Operator Factorization and the Solution of Second-Order Linear Ordinary Differential Equations
ERIC Educational Resources Information Center
Robin, W.
2007-01-01
The theory and application of second-order linear ordinary differential equations is reviewed from the standpoint of the operator factorization approach to the solution of ordinary differential equations (ODE). Using the operator factorization approach, the general second-order linear ODE is solved, exactly, in quadratures and the resulting…
Gazizov, R. K.
2017-01-01
We suggest an algorithm for integrating systems of two second-order ordinary differential equations with four symmetries. In particular, if the admitted transformation group has two second-order differential invariants, the corresponding system can be integrated by quadratures using invariant representation and the operator of invariant differentiation. Otherwise, the systems reduce to partially uncoupled forms and can also be integrated by quadratures. PMID:28265184
Gainetdinova, A A; Gazizov, R K
2017-01-01
We suggest an algorithm for integrating systems of two second-order ordinary differential equations with four symmetries. In particular, if the admitted transformation group has two second-order differential invariants, the corresponding system can be integrated by quadratures using invariant representation and the operator of invariant differentiation. Otherwise, the systems reduce to partially uncoupled forms and can also be integrated by quadratures.
Semicommuting and Commuting Operators for the Heun Family
NASA Astrophysics Data System (ADS)
Batic, D.; Mills, D.; Nowakowski, M.
2018-04-01
We derive the most general families of first- and second-order differential operators semicommuting with the Heun class differential operators. Among these families, we classify all the families that commute with the Heun class. In particular, we find that a certain generalized Heun equation commutes with the Heun differential operator, which allows constructing a general solution of a complicated fourth-order linear differential equation with variable coefficients whose solution cannot be obtained using Maple 16.
USDA-ARS?s Scientific Manuscript database
Adaptive waveform interpretation with Gaussian filtering (AWIGF) and second order bounded mean oscillation operator Z square 2(u,t,r) are TDR analysis methods based on second order differentiation. AWIGF was originally designed for relatively long probe (greater than 150 mm) TDR waveforms, while Z s...
Solution of second order supersymmetrical intertwining relations in Minkowski plane
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ioffe, M. V., E-mail: m.ioffe@spbu.ru; Kolevatova, E. V., E-mail: e.v.kolev@yandex.ru; Nishnianidze, D. N., E-mail: cutaisi@yahoo.com
2016-08-15
Supersymmetrical (SUSY) intertwining relations are generalized to the case of quantum Hamiltonians in Minkowski space. For intertwining operators (supercharges) of second order in derivatives, the intertwined Hamiltonians correspond to completely integrable systems with the symmetry operators of fourth order in momenta. In terms of components, the intertwining relations correspond to the system of nonlinear differential equations which are solvable with the simplest—constant—ansatzes for the “metric” matrix in second order part of the supercharges. The corresponding potentials are built explicitly both for diagonalizable and nondiagonalizable form of “metric” matrices, and their properties are discussed.
NASA Astrophysics Data System (ADS)
Šprlák, Michal; Novák, Pavel
2017-02-01
New spherical integral formulas between components of the second- and third-order gravitational tensors are formulated in this article. First, we review the nomenclature and basic properties of the second- and third-order gravitational tensors. Initial points of mathematical derivations, i.e., the second- and third-order differential operators defined in the spherical local North-oriented reference frame and the analytical solutions of the gradiometric boundary-value problem, are also summarized. Secondly, we apply the third-order differential operators to the analytical solutions of the gradiometric boundary-value problem which gives 30 new integral formulas transforming (1) vertical-vertical, (2) vertical-horizontal and (3) horizontal-horizontal second-order gravitational tensor components onto their third-order counterparts. Using spherical polar coordinates related sub-integral kernels can efficiently be decomposed into azimuthal and isotropic parts. Both spectral and closed forms of the isotropic kernels are provided and their limits are investigated. Thirdly, numerical experiments are performed to test the consistency of the new integral transforms and to investigate properties of the sub-integral kernels. The new mathematical apparatus is valid for any harmonic potential field and may be exploited, e.g., when gravitational/magnetic second- and third-order tensor components become available in the future. The new integral formulas also extend the well-known Meissl diagram and enrich the theoretical apparatus of geodesy.
Absorbing boundary conditions for second-order hyperbolic equations
NASA Technical Reports Server (NTRS)
Jiang, Hong; Wong, Yau Shu
1989-01-01
A uniform approach to construct absorbing artificial boundary conditions for second-order linear hyperbolic equations is proposed. The nonlocal boundary condition is given by a pseudodifferential operator that annihilates travelling waves. It is obtained through the dispersion relation of the differential equation by requiring that the initial-boundary value problem admits the wave solutions travelling in one direction only. Local approximation of this global boundary condition yields an nth-order differential operator. It is shown that the best approximations must be in the canonical forms which can be factorized into first-order operators. These boundary conditions are perfectly absorbing for wave packets propagating at certain group velocities. A hierarchy of absorbing boundary conditions is derived for transonic small perturbation equations of unsteady flows. These examples illustrate that the absorbing boundary conditions are easy to derive, and the effectiveness is demonstrated by the numerical experiments.
On the origins of generalized fractional calculus
NASA Astrophysics Data System (ADS)
Kiryakova, Virginia
2015-11-01
In Fractional Calculus (FC), as in the (classical) Calculus, the notions of derivatives and integrals (of first, second, etc. or arbitrary, incl. non-integer order) are basic and co-related. One of the most frequent approach in FC is to define first the Riemann-Liouville (R-L) integral of fractional order, and then by means of suitable integer-order differentiation operation applied over it (or under its sign) a fractional derivative is defined - in the R-L sense (or in Caputo sense). The first mentioned (R-L type) is closer to the theoretical studies in analysis, but has some shortages - from the point of view of interpretation of the initial conditions for Cauchy problems for fractional differential equations (stated also by means of fractional order derivatives/ integrals), and also for the analysts' confusion that such a derivative of a constant is not zero in general. The Caputo (C-) derivative, arising first in geophysical studies, helps to overcome these problems and to describe models of applied problems with physically consistent initial conditions. The operators of the Generalized Fractional Calculus - GFC (integrals and derivatives) are based on commuting m-tuple (m = 1, 2, 3, …) compositions of operators of the classical FC with power weights (the so-called Erdélyi-Kober operators), but represented in compact and explicit form by means of integral, integro-differential (R-L type) or differential-integral (C-type) operators, where the kernels are special functions of most general hypergeometric kind. The foundations of this theory are given in Kiryakova 18. In this survey we present the genesis of the definitions of the GFC - the generalized fractional integrals and derivatives (of fractional multi-order) of R-L type and Caputo type, analyze their properties and applications. Their special cases are all the known operators of classical FC, their generalizations introduced by other authors, the hyper-Bessel differential operators of higher integer order m as a multi-order (1, 1,…, 1), the Gelfond-Leontiev generalized differentiation operators, many other integral and differential operators in Calculus that have been used in various topics, some of them not related to FC at all, others involved in differential and integral equations for treating fractional order models.
NASA Technical Reports Server (NTRS)
Carleton, O.
1972-01-01
Consideration is given specifically to sixth order elliptic partial differential equations in two independent real variables x, y such that the coefficients of the highest order terms are real constants. It is assumed that the differential operator has distinct characteristics and that it can be factored as a product of second order operators. By analytically continuing into the complex domain and using the complex characteristic coordinates of the differential equation, it is shown that its solutions, u, may be reflected across analytic arcs on which u satisfies certain analytic boundary conditions. Moreover, a method is given whereby one can determine a region into which the solution is extensible. It is seen that this region of reflection is dependent on the original domain of difinition of the solution, the arc and the coefficients of the highest order terms of the equation and not on any sufficiently small quantities; i.e., the reflection is global in nature. The method employed may be applied to similar differential equations of order 2n.
Application of the moving frame method to deformed Willmore surfaces in space forms
NASA Astrophysics Data System (ADS)
Paragoda, Thanuja
2018-06-01
The main goal of this paper is to use the theory of exterior differential forms in deriving variations of the deformed Willmore energy in space forms and study the minimizers of the deformed Willmore energy in space forms. We derive both first and second order variations of deformed Willmore energy in space forms explicitly using moving frame method. We prove that the second order variation of deformed Willmore energy depends on the intrinsic Laplace Beltrami operator, the sectional curvature and some special operators along with mean and Gauss curvatures of the surface embedded in space forms, while the first order variation depends on the extrinsic Laplace Beltrami operator.
Improved diffusion Monte Carlo propagators for bosonic systems using Itô calculus
NASA Astrophysics Data System (ADS)
Hâkansson, P.; Mella, M.; Bressanini, Dario; Morosi, Gabriele; Patrone, Marta
2006-11-01
The construction of importance sampled diffusion Monte Carlo (DMC) schemes accurate to second order in the time step is discussed. A central aspect in obtaining efficient second order schemes is the numerical solution of the stochastic differential equation (SDE) associated with the Fokker-Plank equation responsible for the importance sampling procedure. In this work, stochastic predictor-corrector schemes solving the SDE and consistent with Itô calculus are used in DMC simulations of helium clusters. These schemes are numerically compared with alternative algorithms obtained by splitting the Fokker-Plank operator, an approach that we analyze using the analytical tools provided by Itô calculus. The numerical results show that predictor-corrector methods are indeed accurate to second order in the time step and that they present a smaller time step bias and a better efficiency than second order split-operator derived schemes when computing ensemble averages for bosonic systems. The possible extension of the predictor-corrector methods to higher orders is also discussed.
Semi-classical analysis and pseudo-spectra
NASA Astrophysics Data System (ADS)
Davies, E. B.
We prove an approximate spectral theorem for non-self-adjoint operators and investigate its applications to second-order differential operators in the semi-classical limit. This leads to the construction of a twisted FBI transform. We also investigate the connections between pseudo-spectra and boundary conditions in the semi-classical limit.
NASA Astrophysics Data System (ADS)
Chen, G. K. C.
1981-06-01
A nonlinear macromodel for the bipolar transistor integrated circuit operational amplifier is derived from the macromodel proposed by Boyle. The nonlinear macromodel contains only two nonlinear transistors in the input stage in a differential amplifier configuration. Parasitic capacitance effects are represented by capacitors placed at the collectors and emitters of the input transistors. The nonlinear macromodel is effective in predicting the second order intermodulation effect of operational amplifiers in a unity gain buffer amplifier configuration. The nonlinear analysis computer program NCAP is used for the analysis. Accurate prediction of demodulation of amplitude modulated RF signals with RF carrier frequencies in the 0.05 to 100 MHz range is achieved. The macromodel predicted results, presented in the form of second order nonlinear transfer function, come to within 6 dB of the full model predictions for the 741 type of operational amplifiers for values of the second order transfer function greater than -40 dB.
NASA Astrophysics Data System (ADS)
Li, Liangliang; Huang, Yu; Chen, Goong; Huang, Tingwen
If a second order linear hyperbolic partial differential equation in one-space dimension can be factorized as a product of two first order operators and if the two first order operators commute, with one boundary condition being the van der Pol type and the other being linear, one can establish the occurrence of chaos when the parameters enter a certain regime [Chen et al., 2014]. However, if the commutativity of the two first order operators fails to hold, then the treatment in [Chen et al., 2014] no longer works and significant new challenges arise in determining nonlinear boundary conditions that engenders chaos. In this paper, we show that by incorporating a linear memory effect, a nonlinear van der Pol boundary condition can cause chaotic oscillations when the parameter enters a certain regime. Numerical simulations illustrating chaotic oscillations are also presented.
NASA Technical Reports Server (NTRS)
Chen, Zhangxin; Ewing, Richard E.
1996-01-01
Multigrid algorithms for nonconforming and mixed finite element methods for second order elliptic problems on triangular and rectangular finite elements are considered. The construction of several coarse-to-fine intergrid transfer operators for nonconforming multigrid algorithms is discussed. The equivalence between the nonconforming and mixed finite element methods with and without projection of the coefficient of the differential problems into finite element spaces is described.
A non-local model of fractional heat conduction in rigid bodies
NASA Astrophysics Data System (ADS)
Borino, G.; di Paola, M.; Zingales, M.
2011-03-01
In recent years several applications of fractional differential calculus have been proposed in physics, chemistry as well as in engineering fields. Fractional order integrals and derivatives extend the well-known definitions of integer-order primitives and derivatives of the ordinary differential calculus to real-order operators. Engineering applications of fractional operators spread from viscoelastic models, stochastic dynamics as well as with thermoelasticity. In this latter field one of the main actractives of fractional operators is their capability to interpolate between the heat flux and its time-rate of change, that is related to the well-known second sound effect. In other recent studies a fractional, non-local thermoelastic model has been proposed as a particular case of the non-local, integral, thermoelasticity introduced at the mid of the seventies. In this study the autors aim to introduce a different non-local model of extended irreverible thermodynamics to account for second sound effect. Long-range heat flux is defined and it involves the integral part of the spatial Marchaud fractional derivatives of the temperature field whereas the second-sound effect is accounted for introducing time-derivative of the heat flux in the transport equation. It is shown that the proposed model does not suffer of the pathological problems of non-homogenoeus boundary conditions. Moreover the proposed model coalesces with the Povstenko fractional models in unbounded domains.
Boundary conditions in Chebyshev and Legendre methods
NASA Technical Reports Server (NTRS)
Canuto, C.
1984-01-01
Two different ways of treating non-Dirichlet boundary conditions in Chebyshev and Legendre collocation methods are discussed for second order differential problems. An error analysis is provided. The effect of preconditioning the corresponding spectral operators by finite difference matrices is also investigated.
Nonlinear differential equations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dresner, L.
1988-01-01
This report is the text of a graduate course on nonlinear differential equations given by the author at the University of Wisconsin-Madison during the summer of 1987. The topics covered are: direction fields of first-order differential equations; the Lie (group) theory of ordinary differential equations; similarity solutions of second-order partial differential equations; maximum principles and differential inequalities; monotone operators and iteration; complementary variational principles; and stability of numerical methods. The report should be of interest to graduate students, faculty, and practicing scientists and engineers. No prior knowledge is required beyond a good working knowledge of the calculus. The emphasis ismore » on practical results. Most of the illustrative examples are taken from the fields of nonlinear diffusion, heat and mass transfer, applied superconductivity, and helium cryogenics.« less
NASA Astrophysics Data System (ADS)
Man, Yiu-Kwong
2010-10-01
In this communication, we present a method for computing the Liouvillian solution of second-order linear differential equations via algebraic invariant curves. The main idea is to integrate Kovacic's results on second-order linear differential equations with the Prelle-Singer method for computing first integrals of differential equations. Some examples on using this approach are provided.
NASA Astrophysics Data System (ADS)
Mohamed, Mamdouh S.; Hirani, Anil N.; Samtaney, Ravi
2016-05-01
A conservative discretization of incompressible Navier-Stokes equations is developed based on discrete exterior calculus (DEC). A distinguishing feature of our method is the use of an algebraic discretization of the interior product operator and a combinatorial discretization of the wedge product. The governing equations are first rewritten using the exterior calculus notation, replacing vector calculus differential operators by the exterior derivative, Hodge star and wedge product operators. The discretization is then carried out by substituting with the corresponding discrete operators based on the DEC framework. Numerical experiments for flows over surfaces reveal a second order accuracy for the developed scheme when using structured-triangular meshes, and first order accuracy for otherwise unstructured meshes. By construction, the method is conservative in that both mass and vorticity are conserved up to machine precision. The relative error in kinetic energy for inviscid flow test cases converges in a second order fashion with both the mesh size and the time step.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choi, Cheong R.
The structural changes of kinetic Alfvén solitary waves (KASWs) due to higher-order terms are investigated. While the first-order differential equation for KASWs provides the dispersion relation for kinetic Alfvén waves, the second-order differential equation describes the structural changes of the solitary waves due to higher-order nonlinearity. The reductive perturbation method is used to obtain the second-order and third-order partial differential equations; then, Kodama and Taniuti's technique [J. Phys. Soc. Jpn. 45, 298 (1978)] is applied in order to remove the secularities in the third-order differential equations and derive a linear second-order inhomogeneous differential equation. The solution to this new second-ordermore » equation indicates that, as the amplitude increases, the hump-type Korteweg-de Vries solution is concentrated more around the center position of the soliton and that dip-type structures form near the two edges of the soliton. This result has a close relationship with the interpretation of the complex KASW structures observed in space with satellites.« less
Second order upwind Lagrangian particle method for Euler equations
Samulyak, Roman; Chen, Hsin -Chiang; Yu, Kwangmin
2016-06-01
A new second order upwind Lagrangian particle method for solving Euler equations for compressible inviscid fluid or gas flows is proposed. Similar to smoothed particle hydrodynamics (SPH), the method represents fluid cells with Lagrangian particles and is suitable for the simulation of complex free surface / multiphase flows. The main contributions of our method, which is different from SPH in all other aspects, are (a) significant improvement of approximation of differential operators based on a polynomial fit via weighted least squares approximation and the convergence of prescribed order, (b) an upwind second-order particle-based algorithm with limiter, providing accuracy and longmore » term stability, and (c) accurate resolution of states at free interfaces. In conclusion, numerical verification tests demonstrating the convergence order for fixed domain and free surface problems are presented.« less
Second order upwind Lagrangian particle method for Euler equations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Samulyak, Roman; Chen, Hsin -Chiang; Yu, Kwangmin
A new second order upwind Lagrangian particle method for solving Euler equations for compressible inviscid fluid or gas flows is proposed. Similar to smoothed particle hydrodynamics (SPH), the method represents fluid cells with Lagrangian particles and is suitable for the simulation of complex free surface / multiphase flows. The main contributions of our method, which is different from SPH in all other aspects, are (a) significant improvement of approximation of differential operators based on a polynomial fit via weighted least squares approximation and the convergence of prescribed order, (b) an upwind second-order particle-based algorithm with limiter, providing accuracy and longmore » term stability, and (c) accurate resolution of states at free interfaces. In conclusion, numerical verification tests demonstrating the convergence order for fixed domain and free surface problems are presented.« less
Stability analysis for acoustic wave propagation in tilted TI media by finite differences
NASA Astrophysics Data System (ADS)
Bakker, Peter M.; Duveneck, Eric
2011-05-01
Several papers in recent years have reported instabilities in P-wave modelling, based on an acoustic approximation, for inhomogeneous transversely isotropic media with tilted symmetry axis (TTI media). In particular, instabilities tend to occur if the axis of symmetry varies rapidly in combination with strong contrasts of medium parameters, which is typically the case at the foot of a steeply dipping salt flank. In a recent paper, we have proposed and demonstrated a P-wave modelling approach for TTI media, based on rotated stress and strain tensors, in which the wave equations reduce to a coupled set of two second-order partial differential equations for two scalar stress components: a normal component along the variable axis of symmetry and a lateral component of stress in the plane perpendicular to that axis. Spatially constant density is assumed in this approach. A numerical discretization scheme was proposed which uses discrete second-derivative operators for the non-mixed second-order derivatives in the wave equations, and combined first-derivative operators for the mixed second-order derivatives. This paper provides a complete and rigorous stability analysis, assuming a uniformly sampled grid. Although the spatial discretization operator for the TTI acoustic wave equation is not self-adjoint, this operator still defines a complete basis of eigenfunctions of the solution space, provided that the solution space is somewhat restricted at locations where the medium is elliptically anisotropic. First, a stability analysis is given for a discretization scheme, which is purely based on first-derivative operators. It is shown that the coefficients of the central difference operators should satisfy certain conditions. In view of numerical artefacts, such a discretization scheme is not attractive, and the non-mixed second-order derivatives of the wave equation are discretized directly by second-derivative operators. It is shown that this modification preserves stability, provided that the central difference operators of the second-order derivatives dominate over the twice applied operators of the first-order derivatives. In practice, it turns out that this is almost the case. Stability of the desired discretization scheme is enforced by slightly weighting down the mixed second-order derivatives in the wave equation. This has a minor, practically negligible, effect on the kinematics of wave propagation. Finally, it is shown that non-reflecting boundary conditions, enforced by applying a taper at the boundaries of the grid, do not harm the stability of the discretization scheme.
Fourth order difference methods for hyperbolic IBVP's
NASA Technical Reports Server (NTRS)
Gustafsson, Bertil; Olsson, Pelle
1994-01-01
Fourth order difference approximations of initial-boundary value problems for hyperbolic partial differential equations are considered. We use the method of lines approach with both explicit and compact implicit difference operators in space. The explicit operator satisfies an energy estimate leading to strict stability. For the implicit operator we develop boundary conditions and give a complete proof of strong stability using the Laplace transform technique. We also present numerical experiments for the linear advection equation and Burgers' equation with discontinuities in the solution or in its derivative. The first equation is used for modeling contact discontinuities in fluid dynamics, the second one for modeling shocks and rarefaction waves. The time discretization is done with a third order Runge-Kutta TVD method. For solutions with discontinuities in the solution itself we add a filter based on second order viscosity. In case of the non-linear Burger's equation we use a flux splitting technique that results in an energy estimate for certain different approximations, in which case also an entropy condition is fulfilled. In particular we shall demonstrate that the unsplit conservative form produces a non-physical shock instead of the physically correct rarefaction wave. In the numerical experiments we compare our fourth order methods with a standard second order one and with a third order TVD-method. The results show that the fourth order methods are the only ones that give good results for all the considered test problems.
NASA Astrophysics Data System (ADS)
Alam Khan, Najeeb; Razzaq, Oyoon Abdul
2016-03-01
In the present work a wavelets approximation method is employed to solve fuzzy boundary value differential equations (FBVDEs). Essentially, a truncated Legendre wavelets series together with the Legendre wavelets operational matrix of derivative are utilized to convert FB- VDE into a simple computational problem by reducing it into a system of fuzzy algebraic linear equations. The capability of scheme is investigated on second order FB- VDE considered under generalized H-differentiability. Solutions are represented graphically showing competency and accuracy of this method.
Approximate analytical solutions of a pair of coupled anharmonic oscillators
NASA Astrophysics Data System (ADS)
Alam, Nasir; Mandal, Swapan; Öhberg, Patrik
2015-02-01
The Hamiltonian and the corresponding equations of motion involving the field operators of two quartic anharmonic oscillators indirectly coupled via a linear oscillator are constructed. The approximate analytical solutions of the coupled differential equations involving the non-commuting field operators are solved up to the second order in the anharmonic coupling. In the absence of nonlinearity these solutions are used to calculate the second order variances and hence the squeezing in pure and in mixed modes. The higher order quadrature squeezing and the amplitude squared squeezing of various field modes are also investigated where the squeezing in pure and in mixed modes are found to be suppressed. Moreover, the absence of a nonlinearity prohibits the higher order quadrature and higher ordered amplitude squeezing of the input coherent states. It is established that the mere coupling of two oscillators through a third one is unable to produce any squeezing effects of input coherent light, but the presence of a nonlinear interaction may provide squeezed states and other nonclassical phenomena.
NASA Astrophysics Data System (ADS)
Banda Guzmán, V. M.; Kirchbach, M.
2016-09-01
A boson of spin j≥ 1 can be described in one of the possibilities within the Bargmann-Wigner framework by means of one sole differential equation of order twice the spin, which however is known to be inconsistent as it allows for non-local, ghost and acausally propagating solutions, all problems which are difficult to tackle. The other possibility is provided by the Fierz-Pauli framework which is based on the more comfortable to deal with second-order Klein-Gordon equation, but it needs to be supplemented by an auxiliary condition. Although the latter formalism avoids some of the pathologies of the high-order equations, it still remains plagued by some inconsistencies such as the acausal propagation of the wave fronts of the (classical) solutions within an electromagnetic environment. We here suggest a method alternative to the above two that combines their advantages while avoiding the related difficulties. Namely, we suggest one sole strictly D^{(j,0)oplus (0,j)} representation specific second-order differential equation, which is derivable from a Lagrangian and whose solutions do not violate causality. The equation under discussion presents itself as the product of the Klein-Gordon operator with a momentum-independent projector on Lorentz irreducible representation spaces constructed from one of the Casimir invariants of the spin-Lorentz group. The basis used is that of general tensor-spinors of rank 2 j.
Modeling Ability Differentiation in the Second-Order Factor Model
ERIC Educational Resources Information Center
Molenaar, Dylan; Dolan, Conor V.; van der Maas, Han L. J.
2011-01-01
In this article we present factor models to test for ability differentiation. Ability differentiation predicts that the size of IQ subtest correlations decreases as a function of the general intelligence factor. In the Schmid-Leiman decomposition of the second-order factor model, we model differentiation by introducing heteroscedastic residuals,…
An efficient method for solving the steady Euler equations
NASA Technical Reports Server (NTRS)
Liou, M. S.
1986-01-01
An efficient numerical procedure for solving a set of nonlinear partial differential equations is given, specifically for the steady Euler equations. Solutions of the equations were obtained by Newton's linearization procedure, commonly used to solve the roots of nonlinear algebraic equations. In application of the same procedure for solving a set of differential equations we give a theorem showing that a quadratic convergence rate can be achieved. While the domain of quadratic convergence depends on the problems studied and is unknown a priori, we show that firstand second-order derivatives of flux vectors determine whether the condition for quadratic convergence is satisfied. The first derivatives enter as an implicit operator for yielding new iterates and the second derivatives indicates smoothness of the flows considered. Consequently flows involving shocks are expected to require larger number of iterations. First-order upwind discretization in conjunction with the Steger-Warming flux-vector splitting is employed on the implicit operator and a diagonal dominant matrix results. However the explicit operator is represented by first- and seond-order upwind differencings, using both Steger-Warming's and van Leer's splittings. We discuss treatment of boundary conditions and solution procedures for solving the resulting block matrix system. With a set of test problems for one- and two-dimensional flows, we show detailed study as to the efficiency, accuracy, and convergence of the present method.
Topographical scattering of gravity waves
NASA Astrophysics Data System (ADS)
Miles, J. W.; Chamberlain, P. G.
1998-04-01
A systematic hierarchy of partial differential equations for linear gravity waves in water of variable depth is developed through the expansion of the average Lagrangian in powers of [mid R:][nabla del, Hamilton operator][mid R:] (h=depth, [nabla del, Hamilton operator]h=slope). The first and second members of this hierarchy, the Helmholtz and conventional mild-slope equations, are second order. The third member is fourth order but may be approximated by Chamberlain & Porter's (1995) ‘modified mild-slope’ equation, which is second order and comprises terms in [nabla del, Hamilton operator]2h and ([nabla del, Hamilton operator]h)2 that are absent from the mild-slope equation. Approximate solutions of the mild-slope and modified mild-slope equations for topographical scattering are determined through an iterative sequence, starting from a geometrical-optics approximation (which neglects reflection), then a quasi-geometrical-optics approximation, and on to higher-order results. The resulting reflection coefficient for a ramp of uniform slope is compared with the results of numerical integrations of each of the mild-slope equation (Booij 1983), the modified mild-slope equation (Porter & Staziker 1995), and the full linear equations (Booij 1983). Also considered is a sequence of sinusoidal sandbars, for which Bragg resonance may yield rather strong reflection and for which the modified mild-slope approximation is in close agreement with Mei's (1985) asymptotic approximation.
Explicit least squares system parameter identification for exact differential input/output models
NASA Technical Reports Server (NTRS)
Pearson, A. E.
1993-01-01
The equation error for a class of systems modeled by input/output differential operator equations has the potential to be integrated exactly, given the input/output data on a finite time interval, thereby opening up the possibility of using an explicit least squares estimation technique for system parameter identification. The paper delineates the class of models for which this is possible and shows how the explicit least squares cost function can be obtained in a way that obviates dealing with unknown initial and boundary conditions. The approach is illustrated by two examples: a second order chemical kinetics model and a third order system of Lorenz equations.
Oscillation theorems for second order nonlinear forced differential equations.
Salhin, Ambarka A; Din, Ummul Khair Salma; Ahmad, Rokiah Rozita; Noorani, Mohd Salmi Md
2014-01-01
In this paper, a class of second order forced nonlinear differential equation is considered and several new oscillation theorems are obtained. Our results generalize and improve those known ones in the literature.
Given a one-step numerical scheme, on which ordinary differential equations is it exact?
NASA Astrophysics Data System (ADS)
Villatoro, Francisco R.
2009-01-01
A necessary condition for a (non-autonomous) ordinary differential equation to be exactly solved by a one-step, finite difference method is that the principal term of its local truncation error be null. A procedure to determine some ordinary differential equations exactly solved by a given numerical scheme is developed. Examples of differential equations exactly solved by the explicit Euler, implicit Euler, trapezoidal rule, second-order Taylor, third-order Taylor, van Niekerk's second-order rational, and van Niekerk's third-order rational methods are presented.
[Series: Utilization of Differential Equations and Methods for Solving Them in Medical Physics (1)].
Murase, Kenya
2014-01-01
Utilization of differential equations and methods for solving them in medical physics are presented. First, the basic concept and the kinds of differential equations were overviewed. Second, separable differential equations and well-known first-order and second-order differential equations were introduced, and the methods for solving them were described together with several examples. In the next issue, the symbolic and series expansion methods for solving differential equations will be mainly introduced.
NASA Astrophysics Data System (ADS)
Al-Islam, Najja Shakir
In this Dissertation, the existence of pseudo almost periodic solutions to some systems of nonlinear hyperbolic second-order partial differential equations is established. For that, (Al-Islam [4]) is first studied and then obtained under some suitable assumptions. That is, the existence of pseudo almost periodic solutions to a hyperbolic second-order partial differential equation with delay. The second-order partial differential equation (1) represents a mathematical model for the dynamics of gas absorption, given by uxt+a x,tux=Cx,t,u x,t , u0,t=4 t, 1 where a : [0, L] x RR , C : [0, L] x R x RR , and ϕ : RR are (jointly) continuous functions ( t being the greatest integer function) and L > 0. The results in this Dissertation generalize those of Poorkarimi and Wiener [22]. Secondly, a generalization of the above-mentioned system consisting of the non-linear hyperbolic second-order partial differential equation uxt+a x,tux+bx,t ut+cx,tu=f x,t,u, x∈ 0,L,t∈ R, 2 equipped with the boundary conditions ux,0 =40x, u0,t=u 0t, uxx,0=y 0x, x∈0,L, t∈R, 3 where a, b, c : [0, L ] x RR and f : [0, L] x R x RR are (jointly) continuous functions is studied. Under some suitable assumptions, the existence and uniqueness of pseudo almost periodic solutions to particular cases, as well as the general case of the second-order hyperbolic partial differential equation (2) are studied. The results of all studies contained within this text extend those obtained by Aziz and Meyers [6] in the periodic setting.
Generalized vector calculus on convex domain
NASA Astrophysics Data System (ADS)
Agrawal, Om P.; Xu, Yufeng
2015-06-01
In this paper, we apply recently proposed generalized integral and differential operators to develop generalized vector calculus and generalized variational calculus for problems defined over a convex domain. In particular, we present some generalization of Green's and Gauss divergence theorems involving some new operators, and apply these theorems to generalized variational calculus. For fractional power kernels, the formulation leads to fractional vector calculus and fractional variational calculus for problems defined over a convex domain. In special cases, when certain parameters take integer values, we obtain formulations for integer order problems. Two examples are presented to demonstrate applications of the generalized variational calculus which utilize the generalized vector calculus developed in the paper. The first example leads to a generalized partial differential equation and the second example leads to a generalized eigenvalue problem, both in two dimensional convex domains. We solve the generalized partial differential equation by using polynomial approximation. A special case of the second example is a generalized isoperimetric problem. We find an approximate solution to this problem. Many physical problems containing integer order integrals and derivatives are defined over arbitrary domains. We speculate that future problems containing fractional and generalized integrals and derivatives in fractional mechanics will be defined over arbitrary domains, and therefore, a general variational calculus incorporating a general vector calculus will be needed for these problems. This research is our first attempt in that direction.
Yang, Yi; Tang, Xiangyang
2012-12-01
The x-ray differential phase contrast imaging implemented with the Talbot interferometry has recently been reported to be capable of providing tomographic images corresponding to attenuation-contrast, phase-contrast, and dark-field contrast, simultaneously, from a single set of projection data. The authors believe that, along with small-angle x-ray scattering, the second-order phase derivative Φ(") (s)(x) plays a role in the generation of dark-field contrast. In this paper, the authors derive the analytic formulae to characterize the contribution made by the second-order phase derivative to the dark-field contrast (namely, second-order differential phase contrast) and validate them via computer simulation study. By proposing a practical retrieval method, the authors investigate the potential of second-order differential phase contrast imaging for extensive applications. The theoretical derivation starts at assuming that the refractive index decrement of an object can be decomposed into δ = δ(s) + δ(f), where δ(f) corresponds to the object's fine structures and manifests itself in the dark-field contrast via small-angle scattering. Based on the paraxial Fresnel-Kirchhoff theory, the analytic formulae to characterize the contribution made by δ(s), which corresponds to the object's smooth structures, to the dark-field contrast are derived. Through computer simulation with specially designed numerical phantoms, an x-ray differential phase contrast imaging system implemented with the Talbot interferometry is utilized to evaluate and validate the derived formulae. The same imaging system is also utilized to evaluate and verify the capability of the proposed method to retrieve the second-order differential phase contrast for imaging, as well as its robustness over the dimension of detector cell and the number of steps in grating shifting. Both analytic formulae and computer simulations show that, in addition to small-angle scattering, the contrast generated by the second-order derivative is magnified substantially by the ratio of detector cell dimension over grating period, which plays a significant role in dark-field imaging implemented with the Talbot interferometry. The analytic formulae derived in this work to characterize the second-order differential phase contrast in the dark-field imaging implemented with the Talbot interferometry are of significance, which may initiate more activities in the research and development of x-ray differential phase contrast imaging for extensive preclinical and eventually clinical applications.
An Automatic Orthonormalization Method for Solving Stiff Boundary-Value Problems
NASA Astrophysics Data System (ADS)
Davey, A.
1983-08-01
A new initial-value method is described, based on a remark by Drury, for solving stiff linear differential two-point cigenvalue and boundary-value problems. The method is extremely reliable, it is especially suitable for high-order differential systems, and it is capable of accommodating realms of stiffness which other methods cannot reach. The key idea behind the method is to decompose the stiff differential operator into two non-stiff operators, one of which is nonlinear. The nonlinear one is specially chosen so that it advances an orthonormal frame, indeed the method is essentially a kind of automatic orthonormalization; the second is auxiliary but it is needed to determine the required function. The usefulness of the method is demonstrated by calculating some eigenfunctions for an Orr-Sommerfeld problem when the Reynolds number is as large as 10°.
WEAK GALERKIN METHODS FOR SECOND ORDER ELLIPTIC INTERFACE PROBLEMS
MU, LIN; WANG, JUNPING; WEI, GUOWEI; YE, XIU; ZHAO, SHAN
2013-01-01
Weak Galerkin methods refer to general finite element methods for partial differential equations (PDEs) in which differential operators are approximated by their weak forms as distributions. Such weak forms give rise to desirable flexibilities in enforcing boundary and interface conditions. A weak Galerkin finite element method (WG-FEM) is developed in this paper for solving elliptic PDEs with discontinuous coefficients and interfaces. Theoretically, it is proved that high order numerical schemes can be designed by using the WG-FEM with polynomials of high order on each element. Extensive numerical experiments have been carried to validate the WG-FEM for solving second order elliptic interface problems. High order of convergence is numerically confirmed in both L2 and L∞ norms for the piecewise linear WG-FEM. Special attention is paid to solve many interface problems, in which the solution possesses a certain singularity due to the nonsmoothness of the interface. A challenge in research is to design nearly second order numerical methods that work well for problems with low regularity in the solution. The best known numerical scheme in the literature is of order O(h) to O(h1.5) for the solution itself in L∞ norm. It is demonstrated that the WG-FEM of the lowest order, i.e., the piecewise constant WG-FEM, is capable of delivering numerical approximations that are of order O(h1.75) to O(h2) in the L∞ norm for C1 or Lipschitz continuous interfaces associated with a C1 or H2 continuous solution. PMID:24072935
NASA Astrophysics Data System (ADS)
Doha, E.; Bhrawy, A.
2006-06-01
It is well known that spectral methods (tau, Galerkin, collocation) have a condition number of ( is the number of retained modes of polynomial approximations). This paper presents some efficient spectral algorithms, which have a condition number of , based on the Jacobi?Galerkin methods of second-order elliptic equations in one and two space variables. The key to the efficiency of these algorithms is to construct appropriate base functions, which lead to systems with specially structured matrices that can be efficiently inverted. The complexities of the algorithms are a small multiple of operations for a -dimensional domain with unknowns, while the convergence rates of the algorithms are exponentials with smooth solutions.
NASA Astrophysics Data System (ADS)
Okhovat, Reza; Boström, Anders
2017-04-01
Dynamic equations for an isotropic spherical shell are derived by using a series expansion technique. The displacement field is split into a scalar (radial) part and a vector (tangential) part. Surface differential operators are introduced to decrease the length of all equations. The starting point is a power series expansion of the displacement components in the thickness coordinate relative to the mid-surface of the shell. By using the expansions of the displacement components, the three-dimensional elastodynamic equations yield a set of recursion relations among the expansion functions that can be used to eliminate all but the four of lowest order and to express higher order expansion functions in terms of those of lowest orders. Applying the boundary conditions on the surfaces of the spherical shell and eliminating all but the four lowest order expansion functions give the shell equations as a power series in the shell thickness. After lengthy manipulations, the final four shell equations are obtained in a relatively compact form which are given to second order in shell thickness explicitly. The eigenfrequencies are compared to exact three-dimensional theory with excellent agreement and to membrane theory.
Gao, Yingjie; Zhang, Jinhai; Yao, Zhenxing
2015-12-01
The complex frequency shifted perfectly matched layer (CFS-PML) can improve the absorbing performance of PML for nearly grazing incident waves. However, traditional PML and CFS-PML are based on first-order wave equations; thus, they are not suitable for second-order wave equation. In this paper, an implementation of CFS-PML for second-order wave equation is presented using auxiliary differential equations. This method is free of both convolution calculations and third-order temporal derivatives. As an unsplit CFS-PML, it can reduce the nearly grazing incidence. Numerical experiments show that it has better absorption than typical PML implementations based on second-order wave equation.
SIVA/DIVA- INITIAL VALUE ORDINARY DIFFERENTIAL EQUATION SOLUTION VIA A VARIABLE ORDER ADAMS METHOD
NASA Technical Reports Server (NTRS)
Krogh, F. T.
1994-01-01
The SIVA/DIVA package is a collection of subroutines for the solution of ordinary differential equations. There are versions for single precision and double precision arithmetic. These solutions are applicable to stiff or nonstiff differential equations of first or second order. SIVA/DIVA requires fewer evaluations of derivatives than other variable order Adams predictor-corrector methods. There is an option for the direct integration of second order equations which can make integration of trajectory problems significantly more efficient. Other capabilities of SIVA/DIVA include: monitoring a user supplied function which can be separate from the derivative; dynamically controlling the step size; displaying or not displaying output at initial, final, and step size change points; saving the estimated local error; and reverse communication where subroutines return to the user for output or computation of derivatives instead of automatically performing calculations. The user must supply SIVA/DIVA with: 1) the number of equations; 2) initial values for the dependent and independent variables, integration stepsize, error tolerance, etc.; and 3) the driver program and operational parameters necessary for subroutine execution. SIVA/DIVA contains an extensive diagnostic message library should errors occur during execution. SIVA/DIVA is written in FORTRAN 77 for batch execution and is machine independent. It has a central memory requirement of approximately 120K of 8 bit bytes. This program was developed in 1983 and last updated in 1987.
NASA Astrophysics Data System (ADS)
Syrakos, Alexandros; Varchanis, Stylianos; Dimakopoulos, Yannis; Goulas, Apostolos; Tsamopoulos, John
2017-12-01
Finite volume methods (FVMs) constitute a popular class of methods for the numerical simulation of fluid flows. Among the various components of these methods, the discretisation of the gradient operator has received less attention despite its fundamental importance with regards to the accuracy of the FVM. The most popular gradient schemes are the divergence theorem (DT) (or Green-Gauss) scheme and the least-squares (LS) scheme. Both are widely believed to be second-order accurate, but the present study shows that in fact the common variant of the DT gradient is second-order accurate only on structured meshes whereas it is zeroth-order accurate on general unstructured meshes, and the LS gradient is second-order and first-order accurate, respectively. This is explained through a theoretical analysis and is confirmed by numerical tests. The schemes are then used within a FVM to solve a simple diffusion equation on unstructured grids generated by several methods; the results reveal that the zeroth-order accuracy of the DT gradient is inherited by the FVM as a whole, and the discretisation error does not decrease with grid refinement. On the other hand, use of the LS gradient leads to second-order accurate results, as does the use of alternative, consistent, DT gradient schemes, including a new iterative scheme that makes the common DT gradient consistent at almost no extra cost. The numerical tests are performed using both an in-house code and the popular public domain partial differential equation solver OpenFOAM.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Midya, Bikashkali; Roy, B.; Roychoudhury, R.
2010-02-15
Here, we have studied first- and second-order intertwining approaches to generate isospectral partner potentials of position dependent (effective) mass Schroedinger equation. The second-order intertwiner is constructed directly by taking it as second-order linear differential operator with position dependent coefficients, and the system of equations arising from the intertwining relationship is solved for the coefficients by taking an ansatz. A complete scheme for obtaining general solution is obtained, which is valid for any arbitrary potential and mass function. The proposed technique allows us to generate isospectral potentials with the following spectral modifications: (i) to add new bound state(s), (ii) to removemore » bound state(s), and (iii) to leave the spectrum unaffected. To explain our findings with the help of an illustration, we have used point canonical transformation to obtain the general solution of the position dependent mass Schrodinger equation corresponding to a potential and mass function. It is shown that our results are consistent with the formulation of type A N-fold supersymmetry [T. Tanaka, J. Phys. A 39, 219 (2006); A. Gonzalez-Lopez and T. Tanaka, J. Phys. A 39, 3715 (2006)] for the particular cases N=1 and N=2, respectively.« less
Integration by parts and Pohozaev identities for space-dependent fractional-order operators
NASA Astrophysics Data System (ADS)
Grubb, Gerd
2016-08-01
Consider a classical elliptic pseudodifferential operator P on Rn of order 2a (0 < a < 1) with even symbol. For example, P = A(x , D) a where A (x , D) is a second-order strongly elliptic differential operator; the fractional Laplacian (- Δ) a is a particular case. For solutions u of the Dirichlet problem on a bounded smooth subset Ω ⊂Rn, we show an integration-by-parts formula with a boundary integral involving (d-a u)|∂Ω, where d (x) = dist (x , ∂ Ω). This extends recent results of Ros-Oton, Serra and Valdinoci, to operators that are x-dependent, nonsymmetric, and have lower-order parts. We also generalize their formula of Pohozaev-type, that can be used to prove unique continuation properties, and nonexistence of nontrivial solutions of semilinear problems. An illustration is given with P =(- Δ +m2) a. The basic step in our analysis is a factorization of P, P ∼P-P+, where we set up a calculus for the generalized pseudodifferential operators P± that come out of the construction.
ADM For Solving Linear Second-Order Fredholm Integro-Differential Equations
NASA Astrophysics Data System (ADS)
Karim, Mohd F.; Mohamad, Mahathir; Saifullah Rusiman, Mohd; Che-Him, Norziha; Roslan, Rozaini; Khalid, Kamil
2018-04-01
In this paper, we apply Adomian Decomposition Method (ADM) as numerically analyse linear second-order Fredholm Integro-differential Equations. The approximate solutions of the problems are calculated by Maple package. Some numerical examples have been considered to illustrate the ADM for solving this equation. The results are compared with the existing exact solution. Thus, the Adomian decomposition method can be the best alternative method for solving linear second-order Fredholm Integro-Differential equation. It converges to the exact solution quickly and in the same time reduces computational work for solving the equation. The result obtained by ADM shows the ability and efficiency for solving these equations.
NASA Astrophysics Data System (ADS)
Tisdell, Christopher C.
2017-07-01
Knowing an equation has a unique solution is important from both a modelling and theoretical point of view. For over 70 years, the approach to learning and teaching 'well posedness' of initial value problems (IVPs) for second- and higher-order ordinary differential equations has involved transforming the problem and its analysis to a first-order system of equations. We show that this excursion is unnecessary and present a direct approach regarding second- and higher-order problems that does not require an understanding of systems.
NASA Technical Reports Server (NTRS)
Pflaum, Christoph
1996-01-01
A multilevel algorithm is presented that solves general second order elliptic partial differential equations on adaptive sparse grids. The multilevel algorithm consists of several V-cycles. Suitable discretizations provide that the discrete equation system can be solved in an efficient way. Numerical experiments show a convergence rate of order Omicron(1) for the multilevel algorithm.
A fourth-order box method for solving the boundary layer equations
NASA Technical Reports Server (NTRS)
Wornom, S. F.
1977-01-01
A fourth order box method for calculating high accuracy numerical solutions to parabolic, partial differential equations in two variables or ordinary differential equations is presented. The method is the natural extension of the second order Keller Box scheme to fourth order and is demonstrated with application to the incompressible, laminar and turbulent boundary layer equations. Numerical results for high accuracy test cases show the method to be significantly faster than other higher order and second order methods.
Solving ay'' + by' + cy = 0 with a Simple Product Rule Approach
ERIC Educational Resources Information Center
Tolle, John
2011-01-01
When elementary ordinary differential equations (ODEs) of first and second order are included in the calculus curriculum, second-order linear constant coefficient ODEs are typically solved by a method more appropriate to differential equations courses. This method involves the characteristic equation and its roots, complex-valued solutions, and…
Numerical solution of second order ODE directly by two point block backward differentiation formula
NASA Astrophysics Data System (ADS)
Zainuddin, Nooraini; Ibrahim, Zarina Bibi; Othman, Khairil Iskandar; Suleiman, Mohamed; Jamaludin, Noraini
2015-12-01
Direct Two Point Block Backward Differentiation Formula, (BBDF2) for solving second order ordinary differential equations (ODEs) will be presented throughout this paper. The method is derived by differentiating the interpolating polynomial using three back values. In BBDF2, two approximate solutions are produced simultaneously at each step of integration. The method derived is implemented by using fixed step size and the numerical results that follow demonstrate the advantage of the direct method as compared to the reduction method.
NASA Astrophysics Data System (ADS)
Liu, Changying; Iserles, Arieh; Wu, Xinyuan
2018-03-01
The Klein-Gordon equation with nonlinear potential occurs in a wide range of application areas in science and engineering. Its computation represents a major challenge. The main theme of this paper is the construction of symmetric and arbitrarily high-order time integrators for the nonlinear Klein-Gordon equation by integrating Birkhoff-Hermite interpolation polynomials. To this end, under the assumption of periodic boundary conditions, we begin with the formulation of the nonlinear Klein-Gordon equation as an abstract second-order ordinary differential equation (ODE) and its operator-variation-of-constants formula. We then derive a symmetric and arbitrarily high-order Birkhoff-Hermite time integration formula for the nonlinear abstract ODE. Accordingly, the stability, convergence and long-time behaviour are rigorously analysed once the spatial differential operator is approximated by an appropriate positive semi-definite matrix, subject to suitable temporal and spatial smoothness. A remarkable characteristic of this new approach is that the requirement of temporal smoothness is reduced compared with the traditional numerical methods for PDEs in the literature. Numerical results demonstrate the advantage and efficiency of our time integrators in comparison with the existing numerical approaches.
Spectral approach to homogenization of hyperbolic equations with periodic coefficients
NASA Astrophysics Data System (ADS)
Dorodnyi, M. A.; Suslina, T. A.
2018-06-01
In L2 (Rd ;Cn), we consider selfadjoint strongly elliptic second order differential operators Aε with periodic coefficients depending on x / ε, ε > 0. We study the behavior of the operators cos (Aε1/2 τ) and Aε-1/2 sin (Aε1/2 τ), τ ∈ R, for small ε. Approximations for these operators in the (Hs →L2)-operator norm with a suitable s are obtained. The results are used to study the behavior of the solution vε of the Cauchy problem for the hyperbolic equation ∂τ2 vε = -Aεvε + F. General results are applied to the acoustics equation and the system of elasticity theory.
Higher-order automatic differentiation of mathematical functions
NASA Astrophysics Data System (ADS)
Charpentier, Isabelle; Dal Cappello, Claude
2015-04-01
Functions of mathematical physics such as the Bessel functions, the Chebyshev polynomials, the Gauss hypergeometric function and so forth, have practical applications in many scientific domains. On the one hand, differentiation formulas provided in reference books apply to real or complex variables. These do not account for the chain rule. On the other hand, based on the chain rule, the automatic differentiation has become a natural tool in numerical modeling. Nevertheless automatic differentiation tools do not deal with the numerous mathematical functions. This paper describes formulas and provides codes for the higher-order automatic differentiation of mathematical functions. The first method is based on Faà di Bruno's formula that generalizes the chain rule. The second one makes use of the second order differential equation they satisfy. Both methods are exemplified with the aforementioned functions.
Transformation matrices between non-linear and linear differential equations
NASA Technical Reports Server (NTRS)
Sartain, R. L.
1983-01-01
In the linearization of systems of non-linear differential equations, those systems which can be exactly transformed into the second order linear differential equation Y"-AY'-BY=0 where Y, Y', and Y" are n x 1 vectors and A and B are constant n x n matrices of real numbers were considered. The 2n x 2n matrix was used to transform the above matrix equation into the first order matrix equation X' = MX. Specially the matrix M and the conditions which will diagonalize or triangularize M were studied. Transformation matrices P and P sub -1 were used to accomplish this diagonalization or triangularization to return to the solution of the second order matrix differential equation system from the first order system.
Belavkin filter for mixture of quadrature and photon counting process with some control techniques
NASA Astrophysics Data System (ADS)
Garg, Naman; Parthasarathy, Harish; Upadhyay, D. K.
2018-03-01
The Belavkin filter for the H-P Schrödinger equation is derived when the measurement process consists of a mixture of quantum Brownian motions and conservation/Poisson process. Higher-order powers of the measurement noise differentials appear in the Belavkin dynamics. For simulation, we use a second-order truncation. Control of the Belavkin filtered state by infinitesimal unitary operators is achieved in order to reduce the noise effects in the Belavkin filter equation. This is carried out along the lines of Luc Bouten. Various optimization criteria for control are described like state tracking and Lindblad noise removal.
Computer program documentation for the dynamic analysis of a noncontacting mechanical face seal
NASA Technical Reports Server (NTRS)
Auer, B. M.; Etsion, I.
1980-01-01
A computer program is presented which achieves a numerical solution for the equations of motion of a noncontacting mechanical face seal. The flexibly-mounted primary seal ring motion is expressed by a set of second order differential equations for three degrees of freedom. These equations are reduced to a set of first order equations and the GEAR software package is used to solve the set of first order equations. Program input includes seal design parameters and seal operating conditions. Output from the program includes velocities and displacements of the seal ring about the axis of an inertial reference system. One example problem is described.
Kepner, Gordon R
2010-04-13
The numerous natural phenomena that exhibit saturation behavior, e.g., ligand binding and enzyme kinetics, have been approached, to date, via empirical and particular analyses. This paper presents a mechanism-free, and assumption-free, second-order differential equation, designed only to describe a typical relationship between the variables governing these phenomena. It develops a mathematical model for this relation, based solely on the analysis of the typical experimental data plot and its saturation characteristics. Its utility complements the traditional empirical approaches. For the general saturation curve, described in terms of its independent (x) and dependent (y) variables, a second-order differential equation is obtained that applies to any saturation phenomena. It shows that the driving factor for the basic saturation behavior is the probability of the interactive site being free, which is described quantitatively. Solving the equation relates the variables in terms of the two empirical constants common to all these phenomena, the initial slope of the data plot and the limiting value at saturation. A first-order differential equation for the slope emerged that led to the concept of the effective binding rate at the active site and its dependence on the calculable probability the interactive site is free. These results are illustrated using specific cases, including ligand binding and enzyme kinetics. This leads to a revised understanding of how to interpret the empirical constants, in terms of the variables pertinent to the phenomenon under study. The second-order differential equation revealed the basic underlying relations that describe these saturation phenomena, and the basic mathematical properties of the standard experimental data plot. It was shown how to integrate this differential equation, and define the common basic properties of these phenomena. The results regarding the importance of the slope and the new perspectives on the empirical constants governing the behavior of these phenomena led to an alternative perspective on saturation behavior kinetics. Their essential commonality was revealed by this analysis, based on the second-order differential equation.
Boyko, Vyacheslav M; Popovych, Roman O; Shapoval, Nataliya M
2013-01-01
Lie symmetries of systems of second-order linear ordinary differential equations with constant coefficients are exhaustively described over both the complex and real fields. The exact lower and upper bounds for the dimensions of the maximal Lie invariance algebras possessed by such systems are obtained using an effective algebraic approach.
Boyko, Vyacheslav M.; Popovych, Roman O.; Shapoval, Nataliya M.
2013-01-01
Lie symmetries of systems of second-order linear ordinary differential equations with constant coefficients are exhaustively described over both the complex and real fields. The exact lower and upper bounds for the dimensions of the maximal Lie invariance algebras possessed by such systems are obtained using an effective algebraic approach. PMID:23564972
Keep Your Distance! Using Second-Order Ordinary Differential Equations to Model Traffic Flow
ERIC Educational Resources Information Center
McCartney, Mark
2004-01-01
A simple mathematical model for how vehicles follow each other along a stretch of road is presented. The resulting linear second-order differential equation with constant coefficients is solved and interpreted. The model can be used as an application of solution techniques taught at first-year undergraduate level and as a motivator to encourage…
A New Factorisation of a General Second Order Differential Equation
ERIC Educational Resources Information Center
Clegg, Janet
2006-01-01
A factorisation of a general second order ordinary differential equation is introduced from which the full solution to the equation can be obtained by performing two integrations. The method is compared with traditional methods for solving these type of equations. It is shown how the Green's function can be derived directly from the factorisation…
Anisotropic fractal media by vector calculus in non-integer dimensional space
NASA Astrophysics Data System (ADS)
Tarasov, Vasily E.
2014-08-01
A review of different approaches to describe anisotropic fractal media is proposed. In this paper, differentiation and integration non-integer dimensional and multi-fractional spaces are considered as tools to describe anisotropic fractal materials and media. We suggest a generalization of vector calculus for non-integer dimensional space by using a product measure method. The product of fractional and non-integer dimensional spaces allows us to take into account the anisotropy of the fractal media in the framework of continuum models. The integration over non-integer-dimensional spaces is considered. In this paper differential operators of first and second orders for fractional space and non-integer dimensional space are suggested. The differential operators are defined as inverse operations to integration in spaces with non-integer dimensions. Non-integer dimensional space that is product of spaces with different dimensions allows us to give continuum models for anisotropic type of the media. The Poisson's equation for fractal medium, the Euler-Bernoulli fractal beam, and the Timoshenko beam equations for fractal material are considered as examples of application of suggested generalization of vector calculus for anisotropic fractal materials and media.
NASA Astrophysics Data System (ADS)
López, S. D.; Otranto, S.; Garibotti, C. R.
2015-01-01
In this work, a theoretical study of the double ionization of He by ion impact at the fully differential level is presented. Emphasis is made in the role played by the projectile in the double emission process depending on its charge and the amount of momentum transferred to the target. A Born-CDW model including a second-order term in the projectile charge is introduced and evaluated within an on-shell treatment. We find that emission geometries for which the second-order term dominates lead to asymmetric structures around the momentum transfer direction, a typical characteristic of higher order transitions.
Informed Conjecturing of Solutions for Differential Equations in a Modeling Context
ERIC Educational Resources Information Center
Winkel, Brian
2015-01-01
We examine two differential equations. (i) first-order exponential growth or decay; and (ii) second order, linear, constant coefficient differential equations, and show the advantage of learning differential equations in a modeling context for informed conjectures of their solution. We follow with a discussion of the complete analysis afforded by…
Thandapani, Ethiraju; Kannan, Manju; Pinelas, Sandra
2016-01-01
In this paper, we present some sufficient conditions for the oscillation of all solutions of a second order forced impulsive delay differential equation with damping term. Three factors-impulse, delay and damping that affect the interval qualitative properties of solutions of equations are taken into account together. The results obtained in this paper extend and generalize some of the the known results for forced impulsive differential equations. An example is provided to illustrate the main result.
Solving Second-Order Ordinary Differential Equations without Using Complex Numbers
ERIC Educational Resources Information Center
Kougias, Ioannis E.
2009-01-01
Ordinary differential equations (ODEs) is a subject with a wide range of applications and the need of introducing it to students often arises in the last year of high school, as well as in the early stages of tertiary education. The usual methods of solving second-order ODEs with constant coefficients, among others, rely upon the use of complex…
ERIC Educational Resources Information Center
Tisdell, Christopher C.
2017-01-01
Knowing an equation has a unique solution is important from both a modelling and theoretical point of view. For over 70 years, the approach to learning and teaching "well posedness" of initial value problems (IVPs) for second- and higher-order ordinary differential equations has involved transforming the problem and its analysis to a…
Using the MCNP Taylor series perturbation feature (efficiently) for shielding problems
NASA Astrophysics Data System (ADS)
Favorite, Jeffrey
2017-09-01
The Taylor series or differential operator perturbation method, implemented in MCNP and invoked using the PERT card, can be used for efficient parameter studies in shielding problems. This paper shows how only two PERT cards are needed to generate an entire parameter study, including statistical uncertainty estimates (an additional three PERT cards can be used to give exact statistical uncertainties). One realistic example problem involves a detailed helium-3 neutron detector model and its efficiency as a function of the density of its high-density polyethylene moderator. The MCNP differential operator perturbation capability is extremely accurate for this problem. A second problem involves the density of the polyethylene reflector of the BeRP ball and is an example of first-order sensitivity analysis using the PERT capability. A third problem is an analytic verification of the PERT capability.
NASA Technical Reports Server (NTRS)
Hajimiri, Seyed-Ali (Inventor); Kee, Scott D. (Inventor); Aoki, Ichiro (Inventor)
2010-01-01
A cross-differential amplifier is provided. The cross-differential amplifier includes an inductor connected to a direct current power source at a first terminal. A first and second switch, such as transistors, are connected to the inductor at a second terminal. A first and second amplifier are connected at their supply terminals to the first and second switch. The first and second switches are operated to commutate the inductor between the amplifiers so as to provide an amplified signal while limiting the ripple voltage on the inductor and thus limiting the maximum voltage imposed across the amplifiers and switches.
NASA Technical Reports Server (NTRS)
Hajimiri, Seyed-Ali (Inventor); Kee, Scott D. (Inventor); Aoki, Ichiro (Inventor)
2011-01-01
A cross-differential amplifier is provided. The cross-differential amplifier includes an inductor connected to a direct current power source at a first terminal. A first and second switch, such as transistors, are connected to the inductor at a second terminal. A first and second amplifier are connected at their supply terminals to the first and second switch. The first and second switches are operated to commutate the inductor between the amplifiers so as to provide an amplified signal while limiting the ripple voltage on the inductor and thus limiting the maximum voltage imposed across the amplifiers and switches.
NASA Technical Reports Server (NTRS)
Aoki, Ichiro (Inventor); Hajimiri, Seyed-Ali (Inventor); Kee, Scott D. (Inventor)
2013-01-01
A cross-differential amplifier is provided. The cross-differential amplifier includes an inductor connected to a direct current power source at a first terminal. A first and second switch, such as transistors, are connected to the inductor at a second terminal. A first and second amplifier are connected at their supply terminals to the first and second switch. The first and second switches are operated to commutate the inductor between the amplifiers so as to provide an amplified signal while limiting the ripple voltage on the inductor and thus limiting the maximum voltage imposed across the amplifiers and switches.
NASA Technical Reports Server (NTRS)
Hajimiri, Seyed-Ali (Inventor); Kee, Scott D. (Inventor); Aoki, Ichiro (Inventor)
2008-01-01
A cross-differential amplifier is provided. The cross-differential amplifier includes an inductor connected to a direct current power source at a first terminal. A first and second switch, such as transistors, are connected to the inductor at a second terminal. A first and second amplifier are connected at their supply terminals to the first and second switch. The first and second switches are operated to commutate the inductor between the amplifiers so as to provide an amplified signal while limiting the ripple voltage on the inductor and thus limiting the maximum voltage imposed across the amplifiers and switches.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gupta, Naveen, E-mail: naveens222@rediffmail.com; Singh, Arvinder, E-mail: arvinder6@lycos.com; Singh, Navpreet, E-mail: navpreet.nit@gmail.com
2015-11-15
This paper presents a scheme for second harmonic generation of an intense q-Gaussian laser beam in a preformed parabolic plasma channel, where collisional nonlinearity is operative with nonlinear absorption. Due to nonuniform irradiance of intensity along the wavefront of the laser beam, nonuniform Ohmic heating of plasma electrons takes place. Due to this nonuniform heating of plasma, the laser beam gets self-focused and produces strong density gradients in the transverse direction. The generated density gradients excite an electron plasma wave at pump frequency that interacts with the pump beam to produce its second harmonics. The formulation is based on amore » numerical solution of the nonlinear Schrodinger wave equation in WKB approximation followed by moment theory approach. A second order nonlinear differential equation governing the propagation dynamics of the laser beam with distance of propagation has been obtained and is solved numerically by Runge Kutta fourth order technique. The effect of nonlinear absorption on self-focusing of the laser beam and conversion efficiency of its second harmonics has been investigated.« less
NASA Astrophysics Data System (ADS)
Ebaid, Abdelhalim; Wazwaz, Abdul-Majid; Alali, Elham; Masaedeh, Basem S.
2017-03-01
Very recently, it was observed that the temperature of nanofluids is finally governed by second-order ordinary differential equations with variable coefficients of exponential orders. Such coefficients were then transformed to polynomials type by using new independent variables. In this paper, a class of second-order ordinary differential equations with variable coefficients of polynomials type has been solved analytically. The analytical solution is expressed in terms of a hypergeometric function with generalized parameters. Moreover, applications of the present results have been applied on some selected nanofluids problems in the literature. The exact solutions in the literature were derived as special cases of our generalized analytical solution.
Abel's Theorem Simplifies Reduction of Order
ERIC Educational Resources Information Center
Green, William R.
2011-01-01
We give an alternative to the standard method of reduction or order, in which one uses one solution of a homogeneous, linear, second order differential equation to find a second, linearly independent solution. Our method, based on Abel's Theorem, is shorter, less complex and extends to higher order equations.
NASA Astrophysics Data System (ADS)
Kiryakova, Virginia S.
2012-11-01
The Laplace Transform (LT) serves as a basis of the Operational Calculus (OC), widely explored by engineers and applied scientists in solving mathematical models for their practical needs. This transform is closely related to the exponential and trigonometric functions (exp, cos, sin) and to the classical differentiation and integration operators, reducing them to simple algebraic operations. Thus, the classical LT and the OC give useful tool to handle differential equations and systems with constant coefficients. Several generalizations of the LT have been introduced to allow solving, in a similar way, of differential equations with variable coefficients and of higher integer orders, as well as of fractional (arbitrary non-integer) orders. Note that fractional order mathematical models are recently widely used to describe better various systems and phenomena of the real world. This paper surveys briefly some of our results on classes of such integral transforms, that can be obtained from the LT by means of "transmutations" which are operators of the generalized fractional calculus (GFC). On the list of these Laplace-type integral transforms, we consider the Borel-Dzrbashjan, Meijer, Krätzel, Obrechkoff, generalized Obrechkoff (multi-index Borel-Dzrbashjan) transforms, etc. All of them are G- and H-integral transforms of convolutional type, having as kernels Meijer's G- or Fox's H-functions. Besides, some special functions (also being G- and H-functions), among them - the generalized Bessel-type and Mittag-Leffler (M-L) type functions, are generating Gel'fond-Leontiev (G-L) operators of generalized differentiation and integration, which happen to be also operators of GFC. Our integral transforms have operational properties analogous to those of the LT - they do algebrize the G-L generalized integrations and differentiations, and thus can serve for solving wide classes of differential equations with variable coefficients of arbitrary, including non-integer order. Throughout the survey, we illustrate the parallels in the relationships: Laplace type integral transforms - special functions as kernels - operators of generalized integration and differentiation generated by special functions - special functions as solutions of related differential equations. The role of the so-called Special Functions of Fractional Calculus is emphasized.
Kepner, Gordon R
2014-08-27
This study uses dimensional analysis to derive the general second-order differential equation that underlies numerous physical and natural phenomena described by common mathematical functions. It eschews assumptions about empirical constants and mechanisms. It relies only on the data plot's mathematical properties to provide the conditions and constraints needed to specify a second-order differential equation that is free of empirical constants for each phenomenon. A practical example of each function is analyzed using the general form of the underlying differential equation and the observable unique mathematical properties of each data plot, including boundary conditions. This yields a differential equation that describes the relationship among the physical variables governing the phenomenon's behavior. Complex phenomena such as the Standard Normal Distribution, the Logistic Growth Function, and Hill Ligand binding, which are characterized by data plots of distinctly different sigmoidal character, are readily analyzed by this approach. It provides an alternative, simple, unifying basis for analyzing each of these varied phenomena from a common perspective that ties them together and offers new insights into the appropriate empirical constants for describing each phenomenon.
High-order space charge effects using automatic differentiation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reusch, Michael F.; Bruhwiler, David L.; Computer Accelerator Physics Conference Williamsburg, Virginia 1996
1997-02-01
The Northrop Grumman Topkark code has been upgraded to Fortran 90, making use of operator overloading, so the same code can be used to either track an array of particles or construct a Taylor map representation of the accelerator lattice. We review beam optics and beam dynamics simulations conducted with TOPKARK in the past and we present a new method for modeling space charge forces to high-order with automatic differentiation. This method generates an accurate, high-order, 6-D Taylor map of the phase space variable trajectories for a bunched, high-current beam. The spatial distribution is modeled as the product of amore » Taylor Series times a Gaussian. The variables in the argument of the Gaussian are normalized to the respective second moments of the distribution. This form allows for accurate representation of a wide range of realistic distributions, including any asymmetries, and allows for rapid calculation of the space charge fields with free space boundary conditions. An example problem is presented to illustrate our approach.« less
Solving Ordinary Differential Equations
NASA Technical Reports Server (NTRS)
Krogh, F. T.
1987-01-01
Initial-value ordinary differential equation solution via variable order Adams method (SIVA/DIVA) package is collection of subroutines for solution of nonstiff ordinary differential equations. There are versions for single-precision and double-precision arithmetic. Requires fewer evaluations of derivatives than other variable-order Adams predictor/ corrector methods. Option for direct integration of second-order equations makes integration of trajectory problems significantly more efficient. Written in FORTRAN 77.
Second-order optimality conditions for problems with C1 data
NASA Astrophysics Data System (ADS)
Ginchev, Ivan; Ivanov, Vsevolod I.
2008-04-01
In this paper we obtain second-order optimality conditions of Karush-Kuhn-Tucker type and Fritz John one for a problem with inequality constraints and a set constraint in nonsmooth settings using second-order directional derivatives. In the necessary conditions we suppose that the objective function and the active constraints are continuously differentiable, but their gradients are not necessarily locally Lipschitz. In the sufficient conditions for a global minimum we assume that the objective function is differentiable at and second-order pseudoconvex at , a notion introduced by the authors [I. Ginchev, V.I. Ivanov, Higher-order pseudoconvex functions, in: I.V. Konnov, D.T. Luc, A.M. Rubinov (Eds.), Generalized Convexity and Related Topics, in: Lecture Notes in Econom. and Math. Systems, vol. 583, Springer, 2007, pp. 247-264], the constraints are both differentiable and quasiconvex at . In the sufficient conditions for an isolated local minimum of order two we suppose that the problem belongs to the class C1,1. We show that they do not hold for C1 problems, which are not C1,1 ones. At last a new notion parabolic local minimum is defined and it is applied to extend the sufficient conditions for an isolated local minimum from problems with C1,1 data to problems with C1 one.
Anisotropic fractal media by vector calculus in non-integer dimensional space
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tarasov, Vasily E., E-mail: tarasov@theory.sinp.msu.ru
2014-08-15
A review of different approaches to describe anisotropic fractal media is proposed. In this paper, differentiation and integration non-integer dimensional and multi-fractional spaces are considered as tools to describe anisotropic fractal materials and media. We suggest a generalization of vector calculus for non-integer dimensional space by using a product measure method. The product of fractional and non-integer dimensional spaces allows us to take into account the anisotropy of the fractal media in the framework of continuum models. The integration over non-integer-dimensional spaces is considered. In this paper differential operators of first and second orders for fractional space and non-integer dimensionalmore » space are suggested. The differential operators are defined as inverse operations to integration in spaces with non-integer dimensions. Non-integer dimensional space that is product of spaces with different dimensions allows us to give continuum models for anisotropic type of the media. The Poisson's equation for fractal medium, the Euler-Bernoulli fractal beam, and the Timoshenko beam equations for fractal material are considered as examples of application of suggested generalization of vector calculus for anisotropic fractal materials and media.« less
Hessian-based norm regularization for image restoration with biomedical applications.
Lefkimmiatis, Stamatios; Bourquard, Aurélien; Unser, Michael
2012-03-01
We present nonquadratic Hessian-based regularization methods that can be effectively used for image restoration problems in a variational framework. Motivated by the great success of the total-variation (TV) functional, we extend it to also include second-order differential operators. Specifically, we derive second-order regularizers that involve matrix norms of the Hessian operator. The definition of these functionals is based on an alternative interpretation of TV that relies on mixed norms of directional derivatives. We show that the resulting regularizers retain some of the most favorable properties of TV, i.e., convexity, homogeneity, rotation, and translation invariance, while dealing effectively with the staircase effect. We further develop an efficient minimization scheme for the corresponding objective functions. The proposed algorithm is of the iteratively reweighted least-square type and results from a majorization-minimization approach. It relies on a problem-specific preconditioned conjugate gradient method, which makes the overall minimization scheme very attractive since it can be applied effectively to large images in a reasonable computational time. We validate the overall proposed regularization framework through deblurring experiments under additive Gaussian noise on standard and biomedical images.
Self-adjoint elliptic operators with boundary conditions on not closed hypersurfaces
NASA Astrophysics Data System (ADS)
Mantile, Andrea; Posilicano, Andrea; Sini, Mourad
2016-07-01
The theory of self-adjoint extensions of symmetric operators is used to construct self-adjoint realizations of a second-order elliptic differential operator on Rn with linear boundary conditions on (a relatively open part of) a compact hypersurface. Our approach allows to obtain Kreĭn-like resolvent formulae where the reference operator coincides with the ;free; operator with domain H2 (Rn); this provides an useful tool for the scattering problem from a hypersurface. Concrete examples of this construction are developed in connection with the standard boundary conditions, Dirichlet, Neumann, Robin, δ and δ‧-type, assigned either on a (n - 1) dimensional compact boundary Γ = ∂ Ω or on a relatively open part Σ ⊂ Γ. Schatten-von Neumann estimates for the difference of the powers of resolvents of the free and the perturbed operators are also proven; these give existence and completeness of the wave operators of the associated scattering systems.
NASA Technical Reports Server (NTRS)
Taylor, Arthur C., III; Hou, Gene W.
1994-01-01
The straightforward automatic-differentiation and the hand-differentiated incremental iterative methods are interwoven to produce a hybrid scheme that captures some of the strengths of each strategy. With this compromise, discrete aerodynamic sensitivity derivatives are calculated with the efficient incremental iterative solution algorithm of the original flow code. Moreover, the principal advantage of automatic differentiation is retained (i.e., all complicated source code for the derivative calculations is constructed quickly with accuracy). The basic equations for second-order sensitivity derivatives are presented; four methods are compared. Each scheme requires that large systems are solved first for the first-order derivatives and, in all but one method, for the first-order adjoint variables. Of these latter three schemes, two require no solutions of large systems thereafter. For the other two for which additional systems are solved, the equations and solution procedures are analogous to those for the first order derivatives. From a practical viewpoint, implementation of the second-order methods is feasible only with software tools such as automatic differentiation, because of the extreme complexity and large number of terms. First- and second-order sensitivities are calculated accurately for two airfoil problems, including a turbulent flow example; both geometric-shape and flow-condition design variables are considered. Several methods are tested; results are compared on the basis of accuracy, computational time, and computer memory. For first-order derivatives, the hybrid incremental iterative scheme obtained with automatic differentiation is competitive with the best hand-differentiated method; for six independent variables, it is at least two to four times faster than central finite differences and requires only 60 percent more memory than the original code; the performance is expected to improve further in the future.
Finite difference and Runge-Kutta methods for solving vibration problems
NASA Astrophysics Data System (ADS)
Lintang Renganis Radityani, Scolastika; Mungkasi, Sudi
2017-11-01
The vibration of a storey building can be modelled into a system of second order ordinary differential equations. If the number of floors of a building is large, then the result is a large scale system of second order ordinary differential equations. The large scale system is difficult to solve, and if it can be solved, the solution may not be accurate. Therefore, in this paper, we seek for accurate methods for solving vibration problems. We compare the performance of numerical finite difference and Runge-Kutta methods for solving large scale systems of second order ordinary differential equations. The finite difference methods include the forward and central differences. The Runge-Kutta methods include the Euler and Heun methods. Our research results show that the central finite difference and the Heun methods produce more accurate solutions than the forward finite difference and the Euler methods do.
NASA Astrophysics Data System (ADS)
Amengonu, Yawo H.; Kakad, Yogendra P.
2014-07-01
Quasivelocity techniques such as Maggi's and Boltzmann-Hamel's equations eliminate Lagrange multipliers from the beginning as opposed to the Euler-Lagrange method where one has to solve for the n configuration variables and the multipliers as functions of time when there are m nonholonomic constraints. Maggi's equation produces n second-order differential equations of which (n-m) are derived using (n-m) independent quasivelocities and the time derivative of the m kinematic constraints which add the remaining m second order differential equations. This technique is applied to derive the dynamics of a differential mobile robot and a controller which takes into account these dynamics is developed.
Dirac’s magnetic monopole and the Kontsevich star product
NASA Astrophysics Data System (ADS)
Soloviev, M. A.
2018-03-01
We examine relationships between various quantization schemes for an electrically charged particle in the field of a magnetic monopole. Quantization maps are defined in invariant geometrical terms, appropriate to the case of nontrivial topology, and are constructed for two operator representations. In the first setting, the quantum operators act on the Hilbert space of sections of a nontrivial complex line bundle associated with the Hopf bundle, whereas the second approach uses instead a quaternionic Hilbert module of sections of a trivial quaternionic line bundle. We show that these two quantizations are naturally related by a bundle morphism and, as a consequence, induce the same phase-space star product. We obtain explicit expressions for the integral kernels of star-products corresponding to various operator orderings and calculate their asymptotic expansions up to the third order in the Planck constant \\hbar . We also show that the differential form of the magnetic Weyl product corresponding to the symmetric ordering agrees completely with the Kontsevich formula for deformation quantization of Poisson structures and can be represented by Kontsevich’s graphs.
Guan, Yue; Li, Weifeng; Jiang, Zhuoran; Chen, Ying; Liu, Song; He, Jian; Zhou, Zhengyang; Ge, Yun
2016-12-01
This study aimed to develop whole-lesion apparent diffusion coefficient (ADC)-based entropy-related parameters of cervical cancer to preliminarily assess intratumoral heterogeneity of this lesion in comparison to adjacent normal cervical tissues. A total of 51 women (mean age, 49 years) with cervical cancers confirmed by biopsy underwent 3-T pelvic diffusion-weighted magnetic resonance imaging with b values of 0 and 800 s/mm 2 prospectively. ADC-based entropy-related parameters including first-order entropy and second-order entropies were derived from the whole tumor volume as well as adjacent normal cervical tissues. Intraclass correlation coefficient, Wilcoxon test with Bonferroni correction, Kruskal-Wallis test, and receiver operating characteristic curve were used for statistical analysis. All the parameters showed excellent interobserver agreement (all intraclass correlation coefficients > 0.900). Entropy, entropy(H) 0 , entropy(H) 45 , entropy(H) 90 , entropy(H) 135 , and entropy(H) mean were significantly higher, whereas entropy(H) range and entropy(H) std were significantly lower in cervical cancers compared to adjacent normal cervical tissues (all P <.0001). Kruskal-Wallis test showed that there were no significant differences among the values of various second-order entropies including entropy(H) 0, entropy(H) 45 , entropy(H) 90 , entropy(H) 135 , and entropy(H) mean. All second-order entropies had larger area under the receiver operating characteristic curve than first-order entropy in differentiating cervical cancers from adjacent normal cervical tissues. Further, entropy(H) 45 , entropy(H) 90 , entropy(H) 135 , and entropy(H) mean had the same largest area under the receiver operating characteristic curve of 0.867. Whole-lesion ADC-based entropy-related parameters of cervical cancers were developed successfully, which showed initial potential in characterizing intratumoral heterogeneity in comparison to adjacent normal cervical tissues. Copyright © 2016 The Association of University Radiologists. Published by Elsevier Inc. All rights reserved.
Cohomology and deformation of 𝔞𝔣𝔣(1|1) acting on differential operators
NASA Astrophysics Data System (ADS)
Basdouri, Khaled; Omri, Salem
We consider the 𝔞𝔣𝔣(1|1)-module structure on the spaces of differential operators acting on the spaces of weighted densities. We compute the second differential cohomology of the Lie superalgebra 𝔞𝔣𝔣(1|1) with coefficients in differential operators acting on the spaces of weighted densities. We classify formal deformations of the 𝔞𝔣𝔣(1|1)-module structure on the superspaces of symbols of differential operators. We prove that any formal deformation of a given infinitesimal deformation of this structure is equivalent to its infinitesimal part. This work is the simplest superization of a result by Basdouri [Deformation of 𝔞𝔣𝔣(1)-modules of pseudo-differential operators and symbols, J. Pseudo-differ. Oper. Appl. 7(2) (2016) 157-179] and application of work by Basdouri et al. [First cohomology of 𝔞𝔣𝔣(1) and 𝔞𝔣𝔣(1|1) acting on linear differential operators, Int. J. Geom. Methods Mod. Phys. 13(1) (2016)].
Maglev Train Signal Processing Architecture Based on Nonlinear Discrete Tracking Differentiator.
Wang, Zhiqiang; Li, Xiaolong; Xie, Yunde; Long, Zhiqiang
2018-05-24
In a maglev train levitation system, signal processing plays an important role for the reason that some sensor signals are prone to be corrupted by noise due to the harsh installation and operation environment of sensors and some signals cannot be acquired directly via sensors. Based on these concerns, an architecture based on a new type of nonlinear second-order discrete tracking differentiator is proposed. The function of this signal processing architecture includes filtering signal noise and acquiring needed signals for levitation purposes. The proposed tracking differentiator possesses the advantages of quick convergence, no fluttering, and simple calculation. Tracking differentiator's frequency characteristics at different parameter values are studied in this paper. The performance of this new type of tracking differentiator is tested in a MATLAB simulation and this tracking-differentiator is implemented in Very-High-Speed Integrated Circuit Hardware Description Language (VHDL). In the end, experiments are conducted separately on a test board and a maglev train model. Simulation and experiment results show that the performance of this novel signal processing architecture can fulfill the real system requirement.
NASA Astrophysics Data System (ADS)
Andriopoulos, K.; Leach, P. G. L.
2007-04-01
We extend the work of Abraham-Shrauner [B. Abraham-Shrauner, Hidden symmetries and linearization of the modified Painleve-Ince equation, J. Math. Phys. 34 (1993) 4809-4816] on the linearization of the modified Painleve-Ince equation to a wider class of nonlinear second-order ordinary differential equations invariant under the symmetries of time translation and self-similarity. In the process we demonstrate a remarkable connection with the parameters obtained in the singularity analysis of this class of equations.
Tunç, Cemil; Tunç, Osman
2016-01-01
In this paper, certain system of linear homogeneous differential equations of second-order is considered. By using integral inequalities, some new criteria for bounded and [Formula: see text]-solutions, upper bounds for values of improper integrals of the solutions and their derivatives are established to the considered system. The obtained results in this paper are considered as extension to the results obtained by Kroopnick (2014) [1]. An example is given to illustrate the obtained results.
C1,1 regularity for degenerate elliptic obstacle problems
NASA Astrophysics Data System (ADS)
Daskalopoulos, Panagiota; Feehan, Paul M. N.
2016-03-01
The Heston stochastic volatility process is a degenerate diffusion process where the degeneracy in the diffusion coefficient is proportional to the square root of the distance to the boundary of the half-plane. The generator of this process with killing, called the elliptic Heston operator, is a second-order, degenerate-elliptic partial differential operator, where the degeneracy in the operator symbol is proportional to the distance to the boundary of the half-plane. In mathematical finance, solutions to the obstacle problem for the elliptic Heston operator correspond to value functions for perpetual American-style options on the underlying asset. With the aid of weighted Sobolev spaces and weighted Hölder spaces, we establish the optimal C 1 , 1 regularity (up to the boundary of the half-plane) for solutions to obstacle problems for the elliptic Heston operator when the obstacle functions are sufficiently smooth.
NASA Technical Reports Server (NTRS)
Sirkis, James S. (Inventor); Sivanesan, Ponniah (Inventor); Venkat, Venki S. (Inventor)
2001-01-01
A Bragg grating sensor for measuring distributed strain and temperature at the same time comprises an optical fiber having a single mode operating wavelength region and below a cutoff wavelength of the fiber having a multimode operating wavelength region. A saturated, higher order Bragg grating having first and second order Bragg conditions is fabricated in the optical fiber. The first order of Bragg resonance wavelength of the Bragg grating is within the single mode operating wavelength region of the optical fiber and the second order of Bragg resonance wavelength is below the cutoff wavelength of the fiber within the multimode operating wavelength region. The reflectivities of the saturated Bragg grating at the first and second order Bragg conditions are less than two orders of magnitude of one another. In use, the first and second order Bragg conditions are simultaneously created in the sensor at the respective wavelengths and a signal from the sensor is demodulated with respect to each of the wavelengths corresponding to the first and second order Bragg conditions. Two Bragg conditions have different responsivities to strain and temperature, thus allowing two equations for axial strain and temperature to be found in terms of the measure shifts in the primary and second order Bragg wavelengths. This system of equations can be solved for strain and temperature.
Conforming and nonconforming virtual element methods for elliptic problems
Cangiani, Andrea; Manzini, Gianmarco; Sutton, Oliver J.
2016-08-03
Here we present, in a unified framework, new conforming and nonconforming virtual element methods for general second-order elliptic problems in two and three dimensions. The differential operator is split into its symmetric and nonsymmetric parts and conditions for stability and accuracy on their discrete counterparts are established. These conditions are shown to lead to optimal H 1- and L 2-error estimates, confirmed by numerical experiments on a set of polygonal meshes. The accuracy of the numerical approximation provided by the two methods is shown to be comparable.
Conforming and nonconforming virtual element methods for elliptic problems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cangiani, Andrea; Manzini, Gianmarco; Sutton, Oliver J.
Here we present, in a unified framework, new conforming and nonconforming virtual element methods for general second-order elliptic problems in two and three dimensions. The differential operator is split into its symmetric and nonsymmetric parts and conditions for stability and accuracy on their discrete counterparts are established. These conditions are shown to lead to optimal H 1- and L 2-error estimates, confirmed by numerical experiments on a set of polygonal meshes. The accuracy of the numerical approximation provided by the two methods is shown to be comparable.
Reformulating the Schrödinger equation as a Shabat-Zakharov system
NASA Astrophysics Data System (ADS)
Boonserm, Petarpa; Visser, Matt
2010-02-01
We reformulate the second-order Schrödinger equation as a set of two coupled first-order differential equations, a so-called "Shabat-Zakharov system" (sometimes called a "Zakharov-Shabat" system). There is considerable flexibility in this approach, and we emphasize the utility of introducing an "auxiliary condition" or "gauge condition" that is used to cut down the degrees of freedom. Using this formalism, we derive the explicit (but formal) general solution to the Schrödinger equation. The general solution depends on three arbitrarily chosen functions, and a path-ordered exponential matrix. If one considers path ordering to be an "elementary" process, then this represents complete quadrature, albeit formal, of the second-order linear ordinary differential equation.
Application of the Finite Element Method in Atomic and Molecular Physics
NASA Technical Reports Server (NTRS)
Shertzer, Janine
2007-01-01
The finite element method (FEM) is a numerical algorithm for solving second order differential equations. It has been successfully used to solve many problems in atomic and molecular physics, including bound state and scattering calculations. To illustrate the diversity of the method, we present here details of two applications. First, we calculate the non-adiabatic dipole polarizability of Hi by directly solving the first and second order equations of perturbation theory with FEM. In the second application, we calculate the scattering amplitude for e-H scattering (without partial wave analysis) by reducing the Schrodinger equation to set of integro-differential equations, which are then solved with FEM.
High-order space charge effects using automatic differentiation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reusch, M.F.; Bruhwiler, D.L.
1997-02-01
The Northrop Grumman Topkark code has been upgraded to Fortran 90, making use of operator overloading, so the same code can be used to either track an array of particles or construct a Taylor map representation of the accelerator lattice. We review beam optics and beam dynamics simulations conducted with TOPKARK in the past and we present a new method for modeling space charge forces to high-order with automatic differentiation. This method generates an accurate, high-order, 6-D Taylor map of the phase space variable trajectories for a bunched, high-current beam. The spatial distribution is modeled as the product of amore » Taylor Series times a Gaussian. The variables in the argument of the Gaussian are normalized to the respective second moments of the distribution. This form allows for accurate representation of a wide range of realistic distributions, including any asymmetries, and allows for rapid calculation of the space charge fields with free space boundary conditions. An example problem is presented to illustrate our approach. {copyright} {ital 1997 American Institute of Physics.}« less
On functional determinants of matrix differential operators with multiple zero modes
NASA Astrophysics Data System (ADS)
Falco, G. M.; Fedorenko, Andrei A.; Gruzberg, Ilya A.
2017-12-01
We generalize the method of computing functional determinants with a single excluded zero eigenvalue developed by McKane and Tarlie to differential operators with multiple zero eigenvalues. We derive general formulas for such functional determinants of r× r matrix second order differential operators O with 0 < n ≤slant 2r linearly independent zero modes. We separately discuss the cases of the homogeneous Dirichlet boundary conditions, when the number of zero modes cannot exceed r, and the case of twisted boundary conditions, including the periodic and anti-periodic ones, when the number of zero modes is bounded above by 2r. In all cases the determinants with excluded zero eigenvalues can be expressed only in terms of the n zero modes and other r-n or 2r-n (depending on the boundary conditions) solutions of the homogeneous equation O h=0 , in the spirit of Gel’fand-Yaglom approach. In instanton calculations, the contribution of the zero modes is taken into account by introducing the so-called collective coordinates. We show that there is a remarkable cancellation of a factor (involving scalar products of zero modes) between the Jacobian of the transformation to the collective coordinates and the functional fluctuation determinant with excluded zero eigenvalues. This cancellation drastically simplifies instanton calculations when one uses our formulas.
NASA Astrophysics Data System (ADS)
Zhang, Yi
2018-01-01
This study extends a set of unstructured third/fourth-order flux operators on spherical icosahedral grids from two perspectives. First, the fifth-order and sixth-order flux operators of this kind are further extended, and the nominally second-order to sixth-order operators are then compared based on the solid body rotation and deformational flow tests. Results show that increasing the nominal order generally leads to smaller absolute errors. Overall, the standard fifth-order scheme generates the smallest errors in limited and unlimited tests, although it does not enhance the convergence rate. Even-order operators show higher limiter sensitivity than the odd-order operators. Second, a triangular version of these high-order operators is repurposed for transporting the potential vorticity in a space-time-split shallow water framework. Results show that a class of nominally third-order upwind-biased operators generates better results than second-order and fourth-order counterparts. The increase of the potential enstrophy over time is suppressed owing to the damping effect. The grid-scale noise in the vorticity is largely alleviated, and the total energy remains conserved. Moreover, models using high-order operators show smaller numerical errors in the vorticity field because of a more accurate representation of the nonlinear Coriolis term. This improvement is especially evident in the Rossby-Haurwitz wave test, in which the fluid is highly rotating. Overall, high-order flux operators with higher damping coefficients, which essentially behave like the Anticipated Potential Vorticity Method, present better results.
Wang, Rui; Li, Qiqiang
2016-01-01
We consider a class of second-order Emden-Fowler equations with positive and nonpositve neutral coefficients. By using the Riccati transformation and inequalities, several oscillation and asymptotic results are established. Some examples are given to illustrate the main results.
Error modeling for differential GPS. M.S. Thesis - MIT, 12 May 1995
NASA Technical Reports Server (NTRS)
Blerman, Gregory S.
1995-01-01
Differential Global Positioning System (DGPS) positioning is used to accurately locate a GPS receiver based upon the well-known position of a reference site. In utilizing this technique, several error sources contribute to position inaccuracy. This thesis investigates the error in DGPS operation and attempts to develop a statistical model for the behavior of this error. The model for DGPS error is developed using GPS data collected by Draper Laboratory. The Marquardt method for nonlinear curve-fitting is used to find the parameters of a first order Markov process that models the average errors from the collected data. The results show that a first order Markov process can be used to model the DGPS error as a function of baseline distance and time delay. The model's time correlation constant is 3847.1 seconds (1.07 hours) for the mean square error. The distance correlation constant is 122.8 kilometers. The total process variance for the DGPS model is 3.73 sq meters.
NASA Astrophysics Data System (ADS)
Doha, E. H.; Abd-Elhameed, W. M.; Youssri, Y. H.
2013-10-01
In this paper, we present a new second kind Chebyshev (S2KC) operational matrix of derivatives. With the aid of S2KC, an algorithm is described to obtain numerical solutions of a class of linear and nonlinear Lane-Emden type singular initial value problems (IVPs). The idea of obtaining such solutions is essentially based on reducing the differential equation with its initial conditions to a system of algebraic equations. Two illustrative examples concern relevant physical problems (the Lane-Emden equations of the first and second kind) are discussed to demonstrate the validity and applicability of the suggested algorithm. Numerical results obtained are comparing favorably with the analytical known solutions.
Temperature differential detection device
Girling, P.M.
1986-04-22
A temperature differential detection device for detecting the temperature differential between predetermined portions of a container wall is disclosed as comprising a Wheatstone bridge circuit for detecting resistance imbalance with a first circuit branch having a first elongated wire element mounted in thermal contact with a predetermined portion of the container wall, a second circuit branch having a second elongated wire element mounted in thermal contact with a second predetermined portion of a container wall with the wire elements having a predetermined temperature-resistant coefficient, an indicator interconnected between the first and second branches remote from the container wall for detecting and indicating resistance imbalance between the first and second wire elements, and connector leads for electrically connecting the wire elements to the remote indicator in order to maintain the respective resistance value relationship between the first and second wire elements. The indicator is calibrated to indicate the detected resistance imbalance in terms of a temperature differential between the first and second wall portions. 2 figs.
Temperature differential detection device
Girling, Peter M.
1986-01-01
A temperature differential detection device for detecting the temperature differential between predetermined portions of a container wall is disclosed as comprising a Wheatstone bridge circuit for detecting resistance imbalance with a first circuit branch having a first elongated wire element mounted in thermal contact with a predetermined portion of the container wall, a second circuit branch having a second elongated wire element mounted in thermal contact with a second predetermined portion of a container wall with the wire elements having a predetermined temperature-resistant coefficient, an indicator interconnected between the first and second branches remote from the container wall for detecting and indicating resistance imbalance between the first and second wire elements, and connector leads for electrically connecting the wire elements to the remote indicator in order to maintain the respective resistance value relationship between the first and second wire elements. The indicator is calibrated to indicate the detected resistance imbalance in terms of a temperature differential between the first and second wall portions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jimenez, Bienvenido; Novo, Vicente
We provide second-order necessary and sufficient conditions for a point to be an efficient element of a set with respect to a cone in a normed space, so that there is only a small gap between necessary and sufficient conditions. To this aim, we use the common second-order tangent set and the asymptotic second-order cone utilized by Penot. As an application we establish second-order necessary conditions for a point to be a solution of a vector optimization problem with an arbitrary feasible set and a twice Frechet differentiable objective function between two normed spaces. We also establish second-order sufficient conditionsmore » when the initial space is finite-dimensional so that there is no gap with necessary conditions. Lagrange multiplier rules are also given.« less
Tang, Chen; Han, Lin; Ren, Hongwei; Zhou, Dongjian; Chang, Yiming; Wang, Xiaohang; Cui, Xiaolong
2008-10-01
We derive the second-order oriented partial-differential equations (PDEs) for denoising in electronic-speckle-pattern interferometry fringe patterns from two points of view. The first is based on variational methods, and the second is based on controlling diffusion direction. Our oriented PDE models make the diffusion along only the fringe orientation. The main advantage of our filtering method, based on oriented PDE models, is that it is very easy to implement compared with the published filtering methods along the fringe orientation. We demonstrate the performance of our oriented PDE models via application to two computer-simulated and experimentally obtained speckle fringes and compare with related PDE models.
Collins, Heather R; Zhu, Xun; Bhatt, Ramesh S; Clark, Jonathan D; Joseph, Jane E
2012-12-01
The degree to which face-specific brain regions are specialized for different kinds of perceptual processing is debated. This study parametrically varied demands on featural, first-order configural, or second-order configural processing of faces and houses in a perceptual matching task to determine the extent to which the process of perceptual differentiation was selective for faces regardless of processing type (domain-specific account), specialized for specific types of perceptual processing regardless of category (process-specific account), engaged in category-optimized processing (i.e., configural face processing or featural house processing), or reflected generalized perceptual differentiation (i.e., differentiation that crosses category and processing type boundaries). ROIs were identified in a separate localizer run or with a similarity regressor in the face-matching runs. The predominant principle accounting for fMRI signal modulation in most regions was generalized perceptual differentiation. Nearly all regions showed perceptual differentiation for both faces and houses for more than one processing type, even if the region was identified as face-preferential in the localizer run. Consistent with process specificity, some regions showed perceptual differentiation for first-order processing of faces and houses (right fusiform face area and occipito-temporal cortex and right lateral occipital complex), but not for featural or second-order processing. Somewhat consistent with domain specificity, the right inferior frontal gyrus showed perceptual differentiation only for faces in the featural matching task. The present findings demonstrate that the majority of regions involved in perceptual differentiation of faces are also involved in differentiation of other visually homogenous categories.
Collins, Heather R.; Zhu, Xun; Bhatt, Ramesh S.; Clark, Jonathan D.; Joseph, Jane E.
2015-01-01
The degree to which face-specific brain regions are specialized for different kinds of perceptual processing is debated. The present study parametrically varied demands on featural, first-order configural or second-order configural processing of faces and houses in a perceptual matching task to determine the extent to which the process of perceptual differentiation was selective for faces regardless of processing type (domain-specific account), specialized for specific types of perceptual processing regardless of category (process-specific account), engaged in category-optimized processing (i.e., configural face processing or featural house processing) or reflected generalized perceptual differentiation (i.e. differentiation that crosses category and processing type boundaries). Regions of interest were identified in a separate localizer run or with a similarity regressor in the face-matching runs. The predominant principle accounting for fMRI signal modulation in most regions was generalized perceptual differentiation. Nearly all regions showed perceptual differentiation for both faces and houses for more than one processing type, even if the region was identified as face-preferential in the localizer run. Consistent with process-specificity, some regions showed perceptual differentiation for first-order processing of faces and houses (right fusiform face area and occipito-temporal cortex, and right lateral occipital complex), but not for featural or second-order processing. Somewhat consistent with domain-specificity, the right inferior frontal gyrus showed perceptual differentiation only for faces in the featural matching task. The present findings demonstrate that the majority of regions involved in perceptual differentiation of faces are also involved in differentiation of other visually homogenous categories. PMID:22849402
Second-order Born calculation of coplanar symmetric (e, 2e) process on Mg
NASA Astrophysics Data System (ADS)
Zhang, Yong-Zhi; Wang, Yang; Zhou, Ya-Jun
2014-06-01
The second-order distorted wave Born approximation (DWBA) method is employed to investigate the triple differential cross sections (TDCS) of coplanar doubly symmetric (e, 2e) collisions for magnesium at excess energies of 6 eV-20 eV. Comparing with the standard first-order DWBA calculations, the inclusion of the second-order Born term in the scattering amplitude improves the degree of agreement with experiments, especially for backward scattering region of TDCS. This indicates that the present second-order Born term is capable to give a reasonable correction to DWBA model in studying coplanar symmetric (e, 2e) problems of two-valence-electron target in low energy range.
NASA Astrophysics Data System (ADS)
Tu, Jin; Yi, Cai-Feng
2008-04-01
In this paper, the authors investigate the growth of solutions of a class of higher order linear differential equationsf(k)+Ak-1f(k-1)+...+A0f=0 when most coefficients in the above equations have the same order with each other, and obtain some results which improve previous results due to K.H. Kwon [K.H. Kwon, Nonexistence of finite order solutions of certain second order linear differential equations, Kodai Math. J. 19 (1996) 378-387] and ZE-X. Chen [Z.-X. Chen, The growth of solutions of the differential equation f''+e-zf'+Q(z)f=0, Sci. China Ser. A 31 (2001) 775-784 (in Chinese); ZE-X. Chen, On the hyper order of solutions of higher order differential equations, Chinese Ann. Math. Ser. B 24 (2003) 501-508 (in Chinese); Z.-X. Chen, On the growth of solutions of a class of higher order differential equations, Acta Math. Sci. Ser. B 24 (2004) 52-60 (in Chinese); Z.-X. Chen, C.-C. Yang, Quantitative estimations on the zeros and growth of entire solutions of linear differential equations, Complex Var. 42 (2000) 119-133].
Spacetime encodings. III. Second order Killing tensors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brink, Jeandrew
2010-01-15
This paper explores the Petrov type D, stationary axisymmetric vacuum (SAV) spacetimes that were found by Carter to have separable Hamilton-Jacobi equations, and thus admit a second-order Killing tensor. The derivation of the spacetimes presented in this paper borrows from ideas about dynamical systems, and illustrates concepts that can be generalized to higher-order Killing tensors. The relationship between the components of the Killing equations and metric functions are given explicitly. The origin of the four separable coordinate systems found by Carter is explained and classified in terms of the analytic structure associated with the Killing equations. A geometric picture ofmore » what the orbital invariants may represent is built. Requiring that a SAV spacetime admits a second-order Killing tensor is very restrictive, selecting very few candidates from the group of all possible SAV spacetimes. This restriction arises due to the fact that the consistency conditions associated with the Killing equations require that the field variables obey a second-order differential equation, as opposed to a fourth-order differential equation that imposes the weaker condition that the spacetime be SAV. This paper introduces ideas that could lead to the explicit computation of more general orbital invariants in the form of higher-order Killing tensors.« less
Lagrangian particle method for compressible fluid dynamics
NASA Astrophysics Data System (ADS)
Samulyak, Roman; Wang, Xingyu; Chen, Hsin-Chiang
2018-06-01
A new Lagrangian particle method for solving Euler equations for compressible inviscid fluid or gas flows is proposed. Similar to smoothed particle hydrodynamics (SPH), the method represents fluid cells with Lagrangian particles and is suitable for the simulation of complex free surface/multiphase flows. The main contributions of our method, which is different from SPH in all other aspects, are (a) significant improvement of approximation of differential operators based on a polynomial fit via weighted least squares approximation and the convergence of prescribed order, (b) a second-order particle-based algorithm that reduces to the first-order upwind method at local extremal points, providing accuracy and long term stability, and (c) more accurate resolution of entropy discontinuities and states at free interfaces. While the method is consistent and convergent to a prescribed order, the conservation of momentum and energy is not exact and depends on the convergence order. The method is generalizable to coupled hyperbolic-elliptic systems. Numerical verification tests demonstrating the convergence order are presented as well as examples of complex multiphase flows.
Korkmaz, Erdal
2017-01-01
In this paper, we give sufficient conditions for the boundedness, uniform asymptotic stability and square integrability of the solutions to a certain fourth order non-autonomous differential equations with delay by using Lyapunov's second method. The results obtained essentially improve, include and complement the results in the literature.
NASA Technical Reports Server (NTRS)
Hou, Gene
1998-01-01
Sensitivity analysis is a technique for determining derivatives of system responses with respect to design parameters. Among many methods available for sensitivity analysis, automatic differentiation has been proven through many applications in fluid dynamics and structural mechanics to be an accurate and easy method for obtaining derivatives. Nevertheless, the method can be computational expensive and can require a high memory space. This project will apply an automatic differentiation tool, ADIFOR, to a p-version finite element code to obtain first- and second- order then-nal derivatives, respectively. The focus of the study is on the implementation process and the performance of the ADIFOR-enhanced codes for sensitivity analysis in terms of memory requirement, computational efficiency, and accuracy.
Method for Operating a Sensor to Differentiate Between Analytes in a Sample
Kunt, Tekin; Cavicchi, Richard E; Semancik, Stephen; McAvoy, Thomas J
1998-07-28
Disclosed is a method for operating a sensor to differentiate between first and second analytes in a sample. The method comprises the steps of determining a input profile for the sensor which will enhance the difference in the output profiles of the sensor as between the first analyte and the second analyte; determining a first analyte output profile as observed when the input profile is applied to the sensor; determining a second analyte output profile as observed when the temperature profile is applied to the sensor; introducing the sensor to the sample while applying the temperature profile to the sensor, thereby obtaining a sample output profile; and evaluating the sample output profile as against the first and second analyte output profiles to thereby determine which of the analytes is present in the sample.
A Galerkin formulation of the MIB method for three dimensional elliptic interface problems
Xia, Kelin; Wei, Guo-Wei
2014-01-01
We develop a three dimensional (3D) Galerkin formulation of the matched interface and boundary (MIB) method for solving elliptic partial differential equations (PDEs) with discontinuous coefficients, i.e., the elliptic interface problem. The present approach builds up two sets of elements respectively on two extended subdomains which both include the interface. As a result, two sets of elements overlap each other near the interface. Fictitious solutions are defined on the overlapping part of the elements, so that the differentiation operations of the original PDEs can be discretized as if there was no interface. The extra coefficients of polynomial basis functions, which furnish the overlapping elements and solve the fictitious solutions, are determined by interface jump conditions. Consequently, the interface jump conditions are rigorously enforced on the interface. The present method utilizes Cartesian meshes to avoid the mesh generation in conventional finite element methods (FEMs). We implement the proposed MIB Galerkin method with three different elements, namely, rectangular prism element, five-tetrahedron element and six-tetrahedron element, which tile the Cartesian mesh without introducing any new node. The accuracy, stability and robustness of the proposed 3D MIB Galerkin are extensively validated over three types of elliptic interface problems. In the first type, interfaces are analytically defined by level set functions. These interfaces are relatively simple but admit geometric singularities. In the second type, interfaces are defined by protein surfaces, which are truly arbitrarily complex. The last type of interfaces originates from multiprotein complexes, such as molecular motors. Near second order accuracy has been confirmed for all of these problems. To our knowledge, it is the first time for an FEM to show a near second order convergence in solving the Poisson equation with realistic protein surfaces. Additionally, the present work offers the first known near second order accurate method for C1 continuous or H2 continuous solutions associated with a Lipschitz continuous interface in a 3D setting. PMID:25309038
On the Definition of Surface Potentials for Finite-Difference Operators
NASA Technical Reports Server (NTRS)
Tsynkov, S. V.; Bushnell, Dennis M. (Technical Monitor)
2001-01-01
For a class of linear constant-coefficient finite-difference operators of the second order, we introduce the concepts similar to those of conventional single- and double-layer potentials for differential operators. The discrete potentials are defined completely independently of any notion related to the approximation of the continuous potentials on the grid. We rather use all approach based on differentiating, and then inverting the differentiation of a function with surface discontinuity of a particular kind, which is the most general way of introducing surface potentials in the theory of distributions. The resulting finite-difference "surface" potentials appear to be solutions of the corresponding continuous potentials. Primarily, this pertains to the possibility of representing a given solution to the homogeneous equation on the domain as a variety of surface potentials, with the density defined on the domain's boundary. At the same time the discrete surface potentials can be interpreted as one specific realization of the generalized potentials of Calderon's type, and consequently, their approximation properties can be studied independently in the framework of the difference potentials method by Ryaben'kii. The motivation for introducing and analyzing the discrete surface potentials was provided by the problems of active shielding and control of sound, in which the aforementioned source terms that drive the potentials are interpreted as the acoustic control sources that cancel out the unwanted noise on a predetermined region of interest.
Some Advanced Concepts in Discrete Aerodynamic Sensitivity Analysis
NASA Technical Reports Server (NTRS)
Taylor, Arthur C., III; Green, Lawrence L.; Newman, Perry A.; Putko, Michele M.
2001-01-01
An efficient incremental-iterative approach for differentiating advanced flow codes is successfully demonstrated on a 2D inviscid model problem. The method employs the reverse-mode capability of the automatic- differentiation software tool ADIFOR 3.0, and is proven to yield accurate first-order aerodynamic sensitivity derivatives. A substantial reduction in CPU time and computer memory is demonstrated in comparison with results from a straight-forward, black-box reverse- mode application of ADIFOR 3.0 to the same flow code. An ADIFOR-assisted procedure for accurate second-order aerodynamic sensitivity derivatives is successfully verified on an inviscid transonic lifting airfoil example problem. The method requires that first-order derivatives are calculated first using both the forward (direct) and reverse (adjoint) procedures; then, a very efficient non-iterative calculation of all second-order derivatives can be accomplished. Accurate second derivatives (i.e., the complete Hessian matrices) of lift, wave-drag, and pitching-moment coefficients are calculated with respect to geometric- shape, angle-of-attack, and freestream Mach number
A round trip from Caldirola to Bateman systems
NASA Astrophysics Data System (ADS)
Guerrero, J.; López-Ruiz, F. F.; Aldaya, V.; Cossío, F.
2011-03-01
For the quantum Caldirola-Kanai Hamiltonian, describing a quantum damped harmonic oscillator, a couple of constant of motion operators generating the Heisenberg algebra can be found. The inclusion in this algebra, in a unitary manner, of the standard time evolution generator , which is not a constant of motion, requires a non-trivial extension of this basic algebra and the physical system itself, which now includes a new dual particle. This enlarged algebra, when exponentiated, leads to a group, named the Bateman group, which admits unitary representations with support in the Hilbert space of functions satisfying the Schrodinger equation associated with the quantum Bateman Hamiltonian, either as a second order differential operator as well as a first order one. The classical Bateman Hamiltonian describes a dual system of a damped (losing energy) particle and a dual (gaining energy) particle. The classical Bateman system has a solution submanifold containing the trajectories of the original system as a submanifold. When restricted to this submanifold, the Bateman dual classical Hamiltonian leads to the Caldirola-Kanai Hamiltonian for a single damped particle. This construction can also be done at the quantum level, and the Caldirola-Kanai Hamiltonian operator can be derived from the Bateman Hamiltonian operator when appropriate constraints are imposed.
An Estimation Theory for Differential Equations and other Problems, with Applications.
1981-11-01
order differential -8- operators and M-operators, in particular, the Perron - Frobenius theory and generalizations. Convergence theory for iterative... THEORY FOR DIFFERENTIAL 0EQUATIONS AND OTHER FROBLEMS, WITH APPLICATIONS 0 ,Final Technical Report by Johann Schr6der November, 1981 EUROPEAN RESEARCH...COVERED An estimation theory for differential equations Final Report and other problrms, with app)lications A981 6. PERFORMING ORG. RN,-ORT NUMfFR 7
Simplifying Differential Equations for Multiscale Feynman Integrals beyond Multiple Polylogarithms.
Adams, Luise; Chaubey, Ekta; Weinzierl, Stefan
2017-04-07
In this Letter we exploit factorization properties of Picard-Fuchs operators to decouple differential equations for multiscale Feynman integrals. The algorithm reduces the differential equations to blocks of the size of the order of the irreducible factors of the Picard-Fuchs operator. As a side product, our method can be used to easily convert the differential equations for Feynman integrals which evaluate to multiple polylogarithms to an ϵ form.
Second- and Higher-Order Virial Coefficients Derived from Equations of State for Real Gases
ERIC Educational Resources Information Center
Parkinson, William A.
2009-01-01
Derivation of the second- and higher-order virial coefficients for models of the gaseous state is demonstrated by employing a direct differential method and subsequent term-by-term comparison to power series expansions. This communication demonstrates the application of this technique to van der Waals representations of virial coefficients.…
Luo, Xiongbiao; Jayarathne, Uditha L; McLeod, A Jonathan; Mori, Kensaku
2014-01-01
Endoscopic navigation generally integrates different modalities of sensory information in order to continuously locate an endoscope relative to suspicious tissues in the body during interventions. Current electromagnetic tracking techniques for endoscopic navigation have limited accuracy due to tissue deformation and magnetic field distortion. To avoid these limitations and improve the endoscopic localization accuracy, this paper proposes a new endoscopic navigation framework that uses an optical mouse sensor to measure the endoscope movements along its viewing direction. We then enhance the differential evolution algorithm by modifying its mutation operation. Based on the enhanced differential evolution method, these movement measurements and image structural patches in endoscopic videos are fused to accurately determine the endoscope position. An evaluation on a dynamic phantom demonstrated that our method provides a more accurate navigation framework. Compared to state-of-the-art methods, it improved the navigation accuracy from 2.4 to 1.6 mm and reduced the processing time from 2.8 to 0.9 seconds.
NASA Technical Reports Server (NTRS)
Walden, H.
1974-01-01
Methods for obtaining approximate solutions for the fundamental eigenvalue of the Laplace-Beltrami operator (also referred to as the membrane eigenvalue problem for the vibration equation) on the unit spherical surface are developed. Two specific types of spherical surface domains are considered: (1) the interior of a spherical triangle, i.e., the region bounded by arcs of three great circles, and (2) the exterior of a great circle arc extending for less than pi radians on the sphere (a spherical surface with a slit). In both cases, zero boundary conditions are imposed. In order to solve the resulting second-order elliptic partial differential equations in two independent variables, a finite difference approximation is derived. The symmetric (generally five-point) finite difference equations that develop are written in matrix form and then solved by the iterative method of point successive overrelaxation. Upon convergence of this iterative method, the fundamental eigenvalue is approximated by iteration utilizing the power method as applied to the finite Rayleigh quotient.
A staggered-grid convolutional differentiator for elastic wave modelling
NASA Astrophysics Data System (ADS)
Sun, Weijia; Zhou, Binzhong; Fu, Li-Yun
2015-11-01
The computation of derivatives in governing partial differential equations is one of the most investigated subjects in the numerical simulation of physical wave propagation. An analytical staggered-grid convolutional differentiator (CD) for first-order velocity-stress elastic wave equations is derived in this paper by inverse Fourier transformation of the band-limited spectrum of a first derivative operator. A taper window function is used to truncate the infinite staggered-grid CD stencil. The truncated CD operator is almost as accurate as the analytical solution, and as efficient as the finite-difference (FD) method. The selection of window functions will influence the accuracy of the CD operator in wave simulation. We search for the optimal Gaussian windows for different order CDs by minimizing the spectral error of the derivative and comparing the windows with the normal Hanning window function for tapering the CD operators. It is found that the optimal Gaussian window appears to be similar to the Hanning window function for tapering the same CD operator. We investigate the accuracy of the windowed CD operator and the staggered-grid FD method with different orders. Compared to the conventional staggered-grid FD method, a short staggered-grid CD operator achieves an accuracy equivalent to that of a long FD operator, with lower computational costs. For example, an 8th order staggered-grid CD operator can achieve the same accuracy of a 16th order staggered-grid FD algorithm but with half of the computational resources and time required. Numerical examples from a homogeneous model and a crustal waveguide model are used to illustrate the superiority of the CD operators over the conventional staggered-grid FD operators for the simulation of wave propagations.
NASA Astrophysics Data System (ADS)
Zhang, Y.
2017-12-01
The unstructured formulation of the third/fourth-order flux operators used by the Advanced Research WRF is extended twofold on spherical icosahedral grids. First, the fifth- and sixth-order flux operators of WRF are further extended, and the nominally second- to sixth-order operators are then compared based on the solid body rotation and deformational flow tests. Results show that increasing the nominal order generally leads to smaller absolute errors. Overall, the fifth-order scheme generates the smallest errors in limited and unlimited tests, although it does not enhance the convergence rate. The fifth-order scheme also exhibits smaller sensitivity to the damping coefficient than the third-order scheme. Overall, the even-order schemes have higher limiter sensitivity than the odd-order schemes. Second, a triangular version of these high-order operators is repurposed for transporting the potential vorticity in a space-time-split shallow water framework. Results show that a class of nominally third-order upwind-biased operators generates better results than second- and fourth-order counterparts. The increase of the potential enstrophy over time is suppressed owing to the damping effect. The grid-scale noise in the vorticity is largely alleviated, and the total energy remains conserved. Moreover, models using high-order operators show smaller numerical errors in the vorticity field because of a more accurate representation of the nonlinear Coriolis term. This improvement is especially evident in the Rossby-Haurwitz wave test, in which the fluid is highly rotating. Overall, flux operators with higher damping coefficients, which essentially behaves like the Anticipated Potential Vorticity Method, present optimal results.
Samsonov, Boris F
2013-04-28
One of the simplest non-Hermitian Hamiltonians, first proposed by Schwartz in 1960, that may possess a spectral singularity is analysed from the point of view of the non-Hermitian generalization of quantum mechanics. It is shown that the η operator, being a second-order differential operator, has supersymmetric structure. Asymptotic behaviour of the eigenfunctions of a Hermitian Hamiltonian equivalent to the given non-Hermitian one is found. As a result, the corresponding scattering matrix and cross section are given explicitly. It is demonstrated that the possible presence of a spectral singularity in the spectrum of the non-Hermitian Hamiltonian may be detected as a resonance in the scattering cross section of its Hermitian counterpart. Nevertheless, just at the singular point, the equivalent Hermitian Hamiltonian becomes undetermined.
Multi-scale Eulerian model within the new National Environmental Modeling System
NASA Astrophysics Data System (ADS)
Janjic, Zavisa; Janjic, Tijana; Vasic, Ratko
2010-05-01
The unified Non-hydrostatic Multi-scale Model on the Arakawa B grid (NMMB) is being developed at NCEP within the National Environmental Modeling System (NEMS). The finite-volume horizontal differencing employed in the model preserves important properties of differential operators and conserves a variety of basic and derived dynamical and quadratic quantities. Among these, conservation of energy and enstrophy improves the accuracy of nonlinear dynamics of the model. Within further model development, advection schemes of fourth order of formal accuracy have been developed. It is argued that higher order advection schemes should not be used in the thermodynamic equation in order to preserve consistency with the second order scheme used for computation of the pressure gradient force. Thus, the fourth order scheme is applied only to momentum advection. Three sophisticated second order schemes were considered for upgrade. Two of them, proposed in Janjic(1984), conserve energy and enstrophy, but with enstrophy calculated differently. One of them conserves enstrophy as computed by the most accurate second order Laplacian operating on stream function. The other scheme conserves enstrophy as computed from the B grid velocity. The third scheme (Arakawa 1972) is arithmetic mean of the former two. It does not conserve enstrophy strictly, but it conserves other quadratic quantities that control the nonlinear energy cascade. Linearization of all three schemes leads to the same second order linear advection scheme. The second order term of the truncation error of the linear advection scheme has a special form so that it can be eliminated by simply preconditioning the advected quantity. Tests with linear advection of a cone confirm the advantage of the fourth order scheme. However, if a localized, large amplitude and high wave-number pattern is present in initial conditions, the clear advantage of the fourth order scheme disappears. In real data runs, problems with noisy data may appear due to mountains. Thus, accuracy and formal accuracy may not be synonymous. The nonlinear fourth order schemes are quadratic conservative and reduce to the Arakawa Jacobian in case of non-divergent flow. In case of general flow the conservation properties of the new momentum advection schemes impose stricter constraint on the nonlinear cascade than the original second order schemes. However, for non-divergent flow, the conservation properties of the fourth order schemes cannot be proven in the same way as those of the original second order schemes. Therefore, nonlinear tests were carried out in order to check how well the fourth order schemes control the nonlinear energy cascade. In the tests nonlinear shallow water equations are solved in a rotating rectangular domain (Janjic, 1984). The domain is covered with only 17 x 17 grid points. A diagnostic quantity is used to monitor qualitative changes in the spectrum over 116 days of simulated time. All schemes maintained meaningful solutions throughout the test. Among the second order schemes, the best result was obtained with the scheme that conserved enstrophy as computed by the second order Laplacian of the stream function. It was closely followed by the Arakawa (1972) scheme, while the remaining scheme was distant third. The fourth order schemes ranked in the same order, and were competitive throughout the experiments with their second order counterparts in preventing accumulation of energy at small scales. Finally, the impact was examined of the fourth order momentum advection on global medium range forecasts. The 500 mb anomaly correlation coefficient is used as a measure of success of the forecasts. Arakawa, A., 1972: Design of the UCLA general circulation model. Tech. Report No. 7, Department of Meteorology, University of California, Los Angeles, 116 pp. Janjic, Z. I., 1984: Non-linear advection schemes and energy cascade on semi-staggered grids. Monthly Weather Review, 112, 1234-1245.
Oscillation criteria for a class of second-order Emden-Fowler delay dynamic equations on time scales
NASA Astrophysics Data System (ADS)
Han, Zhenlai; Sun, Shurong; Shi, Bao
2007-10-01
By means of Riccati transformation technique, we establish some new oscillation criteria for the second-order Emden-Fowler delay dynamic equationsx[Delta][Delta](t)+p(t)x[gamma]([tau](t))=0 on a time scale ; here [gamma] is a quotient of odd positive integers with p(t) real-valued positive rd-continuous functions defined on . To the best of our knowledge nothing is known regarding the qualitative behavior of these equations on time scales. Our results in this paper not only extend the results given in [R.P. Agarwal, M. Bohner, S.H. Saker, Oscillation of second-order delay dynamic equations, Can. Appl. Math. Q. 13 (1) (2005) 1-18] but also unify the oscillation of the second-order Emden-Fowler delay differential equation and the second-order Emden-Fowler delay difference equation.
New Operational Matrices for Solving Fractional Differential Equations on the Half-Line
2015-01-01
In this paper, the fractional-order generalized Laguerre operational matrices (FGLOM) of fractional derivatives and fractional integration are derived. These operational matrices are used together with spectral tau method for solving linear fractional differential equations (FDEs) of order ν (0 < ν < 1) on the half line. An upper bound of the absolute errors is obtained for the approximate and exact solutions. Fractional-order generalized Laguerre pseudo-spectral approximation is investigated for solving nonlinear initial value problem of fractional order ν. The extension of the fractional-order generalized Laguerre pseudo-spectral method is given to solve systems of FDEs. We present the advantages of using the spectral schemes based on fractional-order generalized Laguerre functions and compare them with other methods. Several numerical examples are implemented for FDEs and systems of FDEs including linear and nonlinear terms. We demonstrate the high accuracy and the efficiency of the proposed techniques. PMID:25996369
New operational matrices for solving fractional differential equations on the half-line.
Bhrawy, Ali H; Taha, Taha M; Alzahrani, Ebraheem O; Alzahrani, Ebrahim O; Baleanu, Dumitru; Alzahrani, Abdulrahim A
2015-01-01
In this paper, the fractional-order generalized Laguerre operational matrices (FGLOM) of fractional derivatives and fractional integration are derived. These operational matrices are used together with spectral tau method for solving linear fractional differential equations (FDEs) of order ν (0 < ν < 1) on the half line. An upper bound of the absolute errors is obtained for the approximate and exact solutions. Fractional-order generalized Laguerre pseudo-spectral approximation is investigated for solving nonlinear initial value problem of fractional order ν. The extension of the fractional-order generalized Laguerre pseudo-spectral method is given to solve systems of FDEs. We present the advantages of using the spectral schemes based on fractional-order generalized Laguerre functions and compare them with other methods. Several numerical examples are implemented for FDEs and systems of FDEs including linear and nonlinear terms. We demonstrate the high accuracy and the efficiency of the proposed techniques.
2014-08-04
Chebyshev coefficients of both r and q decay exponentially, although those of r decay at a slightly slower rate. 10.2. Evaluation of Legendre polynomials ...In this experiment, we compare the cost of evaluating Legendre polynomials of large order using the standard recurrence relation with the cost of...doing so with a nonoscillatory phase function. For any integer n ě 0, the Legendre polynomial Pnpxq of order n is a solution of the second order
The quantum n-body problem in dimension d ⩾ n – 1: ground state
NASA Astrophysics Data System (ADS)
Miller, Willard, Jr.; Turbiner, Alexander V.; Escobar-Ruiz, M. A.
2018-05-01
We employ generalized Euler coordinates for the n body system in dimensional space, which consists of the centre-of-mass vector, relative (mutual) mass-independent distances r ij and angles as remaining coordinates. We prove that the kinetic energy of the quantum n-body problem for can be written as the sum of three terms: (i) kinetic energy of centre-of-mass, (ii) the second order differential operator which depends on relative distances alone and (iii) the differential operator which annihilates any angle-independent function. The operator has a large reflection symmetry group and in variables is an algebraic operator, which can be written in terms of generators of the hidden algebra . Thus, makes sense of the Hamiltonian of a quantum Euler–Arnold top in a constant magnetic field. It is conjectured that for any n, the similarity-transformed is the Laplace–Beltrami operator plus (effective) potential; thus, it describes a -dimensional quantum particle in curved space. This was verified for . After de-quantization the similarity-transformed becomes the Hamiltonian of the classical top with variable tensor of inertia in an external potential. This approach allows a reduction of the dn-dimensional spectral problem to a -dimensional spectral problem if the eigenfunctions depend only on relative distances. We prove that the ground state function of the n body problem depends on relative distances alone.
NASA Technical Reports Server (NTRS)
Fehlberg, E.
1973-01-01
New Runge-Kutta-Nystrom formulas of the eighth, seventh, sixth, and fifth order are derived for the special second-order (vector) differential equation x = f (t,x). In contrast to Runge-Kutta-Nystrom formulas of an earlier NASA report, these formulas provide a stepsize control procedure based on the leading term of the local truncation error in x. This new procedure is more accurate than the earlier Runge-Kutta-Nystrom procedure (with stepsize control based on the leading term of the local truncation error in x) when integrating close to singularities. Two central orbits are presented as examples. For these orbits, the accuracy and speed of the formulas of this report are compared with those of Runge-Kutta-Nystrom and Runge-Kutta formulas of earlier NASA reports.
An invariant asymptotic formula for solutions of second-order linear ODE's
NASA Technical Reports Server (NTRS)
Gingold, H.
1988-01-01
An invariant-matrix technique for the approximate solution of second-order ordinary differential equations (ODEs) of form y-double-prime = phi(x)y is developed analytically and demonstrated. A set of linear transformations for the companion matrix differential system is proposed; the diagonalization procedure employed in the final stage of the asymptotic decomposition is explained; and a scalar formulation of solutions for the ODEs is obtained. Several typical ODEs are analyzed, and it is shown that the Liouville-Green or WKB approximation is a special case of the present formula, which provides an approximation which is valid for the entire interval (0, infinity).
Convergence of damped inertial dynamics governed by regularized maximally monotone operators
NASA Astrophysics Data System (ADS)
Attouch, Hedy; Cabot, Alexandre
2018-06-01
In a Hilbert space setting, we study the asymptotic behavior, as time t goes to infinity, of the trajectories of a second-order differential equation governed by the Yosida regularization of a maximally monotone operator with time-varying positive index λ (t). The dissipative and convergence properties are attached to the presence of a viscous damping term with positive coefficient γ (t). A suitable tuning of the parameters γ (t) and λ (t) makes it possible to prove the weak convergence of the trajectories towards zeros of the operator. When the operator is the subdifferential of a closed convex proper function, we estimate the rate of convergence of the values. These results are in line with the recent articles by Attouch-Cabot [3], and Attouch-Peypouquet [8]. In this last paper, the authors considered the case γ (t) = α/t, which is naturally linked to Nesterov's accelerated method. We unify, and often improve the results already present in the literature.
Barbot, Antoine; Landy, Michael S.; Carrasco, Marisa
2012-01-01
The visual system can use a rich variety of contours to segment visual scenes into distinct perceptually coherent regions. However, successfully segmenting an image is a computationally expensive process. Previously we have shown that exogenous attention—the more automatic, stimulus-driven component of spatial attention—helps extract contours by enhancing contrast sensitivity for second-order, texture-defined patterns at the attended location, while reducing sensitivity at unattended locations, relative to a neutral condition. Interestingly, the effects of exogenous attention depended on the second-order spatial frequency of the stimulus. At parafoveal locations, attention enhanced second-order contrast sensitivity to relatively high, but not to low second-order spatial frequencies. In the present study we investigated whether endogenous attention—the more voluntary, conceptually-driven component of spatial attention—affects second-order contrast sensitivity, and if so, whether its effects are similar to those of exogenous attention. To that end, we compared the effects of exogenous and endogenous attention on the sensitivity to second-order, orientation-defined, texture patterns of either high or low second-order spatial frequencies. The results show that, like exogenous attention, endogenous attention enhances second-order contrast sensitivity at the attended location and reduces it at unattended locations. However, whereas the effects of exogenous attention are a function of the second-order spatial frequency content, endogenous attention affected second-order contrast sensitivity independent of the second-order spatial frequency content. This finding supports the notion that both exogenous and endogenous attention can affect second-order contrast sensitivity, but that endogenous attention is more flexible, benefitting performance under different conditions. PMID:22895879
Oscillation of two-dimensional linear second-order differential systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kwong, M.K.; Kaper, H.G.
This article is concerned with the oscillatory behavior at infinity of the solution y: (a, infinity) ..-->.. R/sup 2/ of a system of two second-order differential equations, y''(t) + Q(t) y(t) = 0, t epsilon(a, infinity); Q is a continuous matrix-valued function on (a, infinity) whose values are real symmetric matrices of order 2. It is shown that the solution is oscillatory at infinity if the largest eigenvalue of the matrix integral/sub a//sup t/ Q(s) ds tends to infinity as t ..-->.. infinity. This proves a conjecture of D. Hinton and R.T. Lewis for the two-dimensional case. Furthermore, it ismore » shown that considerably weaker forms of the condition still suffice for oscillatory behavior at infinity. 7 references.« less
A novel unsplit perfectly matched layer for the second-order acoustic wave equation.
Ma, Youneng; Yu, Jinhua; Wang, Yuanyuan
2014-08-01
When solving acoustic field equations by using numerical approximation technique, absorbing boundary conditions (ABCs) are widely used to truncate the simulation to a finite space. The perfectly matched layer (PML) technique has exhibited excellent absorbing efficiency as an ABC for the acoustic wave equation formulated as a first-order system. However, as the PML was originally designed for the first-order equation system, it cannot be applied to the second-order equation system directly. In this article, we aim to extend the unsplit PML to the second-order equation system. We developed an efficient unsplit implementation of PML for the second-order acoustic wave equation based on an auxiliary-differential-equation (ADE) scheme. The proposed method can benefit to the use of PML in simulations based on second-order equations. Compared with the existing PMLs, it has simpler implementation and requires less extra storage. Numerical results from finite-difference time-domain models are provided to illustrate the validity of the approach. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Allen, G.
1972-01-01
The use of the theta-operator method and generalized hypergeometric functions in obtaining solutions to nth-order linear ordinary differential equations is explained. For completeness, the analysis of the differential equation to determine whether the point of expansion is an ordinary point or a regular singular point is included. The superiority of the two methods shown over the standard method is demonstrated by using all three of the methods to work out several examples. Also included is a compendium of formulae and properties of the theta operator and generalized hypergeometric functions which is complete enough to make the report self-contained.
Synchronized voltage contrast display analysis system
NASA Technical Reports Server (NTRS)
Johnston, M. F.; Shumka, A.; Miller, E.; Evans, K. C. (Inventor)
1982-01-01
An apparatus and method for comparing internal voltage potentials of first and second operating electronic components such as large scale integrated circuits (LSI's) in which voltage differentials are visually identified via an appropriate display means are described. More particularly, in a first embodiment of the invention a first and second scanning electron microscope (SEM) are configured to scan a first and second operating electronic component respectively. The scan pattern of the second SEM is synchronized to that of the first SEM so that both simultaneously scan corresponding portions of the two operating electronic components. Video signals from each SEM corresponding to secondary electron signals generated as a result of a primary electron beam intersecting each operating electronic component in accordance with a predetermined scan pattern are provided to a video mixer and color encoder.
Two-D results on human operator perception
NASA Technical Reports Server (NTRS)
Siapkara, A. A.; Sheridan, T. B.
1981-01-01
The application of multidimensional scaling methodology in human factors engineering is presented. The nonorthogonality of internally perceived task variables is exhibited for first and second order plants with both dependent and independent task variables. Directions of operator preference are shown for actual performance, pilot opinion rating, and subjective measures of fatigue, adaptability, and system recognition. Improvement of performance in second order systems is exhibited by the use of bang-bang feedback information. Dissimilarity measures for system comparison are suggested in order to account for human operator rotations and subjective sense of time.
Dynamics and Collapse in a Power System Model with Voltage Variation: The Damping Effect.
Ma, Jinpeng; Sun, Yong; Yuan, Xiaoming; Kurths, Jürgen; Zhan, Meng
2016-01-01
Complex nonlinear phenomena are investigated in a basic power system model of the single-machine-infinite-bus (SMIB) with a synchronous generator modeled by a classical third-order differential equation including both angle dynamics and voltage dynamics, the so-called flux decay equation. In contrast, for the second-order differential equation considering the angle dynamics only, it is the classical swing equation. Similarities and differences of the dynamics generated between the third-order model and the second-order one are studied. We mainly find that, for positive damping, these two models show quite similar behavior, namely, stable fixed point, stable limit cycle, and their coexistence for different parameters. However, for negative damping, the second-order system can only collapse, whereas for the third-order model, more complicated behavior may happen, such as stable fixed point, limit cycle, quasi-periodicity, and chaos. Interesting partial collapse phenomena for angle instability only and not for voltage instability are also found here, including collapse from quasi-periodicity and from chaos etc. These findings not only provide a basic physical picture for power system dynamics in the third-order model incorporating voltage dynamics, but also enable us a deeper understanding of the complex dynamical behavior and even leading to a design of oscillation damping in electric power systems.
Lagrangian particle method for compressible fluid dynamics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Samulyak, Roman; Wang, Xingyu; Chen, Hsin -Chiang
A new Lagrangian particle method for solving Euler equations for compressible inviscid fluid or gas flows is proposed. Similar to smoothed particle hydrodynamics (SPH), the method represents fluid cells with Lagrangian particles and is suitable for the simulation of complex free surface / multi-phase flows. The main contributions of our method, which is different from SPH in all other aspects, are (a) significant improvement of approximation of differential operators based on a polynomial fit via weighted least squares approximation and the convergence of prescribed order, (b) a second-order particle-based algorithm that reduces to the first-order upwind method at local extremalmore » points, providing accuracy and long term stability, and (c) more accurate resolution of entropy discontinuities and states at free inter-faces. While the method is consistent and convergent to a prescribed order, the conservation of momentum and energy is not exact and depends on the convergence order . The method is generalizable to coupled hyperbolic-elliptic systems. As a result, numerical verification tests demonstrating the convergence order are presented as well as examples of complex multiphase flows.« less
Lagrangian particle method for compressible fluid dynamics
Samulyak, Roman; Wang, Xingyu; Chen, Hsin -Chiang
2018-02-09
A new Lagrangian particle method for solving Euler equations for compressible inviscid fluid or gas flows is proposed. Similar to smoothed particle hydrodynamics (SPH), the method represents fluid cells with Lagrangian particles and is suitable for the simulation of complex free surface / multi-phase flows. The main contributions of our method, which is different from SPH in all other aspects, are (a) significant improvement of approximation of differential operators based on a polynomial fit via weighted least squares approximation and the convergence of prescribed order, (b) a second-order particle-based algorithm that reduces to the first-order upwind method at local extremalmore » points, providing accuracy and long term stability, and (c) more accurate resolution of entropy discontinuities and states at free inter-faces. While the method is consistent and convergent to a prescribed order, the conservation of momentum and energy is not exact and depends on the convergence order . The method is generalizable to coupled hyperbolic-elliptic systems. As a result, numerical verification tests demonstrating the convergence order are presented as well as examples of complex multiphase flows.« less
Large liquid rocket engine transient performance simulation system
NASA Technical Reports Server (NTRS)
Mason, J. R.; Southwick, R. D.
1991-01-01
A simulation system, ROCETS, was designed and developed to allow cost-effective computer predictions of liquid rocket engine transient performance. The system allows a user to generate a simulation of any rocket engine configuration using component modules stored in a library through high-level input commands. The system library currently contains 24 component modules, 57 sub-modules and maps, and 33 system routines and utilities. FORTRAN models from other sources can be operated in the system upon inclusion of interface information on comment cards. Operation of the simulation is simplified for the user by run, execution, and output processors. The simulation system makes available steady-state trim balance, transient operation, and linear partial generation. The system utilizes a modern equation solver for efficient operation of the simulations. Transient integration methods include integral and differential forms for the trapezoidal, first order Gear, and second order Gear corrector equations. A detailed technology test bed engine (TTBE) model was generated to be used as the acceptance test of the simulation system. The general level of model detail was that reflected in the Space Shuttle Main Engine DTM. The model successfully obtained steady-state balance in main stage operation and simulated throttle transients, including engine starts and shutdown. A NASA FORTRAN control model was obtained, ROCETS interface installed in comment cards, and operated with the TTBE model in closed-loop transient mode.
Some Advanced Concepts in Discrete Aerodynamic Sensitivity Analysis
NASA Technical Reports Server (NTRS)
Taylor, Arthur C., III; Green, Lawrence L.; Newman, Perry A.; Putko, Michele M.
2003-01-01
An efficient incremental iterative approach for differentiating advanced flow codes is successfully demonstrated on a two-dimensional inviscid model problem. The method employs the reverse-mode capability of the automatic differentiation software tool ADIFOR 3.0 and is proven to yield accurate first-order aerodynamic sensitivity derivatives. A substantial reduction in CPU time and computer memory is demonstrated in comparison with results from a straightforward, black-box reverse-mode applicaiton of ADIFOR 3.0 to the same flow code. An ADIFOR-assisted procedure for accurate second-rder aerodynamic sensitivity derivatives is successfully verified on an inviscid transonic lifting airfoil example problem. The method requires that first-order derivatives are calculated first using both the forward (direct) and reverse (adjoinct) procedures; then, a very efficient noniterative calculation of all second-order derivatives can be accomplished. Accurate second derivatives (i.e., the complete Hesian matrices) of lift, wave drag, and pitching-moment coefficients are calculated with respect to geometric shape, angle of attack, and freestream Mach number.
Scilab software package for the study of dynamical systems
NASA Astrophysics Data System (ADS)
Bordeianu, C. C.; Beşliu, C.; Jipa, Al.; Felea, D.; Grossu, I. V.
2008-05-01
This work presents a new software package for the study of chaotic flows and maps. The codes were written using Scilab, a software package for numerical computations providing a powerful open computing environment for engineering and scientific applications. It was found that Scilab provides various functions for ordinary differential equation solving, Fast Fourier Transform, autocorrelation, and excellent 2D and 3D graphical capabilities. The chaotic behaviors of the nonlinear dynamics systems were analyzed using phase-space maps, autocorrelation functions, power spectra, Lyapunov exponents and Kolmogorov-Sinai entropy. Various well known examples are implemented, with the capability of the users inserting their own ODE. Program summaryProgram title: Chaos Catalogue identifier: AEAP_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEAP_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 885 No. of bytes in distributed program, including test data, etc.: 5925 Distribution format: tar.gz Programming language: Scilab 3.1.1 Computer: PC-compatible running Scilab on MS Windows or Linux Operating system: Windows XP, Linux RAM: below 100 Megabytes Classification: 6.2 Nature of problem: Any physical model containing linear or nonlinear ordinary differential equations (ODE). Solution method: Numerical solving of ordinary differential equations. The chaotic behavior of the nonlinear dynamical system is analyzed using Poincaré sections, phase-space maps, autocorrelation functions, power spectra, Lyapunov exponents and Kolmogorov-Sinai entropies. Restrictions: The package routines are normally able to handle ODE systems of high orders (up to order twelve and possibly higher), depending on the nature of the problem. Running time: 10 to 20 seconds for problems that do not involve Lyapunov exponents calculation; 60 to 1000 seconds for problems that involve high orders ODE and Lyapunov exponents calculation.
ERIC Educational Resources Information Center
Mohammed, Ahmed; Zeleke, Aklilu
2015-01-01
We introduce a class of second-order ordinary differential equations (ODEs) with variable coefficients whose closed-form solutions can be obtained by the same method used to solve ODEs with constant coefficients. General solutions for the homogeneous case are discussed.
Stochastic Differential Games with Asymmetric Information
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cardaliaguet, Pierre, E-mail: Pierre.Cardaliaguet@univ-brest.fr; Rainer, Catherine
2009-02-15
We investigate a two-player zero-sum stochastic differential game in which the players have an asymmetric information on the random payoff. We prove that the game has a value and characterize this value in terms of dual viscosity solutions of some second order Hamilton-Jacobi equation.
NASA Astrophysics Data System (ADS)
Bianucci, Marco
2018-05-01
Finding the generalized Fokker-Planck Equation (FPE) for the reduced probability density function of a subpart of a given complex system is a classical issue of statistical mechanics. Zwanzig projection perturbation approach to this issue leads to the trouble of resumming a series of commutators of differential operators that we show to correspond to solving the Lie evolution of first order differential operators along the unperturbed Liouvillian of the dynamical system of interest. In this paper, we develop in a systematic way the procedure to formally solve this problem. In particular, here we show which the basic assumptions are, concerning the dynamical system of interest, necessary for the Lie evolution to be a group on the space of first order differential operators, and we obtain the coefficients of the so-evolved operators. It is thus demonstrated that if the Liouvillian of the system of interest is not a first order differential operator, in general, the FPE structure breaks down and the master equation contains all the power of the partial derivatives, up to infinity. Therefore, this work shed some light on the trouble of the ubiquitous emergence of both thermodynamics from microscopic systems and regular regression laws at macroscopic scales. However these results are very general and can be applied also in other contexts that are non-Hamiltonian as, for example, geophysical fluid dynamics, where important events, like El Niño, can be considered as large time scale phenomena emerging from the observation of few ocean degrees of freedom of a more complex system, including the interaction with the atmosphere.
NASA Astrophysics Data System (ADS)
Kamynin, L. I.; Himčenko, B. N.
1981-02-01
In this paper the strong extremum principle is proved for a certain new class of second order operators with nonnegative characteristic form, without requiring the smoothness of their coefficients, which is essential in the converse of Raševskiĭ's theorem on completely nonholonomic systems. Bibliography: 19 titles.
Second Order Born Effects in the Perpendicular Plane Ionization of Xe (5p) Atoms
NASA Astrophysics Data System (ADS)
Purohit, G.; Singh, Prithvi; Patidar, Vinod
We report triple differential cross section (TDCS) results for the perpendicular plane ionization of xenon atoms at incident electron energies 5, 10, 20, 30, and 40 eV above ionization potential. The TDCS calculation have been preformed within the modified distorted wave Born approximation formalism including the second order Born (SBA) amplitude. We compare the (e, 2e) TDCS result of our calculation with the very recent measurements of Nixon and Murray [Phys. Rev. A 85, 022716 (2012)] and relativistic DWBA-G results of Illarionov and Stauffer [J. Phys. B: At. Mol. Opt. Phys. 45, 225202 (2012)] and discuss the process contributing to structure seen in the differential cross section.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Xiaofeng, E-mail: xfyang@math.sc.edu; Han, Daozhi, E-mail: djhan@iu.edu
2017-02-01
In this paper, we develop a series of linear, unconditionally energy stable numerical schemes for solving the classical phase field crystal model. The temporal discretizations are based on the first order Euler method, the second order backward differentiation formulas (BDF2) and the second order Crank–Nicolson method, respectively. The schemes lead to linear elliptic equations to be solved at each time step, and the induced linear systems are symmetric positive definite. We prove that all three schemes are unconditionally energy stable rigorously. Various classical numerical experiments in 2D and 3D are performed to validate the accuracy and efficiency of the proposedmore » schemes.« less
NASA Technical Reports Server (NTRS)
Hodges, D. H., Roberta.
1976-01-01
The stability of elastic flap bending, lead-lag bending, and torsion of uniform, untwisted, cantilever rotor blades without chordwise offsets between the elastic, mass, tension, and areodynamic center axes is investigated for the hovering flight condition. The equations of motion are obtained by simplifying the general, nonlinear, partial differential equations of motion of an elastic rotating cantilever blade. The equations are adapted for a linearized stability analysis in the hovering flight condition by prescribing aerodynamic forces, applying Galerkin's method, and linearizing the resulting ordinary differential equations about the equilibrium operating condition. The aerodynamic forces are obtained from strip theory based on a quasi-steady approximation of two-dimensional unsteady airfoil theory. Six coupled mode shapes, calculated from free vibration about the equilibrium operating condition, are used in the linearized stability analysis. The study emphasizes the effects of two types of structural coupling that strongly influence the stability of hingeless rotor blades. The first structural coupling is the linear coupling between flap and lead-lag bending of the rotor blade. The second structural coupling is a nonlinear coupling between flap bending, lead-lag bending, and torsion deflections. Results are obtained for a wide variety of hingeless rotor configurations and operating conditions in order to provide a reasonably complete picture of hingeless rotor blade stability characteristics.
NASA Astrophysics Data System (ADS)
Goodman, Joseph W.
2000-07-01
The Wiley Classics Library consists of selected books that have become recognized classics in their respective fields. With these new unabridged and inexpensive editions, Wiley hopes to extend the life of these important works by making them available to future generations of mathematicians and scientists. Currently available in the Series: T. W. Anderson The Statistical Analysis of Time Series T. S. Arthanari & Yadolah Dodge Mathematical Programming in Statistics Emil Artin Geometric Algebra Norman T. J. Bailey The Elements of Stochastic Processes with Applications to the Natural Sciences Robert G. Bartle The Elements of Integration and Lebesgue Measure George E. P. Box & Norman R. Draper Evolutionary Operation: A Statistical Method for Process Improvement George E. P. Box & George C. Tiao Bayesian Inference in Statistical Analysis R. W. Carter Finite Groups of Lie Type: Conjugacy Classes and Complex Characters R. W. Carter Simple Groups of Lie Type William G. Cochran & Gertrude M. Cox Experimental Designs, Second Edition Richard Courant Differential and Integral Calculus, Volume I RIchard Courant Differential and Integral Calculus, Volume II Richard Courant & D. Hilbert Methods of Mathematical Physics, Volume I Richard Courant & D. Hilbert Methods of Mathematical Physics, Volume II D. R. Cox Planning of Experiments Harold S. M. Coxeter Introduction to Geometry, Second Edition Charles W. Curtis & Irving Reiner Representation Theory of Finite Groups and Associative Algebras Charles W. Curtis & Irving Reiner Methods of Representation Theory with Applications to Finite Groups and Orders, Volume I Charles W. Curtis & Irving Reiner Methods of Representation Theory with Applications to Finite Groups and Orders, Volume II Cuthbert Daniel Fitting Equations to Data: Computer Analysis of Multifactor Data, Second Edition Bruno de Finetti Theory of Probability, Volume I Bruno de Finetti Theory of Probability, Volume 2 W. Edwards Deming Sample Design in Business Research
Noncommutative Differential Geometry of Generalized Weyl Algebras
NASA Astrophysics Data System (ADS)
Brzeziński, Tomasz
2016-06-01
Elements of noncommutative differential geometry of Z-graded generalized Weyl algebras A(p;q) over the ring of polynomials in two variables and their zero-degree subalgebras B(p;q), which themselves are generalized Weyl algebras over the ring of polynomials in one variable, are discussed. In particular, three classes of skew derivations of A(p;q) are constructed, and three-dimensional first-order differential calculi induced by these derivations are described. The associated integrals are computed and it is shown that the dimension of the integral space coincides with the order of the defining polynomial p(z). It is proven that the restriction of these first-order differential calculi to the calculi on B(p;q) is isomorphic to the direct sum of degree 2 and degree -2 components of A(p;q). A Dirac operator for B(p;q) is constructed from a (strong) connection with respect to this differential calculus on the (free) spinor bimodule defined as the direct sum of degree 1 and degree -1 components of A(p;q). The real structure of KO-dimension two for this Dirac operator is also described.
NASA Astrophysics Data System (ADS)
Jurčo, B.; Schlieker, M.
1995-07-01
In this paper explicitly natural (from the geometrical point of view) Fock-space representations (contragradient Verma modules) of the quantized enveloping algebras are constructed. In order to do so, one starts from the Gauss decomposition of the quantum group and introduces the differential operators on the corresponding q-deformed flag manifold (assumed as a left comodule for the quantum group) by a projection to it of the right action of the quantized enveloping algebra on the quantum group. Finally, the representatives of the elements of the quantized enveloping algebra corresponding to the left-invariant vector fields on the quantum group are expressed as first-order differential operators on the q-deformed flag manifold.
DOT National Transportation Integrated Search
2015-04-01
Research done through the Second Strategic Highway Research Program (SHRP 2) determined that agencies with the most effective transportation systems management and operations (TSM&O) activities were differentiated not by budgets or technical skills a...
DOT National Transportation Integrated Search
2015-04-01
Research done through the Second Strategic Highway Research Program (SHRP 2) determined that agencies with the most effective transportation systems management and operations (TSM&O) activities were differentiated not by budgets or technical skills a...
DOT National Transportation Integrated Search
2015-04-01
Research done through the Second Strategic Highway Research Program (SHRP 2) determined that agencies with the most effective transportation systems management and operations (TSM&O) activities were differentiated not by budgets or technical skills a...
DOT National Transportation Integrated Search
2015-04-01
Research done through the Second Strategic Highway Research Program (SHRP 2) determined that agencies with the most effective transportation systems management and operations (TSM&O) activities were differentiated not by budgets or technical skills a...
High-Order Automatic Differentiation of Unmodified Linear Algebra Routines via Nilpotent Matrices
NASA Astrophysics Data System (ADS)
Dunham, Benjamin Z.
This work presents a new automatic differentiation method, Nilpotent Matrix Differentiation (NMD), capable of propagating any order of mixed or univariate derivative through common linear algebra functions--most notably third-party sparse solvers and decomposition routines, in addition to basic matrix arithmetic operations and power series--without changing data-type or modifying code line by line; this allows differentiation across sequences of arbitrarily many such functions with minimal implementation effort. NMD works by enlarging the matrices and vectors passed to the routines, replacing each original scalar with a matrix block augmented by derivative data; these blocks are constructed with special sparsity structures, termed "stencils," each designed to be isomorphic to a particular multidimensional hypercomplex algebra. The algebras are in turn designed such that Taylor expansions of hypercomplex function evaluations are finite in length and thus exactly track derivatives without approximation error. Although this use of the method in the "forward mode" is unique in its own right, it is also possible to apply it to existing implementations of the (first-order) discrete adjoint method to find high-order derivatives with lowered cost complexity; for example, for a problem with N inputs and an adjoint solver whose cost is independent of N--i.e., O(1)--the N x N Hessian can be found in O(N) time, which is comparable to existing second-order adjoint methods that require far more problem-specific implementation effort. Higher derivatives are likewise less expensive--e.g., a N x N x N rank-three tensor can be found in O(N2). Alternatively, a Hessian-vector product can be found in O(1) time, which may open up many matrix-based simulations to a range of existing optimization or surrogate modeling approaches. As a final corollary in parallel to the NMD-adjoint hybrid method, the existing complex-step differentiation (CD) technique is also shown to be capable of finding the Hessian-vector product. All variants are implemented on a stochastic diffusion problem and compared in-depth with various cost and accuracy metrics.
The Pendulum and the Calculus.
ERIC Educational Resources Information Center
Sworder, Steven C.
A pair of experiments, appropriate for the lower division fourth semester calculus or differential equations course, are presented. The second order differential equation representing the equation of motion of a simple pendulum is derived. The period of oscillation for a particular pendulum can be predicted from the solution to this equation. As a…
Domoshnitsky, Alexander; Maghakyan, Abraham; Berezansky, Leonid
2017-01-01
In this paper a method for studying stability of the equation [Formula: see text] not including explicitly the first derivative is proposed. We demonstrate that although the corresponding ordinary differential equation [Formula: see text] is not exponentially stable, the delay equation can be exponentially stable.
Exact solution for four-order acousto-optic Bragg diffraction with arbitrary initial conditions.
Pieper, Ron; Koslover, Deborah; Poon, Ting-Chung
2009-03-01
An exact solution to the four-order acousto-optic (AO) Bragg diffraction problem with arbitrary initial conditions compatible with exact Bragg angle incident light is developed. The solution, obtained by solving a 4th-order differential equation, is formalized into a transition matrix operator predicting diffracted light orders at the exit of the AO cell in terms of the same diffracted light orders at the entrance. It is shown that the transition matrix is unitary and that this unitary matrix condition is sufficient to guarantee energy conservation. A comparison of analytical solutions with numerical predictions validates the formalism. Although not directly related to the approach used to obtain the solution, it was discovered that all four generated eigenvalues from the four-order AO differential matrix operator are expressed simply in terms of Euclid's Divine Proportion.
NASA Astrophysics Data System (ADS)
Bauer, Werner; Behrens, Jörn
2017-04-01
We present a locally conservative, low-order finite element (FE) discretization of the covariant 1D linear shallow-water equations written in split form (cf. tet{[1]}). The introduction of additional differential forms (DF) that build pairs with the original ones permits a splitting of these equations into topological momentum and continuity equations and metric-dependent closure equations that apply the Hodge-star. Our novel discretization framework conserves this geometrical structure, in particular it provides for all DFs proper FE spaces such that the differential operators (here gradient and divergence) hold in strong form. The discrete topological equations simply follow by trivial projections onto piecewise constant FE spaces without need to partially integrate. The discrete Hodge-stars operators, representing the discretized metric equations, are realized by nontrivial Galerkin projections (GP). Here they follow by projections onto either a piecewise constant (GP0) or a piecewise linear (GP1) space. Our framework thus provides essentially three different schemes with significantly different behavior. The split scheme using twice GP1 is unstable and shares the same discrete dispersion relation and similar second-order convergence rates as the conventional P1-P1 FE scheme that approximates both velocity and height variables by piecewise linear spaces. The split scheme that applies both GP1 and GP0 is stable and shares the dispersion relation of the conventional P1-P0 FE scheme that approximates the velocity by a piecewise linear and the height by a piecewise constant space with corresponding second- and first-order convergence rates. Exhibiting for both velocity and height fields second-order convergence rates, we might consider the split GP1-GP0 scheme though as stable versions of the conventional P1-P1 FE scheme. For the split scheme applying twice GP0, we are not aware of a corresponding conventional formulation to compare with. Though exhibiting larger absolute error values, it shows similar convergence rates as the other split schemes, but does not provide a satisfactory approximation of the dispersion relation as short waves are propagated much to fast. Despite this, the finding of this new scheme illustrates the potential of our discretization framework as a toolbox to find and to study new FE schemes based on new combinations of FE spaces. [1] Bauer, W. [2016], A new hierarchically-structured n-dimensional covariant form of rotating equations of geophysical fluid dynamics, GEM - International Journal on Geomathematics, 7(1), 31-101.
An Efficient Spectral Method for Ordinary Differential Equations with Rational Function Coefficients
NASA Technical Reports Server (NTRS)
Coutsias, Evangelos A.; Torres, David; Hagstrom, Thomas
1994-01-01
We present some relations that allow the efficient approximate inversion of linear differential operators with rational function coefficients. We employ expansions in terms of a large class of orthogonal polynomial families, including all the classical orthogonal polynomials. These families obey a simple three-term recurrence relation for differentiation, which implies that on an appropriately restricted domain the differentiation operator has a unique banded inverse. The inverse is an integration operator for the family, and it is simply the tridiagonal coefficient matrix for the recurrence. Since in these families convolution operators (i.e. matrix representations of multiplication by a function) are banded for polynomials, we are able to obtain a banded representation for linear differential operators with rational coefficients. This leads to a method of solution of initial or boundary value problems that, besides having an operation count that scales linearly with the order of truncation N, is computationally well conditioned. Among the applications considered is the use of rational maps for the resolution of sharp interior layers.
DOT National Transportation Integrated Search
2015-04-01
Research done through the Second Strategic Highway Research Program (SHRP 2) determined that agencies with the most effective transportation systems management and operations (TSM&O) activities were differentiated not by budgets or technical skills a...
DOT National Transportation Integrated Search
2015-04-01
Research done through the Second Strategic Highway Research Program (SHRP 2) determined that agencies with the most effective transportation systems management and operations (TSM&O) activities were differentiated not by budgets or technical skills a...
A new medical image segmentation model based on fractional order differentiation and level set
NASA Astrophysics Data System (ADS)
Chen, Bo; Huang, Shan; Xie, Feifei; Li, Lihong; Chen, Wensheng; Liang, Zhengrong
2018-03-01
Segmenting medical images is still a challenging task for both traditional local and global methods because the image intensity inhomogeneous. In this paper, two contributions are made: (i) on the one hand, a new hybrid model is proposed for medical image segmentation, which is built based on fractional order differentiation, level set description and curve evolution; and (ii) on the other hand, three popular definitions of Fourier-domain, Grünwald-Letnikov (G-L) and Riemann-Liouville (R-L) fractional order differentiation are investigated and compared through experimental results. Because of the merits of enhancing high frequency features of images and preserving low frequency features of images in a nonlinear manner by the fractional order differentiation definitions, one fractional order differentiation definition is used in our hybrid model to perform segmentation of inhomogeneous images. The proposed hybrid model also integrates fractional order differentiation, fractional order gradient magnitude and difference image information. The widely-used dice similarity coefficient metric is employed to evaluate quantitatively the segmentation results. Firstly, experimental results demonstrated that a slight difference exists among the three expressions of Fourier-domain, G-L, RL fractional order differentiation. This outcome supports our selection of one of the three definitions in our hybrid model. Secondly, further experiments were performed for comparison between our hybrid segmentation model and other existing segmentation models. A noticeable gain was seen by our hybrid model in segmenting intensity inhomogeneous images.
Operator splitting method for simulation of dynamic flows in natural gas pipeline networks
Dyachenko, Sergey A.; Zlotnik, Anatoly; Korotkevich, Alexander O.; ...
2017-09-19
Here, we develop an operator splitting method to simulate flows of isothermal compressible natural gas over transmission pipelines. The method solves a system of nonlinear hyperbolic partial differential equations (PDEs) of hydrodynamic type for mass flow and pressure on a metric graph, where turbulent losses of momentum are modeled by phenomenological Darcy-Weisbach friction. Mass flow balance is maintained through the boundary conditions at the network nodes, where natural gas is injected or withdrawn from the system. Gas flow through the network is controlled by compressors boosting pressure at the inlet of the adjoint pipe. Our operator splitting numerical scheme ismore » unconditionally stable and it is second order accurate in space and time. The scheme is explicit, and it is formulated to work with general networks with loops. We test the scheme over range of regimes and network configurations, also comparing its performance with performance of two other state of the art implicit schemes.« less
NASA Astrophysics Data System (ADS)
Samtaney, Ravi; Mohamed, Mamdouh; Hirani, Anil
2015-11-01
We present examples of numerical solutions of incompressible flow on 2D curved domains. The Navier-Stokes equations are first rewritten using the exterior calculus notation, replacing vector calculus differential operators by the exterior derivative, Hodge star and wedge product operators. A conservative discretization of Navier-Stokes equations on simplicial meshes is developed based on discrete exterior calculus (DEC). The discretization is then carried out by substituting the corresponding discrete operators based on the DEC framework. By construction, the method is conservative in that both the discrete divergence and circulation are conserved up to machine precision. The relative error in kinetic energy for inviscid flow test cases converges in a second order fashion with both the mesh size and the time step. Numerical examples include Taylor vortices on a sphere, Stuart vortices on a sphere, and flow past a cylinder on domains with varying curvature. Supported by the KAUST Office of Competitive Research Funds under Award No. URF/1/1401-01.
An almost symmetric Strang splitting scheme for nonlinear evolution equations.
Einkemmer, Lukas; Ostermann, Alexander
2014-07-01
In this paper we consider splitting methods for the time integration of parabolic and certain classes of hyperbolic partial differential equations, where one partial flow cannot be computed exactly. Instead, we use a numerical approximation based on the linearization of the vector field. This is of interest in applications as it allows us to apply splitting methods to a wider class of problems from the sciences. However, in the situation described, the classic Strang splitting scheme, while still being a method of second order, is not longer symmetric. This, in turn, implies that the construction of higher order methods by composition is limited to order three only. To remedy this situation, based on previous work in the context of ordinary differential equations, we construct a class of Strang splitting schemes that are symmetric up to a desired order. We show rigorously that, under suitable assumptions on the nonlinearity, these methods are of second order and can then be used to construct higher order methods by composition. In addition, we illustrate the theoretical results by conducting numerical experiments for the Brusselator system and the KdV equation.
An almost symmetric Strang splitting scheme for nonlinear evolution equations☆
Einkemmer, Lukas; Ostermann, Alexander
2014-01-01
In this paper we consider splitting methods for the time integration of parabolic and certain classes of hyperbolic partial differential equations, where one partial flow cannot be computed exactly. Instead, we use a numerical approximation based on the linearization of the vector field. This is of interest in applications as it allows us to apply splitting methods to a wider class of problems from the sciences. However, in the situation described, the classic Strang splitting scheme, while still being a method of second order, is not longer symmetric. This, in turn, implies that the construction of higher order methods by composition is limited to order three only. To remedy this situation, based on previous work in the context of ordinary differential equations, we construct a class of Strang splitting schemes that are symmetric up to a desired order. We show rigorously that, under suitable assumptions on the nonlinearity, these methods are of second order and can then be used to construct higher order methods by composition. In addition, we illustrate the theoretical results by conducting numerical experiments for the Brusselator system and the KdV equation. PMID:25844017
NASA Astrophysics Data System (ADS)
Garcia Fernandez, M.; Butala, M.; Komjathy, A.; Desai, S. D.
2012-12-01
Correcting GNSS tracking data for the effects of second order ionospheric effects have been shown to cause a southward shift in GNSS-based precise point positioning solutions by as much as 10 mm, depending on the solar cycle conditions. The most commonly used approaches for modeling the higher order ionospheric effect include, (a) the use of global ionosphere maps to determine vertical total electron content (VTEC) and convert to slant TEC (STEC) assuming a thin shell ionosphere, and (b) using the dual-frequency measurements themselves to determine STEC. The latter approach benefits from not requiring ionospheric mapping functions between VTEC and STEC. However, this approach will require calibrations with receiver and transmitter Differential Code Biases (DCBs). We present results from comparisons of the two approaches. For the first approach, we also compare the use of VTEC observations from IONEX maps compared to climatological model-derived VTEC as provided by the International Reference Ionosphere (IRI2012). We consider various metrics to evaluate the relative performance of the different approaches, including station repeatability, GNSS-based reference frame recovery, and post-fit measurement residuals. Overall, the GIM-based approaches tend to provide lower noise in second order ionosphere correction and positioning solutions. The use of IONEX and IRI2012 models of VTEC provide similar results, especially in periods of low solar activity periods. The use of the IRI2012 model provides a convenient approach for operational scenarios by eliminating the dependence on routine updates of the GIMs, and also serves as a useful source of VTEC when IONEX maps may not be readily available.
NASA Astrophysics Data System (ADS)
Privault, Nicolas
2016-05-01
We construct differential forms of all orders and a covariant derivative together with its adjoint on the probability space of a standard Poisson process, using derivation operators. In this framewok we derive a de Rham-Hodge-Kodaira decomposition as well as Weitzenböck and Clark-Ocone formulas for random differential forms. As in the Wiener space setting, this construction provides two distinct approaches to the vanishing of harmonic differential forms.
Recent advances in high-order WENO finite volume methods for compressible multiphase flows
NASA Astrophysics Data System (ADS)
Dumbser, Michael
2013-10-01
We present two new families of better than second order accurate Godunov-type finite volume methods for the solution of nonlinear hyperbolic partial differential equations with nonconservative products. One family is based on a high order Arbitrary-Lagrangian-Eulerian (ALE) formulation on moving meshes, which allows to resolve the material contact wave in a very sharp way when the mesh is moved at the speed of the material interface. The other family of methods is based on a high order Adaptive Mesh Refinement (AMR) strategy, where the mesh can be strongly refined in the vicinity of the material interface. Both classes of schemes have several building blocks in common, in particular: a high order WENO reconstruction operator to obtain high order of accuracy in space; the use of an element-local space-time Galerkin predictor step which evolves the reconstruction polynomials in time and that allows to reach high order of accuracy in time in one single step; the use of a path-conservative approach to treat the nonconservative terms of the PDE. We show applications of both methods to the Baer-Nunziato model for compressible multiphase flows.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dyachenko, Sergey A.; Zlotnik, Anatoly; Korotkevich, Alexander O.
Here, we develop an operator splitting method to simulate flows of isothermal compressible natural gas over transmission pipelines. The method solves a system of nonlinear hyperbolic partial differential equations (PDEs) of hydrodynamic type for mass flow and pressure on a metric graph, where turbulent losses of momentum are modeled by phenomenological Darcy-Weisbach friction. Mass flow balance is maintained through the boundary conditions at the network nodes, where natural gas is injected or withdrawn from the system. Gas flow through the network is controlled by compressors boosting pressure at the inlet of the adjoint pipe. Our operator splitting numerical scheme ismore » unconditionally stable and it is second order accurate in space and time. The scheme is explicit, and it is formulated to work with general networks with loops. We test the scheme over range of regimes and network configurations, also comparing its performance with performance of two other state of the art implicit schemes.« less
Simplified combustion noise theory yielding a prediction of fluctuating pressure level
NASA Technical Reports Server (NTRS)
Huff, R. G.
1984-01-01
The first order equations for the conservation of mass and momentum in differential form are combined for an ideal gas to yield a single second order partial differential equation in one dimension and time. Small perturbation analysis is applied. A Fourier transformation is performed that results in a second order, constant coefficient, nonhomogeneous equation. The driving function is taken to be the source of combustion noise. A simplified model describing the energy addition via the combustion process gives the required source information for substitution in the driving function. This enables the particular integral solution of the nonhomogeneous equation to be found. This solution multiplied by the acoustic pressure efficiency predicts the acoustic pressure spectrum measured in turbine engine combustors. The prediction was compared with the overall sound pressure levels measured in a CF6-50 turbofan engine combustor and found to be in excellent agreement.
NASA Astrophysics Data System (ADS)
Zeng, Fanhai; Zhang, Zhongqiang; Karniadakis, George Em
2017-12-01
Starting with the asymptotic expansion of the error equation of the shifted Gr\\"{u}nwald--Letnikov formula, we derive a new modified weighted shifted Gr\\"{u}nwald--Letnikov (WSGL) formula by introducing appropriate correction terms. We then apply one special case of the modified WSGL formula to solve multi-term fractional ordinary and partial differential equations, and we prove the linear stability and second-order convergence for both smooth and non-smooth solutions. We show theoretically and numerically that numerical solutions up to certain accuracy can be obtained with only a few correction terms. Moreover, the correction terms can be tuned according to the fractional derivative orders without explicitly knowing the analytical solutions. Numerical simulations verify the theoretical results and demonstrate that the new formula leads to better performance compared to other known numerical approximations with similar resolution.
New second order Mumford-Shah model based on Γ-convergence approximation for image processing
NASA Astrophysics Data System (ADS)
Duan, Jinming; Lu, Wenqi; Pan, Zhenkuan; Bai, Li
2016-05-01
In this paper, a second order variational model named the Mumford-Shah total generalized variation (MSTGV) is proposed for simultaneously image denoising and segmentation, which combines the original Γ-convergence approximated Mumford-Shah model with the second order total generalized variation (TGV). For image denoising, the proposed MSTGV can eliminate both the staircase artefact associated with the first order total variation and the edge blurring effect associated with the quadratic H1 regularization or the second order bounded Hessian regularization. For image segmentation, the MSTGV can obtain clear and continuous boundaries of objects in the image. To improve computational efficiency, the implementation of the MSTGV does not directly solve its high order nonlinear partial differential equations and instead exploits the efficient split Bregman algorithm. The algorithm benefits from the fast Fourier transform, analytical generalized soft thresholding equation, and Gauss-Seidel iteration. Extensive experiments are conducted to demonstrate the effectiveness and efficiency of the proposed model.
Undergraduate Students' Mental Operations in Systems of Differential Equations
ERIC Educational Resources Information Center
Whitehead, Karen; Rasmussen, Chris
2003-01-01
This paper reports on research conducted to understand undergraduate students' ways of reasoning about systems of differential equations (SDEs). As part of a semester long classroom teaching experiment in a first course in differential equations, we conducted task-based interviews with six students after their study of first order differential…
Matrix differentiation formulas
NASA Technical Reports Server (NTRS)
Usikov, D. A.; Tkhabisimov, D. K.
1983-01-01
A compact differentiation technique (without using indexes) is developed for scalar functions that depend on complex matrix arguments which are combined by operations of complex conjugation, transposition, addition, multiplication, matrix inversion and taking the direct product. The differentiation apparatus is developed in order to simplify the solution of extremum problems of scalar functions of matrix arguments.
Critical study of higher order numerical methods for solving the boundary-layer equations
NASA Technical Reports Server (NTRS)
Wornom, S. F.
1978-01-01
A fourth order box method is presented for calculating numerical solutions to parabolic, partial differential equations in two variables or ordinary differential equations. The method, which is the natural extension of the second order box scheme to fourth order, was demonstrated with application to the incompressible, laminar and turbulent, boundary layer equations. The efficiency of the present method is compared with two point and three point higher order methods, namely, the Keller box scheme with Richardson extrapolation, the method of deferred corrections, a three point spline method, and a modified finite element method. For equivalent accuracy, numerical results show the present method to be more efficient than higher order methods for both laminar and turbulent flows.
Semi-Analytic Reconstruction of Flux in Finite Volume Formulations
NASA Technical Reports Server (NTRS)
Gnoffo, Peter A.
2006-01-01
Semi-analytic reconstruction uses the analytic solution to a second-order, steady, ordinary differential equation (ODE) to simultaneously evaluate the convective and diffusive flux at all interfaces of a finite volume formulation. The second-order ODE is itself a linearized approximation to the governing first- and second- order partial differential equation conservation laws. Thus, semi-analytic reconstruction defines a family of formulations for finite volume interface fluxes using analytic solutions to approximating equations. Limiters are not applied in a conventional sense; rather, diffusivity is adjusted in the vicinity of changes in sign of eigenvalues in order to achieve a sufficiently small cell Reynolds number in the analytic formulation across critical points. Several approaches for application of semi-analytic reconstruction for the solution of one-dimensional scalar equations are introduced. Results are compared with exact analytic solutions to Burger s Equation as well as a conventional, upwind discretization using Roe s method. One approach, the end-point wave speed (EPWS) approximation, is further developed for more complex applications. One-dimensional vector equations are tested on a quasi one-dimensional nozzle application. The EPWS algorithm has a more compact difference stencil than Roe s algorithm but reconstruction time is approximately a factor of four larger than for Roe. Though both are second-order accurate schemes, Roe s method approaches a grid converged solution with fewer grid points. Reconstruction of flux in the context of multi-dimensional, vector conservation laws including effects of thermochemical nonequilibrium in the Navier-Stokes equations is developed.
Vazquez-Leal, Hector; Benhammouda, Brahim; Filobello-Nino, Uriel Antonio; Sarmiento-Reyes, Arturo; Jimenez-Fernandez, Victor Manuel; Marin-Hernandez, Antonio; Herrera-May, Agustin Leobardo; Diaz-Sanchez, Alejandro; Huerta-Chua, Jesus
2014-01-01
In this article, we propose the application of a modified Taylor series method (MTSM) for the approximation of nonlinear problems described on finite intervals. The issue of Taylor series method with mixed boundary conditions is circumvented using shooting constants and extra derivatives of the problem. In order to show the benefits of this proposal, three different kinds of problems are solved: three-point boundary valued problem (BVP) of third-order with a hyperbolic sine nonlinearity, two-point BVP for a second-order nonlinear differential equation with an exponential nonlinearity, and a two-point BVP for a third-order nonlinear differential equation with a radical nonlinearity. The result shows that the MTSM method is capable to generate easily computable and highly accurate approximations for nonlinear equations. 34L30.
Periodicity and positivity of a class of fractional differential equations.
Ibrahim, Rabha W; Ahmad, M Z; Mohammed, M Jasim
2016-01-01
Fractional differential equations have been discussed in this study. We utilize the Riemann-Liouville fractional calculus to implement it within the generalization of the well known class of differential equations. The Rayleigh differential equation has been generalized of fractional second order. The existence of periodic and positive outcome is established in a new method. The solution is described in a fractional periodic Sobolev space. Positivity of outcomes is considered under certain requirements. We develop and extend some recent works. An example is constructed.
Energy levels of one-dimensional systems satisfying the minimal length uncertainty relation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bernardo, Reginald Christian S., E-mail: rcbernardo@nip.upd.edu.ph; Esguerra, Jose Perico H., E-mail: jesguerra@nip.upd.edu.ph
2016-10-15
The standard approach to calculating the energy levels for quantum systems satisfying the minimal length uncertainty relation is to solve an eigenvalue problem involving a fourth- or higher-order differential equation in quasiposition space. It is shown that the problem can be reformulated so that the energy levels of these systems can be obtained by solving only a second-order quasiposition eigenvalue equation. Through this formulation the energy levels are calculated for the following potentials: particle in a box, harmonic oscillator, Pöschl–Teller well, Gaussian well, and double-Gaussian well. For the particle in a box, the second-order quasiposition eigenvalue equation is a second-ordermore » differential equation with constant coefficients. For the harmonic oscillator, Pöschl–Teller well, Gaussian well, and double-Gaussian well, a method that involves using Wronskians has been used to solve the second-order quasiposition eigenvalue equation. It is observed for all of these quantum systems that the introduction of a nonzero minimal length uncertainty induces a positive shift in the energy levels. It is shown that the calculation of energy levels in systems satisfying the minimal length uncertainty relation is not limited to a small number of problems like particle in a box and the harmonic oscillator but can be extended to a wider class of problems involving potentials such as the Pöschl–Teller and Gaussian wells.« less
Mathematical Methods for Physics and Engineering Third Edition Paperback Set
NASA Astrophysics Data System (ADS)
Riley, Ken F.; Hobson, Mike P.; Bence, Stephen J.
2006-06-01
Prefaces; 1. Preliminary algebra; 2. Preliminary calculus; 3. Complex numbers and hyperbolic functions; 4. Series and limits; 5. Partial differentiation; 6. Multiple integrals; 7. Vector algebra; 8. Matrices and vector spaces; 9. Normal modes; 10. Vector calculus; 11. Line, surface and volume integrals; 12. Fourier series; 13. Integral transforms; 14. First-order ordinary differential equations; 15. Higher-order ordinary differential equations; 16. Series solutions of ordinary differential equations; 17. Eigenfunction methods for differential equations; 18. Special functions; 19. Quantum operators; 20. Partial differential equations: general and particular; 21. Partial differential equations: separation of variables; 22. Calculus of variations; 23. Integral equations; 24. Complex variables; 25. Application of complex variables; 26. Tensors; 27. Numerical methods; 28. Group theory; 29. Representation theory; 30. Probability; 31. Statistics; Index.
Oscillation criteria for half-linear dynamic equations on time scales
NASA Astrophysics Data System (ADS)
Hassan, Taher S.
2008-09-01
This paper is concerned with oscillation of the second-order half-linear dynamic equation(r(t)(x[Delta])[gamma])[Delta]+p(t)x[gamma](t)=0, on a time scale where [gamma] is the quotient of odd positive integers, r(t) and p(t) are positive rd-continuous functions on . Our results solve a problem posed by [R.P. Agarwal, D. O'Regan, S.H. Saker, Philos-type oscillation criteria for second-order half linear dynamic equations, Rocky Mountain J. Math. 37 (2007) 1085-1104; S.H. Saker, Oscillation criteria of second order half-linear dynamic equations on time scales, J. Comput. Appl. Math. 177 (2005) 375-387] and our results in the special cases when and involve and improve some oscillation results for second-order differential and difference equations; and when , and , etc., our oscillation results are essentially newE Some examples illustrating the importance of our results are also included.
Grima, Ramon
2011-11-01
The mesoscopic description of chemical kinetics, the chemical master equation, can be exactly solved in only a few simple cases. The analytical intractability stems from the discrete character of the equation, and hence considerable effort has been invested in the development of Fokker-Planck equations, second-order partial differential equation approximations to the master equation. We here consider two different types of higher-order partial differential approximations, one derived from the system-size expansion and the other from the Kramers-Moyal expansion, and derive the accuracy of their predictions for chemical reactive networks composed of arbitrary numbers of unimolecular and bimolecular reactions. In particular, we show that the partial differential equation approximation of order Q from the Kramers-Moyal expansion leads to estimates of the mean number of molecules accurate to order Ω(-(2Q-3)/2), of the variance of the fluctuations in the number of molecules accurate to order Ω(-(2Q-5)/2), and of skewness accurate to order Ω(-(Q-2)). We also show that for large Q, the accuracy in the estimates can be matched only by a partial differential equation approximation from the system-size expansion of approximate order 2Q. Hence, we conclude that partial differential approximations based on the Kramers-Moyal expansion generally lead to considerably more accurate estimates in the mean, variance, and skewness than approximations of the same order derived from the system-size expansion.
NASA Astrophysics Data System (ADS)
Chowdury, Amdad; Krolikowski, Wieslaw; Akhmediev, N.
2017-10-01
We present one- and two-breather solutions of the fourth-order nonlinear Schrödinger equation. With several parameters to play with, the solution may take a variety of forms. We consider most of these cases including the general form and limiting cases when the modulation frequencies are 0 or coincide. The zero-frequency limit produces a combination of breather-soliton structures on a constant background. The case of equal modulation frequencies produces a degenerate solution that requires a special technique for deriving. A zero-frequency limit of this degenerate solution produces a rational second-order rogue wave solution with a stretching factor involved. Taking, in addition, the zero limit of the stretching factor transforms the second-order rogue waves into a soliton. Adding a differential shift in the degenerate solution results in structural changes in the wave profile. Moreover, the zero-frequency limit of the degenerate solution with differential shift results in a rogue wave triplet. The zero limit of the stretching factor in this solution, in turn, transforms the triplet into a singlet plus a low-amplitude soliton on the background. A large value of the differential shift parameter converts the triplet into a pure singlet.
Chowdury, Amdad; Krolikowski, Wieslaw; Akhmediev, N
2017-10-01
We present one- and two-breather solutions of the fourth-order nonlinear Schrödinger equation. With several parameters to play with, the solution may take a variety of forms. We consider most of these cases including the general form and limiting cases when the modulation frequencies are 0 or coincide. The zero-frequency limit produces a combination of breather-soliton structures on a constant background. The case of equal modulation frequencies produces a degenerate solution that requires a special technique for deriving. A zero-frequency limit of this degenerate solution produces a rational second-order rogue wave solution with a stretching factor involved. Taking, in addition, the zero limit of the stretching factor transforms the second-order rogue waves into a soliton. Adding a differential shift in the degenerate solution results in structural changes in the wave profile. Moreover, the zero-frequency limit of the degenerate solution with differential shift results in a rogue wave triplet. The zero limit of the stretching factor in this solution, in turn, transforms the triplet into a singlet plus a low-amplitude soliton on the background. A large value of the differential shift parameter converts the triplet into a pure singlet.
NASA Astrophysics Data System (ADS)
Kuleshov, Alexander S.; Katasonova, Vera A.
2018-05-01
The problem of rolling without slipping of a rotationally symmetric rigid body on a sphere is considered. The rolling body is assumed to be subjected to the forces, the resultant of which is directed from the center of mass G of the body to the center O of the sphere, and depends only on the distance between G and O. In this case the solution of this problem is reduced to solving the second order linear differential equation over the projection of the angular velocity of the body onto its axis of symmetry. Using the Kovacic algorithm we search for liouvillian solutions of the corresponding second order differential equation in the case, when the rolling body is a dynamically symmetric ball.
Augustine Muwamba; Devendra M. Amatya; Carl C. Trettin; James B. Glover
2016-01-01
Monitoring of stream water chemistry in forested watersheds provides information to environmental scientists that relate management operations to hydrologic and biogeochemical processes. We used data for the first order watershed, WS80, and second order watershed, WS79, at Santee Experimental Forest. We also used data from a third order watershed, WS78, to...
FAST TRACK COMMUNICATION Quasi self-adjoint nonlinear wave equations
NASA Astrophysics Data System (ADS)
Ibragimov, N. H.; Torrisi, M.; Tracinà, R.
2010-11-01
In this paper we generalize the classification of self-adjoint second-order linear partial differential equation to a family of nonlinear wave equations with two independent variables. We find a class of quasi self-adjoint nonlinear equations which includes the self-adjoint linear equations as a particular case. The property of a differential equation to be quasi self-adjoint is important, e.g. for constructing conservation laws associated with symmetries of the differential equation.
Ultrasound speckle reduction based on fractional order differentiation.
Shao, Dangguo; Zhou, Ting; Liu, Fan; Yi, Sanli; Xiang, Yan; Ma, Lei; Xiong, Xin; He, Jianfeng
2017-07-01
Ultrasound images show a granular pattern of noise known as speckle that diminishes their quality and results in difficulties in diagnosis. To preserve edges and features, this paper proposes a fractional differentiation-based image operator to reduce speckle in ultrasound. An image de-noising model based on fractional partial differential equations with balance relation between k (gradient modulus threshold that controls the conduction) and v (the order of fractional differentiation) was constructed by the effective combination of fractional calculus theory and a partial differential equation, and the numerical algorithm of it was achieved using a fractional differential mask operator. The proposed algorithm has better speckle reduction and structure preservation than the three existing methods [P-M model, the speckle reducing anisotropic diffusion (SRAD) technique, and the detail preserving anisotropic diffusion (DPAD) technique]. And it is significantly faster than bilateral filtering (BF) in producing virtually the same experimental results. Ultrasound phantom testing and in vivo imaging show that the proposed method can improve the quality of an ultrasound image in terms of tissue SNR, CNR, and FOM values.
Higher-Order Factor Structure of the Differential Ability Scales-II: Consistency across Ages 4 to 17
ERIC Educational Resources Information Center
Keith, Timothy Z.; Low, Justin A.; Reynolds, Matthew R.; Patel, Puja G.; Ridley, Kristen P.
2010-01-01
The recently published second edition of the Differential Abilities Scale (DAS-II) is designed to measure multiple broad and general abilities from Cattell-Horn-Carroll (CHC) theory. Although the technical manual presents information supporting the test's structure, additional research is needed to determine the constructs measured by the test and…
Investigating local network interactions underlying first- and second-order processing.
Ellemberg, Dave; Allen, Harriet A; Hess, Robert F
2004-01-01
We compared the spatial lateral interactions for first-order cues to those for second-order cues, and investigated spatial interactions between these two types of cues. We measured the apparent modulation depth of a target Gabor at fixation, in the presence and the absence of horizontally flanking Gabors. The Gabors' gratings were either added to (first-order) or multiplied with (second-order) binary 2-D noise. Apparent "contrast" or modulation depth (i.e., the perceived difference between the high and low luminance regions for the first-order stimulus, or between the high and low contrast regions for the second-order stimulus) was measured with a modulation depth-matching paradigm. For each observer, the first- and second-order Gabors were equated for apparent modulation depth without the flankers. Our results indicate that at the smallest inter-element spacing, the perceived reduction in modulation depth is significantly smaller for the second-order than for the first-order stimuli. Further, lateral interactions operate over shorter distances and the spatial frequency and orientation tuning of the suppression effect are broader for second- than first-order stimuli. Finally, first- and second-order information interact in an asymmetrical fashion; second-order flankers do not reduce the apparent modulation depth of the first-order target, whilst first-order flankers reduce the apparent modulation depth of the second-order target.
Student Solution Manual for Mathematical Methods for Physics and Engineering Third Edition
NASA Astrophysics Data System (ADS)
Riley, K. F.; Hobson, M. P.
2006-03-01
Preface; 1. Preliminary algebra; 2. Preliminary calculus; 3. Complex numbers and hyperbolic functions; 4. Series and limits; 5. Partial differentiation; 6. Multiple integrals; 7. Vector algebra; 8. Matrices and vector spaces; 9. Normal modes; 10. Vector calculus; 11. Line, surface and volume integrals; 12. Fourier series; 13. Integral transforms; 14. First-order ordinary differential equations; 15. Higher-order ordinary differential equations; 16. Series solutions of ordinary differential equations; 17. Eigenfunction methods for differential equations; 18. Special functions; 19. Quantum operators; 20. Partial differential equations: general and particular; 21. Partial differential equations: separation of variables; 22. Calculus of variations; 23. Integral equations; 24. Complex variables; 25. Application of complex variables; 26. Tensors; 27. Numerical methods; 28. Group theory; 29. Representation theory; 30. Probability; 31. Statistics.
Azunre, P.
2016-09-21
Here in this paper, two novel techniques for bounding the solutions of parametric weakly coupled second-order semilinear parabolic partial differential equations are developed. The first provides a theorem to construct interval bounds, while the second provides a theorem to construct lower bounds convex and upper bounds concave in the parameter. The convex/concave bounds can be significantly tighter than the interval bounds because of the wrapping effect suffered by interval analysis in dynamical systems. Both types of bounds are computationally cheap to construct, requiring solving auxiliary systems twice and four times larger than the original system, respectively. An illustrative numerical examplemore » of bound construction and use for deterministic global optimization within a simple serial branch-and-bound algorithm, implemented numerically using interval arithmetic and a generalization of McCormick's relaxation technique, is presented. Finally, problems within the important class of reaction-diffusion systems may be optimized with these tools.« less
Nonclassical properties of coherent light in a pair of coupled anharmonic oscillators
NASA Astrophysics Data System (ADS)
Alam, Nasir; Mandal, Swapan
2016-01-01
The Hamiltonian and hence the equations of motion involving the field operators of two anharmonic oscillators coupled through a linear one is framed. It is found that these equations of motion involving the non-commuting field operators are nonlinear and are coupled to each other and hence pose a great problem for getting the solutions. In order to investigate the dynamics and hence the nonclassical properties of the radiation fields, we obtain approximate analytical solutions of these coupled nonlinear differential equations involving the non-commuting field operators up to the second orders in anharmonic and coupling constants. These solutions are found useful for investigating the squeezing of pure and mixed modes, amplitude squared squeezing, principal squeezing, and the photon antibunching of the input coherent radiation field. With the suitable choice of the parameters (photon number in various field modes, anharmonic, and coupling constants, etc.), we calculate the second order variances of field quadratures of various modes and hence the squeezing, amplitude squared, and mixed mode squeezing of the input coherent light. In the absence of anharmonicities, it is found that these nonlinear nonclassical phenomena (squeezing of pure and mixed modes, amplitude squared squeezing and photon antibunching) are completely absent. The percentage of squeezing, mixed mode squeezing, amplitude squared squeezing increase with the increase of photon number and the dimensionless interaction time. The collapse and revival phenomena in squeezing, mixed mode squeezing and amplitude squared squeezing are exhibited. With the increase of the interaction time, the monotonic increasing nature of the squeezing effects reveal the presence of unwanted secular terms. It is established that the mere coupling of two oscillators through a third one does not produces the squeezing effects of input coherent light. However, the pure nonclassical phenomena of antibunching of photons in vacuum field modes are obtained through the mere coupling and hence the transfers of photons from the remaining coupled mode.
Numerical method based on the lattice Boltzmann model for the Fisher equation.
Yan, Guangwu; Zhang, Jianying; Dong, Yinfeng
2008-06-01
In this paper, a lattice Boltzmann model for the Fisher equation is proposed. First, the Chapman-Enskog expansion and the multiscale time expansion are used to describe higher-order moment of equilibrium distribution functions and a series of partial differential equations in different time scales. Second, the modified partial differential equation of the Fisher equation with the higher-order truncation error is obtained. Third, comparison between numerical results of the lattice Boltzmann models and exact solution is given. The numerical results agree well with the classical ones.
Differential 3D Mueller-matrix mapping of optically anisotropic depolarizing biological layers
NASA Astrophysics Data System (ADS)
Ushenko, O. G.; Grytsyuk, M.; Ushenko, V. O.; Bodnar, G. B.; Vanchulyak, O.; Meglinskiy, I.
2018-01-01
The paper consists of two parts. The first part is devoted to the short theoretical basics of the method of differential Mueller-matrix description of properties of partially depolarizing layers. It was provided the experimentally measured maps of differential matrix of the 2nd order of polycrystalline structure of the histological section of rectum wall tissue. It was defined the values of statistical moments of the1st-4th orders, which characterize the distribution of matrix elements. In the second part of the paper it was provided the data of statistic analysis of birefringence and dichroism of the histological sections of connecting component of vagina wall tissue (normal and with prolapse). It were defined the objective criteria of differential diagnostics of pathologies of vagina wall.
Differential operators on the supercircle S1|2 and symbol map
NASA Astrophysics Data System (ADS)
Hamza, Raouafi; Selmi, Zeineb; Boujelben, Jamel
2017-09-01
We consider the supercircle S1|2 equipped with the standard contact structure. The conformal Lie superalgebra 𝒦(2) acts on S1|2 as the Lie superalgebra of contact vector fields; it contains the Möbius superalgebra 𝔬𝔰𝔭(2|2). We study the space of linear differential operators on weighted densities as a module over 𝔬𝔰𝔭(2|2). We introduce the canonical isomorphism between this space and the corresponding space of symbols. This result allows us to give, in contrast to the classical setting, a classification of the 𝒦(2)-modules 𝔇λ,μk of linear differential operators of order k acting on the superspaces of weighted densities. This work is the simplest superization of a result by Gargoubi and Ovsienko [Modules of differential operators on the real line, Funct. Anal. Appl. 35(1) (2001) 13-18.
The Cantor-Bendixson Rank of Certain Bridgeland-Smith Stability Conditions
NASA Astrophysics Data System (ADS)
Aulicino, David
2018-01-01
We provide a novel proof that the set of directions that admit a saddle connection on a meromorphic quadratic differential with at least one pole of order at least two is closed, which generalizes a result of Bridgeland and Smith, and Gaiotto, Moore, and Neitzke. Secondly, we show that this set has finite Cantor-Bendixson rank and give a tight bound. Finally, we present a family of surfaces realizing all possible Cantor-Bendixson ranks. The techniques in the proof of this result exclusively concern Abelian differentials on Riemann surfaces, also known as translation surfaces. The concept of a "slit translation surface" is introduced as the primary tool for studying meromorphic quadratic differentials with higher order poles.
Mueller matrix mapping of biological polycrystalline layers using reference wave
NASA Astrophysics Data System (ADS)
Dubolazov, A.; Ushenko, O. G.; Ushenko, Yu. O.; Pidkamin, L. Y.; Sidor, M. I.; Grytsyuk, M.; Prysyazhnyuk, P. V.
2018-01-01
The paper consists of two parts. The first part is devoted to the short theoretical basics of the method of differential Mueller-matrix description of properties of partially depolarizing layers. It was provided the experimentally measured maps of differential matrix of the 1st order of polycrystalline structure of the histological section of brain tissue. It was defined the statistical moments of the 1st-4th orders, which characterize the distribution of matrix elements. In the second part of the paper it was provided the data of statistic analysis of birefringence and dichroism of the histological sections of mice liver tissue (normal and with diabetes). It were defined the objective criteria of differential diagnostics of diabetes.
Second-order (2 +1 ) -dimensional anisotropic hydrodynamics
NASA Astrophysics Data System (ADS)
Bazow, Dennis; Heinz, Ulrich; Strickland, Michael
2014-11-01
We present a complete formulation of second-order (2 +1 ) -dimensional anisotropic hydrodynamics. The resulting framework generalizes leading-order anisotropic hydrodynamics by allowing for deviations of the one-particle distribution function from the spheroidal form assumed at leading order. We derive complete second-order equations of motion for the additional terms in the macroscopic currents generated by these deviations from their kinetic definition using a Grad-Israel-Stewart 14-moment ansatz. The result is a set of coupled partial differential equations for the momentum-space anisotropy parameter, effective temperature, the transverse components of the fluid four-velocity, and the viscous tensor components generated by deviations of the distribution from spheroidal form. We then perform a quantitative test of our approach by applying it to the case of one-dimensional boost-invariant expansion in the relaxation time approximation (RTA) in which case it is possible to numerically solve the Boltzmann equation exactly. We demonstrate that the second-order anisotropic hydrodynamics approach provides an excellent approximation to the exact (0+1)-dimensional RTA solution for both small and large values of the shear viscosity.
The ship edge feature detection based on high and low threshold for remote sensing image
NASA Astrophysics Data System (ADS)
Li, Xuan; Li, Shengyang
2018-05-01
In this paper, a method based on high and low threshold is proposed to detect the ship edge feature due to the low accuracy rate caused by the noise. Analyze the relationship between human vision system and the target features, and to determine the ship target by detecting the edge feature. Firstly, using the second-order differential method to enhance the quality of image; Secondly, to improvement the edge operator, we introduction of high and low threshold contrast to enhancement image edge and non-edge points, and the edge as the foreground image, non-edge as a background image using image segmentation to achieve edge detection, and remove the false edges; Finally, the edge features are described based on the result of edge features detection, and determine the ship target. The experimental results show that the proposed method can effectively reduce the number of false edges in edge detection, and has the high accuracy of remote sensing ship edge detection.
Model-order reduction of lumped parameter systems via fractional calculus
NASA Astrophysics Data System (ADS)
Hollkamp, John P.; Sen, Mihir; Semperlotti, Fabio
2018-04-01
This study investigates the use of fractional order differential models to simulate the dynamic response of non-homogeneous discrete systems and to achieve efficient and accurate model order reduction. The traditional integer order approach to the simulation of non-homogeneous systems dictates the use of numerical solutions and often imposes stringent compromises between accuracy and computational performance. Fractional calculus provides an alternative approach where complex dynamical systems can be modeled with compact fractional equations that not only can still guarantee analytical solutions, but can also enable high levels of order reduction without compromising on accuracy. Different approaches are explored in order to transform the integer order model into a reduced order fractional model able to match the dynamic response of the initial system. Analytical and numerical results show that, under certain conditions, an exact match is possible and the resulting fractional differential models have both a complex and frequency-dependent order of the differential operator. The implications of this type of approach for both model order reduction and model synthesis are discussed.
DOT National Transportation Integrated Search
1994-08-14
This order identifies specific criteria, not presently found in existing standards, which shall be satisfied before Instrument Flight Rules (IFR) operations can be authorized using differential global positioning systems (DGPS) Special Instrument App...
Parametric instability analysis of truncated conical shells using the Haar wavelet method
NASA Astrophysics Data System (ADS)
Dai, Qiyi; Cao, Qingjie
2018-05-01
In this paper, the Haar wavelet method is employed to analyze the parametric instability of truncated conical shells under static and time dependent periodic axial loads. The present work is based on the Love first-approximation theory for classical thin shells. The displacement field is expressed as the Haar wavelet series in the axial direction and trigonometric functions in the circumferential direction. Then the partial differential equations are reduced into a system of coupled Mathieu-type ordinary differential equations describing dynamic instability behavior of the shell. Using Bolotin's method, the first-order and second-order approximations of principal instability regions are determined. The correctness of present method is examined by comparing the results with those in the literature and very good agreement is observed. The difference between the first-order and second-order approximations of principal instability regions for tensile and compressive loads is also investigated. Finally, numerical results are presented to bring out the influences of various parameters like static load factors, boundary conditions and shell geometrical characteristics on the domains of parametric instability of conical shells.
First integrals of the axisymmetric shape equation of lipid membranes
NASA Astrophysics Data System (ADS)
Zhang, Yi-Heng; McDargh, Zachary; Tu, Zhan-Chun
2018-03-01
The shape equation of lipid membranes is a fourth-order partial differential equation. Under the axisymmetric condition, this equation was transformed into a second-order ordinary differential equation (ODE) by Zheng and Liu (Phys. Rev. E 48 2856 (1993)). Here we try to further reduce this second-order ODE to a first-order ODE. First, we invert the usual process of variational calculus, that is, we construct a Lagrangian for which the ODE is the corresponding Euler–Lagrange equation. Then, we seek symmetries of this Lagrangian according to the Noether theorem. Under a certain restriction on Lie groups of the shape equation, we find that the first integral only exists when the shape equation is identical to the Willmore equation, in which case the symmetry leading to the first integral is scale invariance. We also obtain the mechanical interpretation of the first integral by using the membrane stress tensor. Project supported by the National Natural Science Foundation of China (Grant No. 11274046) and the National Science Foundation of the United States (Grant No. 1515007).
Real options valuation and optimization of energy assets
NASA Astrophysics Data System (ADS)
Thompson, Matthew
In this thesis we present algorithms for the valuation and optimal operation of natural gas storage facilities, hydro-electric power plants and thermal power generators in competitive markets. Real options theory is used to derive nonlinear partial-integro-differential equations (PIDEs) for the valuation and optimal operating strategies of all types of facilities. The equations are designed to incorporate a wide class of spot price models that can exhibit the same time-dependent, mean-reverting dynamics and price spikes as those observed in most energy markets. Particular attention is paid to the operational characteristics of real energy assets. For natural gas storage facilities these characteristics include: working gas capacities, variable deliverability and injection rates and cycling limitations. For thermal power plants relevant operational characteristics include variable start-up times and costs, control response time lags, minimum generating levels, nonlinear output functions, structural limitations on ramp rates, and minimum up/down time restrictions. For hydro-electric units, head effects and environmental constraints are addressed. We illustrate the models with numerical examples of a gas storage facility, a hydro-electric pump storage facility and a thermal power plant. This PIDE framework is the first in the literature to achieve second order accuracy in characterizing the operating states of hydro-electric and hydro-thermal power plants. The continuous state space representation derived in this thesis can therefore achieve far greater realism in terms of operating state specification than any other method in the literature to date. This thesis is also the first and only to allow for any continuous time jump diffusion processes in order to account for price spikes.
Multi-off-grid methods in multi-step integration of ordinary differential equations
NASA Technical Reports Server (NTRS)
Beaudet, P. R.
1974-01-01
Description of methods of solving first- and second-order systems of differential equations in which all derivatives are evaluated at off-grid locations in order to circumvent the Dahlquist stability limitation on the order of on-grid methods. The proposed multi-off-grid methods require off-grid state predictors for the evaluation of the n derivatives at each step. Progressing forward in time, the off-grid states are predicted using a linear combination of back on-grid state values and off-grid derivative evaluations. A comparison is made between the proposed multi-off-grid methods and the corresponding Adams and Cowell on-grid integration techniques in integrating systems of ordinary differential equations, showing a significant reduction in the error at larger step sizes in the case of the multi-off-grid integrator.
A lattice Boltzmann model for the Burgers-Fisher equation.
Zhang, Jianying; Yan, Guangwu
2010-06-01
A lattice Boltzmann model is developed for the one- and two-dimensional Burgers-Fisher equation based on the method of the higher-order moment of equilibrium distribution functions and a series of partial differential equations in different time scales. In order to obtain the two-dimensional Burgers-Fisher equation, vector sigma(j) has been used. And in order to overcome the drawbacks of "error rebound," a new assumption of additional distribution is presented, where two additional terms, in first order and second order separately, are used. Comparisons with the results obtained by other methods reveal that the numerical solutions obtained by the proposed method converge to exact solutions. The model under new assumption gives better results than that with second order assumption. (c) 2010 American Institute of Physics.
Second harmonic generation and crystal growth of new chalcone derivatives
NASA Astrophysics Data System (ADS)
Patil, P. S.; Dharmaprakash, S. M.; Ramakrishna, K.; Fun, Hoong-Kun; Sai Santosh Kumar, R.; Narayana Rao, D.
2007-05-01
We report on the synthesis, crystal structure and optical characterization of chalcone derivatives developed for second-order nonlinear optics. The investigation of a series of five chalcone derivatives with the second harmonic generation powder test according to Kurtz and Perry revealed that these chalcones show efficient second-order nonlinear activity. Among them, high-quality single crystals of 3-Br-4'-methoxychalcone (3BMC) were grown by solvent evaporation solution growth technique. Grown crystals were characterized by X-ray powder diffraction (XRD), laser damage threshold, UV-vis-NIR and refractive index measurement studies. Infrared spectroscopy, thermogravimetric analysis and differential thermal analysis measurements were performed to study the molecular vibration and thermal behavior of 3BMC crystal. Thermal analysis does not show any structural phase transition.
The spectral function of a singular differential operator of order 2m
NASA Astrophysics Data System (ADS)
Kozko, Artem I.; Pechentsov, Alexander S.
2010-12-01
We study the spectral function of a self-adjoint semibounded below differential operator on a Hilbert space L_2 \\lbrack 0,\\infty) and obtain the formulae for the spectral function of the operator (-1)^{m}y^{(2m)}(x) with general boundary conditions at the zero. In particular, for the boundary conditions y(0)=y'(0)=\\dots=y^{(m-1)}(0)=0 we find the explicit form of the spectral function \\Theta_{mB'}(x,x,\\lambda) on the diagonal x=y for \\lambda \\ge 0.
High Temperature Capacitive Strain Gage
NASA Technical Reports Server (NTRS)
Wnuk, Stephen P., Jr.; Wnuk, Stephen P., III; Wnuk, V. P.
1990-01-01
Capacitive strain gages designed for measurements in wind tunnels to 2000 F were built and evaluated. Two design approaches were followed. One approach was based on fixed capacitor plates with a movable ground plane inserted between the plates to effect differential capacitive output with strain. The second approach was based on movable capacitor plates suspended between sapphire bearings, housed in a rugged body, and arranged to operate as a differential capacitor. A sapphire bearing gage (1/4 in. diameter x 1 in. in size) was built with a range of 50,000 and a resolution of 200 microstrain. Apparent strain on Rene' 41 was less than + or - 1000 microstrain from room temperature to 2000 F. Three gage models were built from the Ground Plane Differential concept. The first was 1/4 in. square by 1/32 in. high and useable to 700 F. The second was 1/2 in. square by 1/16 in. high and useable to 1440 F. The third, also 1/2 in. square by 1/16 in. high was expected to operate in the 1600 to 2000 F range, but was not tested because time and funding ended.
High temperature capacitive strain gage
NASA Astrophysics Data System (ADS)
Wnuk, Stephen P., Jr.; Wnuk, Stephen P., III; Wnuk, V. P.
1990-01-01
Capacitive strain gages designed for measurements in wind tunnels to 2000 F were built and evaluated. Two design approaches were followed. One approach was based on fixed capacitor plates with a movable ground plane inserted between the plates to effect differential capacitive output with strain. The second approach was based on movable capacitor plates suspended between sapphire bearings, housed in a rugged body, and arranged to operate as a differential capacitor. A sapphire bearing gage (1/4 in. diameter x 1 in. in size) was built with a range of 50,000 and a resolution of 200 microstrain. Apparent strain on Rene' 41 was less than + or - 1000 microstrain from room temperature to 2000 F. Three gage models were built from the Ground Plane Differential concept. The first was 1/4 in. square by 1/32 in. high and useable to 700 F. The second was 1/2 in. square by 1/16 in. high and useable to 1440 F. The third, also 1/2 in. square by 1/16 in. high was expected to operate in the 1600 to 2000 F range, but was not tested because time and funding ended.
Second-order variational equations for N-body simulations
NASA Astrophysics Data System (ADS)
Rein, Hanno; Tamayo, Daniel
2016-07-01
First-order variational equations are widely used in N-body simulations to study how nearby trajectories diverge from one another. These allow for efficient and reliable determinations of chaos indicators such as the Maximal Lyapunov characteristic Exponent (MLE) and the Mean Exponential Growth factor of Nearby Orbits (MEGNO). In this paper we lay out the theoretical framework to extend the idea of variational equations to higher order. We explicitly derive the differential equations that govern the evolution of second-order variations in the N-body problem. Going to second order opens the door to new applications, including optimization algorithms that require the first and second derivatives of the solution, like the classical Newton's method. Typically, these methods have faster convergence rates than derivative-free methods. Derivatives are also required for Riemann manifold Langevin and Hamiltonian Monte Carlo methods which provide significantly shorter correlation times than standard methods. Such improved optimization methods can be applied to anything from radial-velocity/transit-timing-variation fitting to spacecraft trajectory optimization to asteroid deflection. We provide an implementation of first- and second-order variational equations for the publicly available REBOUND integrator package. Our implementation allows the simultaneous integration of any number of first- and second-order variational equations with the high-accuracy IAS15 integrator. We also provide routines to generate consistent and accurate initial conditions without the need for finite differencing.
A dimension reduction method for flood compensation operation of multi-reservoir system
NASA Astrophysics Data System (ADS)
Jia, B.; Wu, S.; Fan, Z.
2017-12-01
Multiple reservoirs cooperation compensation operations coping with uncontrolled flood play vital role in real-time flood mitigation. This paper come up with a reservoir flood compensation operation index (ResFCOI), which formed by elements of flood control storage, flood inflow volume, flood transmission time and cooperation operations period, then establish a flood cooperation compensation operations model of multi-reservoir system, according to the ResFCOI to determine a computational order of each reservoir, and lastly the differential evolution algorithm is implemented for computing single reservoir flood compensation optimization in turn, so that a dimension reduction method is formed to reduce computational complexity. Shiguan River Basin with two large reservoirs and an extensive uncontrolled flood area, is used as a case study, results show that (a) reservoirs' flood discharges and the uncontrolled flood are superimposed at Jiangjiaji Station, while the formed flood peak flow is as small as possible; (b) cooperation compensation operations slightly increase in usage of flood storage capacity in reservoirs, when comparing to rule-based operations; (c) it takes 50 seconds in average when computing a cooperation compensation operations scheme. The dimension reduction method to guide flood compensation operations of multi-reservoir system, can make each reservoir adjust its flood discharge strategy dynamically according to the uncontrolled flood magnitude and pattern, so as to mitigate the downstream flood disaster.
ERIC Educational Resources Information Center
Camporesi, Roberto
2016-01-01
We present an approach to the impulsive response method for solving linear constant-coefficient ordinary differential equations of any order based on the factorization of the differential operator. The approach is elementary, we only assume a basic knowledge of calculus and linear algebra. In particular, we avoid the use of distribution theory, as…
A Numerical Method for Integrating Orbits
NASA Astrophysics Data System (ADS)
Sahakyan, Karen P.; Melkonyan, Anahit A.; Hayrapetyan, S. R.
2007-08-01
A numerical method based of trigonometric polynomials for integrating of ordinary differential equations of first and second order is suggested. This method is a trigonometric analogue of Everhart's method and can be especially useful for periodical trajectories.
NASA Astrophysics Data System (ADS)
Saha, Suman; Das, Saptarshi; Das, Shantanu; Gupta, Amitava
2012-09-01
A novel conformal mapping based fractional order (FO) methodology is developed in this paper for tuning existing classical (Integer Order) Proportional Integral Derivative (PID) controllers especially for sluggish and oscillatory second order systems. The conventional pole placement tuning via Linear Quadratic Regulator (LQR) method is extended for open loop oscillatory systems as well. The locations of the open loop zeros of a fractional order PID (FOPID or PIλDμ) controller have been approximated in this paper vis-à-vis a LQR tuned conventional integer order PID controller, to achieve equivalent integer order PID control system. This approach eases the implementation of analog/digital realization of a FOPID controller with its integer order counterpart along with the advantages of fractional order controller preserved. It is shown here in the paper that decrease in the integro-differential operators of the FOPID/PIλDμ controller pushes the open loop zeros of the equivalent PID controller towards greater damping regions which gives a trajectory of the controller zeros and dominant closed loop poles. This trajectory is termed as "M-curve". This phenomena is used to design a two-stage tuning algorithm which reduces the existing PID controller's effort in a significant manner compared to that with a single stage LQR based pole placement method at a desired closed loop damping and frequency.
Theoretical predictions of latitude dependencies in the solar wind
NASA Technical Reports Server (NTRS)
Winge, C. R., Jr.; Coleman, P. J., Jr.
1974-01-01
Results are presented which were obtained with the Winge-Coleman model for theoretical predictions of latitudinal dependencies in the solar wind. A first-order expansion is described which allows analysis of first-order latitudinal variations in the coronal boundary conditions and results in a second-order partial differential equation for the perturbation stream function. Latitudinal dependencies are analytically separated out in the form of Legendre polynomials and their derivative, and are reduced to the solution of radial differential equations. This analysis is shown to supply an estimate of how large the coronal variation in latitude must be to produce an 11 km/sec/deg gradient in the radial velocity of the solar wind, assuming steady-state processes.
Fractional-order difference equations for physical lattices and some applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tarasov, Vasily E., E-mail: tarasov@theory.sinp.msu.ru
2015-10-15
Fractional-order operators for physical lattice models based on the Grünwald-Letnikov fractional differences are suggested. We use an approach based on the models of lattices with long-range particle interactions. The fractional-order operators of differentiation and integration on physical lattices are represented by kernels of lattice long-range interactions. In continuum limit, these discrete operators of non-integer orders give the fractional-order derivatives and integrals with respect to coordinates of the Grünwald-Letnikov types. As examples of the fractional-order difference equations for physical lattices, we give difference analogs of the fractional nonlocal Navier-Stokes equations and the fractional nonlocal Maxwell equations for lattices with long-range interactions.more » Continuum limits of these fractional-order difference equations are also suggested.« less
Song, Junqiang; Leng, Hongze; Lu, Fengshun
2014-01-01
We present a new numerical method to get the approximate solutions of fractional differential equations. A new operational matrix of integration for fractional-order Legendre functions (FLFs) is first derived. Then a modified variational iteration formula which can avoid “noise terms” is constructed. Finally a numerical method based on variational iteration method (VIM) and FLFs is developed for fractional differential equations (FDEs). Block-pulse functions (BPFs) are used to calculate the FLFs coefficient matrices of the nonlinear terms. Five examples are discussed to demonstrate the validity and applicability of the technique. PMID:24511303
Lag-One Autocorrelation in Short Series: Estimation and Hypotheses Testing
ERIC Educational Resources Information Center
Solanas, Antonio; Manolov, Rumen; Sierra, Vicenta
2010-01-01
In the first part of the study, nine estimators of the first-order autoregressive parameter are reviewed and a new estimator is proposed. The relationships and discrepancies between the estimators are discussed in order to achieve a clear differentiation. In the second part of the study, the precision in the estimation of autocorrelation is…
NASA Astrophysics Data System (ADS)
Wang, Bin; Wu, Xinyuan
2014-11-01
In this paper we consider multi-frequency highly oscillatory second-order differential equations x″ (t) + Mx (t) = f (t , x (t) ,x‧ (t)) where high-frequency oscillations are generated by the linear part Mx (t), and M is positive semi-definite (not necessarily nonsingular). It is known that Filon-type methods are effective approach to numerically solving highly oscillatory problems. Unfortunately, however, existing Filon-type asymptotic methods fail to apply to the highly oscillatory second-order differential equations when M is singular. We study and propose an efficient improvement on the existing Filon-type asymptotic methods, so that the improved Filon-type asymptotic methods can be able to numerically solving this class of multi-frequency highly oscillatory systems with a singular matrix M. The improved Filon-type asymptotic methods are designed by combining Filon-type methods with the asymptotic methods based on the variation-of-constants formula. We also present one efficient and practical improved Filon-type asymptotic method which can be performed at lower cost. Accompanying numerical results show the remarkable efficiency.
Space Vehicle Guidance, Navigation, Control, and Estimation Operations Technologies
2018-03-29
angular position around the ellipse, and the out-of-place amplitude and angular position. These elements are explicitly relatable to the six rectangular...quasi) second order relative orbital elements are explored. One theory uses the expanded solution form and introduces several instantaneous ellipses...In each case, the theory quantifies distortion of the first order relative orbital elements when including second order effects. The new variables are
Prediction of Soil pH Hyperspectral Spectrum in Guanzhong Area of Shaanxi Province Based on PLS
NASA Astrophysics Data System (ADS)
Liu, Jinbao; Zhang, Yang; Wang, Huanyuan; Cheng, Jie; Tong, Wei; Wei, Jing
2017-12-01
The soil pH of Fufeng County, Yangling County and Wugong County in Shaanxi Province was studied. The spectral reflectance was measured by ASD Field Spec HR portable terrain spectrum, and its spectral characteristics were analyzed. The first deviation of the original spectral reflectance of the soil, the second deviation, the logarithm of the reciprocal logarithm, the first order differential of the reciprocal logarithm and the second order differential of the reciprocal logarithm were used to establish the soil pH Spectral prediction model. The results showed that the correlation between the reflectance spectra after SNV pre-treatment and the soil pH was significantly improved. The optimal prediction model of soil pH established by partial least squares method was a prediction model based on the first order differential of the reciprocal logarithm of spectral reflectance. The principal component factor was 10, the decision coefficient Rc2 = 0.9959, the model root means square error RMSEC = 0.0076, the correction deviation SEC = 0.0077; the verification decision coefficient Rv2 = 0.9893, the predicted root mean square error RMSEP = 0.0157, The deviation of SEP = 0.0160, the model was stable, the fitting ability and the prediction ability were high, and the soil pH can be measured quickly.
Equations of motion for train derailment dynamics
DOT National Transportation Integrated Search
2007-09-11
This paper describes a planar or two-dimensional model to : examine the gross motions of rail cars in a generalized train : derailment. Three coupled, second-order differential equations : are derived from Newton's Laws to calculate rigid-body car : ...
Additive schemes for certain operator-differential equations
NASA Astrophysics Data System (ADS)
Vabishchevich, P. N.
2010-12-01
Unconditionally stable finite difference schemes for the time approximation of first-order operator-differential systems with self-adjoint operators are constructed. Such systems arise in many applied problems, for example, in connection with nonstationary problems for the system of Stokes (Navier-Stokes) equations. Stability conditions in the corresponding Hilbert spaces for two-level weighted operator-difference schemes are obtained. Additive (splitting) schemes are proposed that involve the solution of simple problems at each time step. The results are used to construct splitting schemes with respect to spatial variables for nonstationary Navier-Stokes equations for incompressible fluid. The capabilities of additive schemes are illustrated using a two-dimensional model problem as an example.
Anomalous dimension of subleading-power N-jet operators
NASA Astrophysics Data System (ADS)
Beneke, Martin; Garny, Mathias; Szafron, Robert; Wang, Jian
2018-03-01
We begin a systematic investigation of the anomalous dimension of subleading power N-jet operators in view of resummation of logarithmically enhanced terms in partonic cross sections beyond leading power. We provide an explicit result at the one-loop order for fermion-number two N-jet operators at the second order in the power expansion parameter of soft-collinear effective theory.
Multistep integration formulas for the numerical integration of the satellite problem
NASA Technical Reports Server (NTRS)
Lundberg, J. B.; Tapley, B. D.
1981-01-01
The use of two Class 2/fixed mesh/fixed order/multistep integration packages of the PECE type for the numerical integration of the second order, nonlinear, ordinary differential equation of the satellite orbit problem. These two methods are referred to as the general and the second sum formulations. The derivation of the basic equations which characterize each formulation and the role of the basic equations in the PECE algorithm are discussed. Possible starting procedures are examined which may be used to supply the initial set of values required by the fixed mesh/multistep integrators. The results of the general and second sum integrators are compared to the results of various fixed step and variable step integrators.
Differential Drag Demonstration: A Post-Mission Experiment with the EO-1 Spacecraft
NASA Technical Reports Server (NTRS)
Hull, Scott; Shelton, Amanda; Richardson, David
2017-01-01
Differential drag is a technique for altering the semi-major axis, velocity, and along-track position of a spacecraft in low Earth orbit. It involves varying the spacecrafts cross-sectional area relative to its velocity direction by temporarily changing attitude and solar array angles, thus varying the amount of atmospheric drag on the spacecraft. The technique has recently been proposed and used by at least three satellite systems for initial separation of constellation spacecraft after launch, stationkeeping during the mission, and potentially for conjunction avoidance. Similarly, differential drag has been proposed as a control strategy for rendezvous, removing the need for active propulsion. In theory, some operational missions that lack propulsion capability could use this approach for conjunction avoidance, though options are typically constrained for spacecraft that are already in orbit. Shortly before the spacecraft was decommissioned, an experiment was performed using NASAs EO-1 spacecraft in order to demonstrate differential drag on an operational spacecraft in orbit, and discover some of the effects differential drag might manifest. EO-1 was not designed to maintain off-nominal orientations for long periods, and as a result the team experienced unanticipated challenges during the experiment. This paper will discuss operations limitations identified before the experiment, as well as those discovered during the experiment. The effective displacement that resulted from increasing the drag area for 39 hours will be compared to predictions as well as the expected position if the spacecraft maintained nominal operations. A hypothetical scenario will also be examined, studying the relative risks of maintaining an operational spacecraft bus in order to maintain the near-maximum drag area orientation and hasten reentry.
Differential Drag Demonstration: A Post-Mission Experiment with the EO-1 Spacecraft
NASA Technical Reports Server (NTRS)
Hull, Scott; Shelton, Amanda; Richardson, David
2017-01-01
Differential drag is a technique for altering the semimajor axis, velocity, and along-track position of a spacecraft in low Earth orbit. It involves varying the spacecraft's cross-sectional area relative to its velocity direction by temporarily changing attitude and solar array angles, thus varying the amount of atmospheric drag on the spacecraft. The technique has recently been proposed and used by at least three satellite systems for initial separation of constellation spacecraft after launch, stationkeeping during the mission, and potentially for conjunction avoidance. Similarly, differential drag has been proposed as a control strategy for rendezvous, removing the need for active propulsion. In theory, some operational missions that lack propulsion capability could use this approach for conjunction avoidance, though options are typically constrained for spacecraft that are already in orbit. Shortly before the spacecraft was decommissioned, an experiment was performed using NASA's EO-1 spacecraft in order to demonstrate differential drag on an operational spacecraft in orbit, and discover some of the effects differential drag might manifest. EO-1 was not designed to maintain off-nominal orientations for long periods, and as a result the team experienced unanticipated challenges during the experiment. This paper will discuss operations limitations identified before the experiment, as well as those discovered during the experiment. The effective displacement that resulted from increasing the drag area for 39 hours will be compared to predictions as well as the expected position if the spacecraft maintained nominal operations. A hypothetical scenario will also be examined, studying the relative risks of maintaining an operational spacecraft bus in order to maintain the near-maximum drag area orientation and hasten reentry.
A fully Sinc-Galerkin method for Euler-Bernoulli beam models
NASA Technical Reports Server (NTRS)
Smith, R. C.; Bowers, K. L.; Lund, J.
1990-01-01
A fully Sinc-Galerkin method in both space and time is presented for fourth-order time-dependent partial differential equations with fixed and cantilever boundary conditions. The Sinc discretizations for the second-order temporal problem and the fourth-order spatial problems are presented. Alternate formulations for variable parameter fourth-order problems are given which prove to be especially useful when applying the forward techniques to parameter recovery problems. The discrete system which corresponds to the time-dependent partial differential equations of interest are then formulated. Computational issues are discussed and a robust and efficient algorithm for solving the resulting matrix system is outlined. Numerical results which highlight the method are given for problems with both analytic and singular solutions as well as fixed and cantilever boundary conditions.
NASA Astrophysics Data System (ADS)
Rabinskiy, L. N.; Zhavoronok, S. I.
2018-04-01
The transient interaction of acoustic media and elastic shells is considered on the basis of the transition function approach. The three-dimensional hyperbolic initial boundary-value problem is reduced to a two-dimensional problem of shell theory with integral operators approximating the acoustic medium effect on the shell dynamics. The kernels of these integral operators are determined by the elementary solution of the problem of acoustic waves diffraction at a rigid obstacle with the same boundary shape as the wetted shell surface. The closed-form elementary solution for arbitrary convex obstacles can be obtained at the initial interaction stages on the background of the so-called “thin layer hypothesis”. Thus, the shell–wave interaction model defined by integro-differential dynamic equations with analytically determined kernels of integral operators becomes hence two-dimensional but nonlocal in time. On the other hand, the initial interaction stage results in localized dynamic loadings and consequently in complex strain and stress states that require higher-order shell theories. Here the modified theory of I.N.Vekua–A.A.Amosov-type is formulated in terms of analytical continuum dynamics. The shell model is constructed on a two-dimensional manifold within a set of field variables, Lagrangian density, and constraint equations following from the boundary conditions “shifted” from the shell faces to its base surface. Such an approach allows one to construct consistent low-order shell models within a unified formal hierarchy. The equations of the N th-order shell theory are singularly perturbed and contain second-order partial derivatives with respect to time and surface coordinates whereas the numerical integration of systems of first-order equations is more efficient. Such systems can be obtained as Hamilton–de Donder–Weyl-type equations for the Lagrangian dynamical system. The Hamiltonian formulation of the elementary N th-order shell theory is here briefly described.
Differential calculus and gauge transformations on a deformed space
NASA Astrophysics Data System (ADS)
Wess, Julius
2007-08-01
We consider a formalism by which gauge theories can be constructed on noncommutative space time structures. The coordinates are supposed to form an algebra, restricted by certain requirements that allow us to realise the algebra in terms of star products. In this formulation it is useful to define derivatives and to extend the algebra of coordinates by these derivatives. The elements of this extended algebra are deformed differential operators. We then show that there is a morphism between these deformed differential operators and the usual higher order differential operators acting on functions of commuting coordinates. In this way we obtain deformed gauge transformations and a deformed version of the algebra of diffeomorphisms. The deformation of these algebras can be clearly seen in the category of Hopf algebras. The comultiplication will be twisted. These twisted algebras can be realised on noncommutative spaces and allow the construction of deformed gauge theories and deformed gravity theory.
NASA Astrophysics Data System (ADS)
Ping, Ping; Zhang, Yu; Xu, Yixian; Chu, Risheng
2016-12-01
In order to improve the perfectly matched layer (PML) efficiency in viscoelastic media, we first propose a split multi-axial PML (M-PML) and an unsplit convolutional PML (C-PML) in the second-order viscoelastic wave equations with the displacement as the only unknown. The advantage of these formulations is that it is easy and efficient to revise the existing codes of the second-order spectral element method (SEM) or finite-element method (FEM) with absorbing boundaries in a uniform equation, as well as more economical than the auxiliary differential equations PML. Three models which are easily suffered from late time instabilities are considered to validate our approaches. Through comparison the M-PML with C-PML efficiency of absorption and stability for long time simulation, it can be concluded that: (1) for an isotropic viscoelastic medium with high Poisson's ratio, the C-PML will be a sufficient choice for long time simulation because of its weak reflections and superior stability; (2) unlike the M-PML with high-order damping profile, the M-PML with second-order damping profile loses its stability in long time simulation for an isotropic viscoelastic medium; (3) in an anisotropic viscoelastic medium, the C-PML suffers from instabilities, while the M-PML with second-order damping profile can be a better choice for its superior stability and more acceptable weak reflections than the M-PML with high-order damping profile. The comparative analysis of the developed methods offers meaningful significance for long time seismic wave modeling in second-order viscoelastic wave equations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bellan, Paul M.
If either finite electron inertia or finite resistivity is included in 2D magnetic reconnection, the two-fluid equations become a pair of second-order differential equations coupling the out-of-plane magnetic field and vector potential to each other to form a fourth-order system. The coupling at an X-point is such that out-of-plane even-parity electric and odd-parity magnetic fields feed off each other to produce instability if the scale length on which the equilibrium magnetic field changes is less than the ion skin depth. The instability growth rate is given by an eigenvalue of the fourth-order system determined by boundary and symmetry conditions. Themore » instability is a purely growing mode, not a wave, and has growth rate of the order of the whistler frequency. The spatial profile of both the out-of-plane electric and magnetic eigenfunctions consists of an inner concave region having extent of the order of the electron skin depth, an intermediate convex region having extent of the order of the equilibrium magnetic field scale length, and a concave outer exponentially decaying region. If finite electron inertia and resistivity are not included, the inner concave region does not exist and the coupled pair of equations reduces to a second-order differential equation having non-physical solutions at an X-point.« less
Solution of second order quasi-linear boundary value problems by a wavelet method
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Lei; Zhou, Youhe; Wang, Jizeng, E-mail: jzwang@lzu.edu.cn
2015-03-10
A wavelet Galerkin method based on expansions of Coiflet-like scaling function bases is applied to solve second order quasi-linear boundary value problems which represent a class of typical nonlinear differential equations. Two types of typical engineering problems are selected as test examples: one is about nonlinear heat conduction and the other is on bending of elastic beams. Numerical results are obtained by the proposed wavelet method. Through comparing to relevant analytical solutions as well as solutions obtained by other methods, we find that the method shows better efficiency and accuracy than several others, and the rate of convergence can evenmore » reach orders of 5.8.« less
Calculating Second-Order Effects in MOSFET's
NASA Technical Reports Server (NTRS)
Benumof, Reuben; Zoutendyk, John A.; Coss, James R.
1990-01-01
Collection of mathematical models includes second-order effects in n-channel, enhancement-mode, metal-oxide-semiconductor field-effect transistors (MOSFET's). When dimensions of circuit elements relatively large, effects neglected safely. However, as very-large-scale integration of microelectronic circuits leads to MOSFET's shorter or narrower than 2 micrometer, effects become significant in design and operation. Such computer programs as widely-used "Simulation Program With Integrated Circuit Emphasis, Version 2" (SPICE 2) include many of these effects. In second-order models of n-channel, enhancement-mode MOSFET, first-order gate-depletion region diminished by triangular-cross-section deletions on end and augmented by circular-wedge-cross-section bulges on sides.
Coherent orthogonal polynomials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Celeghini, E., E-mail: celeghini@fi.infn.it; Olmo, M.A. del, E-mail: olmo@fta.uva.es
2013-08-15
We discuss a fundamental characteristic of orthogonal polynomials, like the existence of a Lie algebra behind them, which can be added to their other relevant aspects. At the basis of the complete framework for orthogonal polynomials we include thus–in addition to differential equations, recurrence relations, Hilbert spaces and square integrable functions–Lie algebra theory. We start here from the square integrable functions on the open connected subset of the real line whose bases are related to orthogonal polynomials. All these one-dimensional continuous spaces allow, besides the standard uncountable basis (|x〉), for an alternative countable basis (|n〉). The matrix elements that relatemore » these two bases are essentially the orthogonal polynomials: Hermite polynomials for the line and Laguerre and Legendre polynomials for the half-line and the line interval, respectively. Differential recurrence relations of orthogonal polynomials allow us to realize that they determine an infinite-dimensional irreducible representation of a non-compact Lie algebra, whose second order Casimir C gives rise to the second order differential equation that defines the corresponding family of orthogonal polynomials. Thus, the Weyl–Heisenberg algebra h(1) with C=0 for Hermite polynomials and su(1,1) with C=−1/4 for Laguerre and Legendre polynomials are obtained. Starting from the orthogonal polynomials the Lie algebra is extended both to the whole space of the L{sup 2} functions and to the corresponding Universal Enveloping Algebra and transformation group. Generalized coherent states from each vector in the space L{sup 2} and, in particular, generalized coherent polynomials are thus obtained. -- Highlights: •Fundamental characteristic of orthogonal polynomials (OP): existence of a Lie algebra. •Differential recurrence relations of OP determine a unitary representation of a non-compact Lie group. •2nd order Casimir originates a 2nd order differential equation that defines the corresponding OP family. •Generalized coherent polynomials are obtained from OP.« less
Differential characters and cohomology of the moduli of flat connections
NASA Astrophysics Data System (ADS)
Castrillón López, Marco; Ferreiro Pérez, Roberto
2018-05-01
Let π {:} P→ M be a principal bundle and p an invariant polynomial of degree r on the Lie algebra of the structure group. The theory of Chern-Simons differential characters is exploited to define a homology map χ k {:} H_{2r-k-1}(M)× Hk(F/G)→ R/Z , for k
Causal dissipation for the relativistic dynamics of ideal gases
NASA Astrophysics Data System (ADS)
Freistühler, Heinrich; Temple, Blake
2017-05-01
We derive a general class of relativistic dissipation tensors by requiring that, combined with the relativistic Euler equations, they form a second-order system of partial differential equations which is symmetric hyperbolic in a second-order sense when written in the natural Godunov variables that make the Euler equations symmetric hyperbolic in the first-order sense. We show that this class contains a unique element representing a causal formulation of relativistic dissipative fluid dynamics which (i) is equivalent to the classical descriptions by Eckart and Landau to first order in the coefficients of viscosity and heat conduction and (ii) has its signal speeds bounded sharply by the speed of light. Based on these properties, we propose this system as a natural candidate for the relativistic counterpart of the classical Navier-Stokes equations.
Causal dissipation for the relativistic dynamics of ideal gases
2017-01-01
We derive a general class of relativistic dissipation tensors by requiring that, combined with the relativistic Euler equations, they form a second-order system of partial differential equations which is symmetric hyperbolic in a second-order sense when written in the natural Godunov variables that make the Euler equations symmetric hyperbolic in the first-order sense. We show that this class contains a unique element representing a causal formulation of relativistic dissipative fluid dynamics which (i) is equivalent to the classical descriptions by Eckart and Landau to first order in the coefficients of viscosity and heat conduction and (ii) has its signal speeds bounded sharply by the speed of light. Based on these properties, we propose this system as a natural candidate for the relativistic counterpart of the classical Navier–Stokes equations. PMID:28588397
Causal dissipation for the relativistic dynamics of ideal gases.
Freistühler, Heinrich; Temple, Blake
2017-05-01
We derive a general class of relativistic dissipation tensors by requiring that, combined with the relativistic Euler equations, they form a second-order system of partial differential equations which is symmetric hyperbolic in a second-order sense when written in the natural Godunov variables that make the Euler equations symmetric hyperbolic in the first-order sense. We show that this class contains a unique element representing a causal formulation of relativistic dissipative fluid dynamics which (i) is equivalent to the classical descriptions by Eckart and Landau to first order in the coefficients of viscosity and heat conduction and (ii) has its signal speeds bounded sharply by the speed of light. Based on these properties, we propose this system as a natural candidate for the relativistic counterpart of the classical Navier-Stokes equations.
Hou, Huazhou; Zhang, Qingling
2016-11-01
In this paper we investigate the finite-time synchronization for second-order multi-agent system via pinning exponent sliding mode control. Firstly, for the nonlinear multi-agent system, differential mean value theorem is employed to transfer the nonlinear system into linear system, then, by pinning only one node in the system with novel exponent sliding mode control, we can achieve synchronization in finite time. Secondly, considering the 3-DOF helicopter system with nonlinear dynamics and disturbances, the novel exponent sliding mode control protocol is applied to only one node to achieve the synchronization. Finally, the simulation results show the effectiveness and the advantages of the proposed method. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.
On twisting type [N] ⊗ [N] Ricci flat complex spacetimes with two homothetic symmetries
NASA Astrophysics Data System (ADS)
Chudecki, Adam; Przanowski, Maciej
2018-04-01
In this article, H H spaces of type [N] ⊗ [N] with twisting congruence of null geodesics defined by the 4-fold undotted and dotted Penrose spinors are investigated. It is assumed that these spaces admit two homothetic symmetries. The general form of the homothetic vector fields is found. New coordinates are introduced, which enable us to reduce the H H system of partial differential equations to one ordinary differential equation (ODE) on one holomorphic function. In a special case, this is a second-order ODE and its general solution is explicitly given. In the generic case, one gets rather involved fifth-order ODE.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nusinovich, Gregory S.; Pu, Ruifeng; Granatstein, Victor L.
2015-07-06
In recent years, there was an active development of high-power, sub-terahertz (sub-THz) gyrotrons for numerous applications. For example, a 0.67 THz gyrotron delivering more than 200 kW with about 20% efficiency was developed. This record high efficiency was achieved because the gyrotron operated in a high-order TE{sub 31,8}-mode with the power of ohmic losses less than 10% of the power of outgoing radiation. That gyrotron operated at the fundamental cyclotron resonance, and a high magnetic field of about 27 T was created by a pulse solenoid. For numerous applications, it is beneficial to use gyrotrons at cyclotron harmonics which can operate inmore » available cryomagnets with fields not exceeding 15 T. However, typically, the gyrotron operation at harmonics faces severe competition from parasitic modes at the fundamental resonance. In the present paper, we consider a similar 0.67 THz gyrotron designed for operation in the same TE{sub 31,8}-mode, but at the second harmonic. We focus on two nonlinear effects typical for interaction between the fundamental and second harmonic modes, viz., the mode suppression and the nonlinear excitation of the mode at the fundamental harmonic by the second harmonic oscillations. Our study includes both the analytical theory and numerical simulations performed with the self-consistent code MAGY. The simulations show that stable second harmonic operation in the TE{sub 31,8} mode is possible with only modest sacrifice of efficiency and power.« less
Design of distributed PID-type dynamic matrix controller for fractional-order systems
NASA Astrophysics Data System (ADS)
Wang, Dawei; Zhang, Ridong
2018-01-01
With the continuous requirements for product quality and safety operation in industrial production, it is difficult to describe the complex large-scale processes with integer-order differential equations. However, the fractional differential equations may precisely represent the intrinsic characteristics of such systems. In this paper, a distributed PID-type dynamic matrix control method based on fractional-order systems is proposed. First, the high-order approximate model of integer order is obtained by utilising the Oustaloup method. Then, the step response model vectors of the plant is obtained on the basis of the high-order model, and the online optimisation for multivariable processes is transformed into the optimisation of each small-scale subsystem that is regarded as a sub-plant controlled in the distributed framework. Furthermore, the PID operator is introduced into the performance index of each subsystem and the fractional-order PID-type dynamic matrix controller is designed based on Nash optimisation strategy. The information exchange among the subsystems is realised through the distributed control structure so as to complete the optimisation task of the whole large-scale system. Finally, the control performance of the designed controller in this paper is verified by an example.
Optimal helicopter trajectory planning for terrain following flight
NASA Technical Reports Server (NTRS)
Menon, P. K. A.
1990-01-01
Helicopters operating in high threat areas have to fly close to the earth surface to minimize the risk of being detected by the adversaries. Techniques are presented for low altitude helicopter trajectory planning. These methods are based on optimal control theory and appear to be implementable onboard in realtime. Second order necessary conditions are obtained to provide a criterion for finding the optimal trajectory when more than one extremal passes through a given point. A second trajectory planning method incorporating a quadratic performance index is also discussed. Trajectory planning problem is formulated as a differential game. The objective is to synthesize optimal trajectories in the presence of an actively maneuvering adversary. Numerical methods for obtaining solutions to these problems are outlined. As an alternative to numerical method, feedback linearizing transformations are combined with the linear quadratic game results to synthesize explicit nonlinear feedback strategies for helicopter pursuit-evasion. Some of the trajectories generated from this research are evaluated on a six-degree-of-freedom helicopter simulation incorporating an advanced autopilot. The optimal trajectory planning methods presented are also useful for autonomous land vehicle guidance.
NASA Astrophysics Data System (ADS)
Singh, Prithvi; Purohit, Ghanshyam; Dorn, Alexander; Ren, Xueguang; Patidar, Vinod
2016-01-01
Fully differential cross sectional (FDCS) results are reported for the electron-impact double ionization of helium atoms at 5 and 27 eV excess energy. The present attempt to calculate the FDCS in the second Born approximation and treating the postcollision interaction is helpful to analyze the measurements of Ren et al (2008 Phys. Rev. Lett. 101 093201) and Durr et al (2007 Phys. Rev. Lett. 98 193201). The second-order processes and postcollision interaction have been found to be significant in describing the trends of the FDCS. More theoretical effort is required to describe the collision dynamics of electron-impact double ionization of helium atoms at near threshold.
Self-excited oscillation and monostable operation of a bistable light emitting diode (BILED)
NASA Astrophysics Data System (ADS)
Okumura, K.; Ogawa, Y.; Ito, H.; Inaba, H.
1983-07-01
A new simple opto-electronic bistable device has been obtained by combining a light emitting diode (LED) and a photodetector (PD) with electronic feedback using a broad bandpass filter. This has interesting dynamic characteristics which are expected to have such various applications as optical oscillators, optical pulse generators and optical pulsewidth modulators. The dynamic characteristics are represented by second-order nonlinear differential equations. In the analyses of these nonlinear systems, instead of numerical analyses with a computer, an approximate analytical method devised for this purpose has been used. This method has been used for investigating the characteristics of the proposed device quantitatively. These include the frequency of oscillations, pulsewidths and hysteresis. The results of the analyses agree approximately with experimentally observed values, thus the dynamic characteristics of the proposed device can be explained.
Hybrid thermal link-wise artificial compressibility method
NASA Astrophysics Data System (ADS)
Obrecht, Christian; Kuznik, Frédéric
2015-10-01
Thermal flow prediction is a subject of interest from a scientific and engineering points of view. Our motivation is to develop an accurate, easy to implement and highly scalable method for convective flows simulation. To this end, we present an extension to the link-wise artificial compressibility method (LW-ACM) for thermal simulation of weakly compressible flows. The novel hybrid formulation uses second-order finite difference operators of the energy equation based on the same stencils as the LW-ACM. For validation purposes, the differentially heated cubic cavity was simulated. The simulations remained stable for Rayleigh numbers up to Ra =108. The Nusselt numbers at isothermal walls and dynamics quantities are in good agreement with reference values from the literature. Our results show that the hybrid thermal LW-ACM is an effective and easy-to-use solution to solve convective flows.
Simulation and analysis of differential GPS
NASA Astrophysics Data System (ADS)
Denaro, R. P.
NASA is conducting a research program to evaluate differential Global Positioning System (GPS) concepts for civil helicopter navigation. It is pointed out that the civil helicopter community will probably be an early user of GPS because of the unique mission operations in areas where precise navigation aids are not available. However, many of these applications involve accuracy requirements which cannot be satisfied by conventional GPS. Such applications include remote area search and rescue, offshore oil platform approach, remote area precision landing, and other precise navigation operations. Differential GPS provides a promising approach for meeting very demanding accuracy requirements. The considered procedure eliminates some of the common bias errors experienced by conventional GPS. This is done by making use of a second GPS receiver. A simulation process is developed as a tool for analyzing various scenarios of GPS-referenced civil aircraft navigation.
Multiple Scattering in Random Mechanical Systems and Diffusion Approximation
NASA Astrophysics Data System (ADS)
Feres, Renato; Ng, Jasmine; Zhang, Hong-Kun
2013-10-01
This paper is concerned with stochastic processes that model multiple (or iterated) scattering in classical mechanical systems of billiard type, defined below. From a given (deterministic) system of billiard type, a random process with transition probabilities operator P is introduced by assuming that some of the dynamical variables are random with prescribed probability distributions. Of particular interest are systems with weak scattering, which are associated to parametric families of operators P h , depending on a geometric or mechanical parameter h, that approaches the identity as h goes to 0. It is shown that ( P h - I)/ h converges for small h to a second order elliptic differential operator on compactly supported functions and that the Markov chain process associated to P h converges to a diffusion with infinitesimal generator . Both P h and are self-adjoint (densely) defined on the space of square-integrable functions over the (lower) half-space in , where η is a stationary measure. This measure's density is either (post-collision) Maxwell-Boltzmann distribution or Knudsen cosine law, and the random processes with infinitesimal generator respectively correspond to what we call MB diffusion and (generalized) Legendre diffusion. Concrete examples of simple mechanical systems are given and illustrated by numerically simulating the random processes.
Concurrently adjusting interrelated control parameters to achieve optimal engine performance
Jiang, Li; Lee, Donghoon; Yilmaz, Hakan; Stefanopoulou, Anna
2015-12-01
Methods and systems for real-time engine control optimization are provided. A value of an engine performance variable is determined, a value of a first operating condition and a value of a second operating condition of a vehicle engine are detected, and initial values for a first engine control parameter and a second engine control parameter are determined based on the detected first operating condition and the detected second operating condition. The initial values for the first engine control parameter and the second engine control parameter are adjusted based on the determined value of the engine performance variable to cause the engine performance variable to approach a target engine performance variable. In order to cause the engine performance variable to approach the target engine performance variable, adjusting the initial value for the first engine control parameter necessitates a corresponding adjustment of the initial value for the second engine control parameter.
Tool for a configurable integrated circuit that uses determination of dynamic power consumption
NASA Technical Reports Server (NTRS)
Davoodi, Azadeh (Inventor); French, Matthew C. (Inventor); Agarwal, Deepak (Inventor); Wang, Li (Inventor)
2011-01-01
A configurable logic tool that allows minimization of dynamic power within an FPGA design without changing user-entered specifications. The minimization of power may use minimized clock nets as a first order operation, and a second order operation that minimizes other factors, such as area of placement, area of clocks and/or slack.
Accelerating numerical solution of stochastic differential equations with CUDA
NASA Astrophysics Data System (ADS)
Januszewski, M.; Kostur, M.
2010-01-01
Numerical integration of stochastic differential equations is commonly used in many branches of science. In this paper we present how to accelerate this kind of numerical calculations with popular NVIDIA Graphics Processing Units using the CUDA programming environment. We address general aspects of numerical programming on stream processors and illustrate them by two examples: the noisy phase dynamics in a Josephson junction and the noisy Kuramoto model. In presented cases the measured speedup can be as high as 675× compared to a typical CPU, which corresponds to several billion integration steps per second. This means that calculations which took weeks can now be completed in less than one hour. This brings stochastic simulation to a completely new level, opening for research a whole new range of problems which can now be solved interactively. Program summaryProgram title: SDE Catalogue identifier: AEFG_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEFG_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Gnu GPL v3 No. of lines in distributed program, including test data, etc.: 978 No. of bytes in distributed program, including test data, etc.: 5905 Distribution format: tar.gz Programming language: CUDA C Computer: any system with a CUDA-compatible GPU Operating system: Linux RAM: 64 MB of GPU memory Classification: 4.3 External routines: The program requires the NVIDIA CUDA Toolkit Version 2.0 or newer and the GNU Scientific Library v1.0 or newer. Optionally gnuplot is recommended for quick visualization of the results. Nature of problem: Direct numerical integration of stochastic differential equations is a computationally intensive problem, due to the necessity of calculating multiple independent realizations of the system. We exploit the inherent parallelism of this problem and perform the calculations on GPUs using the CUDA programming environment. The GPU's ability to execute hundreds of threads simultaneously makes it possible to speed up the computation by over two orders of magnitude, compared to a typical modern CPU. Solution method: The stochastic Runge-Kutta method of the second order is applied to integrate the equation of motion. Ensemble-averaged quantities of interest are obtained through averaging over multiple independent realizations of the system. Unusual features: The numerical solution of the stochastic differential equations in question is performed on a GPU using the CUDA environment. Running time: < 1 minute
Modular forms, Schwarzian conditions, and symmetries of differential equations in physics
NASA Astrophysics Data System (ADS)
Abdelaziz, Y.; Maillard, J.-M.
2017-05-01
We give examples of infinite order rational transformations that leave linear differential equations covariant. These examples are non-trivial yet simple enough illustrations of exact representations of the renormalization group. We first illustrate covariance properties on order-two linear differential operators associated with identities relating the same {}_2F1 hypergeometric function with different rational pullbacks. These rational transformations are solutions of a differentially algebraic equation that already emerged in a paper by Casale on the Galoisian envelopes. We provide two new and more general results of the previous covariance by rational functions: a new Heun function example and a higher genus {}_2F1 hypergeometric function example. We then focus on identities relating the same {}_2F1 hypergeometric function with two different algebraic pullback transformations: such remarkable identities correspond to modular forms, the algebraic transformations being solution of another differentially algebraic Schwarzian equation that also emerged in Casale’s paper. Further, we show that the first differentially algebraic equation can be seen as a subcase of the last Schwarzian differential condition, the restriction corresponding to a factorization condition of some associated order-two linear differential operator. Finally, we also explore generalizations of these results, for instance, to {}_3F2 , hypergeometric functions, and show that one just reduces to the previous {}_2F1 cases through a Clausen identity. The question of the reduction of these Schwarzian conditions to modular correspondences remains an open question. In a _2F1 hypergeometric framework the Schwarzian condition encapsulates all the modular forms and modular equations of the theory of elliptic curves, but these two conditions are actually richer than elliptic curves or {}_2F1 hypergeometric functions, as can be seen on the Heun and higher genus example. This work is a strong incentive to develop more differentially algebraic symmetry analysis in physics.
Blind motion image deblurring using nonconvex higher-order total variation model
NASA Astrophysics Data System (ADS)
Li, Weihong; Chen, Rui; Xu, Shangwen; Gong, Weiguo
2016-09-01
We propose a nonconvex higher-order total variation (TV) method for blind motion image deblurring. First, we introduce a nonconvex higher-order TV differential operator to define a new model of the blind motion image deblurring, which can effectively eliminate the staircase effect of the deblurred image; meanwhile, we employ an image sparse prior to improve the edge recovery quality. Second, to improve the accuracy of the estimated motion blur kernel, we use L1 norm and H1 norm as the blur kernel regularization term, considering the sparsity and smoothing of the motion blur kernel. Third, because it is difficult to solve the numerically computational complexity problem of the proposed model owing to the intrinsic nonconvexity, we propose a binary iterative strategy, which incorporates a reweighted minimization approximating scheme in the outer iteration, and a split Bregman algorithm in the inner iteration. And we also discuss the convergence of the proposed binary iterative strategy. Last, we conduct extensive experiments on both synthetic and real-world degraded images. The results demonstrate that the proposed method outperforms the previous representative methods in both quality of visual perception and quantitative measurement.
Solving Partial Differential Equations in a data-driven multiprocessor environment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gaudiot, J.L.; Lin, C.M.; Hosseiniyar, M.
1988-12-31
Partial differential equations can be found in a host of engineering and scientific problems. The emergence of new parallel architectures has spurred research in the definition of parallel PDE solvers. Concurrently, highly programmable systems such as data-how architectures have been proposed for the exploitation of large scale parallelism. The implementation of some Partial Differential Equation solvers (such as the Jacobi method) on a tagged token data-flow graph is demonstrated here. Asynchronous methods (chaotic relaxation) are studied and new scheduling approaches (the Token No-Labeling scheme) are introduced in order to support the implementation of the asychronous methods in a data-driven environment.more » New high-level data-flow language program constructs are introduced in order to handle chaotic operations. Finally, the performance of the program graphs is demonstrated by a deterministic simulation of a message passing data-flow multiprocessor. An analysis of the overhead in the data-flow graphs is undertaken to demonstrate the limits of parallel operations in dataflow PDE program graphs.« less
NASA Technical Reports Server (NTRS)
Green, Lawrence L.; Newman, Perry A.; Haigler, Kara J.
1993-01-01
The computational technique of automatic differentiation (AD) is applied to a three-dimensional thin-layer Navier-Stokes multigrid flow solver to assess the feasibility and computational impact of obtaining exact sensitivity derivatives typical of those needed for sensitivity analyses. Calculations are performed for an ONERA M6 wing in transonic flow with both the Baldwin-Lomax and Johnson-King turbulence models. The wing lift, drag, and pitching moment coefficients are differentiated with respect to two different groups of input parameters. The first group consists of the second- and fourth-order damping coefficients of the computational algorithm, whereas the second group consists of two parameters in the viscous turbulent flow physics modelling. Results obtained via AD are compared, for both accuracy and computational efficiency with the results obtained with divided differences (DD). The AD results are accurate, extremely simple to obtain, and show significant computational advantage over those obtained by DD for some cases.
Hybrid Differential Dynamic Programming with Stochastic Search
NASA Technical Reports Server (NTRS)
Aziz, Jonathan; Parker, Jeffrey; Englander, Jacob
2016-01-01
Differential dynamic programming (DDP) has been demonstrated as a viable approach to low-thrust trajectory optimization, namely with the recent success of NASAs Dawn mission. The Dawn trajectory was designed with the DDP-based Static Dynamic Optimal Control algorithm used in the Mystic software. Another recently developed method, Hybrid Differential Dynamic Programming (HDDP) is a variant of the standard DDP formulation that leverages both first-order and second-order state transition matrices in addition to nonlinear programming (NLP) techniques. Areas of improvement over standard DDP include constraint handling, convergence properties, continuous dynamics, and multi-phase capability. DDP is a gradient based method and will converge to a solution nearby an initial guess. In this study, monotonic basin hopping (MBH) is employed as a stochastic search method to overcome this limitation, by augmenting the HDDP algorithm for a wider search of the solution space.
Analyzing a stochastic time series obeying a second-order differential equation.
Lehle, B; Peinke, J
2015-06-01
The stochastic properties of a Langevin-type Markov process can be extracted from a given time series by a Markov analysis. Also processes that obey a stochastically forced second-order differential equation can be analyzed this way by employing a particular embedding approach: To obtain a Markovian process in 2N dimensions from a non-Markovian signal in N dimensions, the system is described in a phase space that is extended by the temporal derivative of the signal. For a discrete time series, however, this derivative can only be calculated by a differencing scheme, which introduces an error. If the effects of this error are not accounted for, this leads to systematic errors in the estimation of the drift and diffusion functions of the process. In this paper we will analyze these errors and we will propose an approach that correctly accounts for them. This approach allows an accurate parameter estimation and, additionally, is able to cope with weak measurement noise, which may be superimposed to a given time series.
Solving Upwind-Biased Discretizations: Defect-Correction Iterations
NASA Technical Reports Server (NTRS)
Diskin, Boris; Thomas, James L.
1999-01-01
This paper considers defect-correction solvers for a second order upwind-biased discretization of the 2D convection equation. The following important features are reported: (1) The asymptotic convergence rate is about 0.5 per defect-correction iteration. (2) If the operators involved in defect-correction iterations have different approximation order, then the initial convergence rates may be very slow. The number of iterations required to get into the asymptotic convergence regime might grow on fine grids as a negative power of h. In the case of a second order target operator and a first order driver operator, this number of iterations is roughly proportional to h-1/3. (3) If both the operators have the second approximation order, the defect-correction solver demonstrates the asymptotic convergence rate after three iterations at most. The same three iterations are required to converge algebraic error below the truncation error level. A novel comprehensive half-space Fourier mode analysis (which, by the way, can take into account the influence of discretized outflow boundary conditions as well) for the defect-correction method is developed. This analysis explains many phenomena observed in solving non-elliptic equations and provides a close prediction of the actual solution behavior. It predicts the convergence rate for each iteration and the asymptotic convergence rate. As a result of this analysis, a new very efficient adaptive multigrid algorithm solving the discrete problem to within a given accuracy is proposed. Numerical simulations confirm the accuracy of the analysis and the efficiency of the proposed algorithm. The results of the numerical tests are reported.
Capmany, J; Gasulla, Ivana
2007-08-20
Although a considerable number of multimode fiber (MMF) links operate in a wavelength region around 850 nm where chromatic dispersion of a given modal group mu is described adequately by the second derivative beta(mu) (2) of the propagation constant beta(mu)(omega), there is also an increasing interest in MMF links transmitting in the second spectral window (@1300nm) where this second derivative vanishes being thus necessary to consider the third derivative beta(mu) (3) in the evaluation of the transfer function of the multimode fiber link. We present in this paper, for the first time to our knowledge, an analytical model for the transfer function of a multimode fiber (MMF) optic link taken into account the impact of third-order dispersion. The model extends the operation of a previously reported one for second-order dispersion. Our results show that the performance of broadband radio over fiber transmission through middle-reach distances can be improved by working at the minimum-dispersion wavelength as long as low-linewidth lasers are employed.
Multi-octave analog photonic link with improved second- and third-order SFDRs
NASA Astrophysics Data System (ADS)
Tan, Qinggui; Gao, Yongsheng; Fan, Yangyu; He, You
2018-03-01
The second- and third-order spurious free dynamic ranges (SFDRs) are two key performance indicators for a multi-octave analogy photonic link (APL). The linearization methods for either second- or third-order intermodulation distortion (IMD2 or IMD3) have been intensively studied, but the simultaneous suppression for the both were merely reported. In this paper, we propose an APL with improved second- and third-order SFDRs for multi-octave applications based on two parallel DPMZM-based sub-APLs. The IMD3 in each sub-APL is suppressed by properly biasing the DPMZM, and the IMD2 is suppressed by balanced detecting the two sub-APLs. The experiment demonstrates significant suppression ratios for both the IMD2 and IMD3 after linearization in the proposed link, and the measured second- and third-order SFDRs with the operating frequency from 6 to 40 GHz are above 91 dB ṡHz 1 / 2 and 116 dB ṡHz 2 / 3, respectively.
Second-order QCD effects in Higgs boson production through vector boson fusion
NASA Astrophysics Data System (ADS)
Cruz-Martinez, J.; Gehrmann, T.; Glover, E. W. N.; Huss, A.
2018-06-01
We compute the factorising second-order QCD corrections to the electroweak production of a Higgs boson through vector boson fusion. Our calculation is fully differential in the kinematics of the Higgs boson and of the final state jets, and uses the antenna subtraction method to handle infrared singular configurations in the different parton-level contributions. Our results allow us to reassess the impact of the next-to-leading order (NLO) QCD corrections to electroweak Higgs-plus-three-jet production and of the next-to-next-to-leading order (NNLO) QCD corrections to electroweak Higgs-plus-two-jet production. The NNLO corrections are found to be limited in magnitude to around ± 5% and are uniform in several of the kinematical variables, displaying a kinematical dependence only in the transverse momenta and rapidity separation of the two tagging jets.
Control order and visuomotor strategy development for joystick-steered underground shuttle cars.
Cloete, Steven; Zupanc, Christine; Burgess-Limerick, Robin; Wallis, Guy
2014-09-01
In this simulator-based study, we aimed to quantify performance differences between joystick steering systems using first-order and second-order control, which are used in underground coal mining shuttle cars. In addition, we conducted an exploratory analysis of how users of the more difficult, second-order system changed their behavior over time. Evidence from the visuomotor control literature suggests that higher-order control devices are not intuitive, which could pose a significant risk to underground mine personnel, equipment, and infrastructure. Thirty-six naive participants were randomly assigned to first- and second-order conditions and completed three experimental trials comprising sequences of 90 degrees turns in a virtual underground mine environment, with velocity held constant at 9 km/h(-1). Performance measures were lateral deviation, steering angle variability, high-frequency steering content, joystick activity, and cumulative time in collision with the virtual mine wall. The second-order control group exhibited significantly poorer performance for all outcome measures. In addition, a series of correlation analyses revealed that changes in strategy were evident in the second-order group but not the first-order group. Results were consistent with previous literature indicating poorer performance with higher-order control devices and caution against the adoption of the second-order joystick system for underground shuttle cars. Low-cost, portable simulation platforms may provide an effective basis for operator training and recruitment.
Equations of condition for high order Runge-Kutta-Nystrom formulae
NASA Technical Reports Server (NTRS)
Bettis, D. G.
1974-01-01
Derivation of the equations of condition of order eight for a general system of second-order differential equations approximated by the basic Runge-Kutta-Nystrom algorithm. For this general case, the number of equations of condition is considerably larger than for the special case where the first derivative is not present. Specifically, it is shown that, for orders two through eight, the number of equations for each order is 1, 1, 1, 2, 3, 5, and 9 for the special case and is 1, 1, 2, 5, 13, 34, and 95 for the general case.
An Astronomical Test of CCD Photometric Precision
NASA Technical Reports Server (NTRS)
Koch, David G.; Dunham, Edward W.; Borucki, William J.; Jenkins, Jon M.
2001-01-01
Ground-based differential photometry is limited to a precision of order 10(exp -3) because of atmospheric effects. A space-based photometer should be limited only by the inherent instrument precision and shot noise. Laboratory tests have shown that a precision of order 10-5 is achievable with commercially available charged coupled devices (CCDs). We have proposed to take this one step further by performing measurements at a telescope using a Wollaston prism as a beam splitter First-order atmospheric effects (e.g., extinction) will appear to be identical in the two images of each star formed by the prism and will be removed in the data analysis. This arrangement can determine the precision that is achievable under the influence of second-order atmospheric effects (e.g., variable point-spread function (PSF) from seeing). These telescopic observations will thus provide a lower limit to the precision that can be realized by a space-based differential photometer.
NASA Astrophysics Data System (ADS)
Milic, Vladimir; Kasac, Josip; Novakovic, Branko
2015-10-01
This paper is concerned with ?-gain optimisation of input-affine nonlinear systems controlled by analytic fuzzy logic system. Unlike the conventional fuzzy-based strategies, the non-conventional analytic fuzzy control method does not require an explicit fuzzy rule base. As the first contribution of this paper, we prove, by using the Stone-Weierstrass theorem, that the proposed fuzzy system without rule base is universal approximator. The second contribution of this paper is an algorithm for solving a finite-horizon minimax problem for ?-gain optimisation. The proposed algorithm consists of recursive chain rule for first- and second-order derivatives, Newton's method, multi-step Adams method and automatic differentiation. Finally, the results of this paper are evaluated on a second-order nonlinear system.
Chen, Zhenhua; Hoffmann, Mark R
2012-07-07
A unitary wave operator, exp (G), G(+) = -G, is considered to transform a multiconfigurational reference wave function Φ to the potentially exact, within basis set limit, wave function Ψ = exp (G)Φ. To obtain a useful approximation, the Hausdorff expansion of the similarity transformed effective Hamiltonian, exp (-G)Hexp (G), is truncated at second order and the excitation manifold is limited; an additional separate perturbation approximation can also be made. In the perturbation approximation, which we refer to as multireference unitary second-order perturbation theory (MRUPT2), the Hamiltonian operator in the highest order commutator is approximated by a Mo̸ller-Plesset-type one-body zero-order Hamiltonian. If a complete active space self-consistent field wave function is used as reference, then the energy is invariant under orbital rotations within the inactive, active, and virtual orbital subspaces for both the second-order unitary coupled cluster method and its perturbative approximation. Furthermore, the redundancies of the excitation operators are addressed in a novel way, which is potentially more efficient compared to the usual full diagonalization of the metric of the excited configurations. Despite the loss of rigorous size-extensivity possibly due to the use of a variational approach rather than a projective one in the solution of the amplitudes, test calculations show that the size-extensivity errors are very small. Compared to other internally contracted multireference perturbation theories, MRUPT2 only needs reduced density matrices up to three-body even with a non-complete active space reference wave function when two-body excitations within the active orbital subspace are involved in the wave operator, exp (G). Both the coupled cluster and perturbation theory variants are amenable to large, incomplete model spaces. Applications to some widely studied model systems that can be problematic because of geometry dependent quasidegeneracy, H4, P4, and BeH(2), are performed in order to test the new methods on problems where full configuration interaction results are available.
Liouvillian integrability of gravitating static isothermal fluid spheres
NASA Astrophysics Data System (ADS)
Iacono, Roberto; Llibre, Jaume
2014-10-01
We examine the integrability properties of the Einstein field equations for static, spherically symmetric fluid spheres, complemented with an isothermal equation of state, ρ = np. In this case, Einstein's equations can be reduced to a nonlinear, autonomous second order ordinary differential equation (ODE) for m/R (m is the mass inside the radius R) that has been solved analytically only for n = -1 and n = -3, yielding the cosmological solutions by De Sitter and Einstein, respectively, and for n = -5, case for which the solution can be derived from the De Sitter's one using a symmetry of Einstein's equations. The solutions for these three cases are of Liouvillian type, since they can be expressed in terms of elementary functions. Here, we address the question of whether Liouvillian solutions can be obtained for other values of n. To do so, we transform the second order equation into an equivalent autonomous Lotka-Volterra quadratic polynomial differential system in {R}^2, and characterize the Liouvillian integrability of this system using Darboux theory. We find that the Lotka-Volterra system possesses Liouvillian first integrals for n = -1, -3, -5, which descend from the existence of invariant algebraic curves of degree one, and for n = -6, a new solvable case, associated to an invariant algebraic curve of higher degree (second). For any other value of n, eventual first integrals of the Lotka-Volterra system, and consequently of the second order ODE for the mass function must be non-Liouvillian. This makes the existence of other solutions of the isothermal fluid sphere problem with a Liouvillian metric quite unlikely.
Control of differential strain during heating and cooling of mixed conducting metal oxide membranes
Carolan, Michael Francis
2007-12-25
Method of operating an oxygen-permeable mixed conducting membrane having an oxidant feed side and a permeate side, which method comprises controlling the differential strain between the oxidant feed side and the permeate side by varying either or both of the oxygen partial pressure and the total gas pressure on either or both of the oxidant feed side and the permeate side of the membrane while changing the temperature of the membrane from a first temperature to a second temperature.
NASA Technical Reports Server (NTRS)
Blasche, P. R.
1980-01-01
Specific configurations of first and second order all digital phase locked loops are analyzed for both ideal and additive white gaussian noise inputs. In addition, a design for a hardware digital phase locked loop capable of either first or second order operation is presented along with appropriate experimental data obtained from testing of the hardware loop. All parameters chosen for the analysis and the design of the digital phase locked loop are consistent with an application to an Omega navigation receiver although neither the analysis nor the design are limited to this application.
Gong, Shuqing; Yang, Shaofu; Guo, Zhenyuan; Huang, Tingwen
2018-06-01
The paper is concerned with the synchronization problem of inertial memristive neural networks with time-varying delay. First, by choosing a proper variable substitution, inertial memristive neural networks described by second-order differential equations can be transformed into first-order differential equations. Then, a novel controller with a linear diffusive term and discontinuous sign term is designed. By using the controller, the sufficient conditions for assuring the global exponential synchronization of the derive and response neural networks are derived based on Lyapunov stability theory and some inequality techniques. Finally, several numerical simulations are provided to substantiate the effectiveness of the theoretical results. Copyright © 2018 Elsevier Ltd. All rights reserved.
Periodic solutions of Lienard differential equations via averaging theory of order two.
Llibre, Jaume; Novaes, Douglas D; Teixeira, Marco A
2015-01-01
For ε ≠ 0 sufficiently small we provide sufficient conditions for the existence of periodic solutions for the Lienard differential equations of the form x'' + f (x) x' + n2x + g (x) = ε2p1 (t) + ε3 p2(t), where n is a positive integer, f : ℝ → ℝ is a C 3 function, g : ℝ → ℝ is a C 4 function, and p i : ℝ → ℝ for i = 1, 2 are continuous 2π-periodic function. The main tool used in this paper is the averaging theory of second order. We also provide one application of the main result obtained.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haut, T. S.; Babb, T.; Martinsson, P. G.
2015-06-16
Our manuscript demonstrates a technique for efficiently solving the classical wave equation, the shallow water equations, and, more generally, equations of the form ∂u/∂t=Lu∂u/∂t=Lu, where LL is a skew-Hermitian differential operator. The idea is to explicitly construct an approximation to the time-evolution operator exp(τL)exp(τL) for a relatively large time-step ττ. Recently developed techniques for approximating oscillatory scalar functions by rational functions, and accelerated algorithms for computing functions of discretized differential operators are exploited. Principal advantages of the proposed method include: stability even for large time-steps, the possibility to parallelize in time over many characteristic wavelengths and large speed-ups over existingmore » methods in situations where simulation over long times are required. Numerical examples involving the 2D rotating shallow water equations and the 2D wave equation in an inhomogenous medium are presented, and the method is compared to the 4th order Runge–Kutta (RK4) method and to the use of Chebyshev polynomials. The new method achieved high accuracy over long-time intervals, and with speeds that are orders of magnitude faster than both RK4 and the use of Chebyshev polynomials.« less
Fourier Series and Elliptic Functions
ERIC Educational Resources Information Center
Fay, Temple H.
2003-01-01
Non-linear second-order differential equations whose solutions are the elliptic functions "sn"("t, k"), "cn"("t, k") and "dn"("t, k") are investigated. Using "Mathematica", high precision numerical solutions are generated. From these data, Fourier coefficients are determined yielding approximate formulas for these non-elementary functions that are…
The NIST 27 Al+ quantum-logic clock
NASA Astrophysics Data System (ADS)
Leibrandt, David; Brewer, Samuel; Chen, Jwo-Sy; Hume, David; Hankin, Aaron; Huang, Yao; Chou, Chin-Wen; Rosenband, Till; Wineland, David
2016-05-01
Optical atomic clocks based on quantum-logic spectroscopy of the 1 S0 <--> 3 P0 transition in 27 Al+ have reached a systematic fractional frequency uncertainty of 8 . 0 ×10-18 , enabling table-top tests of fundamental physics as well as measurements of gravitational potential differences. Currently, the largest limitations to the accuracy are second order time dilation shifts due to the driven motion (i.e., micromotion) and thermal motion of the trapped ions. In order to suppress these shifts, we have designed and built new ion traps based on gold-plated, laser-machined diamond wafers with differential RF drive, and we have operated one of our clocks with the ions laser cooled to near the six mode motional ground state. We present a characterization of the time dilation shifts in the new traps with uncertainties near 1 ×10-18 . Furthermore, we describe a new protocol for clock comparison measurements based on synchronous probing of the two clocks using phase-locked local oscillators, which allows for probe times longer than the laser coherence time and avoids the Dick effect. This work is supported by ARO, DARPA, and ONR.
Method for automatically scramming a nuclear reactor
Ougouag, Abderrafi M.; Schultz, Richard R.; Terry, William K.
2005-12-27
An automatically scramming nuclear reactor system. One embodiment comprises a core having a coolant inlet end and a coolant outlet end. A cooling system operatively associated with the core provides coolant to the coolant inlet end and removes heated coolant from the coolant outlet end, thus maintaining a pressure differential therebetween during a normal operating condition of the nuclear reactor system. A guide tube is positioned within the core with a first end of the guide tube in fluid communication with the coolant inlet end of the core, and a second end of the guide tube in fluid communication with the coolant outlet end of the core. A control element is positioned within the guide tube and is movable therein between upper and lower positions, and automatically falls under the action of gravity to the lower position when the pressure differential drops below a safe pressure differential.
Exact linearized Coulomb collision operator in the moment expansion
Ji, Jeong -Young; Held, Eric D.
2006-10-05
In the moment expansion, the Rosenbluth potentials, the linearized Coulomb collision operators, and the moments of the collision operators are analytically calculated for any moment. The explicit calculation of Rosenbluth potentials converts the integro-differential form of the Coulomb collision operator into a differential operator, which enables one to express the collision operator in a simple closed form for any arbitrary mass and temperature ratios. In addition, it is shown that gyrophase averaging the collision operator acting on arbitrary distribution functions is the same as the collision operator acting on the corresponding gyrophase averaged distribution functions. The moments of the collisionmore » operator are linear combinations of the fluid moments with collision coefficients parametrized by mass and temperature ratios. Furthermore, useful forms involving the small mass-ratio approximation are easily found since the collision operators and their moments are expressed in terms of the mass ratio. As an application, the general moment equations are explicitly written and the higher order heat flux equation is derived.« less
A new solution-adaptive grid generation method for transonic airfoil flow calculations
NASA Technical Reports Server (NTRS)
Nakamura, S.; Holst, T. L.
1981-01-01
The clustering algorithm is controlled by a second-order, ordinary differential equation which uses the airfoil surface density gradient as a forcing function. The solution to this differential equation produces a surface grid distribution which is automatically clustered in regions with large gradients. The interior grid points are established from this surface distribution by using an interpolation scheme which is fast and retains the desirable properties of the original grid generated from the standard elliptic equation approach.
Numerical solution of a coupled pair of elliptic equations from solid state electronics
NASA Technical Reports Server (NTRS)
Phillips, T. N.
1983-01-01
Iterative methods are considered for the solution of a coupled pair of second order elliptic partial differential equations which arise in the field of solid state electronics. A finite difference scheme is used which retains the conservative form of the differential equations. Numerical solutions are obtained in two ways, by multigrid and dynamic alternating direction implicit methods. Numerical results are presented which show the multigrid method to be an efficient way of solving this problem.
Second level semi-degenerate fields in W_3 Toda theory: matrix element and differential equation
NASA Astrophysics Data System (ADS)
Belavin, Vladimir; Cao, Xiangyu; Estienne, Benoit; Santachiara, Raoul
2017-03-01
In a recent study we considered W_3 Toda 4-point functions that involve matrix elements of a primary field with the highest-weight in the adjoint representation of sl_3 . We generalize this result by considering a semi-degenerate primary field, which has one null vector at level two. We obtain a sixth-order Fuchsian differential equation for the conformal blocks. We discuss the presence of multiplicities, the matrix elements and the fusion rules.
Sagiyama, Koki; Rudraraju, Shiva; Garikipati, Krishna
2016-09-13
Here, we consider solid state phase transformations that are caused by free energy densities with domains of non-convexity in strain-composition space; we refer to the non-convex domains as mechano-chemical spinodals. The non-convexity with respect to composition and strain causes segregation into phases with different crystal structures. We work on an existing model that couples the classical Cahn-Hilliard model with Toupin’s theory of gradient elasticity at finite strains. Both systems are represented by fourth-order, nonlinear, partial differential equations. The goal of this work is to develop unconditionally stable, second-order accurate time-integration schemes, motivated by the need to carry out large scalemore » computations of dynamically evolving microstructures in three dimensions. We also introduce reduced formulations naturally derived from these proposed schemes for faster computations that are still second-order accurate. Although our method is developed and analyzed here for a specific class of mechano-chemical problems, one can readily apply the same method to develop unconditionally stable, second-order accurate schemes for any problems for which free energy density functions are multivariate polynomials of solution components and component gradients. Apart from an analysis and construction of methods, we present a suite of numerical results that demonstrate the schemes in action.« less
NASA Astrophysics Data System (ADS)
Song, Bowen; Zhang, Guopeng; Lu, Hongbing; Wang, Huafeng; Han, Fangfang; Zhu, Wei; Liang, Zhengrong
2014-03-01
Differentiation of colon lesions according to underlying pathology, e.g., neoplastic and non-neoplastic, is of fundamental importance for patient management. Image intensity based textural features have been recognized as a useful biomarker for the differentiation task. In this paper, we introduce high order texture features, beyond the intensity, such as gradient and curvature, for that task. Based on the Haralick texture analysis method, we introduce a virtual pathological method to explore the utility of texture features from high order differentiations, i.e., gradient and curvature, of the image intensity distribution. The texture features were validated on database consisting of 148 colon lesions, of which 35 are non-neoplastic lesions, using the random forest classifier and the merit of area under the curve (AUC) of the receiver operating characteristics. The results show that after applying the high order features, the AUC was improved from 0.8069 to 0.8544 in differentiating non-neoplastic lesion from neoplastic ones, e.g., hyperplastic polyps from tubular adenomas, tubulovillous adenomas and adenocarcinomas. The experimental results demonstrated that texture features from the higher order images can significantly improve the classification accuracy in pathological differentiation of colorectal lesions. The gain in differentiation capability shall increase the potential of computed tomography (CT) colonography for colorectal cancer screening by not only detecting polyps but also classifying them from optimal polyp management for the best outcome in personalized medicine.
An Algebraic Construction of the First Integrals of the Stationary KdV Hierarchy
NASA Astrophysics Data System (ADS)
Matsushima, Masatomo; Ohmiya, Mayumi
2009-09-01
The stationary KdV hierarchy is constructed using a kind of recursion operator called Λ-operator. The notion of the maximal solution of the n-th stationary KdV equation is introduced. Using this maximal solution, a specific differential polynomial with the auxiliary spectral parameter called the spectral M-function is constructed as the quadratic form of the fundamental system of the eigenvalue problem for the 2-nd order linear ordinary differential equation which is related to the linearizing operator of the hierarchy. By calculating a perfect square condition of the quadratic form by an elementary algebraic method, the complete set of first integrals of this hierarchy is constructed.
NASA Technical Reports Server (NTRS)
Manning, Robert M.
2005-01-01
Solutions are derived for the generalized mutual coherence function (MCF), i.e., the second order moment, of a random wave field propagating through a random medium within the context of the extended parabolic equation. Here, "generalized" connotes the consideration of both the transverse as well as the longitudinal second order moments (with respect to the direction of propagation). Such solutions will afford a comparison between the results of the parabolic equation within the pararaxial approximation and those of the wide-angle extended theory. To this end, a statistical operator method is developed which gives a general equation for an arbitrary spatial statistical moment of the wave field. The generality of the operator method allows one to obtain an expression for the second order field moment in the direction longitudinal to the direction of propagation. Analytical solutions to these equations are derived for the Kolmogorov and Tatarskii spectra of atmospheric permittivity fluctuations within the Markov approximation.
Green operators for low regularity spacetimes
NASA Astrophysics Data System (ADS)
Sanchez Sanchez, Yafet; Vickers, James
2018-02-01
In this paper we define and construct advanced and retarded Green operators for the wave operator on spacetimes with low regularity. In order to do so we require that the spacetime satisfies the condition of generalised hyperbolicity which is equivalent to well-posedness of the classical inhomogeneous problem with zero initial data where weak solutions are properly supported. Moreover, we provide an explicit formula for the kernel of the Green operators in terms of an arbitrary eigenbasis of H 1 and a suitable Green matrix that solves a system of second order ODEs.
Free-Form Region Description with Second-Order Pooling.
Carreira, João; Caseiro, Rui; Batista, Jorge; Sminchisescu, Cristian
2015-06-01
Semantic segmentation and object detection are nowadays dominated by methods operating on regions obtained as a result of a bottom-up grouping process (segmentation) but use feature extractors developed for recognition on fixed-form (e.g. rectangular) patches, with full images as a special case. This is most likely suboptimal. In this paper we focus on feature extraction and description over free-form regions and study the relationship with their fixed-form counterparts. Our main contributions are novel pooling techniques that capture the second-order statistics of local descriptors inside such free-form regions. We introduce second-order generalizations of average and max-pooling that together with appropriate non-linearities, derived from the mathematical structure of their embedding space, lead to state-of-the-art recognition performance in semantic segmentation experiments without any type of local feature coding. In contrast, we show that codebook-based local feature coding is more important when feature extraction is constrained to operate over regions that include both foreground and large portions of the background, as typical in image classification settings, whereas for high-accuracy localization setups, second-order pooling over free-form regions produces results superior to those of the winning systems in the contemporary semantic segmentation challenges, with models that are much faster in both training and testing.
Vibrational and rotational excitation effects of the N(2D) + D2(X1Σg +) → ND(X3Σ+) + D(2S) reaction
NASA Astrophysics Data System (ADS)
Zhu, Ziliang; Wang, Haijie; Wang, Xiquan; Shi, Yanying
2018-05-01
The effects of the rovibrational excitation of reactants in the N(2D) + D2(X1Σg+) → ND(X3Σ+) + D(2S) reaction are calculated in a collision energy range from the threshold to 1.0 eV using the time-dependent wave packet approach and a second-order split operator. The reaction probability, integral cross-section, differential cross-section and rate constant of the title reaction are calculated. The integral cross-section and rate constant of the initial states v = 0, j = 0, 1, are in good agreement with experimental data available in the literature. The rotational excitation of the D2 molecule has little effect on reaction probability, integral cross-section and the rate constant, but it increased the sideways and forward scattering signals. The vibrational excitation of the D2 molecule reduced the threshold and broke up the forward-backward symmetry of the differential cross-section; it also increased the forward scattering signals. This may be because the vibrational excitation of the D2 molecule reduced the lifetime of the intermediate complex.
Higher-order stochastic differential equations and the positive Wigner function
NASA Astrophysics Data System (ADS)
Drummond, P. D.
2017-12-01
General higher-order stochastic processes that correspond to any diffusion-type tensor of higher than second order are obtained. The relationship of multivariate higher-order stochastic differential equations with tensor decomposition theory and tensor rank is explained. Techniques for generating the requisite complex higher-order noise are proved to exist either using polar coordinates and γ distributions, or from products of Gaussian variates. This method is shown to allow the calculation of the dynamics of the Wigner function, after it is extended to a complex phase space. The results are illustrated physically through dynamical calculations of the positive Wigner distribution for three-mode parametric downconversion, widely used in quantum optics. The approach eliminates paradoxes arising from truncation of the higher derivative terms in Wigner function time evolution. Anomalous results of negative populations and vacuum scattering found in truncated Wigner quantum simulations in quantum optics and Bose-Einstein condensate dynamics are shown not to occur with this type of stochastic theory.
Pseudospectral collocation methods for fourth order differential equations
NASA Technical Reports Server (NTRS)
Malek, Alaeddin; Phillips, Timothy N.
1994-01-01
Collocation schemes are presented for solving linear fourth order differential equations in one and two dimensions. The variational formulation of the model fourth order problem is discretized by approximating the integrals by a Gaussian quadrature rule generalized to include the values of the derivative of the integrand at the boundary points. Collocation schemes are derived which are equivalent to this discrete variational problem. An efficient preconditioner based on a low-order finite difference approximation to the same differential operator is presented. The corresponding multidomain problem is also considered and interface conditions are derived. Pseudospectral approximations which are C1 continuous at the interfaces are used in each subdomain to approximate the solution. The approximations are also shown to be C3 continuous at the interfaces asymptotically. A complete analysis of the collocation scheme for the multidomain problem is provided. The extension of the method to the biharmonic equation in two dimensions is discussed and results are presented for a problem defined in a nonrectangular domain.
NASA Astrophysics Data System (ADS)
Talib, Imran; Belgacem, Fethi Bin Muhammad; Asif, Naseer Ahmad; Khalil, Hammad
2017-01-01
In this research article, we derive and analyze an efficient spectral method based on the operational matrices of three dimensional orthogonal Jacobi polynomials to solve numerically the mixed partial derivatives type multi-terms high dimensions generalized class of fractional order partial differential equations. We transform the considered fractional order problem to an easily solvable algebraic equations with the aid of the operational matrices. Being easily solvable, the associated algebraic system leads to finding the solution of the problem. Some test problems are considered to confirm the accuracy and validity of the proposed numerical method. The convergence of the method is ensured by comparing our Matlab software simulations based obtained results with the exact solutions in the literature, yielding negligible errors. Moreover, comparative results discussed in the literature are extended and improved in this study.
Cellular MYCro economics: Balancing MYC function with MYC expression.
Levens, David
2013-11-01
The expression levels of the MYC oncoprotein have long been recognized to be associated with the outputs of major cellular processes including proliferation, cell growth, apoptosis, differentiation, and metabolism. Therefore, to understand how MYC operates, it is important to define quantitatively the relationship between MYC input and expression output for its targets as well as the higher-order relationships between the expression levels of subnetwork components and the flow of information and materials through those networks. Two different views of MYC are considered, first as a molecular microeconomic manager orchestrating specific positive and negative responses at individual promoters in collaboration with other transcription and chromatin components, and second, as a macroeconomic czar imposing an overarching rule onto all active genes. In either case, c-myc promoter output requires multiple inputs and exploits diverse mechanisms to tune expression to the appropriate levels relative to the thresholds of expression that separate health and disease.
76 FR 56657 - Unlicensed Operation in the TV Broadcast Bands
Federal Register 2010, 2011, 2012, 2013, 2014
2011-09-14
... Second Report and Order the Commission decided to designate one or more database administrator from the private sector to create and operate TV band databases. The TV band database administrators will act on behalf of the FCC, but will offer a privately owned and operated service. Each database administrator...
Hybrid Differential Dynamic Programming with Stochastic Search
NASA Technical Reports Server (NTRS)
Aziz, Jonathan; Parker, Jeffrey; Englander, Jacob A.
2016-01-01
Differential dynamic programming (DDP) has been demonstrated as a viable approach to low-thrust trajectory optimization, namely with the recent success of NASA's Dawn mission. The Dawn trajectory was designed with the DDP-based Static/Dynamic Optimal Control algorithm used in the Mystic software.1 Another recently developed method, Hybrid Differential Dynamic Programming (HDDP),2, 3 is a variant of the standard DDP formulation that leverages both first-order and second-order state transition matrices in addition to nonlinear programming (NLP) techniques. Areas of improvement over standard DDP include constraint handling, convergence properties, continuous dynamics, and multi-phase capability. DDP is a gradient based method and will converge to a solution nearby an initial guess. In this study, monotonic basin hopping (MBH) is employed as a stochastic search method to overcome this limitation, by augmenting the HDDP algorithm for a wider search of the solution space.
On the singular perturbations for fractional differential equation.
Atangana, Abdon
2014-01-01
The goal of this paper is to examine the possible extension of the singular perturbation differential equation to the concept of fractional order derivative. To achieve this, we presented a review of the concept of fractional calculus. We make use of the Laplace transform operator to derive exact solution of singular perturbation fractional linear differential equations. We make use of the methodology of three analytical methods to present exact and approximate solution of the singular perturbation fractional, nonlinear, nonhomogeneous differential equation. These methods are including the regular perturbation method, the new development of the variational iteration method, and the homotopy decomposition method.
Approximate controllability of a system of parabolic equations with delay
NASA Astrophysics Data System (ADS)
Carrasco, Alexander; Leiva, Hugo
2008-09-01
In this paper we give necessary and sufficient conditions for the approximate controllability of the following system of parabolic equations with delay: where [Omega] is a bounded domain in , D is an n×n nondiagonal matrix whose eigenvalues are semi-simple with nonnegative real part, the control and B[set membership, variant]L(U,Z) with , . The standard notation zt(x) defines a function from [-[tau],0] to (with x fixed) by zt(x)(s)=z(t+s,x), -[tau][less-than-or-equals, slant]s[less-than-or-equals, slant]0. Here [tau][greater-or-equal, slanted]0 is the maximum delay, which is supposed to be finite. We assume that the operator is linear and bounded, and [phi]0[set membership, variant]Z, [phi][set membership, variant]L2([-[tau],0];Z). To this end: First, we reformulate this system into a standard first-order delay equation. Secondly, the semigroup associated with the first-order delay equation on an appropriate product space is expressed as a series of strongly continuous semigroups and orthogonal projections related with the eigenvalues of the Laplacian operator (); this representation allows us to reduce the controllability of this partial differential equation with delay to a family of ordinary delay equations. Finally, we use the well-known result on the rank condition for the approximate controllability of delay system to derive our main result.
Differential Validity of a Differential Aptitude Test
1990-05-01
Sir Francis Galton in 1883 first espoused the concept of general mental ability or g, it was not until 1904 that empirical evidence was analyzed...81150) and Apprentice Radio Communications Analysis Specialist ( intelligence ) (AFSC 20230), respectively. Table 7. Educational and Demographic Description...numerical order, with a brief categorization such as "Aircrew Operations," "Precision Measurement," or " Intelligence ." Selection and classification
Theory of repetitively pulsed operation of diode lasers subject to delayed feedback
DOE Office of Scientific and Technical Information (OSTI.GOV)
Napartovich, A P; Sukharev, A G
2015-03-31
Repetitively pulsed operation of a diode laser with delayed feedback has been studied theoretically at varying feedback parameters and pump power levels. A new approach has been proposed that allows one to reduce the system of Lang–Kobayashi equations for a steady-state repetitively pulsed operation mode to a first-order nonlinear differential equation. We present partial solutions that allow the pulse shape to be predicted. (lasers)
NASA Astrophysics Data System (ADS)
Baleanu, Dumitru; Tenreiro Machado, J. A.
2009-10-01
The international workshop, Fractional Differentiation and its Applications (FDA08), held at Cankaya University, Ankara, Turkey on 5-7 November 2008, was the third in an ongoing series of conferences dedicated to exploring applications of fractional calculus in science, engineering, economics and finance. Fractional calculus, which deals with derivatives and integrals of any order, is now recognized as playing an important role in modeling multi-scale problems that span a wide range of time or length scales. Fractional calculus provides a natural link to the intermediate-order dynamics that often reflects the complexity of micro- and nanostructures through fractional-order differential equations. Unlike the more established techniques of mathematical physics, the methods of fractional differentiation are still under development; while it is true that the ideas of fractional calculus are as old as the classical integer-order differential operators, modern work is proceeding by both expanding the capabilities of this mathematical tool and by widening its range of applications. Hence, the interested reader will find papers here that focus on the underlying mathematics of fractional calculus, that extend fractional-order operators into new domains, and that apply well established methods to experimental and theoretical problems. The organizing committee invited presentations from experts representing the international community of scholars in fractional calculus and welcomed contributions from the growing number of researchers who are applying fractional differentiation to complex technical problems. The selection of papers in this topical issue of Physica Scripta reflects the success of the FDA08 workshop, with the emergence of a variety of novel areas of application. With these ideas in mind, the guest editors would like to honor the many distinguished scientists that have promoted the development of fractional calculus and, in particular, Professor George M Zaslavsky who supported this special issue but passed away recently. The organizing committee wishes to thank the sponsors and supporters of FDA08, namely Cankaya University represented by the President of the Board of Trustees Sitki Alp and Rector Professor Ziya B Güvenc, The Scientfic and Technological Research Council of Turkey (TUBITAK) and the IFAC for providing the resources needed to hold the workshop, the invited speakers for sharing their expertise and knowledge of fractional calculus, and the participants for their enthusiastic contributions to the discussions and debates.
Insights Into the Fractional Order Initial Value Problem via Semi-Infinite Systems
NASA Technical Reports Server (NTRS)
Hartley, Tom T.; Lorenzo, Carl F.
1998-01-01
This paper considers various aspects of the initial value problem for fractional order differential equations. The main contribution of this paper is to use the solutions to known spatially distributed systems to demonstrate that fractional differintegral operators require an initial condition term that is time-varying due to past distributed storage of information.
Probe-Independent EEG Assessment of Mental Workload in Pilots
2015-05-18
Teager Energy Operator - Frequency Modulated Component - z- score 10.94 17.46 10 Hurst Exponent - Discrete Second Order Derivative 7.02 17.06 D. Best...Teager Energy Operator– Frequency Modulated Component – Z-score 45. Line Length – Time Series 46. Line Length – Time Series – Z-score 47. Hurst Exponent ...Discrete Second Order Derivative 48. Hurst Exponent – Wavelet Based Adaptation 49. Hurst Exponent – Rescaled Range 50. Hurst Exponent – Discrete
Exceptional point in a simple textbook example
NASA Astrophysics Data System (ADS)
Fernández, Francisco M.
2018-07-01
We propose to introduce the concept of exceptional points in intermediate courses on mathematics and classical mechanics by means of simple textbook examples. The first one is an ordinary second-order differential equation with constant coefficients. The second one is the well-known damped harmonic oscillator. From a strict mathematical viewpoint both are the same problem that enables one to connect the occurrence of linearly dependent exponential solutions with a defective matrix which cannot be diagonalized but can be transformed into a Jordan canonical form.
On the maximum principle for complete second-order elliptic operators in general domains
NASA Astrophysics Data System (ADS)
Vitolo, Antonio
This paper is concerned with the maximum principle for second-order linear elliptic equations in a wide generality. By means of a geometric condition previously stressed by Berestycki-Nirenberg-Varadhan, Cabré was very able to improve the classical ABP estimate obtaining the maximum principle also in unbounded domains, such as infinite strips and open connected cones with closure different from the whole space. Now we introduce a new geometric condition that extends the result to a more general class of domains including the complements of hypersurfaces, as for instance the cut plane. The methods developed here allow us to deal with complete second-order equations, where the admissible first-order term, forced to be zero in a preceding result with Cafagna, depends on the geometry of the domain.
Ishidoshiro, K; Chinone, Y; Hasegawa, M; Hazumi, M; Nagai, M; Tajima, O
2012-05-01
We propose an innovative demodulation scheme for coherent detectors used in cosmic microwave background polarization experiments. Removal of non-white noise, e.g., narrow-band noise, in detectors is one of the key requirements for the experiments. A combination of modulation and demodulation is used to extract polarization signals as well as to suppress such noise. Traditional demodulation, which is based on the two-point numerical differentiation, works as a first-order high pass filter for the noise. The proposed demodulation is based on the three-point numerical differentiation. It works as a second-order high pass filter. By using a real detector, we confirmed significant improvements of suppression power for the narrow-band noise. We also found improvement of the noise floor.
NASA Technical Reports Server (NTRS)
Yan, Jue; Shu, Chi-Wang; Bushnell, Dennis M. (Technical Monitor)
2002-01-01
In this paper we review the existing and develop new continuous Galerkin methods for solving time dependent partial differential equations with higher order derivatives in one and multiple space dimensions. We review local discontinuous Galerkin methods for convection diffusion equations involving second derivatives and for KdV type equations involving third derivatives. We then develop new local discontinuous Galerkin methods for the time dependent bi-harmonic type equations involving fourth derivatives, and partial differential equations involving fifth derivatives. For these new methods we present correct interface numerical fluxes and prove L(exp 2) stability for general nonlinear problems. Preliminary numerical examples are shown to illustrate these methods. Finally, we present new results on a post-processing technique, originally designed for methods with good negative-order error estimates, on the local discontinuous Galerkin methods applied to equations with higher derivatives. Numerical experiments show that this technique works as well for the new higher derivative cases, in effectively doubling the rate of convergence with negligible additional computational cost, for linear as well as some nonlinear problems, with a local uniform mesh.
Minimal parameter solution of the orthogonal matrix differential equation
NASA Technical Reports Server (NTRS)
Bar-Itzhack, Itzhack Y.; Markley, F. Landis
1990-01-01
As demonstrated in this work, all orthogonal matrices solve a first order differential equation. The straightforward solution of this equation requires n sup 2 integrations to obtain the element of the nth order matrix. There are, however, only n(n-1)/2 independent parameters which determine an orthogonal matrix. The questions of choosing them, finding their differential equation and expressing the orthogonal matrix in terms of these parameters are considered. Several possibilities which are based on attitude determination in three dimensions are examined. It is shown that not all 3-D methods have useful extensions to higher dimensions. It is also shown why the rate of change of the matrix elements, which are the elements of the angular rate vector in 3-D, are the elements of a tensor of the second rank (dyadic) in spaces other than three dimensional. It is proven that the 3-D Gibbs vector (or Cayley Parameters) are extendable to other dimensions. An algorithm is developed emplying the resulting parameters, which are termed Extended Rodrigues Parameters, and numerical results are presented of the application of the algorithm to a fourth order matrix.
Minimal parameter solution of the orthogonal matrix differential equation
NASA Technical Reports Server (NTRS)
Baritzhack, Itzhack Y.; Markley, F. Landis
1988-01-01
As demonstrated in this work, all orthogonal matrices solve a first order differential equation. The straightforward solution of this equation requires n sup 2 integrations to obtain the element of the nth order matrix. There are, however, only n(n-1)/2 independent parameters which determine an orthogonal matrix. The questions of choosing them, finding their differential equation and expressing the orthogonal matrix in terms of these parameters are considered. Several possibilities which are based on attitude determination in three dimensions are examined. It is shown that not all 3-D methods have useful extensions to higher dimensions. It is also shown why the rate of change of the matrix elements, which are the elements of the angular rate vector in 3-D, are the elements of a tensor of the second rank (dyadic) in spaces other than three dimensional. It is proven that the 3-D Gibbs vector (or Cayley Parameters) are extendable to other dimensions. An algorithm is developed employing the resulting parameters, which are termed Extended Rodrigues Parameters, and numerical results are presented of the application of the algorithm to a fourth order matrix.
Second-order relativistic corrections for the S(L=0) states in one- and two-electron atomic systems
NASA Astrophysics Data System (ADS)
Frolov, A. M.; Mitelut, C. C.; Zhong, Z.
2005-01-01
An analytical approach is developed to compute the first- (similar to alpha(2)) and second-order (similar to alpha(4)) relativistic corrections in one- and two-electron atomic systems. The approach is based on the reduction of all operators to divergent (singular) and nondivergent (regular) parts. Then, we show that all the divergent parts from the differentmatrix elements cancel each other. The remaining expression contains only regular operators and its expectation value can be easily computed. Analysis of the S(L = 0) states in such systems is of specific interest since the corresponding operators for these states contain a large number of singularities. For one-electron systems the computed relativistic corrections coincide exactly with the appropriate result that follows from the Taylor expansion of the relativistic (i.e., Dirac) energy. We also discuss an alternative approach that allows one to cancel all singularities by using the so-called operator-compensation technique. This second approach is found to be very effective in applications of more complex systems, such as helium-like atoms and ions, H-2(+)-like ions, and some exotic three-body systems.
On singlet s-wave electron-hydrogen scattering.
NASA Technical Reports Server (NTRS)
Madan, R. N.
1973-01-01
Discussion of various zeroth-order approximations to s-wave scattering of electrons by hydrogen atoms below the first excitation threshold. The formalism previously developed by the author (1967, 1968) is applied to Feshbach operators to derive integro-differential equations, with the optical-potential set equal to zero, for the singlet and triplet cases. Phase shifts of s-wave scattering are computed in the zeroth-order approximation of the Feshbach operator method and in the static-exchange approximation. It is found that the convergence of numerical computations is faster in the former approximation than in the latter.
Application of higher-order cepstral techniques in problems of fetal heart signal extraction
NASA Astrophysics Data System (ADS)
Sabry-Rizk, Madiha; Zgallai, Walid; Hardiman, P.; O'Riordan, J.
1996-10-01
Recently, cepstral analysis based on second order statistics and homomorphic filtering techniques have been used in the adaptive decomposition of overlapping, or otherwise, and noise contaminated ECG complexes of mothers and fetals obtained by a transabdominal surface electrodes connected to a monitoring instrument, an interface card, and a PC. Differential time delays of fetal heart beats measured from a reference point located on the mother complex after transformation to cepstra domains are first obtained and this is followed by fetal heart rate variability computations. Homomorphic filtering in the complex cepstral domain and the subuent transformation to the time domain results in fetal complex recovery. However, three problems have been identified with second-order based cepstral techniques that needed rectification in this paper. These are (1) errors resulting from the phase unwrapping algorithms and leading to fetal complex perturbation, (2) the unavoidable conversion of noise statistics from Gaussianess to non-Gaussianess due to the highly non-linear nature of homomorphic transform does warrant stringent noise cancellation routines, (3) due to the aforementioned problems in (1) and (2), it is difficult to adaptively optimize windows to include all individual fetal complexes in the time domain based on amplitude thresholding routines in the complex cepstral domain (i.e. the task of `zooming' in on weak fetal complexes requires more processing time). The use of third-order based high resolution differential cepstrum technique results in recovery of the delay of the order of 120 milliseconds.
Integrable Seven-Point Discrete Equations and Second-Order Evolution Chains
NASA Astrophysics Data System (ADS)
Adler, V. E.
2018-04-01
We consider differential-difference equations defining continuous symmetries for discrete equations on a triangular lattice. We show that a certain combination of continuous flows can be represented as a secondorder scalar evolution chain. We illustrate the general construction with a set of examples including an analogue of the elliptic Yamilov chain.
NASA Astrophysics Data System (ADS)
Kamimoto, Shingo; Kawai, Takahiro; Koike, Tatsuya
2016-12-01
Inspired by the symbol calculus of linear differential operators of infinite order applied to the Borel transformed WKB solutions of simple-pole type equation [Kamimoto et al. (RIMS Kôkyûroku Bessatsu B 52:127-146, 2014)], which is summarized in Section 1, we introduce in Section 2 the space of simple resurgent functions depending on a parameter with an infra-exponential type growth order, and then we define the assigning operator A which acts on the space and produces resurgent functions with essential singularities. In Section 3, we apply the operator A to the Borel transforms of the Voros coefficient and its exponentiation for the Whittaker equation with a large parameter so that we may find the Borel transforms of the Voros coefficient and its exponentiation for the boosted Whittaker equation with a large parameter. In Section 4, we use these results to find the explicit form of the alien derivatives of the Borel transformed WKB solutions of the boosted Whittaker equation with a large parameter. The results in this paper manifest the importance of resurgent functions with essential singularities in developing the exact WKB analysis, the WKB analysis based on the resurgent function theory. It is also worth emphasizing that the concrete form of essential singularities we encounter is expressed by the linear differential operators of infinite order.
NASA Astrophysics Data System (ADS)
Liu, Changying; Wu, Xinyuan
2017-07-01
In this paper we explore arbitrarily high-order Lagrange collocation-type time-stepping schemes for effectively solving high-dimensional nonlinear Klein-Gordon equations with different boundary conditions. We begin with one-dimensional periodic boundary problems and first formulate an abstract ordinary differential equation (ODE) on a suitable infinity-dimensional function space based on the operator spectrum theory. We then introduce an operator-variation-of-constants formula which is essential for the derivation of our arbitrarily high-order Lagrange collocation-type time-stepping schemes for the nonlinear abstract ODE. The nonlinear stability and convergence are rigorously analysed once the spatial differential operator is approximated by an appropriate positive semi-definite matrix under some suitable smoothness assumptions. With regard to the two dimensional Dirichlet or Neumann boundary problems, our new time-stepping schemes coupled with discrete Fast Sine / Cosine Transformation can be applied to simulate the two-dimensional nonlinear Klein-Gordon equations effectively. All essential features of the methodology are present in one-dimensional and two-dimensional cases, although the schemes to be analysed lend themselves with equal to higher-dimensional case. The numerical simulation is implemented and the numerical results clearly demonstrate the advantage and effectiveness of our new schemes in comparison with the existing numerical methods for solving nonlinear Klein-Gordon equations in the literature.
Canonical equations of Hamilton for the nonlinear Schrödinger equation
NASA Astrophysics Data System (ADS)
Liang, Guo; Guo, Qi; Ren, Zhanmei
2015-09-01
We define two different systems of mathematical physics: the second order differential system (SODS) and the first order differential system (FODS). The Newton's second law of motion and the nonlinear Schrödinger equation (NLSE) are the exemplary SODS and FODS, respectively. We obtain a new kind of canonical equations of Hamilton (CEH), which exhibit some kind of symmetry in form and are formally different from the conventional CEH without symmetry [H. Goldstein, C. Poole, J. Safko, Classical Mechanics, third ed., Addison- Wesley, 2001]. We also prove that the number of the CEHs is equal to the number of the generalized coordinates for the FODS, but twice the number of the generalized coordinates for the SODS. We show that the FODS can only be expressed by the new CEH, but not introduced by the conventional CEH, while the SODS can be done by both the new and the conventional CEHs. As an example, we prove that the nonlinear Schrödinger equation can be expressed with the new CEH in a consistent way.
Muro-Pastor, Alicia M; Brenes-Álvarez, Manuel; Vioque, Agustín
2017-08-01
Heterocystous cyanobacteria such as Nostoc sp. are filamentous photosynthetic organisms that, in response to nitrogen deficiency, undergo a differentiation process transforming certain, semi-regularly spaced cells into heterocysts, devoted to nitrogen fixation. During transition to a nitrogen-fixing regime, growth of most vegetative cells in the filament is temporarily arrested due to nutritional deprivation, but developing heterocysts require intense transcriptional activity. Therefore, the coexistence of arrested vegetative cells and actively developing prospective heterocysts relies on the simultaneous operation of somewhat opposite transcriptional programs. We have identified genes with multiple nitrogen-responsive transcriptional starts appearing in seemingly paradoxical combinations. For instance, sigA, encoding the RNA polymerase housekeeping sigma factor, is transcribed from one major nitrogen stress-repressed promoter and from a second, nitrogen stress-induced promoter. Here, we show that both promoters are expressed with complementary temporal dynamics. Using a gfp reporter we also show that transcription from the inducible promoter takes place exclusively in differentiating heterocysts and is already detected before any morphological or fluorescence signature of differentiation is observed. Tandem promoters with opposite dynamics could operate a compensatory mechanism in which repression of transcription from the major promoter operative in vegetative cells is offset by transcription from a new promoter only in developing heterocyst. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.
Time-ordered product expansions for computational stochastic system biology.
Mjolsness, Eric
2013-06-01
The time-ordered product framework of quantum field theory can also be used to understand salient phenomena in stochastic biochemical networks. It is used here to derive Gillespie's stochastic simulation algorithm (SSA) for chemical reaction networks; consequently, the SSA can be interpreted in terms of Feynman diagrams. It is also used here to derive other, more general simulation and parameter-learning algorithms including simulation algorithms for networks of stochastic reaction-like processes operating on parameterized objects, and also hybrid stochastic reaction/differential equation models in which systems of ordinary differential equations evolve the parameters of objects that can also undergo stochastic reactions. Thus, the time-ordered product expansion can be used systematically to derive simulation and parameter-fitting algorithms for stochastic systems.
The GEOFLOW experiment missions in the Fluid Science Laboratory on ISS
NASA Astrophysics Data System (ADS)
Picker, Gerold; Carpy, Rodrigo; Fabritius, Gerd; Dettmann, Jan; Minster, Olivier; Winter, Josef; Ranebo, Hans; Dewandre, Thierry; Castiglione, Luigi; Mazzoni, Stefano; Egbers, Christoph; Futterer, Birgit
The GEOFLOW I experiment has been successfully performed on the International Space Sta-tion (ISS) in 2008 in the Columbus module in order to study the stability, pattern formation and transition to turbulence in a viscous incompressible fluid layer enclosed in two concentric co-rotating spheres subject to a radial temperature gradient and a radial volumetric force field. The objective of the study is the experimental investigation of large scale astrophysical and geophysical phenomena in spherical geometry stipulated by rotation, thermal convections and radial gravity fields. These systems include earth outer core or mantle convection, differen-tial rotation effects in the sun, atmosphere of gas planets as well as a variety of engineering applications. The GEOFLOW I experimental instrument consists of an experiment insert for operation in the Fluid Science Laboratory, which is part of the Columbus Module of the ISS. It was first launched in February 2008 together with Columbus Module on STS 122, operated periodically for 9 month and returned to ground after 14 month on orbit with STS 119. The primary objective was the experimental modelling of outer earth core convection flow. In order to allow for variations of the characteristic scaling for different physical phenomena, the experiment was designed and qualified for a total of nine flights to the ISS, with ground refurbishment and geometrical or fluid modification after each mission. The second mission of GEOFLOW (II) is currently under preparation in terms of hardware refurbishment and modification, as well as science parameter development in order to allow use of a new experimental model fluid with a strongly temperature dependent viscosity, a adaptation of the experimental thermal parameter range in order to provide a representative model for earth mantle convection. The GEOFLOW II instrument is foreseen to be launched with the second mission of the Eu-ropean Automated Transfer Vehicle (ATV). The flight to ISS is planned on ATV 2 "Johannes-Kepler" and foreseen for launch with Ariane 5 in November / December 2010. The objective of the presentation is to give an overview on the Geoflow instrument, its scien-tific performances, the experimental procedures with particular focus on the evolution of the instrument and experiment from its first mission to the second mission. The GEOFLOW project is funded by ESA/ESTEC for the industrial activities and the support of the GEOFLOW science topical team and by German Aerospace Center DLR for the ground based research at BTU Cottbus/Germany. The flight hardware was developed and built by an industrial team led by ASTRIUM Space Transportation Friedrichshafen/Germany.
An Expansion Formula with Higher-Order Derivatives for Fractional Operators of Variable Order
Almeida, Ricardo
2013-01-01
We obtain approximation formulas for fractional integrals and derivatives of Riemann-Liouville and Marchaud types with a variable fractional order. The approximations involve integer-order derivatives only. An estimation for the error is given. The efficiency of the approximation method is illustrated with examples. As applications, we show how the obtained results are useful to solve differential equations, and problems of the calculus of variations that depend on fractional derivatives of Marchaud type. PMID:24319382
Jasim Mohammed, M; Ibrahim, Rabha W; Ahmad, M Z
2017-03-01
In this paper, we consider a low initial population model. Our aim is to study the periodicity computation of this model by using neutral differential equations, which are recognized in various studies including biology. We generalize the neutral Rayleigh equation for the third-order by exploiting the model of fractional calculus, in particular the Riemann-Liouville differential operator. We establish the existence and uniqueness of a periodic computational outcome. The technique depends on the continuation theorem of the coincidence degree theory. Besides, an example is presented to demonstrate the finding.
Liu, Weihua; Yang, Yi; Wang, Shuqing; Liu, Yang
2014-01-01
Order insertion often occurs in the scheduling process of logistics service supply chain (LSSC), which disturbs normal time scheduling especially in the environment of mass customization logistics service. This study analyses order similarity coefficient and order insertion operation process and then establishes an order insertion scheduling model of LSSC with service capacity and time factors considered. This model aims to minimize the average unit volume operation cost of logistics service integrator and maximize the average satisfaction degree of functional logistics service providers. In order to verify the viability and effectiveness of our model, a specific example is numerically analyzed. Some interesting conclusions are obtained. First, along with the increase of completion time delay coefficient permitted by customers, the possible inserting order volume first increases and then trends to be stable. Second, supply chain performance reaches the best when the volume of inserting order is equal to the surplus volume of the normal operation capacity in mass service process. Third, the larger the normal operation capacity in mass service process is, the bigger the possible inserting order's volume will be. Moreover, compared to increasing the completion time delay coefficient, improving the normal operation capacity of mass service process is more useful.
On the motion of classical three-body system with consideration of quantum fluctuations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gevorkyan, A. S., E-mail: g-ashot@sci.am
2017-03-15
We obtained the systemof stochastic differential equations which describes the classicalmotion of the three-body system under influence of quantum fluctuations. Using SDEs, for the joint probability distribution of the total momentum of bodies system were obtained the partial differential equation of the second order. It is shown, that the equation for the probability distribution is solved jointly by classical equations, which in turn are responsible for the topological peculiarities of tubes of quantum currents, transitions between asymptotic channels and, respectively for arising of quantum chaos.
A Smoothed Eclipse Model for Solar Electric Propulsion Trajectory Optimization
NASA Technical Reports Server (NTRS)
Aziz, Jonathan D.; Scheeres, Daniel J.; Parker, Jeffrey S.; Englander, Jacob A.
2017-01-01
Solar electric propulsion (SEP) is the dominant design option for employing low-thrust propulsion on a space mission. Spacecraft solar arrays power the SEP system but are subject to blackout periods during solar eclipse conditions. Discontinuity in power available to the spacecraft must be accounted for in trajectory optimization, but gradient-based methods require a differentiable power model. This work presents a power model that smooths the eclipse transition from total eclipse to total sunlight with a logistic function. Example trajectories are computed with differential dynamic programming, a second-order gradient-based method.
NASA Astrophysics Data System (ADS)
Doha, E. H.
2003-05-01
A formula expressing the Laguerre coefficients of a general-order derivative of an infinitely differentiable function in terms of its original coefficients is proved, and a formula expressing explicitly the derivatives of Laguerre polynomials of any degree and for any order as a linear combination of suitable Laguerre polynomials is deduced. A formula for the Laguerre coefficients of the moments of one single Laguerre polynomial of certain degree is given. Formulae for the Laguerre coefficients of the moments of a general-order derivative of an infinitely differentiable function in terms of its Laguerre coefficients are also obtained. A simple approach in order to build and solve recursively for the connection coefficients between Jacobi-Laguerre and Hermite-Laguerre polynomials is described. An explicit formula for these coefficients between Jacobi and Laguerre polynomials is given, of which the ultra-spherical polynomials of the first and second kinds and Legendre polynomials are important special cases. An analytical formula for the connection coefficients between Hermite and Laguerre polynomials is also obtained.
NASA Astrophysics Data System (ADS)
Han, Yu-Yan; Gong, Dunwei; Sun, Xiaoyan
2015-07-01
A flow-shop scheduling problem with blocking has important applications in a variety of industrial systems but is underrepresented in the research literature. In this study, a novel discrete artificial bee colony (ABC) algorithm is presented to solve the above scheduling problem with a makespan criterion by incorporating the ABC with differential evolution (DE). The proposed algorithm (DE-ABC) contains three key operators. One is related to the employed bee operator (i.e. adopting mutation and crossover operators of discrete DE to generate solutions with good quality); the second is concerned with the onlooker bee operator, which modifies the selected solutions using insert or swap operators based on the self-adaptive strategy; and the last is for the local search, that is, the insert-neighbourhood-based local search with a small probability is adopted to improve the algorithm's capability in exploitation. The performance of the proposed DE-ABC algorithm is empirically evaluated by applying it to well-known benchmark problems. The experimental results show that the proposed algorithm is superior to the compared algorithms in minimizing the makespan criterion.
Numerical Solution of Time-Dependent Problems with a Fractional-Power Elliptic Operator
NASA Astrophysics Data System (ADS)
Vabishchevich, P. N.
2018-03-01
A time-dependent problem in a bounded domain for a fractional diffusion equation is considered. The first-order evolution equation involves a fractional-power second-order elliptic operator with Robin boundary conditions. A finite-element spatial approximation with an additive approximation of the operator of the problem is used. The time approximation is based on a vector scheme. The transition to a new time level is ensured by solving a sequence of standard elliptic boundary value problems. Numerical results obtained for a two-dimensional model problem are presented.
Second-order sliding mode controller with model reference adaptation for automatic train operation
NASA Astrophysics Data System (ADS)
Ganesan, M.; Ezhilarasi, D.; Benni, Jijo
2017-11-01
In this paper, a new approach to model reference based adaptive second-order sliding mode control together with adaptive state feedback is presented to control the longitudinal dynamic motion of a high speed train for automatic train operation with the objective of minimal jerk travel by the passengers. The nonlinear dynamic model for the longitudinal motion of the train comprises of a locomotive and coach subsystems is constructed using multiple point-mass model by considering the forces acting on the vehicle. An adaptation scheme using Lyapunov criterion is derived to tune the controller gains by considering a linear, stable reference model that ensures the stability of the system in closed loop. The effectiveness of the controller tracking performance is tested under uncertain passenger load, coupler-draft gear parameters, propulsion resistance coefficients variations and environmental disturbances due to side wind and wet rail conditions. The results demonstrate improved tracking performance of the proposed control scheme with a least jerk under maximum parameter uncertainties when compared to constant gain second-order sliding mode control.
Farhadi, Sajjad; Aminzadeh, Behnoush; Torabian, Ali; Khatibikamal, Vahid; Alizadeh Fard, Mohammad
2012-06-15
This work makes a comparison between electrocoagulation (EC), photoelectrocoagulation, peroxi-electrocoagulation and peroxi-photoelectrocoagulation processes to investigate the removal of chemical oxygen demand (COD) from pharmaceutical wastewater. The effects of operational parameters such as initial pH, current density, applied voltage, amount of hydrogen peroxide and electrolysis time on COD removal efficiency were investigated and the optimum operating range for each of these operating variables was experimentally determined. In electrocoagulation process, the optimum values of pH and voltage were determined to be 7 and 40 V, respectively. Desired pH and hydrogen peroxide concentration in the Fenton-based processes were found to be 3 and 300 mg/L, respectively. The amounts of COD, pH, electrical conductivity, temperature and total dissolved solids (TDS) were on-line monitored. Results indicated that under the optimum operating range for each process, the COD removal efficiency was in order of peroxi-electrocoagulation > peroxi-photoelectrocoagulation > photoelectrocoagulation>electrocoagulation. Finally, a kinetic study was carried out using the linear pseudo-second-order model and results showed that the pseudo-second-order equation provided the best correlation for the COD removal rate. Copyright © 2012 Elsevier B.V. All rights reserved.
Fractional dynamics pharmacokinetics–pharmacodynamic models
2010-01-01
While an increasing number of fractional order integrals and differential equations applications have been reported in the physics, signal processing, engineering and bioengineering literatures, little attention has been paid to this class of models in the pharmacokinetics–pharmacodynamic (PKPD) literature. One of the reasons is computational: while the analytical solution of fractional differential equations is available in special cases, it this turns out that even the simplest PKPD models that can be constructed using fractional calculus do not allow an analytical solution. In this paper, we first introduce new families of PKPD models incorporating fractional order integrals and differential equations, and, second, exemplify and investigate their qualitative behavior. The families represent extensions of frequently used PK link and PD direct and indirect action models, using the tools of fractional calculus. In addition the PD models can be a function of a variable, the active drug, which can smoothly transition from concentration to exposure, to hyper-exposure, according to a fractional integral transformation. To investigate the behavior of the models we propose, we implement numerical algorithms for fractional integration and for the numerical solution of a system of fractional differential equations. For simplicity, in our investigation we concentrate on the pharmacodynamic side of the models, assuming standard (integer order) pharmacokinetics. PMID:20455076
On homogeneous second order linear general quantum difference equations.
Faried, Nashat; Shehata, Enas M; El Zafarani, Rasha M
2017-01-01
In this paper, we prove the existence and uniqueness of solutions of the β -Cauchy problem of second order β -difference equations [Formula: see text] [Formula: see text], in a neighborhood of the unique fixed point [Formula: see text] of the strictly increasing continuous function β , defined on an interval [Formula: see text]. These equations are based on the general quantum difference operator [Formula: see text], which is defined by [Formula: see text], [Formula: see text]. We also construct a fundamental set of solutions for the second order linear homogeneous β -difference equations when the coefficients are constants and study the different cases of the roots of their characteristic equations. Finally, we drive the Euler-Cauchy β -difference equation.
Speaker normalization and adaptation using second-order connectionist networks.
Watrous, R L
1993-01-01
A method for speaker normalization and adaption using connectionist networks is developed. A speaker-specific linear transformation of observations of the speech signal is computed using second-order network units. Classification is accomplished by a multilayer feedforward network that operates on the normalized speech data. The network is adapted for a new talker by modifying the transformation parameters while leaving the classifier fixed. This is accomplished by backpropagating classification error through the classifier to the second-order transformation units. This method was evaluated for the classification of ten vowels for 76 speakers using the first two formant values of the Peterson-Barney data. The results suggest that rapid speaker adaptation resulting in high classification accuracy can be accomplished by this method.
A class of fractional differential hemivariational inequalities with application to contact problem
NASA Astrophysics Data System (ADS)
Zeng, Shengda; Liu, Zhenhai; Migorski, Stanislaw
2018-04-01
In this paper, we study a class of generalized differential hemivariational inequalities of parabolic type involving the time fractional order derivative operator in Banach spaces. We use the Rothe method combined with surjectivity of multivalued pseudomonotone operators and properties of the Clarke generalized gradient to establish existence of solution to the abstract inequality. As an illustrative application, a frictional quasistatic contact problem for viscoelastic materials with adhesion is investigated, in which the friction and contact conditions are described by the Clarke generalized gradient of nonconvex and nonsmooth functionals, and the constitutive relation is modeled by the fractional Kelvin-Voigt law.
Strategic to Operational: A Step Too Far for the Navy Reserve
2007-03-05
including updating their medical status online . In addition, provide a systematic and contiguous network to advertise , select, and assign volunteering IRR...order effects of transforming to an operational reserve are daunting. But, second- and third-order effects should be taken into account for any... effectiveness of 3 the states’ naval militias by passing of the “Naval Militia Act” of 1914, which also created the “Division of Naval Militia Affairs
On the Singular Perturbations for Fractional Differential Equation
Atangana, Abdon
2014-01-01
The goal of this paper is to examine the possible extension of the singular perturbation differential equation to the concept of fractional order derivative. To achieve this, we presented a review of the concept of fractional calculus. We make use of the Laplace transform operator to derive exact solution of singular perturbation fractional linear differential equations. We make use of the methodology of three analytical methods to present exact and approximate solution of the singular perturbation fractional, nonlinear, nonhomogeneous differential equation. These methods are including the regular perturbation method, the new development of the variational iteration method, and the homotopy decomposition method. PMID:24683357
NASA Astrophysics Data System (ADS)
Camporesi, Roberto
2016-01-01
We present an approach to the impulsive response method for solving linear constant-coefficient ordinary differential equations of any order based on the factorization of the differential operator. The approach is elementary, we only assume a basic knowledge of calculus and linear algebra. In particular, we avoid the use of distribution theory, as well as of the other more advanced approaches: Laplace transform, linear systems, the general theory of linear equations with variable coefficients and variation of parameters. The approach presented here can be used in a first course on differential equations for science and engineering majors.
Long-period fiber gratings as ultrafast optical differentiators.
Kulishov, Mykola; Azaña, José
2005-10-15
It is demonstrated that a single, uniform long-period fiber grating (LPFG) working in the linear regime inherently behaves as an ultrafast optical temporal differentiator. Specifically, we show that the output temporal waveform in the core mode of a LPFG providing full energy coupling into the cladding mode is proportional to the first derivative of the optical temporal signal (e.g., optical pulse) launched at the input of the LPFG. Moreover, a LPFG providing full energy recoupling back from the cladding mode into the core mode inherently implements second-order temporal differentiation. Our numerical results have confirmed the feasibility of this simple, all-fiber approach to processing optical signals with temporal features in the picosecond and subpicosecond ranges.
Matrix form of Legendre polynomials for solving linear integro-differential equations of high order
NASA Astrophysics Data System (ADS)
Kammuji, M.; Eshkuvatov, Z. K.; Yunus, Arif A. M.
2017-04-01
This paper presents an effective approximate solution of high order of Fredholm-Volterra integro-differential equations (FVIDEs) with boundary condition. Legendre truncated series is used as a basis functions to estimate the unknown function. Matrix operation of Legendre polynomials is used to transform FVIDEs with boundary conditions into matrix equation of Fredholm-Volterra type. Gauss Legendre quadrature formula and collocation method are applied to transfer the matrix equation into system of linear algebraic equations. The latter equation is solved by Gauss elimination method. The accuracy and validity of this method are discussed by solving two numerical examples and comparisons with wavelet and methods.
Forced oscillations of cracked beam under the stochastic cyclic loading
NASA Astrophysics Data System (ADS)
Matsko, I.; Javors'kyj, I.; Yuzefovych, R.; Zakrzewski, Z.
2018-05-01
An analysis of forced oscillations of cracked beam using statistical methods for periodically correlated random processes is presented. The oscillation realizations are obtained on the basis of numerical solutions of differential equations of the second order, for the case when applied force is described by a sum of harmonic and stationary random process. It is established that due to crack appearance forced oscillations acquire properties of second-order periodical non-stationarity. It is shown that in a super-resonance regime covariance and spectral characteristics, which describe non-stationary structure of forced oscillations, are more sensitive to crack growth than the characteristics of the oscillation's deterministic part. Using diagnostic indicators formed on their basis allows the detection of small cracks.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Buckdahn, Rainer, E-mail: Rainer.Buckdahn@univ-brest.fr; Li, Juan, E-mail: juanli@sdu.edu.cn; Ma, Jin, E-mail: jinma@usc.edu
In this paper we study the optimal control problem for a class of general mean-field stochastic differential equations, in which the coefficients depend, nonlinearly, on both the state process as well as of its law. In particular, we assume that the control set is a general open set that is not necessary convex, and the coefficients are only continuous on the control variable without any further regularity or convexity. We validate the approach of Peng (SIAM J Control Optim 2(4):966–979, 1990) by considering the second order variational equations and the corresponding second order adjoint process in this setting, and wemore » extend the Stochastic Maximum Principle of Buckdahn et al. (Appl Math Optim 64(2):197–216, 2011) to this general case.« less
Analytical approach to peel stresses in bonded composite stiffened panels
NASA Technical Reports Server (NTRS)
Barkey, Derek A.; Madan, Ram C.; Sutton, Jason O.
1987-01-01
A closed-form solution was obtained for the stresses and displacements of two bonded beams. A system of two fourth-order and two second-order differential equations with the associated boundary equations was determined using a variational work approach. A FORTRAN computer program was devised to solve for the eigenvalues and eigenvectors of this system and to calculate the coefficients from the boundary conditions. The results were then compared with NASTRAN finite-element solutions and shown to agree closely.
Errors from approximation of ODE systems with reduced order models
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vassilevska, Tanya
2016-12-30
This is a code to calculate the error from approximation of systems of ordinary differential equations (ODEs) by using Proper Orthogonal Decomposition (POD) Reduced Order Models (ROM) methods and to compare and analyze the errors for two POD ROM variants. The first variant is the standard POD ROM, the second variant is a modification of the method using the values of the time derivatives (a.k.a. time-derivative snapshots). The code compares the errors from the two variants under different conditions.
Nonlinear compensation techniques for magnetic suspension systems. Ph.D. Thesis - MIT
NASA Technical Reports Server (NTRS)
Trumper, David L.
1991-01-01
In aerospace applications, magnetic suspension systems may be required to operate over large variations in air-gap. Thus the nonlinearities inherent in most types of suspensions have a significant effect. Specifically, large variations in operating point may make it difficult to design a linear controller which gives satisfactory stability and performance over a large range of operating points. One way to address this problem is through the use of nonlinear compensation techniques such as feedback linearization. Nonlinear compensators have received limited attention in the magnetic suspension literature. In recent years, progress has been made in the theory of nonlinear control systems, and in the sub-area of feedback linearization. The idea is demonstrated of feedback linearization using a second order suspension system. In the context of the second order suspension, sampling rate issues in the implementation of feedback linearization are examined through simulation.
Finite Moment Tensors of Southern California Earthquakes
NASA Astrophysics Data System (ADS)
Jordan, T. H.; Chen, P.; Zhao, L.
2003-12-01
We have developed procedures for inverting broadband waveforms for the finite moment tensors (FMTs) of regional earthquakes. The FMT is defined in terms of second-order polynomial moments of the source space-time function and provides the lowest order representation of a finite fault rupture; it removes the fault-plane ambiguity of the centroid moment tensor (CMT) and yields several additional parameters of seismological interest: the characteristic length L{c}, width W{c}, and duration T{c} of the faulting, as well as the directivity vector {v}{d} of the fault slip. To formulate the inverse problem, we follow and extend the methods of McGuire et al. [2001, 2002], who have successfully recovered the second-order moments of large earthquakes using low-frequency teleseismic data. We express the Fourier spectra of a synthetic point-source waveform in its exponential (Rytov) form and represent the observed waveform relative to the synthetic in terms two frequency-dependent differential times, a phase delay δ τ {p}(ω ) and an amplitude-reduction time δ τ {q}(ω ), which we measure using Gee and Jordan's [1992] isolation-filter technique. We numerically calculate the FMT partial derivatives in terms of second-order spatiotemporal gradients, which allows us to use 3D finite-difference seismograms as our isolation filters. We have applied our methodology to a set of small to medium-sized earthquakes in Southern California. The errors in anelastic structure introduced perturbations larger than the signal level caused by finite source effect. We have therefore employed a joint inversion technique that recovers the CMT parameters of the aftershocks, as well as the CMT and FMT parameters of the mainshock, under the assumption that the source finiteness of the aftershocks can be ignored. The joint system of equations relating the δ τ {p} and δ τ {q} data to the source parameters of the mainshock-aftershock cluster is denuisanced for path anomalies in both observables; this projection operation effectively corrects the mainshock data for path-related amplitude anomalies in a way similar to, but more flexible than, empirical Green function (EGF) techniques.
NASA Astrophysics Data System (ADS)
Feng, Xueshang; Li, Caixia; Xiang, Changqing; Zhang, Man; Li, HuiChao; Wei, Fengsi
2017-11-01
A second-order path-conservative scheme with a Godunov-type finite-volume method has been implemented to advance the equations of single-fluid solar wind plasma magnetohydrodynamics (MHD) in time. This code operates on the six-component composite grid system in three-dimensional spherical coordinates with hexahedral cells of quadrilateral frustum type. The generalized Osher-Solomon Riemann solver is employed based on a numerical integration of the path-dependent dissipation matrix. For simplicity, the straight line segment path is used, and the path integral is evaluated in a fully numerical way by a high-order numerical Gauss-Legendre quadrature. Besides its very close similarity to Godunov type, the resulting scheme retains the attractive features of the original solver: it is nonlinear, free of entropy-fix, differentiable, and complete, in that each characteristic field results in a different numerical viscosity, due to the full use of the MHD eigenstructure. By using a minmod limiter for spatial oscillation control, the path-conservative scheme is realized for the generalized Lagrange multiplier and the extended generalized Lagrange multiplier formulation of solar wind MHD systems. This new model that is second order in space and time is written in the FORTRAN language with Message Passing Interface parallelization and validated in modeling the time-dependent large-scale structure of the solar corona, driven continuously by Global Oscillation Network Group data. To demonstrate the suitability of our code for the simulation of solar wind, we present selected results from 2009 October 9 to 2009 December 29 show its capability of producing a structured solar corona in agreement with solar coronal observations.
Data-Driven Modeling of Solar Corona by a New 3d Path-Conservative Osher-Solomon MHD Odel
NASA Astrophysics Data System (ADS)
Feng, X. S.; Li, C.
2017-12-01
A second-order path-conservative scheme with Godunov-type finite volume method (FVM) has been implemented to advance the equations of single-fluid solar wind plasma magnetohydrodynamics (MHD) in time. This code operates on the six-component composite grid system in 3D spherical coordinates with hexahedral cells of quadrilateral frustum type. The generalized Osher-Solomon Riemann solver is employed based on a numerical integration of the path-dependentdissipation matrix. For simplicity, the straight line segment path is used and the path-integral is evaluated in a fully numerical way by high-order numerical Gauss-Legendre quadrature. Besides its closest similarity to Godunov, the resulting scheme retains the attractive features of the original solver: it is nonlinear, free of entropy-fix, differentiable and complete in that each characteristic field results in a different numerical viscosity, due to the full use of the MHD eigenstructure. By using a minmod limiter for spatial oscillation control, the pathconservative scheme is realized for the generalized Lagrange multiplier (GLM) and the extended generalized Lagrange multiplier (EGLM) formulation of solar wind MHD systems. This new model of second-order in space and time is written in FORTRAN language with Message Passing Interface (MPI) parallelization, and validated in modeling time-dependent large-scale structure of solar corona, driven continuously by the Global Oscillation Network Group (GONG) data. To demonstrate the suitability of our code for the simulation of solar wind, we present selected results from October 9th, 2009 to December 29th, 2009 , & Year 2008 to show its capability of producing structured solar wind in agreement with the observations.
Differential Equations and Computational Simulations
1999-06-18
divergence operator of a vector field, which can be defined in terms of the Levi - Civita connection. Let $(x, t) be the orbit passing through x g M...differential equations 31 Junping Chen and Dadi Yang The limit cycle of two species predator-prey model with general functional response > 34 S. S...analysis of two -species nonlinear competition system with periodic coefficients 286 X. H. Tang and J. S. Yu Oscillation of first order delay
NASA Astrophysics Data System (ADS)
Bobodzhanov, A. A.; Safonov, V. F.
2016-04-01
We consider an algorithm for constructing asymptotic solutions regularized in the sense of Lomov (see [1], [2]). We show that such problems can be reduced to integro-differential equations with inverse time. But in contrast to known papers devoted to this topic (see, for example, [3]), in this paper we study a fundamentally new case, which is characterized by the absence, in the differential part, of a linear operator that isolates, in the asymptotics of the solution, constituents described by boundary functions and by the fact that the integral operator has kernel with diagonal degeneration of high order. Furthermore, the spectrum of the regularization operator A(t) (see below) may contain purely imaginary eigenvalues, which causes difficulties in the application of the methods of construction of asymptotic solutions proposed in the monograph [3]. Based on an analysis of the principal term of the asymptotics, we isolate a class of inhomogeneities and initial data for which the exact solution of the original problem tends to the limit solution (as \\varepsilon\\to+0) on the entire time interval under consideration, also including a boundary-layer zone (that is, we solve the so-called initialization problem). The paper is of a theoretical nature and is designed to lead to a greater understanding of the problems in the theory of singular perturbations. There may be applications in various applied areas where models described by integro-differential equations are used (for example, in elasticity theory, the theory of electrical circuits, and so on).
Analytical spectrum for a Hamiltonian of quantum dots with Rashba spin-orbit coupling
NASA Astrophysics Data System (ADS)
Dossa, Anselme F.; Avossevou, Gabriel Y. H.
2014-12-01
We determine the analytical solution for a Hamiltonian describing a confined charged particle in a quantum dot, including Rashba spin-orbit coupling and Zeeman splitting terms. The approach followed in this paper is straightforward and uses the symmetrization of the wave function's components. The eigenvalue problem for the Hamiltonian in Bargmann's Hilbert space reduces to a system of coupled first-order differential equations. Then we exploit the symmetry in the system to obtain uncoupled second-order differential equations, which are found to be the Whittaker-Ince limit of the confluent Heun equations. Analytical expressions as well as numerical results are obtained for the spectrum. One of the main features of such models, namely, the level splitting, is present through the spectrum obtained in this paper.
Second-order Compton-Getting effect on arbitrary intensity distribution
NASA Technical Reports Server (NTRS)
Ng, C. K.
1985-01-01
Theoretical studies of energetic particles in space are often referred to a special frame of reference. To compare theory with experiment, one has to transform the particle distribution from the special frame to the observer's frame, or vice versa. Various methods have been derived to obtain the directional distribution in the comoving frame from the directional fluxes measured on a spacecraft. These methods have become progressively complicated as increasingly detailed directional particle data become available. A set of 2nd order correct formulae for the transformation of an arbitrary differential intensity distribution, expressed as a series of spherical harmonics, between any two frames in constant relative motion is presented. These formulae greatly simplify the complicated procedures currently in use for the determination of the differential intensity distribution in a comoving frame.
NASA Astrophysics Data System (ADS)
Zhang, Ye; Gong, Rongfang; Cheng, Xiaoliang; Gulliksson, Mårten
2018-06-01
This study considers the inverse source problem for elliptic partial differential equations with both Dirichlet and Neumann boundary data. The unknown source term is to be determined by additional boundary conditions. Unlike the existing methods found in the literature, which usually employ the first-order in time gradient-like system (such as the steepest descent methods) for numerically solving the regularized optimization problem with a fixed regularization parameter, we propose a novel method with a second-order in time dissipative gradient-like system and a dynamical selected regularization parameter. A damped symplectic scheme is proposed for the numerical solution. Theoretical analysis is given for both the continuous model and the numerical algorithm. Several numerical examples are provided to show the robustness of the proposed algorithm.
Phase transformations during the growth of paracetamol crystals from the vapor phase
NASA Astrophysics Data System (ADS)
Belyaev, A. P.; Rubets, V. P.; Antipov, V. V.; Bordei, N. S.
2014-07-01
Phase transformations during the growth of paracetamol crystals from the vapor phase are studied by differential scanning calorimetry. It is found that the vapor-crystal phase transition is actually a superposition of two phase transitions: a first-order phase transition with variable density and a second-order phase transition with variable ordering. The latter, being a diffuse phase transition, results in the formation of a new, "pretransition," phase irreversibly spent in the course of the transition, which ends in the appearance of orthorhombic crystals. X-ray diffraction data and micrograph are presented.
On solutions of the fifth-order dispersive equations with porous medium type non-linearity
NASA Astrophysics Data System (ADS)
Kocak, Huseyin; Pinar, Zehra
2018-07-01
In this work, we focus on obtaining the exact solutions of the fifth-order semi-linear and non-linear dispersive partial differential equations, which have the second-order diffusion-like (porous-type) non-linearity. The proposed equations were not studied in the literature in the sense of the exact solutions. We reveal solutions of the proposed equations using the classical Riccati equations method. The obtained exact solutions, which can play a key role to simulate non-linear waves in the medium with dispersion and diffusion, are illustrated and discussed in details.
NASA Astrophysics Data System (ADS)
Fuchssteiner, Benno; Carillo, Sandra
1989-01-01
Bäcklund transformations between all known completely integrable third-order differential equations in (1 + 1)-dimensions are established and the corresponding transformations formulas for their hereditary operators and Hamiltonian formulations are exhibited. Some of these Bäcklund transformations are not injective; therefore additional non-commutative symmetry groups are found for some equations. These non-commutative symmetry groups are classified as having a semisimple part isomorphic to the affine algebra A(1)1. New completely integrable third-order integro-differential equations, some depending explicitly on x, are given. These new equations give rise to nonin equation. Connections between the singularity equations (from the Painlevé analysis) and the nonlinear equations for interacting solitons are established. A common approach to singularity analysis and soliton structure is introduced. The Painlevé analysis is modified in such a sense that it carries over directly and without difficulty to the time evolution of singularity manifolds of equations like the sine-Gordon and nonlinear Schrödinger equation. A method to recover the Painlevé series from its constant level term is exhibit. The soliton-singularity transform is recognized to be connected to the Möbius group. This gives rise to a Darboux-like result for the spectral properties of the recursion operator. These connections are used in order to explain why poles of soliton equations move like trajectories of interacting solitons. Furthermore it is explicitly computed how solitons of singularity equations behave under the effect of this soliton-singularity transform. This then leads to the result that only for scaling degrees α = -1 and α = -2 the usual Painlevé analysis can be carried out. A new invariance principle, connected to kernels of differential operators is discovered. This new invariance, for example, connects the explicit solutions of the Liouville equation with the Miura transform. Simple methods are exhibited which allow to compute out of N-soliton solutions of the KdV (Bargman potentials) explicit solutions of equations like the Harry Dym equation. Certain solutions are plotted.
An Investigation of Differential Encoding and Retrieval in Older Adult College Students.
ERIC Educational Resources Information Center
Shaughnessy, Michael F.; Reif, Laurie
Three experiments were conducted in order to clarify the encoding/retrieval dilemma in older adult students; and the recognition/recall test issue was also explored. First, a mnemonic technique based on the "key word" method of Funk and Tarshis was used; secondly, a semantic processing task was tried; and lastly, a repetition task, based…
NASA Astrophysics Data System (ADS)
Plimak, L. I.; Fleischhauer, M.; Olsen, M. K.; Collett, M. J.
2003-01-01
We present an introduction to phase-space techniques (PST) based on a quantum-field-theoretical (QFT) approach. In addition to bridging the gap between PST and QFT, our approach results in a number of generalizations of the PST. First, for problems where the usual PST do not result in a genuine Fokker-Planck equation (even after phase-space doubling) and hence fail to produce a stochastic differential equation (SDE), we show how the system in question may be approximated via stochastic difference equations (SΔE). Second, we show that introducing sources into the SDE’s (or SΔE’s) generalizes them to a full quantum nonlinear stochastic response problem (thus generalizing Kubo’s linear reaction theory to a quantum nonlinear stochastic response theory). Third, we establish general relations linking quantum response properties of the system in question to averages of operator products ordered in a way different from time normal. This extends PST to a much wider assemblage of operator products than are usually considered in phase-space approaches. In all cases, our approach yields a very simple and straightforward way of deriving stochastic equations in phase space.
Second-stage transsphenoidal approach (TSA) for highly vascular pituicytomas in children.
Kim, Young Gyu; Park, Young Seok
2015-06-01
A pituicytoma in the sellar area is extremely rare in children and, due to its highly vascularized nature, can be difficult to address using the transsphenoid approach (TSA) to surgery. Here, we report a rare case of a pituicytoma that was completely removed from a child through a staged operation using the TSA. A 13-year-old girl was admitted with a 1-year history of visual disturbance and amenorrhea. Visual field examination showed left total blindness and right temporal hemianopsia. Laboratory results revealed hormonal levels all within normal ranges. Brain magnetic resonance imaging (MRI) showed a homogeneous, highly enhancing sellar and suprasellar mass, typically suggestive of a pituitary adenoma. TSA surgery revealed the tumor had a rubbery-firm consistency, hypervascularity, and profuse bleeding. We removed the tumor partially and planned a second-stage operation. Gross total removal is the treatment of choice for this type of tumor. Attempted resection of these presumed adenomas or meningiomas using the TSA often results in unexpectedly heavy intraoperative bleeding due to the high vascularity of this rare tumor, making surgery challenging, especially in children where the tumor is within a relatively narrow corridor. While pituicytomas are a rare differential diagnosis for sellar or parasellar tumors in children, total removal by second-stage TSA surgery is indicated in the case of profuse bleeding or uncertainty of biopsy. Following first-stage TSA surgery and pathologic confirmation of pituicytoma, the strategy is typically gross total removal during second-stage TSA surgery. Although very rare in children, a pituicytoma should be included in the differential diagnosis of a mass in the sellar area if the tumor is highly enhancing or very vascular. Second-stage TSA surgery is another strategy when the pathology is not clear during the first-stage TSA surgery.
Differential optoacoustic absorption detector
NASA Technical Reports Server (NTRS)
Shumate, M. S. (Inventor)
1978-01-01
A differential optoacoustic absorption detector employed two tapered cells in tandem or in parallel. When operated in tandem, two mirrors were used at one end remote from the source of the beam of light directed into one cell back through the other, and a lens to focus the light beam into the one cell at a principal focus half way between the reflecting mirror. Each cell was tapered to conform to the shape of the beam so that the volume of one was the same as for the other, and the volume of each received maximum illumination. The axes of the cells were placed as close to each other as possible in order to connect a differential pressure detector to the cells with connecting passages of minimum length. An alternative arrangement employed a beam splitter and two lenses to operate the cells in parallel.
Differential thermal voltammetry for tracking of degradation in lithium-ion batteries
NASA Astrophysics Data System (ADS)
Wu, Billy; Yufit, Vladimir; Merla, Yu; Martinez-Botas, Ricardo F.; Brandon, Nigel P.; Offer, Gregory J.
2015-01-01
Monitoring of lithium-ion batteries is of critical importance in electric vehicle applications in order to manage the operational condition of the cells. Measurements on a vehicle often involve current, voltage and temperature which enable in-situ diagnostic techniques. This paper presents a novel diagnostic technique, termed differential thermal voltammetry, which is capable of monitoring the state of the battery using voltage and temperature measurements in galvanostatic operating modes. This tracks battery degradation through phase transitions, and the resulting entropic heat, occurring in the electrodes. Experiments to monitor battery degradation using the new technique are compared with a pseudo-2D cell model. Results show that the differential thermal voltammetry technique provides information comparable to that of slow rate cyclic voltammetry at shorter timescale and with load conditions easier to replicate in a vehicle.
NASA Astrophysics Data System (ADS)
Gallinato, Olivier; Poignard, Clair
2017-06-01
In this paper, we present a superconvergent second order Cartesian method to solve a free boundary problem with two harmonic phases coupled through the moving interface. The model recently proposed by the authors and colleagues describes the formation of cell protrusions. The moving interface is described by a level set function and is advected at the velocity given by the gradient of the inner phase. The finite differences method proposed in this paper consists of a new stabilized ghost fluid method and second order discretizations for the Laplace operator with the boundary conditions (Dirichlet, Neumann or Robin conditions). Interestingly, the method to solve the harmonic subproblems is superconvergent on two levels, in the sense that the first and second order derivatives of the numerical solutions are obtained with the second order of accuracy, similarly to the solution itself. We exhibit numerical criteria on the data accuracy to get such properties and numerical simulations corroborate these criteria. In addition to these properties, we propose an appropriate extension of the velocity of the level-set to avoid any loss of consistency, and to obtain the second order of accuracy of the complete free boundary problem. Interestingly, we highlight the transmission of the superconvergent properties for the static subproblems and their preservation by the dynamical scheme. Our method is also well suited for quasistatic Hele-Shaw-like or Muskat-like problems.
Symbolic Algebra Development for Higher-Order Electron Propagator Formulation and Implementation.
Tamayo-Mendoza, Teresa; Flores-Moreno, Roberto
2014-06-10
Through the use of symbolic algebra, implemented in a program, the algebraic expression of the elements of the self-energy matrix for the electron propagator to different orders were obtained. In addition, a module for the software package Lowdin was automatically generated. Second- and third-order electron propagator results have been calculated to test the correct operation of the program. It was found that the Fortran 90 modules obtained automatically with our algorithm succeeded in calculating ionization energies with the second- and third-order electron propagator in the diagonal approximation. The strategy for the development of this symbolic algebra program is described in detail. This represents a solid starting point for the automatic derivation and implementation of higher-order electron propagator methods.
Testing Ionizers for Nitrogen Discharge of Interferometer Optics
NASA Astrophysics Data System (ADS)
Amen, Timothy; Ugolini, Dennis
2010-10-01
Interferometric gravitational-wave observatories consist of suspended optics in a vacuum chamber. Charge can build up on and then discontinuously jump across an optic, creating a changing electric field, causing the optic to sway, creating a false signal. We studied possible ways to discharge an optic without damaging their reflective coatings. We tried two types of electron guns. The first was built at the University of Washington and uses an ultraviolet LED to free electrons from a magnesium target. We found the current to be three orders of magnitude less than necessary for discharge in a reasonable time. The second gun used was a Bayard-Alpert gauge. To eliminate sputtering caused by the gauge above 10-4 torr, we employed a differential pumping system. We were able to flow nitrogen gas through the main chamber at pressures between 10-2 and 10-3 torr while the gauge chamber was kept two orders of magnitude lower. We successfully discharged the optic. The discharge rate varied exponentially with charge level and operating current and nearly linearly with acceleration voltage, and peaked when the pressure was 8 x 10-3 torr in the main chamber.
The 1D Richards' equation in two layered soils: a Filippov approach to treat discontinuities
NASA Astrophysics Data System (ADS)
Berardi, Marco; Difonzo, Fabio; Vurro, Michele; Lopez, Luciano
2018-05-01
The infiltration process into the soil is generally modeled by the Richards' partial differential equation (PDE). In this paper a new approach for modeling the infiltration process through the interface of two different soils is proposed, where the interface is seen as a discontinuity surface defined by suitable state variables. Thus, the original 1D Richards' PDE, enriched by a particular choice of the boundary conditions, is first approximated by means of a time semidiscretization, that is by means of the transversal method of lines (TMOL). In such a way a sequence of discontinuous initial value problems, described by a sequence of second order differential systems in the space variable, is derived. Then, Filippov theory on discontinuous dynamical systems may be applied in order to study the relevant dynamics of the problem. The numerical integration of the semidiscretized differential system will be performed by using a one-step method, which employs an event driven procedure to locate the discontinuity surface and to adequately change the vector field.
Period of vibration of axially vibrating truly nonlinear rod
NASA Astrophysics Data System (ADS)
Cveticanin, L.
2016-07-01
In this paper the axial vibration of a muscle whose fibers are parallel to the direction of muscle compression is investigated. The model is a clamped-free rod with a strongly nonlinear elastic property. Axial vibration is described by a nonlinear partial differential equation. A solution of the equation is constructed for special initial conditions by using the method of separation of variables. The partial differential equation is separated into two uncoupled strongly nonlinear second order differential equations. Both equations, with displacement function and with time function are exactly determined. Exact solutions are given in the form of inverse incomplete and inverse complete Beta function. Using boundary and initial conditions, the frequency of vibration is obtained. It has to be mentioned that the determined frequency represents the exact analytic description for the axially vibrating truly nonlinear clamped-free rod. The procedure suggested in this paper is applied for calculation of the frequency of the longissimus dorsi muscle of a cow. The influence of elasticity order and elasticity coefficient on the frequency property is tested.
Second-order shaped pulsed for solid-state quantum computation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sengupta, Pinaki
2008-01-01
We present the construction and detailed analysis of highly optimized self-refocusing pulse shapes for several rotation angles. We characterize the constructed pulses by the coefficients appearing in the Magnus expansion up to second order. This allows a semianalytical analysis of the performance of the constructed shapes in sequences and composite pulses by computing the corresponding leading-order error operators. Higher orders can be analyzed with the numerical technique suggested by us previously. We illustrate the technique by analyzing several composite pulses designed to protect against pulse amplitude errors, and on decoupling sequences for potentially long chains of qubits with on-site andmore » nearest-neighbor couplings.« less
Fluid-dynamically coupled solid propellant combustion instability - cold flow simulation
NASA Astrophysics Data System (ADS)
Ben-Reuven, M.
1983-10-01
The near-wall processes in an injected, axisymmetric, viscous flow is examined. Solid propellant rocket instability, in which cold flow simulation is evaluated as a tool to elucidate possible instability driving mechanisms is studied. One such prominent mechanism seems to be visco-acoustic coupling. The formulation is presented in terms of a singular boundary layer problem, with detail (up to second order) given only to the near wall region. The injection Reynolds number is assumed large, and its inverse square root serves as an appropriate small perturbation quantity. The injected Mach number is also small, and taken of the same order as the aforesaid small quantity. The radial-dependence of the inner solutions up to second order is solved, in polynominal form. This leaves the (x,t) dependence to much simpler partial differential equations. Particular results demonstrate the existence of a first order pressure perturbation, which arises due to the dissipative near wall processes. This pressure and the associated viscous friction coefficient are shown to agree very well with experimental injected flow data.
Mean, covariance, and effective dimension of stochastic distributed delay dynamics
NASA Astrophysics Data System (ADS)
René, Alexandre; Longtin, André
2017-11-01
Dynamical models are often required to incorporate both delays and noise. However, the inherently infinite-dimensional nature of delay equations makes formal solutions to stochastic delay differential equations (SDDEs) challenging. Here, we present an approach, similar in spirit to the analysis of functional differential equations, but based on finite-dimensional matrix operators. This results in a method for obtaining both transient and stationary solutions that is directly amenable to computation, and applicable to first order differential systems with either discrete or distributed delays. With fewer assumptions on the system's parameters than other current solution methods and no need to be near a bifurcation, we decompose the solution to a linear SDDE with arbitrary distributed delays into natural modes, in effect the eigenfunctions of the differential operator, and show that relatively few modes can suffice to approximate the probability density of solutions. Thus, we are led to conclude that noise makes these SDDEs effectively low dimensional, which opens the possibility of practical definitions of probability densities over their solution space.
Yang, Yi; Wang, Shuqing; Liu, Yang
2014-01-01
Order insertion often occurs in the scheduling process of logistics service supply chain (LSSC), which disturbs normal time scheduling especially in the environment of mass customization logistics service. This study analyses order similarity coefficient and order insertion operation process and then establishes an order insertion scheduling model of LSSC with service capacity and time factors considered. This model aims to minimize the average unit volume operation cost of logistics service integrator and maximize the average satisfaction degree of functional logistics service providers. In order to verify the viability and effectiveness of our model, a specific example is numerically analyzed. Some interesting conclusions are obtained. First, along with the increase of completion time delay coefficient permitted by customers, the possible inserting order volume first increases and then trends to be stable. Second, supply chain performance reaches the best when the volume of inserting order is equal to the surplus volume of the normal operation capacity in mass service process. Third, the larger the normal operation capacity in mass service process is, the bigger the possible inserting order's volume will be. Moreover, compared to increasing the completion time delay coefficient, improving the normal operation capacity of mass service process is more useful. PMID:25276851
NASA Technical Reports Server (NTRS)
Mcfarland, R. H.
1981-01-01
Specific configurations of first and second order all digital phase locked loops were analyzed for both ideal and additive gaussian noise inputs. In addition, a design for a hardware digital phase locked loop capable of either first or second order operation was evaluated along with appropriate experimental data obtained from testing of the hardware loop. All parameters chosen for the analysis and the design of the digital phase locked loop were consistent with an application to an Omega navigation receiver although neither the analysis nor the design are limited to this application. For all cases tested, the experimental data showed close agreement with the analytical results indicating that the Markov chain model for first and second order digital phase locked loops are valid.
ERIC Educational Resources Information Center
Farnsworth, Megan
2018-01-01
Overrepresentation of Dual Language Learners (DLLs) in special education remains a problem even after 40 years of inquiry. One factor is that the U.S. federal government has neither clearly explained the definition of Specific Learning Disability (SLD) nor operationally defined it to identify children for special education services. This lack of…
DOT National Transportation Integrated Search
1994-08-19
This order establishes interim procedures to approve special instrument approach : operations using privately owned DGPS installations at U.S. and foreign airports/ : runways. It identifies specific criteria, not presently found in existing : standar...
Monitoring heavy metal Cr in soil based on hyperspectral data using regression analysis
NASA Astrophysics Data System (ADS)
Zhang, Ningyu; Xu, Fuyun; Zhuang, Shidong; He, Changwei
2016-10-01
Heavy metal pollution in soils is one of the most critical problems in the global ecology and environment safety nowadays. Hyperspectral remote sensing and its application is capable of high speed, low cost, less risk and less damage, and provides a good method for detecting heavy metals in soil. This paper proposed a new idea of applying regression analysis of stepwise multiple regression between the spectral data and monitoring the amount of heavy metal Cr by sample points in soil for environmental protection. In the measurement, a FieldSpec HandHeld spectroradiometer is used to collect reflectance spectra of sample points over the wavelength range of 325-1075 nm. Then the spectral data measured by the spectroradiometer is preprocessed to reduced the influence of the external factors, and the preprocessed methods include first-order differential equation, second-order differential equation and continuum removal method. The algorithms of stepwise multiple regression are established accordingly, and the accuracy of each equation is tested. The results showed that the accuracy of first-order differential equation works best, which makes it feasible to predict the content of heavy metal Cr by using stepwise multiple regression.
Thermodynamic Analysis of Dual-Mode Scramjet Engine Operation and Performance
NASA Technical Reports Server (NTRS)
Riggins, David; Tacket, Regan; Taylor, Trent; Auslender, Aaron
2006-01-01
Recent analytical advances in understanding the performance continuum (the thermodynamic spectrum) for air-breathing engines based on fundamental second-law considerations have clarified scramjet and ramjet operation, performance, and characteristics. Second-law based analysis is extended specifically in this work to clarify and describe the performance characteristics for dual-mode scramjet operation in the mid-speed range of flight Mach 4 to 7. This is done by a fundamental investigation of the complex but predictable interplay between heat release and irreversibilities in such an engine; results demonstrate the flow and performance character of the dual mode regime and of dual mode transition behavior. Both analytical and computational (multi-dimensional CFD) studies of sample dual-mode flow-fields are performed in order to demonstrate the second-law capability and performance and operability issues. The impact of the dual-mode regime is found to be characterized by decreasing overall irreversibility with increasing heat release, within the operability limits of the system.
Numerical Bifurcation Analysis of Delayed Recycle Stream in a Continuously Stirred Tank Reactor
NASA Astrophysics Data System (ADS)
Gangadhar, Nalwala Rohitbabu; Balasubramanian, Periyasamy
2010-10-01
In this paper, we present the stability analysis of delay differential equations which arise as a result of transportation lag in the CSTR-mechanical separator recycle system. A first order irreversible elementary reaction is considered to model the system and is governed by the delay differential equations. The DDE-BIFTOOL software package is used to analyze the stability of the delay system. The present analysis reveals that the system exhibits delay independent stability for isothermal operation of the CSTR. In the absence of delay, the system is dynamically unstable for non-isothermal operation of the CSTR, and as a result of delay, the system exhibits delay dependent stability.
Practical method and device for enhancing pulse contrast ratio for lasers and electron accelerators
Zhang, Shukui; Wilson, Guy
2014-09-23
An apparatus and method for enhancing pulse contrast ratios for drive lasers and electron accelerators. The invention comprises a mechanical dual-shutter system wherein the shutters are placed sequentially in series in a laser beam path. Each shutter of the dual shutter system has an individually operated trigger for opening and closing the shutter. As the triggers are operated individually, the delay between opening and closing first shutter and opening and closing the second shutter is variable providing for variable differential time windows and enhancement of pulse contrast ratio.
Order of accuracy of QUICK and related convection-diffusion schemes
NASA Technical Reports Server (NTRS)
Leonard, B. P.
1993-01-01
This report attempts to correct some misunderstandings that have appeared in the literature concerning the order of accuracy of the QUICK scheme for steady-state convective modeling. Other related convection-diffusion schemes are also considered. The original one-dimensional QUICK scheme written in terms of nodal-point values of the convected variable (with a 1/8-factor multiplying the 'curvature' term) is indeed a third-order representation of the finite volume formulation of the convection operator average across the control volume, written naturally in flux-difference form. An alternative single-point upwind difference scheme (SPUDS) using node values (with a 1/6-factor) is a third-order representation of the finite difference single-point formulation; this can be written in a pseudo-flux difference form. These are both third-order convection schemes; however, the QUICK finite volume convection operator is 33 percent more accurate than the single-point implementation of SPUDS. Another finite volume scheme, writing convective fluxes in terms of cell-average values, requires a 1/6-factor for third-order accuracy. For completeness, one can also write a single-point formulation of the convective derivative in terms of cell averages, and then express this in pseudo-flux difference form; for third-order accuracy, this requires a curvature factor of 5/24. Diffusion operators are also considered in both single-point and finite volume formulations. Finite volume formulations are found to be significantly more accurate. For example, classical second-order central differencing for the second derivative is exactly twice as accurate in a finite volume formulation as it is in single-point.
NASA Technical Reports Server (NTRS)
Hunt, L. R.; Villarreal, Ramiro
1987-01-01
System theorists understand that the same mathematical objects which determine controllability for nonlinear control systems of ordinary differential equations (ODEs) also determine hypoellipticity for linear partial differentail equations (PDEs). Moreover, almost any study of ODE systems begins with linear systems. It is remarkable that Hormander's paper on hypoellipticity of second order linear p.d.e.'s starts with equations due to Kolmogorov, which are shown to be analogous to the linear PDEs. Eigenvalue placement by state feedback for a controllable linear system can be paralleled for a Kolmogorov equation if an appropriate type of feedback is introduced. Results concerning transformations of nonlinear systems to linear systems are similar to results for transforming a linear PDE to a Kolmogorov equation.
NASA Astrophysics Data System (ADS)
Priya, B. Ganesh; Muthukumar, P.
2018-02-01
This paper deals with the trajectory controllability for a class of multi-order fractional linear systems subject to a constant delay in state vector. The solution for the coupled fractional delay differential equation is established by the Mittag-Leffler function. The necessary and sufficient condition for the trajectory controllability is formulated and proved by the generalized Gronwall's inequality. The approximate trajectory for the proposed system is obtained through the shifted Jacobi operational matrix method. The numerical simulation of the approximate solution shows the theoretical results. Finally, some remarks and comments on the existing results of constrained controllability for the fractional dynamical system are also presented.
NASA Astrophysics Data System (ADS)
Feldman, E. P.; Stefanovich, L. I.; Gumennyk, K. V.
2008-08-01
Kinetics of polydomain spinodal ordering is studied in alloys of AuCu3 type. We introduce four non-conserved long-range order parameters whose sum, however, is conserved and, using the statistical approach, follow the temporal evolution of their random spatial distribution after a rapid temperature quench. A system of nonlinear differential equations for correlators of second and third order is derived. Asymptotical analysis of this system allows to investigate the scaling regime, which develops on the late stages of evolution and to extract additional information concerning the rate of decrease of the specific volume of disordered regions and the rate of decrease of the average thickness of antiphase boundaries. Comparison of these results to experimental data is given. The quench below the spinodal and the onset of long-range order may be separated by the incubation time, whose origin is different from that in first-order phase transitions. Numerical integration of equations for correlators shows also, that it is possible to prepare a sample in such a way that its further evolution will go with formation of transient kinetically slowed polydomain structures different from the final L12 structure.
Clark, Gillian M; Lum, Jarrad A G
2017-10-01
The serial reaction time task (SRTT) has been used to study procedural learning in clinical populations. In this report, second-order meta-analysis was used to investigate whether disorder type moderates performance on the SRTT. Using this approach to quantitatively summarise past research, it was tested whether autism spectrum disorder, developmental coordination disorder, dyslexia, Parkinson's disease, schizophrenia, and specific language impairment differentially affect procedural learning on the SRTT. The main analysis revealed disorder type moderated SRTT performance (p=0.010). This report demonstrates comparable levels of procedural learning impairment in developmental coordination disorder, dyslexia, Parkinson's disease, schizophrenia, and specific language impairment. However, in autism, procedural learning is spared. Copyright © 2017 Elsevier Inc. All rights reserved.
Method for suppressing noise in measurements
NASA Technical Reports Server (NTRS)
Carson, Paul L. (Inventor); Madsen, Louis A. (Inventor); Leskowitz, Garett M. (Inventor); Weitekamp, Daniel P. (Inventor)
2000-01-01
Methods for suppressing noise in measurements by correlating functions based on at least two different measurements of a system at two different times. In one embodiment, a measurement operation is performed on at least a portion of a system that has a memory. A property of the system is measured during a first measurement period to produce a first response indicative of a first state of the system. Then the property of the system is measured during a second measurement period to produce a second response indicative of a second state of the system. The second measurement is performed after an evolution duration subsequent to the first measurement period when the system still retains a degree of memory of an aspect of the first state. Next, a first function of the first response is combined with a second function of the second response to form a second-order correlation function. Information of the system is then extracted from the second-order correlation function.
ERIC Educational Resources Information Center
Pratt, Sharon M.; Martin, Anita M.
2017-01-01
This pilot study explored two methods of eliciting beginning readers' verbalizations of their thinking when self-monitoring oral reading: video-stimulated recall and concurrent questioning. First and second graders (N = 11) were asked to explain their thinking about repetitions, attempts to self-correct, and successful self-corrects, in order to…
On a modified streamline curvature method for the Euler equations
NASA Technical Reports Server (NTRS)
Cordova, Jeffrey Q.; Pearson, Carl E.
1988-01-01
A modification of the streamline curvature method leads to a quasilinear second-order partial differential equation for the streamline coordinate function. The existence of a stream function is not required. The method is applied to subsonic and supersonic nozzle flow, and to axially symmetric flow with swirl. For many situations, the associated numerical method is both fast and accurate.
ERIC Educational Resources Information Center
Dombrowski, Stefan C.; Golay, Philippe; McGill, Ryan J.; Canivez, Gary L.
2018-01-01
Bayesian structural equation modeling (BSEM) was used to investigate the latent structure of the Differential Ability Scales-Second Edition core battery using the standardization sample normative data for ages 7-17. Results revealed plausibility of a three-factor model, consistent with publisher theory, expressed as either a higher-order (HO) or a…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Delgado-Acosta, E. G.; Napsuciale, Mauro; Rodriguez, Simon
We develop a second order formalism for massive spin 1/2 fermions based on the projection over Poincare invariant subspaces in the ((1/2),0)+(0,(1/2)) representation of the homogeneous Lorentz group. Using the U(1){sub em} gauge principle we obtain a second order description for the electromagnetic interactions of a spin 1/2 fermion with two free parameters, the gyromagnetic factor g and a parameter {xi} related to odd-parity Lorentz structures. We calculate Compton scattering in this formalism. In the particular case g=2, {xi}=0, and for states with well-defined parity, we recover Dirac results. In general, we find the correct classical limit and a finitemore » value r{sub c}{sup 2} for the forward differential cross section, independent of the photon energy and of the value of the parameters g and {xi}. The differential cross section vanishes at high energies for all g, {xi} except in the forward direction. The total cross section at high energies vanishes only for g=2, {xi}=0. We argue that this formalism is more convenient than Dirac theory in the description of low energy electromagnetic properties of baryons and illustrate the point with the proton case.« less
Interior radiances in optically deep absorbing media. 1: Exact solutions for one-dimensional model
NASA Technical Reports Server (NTRS)
Kattawar, G. W.; Plass, G. N.
1973-01-01
The exact solutions are obtained for a one dimensional model of a scattering and absorbing medium. The results are given for both the reflected and transmitted radiance for any arbitrary surface albedo as well as for the interior radiance. These same quantities are calculated by the matrix operator method. The relative error of the solutions is obtained by comparison with the exact solutions as well as by an error analysis of the equations. The importance of an accurate starting value for the reflection and transmission operators is shown. A fourth order Runge-Kutta method can be used to solve the differential equations satisfied by these operators in order to obtain such accurate starting values.
A strictly Markovian expansion for plasma turbulence theory
NASA Technical Reports Server (NTRS)
Jones, F. C.
1976-01-01
The collision operator that appears in the equation of motion for a particle distribution function that was averaged over an ensemble of random Hamiltonians is non-Markovian. It is non-Markovian in that it involves a propagated integral over the past history of the ensemble averaged distribution function. All formal expansions of this nonlinear collision operator to date preserve this non-Markovian character term by term yielding an integro-differential equation that must be converted to a diffusion equation by an additional approximation. An expansion is derived for the collision operator that is strictly Markovian to any finite order and yields a diffusion equation as the lowest nontrivial order. The validity of this expansion is seen to be the same as that of the standard quasilinear expansion.
On the location of spectral edges in \\ {Z}-periodic media
NASA Astrophysics Data System (ADS)
Exner, Pavel; Kuchment, Peter; Winn, Brian
2010-11-01
Periodic second-order ordinary differential operators on \\ {R} are known to have the edges of their spectra to occur only at the spectra of periodic and anti-periodic boundary value problems. The multi-dimensional analog of this property is false, as was shown in a 2007 paper by some of the authors of this paper. However, one sometimes encounters the claims that in the case of a single periodicity (i.e., with respect to the lattice \\ {Z}), the 1D property still holds, and spectral edges occur at the periodic and anti-periodic spectra only. In this work, we show that even in the simplest case of quantum graphs this is not true. It is shown that this is true if the graph consists of a 1D chain of finite graphs connected by single edges, while if the connections are formed by at least two edges, the spectral edges can already occur away from the periodic and anti-periodic spectra. This paper is dedicated to the memory of P Duclos.
Active relearning for robust supervised classification of pulmonary emphysema
NASA Astrophysics Data System (ADS)
Raghunath, Sushravya; Rajagopalan, Srinivasan; Karwoski, Ronald A.; Bartholmai, Brian J.; Robb, Richard A.
2012-03-01
Radiologists are adept at recognizing the appearance of lung parenchymal abnormalities in CT scans. However, the inconsistent differential diagnosis, due to subjective aggregation, mandates supervised classification. Towards optimizing Emphysema classification, we introduce a physician-in-the-loop feedback approach in order to minimize uncertainty in the selected training samples. Using multi-view inductive learning with the training samples, an ensemble of Support Vector Machine (SVM) models, each based on a specific pair-wise dissimilarity metric, was constructed in less than six seconds. In the active relearning phase, the ensemble-expert label conflicts were resolved by an expert. This just-in-time feedback with unoptimized SVMs yielded 15% increase in classification accuracy and 25% reduction in the number of support vectors. The generality of relearning was assessed in the optimized parameter space of six different classifiers across seven dissimilarity metrics. The resultant average accuracy improved to 21%. The co-operative feedback method proposed here could enhance both diagnostic and staging throughput efficiency in chest radiology practice.
Split Space-Marching Finite-Volume Method for Chemically Reacting Supersonic Flow
NASA Technical Reports Server (NTRS)
Rizzi, Arthur W.; Bailey, Harry E.
1976-01-01
A space-marching finite-volume method employing a nonorthogonal coordinate system and using a split differencing scheme for calculating steady supersonic flow over aerodynamic shapes is presented. It is a second-order-accurate mixed explicit-implicit procedure that solves the inviscid adiabatic and nondiffusive equations for chemically reacting flow in integral conservation-law form. The relationship between the finite-volume and differential forms of the equations is examined and the relative merits of each discussed. The method admits initial Cauchy data situated on any arbitrary surface and integrates them forward along a general curvilinear coordinate, distorting and deforming the surface as it advances. The chemical kinetics term is split from the convective terms which are themselves dimensionally split, thereby freeing the fluid operators from the restricted step size imposed by the chemical reactions and increasing the computational efficiency. The accuracy of this splitting technique is analyzed, a sufficient stability criterion is established, a representative flow computation is discussed, and some comparisons are made with another method.
Eisenstein Series and String Thresholds
NASA Astrophysics Data System (ADS)
Obers, N. A.; Pioline, B.
We investigate the relevance of Eisenstein series for representing certain G()-invariant string theory amplitudes which receive corrections from BPS states only. G() may stand for any of the mapping class, T-duality and U-duality groups Sl(d,(), SO(d,d,() or Ed+1(d+1)(() respectively. Using G()-invariant mass formulae, we construct invariant modular functions on the symmetric space K\\G() of non-compact type, with K the maximal compact subgroup of G(), that generalize the standard non-holomorphic Eisenstein series arising in harmonic analysis on the fundamental domain of the Poincaré upper half-plane. Comparing the asymptotics and eigenvalues of the Eisenstein series under second order differential operators with quantities arising in one- and g-loop string amplitudes, we obtain a manifestly T-duality invariant representation of the latter, conjecture their non-perturbative U-duality invariant extension, and analyze the resulting non-perturbative effects. This includes the R4 and R4H4g-4 couplings in toroidal compactifications of M-theory to any dimension D>= 4 and D>= 6 respectively.
NASA Astrophysics Data System (ADS)
Li, Jianhua; Qiu, Jichuan; Guo, Weibo; Wang, Shu; Ma, Baojin; Mou, Xiaoning; Tanes, Michael; Jiang, Huaidong; Liu, Hong
2016-03-01
Second harmonic generation (SHG) nanocrystals have recently been reported to label cancer cells and other functional cell lines due to their unique double-frequency property. In this paper, we report for the first time the use of lithium niobate (LiNbO3, LN) nanocrystals as SHG labels for imaging stem cells. Rat mesenchymal stem cells (rMSCs) were labeled with LN nanocrystals in order to study the cellular internalization of the nanocrystals and the influence on stem cell differentiation. The results showed that LN nanocrystals were endocytosed by the rMSCs and the distribution of the internalized nanoparticles demonstrated a high consistency with the orientation of the actin filaments. Besides, LN-labeled rMSCs showed a concentration-dependent viability. Most importantly, rMSCs labeled with 50 μg per mL of LN nanocrystals retained their ability to differentiate into both osteogenic and adipogenic lineages. The results prove that LN nanocrystals can be used as a cytocompatible, near-infrared (NIR) light driven cell label for long-term imaging, without hindering stem cell differentiation. This work will promote the use of LN nanocrystals to broader applications like deep-tissue tracking, remote drug delivery and stem cell therapy.Second harmonic generation (SHG) nanocrystals have recently been reported to label cancer cells and other functional cell lines due to their unique double-frequency property. In this paper, we report for the first time the use of lithium niobate (LiNbO3, LN) nanocrystals as SHG labels for imaging stem cells. Rat mesenchymal stem cells (rMSCs) were labeled with LN nanocrystals in order to study the cellular internalization of the nanocrystals and the influence on stem cell differentiation. The results showed that LN nanocrystals were endocytosed by the rMSCs and the distribution of the internalized nanoparticles demonstrated a high consistency with the orientation of the actin filaments. Besides, LN-labeled rMSCs showed a concentration-dependent viability. Most importantly, rMSCs labeled with 50 μg per mL of LN nanocrystals retained their ability to differentiate into both osteogenic and adipogenic lineages. The results prove that LN nanocrystals can be used as a cytocompatible, near-infrared (NIR) light driven cell label for long-term imaging, without hindering stem cell differentiation. This work will promote the use of LN nanocrystals to broader applications like deep-tissue tracking, remote drug delivery and stem cell therapy. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr00785f
Optical nonlinearities of excitons in monolayer MoS2
NASA Astrophysics Data System (ADS)
Soh, Daniel B. S.; Rogers, Christopher; Gray, Dodd J.; Chatterjee, Eric; Mabuchi, Hideo
2018-04-01
We calculate linear and nonlinear optical susceptibilities arising from the excitonic states of monolayer MoS2 for in-plane light polarizations, using second-quantized bound and unbound exciton operators. Optical selection rules are critical for obtaining the susceptibilities. We derive the valley-chirality rule for the second-order harmonic generation in monolayer MoS2 and find that the third-order harmonic process is efficient only for linearly polarized input light while the third-order two-photon process (optical Kerr effect) is efficient for circularly polarized light using a higher order exciton state. The absence of linear absorption due to the band gap and the unusually strong two-photon third-order nonlinearity make the monolayer MoS2 excitonic structure a promising resource for coherent nonlinear photonics.
Naiki, Taku; Etani, Toshiki; Naiki-Ito, Aya; Fujii, Kana; Ando, Ryosuke; Iida, Keitaro; Nagai, Takashi; Sugiyama, Yosuke; Nakagawa, Motoo; Kawai, Noriyasu; Yasui, Takahiro
2017-01-01
The prognostic significance of glandular differentiation in urothelial carcinoma (UC) is controversial, and thus far there is no established treatment strategy against metastasis of glandular component. We describe here a case of metastatic UC with glandular differentiation that had histological disappearance of adenocarcinoma components at autopsy after sequential chemotherapy with S-1 and cisplatin (CDDP) and with mFOLFOX6 (fluorouracil, oxaliplatin, and leucovorin) plus bevacizumab (mFOLFOX6+Bev). A 62-year-old Asian male was diagnosed with invasive UC with glandular differentiation (T2N0M0) by radical cystectomy and ileal conduit, and careful follow-up observation was made. Eight years after radical operation, peritoneal metastases occurred, and a biopsy specimen using colon fiber revealed high-grade adenocarcinomas with an immunohistochemical profile that included positivity for cytokeratin 7 (CK7) and negativity for cytokeratin 20 (CK20) and uroplakin, which was identical to the radical cystectomy specimen. Thus, he received combination chemotherapy consisting of S-1 and CDDP; however, the peritoneal metastasis worsened after 2 cycles. Therefore, second-line mFOLFOX6+Bev chemotherapy was performed for a total of 5 courses. In spite of this, the patient died, and the final diagnosis by autopsy was multiple metastases of infiltrating pure UC to the lung, bone, and peritoneum. Interestingly, there were no pathological findings of adenocarcinoma, and the immunohistochemical profile of the metastatic lesions was identical to that of the previous specimens from the bladder and colon. This suggests that sequential chemotherapy of S-1 and CDDP and second-line mFOLFOX6+Bev might be a feasible option in metastatic UC with glandular differentiation. PMID:29515396
Modeling of aircraft unsteady aerodynamic characteristics. Part 1: Postulated models
NASA Technical Reports Server (NTRS)
Klein, Vladislav; Noderer, Keith D.
1994-01-01
A short theoretical study of aircraft aerodynamic model equations with unsteady effects is presented. The aerodynamic forces and moments are expressed in terms of indicial functions or internal state variables. The first representation leads to aircraft integro-differential equations of motion; the second preserves the state-space form of the model equations. The formulations of unsteady aerodynamics is applied in two examples. The first example deals with a one-degree-of-freedom harmonic motion about one of the aircraft body axes. In the second example, the equations for longitudinal short-period motion are developed. In these examples, only linear aerodynamic terms are considered. The indicial functions are postulated as simple exponentials and the internal state variables are governed by linear, time-invariant, first-order differential equations. It is shown that both approaches to the modeling of unsteady aerodynamics lead to identical models.
NASA Technical Reports Server (NTRS)
Udwadia, F. E.; Garba, J. A.
1983-01-01
This paper deals with the identification of spatially varying parameters in systems of finite spatial extent which can be described by second order hyperbolic differential equations. Two questions have been addressed. The first deals with 'partial identification' and inquires into the possibility of retrieving all the eigenvalues of the system from response data obtained at one location x-asterisk epsilon (0, 1). The second deals with the identification of the distributed coefficients rho(x), a(x) and b(x). Sufficient conditions for unique identification of all the eigenvalues of the system are obtained, and conditions under which the coefficients can be uniquely identified using suitable response data obtained at one point in the spatial domain are determined. Application of the results and their usefulness is demonstrated in the identification of the properties of tall building structural systems subjected to dynamic load environments.
Cosmological perturbations in mimetic Horndeski gravity
NASA Astrophysics Data System (ADS)
Arroja, Frederico; Bartolo, Nicola; Karmakar, Purnendu; Matarrese, Sabino
2016-04-01
We study linear scalar perturbations around a flat FLRW background in mimetic Horndeski gravity. In the absence of matter, we show that the Newtonian potential satisfies a second-order differential equation with no spatial derivatives. This implies that the sound speed for scalar perturbations is exactly zero on this background. We also show that in mimetic G3 theories the sound speed is equally zero. We obtain the equation of motion for the comoving curvature perturbation (first order differential equation) and solve it to find that the comoving curvature perturbation is constant on all scales in mimetic Horndeski gravity. We find solutions for the Newtonian potential evolution equation in two simple models. Finally we show that the sound speed is zero on all backgrounds and therefore the system does not have any wave-like scalar degrees of freedom.
Higher-derivative operators and effective field theory for general scalar-tensor theories
NASA Astrophysics Data System (ADS)
Solomon, Adam R.; Trodden, Mark
2018-02-01
We discuss the extent to which it is necessary to include higher-derivative operators in the effective field theory of general scalar-tensor theories. We explore the circumstances under which it is correct to restrict to second-order operators only, and demonstrate this using several different techniques, such as reduction of order and explicit field redefinitions. These methods are applied, in particular, to the much-studied Horndeski theories. The goal is to clarify the application of effective field theory techniques in the context of popular cosmological models, and to explicitly demonstrate how and when higher-derivative operators can be cast into lower-derivative forms suitable for numerical solution techniques.
76 FR 25344 - Information Collection(s) Being Reviewed by the Federal Communications Commission
Federal Register 2010, 2011, 2012, 2013, 2014
2011-05-04
... Second Report and Order the Commission decided to designate one or more database administrators from the private sector to create and operate TV bands databases. The TV band database administrators will act on behalf of the FCC, but will offer a privately owned and operated service. Each database administrator...
Numerical scheme approximating solution and parameters in a beam equation
NASA Astrophysics Data System (ADS)
Ferdinand, Robert R.
2003-12-01
We present a mathematical model which describes vibration in a metallic beam about its equilibrium position. This model takes the form of a nonlinear second-order (in time) and fourth-order (in space) partial differential equation with boundary and initial conditions. A finite-element Galerkin approximation scheme is used to estimate model solution. Infinite-dimensional model parameters are then estimated numerically using an inverse method procedure which involves the minimization of a least-squares cost functional. Numerical results are presented and future work to be done is discussed.
Stability analysis of gyroscopic systems with delay via decomposition
NASA Astrophysics Data System (ADS)
Aleksandrov, A. Yu.; Zhabko, A. P.; Chen, Y.
2018-05-01
A mechanical system describing by the second order linear differential equations with a positive parameter at the velocity forces and with time delay in the positional forces is studied. Using the decomposition method and Lyapunov-Krasovskii functionals, conditions are obtained under which from the asymptotic stability of two auxiliary first order subsystems it follows that, for sufficiently large values of the parameter, the original system is also asymptotically stable. Moreover, it is shown that the proposed approach can be applied to the stability investigation of linear gyroscopic systems with switched positional forces.
NASA Technical Reports Server (NTRS)
Goodrich, John W.
1991-01-01
An algorithm is presented for unsteady two-dimensional incompressible Navier-Stokes calculations. This algorithm is based on the fourth order partial differential equation for incompressible fluid flow which uses the streamfunction as the only dependent variable. The algorithm is second order accurate in both time and space. It uses a multigrid solver at each time step. It is extremely efficient with respect to the use of both CPU time and physical memory. It is extremely robust with respect to Reynolds number.
Optimization of Second Fault Detection Thresholds to Maximize Mission POS
NASA Technical Reports Server (NTRS)
Anzalone, Evan
2018-01-01
In order to support manned spaceflight safety requirements, the Space Launch System (SLS) has defined program-level requirements for key systems to ensure successful operation under single fault conditions. To accommodate this with regards to Navigation, the SLS utilizes an internally redundant Inertial Navigation System (INS) with built-in capability to detect, isolate, and recover from first failure conditions and still maintain adherence to performance requirements. The unit utilizes multiple hardware- and software-level techniques to enable detection, isolation, and recovery from these events in terms of its built-in Fault Detection, Isolation, and Recovery (FDIR) algorithms. Successful operation is defined in terms of sufficient navigation accuracy at insertion while operating under worst case single sensor outages (gyroscope and accelerometer faults at launch). In addition to first fault detection and recovery, the SLS program has also levied requirements relating to the capability of the INS to detect a second fault, tracking any unacceptable uncertainty in knowledge of the vehicle's state. This detection functionality is required in order to feed abort analysis and ensure crew safety. Increases in navigation state error and sensor faults can drive the vehicle outside of its operational as-designed environments and outside of its performance envelope causing loss of mission, or worse, loss of crew. The criteria for operation under second faults allows for a larger set of achievable missions in terms of potential fault conditions, due to the INS operating at the edge of its capability. As this performance is defined and controlled at the vehicle level, it allows for the use of system level margins to increase probability of mission success on the operational edges of the design space. Due to the implications of the vehicle response to abort conditions (such as a potentially failed INS), it is important to consider a wide range of failure scenarios in terms of both magnitude and time. As such, the Navigation team is taking advantage of the INS's capability to schedule and change fault detection thresholds in flight. These values are optimized along a nominal trajectory in order to maximize probability of mission success, and reducing the probability of false positives (defined as when the INS would report a second fault condition resulting in loss of mission, but the vehicle would still meet insertion requirements within system-level margins). This paper will describe an optimization approach using Genetic Algorithms to tune the threshold parameters to maximize vehicle resilience to second fault events as a function of potential fault magnitude and time of fault over an ascent mission profile. The analysis approach, and performance assessment of the results will be presented to demonstrate the applicability of this process to second fault detection to maximize mission probability of success.
Gravitational collapse of a turbulent vortex with application to star formation
NASA Technical Reports Server (NTRS)
Deissler, R. G.
1976-01-01
The gravitational collapse of a rotating cloud or vortex is analyzed by expanding the dependent variables in the equations of motion in two-dimensional Taylor series in the space variables. It is shown that the gravitational and rotational terms in the equations are of first order in the space variables, the pressure-gradient terms are of second order, and the turbulent-viscosity term is of third order. The presence of turbulent viscosity ensures that the initial rotation is solid-body-like near the origin. The effect of pressure on the collapse process is found to depend on the shape of the initial density disturbance at the origin. Dimensionless collapse times, as well as the evolution of density and velocity, are calculated by solving numerically the system of nonlinear ordinary differential equations resulting from the series expansions. The axial flow is always inward and allows collapse to occur (axially) even when the rotation is large. An approximate solution of the governing partial differential equations is also given in order to study the spatial distributions of the density and velocity.
Gravitational collapse of a turbulent vortex with application to star formation
NASA Technical Reports Server (NTRS)
Deissler, R. G.
1975-01-01
The gravitational collapse of a rotating cloud or vortex is analyzed by expanding the dependent variables in the equations of motion in two-dimensional Taylor series in the space variables. It is shown that the gravitation and rotation terms in the equations are of first order in the space variables, the pressure gradient terms are of second order, and the turbulent viscosity term is of third order. The presence of a turbulent viscosity insures that the initial rotation is solid-body-like near the origin. The effect of pressure on the collapse process is found to depend on the shape of the intial density disturbance at the origin. Dimensionless collapse times, as well as the evolution of density and velocity, are calculated by solving numerically the system of nonlinear ordinary differential equations resulting from the series expansions. The axial inflow plays an important role and allows collapse to occur even when the rotation is large. An approximate solution of the governing partial differential equations is also given, in order to study the spacial distributions of the density and velocity.
Nonclassical point of view of the Brownian motion generation via fractional deterministic model
NASA Astrophysics Data System (ADS)
Gilardi-Velázquez, H. E.; Campos-Cantón, E.
In this paper, we present a dynamical system based on the Langevin equation without stochastic term and using fractional derivatives that exhibit properties of Brownian motion, i.e. a deterministic model to generate Brownian motion is proposed. The stochastic process is replaced by considering an additional degree of freedom in the second-order Langevin equation. Thus, it is transformed into a system of three first-order linear differential equations, additionally α-fractional derivative are considered which allow us to obtain better statistical properties. Switching surfaces are established as a part of fluctuating acceleration. The final system of three α-order linear differential equations does not contain a stochastic term, so the system generates motion in a deterministic way. Nevertheless, from the time series analysis, we found that the behavior of the system exhibits statistics properties of Brownian motion, such as, a linear growth in time of mean square displacement, a Gaussian distribution. Furthermore, we use the detrended fluctuation analysis to prove the Brownian character of this motion.
NASA Astrophysics Data System (ADS)
Doha, E. H.
2004-01-01
Formulae expressing explicitly the Jacobi coefficients of a general-order derivative (integral) of an infinitely differentiable function in terms of its original expansion coefficients, and formulae for the derivatives (integrals) of Jacobi polynomials in terms of Jacobi polynomials themselves are stated. A formula for the Jacobi coefficients of the moments of one single Jacobi polynomial of certain degree is proved. Another formula for the Jacobi coefficients of the moments of a general-order derivative of an infinitely differentiable function in terms of its original expanded coefficients is also given. A simple approach in order to construct and solve recursively for the connection coefficients between Jacobi-Jacobi polynomials is described. Explicit formulae for these coefficients between ultraspherical and Jacobi polynomials are deduced, of which the Chebyshev polynomials of the first and second kinds and Legendre polynomials are important special cases. Two analytical formulae for the connection coefficients between Laguerre-Jacobi and Hermite-Jacobi are developed.
A new solution procedure for a nonlinear infinite beam equation of motion
NASA Astrophysics Data System (ADS)
Jang, T. S.
2016-10-01
Our goal of this paper is of a purely theoretical question, however which would be fundamental in computational partial differential equations: Can a linear solution-structure for the equation of motion for an infinite nonlinear beam be directly manipulated for constructing its nonlinear solution? Here, the equation of motion is modeled as mathematically a fourth-order nonlinear partial differential equation. To answer the question, a pseudo-parameter is firstly introduced to modify the equation of motion. And then, an integral formalism for the modified equation is found here, being taken as a linear solution-structure. It enables us to formulate a nonlinear integral equation of second kind, equivalent to the original equation of motion. The fixed point approach, applied to the integral equation, results in proposing a new iterative solution procedure for constructing the nonlinear solution of the original beam equation of motion, which consists luckily of just the simple regular numerical integration for its iterative process; i.e., it appears to be fairly simple as well as straightforward to apply. A mathematical analysis is carried out on both natures of convergence and uniqueness of the iterative procedure by proving a contractive character of a nonlinear operator. It follows conclusively,therefore, that it would be one of the useful nonlinear strategies for integrating the equation of motion for a nonlinear infinite beam, whereby the preceding question may be answered. In addition, it may be worth noticing that the pseudo-parameter introduced here has double roles; firstly, it connects the original beam equation of motion with the integral equation, second, it is related with the convergence of the iterative method proposed here.
Isolated Polynucleotides and Methods of Promoting a Morphology in a Fungus
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lasure, Linda L; Dai, Ziyu
2008-10-21
The invention includes isolated polynucleotide molecules that are differentially expressed in a native fungus exhibiting a first morphology relative to the native fungus exhibiting a second morphology. The invention includes a method of enhancing a bioprocess utilizing a fungus. A transformed fungus is produced by transforming a fungus with a recombinant polynucleotide molecule. The recombinant polynucleotide molecule contains an isolated polynucleotide sequence linked operably to a promoter. The polynucleotide sequence is expressed to promote a first morphology. The first morphology of the transformed fungus enhances a bioprocess relative to the bioprocess utilizing a second morphology.
NASA Technical Reports Server (NTRS)
Chamberlain, Robert G.; Duquette, William H.; Provenzano, Joseph P.; Brunzie, Theodore J.; Jordan, Benjamin
2011-01-01
The Athena simulation software supports an analyst from DoD or other federal agency in making stability and reconstruction projections for operational analyses in areas like Iraq or Afghanistan. It encompasses the use of all elements of national power: diplomatic, information, military, and economic (DIME), and anticipates their effects on political, military, economic, social, information, and infrastructure (PMESII) variables in real-world battle space environments. Athena is a stand-alone model that provides analysts with insights into the effectiveness of complex operations by anticipating second-, third-, and higher-order effects. For example, the first-order effect of executing a curfew may be to reduce insurgent activity, but it may also reduce consumer spending and keep workers home as second-order effects. Reduced spending and reduced labor may reduce the gross domestic product (GDP) as a third-order effect. Damage to the economy will have further consequences. The Athena approach has also been considered for application in studies related to climate change and the smart grid. It can be applied to any project where the impacts on the population and their perceptions are important, and where population perception is important to the success of the project.
NASA Astrophysics Data System (ADS)
Hoell, Simon; Omenzetter, Piotr
2016-04-01
Fueled by increasing demand for carbon neutral energy, erections of ever larger wind turbines (WTs), with WT blades (WTBs) with higher flexibilities and lower buckling capacities lead to increasing operation and maintenance costs. This can be counteracted with efficient structural health monitoring (SHM), which allows scheduling maintenance actions according to the structural state and preventing dramatic failures. The present study proposes a novel multi-step approach for vibration-based structural damage localization and severity estimation for application in operating WTs. First, partial autocorrelation coefficients (PACCs) are estimated from vibrational responses. Second, principal component analysis is applied to PACCs from the healthy structure in order to calculate scores. Then, the scores are ranked with respect to their ability to differentiate different damage scenarios. This ranking information is used for constructing hierarchical adaptive neuro-fuzzy inference systems (HANFISs), where cross-validation is used to identify optimal numbers of hierarchy levels. Different HANFISs are created for the purposes of structural damage localization and severity estimation. For demonstrating the applicability of the approach, experimental data are superimposed with signals from numerical simulations to account for characteristics of operational noise. For the physical experiments, a small scale WTB is excited with a domestic fan and damage scenarios are introduced non-destructively by attaching small masses. Numerical simulations are also performed for a representative fully functional small WT operating in turbulent wind. The obtained results are promising for future applications of vibration-based SHM to facilitate improved safety and reliability of WTs at lower costs.
NASA Technical Reports Server (NTRS)
Fisher, Travis C.; Carpenter, Mark H.; Yamaleev, Nail K.; Frankel, Steven H.
2009-01-01
A general strategy exists for constructing Energy Stable Weighted Essentially Non Oscillatory (ESWENO) finite difference schemes up to eighth-order on periodic domains. These ESWENO schemes satisfy an energy norm stability proof for both continuous and discontinuous solutions of systems of linear hyperbolic equations. Herein, boundary closures are developed for the fourth-order ESWENO scheme that maintain wherever possible the WENO stencil biasing properties, while satisfying the summation-by-parts (SBP) operator convention, thereby ensuring stability in an L2 norm. Second-order, and third-order boundary closures are developed that achieve stability in diagonal and block norms, respectively. The global accuracy for the second-order closures is three, and for the third-order closures is four. A novel set of non-uniform flux interpolation points is necessary near the boundaries to simultaneously achieve 1) accuracy, 2) the SBP convention, and 3) WENO stencil biasing mechanics.
Multi-Rate Digital Control Systems with Simulation Applications. Volume I. Technical Report
1980-09-01
108 45. A Pseudo Differentiation Configuration ........................ 110 46. Bode Plot, Pseudo Differentiation ...symbolically in Fig. 7a and for 11 x 2 in Fig. 7b. (* notation on x2is used here to indicate an "unconven- tional" sampling operation.) 115 TXi ,A! T...the general multi-rate/multiple-order open-loop system of Fig. 21 have a sine wave input. In Fig 2L, = (GIRj) (114) CT/N = [GGRt]T/N ( 115 ) where a, B
Power transmission device for four wheel drive vehicle
DOE Office of Scientific and Technical Information (OSTI.GOV)
Iwatsuki, T.; Kawamoto, M.; Kano, T.
This patent describes a power transmission device with an improved differential motion limiting mechanism for a four wheel drive vehicle having automatic transmission means, front wheel differential gear means, differential motion limiting means and transfer unit means including center differential gear means, comprising: a first gear mount casing having a gear adapted to mesh with an output of a transmission; a differential motion limiting device arranged together with a front wheel differential gear in the first gear mount casing. The front wheel differential gear having a first diff-carrier and the differential motion limiting device comprising a hydraulic friction clutch formore » engaging and disengaging the first gear mount casing with the first diff-carrier of the front wheel differential gear; a second gear mount casing disposed coaxially with respect to the first gear mount casing; and a transfer unit including a center differential gear arranged in the second gear mount casing, the center differential gear comprising a second diff-carrier coupled with the first gear mount casing, a first side gear coupled with the first diff-carrier of the front wheel differential gear, and a second side gear coupled with the second gear mount casing for transmitting power to the rear wheels.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jursenas, Rytis, E-mail: Rytis.Jursenas@tfai.vu.l; Merkelis, Gintaras
2011-01-15
General expressions for the second-order effective atomic Hamiltonian are derived for open-subshell atoms in jj-coupling. The expansion terms are presented as N-body (N=0,1,2,3) effective operators given in the second quantization representation in coupled tensorial form. Two alternative coupled tensorial forms for each expansion term have been developed. To reduce the number of expressions of the effective Hamiltonian, the reduced matrix elements of antisymmetric two-particle wavefunctions are involved in the consideration. The general expressions presented allow the determination of the spin-angular part of expansion terms when studying correlation effects dealing with a number of problems in atomic structure calculations.
Forbes, Thomas P; Staymates, Matthew; Sisco, Edward
2017-08-07
Wipe collected analytes were thermally desorbed using broad spectrum near infrared heating for mass spectrometric detection. Employing a twin tube filament-based infrared emitter, rapid and efficiently powered thermal desorption and detection of nanogram levels of explosives and narcotics was demonstrated. The infrared thermal desorption (IRTD) platform developed here used multi-mode heating (direct radiation and secondary conduction from substrate and subsequent convection from air) and a temperature ramp to efficiently desorb analytes with vapor pressures across eight orders of magnitude. The wipe substrate experienced heating rates up to (85 ± 2) °C s -1 with a time constant of (3.9 ± 0.2) s for 100% power emission. The detection of trace analytes was also demonstrated from complex mixtures, including plastic-bonded explosives and exogenous narcotics, explosives, and metabolites from collected artificial latent fingerprints. Manipulation of the emission power and duration directly controlled the heating rate and maximum temperature, enabling differential thermal desorption and a level of upstream separation for enhanced specificity. Transitioning from 100% power and 5 s emission duration to 25% power and 30 s emission enabled an order of magnitude increase in the temporal separation (single seconds to tens of seconds) of the desorption of volatile and semi-volatile species within a collected fingerprint. This mode of operation reduced local gas-phase concentrations, reducing matrix effects experienced with high concentration mixtures. IRTD provides a unique platform for the desorption of trace analytes from wipe collections, an area of importance to the security sector, transportation agencies, and customs and border protection.
Epiphyseal osteochondroma of the anterior cruciate ligament.
Chekofsky, K M; Scott, W N; Fielding, J W
1979-01-01
An 8-year-old Black boy complained of pain, swelling, and a decreased range of motion in the knee. One arthrotomy operation was reported to show a normal knee joint. Six months later, a second arthrotomy demonstrated an osteochondroma growing from the epiphysis into the anterior cruciate ligament. Epiphyseal osteochondroma should be added to the working differential diagnosis on children with effusion and decrease of knee motion.
Neural correlates of processing facial identity based on features versus their spacing.
Maurer, D; O'Craven, K M; Le Grand, R; Mondloch, C J; Springer, M V; Lewis, T L; Grady, C L
2007-04-08
Adults' expertise in recognizing facial identity involves encoding subtle differences among faces in the shape of individual facial features (featural processing) and in the spacing among features (a type of configural processing called sensitivity to second-order relations). We used fMRI to investigate the neural mechanisms that differentiate these two types of processing. Participants made same/different judgments about pairs of faces that differed only in the shape of the eyes and mouth, with minimal differences in spacing (featural blocks), or pairs of faces that had identical features but differed in the positions of those features (spacing blocks). From a localizer scan with faces, objects, and houses, we identified regions with comparatively more activity for faces, including the fusiform face area (FFA) in the right fusiform gyrus, other extrastriate regions, and prefrontal cortices. Contrasts between the featural and spacing conditions revealed distributed patterns of activity differentiating the two conditions. A region of the right fusiform gyrus (near but not overlapping the localized FFA) showed greater activity during the spacing task, along with multiple areas of right frontal cortex, whereas left prefrontal activity increased for featural processing. These patterns of activity were not related to differences in performance between the two tasks. The results indicate that the processing of facial features is distinct from the processing of second-order relations in faces, and that these functions are mediated by separate and lateralized networks involving the right fusiform gyrus, although the FFA as defined from a localizer scan is not differentially involved.
Theory of biaxial graded-index optical fiber. M.S. Thesis
NASA Technical Reports Server (NTRS)
Kawalko, Stephen F.
1990-01-01
A biaxial graded-index fiber with a homogeneous cladding is studied. Two methods, wave equation and matrix differential equation, of formulating the problem and their respective solutions are discussed. For the wave equation formulation of the problem it is shown that for the case of a diagonal permittivity tensor the longitudinal electric and magnetic fields satisfy a pair of coupled second-order differential equations. Also, a generalized dispersion relation is derived in terms of the solutions for the longitudinal electric and magnetic fields. For the case of a step-index fiber, either isotropic or uniaxial, these differential equations can be solved exactly in terms of Bessel functions. For the cases of an istropic graded-index and a uniaxial graded-index fiber, a solution using the Wentzel, Krammers and Brillouin (WKB) approximation technique is shown. Results for some particular permittivity profiles are presented. Also the WKB solutions is compared with the vector solution found by Kurtz and Streifer. For the matrix formulation it is shown that the tangential components of the electric and magnetic fields satisfy a system of four first-order differential equations which can be conveniently written in matrix form. For the special case of meridional modes, the system of equations splits into two systems of two equations. A general iterative technique, asymptotic partitioning of systems of equations, for solving systems of differential equations is presented. As a simple example, Bessel's differential equation is written in matrix form and is solved using this asymptotic technique. Low order solutions for particular examples of a biaxial and uniaxial graded-index fiber are presented. Finally numerical results obtained using the asymptotic technique are presented for particular examples of isotropic and uniaxial step-index fibers and isotropic, uniaxial and biaxial graded-index fibers.
The effect of mild motion sickness and sopite syndrome on multitasking cognitive performance.
Matsangas, Panagiotis; McCauley, Michael E; Becker, William
2014-09-01
In this study, we investigated the effects of mild motion sickness and sopite syndrome on multitasking cognitive performance. Despite knowledge on general motion sickness, little is known about the effect of motion sickness and sopite syndrome on multitasking cognitive performance. Specifically, there is a gap in existing knowledge in the gray area of mild motion sickness. Fifty-one healthy individuals performed a multitasking battery. Three independent groups of participants were exposed to two experimental sessions. Two groups received motion only in the first or the second session, whereas the control group did not receive motion. Measurements of motion sickness, sopite syndrome, alertness, and performance were collected during the experiment Only during the second session, motion sickness and sopite syndrome had a significant negative association with cognitive performance. Significant performance differences between symptomatic and asymptomatic participants in the second session were identified in composite (9.43%), memory (31.7%), and arithmetic (14.7%) task scores. The results suggest that performance retention between sessions was not affected by mild motion sickness. Multitasking cognitive performance declined even when motion sickness and soporific symptoms were mild. The results also show an order effect. We postulate that the differential effect of session on the association between symptomatology and multitasking performance may be related to the attentional resources allocated to performing the multiple tasks. Results suggest an inverse relationship between motion sickness effects on performance and the cognitive effort focused on performing a task. Even mild motion sickness has potential implications for multitasking operational performance.
NASA Technical Reports Server (NTRS)
Lewis, Robert Michael
1997-01-01
This paper discusses the calculation of sensitivities. or derivatives, for optimization problems involving systems governed by differential equations and other state relations. The subject is examined from the point of view of nonlinear programming, beginning with the analytical structure of the first and second derivatives associated with such problems and the relation of these derivatives to implicit differentiation and equality constrained optimization. We also outline an error analysis of the analytical formulae and compare the results with similar results for finite-difference estimates of derivatives. We then attend to an investigation of the nature of the adjoint method and the adjoint equations and their relation to directions of steepest descent. We illustrate the points discussed with an optimization problem in which the variables are the coefficients in a differential operator.
Mitigating the Shortage of Special Operations Aviation By an Unconventional Approach
2017-12-01
Second World War, and the majority of air power theorists suggested that when technology finally caught up with the inherent ability of aviation, air...assessment of an American expert [Richard D. Newton, Joint Special Operations University] in air special operations at the Air Force’s annual Air Power ...scope and time in order to “seize, destroy, disrupt, capture, exploit, recover, or damage high value or high pay-off targets.”48 When these operations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moryakov, A. V., E-mail: sailor@orc.ru
2016-12-15
An algorithm for solving the linear Cauchy problem for large systems of ordinary differential equations is presented. The algorithm for systems of first-order differential equations is implemented in the EDELWEISS code with the possibility of parallel computations on supercomputers employing the MPI (Message Passing Interface) standard for the data exchange between parallel processes. The solution is represented by a series of orthogonal polynomials on the interval [0, 1]. The algorithm is characterized by simplicity and the possibility to solve nonlinear problems with a correction of the operator in accordance with the solution obtained in the previous iterative process.
Analysis of differential and active charging phenomena on ATS-5 and ATS-6
NASA Technical Reports Server (NTRS)
Olsen, R. C.; Whipple, E. C., Jr.
1980-01-01
Spacecraft charging on the differential charging and artificial particle emission experiments on ATS 5 and ATS 6 were studied. Differential charging of spacecraft surfaces generated large electrostatic barriers to spacecraft generated electrons, from photoemission, secondary emission, and thermal emitters. The electron emitter could partially or totally discharge the satellite, but the mainframe recharged negatively in a few 10's of seconds. The time dependence of the charging behavior was explained by the relatively large capacitance for differential charging in comparison to the small spacecraft to space capacitance. A daylight charging event on ATS 6 was shown to have a charging behavior suggesting the dominance of differential charging on the absolute potential of the mainframe. Ion engine operations and plasma emission experiments on ATS 6 were shown to be an effective means of controlling the spacecraft potential in eclipse and sunlight. Elimination of barrier effects around the detectors and improving the quality of the particle data are discussed.
NASA Astrophysics Data System (ADS)
Jiang, Wen; Yang, Yanfu; Zhang, Qun; Sun, Yunxu; Zhong, Kangping; Zhou, Xian; Yao, Yong
2016-09-01
The frequency offset estimation (FOE) schemes based on Kalman filter are proposed and investigated in detail via numerical simulation and experiment. The schemes consist of a modulation phase removing stage and Kalman filter estimation stage. In the second stage, the Kalman filters are employed for tracking either differential angles or differential data between two successive symbols. Several implementations of the proposed FOE scheme are compared by employing different modulation removing methods and two Kalman algorithms. The optimal FOE implementation is suggested for different operating conditions including optical signal-to-noise ratio and the number of the available data symbols.
A Novel Discrete Differential Evolution Algorithm for the Vehicle Routing Problem in B2C E-Commerce
NASA Astrophysics Data System (ADS)
Xia, Chao; Sheng, Ying; Jiang, Zhong-Zhong; Tan, Chunqiao; Huang, Min; He, Yuanjian
2015-12-01
In this paper, a novel discrete differential evolution (DDE) algorithm is proposed to solve the vehicle routing problems (VRP) in B2C e-commerce, in which VRP is modeled by the incomplete graph based on the actual urban road system. First, a variant of classical VRP is described and a mathematical programming model for the variant is given. Second, the DDE is presented, where individuals are represented as the sequential encoding scheme, and a novel reparation operator is employed to repair the infeasible solutions. Furthermore, a FLOYD operator for dealing with the shortest route is embedded in the proposed DDE. Finally, an extensive computational study is carried out in comparison with the predatory search algorithm and genetic algorithm, and the results show that the proposed DDE is an effective algorithm for VRP in B2C e-commerce.
NASA Astrophysics Data System (ADS)
Dumbser, Michael; Guercilena, Federico; Köppel, Sven; Rezzolla, Luciano; Zanotti, Olindo
2018-04-01
We present a strongly hyperbolic first-order formulation of the Einstein equations based on the conformal and covariant Z4 system (CCZ4) with constraint-violation damping, which we refer to as FO-CCZ4. As CCZ4, this formulation combines the advantages of a conformal and traceless formulation, with the suppression of constraint violations given by the damping terms, but being first order in time and space, it is particularly suited for a discontinuous Galerkin (DG) implementation. The strongly hyperbolic first-order formulation has been obtained by making careful use of first and second-order ordering constraints. A proof of strong hyperbolicity is given for a selected choice of standard gauges via an analytical computation of the entire eigenstructure of the FO-CCZ4 system. The resulting governing partial differential equations system is written in nonconservative form and requires the evolution of 58 unknowns. A key feature of our formulation is that the first-order CCZ4 system decouples into a set of pure ordinary differential equations and a reduced hyperbolic system of partial differential equations that contains only linearly degenerate fields. We implement FO-CCZ4 in a high-order path-conservative arbitrary-high-order-method-using-derivatives (ADER)-DG scheme with adaptive mesh refinement and local time-stepping, supplemented with a third-order ADER-WENO subcell finite-volume limiter in order to deal with singularities arising with black holes. We validate the correctness of the formulation through a series of standard tests in vacuum, performed in one, two and three spatial dimensions, and also present preliminary results on the evolution of binary black-hole systems. To the best of our knowledge, these are the first successful three-dimensional simulations of moving punctures carried out with high-order DG schemes using a first-order formulation of the Einstein equations.
Benefits estimation framework for automated vehicle operations.
DOT National Transportation Integrated Search
2015-08-01
Automated vehicles have the potential to bring about transformative safety, mobility, energy, and environmental benefits to the surface transportation system. They are also being introduced into a complex transportation system, where second-order imp...
Development of advanced methods for analysis of experimental data in diffusion
NASA Astrophysics Data System (ADS)
Jaques, Alonso V.
There are numerous experimental configurations and data analysis techniques for the characterization of diffusion phenomena. However, the mathematical methods for estimating diffusivities traditionally do not take into account the effects of experimental errors in the data, and often require smooth, noiseless data sets to perform the necessary analysis steps. The current methods used for data smoothing require strong assumptions which can introduce numerical "artifacts" into the data, affecting confidence in the estimated parameters. The Boltzmann-Matano method is used extensively in the determination of concentration - dependent diffusivities, D(C), in alloys. In the course of analyzing experimental data, numerical integrations and differentiations of the concentration profile are performed. These methods require smoothing of the data prior to analysis. We present here an approach to the Boltzmann-Matano method that is based on a regularization method to estimate a differentiation operation on the data, i.e., estimate the concentration gradient term, which is important in the analysis process for determining the diffusivity. This approach, therefore, has the potential to be less subjective, and in numerical simulations shows an increased accuracy in the estimated diffusion coefficients. We present a regression approach to estimate linear multicomponent diffusion coefficients that eliminates the need pre-treat or pre-condition the concentration profile. This approach fits the data to a functional form of the mathematical expression for the concentration profile, and allows us to determine the diffusivity matrix directly from the fitted parameters. Reformulation of the equation for the analytical solution is done in order to reduce the size of the problem and accelerate the convergence. The objective function for the regression can incorporate point estimations for error in the concentration, improving the statistical confidence in the estimated diffusivity matrix. Case studies are presented to demonstrate the reliability and the stability of the method. To the best of our knowledge there is no published analysis of the effects of experimental errors on the reliability of the estimates for the diffusivities. For the case of linear multicomponent diffusion, we analyze the effects of the instrument analytical spot size, positioning uncertainty, and concentration uncertainty on the resulting values of the diffusivities. These effects are studied using Monte Carlo method on simulated experimental data. Several useful scaling relationships were identified which allow more rigorous and quantitative estimates of the errors in the measured data, and are valuable for experimental design. To further analyze anomalous diffusion processes, where traditional diffusional transport equations do not hold, we explore the use of fractional calculus in analytically representing these processes is proposed. We use the fractional calculus approach for anomalous diffusion processes occurring through a finite plane sheet with one face held at a fixed concentration, the other held at zero, and the initial concentration within the sheet equal to zero. This problem is related to cases in nature where diffusion is enhanced relative to the classical process, and the order of differentiation is not necessarily a second--order differential equation. That is, differentiation is of fractional order alpha, where 1 ≤ alpha < 2. For alpha = 2, the presented solutions reduce to the classical second-order diffusion solution for the conditions studied. The solution obtained allows the analysis of permeation experiments. Frequently, hydrogen diffusion is analyzed using electrochemical permeation methods using the traditional, Fickian-based theory. Experimental evidence shows the latter analytical approach is not always appropiate, because reported data shows qualitative (and quantitative) deviation from its theoretical scaling predictions. Preliminary analysis of data shows better agreement with fractional diffusion analysis when compared to traditional square-root scaling. Although there is a large amount of work in the estimation of the diffusivity from experimental data, reported studies typically present only the analytical description for the diffusivity, without scattering. However, because these studies do not consider effects produced by instrument analysis, their direct applicability is limited. We propose alternatives to address these, and to evaluate their influence on the final resulting diffusivity values.
Preliminary Test Results of a Non-Contacting Finger Seal on a Herringbone-Grooved Rotor
NASA Technical Reports Server (NTRS)
Proctor, Margaret P.; Degado, Irebert R.
2008-01-01
Low leakage, non-contacting finger seals have potential to reduce gas turbine engine specific fuel consumption by 2 to 3 percent and to reduce direct operating costs by increasing the time between engine overhauls. A non-contacting finger seal with concentric lift-pads operating adjacent to a test rotor with herringbone grooves was statically tested at 300, 533, and 700 K inlet air temperatures at pressure differentials up to 576 kPa. Leakage flow factors were approximately 70 percent less than state-of-the-art labyrinth seals. Leakage rates are compared to first order predictions. Initial spin tests at 5000 rpm, 300 K inlet air temperature and pressure differentials to 241 kPa produced no measurable wear.
Propagation of mechanical waves through a stochastic medium with spherical symmetry
NASA Astrophysics Data System (ADS)
Avendaño, Carlos G.; Reyes, J. Adrián
2018-01-01
We theoretically analyze the propagation of outgoing mechanical waves through an infinite isotropic elastic medium possessing spherical symmetry whose Lamé coefficients and density are spatial random functions characterized by well-defined statistical parameters. We derive the differential equation that governs the average displacement for a system whose properties depend on the radial coordinate. We show that such an equation is an extended version of the well-known Bessel differential equation whose perturbative additional terms contain coefficients that depend directly on the squared noise intensities and the autocorrelation lengths in an exponential decay fashion. We numerically solve the second order differential equation for several values of noise intensities and autocorrelation lengths and compare the corresponding displacement profiles with that of the exact analytic solution for the case of absent inhomogeneities.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-08-16
... (CAISO) proposed Revised Transmission Planning Process (RTPP).\\1\\ Take notice that such conference will... California Transmission Planning Group, and complies with the transmission planning principles of Order No. 890; How the various categories of transmission projects will be defined and differentiated; To what...
46 CFR 201.76 - Applications for Government aid.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 8 2011-10-01 2011-10-01 false Applications for Government aid. 201.76 Section 201.76... Government aid. Applications for operating-differential subsidies, charter of Government-owned vessels, and other types of Government aid shall conform to the requirements set forth in the various general orders...
46 CFR 201.76 - Applications for Government aid.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 8 2010-10-01 2010-10-01 false Applications for Government aid. 201.76 Section 201.76... Government aid. Applications for operating-differential subsidies, charter of Government-owned vessels, and other types of Government aid shall conform to the requirements set forth in the various general orders...
NASA Technical Reports Server (NTRS)
Fisher, Travis C.; Carpenter, Mark H.; Nordstroem, Jan; Yamaleev, Nail K.; Swanson, R. Charles
2011-01-01
Simulations of nonlinear conservation laws that admit discontinuous solutions are typically restricted to discretizations of equations that are explicitly written in divergence form. This restriction is, however, unnecessary. Herein, linear combinations of divergence and product rule forms that have been discretized using diagonal-norm skew-symmetric summation-by-parts (SBP) operators, are shown to satisfy the sufficient conditions of the Lax-Wendroff theorem and thus are appropriate for simulations of discontinuous physical phenomena. Furthermore, special treatments are not required at the points that are near physical boundaries (i.e., discrete conservation is achieved throughout the entire computational domain, including the boundaries). Examples are presented of a fourth-order, SBP finite-difference operator with second-order boundary closures. Sixth- and eighth-order constructions are derived, and included in E. Narrow-stencil difference operators for linear viscous terms are also derived; these guarantee the conservative form of the combined operator.
Xu, Shi-Zhou; Wang, Chun-Jie; Lin, Fang-Li; Li, Shi-Xiang
2017-10-31
The multi-device open-circuit fault is a common fault of ANPC (Active Neutral-Point Clamped) three-level inverter and effect the operation stability of the whole system. To improve the operation stability, this paper summarized the main solutions currently firstly and analyzed all the possible states of multi-device open-circuit fault. Secondly, an order-reduction optimal control strategy was proposed under multi-device open-circuit fault to realize fault-tolerant control based on the topology and control requirement of ANPC three-level inverter and operation stability. This control strategy can solve the faults with different operation states, and can works in order-reduction state under specific open-circuit faults with specific combined devices, which sacrifices the control quality to obtain the stability priority control. Finally, the simulation and experiment proved the effectiveness of the proposed strategy.
NASA Technical Reports Server (NTRS)
Huyse, Luc; Bushnell, Dennis M. (Technical Monitor)
2001-01-01
Free-form shape optimization of airfoils poses unexpected difficulties. Practical experience has indicated that a deterministic optimization for discrete operating conditions can result in dramatically inferior performance when the actual operating conditions are different from the - somewhat arbitrary - design values used for the optimization. Extensions to multi-point optimization have proven unable to adequately remedy this problem of "localized optimization" near the sampled operating conditions. This paper presents an intrinsically statistical approach and demonstrates how the shortcomings of multi-point optimization with respect to "localized optimization" can be overcome. The practical examples also reveal how the relative likelihood of each of the operating conditions is automatically taken into consideration during the optimization process. This is a key advantage over the use of multipoint methods.
A strictly Markovian expansion for plasma turbulence theory
NASA Technical Reports Server (NTRS)
Jones, F. C.
1978-01-01
The collision operator that appears in the equation of motion for a particle distribution function that has been averaged over an ensemble of random Hamiltonians is non-Markovian. It is non-Markovian in that it involves a propagated integral over the past history of the ensemble averaged distribution function. All formal expansions of this nonlinear collision operator to date preserve this non-Markovian character term by term yielding an integro-differential equation that must be converted to a diffusion equation by an additional approximation. In this note we derive an expansion of the collision operator that is strictly Markovian to any finite order and yields a diffusion equation as the lowest non-trivial order. The validity of this expansion is seen to be the same as that of the standard quasi-linear expansion.
NASA Astrophysics Data System (ADS)
Bhrawy, A. H.; Zaky, M. A.
2015-01-01
In this paper, we propose and analyze an efficient operational formulation of spectral tau method for multi-term time-space fractional differential equation with Dirichlet boundary conditions. The shifted Jacobi operational matrices of Riemann-Liouville fractional integral, left-sided and right-sided Caputo fractional derivatives are presented. By using these operational matrices, we propose a shifted Jacobi tau method for both temporal and spatial discretizations, which allows us to present an efficient spectral method for solving such problem. Furthermore, the error is estimated and the proposed method has reasonable convergence rates in spatial and temporal discretizations. In addition, some known spectral tau approximations can be derived as special cases from our algorithm if we suitably choose the corresponding special cases of Jacobi parameters θ and ϑ. Finally, in order to demonstrate its accuracy, we compare our method with those reported in the literature.
Modified harmonic balance method for the solution of nonlinear jerk equations
NASA Astrophysics Data System (ADS)
Rahman, M. Saifur; Hasan, A. S. M. Z.
2018-03-01
In this paper, a second approximate solution of nonlinear jerk equations (third order differential equation) can be obtained by using modified harmonic balance method. The method is simpler and easier to carry out the solution of nonlinear differential equations due to less number of nonlinear equations are required to solve than the classical harmonic balance method. The results obtained from this method are compared with those obtained from the other existing analytical methods that are available in the literature and the numerical method. The solution shows a good agreement with the numerical solution as well as the analytical methods of the available literature.
Rep. Simpson, Michael K. [R-ID-2
2013-10-01
Senate - 10/03/2013 Read the second time. Placed on Senate Legislative Calendar under General Orders. Calendar No. 203 pursuant to the order of Oct. 2, 2013. (All Actions) Tracker: This bill has the status Passed HouseHere are the steps for Status of Legislation:
Stock price forecasting based on time series analysis
NASA Astrophysics Data System (ADS)
Chi, Wan Le
2018-05-01
Using the historical stock price data to set up a sequence model to explain the intrinsic relationship of data, the future stock price can forecasted. The used models are auto-regressive model, moving-average model and autoregressive-movingaverage model. The original data sequence of unit root test was used to judge whether the original data sequence was stationary. The non-stationary original sequence as a first order difference needed further processing. Then the stability of the sequence difference was re-inspected. If it is still non-stationary, the second order differential processing of the sequence is carried out. Autocorrelation diagram and partial correlation diagram were used to evaluate the parameters of the identified ARMA model, including coefficients of the model and model order. Finally, the model was used to forecast the fitting of the shanghai composite index daily closing price with precision. Results showed that the non-stationary original data series was stationary after the second order difference. The forecast value of shanghai composite index daily closing price was closer to actual value, indicating that the ARMA model in the paper was a certain accuracy.
Space station auxiliary thrust chamber technology
NASA Technical Reports Server (NTRS)
Senneff, J. M.
1987-01-01
A program to design, fabricate, and test a 50 lb sub f (222 N) thruster was undertaken to demonstrate the applicability of the reverse flow concept as an item of auxillary propulsion for the Space Station. The thruster was to operate at a mixture ratio (O/F) of 4, be capable of operating for 2 million lb sub f-seconds (8.896 million N-seconds) impulse with a chamber pressure of 75 psia (52N/sq cm) and a nozzle area ratio of 40. A successful demonstration of an (0/F) of 4 thruster, was followed by the design objective of operating at (O/F) of 8. The demonstration of this thruster resulted in the order of and additional (O/F) of 8 thruster chamber under the present NAS 3-24883 contract. The effort to fabricate and test the second (0/F) of 8 thruster is documented.
NASA Astrophysics Data System (ADS)
Elamien, Mohamed B.; Mahmoud, Soliman A.
2018-03-01
In this paper, a third-order elliptic lowpass filter is designed using highly linear digital programmable balanced OTA. The filter exhibits a cutoff frequency tuning range from 2.2 MHz to 7.1 MHz, thus, it covers W-CDMA, UMTS, and DVB-H standards. The programmability concept in the filter is achieved by using digitally programmable operational transconductors amplifier (DPOTA). The DPOTA employs three linearization techniques which are the source degeneration, double differential pair and the adaptive biasing. Two current division networks (CDNs) are used to control the value of the transconductance. For the DPOTA, the third-order harmonic distortion (HD3) remains below -65 dB up to 0.4 V differential input voltage at 1.2 V supply voltage. The DPOTA and the filter are designed and simulated in 90 nm CMOS technology with LTspice simulator.
A new computational method for reacting hypersonic flows
NASA Astrophysics Data System (ADS)
Niculescu, M. L.; Cojocaru, M. G.; Pricop, M. V.; Fadgyas, M. C.; Pepelea, D.; Stoican, M. G.
2017-07-01
Hypersonic gas dynamics computations are challenging due to the difficulties to have reliable and robust chemistry models that are usually added to Navier-Stokes equations. From the numerical point of view, it is very difficult to integrate together Navier-Stokes equations and chemistry model equations because these partial differential equations have different specific time scales. For these reasons, almost all known finite volume methods fail shortly to solve this second order partial differential system. Unfortunately, the heating of Earth reentry vehicles such as space shuttles and capsules is very close linked to endothermic chemical reactions. A better prediction of wall heat flux leads to smaller safety coefficient for thermal shield of space reentry vehicle; therefore, the size of thermal shield decreases and the payload increases. For these reasons, the present paper proposes a new computational method based on chemical equilibrium, which gives accurate prediction of hypersonic heating in order to support the Earth reentry capsule design.
Multilayered analog optical differentiating device: performance analysis on structural parameters.
Wu, Wenhui; Jiang, Wei; Yang, Jiang; Gong, Shaoxiang; Ma, Yungui
2017-12-15
Analogy optical devices (AODs) able to do mathematical computations have recently gained strong research interest for their potential applications as accelerating hardware in traditional electronic computers. The performance of these wavefront-processing devices is primarily decided by the accuracy of the angular spectral engineering. In this Letter, we show that the multilayer technique could be a promising method to flexibly design AODs according to the input wavefront conditions. As examples, various Si-SiO 2 -based multilayer films are designed that can precisely perform the second-order differentiation for the input wavefronts of different Fourier spectrum widths. The minimum number and thickness uncertainty of sublayers for the device performance are discussed. A technique by rescaling the Fourier spectrum intensity has been proposed in order to further improve the practical feasibility. These results are thought to be instrumental for the development of AODs.
Hidden symmetry in the presence of fluxes
NASA Astrophysics Data System (ADS)
Kubizňák, David; Warnick, Claude M.; Krtouš, Pavel
2011-03-01
We derive the most general first-order symmetry operator for the Dirac equation coupled to arbitrary fluxes. Such an operator is given in terms of an inhomogeneous form ω which is a solution to a coupled system of first-order partial differential equations which we call the generalized conformal Killing-Yano system. Except trivial fluxes, solutions of this system are subject to additional constraints. We discuss various special cases of physical interest. In particular, we demonstrate that in the case of a Dirac operator coupled to the skew symmetric torsion and U(1) field, the system of generalized conformal Killing-Yano equations decouples into the homogeneous conformal Killing-Yano equations with torsion introduced in D. Kubiznak et al. (2009) [8] and the symmetry operator is essentially the one derived in T. Houri et al. (2010) [9]. We also discuss the Dirac field coupled to a scalar potential and in the presence of 5-form and 7-form fluxes.
A teledentistry system for the second opinion.
Gambino, Orazio; Lima, Fausto; Pirrone, Roberto; Ardizzone, Edoardo; Campisi, Giuseppina; di Fede, Olga
2014-01-01
In this paper we present a Teledentistry system aimed to the Second Opinion task. It make use of a particular camera called intra-oral camera, also called dental camera, in order to perform the photo shooting and real-time video of the inner part of the mouth. The pictures acquired by the Operator with such a device are sent to the Oral Medicine Expert (OME) by means of a current File Transfer Protocol (FTP) service and the real-time video is channeled into a video streaming thanks to the VideoLan client/server (VLC) application. It is composed by a HTML5 web-pages generated by PHP and allows to perform the Second Opinion both when Operator and OME are logged and when one of them is offline.
A novel method for predicting the power outputs of wave energy converters
NASA Astrophysics Data System (ADS)
Wang, Yingguang
2018-03-01
This paper focuses on realistically predicting the power outputs of wave energy converters operating in shallow water nonlinear waves. A heaving two-body point absorber is utilized as a specific calculation example, and the generated power of the point absorber has been predicted by using a novel method (a nonlinear simulation method) that incorporates a second order random wave model into a nonlinear dynamic filter. It is demonstrated that the second order random wave model in this article can be utilized to generate irregular waves with realistic crest-trough asymmetries, and consequently, more accurate generated power can be predicted by subsequently solving the nonlinear dynamic filter equation with the nonlinearly simulated second order waves as inputs. The research findings demonstrate that the novel nonlinear simulation method in this article can be utilized as a robust tool for ocean engineers in their design, analysis and optimization of wave energy converters.
Dimension-independent likelihood-informed MCMC
Cui, Tiangang; Law, Kody J. H.; Marzouk, Youssef M.
2015-10-08
Many Bayesian inference problems require exploring the posterior distribution of highdimensional parameters that represent the discretization of an underlying function. Our work introduces a family of Markov chain Monte Carlo (MCMC) samplers that can adapt to the particular structure of a posterior distribution over functions. There are two distinct lines of research that intersect in the methods we develop here. First, we introduce a general class of operator-weighted proposal distributions that are well defined on function space, such that the performance of the resulting MCMC samplers is independent of the discretization of the function. Second, by exploiting local Hessian informationmore » and any associated lowdimensional structure in the change from prior to posterior distributions, we develop an inhomogeneous discretization scheme for the Langevin stochastic differential equation that yields operator-weighted proposals adapted to the non-Gaussian structure of the posterior. The resulting dimension-independent and likelihood-informed (DILI) MCMC samplers may be useful for a large class of high-dimensional problems where the target probability measure has a density with respect to a Gaussian reference measure. Finally, we use two nonlinear inverse problems in order to demonstrate the efficiency of these DILI samplers: an elliptic PDE coefficient inverse problem and path reconstruction in a conditioned diffusion.« less
A method for testing railway wheel sets on a full-scale roller rig
NASA Astrophysics Data System (ADS)
Liu, Binbin; Bruni, Stefano
2015-09-01
Full-scale roller rigs for tests on a single axle enable the investigation of several dynamics and durability problems related with the design and operation of the railway rolling stock. In order to exploit the best potential of this test equipment, appropriate test procedures need to be defined, particularly in terms of actuators' references, to make sure that meaningful wheel -rail contact conditions can be reproduced. The aim of this paper is to propose a new methodology to define the forces to be generated by the actuators in the rig in order to best reproduce the behaviour of a wheel set and especially the wheel -rail contact forces in a running condition of interest as obtained either from multi-body system (MBS) simulation or from on-track measurements. The method is supported by the use of a mathematical model of the roller rig and uses an iterative correction scheme, comparing the time histories of the contact force components from the roller rig test as predicted by the mathematical model to a set of target contact force time histories. Two methods are introduced, the first one considering a standard arrangement of the roller rig, the second one assuming that a differential gear is introduced in the rig, allowing different rolling speeds of the two rollers. Results are presented showing that the deviation of the roller rig test results from the considered targets can be kept within low tolerances (1% approximately) as far as the vertical and lateral contact forces on both wheels are concerned. For the longitudinal forces, larger deviations are obtained except in the case where a differential gear is introduced.
Optimal space communications techniques. [all digital phase locked loop for FM demodulation
NASA Technical Reports Server (NTRS)
Schilling, D. L.
1973-01-01
The design, development, and analysis are reported of a digital phase-locked loop (DPLL) for FM demodulation and threshold extension. One of the features of the developed DPLL is its synchronous, real time operation. The sampling frequency is constant and all the required arithmetic and logic operations are performed within one sampling period, generating an output sequence which is converted to analog form and filtered. An equation relating the sampling frequency to the carrier frequency must be satisfied to guarantee proper DPLL operation. The synchronous operation enables a time-shared operation of one DPLL to demodulate several FM signals simultaneously. In order to obtain information about the DPLL performance at low input signal-to-noise ratios, a model of an input noise spike was introduced, and the DPLL equation was solved using a digital computer. The spike model was successful in finding a second order DPLL which yielded a five db threshold extension beyond that of a first order DPLL.
Alternative formulation of explicitly correlated third-order Møller-Plesset perturbation theory
NASA Astrophysics Data System (ADS)
Ohnishi, Yu-ya; Ten-no, Seiichiro
2013-09-01
The second-order wave operator in the explicitly correlated wave function theory has been newly defined as an extension of the conventional s- and p-wave (SP) ansatz (also referred to as the FIXED amplitude ansatz) based on the linked-diagram theorem. The newly defined second-order wave operator has been applied to the calculation of the F12 correction to the third-order many-body perturbation (MP3) energy. In addition to this new wave operator, the F12 correction with the conventional first-order wave operator has been derived and calculated. Among three components of the MP3 correlation energy, the particle ladder contribution, which has shown the slowest convergence with respect to the basis set size, is fairly ameliorated by employing these F12 corrections. Both the newly defined and conventional formalisms of the F12 corrections exhibit a similar recovery of over 90% of the complete basis set limit of the particle ladder contribution of the MP3 correlation energy with a triple-zeta quality basis set for the neon atom, while the amount is about 75% without the F12 correction. The corrections to the ring term are small but the corrected energy has shown similar recovery as the particle ladder term. The hole ladder term has shown a rapid convergence even without the F12 corrections. Owing to these balanced recoveries, the deviation of the total MP3 correlation energy from the complete basis set limit has been calculated to be about 1 kcal/mol with the triple-zeta quality basis set, which is more than five times smaller than the error without the F12 correction.
First and second order derivatives for optimizing parallel RF excitation waveforms.
Majewski, Kurt; Ritter, Dieter
2015-09-01
For piecewise constant magnetic fields, the Bloch equations (without relaxation terms) can be solved explicitly. This way the magnetization created by an excitation pulse can be written as a concatenation of rotations applied to the initial magnetization. For fixed gradient trajectories, the problem of finding parallel RF waveforms, which minimize the difference between achieved and desired magnetization on a number of voxels, can thus be represented as a finite-dimensional minimization problem. We use quaternion calculus to formulate this optimization problem in the magnitude least squares variant and specify first and second order derivatives of the objective function. We obtain a small tip angle approximation as first order Taylor development from the first order derivatives and also develop algorithms for first and second order derivatives for this small tip angle approximation. All algorithms are accompanied by precise floating point operation counts to assess and compare the computational efforts. We have implemented these algorithms as callback functions of an interior-point solver. We have applied this numerical optimization method to example problems from the literature and report key observations. Copyright © 2015 Elsevier Inc. All rights reserved.
First and second order derivatives for optimizing parallel RF excitation waveforms
NASA Astrophysics Data System (ADS)
Majewski, Kurt; Ritter, Dieter
2015-09-01
For piecewise constant magnetic fields, the Bloch equations (without relaxation terms) can be solved explicitly. This way the magnetization created by an excitation pulse can be written as a concatenation of rotations applied to the initial magnetization. For fixed gradient trajectories, the problem of finding parallel RF waveforms, which minimize the difference between achieved and desired magnetization on a number of voxels, can thus be represented as a finite-dimensional minimization problem. We use quaternion calculus to formulate this optimization problem in the magnitude least squares variant and specify first and second order derivatives of the objective function. We obtain a small tip angle approximation as first order Taylor development from the first order derivatives and also develop algorithms for first and second order derivatives for this small tip angle approximation. All algorithms are accompanied by precise floating point operation counts to assess and compare the computational efforts. We have implemented these algorithms as callback functions of an interior-point solver. We have applied this numerical optimization method to example problems from the literature and report key observations.
NASA Technical Reports Server (NTRS)
Manning, Robert M.
2004-01-01
The extended wide-angle parabolic wave equation applied to electromagnetic wave propagation in random media is considered. A general operator equation is derived which gives the statistical moments of an electric field of a propagating wave. This expression is used to obtain the first and second order moments of the wave field and solutions are found that transcend those which incorporate the full paraxial approximation at the outset. Although these equations can be applied to any propagation scenario that satisfies the conditions of application of the extended parabolic wave equation, the example of propagation through atmospheric turbulence is used. It is shown that in the case of atmospheric wave propagation and under the Markov approximation (i.e., the delta-correlation of the fluctuations in the direction of propagation), the usual parabolic equation in the paraxial approximation is accurate even at millimeter wavelengths. The comprehensive operator solution also allows one to obtain expressions for the longitudinal (generalized) second order moment. This is also considered and the solution for the atmospheric case is obtained and discussed. The methodology developed here can be applied to any qualifying situation involving random propagation through turbid or plasma environments that can be represented by a spectral density of permittivity fluctuations.
High-order flux correction/finite difference schemes for strand grids
NASA Astrophysics Data System (ADS)
Katz, Aaron; Work, Dalon
2015-02-01
A novel high-order method combining unstructured flux correction along body surfaces and high-order finite differences normal to surfaces is formulated for unsteady viscous flows on strand grids. The flux correction algorithm is applied in each unstructured layer of the strand grid, and the layers are then coupled together via a source term containing derivatives in the strand direction. Strand-direction derivatives are approximated to high-order via summation-by-parts operators for first derivatives and second derivatives with variable coefficients. We show how this procedure allows for the proper truncation error canceling properties required for the flux correction scheme. The resulting scheme possesses third-order design accuracy, but often exhibits fourth-order accuracy when higher-order derivatives are employed in the strand direction, especially for highly viscous flows. We prove discrete conservation for the new scheme and time stability in the absence of the flux correction terms. Results in two dimensions are presented that demonstrate improvements in accuracy with minimal computational and algorithmic overhead over traditional second-order algorithms.
NASA Astrophysics Data System (ADS)
Liolios, K.; Tsihrintzis, V.; Angelidis, P.; Georgiev, K.; Georgiev, I.
2016-10-01
Current developments on modeling of groundwater flow and contaminant transport and removal in the porous media of Horizontal Subsurface Flow Constructed Wetlands (HSF CWs) are first reviewed in a short way. The two usual environmental engineering approaches, the black-box and the process-based one, are briefly presented. Next, recent research results obtained by using these two approaches are briefly discussed as application examples, where emphasis is given to the evaluation of the optimal design and operation parameters concerning HSF CWs. For the black-box approach, the use of Artificial Neural Networks is discussed for the formulation of models, which predict the removal performance of HSF CWs. A novel mathematical prove is presented, which concerns the dependence of the first-order removal coefficient on the Temperature and the Hydraulic Residence Time. For the process-based approach, an application example is first discussed which concerns procedures to evaluate the optimal range of values for the removal coefficient, dependent on either the Temperature or the Hydraulic Residence Time. This evaluation is based on simulating available experimental results of pilot-scale units operated in Democritus University of Thrace, Xanthi, Greece. Further, in a second example, a novel enlargement of the system of Partial Differential Equations is presented, in order to include geothermal effects. Finally, in a third example, the case of parameters uncertainty concerning biodegradation procedures is considered and the use of upper and a novel approach is presented, which concerns the upper and the lower solution bound for the practical draft design of HSF CWs.
Fink, Reinhold F
2010-11-07
A rigorous perturbation theory is proposed, which has the same second order energy as the spin-component-scaled Møller-Plesset second order (SCS-MP2) method of Grimme [J. Chem. Phys. 118, 9095 (2003)]. This upgrades SCS-MP2 to a systematically improvable, true wave-function-based method. The perturbation theory is defined by an unperturbed Hamiltonian, Ĥ(0), that contains the ordinary Fock operator and spin operators Ŝ(2) that act either on the occupied or the virtual orbital spaces. Two choices for Ĥ(0) are discussed and the importance of a spin-pure Ĥ((0)) is underlined. Like the SCS-MP2 approach, the theory contains two parameters (c(os) and c(ss)) that scale the opposite-spin and the same-spin contributions to the second order perturbation energy. It is shown that these parameters can be determined from theoretical considerations by a Feenberg scaling approach or a fit of the wave functions from the perturbation theory to the exact one from a full configuration interaction calculation. The parameters c(os)=1.15 and c(ss)=0.75 are found to be optimal for a reasonable test set of molecules. The meaning of these parameters and the consequences following from a well defined improved MP method are discussed.
NASA Astrophysics Data System (ADS)
Naz, Rehana; Naeem, Imran
2018-03-01
The non-standard Hamiltonian system, also referred to as a partial Hamiltonian system in the literature, of the form {\\dot q^i} = {partial H}/{partial {p_i}},\\dot p^i = - {partial H}/{partial {q_i}} + {Γ ^i}(t,{q^i},{p_i}) appears widely in economics, physics, mechanics, and other fields. The non-standard (partial) Hamiltonian systems arise from physical Hamiltonian structures as well as from artificial Hamiltonian structures. We introduce the term `artificial Hamiltonian' for the Hamiltonian of a model having no physical structure. We provide here explicitly the notion of an artificial Hamiltonian for dynamical systems of ordinary differential equations (ODEs). Also, we show that every system of second-order ODEs can be expressed as a non-standard (partial) Hamiltonian system of first-order ODEs by introducing an artificial Hamiltonian. This notion of an artificial Hamiltonian gives a new way to solve dynamical systems of first-order ODEs and systems of second-order ODEs that can be expressed as a non-standard (partial) Hamiltonian system by using the known techniques applicable to the non-standard Hamiltonian systems. We employ the proposed notion to solve dynamical systems of first-order ODEs arising in epidemics.
First integrals and parametric solutions of third-order ODEs admitting {\\mathfrak{sl}(2, {R})}
NASA Astrophysics Data System (ADS)
Ruiz, A.; Muriel, C.
2017-05-01
A complete set of first integrals for any third-order ordinary differential equation admitting a Lie symmetry algebra isomorphic to sl(2, {R}) is explicitly computed. These first integrals are derived from two linearly independent solutions of a linear second-order ODE, without additional integration. The general solution in parametric form can be obtained by using the computed first integrals. The study includes a parallel analysis of the four inequivalent realizations of sl(2, {R}) , and it is applied to several particular examples. These include the generalized Chazy equation, as well as an example of an equation which admits the most complicated of the four inequivalent realizations.
NASA Astrophysics Data System (ADS)
Tang, Tingting
In this dissertation, we develop structured population models to examine how changes in the environmental affect population processes. In Chapter 2, we develop a general continuous time size structured model describing a susceptible-infected (SI) population coupled with the environment. This model applies to problems arising in ecology, epidemiology, and cell biology. The model consists of a system of quasilinear hyperbolic partial differential equations coupled with a system of nonlinear ordinary differential equations that represent the environment. We develop a second-order high resolution finite difference scheme to numerically solve the model. Convergence of this scheme to a weak solution with bounded total variation is proved. We numerically compare the second order high resolution scheme with a first order finite difference scheme. Higher order of convergence and high resolution property are observed in the second order finite difference scheme. In addition, we apply our model to a multi-host wildlife disease problem, questions regarding the impact of the initial population structure and transition rate within each host are numerically explored. In Chapter 3, we use a stage structured matrix model for wildlife population to study the recovery process of the population given an environmental disturbance. We focus on the time it takes for the population to recover to its pre-event level and develop general formulas to calculate the sensitivity or elasticity of the recovery time to changes in the initial population distribution, vital rates and event severity. Our results suggest that the recovery time is independent of the initial population size, but is sensitive to the initial population structure. Moreover, it is more sensitive to the reduction proportion to the vital rates of the population caused by the catastrophe event relative to the duration of impact of the event. We present the potential application of our model to the amphibian population dynamic and the recovery of a certain plant population. In addition, we explore, in details, the application of the model to the sperm whale population in Gulf of Mexico after the Deepwater Horizon oil spill. In Chapter 4, we summarize the results from Chapter 2 and Chapter 3 and explore some further avenues of our research.
NASA Technical Reports Server (NTRS)
Ball, R. E.
1972-01-01
A digital computer program known as SATANS (static and transient analysis, nonlinear, shells) for the geometrically nonlinear static and dynamic response of arbitrarily loaded shells of revolution is presented. Instructions for the preparation of the input data cards and other information necessary for the operation of the program are described in detail and two sample problems are included. The governing partial differential equations are based upon Sanders' nonlinear thin shell theory for the conditions of small strains and moderately small rotations. The governing equations are reduced to uncoupled sets of four linear, second order, partial differential equations in the meridional and time coordinates by expanding the dependent variables in a Fourier sine or cosine series in the circumferential coordinate and treating the nonlinear modal coupling terms as pseudo loads. The derivatives with respect to the meridional coordinate are approximated by central finite differences, and the displacement accelerations are approximated by the implicit Houbolt backward difference scheme with a constant time interval. The boundaries of the shell may be closed, free, fixed, or elastically restrained. The program is coded in the FORTRAN 4 language and is dimensioned to allow a maximum of 10 arbitrary Fourier harmonics and a maximum product of the total number of meridional stations and the total number of Fourier harmonics of 200. The program requires 155,000 bytes of core storage.
NASA Technical Reports Server (NTRS)
Abramopoulos, Frank
1988-01-01
The conditions under which finite difference schemes for the shallow water equations can conserve both total energy and potential enstrophy are considered. A method of deriving such schemes using operator formalism is developed. Several such schemes are derived for the A-, B- and C-grids. The derived schemes include second-order schemes and pseudo-fourth-order schemes. The simplest B-grid pseudo-fourth-order schemes are presented.
Stabilization and control of distributed systems with time-dependent spatial domains
NASA Technical Reports Server (NTRS)
Wang, P. K. C.
1990-01-01
This paper considers the problem of the stabilization and control of distributed systems with time-dependent spatial domains. The evolution of the spatial domains with time is described by a finite-dimensional system of ordinary differential equations, while the distributed systems are described by first-order or second-order linear evolution equations defined on appropriate Hilbert spaces. First, results pertaining to the existence and uniqueness of solutions of the system equations are presented. Then, various optimal control and stabilization problems are considered. The paper concludes with some examples which illustrate the application of the main results.
Progress Towards a Cartesian Cut-Cell Method for Viscous Compressible Flow
NASA Technical Reports Server (NTRS)
Berger, Marsha; Aftosmis, Michael J.
2011-01-01
The proposed paper reports advances in developing a method for high Reynolds number compressible viscous flow simulations using a Cartesian cut-cell method with embedded boundaries. This preliminary work focuses on accuracy of the discretization near solid wall boundaries. A model problem is used to investigate the accuracy of various difference stencils for second derivatives and to guide development of the discretization of the viscous terms in the Navier-Stokes equations. Near walls, quadratic reconstruction in the wall-normal direction is used to mitigate mesh irregularity and yields smooth skin friction distributions along the body. Multigrid performance is demonstrated using second-order coarse grid operators combined with second-order restriction and prolongation operators. Preliminary verification and validation for the method is demonstrated using flat-plate and airfoil examples at compressible Mach numbers. Simulations of flow on laminar and turbulent flat plates show skin friction and velocity profiles compared with those from boundary-layer theory. Airfoil simulations are performed at laminar and turbulent Reynolds numbers with results compared to both other simulations and experimental data
Hernández-Ocaña, Betania; Pozos-Parra, Ma. Del Pilar; Mezura-Montes, Efrén; Portilla-Flores, Edgar Alfredo; Vega-Alvarado, Eduardo; Calva-Yáñez, Maria Bárbara
2016-01-01
This paper presents two-swim operators to be added to the chemotaxis process of the modified bacterial foraging optimization algorithm to solve three instances of the synthesis of four-bar planar mechanisms. One swim favors exploration while the second one promotes fine movements in the neighborhood of each bacterium. The combined effect of the new operators looks to increase the production of better solutions during the search. As a consequence, the ability of the algorithm to escape from local optimum solutions is enhanced. The algorithm is tested through four experiments and its results are compared against two BFOA-based algorithms and also against a differential evolution algorithm designed for mechanical design problems. The overall results indicate that the proposed algorithm outperforms other BFOA-based approaches and finds highly competitive mechanisms, with a single set of parameter values and with less evaluations in the first synthesis problem, with respect to those mechanisms obtained by the differential evolution algorithm, which needed a parameter fine-tuning process for each optimization problem. PMID:27057156
Hernández-Ocaña, Betania; Pozos-Parra, Ma Del Pilar; Mezura-Montes, Efrén; Portilla-Flores, Edgar Alfredo; Vega-Alvarado, Eduardo; Calva-Yáñez, Maria Bárbara
2016-01-01
This paper presents two-swim operators to be added to the chemotaxis process of the modified bacterial foraging optimization algorithm to solve three instances of the synthesis of four-bar planar mechanisms. One swim favors exploration while the second one promotes fine movements in the neighborhood of each bacterium. The combined effect of the new operators looks to increase the production of better solutions during the search. As a consequence, the ability of the algorithm to escape from local optimum solutions is enhanced. The algorithm is tested through four experiments and its results are compared against two BFOA-based algorithms and also against a differential evolution algorithm designed for mechanical design problems. The overall results indicate that the proposed algorithm outperforms other BFOA-based approaches and finds highly competitive mechanisms, with a single set of parameter values and with less evaluations in the first synthesis problem, with respect to those mechanisms obtained by the differential evolution algorithm, which needed a parameter fine-tuning process for each optimization problem.
NASA Astrophysics Data System (ADS)
Lin, Zhi; Zhang, Qinghai
2017-09-01
We propose high-order finite-volume schemes for numerically solving the steady-state advection-diffusion equation with nonlinear Robin boundary conditions. Although the original motivation comes from a mathematical model of blood clotting, the nonlinear boundary conditions may also apply to other scientific problems. The main contribution of this work is a generic algorithm for generating third-order, fourth-order, and even higher-order explicit ghost-filling formulas to enforce nonlinear Robin boundary conditions in multiple dimensions. Under the framework of finite volume methods, this appears to be the first algorithm of its kind. Numerical experiments on boundary value problems show that the proposed fourth-order formula can be much more accurate and efficient than a simple second-order formula. Furthermore, the proposed ghost-filling formulas may also be useful for solving other partial differential equations.
Benefits Estimation Model for Automated Vehicle Operations: Phase 2 Final Report
DOT National Transportation Integrated Search
2018-01-01
Automated vehicles have the potential to bring about transformative safety, mobility, energy, and environmental benefits to the surface transportation system. They are also being introduced into a complex transportation system, where second-order imp...
NASA Astrophysics Data System (ADS)
Tisdell, Christopher C.
2017-11-01
For over 50 years, the learning of teaching of a priori bounds on solutions to linear differential equations has involved a Euclidean approach to measuring the size of a solution. While the Euclidean approach to a priori bounds on solutions is somewhat manageable in the learning and teaching of the proofs involving second-order, linear problems with constant co-efficients, we believe it is not pedagogically optimal. Moreover, the Euclidean method becomes pedagogically unwieldy in the proofs involving higher-order cases. The purpose of this work is to propose a simpler pedagogical approach to establish a priori bounds on solutions by considering a different way of measuring the size of a solution to linear problems, which we refer to as the Uber size. The Uber form enables a simplification of pedagogy from the literature and the ideas are accessible to learners who have an understanding of the Fundamental Theorem of Calculus and the exponential function, both usually seen in a first course in calculus. We believe that this work will be of mathematical and pedagogical interest to those who are learning and teaching in the area of differential equations or in any of the numerous disciplines where linear differential equations are used.
Analysis and Synthesis of Adaptive Neural Elements and Assembles
1993-09-30
of an Aplysia sensory neuron was developed that reflects the subcellular processes underlying activity-dependent neuromodulation . This single- Page -3... neuromodulation learning rule could simulate some higher-order features of classical conditioning, such second-order conditioning and blocking. During the...reporting period, simulations were used to test the hypothesis that activity-dependent neuromodulation could also support operant conditioning. A
Federal Register 2010, 2011, 2012, 2013, 2014
2013-03-22
... publically owned treatment works owned and operated by the City of Baton Rouge and the Parish of East Baton... December 31, 2018 and the City/Parish would implement additional work including installation of a... 20044-7611. Please enclose a check or money order for $7.00 (25 cents per page reproduction cost...
A remark on fractional differential equation involving I-function
NASA Astrophysics Data System (ADS)
Mishra, Jyoti
2018-02-01
The present paper deals with the solution of the fractional differential equation using the Laplace transform operator and its corresponding properties in the fractional calculus; we derive an exact solution of a complex fractional differential equation involving a special function known as I-function. The analysis of the some fractional integral with two parameters is presented using the suggested Theorem 1. In addition, some very useful corollaries are established and their proofs presented in detail. Some obtained exact solutions are depicted to see the effect of each fractional order. Owing to the wider applicability of the I-function, we can conclude that, the obtained results in our work generalize numerous well-known results obtained by specializing the parameters.
Code of Federal Regulations, 2010 CFR
2010-10-01
... Administration, Washington, DC 20590. (b) Condition of vessels, inspection and repairs. (1) In order that the Maritime Administration may have an opportunity to participate in the inspection of the vessels, the... time and place of making inspections. In the event the Maritime Administration's representative is not...
Code of Federal Regulations, 2011 CFR
2011-10-01
... Administration, Washington, DC 20590. (b) Condition of vessels, inspection and repairs. (1) In order that the Maritime Administration may have an opportunity to participate in the inspection of the vessels, the... time and place of making inspections. In the event the Maritime Administration's representative is not...
Devgan, Preetpaul S; Diehl, John F; Urick, Vincent J; Sunderman, Christopher E; Williams, Keith J
2009-05-25
We present a technique using a dual-output Mach-Zehnder modulator (MZM) with two wavelength inputs, one operating at low-bias and the other operating at high-bias, in order to cancel unwanted even-order harmonics in analog optical links. By using a dual-output MZM, this technique allows for two suppressed optical carriers to be transmitted to the receiver. Combined with optical amplification and balanced differential detection, the RF power of the fundamental is increased by 2 dB while the even-order harmonic is reduced by 47 dB, simultaneously. The RF noise figure and third-order spurious-free dynamic range (SFDR(3)) are improved by 5.4 dB and 3.6 dB, respectively. Using a wavelength sensitive, low V(pi) MZM allows the two wavelengths to be within 5.5 nm of each other for a frequency band from 10 MHz to 100 MHz and 10 nm for 1 GHz.
Blind ICA detection based on second-order cone programming for MC-CDMA systems
NASA Astrophysics Data System (ADS)
Jen, Chih-Wei; Jou, Shyh-Jye
2014-12-01
The multicarrier code division multiple access (MC-CDMA) technique has received considerable interest for its potential application to future wireless communication systems due to its high data rate. A common problem regarding the blind multiuser detectors used in MC-CDMA systems is that they are extremely sensitive to the complex channel environment. Besides, the perturbation of colored noise may negatively affect the performance of the system. In this paper, a new coherent detection method will be proposed, which utilizes the modified fast independent component analysis (FastICA) algorithm, based on approximate negentropy maximization that is subject to the second-order cone programming (SOCP) constraint. The aim of the proposed coherent detection is to provide robustness against small-to-medium channel estimation mismatch (CEM) that may arise from channel frequency response estimation error in the MC-CDMA system, which is modulated by downlink binary phase-shift keying (BPSK) under colored noise. Noncoherent demodulation schemes are preferable to coherent demodulation schemes, as the latter are difficult to implement over time-varying fading channels. Differential phase-shift keying (DPSK) is therefore the natural choice for an alternative modulation scheme. Furthermore, the new blind differential SOCP-based ICA (SOCP-ICA) detection without channel estimation and compensation will be proposed to combat Doppler spread caused by time-varying fading channels in the DPSK-modulated MC-CDMA system under colored noise. In this paper, numerical simulations are used to illustrate the robustness of the proposed blind coherent SOCP-ICA detector against small-to-medium CEM and to emphasize the advantage of the blind differential SOCP-ICA detector in overcoming Doppler spread.
Noncommutative de Rham Cohomology of Finite Groups
NASA Astrophysics Data System (ADS)
Castellani, L.; Catenacci, R.; Debernardi, M.; Pagani, C.
We study de Rham cohomology for various differential calculi on finite groups G up to order 8. These include the permutation group S3, the dihedral group D4 and the quaternion group Q. Poincaré duality holds in every case, and under some assumptions (essentially the existence of a top form) we find that it must hold in general. A short review of the bicovariant (noncommutative) differential calculus on finite G is given for selfconsistency. Exterior derivative, exterior product, metric, Hodge dual, connections, torsion, curvature, and biinvariant integration can be defined algebraically. A projector decomposition of the braiding operator is found, and used in constructing the projector on the space of two-forms. By means of the braiding operator and the metric a knot invariant is defined for any finite group.
Closed Loop solar array-ion thruster system with power control circuitry
NASA Technical Reports Server (NTRS)
Gruber, R. P. (Inventor)
1979-01-01
A power control circuit connected between a solar array and an ion thruster receives voltage and current signals from the solar array. The control circuit multiplies the voltage and current signals together to produce a power signal which is differentiated with respect to time. The differentiator output is detected by a zero crossing detector and, after suitable shaping, the detector output is phase compared with a clock in a phase demodulator. An integrator receives no output from the phase demodulator when the operating point is at the maximum power but is driven toward the maximum power point for non-optimum operation. A ramp generator provides minor variations in the beam current reference signal produced by the integrator in order to obtain the first derivative of power.
LI, ZHILIN; JI, HAIFENG; CHEN, XIAOHONG
2016-01-01
A new augmented method is proposed for elliptic interface problems with a piecewise variable coefficient that has a finite jump across a smooth interface. The main motivation is not only to get a second order accurate solution but also a second order accurate gradient from each side of the interface. The key of the new method is to introduce the jump in the normal derivative of the solution as an augmented variable and re-write the interface problem as a new PDE that consists of a leading Laplacian operator plus lower order derivative terms near the interface. In this way, the leading second order derivatives jump relations are independent of the jump in the coefficient that appears only in the lower order terms after the scaling. An upwind type discretization is used for the finite difference discretization at the irregular grid points near or on the interface so that the resulting coefficient matrix is an M-matrix. A multi-grid solver is used to solve the linear system of equations and the GMRES iterative method is used to solve the augmented variable. Second order convergence for the solution and the gradient from each side of the interface has also been proved in this paper. Numerical examples for general elliptic interface problems have confirmed the theoretical analysis and efficiency of the new method. PMID:28983130
Differential form representation of stochastic electromagnetic fields
NASA Astrophysics Data System (ADS)
Haider, Michael; Russer, Johannes A.
2017-09-01
In this work, we revisit the theory of stochastic electromagnetic fields using exterior differential forms. We present a short overview as well as a brief introduction to the application of differential forms in electromagnetic theory. Within the framework of exterior calculus we derive equations for the second order moments, describing stochastic electromagnetic fields. Since the resulting objects are continuous quantities in space, a discretization scheme based on the Method of Moments (MoM) is introduced for numerical treatment. The MoM is applied in such a way, that the notation of exterior calculus is maintained while we still arrive at the same set of algebraic equations as obtained for the case of formulating the theory using the traditional notation of vector calculus. We conclude with an analytic calculation of the radiated electric field of two Hertzian dipole, excited by uncorrelated random currents.
Influences of Vehicle Size and Mass and Selected Driver Factors on Odds of Driver Fatality
Padmanaban, Jeya
2003-01-01
Research was undertaken to determine vehicle size parameters influencing driver fatality odds, independent of mass, in two-vehicle collisions. Forty vehicle parameters were evaluated for 1,500 vehicle groupings. Logistic regression analyses show driver factors (belt use, age, drinking) collectively contribute more to fatality odds than vehicle factors, and that mass is the most important vehicular parameter influencing fatality odds for all crash configurations. In car crashes, other vehicle parameters with statistical significance had a second order effect compared to mass. In light truck-to-car crashes, “vehicle type-striking vehicle is light truck” was the most important parameter after mass, followed by vehicle height and bumper height, with second order effect. To understand the importance of “vehicle type” variable, further investigation of vehicle “stiffness” and other passenger car/light truck differentiating parameters is warranted. PMID:12941244
Boundary control of elliptic solutions to enforce local constraints
NASA Astrophysics Data System (ADS)
Bal, G.; Courdurier, M.
We present a constructive method to devise boundary conditions for solutions of second-order elliptic equations so that these solutions satisfy specific qualitative properties such as: (i) the norm of the gradient of one solution is bounded from below by a positive constant in the vicinity of a finite number of prescribed points; (ii) the determinant of gradients of n solutions is bounded from below in the vicinity of a finite number of prescribed points. Such constructions find applications in recent hybrid medical imaging modalities. The methodology is based on starting from a controlled setting in which the constraints are satisfied and continuously modifying the coefficients in the second-order elliptic equation. The boundary condition is evolved by solving an ordinary differential equation (ODE) defined via appropriate optimality conditions. Unique continuations and standard regularity results for elliptic equations are used to show that the ODE admits a solution for sufficiently long times.
Gravitational collapse of a turbulent vortex with application to star formation
NASA Technical Reports Server (NTRS)
Deissler, R. G.
1975-01-01
The gravitational collapse of a rotating cloud or vortex is analyzed by expanding the dependent variables in the equations of motion in two-dimensional Taylor series in the space variables. It is shown that the gravitation and rotation terms in the equations are of first order in the space variables, the pressure gradient terms are of second order, and the turbulent viscosity term is of third order. The presence of a turbulent viscosity insures that the initial rotation is solid-body-like near the origin. The effect of pressure on the collapse process is found to depend on the shape of the initial density disturbance at the origin. Dimensionless collapse times, as well as the evolution of density and velocity, are calculated by solving numerically the system of nonlinear ordinary differential equations resulting from the series expansions. The axial inflow plays an important role and allows collapse to occur even when the rotation is large. An approximate solution of the governing partial differential equations is also given; the equations are used to study the spacial distributions of the density and velocity.