = 2 → 1 line emission of the pre-transitional protoplanetary disk around the solar-mass star PDS 70. PDS 70, a weak-lined T Tauri star, exhibits a gap in the scattered light from its disk with a radius of ∼65 AU at NIR wavelengths. However, we found a larger gap in the disk with a radius of ∼80 AU at 1.3 mm. Emission from all three disk components (the gas and the small and large dust grains) in images exhibits a deficit in brightness in the central region of the disk, in particular, the dust disk in small and large dust grains has asymmetric brightness. The contrast ratio of the flux density in the dust continuum between the peak position to the opposite side of the disk reaches 1.4. We suggest the asymmetries and different gap radii of the disk around PDS 70 are potentially formed by several (unseen) accreting planets inducing dust filtration.« less

  9. The early evolution of protostellar disks

    NASA Technical Reports Server (NTRS)

    Stahler, Steven W.; Korycansky, D. G.; Brothers, Maxwell J.; Touma, Jihad

    1994-01-01

    We consider the origin and intital growth of the disks that form around protostars during the collapse of rotating molecular cloud cores. These disks are assumed to be inviscid and pressure free, and to have masses small compared to those of their central stars. We find that there exist three distinct components-an outer disk, in which shocked gas moves with comparable azimuthal and radical velocities; and inner disk, where material follows nearly circular orbits, but spirals slowly toward the star because of the drag exerted by adjacent onfalling matter, and a turbulent ring adjoining the first two regions. Early in the evolution, i.e., soon after infalling matter begins to miss the star, only the outer disk is present, and the total mass acceration rate onto the protostar is undiminished. Once the outer disk boundary grows to more than 2.9 times the stellar radius, first the ring, and then the inner disk appear. Thereafter, the radii of all three components expand as t(exp 3). The mass of the ring increase with time and is always 13% of the total mass that has fallen from the cloud. Concurrently with the buildup of the inner disk and ring, the accretion rate onto the star falls off. However, the protostellar mass continue to rise, asymptotically as t(exp 1/4). We calculated the radiated flux from the inner and outer disk components due to the release of gravitational potential energy. The flux from the inner disk is dominant and rises steeply toward the stellar surface. We also determine the surface temperature of the inner disk as a function of radius. The total disk luminosity decreases slowly with time, while the contributions from the ring and inner disk both fall as t(exp -2).

  10. Constraints from Dust Mass and Mass Accretion Rate Measurements on Angular Momentum Transport in Protoplanetary Disks

    NASA Astrophysics Data System (ADS)

    Mulders, Gijs D.; Pascucci, Ilaria; Manara, Carlo F.; Testi, Leonardo; Herczeg, Gregory J.; Henning, Thomas; Mohanty, Subhanjoy; Lodato, Giuseppe

    2017-09-01

    In this paper, we investigate the relation between disk mass and mass accretion rate to constrain the mechanism of angular momentum transport in protoplanetary disks. We find a correlation between dust disk mass and mass accretion rate in Chamaeleon I with a slope that is close to linear, similar to the one recently identified in Lupus. We investigate the effect of stellar mass and find that the intrinsic scatter around the best-fit {M}{dust}-{M}\\star and {\\dot{M}}{acc}-{M}\\star relations is uncorrelated. We simulate synthetic observations of an ensemble of evolving disks using a Monte Carlo approach and find that disks with a constant α viscosity can fit the observed relations between dust mass, mass accretion rate, and stellar mass but overpredict the strength of the correlation between disk mass and mass accretion rate when using standard initial conditions. We find two possible solutions. In the first one, the observed scatter in {M}{dust} and {\\dot{M}}{acc} is not primordial, but arises from additional physical processes or uncertainties in estimating the disk gas mass. Most likely grain growth and radial drift affect the observable dust mass, while variability on large timescales affects the mass accretion rates. In the second scenario, the observed scatter is primordial, but disks have not evolved substantially at the age of Lupus and Chamaeleon I owing to a low viscosity or a large initial disk radius. More accurate estimates of the disk mass and gas disk sizes in a large sample of protoplanetary disks, through either direct observations of the gas or spatially resolved multiwavelength observations of the dust with ALMA, are needed to discriminate between both scenarios or to constrain alternative angular momentum transport mechanisms such as MHD disk winds.

  11. Constrained Evolution of a Radially Magnetized Protoplanetary Disk: Implications for Planetary Migration

    NASA Astrophysics Data System (ADS)

    Russo, Matthew; Thompson, Christopher

    2015-12-01

    We consider the inner ˜1 AU of a protoplanetary disk (PPD) at a stage where angular momentum transport is driven by the mixing of a radial magnetic field into the disk from a T Tauri wind. Because the radial profile of the imposed magnetic field is well constrained, a constrained calculation of the disk mass flow becomes possible. The vertical disk profiles obtained in Paper I imply a stronger magnetization in the inner disk, faster accretion, and a secular depletion of the disk material. Inward transport of solids allows the disk to maintain a broad optical absorption layer even when the grain abundance becomes too small to suppress its ionization. Thus, a PPD may show a strong mid- to near-infrared spectral excess even while its mass profile departs radically from the minimum-mass solar nebula. The disk surface density is buffered at ˜30 g cm-2 below this, X-rays trigger magnetorotational turbulence at the midplane strong enough to loft millimeter- to centimeter-sized particles high in the disk, followed by catastrophic fragmentation. A sharp density gradient bounds the inner depleted disk and propagates outward to ˜1-2 AU over a few megayears. Earth-mass planets migrate through the inner disk over a similar timescale, whereas the migration of Jupiters is limited by the supply of gas. Gas-mediated migration must stall outside 0.04 AU, where silicates are sublimated and the disk shifts to a much lower column. A transition disk emerges when the dust/gas ratio in the MRI-active layer falls below Xd ˜ 10-6 (ad/μm), where ad is the grain size.

  12. The Structure of Pre-Transitional Protoplanetary Disks. II Azimuthal Asymmetries, Different Radial Distributions of Large and Small Dust Grains in PDS 70

    NASA Technical Reports Server (NTRS)

    Hashimoto, J.; Tsukagoshi, T.; Brown, J. M.; Dong, R.; Muto, T.; Zhu, Z.; Wisniewski, J.; Ohashi, N.; Kudo, T.; Kusakabe, N.; hide

    2015-01-01

    The formation scenario of a gapped disk, i.e., transitional disk, and its asymmetry is still under debate. Proposed scenarios such as disk-planet interaction, photoevaporation, grain growth, anticyclonic vortex, eccentricity, and their combinations would result in different radial distributions of the gas and the small (sub-micron size) and large (millimeter size) dust grains as well as asymmetric structures in a disk. Optical/near-infrared (NIR) imaging observations and (sub-)millimeter interferometry can trace small and large dust grains, respectively; therefore multi-wavelength observations could help elucidate the origin of complicated structures of a disk. Here we report Submillimeter Array observations of the dust continuum at 1.3 mm and CO-12 J = 2 yields 1 line emission of the pre-transitional protoplanetary disk around the solar-mass star PDS 70. PDS 70, a weak-lined T Tauri star, exhibits a gap in the scattered light from its disk with a radius of approx. 65 AU at NIR wavelengths. However, we found a larger gap in the disk with a radius of approx. 80 AU at 1.3 mm. Emission from all three disk components (the gas and the small and large dust grains) in images exhibits a deficit in brightness in the central region of the disk, in particular, the dust disk in small and large dust grains has asymmetric brightness. The contrast ratio of the flux density in the dust continuum between the peak position to the opposite side of the disk reaches 1.4. We suggest the asymmetries and different gap radii of the disk around PDS 70 are potentially formed by several (unseen) accreting planets inducing dust filtration.

  13. Fast, Capacious Disk Memory Device

    NASA Technical Reports Server (NTRS)

    Muller, Ronald M.

    1990-01-01

    Device for recording digital data on, and playing back data from, memory disks has high recording or playback rate and utilizes available recording area more fully. Two disks, each with own reading/writing head, used to record data at same time. Head on disk A operates on one of tracks numbered from outside in; head on disk B operates on track of same number in sequence from inside out. Underlying concept of device applicable to magnetic or optical disks.

  14. An improved turbine disk design to increase reliability of aircraft jet engines

    NASA Technical Reports Server (NTRS)

    Barack, W. N.; Domas, P. A.

    1976-01-01

    An analytical study was performed on a novel disk design to replace the existing high-pressure turbine, stage 1 disk on the CF6-50 turbofan engine. Preliminary studies were conducted on seven candidate disk design concepts. An integral multidisk design with bore entry of the turbine blade cooling air was selected as the improved disk design. This disk has the unique feature of being redundant such that if one portion of the disk would fail, the remaining portion would prevent the release of large disk fragments from the turbine system. Low cycle fatigue lives, initial defect propagation lives, burst speed, and the kinetic energies of probable disk fragment configurations were calculated, and comparisons were made with the existing disk, both in its current material, IN 718, and with the substitution of an advanced alloy, Rene 95. The design for redundancy approach which necessitated the addition of approximately 44.5 kg (98 lb) to the design disk substantially improved the life of the disk. The life to crack initiation was increased from 30,000 cycles to more than 100,000 cycles. The cycles to failure from initial defect propagation were increased from 380 cycles to 1564 cycles. Burst speed was increased from 126 percent overspeed to 149 percent overspeed. Additionally, the maximum fragment energies associated with a failure were decreased by an order of magnitude.

  15. Subaru Imaging of Asymmetric Features in a Transitional Disk in a Transitional Disk in Upper Scorpius

    NASA Technical Reports Server (NTRS)

    Mayama, S.; Hashimoto, J.; Muto, T.; Tsukagoshi, T.; Kusakabe, N.; Kuzuhara, M.; Takahashi, Y.; Kudo, T.; Dong, R.; Fukagawa, M.; hide

    2012-01-01

    We report high-resolution (0.07 arcsec) near-infrared polarized intensity images of the circumstellar disk around the star 2MASS J16042165-2130284 obtained with HiCIAO mounted on the Subaru 8.2 m telescope. We present our H-band data, which clearly exhibit a resolved, face-on disk with a large inner hole for the first time at infrared wavelengths.We detect the centrosymmetric polarization pattern in the circumstellar material as has been observed in other disks. Elliptical fitting gives the semimajor axis, semiminor axis, and position angle (P.A.) of the disk as 63 AU, 62 AU, and -14?, respectively. The disk is asymmetric, with one dip located at P.A.s of 85?. Our observed disk size agrees well with a previous study of dust and CO emission at submillimeter wavelength with Submillimeter Array. Hence, the near-infrared light is interpreted as scattered light reflected from the inner edge of the disk. Our observations also detect an elongated arc (50 AU) extending over the disk inner hole. It emanates at the inner edge of the western side of the disk, extending inward first, then curving to the northeast. We discuss the possibility that the inner hole, the dip, and the arc that we have observed may be related to the existence of unseen bodies within the disk

  16. The correlation between HCN/H2O flux ratios and disk mass: evidence for protoplanet formation

    NASA Astrophysics Data System (ADS)

    Rose, Caitlin; Salyk, Colette

    2017-01-01

    We analyze hydrogen cyanide (HCN) and water vapor flux ratios in protoplanetary disks as a way to trace planet formation. Analyzing only disks in the Taurus molecular cloud, Najita et al. (2013) found a tentative correlation between protoplanetary disk mass and the HCN/H2O line flux ratio in Spitzer-IRS emission spectra. They interpret this correlation to be a consequence of more massive disks forming planetesimals more efficiently than smaller disks, as the formation of large planetesimals may lock up water ice in the cool outer disk region and prevent it from migrating, drying out the inner disk. The sequestering of water (and therefore oxygen) in the outer disk may also increase the carbon-to- oxygen ratio in the inner disk, leading to enhanced organic molecule (e.g. HCN) emission. To confirm this trend, we expand the Najita et al. sample by calculating HCN/H2O line flux ratios for 8 more sources with known disk masses from clusters besides Taurus. We find agreement with the Najita et al. trend, suggesting that this is a widespread phenomenon. In addition, we find HCN/H2O line flux ratios for 17 more sources that await disk mass measurements, which should become commonplace in the ALMA era. Finally, we investigate linear fits and outliers to this trend, and discuss possible causes.

  17. The End of Protoplanetary Disk Evolution: An ALMA Survey of Upper Scorpius

    NASA Astrophysics Data System (ADS)

    Barenfeld, Scott A.; Carpenter, John M.; Sargent, Anneila I.; Ricci, Luca; Isella, Andrea

    2017-01-01

    The evolution of the mass of solids in circumstellar disks is a key factor in determining how planets form. Infrared observations have established that the dust in primordial disks vanishes around the majority of stars by an age of 5-10 Myr. However, how this disappearance proceeds is poorly constrained. Only with longer wavelength observations, where the dust emission is optically thin, is it possible to measure disk dust mass and how it varies as a function of age. To this end, we have obtained ALMA 0.88 mm observations of over 100 sources with suspected circumstellar disks in the Upper Scorpius OB Association (Upper Sco). The 5-11 Myr age of Upper Sco suggests that any such disks will be quite evolved, making this association an ideal target to compare to systems of younger disks in order to study evolution. With ALMA, we achieve an order of magnitude improvement in sensitivity over previous (sub)millimeter surveys of Upper Sco and detect 58 disks in the continuum. We calculate the total dust masses of these disks and compare their masses to those of younger disks in Taurus, Lupus, and Chamaeleon. We find strong evidence for a decline in disk dust mass between these 1-3 Myr old systems and the 5-11 Myr old Upper Sco. Our results represent the first definitive measurement of a decline in disk dust mass with age.

  18. ACS Imaging of beta Pic: Searching for the origin of rings and asymmetry in planetesimal disks

    NASA Astrophysics Data System (ADS)

    Kalas, Paul

    2003-07-01

    The emerging picture for planetesimal disks around main sequence stars is that their radial and azimuthal symmetries are significantly deformed by the dynamical effects of either planets interior to the disk, or stellar objects exterior to the disk. The cause of these structures, such as the 50 AU cutoff of our Kuiper Belt, remains mysterious. Structure in the beta Pic planetesimal disk could be due to dynamics controlled by an extrasolar planet, or by the tidal influence of a more massive object exterior to the disk. The hypothesis of an extrasolar planet causing the vertical deformation in the disk predicts a blue color to the disk perpendicular to the disk midplane. The hypothesis that a stellar perturber deforms the disk predicts a globally uniform color and the existence of ring-like structure beyond 800 AU radius. We propose to obtain deep, multi-color images of the beta Pic disk ansae in the region 15"-220" {200-4000 AU} radius with the ACS WFC. The unparalleled stability of the HST PSF means that these data are uniquely capable of delivering the color sensitivity that can distinguish between the two theories of beta Pic's disk structure. Ascertaining the cause of such structure provide a meaningful context for understanding the dynamical history of our early solar system, as well as other planetesimal systems imaged around main sequence stars.

  19. Fragment Production and Survival in Irradiated Disks: A Comprehensive Cooling Criterion

    NASA Astrophysics Data System (ADS)

    Kratter, Kaitlin M.; Murray-Clay, Ruth A.

    2011-10-01

    Accretion disks that become gravitationally unstable can fragment into stellar or substellar companions. The formation and survival of these fragments depends on the precarious balance between self-gravity, internal pressure, tidal shearing, and rotation. Disk fragmentation depends on two key factors: (1) whether the disk can get to the fragmentation boundary of Q = 1 and (2) whether fragments can survive for many orbital periods. Previous work suggests that to reach Q = 1, and have fragments survive, a disk must cool on an orbital timescale. Here we show that disks heated primarily by external irradiation always satisfy the standard cooling time criterion. Thus, even though irradiation heats disks and makes them more stable in general, once they reach the fragmentation boundary, they fragment more easily. We derive a new cooling criterion that determines fragment survival and calculate a pressure-modified Hill radius, which sets the maximum size of pressure-supported objects in a Keplerian disk. We conclude that fragmentation in protostellar disks might occur at slightly smaller radii than previously thought and recommend tests for future simulations that will better predict the outcome of fragmentation in real disks.

  20. Accretion in Radiative Equipartition (AiRE) Disks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yazdi, Yasaman K.; Afshordi, Niayesh, E-mail: yyazdi@pitp.ca, E-mail: nafshordi@pitp.ca

    2017-07-01

    Standard accretion disk theory predicts that the total pressure in disks at typical (sub-)Eddington accretion rates becomes radiation pressure dominated. However, radiation pressure dominated disks are thermally unstable. Since these disks are observed in approximate steady state over the instability timescale, our accretion models in the radiation-pressure-dominated regime (i.e., inner disk) need to be modified. Here, we present a modification to the Shakura and Sunyaev model, where the radiation pressure is in equipartition with the gas pressure in the inner region. We call these flows accretion in radiative equipartition (AiRE) disks. We introduce the basic features of AiRE disks andmore » show how they modify disk properties such as the Toomre parameter and the central temperature. We then show that the accretion rate of AiRE disks is limited from above and below, by Toomre and nodal sonic point instabilities, respectively. The former leads to a strict upper limit on the mass of supermassive black holes as a function of cosmic time (and spin), while the latter could explain the transition between hard and soft states of X-ray binaries.« less

  1. Using Ice and Dust Lines to Constrain the Surface Densities of Protoplanetary Disks

    NASA Astrophysics Data System (ADS)

    Powell, Diana; Murray-Clay, Ruth; Schlichting, Hilke

    2018-04-01

    The surface density of protoplanetary disks is a fundamental parameter that still remains largely unconstrained due to uncertainties in the dust-to-gas ratio and CO abundance. In this talk I will present a novel method for determining the surface density of protoplanetary disks through consideration of disk “dust lines,” which indicate the observed disk radial scale at different observational wavelengths. I will provide an initial proof of concept of our model through an application to the disk TW Hya where we are able to estimate the disk dust-to-gas ratio, CO abundance, and accretion rate in addition to the total disk surface density. We find that our derived surface density profile and dust-to-gas ratio are consistent with the lower limits found through measurements of HD gas. We further apply our model to a large parameter space of theoretical disks and find three observational diagnostics that may be used to test its validity. Using this method we derive disks that may be much more massive than previously thought, often approaching the limit of gravitational stability.

  2. 51 OPHIUCHUS: A POSSIBLE BETA PICTORIS ANALOG MEASURED WITH THE KECK INTERFEROMETER NULLER

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stark, Christopher C.; Kuchner, Marc J.; Traub, Wesley A.

    2009-10-01

    We present observations of the 51 Ophiuchi circumstellar disk made with the Keck interferometer operating in nulling mode at N band. We model these data simultaneously with VLTI-MIDI visibility data and a Spitzer IRS spectrum using a variety of optically thin dust cloud models and an edge-on optically thick disk model. We find that single-component optically thin disk models and optically thick disk models are inadequate to reproduce the observations, but an optically thin two-component disk model can reproduce all of the major spectral and interferometric features. Our preferred disk model consists of an inner disk of blackbody grains extendingmore » to {approx}4 AU and an outer disk of small silicate grains extending out to {approx}1200 AU. Our model is consistent with an inner 'birth' disk of continually colliding parent bodies producing an extended envelope of ejected small grains. This picture resembles the disks around Vega, AU Microscopii, and beta Pictoris, supporting the idea that 51 Ophiuchius may be a beta Pictoris analog.« less

  3. Sharp Eccentric Rings in Planetless Hydrodynamical Models of Debris Disks

    NASA Technical Reports Server (NTRS)

    Lyra, W.; Kuchner, M. J.

    2013-01-01

    Exoplanets are often associated with disks of dust and debris, analogs of the Kuiper Belt in our solar system. These "debris disks" show a variety of non-trivial structures attributed to planetary perturbations and utilized to constrain the properties of the planets. However, analyses of these systems have largely ignored the fact that, increasingly, debris disks are found to contain small quantities of gas, a component all debris disks should contain at some level. Several debris disks have been measured with a dust-to-gas ratio around unity where the effect of hydrodynamics on the structure of the disk cannot be ignored. Here we report that dust-gas interactions can produce some of the key patterns seen in debris disks that were previously attributed to planets. Through linear and nonlinear modeling of the hydrodynamical problem, we find that a robust clumping instability exists in this configuration, organizing the dust into narrow, eccentric rings, similar to the Fomalhaut debris disk. The hypothesis that these disks might contain planets, though thrilling, is not necessarily required to explain these systems.

  4. Accretion in Radiative Equipartition (AiRE) Disks

    NASA Astrophysics Data System (ADS)

    Yazdi, Yasaman K.; Afshordi, Niayesh

    2017-07-01

    Standard accretion disk theory predicts that the total pressure in disks at typical (sub-)Eddington accretion rates becomes radiation pressure dominated. However, radiation pressure dominated disks are thermally unstable. Since these disks are observed in approximate steady state over the instability timescale, our accretion models in the radiation-pressure-dominated regime (I.e., inner disk) need to be modified. Here, we present a modification to the Shakura & Sunyaev model, where the radiation pressure is in equipartition with the gas pressure in the inner region. We call these flows accretion in radiative equipartition (AiRE) disks. We introduce the basic features of AiRE disks and show how they modify disk properties such as the Toomre parameter and the central temperature. We then show that the accretion rate of AiRE disks is limited from above and below, by Toomre and nodal sonic point instabilities, respectively. The former leads to a strict upper limit on the mass of supermassive black holes as a function of cosmic time (and spin), while the latter could explain the transition between hard and soft states of X-ray binaries.

  5. Evolution of magnetic disk subsystems

    NASA Astrophysics Data System (ADS)

    Kaneko, Satoru

    1994-06-01

    The higher recording density of magnetic disk realized today has brought larger storage capacity per unit and smaller form factors. If the required access performance per MB is constant, the performance of large subsystems has to be several times better. This article describes mainly the technology for improving the performance of the magnetic disk subsystems and the prospects of their future evolution. Also considered are 'crosscall pathing' which makes the data transfer channel more effective, 'disk cache' which improves performance coupling with solid state memory technology, and 'RAID' which improves the availability and integrity of disk subsystems by organizing multiple disk drives in a subsystem. As a result, it is concluded that since the performance of the subsystem is dominated by that of the disk cache, maximation of the performance of the disk cache subsystems is very important.

  6. The Thermal Regulation of Gravitational Instabilities in Protoplanetary Disks. III. Simulations with Radiative Cooling and Realistic Opacities

    NASA Astrophysics Data System (ADS)

    Boley, Aaron C.; Mejía, Annie C.; Durisen, Richard H.; Cai, Kai; Pickett, Megan K.; D'Alessio, Paola

    2006-11-01

    This paper presents a fully three-dimensional radiative hydrodymanics simulation with realistic opacities for a gravitationally unstable 0.07 Msolar disk around a 0.5 Msolar star. We address the following aspects of disk evolution: the strength of gravitational instabilities under realistic cooling, mass transport in the disk that arises from GIs, comparisons between the gravitational and Reynolds stresses measured in the disk and those expected in an α-disk, and comparisons between the SED derived for the disk and SEDs derived from observationally determined parameters. The mass transport in this disk is dominated by global modes, and the cooling times are too long to permit fragmentation for all radii. Moreover, our results suggest a plausible explanation for the FU Ori outburst phenomenon.

  7. Analysis of mean time to data loss of fault-tolerant disk arrays RAID-6 based on specialized Markov chain

    NASA Astrophysics Data System (ADS)

    Rahman, P. A.; D'K Novikova Freyre Shavier, G.

    2018-03-01

    This scientific paper is devoted to the analysis of the mean time to data loss of redundant disk arrays RAID-6 with alternation of data considering different failure rates of disks both in normal state of the disk array and in degraded and rebuild states, and also nonzero time of the disk replacement. The reliability model developed by the authors on the basis of the Markov chain and obtained calculation formula for estimation of the mean time to data loss (MTTDL) of the RAID-6 disk arrays are also presented. At last, the technique of estimation of the initial reliability parameters and examples of calculation of the MTTDL of the RAID-6 disk arrays for the different numbers of disks are also given.

  8. Gravitational Instabilities in a Young Protoplanetary Disk with Embedded Objects

    NASA Astrophysics Data System (ADS)

    Desai, Karna M.

    Gravitational Instabilities (GIs), a mechanism for angular momentum transport, are prominent during the early phases of protoplanetary disk evolution when the disk is relatively massive. In this dissertation, I analyze GIs by inserting different objects in a disk by employing 3D hydrodynamics simulations. GIs in a circumbinary disks are studied to determine how the presence of the companion affects the nature and strength of GIs in the disk. The circumbinary disk achieves a state of sustained marginal instability similar to an identical disk without the companion. A realistic evolution of the binary is detected. Planet and disk interactions play an important role in the evolution of planetary systems. To study this interaction during the early phases of planet formation, a migration study of Jovian planets in a GI-active disk is conducted. I find the migration timescales to be longer in a GI-active disk, when compared to laminar disks. The 3 MJupiter planet controls its own orbital evolution, while the migration of a 0.3 MJupiter planet is stochastic in nature. I define a 'critical mass' as the mass of an arm of the dominant two-armed spiral density wave within the planet's Hill diameter. Planets above this mass control their own destiny, and planets below this mass are scattered by the disk. This critical mass could provide a recipe for predicting the migration behavior of planets in GI-active disks. To understand the stochastic migration of low-mass planets, I perform a simulation of 240 zero-mass planet-tracers by inserting these at a range of locations in the disk. A Diffusion Coefficient is calculated to characterize the stochastic migration of low-mass objects. The eccentricity dispersion for the sample is also studied. I find that the diffusion of planets can be a slow process, resulting in the survival of small planetary cores.

  9. Warping and tearing of misaligned circumbinary disks around eccentric supermassive black hole binaries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hayasaki, K.; Sohn, B.W.; Jung, T.

    2015-07-01

    We study the warping and tearing of a geometrically thin, non-self-gravitating disk surrounding binary supermassive black holes on an eccentric orbit. The circumbinary disk is significantly misaligned with the binary orbital plane, and is subject to the time-dependent tidal torques. In principle, such a disk is warped and precesses, and is torn into mutually misaligned rings in the region, where the tidal precession torques are stronger than the local viscous torques. We derive the tidal-warp and tearing radii of the misaligned circumbinary disks around eccentric SMBH binaries. We find that in disks with the viscosity parameter α larger than amore » critical value depending on the disk aspect ratio, the disk warping appears outside the tearing radius. This condition is expressed for small amplitude warps as α > √H/(3r) for H/r∼<0.1, where H is the disk scale height. If α < √H/(3r), only the disk tearing occurs because the tidal warp radius is inside the tearing radius, where most of disk material is likely to rapidly accrete onto SMBHs. In warped and torn disks, both the tidal-warp and the tearing radii most strongly depend on the binary semi-major axis, although they also mildly depend on the other orbital and disk parameters. This strong dependence enables us to estimate the semi-major axis, once the tidal warp or tearing radius is determined observationally: for the tidal warp radius of 0.1 pc, the semi-major axis is estimated to be ∼10{sup −2} pc for 10{sup 7} M{sub ⊙} black hole with typical orbital and disk parameters. We also briefly discuss the possibility that central objects of observed warped maser disks in active galactic nuclei are supermassive black hole binaries.« less

  10. Physical properties of dusty protoplanetary disks in Lupus: evidence for viscous evolution?

    NASA Astrophysics Data System (ADS)

    Tazzari, M.; Testi, L.; Natta, A.; Ansdell, M.; Carpenter, J.; Guidi, G.; Hogerheijde, M.; Manara, C. F.; Miotello, A.; van der Marel, N.; van Dishoeck, E. F.; Williams, J. P.

    2017-10-01

    Context. The formation of planets strongly depends on the total amount as well as on the spatial distribution of solids in protoplanetary disks. Thanks to the improvements in resolution and sensitivity provided by ALMA, measurements of the surface density of mm-sized grains are now possible on large samples of disks. Such measurements provide statistical constraints that can be used to inform our understanding of the initial conditions of planet formation. Aims: We aim to analyze spatially resolved observations of 36 protoplanetary disks in the Lupus star forming complex from our ALMA survey at 890 μm, aiming to determine physical properties such as the dust surface density, the disk mass and size, and to provide a constraint on the temperature profile. Methods: We fit the observations directly in the uv-plane using a two-layer disk model that computes the 890 μm emission by solving the energy balance at each disk radius. Results: For 22 out of 36 protoplanetary disks we derive robust estimates of their physical properties. The sample covers stellar masses between 0.1 and 2 M⊙, and we find no trend in the relationship between the average disk temperatures and the stellar parameters. We find, instead, a correlation between the integrated sub-mm flux (a proxy for the disk mass) and the exponential cut-off radii (a proxy of the disk size) of the Lupus disks. Comparing these results with observations at similar angular resolution of Taurus-Auriga and Ophiuchus disks found in literature and scaling them to the same distance, we observe that the Lupus disks are generally fainter and larger at a high level of statistical significance. Considering the 1-2 Myr age difference between these regions, it is possible to tentatively explain the offset in the disk mass-size relation with viscous spreading, however with the current measurements other mechanisms cannot be ruled out.

  11. Water budgets, water quality, and analysis of nutrient loading of the Winter Park chain of lakes, central Florida, 1989-92

    USGS Publications Warehouse

    Phelps, G.G.; German, E.R.

    1995-01-01

    The Winter Park chain of lakes (Lakes Maitland, Virginia, Osceola, and Mizell) has a combined area of about 900 acres, an immediate drainage area of about 3,100 acres, and mean depths ranging from 11 to 15 feet. The lakes are an important recreational resource for the surrounding communities, but there is concern about the possible effects of stormwater runoff and seepage of nutrient-enriched ground water on the quality of water in the lakes. The lakes receive water from several sources: rainfall on lake surfaces, inflow from other surface-water bodies, stormflow that enters the lakes through storm drains or by direct runoff from land adjacent to the lakes and ground-water seepage. Water leaves the lakes by evaporation, surface outflow, and ground-water outflow. Of the three, only surface outflow can be measured directly. Rainfall, surface inflow and outflow, and lake-stage data were collected from October 1, 1989, to September 30, 1992. Stormflow, evaporation and ground-water inflow and outflow were estimated for the 3 years of the study. Ground-water outflow was calculated by evaluating the rate of lake-stage decline during dry periods. Estimated ground-water outflow was compared to downward leakage rates estimated by ground-water flow models. Lateral ground-water inflow from surficial sediments was calculated as the residual of the flow budget. Flow budgets were calculated for the 3 years of the study. In water year 1992 (a year with about average rainfall), inflow consisted of rainfall, 48 inches; stormflow, 15 inches; surface inflow, 67 inches; and ground water, 40 inches. The calculated outflows were evaporation, 47 inches; surface outflow, 90 inches; and ground water, 33 inches. Water-quality data also were used to calculate nutrient budgets for the lakes. Bimonthly water samples were collected from the lakes and at surface inflow and outflow sites, and were analyzed for physical characteristics, dissolved oxygen, pH, specific conductance, major ions, the nutrients nitrogen and phosphorus, and chlorophyll (collected at lake sites only). Specific conductance ranged from about 190 to 230 microsiemens per centimeter at 25 degrees Celsius in Lakes Maitland, Virginia and Osceola and from about 226 to 260 microsiemens per centimeter at 25 degrees Celsius in Lake Mizell. The median concentrations of total ammonia-plus-organic nitrogen in all the lakes ranged from 0.79 to 0.99 milligrams per liter. Median total phosphorus concentrations ranged from less than 0.02 to 0.20 milligrams per liter. Stormwater samples were collected for 17 storms at one storm-drain site and 16 storms at another storm-drain site on Lake Osceola. Median total nitrogen concentrations at the sites were 2.23 and 3.06 milligrams per liter and median total phosphorus concentrations were 0.34 and 0.40 milligrams per liter. The water quality in the Winter Park lakes generally is fair to good, based on a trophic-state index used by the Florida Department of Environmental Protection for assessing the tropic state of Florida lakes. This index was determined from median total nitrogen, total phosphorus, and chlorophyll-a concentrations, and median Secchi-disk transparency for all lakes for the period September 1989 to June 1992. Based on a one-time sampling of 20 sites around the lakes, surficial ground-water quality is highly variable. Nutrient concentrations were highly variable and could not be correlated to the proximity of septic tanks. Fertilizer probably is the primary source of nutrients in the surficial ground water. Nutrient budgets were calculated for the lakes for the 3 years of the study. The most variable source of nutrient loading to the lakes is stormwater. Nutrient-loading modeling indicates that reduction of nutrients in stormflow probably would improve lake-water quality. However, even with complete removal of nitrogen and phosphorus from stormwater, the lakes might still be mesotrophic with respect to both nutrients during periods of below ave

  12. Disk Susceptibility Studies with Cefazolin and Cephalothin

    PubMed Central

    Actor, Paul; Guarini, Joseph; Uri, Joseph; Dickson, Judith; Pauls, John F.; Weisbach, Jerry A.

    1974-01-01

    Cefazolin and cephalothin disk susceptibility and minimal inhibitory concentration determinations were conducted on 591 clinical isolates. Cefazolin demonstrated superior activity, as shown by lower minimal inhibitory concentrations, and a greater percentage of isolates inhibited in the disk susceptibility test. The cephalothin antibiotic class disk by the standard Bauer-Kirby method failed to detect susceptibility to cefazolin in a significant percentage of Escherchia coli, Enterobacter species, and Enterococcus isolates. A separate cefazolin disk with a susceptibility cut-off point of 18 mm is recommended. An alternative to a separate cefazolin disk would be a reinterpretation of the cephalothin susceptibility disk zone diameters so that it would more adequately predict cefazolin activity. PMID:4840450

  13. Nonlinear calculations of the time evolution of black hole accretion disks

    NASA Technical Reports Server (NTRS)

    Luo, C.

    1994-01-01

    Based on previous works on black hole accretion disks, I continue to explore the disk dynamics using the finite difference method to solve the highly nonlinear problem of time-dependent alpha disk equations. Here a radially zoned model is used to develop a computational scheme in order to accommodate functional dependence of the viscosity parameter alpha on the disk scale height and/or surface density. This work is based on the author's previous work on the steady disk structure and the linear analysis of disk dynamics to try to apply to x-ray emissions from black candidates (i.e., multiple-state spectra, instabilities, QPO's, etc.).

  14. Observability of characteristic binary-induced structures in circumbinary disks

    NASA Astrophysics Data System (ADS)

    Avramenko, R.; Wolf, S.; Illenseer, T. F.

    2017-07-01

    Context. A substantial fraction of protoplanetary disks form around stellar binaries. The binary system generates a time-dependent non-axisymmetric gravitational potential, inducing strong tidal forces on the circumbinary disk. This leads to a change in basic physical properties of the circumbinary disk, which should in turn result in unique structures that are potentially observable with the current generation of instruments. Aims: The goal of this study is to identify these characteristic structures, constrain the physical conditions that cause them, and evaluate the feasibility of observing them in circumbinary disks. Methods: To achieve this, first we perform 2D hydrodynamic simulations. The resulting density distributions are post-processed with a 3D radiative transfer code to generate re-emission and scattered light maps. Based on these distributions, we study the influence of various parameters, such as the mass of the stellar components, mass of the disk, and binary separation on observable features in circumbinary disks. Results: We find that the Atacama Large (sub-)Millimetre Array (ALMA) as well as the European Extremely Large Telescope (E-ELT) are capable of tracing asymmetries in the inner region of circumbinary disks, which are affected most by the binary-disk interaction. Observations at submillimetre/millimetre wavelengths allow the detection of the density waves at the inner rim of the disk and inner cavity. With the E-ELT one can partially resolve the innermost parts of the disk in the infrared wavelength range, including the disk's rim, accretion arms, and potentially the expected circumstellar disks around each of the binary components.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hendler, Nathanial P.; Mulders, Gijs D.; Pascucci, Ilaria

    The properties of disks around brown dwarfs and very low mass stars (hereafter VLMOs) provide important boundary conditions on the process of planet formation and inform us about the numbers and masses of planets than can form in this regime. We use the Herschel Space Observatory PACS spectrometer to measure the continuum and [O i] 63 μ m line emission toward 11 VLMOs with known disks in the Taurus and Chamaeleon I star-forming regions. We fit radiative transfer models to the spectral energy distributions of these sources. Additionally, we carry out a grid of radiative transfer models run in amore » regime that connects the luminosity of our sources with brighter T Tauri stars. We find that VLMO disks with sizes 1.3–78 au, smaller than typical T Tauri disks, fit well the spectral energy distributions assuming that disk geometry and dust properties are stellar mass independent. Reducing the disk size increases the disk temperature, and we show that VLMOs do not follow previously derived disk temperature–stellar luminosity relationships if the disk outer radius scales with stellar mass. Only 2 out of 11 sources are detected in [O i] despite a better sensitivity than was achieved for T Tauri stars, suggesting that VLMO disks are underluminous. Using thermochemical models, we show that smaller disks can lead to the unexpected [O i] 63 μ m nondetections in our sample. The disk outer radius is an important factor in determining the gas and dust observables. Hence, spatially resolved observations with ALMA—to establish if and how disk radii scale with stellar mass—should be pursued further.« less

  16. HD 100453: An evolutionary link between protoplanetary disks and debris disks

    NASA Astrophysics Data System (ADS)

    Collins, Karen

    2008-12-01

    Herbig Ae stars are young stars usually surrounded by gas and dust in the form of a disk and are thought to evolve into planetary systems similar to our own. We present a multi-wavelength examination of the disk and environment of the Herbig Ae star HD 100453A, focusing on the determination of accretion rate, system age, and disk evolution. We show that the accretion rate is characterized by Chandra X-ray imagery that is inconsistent with strongly accreting early F stars, that the disk lacks the conspicuous Fe II emission and continuum seen in FUV spectra of actively accreting Herbig Ae stars, and that FUSE, HST, and FEROS data suggest an accretion rate below ˜ 2.5×10 -10 [Special characters omitted.] M⊙ yr -1 . We confirm that HD 100453B is a common proper motion companion to HD 100453A, with spectral type M4.0V - M4.5V, and derive an age of 14 ± 4 Myr. We examine the Meeus et al. (2001) hypothesis that Meeus Group I sources, which have a mid-IR bump which can be fitted by a black body component, evolve to Meeus Group II sources, which have no such mid-IR bump. By considering stellar age and accretion rate evidence, we find the hypothesis to be invalid. Furthermore, we find that the disk characteristics of HD 100453A do not fit the traditional definition of a protoplanetary disk, a transitional disk, or a debris disk, and they may suggest a new class of disks linking gas-rich protoplanetary disks and gas-poor debris disks.

  17. Embedded Protostellar Disks Around (Sub-)Solar Stars. II. Disk Masses, Sizes, Densities, Temperatures, and the Planet Formation Perspective

    NASA Astrophysics Data System (ADS)

    Vorobyov, Eduard I.

    2011-03-01

    We present basic properties of protostellar disks in the embedded phase of star formation (EPSF), which is difficult to probe observationally using available observational facilities. We use numerical hydrodynamics simulations of cloud core collapse and focus on disks formed around stars in the 0.03-1.0 M sun mass range. Our obtained disk masses scale near-linearly with the stellar mass. The mean and median disk masses in the Class 0 and I phases (M mean d,C0 = 0.12 M sun, M mdn d,C0 = 0.09 M sun and M mean d,CI = 0.18 M sun, M mdn d,CI = 0.15 M sun, respectively) are greater than those inferred from observations by (at least) a factor of 2-3. We demonstrate that this disagreement may (in part) be caused by the optically thick inner regions of protostellar disks, which do not contribute to millimeter dust flux. We find that disk masses and surface densities start to systematically exceed that of the minimum mass solar nebular for objects with stellar mass as low as M * = 0.05-0.1 M sun. Concurrently, disk radii start to grow beyond 100 AU, making gravitational fragmentation in the disk outer regions possible. Large disk masses, surface densities, and sizes suggest that giant planets may start forming as early as in the EPSF, either by means of core accretion (inner disk regions) or direct gravitational instability (outer disk regions), thus breaking a longstanding stereotype that the planet formation process begins in the Class II phase.

  18. Kinematic Dynamo In Turbulent Circumstellar Disks

    NASA Technical Reports Server (NTRS)

    Stepinski, T.

    1993-01-01

    Many circumstellar disks associated with objects ranging from protoplanetary nebulae, to accretion disks around compact stars allow for the generation of magnetic fields by an (alpha)omega dynamo. We have applied kinematic dynamo formalism to geometrically thin accretion disks. We calculate, in the framework of an adiabatic approximation, the normal mode solutions for dynamos operating in disks around compact stars. We then describe the criteria for a viable dynamo in protoplanetary nebulae, and discuss the particular features that make accretion disk dynamos different from planetary, stellar, and galactic dynamos.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kasper, Markus; Apai, Dániel; Wagner, Kevin

    Using Very Large Telescope/SPHERE near-infrared dual-band imaging and integral field spectroscopy, we discovered an edge-on debris disk around the 17 Myr old A-type member of the Scorpius–Centaurus OB association HD 110058. The edge-on disk can be traced to about 0.″6 or 65 AU projected separation. In its northern and southern wings, the disk shows at all wavelengths two prominent, bright, and symmetrically placed knots at 0.″3 or 32 AU from the star. We interpret these knots as a ring of planetesimals whose collisions may produce most of the dust observed in the disk. We find no evidence for a bowmore » in the disk, but we identify a pair of symmetric, hooklike features in both wings. Based on similar features in the Beta Pictoris disk, we propose that this wing-tilt asymmetry traces either an outer planetesimal belt that is inclined with respect to the disk midplane or radiation-pressure-driven dust blown out from a yet unseen inner belt that is inclined with respect to the disk midplane. The misaligned inner or outer disk may be a result of interaction with a yet unseen planet. Overall, the disk geometry resembles the nearby disk around Beta Pictoris, albeit seen at smaller radial scales.« less

  20. Identification of transitional disks in Chamaeleon with Herschel

    NASA Astrophysics Data System (ADS)

    Ribas, Á.; Merín, B.; Bouy, H.; Alves de Oliveira, C.; Ardila, D. R.; Puga, E.; Kóspál, Á.; Spezzi, L.; Cox, N. L. J.; Prusti, T.; Pilbratt, G. L.; André, Ph.; Matrà, L.; Vavrek, R.

    2013-04-01

    Context. Transitional disks are circumstellar disks with inner holes that in some cases are produced by planets and/or substellar companions in these systems. For this reason, these disks are extremely important for the study of planetary system formation. Aims: The Herschel Space Observatory provides an unique opportunity for studying the outer regions of protoplanetary disks. In this work we update previous knowledge on the transitional disks in the Chamaeleon I and II regions with data from the Herschel Gould Belt Survey. Methods: We propose a new method for transitional disk classification based on the WISE 12 μm - PACS 70 μm color, together with inspection of the Herschel images. We applied this method to the population of Class II sources in the Chamaeleon region and studied the spectral energy distributions of the transitional disks in the sample. We also built the median spectral energy distribution of Class II objects in these regions for comparison with transitional disks. Results: The proposed method allows a clear separation of the known transitional disks from the Class II sources. We find six transitional disks, all previously known, and identify five objects previously thought to be transitional as possibly non-transitional. We find higher fluxes at the PACS wavelengths in the sample of transitional disks than those of Class II objects. Conclusions: We show the Herschel 70 μm band to be a robust and efficient tool for transitional disk identification. The sensitivity and spatial resolution of Herschel reveals a significant contamination level among the previously identified transitional disk candidates for the two regions, which calls for a revision of previous samples of transitional disks in other regions. The systematic excess found at the PACS bands could be either a result of the mechanism that produces the transitional phase, or an indication of different evolutionary paths for transitional disks and Class II sources. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.Appendix A is available in electronic form at http://www.aanda.org

  1. Evolution of dynamo-generated magnetic fields in accretion disks around compact and young stars

    NASA Technical Reports Server (NTRS)

    Stepinski, Tomasz F.

    1994-01-01

    Geometrically thin, optically thick, turbulent accretion disks are believed to surround many stars. Some of them are the compact components of close binaries, while the others are throught to be T Tauri stars. These accretion disks must be magnetized objects because the accreted matter, whether it comes from the companion star (binaries) or from a collapsing molecular cloud core (single young stars), carries an embedded magnetic field. In addition, most accretion disks are hot and turbulent, thus meeting the condition for the MHD turbulent dynamo to maintain and amplify any seed field magnetic field. In fact, for a disk's magnetic field to persist long enough in comparison with the disk viscous time it must be contemporaneously regenerated because the characteristic diffusion time of a magnetic field is typically much shorter than a disk's viscous time. This is true for most thin accretion disks. Consequently, studying magentic fields in thin disks is usually synonymous with studying magnetic dynamos, a fact that is not commonly recognized in the literature. Progress in studying the structure of many accretion disks was achieved mainly because most disks can be regarded as two-dimensional flows in which vertical and radial structures are largely decoupled. By analogy, in a thin disk, one may expect that vertical and radial structures of the magnetic field are decoupled because the magnetic field diffuses more rapidly to the vertical boundary of the disk than along the radius. Thus, an asymptotic method, called an adiabatic approximation, can be applied to accretion disk dynamo. We can represent the solution to the dynamo equation in the form B = Q(r)b(r,z), where Q(r) describes the field distribution along the radius, while the field distribution across the disk is included in the vector function b, which parametrically depends on r and is normalized by the condition max (b(z)) = 1. The field distribution across the disk is established rapidly, while the radial distribution Q(r) evolves on a considerably longer timescale. It is this evolution that is the subject of this paper.

  2. Numerical study of two disks settling in an Oldroyd-B fluid: From periodic interaction to chaining

    NASA Astrophysics Data System (ADS)

    Pan, Tsorng-Whay; Glowinski, Roland

    2017-12-01

    In this article, we present a numerical study of the dynamics of two disks sedimenting in a narrow vertical channel filled with an Oldroyd-B fluid. Two kinds of particle dynamics are observed: (i) a periodic interaction between the two disks, and (ii) the formation of a two-disk chain. For the periodic interaction of the two disks, two different motions are observed: (a) the two disks stay far apart and interact periodically, and (b) the two disks interact closely and then far apart in a periodic way, like the drafting, kissing, and tumbling of two disks sedimenting in a Newtonian fluid, due to a weak elastic force. Concerning the formation of a two-disk chain occurring at higher values of the elasticity number, either a tilted chain or a vertical chain is observed. Our simulations show that, as expected, the values of the elasticity and Mach numbers are the determining factors concerning the particle chain formation and its orientation.

  3. Numerical study of two disks settling in an Oldroyd-B fluid: From periodic interaction to chaining.

    PubMed

    Pan, Tsorng-Whay; Glowinski, Roland

    2017-12-01

    In this article, we present a numerical study of the dynamics of two disks sedimenting in a narrow vertical channel filled with an Oldroyd-B fluid. Two kinds of particle dynamics are observed: (i) a periodic interaction between the two disks, and (ii) the formation of a two-disk chain. For the periodic interaction of the two disks, two different motions are observed: (a) the two disks stay far apart and interact periodically, and (b) the two disks interact closely and then far apart in a periodic way, like the drafting, kissing, and tumbling of two disks sedimenting in a Newtonian fluid, due to a weak elastic force. Concerning the formation of a two-disk chain occurring at higher values of the elasticity number, either a tilted chain or a vertical chain is observed. Our simulations show that, as expected, the values of the elasticity and Mach numbers are the determining factors concerning the particle chain formation and its orientation.

  4. Transitional Disks Associated With Intermediate-mass Stars: Results of the SEEDS YSO survey

    NASA Technical Reports Server (NTRS)

    Grady, Carol A.; Fukagawa, M.; Maruta, Y.; Ohta, Y.; Wisniewski, J.; Hashimoto, J.; Okamoto, Y.; Momose, M.; Currie, T.; Mcelwain, Michael W.; hide

    2014-01-01

    As part of the Strategic Exploration of Exoplanets and Disks with Subaru YSO survey, we have surveyed a number of Herbig B-F stars at H-band using Polarimetric Differential Imaging+Angular differential imaging. Historically, Herbig stars have been sorted based on their IR SEDs into those with SEDS which can be fit by powerlaws over 1-200 µm (Meeus et al. 2001, group II), and those which can be interpreted as a powerlaw + a blackbody component (Meeus group I) or powerlaw+missing warm thermal emission, which is one of the criteria for identification of gapped or transitional disks. Meeus group II disks, when imaged with HiCIAO show featureless disks with depolarization along the projection of the disk semi-minor axis (Kusakabe et al. 2012). This is what we had expected to see for the Meeus group I disks, except for the addition of wide gaps or central cavities. Instead we find wild diversity, suggesting that transitional disks are highly perturbed compared to Meeus group II disks.

  5. Mapping hard magnetic recording disks by TOF-SIMS

    NASA Astrophysics Data System (ADS)

    Spool, A.; Forrest, J.

    2008-12-01

    Mapping of hard magnetic recording disks by TOF-SIMS was performed both to produce significant analytical results for the understanding of the disk surface and the head disk interface in hard disk drives, and as an example of a macroscopic non-rectangular mapping problem for the technique. In this study, maps were obtained by taking discrete samples of the disk surface at set intervals in R and Θ. Because both in manufacturing, and in the disk drive, processes that may affect the disk surface are typically circumferential in nature, changes in the surface are likely to be blurred in the Θ direction. An algorithm was developed to determine the optimum relative sampling ratio in R and Θ. The results confirm what the experience of the analysts suggested, that changes occur more rapidly on disks in the radial direction, and that more sampling in the radial direction is desired. The subsequent use of statistical methods principle component analysis (PCA), maximum auto-correlation factors (MAF), and the algorithm inverse distance weighting (IDW) are explored.

  6. The Influence of Interactions and Minor Mergers on the Structure of Galactic Disks

    NASA Astrophysics Data System (ADS)

    Schwarzkopf, U.

    1999-07-01

    A detailed statistical study is presented focused on the effects of minor mergers and tidal interactions on the radial and vertical structure of galactic disks. The fundamental disk parameters of 112 highly-inclined/edge-on galaxies are studied in optical and in near-infrared passbands. This sample consists of two subsamples of 65 non-interacting and 47 interacting/merging galaxies. Additionally, 41 of these galaxies were observed in the near-infrared. A 3-dimensional disk modelling and -fitting procedure was applied in order to analyze and to compare characteristic disk parameters of all sample galaxies. Furthermore, n-body simulations were performed in order to study the influence of minor mergers in the mass range Msat/Mdisk 0.1 on the vertical structure of disks in spiral galaxies. In particular, the dependence of vertical, tidally-triggered disk thickening on initial disk parameters is investigated. The quantitative results of both simulation and observation are compared in order to find similarities in the distribution of characteristic disk parameters.

  7. The near-infrared properties of compact binary systems

    NASA Astrophysics Data System (ADS)

    Froning, Cynthia Suzanne

    I present H- and K-band light curves of the dwarf nova cataclysmic variable (CV), IP Peg, and the novalike CV, RW Tri, and an H-band light curve of the novalike CV, SW Sex. All three systems showed contributions from the late-type secondary star and the accretion disk, including a primary eclipse of the accretion disk by the secondary star and a secondary eclipse of the star by the disk. The ellipsoidal variations of the secondary star in IP Peg were modeled and subtracted from the data. The subtracted light curves show a pronounced double-hump variation, resembling those seen in the dwarf novae WZ Sge and AL Com. The primary eclipse was modeled using maximum entropy disk mapping techniques. The accretion disk has a flat intensity distribution and a low brightness temperature (Tbr ~= 3000-4000 K). Superimposed on the face of the disk is the bright spot, where the mass accretion stream impacts the disk; the position of the bright spot is different from the range of positions seen at visible wavelengths. The near-infrared accretion disk flux is dominated by optically thin emission. The eclipse depth is too shallow to be caused by a fully opaque accretion disk. The NIR light curves in RW Tri show a deep primary eclipse of the accretion disk, ellipsoidal variations from the secondary star, a secondary eclipse, and strong flickering in the disk flux. The depth of the secondary eclipse indicates that the accretion disk is opaque. The light curve also has a hump extending from φ = 0.1-0.9 which was successfully modeled as flux from the inner face of the secondary star when heated by a ~0.2 L Lsolar source. The radial brightness temperature profile of the outer disk is consistent with models of a disk in steady-state for a mass transfer rate of M~=5×10- 10 Msolaryr- 1 . At small disk radii, however, the brightness temperature profile is flatter than the steady-state model. The H-band light curve of SW Sex is dominated by emission from the accretion disk. As in RW Tri, the light curve has a hump outside of primary eclipse which was modeled as flux from the secondary star when irradiated by a 0.2-0.3 Lsolar source. The light curve has a dip at φ = 0.5 which is consistent with an eclipse of the irradiated face of the secondary star by an opaque accretion disk. The accretion disk has a brightness temperature profile much flatter than the theoretical profile of a steady- state disk. The disk is asymmetric, with the front of the disk (the side facing the secondary star at mid-eclipse) hotter than the back. The bright spot, which appears in visible disk maps of SW Sex, is not seen in the NIR light curve. I also present H-band light curves of the X-ray binary system, A0620-00, and NIR spectra of two X-ray binaries, CI Cam, and the relativistic jet source, SS 433. (Abstract shortened by UMI.)

  8. Can Eccentric Debris Disks Be Long-lived? A First Numerical Investigation and Application to Zeta(exp 2) Reticuli

    NASA Technical Reports Server (NTRS)

    Faramaz, V.; Beust, H.; Thebault, P.; Augereau, J.-C.; Bonsor, A.; delBurgo, C.; Ertel, S.; Marshall, J. P.; Milli, J.; Montesinos, B.; hide

    2014-01-01

    Context. Imaging of debris disks has found evidence for both eccentric and offset disks. One hypothesis is that they provide evidence for massive perturbers, for example, planets or binary companions, which sculpt the observed structures. One such disk was recently observed in the far-IR by the Herschel Space Observatory around Zeta2 Reticuli. In contrast with previously reported systems, the disk is significantly eccentric, and the system is several Gyr old. Aims. We aim to investigate the long-term evolution of eccentric structures in debris disks caused by a perturber on an eccentric orbit around the star. We hypothesise that the observed eccentric disk around Zeta2 Reticuli might be evidence of such a scenario. If so, we are able to constrain the mass and orbit of a potential perturber, either a giant planet or a binary companion. Methods. Analytical techniques were used to predict the effects of a perturber on a debris disk. Numerical N-body simulations were used to verify these results and further investigate the observable structures that may be produced by eccentric perturbers. The long-term evolution of the disk geometry was examined, with particular application to the Zeta2 Reticuli system. In addition, synthetic images of the disk were produced for direct comparison with Herschel observations. Results. We show that an eccentric companion can produce both the observed offsets and eccentric disks. These effects are not immediate, and we characterise the timescale required for the disk to develop to an eccentric state (and any spirals to vanish). For Zeta2 Reticuli, we derive limits on the mass and orbit of the companion required to produce the observations. Synthetic images show that the pattern observed around Zeta2 Reticuli can be produced by an eccentric disk seen close to edge-on, and allow us to bring additional constraints on the disk parameters of our model (disk flux and extent). Conclusions. We conclude that eccentric planets or stellar companions can induce long-lived eccentric structures in debris disks. Observations of such eccentric structures thus provide potential evidence of the presence of such a companion in a planetary system. We considered the specific example of Zeta2 Reticuli, whose observed eccentric disk can be explained by a distant companion (at tens of AU) on an eccentric orbit (ep greater than approx. 0.3).

  9. High-resolution observations of IRAS 08544-4431. Detection of a disk orbiting a post-AGB star and of a slow disk wind

    NASA Astrophysics Data System (ADS)

    Bujarrabal, V.; Castro-Carrizo, A.; Winckel, H. Van; Alcolea, J.; Contreras, C. Sánchez; Santander-García, M.; Hillen, M.

    2018-06-01

    Context. Aims: In order to study the effects of rotating disks in the post-asymptotic giant branch (post-AGB) evolution, we observe a class of binary post-AGB stars that seem to be systematically surrounded by equatorial disks and slow outflows. Although the rotating dynamics had only been well identified in three cases, the study of such structures is thought to be fundamental to the understanding of the formation of disks in various phases of the late evolution of binary stars and the ejection of planetary nebulae from evolved stars. Methods: We present ALMA maps of 12CO and 13CO J = 3-2 lines in the source IRAS 08544-4431, which belongs to the above mentioned class of objects. We analyzed the data by means of nebula models, which account for the expectedly composite source and can reproduce the data. From our modeling, we estimated the main nebula parameters, including the structure and dynamics and the density and temperature distributions. We discuss the uncertainties of the derived values and, in particular, their dependence on the distance. Results: Our observations reveal the presence of an equatorial disk in rotation; a low-velocity outflow is also found, probably formed of gas expelled from the disk. The main characteristics of our observations and modeling of IRAS 08544-4431 are similar to those of better studied objects, confirming our interpretation. The disk rotation indicates a total central mass of about 1.8 M⊙, for a distance of 1100 pc. The disk is found to be relatively extended and has a typical diameter of 4 × 1016 cm. The total nebular mass is 2 × 10-2 M⊙, of which 90% corresponds to the disk. Assuming that the outflow is due to mass loss from the disk, we derive a disk lifetime of 10 000 yr. The disk angular momentum is found to be comparable to that of the binary system at present. Assuming that the disk angular momentum was transferred from the binary system, as expected, the high values of the disk angular momentum in this and other similar disks suggest that the size of the stellar orbits has significantly decreased as a consequence of disk formation.

  10. Hiding the Disk and Network Latency of Out-of-Core Visualization

    NASA Technical Reports Server (NTRS)

    Ellsworth, David

    2001-01-01

    This paper describes an algorithm that improves the performance of application-controlled demand paging for out-of-core visualization by hiding the latency of reading data from both local disks or disks on remote servers. The performance improvements come from better overlapping the computation with the page reading process, and by performing multiple page reads in parallel. The paper includes measurements that show that the new multithreaded paging algorithm decreases the time needed to compute visualizations by one third when using one processor and reading data from local disk. The time needed when using one processor and reading data from remote disk decreased by two thirds. Visualization runs using data from remote disk actually ran faster than ones using data from local disk because the remote runs were able to make use of the remote server's high performance disk array.

  11. NGC 3516: Disk Diagnostics from a Windy BLSy1 in a High-State

    NASA Astrophysics Data System (ADS)

    Turner, Tracey

    2006-09-01

    Recent advances have shown X-ray flux to be simply correlated with reflection-signatures from the disk and with an associated wind in AGN. It appears two things are essential to observe the disk/wind: 1) catch the Seyfert in a high-state where disk/wind features show up strongly and 2) separate out reprocessing from distant gas to allow isolation of disk/wind features. NGC 3516 is currently in a very high state, which we predict will lead to observable features from the disk and its wind. UV data indicate NGC 3516 is very likely to have an observable disk wind due to a favorable orientation. We request 210 ks XMM exposure on NGC 3156 with supporting 200 ks Chandra time to test our prediction of flux-linked disk reflection and wind.

  12. Numerical analysis of hydrodynamics in a rotor-stator reactor for biodiesel synthesis

    NASA Astrophysics Data System (ADS)

    Wen, Zhuqing; Petera, Jerzy

    2016-06-01

    A rotor-stator spinning disk reactor for intensified biodiesel synthesis is described and numerically simulated. The reactor consists of two flat disks, located coaxially and parallel to each other with a gap ranging from 0.1 mm to 0.2 mm between the disks. The upper disk is located on a rotating shaft while the lower disk is stationary. The feed liquids, triglycerides (TG) and methanol are introduced coaxially along the center line of rotating disk and stationary disk, respectively. Fluid hydrodynamics in the reactor for synthesis of biodiesel from TG and methanol in the presence of a sodium hydroxide catalyst are simulated, using convection-diffusion-reaction species transport model by the CFD software ANSYS©Fluent v. 13.0. The effects of upper disk's spinning speed, gap size and flow rates at inlets are evaluated.

  13. HD139614: the Interferometric Case for a Group-Ib Pre-Transitional Young Disk

    NASA Technical Reports Server (NTRS)

    Labadie, Lucas; Matter, Alexis; Kreplin, Alexander; Lopez, Bruno; Wolf, Sebastian; Weigelt, Gerd; Ertel, Steve; Berger, Jean-Philippe; Pott, Jorg-Uwe; Danchi, William C.

    2014-01-01

    The Herbig Ae star HD139614 is a group-Ib object, which featureless SED indicates disk flaring and a possible pre-transitional evolutionary stage. We present mid- and near-IR interferometric results collected with MIDI, AMBER and PIONIER with the aim of constraining the spatial structure of the 0.1-10 AU disk region and assess its possible multi-component structure. A two-component disk model composed of an optically thin 2-AU wide inner disk and an outer temperature-gradient disk starting at 5.6 AU reproduces well the observations. This is an additional argument to the idea that group-I HAeBe inner disks could be already in the disk-clearing transient stage. HD139614 will become a prime target for mid-IR interferometric imaging with the second-generation instrument MATISSE of the VLTI.

  14. [Calcifications after intra-disk injection of triamcinolone hexacetonide in lumbar disk hernia. Evaluation of therapeutical results in 3 years].

    PubMed

    Debiais, F; Bontoux, D; Alcalay, M; Vandermarcq, P; Azais, O; Denis, A; Azais, I; Gasquet, C

    1991-10-01

    The development of disk or epidural calcifications is a frequent possibility following intra-disk injection of triamcinolone hexacetonide. It was found 10 times in 26 follow-up CT scans obtained 2 to 3 years after the injection. These calcifications are often clinically silent, but they sometimes accompany a recurrence of the initial painful symptomatology. Furthermore, evaluation at 3 years of therapeutic results in a previously published series of patients who had received an intra-disk injection of triamcinolone hexacetonide showed a marked decrease in favourable results (30% vs 67% at 6 months). These two arguments: disappointing long term results and possibility of disk calcifications, are felt by the authors to justify abandoning the technique of triamcinolone hexacetonide by intra-disk injection in the treatment of lumbar disk prolapse.

  15. Assessment of disk MHD generators for a base load powerplant

    NASA Technical Reports Server (NTRS)

    Chubb, D. L.; Retallick, F. D.; Lu, C. L.; Stella, M.; Teare, J. D.; Loubsky, W. J.; Louis, J. F.; Misra, B.

    1981-01-01

    Results from a study of the disk MHD generator are presented. Both open and closed cycle disk systems were investigated. Costing of the open cycle disk components (nozzle, channel, diffuser, radiant boiler, magnet and power management) was done. However, no detailed costing was done for the closed cycle systems. Preliminary plant design for the open cycle systems was also completed. Based on the system study results, an economic assessment of the open cycle systems is presented. Costs of the open cycle disk conponents are less than comparable linear generator components. Also, costs of electricity for the open cycle disk systems are competitive with comparable linear systems. Advantages of the disk design simplicity are considered. Improvements in the channel availability or a reduction in the channel lifetime requirement are possible as a result of the disk design.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Espaillat, C.; Andrews, S.; Qi, C.

    Two decades ago 'transitional disks' (TDs) described spectral energy distributions (SEDs) of T Tauri stars with small near-IR excesses, but significant mid- and far-IR excesses. Many inferred this indicated dust-free holes in disks possibly cleared by planets. Recently, this term has been applied disparately to objects whose Spitzer SEDs diverge from the expectations for a typical full disk (FD). Here, we use irradiated accretion disk models to fit the SEDs of 15 such disks in NGC 2068 and IC 348. One group has a 'dip' in infrared emission while the others' continuum emission decreases steadily at all wavelengths. We findmore » that the former have an inner disk hole or gap at intermediate radii in the disk and we call these objects 'transitional disks' and 'pre-transitional disks' (PTDs), respectively. For the latter group, we can fit these SEDs with FD models and find that millimeter data are necessary to break the degeneracy between dust settling and disk mass. We suggest that the term 'transitional' only be applied to objects that display evidence for a radical change in the disk's radial structure. Using this definition, we find that TDs and PTDs tend to have lower mass accretion rates than FDs and that TDs have lower accretion rates than PTDs. These reduced accretion rates onto the star could be linked to forming planets. Future observations of TDs and PTDs will allow us to better quantify the signatures of planet formation in young disks.« less

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lieman-Sifry, Jesse; Hughes, A. Meredith; Flaherty, Kevin M.

    We present a CO(2-1) and 1240 μ m continuum survey of 23 debris disks with spectral types B9-G1, observed at an angular resolution of 0.″5–1″ with the Atacama Large Millimeter/Submillimeter Array (ALMA). The sample was selected for large infrared excess and age ∼10 Myr, to characterize the prevalence of molecular gas emission in young debris disks. We identify three CO-rich debris disks, plus two additional tentative (3 σ) CO detections. Twenty disks were detected in the continuum at the >3 σ level. For the 12 disks in the sample that are spatially resolved by our observations, we perform an independentmore » analysis of the interferometric continuum visibilities to constrain the basic dust disk geometry, as well as a simultaneous analysis of the visibilities and broadband spectral energy distribution to constrain the characteristic grain size and disk mass. The gas-rich debris disks exhibit preferentially larger outer radii in their dust disks, and a higher prevalence of characteristic grain sizes smaller than the blowout size. The gas-rich disks do not exhibit preferentially larger dust masses, contrary to expectations for a scenario in which a higher cometary destruction rate would be expected to result in a larger mass of both CO and dust. The three debris disks in our sample with strong CO detections are all around A stars: the conditions in disks around intermediate-mass stars appear to be the most conducive to the survival or formation of CO.« less

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bergin, Edwin A.; Du, Fujun; Schwarz, K.

    We report observations of resolved C{sub 2}H emission rings within the gas-rich protoplanetary disks of TW Hya and DM Tau using the Atacama Large Millimeter Array. In each case the emission ring is found to arise at the edge of the observable disk of millimeter-sized grains (pebbles) traced by submillimeter-wave continuum emission. In addition, we detect a C{sub 3}H{sub 2} emission ring with an identical spatial distribution to C{sub 2}H in the TW Hya disk. This suggests that these are hydrocarbon rings (i.e., not limited to C{sub 2}H). Using a detailed thermo-chemical model we show that reproducing the emission frommore » C{sub 2}H requires a strong UV field and C/O > 1 in the upper disk atmosphere and outer disk, beyond the edge of the pebble disk. This naturally arises in a disk where the ice-coated dust mass is spatially stratified due to the combined effects of coagulation, gravitational settling and drift. This stratification causes the disk surface and outer disk to have a greater permeability to UV photons. Furthermore the concentration of ices that transport key volatile carriers of oxygen and carbon in the midplane, along with photochemical erosion of CO, leads to an elemental C/O ratio that exceeds unity in the UV-dominated disk. Thus the motions of the grains, and not the gas, lead to a rich hydrocarbon chemistry in disk surface layers and in the outer disk midplane.« less

  19. Photoevaporating Disks around Young Stars: Ultracompact HII Regions and Protoplanetary Disks.

    NASA Astrophysics Data System (ADS)

    Johnstone, Douglas Ian

    1995-01-01

    Newly formed stars produce sufficient Lyman continuum luminosity phi to significantly alter the structure and evolution of the accretion disk surrounding them. In the absence of a stellar wind, a nearly static, photoionized, 10^4 K, disk atmosphere, with a scale height that increases with disk radius varpi as varpi^{3/2 }, forms inside the gravitational radius varpig ~ 1014(M_*/ M_odot) cm where M _* is the mass of the central star. This ionized atmosphere is maintained by both the direct radiation from the central star and the diffuse field produced in the disk atmosphere by the significant fraction of hydrogen recombinations directly to the ground state. Beyond varpig the material evaporated from the disk is capable of escaping from the system and produces an ionized disk wind. The mass-loss due to this disk wind peaks at varpig . The inclusion of a stellar wind into the basic picture reduces the height of the inner disk atmosphere and introduces a new scale radius varpi_ {w} where the thermal pressure of the material evaporated from the disk balances the ram pressure in the wind. In this case the mass-loss due to the disk wind peaks at varpiw and is enhanced over the no-wind case. The photoevaporation of disks around newly formed stars has significance to both ultracompact HII regions and the dispersal of solar-type nebulae. High mass stars are intrinsically hot and thus yield sufficient Lyman luminosity to create, even without a stellar wind, disk mass-loss rates of order 2 times 10 ^{-5}phi_sp{49} {1/2} M_odotyr ^{-1}, where phi 49 = phi/(10 49 Lyman continuum photons s^{-1}). This wind, which will last until the disk is dispersed, ~ 10^5 yrs if the disk mass is M_ {d}~0.3M_*, yields sizes, emission measures and ages consistent with observations of ultracompact HII regions. The well-observed high mass star MWC 349 may be the best example to date of an evaporating disk around a high mass star. On the other end of the stellar scale, many newly formed low-mass stars are known to have enhanced extreme ultraviolet luminosity suggested to be due to boundary layer accretion. Assuming that most low mass stars have such an enhanced Lyman luminosity phi ~ 1041 s ^{-1}, for ~ 3 times 10^7 yrs it is possible to remove most of the gas in the outer disk. A diagnostic of this mass loss may be the low-velocity forbidden oxygen, nitrogen, and sulphur line emission observed around young stars with disks. Photoevaporating disk models yield reasonable agreement with the flux seen in these lines. The process of photoevaporation also has implications for the formation of the giant planets within the solar nebula. Within young stellar clusters a few high mass stars may overwhelm the internal Lyman continuum flux from low mass stars and externally evaporated disks may result. The Trapezium region presents the best studied example of such a cluster. Photoionization due to high energy photons from the high mass stars erode the disks around nearby low mass stars. The resulting short destruction times for these disks constrain the gestation period for creating planets.

  20. [Management of disk displacement with condylar fracture].

    PubMed

    Yu, Shi-bin; Li, Zu-bing; Yang, Xue-wen; Zhao, Ji-hong; Dong, Yao-jun

    2003-07-01

    To investigate clinical features of disk displacement during the course of condylar fracture and to explore the techniques of disk reposition and suturation. 32 patients (10 females and 22 males) who had disk displacements with condylar fractures were followed up. Reduction and reposition of the dislocated disks simultaneously with fixation of fractures were performed. 7 patients underwent intermaxillary fixation with elastic bands for 1 to 2 weeks. The occlusions were satisfactory in all cases but one for the reason of ramus height loss. No TMJ symptom was found when examined 3 months post operation. Anterior disk displacements were most occurred with high condylar process fractures. Surgical reposition and suturation of disk play an important role for the later TMJ-function.

  1. Laser optical disk position encoder with active heads

    NASA Technical Reports Server (NTRS)

    Osborne, Eric P.

    1991-01-01

    An angular position encoder that minimizes the effects of eccentricity and other misalignments between the disk and the read stations by employing heads with beam steering optics that actively track the disk in directions along the disk radius and normal to its surface is discussed. The device adapts features prevalent in optical disk technology to the application of angular position sensing.

  2. The Evolution of a Planet-Forming Disk Artist Concept Animation

    NASA Image and Video Library

    2004-12-09

    This frame from an animation shows the evolution of a planet-forming disk around a star. Initially, the young disk is bright and thick with dust, providing raw materials for building planets. In the first 10 million years or so, gaps appear within the disk as newborn planets coalesce out of the dust, clearing out a path. In time, this planetary "debris disk" thins out as gravitational interactions with numerous planets slowly sweep away the dust. Steady pressure from the starlight and solar winds also blows out the dust. After a few billion years, only a thin ring remains in the outermost reaches of the system, a faint echo of the once-brilliant disk. Our own solar system has a similar debris disk -- a ring of comets called the Kuiper Belt. Leftover dust in the inner portion of the solar system is known as "zodiacal dust." Bright, young disks can be imaged directly by visible-light telescopes, such as NASA's Hubble Space Telescope. Older, fainter debris disks can be detected only by infrared telescopes like NASA's Spitzer Space Telescope, which sense the disks' dim heat. http://photojournal.jpl.nasa.gov/catalog/PIA07099

  3. A three-dimensional model for lubricant depletion under sliding condition on bit patterned media of hard disk drives

    NASA Astrophysics Data System (ADS)

    Wu, Lin

    2018-05-01

    In this paper, we model the depletion dynamics of the molecularly thin layer of lubricants on a bit patterned media disk of hard disk drives under a sliding air bearing head. The dominant physics and consequently, the lubricant depletion dynamics on a patterned disk are shown to be significantly different from the well-studied cases of a smooth disk. Our results indicate that the surface tension effect, which is negligible on a flat disk, apparently suppresses depletion by enforcing a bottleneck effect around the disk pattern peak regions to thwart the migration of lubricants. When the disjoining pressure is relatively small, it assists the depletion. But, when the disjoining pressure becomes dominant, the disjoining pressure resists depletion. Disk pattern orientation plays a critical role in the depletion process. The effect of disk pattern orientation on depletion originates from its complex interaction with other intermingled factors of external air shearing stress distribution and lubricant particle trajectory. Patterning a disk surface with nanostructures of high density, large height/pitch ratio, and particular orientation is demonstrated to be one efficient way to alleviate the formation of lubricant depletion tracks.

  4. Molecular Gas in Young Debris Disks

    NASA Technical Reports Server (NTRS)

    Moor, A.; Abraham, P.; Juhasz, A.; Kiss, Cs.; Pascucci, I.; Kospal, A.; Apai, D.; Henning, T.; Csengeri, T.; Grady, C.

    2011-01-01

    Gas-rich primordial disks and tenuous gas-poor debris disks are usually considered as two distinct evolutionary phases of the circumstellar matter. Interestingly, the debris disk around the young main-sequence star 49 Ceti possesses a substantial amount of molecular gas and possibly represents the missing link between the two phases. Motivated to understand the evolution of the gas component in circumstellar disks via finding more 49 Ceti-like systems, we carried out a CO J = 3-2 survey with the Atacama Pathfinder EXperiment, targeting 20 infrared-luminous debris disks. These systems fill the gap between primordial and old tenuous debris disks in terms of fractional luminosity. Here we report on the discovery of a second 49 Ceti-like disk around the 30 Myr old A3-type star HD21997, a member of the Columba Association. This system was also detected in the CO(2-1) transition, and the reliable age determination makes it an even clearer example of an old gas-bearing disk than 49 Ceti. While the fractional luminosities of HD21997 and 49 Ceti are not particularly high, these objects seem to harbor the most extended disks within our sample. The double-peaked profiles of HD21997 were reproduced by a Keplerian disk model combined with the LIME radiative transfer code. Based on their similarities, 49 Ceti and HD21997 may be the first representatives of a so far undefined new class of relatively old > or approx.8 Myr), gaseous dust disks. From our results, neither primordia1 origin nor steady secondary production from icy planetesima1s can unequivocally explain the presence of CO gas in the disk ofHD21997.

  5. The 0.5-2.22 micrometer Scattered Light Spectrum of the Disk around TW Hya: Detection of a Partially Filled Disk Gap at 80 AU*

    NASA Technical Reports Server (NTRS)

    Debes, John H.; Jang-Condell, Hannah; Weinberger, Alycia J.; Roberge, Aki; Schneider, Glenn

    2013-01-01

    We present a 0.5-2.2 micrometer scattered light spectrum of the circumstellar disk around TW Hya from a combination of spatially resolved Hubble Space Telescope STIS spectroscopy and NICMOS coronagraphic images of the disk. We investigate the morphology of the disk at distances greater than 40 AU over this wide range of wavelengths, and identify the presence of a depression in surface brightness at approximately 80 AU that could be caused by a gap in the disk. Additionally, we quantify the surface brightness, azimuthal symmetry, and spectral character of the disk as a function of radius. Our analysis shows that the scattering efficiency of the dust is largely neutral to blue over the observed wavelengths. We model the disk as a steady a-disk with an ad hoc gap structure. The thermal properties of the disk are selfconsistently calculated using a three-dimensional radiative transfer code that uses ray tracing to model the heating of the disk interior and scattered light images. We find a good fit to the data over a wide range of distances from the star if we use a model disk with a partially filled gap of 30% depth at 80 AU and with a self-similar truncation knee at 100 AU. The origin of the gap is unclear, but it could arise from a transition in the nature of the disk's dust composition or the presence of a planetary companion. Based on scalings to previous hydrodynamic simulations of gap-opening criteria for embedded proto-planets, we estimate that a planetary companion forming the gap could have a mass between 6 and 28 solar mass.

  6. An ALMA Survey of CO Isotopologue Emission from Protoplanetary Disks in Chamaeleon I

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Long Feng; Herczeg, Gregory J.; Pascucci, Ilaria

    The mass of a protoplanetary disk limits the formation and future growth of any planet. Masses of protoplanetary disks are usually calculated from measurements of the dust continuum emission by assuming an interstellar gas-to-dust ratio. To investigate the utility of CO as an alternate probe of disk mass, we use ALMA to survey {sup 13}CO and C{sup 18}O J = 3–2 line emission from a sample of 93 protoplanetary disks around stars and brown dwarfs with masses from in the nearby Chamaeleon I star-forming region. We detect {sup 13}CO emission from 17 sources and C{sup 18}O from only one source.more » Gas masses for disks are then estimated by comparing the CO line luminosities to results from published disk models that include CO freeze-out and isotope-selective photodissociation. Under the assumption of a typical interstellar medium CO-to-H{sub 2} ratio of 10{sup −4}, the resulting gas masses are implausibly low, with an average gas mass of ∼0.05 M {sub Jup} as inferred from the average flux of stacked {sup 13}CO lines. The low gas masses and gas-to-dust ratios for Cha I disks are both consistent with similar results from disks in the Lupus star-forming region. The faint CO line emission may instead be explained if disks have much higher gas masses, but freeze-out of CO or complex C-bearing molecules is underestimated in disk models. The conversion of CO flux to CO gas mass also suffers from uncertainties in disk structures, which could affect gas temperatures. CO emission lines will only be a good tracer of the disk mass when models for C and CO depletion are confirmed to be accurate.« less

  7. The Effects of Protostellar Disk Turbulence on CO Emission Lines: A Comparison Study of Disks with Constant CO Abundance versus Chemically Evolving Disks

    NASA Astrophysics Data System (ADS)

    Yu, Mo; Evans, Neal J., II; Dodson-Robinson, Sarah E.; Willacy, Karen; Turner, Neal J.

    2017-12-01

    Turbulence is the leading candidate for angular momentum transport in protoplanetary disks and therefore influences disk lifetimes and planet formation timescales. However, the turbulent properties of protoplanetary disks are poorly constrained observationally. Recent studies have found turbulent speeds smaller than what fully-developed MRI would produce (Flaherty et al.). However, existing studies assumed a constant CO/H2 ratio of 10-4 in locations where CO is not frozen-out or photo-dissociated. Our previous studies of evolving disk chemistry indicate that CO is depleted by incorporation into complex organic molecules well inside the freeze-out radius of CO. We consider the effects of this chemical depletion on measurements of turbulence. Simon et al. suggested that the ratio of the peak line flux to the flux at line center of the CO J = 3-2 transition is a reasonable diagnostic of turbulence, so we focus on that metric, while adding some analysis of the more complex effects on spatial distribution. We simulate the emission lines of CO based on chemical evolution models presented in Yu et al., and find that the peak-to-trough ratio changes as a function of time as CO is destroyed. Specifically, a CO-depleted disk with high turbulent velocity mimics the peak-to-trough ratios of a non-CO-depleted disk with lower turbulent velocity. We suggest that disk observers and modelers take into account the possibility of CO depletion when using line profiles or peak-to-trough ratios to constrain the degree of turbulence in disks. Assuming that {CO}/{{{H}}}2={10}-4 at all disk radii can lead to underestimates of turbulent speeds in the disk by at least 0.2 km s-1.

  8. An Upper Limit on the Mass of the Circumplanetary Disk for DH Tau b

    NASA Astrophysics Data System (ADS)

    Wolff, Schuyler G.; Ménard, François; Caceres, Claudio; Lefèvre, Charlene; Bonnefoy, Mickael; Cánovas, Héctor; Maret, Sébastien; Pinte, Christophe; Schreiber, Matthias R.; van der Plas, Gerrit

    2017-07-01

    DH Tau is a young (˜1 Myr) classical T Tauri star. It is one of the few young PMS stars known to be associated with a planetary mass companion, DH Tau b, orbiting at large separation and detected by direct imaging. DH Tau b is thought to be accreting based on copious {{H}}α emission and exhibits variable Paschen Beta emission. NOEMA observations at 230 GHz allow us to place constraints on the disk dust mass for both DH Tau b and the primary in a regime where the disks will appear optically thin. We estimate a disk dust mass for the primary, DH Tau A of 17.2+/- 1.7 {M}\\oplus , which gives a disk to star mass ratio of 0.014 (assuming the usual gas to dust mass ratio of 100 in the disk). We find a conservative disk dust mass upper limit of 0.42 M ⊕ for DH Tau b, assuming that the disk temperature is dominated by irradiation from DH Tau b itself. Given the environment of the circumplanetary disk, variable illumination from the primary or the equilibrium temperature of the surrounding cloud would lead to even lower disk mass estimates. A MCFOST radiative transfer model, including heating of the circumplanetary disk by DH Tau b and DH Tau A, suggests that a mass-averaged disk temperature of 22 K is more realistic, resulting in a dust disk mass upper limit of 0.09 M ⊕ for DH Tau b. We place DH Tau b in context with similar objects and discuss the consequences for planet formation models. This work is based on observations carried out under project D15AC with the IRAM NOEMA Interferometer. IRAM is supported by INSU/CNRS (France), MPG (Germany), and IGN (Spain).

  9. Radial Surface Density Profiles of Gas and Dust in the Debris Disk around 49 Ceti

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hughes, A. Meredith; Lieman-Sifry, Jesse; Flaherty, Kevin M.

    We present ∼0.″4 resolution images of CO(3–2) and associated continuum emission from the gas-bearing debris disk around the nearby A star 49 Ceti, observed with the Atacama Large Millimeter/Submillimeter Array (ALMA). We analyze the ALMA visibilities in tandem with the broadband spectral energy distribution to measure the radial surface density profiles of dust and gas emission from the system. The dust surface density decreases with radius between ∼100 and 310 au, with a marginally significant enhancement of surface density at a radius of ∼110 au. The SED requires an inner disk of small grains in addition to the outer diskmore » of larger grains resolved by ALMA. The gas disk exhibits a surface density profile that increases with radius, contrary to most previous spatially resolved observations of circumstellar gas disks. While ∼80% of the CO flux is well described by an axisymmetric power-law disk in Keplerian rotation about the central star, residuals at ∼20% of the peak flux exhibit a departure from axisymmetry suggestive of spiral arms or a warp in the gas disk. The radial extent of the gas disk (∼220 au) is smaller than that of the dust disk (∼300 au), consistent with recent observations of other gas-bearing debris disks. While there are so far only three broad debris disks with well characterized radial dust profiles at millimeter wavelengths, 49 Ceti’s disk shows a markedly different structure from two radially resolved gas-poor debris disks, implying that the physical processes generating and sculpting the gas and dust are fundamentally different.« less

  10. Modifying the Standard Disk Model for the Ultraviolet Spectral Analysis of Disk-dominated Cataclysmic Variables. I. The Novalikes MV Lyrae, BZ Camelopardalis, and V592 Cassiopeiae.

    PubMed

    Godon, Patrick; Sion, Edward M; Balman, Şölen; Blair, William P

    2017-09-01

    The standard disk is often inadequate to model disk-dominated cataclysmic variables (CVs) and generates a spectrum that is bluer than the observed UV spectra. X-ray observations of these systems reveal an optically thin boundary layer (BL) expected to appear as an inner hole in the disk. Consequently, we truncate the inner disk. However, instead of removing the inner disk, we impose the no-shear boundary condition at the truncation radius, thereby lowering the disk temperature and generating a spectrum that better fits the UV data. With our modified disk, we analyze the archival UV spectra of three novalikes that cannot be fitted with standard disks. For the VY Scl systems MV Lyr and BZ Cam, we fit a hot inflated white dwarf (WD) with a cold modified disk ( [Formula: see text] ~ a few 10 -9 M ⊙ yr -1 ). For V592 Cas, the slightly modified disk ( [Formula: see text] ~ 6 × 10 -9 M ⊙ yr -1 ) completely dominates the UV. These results are consistent with Swift X-ray observations of these systems, revealing BLs merged with ADAF-like flows and/or hot coronae, where the advection of energy is likely launching an outflow and heating the WD, thereby explaining the high WD temperature in VY Scl systems. This is further supported by the fact that the X-ray hardness ratio increases with the shallowness of the UV slope in a small CV sample we examine. Furthermore, for 105 disk-dominated systems, the International Ultraviolet Explorer spectra UV slope decreases in the same order as the ratio of the X-ray flux to optical/UV flux: from SU UMa's, to U Gem's, Z Cam's, UX UMa's, and VY Scl's.

  11. Effect of Degeneration on Fluid-Solid Interaction within Intervertebral Disk Under Cyclic Loading - A Meta-Model Analysis of Finite Element Simulations.

    PubMed

    Nikkhoo, Mohammad; Khalaf, Kinda; Kuo, Ya-Wen; Hsu, Yu-Chun; Haghpanahi, Mohammad; Parnianpour, Mohamad; Wang, Jaw-Lin

    2015-01-01

    The risk of low back pain resulted from cyclic loadings is greater than that resulted from prolonged static postures. Disk degeneration results in degradation of disk solid structures and decrease of water contents, which is caused by activation of matrix digestive enzymes. The mechanical responses resulted from internal solid-fluid interactions of degenerative disks to cyclic loadings are not well studied yet. The fluid-solid interactions in disks can be evaluated by mathematical models, especially the poroelastic finite element (FE) models. We developed a robust disk poroelastic FE model to analyze the effect of degeneration on solid-fluid interactions within disk subjected to cyclic loadings at different loading frequencies. A backward analysis combined with in vitro experiments was used to find the elastic modulus and hydraulic permeability of intact and enzyme-induced degenerated porcine disks. The results showed that the averaged peak-to-peak disk deformations during the in vitro cyclic tests were well fitted with limited FE simulations and a quadratic response surface regression for both disk groups. The results showed that higher loading frequency increased the intradiscal pressure, decreased the total fluid loss, and slightly increased the maximum axial stress within solid matrix. Enzyme-induced degeneration decreased the intradiscal pressure and total fluid loss, and barely changed the maximum axial stress within solid matrix. The increase of intradiscal pressure and total fluid loss with loading frequency was less sensitive after the frequency elevated to 0.1 Hz for the enzyme-induced degenerated disk. Based on this study, it is found that enzyme-induced degeneration decreases energy attenuation capability of disk, but less change the strength of disk.

  12. The Dynamics of Truncated Black Hole Accretion Disks. I. Viscous Hydrodynamic Case

    NASA Astrophysics Data System (ADS)

    Hogg, J. Drew; Reynolds, Christopher S.

    2017-07-01

    Truncated accretion disks are commonly invoked to explain the spectro-temporal variability in accreting black holes in both small systems, I.e., state transitions in galactic black hole binaries (GBHBs), and large systems, I.e., low-luminosity active galactic nuclei (LLAGNs). In the canonical truncated disk model of moderately low accretion rate systems, gas in the inner region of the accretion disk occupies a hot, radiatively inefficient phase, which leads to a geometrically thick disk, while the gas in the outer region occupies a cooler, radiatively efficient phase that resides in the standard geometrically thin disk. Observationally, there is strong empirical evidence to support this phenomenological model, but a detailed understanding of the dynamics of truncated disks is lacking. We present a well-resolved viscous, hydrodynamic simulation that uses an ad hoc cooling prescription to drive a thermal instability and, hence, produce the first sustained truncated accretion disk. With this simulation, we perform a study of the dynamics, angular momentum transport, and energetics of a truncated disk. We find that the time variability introduced by the quasi-periodic transition of gas from efficient cooling to inefficient cooling impacts the evolution of the simulated disk. A consequence of the thermal instability is that an outflow is launched from the hot/cold gas interface, which drives large, sub-Keplerian convective cells into the disk atmosphere. The convective cells introduce a viscous θ - ϕ stress that is less than the generic r - ϕ viscous stress component, but greatly influences the evolution of the disk. In the truncated disk, we find that the bulk of the accreted gas is in the hot phase.

  13. Increased Utilization of Cervical Disk Arthroplasty in University Hospitals with Regional Variation and Socioeconomic Discrepancies.

    PubMed

    Palejwala, Sheri K; Rughani, Anand I; Dumont, Travis M

    2017-03-01

    Treatment of cervical radiculopathy with disk arthroplasty has been approved by the U.S. Food and Drug Administration since 2007. Recently, a significant increase in clinical data including mid- and long-term follow-up has become available, demonstrating the superiority of disk arthroplasty compared with anterior discectomy and fusion. The aim of this project is to assess the nationwide use of cervical disk arthroplasty. The University Healthcare Consortium database was accessed for all elective cases of patients treated for cervical radiculopathy caused by disk herniation (International Classification of Diseases [ICD] 722.0) from the fourth quarter of 2012 to the third quarter of 2015. Within this 3-year window, temporal and socioeconomic trends in the use of cervical disk replacement for this diagnosis were assessed. Three thousand four hundred forty-six cases were identified. A minority of cases (10.7%) were treated with disk arthroplasty. Median hospital charges were comparable for cervical disk replacement ($15,606) and anterior cervical fusion ($15,080). However, utilization was seen to increase by nearly 70% during the timeframe assessed. Disk arthroplasty was performed in 8% of patients in 2012 to 2013, compared with 13% of cases in 2015. Disk replacement use was more common for self-paying patients, patients with private insurance, and patients with military-based insurance. There was widespread variation in the use of cervical disk replacement between regions, with a nadir in northeastern states (8%) and a peak in western states (20%). Over a short, 3 -year period there has been an increase in the treatment of symptomatic cervical radiculopathy with disk arthroplasty. The authors predict a further increase in cervical disk arthroplasty in upcoming years. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. SMA Continuum Survey of Circumstellar Disks in Serpens

    NASA Astrophysics Data System (ADS)

    Law, Charles; Ricci, Luca; Andrews, Sean M.; Wilner, David J.; Qi, Chunhua

    2017-06-01

    The lifetime of disks surrounding pre-main-sequence stars is closely linked to planet formation and provides information on disk dispersal mechanisms and dissipation timescales. The potential for these optically thick, gas-rich disks to form planets is critically dependent on how much dust is available to be converted into terrestrial planets and rocky cores of giant planets. For this reason, an understanding of how dust mass varies with key properties such as stellar mass, age, and environment is critical for understanding planet formation. Millimeter wavelength observations, in which the dust emission is optically thin, are required to study the colder dust residing in the disk’s outer regions and to measure disk dust masses. Hence, we have obtained SMA 1.3 mm continuum observations of 62 Class II sources with suspected circumstellar disks in the Serpens star-forming region (SFR). Relative to the well-studied Taurus SFR, Serpens allows us to probe the distribution of dust masses for disks in a much denser and more clustered environment. Only 13 disks were detected in the continuum with the SMA. We calculate the total dust masses of these disks and compare their masses to those of disks in Taurus, Lupus, and Upper Scorpius. We do not find evidence of diminished dust masses in Serpens disks relative to those in Taurus despite the fact that disks in denser clusters may be expected to contain less dust mass due to stronger and more frequent tidal interactions that can disrupt the outer regions of disks. However, considering the low detection fraction, we likely detected only bright continuum sources and a more sensitive survey of Serpens would help clarify these results.

  15. An ALMA Survey of CO Isotopologue Emission from Protoplanetary Disks in Chamaeleon I

    NASA Astrophysics Data System (ADS)

    Long, Feng; Herczeg, Gregory J.; Pascucci, Ilaria; Drabek-Maunder, Emily; Mohanty, Subhanjoy; Testi, Leonardo; Apai, Daniel; Hendler, Nathan; Henning, Thomas; Manara, Carlo F.; Mulders, Gijs D.

    2017-08-01

    The mass of a protoplanetary disk limits the formation and future growth of any planet. Masses of protoplanetary disks are usually calculated from measurements of the dust continuum emission by assuming an interstellar gas-to-dust ratio. To investigate the utility of CO as an alternate probe of disk mass, we use ALMA to survey 13CO and C18O J = 3–2 line emission from a sample of 93 protoplanetary disks around stars and brown dwarfs with masses from in the nearby Chamaeleon I star-forming region. We detect 13CO emission from 17 sources and C18O from only one source. Gas masses for disks are then estimated by comparing the CO line luminosities to results from published disk models that include CO freeze-out and isotope-selective photodissociation. Under the assumption of a typical interstellar medium CO-to-H2 ratio of 10‑4, the resulting gas masses are implausibly low, with an average gas mass of ∼0.05 M Jup as inferred from the average flux of stacked 13CO lines. The low gas masses and gas-to-dust ratios for Cha I disks are both consistent with similar results from disks in the Lupus star-forming region. The faint CO line emission may instead be explained if disks have much higher gas masses, but freeze-out of CO or complex C-bearing molecules is underestimated in disk models. The conversion of CO flux to CO gas mass also suffers from uncertainties in disk structures, which could affect gas temperatures. CO emission lines will only be a good tracer of the disk mass when models for C and CO depletion are confirmed to be accurate.

  16. The Ages of the Thin Disk, Thick Disk, and the Halo from Nearby White Dwarfs

    NASA Astrophysics Data System (ADS)

    Kilic, Mukremin; Munn, Jeffrey A.; Harris, Hugh C.; von Hippel, Ted; Liebert, James W.; Williams, Kurtis A.; Jeffery, Elizabeth; DeGennaro, Steven

    2017-03-01

    We present a detailed analysis of the white dwarf luminosity functions derived from the local 40 pc sample and the deep proper motion catalog of Munn et al. Many previous studies have ignored the contribution of thick disk white dwarfs to the Galactic disk luminosity function, which results in an erroneous age measurement. We demonstrate that the ratio of thick/thin disk white dwarfs is roughly 20% in the local sample. Simultaneously fitting for both disk components, we derive ages of 6.8-7.0 Gyr for the thin disk and 8.7 ± 0.1 Gyr for the thick disk from the local 40 pc sample. Similarly, we derive ages of 7.4-8.2 Gyr for the thin disk and 9.5-9.9 Gyr for the thick disk from the deep proper motion catalog, which shows no evidence of a deviation from a constant star formation rate in the past 2.5 Gyr. We constrain the time difference between the onset of star formation in the thin disk and the thick disk to be {1.6}-0.4+0.3 Gyr. The faint end of the luminosity function for the halo white dwarfs is less constrained, resulting in an age estimate of {12.5}-3.4+1.4 Gyr for the Galactic inner halo. This is the first time that ages for all three major components of the Galaxy have been obtained from a sample of field white dwarfs that is large enough to contain significant numbers of disk and halo objects. The resultant ages agree reasonably well with the age estimates for the oldest open and globular clusters.

  17. Collisional Time Scales in the Kuiper Disk and Their Implications

    NASA Technical Reports Server (NTRS)

    Stern, S. Alan

    1995-01-01

    We explore the rate of collisions among bodies in the present-day Kuiper Disk as a function of the total mass and population size structure of the disk. We find that collisional evolution is an important evolutionary process in the disk as a whole, and indeed, that it is likely the dominant evolutionary process beyond approx. 42 AU, where dynamical instability time scales exceed the age of the solar system. Two key findings we report from this modeling work are: that unless the disk's population structure is sharply truncated for radii smaller than approx. 1-2 km, collisions between comets and smaller debris are occurring so frequently in the disk, and with high enough velocities, that the small body (i.e., KM-class object) population in the disk has probably developed into a collisional cascade, thereby implying that the Kuiper Disk comets may not all be primordial, and that the rate of collisions of smaller bodies with larger 100 less R less 400 km objects (like 1992QB(sub 1) and its cohorts) is so low that there appears to be a dilemma in explaining how QB(sub 1)s could have grown by binary accretion in the disk as we know it. Given these findings, it appears that either the present-day paradigm for the formation of Kuiper Disk is failed in some fundamental respect, or that the present-day disk is no longer representative of the ancient structure from which it evolved. This in turn suggests the intriguing possibility that the present-day Kuiper Disk evolved through a more erosional stage reminiscent of the disks around the stars Beta Pictorus, alpha PsA, and alpha Lyr.

  18. The Dynamics of Truncated Black Hole Accretion Disks. I. Viscous Hydrodynamic Case

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hogg, J. Drew; Reynolds, Christopher S.

    Truncated accretion disks are commonly invoked to explain the spectro-temporal variability in accreting black holes in both small systems, i.e., state transitions in galactic black hole binaries (GBHBs), and large systems, i.e., low-luminosity active galactic nuclei (LLAGNs). In the canonical truncated disk model of moderately low accretion rate systems, gas in the inner region of the accretion disk occupies a hot, radiatively inefficient phase, which leads to a geometrically thick disk, while the gas in the outer region occupies a cooler, radiatively efficient phase that resides in the standard geometrically thin disk. Observationally, there is strong empirical evidence to supportmore » this phenomenological model, but a detailed understanding of the dynamics of truncated disks is lacking. We present a well-resolved viscous, hydrodynamic simulation that uses an ad hoc cooling prescription to drive a thermal instability and, hence, produce the first sustained truncated accretion disk. With this simulation, we perform a study of the dynamics, angular momentum transport, and energetics of a truncated disk. We find that the time variability introduced by the quasi-periodic transition of gas from efficient cooling to inefficient cooling impacts the evolution of the simulated disk. A consequence of the thermal instability is that an outflow is launched from the hot/cold gas interface, which drives large, sub-Keplerian convective cells into the disk atmosphere. The convective cells introduce a viscous θ − ϕ stress that is less than the generic r − ϕ viscous stress component, but greatly influences the evolution of the disk. In the truncated disk, we find that the bulk of the accreted gas is in the hot phase.« less

  19. Effect of Degeneration on Fluid–Solid Interaction within Intervertebral Disk Under Cyclic Loading – A Meta-Model Analysis of Finite Element Simulations

    PubMed Central

    Nikkhoo, Mohammad; Khalaf, Kinda; Kuo, Ya-Wen; Hsu, Yu-Chun; Haghpanahi, Mohammad; Parnianpour, Mohamad; Wang, Jaw-Lin

    2015-01-01

    The risk of low back pain resulted from cyclic loadings is greater than that resulted from prolonged static postures. Disk degeneration results in degradation of disk solid structures and decrease of water contents, which is caused by activation of matrix digestive enzymes. The mechanical responses resulted from internal solid–fluid interactions of degenerative disks to cyclic loadings are not well studied yet. The fluid–solid interactions in disks can be evaluated by mathematical models, especially the poroelastic finite element (FE) models. We developed a robust disk poroelastic FE model to analyze the effect of degeneration on solid–fluid interactions within disk subjected to cyclic loadings at different loading frequencies. A backward analysis combined with in vitro experiments was used to find the elastic modulus and hydraulic permeability of intact and enzyme-induced degenerated porcine disks. The results showed that the averaged peak-to-peak disk deformations during the in vitro cyclic tests were well fitted with limited FE simulations and a quadratic response surface regression for both disk groups. The results showed that higher loading frequency increased the intradiscal pressure, decreased the total fluid loss, and slightly increased the maximum axial stress within solid matrix. Enzyme-induced degeneration decreased the intradiscal pressure and total fluid loss, and barely changed the maximum axial stress within solid matrix. The increase of intradiscal pressure and total fluid loss with loading frequency was less sensitive after the frequency elevated to 0.1 Hz for the enzyme-induced degenerated disk. Based on this study, it is found that enzyme-induced degeneration decreases energy attenuation capability of disk, but less change the strength of disk. PMID:25674562

  20. Photon Bubbles and the Vertical Structure of Accretion Disks

    NASA Astrophysics Data System (ADS)

    Begelman, Mitchell C.

    2006-06-01

    We consider the effects of ``photon bubble'' shock trains on the vertical structure of radiation pressure-dominated accretion disks. These density inhomogeneities are expected to develop spontaneously in radiation-dominated accretion disks where magnetic pressure exceeds gas pressure, even in the presence of magnetorotational instability (MRI). They increase the rate at which radiation escapes from the disk and may allow disks to exceed the Eddington limit by a substantial factor without blowing themselves apart. To refine our earlier analysis of photon bubble transport in accretion disks, we generalize the theory of photon bubbles to include the effects of finite optical depths and radiation damping. Modifications to the diffusion law at low τ tend to ``fill in'' the low-density regions of photon bubbles, while radiation damping inhibits the formation of photon bubbles at large radii, small accretion rates, and small heights above the equatorial plane. Accretion disks dominated by photon bubble transport may reach luminosities from 10 to >100 times the Eddington limit (LEdd), depending on the mass of the central object, while remaining geometrically thin. However, photon bubble-dominated disks with α-viscosity are subject to the same thermal and viscous instabilities that plague standard radiation pressure-dominated disks, suggesting that they may be intrinsically unsteady. Photon bubbles can lead to a ``core-halo'' vertical disk structure. In super-Eddington disks the halo forms the base of a wind, which carries away substantial energy and mass, but not enough to prevent the luminosity from exceeding LEdd. Photon bubble-dominated disks may have smaller color corrections than standard accretion disks of the same luminosity. They remain viable contenders for some ultraluminous X-ray sources and may play a role in the rapid growth of supermassive black holes at high redshift.

  1. THE SPITZER INFRARED SPECTROGRAPH SURVEY OF PROTOPLANETARY DISKS IN ORION A. I. DISK PROPERTIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, K. H.; Watson, Dan M.; Manoj, P.

    2016-09-01

    We present our investigation of 319 Class II objects in Orion A observed by Spitzer /IRS. We also present the follow-up observations of 120 of these Class II objects in Orion A from the Infrared Telescope Facility/SpeX. We measure continuum spectral indices, equivalent widths, and integrated fluxes that pertain to disk structure and dust composition from IRS spectra of Class II objects in Orion A. We estimate mass accretion rates using hydrogen recombination lines in the SpeX spectra of our targets. Utilizing these properties, we compare the distributions of the disk and dust properties of Orion A disks with thosemore » of Taurus disks with respect to position within Orion A (Orion Nebular Cluster [ONC] and L1641) and with the subgroups by the inferred radial structures, such as transitional disks (TDs) versus radially continuous full disks (FDs). Our main findings are as follows. (1) Inner disks evolve faster than the outer disks. (2) The mass accretion rates of TDs and those of radially continuous FDs are statistically significantly displaced from each other. The median mass accretion rate of radially continuous disks in the ONC and L1641 is not very different from that in Taurus. (3) Less grain processing has occurred in the disks in the ONC compared to those in Taurus, based on analysis of the shape index of the 10 μ m silicate feature ( F {sub 11.3}/ F {sub 9.8}). (4) The 20–31 μ m continuum spectral index tracks the projected distance from the most luminous Trapezium star, θ {sup 1} Ori C. A possible explanation is UV ablation of the outer parts of disks.« less

  2. Cell Attachment Following Instrumentation with Titanium and Plastic Instruments, Diode Laser, and Titanium Brush on Titanium, Titanium-Zirconium, and Zirconia Surfaces.

    PubMed

    Lang, Melissa S; Cerutis, D Roselyn; Miyamoto, Takanari; Nunn, Martha E

    2016-01-01

    The aim of this study was to evaluate the surface characteristics and gingival fibroblast adhesion of disks composed of implant and abutment materials following brief and repeated instrumentation with instruments commonly used in procedures for implant maintenance, stage-two implant surgery, and periimplantitis treatment. One hundred twenty disks (40 titanium, 40 titaniumzirconium, 40 zirconia) were grouped into treatment categories of instrumentation by plastic curette, titanium curette, diode microlaser, rotary titanium brush, and no treatment. Twenty strokes were applied to half of the disks in the plastic and titanium curette treatment categories, while half of the disks received 100 strokes each to simulate implant maintenance occurring on a repetitive basis. Following analysis of the disks by optical laser profilometry, disks were cultured with human gingival fibroblasts. Cell counts were conducted from scanning electron microscopy (SEM) images. Differences in surface roughness across all instruments tested for zirconia disks were negligible, while both titanium disks and titaniumzirconium disks showed large differences in surface roughness across the spectrum of instruments tested. The rotary titanium brush and the titanium curette yielded the greatest overall mean surface roughness, while the plastic curette yielded the lowest mean surface roughness. The greatest mean cell counts for each disk type were as follows: titanium disks with plastic curettes, titanium-zirconium disks with titanium curettes, and zirconia disks with the diode microlaser. Repeated instrumentation did not result in cumulative changes in surface roughness of implant materials made of titanium, titanium-zirconium, or zirconia. Instrumentation with plastic implant curettes on titanium and zirconia surfaces appeared to be more favorable than titanium implant curettes in terms of gingival fibroblast attachment on these surfaces.

  3. Shadows cast on the transition disk of HD 135344B. Multiwavelength VLT/SPHERE polarimetric differential imaging

    NASA Astrophysics Data System (ADS)

    Stolker, T.; Dominik, C.; Avenhaus, H.; Min, M.; de Boer, J.; Ginski, C.; Schmid, H. M.; Juhasz, A.; Bazzon, A.; Waters, L. B. F. M.; Garufi, A.; Augereau, J.-C.; Benisty, M.; Boccaletti, A.; Henning, Th.; Langlois, M.; Maire, A.-L.; Ménard, F.; Meyer, M. R.; Pinte, C.; Quanz, S. P.; Thalmann, C.; Beuzit, J.-L.; Carbillet, M.; Costille, A.; Dohlen, K.; Feldt, M.; Gisler, D.; Mouillet, D.; Pavlov, A.; Perret, D.; Petit, C.; Pragt, J.; Rochat, S.; Roelfsema, R.; Salasnich, B.; Soenke, C.; Wildi, F.

    2016-11-01

    Context. The protoplanetary disk around the F-type star HD 135344B (SAO 206462) is in a transition stage and shows many intriguing structures both in scattered light and thermal (sub-)millimeter emission which are possibly related to planet formation processes. Aims: We aim to study the morphology and surface brightness of the disk in scattered light to gain insight into the innermost disk regions, the formation of protoplanets, planet-disk interactions traced in the surface and midplane layers, and the dust grain properties of the disk surface. Methods: We have carried out high-contrast polarimetric differential imaging (PDI) observations with VLT/SPHERE and obtained polarized scattered light images with ZIMPOL in the R and I-bands and with IRDIS in the Y and J-bands. The scattered light images and surface brightness profiles are used to study in detail structures in the disk surface and brightness variations. We have constructed a 3D radiative transfer model to support the interpretation of several detected shadow features. Results: The scattered light images reveal with unprecedented angular resolution and sensitivity the spiral arms as well as the 25 au cavity of the disk. Multiple shadow features are discovered on the outer disk with one shadow only being present during the second observation epoch. A positive surface brightness gradient is observed in the stellar irradiation corrected (r2-scaled) images in southwest direction possibly due to an azimuthally asymmetric perturbation of the temperature and/or surface density by the passing spiral arms. The disk integrated polarized flux, normalized to the stellar flux, shows a positive trend towards longer wavelengths which we attribute to large (2πa ≳ λ) aggregate dust grains in the disk surface. Part of the non-azimuthal polarization signal in the Uφ image of the J-band observation can be attributed to multiple scattering in the disk. Conclusions: The detected shadow features and their possible variability have the potential to provide insight into the structure of and processes occurring in the innermost disk regions. Possible explanations for the presence of the shadows include a 22° misaligned inner disk, a warped disk region that connects the inner disk with the outer disk, and variable or transient phenomena such as a perturbation of the inner disk or an asymmetric accretion flow. The spiral arms are best explained by one or multiple protoplanets in the exterior of the disk although no gap is detected beyond the spiral arms up to 1.''0. Based on observations collected at the European Southern Observatory, Chile, ESO No. 095.C-0273(A) and 095.C-0273(D).

  4. Exploring Disks Around Planets

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2017-07-01

    Giant planets are thought to form in circumstellar disks surrounding young stars, but material may also accrete into a smaller disk around the planet. Weve never detected one of these circumplanetary disks before but thanks to new simulations, we now have a better idea of what to look for.Image from previous work simulating a Jupiter-mass planet forming inside a circumstellar disk. The planet has its own circumplanetary disk of accreted material. [Frdric Masset]Elusive DisksIn the formation of giant planets, we think the final phase consists of accretion onto the planet from a disk that surrounds it. This circumplanetary disk is important to understand, since it both regulates the late gas accretion and forms the birthplace of future satellites of the planet.Weve yet to detect a circumplanetary disk thus far, because the resolution needed to spot one has been out of reach. Now, however, were entering an era where the disk and its kinematics may be observable with high-powered telescopes (like the Atacama Large Millimeter Array).To prepare for such observations, we need models that predict the basic characteristics of these disks like the mass, temperature, and kinematic properties. Now a researcher at the ETH Zrich Institute for Astronomy in Switzerland, Judit Szulgyi, has worked toward this goal.Simulating CoolingSzulgyi performs a series of 3D global radiative hydrodynamic simulations of 1, 3, 5, and 10 Jupiter-mass (MJ) giant planets and their surrounding circumplanetary disks, embedded within the larger circumstellar disk around the central star.Density (left column), temperature (center), and normalized angular momentum (right) for a 1 MJ planet over temperatures cooling from 10,000 K (top) to 1,000 K (bottom). At high temperatures, a spherical circumplanetary envelope surrounds the planet, but as the planet cools, the envelope transitions around 64,000 K to a flattened disk. [Szulgyi 2017]This work explores the effects of different planet temperatures and masses on the properties of the disks. Szulgyi specifically examines a range of planetary temperatures between 10,000 K and 1,000 K for the 1 MJ planet. Since the planet cools as it radiates away its formation heat, the different temperatures represent an evolutionary sequence over time.Predicted CharacteristicsSzulgyis work produced a number of intriguing observations, including the following:For the 1 MJ planet, a spherical circumplanetary envelope forms at high temperatures, flattening into a disk as the planet cools. Higher-mass planets form disks even at high temperatures.The disk has a steep temperature profile from inside to outside, and the whole disk is too hot for water to remain frozen. This suggests that satellites couldnt form in the disk earlier than 1 Myr after the planet birth. The outskirts of the disk cool first as the planet cools, indicating that satellites may eventually form in these outer parts and then migrate inward.The planets open gaps in the circumstellar disk as they orbit. As a planet radiates away its formation heat, the gap it opens becomes deeper and wider (though this is a small effect). For high-mass planets (5 MJ), the gap eccentricity increases, which creates a hostile environment for satellite formation.Szulgyi discusses a number of features of these disks that we can plan to search for in the future with our increasing telescope power including signatures in direct imaging and observations of their kinematics. The results from these simulations will help us both to detect these circumplanetary disks and to understand our observations when we do. These future observations will then allow us to learn about late-stage giant-planet formation as well as the formation of their satellites.CitationJ. Szulgyi 2017 ApJ 842 103. doi:10.3847/1538-4357/aa7515

  5. Evolution of Pre-Main Sequence Accretion Disks

    NASA Technical Reports Server (NTRS)

    Hartmann, Lee W.

    2004-01-01

    The aim of this project is to develop a comprehensive global picture of the physical conditions in, and evolutionary timescales of, pre-main sequence accretion disks. The results of this work will help constrain the initial conditions for planet formation. To this end we are developing much larger samples of 3-10 Myr-old stars to provide better empirical constraints on protoplanetary disk evolution; measuring disk accretion rates in these systems; and constructing detailed model disk structures consistent with observations to infer physical conditions such as grain growth in protoplanetary disks.

  6. Evolution of Pre-Main Sequence Accretion Disks

    NASA Technical Reports Server (NTRS)

    Hartmann, Lee W.

    2003-01-01

    The aim of this project is to develop a comprehensive global picture of the physical conditions in, and evolutionary timescales of, pre-main sequence accretion disks. The results of this work will help constrain the initial conditions for planet formation. To this end we are developing much larger samples of 3-10 Myr-old stars to provide better empirical constraints on protoplanetary disk evolution; measuring disk accretion rates in these systems; and constructing detailed model disk structures consistent with observations to infer physical conditions such as grain growth in protoplanetary disks.

  7. Evolution of Pre-Main Sequence Accretion Disks

    NASA Technical Reports Server (NTRS)

    Hartmann, Lee W.

    2005-01-01

    The aim of this project was to develop a comprehensive global picture of the physical conditions in, and evolutionary timescales of, premain sequence accretion disks. The results of this work will help constrain the initial conditions for planet formation. To this end we developed much larger samples of 3-10 Myr-old stars to provide better empirical constraints on protoplanetary disk evolution; measured disk accretion rates in these systems; and constructed detailed model disk structures consistent with observations to infer physical conditions such as grain growth in protoplanetary disks.

  8. Externally Induced Evaporation of Young Stellar Disks in Orion

    NASA Technical Reports Server (NTRS)

    Johnstone, D.; Hollenbach, D.; Shu, F.

    1996-01-01

    In this paper we propose a model for the evaporation of disks around young low-mass stars by external sources of high energy photons. Two evaporation techniques are possible. Lyman continuum radiation can ionize hydrogen at the disk surface powering a steady thermal ionized disk-wind, or FUV radiation can heat the disk through photo-electric grain processes powering a slower thermal neutral disk-wind. Applying these two models to the evaporating objects in the Trapezium produces a satisfactory solution to both the mass-loss rate and size of the ionized envelopes.

  9. Emulation Aid System II (EASY II) System Programmer’s Guide.

    DTIC Science & Technology

    1981-03-01

    DISK-SAVE, PASSWD =SSSS .MTUINIT= 17 ,MTF IILE=99,D)SKUNIT=7. RESTORE-DISK, PASSWD =SSSS,,MTt!NI=I 7,MTF [LE--=99,DSKtJNIT=7. where PASSWD - a system disk...DISK-SAVE, PASSWD =SSSS ,MTUNIT=17,MTFILE=99,DSKtJNIT=7. SAVE A DISK FILE ON TAPE HELP ,O,O,O. DSKSV. EDIT. CR’r BASED EDITOR (COMM ANDS EXPLAINED AS...BE EXPLICITLY TURNED ON QCNTRL ,LOCKED. RDTAPE,UNIT= 17. READING TAPE FOR USE WITH 6000 AND PRINT. 0. RDTAPE. RESTORE-DISK, PASSWD =SSSS ,MTUNIT= 17

  10. Studies of Circumstellar Disk Evolution

    NASA Technical Reports Server (NTRS)

    Hartmann, Lee W.

    2005-01-01

    The aim of this project is to develop a comprehensive global picture of the physical conditions in, and evolutionary timescales of, pre-main sequence accretion disks. The results of this work will help constrain the initial conditions for planet formation. To this end we are developing much larger samples of 3-10 Myr-old stars to provide better empirical constraints on protoplanetary disk evolution; measuring disk accretion rates in these systems; and constructing detailed model disk structures consistent with observations to infer physical conditions such as grain growth in protoplanetary disks.

  11. Stability and Evolution of Supernova Fallback Disks

    NASA Astrophysics Data System (ADS)

    Menou, Kristen; Perna, Rosalba; Hernquist, Lars

    2001-10-01

    We show that thin accretion disks made of carbon or oxygen are subject to the same thermal ionization instability as hydrogen and helium disks. We argue that the instability applies to disks of any metal content. The relevance of the instability to supernova fallback disks probably means that their power-law evolution breaks down when they first become neutral. We construct simple analytical models for the viscous evolution of fallback disks to show that it is possible for these disks to become neutral when they are still young (ages of a few 103 to 104 yr), compact in size (a few 109 to 1011 cm) and generally accreting at sub-Eddington rates (M~a few 1014-1018 g s-1). Based on recent results on the nature of viscosity in the disks of close binaries, we argue that this time may also correspond to the end of the disk activity period. Indeed, in the absence of a significant source of viscosity in the neutral phase, the entire disk will likely turn to dust and become passive. We discuss various applications of the evolutionary model, including anomalous X-ray pulsars and young radio pulsars. Our analysis indicates that metal-rich fallback disks around newly born neutron stars and black holes become neutral generally inside the tidal truncation radius (Roche limit) for planets at ~1011 cm. Consequently, the efficiency of the planetary formation process in this context will mostly depend on the ability of the resulting disk of rocks to spread via collisions beyond the Roche limit. It appears easier for the merger product of a doubly degenerate binary, whether it is a massive white dwarf or a neutron star, to harbor planets because its remnant disk has a rather large initial angular momentum, which allows it to spread beyond the Roche limit before becoming neutral. The early super-Eddington phase of accretion is a source of uncertainty for the disk evolution models presented here.

  12. Planet Formation in Stellar Binaries: How Disk Gravity Can Lower theFragmentation Barrier

    NASA Astrophysics Data System (ADS)

    Silsbee, Kedron; Rafikov, Roman R.

    2014-11-01

    Binary star systems present a challenge to current theories of planet formation. Perturbations from the companion star dynamically excite the protoplanetary disk, which can lead to destructive collisions between planetesimals, and prevent growth from 1 km to 100 km sized planetesimals. Despite this apparent barrier to coagulation, planets have been discovered within several small-separation (<20 AU), eccentric (eb 0.4) binaries, such as alpha Cen and gamma Cep. We address this problem by analytically exploring planetesimal dynamics under the simultaneous action of (1) binary perturbation, (2) gas drag (which tends to align planetesimal orbits), and (3), the gravity of an eccentric protoplanetary disk. We then use our dynamical solutions to assess the outcomes of planetesimal collisions (growth, destruction, erosion) for a variety of disk models. We find that planets in small-separation binaries can form at their present locations if the primordial protoplanetary disks were massive (>0.01M⊙) and not very eccentric (eccentricity of order several per cent at the location of planet). This constraint on the disk mass is compatible with the high masses of the giant planets in known gamma Cep-like binaries, which require a large mass reservoir for their formation. We show that for these massive disks, disk gravity is dominant over the gravity of the binary companion at the location of the observed planets. Therefore, planetesimal growth is highly sensitive to disk properties. The requirement of low disk eccentricity is in line with the recent hydrodynamic simulations that tend to show gaseous disks in eccentric binaries developing very low eccentricity, at the level of a few percent. A massive purely axisymmetric disk makes for a friendlier environment for planetesimal growth by driving rapid apsidal precession of planetesimals, and averaging out the eccentricity excitation from the binary companion. When the protoplanetary disk is eccentric we find that the most favorable conditions for planetesimal growth emerge when the disk is non-precessing and is apsidally aligned with the orbit of the binary.

  13. Accretion Disks and the Formation of Stellar Systems

    NASA Astrophysics Data System (ADS)

    Kratter, Kaitlin Michelle

    2011-02-01

    In this thesis, we examine the role of accretion disks in the formation of stellar systems, focusing on young massive disks which regulate the flow of material from the parent molecular core down to the star. We study the evolution of disks with high infall rates that develop strong gravitational instabilities. We begin in chapter 1 with a review of the observations and theory which underpin models for the earliest phases of star formation and provide a brief review of basic accretion disk physics, and the numerical methods that we employ. In chapter 2 we outline the current models of binary and multiple star formation, and review their successes and shortcomings from a theoretical and observational perspective. In chapter 3 we begin with a relatively simple analytic model for disks around young, high mass stars, showing that instability in these disks may be responsible for the higher multiplicity fraction of massive stars, and perhaps the upper mass to which they grow. We extend these models in chapter 4 to explore the properties of disks and the formation of binary companions across a broad range of stellar masses. In particular, we model the role of global and local mechanisms for angular momentum transport in regulating the relative masses of disks and stars. We follow the evolution of these disks throughout the main accretion phase of the system, and predict the trajectory of disks through parameter space. We follow up on the predictions made in our analytic models with a series of high resolution, global numerical experiments in chapter 5. Here we propose and test a new parameterization for describing rapidly accreting, gravitationally unstable disks. We find that disk properties and system multiplicity can be mapped out well in this parameter space. Finally, in chapter 6, we address whether our studies of unstable disks are relevant to recently detected massive planets on wide orbits around their central stars.

  14. First detection of equatorial dark dust lane in a protostellar disk at submillimeter wavelength

    PubMed Central

    Lee, Chin-Fei; Li, Zhi-Yun; Ho, Paul T. P.; Hirano, Naomi; Zhang, Qizhou; Shang, Hsien

    2017-01-01

    In the earliest (so-called “Class 0”) phase of Sun-like (low-mass) star formation, circumstellar disks are expected to form, feeding the protostars. However, these disks are difficult to resolve spatially because of their small sizes. Moreover, there are theoretical difficulties in producing these disks in the earliest phase because of the retarding effects of magnetic fields on the rotating, collapsing material (so-called “magnetic braking”). With the Atacama Large Millimeter/submillimeter Array (ALMA), it becomes possible to uncover these disks and study them in detail. HH 212 is a very young protostellar system. With ALMA, we not only detect but also spatially resolve its disk in dust emission at submillimeter wavelength. The disk is nearly edge-on and has a radius of ~60 astronomical unit. It shows a prominent equatorial dark lane sandwiched between two brighter features due to relatively low temperature and high optical depth near the disk midplane. For the first time, this dark lane is seen at submillimeter wavelength, producing a “hamburger”-shaped appearance that is reminiscent of the scattered-light image of an edge-on disk in optical and near infrared light. Our observations open up an exciting possibility of directly detecting and characterizing small disks around the youngest protostars through high-resolution imaging with ALMA, which provides strong constraints on theories of disk formation. PMID:28439561

  15. Subaru Imaging of Asymmetric Features in a Transitional Disk in Upper Scorpius

    NASA Technical Reports Server (NTRS)

    Mayama, S.; Hashimoto, J.; Muto, T.; Tsukagoshi, T.; Kusakabe, N.; Kuzuhara, M.; Takahashi, Y.; Kudo, T.; Dong, R.; Fukagawa, M.; hide

    2012-01-01

    We report high-resolution (0.07 arcsec) near-infrared polarized intensity images of the circumstellar disk around the star 2MASS J16042165.2130284 obtained with HiCIAO mounted on the Subaru 8.2 m telescope. We present our H-band data, which clearly exhibit a resolved, face-on disk with a large inner hole for the first time at infrared wavelengths. We detect the centrosymmetric polarization pattern in the circumstellar material as has been observed in other disks. Elliptical fitting gives the semi-major axis, semi-minor axis, and position angle (P.A.) of the disk as 63 AU, 62 AU, and -14deg, respectively. The disk is asymmetric, with one dip located at P.A.s of approx. 85deg. Our observed disk size agrees well with a previous study of dust and CO emission at submillimeter wavelength with Submillimeter Array. Hence, the near-infrared light is interpreted as scattered light reflected from the inner edge of the disk. Our observations also detect an elongated arc (50 AU) extending over the disk inner hole. It emanates at the inner edge of the western side of the disk, extending inward first, then curving to the northeast. We discuss the possibility that the inner hole, the dip, and the arc that we have observed may be related to the existence of unseen bodies within the disk.

  16. The Shadow Knows: Using Shadows to Investigate the Structure of the Pretransitional Disk of HD 100453

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Long, Zachary C.; Fernandes, Rachel B.; Sitko, Michael

    2017-03-20

    We present Gemini Planet Imager polarized intensity imagery of HD 100453 in Y , J , and K 1 bands that reveals an inner gap (9–18 au), an outer disk (18–39 au) with two prominent spiral arms, and two azimuthally localized dark features that are also present in Spectro-Polarimetric High-contrast Exoplanet REsearch (SPHERE) total intensity images. Spectral energy distribution fitting further suggests that the radial gap extends to 1 au. The narrow, wedge-like shape of the dark features appears similar to predictions of shadows cast by an inner disk that is misaligned with respect to the outer disk. Using themore » Monte Carlo radiative transfer code HOCHUNCK3D, we construct a model of the disk that allows us to determine its physical properties in more detail. From the angular separation of the features, we measure the difference in inclination between the disks (45°) and their major axes, PA = 140° east of north for the outer disk, and 100° for the inner disk. We find an outer-disk inclination of 25° ± 10° from face-on, in broad agreement with the Wagner et al. measurement of 34°. SPHERE data in J and H bands indicate a reddish disk, which indicates that HD 100453 is evolving into a young debris disk.« less

  17. NUMERICAL SIMULATIONS OF THE POSSIBLE ORIGIN OF THE TWO SUB-PARSEC SCALE AND COUNTERROTATING STELLAR DISKS AROUND SgrA*

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alig, C.; Schartmann, M.; Burkert, A.

    2013-07-10

    We present a high-resolution simulation of an idealized model to explain the origin of the two young, counterrotating, sub-parsec scale stellar disks around the supermassive black hole SgrA* at the center of the Milky Way. In our model, the collision of a single molecular cloud with a circumnuclear gas disk (similar to the one observed presently) leads to multiple streams of gas flowing toward the black hole and creating accretion disks with angular momentum depending on the ratio of cloud and circumnuclear disk material. The infalling gas creates two inclined, counterrotating sub-parsec scale accretion disks around the supermassive black holemore » with the first disk forming roughly 1 Myr earlier, allowing it to fragment into stars and get dispersed before the second counterrotating disk forms. Fragmentation of the second disk would lead to the two inclined, counterrotating stellar disks which are observed at the Galactic center. A similar event might be happening again right now at the Milky Way Galactic center. Our model predicts that the collision event generates spiral-like filaments of gas, feeding the Galactic center prior to disk formation with a geometry and inflow pattern that is in agreement with the structure of the so-called mini spiral that has been detected in the Galactic center.« less

  18. Imaging Transitional Disks with TMT: Lessons Learned from the SEEDS Survey

    NASA Technical Reports Server (NTRS)

    Grady, Carol A.; Fukagawa, M.; Muto, T.; Hashimoto, J.

    2014-01-01

    TMT studies of the early phases of giant planet formation will build on studies carried out in this decade using 8-meter class telescopes. One such study is the Strategic Exploration of Exoplanets and Disks with Subaru transitional disk survey. We have found a wealth of indirect signatures of giant planet presence, including spiral arms, pericenter offsets of the outer disk from the star, and changes in disk color at the inner edge of the outer disk in intermediate-mass PMS star disks. T Tauri star transitional disks are less flamboyant, but are also dynamically colder: any spiral arms in these diskswill be more tightly wound. Imaging such features at the distance of the nearest star-forming regions requires higher angular resolution than achieved with HiCIAO+ AO188. Imaging such disks with extreme AO systems requires use of laser guide stars, and are infeasible with the extreme AO systems currently commissioning on 8-meter class telescopes. Similarly, the JWST and AFTAWFIRST coronagraphs being considered have inner working angles 0.2, and will occult the inner 28 atomic units of systems at d140pc, a region where both high-contrast imagery and ALMA data indicate that giant planets are located in transitional disks. However, studies of transitional disks associated with solar-mass stars and their planet complement are feasible with TMT using NFIRAOS.

  19. Collective transport for active matter run-and-tumble disk systems on a traveling-wave substrate

    DOE PAGES

    Sándor, Csand; Libál, Andras; Reichhardt, Charles; ...

    2017-01-17

    Here, we examine numerically the transport of an assembly of active run-and-tumble disks interacting with a traveling-wave substrate. We show that as a function of substrate strength, wave speed, disk activity, and disk density, a variety of dynamical phases arise that are correlated with the structure and net flux of disks. We find that there is a sharp transition into a state in which the disks are only partially coupled to the substrate and form a phase-separated cluster state. This transition is associated with a drop in the net disk flux, and it can occur as a function of themore » substrate speed, maximum substrate force, disk run time, and disk density. Since variation of the disk activity parameters produces different disk drift rates for a fixed traveling-wave speed on the substrate, the system we consider could be used as an efficient method for active matter species separation. Within the cluster phase, we find that in some regimes the motion of the cluster center of mass is in the opposite direction to that of the traveling wave, while when the maximum substrate force is increased, the cluster drifts in the direction of the traveling wave. This suggests that swarming or clustering motion can serve as a method by which an active system can collectively move against an external drift.« less

  20. Simulations of polarization from accretion disks

    NASA Astrophysics Data System (ADS)

    Schultz, J.

    2000-12-01

    The Monte Carlo Method was used to estimate the level of polarization from axisymmetric accretion disks similar to those in low-mass X-ray binaries and some classes of cataclysmic variables. In low-mass X-ray binaries electron scattering is supposed to be the dominant opacity source in the inner disk, and most of the optical light is produced in the disk. Thompson scattering occuring in the disk corona produces linear polarization. Detailed theoretical models of accretion disks are numerous, but simple mathematical disk models were used, as the accuracy of polarization measurements does not allow distinction of the fine details of disk models. Stokes parameters were used for the radiative transfer. The simulations indicate that the vertical distribution of emissivity has the greatest effect on polarization, and variations of radial emissivity distribution have no detectable effect on polarization. Irregularities in the disk may reduce the degree of polarization. The polarization levels produced by simulations are detectable with modern instruments. Polarization measurements could be used to get rough constraints on the vertical emissivity distribution of an accretion disk, provided that a reasonably accurate disk model can be constructed from photometric or spectrosopic observations in optical and/or X-ray wavelengths. Mainly based on observations taken at the Observatoire de Haute-Provence, France, and on some observations obtained at the European Southern Observatory, Chile (ESO Prog. IDs: 57.C-0492, 59.C-0293, 61.C-0512).

Top