Sample records for second-order differential systems

  1. Integrability of systems of two second-order ordinary differential equations admitting four-dimensional Lie algebras

    PubMed Central

    Gazizov, R. K.

    2017-01-01

    We suggest an algorithm for integrating systems of two second-order ordinary differential equations with four symmetries. In particular, if the admitted transformation group has two second-order differential invariants, the corresponding system can be integrated by quadratures using invariant representation and the operator of invariant differentiation. Otherwise, the systems reduce to partially uncoupled forms and can also be integrated by quadratures. PMID:28265184

  2. Integrability of systems of two second-order ordinary differential equations admitting four-dimensional Lie algebras.

    PubMed

    Gainetdinova, A A; Gazizov, R K

    2017-01-01

    We suggest an algorithm for integrating systems of two second-order ordinary differential equations with four symmetries. In particular, if the admitted transformation group has two second-order differential invariants, the corresponding system can be integrated by quadratures using invariant representation and the operator of invariant differentiation. Otherwise, the systems reduce to partially uncoupled forms and can also be integrated by quadratures.

  3. Transformation matrices between non-linear and linear differential equations

    NASA Technical Reports Server (NTRS)

    Sartain, R. L.

    1983-01-01

    In the linearization of systems of non-linear differential equations, those systems which can be exactly transformed into the second order linear differential equation Y"-AY'-BY=0 where Y, Y', and Y" are n x 1 vectors and A and B are constant n x n matrices of real numbers were considered. The 2n x 2n matrix was used to transform the above matrix equation into the first order matrix equation X' = MX. Specially the matrix M and the conditions which will diagonalize or triangularize M were studied. Transformation matrices P and P sub -1 were used to accomplish this diagonalization or triangularization to return to the solution of the second order matrix differential equation system from the first order system.

  4. Lie symmetries of systems of second-order linear ordinary differential equations with constant coefficients.

    PubMed

    Boyko, Vyacheslav M; Popovych, Roman O; Shapoval, Nataliya M

    2013-01-01

    Lie symmetries of systems of second-order linear ordinary differential equations with constant coefficients are exhaustively described over both the complex and real fields. The exact lower and upper bounds for the dimensions of the maximal Lie invariance algebras possessed by such systems are obtained using an effective algebraic approach.

  5. Lie symmetries of systems of second-order linear ordinary differential equations with constant coefficients

    PubMed Central

    Boyko, Vyacheslav M.; Popovych, Roman O.; Shapoval, Nataliya M.

    2013-01-01

    Lie symmetries of systems of second-order linear ordinary differential equations with constant coefficients are exhaustively described over both the complex and real fields. The exact lower and upper bounds for the dimensions of the maximal Lie invariance algebras possessed by such systems are obtained using an effective algebraic approach. PMID:23564972

  6. Rethinking pedagogy for second-order differential equations: a simplified approach to understanding well-posed problems

    NASA Astrophysics Data System (ADS)

    Tisdell, Christopher C.

    2017-07-01

    Knowing an equation has a unique solution is important from both a modelling and theoretical point of view. For over 70 years, the approach to learning and teaching 'well posedness' of initial value problems (IVPs) for second- and higher-order ordinary differential equations has involved transforming the problem and its analysis to a first-order system of equations. We show that this excursion is unnecessary and present a direct approach regarding second- and higher-order problems that does not require an understanding of systems.

  7. Pseudo almost periodic solutions to some systems of nonlinear hyperbolic second-order partial differential equations

    NASA Astrophysics Data System (ADS)

    Al-Islam, Najja Shakir

    In this Dissertation, the existence of pseudo almost periodic solutions to some systems of nonlinear hyperbolic second-order partial differential equations is established. For that, (Al-Islam [4]) is first studied and then obtained under some suitable assumptions. That is, the existence of pseudo almost periodic solutions to a hyperbolic second-order partial differential equation with delay. The second-order partial differential equation (1) represents a mathematical model for the dynamics of gas absorption, given by uxt+a x,tux=Cx,t,u x,t , u0,t=4 t, 1 where a : [0, L] x RR , C : [0, L] x R x RR , and ϕ : RR are (jointly) continuous functions ( t being the greatest integer function) and L > 0. The results in this Dissertation generalize those of Poorkarimi and Wiener [22]. Secondly, a generalization of the above-mentioned system consisting of the non-linear hyperbolic second-order partial differential equation uxt+a x,tux+bx,t ut+cx,tu=f x,t,u, x∈ 0,L,t∈ R, 2 equipped with the boundary conditions ux,0 =40x, u0,t=u 0t, uxx,0=y 0x, x∈0,L, t∈R, 3 where a, b, c : [0, L ] x RR and f : [0, L] x R x RR are (jointly) continuous functions is studied. Under some suitable assumptions, the existence and uniqueness of pseudo almost periodic solutions to particular cases, as well as the general case of the second-order hyperbolic partial differential equation (2) are studied. The results of all studies contained within this text extend those obtained by Aziz and Meyers [6] in the periodic setting.

  8. A Multilevel Algorithm for the Solution of Second Order Elliptic Differential Equations on Sparse Grids

    NASA Technical Reports Server (NTRS)

    Pflaum, Christoph

    1996-01-01

    A multilevel algorithm is presented that solves general second order elliptic partial differential equations on adaptive sparse grids. The multilevel algorithm consists of several V-cycles. Suitable discretizations provide that the discrete equation system can be solved in an efficient way. Numerical experiments show a convergence rate of order Omicron(1) for the multilevel algorithm.

  9. Finite difference and Runge-Kutta methods for solving vibration problems

    NASA Astrophysics Data System (ADS)

    Lintang Renganis Radityani, Scolastika; Mungkasi, Sudi

    2017-11-01

    The vibration of a storey building can be modelled into a system of second order ordinary differential equations. If the number of floors of a building is large, then the result is a large scale system of second order ordinary differential equations. The large scale system is difficult to solve, and if it can be solved, the solution may not be accurate. Therefore, in this paper, we seek for accurate methods for solving vibration problems. We compare the performance of numerical finite difference and Runge-Kutta methods for solving large scale systems of second order ordinary differential equations. The finite difference methods include the forward and central differences. The Runge-Kutta methods include the Euler and Heun methods. Our research results show that the central finite difference and the Heun methods produce more accurate solutions than the forward finite difference and the Euler methods do.

  10. The second-order differential phase contrast and its retrieval for imaging with x-ray Talbot interferometry.

    PubMed

    Yang, Yi; Tang, Xiangyang

    2012-12-01

    The x-ray differential phase contrast imaging implemented with the Talbot interferometry has recently been reported to be capable of providing tomographic images corresponding to attenuation-contrast, phase-contrast, and dark-field contrast, simultaneously, from a single set of projection data. The authors believe that, along with small-angle x-ray scattering, the second-order phase derivative Φ(") (s)(x) plays a role in the generation of dark-field contrast. In this paper, the authors derive the analytic formulae to characterize the contribution made by the second-order phase derivative to the dark-field contrast (namely, second-order differential phase contrast) and validate them via computer simulation study. By proposing a practical retrieval method, the authors investigate the potential of second-order differential phase contrast imaging for extensive applications. The theoretical derivation starts at assuming that the refractive index decrement of an object can be decomposed into δ = δ(s) + δ(f), where δ(f) corresponds to the object's fine structures and manifests itself in the dark-field contrast via small-angle scattering. Based on the paraxial Fresnel-Kirchhoff theory, the analytic formulae to characterize the contribution made by δ(s), which corresponds to the object's smooth structures, to the dark-field contrast are derived. Through computer simulation with specially designed numerical phantoms, an x-ray differential phase contrast imaging system implemented with the Talbot interferometry is utilized to evaluate and validate the derived formulae. The same imaging system is also utilized to evaluate and verify the capability of the proposed method to retrieve the second-order differential phase contrast for imaging, as well as its robustness over the dimension of detector cell and the number of steps in grating shifting. Both analytic formulae and computer simulations show that, in addition to small-angle scattering, the contrast generated by the second-order derivative is magnified substantially by the ratio of detector cell dimension over grating period, which plays a significant role in dark-field imaging implemented with the Talbot interferometry. The analytic formulae derived in this work to characterize the second-order differential phase contrast in the dark-field imaging implemented with the Talbot interferometry are of significance, which may initiate more activities in the research and development of x-ray differential phase contrast imaging for extensive preclinical and eventually clinical applications.

  11. Reformulating the Schrödinger equation as a Shabat-Zakharov system

    NASA Astrophysics Data System (ADS)

    Boonserm, Petarpa; Visser, Matt

    2010-02-01

    We reformulate the second-order Schrödinger equation as a set of two coupled first-order differential equations, a so-called "Shabat-Zakharov system" (sometimes called a "Zakharov-Shabat" system). There is considerable flexibility in this approach, and we emphasize the utility of introducing an "auxiliary condition" or "gauge condition" that is used to cut down the degrees of freedom. Using this formalism, we derive the explicit (but formal) general solution to the Schrödinger equation. The general solution depends on three arbitrarily chosen functions, and a path-ordered exponential matrix. If one considers path ordering to be an "elementary" process, then this represents complete quadrature, albeit formal, of the second-order linear ordinary differential equation.

  12. On the boundedness and integration of non-oscillatory solutions of certain linear differential equations of second order.

    PubMed

    Tunç, Cemil; Tunç, Osman

    2016-01-01

    In this paper, certain system of linear homogeneous differential equations of second-order is considered. By using integral inequalities, some new criteria for bounded and [Formula: see text]-solutions, upper bounds for values of improper integrals of the solutions and their derivatives are established to the considered system. The obtained results in this paper are considered as extension to the results obtained by Kroopnick (2014) [1]. An example is given to illustrate the obtained results.

  13. Methodology for sensitivity analysis, approximate analysis, and design optimization in CFD for multidisciplinary applications

    NASA Technical Reports Server (NTRS)

    Taylor, Arthur C., III; Hou, Gene W.

    1994-01-01

    The straightforward automatic-differentiation and the hand-differentiated incremental iterative methods are interwoven to produce a hybrid scheme that captures some of the strengths of each strategy. With this compromise, discrete aerodynamic sensitivity derivatives are calculated with the efficient incremental iterative solution algorithm of the original flow code. Moreover, the principal advantage of automatic differentiation is retained (i.e., all complicated source code for the derivative calculations is constructed quickly with accuracy). The basic equations for second-order sensitivity derivatives are presented; four methods are compared. Each scheme requires that large systems are solved first for the first-order derivatives and, in all but one method, for the first-order adjoint variables. Of these latter three schemes, two require no solutions of large systems thereafter. For the other two for which additional systems are solved, the equations and solution procedures are analogous to those for the first order derivatives. From a practical viewpoint, implementation of the second-order methods is feasible only with software tools such as automatic differentiation, because of the extreme complexity and large number of terms. First- and second-order sensitivities are calculated accurately for two airfoil problems, including a turbulent flow example; both geometric-shape and flow-condition design variables are considered. Several methods are tested; results are compared on the basis of accuracy, computational time, and computer memory. For first-order derivatives, the hybrid incremental iterative scheme obtained with automatic differentiation is competitive with the best hand-differentiated method; for six independent variables, it is at least two to four times faster than central finite differences and requires only 60 percent more memory than the original code; the performance is expected to improve further in the future.

  14. A novel unsplit perfectly matched layer for the second-order acoustic wave equation.

    PubMed

    Ma, Youneng; Yu, Jinhua; Wang, Yuanyuan

    2014-08-01

    When solving acoustic field equations by using numerical approximation technique, absorbing boundary conditions (ABCs) are widely used to truncate the simulation to a finite space. The perfectly matched layer (PML) technique has exhibited excellent absorbing efficiency as an ABC for the acoustic wave equation formulated as a first-order system. However, as the PML was originally designed for the first-order equation system, it cannot be applied to the second-order equation system directly. In this article, we aim to extend the unsplit PML to the second-order equation system. We developed an efficient unsplit implementation of PML for the second-order acoustic wave equation based on an auxiliary-differential-equation (ADE) scheme. The proposed method can benefit to the use of PML in simulations based on second-order equations. Compared with the existing PMLs, it has simpler implementation and requires less extra storage. Numerical results from finite-difference time-domain models are provided to illustrate the validity of the approach. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Dynamics and Collapse in a Power System Model with Voltage Variation: The Damping Effect.

    PubMed

    Ma, Jinpeng; Sun, Yong; Yuan, Xiaoming; Kurths, Jürgen; Zhan, Meng

    2016-01-01

    Complex nonlinear phenomena are investigated in a basic power system model of the single-machine-infinite-bus (SMIB) with a synchronous generator modeled by a classical third-order differential equation including both angle dynamics and voltage dynamics, the so-called flux decay equation. In contrast, for the second-order differential equation considering the angle dynamics only, it is the classical swing equation. Similarities and differences of the dynamics generated between the third-order model and the second-order one are studied. We mainly find that, for positive damping, these two models show quite similar behavior, namely, stable fixed point, stable limit cycle, and their coexistence for different parameters. However, for negative damping, the second-order system can only collapse, whereas for the third-order model, more complicated behavior may happen, such as stable fixed point, limit cycle, quasi-periodicity, and chaos. Interesting partial collapse phenomena for angle instability only and not for voltage instability are also found here, including collapse from quasi-periodicity and from chaos etc. These findings not only provide a basic physical picture for power system dynamics in the third-order model incorporating voltage dynamics, but also enable us a deeper understanding of the complex dynamical behavior and even leading to a design of oscillation damping in electric power systems.

  16. Solution of second order supersymmetrical intertwining relations in Minkowski plane

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ioffe, M. V., E-mail: m.ioffe@spbu.ru; Kolevatova, E. V., E-mail: e.v.kolev@yandex.ru; Nishnianidze, D. N., E-mail: cutaisi@yahoo.com

    2016-08-15

    Supersymmetrical (SUSY) intertwining relations are generalized to the case of quantum Hamiltonians in Minkowski space. For intertwining operators (supercharges) of second order in derivatives, the intertwined Hamiltonians correspond to completely integrable systems with the symmetry operators of fourth order in momenta. In terms of components, the intertwining relations correspond to the system of nonlinear differential equations which are solvable with the simplest—constant—ansatzes for the “metric” matrix in second order part of the supercharges. The corresponding potentials are built explicitly both for diagonalizable and nondiagonalizable form of “metric” matrices, and their properties are discussed.

  17. Dynamics and Control of Constrained Multibody Systems modeled with Maggi's equation: Application to Differential Mobile Robots Part I

    NASA Astrophysics Data System (ADS)

    Amengonu, Yawo H.; Kakad, Yogendra P.

    2014-07-01

    Quasivelocity techniques such as Maggi's and Boltzmann-Hamel's equations eliminate Lagrange multipliers from the beginning as opposed to the Euler-Lagrange method where one has to solve for the n configuration variables and the multipliers as functions of time when there are m nonholonomic constraints. Maggi's equation produces n second-order differential equations of which (n-m) are derived using (n-m) independent quasivelocities and the time derivative of the m kinematic constraints which add the remaining m second order differential equations. This technique is applied to derive the dynamics of a differential mobile robot and a controller which takes into account these dynamics is developed.

  18. FAST TRACK COMMUNICATION: On the Liouvillian solution of second-order linear differential equations and algebraic invariant curves

    NASA Astrophysics Data System (ADS)

    Man, Yiu-Kwong

    2010-10-01

    In this communication, we present a method for computing the Liouvillian solution of second-order linear differential equations via algebraic invariant curves. The main idea is to integrate Kovacic's results on second-order linear differential equations with the Prelle-Singer method for computing first integrals of differential equations. Some examples on using this approach are provided.

  19. Operator Factorization and the Solution of Second-Order Linear Ordinary Differential Equations

    ERIC Educational Resources Information Center

    Robin, W.

    2007-01-01

    The theory and application of second-order linear ordinary differential equations is reviewed from the standpoint of the operator factorization approach to the solution of ordinary differential equations (ODE). Using the operator factorization approach, the general second-order linear ODE is solved, exactly, in quadratures and the resulting…

  20. Spacetime encodings. III. Second order Killing tensors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brink, Jeandrew

    2010-01-15

    This paper explores the Petrov type D, stationary axisymmetric vacuum (SAV) spacetimes that were found by Carter to have separable Hamilton-Jacobi equations, and thus admit a second-order Killing tensor. The derivation of the spacetimes presented in this paper borrows from ideas about dynamical systems, and illustrates concepts that can be generalized to higher-order Killing tensors. The relationship between the components of the Killing equations and metric functions are given explicitly. The origin of the four separable coordinate systems found by Carter is explained and classified in terms of the analytic structure associated with the Killing equations. A geometric picture ofmore » what the orbital invariants may represent is built. Requiring that a SAV spacetime admits a second-order Killing tensor is very restrictive, selecting very few candidates from the group of all possible SAV spacetimes. This restriction arises due to the fact that the consistency conditions associated with the Killing equations require that the field variables obey a second-order differential equation, as opposed to a fourth-order differential equation that imposes the weaker condition that the spacetime be SAV. This paper introduces ideas that could lead to the explicit computation of more general orbital invariants in the form of higher-order Killing tensors.« less

  1. Oscillation of two-dimensional linear second-order differential systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kwong, M.K.; Kaper, H.G.

    This article is concerned with the oscillatory behavior at infinity of the solution y: (a, infinity) ..-->.. R/sup 2/ of a system of two second-order differential equations, y''(t) + Q(t) y(t) = 0, t epsilon(a, infinity); Q is a continuous matrix-valued function on (a, infinity) whose values are real symmetric matrices of order 2. It is shown that the solution is oscillatory at infinity if the largest eigenvalue of the matrix integral/sub a//sup t/ Q(s) ds tends to infinity as t ..-->.. infinity. This proves a conjecture of D. Hinton and R.T. Lewis for the two-dimensional case. Furthermore, it ismore » shown that considerably weaker forms of the condition still suffice for oscillatory behavior at infinity. 7 references.« less

  2. Second-order optimality conditions for problems with C1 data

    NASA Astrophysics Data System (ADS)

    Ginchev, Ivan; Ivanov, Vsevolod I.

    2008-04-01

    In this paper we obtain second-order optimality conditions of Karush-Kuhn-Tucker type and Fritz John one for a problem with inequality constraints and a set constraint in nonsmooth settings using second-order directional derivatives. In the necessary conditions we suppose that the objective function and the active constraints are continuously differentiable, but their gradients are not necessarily locally Lipschitz. In the sufficient conditions for a global minimum we assume that the objective function is differentiable at and second-order pseudoconvex at , a notion introduced by the authors [I. Ginchev, V.I. Ivanov, Higher-order pseudoconvex functions, in: I.V. Konnov, D.T. Luc, A.M. Rubinov (Eds.), Generalized Convexity and Related Topics, in: Lecture Notes in Econom. and Math. Systems, vol. 583, Springer, 2007, pp. 247-264], the constraints are both differentiable and quasiconvex at . In the sufficient conditions for an isolated local minimum of order two we suppose that the problem belongs to the class C1,1. We show that they do not hold for C1 problems, which are not C1,1 ones. At last a new notion parabolic local minimum is defined and it is applied to extend the sufficient conditions for an isolated local minimum from problems with C1,1 data to problems with C1 one.

  3. Energy levels of one-dimensional systems satisfying the minimal length uncertainty relation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bernardo, Reginald Christian S., E-mail: rcbernardo@nip.upd.edu.ph; Esguerra, Jose Perico H., E-mail: jesguerra@nip.upd.edu.ph

    2016-10-15

    The standard approach to calculating the energy levels for quantum systems satisfying the minimal length uncertainty relation is to solve an eigenvalue problem involving a fourth- or higher-order differential equation in quasiposition space. It is shown that the problem can be reformulated so that the energy levels of these systems can be obtained by solving only a second-order quasiposition eigenvalue equation. Through this formulation the energy levels are calculated for the following potentials: particle in a box, harmonic oscillator, Pöschl–Teller well, Gaussian well, and double-Gaussian well. For the particle in a box, the second-order quasiposition eigenvalue equation is a second-ordermore » differential equation with constant coefficients. For the harmonic oscillator, Pöschl–Teller well, Gaussian well, and double-Gaussian well, a method that involves using Wronskians has been used to solve the second-order quasiposition eigenvalue equation. It is observed for all of these quantum systems that the introduction of a nonzero minimal length uncertainty induces a positive shift in the energy levels. It is shown that the calculation of energy levels in systems satisfying the minimal length uncertainty relation is not limited to a small number of problems like particle in a box and the harmonic oscillator but can be extended to a wider class of problems involving potentials such as the Pöschl–Teller and Gaussian wells.« less

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choi, Cheong R.

    The structural changes of kinetic Alfvén solitary waves (KASWs) due to higher-order terms are investigated. While the first-order differential equation for KASWs provides the dispersion relation for kinetic Alfvén waves, the second-order differential equation describes the structural changes of the solitary waves due to higher-order nonlinearity. The reductive perturbation method is used to obtain the second-order and third-order partial differential equations; then, Kodama and Taniuti's technique [J. Phys. Soc. Jpn. 45, 298 (1978)] is applied in order to remove the secularities in the third-order differential equations and derive a linear second-order inhomogeneous differential equation. The solution to this new second-ordermore » equation indicates that, as the amplitude increases, the hump-type Korteweg-de Vries solution is concentrated more around the center position of the soliton and that dip-type structures form near the two edges of the soliton. This result has a close relationship with the interpretation of the complex KASW structures observed in space with satellites.« less

  5. Bounding the solutions of parametric weakly coupled second-order semilinear parabolic partial differential equations

    DOE PAGES

    Azunre, P.

    2016-09-21

    Here in this paper, two novel techniques for bounding the solutions of parametric weakly coupled second-order semilinear parabolic partial differential equations are developed. The first provides a theorem to construct interval bounds, while the second provides a theorem to construct lower bounds convex and upper bounds concave in the parameter. The convex/concave bounds can be significantly tighter than the interval bounds because of the wrapping effect suffered by interval analysis in dynamical systems. Both types of bounds are computationally cheap to construct, requiring solving auxiliary systems twice and four times larger than the original system, respectively. An illustrative numerical examplemore » of bound construction and use for deterministic global optimization within a simple serial branch-and-bound algorithm, implemented numerically using interval arithmetic and a generalization of McCormick's relaxation technique, is presented. Finally, problems within the important class of reaction-diffusion systems may be optimized with these tools.« less

  6. Finite-time synchronization for second-order nonlinear multi-agent system via pinning exponent sliding mode control.

    PubMed

    Hou, Huazhou; Zhang, Qingling

    2016-11-01

    In this paper we investigate the finite-time synchronization for second-order multi-agent system via pinning exponent sliding mode control. Firstly, for the nonlinear multi-agent system, differential mean value theorem is employed to transfer the nonlinear system into linear system, then, by pinning only one node in the system with novel exponent sliding mode control, we can achieve synchronization in finite time. Secondly, considering the 3-DOF helicopter system with nonlinear dynamics and disturbances, the novel exponent sliding mode control protocol is applied to only one node to achieve the synchronization. Finally, the simulation results show the effectiveness and the advantages of the proposed method. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  7. First- and Second-Order Sensitivity Analysis of a P-Version Finite Element Equation Via Automatic Differentiation

    NASA Technical Reports Server (NTRS)

    Hou, Gene

    1998-01-01

    Sensitivity analysis is a technique for determining derivatives of system responses with respect to design parameters. Among many methods available for sensitivity analysis, automatic differentiation has been proven through many applications in fluid dynamics and structural mechanics to be an accurate and easy method for obtaining derivatives. Nevertheless, the method can be computational expensive and can require a high memory space. This project will apply an automatic differentiation tool, ADIFOR, to a p-version finite element code to obtain first- and second- order then-nal derivatives, respectively. The focus of the study is on the implementation process and the performance of the ADIFOR-enhanced codes for sensitivity analysis in terms of memory requirement, computational efficiency, and accuracy.

  8. Modeling Ability Differentiation in the Second-Order Factor Model

    ERIC Educational Resources Information Center

    Molenaar, Dylan; Dolan, Conor V.; van der Maas, Han L. J.

    2011-01-01

    In this article we present factor models to test for ability differentiation. Ability differentiation predicts that the size of IQ subtest correlations decreases as a function of the general intelligence factor. In the Schmid-Leiman decomposition of the second-order factor model, we model differentiation by introducing heteroscedastic residuals,…

  9. An invariant asymptotic formula for solutions of second-order linear ODE's

    NASA Technical Reports Server (NTRS)

    Gingold, H.

    1988-01-01

    An invariant-matrix technique for the approximate solution of second-order ordinary differential equations (ODEs) of form y-double-prime = phi(x)y is developed analytically and demonstrated. A set of linear transformations for the companion matrix differential system is proposed; the diagonalization procedure employed in the final stage of the asymptotic decomposition is explained; and a scalar formulation of solutions for the ODEs is obtained. Several typical ODEs are analyzed, and it is shown that the Liouville-Green or WKB approximation is a special case of the present formula, which provides an approximation which is valid for the entire interval (0, infinity).

  10. Explicit least squares system parameter identification for exact differential input/output models

    NASA Technical Reports Server (NTRS)

    Pearson, A. E.

    1993-01-01

    The equation error for a class of systems modeled by input/output differential operator equations has the potential to be integrated exactly, given the input/output data on a finite time interval, thereby opening up the possibility of using an explicit least squares estimation technique for system parameter identification. The paper delineates the class of models for which this is possible and shows how the explicit least squares cost function can be obtained in a way that obviates dealing with unknown initial and boundary conditions. The approach is illustrated by two examples: a second order chemical kinetics model and a third order system of Lorenz equations.

  11. Construction and accuracy of partial differential equation approximations to the chemical master equation.

    PubMed

    Grima, Ramon

    2011-11-01

    The mesoscopic description of chemical kinetics, the chemical master equation, can be exactly solved in only a few simple cases. The analytical intractability stems from the discrete character of the equation, and hence considerable effort has been invested in the development of Fokker-Planck equations, second-order partial differential equation approximations to the master equation. We here consider two different types of higher-order partial differential approximations, one derived from the system-size expansion and the other from the Kramers-Moyal expansion, and derive the accuracy of their predictions for chemical reactive networks composed of arbitrary numbers of unimolecular and bimolecular reactions. In particular, we show that the partial differential equation approximation of order Q from the Kramers-Moyal expansion leads to estimates of the mean number of molecules accurate to order Ω(-(2Q-3)/2), of the variance of the fluctuations in the number of molecules accurate to order Ω(-(2Q-5)/2), and of skewness accurate to order Ω(-(Q-2)). We also show that for large Q, the accuracy in the estimates can be matched only by a partial differential equation approximation from the system-size expansion of approximate order 2Q. Hence, we conclude that partial differential approximations based on the Kramers-Moyal expansion generally lead to considerably more accurate estimates in the mean, variance, and skewness than approximations of the same order derived from the system-size expansion.

  12. Oscillation theorems for second order nonlinear forced differential equations.

    PubMed

    Salhin, Ambarka A; Din, Ummul Khair Salma; Ahmad, Rokiah Rozita; Noorani, Mohd Salmi Md

    2014-01-01

    In this paper, a class of second order forced nonlinear differential equation is considered and several new oscillation theorems are obtained. Our results generalize and improve those known ones in the literature.

  13. Given a one-step numerical scheme, on which ordinary differential equations is it exact?

    NASA Astrophysics Data System (ADS)

    Villatoro, Francisco R.

    2009-01-01

    A necessary condition for a (non-autonomous) ordinary differential equation to be exactly solved by a one-step, finite difference method is that the principal term of its local truncation error be null. A procedure to determine some ordinary differential equations exactly solved by a given numerical scheme is developed. Examples of differential equations exactly solved by the explicit Euler, implicit Euler, trapezoidal rule, second-order Taylor, third-order Taylor, van Niekerk's second-order rational, and van Niekerk's third-order rational methods are presented.

  14. An analytical fuzzy-based approach to ?-gain optimal control of input-affine nonlinear systems using Newton-type algorithm

    NASA Astrophysics Data System (ADS)

    Milic, Vladimir; Kasac, Josip; Novakovic, Branko

    2015-10-01

    This paper is concerned with ?-gain optimisation of input-affine nonlinear systems controlled by analytic fuzzy logic system. Unlike the conventional fuzzy-based strategies, the non-conventional analytic fuzzy control method does not require an explicit fuzzy rule base. As the first contribution of this paper, we prove, by using the Stone-Weierstrass theorem, that the proposed fuzzy system without rule base is universal approximator. The second contribution of this paper is an algorithm for solving a finite-horizon minimax problem for ?-gain optimisation. The proposed algorithm consists of recursive chain rule for first- and second-order derivatives, Newton's method, multi-step Adams method and automatic differentiation. Finally, the results of this paper are evaluated on a second-order nonlinear system.

  15. [Series: Utilization of Differential Equations and Methods for Solving Them in Medical Physics (1)].

    PubMed

    Murase, Kenya

    2014-01-01

    Utilization of differential equations and methods for solving them in medical physics are presented. First, the basic concept and the kinds of differential equations were overviewed. Second, separable differential equations and well-known first-order and second-order differential equations were introduced, and the methods for solving them were described together with several examples. In the next issue, the symbolic and series expansion methods for solving differential equations will be mainly introduced.

  16. Improved diffusion Monte Carlo propagators for bosonic systems using Itô calculus

    NASA Astrophysics Data System (ADS)

    Hâkansson, P.; Mella, M.; Bressanini, Dario; Morosi, Gabriele; Patrone, Marta

    2006-11-01

    The construction of importance sampled diffusion Monte Carlo (DMC) schemes accurate to second order in the time step is discussed. A central aspect in obtaining efficient second order schemes is the numerical solution of the stochastic differential equation (SDE) associated with the Fokker-Plank equation responsible for the importance sampling procedure. In this work, stochastic predictor-corrector schemes solving the SDE and consistent with Itô calculus are used in DMC simulations of helium clusters. These schemes are numerically compared with alternative algorithms obtained by splitting the Fokker-Plank operator, an approach that we analyze using the analytical tools provided by Itô calculus. The numerical results show that predictor-corrector methods are indeed accurate to second order in the time step and that they present a smaller time step bias and a better efficiency than second order split-operator derived schemes when computing ensemble averages for bosonic systems. The possible extension of the predictor-corrector methods to higher orders is also discussed.

  17. Linearly first- and second-order, unconditionally energy stable schemes for the phase field crystal model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Xiaofeng, E-mail: xfyang@math.sc.edu; Han, Daozhi, E-mail: djhan@iu.edu

    2017-02-01

    In this paper, we develop a series of linear, unconditionally energy stable numerical schemes for solving the classical phase field crystal model. The temporal discretizations are based on the first order Euler method, the second order backward differentiation formulas (BDF2) and the second order Crank–Nicolson method, respectively. The schemes lead to linear elliptic equations to be solved at each time step, and the induced linear systems are symmetric positive definite. We prove that all three schemes are unconditionally energy stable rigorously. Various classical numerical experiments in 2D and 3D are performed to validate the accuracy and efficiency of the proposedmore » schemes.« less

  18. Multi-off-grid methods in multi-step integration of ordinary differential equations

    NASA Technical Reports Server (NTRS)

    Beaudet, P. R.

    1974-01-01

    Description of methods of solving first- and second-order systems of differential equations in which all derivatives are evaluated at off-grid locations in order to circumvent the Dahlquist stability limitation on the order of on-grid methods. The proposed multi-off-grid methods require off-grid state predictors for the evaluation of the n derivatives at each step. Progressing forward in time, the off-grid states are predicted using a linear combination of back on-grid state values and off-grid derivative evaluations. A comparison is made between the proposed multi-off-grid methods and the corresponding Adams and Cowell on-grid integration techniques in integrating systems of ordinary differential equations, showing a significant reduction in the error at larger step sizes in the case of the multi-off-grid integrator.

  19. Unsplit complex frequency shifted perfectly matched layer for second-order wave equation using auxiliary differential equations.

    PubMed

    Gao, Yingjie; Zhang, Jinhai; Yao, Zhenxing

    2015-12-01

    The complex frequency shifted perfectly matched layer (CFS-PML) can improve the absorbing performance of PML for nearly grazing incident waves. However, traditional PML and CFS-PML are based on first-order wave equations; thus, they are not suitable for second-order wave equation. In this paper, an implementation of CFS-PML for second-order wave equation is presented using auxiliary differential equations. This method is free of both convolution calculations and third-order temporal derivatives. As an unsplit CFS-PML, it can reduce the nearly grazing incidence. Numerical experiments show that it has better absorption than typical PML implementations based on second-order wave equation.

  20. A fully Sinc-Galerkin method for Euler-Bernoulli beam models

    NASA Technical Reports Server (NTRS)

    Smith, R. C.; Bowers, K. L.; Lund, J.

    1990-01-01

    A fully Sinc-Galerkin method in both space and time is presented for fourth-order time-dependent partial differential equations with fixed and cantilever boundary conditions. The Sinc discretizations for the second-order temporal problem and the fourth-order spatial problems are presented. Alternate formulations for variable parameter fourth-order problems are given which prove to be especially useful when applying the forward techniques to parameter recovery problems. The discrete system which corresponds to the time-dependent partial differential equations of interest are then formulated. Computational issues are discussed and a robust and efficient algorithm for solving the resulting matrix system is outlined. Numerical results which highlight the method are given for problems with both analytic and singular solutions as well as fixed and cantilever boundary conditions.

  1. Parallels between control PDE's (Partial Differential Equations) and systems of ODE's (Ordinary Differential Equations)

    NASA Technical Reports Server (NTRS)

    Hunt, L. R.; Villarreal, Ramiro

    1987-01-01

    System theorists understand that the same mathematical objects which determine controllability for nonlinear control systems of ordinary differential equations (ODEs) also determine hypoellipticity for linear partial differentail equations (PDEs). Moreover, almost any study of ODE systems begins with linear systems. It is remarkable that Hormander's paper on hypoellipticity of second order linear p.d.e.'s starts with equations due to Kolmogorov, which are shown to be analogous to the linear PDEs. Eigenvalue placement by state feedback for a controllable linear system can be paralleled for a Kolmogorov equation if an appropriate type of feedback is introduced. Results concerning transformations of nonlinear systems to linear systems are similar to results for transforming a linear PDE to a Kolmogorov equation.

  2. ADM For Solving Linear Second-Order Fredholm Integro-Differential Equations

    NASA Astrophysics Data System (ADS)

    Karim, Mohd F.; Mohamad, Mahathir; Saifullah Rusiman, Mohd; Che-Him, Norziha; Roslan, Rozaini; Khalid, Kamil

    2018-04-01

    In this paper, we apply Adomian Decomposition Method (ADM) as numerically analyse linear second-order Fredholm Integro-differential Equations. The approximate solutions of the problems are calculated by Maple package. Some numerical examples have been considered to illustrate the ADM for solving this equation. The results are compared with the existing exact solution. Thus, the Adomian decomposition method can be the best alternative method for solving linear second-order Fredholm Integro-Differential equation. It converges to the exact solution quickly and in the same time reduces computational work for solving the equation. The result obtained by ADM shows the ability and efficiency for solving these equations.

  3. Causal dissipation for the relativistic dynamics of ideal gases

    NASA Astrophysics Data System (ADS)

    Freistühler, Heinrich; Temple, Blake

    2017-05-01

    We derive a general class of relativistic dissipation tensors by requiring that, combined with the relativistic Euler equations, they form a second-order system of partial differential equations which is symmetric hyperbolic in a second-order sense when written in the natural Godunov variables that make the Euler equations symmetric hyperbolic in the first-order sense. We show that this class contains a unique element representing a causal formulation of relativistic dissipative fluid dynamics which (i) is equivalent to the classical descriptions by Eckart and Landau to first order in the coefficients of viscosity and heat conduction and (ii) has its signal speeds bounded sharply by the speed of light. Based on these properties, we propose this system as a natural candidate for the relativistic counterpart of the classical Navier-Stokes equations.

  4. Causal dissipation for the relativistic dynamics of ideal gases

    PubMed Central

    2017-01-01

    We derive a general class of relativistic dissipation tensors by requiring that, combined with the relativistic Euler equations, they form a second-order system of partial differential equations which is symmetric hyperbolic in a second-order sense when written in the natural Godunov variables that make the Euler equations symmetric hyperbolic in the first-order sense. We show that this class contains a unique element representing a causal formulation of relativistic dissipative fluid dynamics which (i) is equivalent to the classical descriptions by Eckart and Landau to first order in the coefficients of viscosity and heat conduction and (ii) has its signal speeds bounded sharply by the speed of light. Based on these properties, we propose this system as a natural candidate for the relativistic counterpart of the classical Navier–Stokes equations. PMID:28588397

  5. Causal dissipation for the relativistic dynamics of ideal gases.

    PubMed

    Freistühler, Heinrich; Temple, Blake

    2017-05-01

    We derive a general class of relativistic dissipation tensors by requiring that, combined with the relativistic Euler equations, they form a second-order system of partial differential equations which is symmetric hyperbolic in a second-order sense when written in the natural Godunov variables that make the Euler equations symmetric hyperbolic in the first-order sense. We show that this class contains a unique element representing a causal formulation of relativistic dissipative fluid dynamics which (i) is equivalent to the classical descriptions by Eckart and Landau to first order in the coefficients of viscosity and heat conduction and (ii) has its signal speeds bounded sharply by the speed of light. Based on these properties, we propose this system as a natural candidate for the relativistic counterpart of the classical Navier-Stokes equations.

  6. A fourth-order box method for solving the boundary layer equations

    NASA Technical Reports Server (NTRS)

    Wornom, S. F.

    1977-01-01

    A fourth order box method for calculating high accuracy numerical solutions to parabolic, partial differential equations in two variables or ordinary differential equations is presented. The method is the natural extension of the second order Keller Box scheme to fourth order and is demonstrated with application to the incompressible, laminar and turbulent boundary layer equations. Numerical results for high accuracy test cases show the method to be significantly faster than other higher order and second order methods.

  7. Solving ay'' + by' + cy = 0 with a Simple Product Rule Approach

    ERIC Educational Resources Information Center

    Tolle, John

    2011-01-01

    When elementary ordinary differential equations (ODEs) of first and second order are included in the calculus curriculum, second-order linear constant coefficient ODEs are typically solved by a method more appropriate to differential equations courses. This method involves the characteristic equation and its roots, complex-valued solutions, and…

  8. Liouvillian integrability of gravitating static isothermal fluid spheres

    NASA Astrophysics Data System (ADS)

    Iacono, Roberto; Llibre, Jaume

    2014-10-01

    We examine the integrability properties of the Einstein field equations for static, spherically symmetric fluid spheres, complemented with an isothermal equation of state, ρ = np. In this case, Einstein's equations can be reduced to a nonlinear, autonomous second order ordinary differential equation (ODE) for m/R (m is the mass inside the radius R) that has been solved analytically only for n = -1 and n = -3, yielding the cosmological solutions by De Sitter and Einstein, respectively, and for n = -5, case for which the solution can be derived from the De Sitter's one using a symmetry of Einstein's equations. The solutions for these three cases are of Liouvillian type, since they can be expressed in terms of elementary functions. Here, we address the question of whether Liouvillian solutions can be obtained for other values of n. To do so, we transform the second order equation into an equivalent autonomous Lotka-Volterra quadratic polynomial differential system in {R}^2, and characterize the Liouvillian integrability of this system using Darboux theory. We find that the Lotka-Volterra system possesses Liouvillian first integrals for n = -1, -3, -5, which descend from the existence of invariant algebraic curves of degree one, and for n = -6, a new solvable case, associated to an invariant algebraic curve of higher degree (second). For any other value of n, eventual first integrals of the Lotka-Volterra system, and consequently of the second order ODE for the mass function must be non-Liouvillian. This makes the existence of other solutions of the isothermal fluid sphere problem with a Liouvillian metric quite unlikely.

  9. On the motion of classical three-body system with consideration of quantum fluctuations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gevorkyan, A. S., E-mail: g-ashot@sci.am

    2017-03-15

    We obtained the systemof stochastic differential equations which describes the classicalmotion of the three-body system under influence of quantum fluctuations. Using SDEs, for the joint probability distribution of the total momentum of bodies system were obtained the partial differential equation of the second order. It is shown, that the equation for the probability distribution is solved jointly by classical equations, which in turn are responsible for the topological peculiarities of tubes of quantum currents, transitions between asymptotic channels and, respectively for arising of quantum chaos.

  10. Numerical solution of second order ODE directly by two point block backward differentiation formula

    NASA Astrophysics Data System (ADS)

    Zainuddin, Nooraini; Ibrahim, Zarina Bibi; Othman, Khairil Iskandar; Suleiman, Mohamed; Jamaludin, Noraini

    2015-12-01

    Direct Two Point Block Backward Differentiation Formula, (BBDF2) for solving second order ordinary differential equations (ODEs) will be presented throughout this paper. The method is derived by differentiating the interpolating polynomial using three back values. In BBDF2, two approximate solutions are produced simultaneously at each step of integration. The method derived is implemented by using fixed step size and the numerical results that follow demonstrate the advantage of the direct method as compared to the reduction method.

  11. Differential effects of exogenous and endogenous attention on second-order texture contrast sensitivity

    PubMed Central

    Barbot, Antoine; Landy, Michael S.; Carrasco, Marisa

    2012-01-01

    The visual system can use a rich variety of contours to segment visual scenes into distinct perceptually coherent regions. However, successfully segmenting an image is a computationally expensive process. Previously we have shown that exogenous attention—the more automatic, stimulus-driven component of spatial attention—helps extract contours by enhancing contrast sensitivity for second-order, texture-defined patterns at the attended location, while reducing sensitivity at unattended locations, relative to a neutral condition. Interestingly, the effects of exogenous attention depended on the second-order spatial frequency of the stimulus. At parafoveal locations, attention enhanced second-order contrast sensitivity to relatively high, but not to low second-order spatial frequencies. In the present study we investigated whether endogenous attention—the more voluntary, conceptually-driven component of spatial attention—affects second-order contrast sensitivity, and if so, whether its effects are similar to those of exogenous attention. To that end, we compared the effects of exogenous and endogenous attention on the sensitivity to second-order, orientation-defined, texture patterns of either high or low second-order spatial frequencies. The results show that, like exogenous attention, endogenous attention enhances second-order contrast sensitivity at the attended location and reduces it at unattended locations. However, whereas the effects of exogenous attention are a function of the second-order spatial frequency content, endogenous attention affected second-order contrast sensitivity independent of the second-order spatial frequency content. This finding supports the notion that both exogenous and endogenous attention can affect second-order contrast sensitivity, but that endogenous attention is more flexible, benefitting performance under different conditions. PMID:22895879

  12. An almost symmetric Strang splitting scheme for nonlinear evolution equations.

    PubMed

    Einkemmer, Lukas; Ostermann, Alexander

    2014-07-01

    In this paper we consider splitting methods for the time integration of parabolic and certain classes of hyperbolic partial differential equations, where one partial flow cannot be computed exactly. Instead, we use a numerical approximation based on the linearization of the vector field. This is of interest in applications as it allows us to apply splitting methods to a wider class of problems from the sciences. However, in the situation described, the classic Strang splitting scheme, while still being a method of second order, is not longer symmetric. This, in turn, implies that the construction of higher order methods by composition is limited to order three only. To remedy this situation, based on previous work in the context of ordinary differential equations, we construct a class of Strang splitting schemes that are symmetric up to a desired order. We show rigorously that, under suitable assumptions on the nonlinearity, these methods are of second order and can then be used to construct higher order methods by composition. In addition, we illustrate the theoretical results by conducting numerical experiments for the Brusselator system and the KdV equation.

  13. An almost symmetric Strang splitting scheme for nonlinear evolution equations☆

    PubMed Central

    Einkemmer, Lukas; Ostermann, Alexander

    2014-01-01

    In this paper we consider splitting methods for the time integration of parabolic and certain classes of hyperbolic partial differential equations, where one partial flow cannot be computed exactly. Instead, we use a numerical approximation based on the linearization of the vector field. This is of interest in applications as it allows us to apply splitting methods to a wider class of problems from the sciences. However, in the situation described, the classic Strang splitting scheme, while still being a method of second order, is not longer symmetric. This, in turn, implies that the construction of higher order methods by composition is limited to order three only. To remedy this situation, based on previous work in the context of ordinary differential equations, we construct a class of Strang splitting schemes that are symmetric up to a desired order. We show rigorously that, under suitable assumptions on the nonlinearity, these methods are of second order and can then be used to construct higher order methods by composition. In addition, we illustrate the theoretical results by conducting numerical experiments for the Brusselator system and the KdV equation. PMID:25844017

  14. The Artificial Hamiltonian, First Integrals, and Closed-Form Solutions of Dynamical Systems for Epidemics

    NASA Astrophysics Data System (ADS)

    Naz, Rehana; Naeem, Imran

    2018-03-01

    The non-standard Hamiltonian system, also referred to as a partial Hamiltonian system in the literature, of the form {\\dot q^i} = {partial H}/{partial {p_i}},\\dot p^i = - {partial H}/{partial {q_i}} + {Γ ^i}(t,{q^i},{p_i}) appears widely in economics, physics, mechanics, and other fields. The non-standard (partial) Hamiltonian systems arise from physical Hamiltonian structures as well as from artificial Hamiltonian structures. We introduce the term `artificial Hamiltonian' for the Hamiltonian of a model having no physical structure. We provide here explicitly the notion of an artificial Hamiltonian for dynamical systems of ordinary differential equations (ODEs). Also, we show that every system of second-order ODEs can be expressed as a non-standard (partial) Hamiltonian system of first-order ODEs by introducing an artificial Hamiltonian. This notion of an artificial Hamiltonian gives a new way to solve dynamical systems of first-order ODEs and systems of second-order ODEs that can be expressed as a non-standard (partial) Hamiltonian system by using the known techniques applicable to the non-standard Hamiltonian systems. We employ the proposed notion to solve dynamical systems of first-order ODEs arising in epidemics.

  15. Higher-order automatic differentiation of mathematical functions

    NASA Astrophysics Data System (ADS)

    Charpentier, Isabelle; Dal Cappello, Claude

    2015-04-01

    Functions of mathematical physics such as the Bessel functions, the Chebyshev polynomials, the Gauss hypergeometric function and so forth, have practical applications in many scientific domains. On the one hand, differentiation formulas provided in reference books apply to real or complex variables. These do not account for the chain rule. On the other hand, based on the chain rule, the automatic differentiation has become a natural tool in numerical modeling. Nevertheless automatic differentiation tools do not deal with the numerous mathematical functions. This paper describes formulas and provides codes for the higher-order automatic differentiation of mathematical functions. The first method is based on Faà di Bruno's formula that generalizes the chain rule. The second one makes use of the second order differential equation they satisfy. Both methods are exemplified with the aforementioned functions.

  16. Stability analysis of gyroscopic systems with delay via decomposition

    NASA Astrophysics Data System (ADS)

    Aleksandrov, A. Yu.; Zhabko, A. P.; Chen, Y.

    2018-05-01

    A mechanical system describing by the second order linear differential equations with a positive parameter at the velocity forces and with time delay in the positional forces is studied. Using the decomposition method and Lyapunov-Krasovskii functionals, conditions are obtained under which from the asymptotic stability of two auxiliary first order subsystems it follows that, for sufficiently large values of the parameter, the original system is also asymptotically stable. Moreover, it is shown that the proposed approach can be applied to the stability investigation of linear gyroscopic systems with switched positional forces.

  17. On the identification of continuous vibrating systems modelled by hyperbolic partial differential equations

    NASA Technical Reports Server (NTRS)

    Udwadia, F. E.; Garba, J. A.

    1983-01-01

    This paper deals with the identification of spatially varying parameters in systems of finite spatial extent which can be described by second order hyperbolic differential equations. Two questions have been addressed. The first deals with 'partial identification' and inquires into the possibility of retrieving all the eigenvalues of the system from response data obtained at one location x-asterisk epsilon (0, 1). The second deals with the identification of the distributed coefficients rho(x), a(x) and b(x). Sufficient conditions for unique identification of all the eigenvalues of the system are obtained, and conditions under which the coefficients can be uniquely identified using suitable response data obtained at one point in the spatial domain are determined. Application of the results and their usefulness is demonstrated in the identification of the properties of tall building structural systems subjected to dynamic load environments.

  18. Saturation behavior: a general relationship described by a simple second-order differential equation.

    PubMed

    Kepner, Gordon R

    2010-04-13

    The numerous natural phenomena that exhibit saturation behavior, e.g., ligand binding and enzyme kinetics, have been approached, to date, via empirical and particular analyses. This paper presents a mechanism-free, and assumption-free, second-order differential equation, designed only to describe a typical relationship between the variables governing these phenomena. It develops a mathematical model for this relation, based solely on the analysis of the typical experimental data plot and its saturation characteristics. Its utility complements the traditional empirical approaches. For the general saturation curve, described in terms of its independent (x) and dependent (y) variables, a second-order differential equation is obtained that applies to any saturation phenomena. It shows that the driving factor for the basic saturation behavior is the probability of the interactive site being free, which is described quantitatively. Solving the equation relates the variables in terms of the two empirical constants common to all these phenomena, the initial slope of the data plot and the limiting value at saturation. A first-order differential equation for the slope emerged that led to the concept of the effective binding rate at the active site and its dependence on the calculable probability the interactive site is free. These results are illustrated using specific cases, including ligand binding and enzyme kinetics. This leads to a revised understanding of how to interpret the empirical constants, in terms of the variables pertinent to the phenomenon under study. The second-order differential equation revealed the basic underlying relations that describe these saturation phenomena, and the basic mathematical properties of the standard experimental data plot. It was shown how to integrate this differential equation, and define the common basic properties of these phenomena. The results regarding the importance of the slope and the new perspectives on the empirical constants governing the behavior of these phenomena led to an alternative perspective on saturation behavior kinetics. Their essential commonality was revealed by this analysis, based on the second-order differential equation.

  19. Fast, purely growing collisionless reconnection as an eigenfunction problem related to but not involving linear whistler waves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bellan, Paul M.

    If either finite electron inertia or finite resistivity is included in 2D magnetic reconnection, the two-fluid equations become a pair of second-order differential equations coupling the out-of-plane magnetic field and vector potential to each other to form a fourth-order system. The coupling at an X-point is such that out-of-plane even-parity electric and odd-parity magnetic fields feed off each other to produce instability if the scale length on which the equilibrium magnetic field changes is less than the ion skin depth. The instability growth rate is given by an eigenvalue of the fourth-order system determined by boundary and symmetry conditions. Themore » instability is a purely growing mode, not a wave, and has growth rate of the order of the whistler frequency. The spatial profile of both the out-of-plane electric and magnetic eigenfunctions consists of an inner concave region having extent of the order of the electron skin depth, an intermediate convex region having extent of the order of the equilibrium magnetic field scale length, and a concave outer exponentially decaying region. If finite electron inertia and resistivity are not included, the inner concave region does not exist and the coupled pair of equations reduces to a second-order differential equation having non-physical solutions at an X-point.« less

  20. Keep Your Distance! Using Second-Order Ordinary Differential Equations to Model Traffic Flow

    ERIC Educational Resources Information Center

    McCartney, Mark

    2004-01-01

    A simple mathematical model for how vehicles follow each other along a stretch of road is presented. The resulting linear second-order differential equation with constant coefficients is solved and interpreted. The model can be used as an application of solution techniques taught at first-year undergraduate level and as a motivator to encourage…

  1. A New Factorisation of a General Second Order Differential Equation

    ERIC Educational Resources Information Center

    Clegg, Janet

    2006-01-01

    A factorisation of a general second order ordinary differential equation is introduced from which the full solution to the equation can be obtained by performing two integrations. The method is compared with traditional methods for solving these type of equations. It is shown how the Green's function can be derived directly from the factorisation…

  2. Nonclassical point of view of the Brownian motion generation via fractional deterministic model

    NASA Astrophysics Data System (ADS)

    Gilardi-Velázquez, H. E.; Campos-Cantón, E.

    In this paper, we present a dynamical system based on the Langevin equation without stochastic term and using fractional derivatives that exhibit properties of Brownian motion, i.e. a deterministic model to generate Brownian motion is proposed. The stochastic process is replaced by considering an additional degree of freedom in the second-order Langevin equation. Thus, it is transformed into a system of three first-order linear differential equations, additionally α-fractional derivative are considered which allow us to obtain better statistical properties. Switching surfaces are established as a part of fluctuating acceleration. The final system of three α-order linear differential equations does not contain a stochastic term, so the system generates motion in a deterministic way. Nevertheless, from the time series analysis, we found that the behavior of the system exhibits statistics properties of Brownian motion, such as, a linear growth in time of mean square displacement, a Gaussian distribution. Furthermore, we use the detrended fluctuation analysis to prove the Brownian character of this motion.

  3. Double ionization of helium by ion impact: second Born order treatment at the fully differential level

    NASA Astrophysics Data System (ADS)

    López, S. D.; Otranto, S.; Garibotti, C. R.

    2015-01-01

    In this work, a theoretical study of the double ionization of He by ion impact at the fully differential level is presented. Emphasis is made in the role played by the projectile in the double emission process depending on its charge and the amount of momentum transferred to the target. A Born-CDW model including a second-order term in the projectile charge is introduced and evaluated within an on-shell treatment. We find that emission geometries for which the second-order term dominates lead to asymmetric structures around the momentum transfer direction, a typical characteristic of higher order transitions.

  4. Canonical equations of Hamilton for the nonlinear Schrödinger equation

    NASA Astrophysics Data System (ADS)

    Liang, Guo; Guo, Qi; Ren, Zhanmei

    2015-09-01

    We define two different systems of mathematical physics: the second order differential system (SODS) and the first order differential system (FODS). The Newton's second law of motion and the nonlinear Schrödinger equation (NLSE) are the exemplary SODS and FODS, respectively. We obtain a new kind of canonical equations of Hamilton (CEH), which exhibit some kind of symmetry in form and are formally different from the conventional CEH without symmetry [H. Goldstein, C. Poole, J. Safko, Classical Mechanics, third ed., Addison- Wesley, 2001]. We also prove that the number of the CEHs is equal to the number of the generalized coordinates for the FODS, but twice the number of the generalized coordinates for the SODS. We show that the FODS can only be expressed by the new CEH, but not introduced by the conventional CEH, while the SODS can be done by both the new and the conventional CEHs. As an example, we prove that the nonlinear Schrödinger equation can be expressed with the new CEH in a consistent way.

  5. Stabilization and control of distributed systems with time-dependent spatial domains

    NASA Technical Reports Server (NTRS)

    Wang, P. K. C.

    1990-01-01

    This paper considers the problem of the stabilization and control of distributed systems with time-dependent spatial domains. The evolution of the spatial domains with time is described by a finite-dimensional system of ordinary differential equations, while the distributed systems are described by first-order or second-order linear evolution equations defined on appropriate Hilbert spaces. First, results pertaining to the existence and uniqueness of solutions of the system equations are presented. Then, various optimal control and stabilization problems are considered. The paper concludes with some examples which illustrate the application of the main results.

  6. Analytical approach to peel stresses in bonded composite stiffened panels

    NASA Technical Reports Server (NTRS)

    Barkey, Derek A.; Madan, Ram C.; Sutton, Jason O.

    1987-01-01

    A closed-form solution was obtained for the stresses and displacements of two bonded beams. A system of two fourth-order and two second-order differential equations with the associated boundary equations was determined using a variational work approach. A FORTRAN computer program was devised to solve for the eigenvalues and eigenvectors of this system and to calculate the coefficients from the boundary conditions. The results were then compared with NASTRAN finite-element solutions and shown to agree closely.

  7. Errors from approximation of ODE systems with reduced order models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vassilevska, Tanya

    2016-12-30

    This is a code to calculate the error from approximation of systems of ordinary differential equations (ODEs) by using Proper Orthogonal Decomposition (POD) Reduced Order Models (ROM) methods and to compare and analyze the errors for two POD ROM variants. The first variant is the standard POD ROM, the second variant is a modification of the method using the values of the time derivatives (a.k.a. time-derivative snapshots). The code compares the errors from the two variants under different conditions.

  8. An efficient computer based wavelets approximation method to solve Fuzzy boundary value differential equations

    NASA Astrophysics Data System (ADS)

    Alam Khan, Najeeb; Razzaq, Oyoon Abdul

    2016-03-01

    In the present work a wavelets approximation method is employed to solve fuzzy boundary value differential equations (FBVDEs). Essentially, a truncated Legendre wavelets series together with the Legendre wavelets operational matrix of derivative are utilized to convert FB- VDE into a simple computational problem by reducing it into a system of fuzzy algebraic linear equations. The capability of scheme is investigated on second order FB- VDE considered under generalized H-differentiability. Solutions are represented graphically showing competency and accuracy of this method.

  9. Informed Conjecturing of Solutions for Differential Equations in a Modeling Context

    ERIC Educational Resources Information Center

    Winkel, Brian

    2015-01-01

    We examine two differential equations. (i) first-order exponential growth or decay; and (ii) second order, linear, constant coefficient differential equations, and show the advantage of learning differential equations in a modeling context for informed conjectures of their solution. We follow with a discussion of the complete analysis afforded by…

  10. Interval oscillation criteria for second-order forced impulsive delay differential equations with damping term.

    PubMed

    Thandapani, Ethiraju; Kannan, Manju; Pinelas, Sandra

    2016-01-01

    In this paper, we present some sufficient conditions for the oscillation of all solutions of a second order forced impulsive delay differential equation with damping term. Three factors-impulse, delay and damping that affect the interval qualitative properties of solutions of equations are taken into account together. The results obtained in this paper extend and generalize some of the the known results for forced impulsive differential equations. An example is provided to illustrate the main result.

  11. Solving Second-Order Ordinary Differential Equations without Using Complex Numbers

    ERIC Educational Resources Information Center

    Kougias, Ioannis E.

    2009-01-01

    Ordinary differential equations (ODEs) is a subject with a wide range of applications and the need of introducing it to students often arises in the last year of high school, as well as in the early stages of tertiary education. The usual methods of solving second-order ODEs with constant coefficients, among others, rely upon the use of complex…

  12. Rethinking Pedagogy for Second-Order Differential Equations: A Simplified Approach to Understanding Well-Posed Problems

    ERIC Educational Resources Information Center

    Tisdell, Christopher C.

    2017-01-01

    Knowing an equation has a unique solution is important from both a modelling and theoretical point of view. For over 70 years, the approach to learning and teaching "well posedness" of initial value problems (IVPs) for second- and higher-order ordinary differential equations has involved transforming the problem and its analysis to a…

  13. Investigation of a Nonlinear Control System

    NASA Technical Reports Server (NTRS)

    Flugge-Lotz, I; Taylor, C F; Lindberg, H E

    1958-01-01

    A discontinuous variation of coefficients of the differential equation describing the linear control system before nonlinear elements are added is studied in detail. The nonlinear feedback is applied to a second-order system. Simulation techniques are used to study performance of the nonlinear control system and to compare it with the linear system for a wide variety of inputs. A detailed quantitative study of the influence of relay delays and of a transport delay is presented.

  14. The 1D Richards' equation in two layered soils: a Filippov approach to treat discontinuities

    NASA Astrophysics Data System (ADS)

    Berardi, Marco; Difonzo, Fabio; Vurro, Michele; Lopez, Luciano

    2018-05-01

    The infiltration process into the soil is generally modeled by the Richards' partial differential equation (PDE). In this paper a new approach for modeling the infiltration process through the interface of two different soils is proposed, where the interface is seen as a discontinuity surface defined by suitable state variables. Thus, the original 1D Richards' PDE, enriched by a particular choice of the boundary conditions, is first approximated by means of a time semidiscretization, that is by means of the transversal method of lines (TMOL). In such a way a sequence of discontinuous initial value problems, described by a sequence of second order differential systems in the space variable, is derived. Then, Filippov theory on discontinuous dynamical systems may be applied in order to study the relevant dynamics of the problem. The numerical integration of the semidiscretized differential system will be performed by using a one-step method, which employs an event driven procedure to locate the discontinuity surface and to adequately change the vector field.

  15. Hypergeometric Series Solution to a Class of Second-Order Boundary Value Problems via Laplace Transform with Applications to Nanofluids

    NASA Astrophysics Data System (ADS)

    Ebaid, Abdelhalim; Wazwaz, Abdul-Majid; Alali, Elham; Masaedeh, Basem S.

    2017-03-01

    Very recently, it was observed that the temperature of nanofluids is finally governed by second-order ordinary differential equations with variable coefficients of exponential orders. Such coefficients were then transformed to polynomials type by using new independent variables. In this paper, a class of second-order ordinary differential equations with variable coefficients of polynomials type has been solved analytically. The analytical solution is expressed in terms of a hypergeometric function with generalized parameters. Moreover, applications of the present results have been applied on some selected nanofluids problems in the literature. The exact solutions in the literature were derived as special cases of our generalized analytical solution.

  16. A comparison of second order derivative based models for time domain reflectometry wave form analysis

    USDA-ARS?s Scientific Manuscript database

    Adaptive waveform interpretation with Gaussian filtering (AWIGF) and second order bounded mean oscillation operator Z square 2(u,t,r) are TDR analysis methods based on second order differentiation. AWIGF was originally designed for relatively long probe (greater than 150 mm) TDR waveforms, while Z s...

  17. Parametric instability analysis of truncated conical shells using the Haar wavelet method

    NASA Astrophysics Data System (ADS)

    Dai, Qiyi; Cao, Qingjie

    2018-05-01

    In this paper, the Haar wavelet method is employed to analyze the parametric instability of truncated conical shells under static and time dependent periodic axial loads. The present work is based on the Love first-approximation theory for classical thin shells. The displacement field is expressed as the Haar wavelet series in the axial direction and trigonometric functions in the circumferential direction. Then the partial differential equations are reduced into a system of coupled Mathieu-type ordinary differential equations describing dynamic instability behavior of the shell. Using Bolotin's method, the first-order and second-order approximations of principal instability regions are determined. The correctness of present method is examined by comparing the results with those in the literature and very good agreement is observed. The difference between the first-order and second-order approximations of principal instability regions for tensile and compressive loads is also investigated. Finally, numerical results are presented to bring out the influences of various parameters like static load factors, boundary conditions and shell geometrical characteristics on the domains of parametric instability of conical shells.

  18. Development and Application of Modern Optimal Controllers for a Membrane Structure Using Vector Second Order Form

    NASA Astrophysics Data System (ADS)

    Ferhat, Ipar

    With increasing advancement in material science and computational power of current computers that allows us to analyze high dimensional systems, very light and large structures are being designed and built for aerospace applications. One example is a reflector of a space telescope that is made of membrane structures. These reflectors are light and foldable which makes the shipment easy and cheaper unlike traditional reflectors made of glass or other heavy materials. However, one of the disadvantages of membranes is that they are very sensitive to external changes, such as thermal load or maneuvering of the space telescope. These effects create vibrations that dramatically affect the performance of the reflector. To overcome vibrations in membranes, in this work, piezoelectric actuators are used to develop distributed controllers for membranes. These actuators generate bending effects to suppress the vibration. The actuators attached to a membrane are relatively thick which makes the system heterogeneous; thus, an analytical solution cannot be obtained to solve the partial differential equation of the system. Therefore, the Finite Element Model is applied to obtain an approximate solution for the membrane actuator system. Another difficulty that arises with very flexible large structures is the dimension of the discretized system. To obtain an accurate result, the system needs to be discretized using smaller segments which makes the dimension of the system very high. This issue will persist as long as the improving technology will allow increasingly complex and large systems to be designed and built. To deal with this difficulty, the analysis of the system and controller development to suppress the vibration are carried out using vector second order form as an alternative to vector first order form. In vector second order form, the number of equations that need to be solved are half of the number equations in vector first order form. Analyzing the system for control characteristics such as stability, controllability and observability is a key step that needs to be carried out before developing a controller. This analysis determines what kind of system is being modeled and the appropriate approach for controller development. Therefore, accuracy of the system analysis is very crucial. The results of the system analysis using vector second order form and vector first order form show the computational advantages of using vector second order form. Using similar concepts, LQR and LQG controllers, that are developed to suppress the vibration, are derived using vector second order form. To develop a controller using vector second order form, two different approaches are used. One is reducing the size of the Algebraic Riccati Equation to half by partitioning the solution matrix. The other approach is using the Hamiltonian method directly in vector second order form. Controllers are developed using both approaches and compared to each other. Some simple solutions for special cases are derived for vector second order form using the reduced Algebraic Riccati Equation. The advantages and drawbacks of both approaches are explained through examples. System analysis and controller applications are carried out for a square membrane system with four actuators. Two different systems with different actuator locations are analyzed. One system has the actuators at the corners of the membrane, the other has the actuators away from the corners. The structural and control effect of actuator locations are demonstrated with mode shapes and simulations. The results of the controller applications and the comparison of the vector first order form with the vector second order form demonstrate the efficacy of the controllers.

  19. Abel's Theorem Simplifies Reduction of Order

    ERIC Educational Resources Information Center

    Green, William R.

    2011-01-01

    We give an alternative to the standard method of reduction or order, in which one uses one solution of a homogeneous, linear, second order differential equation to find a second, linearly independent solution. Our method, based on Abel's Theorem, is shorter, less complex and extends to higher order equations.

  20. On twisting type [N] ⊗ [N] Ricci flat complex spacetimes with two homothetic symmetries

    NASA Astrophysics Data System (ADS)

    Chudecki, Adam; Przanowski, Maciej

    2018-04-01

    In this article, H H spaces of type [N] ⊗ [N] with twisting congruence of null geodesics defined by the 4-fold undotted and dotted Penrose spinors are investigated. It is assumed that these spaces admit two homothetic symmetries. The general form of the homothetic vector fields is found. New coordinates are introduced, which enable us to reduce the H H system of partial differential equations to one ordinary differential equation (ODE) on one holomorphic function. In a special case, this is a second-order ODE and its general solution is explicitly given. In the generic case, one gets rather involved fifth-order ODE.

  1. Conformal and covariant Z4 formulation of the Einstein equations: Strongly hyperbolic first-order reduction and solution with discontinuous Galerkin schemes

    NASA Astrophysics Data System (ADS)

    Dumbser, Michael; Guercilena, Federico; Köppel, Sven; Rezzolla, Luciano; Zanotti, Olindo

    2018-04-01

    We present a strongly hyperbolic first-order formulation of the Einstein equations based on the conformal and covariant Z4 system (CCZ4) with constraint-violation damping, which we refer to as FO-CCZ4. As CCZ4, this formulation combines the advantages of a conformal and traceless formulation, with the suppression of constraint violations given by the damping terms, but being first order in time and space, it is particularly suited for a discontinuous Galerkin (DG) implementation. The strongly hyperbolic first-order formulation has been obtained by making careful use of first and second-order ordering constraints. A proof of strong hyperbolicity is given for a selected choice of standard gauges via an analytical computation of the entire eigenstructure of the FO-CCZ4 system. The resulting governing partial differential equations system is written in nonconservative form and requires the evolution of 58 unknowns. A key feature of our formulation is that the first-order CCZ4 system decouples into a set of pure ordinary differential equations and a reduced hyperbolic system of partial differential equations that contains only linearly degenerate fields. We implement FO-CCZ4 in a high-order path-conservative arbitrary-high-order-method-using-derivatives (ADER)-DG scheme with adaptive mesh refinement and local time-stepping, supplemented with a third-order ADER-WENO subcell finite-volume limiter in order to deal with singularities arising with black holes. We validate the correctness of the formulation through a series of standard tests in vacuum, performed in one, two and three spatial dimensions, and also present preliminary results on the evolution of binary black-hole systems. To the best of our knowledge, these are the first successful three-dimensional simulations of moving punctures carried out with high-order DG schemes using a first-order formulation of the Einstein equations.

  2. Theory of biaxial graded-index optical fiber. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Kawalko, Stephen F.

    1990-01-01

    A biaxial graded-index fiber with a homogeneous cladding is studied. Two methods, wave equation and matrix differential equation, of formulating the problem and their respective solutions are discussed. For the wave equation formulation of the problem it is shown that for the case of a diagonal permittivity tensor the longitudinal electric and magnetic fields satisfy a pair of coupled second-order differential equations. Also, a generalized dispersion relation is derived in terms of the solutions for the longitudinal electric and magnetic fields. For the case of a step-index fiber, either isotropic or uniaxial, these differential equations can be solved exactly in terms of Bessel functions. For the cases of an istropic graded-index and a uniaxial graded-index fiber, a solution using the Wentzel, Krammers and Brillouin (WKB) approximation technique is shown. Results for some particular permittivity profiles are presented. Also the WKB solutions is compared with the vector solution found by Kurtz and Streifer. For the matrix formulation it is shown that the tangential components of the electric and magnetic fields satisfy a system of four first-order differential equations which can be conveniently written in matrix form. For the special case of meridional modes, the system of equations splits into two systems of two equations. A general iterative technique, asymptotic partitioning of systems of equations, for solving systems of differential equations is presented. As a simple example, Bessel's differential equation is written in matrix form and is solved using this asymptotic technique. Low order solutions for particular examples of a biaxial and uniaxial graded-index fiber are presented. Finally numerical results obtained using the asymptotic technique are presented for particular examples of isotropic and uniaxial step-index fibers and isotropic, uniaxial and biaxial graded-index fibers.

  3. Dimensional analysis yields the general second-order differential equation underlying many natural phenomena: the mathematical properties of a phenomenon's data plot then specify a unique differential equation for it.

    PubMed

    Kepner, Gordon R

    2014-08-27

    This study uses dimensional analysis to derive the general second-order differential equation that underlies numerous physical and natural phenomena described by common mathematical functions. It eschews assumptions about empirical constants and mechanisms. It relies only on the data plot's mathematical properties to provide the conditions and constraints needed to specify a second-order differential equation that is free of empirical constants for each phenomenon. A practical example of each function is analyzed using the general form of the underlying differential equation and the observable unique mathematical properties of each data plot, including boundary conditions. This yields a differential equation that describes the relationship among the physical variables governing the phenomenon's behavior. Complex phenomena such as the Standard Normal Distribution, the Logistic Growth Function, and Hill Ligand binding, which are characterized by data plots of distinctly different sigmoidal character, are readily analyzed by this approach. It provides an alternative, simple, unifying basis for analyzing each of these varied phenomena from a common perspective that ties them together and offers new insights into the appropriate empirical constants for describing each phenomenon.

  4. Lie-Hamilton systems on the plane: Properties, classification and applications

    NASA Astrophysics Data System (ADS)

    Ballesteros, A.; Blasco, A.; Herranz, F. J.; de Lucas, J.; Sardón, C.

    2015-04-01

    We study Lie-Hamilton systems on the plane, i.e. systems of first-order differential equations describing the integral curves of a t-dependent vector field taking values in a finite-dimensional real Lie algebra of planar Hamiltonian vector fields with respect to a Poisson structure. We start with the local classification of finite-dimensional real Lie algebras of vector fields on the plane obtained in González-López, Kamran, and Olver (1992) [23] and we interpret their results as a local classification of Lie systems. By determining which of these real Lie algebras consist of Hamiltonian vector fields relative to a Poisson structure, we provide the complete local classification of Lie-Hamilton systems on the plane. We present and study through our results new Lie-Hamilton systems of interest which are used to investigate relevant non-autonomous differential equations, e.g. we get explicit local diffeomorphisms between such systems. We also analyse biomathematical models, the Milne-Pinney equations, second-order Kummer-Schwarz equations, complex Riccati equations and Buchdahl equations.

  5. Analytical spectrum for a Hamiltonian of quantum dots with Rashba spin-orbit coupling

    NASA Astrophysics Data System (ADS)

    Dossa, Anselme F.; Avossevou, Gabriel Y. H.

    2014-12-01

    We determine the analytical solution for a Hamiltonian describing a confined charged particle in a quantum dot, including Rashba spin-orbit coupling and Zeeman splitting terms. The approach followed in this paper is straightforward and uses the symmetrization of the wave function's components. The eigenvalue problem for the Hamiltonian in Bargmann's Hilbert space reduces to a system of coupled first-order differential equations. Then we exploit the symmetry in the system to obtain uncoupled second-order differential equations, which are found to be the Whittaker-Ince limit of the confluent Heun equations. Analytical expressions as well as numerical results are obtained for the spectrum. One of the main features of such models, namely, the level splitting, is present through the spectrum obtained in this paper.

  6. A dynamical regularization algorithm for solving inverse source problems of elliptic partial differential equations

    NASA Astrophysics Data System (ADS)

    Zhang, Ye; Gong, Rongfang; Cheng, Xiaoliang; Gulliksson, Mårten

    2018-06-01

    This study considers the inverse source problem for elliptic partial differential equations with both Dirichlet and Neumann boundary data. The unknown source term is to be determined by additional boundary conditions. Unlike the existing methods found in the literature, which usually employ the first-order in time gradient-like system (such as the steepest descent methods) for numerically solving the regularized optimization problem with a fixed regularization parameter, we propose a novel method with a second-order in time dissipative gradient-like system and a dynamical selected regularization parameter. A damped symplectic scheme is proposed for the numerical solution. Theoretical analysis is given for both the continuous model and the numerical algorithm. Several numerical examples are provided to show the robustness of the proposed algorithm.

  7. Solving Ordinary Differential Equations

    NASA Technical Reports Server (NTRS)

    Krogh, F. T.

    1987-01-01

    Initial-value ordinary differential equation solution via variable order Adams method (SIVA/DIVA) package is collection of subroutines for solution of nonstiff ordinary differential equations. There are versions for single-precision and double-precision arithmetic. Requires fewer evaluations of derivatives than other variable-order Adams predictor/ corrector methods. Option for direct integration of second-order equations makes integration of trajectory problems significantly more efficient. Written in FORTRAN 77.

  8. Improved Filon-type asymptotic methods for highly oscillatory differential equations with multiple time scales

    NASA Astrophysics Data System (ADS)

    Wang, Bin; Wu, Xinyuan

    2014-11-01

    In this paper we consider multi-frequency highly oscillatory second-order differential equations x″ (t) + Mx (t) = f (t , x (t) ,x‧ (t)) where high-frequency oscillations are generated by the linear part Mx (t), and M is positive semi-definite (not necessarily nonsingular). It is known that Filon-type methods are effective approach to numerically solving highly oscillatory problems. Unfortunately, however, existing Filon-type asymptotic methods fail to apply to the highly oscillatory second-order differential equations when M is singular. We study and propose an efficient improvement on the existing Filon-type asymptotic methods, so that the improved Filon-type asymptotic methods can be able to numerically solving this class of multi-frequency highly oscillatory systems with a singular matrix M. The improved Filon-type asymptotic methods are designed by combining Filon-type methods with the asymptotic methods based on the variation-of-constants formula. We also present one efficient and practical improved Filon-type asymptotic method which can be performed at lower cost. Accompanying numerical results show the remarkable efficiency.

  9. Numerical solution of system of boundary value problems using B-spline with free parameter

    NASA Astrophysics Data System (ADS)

    Gupta, Yogesh

    2017-01-01

    This paper deals with method of B-spline solution for a system of boundary value problems. The differential equations are useful in various fields of science and engineering. Some interesting real life problems involve more than one unknown function. These result in system of simultaneous differential equations. Such systems have been applied to many problems in mathematics, physics, engineering etc. In present paper, B-spline and B-spline with free parameter methods for the solution of a linear system of second-order boundary value problems are presented. The methods utilize the values of cubic B-spline and its derivatives at nodal points together with the equations of the given system and boundary conditions, ensuing into the linear matrix equation.

  10. Hyperbolic Method for Dispersive PDEs: Same High-Order of Accuracy for Solution, Gradient, and Hessian

    NASA Technical Reports Server (NTRS)

    Mazaheri, Alireza; Ricchiuto, Mario; Nishikawa, Hiroaki

    2016-01-01

    In this paper, we introduce a new hyperbolic first-order system for general dispersive partial differential equations (PDEs). We then extend the proposed system to general advection-diffusion-dispersion PDEs. We apply the fourth-order RD scheme of Ref. 1 to the proposed hyperbolic system, and solve time-dependent dispersive equations, including the classical two-soliton KdV and a dispersive shock case. We demonstrate that the predicted results, including the gradient and Hessian (second derivative), are in a very good agreement with the exact solutions. We then show that the RD scheme applied to the proposed system accurately captures dispersive shocks without numerical oscillations. We also verify that the solution, gradient and Hessian are predicted with equal order of accuracy.

  11. Blind ICA detection based on second-order cone programming for MC-CDMA systems

    NASA Astrophysics Data System (ADS)

    Jen, Chih-Wei; Jou, Shyh-Jye

    2014-12-01

    The multicarrier code division multiple access (MC-CDMA) technique has received considerable interest for its potential application to future wireless communication systems due to its high data rate. A common problem regarding the blind multiuser detectors used in MC-CDMA systems is that they are extremely sensitive to the complex channel environment. Besides, the perturbation of colored noise may negatively affect the performance of the system. In this paper, a new coherent detection method will be proposed, which utilizes the modified fast independent component analysis (FastICA) algorithm, based on approximate negentropy maximization that is subject to the second-order cone programming (SOCP) constraint. The aim of the proposed coherent detection is to provide robustness against small-to-medium channel estimation mismatch (CEM) that may arise from channel frequency response estimation error in the MC-CDMA system, which is modulated by downlink binary phase-shift keying (BPSK) under colored noise. Noncoherent demodulation schemes are preferable to coherent demodulation schemes, as the latter are difficult to implement over time-varying fading channels. Differential phase-shift keying (DPSK) is therefore the natural choice for an alternative modulation scheme. Furthermore, the new blind differential SOCP-based ICA (SOCP-ICA) detection without channel estimation and compensation will be proposed to combat Doppler spread caused by time-varying fading channels in the DPSK-modulated MC-CDMA system under colored noise. In this paper, numerical simulations are used to illustrate the robustness of the proposed blind coherent SOCP-ICA detector against small-to-medium CEM and to emphasize the advantage of the blind differential SOCP-ICA detector in overcoming Doppler spread.

  12. Spherical integral transforms of second-order gravitational tensor components onto third-order gravitational tensor components

    NASA Astrophysics Data System (ADS)

    Šprlák, Michal; Novák, Pavel

    2017-02-01

    New spherical integral formulas between components of the second- and third-order gravitational tensors are formulated in this article. First, we review the nomenclature and basic properties of the second- and third-order gravitational tensors. Initial points of mathematical derivations, i.e., the second- and third-order differential operators defined in the spherical local North-oriented reference frame and the analytical solutions of the gradiometric boundary-value problem, are also summarized. Secondly, we apply the third-order differential operators to the analytical solutions of the gradiometric boundary-value problem which gives 30 new integral formulas transforming (1) vertical-vertical, (2) vertical-horizontal and (3) horizontal-horizontal second-order gravitational tensor components onto their third-order counterparts. Using spherical polar coordinates related sub-integral kernels can efficiently be decomposed into azimuthal and isotropic parts. Both spectral and closed forms of the isotropic kernels are provided and their limits are investigated. Thirdly, numerical experiments are performed to test the consistency of the new integral transforms and to investigate properties of the sub-integral kernels. The new mathematical apparatus is valid for any harmonic potential field and may be exploited, e.g., when gravitational/magnetic second- and third-order tensor components become available in the future. The new integral formulas also extend the well-known Meissl diagram and enrich the theoretical apparatus of geodesy.

  13. Equations of condition for high order Runge-Kutta-Nystrom formulae

    NASA Technical Reports Server (NTRS)

    Bettis, D. G.

    1974-01-01

    Derivation of the equations of condition of order eight for a general system of second-order differential equations approximated by the basic Runge-Kutta-Nystrom algorithm. For this general case, the number of equations of condition is considerably larger than for the special case where the first derivative is not present. Specifically, it is shown that, for orders two through eight, the number of equations for each order is 1, 1, 1, 2, 3, 5, and 9 for the special case and is 1, 1, 2, 5, 13, 34, and 95 for the general case.

  14. Development of a Fuel Spill/Vapor Migration Modeling System.

    DTIC Science & Technology

    1985-12-01

    transforms resulting in a direct solution of the differential equation. A second order finite * difference approximation to the Poisson equation A2*j is...7 O-A64 043 DEVELOPMENT OF A FUEL SPILL/VPOR MIGRATION MODELING 1/2 SYSTEM(U) TRACER TECHNOLOGIES ESCONDIDO Cflo IL 0 ENGLAND ET AL. DEC 85 RFURL...AFWAL-TR-85-2089 DEVELOPMENT OF A FUEL SPILL/VAPOR MIGRATION MODELING SYSTEM W.G. England * L.H. Teuscher TRACER TECHNOLOGIES DTIC *2120 WEST MISSION

  15. Probabilistic density function method for nonlinear dynamical systems driven by colored noise

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barajas-Solano, David A.; Tartakovsky, Alexandre M.

    2016-05-01

    We present a probability density function (PDF) method for a system of nonlinear stochastic ordinary differential equations driven by colored noise. The method provides an integro-differential equation for the temporal evolution of the joint PDF of the system's state, which we close by means of a modified Large-Eddy-Diffusivity-type closure. Additionally, we introduce the generalized local linearization (LL) approximation for deriving a computable PDF equation in the form of the second-order partial differential equation (PDE). We demonstrate the proposed closure and localization accurately describe the dynamics of the PDF in phase space for systems driven by noise with arbitrary auto-correlation time.more » We apply the proposed PDF method to the analysis of a set of Kramers equations driven by exponentially auto-correlated Gaussian colored noise to study the dynamics and stability of a power grid.« less

  16. On the complete and partial integrability of non-Hamiltonian systems

    NASA Astrophysics Data System (ADS)

    Bountis, T. C.; Ramani, A.; Grammaticos, B.; Dorizzi, B.

    1984-11-01

    The methods of singularity analysis are applied to several third order non-Hamiltonian systems of physical significance including the Lotka-Volterra equations, the three-wave interaction and the Rikitake dynamo model. Complete integrability is defined and new completely integrable systems are discovered by means of the Painlevé property. In all these cases we obtain integrals, which reduce the equations either to a final quadrature or to an irreducible second order ordinary differential equation (ODE) solved by Painlevé transcendents. Relaxing the Painlevé property we find many partially integrable cases whose movable singularities are poles at leading order, with In( t- t0) terms entering at higher orders. In an Nth order, generalized Rössler model a precise relation is established between the partial fulfillment of the Painlevé conditions and the existence of N - 2 integrals of the motion.

  17. Variational submanifolds of Euclidean spaces

    NASA Astrophysics Data System (ADS)

    Krupka, D.; Urban, Z.; Volná, J.

    2018-03-01

    Systems of ordinary differential equations (or dynamical forms in Lagrangian mechanics), induced by embeddings of smooth fibered manifolds over one-dimensional basis, are considered in the class of variational equations. For a given non-variational system, conditions assuring variationality (the Helmholtz conditions) of the induced system with respect to a submanifold of a Euclidean space are studied, and the problem of existence of these "variational submanifolds" is formulated in general and solved for second-order systems. The variational sequence theory on sheaves of differential forms is employed as a main tool for the analysis of local and global aspects (variationality and variational triviality). The theory is illustrated by examples of holonomic constraints (submanifolds of a configuration Euclidean space) which are variational submanifolds in geometry and mechanics.

  18. Semicommuting and Commuting Operators for the Heun Family

    NASA Astrophysics Data System (ADS)

    Batic, D.; Mills, D.; Nowakowski, M.

    2018-04-01

    We derive the most general families of first- and second-order differential operators semicommuting with the Heun class differential operators. Among these families, we classify all the families that commute with the Heun class. In particular, we find that a certain generalized Heun equation commutes with the Heun differential operator, which allows constructing a general solution of a complicated fourth-order linear differential equation with variable coefficients whose solution cannot be obtained using Maple 16.

  19. Efficient spectral-Galerkin algorithms for direct solution for second-order differential equations using Jacobi polynomials

    NASA Astrophysics Data System (ADS)

    Doha, E.; Bhrawy, A.

    2006-06-01

    It is well known that spectral methods (tau, Galerkin, collocation) have a condition number of ( is the number of retained modes of polynomial approximations). This paper presents some efficient spectral algorithms, which have a condition number of , based on the Jacobi?Galerkin methods of second-order elliptic equations in one and two space variables. The key to the efficiency of these algorithms is to construct appropriate base functions, which lead to systems with specially structured matrices that can be efficiently inverted. The complexities of the algorithms are a small multiple of operations for a -dimensional domain with unknowns, while the convergence rates of the algorithms are exponentials with smooth solutions.

  20. A Smoothed Eclipse Model for Solar Electric Propulsion Trajectory Optimization

    NASA Technical Reports Server (NTRS)

    Aziz, Jonathan D.; Scheeres, Daniel J.; Parker, Jeffrey S.; Englander, Jacob A.

    2017-01-01

    Solar electric propulsion (SEP) is the dominant design option for employing low-thrust propulsion on a space mission. Spacecraft solar arrays power the SEP system but are subject to blackout periods during solar eclipse conditions. Discontinuity in power available to the spacecraft must be accounted for in trajectory optimization, but gradient-based methods require a differentiable power model. This work presents a power model that smooths the eclipse transition from total eclipse to total sunlight with a logistic function. Example trajectories are computed with differential dynamic programming, a second-order gradient-based method.

  1. GRID2D/3D: A computer program for generating grid systems in complex-shaped two- and three-dimensional spatial domains. Part 2: User's manual and program listing

    NASA Technical Reports Server (NTRS)

    Bailey, R. T.; Shih, T. I.-P.; Nguyen, H. L.; Roelke, R. J.

    1990-01-01

    An efficient computer program, called GRID2D/3D, was developed to generate single and composite grid systems within geometrically complex two- and three-dimensional (2- and 3-D) spatial domains that can deform with time. GRID2D/3D generates single grid systems by using algebraic grid generation methods based on transfinite interpolation in which the distribution of grid points within the spatial domain is controlled by stretching functions. All single grid systems generated by GRID2D/3D can have grid lines that are continuous and differentiable everywhere up to the second-order. Also, grid lines can intersect boundaries of the spatial domain orthogonally. GRID2D/3D generates composite grid systems by patching together two or more single grid systems. The patching can be discontinuous or continuous. For continuous composite grid systems, the grid lines are continuous and differentiable everywhere up to the second-order except at interfaces where different single grid systems meet. At interfaces where different single grid systems meet, the grid lines are only differentiable up to the first-order. For 2-D spatial domains, the boundary curves are described by using either cubic or tension spline interpolation. For 3-D spatial domains, the boundary surfaces are described by using either linear Coon's interpolation, bi-hyperbolic spline interpolation, or a new technique referred to as 3-D bi-directional Hermite interpolation. Since grid systems generated by algebraic methods can have grid lines that overlap one another, GRID2D/3D contains a graphics package for evaluating the grid systems generated. With the graphics package, the user can generate grid systems in an interactive manner with the grid generation part of GRID2D/3D. GRID2D/3D is written in FORTRAN 77 and can be run on any IBM PC, XT, or AT compatible computer. In order to use GRID2D/3D on workstations or mainframe computers, some minor modifications must be made in the graphics part of the program; no modifications are needed in the grid generation part of the program. The theory and method used in GRID2D/3D is described.

  2. GRID2D/3D: A computer program for generating grid systems in complex-shaped two- and three-dimensional spatial domains. Part 1: Theory and method

    NASA Technical Reports Server (NTRS)

    Shih, T. I.-P.; Bailey, R. T.; Nguyen, H. L.; Roelke, R. J.

    1990-01-01

    An efficient computer program, called GRID2D/3D was developed to generate single and composite grid systems within geometrically complex two- and three-dimensional (2- and 3-D) spatial domains that can deform with time. GRID2D/3D generates single grid systems by using algebraic grid generation methods based on transfinite interpolation in which the distribution of grid points within the spatial domain is controlled by stretching functions. All single grid systems generated by GRID2D/3D can have grid lines that are continuous and differentiable everywhere up to the second-order. Also, grid lines can intersect boundaries of the spatial domain orthogonally. GRID2D/3D generates composite grid systems by patching together two or more single grid systems. The patching can be discontinuous or continuous. For continuous composite grid systems, the grid lines are continuous and differentiable everywhere up to the second-order except at interfaces where different single grid systems meet. At interfaces where different single grid systems meet, the grid lines are only differentiable up to the first-order. For 2-D spatial domains, the boundary curves are described by using either cubic or tension spline interpolation. For 3-D spatial domains, the boundary surfaces are described by using either linear Coon's interpolation, bi-hyperbolic spline interpolation, or a new technique referred to as 3-D bi-directional Hermite interpolation. Since grid systems generated by algebraic methods can have grid lines that overlap one another, GRID2D/3D contains a graphics package for evaluating the grid systems generated. With the graphics package, the user can generate grid systems in an interactive manner with the grid generation part of GRID2D/3D. GRID2D/3D is written in FORTRAN 77 and can be run on any IBM PC, XT, or AT compatible computer. In order to use GRID2D/3D on workstations or mainframe computers, some minor modifications must be made in the graphics part of the program; no modifications are needed in the grid generation part of the program. This technical memorandum describes the theory and method used in GRID2D/3D.

  3. Analyzing a stochastic time series obeying a second-order differential equation.

    PubMed

    Lehle, B; Peinke, J

    2015-06-01

    The stochastic properties of a Langevin-type Markov process can be extracted from a given time series by a Markov analysis. Also processes that obey a stochastically forced second-order differential equation can be analyzed this way by employing a particular embedding approach: To obtain a Markovian process in 2N dimensions from a non-Markovian signal in N dimensions, the system is described in a phase space that is extended by the temporal derivative of the signal. For a discrete time series, however, this derivative can only be calculated by a differencing scheme, which introduces an error. If the effects of this error are not accounted for, this leads to systematic errors in the estimation of the drift and diffusion functions of the process. In this paper we will analyze these errors and we will propose an approach that correctly accounts for them. This approach allows an accurate parameter estimation and, additionally, is able to cope with weak measurement noise, which may be superimposed to a given time series.

  4. Symmetry and singularity properties of second-order ordinary differential equations of Lie's type III

    NASA Astrophysics Data System (ADS)

    Andriopoulos, K.; Leach, P. G. L.

    2007-04-01

    We extend the work of Abraham-Shrauner [B. Abraham-Shrauner, Hidden symmetries and linearization of the modified Painleve-Ince equation, J. Math. Phys. 34 (1993) 4809-4816] on the linearization of the modified Painleve-Ince equation to a wider class of nonlinear second-order ordinary differential equations invariant under the symmetries of time translation and self-similarity. In the process we demonstrate a remarkable connection with the parameters obtained in the singularity analysis of this class of equations.

  5. Scilab software package for the study of dynamical systems

    NASA Astrophysics Data System (ADS)

    Bordeianu, C. C.; Beşliu, C.; Jipa, Al.; Felea, D.; Grossu, I. V.

    2008-05-01

    This work presents a new software package for the study of chaotic flows and maps. The codes were written using Scilab, a software package for numerical computations providing a powerful open computing environment for engineering and scientific applications. It was found that Scilab provides various functions for ordinary differential equation solving, Fast Fourier Transform, autocorrelation, and excellent 2D and 3D graphical capabilities. The chaotic behaviors of the nonlinear dynamics systems were analyzed using phase-space maps, autocorrelation functions, power spectra, Lyapunov exponents and Kolmogorov-Sinai entropy. Various well known examples are implemented, with the capability of the users inserting their own ODE. Program summaryProgram title: Chaos Catalogue identifier: AEAP_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEAP_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 885 No. of bytes in distributed program, including test data, etc.: 5925 Distribution format: tar.gz Programming language: Scilab 3.1.1 Computer: PC-compatible running Scilab on MS Windows or Linux Operating system: Windows XP, Linux RAM: below 100 Megabytes Classification: 6.2 Nature of problem: Any physical model containing linear or nonlinear ordinary differential equations (ODE). Solution method: Numerical solving of ordinary differential equations. The chaotic behavior of the nonlinear dynamical system is analyzed using Poincaré sections, phase-space maps, autocorrelation functions, power spectra, Lyapunov exponents and Kolmogorov-Sinai entropies. Restrictions: The package routines are normally able to handle ODE systems of high orders (up to order twelve and possibly higher), depending on the nature of the problem. Running time: 10 to 20 seconds for problems that do not involve Lyapunov exponents calculation; 60 to 1000 seconds for problems that involve high orders ODE and Lyapunov exponents calculation.

  6. Kinetics of Polydomain Ordering at Second-Order Phase Transitions (by the Example of the AuCu3 Alloy)

    NASA Astrophysics Data System (ADS)

    Feldman, E. P.; Stefanovich, L. I.; Gumennyk, K. V.

    2008-08-01

    Kinetics of polydomain spinodal ordering is studied in alloys of AuCu3 type. We introduce four non-conserved long-range order parameters whose sum, however, is conserved and, using the statistical approach, follow the temporal evolution of their random spatial distribution after a rapid temperature quench. A system of nonlinear differential equations for correlators of second and third order is derived. Asymptotical analysis of this system allows to investigate the scaling regime, which develops on the late stages of evolution and to extract additional information concerning the rate of decrease of the specific volume of disordered regions and the rate of decrease of the average thickness of antiphase boundaries. Comparison of these results to experimental data is given. The quench below the spinodal and the onset of long-range order may be separated by the incubation time, whose origin is different from that in first-order phase transitions. Numerical integration of equations for correlators shows also, that it is possible to prepare a sample in such a way that its further evolution will go with formation of transient kinetically slowed polydomain structures different from the final L12 structure.

  7. Application of the Finite Element Method in Atomic and Molecular Physics

    NASA Technical Reports Server (NTRS)

    Shertzer, Janine

    2007-01-01

    The finite element method (FEM) is a numerical algorithm for solving second order differential equations. It has been successfully used to solve many problems in atomic and molecular physics, including bound state and scattering calculations. To illustrate the diversity of the method, we present here details of two applications. First, we calculate the non-adiabatic dipole polarizability of Hi by directly solving the first and second order equations of perturbation theory with FEM. In the second application, we calculate the scattering amplitude for e-H scattering (without partial wave analysis) by reducing the Schrodinger equation to set of integro-differential equations, which are then solved with FEM.

  8. Time-dependent inertia analysis of vehicle mechanisms

    NASA Astrophysics Data System (ADS)

    Salmon, James Lee

    Two methods for performing transient inertia analysis of vehicle hardware systems are developed in this dissertation. The analysis techniques can be used to predict the response of vehicle mechanism systems to the accelerations associated with vehicle impacts. General analytical methods for evaluating translational or rotational system dynamics are generated and evaluated for various system characteristics. The utility of the derived techniques are demonstrated by applying the generalized methods to two vehicle systems. Time dependent acceleration measured during a vehicle to vehicle impact are used as input to perform a dynamic analysis of an automobile liftgate latch and outside door handle. Generalized Lagrange equations for a non-conservative system are used to formulate a second order nonlinear differential equation defining the response of the components to the transient input. The differential equation is solved by employing the fourth order Runge-Kutta method. The events are then analyzed using commercially available two dimensional rigid body dynamic analysis software. The results of the two analytical techniques are compared to experimental data generated by high speed film analysis of tests of the two components performed on a high G acceleration sled at Ford Motor Company.

  9. Oscillation and asymptotic properties of a class of second-order Emden-Fowler neutral differential equations.

    PubMed

    Wang, Rui; Li, Qiqiang

    2016-01-01

    We consider a class of second-order Emden-Fowler equations with positive and nonpositve neutral coefficients. By using the Riccati transformation and inequalities, several oscillation and asymptotic results are established. Some examples are given to illustrate the main results.

  10. A stochastic hybrid systems based framework for modeling dependent failure processes

    PubMed Central

    Fan, Mengfei; Zeng, Zhiguo; Zio, Enrico; Kang, Rui; Chen, Ying

    2017-01-01

    In this paper, we develop a framework to model and analyze systems that are subject to dependent, competing degradation processes and random shocks. The degradation processes are described by stochastic differential equations, whereas transitions between the system discrete states are triggered by random shocks. The modeling is, then, based on Stochastic Hybrid Systems (SHS), whose state space is comprised of a continuous state determined by stochastic differential equations and a discrete state driven by stochastic transitions and reset maps. A set of differential equations are derived to characterize the conditional moments of the state variables. System reliability and its lower bounds are estimated from these conditional moments, using the First Order Second Moment (FOSM) method and Markov inequality, respectively. The developed framework is applied to model three dependent failure processes from literature and a comparison is made to Monte Carlo simulations. The results demonstrate that the developed framework is able to yield an accurate estimation of reliability with less computational costs compared to traditional Monte Carlo-based methods. PMID:28231313

  11. A stochastic hybrid systems based framework for modeling dependent failure processes.

    PubMed

    Fan, Mengfei; Zeng, Zhiguo; Zio, Enrico; Kang, Rui; Chen, Ying

    2017-01-01

    In this paper, we develop a framework to model and analyze systems that are subject to dependent, competing degradation processes and random shocks. The degradation processes are described by stochastic differential equations, whereas transitions between the system discrete states are triggered by random shocks. The modeling is, then, based on Stochastic Hybrid Systems (SHS), whose state space is comprised of a continuous state determined by stochastic differential equations and a discrete state driven by stochastic transitions and reset maps. A set of differential equations are derived to characterize the conditional moments of the state variables. System reliability and its lower bounds are estimated from these conditional moments, using the First Order Second Moment (FOSM) method and Markov inequality, respectively. The developed framework is applied to model three dependent failure processes from literature and a comparison is made to Monte Carlo simulations. The results demonstrate that the developed framework is able to yield an accurate estimation of reliability with less computational costs compared to traditional Monte Carlo-based methods.

  12. Systematic generation of multibody equations of motion suitable for recursive and parallel manipulation

    NASA Technical Reports Server (NTRS)

    Nikravesh, Parviz E.; Gim, Gwanghum; Arabyan, Ara; Rein, Udo

    1989-01-01

    The formulation of a method known as the joint coordinate method for automatic generation of the equations of motion for multibody systems is summarized. For systems containing open or closed kinematic loops, the equations of motion can be reduced systematically to a minimum number of second order differential equations. The application of recursive and nonrecursive algorithms to this formulation, computational considerations and the feasibility of implementing this formulation on multiprocessor computers are discussed.

  13. Identification of the Radiative and Nonradiative Parts of a Wave Field

    NASA Astrophysics Data System (ADS)

    Hoenders, B. J.; Ferwerda, H. A.

    2001-08-01

    We present a method for decomposing a wave field, described by a second-order ordinary differential equation, into a radiative component and a nonradiative one, using a biorthonormal system related to the problem under consideration. We show that it is possible to select a special system such that the wave field is purely radiating. We discuss the differences and analogies with approaches which, unlike our approach, start from the corresponding sources of the field.

  14. Probabilistic methods for rotordynamics analysis

    NASA Technical Reports Server (NTRS)

    Wu, Y.-T.; Torng, T. Y.; Millwater, H. R.; Fossum, A. F.; Rheinfurth, M. H.

    1991-01-01

    This paper summarizes the development of the methods and a computer program to compute the probability of instability of dynamic systems that can be represented by a system of second-order ordinary linear differential equations. Two instability criteria based upon the eigenvalues or Routh-Hurwitz test functions are investigated. Computational methods based on a fast probability integration concept and an efficient adaptive importance sampling method are proposed to perform efficient probabilistic analysis. A numerical example is provided to demonstrate the methods.

  15. A Tribute to J. C. Sprott

    NASA Astrophysics Data System (ADS)

    Nazarimehr, Fahimeh; Jafari, Sajad; Chen, Guanrong; Kapitaniak, Tomasz; Kuznetsov, Nikolay V.; Leonov, Gennady A.; Li, Chunbiao; Wei, Zhouchao

    2017-12-01

    In honor of his 75th birthday, we review the prominent works of Professor Julien Clinton Sprott in chaos and nonlinear dynamics. We categorize his works into three important groups. The first and most important group is identifying new dynamical systems with special properties. He has proposed different chaotic maps, flows, complex variable systems, nonautonomous systems, partial differential equations, fractional-order systems, delay differential systems, spatiotemporal systems, artificial neural networks, and chaotic electrical circuits. He has also studied dynamical properties of complex systems such as bifurcations and basins of attraction. He has done work on generating fractal art. He has examined models of real-world systems that exhibit chaos. The second group of his works comprise control and synchronization of chaos. Finally, the third group is extracting dynamical properties of systems using time-series analysis. This paper highlights the impact of Sprott’s work on the promotion of nonlinear dynamics.

  16. Flexible system model reduction and control system design based upon actuator and sensor influence functions

    NASA Technical Reports Server (NTRS)

    Yam, Yeung; Johnson, Timothy L.; Lang, Jeffrey H.

    1987-01-01

    A model reduction technique based on aggregation with respect to sensor and actuator influence functions rather than modes is presented for large systems of coupled second-order differential equations. Perturbation expressions which can predict the effects of spillover on both the reduced-order plant model and the neglected plant model are derived. For the special case of collocated actuators and sensors, these expressions lead to the derivation of constraints on the controller gains that are, given the validity of the perturbation technique, sufficient to guarantee the stability of the closed-loop system. A case study demonstrates the derivation of stabilizing controllers based on the present technique. The use of control and observation synthesis in modifying the dimension of the reduced-order plant model is also discussed. A numerical example is provided for illustration.

  17. Geometry of Conservation Laws for a Class of Parabolic Partial Differential Equations

    NASA Astrophysics Data System (ADS)

    Clelland, Jeanne Nielsen

    1996-08-01

    I consider the problem of computing the space of conservation laws for a second-order, parabolic partial differential equation for one function of three independent variables. The PDE is formulated as an exterior differential system {cal I} on a 12 -manifold M, and its conservation laws are identified with the vector space of closed 3-forms in the infinite prolongation of {cal I} modulo the so -called "trivial" conservation laws. I use the tools of exterior differential systems and Cartan's method of equivalence to study the structure of the space of conservation laws. My main result is:. Theorem. Any conservation law for a second-order, parabolic PDE for one function of three independent variables can be represented by a closed 3-form in the differential ideal {cal I} on the original 12-manifold M. I show that if a nontrivial conservation law exists, then {cal I} has a deprolongation to an equivalent system {cal J} on a 7-manifold N, and any conservation law for {cal I} can be expressed as a closed 3-form on N which lies in {cal J}. Furthermore, any such system in the real analytic category is locally equivalent to a system generated by a (parabolic) equation of the formA(u _{xx}u_{yy}-u_sp {xy}{2}) + B_1u_{xx }+2B_2u_{xy} +B_3u_ {yy}+C=0crwhere A, B_{i}, C are functions of x, y, t, u, u_{x}, u _{y}, u_{t}. I compute the space of conservation laws for several examples, and I begin the process of analyzing the general case using Cartan's method of equivalence. I show that the non-linearizable equation u_{t} = {1over2}e ^{-u}(u_{xx}+u_ {yy})has an infinite-dimensional space of conservation laws. This stands in contrast to the two-variable case, for which Bryant and Griffiths showed that any equation whose space of conservation laws has dimension 4 or more is locally equivalent to a linear equation, i.e., is linearizable.

  18. Stokes polarimetry imaging of dog prostate tissue

    NASA Astrophysics Data System (ADS)

    Kim, Jihoon; Johnston, William K., III; Walsh, Joseph T., Jr.

    2010-02-01

    Prostate cancer is the second leading cause of death in the United States in 2009. Radical prostatectomy (complete removal of the prostate) is the most common treatment for prostate cancer, however, differentiating prostate tissue from adjacent bladder, nerves, and muscle is difficult. Improved visualization could improve oncologic outcomes and decrease damage to adjacent nerves and muscle important for preservation of potency and continence. A novel Stokes polarimetry imaging (SPI) system was developed and evaluated using a dog prostate specimen in order to examine the feasibility of the system to differentiate prostate from bladder. The degree of linear polarization (DOLP) image maps from linearly polarized light illumination at different visible wavelengths (475, 510, and 650 nm) were constructed. The SPI system used the polarization property of the prostate tissue. The DOLP images allowed advanced differentiation by distinguishing glandular tissue of prostate from the muscular-stromal tissue in the bladder. The DOLP image at 650 nm effectively differentiated prostate and bladder by strong DOLP in bladder. SPI system has the potential to improve surgical outcomes in open or robotic-assisted laparoscopic removal of the prostate. Further in vivo testing is warranted.

  19. Finite-time H∞ filtering for non-linear stochastic systems

    NASA Astrophysics Data System (ADS)

    Hou, Mingzhe; Deng, Zongquan; Duan, Guangren

    2016-09-01

    This paper describes the robust H∞ filtering analysis and the synthesis of general non-linear stochastic systems with finite settling time. We assume that the system dynamic is modelled by Itô-type stochastic differential equations of which the state and the measurement are corrupted by state-dependent noises and exogenous disturbances. A sufficient condition for non-linear stochastic systems to have the finite-time H∞ performance with gain less than or equal to a prescribed positive number is established in terms of a certain Hamilton-Jacobi inequality. Based on this result, the existence of a finite-time H∞ filter is given for the general non-linear stochastic system by a second-order non-linear partial differential inequality, and the filter can be obtained by solving this inequality. The effectiveness of the obtained result is illustrated by a numerical example.

  20. Symmetry Reductions and Group-Invariant Radial Solutions to the n-Dimensional Wave Equation

    NASA Astrophysics Data System (ADS)

    Feng, Wei; Zhao, Songlin

    2018-01-01

    In this paper, we derive explicit group-invariant radial solutions to a class of wave equation via symmetry group method. The optimal systems of one-dimensional subalgebras for the corresponding radial wave equation are presented in terms of the known point symmetries. The reductions of the radial wave equation into second-order ordinary differential equations (ODEs) with respect to each symmetry in the optimal systems are shown. Then we solve the corresponding reduced ODEs explicitly in order to write out the group-invariant radial solutions for the wave equation. Finally, several analytical behaviours and smoothness of the resulting solutions are discussed.

  1. Temperature differential detection device

    DOEpatents

    Girling, P.M.

    1986-04-22

    A temperature differential detection device for detecting the temperature differential between predetermined portions of a container wall is disclosed as comprising a Wheatstone bridge circuit for detecting resistance imbalance with a first circuit branch having a first elongated wire element mounted in thermal contact with a predetermined portion of the container wall, a second circuit branch having a second elongated wire element mounted in thermal contact with a second predetermined portion of a container wall with the wire elements having a predetermined temperature-resistant coefficient, an indicator interconnected between the first and second branches remote from the container wall for detecting and indicating resistance imbalance between the first and second wire elements, and connector leads for electrically connecting the wire elements to the remote indicator in order to maintain the respective resistance value relationship between the first and second wire elements. The indicator is calibrated to indicate the detected resistance imbalance in terms of a temperature differential between the first and second wall portions. 2 figs.

  2. Temperature differential detection device

    DOEpatents

    Girling, Peter M.

    1986-01-01

    A temperature differential detection device for detecting the temperature differential between predetermined portions of a container wall is disclosed as comprising a Wheatstone bridge circuit for detecting resistance imbalance with a first circuit branch having a first elongated wire element mounted in thermal contact with a predetermined portion of the container wall, a second circuit branch having a second elongated wire element mounted in thermal contact with a second predetermined portion of a container wall with the wire elements having a predetermined temperature-resistant coefficient, an indicator interconnected between the first and second branches remote from the container wall for detecting and indicating resistance imbalance between the first and second wire elements, and connector leads for electrically connecting the wire elements to the remote indicator in order to maintain the respective resistance value relationship between the first and second wire elements. The indicator is calibrated to indicate the detected resistance imbalance in terms of a temperature differential between the first and second wall portions.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jimenez, Bienvenido; Novo, Vicente

    We provide second-order necessary and sufficient conditions for a point to be an efficient element of a set with respect to a cone in a normed space, so that there is only a small gap between necessary and sufficient conditions. To this aim, we use the common second-order tangent set and the asymptotic second-order cone utilized by Penot. As an application we establish second-order necessary conditions for a point to be a solution of a vector optimization problem with an arbitrary feasible set and a twice Frechet differentiable objective function between two normed spaces. We also establish second-order sufficient conditionsmore » when the initial space is finite-dimensional so that there is no gap with necessary conditions. Lagrange multiplier rules are also given.« less

  4. Second-order oriented partial-differential equations for denoising in electronic-speckle-pattern interferometry fringes.

    PubMed

    Tang, Chen; Han, Lin; Ren, Hongwei; Zhou, Dongjian; Chang, Yiming; Wang, Xiaohang; Cui, Xiaolong

    2008-10-01

    We derive the second-order oriented partial-differential equations (PDEs) for denoising in electronic-speckle-pattern interferometry fringe patterns from two points of view. The first is based on variational methods, and the second is based on controlling diffusion direction. Our oriented PDE models make the diffusion along only the fringe orientation. The main advantage of our filtering method, based on oriented PDE models, is that it is very easy to implement compared with the published filtering methods along the fringe orientation. We demonstrate the performance of our oriented PDE models via application to two computer-simulated and experimentally obtained speckle fringes and compare with related PDE models.

  5. Process and domain specificity in regions engaged for face processing: an fMRI study of perceptual differentiation.

    PubMed

    Collins, Heather R; Zhu, Xun; Bhatt, Ramesh S; Clark, Jonathan D; Joseph, Jane E

    2012-12-01

    The degree to which face-specific brain regions are specialized for different kinds of perceptual processing is debated. This study parametrically varied demands on featural, first-order configural, or second-order configural processing of faces and houses in a perceptual matching task to determine the extent to which the process of perceptual differentiation was selective for faces regardless of processing type (domain-specific account), specialized for specific types of perceptual processing regardless of category (process-specific account), engaged in category-optimized processing (i.e., configural face processing or featural house processing), or reflected generalized perceptual differentiation (i.e., differentiation that crosses category and processing type boundaries). ROIs were identified in a separate localizer run or with a similarity regressor in the face-matching runs. The predominant principle accounting for fMRI signal modulation in most regions was generalized perceptual differentiation. Nearly all regions showed perceptual differentiation for both faces and houses for more than one processing type, even if the region was identified as face-preferential in the localizer run. Consistent with process specificity, some regions showed perceptual differentiation for first-order processing of faces and houses (right fusiform face area and occipito-temporal cortex and right lateral occipital complex), but not for featural or second-order processing. Somewhat consistent with domain specificity, the right inferior frontal gyrus showed perceptual differentiation only for faces in the featural matching task. The present findings demonstrate that the majority of regions involved in perceptual differentiation of faces are also involved in differentiation of other visually homogenous categories.

  6. Process- and Domain-Specificity in Regions Engaged for Face Processing: An fMRI Study of Perceptual Differentiation

    PubMed Central

    Collins, Heather R.; Zhu, Xun; Bhatt, Ramesh S.; Clark, Jonathan D.; Joseph, Jane E.

    2015-01-01

    The degree to which face-specific brain regions are specialized for different kinds of perceptual processing is debated. The present study parametrically varied demands on featural, first-order configural or second-order configural processing of faces and houses in a perceptual matching task to determine the extent to which the process of perceptual differentiation was selective for faces regardless of processing type (domain-specific account), specialized for specific types of perceptual processing regardless of category (process-specific account), engaged in category-optimized processing (i.e., configural face processing or featural house processing) or reflected generalized perceptual differentiation (i.e. differentiation that crosses category and processing type boundaries). Regions of interest were identified in a separate localizer run or with a similarity regressor in the face-matching runs. The predominant principle accounting for fMRI signal modulation in most regions was generalized perceptual differentiation. Nearly all regions showed perceptual differentiation for both faces and houses for more than one processing type, even if the region was identified as face-preferential in the localizer run. Consistent with process-specificity, some regions showed perceptual differentiation for first-order processing of faces and houses (right fusiform face area and occipito-temporal cortex, and right lateral occipital complex), but not for featural or second-order processing. Somewhat consistent with domain-specificity, the right inferior frontal gyrus showed perceptual differentiation only for faces in the featural matching task. The present findings demonstrate that the majority of regions involved in perceptual differentiation of faces are also involved in differentiation of other visually homogenous categories. PMID:22849402

  7. Characteristics pertaining to a stiffness cross-coupled Jeffcott model

    NASA Technical Reports Server (NTRS)

    Spanyer, K. L.

    1985-01-01

    Rotordynamic studies of complex systems utilizing multiple degree-of-freedom analysis have been performed to understand response, loads, and stability. In order to understand the fundamental nature of rotordynamic response, the Jeffcott rotor model has received wide attention. The purpose of this paper is to provide a generic rotordynamic analysis of a stiffness cross-coupled Jeffcott rotor model to illustrate characteristics of a second order stiffness-coupled linear system. The particular characteristics investigated were forced response, force vector diagrams, response orbits, and stability. Numerical results were achieved through a fourth order Runge-Kutta method for solving differential equations and the Routh Hurwitz stability criterion. The numerical results were verified to an exact mathematical solution for the steady state response.

  8. Maglev Train Signal Processing Architecture Based on Nonlinear Discrete Tracking Differentiator.

    PubMed

    Wang, Zhiqiang; Li, Xiaolong; Xie, Yunde; Long, Zhiqiang

    2018-05-24

    In a maglev train levitation system, signal processing plays an important role for the reason that some sensor signals are prone to be corrupted by noise due to the harsh installation and operation environment of sensors and some signals cannot be acquired directly via sensors. Based on these concerns, an architecture based on a new type of nonlinear second-order discrete tracking differentiator is proposed. The function of this signal processing architecture includes filtering signal noise and acquiring needed signals for levitation purposes. The proposed tracking differentiator possesses the advantages of quick convergence, no fluttering, and simple calculation. Tracking differentiator's frequency characteristics at different parameter values are studied in this paper. The performance of this new type of tracking differentiator is tested in a MATLAB simulation and this tracking-differentiator is implemented in Very-High-Speed Integrated Circuit Hardware Description Language (VHDL). In the end, experiments are conducted separately on a test board and a maglev train model. Simulation and experiment results show that the performance of this novel signal processing architecture can fulfill the real system requirement.

  9. Unconditionally stable, second-order accurate schemes for solid state phase transformations driven by mechano-chemical spinodal decomposition

    DOE PAGES

    Sagiyama, Koki; Rudraraju, Shiva; Garikipati, Krishna

    2016-09-13

    Here, we consider solid state phase transformations that are caused by free energy densities with domains of non-convexity in strain-composition space; we refer to the non-convex domains as mechano-chemical spinodals. The non-convexity with respect to composition and strain causes segregation into phases with different crystal structures. We work on an existing model that couples the classical Cahn-Hilliard model with Toupin’s theory of gradient elasticity at finite strains. Both systems are represented by fourth-order, nonlinear, partial differential equations. The goal of this work is to develop unconditionally stable, second-order accurate time-integration schemes, motivated by the need to carry out large scalemore » computations of dynamically evolving microstructures in three dimensions. We also introduce reduced formulations naturally derived from these proposed schemes for faster computations that are still second-order accurate. Although our method is developed and analyzed here for a specific class of mechano-chemical problems, one can readily apply the same method to develop unconditionally stable, second-order accurate schemes for any problems for which free energy density functions are multivariate polynomials of solution components and component gradients. Apart from an analysis and construction of methods, we present a suite of numerical results that demonstrate the schemes in action.« less

  10. Second-order Born calculation of coplanar symmetric (e, 2e) process on Mg

    NASA Astrophysics Data System (ADS)

    Zhang, Yong-Zhi; Wang, Yang; Zhou, Ya-Jun

    2014-06-01

    The second-order distorted wave Born approximation (DWBA) method is employed to investigate the triple differential cross sections (TDCS) of coplanar doubly symmetric (e, 2e) collisions for magnesium at excess energies of 6 eV-20 eV. Comparing with the standard first-order DWBA calculations, the inclusion of the second-order Born term in the scattering amplitude improves the degree of agreement with experiments, especially for backward scattering region of TDCS. This indicates that the present second-order Born term is capable to give a reasonable correction to DWBA model in studying coplanar symmetric (e, 2e) problems of two-valence-electron target in low energy range.

  11. On the growth of solutions of a class of higher order linear differential equations with coefficients having the same order

    NASA Astrophysics Data System (ADS)

    Tu, Jin; Yi, Cai-Feng

    2008-04-01

    In this paper, the authors investigate the growth of solutions of a class of higher order linear differential equationsf(k)+Ak-1f(k-1)+...+A0f=0 when most coefficients in the above equations have the same order with each other, and obtain some results which improve previous results due to K.H. Kwon [K.H. Kwon, Nonexistence of finite order solutions of certain second order linear differential equations, Kodai Math. J. 19 (1996) 378-387] and ZE-X. Chen [Z.-X. Chen, The growth of solutions of the differential equation f''+e-zf'+Q(z)f=0, Sci. China Ser. A 31 (2001) 775-784 (in Chinese); ZE-X. Chen, On the hyper order of solutions of higher order differential equations, Chinese Ann. Math. Ser. B 24 (2003) 501-508 (in Chinese); Z.-X. Chen, On the growth of solutions of a class of higher order differential equations, Acta Math. Sci. Ser. B 24 (2004) 52-60 (in Chinese); Z.-X. Chen, C.-C. Yang, Quantitative estimations on the zeros and growth of entire solutions of linear differential equations, Complex Var. 42 (2000) 119-133].

  12. Use of Green's functions in the numerical solution of two-point boundary value problems

    NASA Technical Reports Server (NTRS)

    Gallaher, L. J.; Perlin, I. E.

    1974-01-01

    This study investigates the use of Green's functions in the numerical solution of the two-point boundary value problem. The first part deals with the role of the Green's function in solving both linear and nonlinear second order ordinary differential equations with boundary conditions and systems of such equations. The second part describes procedures for numerical construction of Green's functions and considers briefly the conditions for their existence. Finally, there is a description of some numerical experiments using nonlinear problems for which the known existence, uniqueness or convergence theorems do not apply. Examples here include some problems in finding rendezvous orbits of the restricted three body system.

  13. Ion mobility sensor system

    DOEpatents

    Xu, Jun; Watson, David B.; Whitten, William B.

    2013-01-22

    An ion mobility sensor system including an ion mobility spectrometer and a differential mobility spectrometer coupled to the ion mobility spectrometer. The ion mobility spectrometer has a first chamber having first end and a second end extending along a first direction, and a first electrode system that generates a constant electric field parallel to the first direction. The differential mobility spectrometer includes a second chamber having a third end and a fourth end configured such that a fluid may flow in a second direction from the third end to the fourth end, and a second electrode system that generates an asymmetric electric field within an interior of the second chamber. Additionally, the ion mobility spectrometer and the differential mobility spectrometer form an interface region. Also, the first end and the third end are positioned facing one another so that the constant electric field enters the third end and overlaps the fluid flowing in the second direction.

  14. Stability and square integrability of derivatives of solutions of nonlinear fourth order differential equations with delay.

    PubMed

    Korkmaz, Erdal

    2017-01-01

    In this paper, we give sufficient conditions for the boundedness, uniform asymptotic stability and square integrability of the solutions to a certain fourth order non-autonomous differential equations with delay by using Lyapunov's second method. The results obtained essentially improve, include and complement the results in the literature.

  15. Computer program documentation for the dynamic analysis of a noncontacting mechanical face seal

    NASA Technical Reports Server (NTRS)

    Auer, B. M.; Etsion, I.

    1980-01-01

    A computer program is presented which achieves a numerical solution for the equations of motion of a noncontacting mechanical face seal. The flexibly-mounted primary seal ring motion is expressed by a set of second order differential equations for three degrees of freedom. These equations are reduced to a set of first order equations and the GEAR software package is used to solve the set of first order equations. Program input includes seal design parameters and seal operating conditions. Output from the program includes velocities and displacements of the seal ring about the axis of an inertial reference system. One example problem is described.

  16. Some Advanced Concepts in Discrete Aerodynamic Sensitivity Analysis

    NASA Technical Reports Server (NTRS)

    Taylor, Arthur C., III; Green, Lawrence L.; Newman, Perry A.; Putko, Michele M.

    2001-01-01

    An efficient incremental-iterative approach for differentiating advanced flow codes is successfully demonstrated on a 2D inviscid model problem. The method employs the reverse-mode capability of the automatic- differentiation software tool ADIFOR 3.0, and is proven to yield accurate first-order aerodynamic sensitivity derivatives. A substantial reduction in CPU time and computer memory is demonstrated in comparison with results from a straight-forward, black-box reverse- mode application of ADIFOR 3.0 to the same flow code. An ADIFOR-assisted procedure for accurate second-order aerodynamic sensitivity derivatives is successfully verified on an inviscid transonic lifting airfoil example problem. The method requires that first-order derivatives are calculated first using both the forward (direct) and reverse (adjoint) procedures; then, a very efficient non-iterative calculation of all second-order derivatives can be accomplished. Accurate second derivatives (i.e., the complete Hessian matrices) of lift, wave-drag, and pitching-moment coefficients are calculated with respect to geometric- shape, angle-of-attack, and freestream Mach number

  17. Second- and Higher-Order Virial Coefficients Derived from Equations of State for Real Gases

    ERIC Educational Resources Information Center

    Parkinson, William A.

    2009-01-01

    Derivation of the second- and higher-order virial coefficients for models of the gaseous state is demonstrated by employing a direct differential method and subsequent term-by-term comparison to power series expansions. This communication demonstrates the application of this technique to van der Waals representations of virial coefficients.…

  18. Cosmological perturbations in mimetic Horndeski gravity

    NASA Astrophysics Data System (ADS)

    Arroja, Frederico; Bartolo, Nicola; Karmakar, Purnendu; Matarrese, Sabino

    2016-04-01

    We study linear scalar perturbations around a flat FLRW background in mimetic Horndeski gravity. In the absence of matter, we show that the Newtonian potential satisfies a second-order differential equation with no spatial derivatives. This implies that the sound speed for scalar perturbations is exactly zero on this background. We also show that in mimetic G3 theories the sound speed is equally zero. We obtain the equation of motion for the comoving curvature perturbation (first order differential equation) and solve it to find that the comoving curvature perturbation is constant on all scales in mimetic Horndeski gravity. We find solutions for the Newtonian potential evolution equation in two simple models. Finally we show that the sound speed is zero on all backgrounds and therefore the system does not have any wave-like scalar degrees of freedom.

  19. Oscillation criteria for a class of second-order Emden-Fowler delay dynamic equations on time scales

    NASA Astrophysics Data System (ADS)

    Han, Zhenlai; Sun, Shurong; Shi, Bao

    2007-10-01

    By means of Riccati transformation technique, we establish some new oscillation criteria for the second-order Emden-Fowler delay dynamic equationsx[Delta][Delta](t)+p(t)x[gamma]([tau](t))=0 on a time scale ; here [gamma] is a quotient of odd positive integers with p(t) real-valued positive rd-continuous functions defined on . To the best of our knowledge nothing is known regarding the qualitative behavior of these equations on time scales. Our results in this paper not only extend the results given in [R.P. Agarwal, M. Bohner, S.H. Saker, Oscillation of second-order delay dynamic equations, Can. Appl. Math. Q. 13 (1) (2005) 1-18] but also unify the oscillation of the second-order Emden-Fowler delay differential equation and the second-order Emden-Fowler delay difference equation.

  20. On the Existence of Non-Oscillatory Phase Functions for Second Order Ordinary Differential Equations in the High-Frequency Regime

    DTIC Science & Technology

    2014-08-04

    Chebyshev coefficients of both r and q decay exponentially, although those of r decay at a slightly slower rate. 10.2. Evaluation of Legendre polynomials ...In this experiment, we compare the cost of evaluating Legendre polynomials of large order using the standard recurrence relation with the cost of...doing so with a nonoscillatory phase function. For any integer n ě 0, the Legendre polynomial Pnpxq of order n is a solution of the second order

  1. Fractional dynamics pharmacokinetics–pharmacodynamic models

    PubMed Central

    2010-01-01

    While an increasing number of fractional order integrals and differential equations applications have been reported in the physics, signal processing, engineering and bioengineering literatures, little attention has been paid to this class of models in the pharmacokinetics–pharmacodynamic (PKPD) literature. One of the reasons is computational: while the analytical solution of fractional differential equations is available in special cases, it this turns out that even the simplest PKPD models that can be constructed using fractional calculus do not allow an analytical solution. In this paper, we first introduce new families of PKPD models incorporating fractional order integrals and differential equations, and, second, exemplify and investigate their qualitative behavior. The families represent extensions of frequently used PK link and PD direct and indirect action models, using the tools of fractional calculus. In addition the PD models can be a function of a variable, the active drug, which can smoothly transition from concentration to exposure, to hyper-exposure, according to a fractional integral transformation. To investigate the behavior of the models we propose, we implement numerical algorithms for fractional integration and for the numerical solution of a system of fractional differential equations. For simplicity, in our investigation we concentrate on the pharmacodynamic side of the models, assuming standard (integer order) pharmacokinetics. PMID:20455076

  2. Classical eighth- and lower-order Runge-Kutta-Nystroem formulas with a new stepsize control procedure for special second-order differential equations

    NASA Technical Reports Server (NTRS)

    Fehlberg, E.

    1973-01-01

    New Runge-Kutta-Nystrom formulas of the eighth, seventh, sixth, and fifth order are derived for the special second-order (vector) differential equation x = f (t,x). In contrast to Runge-Kutta-Nystrom formulas of an earlier NASA report, these formulas provide a stepsize control procedure based on the leading term of the local truncation error in x. This new procedure is more accurate than the earlier Runge-Kutta-Nystrom procedure (with stepsize control based on the leading term of the local truncation error in x) when integrating close to singularities. Two central orbits are presented as examples. For these orbits, the accuracy and speed of the formulas of this report are compared with those of Runge-Kutta-Nystrom and Runge-Kutta formulas of earlier NASA reports.

  3. White noise analysis of Phycomyces light growth response system. I. Normal intensity range.

    PubMed Central

    Lipson, E D

    1975-01-01

    The Wiener-Lee-Schetzen method for the identification of a nonlinear system through white gaussian noise stimulation was applied to the transient light growth response of the sporangiophore of Phycomyces. In order to cover a moderate dynamic range of light intensity I, the imput variable was defined to be log I. The experiments were performed in the normal range of light intensity, centered about I0 = 10(-6) W/cm2. The kernels of the Wierner functionals were computed up to second order. Within the range of a few decades the system is reasonably linear with log I. The main nonlinear feature of the second-order kernel corresponds to the property of rectification. Power spectral analysis reveals that the slow dynamics of the system are of at least fifth order. The system can be represented approximately by a linear transfer function, including a first-order high-pass (adaptation) filter with a 4 min time constant and an underdamped fourth-order low-pass filter. Accordingly a linear electronic circuit was constructed to simulate the small scale response characteristics. In terms of the adaptation model of Delbrück and Reichardt (1956, in Cellular Mechanisms in Differentiation and Growth, Princeton University Press), kernels were deduced for the dynamic dependence of the growth velocity (output) on the "subjective intensity", a presumed internal variable. Finally the linear electronic simulator above was generalized to accommodate the large scale nonlinearity of the adaptation model and to serve as a tool for deeper test of the model. PMID:1203444

  4. Identification and feedback control in structures with piezoceramic actuators

    NASA Technical Reports Server (NTRS)

    Banks, H. T.; Ito, K.; Wang, Y.

    1992-01-01

    In this lecture we give fundamental well-posedness results for a variational formulation of a class of damped second order partial differential equations with unbounded input or control coefficients. Included as special cases in this class are structures with piezoceramic actuators. We consider approximation techniques leading to computational methods in the context of both parameter estimation and feedback control problems for these systems. Rigorous convergence results for parameter estimates and feedback gains are discussed.

  5. Large space structure model reduction and control system design based upon actuator and sensor influence functions

    NASA Technical Reports Server (NTRS)

    Yam, Y.; Lang, J. H.; Johnson, T. L.; Shih, S.; Staelin, D. H.

    1983-01-01

    A model reduction procedure based on aggregation with respect to sensor and actuator influences rather than modes is presented for large systems of coupled second-order differential equations. Perturbation expressions which can predict the effects of spillover on both the aggregated and residual states are derived. These expressions lead to the development of control system design constraints which are sufficient to guarantee, to within the validity of the perturbations, that the residual states are not destabilized by control systems designed from the reduced model. A numerical example is provided to illustrate the application of the aggregation and control system design method.

  6. Propagation of mechanical waves through a stochastic medium with spherical symmetry

    NASA Astrophysics Data System (ADS)

    Avendaño, Carlos G.; Reyes, J. Adrián

    2018-01-01

    We theoretically analyze the propagation of outgoing mechanical waves through an infinite isotropic elastic medium possessing spherical symmetry whose Lamé coefficients and density are spatial random functions characterized by well-defined statistical parameters. We derive the differential equation that governs the average displacement for a system whose properties depend on the radial coordinate. We show that such an equation is an extended version of the well-known Bessel differential equation whose perturbative additional terms contain coefficients that depend directly on the squared noise intensities and the autocorrelation lengths in an exponential decay fashion. We numerically solve the second order differential equation for several values of noise intensities and autocorrelation lengths and compare the corresponding displacement profiles with that of the exact analytic solution for the case of absent inhomogeneities.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Azunre, P.

    Here in this paper, two novel techniques for bounding the solutions of parametric weakly coupled second-order semilinear parabolic partial differential equations are developed. The first provides a theorem to construct interval bounds, while the second provides a theorem to construct lower bounds convex and upper bounds concave in the parameter. The convex/concave bounds can be significantly tighter than the interval bounds because of the wrapping effect suffered by interval analysis in dynamical systems. Both types of bounds are computationally cheap to construct, requiring solving auxiliary systems twice and four times larger than the original system, respectively. An illustrative numerical examplemore » of bound construction and use for deterministic global optimization within a simple serial branch-and-bound algorithm, implemented numerically using interval arithmetic and a generalization of McCormick's relaxation technique, is presented. Finally, problems within the important class of reaction-diffusion systems may be optimized with these tools.« less

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Uin, Janek

    The Brechtel Manufacturing Inc. (BMI) Humidified Tandem Differential Mobility Analyzer (HT-DMA Model 3002) (Brechtel and Kreidenweis 2000a,b, Henning et al. 2005, Xerxes et al. 2014) measures how aerosol particles of different initial dry sizes grow or shrink when exposed to changing relative humidity (RH) conditions. It uses two different mobility analyzers (DMA) and a humidification system to make the measurements. One DMA selects a narrow size range of dry aerosol particles, which are exposed to varying RH conditions in the humidification system. The second (humidified) DMA scans the particle size distribution output from the humidification system. Scanning a wide rangemore » of particle sizes enables the second DMA to measure changes in size or growth factor (growth factor = humidified size/dry size), due to water uptake by the particles. A Condensation Particle Counter (CPC) downstream of the second DMA counts particles as a function of selected size in order to obtain the number size distribution of particles exposed to different RH conditions.« less

  9. Gravitational collapse of a turbulent vortex with application to star formation

    NASA Technical Reports Server (NTRS)

    Deissler, R. G.

    1976-01-01

    The gravitational collapse of a rotating cloud or vortex is analyzed by expanding the dependent variables in the equations of motion in two-dimensional Taylor series in the space variables. It is shown that the gravitational and rotational terms in the equations are of first order in the space variables, the pressure-gradient terms are of second order, and the turbulent-viscosity term is of third order. The presence of turbulent viscosity ensures that the initial rotation is solid-body-like near the origin. The effect of pressure on the collapse process is found to depend on the shape of the initial density disturbance at the origin. Dimensionless collapse times, as well as the evolution of density and velocity, are calculated by solving numerically the system of nonlinear ordinary differential equations resulting from the series expansions. The axial flow is always inward and allows collapse to occur (axially) even when the rotation is large. An approximate solution of the governing partial differential equations is also given in order to study the spatial distributions of the density and velocity.

  10. Gravitational collapse of a turbulent vortex with application to star formation

    NASA Technical Reports Server (NTRS)

    Deissler, R. G.

    1975-01-01

    The gravitational collapse of a rotating cloud or vortex is analyzed by expanding the dependent variables in the equations of motion in two-dimensional Taylor series in the space variables. It is shown that the gravitation and rotation terms in the equations are of first order in the space variables, the pressure gradient terms are of second order, and the turbulent viscosity term is of third order. The presence of a turbulent viscosity insures that the initial rotation is solid-body-like near the origin. The effect of pressure on the collapse process is found to depend on the shape of the intial density disturbance at the origin. Dimensionless collapse times, as well as the evolution of density and velocity, are calculated by solving numerically the system of nonlinear ordinary differential equations resulting from the series expansions. The axial inflow plays an important role and allows collapse to occur even when the rotation is large. An approximate solution of the governing partial differential equations is also given, in order to study the spacial distributions of the density and velocity.

  11. Absorbing boundary conditions for second-order hyperbolic equations

    NASA Technical Reports Server (NTRS)

    Jiang, Hong; Wong, Yau Shu

    1989-01-01

    A uniform approach to construct absorbing artificial boundary conditions for second-order linear hyperbolic equations is proposed. The nonlocal boundary condition is given by a pseudodifferential operator that annihilates travelling waves. It is obtained through the dispersion relation of the differential equation by requiring that the initial-boundary value problem admits the wave solutions travelling in one direction only. Local approximation of this global boundary condition yields an nth-order differential operator. It is shown that the best approximations must be in the canonical forms which can be factorized into first-order operators. These boundary conditions are perfectly absorbing for wave packets propagating at certain group velocities. A hierarchy of absorbing boundary conditions is derived for transonic small perturbation equations of unsteady flows. These examples illustrate that the absorbing boundary conditions are easy to derive, and the effectiveness is demonstrated by the numerical experiments.

  12. Spin effects in transport through triangular quantum dot molecule in different geometrical configurations

    NASA Astrophysics Data System (ADS)

    Wrześniewski, Kacper; Weymann, Ireneusz

    2015-07-01

    We analyze the spin-resolved transport properties of a triangular quantum dot molecule weakly coupled to external ferromagnetic leads. The calculations are performed by using the real-time diagrammatic technique up to the second-order of perturbation theory, which enables a description of both the sequential and cotunneling processes. We study the behavior of the current and differential conductance in the parallel and antiparallel magnetic configurations, as well as the tunnel magnetoresistance (TMR) and the Fano factor in both the linear and nonlinear response regimes. It is shown that the transport characteristics depend greatly on how the system is connected to external leads. Two specific geometrical configurations of the device are considered—the mirror one, which possesses the reflection symmetry with respect to the current flow direction and the fork one, in which this symmetry is broken. In the case of first configuration we show that, depending on the bias and gate voltages, the system exhibits both enhanced TMR and super-Poissonian shot noise. On the other hand, when the system is in the second configuration, we predict a negative TMR and a negative differential conductance in certain transport regimes. The mechanisms leading to those effects are thoroughly discussed.

  13. Reflecting Solutions of High Order Elliptic Differential Equations in Two Independent Variables Across Analytic Arcs. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Carleton, O.

    1972-01-01

    Consideration is given specifically to sixth order elliptic partial differential equations in two independent real variables x, y such that the coefficients of the highest order terms are real constants. It is assumed that the differential operator has distinct characteristics and that it can be factored as a product of second order operators. By analytically continuing into the complex domain and using the complex characteristic coordinates of the differential equation, it is shown that its solutions, u, may be reflected across analytic arcs on which u satisfies certain analytic boundary conditions. Moreover, a method is given whereby one can determine a region into which the solution is extensible. It is seen that this region of reflection is dependent on the original domain of difinition of the solution, the arc and the coefficients of the highest order terms of the equation and not on any sufficiently small quantities; i.e., the reflection is global in nature. The method employed may be applied to similar differential equations of order 2n.

  14. Some Advanced Concepts in Discrete Aerodynamic Sensitivity Analysis

    NASA Technical Reports Server (NTRS)

    Taylor, Arthur C., III; Green, Lawrence L.; Newman, Perry A.; Putko, Michele M.

    2003-01-01

    An efficient incremental iterative approach for differentiating advanced flow codes is successfully demonstrated on a two-dimensional inviscid model problem. The method employs the reverse-mode capability of the automatic differentiation software tool ADIFOR 3.0 and is proven to yield accurate first-order aerodynamic sensitivity derivatives. A substantial reduction in CPU time and computer memory is demonstrated in comparison with results from a straightforward, black-box reverse-mode applicaiton of ADIFOR 3.0 to the same flow code. An ADIFOR-assisted procedure for accurate second-rder aerodynamic sensitivity derivatives is successfully verified on an inviscid transonic lifting airfoil example problem. The method requires that first-order derivatives are calculated first using both the forward (direct) and reverse (adjoinct) procedures; then, a very efficient noniterative calculation of all second-order derivatives can be accomplished. Accurate second derivatives (i.e., the complete Hesian matrices) of lift, wave drag, and pitching-moment coefficients are calculated with respect to geometric shape, angle of attack, and freestream Mach number.

  15. Second-order differential equations for bosons with spin j ≥ 1 and in the bases of general tensor-spinors of rank 2j

    NASA Astrophysics Data System (ADS)

    Banda Guzmán, V. M.; Kirchbach, M.

    2016-09-01

    A boson of spin j≥ 1 can be described in one of the possibilities within the Bargmann-Wigner framework by means of one sole differential equation of order twice the spin, which however is known to be inconsistent as it allows for non-local, ghost and acausally propagating solutions, all problems which are difficult to tackle. The other possibility is provided by the Fierz-Pauli framework which is based on the more comfortable to deal with second-order Klein-Gordon equation, but it needs to be supplemented by an auxiliary condition. Although the latter formalism avoids some of the pathologies of the high-order equations, it still remains plagued by some inconsistencies such as the acausal propagation of the wave fronts of the (classical) solutions within an electromagnetic environment. We here suggest a method alternative to the above two that combines their advantages while avoiding the related difficulties. Namely, we suggest one sole strictly D^{(j,0)oplus (0,j)} representation specific second-order differential equation, which is derivable from a Lagrangian and whose solutions do not violate causality. The equation under discussion presents itself as the product of the Klein-Gordon operator with a momentum-independent projector on Lorentz irreducible representation spaces constructed from one of the Casimir invariants of the spin-Lorentz group. The basis used is that of general tensor-spinors of rank 2 j.

  16. A new computational method for reacting hypersonic flows

    NASA Astrophysics Data System (ADS)

    Niculescu, M. L.; Cojocaru, M. G.; Pricop, M. V.; Fadgyas, M. C.; Pepelea, D.; Stoican, M. G.

    2017-07-01

    Hypersonic gas dynamics computations are challenging due to the difficulties to have reliable and robust chemistry models that are usually added to Navier-Stokes equations. From the numerical point of view, it is very difficult to integrate together Navier-Stokes equations and chemistry model equations because these partial differential equations have different specific time scales. For these reasons, almost all known finite volume methods fail shortly to solve this second order partial differential system. Unfortunately, the heating of Earth reentry vehicles such as space shuttles and capsules is very close linked to endothermic chemical reactions. A better prediction of wall heat flux leads to smaller safety coefficient for thermal shield of space reentry vehicle; therefore, the size of thermal shield decreases and the payload increases. For these reasons, the present paper proposes a new computational method based on chemical equilibrium, which gives accurate prediction of hypersonic heating in order to support the Earth reentry capsule design.

  17. A canonical form of the equation of motion of linear dynamical systems

    NASA Astrophysics Data System (ADS)

    Kawano, Daniel T.; Salsa, Rubens Goncalves; Ma, Fai; Morzfeld, Matthias

    2018-03-01

    The equation of motion of a discrete linear system has the form of a second-order ordinary differential equation with three real and square coefficient matrices. It is shown that, for almost all linear systems, such an equation can always be converted by an invertible transformation into a canonical form specified by two diagonal coefficient matrices associated with the generalized acceleration and displacement. This canonical form of the equation of motion is unique up to an equivalence class for non-defective systems. As an important by-product, a damped linear system that possesses three symmetric and positive definite coefficients can always be recast as an undamped and decoupled system.

  18. Extending the Constant Coefficient Solution Technique to Variable Coefficient Ordinary Differential Equations

    ERIC Educational Resources Information Center

    Mohammed, Ahmed; Zeleke, Aklilu

    2015-01-01

    We introduce a class of second-order ordinary differential equations (ODEs) with variable coefficients whose closed-form solutions can be obtained by the same method used to solve ODEs with constant coefficients. General solutions for the homogeneous case are discussed.

  19. Stochastic Differential Games with Asymmetric Information

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cardaliaguet, Pierre, E-mail: Pierre.Cardaliaguet@univ-brest.fr; Rainer, Catherine

    2009-02-15

    We investigate a two-player zero-sum stochastic differential game in which the players have an asymmetric information on the random payoff. We prove that the game has a value and characterize this value in terms of dual viscosity solutions of some second order Hamilton-Jacobi equation.

  20. Continuous and Discrete Structured Population Models with Applications to Epidemiology and Marine Mammals

    NASA Astrophysics Data System (ADS)

    Tang, Tingting

    In this dissertation, we develop structured population models to examine how changes in the environmental affect population processes. In Chapter 2, we develop a general continuous time size structured model describing a susceptible-infected (SI) population coupled with the environment. This model applies to problems arising in ecology, epidemiology, and cell biology. The model consists of a system of quasilinear hyperbolic partial differential equations coupled with a system of nonlinear ordinary differential equations that represent the environment. We develop a second-order high resolution finite difference scheme to numerically solve the model. Convergence of this scheme to a weak solution with bounded total variation is proved. We numerically compare the second order high resolution scheme with a first order finite difference scheme. Higher order of convergence and high resolution property are observed in the second order finite difference scheme. In addition, we apply our model to a multi-host wildlife disease problem, questions regarding the impact of the initial population structure and transition rate within each host are numerically explored. In Chapter 3, we use a stage structured matrix model for wildlife population to study the recovery process of the population given an environmental disturbance. We focus on the time it takes for the population to recover to its pre-event level and develop general formulas to calculate the sensitivity or elasticity of the recovery time to changes in the initial population distribution, vital rates and event severity. Our results suggest that the recovery time is independent of the initial population size, but is sensitive to the initial population structure. Moreover, it is more sensitive to the reduction proportion to the vital rates of the population caused by the catastrophe event relative to the duration of impact of the event. We present the potential application of our model to the amphibian population dynamic and the recovery of a certain plant population. In addition, we explore, in details, the application of the model to the sperm whale population in Gulf of Mexico after the Deepwater Horizon oil spill. In Chapter 4, we summarize the results from Chapter 2 and Chapter 3 and explore some further avenues of our research.

  1. Second Order Born Effects in the Perpendicular Plane Ionization of Xe (5p) Atoms

    NASA Astrophysics Data System (ADS)

    Purohit, G.; Singh, Prithvi; Patidar, Vinod

    We report triple differential cross section (TDCS) results for the perpendicular plane ionization of xenon atoms at incident electron energies 5, 10, 20, 30, and 40 eV above ionization potential. The TDCS calculation have been preformed within the modified distorted wave Born approximation formalism including the second order Born (SBA) amplitude. We compare the (e, 2e) TDCS result of our calculation with the very recent measurements of Nixon and Murray [Phys. Rev. A 85, 022716 (2012)] and relativistic DWBA-G results of Illarionov and Stauffer [J. Phys. B: At. Mol. Opt. Phys. 45, 225202 (2012)] and discuss the process contributing to structure seen in the differential cross section.

  2. The Quantum Arnold Transformation for the damped harmonic oscillator: from the Caldirola-Kanai model toward the Bateman model

    NASA Astrophysics Data System (ADS)

    López-Ruiz, F. F.; Guerrero, J.; Aldaya, V.; Cossío, F.

    2012-08-01

    Using a quantum version of the Arnold transformation of classical mechanics, all quantum dynamical systems whose classical equations of motion are non-homogeneous linear second-order ordinary differential equations (LSODE), including systems with friction linear in velocity such as the damped harmonic oscillator, can be related to the quantum free-particle dynamical system. This implies that symmetries and simple computations in the free particle can be exported to the LSODE-system. The quantum Arnold transformation is given explicitly for the damped harmonic oscillator, and an algebraic connection between the Caldirola-Kanai model for the damped harmonic oscillator and the Bateman system will be sketched out.

  3. Propagation of high amplitude higher order sounds in slightly soft rectangular ducts, carrying mean flow

    NASA Technical Reports Server (NTRS)

    Wang, K. S.; Vaidya, P. G.

    1975-01-01

    The resonance expansion method, developed to study the propagation of sound in rigid rectangular ducts is applied to the case of slightly soft ducts. Expressions for the generation and decay of various harmonics are obtained. The effect of wall admittance is seen through a dissipation function in the system of nonlinear differential equations, governing the generation of harmonics. As the wall admittance increases, the resonance is reduced. For a given wall admittance this phenomenon is stronger at higher input intensities. Both the first and second order solutions are obtained and the results are extended to the case of ducts having mean flow.

  4. An Automatic Orthonormalization Method for Solving Stiff Boundary-Value Problems

    NASA Astrophysics Data System (ADS)

    Davey, A.

    1983-08-01

    A new initial-value method is described, based on a remark by Drury, for solving stiff linear differential two-point cigenvalue and boundary-value problems. The method is extremely reliable, it is especially suitable for high-order differential systems, and it is capable of accommodating realms of stiffness which other methods cannot reach. The key idea behind the method is to decompose the stiff differential operator into two non-stiff operators, one of which is nonlinear. The nonlinear one is specially chosen so that it advances an orthonormal frame, indeed the method is essentially a kind of automatic orthonormalization; the second is auxiliary but it is needed to determine the required function. The usefulness of the method is demonstrated by calculating some eigenfunctions for an Orr-Sommerfeld problem when the Reynolds number is as large as 10°.

  5. Nonlinear differential equations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dresner, L.

    1988-01-01

    This report is the text of a graduate course on nonlinear differential equations given by the author at the University of Wisconsin-Madison during the summer of 1987. The topics covered are: direction fields of first-order differential equations; the Lie (group) theory of ordinary differential equations; similarity solutions of second-order partial differential equations; maximum principles and differential inequalities; monotone operators and iteration; complementary variational principles; and stability of numerical methods. The report should be of interest to graduate students, faculty, and practicing scientists and engineers. No prior knowledge is required beyond a good working knowledge of the calculus. The emphasis ismore » on practical results. Most of the illustrative examples are taken from the fields of nonlinear diffusion, heat and mass transfer, applied superconductivity, and helium cryogenics.« less

  6. An efficient method for solving the steady Euler equations

    NASA Technical Reports Server (NTRS)

    Liou, M. S.

    1986-01-01

    An efficient numerical procedure for solving a set of nonlinear partial differential equations is given, specifically for the steady Euler equations. Solutions of the equations were obtained by Newton's linearization procedure, commonly used to solve the roots of nonlinear algebraic equations. In application of the same procedure for solving a set of differential equations we give a theorem showing that a quadratic convergence rate can be achieved. While the domain of quadratic convergence depends on the problems studied and is unknown a priori, we show that firstand second-order derivatives of flux vectors determine whether the condition for quadratic convergence is satisfied. The first derivatives enter as an implicit operator for yielding new iterates and the second derivatives indicates smoothness of the flows considered. Consequently flows involving shocks are expected to require larger number of iterations. First-order upwind discretization in conjunction with the Steger-Warming flux-vector splitting is employed on the implicit operator and a diagonal dominant matrix results. However the explicit operator is represented by first- and seond-order upwind differencings, using both Steger-Warming's and van Leer's splittings. We discuss treatment of boundary conditions and solution procedures for solving the resulting block matrix system. With a set of test problems for one- and two-dimensional flows, we show detailed study as to the efficiency, accuracy, and convergence of the present method.

  7. Modeling hexavalent chromium removal in a Bacillus sp. fixed-film bioreactor.

    PubMed

    Nkhalambayausi-Chirwa, Evans M; Wang, Yi-Tin

    2004-09-30

    A one-dimensional diffusion-reaction model was developed to simulate Cr(VI) reduction in a Bacillus sp. pure culture biofilm reactor with glucose as a sole supplied carbon and energy source. Substrate utilization and Cr(VI) reduction in the biofilm was best represented by a system of (second-order) partial differential equations (PDEs). The PDE system was solved by the (fourth-order) Runge-Kutta method adjusted for mass transport resistance using the (second-order) Crank-Nicholson and Backward Euler finite difference methods. A heuristic procedure (genetic search algorithm) was used to find global optimum values of Cr(VI) reduction and substrate utilization rate kinetic parameters. The fixed-film bioreactor system yielded higher values of the maximum specific Cr(VI) reduction rate coefficient and Cr(VI) reduction capacity (kmc = 0.062 1/h, and Rc = 0.13 mg/mg, respectively) than previously determined in batch reactors (kmc = 0.022 1/h and Rc = 0.012 mg/mg). The model predicted effluent Cr(VI) concentration well with 98.9% confidence (sigmay2 = 2.37 mg2/L2, N = 119) and effluent glucose with 96.4 % confidence (sigmay(w)2 = 5402 mg2/L2, N = 121, w = 100) over a wide range of Cr(VI) loadings (10-498 mg Cr(VI)/L/d). Copyright 2004 Wiley Periodicals, Inc.

  8. Causal dissipation and shock profiles in the relativistic fluid dynamics of pure radiation.

    PubMed

    Freistühler, Heinrich; Temple, Blake

    2014-06-08

    CURRENT THEORIES OF DISSIPATION IN THE RELATIVISTIC REGIME SUFFER FROM ONE OF TWO DEFICITS: either their dissipation is not causal or no profiles for strong shock waves exist. This paper proposes a relativistic Navier-Stokes-Fourier-type viscosity and heat conduction tensor such that the resulting second-order system of partial differential equations for the fluid dynamics of pure radiation is symmetric hyperbolic. This system has causal dissipation as well as the property that all shock waves of arbitrary strength have smooth profiles. Entropy production is positive both on gradients near those of solutions to the dissipation-free equations and on gradients of shock profiles. This shows that the new dissipation stress tensor complies to leading order with the principles of thermodynamics. Whether higher order modifications of the ansatz are required to obtain full compatibility with the second law far from the zero-dissipation equilibrium is left to further investigations. The system has exactly three a priori free parameters χ , η , ζ , corresponding physically to heat conductivity, shear viscosity and bulk viscosity. If the bulk viscosity is zero (as is stated in the literature) and the total stress-energy tensor is trace free, the entire viscosity and heat conduction tensor is determined to within a constant factor.

  9. Causal dissipation and shock profiles in the relativistic fluid dynamics of pure radiation

    PubMed Central

    Freistühler, Heinrich; Temple, Blake

    2014-01-01

    Current theories of dissipation in the relativistic regime suffer from one of two deficits: either their dissipation is not causal or no profiles for strong shock waves exist. This paper proposes a relativistic Navier–Stokes–Fourier-type viscosity and heat conduction tensor such that the resulting second-order system of partial differential equations for the fluid dynamics of pure radiation is symmetric hyperbolic. This system has causal dissipation as well as the property that all shock waves of arbitrary strength have smooth profiles. Entropy production is positive both on gradients near those of solutions to the dissipation-free equations and on gradients of shock profiles. This shows that the new dissipation stress tensor complies to leading order with the principles of thermodynamics. Whether higher order modifications of the ansatz are required to obtain full compatibility with the second law far from the zero-dissipation equilibrium is left to further investigations. The system has exactly three a priori free parameters χ,η,ζ, corresponding physically to heat conductivity, shear viscosity and bulk viscosity. If the bulk viscosity is zero (as is stated in the literature) and the total stress–energy tensor is trace free, the entire viscosity and heat conduction tensor is determined to within a constant factor. PMID:24910526

  10. Compton Scattering by Static and Moving Media. Part 1; The Transfer Equation and its Moments

    NASA Technical Reports Server (NTRS)

    Psaltis, Dimitrios; Lamb, Frederick K.

    1997-01-01

    Compton scattering of photons by nonrelativistic particles is thought to play an important role in forming the radiation spectrum of many astrophysical systems. Here we derive the time-dependent photon kinetic equation that describes spontaneous and induced Compton scattering, as well as absorption and emission by static and moving media, the corresponding radiative transfer equation, and their zeroth and first angular moments, both in the system frame and in the frame comoving with the medium. We show that it is necessary to use the correct relativistic differential scattering cross section in order to obtain a photon kinetic equation that is correct to first order in Epsilon/m(sub e), T(sub e)/m(sub e), and V, where Epsilon is the photon energy, T(sub e) and m(sub e) are the electron temperature and rest mass, and V is the electron bulk velocity in units of the speed of light. We also demonstrate that the terms in the radiative transfer equation that are second order in V should usually be retained, because if the radiation energy density is sufficiently large, compared to the radiation flux, the effects of bulk Comptonization described by the terms that are second order in V can be as important as the effects described by the terms that are first order in V, even when V is small. The system- and fluid-frame equations that we derive are correct to first order in Epsilon/m(sub e). Our system-frame equations, which are correct to second order in V, may be used when V is not too large. Our fluid-frame equations, which are exact in V, may be used when V approaches 1. Both sets of equations are valid for systems of arbitrary optical depth and can therefore be used in both the free-streaming and diffusion regimes. We demonstrate that Comptonization by the electron bulk motion occurs whether or not the radiation field is isotropic or the bulk flow converges and that it is more important than thermal Comptonization if V(sup 2) is greater than 3T(sub e)/m(sub e).

  11. Qualitative and quantitative behaviour of planetary systems; Proceedings of the 3rd Alexander von Humboldt Colloquium on Celestial Mechanics, Ramsau, Austria, Mar. 29-Apr. 4, 1992

    NASA Astrophysics Data System (ADS)

    Dvorak, R.; Henrard, J.

    1993-06-01

    Topics addressed include planetary theories, the Sitnikov problem, asteroids, resonance, general dynamical systems, and chaos and stability. Particular attention is given to recent progress in the theory and application of symplectic integrators, a computer-aided analysis of the Sitnikov problem, the chaotic behavior of trajectories for the asteroidal resonances, and the resonant motion in the restricted three-body problem. Also discussed are the second order long-period motion of Hyperion, meteorites from the asteroid 6 Hebe, and least squares parameter estimation in chaotic differential equations.

  12. Continuous higher-order sliding mode control with time-varying gain for a class of uncertain nonlinear systems.

    PubMed

    Han, Yaozhen; Liu, Xiangjie

    2016-05-01

    This paper presents a continuous higher-order sliding mode (HOSM) control scheme with time-varying gain for a class of uncertain nonlinear systems. The proposed controller is derived from the concept of geometric homogeneity and super-twisting algorithm, and includes two parts, the first part of which achieves smooth finite time stabilization of pure integrator chains. The second part conquers the twice differentiable uncertainty and realizes system robustness by employing super-twisting algorithm. Particularly, time-varying switching control gain is constructed to reduce the switching control action magnitude to the minimum possible value while keeping the property of finite time convergence. Examples concerning the perturbed triple integrator chains and excitation control for single-machine infinite bus power system are simulated respectively to demonstrate the effectiveness and applicability of the proposed approach. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  13. The Pendulum and the Calculus.

    ERIC Educational Resources Information Center

    Sworder, Steven C.

    A pair of experiments, appropriate for the lower division fourth semester calculus or differential equations course, are presented. The second order differential equation representing the equation of motion of a simple pendulum is derived. The period of oscillation for a particular pendulum can be predicted from the solution to this equation. As a…

  14. W-transform for exponential stability of second order delay differential equations without damping terms.

    PubMed

    Domoshnitsky, Alexander; Maghakyan, Abraham; Berezansky, Leonid

    2017-01-01

    In this paper a method for studying stability of the equation [Formula: see text] not including explicitly the first derivative is proposed. We demonstrate that although the corresponding ordinary differential equation [Formula: see text] is not exponentially stable, the delay equation can be exponentially stable.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luo, Yousong, E-mail: yousong.luo@rmit.edu.au

    This paper deals with a class of optimal control problems governed by an initial-boundary value problem of a parabolic equation. The case of semi-linear boundary control is studied where the control is applied to the system via the Wentzell boundary condition. The differentiability of the state variable with respect to the control is established and hence a necessary condition is derived for the optimal solution in the case of both unconstrained and constrained problems. The condition is also sufficient for the unconstrained convex problems. A second order condition is also derived.

  16. Position dependent mass Schroedinger equation and isospectral potentials: Intertwining operator approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Midya, Bikashkali; Roy, B.; Roychoudhury, R.

    2010-02-15

    Here, we have studied first- and second-order intertwining approaches to generate isospectral partner potentials of position dependent (effective) mass Schroedinger equation. The second-order intertwiner is constructed directly by taking it as second-order linear differential operator with position dependent coefficients, and the system of equations arising from the intertwining relationship is solved for the coefficients by taking an ansatz. A complete scheme for obtaining general solution is obtained, which is valid for any arbitrary potential and mass function. The proposed technique allows us to generate isospectral potentials with the following spectral modifications: (i) to add new bound state(s), (ii) to removemore » bound state(s), and (iii) to leave the spectrum unaffected. To explain our findings with the help of an illustration, we have used point canonical transformation to obtain the general solution of the position dependent mass Schrodinger equation corresponding to a potential and mass function. It is shown that our results are consistent with the formulation of type A N-fold supersymmetry [T. Tanaka, J. Phys. A 39, 219 (2006); A. Gonzalez-Lopez and T. Tanaka, J. Phys. A 39, 3715 (2006)] for the particular cases N=1 and N=2, respectively.« less

  17. DEAN: A program for dynamic engine analysis

    NASA Technical Reports Server (NTRS)

    Sadler, G. G.; Melcher, K. J.

    1985-01-01

    The Dynamic Engine Analysis program, DEAN, is a FORTRAN code implemented on the IBM/370 mainframe at NASA Lewis Research Center for digital simulation of turbofan engine dynamics. DEAN is an interactive program which allows the user to simulate engine subsystems as well as a full engine systems with relative ease. The nonlinear first order ordinary differential equations which define the engine model may be solved by one of four integration schemes, a second order Runge-Kutta, a fourth order Runge-Kutta, an Adams Predictor-Corrector, or Gear's method for still systems. The numerical data generated by the model equations are displayed at specified intervals between which the user may choose to modify various parameters affecting the model equations and transient execution. Following the transient run, versatile graphics capabilities allow close examination of the data. DEAN's modeling procedure and capabilities are demonstrated by generating a model of simple compressor rig.

  18. Construction of normal-regular decisions of Bessel typed special system

    NASA Astrophysics Data System (ADS)

    Tasmambetov, Zhaksylyk N.; Talipova, Meiramgul Zh.

    2017-09-01

    Studying a special system of differential equations in the separate production of the second order is solved by the degenerate hypergeometric function reducing to the Bessel functions of two variables. To construct a solution of this system near regular and irregular singularities, we use the method of Frobenius-Latysheva applying the concepts of rank and antirank. There is proved the basic theorem that establishes the existence of four linearly independent solutions of studying system type of Bessel. To prove the existence of normal-regular solutions we establish necessary conditions for the existence of such solutions. The existence and convergence of a normally regular solution are shown using the notion of rank and antirank.

  19. A new medical image segmentation model based on fractional order differentiation and level set

    NASA Astrophysics Data System (ADS)

    Chen, Bo; Huang, Shan; Xie, Feifei; Li, Lihong; Chen, Wensheng; Liang, Zhengrong

    2018-03-01

    Segmenting medical images is still a challenging task for both traditional local and global methods because the image intensity inhomogeneous. In this paper, two contributions are made: (i) on the one hand, a new hybrid model is proposed for medical image segmentation, which is built based on fractional order differentiation, level set description and curve evolution; and (ii) on the other hand, three popular definitions of Fourier-domain, Grünwald-Letnikov (G-L) and Riemann-Liouville (R-L) fractional order differentiation are investigated and compared through experimental results. Because of the merits of enhancing high frequency features of images and preserving low frequency features of images in a nonlinear manner by the fractional order differentiation definitions, one fractional order differentiation definition is used in our hybrid model to perform segmentation of inhomogeneous images. The proposed hybrid model also integrates fractional order differentiation, fractional order gradient magnitude and difference image information. The widely-used dice similarity coefficient metric is employed to evaluate quantitatively the segmentation results. Firstly, experimental results demonstrated that a slight difference exists among the three expressions of Fourier-domain, G-L, RL fractional order differentiation. This outcome supports our selection of one of the three definitions in our hybrid model. Secondly, further experiments were performed for comparison between our hybrid segmentation model and other existing segmentation models. A noticeable gain was seen by our hybrid model in segmenting intensity inhomogeneous images.

  20. Recent Development of Multigrid Algorithms for Mixed and Noncomforming Methods for Second Order Elliptical Problems

    NASA Technical Reports Server (NTRS)

    Chen, Zhangxin; Ewing, Richard E.

    1996-01-01

    Multigrid algorithms for nonconforming and mixed finite element methods for second order elliptic problems on triangular and rectangular finite elements are considered. The construction of several coarse-to-fine intergrid transfer operators for nonconforming multigrid algorithms is discussed. The equivalence between the nonconforming and mixed finite element methods with and without projection of the coefficient of the differential problems into finite element spaces is described.

  1. Model-order reduction of lumped parameter systems via fractional calculus

    NASA Astrophysics Data System (ADS)

    Hollkamp, John P.; Sen, Mihir; Semperlotti, Fabio

    2018-04-01

    This study investigates the use of fractional order differential models to simulate the dynamic response of non-homogeneous discrete systems and to achieve efficient and accurate model order reduction. The traditional integer order approach to the simulation of non-homogeneous systems dictates the use of numerical solutions and often imposes stringent compromises between accuracy and computational performance. Fractional calculus provides an alternative approach where complex dynamical systems can be modeled with compact fractional equations that not only can still guarantee analytical solutions, but can also enable high levels of order reduction without compromising on accuracy. Different approaches are explored in order to transform the integer order model into a reduced order fractional model able to match the dynamic response of the initial system. Analytical and numerical results show that, under certain conditions, an exact match is possible and the resulting fractional differential models have both a complex and frequency-dependent order of the differential operator. The implications of this type of approach for both model order reduction and model synthesis are discussed.

  2. Simplified combustion noise theory yielding a prediction of fluctuating pressure level

    NASA Technical Reports Server (NTRS)

    Huff, R. G.

    1984-01-01

    The first order equations for the conservation of mass and momentum in differential form are combined for an ideal gas to yield a single second order partial differential equation in one dimension and time. Small perturbation analysis is applied. A Fourier transformation is performed that results in a second order, constant coefficient, nonhomogeneous equation. The driving function is taken to be the source of combustion noise. A simplified model describing the energy addition via the combustion process gives the required source information for substitution in the driving function. This enables the particular integral solution of the nonhomogeneous equation to be found. This solution multiplied by the acoustic pressure efficiency predicts the acoustic pressure spectrum measured in turbine engine combustors. The prediction was compared with the overall sound pressure levels measured in a CF6-50 turbofan engine combustor and found to be in excellent agreement.

  3. Second-order numerical methods for multi-term fractional differential equations: Smooth and non-smooth solutions

    NASA Astrophysics Data System (ADS)

    Zeng, Fanhai; Zhang, Zhongqiang; Karniadakis, George Em

    2017-12-01

    Starting with the asymptotic expansion of the error equation of the shifted Gr\\"{u}nwald--Letnikov formula, we derive a new modified weighted shifted Gr\\"{u}nwald--Letnikov (WSGL) formula by introducing appropriate correction terms. We then apply one special case of the modified WSGL formula to solve multi-term fractional ordinary and partial differential equations, and we prove the linear stability and second-order convergence for both smooth and non-smooth solutions. We show theoretically and numerically that numerical solutions up to certain accuracy can be obtained with only a few correction terms. Moreover, the correction terms can be tuned according to the fractional derivative orders without explicitly knowing the analytical solutions. Numerical simulations verify the theoretical results and demonstrate that the new formula leads to better performance compared to other known numerical approximations with similar resolution.

  4. Gravitational collapse of a turbulent vortex with application to star formation

    NASA Technical Reports Server (NTRS)

    Deissler, R. G.

    1975-01-01

    The gravitational collapse of a rotating cloud or vortex is analyzed by expanding the dependent variables in the equations of motion in two-dimensional Taylor series in the space variables. It is shown that the gravitation and rotation terms in the equations are of first order in the space variables, the pressure gradient terms are of second order, and the turbulent viscosity term is of third order. The presence of a turbulent viscosity insures that the initial rotation is solid-body-like near the origin. The effect of pressure on the collapse process is found to depend on the shape of the initial density disturbance at the origin. Dimensionless collapse times, as well as the evolution of density and velocity, are calculated by solving numerically the system of nonlinear ordinary differential equations resulting from the series expansions. The axial inflow plays an important role and allows collapse to occur even when the rotation is large. An approximate solution of the governing partial differential equations is also given; the equations are used to study the spacial distributions of the density and velocity.

  5. New second order Mumford-Shah model based on Γ-convergence approximation for image processing

    NASA Astrophysics Data System (ADS)

    Duan, Jinming; Lu, Wenqi; Pan, Zhenkuan; Bai, Li

    2016-05-01

    In this paper, a second order variational model named the Mumford-Shah total generalized variation (MSTGV) is proposed for simultaneously image denoising and segmentation, which combines the original Γ-convergence approximated Mumford-Shah model with the second order total generalized variation (TGV). For image denoising, the proposed MSTGV can eliminate both the staircase artefact associated with the first order total variation and the edge blurring effect associated with the quadratic H1 regularization or the second order bounded Hessian regularization. For image segmentation, the MSTGV can obtain clear and continuous boundaries of objects in the image. To improve computational efficiency, the implementation of the MSTGV does not directly solve its high order nonlinear partial differential equations and instead exploits the efficient split Bregman algorithm. The algorithm benefits from the fast Fourier transform, analytical generalized soft thresholding equation, and Gauss-Seidel iteration. Extensive experiments are conducted to demonstrate the effectiveness and efficiency of the proposed model.

  6. Critical study of higher order numerical methods for solving the boundary-layer equations

    NASA Technical Reports Server (NTRS)

    Wornom, S. F.

    1978-01-01

    A fourth order box method is presented for calculating numerical solutions to parabolic, partial differential equations in two variables or ordinary differential equations. The method, which is the natural extension of the second order box scheme to fourth order, was demonstrated with application to the incompressible, laminar and turbulent, boundary layer equations. The efficiency of the present method is compared with two point and three point higher order methods, namely, the Keller box scheme with Richardson extrapolation, the method of deferred corrections, a three point spline method, and a modified finite element method. For equivalent accuracy, numerical results show the present method to be more efficient than higher order methods for both laminar and turbulent flows.

  7. Uncertainty Quantification in Simulations of Epidemics Using Polynomial Chaos

    PubMed Central

    Santonja, F.; Chen-Charpentier, B.

    2012-01-01

    Mathematical models based on ordinary differential equations are a useful tool to study the processes involved in epidemiology. Many models consider that the parameters are deterministic variables. But in practice, the transmission parameters present large variability and it is not possible to determine them exactly, and it is necessary to introduce randomness. In this paper, we present an application of the polynomial chaos approach to epidemiological mathematical models based on ordinary differential equations with random coefficients. Taking into account the variability of the transmission parameters of the model, this approach allows us to obtain an auxiliary system of differential equations, which is then integrated numerically to obtain the first-and the second-order moments of the output stochastic processes. A sensitivity analysis based on the polynomial chaos approach is also performed to determine which parameters have the greatest influence on the results. As an example, we will apply the approach to an obesity epidemic model. PMID:22927889

  8. Semi-Analytic Reconstruction of Flux in Finite Volume Formulations

    NASA Technical Reports Server (NTRS)

    Gnoffo, Peter A.

    2006-01-01

    Semi-analytic reconstruction uses the analytic solution to a second-order, steady, ordinary differential equation (ODE) to simultaneously evaluate the convective and diffusive flux at all interfaces of a finite volume formulation. The second-order ODE is itself a linearized approximation to the governing first- and second- order partial differential equation conservation laws. Thus, semi-analytic reconstruction defines a family of formulations for finite volume interface fluxes using analytic solutions to approximating equations. Limiters are not applied in a conventional sense; rather, diffusivity is adjusted in the vicinity of changes in sign of eigenvalues in order to achieve a sufficiently small cell Reynolds number in the analytic formulation across critical points. Several approaches for application of semi-analytic reconstruction for the solution of one-dimensional scalar equations are introduced. Results are compared with exact analytic solutions to Burger s Equation as well as a conventional, upwind discretization using Roe s method. One approach, the end-point wave speed (EPWS) approximation, is further developed for more complex applications. One-dimensional vector equations are tested on a quasi one-dimensional nozzle application. The EPWS algorithm has a more compact difference stencil than Roe s algorithm but reconstruction time is approximately a factor of four larger than for Roe. Though both are second-order accurate schemes, Roe s method approaches a grid converged solution with fewer grid points. Reconstruction of flux in the context of multi-dimensional, vector conservation laws including effects of thermochemical nonequilibrium in the Navier-Stokes equations is developed.

  9. Modified Taylor series method for solving nonlinear differential equations with mixed boundary conditions defined on finite intervals.

    PubMed

    Vazquez-Leal, Hector; Benhammouda, Brahim; Filobello-Nino, Uriel Antonio; Sarmiento-Reyes, Arturo; Jimenez-Fernandez, Victor Manuel; Marin-Hernandez, Antonio; Herrera-May, Agustin Leobardo; Diaz-Sanchez, Alejandro; Huerta-Chua, Jesus

    2014-01-01

    In this article, we propose the application of a modified Taylor series method (MTSM) for the approximation of nonlinear problems described on finite intervals. The issue of Taylor series method with mixed boundary conditions is circumvented using shooting constants and extra derivatives of the problem. In order to show the benefits of this proposal, three different kinds of problems are solved: three-point boundary valued problem (BVP) of third-order with a hyperbolic sine nonlinearity, two-point BVP for a second-order nonlinear differential equation with an exponential nonlinearity, and a two-point BVP for a third-order nonlinear differential equation with a radical nonlinearity. The result shows that the MTSM method is capable to generate easily computable and highly accurate approximations for nonlinear equations. 34L30.

  10. Chosen interval methods for solving linear interval systems with special type of matrix

    NASA Astrophysics Data System (ADS)

    Szyszka, Barbara

    2013-10-01

    The paper is devoted to chosen direct interval methods for solving linear interval systems with special type of matrix. This kind of matrix: band matrix with a parameter, from finite difference problem is obtained. Such linear systems occur while solving one dimensional wave equation (Partial Differential Equations of hyperbolic type) by using the central difference interval method of the second order. Interval methods are constructed so as the errors of method are enclosed in obtained results, therefore presented linear interval systems contain elements that determining the errors of difference method. The chosen direct algorithms have been applied for solving linear systems because they have no errors of method. All calculations were performed in floating-point interval arithmetic.

  11. Periodicity and positivity of a class of fractional differential equations.

    PubMed

    Ibrahim, Rabha W; Ahmad, M Z; Mohammed, M Jasim

    2016-01-01

    Fractional differential equations have been discussed in this study. We utilize the Riemann-Liouville fractional calculus to implement it within the generalization of the well known class of differential equations. The Rayleigh differential equation has been generalized of fractional second order. The existence of periodic and positive outcome is established in a new method. The solution is described in a fractional periodic Sobolev space. Positivity of outcomes is considered under certain requirements. We develop and extend some recent works. An example is constructed.

  12. Generalized Lie symmetry approach for fractional order systems of differential equations. III

    NASA Astrophysics Data System (ADS)

    Singla, Komal; Gupta, R. K.

    2017-06-01

    The generalized Lie symmetry technique is proposed for the derivation of point symmetries for systems of fractional differential equations with an arbitrary number of independent as well as dependent variables. The efficiency of the method is illustrated by its application to three higher dimensional nonlinear systems of fractional order partial differential equations consisting of the (2 + 1)-dimensional asymmetric Nizhnik-Novikov-Veselov system, (3 + 1)-dimensional Burgers system, and (3 + 1)-dimensional Navier-Stokes equations. With the help of derived Lie point symmetries, the corresponding invariant solutions transform each of the considered systems into a system of lower-dimensional fractional partial differential equations.

  13. Second order upwind Lagrangian particle method for Euler equations

    DOE PAGES

    Samulyak, Roman; Chen, Hsin -Chiang; Yu, Kwangmin

    2016-06-01

    A new second order upwind Lagrangian particle method for solving Euler equations for compressible inviscid fluid or gas flows is proposed. Similar to smoothed particle hydrodynamics (SPH), the method represents fluid cells with Lagrangian particles and is suitable for the simulation of complex free surface / multiphase flows. The main contributions of our method, which is different from SPH in all other aspects, are (a) significant improvement of approximation of differential operators based on a polynomial fit via weighted least squares approximation and the convergence of prescribed order, (b) an upwind second-order particle-based algorithm with limiter, providing accuracy and longmore » term stability, and (c) accurate resolution of states at free interfaces. In conclusion, numerical verification tests demonstrating the convergence order for fixed domain and free surface problems are presented.« less

  14. Second order upwind Lagrangian particle method for Euler equations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Samulyak, Roman; Chen, Hsin -Chiang; Yu, Kwangmin

    A new second order upwind Lagrangian particle method for solving Euler equations for compressible inviscid fluid or gas flows is proposed. Similar to smoothed particle hydrodynamics (SPH), the method represents fluid cells with Lagrangian particles and is suitable for the simulation of complex free surface / multiphase flows. The main contributions of our method, which is different from SPH in all other aspects, are (a) significant improvement of approximation of differential operators based on a polynomial fit via weighted least squares approximation and the convergence of prescribed order, (b) an upwind second-order particle-based algorithm with limiter, providing accuracy and longmore » term stability, and (c) accurate resolution of states at free interfaces. In conclusion, numerical verification tests demonstrating the convergence order for fixed domain and free surface problems are presented.« less

  15. Oscillation criteria for half-linear dynamic equations on time scales

    NASA Astrophysics Data System (ADS)

    Hassan, Taher S.

    2008-09-01

    This paper is concerned with oscillation of the second-order half-linear dynamic equation(r(t)(x[Delta])[gamma])[Delta]+p(t)x[gamma](t)=0, on a time scale where [gamma] is the quotient of odd positive integers, r(t) and p(t) are positive rd-continuous functions on . Our results solve a problem posed by [R.P. Agarwal, D. O'Regan, S.H. Saker, Philos-type oscillation criteria for second-order half linear dynamic equations, Rocky Mountain J. Math. 37 (2007) 1085-1104; S.H. Saker, Oscillation criteria of second order half-linear dynamic equations on time scales, J. Comput. Appl. Math. 177 (2005) 375-387] and our results in the special cases when and involve and improve some oscillation results for second-order differential and difference equations; and when , and , etc., our oscillation results are essentially newE Some examples illustrating the importance of our results are also included.

  16. Linearized Model of an Actively Controlled Cable for a Carlina Diluted Telescope

    NASA Astrophysics Data System (ADS)

    Andersen, T.; Le Coroller, H.; Owner-Petersen, M.; Dejonghe, J.

    2014-04-01

    The Carlina thinned pupil telescope has a focal unit (``gondola'') suspended by cables over the primary mirror. To predict the structural behavior of the gondola system, a simulation building block of a single cable is needed. A preloaded cable is a strongly non-linear system and can be modeled either with partial differential equations or non-linear finite elements. Using the latter, we set up an iteration procedure for determination of the static cable form and we formulate the necessary second-order differential equations for such a model. We convert them to a set of first-order differential equations (an ``ABCD''-model). Symmetrical in-plane eigenmodes and ``axial'' eigenmodes are the only eigenmodes that play a role in practice for a taut cable. Using the model and a generic suspension, a parameter study is made to find the influence of various design parameters. We conclude that the cable should be as stiff and thick as practically possible with a fairly high preload. Steel or Aramid are suitable materials. Further, placing the cable winches on the gondola and not on the ground does not provide significant advantages. Finally, it seems that use of reaction-wheels and/or reaction-masses will make the way for more accurate control of the gondola position under wind load. An adaptive stage with tip/tilt/piston correction for subapertures together with a focus and guiding system for freezing the fringes must also be studied.

  17. Breather solutions of a fourth-order nonlinear Schrödinger equation in the degenerate, soliton, and rogue wave limits

    NASA Astrophysics Data System (ADS)

    Chowdury, Amdad; Krolikowski, Wieslaw; Akhmediev, N.

    2017-10-01

    We present one- and two-breather solutions of the fourth-order nonlinear Schrödinger equation. With several parameters to play with, the solution may take a variety of forms. We consider most of these cases including the general form and limiting cases when the modulation frequencies are 0 or coincide. The zero-frequency limit produces a combination of breather-soliton structures on a constant background. The case of equal modulation frequencies produces a degenerate solution that requires a special technique for deriving. A zero-frequency limit of this degenerate solution produces a rational second-order rogue wave solution with a stretching factor involved. Taking, in addition, the zero limit of the stretching factor transforms the second-order rogue waves into a soliton. Adding a differential shift in the degenerate solution results in structural changes in the wave profile. Moreover, the zero-frequency limit of the degenerate solution with differential shift results in a rogue wave triplet. The zero limit of the stretching factor in this solution, in turn, transforms the triplet into a singlet plus a low-amplitude soliton on the background. A large value of the differential shift parameter converts the triplet into a pure singlet.

  18. Breather solutions of a fourth-order nonlinear Schrödinger equation in the degenerate, soliton, and rogue wave limits.

    PubMed

    Chowdury, Amdad; Krolikowski, Wieslaw; Akhmediev, N

    2017-10-01

    We present one- and two-breather solutions of the fourth-order nonlinear Schrödinger equation. With several parameters to play with, the solution may take a variety of forms. We consider most of these cases including the general form and limiting cases when the modulation frequencies are 0 or coincide. The zero-frequency limit produces a combination of breather-soliton structures on a constant background. The case of equal modulation frequencies produces a degenerate solution that requires a special technique for deriving. A zero-frequency limit of this degenerate solution produces a rational second-order rogue wave solution with a stretching factor involved. Taking, in addition, the zero limit of the stretching factor transforms the second-order rogue waves into a soliton. Adding a differential shift in the degenerate solution results in structural changes in the wave profile. Moreover, the zero-frequency limit of the degenerate solution with differential shift results in a rogue wave triplet. The zero limit of the stretching factor in this solution, in turn, transforms the triplet into a singlet plus a low-amplitude soliton on the background. A large value of the differential shift parameter converts the triplet into a pure singlet.

  19. Existence of liouvillian solutions in the problem of motion of a rotationally symmetric body on a sphere

    NASA Astrophysics Data System (ADS)

    Kuleshov, Alexander S.; Katasonova, Vera A.

    2018-05-01

    The problem of rolling without slipping of a rotationally symmetric rigid body on a sphere is considered. The rolling body is assumed to be subjected to the forces, the resultant of which is directed from the center of mass G of the body to the center O of the sphere, and depends only on the distance between G and O. In this case the solution of this problem is reduced to solving the second order linear differential equation over the projection of the angular velocity of the body onto its axis of symmetry. Using the Kovacic algorithm we search for liouvillian solutions of the corresponding second order differential equation in the case, when the rolling body is a dynamically symmetric ball.

  20. Error modeling for differential GPS. M.S. Thesis - MIT, 12 May 1995

    NASA Technical Reports Server (NTRS)

    Blerman, Gregory S.

    1995-01-01

    Differential Global Positioning System (DGPS) positioning is used to accurately locate a GPS receiver based upon the well-known position of a reference site. In utilizing this technique, several error sources contribute to position inaccuracy. This thesis investigates the error in DGPS operation and attempts to develop a statistical model for the behavior of this error. The model for DGPS error is developed using GPS data collected by Draper Laboratory. The Marquardt method for nonlinear curve-fitting is used to find the parameters of a first order Markov process that models the average errors from the collected data. The results show that a first order Markov process can be used to model the DGPS error as a function of baseline distance and time delay. The model's time correlation constant is 3847.1 seconds (1.07 hours) for the mean square error. The distance correlation constant is 122.8 kilometers. The total process variance for the DGPS model is 3.73 sq meters.

  1. FAST TRACK COMMUNICATION Quasi self-adjoint nonlinear wave equations

    NASA Astrophysics Data System (ADS)

    Ibragimov, N. H.; Torrisi, M.; Tracinà, R.

    2010-11-01

    In this paper we generalize the classification of self-adjoint second-order linear partial differential equation to a family of nonlinear wave equations with two independent variables. We find a class of quasi self-adjoint nonlinear equations which includes the self-adjoint linear equations as a particular case. The property of a differential equation to be quasi self-adjoint is important, e.g. for constructing conservation laws associated with symmetries of the differential equation.

  2. Higher-Order Factor Structure of the Differential Ability Scales-II: Consistency across Ages 4 to 17

    ERIC Educational Resources Information Center

    Keith, Timothy Z.; Low, Justin A.; Reynolds, Matthew R.; Patel, Puja G.; Ridley, Kristen P.

    2010-01-01

    The recently published second edition of the Differential Abilities Scale (DAS-II) is designed to measure multiple broad and general abilities from Cattell-Horn-Carroll (CHC) theory. Although the technical manual presents information supporting the test's structure, additional research is needed to determine the constructs measured by the test and…

  3. Accelerating numerical solution of stochastic differential equations with CUDA

    NASA Astrophysics Data System (ADS)

    Januszewski, M.; Kostur, M.

    2010-01-01

    Numerical integration of stochastic differential equations is commonly used in many branches of science. In this paper we present how to accelerate this kind of numerical calculations with popular NVIDIA Graphics Processing Units using the CUDA programming environment. We address general aspects of numerical programming on stream processors and illustrate them by two examples: the noisy phase dynamics in a Josephson junction and the noisy Kuramoto model. In presented cases the measured speedup can be as high as 675× compared to a typical CPU, which corresponds to several billion integration steps per second. This means that calculations which took weeks can now be completed in less than one hour. This brings stochastic simulation to a completely new level, opening for research a whole new range of problems which can now be solved interactively. Program summaryProgram title: SDE Catalogue identifier: AEFG_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEFG_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Gnu GPL v3 No. of lines in distributed program, including test data, etc.: 978 No. of bytes in distributed program, including test data, etc.: 5905 Distribution format: tar.gz Programming language: CUDA C Computer: any system with a CUDA-compatible GPU Operating system: Linux RAM: 64 MB of GPU memory Classification: 4.3 External routines: The program requires the NVIDIA CUDA Toolkit Version 2.0 or newer and the GNU Scientific Library v1.0 or newer. Optionally gnuplot is recommended for quick visualization of the results. Nature of problem: Direct numerical integration of stochastic differential equations is a computationally intensive problem, due to the necessity of calculating multiple independent realizations of the system. We exploit the inherent parallelism of this problem and perform the calculations on GPUs using the CUDA programming environment. The GPU's ability to execute hundreds of threads simultaneously makes it possible to speed up the computation by over two orders of magnitude, compared to a typical modern CPU. Solution method: The stochastic Runge-Kutta method of the second order is applied to integrate the equation of motion. Ensemble-averaged quantities of interest are obtained through averaging over multiple independent realizations of the system. Unusual features: The numerical solution of the stochastic differential equations in question is performed on a GPU using the CUDA environment. Running time: < 1 minute

  4. WEAK GALERKIN METHODS FOR SECOND ORDER ELLIPTIC INTERFACE PROBLEMS

    PubMed Central

    MU, LIN; WANG, JUNPING; WEI, GUOWEI; YE, XIU; ZHAO, SHAN

    2013-01-01

    Weak Galerkin methods refer to general finite element methods for partial differential equations (PDEs) in which differential operators are approximated by their weak forms as distributions. Such weak forms give rise to desirable flexibilities in enforcing boundary and interface conditions. A weak Galerkin finite element method (WG-FEM) is developed in this paper for solving elliptic PDEs with discontinuous coefficients and interfaces. Theoretically, it is proved that high order numerical schemes can be designed by using the WG-FEM with polynomials of high order on each element. Extensive numerical experiments have been carried to validate the WG-FEM for solving second order elliptic interface problems. High order of convergence is numerically confirmed in both L2 and L∞ norms for the piecewise linear WG-FEM. Special attention is paid to solve many interface problems, in which the solution possesses a certain singularity due to the nonsmoothness of the interface. A challenge in research is to design nearly second order numerical methods that work well for problems with low regularity in the solution. The best known numerical scheme in the literature is of order O(h) to O(h1.5) for the solution itself in L∞ norm. It is demonstrated that the WG-FEM of the lowest order, i.e., the piecewise constant WG-FEM, is capable of delivering numerical approximations that are of order O(h1.75) to O(h2) in the L∞ norm for C1 or Lipschitz continuous interfaces associated with a C1 or H2 continuous solution. PMID:24072935

  5. Modeling of Inverted Annular Film Boiling using an integral method

    NASA Astrophysics Data System (ADS)

    Sridharan, Arunkumar

    In modeling Inverted Annular Film Boiling (IAFB), several important phenomena such as interaction between the liquid and the vapor phases and irregular nature of the interface, which greatly influence the momentum and heat transfer at the interface, need to be accounted for. However, due to the complexity of these phenomena, they were not modeled in previous studies. Since two-phase heat transfer equations and relationships rely heavily on experimental data, many closure relationships that were used in previous studies to solve the problem are empirical in nature. Also, in deriving the relationships, the experimental data were often extrapolated beyond the intended range of conditions, causing errors in predictions. In some cases, empirical correlations that were derived from situations other than IAFB, and whose applicability to IAFB was questionable, were used. Moreover, arbitrary constants were introduced in the model developed in previous studies to provide good fit to the experimental data. These constants have no physical basis, thereby leading to questionable accuracy in the model predictions. In the present work, modeling of Inverted Annular Film Boiling (IAFB) is done using Integral Method. Two-dimensional formulation of IAFB is presented. Separate equations for the conservation of mass, momentum and energy are derived from first principles, for the vapor film and the liquid core. Turbulence is incorporated in the formulation. The system of second-order partial differential equations is integrated over the radial direction to obtain a system of integral differential equations. In order to solve the system of equations, second order polynomial profiles are used to describe the nondimensional velocity and temperatures. The unknown coefficients in the profiles are functions of the axial direction alone. Using the boundary conditions that govern the physical problem, equations for the unknown coefficients are derived in terms of the primary dependent variables: wall shear stress, interfacial shear stress, film thickness, pressure, wall temperature and the mass transfer rate due to evaporation. A system of non-linear first order coupled ordinary differential equations is obtained. Due to the inherent mathematical complexity of the system of equations, simplifying assumptions are made to obtain a numerical solution. The system of equations is solved numerically to obtain values of the unknown quantities at each subsequent axial location. Derived quantities like void fraction and heat transfer coefficient are calculated at each axial location. The calculation is terminated when the void fraction reaches a value of 0.6, the upper limit of IAFB. The results obtained agree with the experimental trends observed. Void fraction increases along the heated length, while the heat transfer coefficient drops due to the increased resistance of the vapor film as expected.

  6. A shifted Jacobi collocation algorithm for wave type equations with non-local conservation conditions

    NASA Astrophysics Data System (ADS)

    Doha, Eid H.; Bhrawy, Ali H.; Abdelkawy, Mohammed A.

    2014-09-01

    In this paper, we propose an efficient spectral collocation algorithm to solve numerically wave type equations subject to initial, boundary and non-local conservation conditions. The shifted Jacobi pseudospectral approximation is investigated for the discretization of the spatial variable of such equations. It possesses spectral accuracy in the spatial variable. The shifted Jacobi-Gauss-Lobatto (SJ-GL) quadrature rule is established for treating the non-local conservation conditions, and then the problem with its initial and non-local boundary conditions are reduced to a system of second-order ordinary differential equations in temporal variable. This system is solved by two-stage forth-order A-stable implicit RK scheme. Five numerical examples with comparisons are given. The computational results demonstrate that the proposed algorithm is more accurate than finite difference method, method of lines and spline collocation approach

  7. Matrix Perturbation Techniques in Structural Dynamics

    NASA Technical Reports Server (NTRS)

    Caughey, T. K.

    1973-01-01

    Matrix perturbation are developed techniques which can be used in the dynamical analysis of structures where the range of numerical values in the matrices extreme or where the nature of the damping matrix requires that complex valued eigenvalues and eigenvectors be used. The techniques can be advantageously used in a variety of fields such as earthquake engineering, ocean engineering, aerospace engineering and other fields concerned with the dynamical analysis of large complex structures or systems of second order differential equations. A number of simple examples are included to illustrate the techniques.

  8. Action principle for Coulomb collisions in plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hirvijoki, Eero

    In this study, an action principle for Coulomb collisions in plasmas is proposed. Although no natural Lagrangian exists for the Landau-Fokker-Planck equation, an Eulerian variational formulation is found considering the system of partial differential equations that couple the distribution function and the Rosenbluth-MacDonald-Judd potentials. Conservation laws are derived after generalizing the energy-momentum stress tensor for second order Lagrangians and, in the case of a test-particle population in a given plasma background, the action principle is shown to correspond to the Langevin equation for individual particles.

  9. Action principle for Coulomb collisions in plasmas

    DOE PAGES

    Hirvijoki, Eero

    2016-09-14

    In this study, an action principle for Coulomb collisions in plasmas is proposed. Although no natural Lagrangian exists for the Landau-Fokker-Planck equation, an Eulerian variational formulation is found considering the system of partial differential equations that couple the distribution function and the Rosenbluth-MacDonald-Judd potentials. Conservation laws are derived after generalizing the energy-momentum stress tensor for second order Lagrangians and, in the case of a test-particle population in a given plasma background, the action principle is shown to correspond to the Langevin equation for individual particles.

  10. Monge-Ampére simulation of fourth order PDEs in two dimensions with application to elastic-electrostatic contact problems

    NASA Astrophysics Data System (ADS)

    DiPietro, Kelsey L.; Lindsay, Alan E.

    2017-11-01

    We present an efficient moving mesh method for the simulation of fourth order nonlinear partial differential equations (PDEs) in two dimensions using the Parabolic Monge-Ampére (PMA) equation. PMA methods have been successfully applied to the simulation of second order problems, but not on systems with higher order equations which arise in many topical applications. Our main application is the resolution of fine scale behavior in PDEs describing elastic-electrostatic interactions. The PDE system considered has multiple parameter dependent singular solution modalities, including finite time singularities and sharp interface dynamics. We describe how to construct a dynamic mesh algorithm for such problems which incorporates known self similar or boundary layer scalings of the underlying equation to locate and dynamically resolve fine scale solution features in these singular regimes. We find a key step in using the PMA equation for mesh generation in fourth order problems is the adoption of a high order representation of the transformation from the computational to physical mesh. We demonstrate the efficacy of the new method on a variety of examples and establish several new results and conjectures on the nature of self-similar singularity formation in higher order PDEs.

  11. Preliminary Planar Formation: Flight Dynamics Near Sun-Earth L2 Point

    NASA Technical Reports Server (NTRS)

    Segerman, Alan M.; Zedd, Michael F.

    2003-01-01

    NASA's Goddard Space Flight Center is planning a series of missions in the vicinity of the Sun-Earth L2 libration point. Some of these projects will involve a distributed space system of telescope spacecraft acting together as a single telescope for high-resolution. The individual telescopes will be configured in a plane, surrounding a hub, where the telescope plane can be aimed toward various astronomical targets of interest. In preparation for these missions, it is necessary to develop an improved understanding of the dynamical behavior of objects in a planar configuration near L2. The classical circular restricted three body problem is taken as the basis for the analysis. At first order, the motion of such a telescope relative to the hub is described by a system of linear second order differential equations. These equations are identical to the circular restricted problem's linear equations describing the hub motion about L2. Therefore, the fundamental frequencies, both parallel to and normal to the ecliptic plane, are the same for the relative telescope motion as for the hub motion. To maintain the telescope plane for the duration necessary for the planned observations, a halo-type orbit of the telescopes about the hub is investigated. By using a halo orbit, the individual telescopes remain in approximately the same plane over the observation duration. For such an orbit, the fundamental periods parallel to and normal to the ecliptic plane are forced to be the same by careful selection of the initial conditions in order to adjust the higher order forces. The relative amplitudes of the resulting oscillations are associated with the orientation of the telescope plane relative to the ecliptic. As in the circular restricted problem, initial conditions for the linearized equations must be selected so as not to excite the convergent or divergent linear modes. In a higher order analysis, the telescope relative motion equations include the effects of the position of the hub relative to L2. In this paper, the differential equations are developed through second order in the distance of the hub from the libration point. A modified Lindstedt-Poincad perturbation method is employed to construct the solution of these differential equations through that same order of magnitude. In the course of the solution process, relationships are determined between the initial conditions of the telescopes, selected in order to avoid resonance excitation. As the differential equations include the hub position, it is necessary to simultaneously develop the solution for the hub. As has been done in past analyses of the circular restricted problem, the hub position is written in a power series formulation in terms of its distance from L2. Then, in order to be included in the telescope equations, the hub solution is cast in terms of the nonlinear frequency of the relative telescope motion. In the course of the analysis, it is determined that the hub should also maintain a halo orbit - about L2. Additionally, relationships are formed between the initial conditions of the telescopes and the hub. These relationships may be used to associate sets of initial conditions with particular orientations of the telescope plane. The accuracy of the analytical solution is verified through various simulations and comparison to numerical integration of the differential equations. The results of the simulations are presented, along with a graphical representation of the relationships between the initial conditions of the telescopes and hub.

  12. Compact first and second order polarization mode dispersion emulator

    NASA Astrophysics Data System (ADS)

    Zhang, Yang; Li, Shiguang; Yang, Changxi

    2005-08-01

    We propose a 1st and 2nd order polarization mode dispersion emulator (PMDE) with one variable differential group delay (DGD) element using birefringence crystals and four polarization controllers (PCs). Monte Carlo simulations demonstrate that the output 1st and 2nd order polarization mode dispersion (PMD) generated by the PMDE consists with statistic theory. Compared with former PMDEs, this design is tunable, lower-cost, and more integrated for fabrication, which shows response time of 150 ?s, response frequency of 3.8 kHz, working wavelength of 1550 nm, total power consumption of less than 3 W, working range of 0---84 ps and 0---3600 ps2 for 1st and 2nd order PMD emulation, respectively. Also, it is programmable and can be controlled by either singlechip or computer. It can be applied to study the outage probability of optical communication systems due to PMD effect and the effectiveness of PMD compensation.

  13. Numerical method based on the lattice Boltzmann model for the Fisher equation.

    PubMed

    Yan, Guangwu; Zhang, Jianying; Dong, Yinfeng

    2008-06-01

    In this paper, a lattice Boltzmann model for the Fisher equation is proposed. First, the Chapman-Enskog expansion and the multiscale time expansion are used to describe higher-order moment of equilibrium distribution functions and a series of partial differential equations in different time scales. Second, the modified partial differential equation of the Fisher equation with the higher-order truncation error is obtained. Third, comparison between numerical results of the lattice Boltzmann models and exact solution is given. The numerical results agree well with the classical ones.

  14. 77 FR 41331 - Commercial Mobile Alert System

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-13

    ... Mobile Alert System AGENCY: Federal Communications Commission. ACTION: Final rule; announcement of... with the Commission's Commercial Mobile Alert System (CMS), Second Report and Order (``CMAS Second... Alert System rules contained in the Commission's Second Report and Order, FCC 08- 164, published at 73...

  15. Differential 3D Mueller-matrix mapping of optically anisotropic depolarizing biological layers

    NASA Astrophysics Data System (ADS)

    Ushenko, O. G.; Grytsyuk, M.; Ushenko, V. O.; Bodnar, G. B.; Vanchulyak, O.; Meglinskiy, I.

    2018-01-01

    The paper consists of two parts. The first part is devoted to the short theoretical basics of the method of differential Mueller-matrix description of properties of partially depolarizing layers. It was provided the experimentally measured maps of differential matrix of the 2nd order of polycrystalline structure of the histological section of rectum wall tissue. It was defined the values of statistical moments of the1st-4th orders, which characterize the distribution of matrix elements. In the second part of the paper it was provided the data of statistic analysis of birefringence and dichroism of the histological sections of connecting component of vagina wall tissue (normal and with prolapse). It were defined the objective criteria of differential diagnostics of pathologies of vagina wall.

  16. The Cantor-Bendixson Rank of Certain Bridgeland-Smith Stability Conditions

    NASA Astrophysics Data System (ADS)

    Aulicino, David

    2018-01-01

    We provide a novel proof that the set of directions that admit a saddle connection on a meromorphic quadratic differential with at least one pole of order at least two is closed, which generalizes a result of Bridgeland and Smith, and Gaiotto, Moore, and Neitzke. Secondly, we show that this set has finite Cantor-Bendixson rank and give a tight bound. Finally, we present a family of surfaces realizing all possible Cantor-Bendixson ranks. The techniques in the proof of this result exclusively concern Abelian differentials on Riemann surfaces, also known as translation surfaces. The concept of a "slit translation surface" is introduced as the primary tool for studying meromorphic quadratic differentials with higher order poles.

  17. Mueller matrix mapping of biological polycrystalline layers using reference wave

    NASA Astrophysics Data System (ADS)

    Dubolazov, A.; Ushenko, O. G.; Ushenko, Yu. O.; Pidkamin, L. Y.; Sidor, M. I.; Grytsyuk, M.; Prysyazhnyuk, P. V.

    2018-01-01

    The paper consists of two parts. The first part is devoted to the short theoretical basics of the method of differential Mueller-matrix description of properties of partially depolarizing layers. It was provided the experimentally measured maps of differential matrix of the 1st order of polycrystalline structure of the histological section of brain tissue. It was defined the statistical moments of the 1st-4th orders, which characterize the distribution of matrix elements. In the second part of the paper it was provided the data of statistic analysis of birefringence and dichroism of the histological sections of mice liver tissue (normal and with diabetes). It were defined the objective criteria of differential diagnostics of diabetes.

  18. Second-order (2 +1 ) -dimensional anisotropic hydrodynamics

    NASA Astrophysics Data System (ADS)

    Bazow, Dennis; Heinz, Ulrich; Strickland, Michael

    2014-11-01

    We present a complete formulation of second-order (2 +1 ) -dimensional anisotropic hydrodynamics. The resulting framework generalizes leading-order anisotropic hydrodynamics by allowing for deviations of the one-particle distribution function from the spheroidal form assumed at leading order. We derive complete second-order equations of motion for the additional terms in the macroscopic currents generated by these deviations from their kinetic definition using a Grad-Israel-Stewart 14-moment ansatz. The result is a set of coupled partial differential equations for the momentum-space anisotropy parameter, effective temperature, the transverse components of the fluid four-velocity, and the viscous tensor components generated by deviations of the distribution from spheroidal form. We then perform a quantitative test of our approach by applying it to the case of one-dimensional boost-invariant expansion in the relaxation time approximation (RTA) in which case it is possible to numerically solve the Boltzmann equation exactly. We demonstrate that the second-order anisotropic hydrodynamics approach provides an excellent approximation to the exact (0+1)-dimensional RTA solution for both small and large values of the shear viscosity.

  19. A conformal mapping based fractional order approach for sub-optimal tuning of PID controllers with guaranteed dominant pole placement

    NASA Astrophysics Data System (ADS)

    Saha, Suman; Das, Saptarshi; Das, Shantanu; Gupta, Amitava

    2012-09-01

    A novel conformal mapping based fractional order (FO) methodology is developed in this paper for tuning existing classical (Integer Order) Proportional Integral Derivative (PID) controllers especially for sluggish and oscillatory second order systems. The conventional pole placement tuning via Linear Quadratic Regulator (LQR) method is extended for open loop oscillatory systems as well. The locations of the open loop zeros of a fractional order PID (FOPID or PIλDμ) controller have been approximated in this paper vis-à-vis a LQR tuned conventional integer order PID controller, to achieve equivalent integer order PID control system. This approach eases the implementation of analog/digital realization of a FOPID controller with its integer order counterpart along with the advantages of fractional order controller preserved. It is shown here in the paper that decrease in the integro-differential operators of the FOPID/PIλDμ controller pushes the open loop zeros of the equivalent PID controller towards greater damping regions which gives a trajectory of the controller zeros and dominant closed loop poles. This trajectory is termed as "M-curve". This phenomena is used to design a two-stage tuning algorithm which reduces the existing PID controller's effort in a significant manner compared to that with a single stage LQR based pole placement method at a desired closed loop damping and frequency.

  20. Dynamic Monte Carlo description of thermal desorption processes

    NASA Astrophysics Data System (ADS)

    Weinketz, Sieghard

    1994-07-01

    The applicability of the dynamic Monte Carlo method of Fichthorn and Weinberg, in which the time evolution of a system is described in terms of the absolute number of different microscopic possible events and their associated transition rates, is discussed for the case of thermal desorption simulations. It is shown that the definition of the time increment at each successful event leads naturally to the macroscopic differential equation of desorption, in the case of simple first- and second-order processes in which the only possible events are desorption and diffusion. This equivalence is numerically demonstrated for a second-order case. In the sequence, the equivalence of this method with the Monte Carlo method of Sales and Zgrablich for more complex desorption processes, allowing for lateral interactions between adsorbates, is shown, even though the dynamic Monte Carlo method does not bear their limitation of a rapid surface diffusion condition, thus being able to describe a more complex ``kinetics'' of surface reactive processes, and therefore be applied to a wider class of phenomena, such as surface catalysis.

  1. First- and second-order processing in transient stereopsis.

    PubMed

    Edwards, M; Pope, D R; Schor, C M

    2000-01-01

    Large-field stimuli were used to investigate the interaction of first- and second-order pathways in transient-stereo processing. Stimuli consisted of sinewave modulations in either the mean luminance (first-order stimulus) or the contrast (second-order stimulus) of a dynamic-random-dot field. The main results of the present study are that: (1) Depth could be extracted with both the first-order and second-order stimuli; (2) Depth could be extracted from dichoptically mixed first- and second-order stimuli, however, the same stimuli, when presented as a motion sequence, did not result in a motion percept. Based upon these findings we conclude that the transient-stereo system processes both first- and second-order signals, and that these two signals are pooled prior to the extraction of transient depth. This finding of interaction between first- and second-order stereoscopic processing is different from the independence that has been found with the motion system.

  2. Lagrangian particle method for compressible fluid dynamics

    NASA Astrophysics Data System (ADS)

    Samulyak, Roman; Wang, Xingyu; Chen, Hsin-Chiang

    2018-06-01

    A new Lagrangian particle method for solving Euler equations for compressible inviscid fluid or gas flows is proposed. Similar to smoothed particle hydrodynamics (SPH), the method represents fluid cells with Lagrangian particles and is suitable for the simulation of complex free surface/multiphase flows. The main contributions of our method, which is different from SPH in all other aspects, are (a) significant improvement of approximation of differential operators based on a polynomial fit via weighted least squares approximation and the convergence of prescribed order, (b) a second-order particle-based algorithm that reduces to the first-order upwind method at local extremal points, providing accuracy and long term stability, and (c) more accurate resolution of entropy discontinuities and states at free interfaces. While the method is consistent and convergent to a prescribed order, the conservation of momentum and energy is not exact and depends on the convergence order. The method is generalizable to coupled hyperbolic-elliptic systems. Numerical verification tests demonstrating the convergence order are presented as well as examples of complex multiphase flows.

  3. First integrals of the axisymmetric shape equation of lipid membranes

    NASA Astrophysics Data System (ADS)

    Zhang, Yi-Heng; McDargh, Zachary; Tu, Zhan-Chun

    2018-03-01

    The shape equation of lipid membranes is a fourth-order partial differential equation. Under the axisymmetric condition, this equation was transformed into a second-order ordinary differential equation (ODE) by Zheng and Liu (Phys. Rev. E 48 2856 (1993)). Here we try to further reduce this second-order ODE to a first-order ODE. First, we invert the usual process of variational calculus, that is, we construct a Lagrangian for which the ODE is the corresponding Euler–Lagrange equation. Then, we seek symmetries of this Lagrangian according to the Noether theorem. Under a certain restriction on Lie groups of the shape equation, we find that the first integral only exists when the shape equation is identical to the Willmore equation, in which case the symmetry leading to the first integral is scale invariance. We also obtain the mechanical interpretation of the first integral by using the membrane stress tensor. Project supported by the National Natural Science Foundation of China (Grant No. 11274046) and the National Science Foundation of the United States (Grant No. 1515007).

  4. Multi-scale Eulerian model within the new National Environmental Modeling System

    NASA Astrophysics Data System (ADS)

    Janjic, Zavisa; Janjic, Tijana; Vasic, Ratko

    2010-05-01

    The unified Non-hydrostatic Multi-scale Model on the Arakawa B grid (NMMB) is being developed at NCEP within the National Environmental Modeling System (NEMS). The finite-volume horizontal differencing employed in the model preserves important properties of differential operators and conserves a variety of basic and derived dynamical and quadratic quantities. Among these, conservation of energy and enstrophy improves the accuracy of nonlinear dynamics of the model. Within further model development, advection schemes of fourth order of formal accuracy have been developed. It is argued that higher order advection schemes should not be used in the thermodynamic equation in order to preserve consistency with the second order scheme used for computation of the pressure gradient force. Thus, the fourth order scheme is applied only to momentum advection. Three sophisticated second order schemes were considered for upgrade. Two of them, proposed in Janjic(1984), conserve energy and enstrophy, but with enstrophy calculated differently. One of them conserves enstrophy as computed by the most accurate second order Laplacian operating on stream function. The other scheme conserves enstrophy as computed from the B grid velocity. The third scheme (Arakawa 1972) is arithmetic mean of the former two. It does not conserve enstrophy strictly, but it conserves other quadratic quantities that control the nonlinear energy cascade. Linearization of all three schemes leads to the same second order linear advection scheme. The second order term of the truncation error of the linear advection scheme has a special form so that it can be eliminated by simply preconditioning the advected quantity. Tests with linear advection of a cone confirm the advantage of the fourth order scheme. However, if a localized, large amplitude and high wave-number pattern is present in initial conditions, the clear advantage of the fourth order scheme disappears. In real data runs, problems with noisy data may appear due to mountains. Thus, accuracy and formal accuracy may not be synonymous. The nonlinear fourth order schemes are quadratic conservative and reduce to the Arakawa Jacobian in case of non-divergent flow. In case of general flow the conservation properties of the new momentum advection schemes impose stricter constraint on the nonlinear cascade than the original second order schemes. However, for non-divergent flow, the conservation properties of the fourth order schemes cannot be proven in the same way as those of the original second order schemes. Therefore, nonlinear tests were carried out in order to check how well the fourth order schemes control the nonlinear energy cascade. In the tests nonlinear shallow water equations are solved in a rotating rectangular domain (Janjic, 1984). The domain is covered with only 17 x 17 grid points. A diagnostic quantity is used to monitor qualitative changes in the spectrum over 116 days of simulated time. All schemes maintained meaningful solutions throughout the test. Among the second order schemes, the best result was obtained with the scheme that conserved enstrophy as computed by the second order Laplacian of the stream function. It was closely followed by the Arakawa (1972) scheme, while the remaining scheme was distant third. The fourth order schemes ranked in the same order, and were competitive throughout the experiments with their second order counterparts in preventing accumulation of energy at small scales. Finally, the impact was examined of the fourth order momentum advection on global medium range forecasts. The 500 mb anomaly correlation coefficient is used as a measure of success of the forecasts. Arakawa, A., 1972: Design of the UCLA general circulation model. Tech. Report No. 7, Department of Meteorology, University of California, Los Angeles, 116 pp. Janjic, Z. I., 1984: Non-linear advection schemes and energy cascade on semi-staggered grids. Monthly Weather Review, 112, 1234-1245.

  5. Displacement and frequency analyses of vibratory systems

    NASA Astrophysics Data System (ADS)

    Low, K. H.

    1995-02-01

    This paper deals with the frequency and response studies of vibratory systems, which are represented by a set of n coupled second-order differential equations. The following numerical methods are used in the response analysis: central difference, fourth-order Runge-Kutta and modal methods. Data generated in the response analysis are processed to obtain the system frequencies by using the fast Fourier transform (FFT) or harmonic response methods. Two types of the windows are used in the FFT analysis: rectangular and Hanning windows. Examples of two, four and seven degrees of freedom systems are considered, to illustrate the proposed algorithms. Comparisons with those existing results confirm the validity of the proposed methods. The Hanning window attenuates the results that give a narrower bandwidth around the peak if compared with those using the rectangular window. It is also found that in free vibrations of a multi-mass system, the masses will vibrate in a manner that is the superposition of the natural frequencies of the system, while the system will vibrate at the driving frequency in forced vibrations.

  6. Improvements in deep-space tracking by use of third-order loops.

    NASA Technical Reports Server (NTRS)

    Tausworth, R. C.; Crow, R. B.

    1972-01-01

    Third-order phase-locked receivers have not yet found wide application in deep-space communications systems because the second-order systems now used have performed adequately on past spacecraft missions. However, a survey of the doppler profiles for future missions shows that an unaided second-order loop may be unable to perform within reasonable error bounds. This article discusses the characteristics of a simple third-order extension to present second-order systems that not only extends doppler-tracking capability, but widens the pull-in range and decreases pull-in time as well.

  7. Vasculitic wheel - an algorithmic approach to cutaneous vasculitides.

    PubMed

    Ratzinger, Gudrun; Zelger, Bettina Gudrun; Carlson, J Andrew; Burgdorf, Walter; Zelger, Bernhard

    2015-11-01

    Previous classifications of vasculitides suffer from several defects. First, classifications may follow different principles including clinicopathologic findings, etiology, pathogenesis, prognosis, or therapeutic options. Second, authors fail to distinguish between vasculitis and coagulopathy. Third, vasculitides are systemic diseases. Organ-specific variations make morphologic findings difficult to compare. Fourth, subtle changes are recognized in the skin, but may be asymptomatic in other organs. Our aim was to use the skin and subcutis as a model and the clinicopathologic correlation as the basic process for classification. We use an algorithmic approach with pattern analysis, which allows for consistent reporting of microscopic findings. We first differentiate between small and medium vessel vasculitis. In the second step, we differentiate the subtypes of small (capillaries versus postcapillary venules) and medium-sized (arterioles/arteries versus veins) vessels. In the final step, we differentiate, according to the predominant cell type, into leukocytoclastic and/or granulomatous vasculitis. Starting from leukocytoclastic vasculitis as a central reaction pattern of cutaneous small/medium vessel vasculitides, its relations or variations may be arranged around it like spokes of a wheel around the hub. This may help establish some basic order in this rather complex realm of cutaneous vasculitides, leading to a better understanding in a complicated field. © 2015 Deutsche Dermatologische Gesellschaft (DDG). Published by John Wiley & Sons Ltd.

  8. Implicit integration methods for dislocation dynamics

    DOE PAGES

    Gardner, D. J.; Woodward, C. S.; Reynolds, D. R.; ...

    2015-01-20

    In dislocation dynamics simulations, strain hardening simulations require integrating stiff systems of ordinary differential equations in time with expensive force calculations, discontinuous topological events, and rapidly changing problem size. Current solvers in use often result in small time steps and long simulation times. Faster solvers may help dislocation dynamics simulations accumulate plastic strains at strain rates comparable to experimental observations. Here, this paper investigates the viability of high order implicit time integrators and robust nonlinear solvers to reduce simulation run times while maintaining the accuracy of the computed solution. In particular, implicit Runge-Kutta time integrators are explored as a waymore » of providing greater accuracy over a larger time step than is typically done with the standard second-order trapezoidal method. In addition, both accelerated fixed point and Newton's method are investigated to provide fast and effective solves for the nonlinear systems that must be resolved within each time step. Results show that integrators of third order are the most effective, while accelerated fixed point and Newton's method both improve solver performance over the standard fixed point method used for the solution of the nonlinear systems.« less

  9. A lattice Boltzmann model for the Burgers-Fisher equation.

    PubMed

    Zhang, Jianying; Yan, Guangwu

    2010-06-01

    A lattice Boltzmann model is developed for the one- and two-dimensional Burgers-Fisher equation based on the method of the higher-order moment of equilibrium distribution functions and a series of partial differential equations in different time scales. In order to obtain the two-dimensional Burgers-Fisher equation, vector sigma(j) has been used. And in order to overcome the drawbacks of "error rebound," a new assumption of additional distribution is presented, where two additional terms, in first order and second order separately, are used. Comparisons with the results obtained by other methods reveal that the numerical solutions obtained by the proposed method converge to exact solutions. The model under new assumption gives better results than that with second order assumption. (c) 2010 American Institute of Physics.

  10. Second harmonic generation and crystal growth of new chalcone derivatives

    NASA Astrophysics Data System (ADS)

    Patil, P. S.; Dharmaprakash, S. M.; Ramakrishna, K.; Fun, Hoong-Kun; Sai Santosh Kumar, R.; Narayana Rao, D.

    2007-05-01

    We report on the synthesis, crystal structure and optical characterization of chalcone derivatives developed for second-order nonlinear optics. The investigation of a series of five chalcone derivatives with the second harmonic generation powder test according to Kurtz and Perry revealed that these chalcones show efficient second-order nonlinear activity. Among them, high-quality single crystals of 3-Br-4'-methoxychalcone (3BMC) were grown by solvent evaporation solution growth technique. Grown crystals were characterized by X-ray powder diffraction (XRD), laser damage threshold, UV-vis-NIR and refractive index measurement studies. Infrared spectroscopy, thermogravimetric analysis and differential thermal analysis measurements were performed to study the molecular vibration and thermal behavior of 3BMC crystal. Thermal analysis does not show any structural phase transition.

  11. Analysis of Dual-Order Backward Pumping Schemes in Distributed Raman Amplification System

    NASA Astrophysics Data System (ADS)

    Singh, Kulwinder; Patterh, Manjeet Singh; Bhamrah, Manjit Singh

    2018-04-01

    Backward pumping in fiber Raman amplifiers has been investigated in this paper in terms of on-off Raman gain, noise figure and optical signal-to-noise ratio. The results exhibit that with four first-order pumps and one second-order pump scheme can be employed to achieve 8.2 dB noise figure in 64 channel fiber optic communication system. It has also been reported that 2.65 dB gain ripple, 0.87 dB noise figure tilt and 2.02 dB OSNR tilt can be attained with the second-order pumping in fiber Raman amplifiers. The main advantage of the scheme is that only 50 mW second-order pump shows appreciable improvement in the system performance. It shows that further increase in first-order and second-order pump powers increase system noise implications.

  12. Effects of Second-Order Hydrodynamics on a Semisubmersible Floating Offshore Wind Turbine: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bayati, I.; Jonkman, J.; Robertson, A.

    2014-07-01

    The objective of this paper is to assess the second-order hydrodynamic effects on a semisubmersible floating offshore wind turbine. Second-order hydrodynamics induce loads and motions at the sum- and difference-frequencies of the incident waves. These effects have often been ignored in offshore wind analysis, under the assumption that they are significantly smaller than first-order effects. The sum- and difference-frequency loads can, however, excite eigenfrequencies of the system, leading to large oscillations that strain the mooring system or vibrations that cause fatigue damage to the structure. Observations of supposed second-order responses in wave-tank tests performed by the DeepCwind consortium at themore » MARIN offshore basin suggest that these effects might be more important than originally expected. These observations inspired interest in investigating how second-order excitation affects floating offshore wind turbines and whether second-order hydrodynamics should be included in offshore wind simulation tools like FAST in the future. In this work, the effects of second-order hydrodynamics on a floating semisubmersible offshore wind turbine are investigated. Because FAST is currently unable to account for second-order effects, a method to assess these effects was applied in which linearized properties of the floating wind system derived from FAST (including the 6x6 mass and stiffness matrices) are used by WAMIT to solve the first- and second-order hydrodynamics problems in the frequency domain. The method has been applied to the OC4-DeepCwind semisubmersible platform, supporting the NREL 5-MW baseline wind turbine. The loads and response of the system due to the second-order hydrodynamics are analysed and compared to first-order hydrodynamic loads and induced motions in the frequency domain. Further, the second-order loads and induced response data are compared to the loads and motions induced by aerodynamic loading as solved by FAST.« less

  13. Non-symmetric forms of non-linear vibrations of flexible cylindrical panels and plates under longitudinal load and additive white noise

    NASA Astrophysics Data System (ADS)

    Krysko, V. A.; Awrejcewicz, J.; Krylova, E. Yu; Papkova, I. V.; Krysko, A. V.

    2018-06-01

    Parametric non-linear vibrations of flexible cylindrical panels subjected to additive white noise are studied. The governing Marguerre equations are investigated using the finite difference method (FDM) of the second-order accuracy and the Runge-Kutta method. The considered mechanical structural member is treated as a system of many/infinite number of degrees of freedom (DoF). The dependence of chaotic vibrations on the number of DoFs is investigated. Reliability of results is guaranteed by comparing the results obtained using two qualitatively different methods to reduce the problem of PDEs (partial differential equations) to ODEs (ordinary differential equations), i.e. the Faedo-Galerkin method in higher approximations and the 4th and 6th order FDM. The Cauchy problem obtained by the FDM is eventually solved using the 4th-order Runge-Kutta methods. The numerical experiment yielded, for a certain set of parameters, the non-symmetric vibration modes/forms with and without white noise. In particular, it has been illustrated and discussed that action of white noise on chaotic vibrations implies quasi-periodicity, whereas the previously non-symmetric vibration modes are closer to symmetric ones.

  14. Second-order variational equations for N-body simulations

    NASA Astrophysics Data System (ADS)

    Rein, Hanno; Tamayo, Daniel

    2016-07-01

    First-order variational equations are widely used in N-body simulations to study how nearby trajectories diverge from one another. These allow for efficient and reliable determinations of chaos indicators such as the Maximal Lyapunov characteristic Exponent (MLE) and the Mean Exponential Growth factor of Nearby Orbits (MEGNO). In this paper we lay out the theoretical framework to extend the idea of variational equations to higher order. We explicitly derive the differential equations that govern the evolution of second-order variations in the N-body problem. Going to second order opens the door to new applications, including optimization algorithms that require the first and second derivatives of the solution, like the classical Newton's method. Typically, these methods have faster convergence rates than derivative-free methods. Derivatives are also required for Riemann manifold Langevin and Hamiltonian Monte Carlo methods which provide significantly shorter correlation times than standard methods. Such improved optimization methods can be applied to anything from radial-velocity/transit-timing-variation fitting to spacecraft trajectory optimization to asteroid deflection. We provide an implementation of first- and second-order variational equations for the publicly available REBOUND integrator package. Our implementation allows the simultaneous integration of any number of first- and second-order variational equations with the high-accuracy IAS15 integrator. We also provide routines to generate consistent and accurate initial conditions without the need for finite differencing.

  15. SIVA/DIVA- INITIAL VALUE ORDINARY DIFFERENTIAL EQUATION SOLUTION VIA A VARIABLE ORDER ADAMS METHOD

    NASA Technical Reports Server (NTRS)

    Krogh, F. T.

    1994-01-01

    The SIVA/DIVA package is a collection of subroutines for the solution of ordinary differential equations. There are versions for single precision and double precision arithmetic. These solutions are applicable to stiff or nonstiff differential equations of first or second order. SIVA/DIVA requires fewer evaluations of derivatives than other variable order Adams predictor-corrector methods. There is an option for the direct integration of second order equations which can make integration of trajectory problems significantly more efficient. Other capabilities of SIVA/DIVA include: monitoring a user supplied function which can be separate from the derivative; dynamically controlling the step size; displaying or not displaying output at initial, final, and step size change points; saving the estimated local error; and reverse communication where subroutines return to the user for output or computation of derivatives instead of automatically performing calculations. The user must supply SIVA/DIVA with: 1) the number of equations; 2) initial values for the dependent and independent variables, integration stepsize, error tolerance, etc.; and 3) the driver program and operational parameters necessary for subroutine execution. SIVA/DIVA contains an extensive diagnostic message library should errors occur during execution. SIVA/DIVA is written in FORTRAN 77 for batch execution and is machine independent. It has a central memory requirement of approximately 120K of 8 bit bytes. This program was developed in 1983 and last updated in 1987.

  16. Motion cue effects on human pilot dynamics in manual control

    NASA Technical Reports Server (NTRS)

    Washizu, K.; Tanaka, K.; Endo, S.; Itoko, T.

    1977-01-01

    Two experiments were conducted to study the motion cue effects on human pilots during tracking tasks. The moving-base simulator of National Aerospace Laboratory was employed as the motion cue device, and the attitude director indicator or the projected visual field was employed as the visual cue device. The chosen controlled elements were second-order unstable systems. It was confirmed that with the aid of motion cues the pilot workload was lessened and consequently the human controllability limits were enlarged. In order to clarify the mechanism of these effects, the describing functions of the human pilots were identified by making use of the spectral and the time domain analyses. The results of these analyses suggest that the sensory system of the motion cues can yield the differential informations of the signal effectively, which coincides with the existing knowledges in the physiological area.

  17. The development of a peak-time criterion for designing controlled-release devices.

    PubMed

    Simon, Laurent; Ospina, Juan

    2016-08-25

    This work consists of estimating dynamic characteristics for topically-applied drugs when the magnitude of the flux increases to a maximum value, called peak flux, before declining to zero. This situation is typical of controlled-released systems with a finite donor or vehicle volume. Laplace transforms were applied to the governing equations and resulted in an expression for the flux in terms of the physical characteristics of the system. After approximating this function by a second-order model, three parameters of this reduced structure captured the essential features of the original process. Closed-form relationships were then developed for the peak flux and time-to-peak based on the empirical representation. Three case studies that involve mechanisms, such as diffusion, partitioning, dissolution and elimination, were selected to illustrate the procedure. The technique performed successfully as shown by the ability of the second-order flux to match the prediction of the original transport equations. A main advantage of the proposed method is that it does not require a solution of the original partial differential equations. Less accurate results were noted for longer lag times. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Applying constraints on model-based methods: Estimation of rate constants in a second order consecutive reaction

    NASA Astrophysics Data System (ADS)

    Kompany-Zareh, Mohsen; Khoshkam, Maryam

    2013-02-01

    This paper describes estimation of reaction rate constants and pure ultraviolet/visible (UV-vis) spectra of the component involved in a second order consecutive reaction between Ortho-Amino benzoeic acid (o-ABA) and Diazoniom ions (DIAZO), with one intermediate. In the described system, o-ABA was not absorbing in the visible region of interest and thus, closure rank deficiency problem did not exist. Concentration profiles were determined by solving differential equations of the corresponding kinetic model. In that sense, three types of model-based procedures were applied to estimate the rate constants of the kinetic system, according to Levenberg/Marquardt (NGL/M) algorithm. Original data-based, Score-based and concentration-based objective functions were included in these nonlinear fitting procedures. Results showed that when there is error in initial concentrations, accuracy of estimated rate constants strongly depends on the type of applied objective function in fitting procedure. Moreover, flexibility in application of different constraints and optimization of the initial concentrations estimation during the fitting procedure were investigated. Results showed a considerable decrease in ambiguity of obtained parameters by applying appropriate constraints and adjustable initial concentrations of reagents.

  19. A Numerical Method for Integrating Orbits

    NASA Astrophysics Data System (ADS)

    Sahakyan, Karen P.; Melkonyan, Anahit A.; Hayrapetyan, S. R.

    2007-08-01

    A numerical method based of trigonometric polynomials for integrating of ordinary differential equations of first and second order is suggested. This method is a trigonometric analogue of Everhart's method and can be especially useful for periodical trajectories.

  20. Fast Numerical Methods for Stochastic Partial Differential Equations

    DTIC Science & Technology

    2016-04-15

    analysis we first derived a system of forward and backward SDEs (BSDEs) for (Xt, Qt, Zt){ dXs = b( Xs )dt+ σsdWs, Xt = x, t < s < T, (SDE) dQs = ZsdWs...g( Xs )QsdVs, QT = Φ(XT ). (BSDE) (6) Here Wt and Vt are two independent Brownian motions. The first equation in (6) is a forward SDE while the second...first order scheme for a general coupled system of forward-backward SDEs [1]: dXs = b( Xs )ds+ σ( Xs )dWs, t ≤ s ≤ T, dYs = +f(s, Xs , Ys)ds +g(s

  1. Oblique scattering from radially inhomogeneous dielectric cylinders: An exact Volterra integral equation formulation

    NASA Astrophysics Data System (ADS)

    Tsalamengas, John L.

    2018-07-01

    We study plane-wave electromagnetic scattering by radially and strongly inhomogeneous dielectric cylinders at oblique incidence. The method of analysis relies on an exact reformulation of the underlying field equations as a first-order 4 × 4 system of differential equations and on the ability to restate the associated initial-value problem in the form of a system of coupled linear Volterra integral equations of the second kind. The integral equations so derived are discretized via a sophisticated variant of the Nyström method. The proposed method yields results accurate up to machine precision without relying on approximations. Numerical results and case studies ably demonstrate the efficiency and high accuracy of the algorithms.

  2. Static shape control for flexible structures

    NASA Technical Reports Server (NTRS)

    Rodriguez, G.; Scheid, R. E., Jr.

    1986-01-01

    An integrated methodology is described for defining static shape control laws for large flexible structures. The techniques include modeling, identifying and estimating the control laws of distributed systems characterized in terms of infinite dimensional state and parameter spaces. The models are expressed as interconnected elliptic partial differential equations governing a range of static loads, with the capability of analyzing electromagnetic fields around antenna systems. A second-order analysis is carried out for statistical errors, and model parameters are determined by maximizing an appropriate defined likelihood functional which adjusts the model to observational data. The parameter estimates are derived from the conditional mean of the observational data, resulting in a least squares superposition of shape functions obtained from the structural model.

  3. Towards a coherent European approach for taxation of combustible waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dubois, Maarten, E-mail: maarten.dubois@kuleuven.be

    2013-08-15

    Highlights: • Current European waste taxes do not constitute a level playing field. • Integrating waste incineration in EU ETS avoids regional tax competition. • A differentiated incineration tax is a second-best instrument for NO{sub x} emissions. • A tax on landfilled incineration residues stimulates ash treatment. - Abstract: Although intra-European trade of combustible waste has grown strongly in the last decade, incineration and landfill taxes remain disparate within Europe. The paper proposes a more coherent taxation approach for Europe that is based on the principle of Pigovian taxation, i.e. the internalization of environmental damage costs. The approach aims tomore » create a level playing field between European regions while reinforcing incentives for sustainable management of combustible waste. Three important policy recommendations emerge. First, integrating waste incineration into the European Emissions Trading System for greenhouse gases (EU ETS) reduces the risk of tax competition between regions. Second, because taxation of every single air pollutant from waste incineration is cumbersome, a differentiated waste incineration tax based on NO{sub x} emissions can serve as a second-best instrument. Finally, in order to strengthen incentives for ash treatment, a landfill tax should apply for landfilled incineration residues. An example illustrates the coherence of the policy recommendations for incineration technologies with diverse environmental effects.« less

  4. Revisit of the relationship between the elastic properties and sound velocities at high pressures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Chenju; Yan, Xiaozhen; Institute of Atomic and Molecular Sciences, Sichuan University, Chengdu 610065

    2014-09-14

    The second-order elastic constants and stress-strain coefficients are defined, respectively, as the second derivatives of the total energy and the first derivative of the stress with respect to strain. Since the Lagrangian and infinitesimal strain are commonly used in the two definitions above, the second-order elastic constants and stress-strain coefficients are separated into two categories, respectively. In general, any of the four physical quantities is employed to characterize the elastic properties of materials without differentiation. Nevertheless, differences may exist among them at non-zero pressures, especially high pressures. Having explored the confusing issue systemically in the present work, we find thatmore » the four quantities are indeed different from each other at high pressures and these differences depend on the initial stress applied on materials. Moreover, the various relations between the four quantities depicting elastic properties of materials and high-pressure sound velocities are also derived from the elastic wave equations. As examples, we calculated the high-pressure sound velocities of cubic tantalum and hexagonal rhenium using these nexus. The excellent agreement of our results with available experimental data suggests the general applicability of the relations.« less

  5. Theoretical predictions of latitude dependencies in the solar wind

    NASA Technical Reports Server (NTRS)

    Winge, C. R., Jr.; Coleman, P. J., Jr.

    1974-01-01

    Results are presented which were obtained with the Winge-Coleman model for theoretical predictions of latitudinal dependencies in the solar wind. A first-order expansion is described which allows analysis of first-order latitudinal variations in the coronal boundary conditions and results in a second-order partial differential equation for the perturbation stream function. Latitudinal dependencies are analytically separated out in the form of Legendre polynomials and their derivative, and are reduced to the solution of radial differential equations. This analysis is shown to supply an estimate of how large the coronal variation in latitude must be to produce an 11 km/sec/deg gradient in the radial velocity of the solar wind, assuming steady-state processes.

  6. Lag-One Autocorrelation in Short Series: Estimation and Hypotheses Testing

    ERIC Educational Resources Information Center

    Solanas, Antonio; Manolov, Rumen; Sierra, Vicenta

    2010-01-01

    In the first part of the study, nine estimators of the first-order autoregressive parameter are reviewed and a new estimator is proposed. The relationships and discrepancies between the estimators are discussed in order to achieve a clear differentiation. In the second part of the study, the precision in the estimation of autocorrelation is…

  7. Schwarzian derivative treatment of the quantum second-order supersymmetry anomaly, and coupling-constant metamorphosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Plyushchay, Mikhail S., E-mail: mikhail.plyushchay@usach.cl

    A canonical quantization scheme applied to a classical supersymmetric system with quadratic in momentum supercharges gives rise to a quantum anomaly problem described by a specific term to be quadratic in Planck constant. We reveal a close relationship between the anomaly and the Schwarzian derivative, and specify a quantization prescription which generates the anomaly-free supersymmetric quantum system with second order supercharges. We also discuss the phenomenon of a coupling-constant metamorphosis that associates quantum systems with the first-order supersymmetry to the systems with the second-order supercharges.

  8. Practical considerations for a second-order directional hearing aid microphone system

    NASA Astrophysics Data System (ADS)

    Thompson, Stephen C.

    2003-04-01

    First-order directional microphone systems for hearing aids have been available for several years. Such a system uses two microphones and has a theoretical maximum free-field directivity index (DI) of 6.0 dB. A second-order microphone system using three microphones could provide a theoretical increase in free-field DI to 9.5 dB. These theoretical maximum DI values assume that the microphones have exactly matched sensitivities at all frequencies of interest. In practice, the individual microphones in the hearing aid always have slightly different sensitivities. For the small microphone separation necessary to fit in a hearing aid, these sensitivity matching errors degrade the directivity from the theoretical values, especially at low frequencies. This paper shows that, for first-order systems the directivity degradation due to sensitivity errors is relatively small. However, for second-order systems with practical microphone sensitivity matching specifications, the directivity degradation below 1 kHz is not tolerable. A hybrid order directive system is proposed that uses first-order processing at low frequencies and second-order directive processing at higher frequencies. This hybrid system is suggested as an alternative that could provide improved directivity index in the frequency regions that are important to speech intelligibility.

  9. Prediction of Soil pH Hyperspectral Spectrum in Guanzhong Area of Shaanxi Province Based on PLS

    NASA Astrophysics Data System (ADS)

    Liu, Jinbao; Zhang, Yang; Wang, Huanyuan; Cheng, Jie; Tong, Wei; Wei, Jing

    2017-12-01

    The soil pH of Fufeng County, Yangling County and Wugong County in Shaanxi Province was studied. The spectral reflectance was measured by ASD Field Spec HR portable terrain spectrum, and its spectral characteristics were analyzed. The first deviation of the original spectral reflectance of the soil, the second deviation, the logarithm of the reciprocal logarithm, the first order differential of the reciprocal logarithm and the second order differential of the reciprocal logarithm were used to establish the soil pH Spectral prediction model. The results showed that the correlation between the reflectance spectra after SNV pre-treatment and the soil pH was significantly improved. The optimal prediction model of soil pH established by partial least squares method was a prediction model based on the first order differential of the reciprocal logarithm of spectral reflectance. The principal component factor was 10, the decision coefficient Rc2 = 0.9959, the model root means square error RMSEC = 0.0076, the correction deviation SEC = 0.0077; the verification decision coefficient Rv2 = 0.9893, the predicted root mean square error RMSEP = 0.0157, The deviation of SEP = 0.0160, the model was stable, the fitting ability and the prediction ability were high, and the soil pH can be measured quickly.

  10. Fast smooth second-order sliding mode control for systems with additive colored noises.

    PubMed

    Yang, Pengfei; Fang, Yangwang; Wu, Youli; Liu, Yunxia; Zhang, Danxu

    2017-01-01

    In this paper, a fast smooth second-order sliding mode control is presented for a class of stochastic systems with enumerable Ornstein-Uhlenbeck colored noises. The finite-time mean-square practical stability and finite-time mean-square practical reachability are first introduced. Instead of treating the noise as bounded disturbance, the stochastic control techniques are incorporated into the design of the controller. The finite-time convergence of the prescribed sliding variable dynamics system is proved by using stochastic Lyapunov-like techniques. Then the proposed sliding mode controller is applied to a second-order nonlinear stochastic system. Simulation results are presented comparing with smooth second-order sliding mode control to validate the analysis.

  11. Helium Atom Scattering from C2H6, F2HCCH3, F3CCH2F and C2F6 in Crossed Molecular Beams

    NASA Astrophysics Data System (ADS)

    Hammer, Markus; Seidel, Wolfhart

    1997-10-01

    Rotationally unresolved differential cross sections were measured in crossed molecular beam experiments by scattering Helium atoms from Ethane, 1,1-Difluoroethane, 1,1,1,2-Tetrafluoroethane and Hexafluoroethane. The damping of observed diffraction oscillations was used to extract anisotropic interaction potentials for these scattering systems applying the infinite order sudden approximation (IOSA). Binary macroscopic parameters such as second heterogeneous virial coefficients and the coefficients of diffusion and viscosity were computed from these potentials and compared to results from macroscopic experiments.

  12. On substructuring algorithms and solution techniques for the numerical approximation of partial differential equations

    NASA Technical Reports Server (NTRS)

    Gunzburger, M. D.; Nicolaides, R. A.

    1986-01-01

    Substructuring methods are in common use in mechanics problems where typically the associated linear systems of algebraic equations are positive definite. Here these methods are extended to problems which lead to nonpositive definite, nonsymmetric matrices. The extension is based on an algorithm which carries out the block Gauss elimination procedure without the need for interchanges even when a pivot matrix is singular. Examples are provided wherein the method is used in connection with finite element solutions of the stationary Stokes equations and the Helmholtz equation, and dual methods for second-order elliptic equations.

  13. Model of ASTM Flammability Test in Microgravity: Iron Rods

    NASA Technical Reports Server (NTRS)

    Steinberg, Theodore A; Stoltzfus, Joel M.; Fries, Joseph (Technical Monitor)

    2000-01-01

    There is extensive qualitative results from burning metallic materials in a NASA/ASTM flammability test system in normal gravity. However, this data was shown to be inconclusive for applications involving oxygen-enriched atmospheres under microgravity conditions by conducting tests using the 2.2-second Lewis Research Center (LeRC) Drop Tower. Data from neither type of test has been reduced to fundamental kinetic and dynamic systems parameters. This paper reports the initial model analysis for burning iron rods under microgravity conditions using data obtained at the LERC tower and modeling the burning system after ignition. Under the conditions of the test the burning mass regresses up the rod to be detached upon deceleration at the end of the drop. The model describes the burning system as a semi-batch, well-mixed reactor with product accumulation only. This model is consistent with the 2.0-second duration of the test. Transient temperature and pressure measurements are made on the chamber volume. The rod solid-liquid interface melting rate is obtained from film records. The model consists of a set of 17 non-linear, first-order differential equations which are solved using MATLAB. This analysis confirms that a first-order rate, in oxygen concentration, is consistent for the iron-oxygen kinetic reaction. An apparent activation energy of 246.8 kJ/mol is consistent for this model.

  14. Equations of motion for train derailment dynamics

    DOT National Transportation Integrated Search

    2007-09-11

    This paper describes a planar or two-dimensional model to : examine the gross motions of rail cars in a generalized train : derailment. Three coupled, second-order differential equations : are derived from Newton's Laws to calculate rigid-body car : ...

  15. Second derivative time integration methods for discontinuous Galerkin solutions of unsteady compressible flows

    NASA Astrophysics Data System (ADS)

    Nigro, A.; De Bartolo, C.; Crivellini, A.; Bassi, F.

    2017-12-01

    In this paper we investigate the possibility of using the high-order accurate A (α) -stable Second Derivative (SD) schemes proposed by Enright for the implicit time integration of the Discontinuous Galerkin (DG) space-discretized Navier-Stokes equations. These multistep schemes are A-stable up to fourth-order, but their use results in a system matrix difficult to compute. Furthermore, the evaluation of the nonlinear function is computationally very demanding. We propose here a Matrix-Free (MF) implementation of Enright schemes that allows to obtain a method without the costs of forming, storing and factorizing the system matrix, which is much less computationally expensive than its matrix-explicit counterpart, and which performs competitively with other implicit schemes, such as the Modified Extended Backward Differentiation Formulae (MEBDF). The algorithm makes use of the preconditioned GMRES algorithm for solving the linear system of equations. The preconditioner is based on the ILU(0) factorization of an approximated but computationally cheaper form of the system matrix, and it has been reused for several time steps to improve the efficiency of the MF Newton-Krylov solver. We additionally employ a polynomial extrapolation technique to compute an accurate initial guess to the implicit nonlinear system. The stability properties of SD schemes have been analyzed by solving a linear model problem. For the analysis on the Navier-Stokes equations, two-dimensional inviscid and viscous test cases, both with a known analytical solution, are solved to assess the accuracy properties of the proposed time integration method for nonlinear autonomous and non-autonomous systems, respectively. The performance of the SD algorithm is compared with the ones obtained by using an MF-MEBDF solver, in order to evaluate its effectiveness, identifying its limitations and suggesting possible further improvements.

  16. Multistep integration formulas for the numerical integration of the satellite problem

    NASA Technical Reports Server (NTRS)

    Lundberg, J. B.; Tapley, B. D.

    1981-01-01

    The use of two Class 2/fixed mesh/fixed order/multistep integration packages of the PECE type for the numerical integration of the second order, nonlinear, ordinary differential equation of the satellite orbit problem. These two methods are referred to as the general and the second sum formulations. The derivation of the basic equations which characterize each formulation and the role of the basic equations in the PECE algorithm are discussed. Possible starting procedures are examined which may be used to supply the initial set of values required by the fixed mesh/multistep integrators. The results of the general and second sum integrators are compared to the results of various fixed step and variable step integrators.

  17. The numerical-analytical implementation of the cross-sections method to the open waveguide transition of the "horn" type

    NASA Astrophysics Data System (ADS)

    Divakov, Dmitriy; Malykh, Mikhail; Sevastianov, Leonid; Sevastianov, Anton; Tiutiunnik, Anastasiia

    2017-04-01

    In the paper we construct a method for approximate solution of the waveguide problem for guided modes of an open irregular waveguide transition. The method is based on straightening of the curved waveguide boundaries by introducing new variables and applying the Kantorovich method to the problem formulated in the new variables to get a system of ordinary second-order differential equations. In the method, the boundary conditions are formulated by analogy with the partial radiation conditions in the similar problem for closed waveguide transitions. The method is implemented in the symbolic-numeric form using the Maple computer algebra system. The coefficient matrices of the system of differential equations and boundary conditions are calculated symbolically, and then the obtained boundary-value problem is solved numerically using the finite difference method. The chosen coordinate functions of Kantorovich expansions provide good conditionality of the coefficient matrices. The numerical experiment simulating the propagation of guided modes in the open waveguide transition confirms the validity of the method proposed to solve the problem.

  18. Controlled differential pressure system for an enhanced fluid blending apparatus

    DOEpatents

    Hallman, Jr., Russell Louis

    2009-02-24

    A system and method for producing a controlled blend of two or more fluids. Thermally-induced permeation through a permeable tube is used to mix a first fluid from outside the tube with a second fluid flowing through the tube. Mixture ratios may be controlled by adjusting the temperature of the first fluid or by adjusting the pressure drop through the permeable tube. The combination of a back pressure control valve and a differential regulator is used to control the output pressure of the blended fluid. The combination of the back pressure control valve and differential regulator provides superior flow control of the second dry gas. A valve manifold system may be used to mix multiple fluids, and to adjust the volume of blended fluid produced, and to further modify the mixture ratio.

  19. A semi-analytical method for the computation of the Lyapunov exponents of fractional-order systems

    NASA Astrophysics Data System (ADS)

    Caponetto, Riccardo; Fazzino, Stefano

    2013-01-01

    Fractional-order differential equations are interesting for their applications in the construction of mathematical models in finance, materials science or diffusion. In this paper, an application of a well known transformation technique, Differential Transform Method (DTM), to the area of fractional differential equation is employed for calculating Lyapunov exponents of fractional order systems. It is known that the Lyapunov exponents, first introduced by Oseledec, play a crucial role in characterizing the behaviour of dynamical systems. They can be used to analyze the sensitive dependence on initial conditions and the presence of chaotic attractors. The results reveal that the proposed method is very effective and simple and leads to accurate, approximately convergent solutions.

  20. Homodyne detection of short-range Doppler radar using a forced oscillator model

    NASA Astrophysics Data System (ADS)

    Kittipute, Kunanon; Saratayon, Peerayudh; Srisook, Suthasin; Wardkein, Paramote

    2017-03-01

    This article presents the homodyne detection in a self-oscillation system, which represented by a short-range radar (SRR) circuit, that is analysed using a multi-time forced oscillator (MTFO) model. The MTFO model is based on a forced oscillation perspective with the signal and system theory, a second-order differential equation, and the multiple time variable technique. This model can also apply to analyse the homodyne phenomenon in a difference kind of the oscillation system under same method such as the self-oscillation system, and the natural oscillation system with external forced. In a free oscillation system, which forced by the external source is represented by a pendulum with an oscillating support experiment, and a modified Colpitts oscillator circuit in the UHF band with input as a Doppler signal is a representative of self-oscillation system. The MTFO model is verified with the experimental result, which well in line with the theoretical analysis.

  1. Multiple positive solutions to a coupled systems of nonlinear fractional differential equations.

    PubMed

    Shah, Kamal; Khan, Rahmat Ali

    2016-01-01

    In this article, we study existence, uniqueness and nonexistence of positive solution to a highly nonlinear coupled system of fractional order differential equations. Necessary and sufficient conditions for the existence and uniqueness of positive solution are developed by using Perov's fixed point theorem for the considered problem. Further, we also established sufficient conditions for existence of multiplicity results for positive solutions. Also, we developed some conditions under which the considered coupled system of fractional order differential equations has no positive solution. Appropriate examples are also provided which demonstrate our results.

  2. Efficiency of perfectly matched layers for seismic wave modeling in second-order viscoelastic equations

    NASA Astrophysics Data System (ADS)

    Ping, Ping; Zhang, Yu; Xu, Yixian; Chu, Risheng

    2016-12-01

    In order to improve the perfectly matched layer (PML) efficiency in viscoelastic media, we first propose a split multi-axial PML (M-PML) and an unsplit convolutional PML (C-PML) in the second-order viscoelastic wave equations with the displacement as the only unknown. The advantage of these formulations is that it is easy and efficient to revise the existing codes of the second-order spectral element method (SEM) or finite-element method (FEM) with absorbing boundaries in a uniform equation, as well as more economical than the auxiliary differential equations PML. Three models which are easily suffered from late time instabilities are considered to validate our approaches. Through comparison the M-PML with C-PML efficiency of absorption and stability for long time simulation, it can be concluded that: (1) for an isotropic viscoelastic medium with high Poisson's ratio, the C-PML will be a sufficient choice for long time simulation because of its weak reflections and superior stability; (2) unlike the M-PML with high-order damping profile, the M-PML with second-order damping profile loses its stability in long time simulation for an isotropic viscoelastic medium; (3) in an anisotropic viscoelastic medium, the C-PML suffers from instabilities, while the M-PML with second-order damping profile can be a better choice for its superior stability and more acceptable weak reflections than the M-PML with high-order damping profile. The comparative analysis of the developed methods offers meaningful significance for long time seismic wave modeling in second-order viscoelastic wave equations.

  3. Dynamics of a particle with friction and delay

    NASA Astrophysics Data System (ADS)

    Monteiro Marques, Manuel D. P.; Dzonou, Raoul

    2018-03-01

    We are interested in the motion of a simple mechanical system having a finite number of degrees of freedom subjected to a unilateral constraint with dry friction and delay effects (with maximal duration τ > 0). At the contact point, we characterize the friction by a Coulomb law associated with a friction cone. Starting from a formulation of the problem that was given by Jean-Jacques Moreau in the form of a second-order differential inclusion in the sense of measures, we consider a sweeping process algorithm that converges towards a solution to the dynamical contact problem. The mathematical machinery as well as the general plan of the existence proof may seem much too heavy in order to treat just this simple case, but they have proved useful in more complex settings. xml:lang="fr"

  4. Application of the moving frame method to deformed Willmore surfaces in space forms

    NASA Astrophysics Data System (ADS)

    Paragoda, Thanuja

    2018-06-01

    The main goal of this paper is to use the theory of exterior differential forms in deriving variations of the deformed Willmore energy in space forms and study the minimizers of the deformed Willmore energy in space forms. We derive both first and second order variations of deformed Willmore energy in space forms explicitly using moving frame method. We prove that the second order variation of deformed Willmore energy depends on the intrinsic Laplace Beltrami operator, the sectional curvature and some special operators along with mean and Gauss curvatures of the surface embedded in space forms, while the first order variation depends on the extrinsic Laplace Beltrami operator.

  5. Solution of second order quasi-linear boundary value problems by a wavelet method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Lei; Zhou, Youhe; Wang, Jizeng, E-mail: jzwang@lzu.edu.cn

    2015-03-10

    A wavelet Galerkin method based on expansions of Coiflet-like scaling function bases is applied to solve second order quasi-linear boundary value problems which represent a class of typical nonlinear differential equations. Two types of typical engineering problems are selected as test examples: one is about nonlinear heat conduction and the other is on bending of elastic beams. Numerical results are obtained by the proposed wavelet method. Through comparing to relevant analytical solutions as well as solutions obtained by other methods, we find that the method shows better efficiency and accuracy than several others, and the rate of convergence can evenmore » reach orders of 5.8.« less

  6. Algorithms For Integrating Nonlinear Differential Equations

    NASA Technical Reports Server (NTRS)

    Freed, A. D.; Walker, K. P.

    1994-01-01

    Improved algorithms developed for use in numerical integration of systems of nonhomogenous, nonlinear, first-order, ordinary differential equations. In comparison with integration algorithms, these algorithms offer greater stability and accuracy. Several asymptotically correct, thereby enabling retention of stability and accuracy when large increments of independent variable used. Accuracies attainable demonstrated by applying them to systems of nonlinear, first-order, differential equations that arise in study of viscoplastic behavior, spread of acquired immune-deficiency syndrome (AIDS) virus and predator/prey populations.

  7. Shuttle rocket booster computational fluid dynamics

    NASA Technical Reports Server (NTRS)

    Chung, T. J.; Park, O. Y.

    1988-01-01

    Additional results and a revised and improved computer program listing from the shuttle rocket booster computational fluid dynamics formulations are presented. Numerical calculations for the flame zone of solid propellants are carried out using the Galerkin finite elements, with perturbations expanded to the zeroth, first, and second orders. The results indicate that amplification of oscillatory motions does indeed prevail in high frequency regions. For the second order system, the trend is similar to the first order system for low frequencies, but instabilities may appear at frequencies lower than those of the first order system. The most significant effect of the second order system is that the admittance is extremely oscillatory between moderately high frequency ranges.

  8. Well-conditioned fractional collocation methods using fractional Birkhoff interpolation basis

    NASA Astrophysics Data System (ADS)

    Jiao, Yujian; Wang, Li-Lian; Huang, Can

    2016-01-01

    The purpose of this paper is twofold. Firstly, we provide explicit and compact formulas for computing both Caputo and (modified) Riemann-Liouville (RL) fractional pseudospectral differentiation matrices (F-PSDMs) of any order at general Jacobi-Gauss-Lobatto (JGL) points. We show that in the Caputo case, it suffices to compute F-PSDM of order μ ∈ (0 , 1) to compute that of any order k + μ with integer k ≥ 0, while in the modified RL case, it is only necessary to evaluate a fractional integral matrix of order μ ∈ (0 , 1). Secondly, we introduce suitable fractional JGL Birkhoff interpolation problems leading to new interpolation polynomial basis functions with remarkable properties: (i) the matrix generated from the new basis yields the exact inverse of F-PSDM at "interior" JGL points; (ii) the matrix of the highest fractional derivative in a collocation scheme under the new basis is diagonal; and (iii) the resulted linear system is well-conditioned in the Caputo case, while in the modified RL case, the eigenvalues of the coefficient matrix are highly concentrated. In both cases, the linear systems of the collocation schemes using the new basis can be solved by an iterative solver within a few iterations. Notably, the inverse can be computed in a very stable manner, so this offers optimal preconditioners for usual fractional collocation methods for fractional differential equations (FDEs). It is also noteworthy that the choice of certain special JGL points with parameters related to the order of the equations can ease the implementation. We highlight that the use of the Bateman's fractional integral formulas and fast transforms between Jacobi polynomials with different parameters, is essential for our algorithm development.

  9. Dynamical Stability and Long-term Evolution of Rotating Stellar Systems

    NASA Astrophysics Data System (ADS)

    Varri, Anna L.; Vesperini, E.; McMillan, S. L. W.; Bertin, G.

    2011-05-01

    We present the first results of an extensive survey of N-body simulations designed to investigate the dynamical stability and the long-term evolution of two new families of self-consistent stellar dynamical models, characterized by the presence of internal rotation. The first family extends the well-known King models to the case of axisymmetric systems flattened by solid-body rotation while the second family is characterized by differential rotation. The equilibrium configurations thus obtained can be described in terms of two dimensionless parameters, which measure the concentration and the amount of rotation, respectively. Slowly rotating configurations are found to be dynamically stable and we followed their long-term evolution, in order to evaluate the interplay between collisional relaxation and angular momentum transport. We also studied the stability of rapidly rotating models, which are characterized by the presence of a toroidal core embedded in an otherwise quasi-spherical configuration. In both cases, a description in terms of the radial and global properties, such as the ratio between the ordered kinetic energy and the gravitational energy of the system, is provided. Because the role of angular momentum in the process of cluster formation is only partly understood, we also undertook a preliminary investigation of the violent relaxation of simple systems initially characterized by approximate solid-body rotation. The properties of the final equilibrium configurations thus obtained are compared with those of the above-described family of differentially rotating models.

  10. The Local Brewery: A Project for Use in Differential Equations Courses

    ERIC Educational Resources Information Center

    Starling, James K.; Povich, Timothy J.; Findlay, Michael

    2016-01-01

    We describe a modeling project designed for an ordinary differential equations (ODEs) course using first-order and systems of first-order differential equations to model the fermentation process in beer. The project aims to expose the students to the modeling process by creating and solving a mathematical model and effectively communicating their…

  11. Coherent orthogonal polynomials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Celeghini, E., E-mail: celeghini@fi.infn.it; Olmo, M.A. del, E-mail: olmo@fta.uva.es

    2013-08-15

    We discuss a fundamental characteristic of orthogonal polynomials, like the existence of a Lie algebra behind them, which can be added to their other relevant aspects. At the basis of the complete framework for orthogonal polynomials we include thus–in addition to differential equations, recurrence relations, Hilbert spaces and square integrable functions–Lie algebra theory. We start here from the square integrable functions on the open connected subset of the real line whose bases are related to orthogonal polynomials. All these one-dimensional continuous spaces allow, besides the standard uncountable basis (|x〉), for an alternative countable basis (|n〉). The matrix elements that relatemore » these two bases are essentially the orthogonal polynomials: Hermite polynomials for the line and Laguerre and Legendre polynomials for the half-line and the line interval, respectively. Differential recurrence relations of orthogonal polynomials allow us to realize that they determine an infinite-dimensional irreducible representation of a non-compact Lie algebra, whose second order Casimir C gives rise to the second order differential equation that defines the corresponding family of orthogonal polynomials. Thus, the Weyl–Heisenberg algebra h(1) with C=0 for Hermite polynomials and su(1,1) with C=−1/4 for Laguerre and Legendre polynomials are obtained. Starting from the orthogonal polynomials the Lie algebra is extended both to the whole space of the L{sup 2} functions and to the corresponding Universal Enveloping Algebra and transformation group. Generalized coherent states from each vector in the space L{sup 2} and, in particular, generalized coherent polynomials are thus obtained. -- Highlights: •Fundamental characteristic of orthogonal polynomials (OP): existence of a Lie algebra. •Differential recurrence relations of OP determine a unitary representation of a non-compact Lie group. •2nd order Casimir originates a 2nd order differential equation that defines the corresponding OP family. •Generalized coherent polynomials are obtained from OP.« less

  12. Differential characters and cohomology of the moduli of flat connections

    NASA Astrophysics Data System (ADS)

    Castrillón López, Marco; Ferreiro Pérez, Roberto

    2018-05-01

    Let π {:} P→ M be a principal bundle and p an invariant polynomial of degree r on the Lie algebra of the structure group. The theory of Chern-Simons differential characters is exploited to define a homology map χ k {:} H_{2r-k-1}(M)× Hk(F/G)→ R/Z , for k

  13. Generation of localized patterns in anharmonic lattices with cubic-quintic nonlinearities and fourth-order dispersion via a variational approach

    NASA Astrophysics Data System (ADS)

    Wamba, Etienne; Tchakoutio Nguetcho, Aurélien S.

    2018-05-01

    We use the time-dependent variational method to examine the formation of localized patterns in dynamically unstable anharmonic lattices with cubic-quintic nonlinearities and fourth-order dispersion. The governing equation is an extended nonlinear Schrödinger equation known for modified Frankel-Kontorova models of atomic lattices and here derived from an extended Bose-Hubbard model of bosonic lattices with local three-body interactions. In presence of modulated waves, we derive and investigate the ordinary differential equations for the time evolution of the amplitude and phase of dynamical perturbation. Through an effective potential, we find the modulationally unstable domains of the lattice and discuss the effect of the fourth-order dispersion in the dynamics. Direct numerical simulations are performed to support our analytical results, and a good agreement is found. Various types of localized patterns, including breathers and solitonic chirped-like pulses, form in the system as a result of interplay between the cubic-quintic nonlinearities and the second- and fourth-order dispersions.

  14. Some new results on stability and synchronization for delayed inertial neural networks based on non-reduced order method.

    PubMed

    Li, Xuanying; Li, Xiaotong; Hu, Cheng

    2017-12-01

    In this paper, without transforming the second order inertial neural networks into the first order differential systems by some variable substitutions, asymptotic stability and synchronization for a class of delayed inertial neural networks are investigated. Firstly, a new Lyapunov functional is constructed to directly propose the asymptotic stability of the inertial neural networks, and some new stability criteria are derived by means of Barbalat Lemma. Additionally, by designing a new feedback control strategy, the asymptotic synchronization of the addressed inertial networks is studied and some effective conditions are obtained. To reduce the control cost, an adaptive control scheme is designed to realize the asymptotic synchronization. It is noted that the dynamical behaviors of inertial neural networks are directly analyzed in this paper by constructing some new Lyapunov functionals, this is totally different from the traditional reduced-order variable substitution method. Finally, some numerical simulations are given to demonstrate the effectiveness of the derived theoretical results. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Boundary conditions in Chebyshev and Legendre methods

    NASA Technical Reports Server (NTRS)

    Canuto, C.

    1984-01-01

    Two different ways of treating non-Dirichlet boundary conditions in Chebyshev and Legendre collocation methods are discussed for second order differential problems. An error analysis is provided. The effect of preconditioning the corresponding spectral operators by finite difference matrices is also investigated.

  16. Second-order sliding mode control with experimental application.

    PubMed

    Eker, Ilyas

    2010-07-01

    In this article, a second-order sliding mode control (2-SMC) is proposed for second-order uncertain plants using equivalent control approach to improve the performance of control systems. A Proportional + Integral + Derivative (PID) sliding surface is used for the sliding mode. The sliding mode control law is derived using direct Lyapunov stability approach and asymptotic stability is proved theoretically. The performance of the closed-loop system is analysed through an experimental application to an electromechanical plant to show the feasibility and effectiveness of the proposed second-order sliding mode control and factors involved in the design. The second-order plant parameters are experimentally determined using input-output measured data. The results of the experimental application are presented to make a quantitative comparison with the traditional (first-order) sliding mode control (SMC) and PID control. It is demonstrated that the proposed 2-SMC system improves the performance of the closed-loop system with better tracking specifications in the case of external disturbances, better behavior of the output and faster convergence of the sliding surface while maintaining the stability. 2010 ISA. Published by Elsevier Ltd. All rights reserved.

  17. Effects of the non-extensive parameter on the propagation of ion acoustic waves in five-component cometary plasma system

    NASA Astrophysics Data System (ADS)

    Mahmoud, Abeer A.

    2018-01-01

    Some important evolution nonlinear partial differential equations are derived using the reductive perturbation method for unmagnetized collisionless system of five component plasma. This plasma system is a multi-ion contains negatively and positively charged Oxygen ions (heavy ions), positive Hydrogen ions (lighter ions), hot electrons from solar origin and colder electrons from cometary origin. The positive Hydrogen ion and the two types of electrons obey q-non-extensive distributions. The derived equations have three types of ion acoustic waves, which are soliton waves, shock waves and kink waves. The effects of the non-extensive parameters for the hot electrons, the colder electrons and the Hydrogen ions on the propagation of the envelope waves are studied. The compressive and rarefactive shapes of the three envelope waves appear in this system for the first order of the power of the nonlinearity strength with different values of non-extensive parameters. For the second order, the strength of nonlinearity will increase and the compressive type of the envelope wave only appears.

  18. Lagrangian particle method for compressible fluid dynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Samulyak, Roman; Wang, Xingyu; Chen, Hsin -Chiang

    A new Lagrangian particle method for solving Euler equations for compressible inviscid fluid or gas flows is proposed. Similar to smoothed particle hydrodynamics (SPH), the method represents fluid cells with Lagrangian particles and is suitable for the simulation of complex free surface / multi-phase flows. The main contributions of our method, which is different from SPH in all other aspects, are (a) significant improvement of approximation of differential operators based on a polynomial fit via weighted least squares approximation and the convergence of prescribed order, (b) a second-order particle-based algorithm that reduces to the first-order upwind method at local extremalmore » points, providing accuracy and long term stability, and (c) more accurate resolution of entropy discontinuities and states at free inter-faces. While the method is consistent and convergent to a prescribed order, the conservation of momentum and energy is not exact and depends on the convergence order . The method is generalizable to coupled hyperbolic-elliptic systems. As a result, numerical verification tests demonstrating the convergence order are presented as well as examples of complex multiphase flows.« less

  19. Lagrangian particle method for compressible fluid dynamics

    DOE PAGES

    Samulyak, Roman; Wang, Xingyu; Chen, Hsin -Chiang

    2018-02-09

    A new Lagrangian particle method for solving Euler equations for compressible inviscid fluid or gas flows is proposed. Similar to smoothed particle hydrodynamics (SPH), the method represents fluid cells with Lagrangian particles and is suitable for the simulation of complex free surface / multi-phase flows. The main contributions of our method, which is different from SPH in all other aspects, are (a) significant improvement of approximation of differential operators based on a polynomial fit via weighted least squares approximation and the convergence of prescribed order, (b) a second-order particle-based algorithm that reduces to the first-order upwind method at local extremalmore » points, providing accuracy and long term stability, and (c) more accurate resolution of entropy discontinuities and states at free inter-faces. While the method is consistent and convergent to a prescribed order, the conservation of momentum and energy is not exact and depends on the convergence order . The method is generalizable to coupled hyperbolic-elliptic systems. As a result, numerical verification tests demonstrating the convergence order are presented as well as examples of complex multiphase flows.« less

  20. Real-time fringe pattern demodulation with a second-order digital phase-locked loop.

    PubMed

    Gdeisat, M A; Burton, D R; Lalor, M J

    2000-10-10

    The use of a second-order digital phase-locked loop (DPLL) to demodulate fringe patterns is presented. The second-order DPLL has better tracking ability and more noise immunity than the first-order loop. Consequently, the second-order DPLL is capable of demodulating a wider range of fringe patterns than the first-order DPLL. A basic analysis of the first- and the second-order loops is given, and a performance comparison between the first- and the second-order DPLL's in analyzing fringe patterns is presented. The implementation of the second-order loop in real time on a commercial parallel image processing system is described. Fringe patterns are grabbed and processed, and the resultant phase maps are displayed concurrently.

  1. Growth and physicochemical properties of second-order nonlinear optical 2-amino-5-chloropyridinium trichloroacetate single crystals

    NASA Astrophysics Data System (ADS)

    Renugadevi, R.; Kesavasamy, R.

    2015-09-01

    The growth of organic nonlinear optical (NLO) crystal 2-amino-5-chloropyridinium trichloroacetate (2A5CPTCA) has been synthesized and single crystals have been grown from methanol solvent by slow evaporation technique. The grown crystals were subjected to various characterization analyses in order to find out the suitability for device fabrication. Single crystal X-ray diffraction analysis reveals that 2A5CPTCA crystallizes in monoclinic system with the space group Cc. The grown crystal was further characterized by Fourier transform infrared spectral analysis to find out the functional groups. The nuclear magnetic resonance spectroscopy is a research technique that exploits the magnetic properties of certain atomic nuclei. The optical transparency window in the visible and near-IR (200--1100 nm) regions was found to be good for NLO applications. Thermogravimetric analysis and differential thermal analysis were used to study its thermal properties. The powder second harmonic generation efficiency measurement with Nd:YAG laser (1064 nm) radiation shows that the highest value when compared with the standard potassium dihydrogen phosphate crystal.

  2. Control order and visuomotor strategy development for joystick-steered underground shuttle cars.

    PubMed

    Cloete, Steven; Zupanc, Christine; Burgess-Limerick, Robin; Wallis, Guy

    2014-09-01

    In this simulator-based study, we aimed to quantify performance differences between joystick steering systems using first-order and second-order control, which are used in underground coal mining shuttle cars. In addition, we conducted an exploratory analysis of how users of the more difficult, second-order system changed their behavior over time. Evidence from the visuomotor control literature suggests that higher-order control devices are not intuitive, which could pose a significant risk to underground mine personnel, equipment, and infrastructure. Thirty-six naive participants were randomly assigned to first- and second-order conditions and completed three experimental trials comprising sequences of 90 degrees turns in a virtual underground mine environment, with velocity held constant at 9 km/h(-1). Performance measures were lateral deviation, steering angle variability, high-frequency steering content, joystick activity, and cumulative time in collision with the virtual mine wall. The second-order control group exhibited significantly poorer performance for all outcome measures. In addition, a series of correlation analyses revealed that changes in strategy were evident in the second-order group but not the first-order group. Results were consistent with previous literature indicating poorer performance with higher-order control devices and caution against the adoption of the second-order joystick system for underground shuttle cars. Low-cost, portable simulation platforms may provide an effective basis for operator training and recruitment.

  3. Calculation of fully differential cross sections for the near threshold double ionization of helium atoms

    NASA Astrophysics Data System (ADS)

    Singh, Prithvi; Purohit, Ghanshyam; Dorn, Alexander; Ren, Xueguang; Patidar, Vinod

    2016-01-01

    Fully differential cross sectional (FDCS) results are reported for the electron-impact double ionization of helium atoms at 5 and 27 eV excess energy. The present attempt to calculate the FDCS in the second Born approximation and treating the postcollision interaction is helpful to analyze the measurements of Ren et al (2008 Phys. Rev. Lett. 101 093201) and Durr et al (2007 Phys. Rev. Lett. 98 193201). The second-order processes and postcollision interaction have been found to be significant in describing the trends of the FDCS. More theoretical effort is required to describe the collision dynamics of electron-impact double ionization of helium atoms at near threshold.

  4. Description and use of LSODE, the Livermore Solver for Ordinary Differential Equations

    NASA Technical Reports Server (NTRS)

    Radhakrishnan, Krishnan; Hindmarsh, Alan C.

    1993-01-01

    LSODE, the Livermore Solver for Ordinary Differential Equations, is a package of FORTRAN subroutines designed for the numerical solution of the initial value problem for a system of ordinary differential equations. It is particularly well suited for 'stiff' differential systems, for which the backward differentiation formula method of orders 1 to 5 is provided. The code includes the Adams-Moulton method of orders 1 to 12, so it can be used for nonstiff problems as well. In addition, the user can easily switch methods to increase computational efficiency for problems that change character. For both methods a variety of corrector iteration techniques is included in the code. Also, to minimize computational work, both the step size and method order are varied dynamically. This report presents complete descriptions of the code and integration methods, including their implementation. It also provides a detailed guide to the use of the code, as well as an illustrative example problem.

  5. Back-stepping active disturbance rejection control design for integrated missile guidance and control system via reduced-order ESO.

    PubMed

    Xingling, Shao; Honglun, Wang

    2015-07-01

    This paper proposes a novel composite integrated guidance and control (IGC) law for missile intercepting against unknown maneuvering target with multiple uncertainties and control constraint. First, by using back-stepping technique, the proposed IGC law design is separated into guidance loop and control loop. The unknown target maneuvers and variations of aerodynamics parameters in guidance and control loop are viewed as uncertainties, which are estimated and compensated by designed model-assisted reduced-order extended state observer (ESO). Second, based on the principle of active disturbance rejection control (ADRC), enhanced feedback linearization (FL) based control law is implemented for the IGC model using the estimates generated by reduced-order ESO. In addition, performance analysis and comparisons between ESO and reduced-order ESO are examined. Nonlinear tracking differentiator is employed to construct the derivative of virtual control command in the control loop. Third, the closed-loop stability for the considered system is established. Finally, the effectiveness of the proposed IGC law in enhanced interception performance such as smooth interception course, improved robustness against multiple uncertainties as well as reduced control consumption during initial phase are demonstrated through simulations. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  6. Discrete integration of continuous Kalman filtering equations for time invariant second-order structural systems

    NASA Technical Reports Server (NTRS)

    Park, K. C.; Belvin, W. Keith

    1990-01-01

    A general form for the first-order representation of the continuous second-order linear structural-dynamics equations is introduced to derive a corresponding form of first-order continuous Kalman filtering equations. Time integration of the resulting equations is carried out via a set of linear multistep integration formulas. It is shown that a judicious combined selection of computational paths and the undetermined matrices introduced in the general form of the first-order linear structural systems leads to a class of second-order discrete Kalman filtering equations involving only symmetric sparse N x N solution matrices.

  7. Diffraction-based optical correlator

    NASA Technical Reports Server (NTRS)

    Spremo, Stevan M. (Inventor); Fuhr, Peter L. (Inventor); Schipper, John F. (Inventor)

    2005-01-01

    Method and system for wavelength-based processing of a light beam. A light beam, produced at a chemical or physical reaction site and having at least first and second wavelengths, ?1 and ?2, is received and diffracted at a first diffraction grating to provide first and second diffracted beams, which are received and analyzed in terms of wavelength and/or time at two spaced apart light detectors. In a second embodiment, light from first and second sources is diffracted and compared in terms of wavelength and/or time to determine if the two beams arise from the same source. In a third embodiment, a light beam is split and diffracted and passed through first and second environments to study differential effects. In a fourth embodiment, diffracted light beam components, having first and second wavelengths, are received sequentially at a reaction site to determine whether a specified reaction is promoted, based on order of receipt of the beams. In a fifth embodiment, a cylindrically shaped diffraction grating (uniform or chirped) is rotated and translated to provide a sequence of diffracted beams with different wavelengths. In a sixth embodiment, incident light, representing one or more symbols, is successively diffracted from first and second diffraction gratings and is received at different light detectors, depending upon the wavelengths present in the incident light.

  8. On the origins of generalized fractional calculus

    NASA Astrophysics Data System (ADS)

    Kiryakova, Virginia

    2015-11-01

    In Fractional Calculus (FC), as in the (classical) Calculus, the notions of derivatives and integrals (of first, second, etc. or arbitrary, incl. non-integer order) are basic and co-related. One of the most frequent approach in FC is to define first the Riemann-Liouville (R-L) integral of fractional order, and then by means of suitable integer-order differentiation operation applied over it (or under its sign) a fractional derivative is defined - in the R-L sense (or in Caputo sense). The first mentioned (R-L type) is closer to the theoretical studies in analysis, but has some shortages - from the point of view of interpretation of the initial conditions for Cauchy problems for fractional differential equations (stated also by means of fractional order derivatives/ integrals), and also for the analysts' confusion that such a derivative of a constant is not zero in general. The Caputo (C-) derivative, arising first in geophysical studies, helps to overcome these problems and to describe models of applied problems with physically consistent initial conditions. The operators of the Generalized Fractional Calculus - GFC (integrals and derivatives) are based on commuting m-tuple (m = 1, 2, 3, …) compositions of operators of the classical FC with power weights (the so-called Erdélyi-Kober operators), but represented in compact and explicit form by means of integral, integro-differential (R-L type) or differential-integral (C-type) operators, where the kernels are special functions of most general hypergeometric kind. The foundations of this theory are given in Kiryakova 18. In this survey we present the genesis of the definitions of the GFC - the generalized fractional integrals and derivatives (of fractional multi-order) of R-L type and Caputo type, analyze their properties and applications. Their special cases are all the known operators of classical FC, their generalizations introduced by other authors, the hyper-Bessel differential operators of higher integer order m as a multi-order (1, 1,…, 1), the Gelfond-Leontiev generalized differentiation operators, many other integral and differential operators in Calculus that have been used in various topics, some of them not related to FC at all, others involved in differential and integral equations for treating fractional order models.

  9. Semi-empirical model for prediction of unsteady forces on an airfoil with application to flutter

    NASA Technical Reports Server (NTRS)

    Mahajan, Aparajit J.; Kaza, Krishna Rao V.

    1992-01-01

    A semi-empirical model is described for predicting unsteady aerodynamic forces on arbitrary airfoils under mildly stalled and unstalled conditions. Aerodynamic forces are modeled using second order ordinary differential equations for lift and moment with airfoil motion as the input. This model is simultaneously integrated with structural dynamics equations to determine flutter characteristics for a two degrees-of-freedom system. Results for a number of cases are presented to demonstrate the suitability of this model to predict flutter. Comparison is made to the flutter characteristics determined by a Navier-Stokes solver and also the classical incompressible potential flow theory.

  10. Semi-empirical model for prediction of unsteady forces on an airfoil with application to flutter

    NASA Technical Reports Server (NTRS)

    Mahajan, A. J.; Kaza, K. R. V.; Dowell, E. H.

    1993-01-01

    A semi-empirical model is described for predicting unsteady aerodynamic forces on arbitrary airfoils under mildly stalled and unstalled conditions. Aerodynamic forces are modeled using second order ordinary differential equations for lift and moment with airfoil motion as the input. This model is simultaneously integrated with structural dynamics equations to determine flutter characteristics for a two degrees-of-freedom system. Results for a number of cases are presented to demonstrate the suitability of this model to predict flutter. Comparison is made to the flutter characteristics determined by a Navier-Stokes solver and also the classical incompressible potential flow theory.

  11. Fast smooth second-order sliding mode control for stochastic systems with enumerable coloured noises

    NASA Astrophysics Data System (ADS)

    Yang, Peng-fei; Fang, Yang-wang; Wu, You-li; Zhang, Dan-xu; Xu, Yang

    2018-01-01

    A fast smooth second-order sliding mode control is presented for a class of stochastic systems driven by enumerable Ornstein-Uhlenbeck coloured noises with time-varying coefficients. Instead of treating the noise as bounded disturbance, the stochastic control techniques are incorporated into the design of the control. The finite-time mean-square practical stability and finite-time mean-square practical reachability are first introduced. Then the prescribed sliding variable dynamic is presented. The sufficient condition guaranteeing its finite-time convergence is given and proved using stochastic Lyapunov-like techniques. The proposed sliding mode controller is applied to a second-order nonlinear stochastic system. Simulation results are given comparing with smooth second-order sliding mode control to validate the analysis.

  12. Optimal second order sliding mode control for nonlinear uncertain systems.

    PubMed

    Das, Madhulika; Mahanta, Chitralekha

    2014-07-01

    In this paper, a chattering free optimal second order sliding mode control (OSOSMC) method is proposed to stabilize nonlinear systems affected by uncertainties. The nonlinear optimal control strategy is based on the control Lyapunov function (CLF). For ensuring robustness of the optimal controller in the presence of parametric uncertainty and external disturbances, a sliding mode control scheme is realized by combining an integral and a terminal sliding surface. The resulting second order sliding mode can effectively reduce chattering in the control input. Simulation results confirm the supremacy of the proposed optimal second order sliding mode control over some existing sliding mode controllers in controlling nonlinear systems affected by uncertainty. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.

  13. Structure of Lie point and variational symmetry algebras for a class of odes

    NASA Astrophysics Data System (ADS)

    Ndogmo, J. C.

    2018-04-01

    It is known for scalar ordinary differential equations, and for systems of ordinary differential equations of order not higher than the third, that their Lie point symmetry algebras is of maximal dimension if and only if they can be reduced by a point transformation to the trivial equation y(n)=0. For arbitrary systems of ordinary differential equations of order n ≥ 3 reducible by point transformations to the trivial equation, we determine the complete structure of their Lie point symmetry algebras as well as that for their variational, and their divergence symmetry algebras. As a corollary, we obtain the maximal dimension of the Lie point symmetry algebra for any system of linear or nonlinear ordinary differential equations.

  14. Sensitivity derivatives for advanced CFD algorithm and viscous modelling parameters via automatic differentiation

    NASA Technical Reports Server (NTRS)

    Green, Lawrence L.; Newman, Perry A.; Haigler, Kara J.

    1993-01-01

    The computational technique of automatic differentiation (AD) is applied to a three-dimensional thin-layer Navier-Stokes multigrid flow solver to assess the feasibility and computational impact of obtaining exact sensitivity derivatives typical of those needed for sensitivity analyses. Calculations are performed for an ONERA M6 wing in transonic flow with both the Baldwin-Lomax and Johnson-King turbulence models. The wing lift, drag, and pitching moment coefficients are differentiated with respect to two different groups of input parameters. The first group consists of the second- and fourth-order damping coefficients of the computational algorithm, whereas the second group consists of two parameters in the viscous turbulent flow physics modelling. Results obtained via AD are compared, for both accuracy and computational efficiency with the results obtained with divided differences (DD). The AD results are accurate, extremely simple to obtain, and show significant computational advantage over those obtained by DD for some cases.

  15. A non-local model of fractional heat conduction in rigid bodies

    NASA Astrophysics Data System (ADS)

    Borino, G.; di Paola, M.; Zingales, M.

    2011-03-01

    In recent years several applications of fractional differential calculus have been proposed in physics, chemistry as well as in engineering fields. Fractional order integrals and derivatives extend the well-known definitions of integer-order primitives and derivatives of the ordinary differential calculus to real-order operators. Engineering applications of fractional operators spread from viscoelastic models, stochastic dynamics as well as with thermoelasticity. In this latter field one of the main actractives of fractional operators is their capability to interpolate between the heat flux and its time-rate of change, that is related to the well-known second sound effect. In other recent studies a fractional, non-local thermoelastic model has been proposed as a particular case of the non-local, integral, thermoelasticity introduced at the mid of the seventies. In this study the autors aim to introduce a different non-local model of extended irreverible thermodynamics to account for second sound effect. Long-range heat flux is defined and it involves the integral part of the spatial Marchaud fractional derivatives of the temperature field whereas the second-sound effect is accounted for introducing time-derivative of the heat flux in the transport equation. It is shown that the proposed model does not suffer of the pathological problems of non-homogenoeus boundary conditions. Moreover the proposed model coalesces with the Povstenko fractional models in unbounded domains.

  16. Elasticity solutions for a class of composite laminate problems with stress singularities

    NASA Technical Reports Server (NTRS)

    Wang, S. S.

    1983-01-01

    A study on the fundamental mechanics of fiber-reinforced composite laminates with stress singularities is presented. Based on the theory of anisotropic elasticity and Lekhnitskii's complex-variable stress potentials, a system of coupled governing partial differential equations are established. An eigenfunction expansion method is introduced to determine the orders of stress singularities in composite laminates with various geometric configurations and material systems. Complete elasticity solutions are obtained for this class of singular composite laminate mechanics problems. Homogeneous solutions in eigenfunction series and particular solutions in polynomials are presented for several cases of interest. Three examples are given to illustrate the method of approach and the basic nature of the singular laminate elasticity solutions. The first problem is the well-known laminate free-edge stress problem, which has a rather weak stress singularity. The second problem is the important composite delamination problem, which has a strong crack-tip stress singularity. The third problem is the commonly encountered bonded composite joints, which has a complex solution structure with moderate orders of stress singularities.

  17. Intrinsically safe moisture blending system

    DOEpatents

    Hallman Jr., Russell L.; Vanatta, Paul D.

    2012-09-11

    A system for providing an adjustable blend of fluids to an application process is disclosed. The system uses a source of a first fluid flowing through at least one tube that is permeable to a second fluid and that is disposed in a source of the second fluid to provide the adjustable blend. The temperature of the second fluid is not regulated, and at least one calibration curve is used to predict the volumetric mixture ratio of the second fluid with the first fluid from the permeable tube. The system typically includes a differential pressure valve and a backpressure control valve to set the flow rate through the system.

  18. Chaotic Oscillations of Second Order Linear Hyperbolic Equations with Nonlinear Boundary Conditions: A Factorizable but Noncommutative Case

    NASA Astrophysics Data System (ADS)

    Li, Liangliang; Huang, Yu; Chen, Goong; Huang, Tingwen

    If a second order linear hyperbolic partial differential equation in one-space dimension can be factorized as a product of two first order operators and if the two first order operators commute, with one boundary condition being the van der Pol type and the other being linear, one can establish the occurrence of chaos when the parameters enter a certain regime [Chen et al., 2014]. However, if the commutativity of the two first order operators fails to hold, then the treatment in [Chen et al., 2014] no longer works and significant new challenges arise in determining nonlinear boundary conditions that engenders chaos. In this paper, we show that by incorporating a linear memory effect, a nonlinear van der Pol boundary condition can cause chaotic oscillations when the parameter enters a certain regime. Numerical simulations illustrating chaotic oscillations are also presented.

  19. Undergraduate Students' Mental Operations in Systems of Differential Equations

    ERIC Educational Resources Information Center

    Whitehead, Karen; Rasmussen, Chris

    2003-01-01

    This paper reports on research conducted to understand undergraduate students' ways of reasoning about systems of differential equations (SDEs). As part of a semester long classroom teaching experiment in a first course in differential equations, we conducted task-based interviews with six students after their study of first order differential…

  20. Hybrid Differential Dynamic Programming with Stochastic Search

    NASA Technical Reports Server (NTRS)

    Aziz, Jonathan; Parker, Jeffrey; Englander, Jacob

    2016-01-01

    Differential dynamic programming (DDP) has been demonstrated as a viable approach to low-thrust trajectory optimization, namely with the recent success of NASAs Dawn mission. The Dawn trajectory was designed with the DDP-based Static Dynamic Optimal Control algorithm used in the Mystic software. Another recently developed method, Hybrid Differential Dynamic Programming (HDDP) is a variant of the standard DDP formulation that leverages both first-order and second-order state transition matrices in addition to nonlinear programming (NLP) techniques. Areas of improvement over standard DDP include constraint handling, convergence properties, continuous dynamics, and multi-phase capability. DDP is a gradient based method and will converge to a solution nearby an initial guess. In this study, monotonic basin hopping (MBH) is employed as a stochastic search method to overcome this limitation, by augmenting the HDDP algorithm for a wider search of the solution space.

  1. Second-Order Consensus in Multiagent Systems via Distributed Sliding Mode Control.

    PubMed

    Yu, Wenwu; Wang, He; Cheng, Fei; Yu, Xinghuo; Wen, Guanghui

    2016-11-22

    In this paper, the new decoupled distributed sliding-mode control (DSMC) is first proposed for second-order consensus in multiagent systems, which finally solves the fundamental unknown problem for sliding-mode control (SMC) design of coupled networked systems. A distributed full-order sliding-mode surface is designed based on the homogeneity with dilation for reaching second-order consensus in multiagent systems, under which the sliding-mode states are decoupled. Then, the SMC is applied to the decoupled sliding-mode states to reach their origin in finite time, which is the sliding-mode surface. The states of agents can first reach the designed sliding-mode surface in finite time and then move to the second-order consensus state along the surface in finite time as well. The DSMC designed in this paper can eliminate the influence of singularity problems and weaken the influence of chattering, which is still very difficult in the SMC systems. In addition, DSMC proposes a general decoupling framework for designing SMC in networked multiagent systems. Simulations are presented to verify the theoretical results in this paper.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stinis, Panagiotis

    We present a comparative study of two methods for thereduction of the dimensionality of a system of ordinary differentialequations that exhibits time-scale separation. Both methods lead to areduced system of stochastic differential equations. The novel feature ofthese methods is that they allow the use, in the reduced system, ofhigher order terms in the resolved variables. The first method, proposedby Majda, Timofeyev and Vanden-Eijnden, is based on an asymptoticstrategy developed by Kurtz. The second method is a short-memoryapproximation of the Mori-Zwanzig projection formalism of irreversiblestatistical mechanics, as proposed by Chorin, Hald and Kupferman. Wepresent conditions under which the reduced models arisingmore » from the twomethods should have similar predictive ability. We apply the two methodsto test cases that satisfy these conditions. The form of the reducedmodels and the numerical simulations show that the two methods havesimilar predictive ability as expected.« less

  3. Robust controller designs for second-order dynamic system: A virtual passive approach

    NASA Technical Reports Server (NTRS)

    Juang, Jer-Nan; Phan, Minh

    1990-01-01

    A robust controller design is presented for second-order dynamic systems. The controller is model-independent and itself is a virtual second-order dynamic system. Conditions on actuator and sensor placements are identified for controller designs that guarantee overall closed-loop stability. The dynamic controller can be viewed as a virtual passive damping system that serves to stabilize the actual dynamic system. The control gains are interpreted as virtual mass, spring, and dashpot elements that play the same roles as actual physical elements in stability analysis. Position, velocity, and acceleration feedback are considered. Simple examples are provided to illustrate the physical meaning of this controller design.

  4. A study of the applicability of nucleation theory to quasi-thermodynamic transitions of second and higher Ehrenfest-order

    NASA Technical Reports Server (NTRS)

    Barker, R. E., Jr.; Campbell, K. W.

    1985-01-01

    The applicability of classical nucleation theory to second (and higher) order thermodynamic transitions in the Ehrenfest sense has been investigated and expressions have been derived upon which the qualitative and quantitative success of the basic approach must ultimately depend. The expressions describe the effect of temperature undercooling, hydrostatic pressure, and tensile stress upon the critical parameters, the critical nucleus size, and critical free energy barrier, for nucleation in a thermodynamic transition of any general order. These expressions are then specialized for the case of first and second order transitions. The expressions for the case of undercooling are then used in conjunction with literature data to estimate values for the critical quantities in a system undergoing a pseudo-second order transition (the glass transition in polystyrene). Methods of estimating the interfacial energy gamma in systems undergoing a first and second order transition are also discussed.

  5. Lie group classification of first-order delay ordinary differential equations

    NASA Astrophysics Data System (ADS)

    Dorodnitsyn, Vladimir A.; Kozlov, Roman; Meleshko, Sergey V.; Winternitz, Pavel

    2018-05-01

    A group classification of first-order delay ordinary differential equations (DODEs) accompanied by an equation for the delay parameter (delay relation) is presented. A subset of such systems (delay ordinary differential systems or DODSs), which consists of linear DODEs and solution-independent delay relations, have infinite-dimensional symmetry algebras—as do nonlinear ones that are linearizable by an invertible transformation of variables. Genuinely nonlinear DODSs have symmetry algebras of dimension n, . It is shown how exact analytical solutions of invariant DODSs can be obtained using symmetry reduction.

  6. Second-order QCD effects in Higgs boson production through vector boson fusion

    NASA Astrophysics Data System (ADS)

    Cruz-Martinez, J.; Gehrmann, T.; Glover, E. W. N.; Huss, A.

    2018-06-01

    We compute the factorising second-order QCD corrections to the electroweak production of a Higgs boson through vector boson fusion. Our calculation is fully differential in the kinematics of the Higgs boson and of the final state jets, and uses the antenna subtraction method to handle infrared singular configurations in the different parton-level contributions. Our results allow us to reassess the impact of the next-to-leading order (NLO) QCD corrections to electroweak Higgs-plus-three-jet production and of the next-to-next-to-leading order (NNLO) QCD corrections to electroweak Higgs-plus-two-jet production. The NNLO corrections are found to be limited in magnitude to around ± 5% and are uniform in several of the kinematical variables, displaying a kinematical dependence only in the transverse momenta and rapidity separation of the two tagging jets.

  7. Probabilistic density function method for nonlinear dynamical systems driven by colored noise.

    PubMed

    Barajas-Solano, David A; Tartakovsky, Alexandre M

    2016-05-01

    We present a probability density function (PDF) method for a system of nonlinear stochastic ordinary differential equations driven by colored noise. The method provides an integrodifferential equation for the temporal evolution of the joint PDF of the system's state, which we close by means of a modified large-eddy-diffusivity (LED) closure. In contrast to the classical LED closure, the proposed closure accounts for advective transport of the PDF in the approximate temporal deconvolution of the integrodifferential equation. In addition, we introduce the generalized local linearization approximation for deriving a computable PDF equation in the form of a second-order partial differential equation. We demonstrate that the proposed closure and localization accurately describe the dynamics of the PDF in phase space for systems driven by noise with arbitrary autocorrelation time. We apply the proposed PDF method to analyze a set of Kramers equations driven by exponentially autocorrelated Gaussian colored noise to study nonlinear oscillators and the dynamics and stability of a power grid. Numerical experiments show the PDF method is accurate when the noise autocorrelation time is either much shorter or longer than the system's relaxation time, while the accuracy decreases as the ratio of the two timescales approaches unity. Similarly, the PDF method accuracy decreases with increasing standard deviation of the noise.

  8. An Astronomical Test of CCD Photometric Precision

    NASA Technical Reports Server (NTRS)

    Koch, David G.; Dunham, Edward W.; Borucki, William J.; Jenkins, Jon M.

    2001-01-01

    Ground-based differential photometry is limited to a precision of order 10(exp -3) because of atmospheric effects. A space-based photometer should be limited only by the inherent instrument precision and shot noise. Laboratory tests have shown that a precision of order 10-5 is achievable with commercially available charged coupled devices (CCDs). We have proposed to take this one step further by performing measurements at a telescope using a Wollaston prism as a beam splitter First-order atmospheric effects (e.g., extinction) will appear to be identical in the two images of each star formed by the prism and will be removed in the data analysis. This arrangement can determine the precision that is achievable under the influence of second-order atmospheric effects (e.g., variable point-spread function (PSF) from seeing). These telescopic observations will thus provide a lower limit to the precision that can be realized by a space-based differential photometer.

  9. A round trip from Caldirola to Bateman systems

    NASA Astrophysics Data System (ADS)

    Guerrero, J.; López-Ruiz, F. F.; Aldaya, V.; Cossío, F.

    2011-03-01

    For the quantum Caldirola-Kanai Hamiltonian, describing a quantum damped harmonic oscillator, a couple of constant of motion operators generating the Heisenberg algebra can be found. The inclusion in this algebra, in a unitary manner, of the standard time evolution generator , which is not a constant of motion, requires a non-trivial extension of this basic algebra and the physical system itself, which now includes a new dual particle. This enlarged algebra, when exponentiated, leads to a group, named the Bateman group, which admits unitary representations with support in the Hilbert space of functions satisfying the Schrodinger equation associated with the quantum Bateman Hamiltonian, either as a second order differential operator as well as a first order one. The classical Bateman Hamiltonian describes a dual system of a damped (losing energy) particle and a dual (gaining energy) particle. The classical Bateman system has a solution submanifold containing the trajectories of the original system as a submanifold. When restricted to this submanifold, the Bateman dual classical Hamiltonian leads to the Caldirola-Kanai Hamiltonian for a single damped particle. This construction can also be done at the quantum level, and the Caldirola-Kanai Hamiltonian operator can be derived from the Bateman Hamiltonian operator when appropriate constraints are imposed.

  10. On the slow dynamics of near-field acoustically levitated objects under High excitation frequencies

    NASA Astrophysics Data System (ADS)

    Ilssar, Dotan; Bucher, Izhak

    2015-10-01

    This paper introduces a simplified analytical model describing the governing dynamics of near-field acoustically levitated objects. The simplification converts the equation of motion coupled with the partial differential equation of a compressible fluid, into a compact, second order ordinary differential equation, where the local stiffness and damping are transparent. The simplified model allows one to more easily analyse and design near-field acoustic levitation based systems, and it also helps to devise closed-loop controller algorithms for such systems. Near-field acoustic levitation employs fast ultrasonic vibrations of a driving surface and exploits the viscosity and the compressibility of a gaseous medium to achieve average, load carrying pressure. It is demonstrated that the slow dynamics dominates the transient behaviour, while the time-scale associated with the fast, ultrasonic excitation has a small presence in the oscillations of the levitated object. Indeed, the present paper formulates the slow dynamics under an ultrasonic excitation without the need to explicitly consider the latter. The simplified model is compared with a numerical scheme based on Reynolds equation and with experiments, both showing reasonably good results.

  11. Method for suppressing noise in measurements

    NASA Technical Reports Server (NTRS)

    Carson, Paul L. (Inventor); Madsen, Louis A. (Inventor); Leskowitz, Garett M. (Inventor); Weitekamp, Daniel P. (Inventor)

    2000-01-01

    Methods for suppressing noise in measurements by correlating functions based on at least two different measurements of a system at two different times. In one embodiment, a measurement operation is performed on at least a portion of a system that has a memory. A property of the system is measured during a first measurement period to produce a first response indicative of a first state of the system. Then the property of the system is measured during a second measurement period to produce a second response indicative of a second state of the system. The second measurement is performed after an evolution duration subsequent to the first measurement period when the system still retains a degree of memory of an aspect of the first state. Next, a first function of the first response is combined with a second function of the second response to form a second-order correlation function. Information of the system is then extracted from the second-order correlation function.

  12. Pavlovian second-order conditioned analgesia.

    PubMed

    Ross, R T

    1986-01-01

    Three experiments with rat subjects assessed conditioned analgesia in a Pavlovian second-order conditioning procedure by using inhibition of responding to thermal stimulation as an index of pain sensitivity. In Experiment 1, rats receiving second-order conditioning showed longer response latencies during a test of pain sensitivity in the presence of the second-order conditioned stimulus (CS) than rats receiving appropriate control procedures. Experiment 2 found that extinction of the first-order CS had no effect on established second-order conditioned analgesia. Experiment 3 evaluated the effects of post second-order conditioning pairings of morphine and the shock unconditioned stimulus (US). Rats receiving paired morphine-shock presentations showed significantly shorter response latencies during a hot-plate test of pain sensitivity in the presence of the second-order CS than did groups of rats receiving various control procedures; second-order analgesia was attenuated. These data extend the associative account of conditioned analgesia to second-order conditioning situations and are discussed in terms of the mediation of both first- and second-order analgesia by an association between the CS and a representation or expectancy of the US, which may directly activate endogenous pain inhibition systems.

  13. Global exponential synchronization of inertial memristive neural networks with time-varying delay via nonlinear controller.

    PubMed

    Gong, Shuqing; Yang, Shaofu; Guo, Zhenyuan; Huang, Tingwen

    2018-06-01

    The paper is concerned with the synchronization problem of inertial memristive neural networks with time-varying delay. First, by choosing a proper variable substitution, inertial memristive neural networks described by second-order differential equations can be transformed into first-order differential equations. Then, a novel controller with a linear diffusive term and discontinuous sign term is designed. By using the controller, the sufficient conditions for assuring the global exponential synchronization of the derive and response neural networks are derived based on Lyapunov stability theory and some inequality techniques. Finally, several numerical simulations are provided to substantiate the effectiveness of the theoretical results. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. Periodic solutions of Lienard differential equations via averaging theory of order two.

    PubMed

    Llibre, Jaume; Novaes, Douglas D; Teixeira, Marco A

    2015-01-01

    For ε ≠ 0 sufficiently small we provide sufficient conditions for the existence of periodic solutions for the Lienard differential equations of the form x'' + f ⁢(x)⁢ x' + n2⁢x + g (x) = ε2p1 ⁢(t) + ε3 ⁢p2(t), where n is a positive integer, f : ℝ → ℝ is a C 3 function, g : ℝ → ℝ is a C 4 function, and p i : ℝ → ℝ for i = 1, 2 are continuous 2π-periodic function. The main tool used in this paper is the averaging theory of second order. We also provide one application of the main result obtained.

  15. Fourier Series and Elliptic Functions

    ERIC Educational Resources Information Center

    Fay, Temple H.

    2003-01-01

    Non-linear second-order differential equations whose solutions are the elliptic functions "sn"("t, k"), "cn"("t, k") and "dn"("t, k") are investigated. Using "Mathematica", high precision numerical solutions are generated. From these data, Fourier coefficients are determined yielding approximate formulas for these non-elementary functions that are…

  16. A structure-preserving method for a class of nonlinear dissipative wave equations with Riesz space-fractional derivatives

    NASA Astrophysics Data System (ADS)

    Macías-Díaz, J. E.

    2017-12-01

    In this manuscript, we consider an initial-boundary-value problem governed by a (1 + 1)-dimensional hyperbolic partial differential equation with constant damping that generalizes many nonlinear wave equations from mathematical physics. The model considers the presence of a spatial Laplacian of fractional order which is defined in terms of Riesz fractional derivatives, as well as the inclusion of a generic continuously differentiable potential. It is known that the undamped regime has an associated positive energy functional, and we show here that it is preserved throughout time under suitable boundary conditions. To approximate the solutions of this model, we propose a finite-difference discretization based on fractional centered differences. Some discrete quantities are proposed in this work to estimate the energy functional, and we show that the numerical method is capable of conserving the discrete energy under the same boundary conditions for which the continuous model is conservative. Moreover, we establish suitable computational constraints under which the discrete energy of the system is positive. The method is consistent of second order, and is both stable and convergent. The numerical simulations shown here illustrate the most important features of our numerical methodology.

  17. Mixed H2/Hinfinity output-feedback control of second-order neutral systems with time-varying state and input delays.

    PubMed

    Karimi, Hamid Reza; Gao, Huijun

    2008-07-01

    A mixed H2/Hinfinity output-feedback control design methodology is presented in this paper for second-order neutral linear systems with time-varying state and input delays. Delay-dependent sufficient conditions for the design of a desired control are given in terms of linear matrix inequalities (LMIs). A controller, which guarantees asymptotic stability and a mixed H2/Hinfinity performance for the closed-loop system of the second-order neutral linear system, is then developed directly instead of coupling the model to a first-order neutral system. A Lyapunov-Krasovskii method underlies the LMI-based mixed H2/Hinfinity output-feedback control design using some free weighting matrices. The simulation results illustrate the effectiveness of the proposed methodology.

  18. Implementation of a partitioned algorithm for simulation of large CSI problems

    NASA Technical Reports Server (NTRS)

    Alvin, Kenneth F.; Park, K. C.

    1991-01-01

    The implementation of a partitioned numerical algorithm for determining the dynamic response of coupled structure/controller/estimator finite-dimensional systems is reviewed. The partitioned approach leads to a set of coupled first and second-order linear differential equations which are numerically integrated with extrapolation and implicit step methods. The present software implementation, ACSIS, utilizes parallel processing techniques at various levels to optimize performance on a shared-memory concurrent/vector processing system. A general procedure for the design of controller and filter gains is also implemented, which utilizes the vibration characteristics of the structure to be solved. Also presented are: example problems; a user's guide to the software; the procedures and algorithm scripts; a stability analysis for the algorithm; and the source code for the parallel implementation.

  19. A new solution-adaptive grid generation method for transonic airfoil flow calculations

    NASA Technical Reports Server (NTRS)

    Nakamura, S.; Holst, T. L.

    1981-01-01

    The clustering algorithm is controlled by a second-order, ordinary differential equation which uses the airfoil surface density gradient as a forcing function. The solution to this differential equation produces a surface grid distribution which is automatically clustered in regions with large gradients. The interior grid points are established from this surface distribution by using an interpolation scheme which is fast and retains the desirable properties of the original grid generated from the standard elliptic equation approach.

  20. Numerical solution of a coupled pair of elliptic equations from solid state electronics

    NASA Technical Reports Server (NTRS)

    Phillips, T. N.

    1983-01-01

    Iterative methods are considered for the solution of a coupled pair of second order elliptic partial differential equations which arise in the field of solid state electronics. A finite difference scheme is used which retains the conservative form of the differential equations. Numerical solutions are obtained in two ways, by multigrid and dynamic alternating direction implicit methods. Numerical results are presented which show the multigrid method to be an efficient way of solving this problem.

  1. Second level semi-degenerate fields in W_3 Toda theory: matrix element and differential equation

    NASA Astrophysics Data System (ADS)

    Belavin, Vladimir; Cao, Xiangyu; Estienne, Benoit; Santachiara, Raoul

    2017-03-01

    In a recent study we considered W_3 Toda 4-point functions that involve matrix elements of a primary field with the highest-weight in the adjoint representation of sl_3 . We generalize this result by considering a semi-degenerate primary field, which has one null vector at level two. We obtain a sixth-order Fuchsian differential equation for the conformal blocks. We discuss the presence of multiplicities, the matrix elements and the fusion rules.

  2. Three Stages and Two Systems of Visual Processing

    DTIC Science & Technology

    1989-01-01

    as squaring do not, in and of themselves, imply second- order processing . For example, the Adelson and Bergen’s (1985) detector of directional motion...rectification, halfwave rectification is a second- order processing scheme. Figure 8. Stimuli for analyzing second- order processing . (a) An x,y,t representation of

  3. Robust stability of second-order systems

    NASA Technical Reports Server (NTRS)

    Chuang, C.-H.

    1995-01-01

    It has been shown recently how virtual passive controllers can be designed for second-order dynamic systems to achieve robust stability. The virtual controllers were visualized as systems made up of spring, mass and damping elements. In this paper, a new approach emphasizing on the notion of positive realness to the same second-order dynamic systems is used. Necessary and sufficient conditions for positive realness are presented for scalar spring-mass-dashpot systems. For multi-input multi-output systems, we show how a mass-spring-dashpot system can be made positive real by properly choosing its output variables. In particular, sufficient conditions are shown for the system without output velocity. Furthermore, if velocity cannot be measured then the system parameters must be precise to keep the system positive real. In practice, system parameters are not always constant and cannot be measured precisely. Therefore, in order to be useful positive real systems must be robust to some degrees. This can be achieved with the design presented in this paper.

  4. Comparison of Centralized-Manual, Centralized-Computerized, and Decentralized-Computerized Order and Management Information Models for the Turkish Air Force Logistics System.

    DTIC Science & Technology

    1986-09-01

    differentiation between the systems. This study will investigate an appropriate Order Processing and Management Information System (OP&MIS) to link base-level...methodology: 1. Reviewed the current order processing and information model of the TUAF Logistics System. (centralized-manual model) 2. Described the...RDS program’s order processing and information system. (centralized-computerized model) 3. Described the order irocessing and information system of

  5. Consensus Algorithms for Networks of Systems with Second- and Higher-Order Dynamics

    NASA Astrophysics Data System (ADS)

    Fruhnert, Michael

    This thesis considers homogeneous networks of linear systems. We consider linear feedback controllers and require that the directed graph associated with the network contains a spanning tree and systems are stabilizable. We show that, in continuous-time, consensus with a guaranteed rate of convergence can always be achieved using linear state feedback. For networks of continuous-time second-order systems, we provide a new and simple derivation of the conditions for a second-order polynomials with complex coefficients to be Hurwitz. We apply this result to obtain necessary and sufficient conditions to achieve consensus with networks whose graph Laplacian matrix may have complex eigenvalues. Based on the conditions found, methods to compute feedback gains are proposed. We show that gains can be chosen such that consensus is achieved robustly over a variety of communication structures and system dynamics. We also consider the use of static output feedback. For networks of discrete-time second-order systems, we provide a new and simple derivation of the conditions for a second-order polynomials with complex coefficients to be Schur. We apply this result to obtain necessary and sufficient conditions to achieve consensus with networks whose graph Laplacian matrix may have complex eigenvalues. We show that consensus can always be achieved for marginally stable systems and discretized systems. Simple conditions for consensus achieving controllers are obtained when the Laplacian eigenvalues are all real. For networks of continuous-time time-variant higher-order systems, we show that uniform consensus can always be achieved if systems are quadratically stabilizable. In this case, we provide a simple condition to obtain a linear feedback control. For networks of discrete-time higher-order systems, we show that constant gains can be chosen such that consensus is achieved for a variety of network topologies. First, we develop simple results for networks of time-invariant systems and networks of time-variant systems that are given in controllable canonical form. Second, we formulate the problem in terms of Linear Matrix Inequalities (LMIs). The condition found simplifies the design process and avoids the parallel solution of multiple LMIs. The result yields a modified Algebraic Riccati Equation (ARE) for which we present an equivalent LMI condition.

  6. Homodyne detection of short-range Doppler radar using a forced oscillator model

    PubMed Central

    Kittipute, Kunanon; Saratayon, Peerayudh; Srisook, Suthasin; Wardkein, Paramote

    2017-01-01

    This article presents the homodyne detection in a self-oscillation system, which represented by a short-range radar (SRR) circuit, that is analysed using a multi-time forced oscillator (MTFO) model. The MTFO model is based on a forced oscillation perspective with the signal and system theory, a second-order differential equation, and the multiple time variable technique. This model can also apply to analyse the homodyne phenomenon in a difference kind of the oscillation system under same method such as the self-oscillation system, and the natural oscillation system with external forced. In a free oscillation system, which forced by the external source is represented by a pendulum with an oscillating support experiment, and a modified Colpitts oscillator circuit in the UHF band with input as a Doppler signal is a representative of self-oscillation system. The MTFO model is verified with the experimental result, which well in line with the theoretical analysis. PMID:28252000

  7. A new orthodontic force system for moment control utilizing the flexibility of common wires: Evaluation of the effect of contractile force and hook length.

    PubMed

    Lai, Wei-Jen; Midorikawa, Yoshiyuki; Kanno, Zuisei; Takemura, Hiroshi; Suga, Kazuhiro; Soga, Kohei; Ono, Takashi; Uo, Motohiro

    2018-01-01

    The application of an appropriate force system is indispensable for successful orthodontic treatments. Second-order moment control is especially important in many clinical situations, so we developed a new force system composed of a straight orthodontic wire and two crimpable hooks of different lengths to produce the second-order moment. The objective of this study was to evaluate this new force system and determine an optimum condition that could be used in clinics. We built a premolar extraction model with two teeth according to the concept of a modified orthodontic simulator. This system was activated by applying contractile force from two hooks that generated second-order moment and force. The experimental device incorporated two sensors, and forces and moments were measured along six axes. We changed the contractile force and hook length to elucidate their effects. Three types of commercial wires were tested. The second-order moment was greater on the longer hook side of the model. Vertical force balanced the difference in moments between the two teeth. Greater contractile force generated a greater second-order moment, which reached a limit of 150 g. Excessive contractile force induced more undesired reactions in the other direction. Longer hooks induced greater moment generation, reaching their limit at 10 mm in length. The system acted similar to an off-center V-bend and can be applied in clinical practice as an unconventional loop design. We suggest that this force system has the potential for second-order moment control in clinical applications. Copyright © 2017. Published by Elsevier B.V.

  8. Exact Solutions for the Integrable Sixth-Order Drinfeld-Sokolov-Satsuma-Hirota System by the Analytical Methods.

    PubMed

    Manafian Heris, Jalil; Lakestani, Mehrdad

    2014-01-01

    We establish exact solutions including periodic wave and solitary wave solutions for the integrable sixth-order Drinfeld-Sokolov-Satsuma-Hirota system. We employ this system by using a generalized (G'/G)-expansion and the generalized tanh-coth methods. These methods are developed for searching exact travelling wave solutions of nonlinear partial differential equations. It is shown that these methods, with the help of symbolic computation, provide a straightforward and powerful mathematical tool for solving nonlinear partial differential equations.

  9. Trimodal endoscopic imaging for the detection and differentiation of colorectal adenomas: a prospective single-centre clinical evaluation.

    PubMed

    Rotondano, Gianluca; Bianco, Maria Antonia; Sansone, Stefano; Prisco, Antonio; Meucci, Costantino; Garofano, Maria Lucia; Cipolletta, Livio

    2012-03-01

    The purpose of this study is to evaluate an endoscopic trimodal imaging (ETMI) system (high resolution, autofluorescence, and NBI) in the detection and differentiation of colorectal adenomas. A prospective randomised trial of tandem colonoscopies was carried out using the Olympus XCF-FH260AZI system. Each colonic segment was examined twice for lesions, once with HRE and once with AFI, in random order per patient. All detected lesions were assessed with NBI for pit pattern and with AFI for colour. All lesions were removed and sent for histology. Any lesion identified on the second examination was considered as missed by the first examination. Outcome measures are adenoma miss rates of AFI and HRE, and diagnostic accuracy of NBI and AFI for differentiating neoplastic from non-neoplastic lesions. Ninety-four patients underwent colonoscopy with ETMI (47 in each group). Among 47 patients examined with AFI first, 31 adenomas in 15 patients were detected initially [detection rate 0.66 (0.52-0.75)]. Subsequent HRE inspection identified six additional adenomas. Among 47 patients examined with HRE first, 29 adenomas in 14 patients were detected initially [detection rate 0.62 (0.53-0.79)]. Successive AFI yielded seven additional adenomas. Adenoma miss rates of AFI and HRE were 14% and 16.2%, respectively (p = 0.29). Accuracy of AFI alone for differentiation was lower than NBI (63% vs. 80%, p < 0.001). Combined use of AFI and NBI achieved improved accuracy for differentiation (84%), showing a trend for superiority compared with NBI alone (p = 0.064). AFI did not significantly reduce the adenoma miss rate compared with HRE. AFI alone had a disappointing accuracy for adenoma differentiation, which could be improved by combination of AFI and NBI.

  10. Higher-order stochastic differential equations and the positive Wigner function

    NASA Astrophysics Data System (ADS)

    Drummond, P. D.

    2017-12-01

    General higher-order stochastic processes that correspond to any diffusion-type tensor of higher than second order are obtained. The relationship of multivariate higher-order stochastic differential equations with tensor decomposition theory and tensor rank is explained. Techniques for generating the requisite complex higher-order noise are proved to exist either using polar coordinates and γ distributions, or from products of Gaussian variates. This method is shown to allow the calculation of the dynamics of the Wigner function, after it is extended to a complex phase space. The results are illustrated physically through dynamical calculations of the positive Wigner distribution for three-mode parametric downconversion, widely used in quantum optics. The approach eliminates paradoxes arising from truncation of the higher derivative terms in Wigner function time evolution. Anomalous results of negative populations and vacuum scattering found in truncated Wigner quantum simulations in quantum optics and Bose-Einstein condensate dynamics are shown not to occur with this type of stochastic theory.

  11. Semi-classical analysis and pseudo-spectra

    NASA Astrophysics Data System (ADS)

    Davies, E. B.

    We prove an approximate spectral theorem for non-self-adjoint operators and investigate its applications to second-order differential operators in the semi-classical limit. This leads to the construction of a twisted FBI transform. We also investigate the connections between pseudo-spectra and boundary conditions in the semi-classical limit.

  12. [A scientific-cultural approach to the Gestalt concept].

    PubMed

    Huneeus, F

    1976-06-01

    In the descriptions of the gestalt process formulated by F. S. Perls (Gestalt Therapy Verbatim, Real People Press, Lafayette, 1969) and other gestalt psychologists, it appears as if the gestalt formation was a general and universal tendency of living and non living matter as well. Broadly speaking, they state that a gestalt is something that in itself wants to be formed and completed, something which emerges as a distinct entity (figure) from a undifferentiated environment (background). From experience we know that perceptions of any kind, have this as a prerequisite: the perceived object or process has to out of equilibrium with the environment, otherwise it remains undetectable. On the other hand, the second law of thermodynamics prescribes that the tendency for spontaneous isolated processes is exactly the opposite. With time, processes tend towards equilibrium, things tend to equalize, heterogeneity tends to become homogeneity, order into disorder. Thus these two very important "rules of the game" for natural processes are seemingly contradictory. While one states that matter tends to differentiate into figure and ground, the other states that exactly the opposite is what will occur - with time, all distinction and differentiation will disappear. Of the many problems posed by biological entities to the physical sciences, their obvious differentiation within the growth span of the organism, is a flagrant violation of the second law and hence they, as a whole, escape the realm of thermodynamics. Only living organisms can go against the second law. Living organisms tend to form gestalts and they perceive the world through the formation of gestalt pairs. However, the first man-made creature that knowingly could obviate the results prescribed by the second law, was Maxwell's Demon. He can produce heterogeneity from homogeneity since he can handle information. In Maxwell's hypothetical experiment, his Demon can pick out fast molecules from slow molecules taking a system initially in equilibrium to a new state in which there are differences. Information, in its mathematical context or neg-entropy is thus essential to systems that are out of equilibrium with their environment. In particular this is true of biological organisms. At an early stage genetic information is all that is required to produce differentiation. With growth and differentiation other forms of information come into play. From an engineer's point of view, energy without information does not serve in the production of work. From a psychotherapist's point of view, energy without information does not serve in the production of growth. In all schools of psychotherapy, the therapist can be considered as a Maxwell Demon; the outcome depending on the particular bias of his school. Gestalt Therapy with its strong emphasis on the "awareness of the ongoing process" relies heavily on all organismic functions as the means of producing information relevant to the patient...

  13. Hybrid Differential Dynamic Programming with Stochastic Search

    NASA Technical Reports Server (NTRS)

    Aziz, Jonathan; Parker, Jeffrey; Englander, Jacob A.

    2016-01-01

    Differential dynamic programming (DDP) has been demonstrated as a viable approach to low-thrust trajectory optimization, namely with the recent success of NASA's Dawn mission. The Dawn trajectory was designed with the DDP-based Static/Dynamic Optimal Control algorithm used in the Mystic software.1 Another recently developed method, Hybrid Differential Dynamic Programming (HDDP),2, 3 is a variant of the standard DDP formulation that leverages both first-order and second-order state transition matrices in addition to nonlinear programming (NLP) techniques. Areas of improvement over standard DDP include constraint handling, convergence properties, continuous dynamics, and multi-phase capability. DDP is a gradient based method and will converge to a solution nearby an initial guess. In this study, monotonic basin hopping (MBH) is employed as a stochastic search method to overcome this limitation, by augmenting the HDDP algorithm for a wider search of the solution space.

  14. Approximate reduction of linear population models governed by stochastic differential equations: application to multiregional models.

    PubMed

    Sanz, Luis; Alonso, Juan Antonio

    2017-12-01

    In this work we develop approximate aggregation techniques in the context of slow-fast linear population models governed by stochastic differential equations and apply the results to the treatment of populations with spatial heterogeneity. Approximate aggregation techniques allow one to transform a complex system involving many coupled variables and in which there are processes with different time scales, by a simpler reduced model with a fewer number of 'global' variables, in such a way that the dynamics of the former can be approximated by that of the latter. In our model we contemplate a linear fast deterministic process together with a linear slow process in which the parameters are affected by additive noise, and give conditions for the solutions corresponding to positive initial conditions to remain positive for all times. By letting the fast process reach equilibrium we build a reduced system with a lesser number of variables, and provide results relating the asymptotic behaviour of the first- and second-order moments of the population vector for the original and the reduced system. The general technique is illustrated by analysing a multiregional stochastic system in which dispersal is deterministic and the rate growth of the populations in each patch is affected by additive noise.

  15. Research on the critical parameters initialization of optical PMD compensator in high bit-rate systems

    NASA Astrophysics Data System (ADS)

    Zhao, Wenyu; Zhang, Haiyi; Ji, Yuefeng; Xu, Daxiong

    2004-05-01

    Based on the proposed polarization mode dispersion (PMD) compensation simulation model and statistical analysis method (Monte-Carlo), the critical parameters initialization of two typical optical domain PMD compensators, which include optical PMD method with fixed compensation differential group delay (DGD) and that with variable compensation DGD, are detailedly investigated by numerical method. In the simulation, the line PMD values are chosen as 3ps, 4ps and 5ps and run samples are set to 1000 in order to achieve statistical evaluation for PMD compensated systems, respectively. The simulation results show that for the PMD value pre-known systems, the value of the fixed DGD compensator should be set to 1.5~1.6 times of line PMD value in order to reach the optimum performance, but for the second kind of PMD compensator, the DGD range of lower limit should be 1.5~1.6 times of line PMD provided that of upper limit is set to 3 times of line PMD, if no effective ways are chosen to resolve the problem of local minimum in optimum process. Another conclusion can be drawn from the simulation is that, although the second PMD compensator holds higher PMD compensation performance, it will spend more feedback loops to look up the optimum DGD value in the real PMD compensation realization, and this will bring more requirements on adjustable DGD device, not only wider adjustable range, but rapid adjusting speed for real time PMD equalization.

  16. Spectral approach to homogenization of hyperbolic equations with periodic coefficients

    NASA Astrophysics Data System (ADS)

    Dorodnyi, M. A.; Suslina, T. A.

    2018-06-01

    In L2 (Rd ;Cn), we consider selfadjoint strongly elliptic second order differential operators Aε with periodic coefficients depending on x / ε, ε > 0. We study the behavior of the operators cos ⁡ (Aε1/2 τ) and Aε-1/2 sin ⁡ (Aε1/2 τ), τ ∈ R, for small ε. Approximations for these operators in the (Hs →L2)-operator norm with a suitable s are obtained. The results are used to study the behavior of the solution vε of the Cauchy problem for the hyperbolic equation ∂τ2 vε = -Aεvε + F. General results are applied to the acoustics equation and the system of elasticity theory.

  17. A DG approach to the numerical solution of the Stein-Stein stochastic volatility option pricing model

    NASA Astrophysics Data System (ADS)

    Hozman, J.; Tichý, T.

    2017-12-01

    Stochastic volatility models enable to capture the real world features of the options better than the classical Black-Scholes treatment. Here we focus on pricing of European-style options under the Stein-Stein stochastic volatility model when the option value depends on the time, on the price of the underlying asset and on the volatility as a function of a mean reverting Orstein-Uhlenbeck process. A standard mathematical approach to this model leads to the non-stationary second-order degenerate partial differential equation of two spatial variables completed by the system of boundary and terminal conditions. In order to improve the numerical valuation process for a such pricing equation, we propose a numerical technique based on the discontinuous Galerkin method and the Crank-Nicolson scheme. Finally, reference numerical experiments on real market data illustrate comprehensive empirical findings on options with stochastic volatility.

  18. Behavior of Combined Dielectric-Metallic Systems in a Charged Particle Environment

    NASA Technical Reports Server (NTRS)

    Gordon, W. L.; Hoffman, R. W.

    1984-01-01

    The charging and discharging characteristics of an electrically isolated solar array segment were studied in order to simulate discharges seen during geomagnetic substorms. A solar array segment was floated while bombarded with monoenergetic electrons at various angles of incidence. The potentials of the array surface and of the interconnects were monitored using Trek voltage probes to maintain electrical isolation. A back plate was capacitively coupled to the array to provide information on the characteristics of the transients accompanying the discharges. Several modes of discharging of the array were observed at relatively low differential and absolute potentials (a few kilovolts). A relatively slow discharge response in the array was observed, discharging over one second with currents of nanoamps. Two types of faster discharges were also seen which lasted a few hundredths of a millisecond and with currents on the order of microamps. Some results indicate an electron emission process associated with the arcs.

  19. Free-form geometric modeling by integrating parametric and implicit PDEs.

    PubMed

    Du, Haixia; Qin, Hong

    2007-01-01

    Parametric PDE techniques, which use partial differential equations (PDEs) defined over a 2D or 3D parametric domain to model graphical objects and processes, can unify geometric attributes and functional constraints of the models. PDEs can also model implicit shapes defined by level sets of scalar intensity fields. In this paper, we present an approach that integrates parametric and implicit trivariate PDEs to define geometric solid models containing both geometric information and intensity distribution subject to flexible boundary conditions. The integrated formulation of second-order or fourth-order elliptic PDEs permits designers to manipulate PDE objects of complex geometry and/or arbitrary topology through direct sculpting and free-form modeling. We developed a PDE-based geometric modeling system for shape design and manipulation of PDE objects. The integration of implicit PDEs with parametric geometry offers more general and arbitrary shape blending and free-form modeling for objects with intensity attributes than pure geometric models.

  20. A nonlinear macromodel of the bipolar integrated circuit operational amplifier for electromagnetic interference analysis

    NASA Astrophysics Data System (ADS)

    Chen, G. K. C.

    1981-06-01

    A nonlinear macromodel for the bipolar transistor integrated circuit operational amplifier is derived from the macromodel proposed by Boyle. The nonlinear macromodel contains only two nonlinear transistors in the input stage in a differential amplifier configuration. Parasitic capacitance effects are represented by capacitors placed at the collectors and emitters of the input transistors. The nonlinear macromodel is effective in predicting the second order intermodulation effect of operational amplifiers in a unity gain buffer amplifier configuration. The nonlinear analysis computer program NCAP is used for the analysis. Accurate prediction of demodulation of amplitude modulated RF signals with RF carrier frequencies in the 0.05 to 100 MHz range is achieved. The macromodel predicted results, presented in the form of second order nonlinear transfer function, come to within 6 dB of the full model predictions for the 741 type of operational amplifiers for values of the second order transfer function greater than -40 dB.

  1. SRB combustion dynamics analysis computer program (CDA-1)

    NASA Technical Reports Server (NTRS)

    Chung, T. J.; Park, O. Y.

    1988-01-01

    A two-dimensional numerical model is developed for the unsteady oscillatory combustion of the solid propellant flame zone. Variations of pressure with low and high frequency responses across the long flame, such as in the double-base propellants, are accommodated. The formulation is based on a premixed, laminar flame with a one-step overall chemical reaction and the Arrhenius law of decomposition for the gaseous phase with no condensed phase reaction. Numerical calculations are carried out using the Galerkin finite elements, with perturbations expanded to the zeroth, first, and second orders. The numerical results indicate that amplification of oscillatory motions does indeed prevail in high frequency regions. For the second order system, the trend is similar to the first order system for low frequencies, but instabilities may appear at frequencies lower than those of the first order system. The most significant effect of the second order system is that the admittance is extremely oscillatory between moderately high frequency ranges.

  2. A revised version of the transfer matrix method to analyze one-dimensional structures

    NASA Technical Reports Server (NTRS)

    Nitzsche, F.

    1983-01-01

    A new and general method to analyze both free and forced vibration characteristics of one-dimensional structures is discussed in this paper. This scheme links for the first time the classical transfer matrix method with the recently developed integrating matrix technique to integrate systems of differential equations. Two alternative approaches to the problem are presented. The first is based upon the lumped parameter model to account for the inertia properties of the structure. The second releases that constraint allowing a more precise description of the physical system. The free vibration of a straight uniform beam under different support conditions is analyzed to test the accuracy of the two models. Finally some results for the free vibration of a 12th order system representing a curved, rotating beam prove that the present method is conveniently extended to more complicated structural dynamics problems.

  3. Exceptional point in a simple textbook example

    NASA Astrophysics Data System (ADS)

    Fernández, Francisco M.

    2018-07-01

    We propose to introduce the concept of exceptional points in intermediate courses on mathematics and classical mechanics by means of simple textbook examples. The first one is an ordinary second-order differential equation with constant coefficients. The second one is the well-known damped harmonic oscillator. From a strict mathematical viewpoint both are the same problem that enables one to connect the occurrence of linearly dependent exponential solutions with a defective matrix which cannot be diagonalized but can be transformed into a Jordan canonical form.

  4. NUMERICAL ANALYSES FOR TREATING DIFFUSION IN SINGLE-, TWO-, AND THREE-PHASE BINARY ALLOY SYSTEMS

    NASA Technical Reports Server (NTRS)

    Tenney, D. R.

    1994-01-01

    This package consists of a series of three computer programs for treating one-dimensional transient diffusion problems in single and multiple phase binary alloy systems. An accurate understanding of the diffusion process is important in the development and production of binary alloys. Previous solutions of the diffusion equations were highly restricted in their scope and application. The finite-difference solutions developed for this package are applicable for planar, cylindrical, and spherical geometries with any diffusion-zone size and any continuous variation of the diffusion coefficient with concentration. Special techniques were included to account for differences in modal volumes, initiation and growth of an intermediate phase, disappearance of a phase, and the presence of an initial composition profile in the specimen. In each analysis, an effort was made to achieve good accuracy while minimizing computation time. The solutions to the diffusion equations for single-, two-, and threephase binary alloy systems are numerically calculated by the three programs NAD1, NAD2, and NAD3. NAD1 treats the diffusion between pure metals which belong to a single-phase system. Diffusion in this system is described by a one-dimensional Fick's second law and will result in a continuous composition variation. For computational purposes, Fick's second law is expressed as an explicit second-order finite difference equation. Finite difference calculations are made by choosing the grid spacing small enough to give convergent solutions of acceptable accuracy. NAD2 treats diffusion between pure metals which form a two-phase system. Diffusion in the twophase system is described by two partial differential equations (a Fick's second law for each phase) and an interface-flux-balance equation which describes the location of the interface. Actual interface motion is obtained by a mass conservation procedure. To account for changes in the thicknesses of the two phases as diffusion progresses, a variable grid technique developed by Murray and Landis is employed. These equations are expressed in finite difference form and solved numerically. Program NAD3 treats diffusion between pure metals which form a two-phase system with an intermediate third phase. Diffusion in the three-phase system is described by three partial differential expressions of Fick's second law and two interface-flux-balance equations. As with the two-phase case, a variable grid finite difference is used to numerically solve the diffusion equations. Computation time is minimized without sacrificing solution accuracy by treating the three-phase problem as a two-phase problem when the thickness of the intermediate phase is less than a preset value. Comparisons between these programs and other solutions have shown excellent agreement. The programs are written in FORTRAN IV for batch execution on the CDC 6600 with a central memory requirement of approximately 51K (octal) 60 bit words.

  5. Note: innovative demodulation scheme for coherent detectors in cosmic microwave background experiments.

    PubMed

    Ishidoshiro, K; Chinone, Y; Hasegawa, M; Hazumi, M; Nagai, M; Tajima, O

    2012-05-01

    We propose an innovative demodulation scheme for coherent detectors used in cosmic microwave background polarization experiments. Removal of non-white noise, e.g., narrow-band noise, in detectors is one of the key requirements for the experiments. A combination of modulation and demodulation is used to extract polarization signals as well as to suppress such noise. Traditional demodulation, which is based on the two-point numerical differentiation, works as a first-order high pass filter for the noise. The proposed demodulation is based on the three-point numerical differentiation. It works as a second-order high pass filter. By using a real detector, we confirmed significant improvements of suppression power for the narrow-band noise. We also found improvement of the noise floor.

  6. Chaos in a Fractional Order Chua System

    NASA Technical Reports Server (NTRS)

    Lorenzo, Carl F.; Hartley, Tom T.; Qammar, Helen Killory

    1996-01-01

    This report studies the effects of fractional dynamics in chaotic systems. In particular, Chua's system is modified to include fractional order elements. Varying the total system order incrementally from 2.6 to 3.7 demonstrates that systems of 'order' less than three can exhibit chaos as well as other nonlinear behavior. This effectively forces a clarification of the definition of order which can no longer be considered only by the total number of differentiations or by the highest power of the Laplace variable.

  7. Local Discontinuous Galerkin Methods for Partial Differential Equations with Higher Order Derivatives

    NASA Technical Reports Server (NTRS)

    Yan, Jue; Shu, Chi-Wang; Bushnell, Dennis M. (Technical Monitor)

    2002-01-01

    In this paper we review the existing and develop new continuous Galerkin methods for solving time dependent partial differential equations with higher order derivatives in one and multiple space dimensions. We review local discontinuous Galerkin methods for convection diffusion equations involving second derivatives and for KdV type equations involving third derivatives. We then develop new local discontinuous Galerkin methods for the time dependent bi-harmonic type equations involving fourth derivatives, and partial differential equations involving fifth derivatives. For these new methods we present correct interface numerical fluxes and prove L(exp 2) stability for general nonlinear problems. Preliminary numerical examples are shown to illustrate these methods. Finally, we present new results on a post-processing technique, originally designed for methods with good negative-order error estimates, on the local discontinuous Galerkin methods applied to equations with higher derivatives. Numerical experiments show that this technique works as well for the new higher derivative cases, in effectively doubling the rate of convergence with negligible additional computational cost, for linear as well as some nonlinear problems, with a local uniform mesh.

  8. Minimal parameter solution of the orthogonal matrix differential equation

    NASA Technical Reports Server (NTRS)

    Bar-Itzhack, Itzhack Y.; Markley, F. Landis

    1990-01-01

    As demonstrated in this work, all orthogonal matrices solve a first order differential equation. The straightforward solution of this equation requires n sup 2 integrations to obtain the element of the nth order matrix. There are, however, only n(n-1)/2 independent parameters which determine an orthogonal matrix. The questions of choosing them, finding their differential equation and expressing the orthogonal matrix in terms of these parameters are considered. Several possibilities which are based on attitude determination in three dimensions are examined. It is shown that not all 3-D methods have useful extensions to higher dimensions. It is also shown why the rate of change of the matrix elements, which are the elements of the angular rate vector in 3-D, are the elements of a tensor of the second rank (dyadic) in spaces other than three dimensional. It is proven that the 3-D Gibbs vector (or Cayley Parameters) are extendable to other dimensions. An algorithm is developed emplying the resulting parameters, which are termed Extended Rodrigues Parameters, and numerical results are presented of the application of the algorithm to a fourth order matrix.

  9. Minimal parameter solution of the orthogonal matrix differential equation

    NASA Technical Reports Server (NTRS)

    Baritzhack, Itzhack Y.; Markley, F. Landis

    1988-01-01

    As demonstrated in this work, all orthogonal matrices solve a first order differential equation. The straightforward solution of this equation requires n sup 2 integrations to obtain the element of the nth order matrix. There are, however, only n(n-1)/2 independent parameters which determine an orthogonal matrix. The questions of choosing them, finding their differential equation and expressing the orthogonal matrix in terms of these parameters are considered. Several possibilities which are based on attitude determination in three dimensions are examined. It is shown that not all 3-D methods have useful extensions to higher dimensions. It is also shown why the rate of change of the matrix elements, which are the elements of the angular rate vector in 3-D, are the elements of a tensor of the second rank (dyadic) in spaces other than three dimensional. It is proven that the 3-D Gibbs vector (or Cayley Parameters) are extendable to other dimensions. An algorithm is developed employing the resulting parameters, which are termed Extended Rodrigues Parameters, and numerical results are presented of the application of the algorithm to a fourth order matrix.

  10. Integrated Kerr comb-based reconfigurable transversal differentiator for microwave photonic signal processing

    NASA Astrophysics Data System (ADS)

    Xu, Xingyuan; Wu, Jiayang; Shoeiby, Mehrdad; Nguyen, Thach G.; Chu, Sai T.; Little, Brent E.; Morandotti, Roberto; Mitchell, Arnan; Moss, David J.

    2018-01-01

    An arbitrary-order intensity differentiator for high-order microwave signal differentiation is proposed and experimentally demonstrated on a versatile transversal microwave photonic signal processing platform based on integrated Kerr combs. With a CMOS-compatible nonlinear micro-ring resonator, high quality Kerr combs with broad bandwidth and large frequency spacings are generated, enabling a larger number of taps and an increased Nyquist zone. By programming and shaping individual comb lines' power, calculated tap weights are realized, thus achieving a versatile microwave photonic signal processing platform. Arbitrary-order intensity differentiation is demonstrated on the platform. The RF responses are experimentally characterized, and systems demonstrations for Gaussian input signals are also performed.

  11. Distributed event-triggered consensus tracking of second-order multi-agent systems with a virtual leader

    NASA Astrophysics Data System (ADS)

    Jie, Cao; Zhi-Hai, Wu; Li, Peng

    2016-05-01

    This paper investigates the consensus tracking problems of second-order multi-agent systems with a virtual leader via event-triggered control. A novel distributed event-triggered transmission scheme is proposed, which is intermittently examined at constant sampling instants. Only partial neighbor information and local measurements are required for event detection. Then the corresponding event-triggered consensus tracking protocol is presented to guarantee second-order multi-agent systems to achieve consensus tracking. Numerical simulations are given to illustrate the effectiveness of the proposed strategy. Project supported by the National Natural Science Foundation of China (Grant Nos. 61203147, 61374047, and 61403168).

  12. Application of higher-order cepstral techniques in problems of fetal heart signal extraction

    NASA Astrophysics Data System (ADS)

    Sabry-Rizk, Madiha; Zgallai, Walid; Hardiman, P.; O'Riordan, J.

    1996-10-01

    Recently, cepstral analysis based on second order statistics and homomorphic filtering techniques have been used in the adaptive decomposition of overlapping, or otherwise, and noise contaminated ECG complexes of mothers and fetals obtained by a transabdominal surface electrodes connected to a monitoring instrument, an interface card, and a PC. Differential time delays of fetal heart beats measured from a reference point located on the mother complex after transformation to cepstra domains are first obtained and this is followed by fetal heart rate variability computations. Homomorphic filtering in the complex cepstral domain and the subuent transformation to the time domain results in fetal complex recovery. However, three problems have been identified with second-order based cepstral techniques that needed rectification in this paper. These are (1) errors resulting from the phase unwrapping algorithms and leading to fetal complex perturbation, (2) the unavoidable conversion of noise statistics from Gaussianess to non-Gaussianess due to the highly non-linear nature of homomorphic transform does warrant stringent noise cancellation routines, (3) due to the aforementioned problems in (1) and (2), it is difficult to adaptively optimize windows to include all individual fetal complexes in the time domain based on amplitude thresholding routines in the complex cepstral domain (i.e. the task of `zooming' in on weak fetal complexes requires more processing time). The use of third-order based high resolution differential cepstrum technique results in recovery of the delay of the order of 120 milliseconds.

  13. Approximations of Thermoelastic and Viscoelastic Control Systems

    DTIC Science & Technology

    1990-06-01

    parabolic partial differential equations. The development of computational algorithms for designing controllers for such systems is an Immenselv complex...hereditary differential system on Rr , then approximate the "’historv" or -’memory- term (i.e.. the integral term in i.S)). In this paper we will use a... variation introduced by Fabiano and Ito ([FI]) of the averaging scheme considered by Banks and Burns ([BB]) for the second stage. The idea of the "’AVE

  14. Approximate analytical solutions of a pair of coupled anharmonic oscillators

    NASA Astrophysics Data System (ADS)

    Alam, Nasir; Mandal, Swapan; Öhberg, Patrik

    2015-02-01

    The Hamiltonian and the corresponding equations of motion involving the field operators of two quartic anharmonic oscillators indirectly coupled via a linear oscillator are constructed. The approximate analytical solutions of the coupled differential equations involving the non-commuting field operators are solved up to the second order in the anharmonic coupling. In the absence of nonlinearity these solutions are used to calculate the second order variances and hence the squeezing in pure and in mixed modes. The higher order quadrature squeezing and the amplitude squared squeezing of various field modes are also investigated where the squeezing in pure and in mixed modes are found to be suppressed. Moreover, the absence of a nonlinearity prohibits the higher order quadrature and higher ordered amplitude squeezing of the input coherent states. It is established that the mere coupling of two oscillators through a third one is unable to produce any squeezing effects of input coherent light, but the presence of a nonlinear interaction may provide squeezed states and other nonclassical phenomena.

  15. Generalized Lagrangian Jacobi Gauss collocation method for solving unsteady isothermal gas through a micro-nano porous medium

    NASA Astrophysics Data System (ADS)

    Parand, Kourosh; Latifi, Sobhan; Delkhosh, Mehdi; Moayeri, Mohammad M.

    2018-01-01

    In the present paper, a new method based on the Generalized Lagrangian Jacobi Gauss (GLJG) collocation method is proposed. The nonlinear Kidder equation, which explains unsteady isothermal gas through a micro-nano porous medium, is a second-order two-point boundary value ordinary differential equation on the unbounded interval [0, ∞). Firstly, using the quasilinearization method, the equation is converted to a sequence of linear ordinary differential equations. Then, by using the GLJG collocation method, the problem is reduced to solving a system of algebraic equations. It must be mentioned that this equation is solved without domain truncation and variable changing. A comparison with some numerical solutions made and the obtained results indicate that the presented solution is highly accurate. The important value of the initial slope, y'(0), is obtained as -1.191790649719421734122828603800159364 for η = 0.5. Comparing to the best result obtained so far, it is accurate up to 36 decimal places.

  16. A Low Cost Approach to the Design of Autopilot for Hypersonic Glider

    NASA Astrophysics Data System (ADS)

    Liang, Wang; Weihua, Zhang; Ke, Peng; Donghui, Wang

    2017-12-01

    This paper proposes a novel integrated guidance and control (IGC) approach to improve the autopilot design with low cost for hypersonic glider in dive and pull-up phase. The main objective is robust and adaptive tracking of flight path angle (FPA) under severe flight scenarios. Firstly, the nonlinear IGC model is developed with a second order actuator dynamics. Then the adaptive command filtered back-stepping control is implemented to deal with the large aerodynamics coefficient uncertainties, control surface uncertainties and unmatched time-varying disturbances. For the autopilot, a back-stepping sliding mode control is designed to track the control surface deflection, and a nonlinear differentiator is used to avoid direct differentiating the control input. Through a series of 6-DOF numerical simulations, it’s shown that the proposed scheme successfully cancels out the large uncertainties and disturbances in tracking different kinds of FPA trajectory. The contribution of this paper lies in the application and determination of nonlinear integrated design of guidance and control system for hypersonic glider.

  17. IFR approval of differential global positioning system (DGPS) special category I instrument approaches using private ground facilities

    DOT National Transportation Integrated Search

    1994-08-14

    This order identifies specific criteria, not presently found in existing standards, which shall be satisfied before Instrument Flight Rules (IFR) operations can be authorized using differential global positioning systems (DGPS) Special Instrument App...

  18. Stabilisation of time-varying linear systems via Lyapunov differential equations

    NASA Astrophysics Data System (ADS)

    Zhou, Bin; Cai, Guang-Bin; Duan, Guang-Ren

    2013-02-01

    This article studies stabilisation problem for time-varying linear systems via state feedback. Two types of controllers are designed by utilising solutions to Lyapunov differential equations. The first type of feedback controllers involves the unique positive-definite solution to a parametric Lyapunov differential equation, which can be solved when either the state transition matrix of the open-loop system is exactly known, or the future information of the system matrices are accessible in advance. Different from the first class of controllers which may be difficult to implement in practice, the second type of controllers can be easily implemented by solving a state-dependent Lyapunov differential equation with a given positive-definite initial condition. In both cases, explicit conditions are obtained to guarantee the exponentially asymptotic stability of the associated closed-loop systems. Numerical examples show the effectiveness of the proposed approaches.

  19. Jacobi-Gauss-Lobatto collocation method for the numerical solution of 1+1 nonlinear Schrödinger equations

    NASA Astrophysics Data System (ADS)

    Doha, E. H.; Bhrawy, A. H.; Abdelkawy, M. A.; Van Gorder, Robert A.

    2014-03-01

    A Jacobi-Gauss-Lobatto collocation (J-GL-C) method, used in combination with the implicit Runge-Kutta method of fourth order, is proposed as a numerical algorithm for the approximation of solutions to nonlinear Schrödinger equations (NLSE) with initial-boundary data in 1+1 dimensions. Our procedure is implemented in two successive steps. In the first one, the J-GL-C is employed for approximating the functional dependence on the spatial variable, using (N-1) nodes of the Jacobi-Gauss-Lobatto interpolation which depends upon two general Jacobi parameters. The resulting equations together with the two-point boundary conditions induce a system of 2(N-1) first-order ordinary differential equations (ODEs) in time. In the second step, the implicit Runge-Kutta method of fourth order is applied to solve this temporal system. The proposed J-GL-C method, used in combination with the implicit Runge-Kutta method of fourth order, is employed to obtain highly accurate numerical approximations to four types of NLSE, including the attractive and repulsive NLSE and a Gross-Pitaevskii equation with space-periodic potential. The numerical results obtained by this algorithm have been compared with various exact solutions in order to demonstrate the accuracy and efficiency of the proposed method. Indeed, for relatively few nodes used, the absolute error in our numerical solutions is sufficiently small.

  20. Integrable Seven-Point Discrete Equations and Second-Order Evolution Chains

    NASA Astrophysics Data System (ADS)

    Adler, V. E.

    2018-04-01

    We consider differential-difference equations defining continuous symmetries for discrete equations on a triangular lattice. We show that a certain combination of continuous flows can be represented as a secondorder scalar evolution chain. We illustrate the general construction with a set of examples including an analogue of the elliptic Yamilov chain.

  1. Finite element analysis of low speed viscous and inviscid aerodynamic flows

    NASA Technical Reports Server (NTRS)

    Baker, A. J.; Manhardt, P. D.

    1977-01-01

    A weak interaction solution algorithm was established for aerodynamic flow about an isolated airfoil. Finite element numerical methodology was applied to solution of each of differential equations governing potential flow, and viscous and turbulent boundary layer and wake flow downstream of the sharp trailing edge. The algorithm accounts for computed viscous displacement effects on the potential flow. Closure for turbulence was accomplished using both first and second order models. The COMOC finite element fluid mechanics computer program was modified to solve the identified equation systems for two dimensional flows. A numerical program was completed to determine factors affecting solution accuracy, convergence and stability for the combined potential, boundary layer, and parabolic Navier-Stokes equation systems. Good accuracy and convergence are demonstrated. Each solution is obtained within the identical finite element framework of COMOC.

  2. Immigration and the modern welfare state: the case of USA and Germany.

    PubMed

    Wenzel, U; Bos, M

    1997-10-01

    "This article presents a comparison of the inclusion of migrants into welfare programmes in the USA and in Germany. In the first part of the article a brief overview is provided of immigration categories in both countries in order to demonstrate the relevance of these administrative regulations for the opportunities of individual migrants to participate in the welfare system. In the second part we elaborate in more detail on how welfare programmes have developed as basic mechanisms to include or exclude migrants. Our findings illustrate an increasing differentiation of membership statuses parallel to the expansion of modern welfare systems. In both the USA and Germany, the territorial principle and participation in the labour market are of prime importance to the access to social rights. In both cases all migrants may profit from contributory programmes." excerpt

  3. Highly ordered nanocomposites via a monomer self-assembly in situ condensation approach

    DOEpatents

    Gin, D.L.; Fischer, W.M.; Gray, D.H.; Smith, R.C.

    1998-12-15

    A method for synthesizing composites with architectural control on the nanometer scale is described. A polymerizable lyotropic liquid-crystalline monomer is used to form an inverse hexagonal phase in the presence of a second polymer precursor solution. The monomer system acts as an organic template, providing the underlying matrix and order of the composite system. Polymerization of the template in the presence of an optional cross-linking agent with retention of the liquid-crystalline order is carried out followed by a second polymerization of the second polymer precursor within the channels of the polymer template to provide an ordered nanocomposite material. 13 figs.

  4. Highly ordered nanocomposites via a monomer self-assembly in situ condensation approach

    DOEpatents

    Gin, Douglas L.; Fischer, Walter M.; Gray, David H.; Smith, Ryan C.

    1998-01-01

    A method for synthesizing composites with architectural control on the nanometer scale is described. A polymerizable lyotropic liquid-crystalline monomer is used to form an inverse hexagonal phase in the presence of a second polymer precursor solution. The monomer system acts as an organic template, providing the underlying matrix and order of the composite system. Polymerization of the template in the presence of an optional cross-linking agent with retention of the liquid-crystalline order is carried out followed by a second polymerization of the second polymer precursor within the channels of the polymer template to provide an ordered nanocomposite material.

  5. Itinerant ferromagnetism in fermionic systems with SP (2 N) symmetry

    NASA Astrophysics Data System (ADS)

    Yang, Wang; Wu, Congjun

    The Ginzburg-Landau free energy of systems with SP (2 N) symmetry describes a second order phase transition on the mean field level, since the Casimir invariants of the SP (2 N) group can be only of even order combinations of the generators of the SP (2 N) group. This is in contrast with systems having the SU (N) symmetry, where the allowance of cubic term generally makes the phase transition into first order. In this work, we consider the Hertz-Millis type itinerant ferromagnetism in an interacting fermionic system with SP (2 N) symmetry, where the ferromagnetic orders are enriched by the multi-component nature of the system. The quantum criticality is discussed near the second order phase transition point.

  6. Fourth order difference methods for hyperbolic IBVP's

    NASA Technical Reports Server (NTRS)

    Gustafsson, Bertil; Olsson, Pelle

    1994-01-01

    Fourth order difference approximations of initial-boundary value problems for hyperbolic partial differential equations are considered. We use the method of lines approach with both explicit and compact implicit difference operators in space. The explicit operator satisfies an energy estimate leading to strict stability. For the implicit operator we develop boundary conditions and give a complete proof of strong stability using the Laplace transform technique. We also present numerical experiments for the linear advection equation and Burgers' equation with discontinuities in the solution or in its derivative. The first equation is used for modeling contact discontinuities in fluid dynamics, the second one for modeling shocks and rarefaction waves. The time discretization is done with a third order Runge-Kutta TVD method. For solutions with discontinuities in the solution itself we add a filter based on second order viscosity. In case of the non-linear Burger's equation we use a flux splitting technique that results in an energy estimate for certain different approximations, in which case also an entropy condition is fulfilled. In particular we shall demonstrate that the unsplit conservative form produces a non-physical shock instead of the physically correct rarefaction wave. In the numerical experiments we compare our fourth order methods with a standard second order one and with a third order TVD-method. The results show that the fourth order methods are the only ones that give good results for all the considered test problems.

  7. On magnetohydrodynamic flow of second grade nanofluid over a nonlinear stretching sheet

    NASA Astrophysics Data System (ADS)

    Hayat, Tasawar; Aziz, Arsalan; Muhammad, Taseer; Ahmad, Bashir

    2016-06-01

    This research article addresses the magnetohydrodynamic (MHD) flow of second grade nanofluid over a nonlinear stretching sheet. Heat and mass transfer aspects are investigated through the thermophoresis and Brownian motion effects. Second grade fluid is assumed electrically conducting through a non-uniform applied magnetic field. Mathematical formulation is developed subject to small magnetic Reynolds number and boundary layer assumptions. Newly constructed condition having zero mass flux of nanoparticles at the boundary is incorporated. Transformations have been invoked for the reduction of partial differential systems into the set of nonlinear ordinary differential systems. The governing nonlinear systems have been solved for local behavior. Graphical results of different influential parameters are studied and discussed in detail. Computations for skin friction coefficient and local Nusselt number have been carried out. It is observed that the effects of thermophoresis parameter on the temperature and nanoparticles concentration distributions are qualitatively similar. The temperature and nanoparticles concentration distributions are enhanced for the larger magnetic parameter.

  8. High-Order Residual-Distribution Hyperbolic Advection-Diffusion Schemes: 3rd-, 4th-, and 6th-Order

    NASA Technical Reports Server (NTRS)

    Mazaheri, Alireza R.; Nishikawa, Hiroaki

    2014-01-01

    In this paper, spatially high-order Residual-Distribution (RD) schemes using the first-order hyperbolic system method are proposed for general time-dependent advection-diffusion problems. The corresponding second-order time-dependent hyperbolic advection- diffusion scheme was first introduced in [NASA/TM-2014-218175, 2014], where rapid convergences over each physical time step, with typically less than five Newton iterations, were shown. In that method, the time-dependent hyperbolic advection-diffusion system (linear and nonlinear) was discretized by the second-order upwind RD scheme in a unified manner, and the system of implicit-residual-equations was solved efficiently by Newton's method over every physical time step. In this paper, two techniques for the source term discretization are proposed; 1) reformulation of the source terms with their divergence forms, and 2) correction to the trapezoidal rule for the source term discretization. Third-, fourth, and sixth-order RD schemes are then proposed with the above techniques that, relative to the second-order RD scheme, only cost the evaluation of either the first derivative or both the first and the second derivatives of the source terms. A special fourth-order RD scheme is also proposed that is even less computationally expensive than the third-order RD schemes. The second-order Jacobian formulation was used for all the proposed high-order schemes. The numerical results are then presented for both steady and time-dependent linear and nonlinear advection-diffusion problems. It is shown that these newly developed high-order RD schemes are remarkably efficient and capable of producing the solutions and the gradients to the same order of accuracy of the proposed RD schemes with rapid convergence over each physical time step, typically less than ten Newton iterations.

  9. Early prediction of lung cancer recurrence after stereotactic radiotherapy using second order texture statistics

    NASA Astrophysics Data System (ADS)

    Mattonen, Sarah A.; Palma, David A.; Haasbeek, Cornelis J. A.; Senan, Suresh; Ward, Aaron D.

    2014-03-01

    Benign radiation-induced lung injury is a common finding following stereotactic ablative radiotherapy (SABR) for lung cancer, and is often difficult to differentiate from a recurring tumour due to the ablative doses and highly conformal treatment with SABR. Current approaches to treatment response assessment have shown limited ability to predict recurrence within 6 months of treatment. The purpose of our study was to evaluate the accuracy of second order texture statistics for prediction of eventual recurrence based on computed tomography (CT) images acquired within 6 months of treatment, and compare with the performance of first order appearance and lesion size measures. Consolidative and ground-glass opacity (GGO) regions were manually delineated on post-SABR CT images. Automatic consolidation expansion was also investigated to act as a surrogate for GGO position. The top features for prediction of recurrence were all texture features within the GGO and included energy, entropy, correlation, inertia, and first order texture (standard deviation of density). These predicted recurrence with 2-fold cross validation (CV) accuracies of 70-77% at 2- 5 months post-SABR, with energy, entropy, and first order texture having leave-one-out CV accuracies greater than 80%. Our results also suggest that automatic expansion of the consolidation region could eliminate the need for manual delineation, and produced reproducible results when compared to manually delineated GGO. If validated on a larger data set, this could lead to a clinically useful computer-aided diagnosis system for prediction of recurrence within 6 months of SABR and allow for early salvage therapy for patients with recurrence.

  10. Numerical method for the solution of large systems of differential equations of the boundary layer type

    NASA Technical Reports Server (NTRS)

    Green, M. J.; Nachtsheim, P. R.

    1972-01-01

    A numerical method for the solution of large systems of nonlinear differential equations of the boundary-layer type is described. The method is a modification of the technique for satisfying asymptotic boundary conditions. The present method employs inverse interpolation instead of the Newton method to adjust the initial conditions of the related initial-value problem. This eliminates the so-called perturbation equations. The elimination of the perturbation equations not only reduces the user's preliminary work in the application of the method, but also reduces the number of time-consuming initial-value problems to be numerically solved at each iteration. For further ease of application, the solution of the overdetermined system for the unknown initial conditions is obtained automatically by applying Golub's linear least-squares algorithm. The relative ease of application of the proposed numerical method increases directly as the order of the differential-equation system increases. Hence, the method is especially attractive for the solution of large-order systems. After the method is described, it is applied to a fifth-order problem from boundary-layer theory.

  11. On the connection coefficients and recurrence relations arising from expansions in series of Laguerre polynomials

    NASA Astrophysics Data System (ADS)

    Doha, E. H.

    2003-05-01

    A formula expressing the Laguerre coefficients of a general-order derivative of an infinitely differentiable function in terms of its original coefficients is proved, and a formula expressing explicitly the derivatives of Laguerre polynomials of any degree and for any order as a linear combination of suitable Laguerre polynomials is deduced. A formula for the Laguerre coefficients of the moments of one single Laguerre polynomial of certain degree is given. Formulae for the Laguerre coefficients of the moments of a general-order derivative of an infinitely differentiable function in terms of its Laguerre coefficients are also obtained. A simple approach in order to build and solve recursively for the connection coefficients between Jacobi-Laguerre and Hermite-Laguerre polynomials is described. An explicit formula for these coefficients between Jacobi and Laguerre polynomials is given, of which the ultra-spherical polynomials of the first and second kinds and Legendre polynomials are important special cases. An analytical formula for the connection coefficients between Hermite and Laguerre polynomials is also obtained.

  12. Large liquid rocket engine transient performance simulation system

    NASA Technical Reports Server (NTRS)

    Mason, J. R.; Southwick, R. D.

    1991-01-01

    A simulation system, ROCETS, was designed and developed to allow cost-effective computer predictions of liquid rocket engine transient performance. The system allows a user to generate a simulation of any rocket engine configuration using component modules stored in a library through high-level input commands. The system library currently contains 24 component modules, 57 sub-modules and maps, and 33 system routines and utilities. FORTRAN models from other sources can be operated in the system upon inclusion of interface information on comment cards. Operation of the simulation is simplified for the user by run, execution, and output processors. The simulation system makes available steady-state trim balance, transient operation, and linear partial generation. The system utilizes a modern equation solver for efficient operation of the simulations. Transient integration methods include integral and differential forms for the trapezoidal, first order Gear, and second order Gear corrector equations. A detailed technology test bed engine (TTBE) model was generated to be used as the acceptance test of the simulation system. The general level of model detail was that reflected in the Space Shuttle Main Engine DTM. The model successfully obtained steady-state balance in main stage operation and simulated throttle transients, including engine starts and shutdown. A NASA FORTRAN control model was obtained, ROCETS interface installed in comment cards, and operated with the TTBE model in closed-loop transient mode.

  13. Second-order discrete Kalman filtering equations for control-structure interaction simulations

    NASA Technical Reports Server (NTRS)

    Park, K. C.; Belvin, W. Keith; Alvin, Kenneth F.

    1991-01-01

    A general form for the first-order representation of the continuous, second-order linear structural dynamics equations is introduced in order to derive a corresponding form of first-order Kalman filtering equations (KFE). Time integration of the resulting first-order KFE is carried out via a set of linear multistep integration formulas. It is shown that a judicious combined selection of computational paths and the undetermined matrices introduced in the general form of the first-order linear structural systems leads to a class of second-order discrete KFE involving only symmetric, N x N solution matrix.

  14. Finding higher symmetries of differential equations using the MAPLE package DESOLVII

    NASA Astrophysics Data System (ADS)

    Vu, K. T.; Jefferson, G. F.; Carminati, J.

    2012-04-01

    We present and describe, with illustrative examples, the MAPLE computer algebra package DESOLVII, which is a major upgrade of DESOLV. DESOLVII now includes new routines allowing the determination of higher symmetries (contact and Lie-Bäcklund) for systems of both ordinary and partial differential equations. Catalogue identifier: ADYZ_v2_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADYZ_v2_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 10 858 No. of bytes in distributed program, including test data, etc.: 112 515 Distribution format: tar.gz Programming language: MAPLE internal language Computer: PCs and workstations Operating system: Linux, Windows XP and Windows 7 RAM: Depends on the type of problem and the complexity of the system (small ≈ MB, large ≈ GB) Classification: 4.3, 5 Catalogue identifier of previous version: ADYZ_v1_0 Journal reference of previous version: Comput. Phys. Comm. 176 (2007) 682 Does the new version supersede the previous version?: Yes Nature of problem: There are a number of approaches one may use to find solutions to systems of differential equations. These include numerical, perturbative, and algebraic methods. Unfortunately, approximate or numerical solution methods may be inappropriate in many cases or even impossible due to the nature of the system and hence exact methods are important. In their own right, exact solutions are valuable not only as a yardstick for approximate/numerical solutions but also as a means of elucidating the physical meaning of fundamental quantities in systems. One particular method of finding special exact solutions is afforded by the work of Sophus Lie and the use of continuous transformation groups. The power of Lie's group theoretic method lies in its ability to unify a number of ad hoc integration methods through the use of symmetries, that is, continuous groups of transformations which leave the differential system “unchanged”. These symmetry groups may then be used to find special solutions. Solutions found in this manner are called similarity or invariant solutions. The method of finding symmetry transformations initially requires the generation of a large overdetermined system of linear, homogeneous, coupled PDEs. The integration of this system is usually reasonably straightforward requiring the (often elementary) integration of equations by splitting the system according to dependency on different orders and degrees of the dependent variable/s. Unfortunately, in the case of contact and Lie-Bäcklund symmetries, the integration of the determining system becomes increasingly more difficult as the order of the symmetry is increased. This is because the symmetry generating functions become dependent on higher orders of the derivatives of the dependent variables and this diminishes the overall resulting “separable” differential conditions derived from the main determining system. Furthermore, typical determining systems consist of tens to hundreds of equations and this, combined with standard mechanical solution methods, makes the process well suited to automation using computer algebra systems. The new MAPLE package DESOLVII, which is a major upgrade of DESOLV, now includes routines allowing the determination of higher symmetries (contact and Lie-Bäcklund) for systems of both ordinary and partial differential equations. In addition, significant improvements have been implemented to the algorithm for PDE solution. Finally, we have made some improvements in the overall automated process so as to improve user friendliness by reducing user intervention where possible. Solution method: See “Nature of problem” above. Reasons for new version: New and improved functionality. New functionality - can now compute generalised symmetries. Much improved efficiency (speed and memory use) of existing routines. Restrictions: Sufficient memory may be required for complex systems. Running time: Depends on the type of problem and the complexity of the system (small ≈ seconds, large ≈ hours).

  15. A second-order modelling of a stably stratified sheared turbulence submitted to a non-vertical shear

    NASA Astrophysics Data System (ADS)

    Bouzaiane, Mounir; Ben Abdallah, Hichem; Lili, Taieb

    2004-09-01

    In this work, the evolution of homogeneous stably stratified turbulence submitted to a non-vertical shear is studied using second-order closure models. Two cases of turbulent flows are considered. Firstly, the case of a purely horizontal shear is considered. In this case, the evolution of the turbulence is studied according to the Richardson number Ri which is varied from 0.2 to 2.0 when other parameters are kept constant. In the second case, two components of shear are present. The turbulence is submitted to a vertical component Sv = partU1/partx3 = S cos(thgr) and a horizontal component Sh = partU1/partx2 = S sin(thgr). In this case, we study the influence of shear inclination angle thgr on the evolution of turbulence. In both cases, we are referred respectively to the recent direct numerical simulations of Jacobitz (2002 J. Turbulence 3 055) and Jacobitz and Sarkar (1998 Phys. Fluids 10 1158-68) which are, to our knowledge, the most recent results of the above-mentioned flows. Transport equations of second-order moments \\overline{u_{i} u_{j}} , \\overline{u_{i} \\rho } , \\overline{\\rho^{2}} are derived. The Shih-Lumley (SL) (Shih T H 1996 Turbulence Transition and Modeling ed H D S Henningson, A V Johansson and P H Alfredsson (Dordrecht: Kluwer); Shih and Lumley J L 1989 27th Aerospace Meeting 9-12 January, Center of Turbulent Research, Nevada) and the Craft-Launder (CL) (Craft T J and Launder B E 1989 Turbulent Shear Flow Stanford University, USA, pp 12-1-12-6 Launder B E 1996 Turbulence Transition and Modeling ed H D S Henningson, A V Johansson and P H Alfredsson (Dordrecht: Kluwer)) second-order models are retained for the pressure-strain correlation phgrij and the pressure-scalar gradient correlation phgrirgr. The corresponding models are also retained for the dissipation egr of the turbulent kinetic energy and an algebraic model is retained for the dissipation egrrgrrgr of the variance of the scalar. A fourth-order Runge-Kutta method is used for the numerical integration of the closed systems of non-linear dimensionless differential equations. A good agreement between the predictions of second-order models and values of direct numerical simulation of Jacobitz has been generally observed for the principal component of anisotropy b12. A qualitative agreement has been observed for the ratios K/E and Krgr/E of the kinetic and potential energies to the total energy E.

  16. Dirac structures in vakonomic mechanics

    NASA Astrophysics Data System (ADS)

    Jiménez, Fernando; Yoshimura, Hiroaki

    2015-08-01

    In this paper, we explore dynamics of the nonholonomic system called vakonomic mechanics in the context of Lagrange-Dirac dynamical systems using a Dirac structure and its associated Hamilton-Pontryagin variational principle. We first show the link between vakonomic mechanics and nonholonomic mechanics from the viewpoints of Dirac structures as well as Lagrangian submanifolds. Namely, we clarify that Lagrangian submanifold theory cannot represent nonholonomic mechanics properly, but vakonomic mechanics instead. Second, in order to represent vakonomic mechanics, we employ the space TQ ×V∗, where a vakonomic Lagrangian is defined from a given Lagrangian (possibly degenerate) subject to nonholonomic constraints. Then, we show how implicit vakonomic Euler-Lagrange equations can be formulated by the Hamilton-Pontryagin variational principle for the vakonomic Lagrangian on the extended Pontryagin bundle (TQ ⊕T∗ Q) ×V∗. Associated with this variational principle, we establish a Dirac structure on (TQ ⊕T∗ Q) ×V∗ in order to define an intrinsic vakonomic Lagrange-Dirac system. Furthermore, we also establish another construction for the vakonomic Lagrange-Dirac system using a Dirac structure on T∗ Q ×V∗, where we introduce a vakonomic Dirac differential. Finally, we illustrate our theory of vakonomic Lagrange-Dirac systems by some examples such as the vakonomic skate and the vertical rolling coin.

  17. All-optical computation system for solving differential equations based on optical intensity differentiator.

    PubMed

    Tan, Sisi; Wu, Zhao; Lei, Lei; Hu, Shoujin; Dong, Jianji; Zhang, Xinliang

    2013-03-25

    We propose and experimentally demonstrate an all-optical differentiator-based computation system used for solving constant-coefficient first-order linear ordinary differential equations. It consists of an all-optical intensity differentiator and a wavelength converter, both based on a semiconductor optical amplifier (SOA) and an optical filter (OF). The equation is solved for various values of the constant-coefficient and two considered input waveforms, namely, super-Gaussian and Gaussian signals. An excellent agreement between the numerical simulation and the experimental results is obtained.

  18. KANTBP: A program for computing energy levels, reaction matrix and radial wave functions in the coupled-channel hyperspherical adiabatic approach

    NASA Astrophysics Data System (ADS)

    Chuluunbaatar, O.; Gusev, A. A.; Abrashkevich, A. G.; Amaya-Tapia, A.; Kaschiev, M. S.; Larsen, S. Y.; Vinitsky, S. I.

    2007-10-01

    A FORTRAN 77 program is presented which calculates energy values, reaction matrix and corresponding radial wave functions in a coupled-channel approximation of the hyperspherical adiabatic approach. In this approach, a multi-dimensional Schrödinger equation is reduced to a system of the coupled second-order ordinary differential equations on the finite interval with homogeneous boundary conditions of the third type. The resulting system of radial equations which contains the potential matrix elements and first-derivative coupling terms is solved using high-order accuracy approximations of the finite-element method. As a test desk, the program is applied to the calculation of the energy values and reaction matrix for an exactly solvable 2D-model of three identical particles on a line with pair zero-range potentials. Program summaryProgram title: KANTBP Catalogue identifier: ADZH_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADZH_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 4224 No. of bytes in distributed program, including test data, etc.: 31 232 Distribution format: tar.gz Programming language: FORTRAN 77 Computer: Intel Xeon EM64T, Alpha 21264A, AMD Athlon MP, Pentium IV Xeon, Opteron 248, Intel Pentium IV Operating system: OC Linux, Unix AIX 5.3, SunOS 5.8, Solaris, Windows XP RAM: depends on (a) the number of differential equations; (b) the number and order of finite-elements; (c) the number of hyperradial points; and (d) the number of eigensolutions required. Test run requires 30 MB Classification: 2.1, 2.4 External routines: GAULEG and GAUSSJ [W.H. Press, B.F. Flanery, S.A. Teukolsky, W.T. Vetterley, Numerical Recipes: The Art of Scientific Computing, Cambridge University Press, Cambridge, 1986] Nature of problem: In the hyperspherical adiabatic approach [J. Macek, J. Phys. B 1 (1968) 831-843; U. Fano, Rep. Progr. Phys. 46 (1983) 97-165; C.D. Lin, Adv. Atom. Mol. Phys. 22 (1986) 77-142], a multi-dimensional Schrödinger equation for a two-electron system [A.G. Abrashkevich, D.G. Abrashkevich, M. Shapiro, Comput. Phys. Comm. 90 (1995) 311-339] or a hydrogen atom in magnetic field [M.G. Dimova, M.S. Kaschiev, S.I. Vinitsky, J. Phys. B 38 (2005) 2337-2352] is reduced by separating the radial coordinate ρ from the angular variables to a system of second-order ordinary differential equations which contain potential matrix elements and first-derivative coupling terms. The purpose of this paper is to present the finite-element method procedure based on the use of high-order accuracy approximations for calculating approximate eigensolutions for such systems of coupled differential equations. Solution method: The boundary problems for coupled differential equations are solved by the finite-element method using high-order accuracy approximations [A.G. Abrashkevich, D.G. Abrashkevich, M.S. Kaschiev, I.V. Puzynin, Comput. Phys. Comm. 85 (1995) 40-64]. The generalized algebraic eigenvalue problem AF=EBF with respect to pair unknowns ( E,F) arising after the replacement of the differential problem by the finite-element approximation is solved by the subspace iteration method using the SSPACE program [K.J. Bathe, Finite Element Procedures in Engineering Analysis, Englewood Cliffs, Prentice-Hall, New York, 1982]. The generalized algebraic eigenvalue problem (A-EB)F=λDF with respect to pair unknowns (λ,F) arising after the corresponding replacement of the scattering boundary problem in open channels at fixed energy value, E, is solved by the LDL factorization of symmetric matrix and back-substitution methods using the DECOMP and REDBAK programs, respectively [K.J. Bathe, Finite Element Procedures in Engineering Analysis, Englewood Cliffs, Prentice-Hall, New York, 1982]. As a test desk, the program is applied to the calculation of the energy values and reaction matrix for an exactly solvable 2D-model of three identical particles on a line with pair zero-range potentials described in [Yu. A. Kuperin, P.B. Kurasov, Yu.B. Melnikov, S.P. Merkuriev, Ann. Phys. 205 (1991) 330-361; O. Chuluunbaatar, A.A. Gusev, S.Y. Larsen, S.I. Vinitsky, J. Phys. A 35 (2002) L513-L525; N.P. Mehta, J.R. Shepard, Phys. Rev. A 72 (2005) 032728-1-11; O. Chuluunbaatar, A.A. Gusev, M.S. Kaschiev, V.A. Kaschieva, A. Amaya-Tapia, S.Y. Larsen, S.I. Vinitsky, J. Phys. B 39 (2006) 243-269]. For this benchmark model the needed analytical expressions for the potential matrix elements and first-derivative coupling terms, their asymptotics and asymptotics of radial solutions of the boundary problems for coupled differential equations have been produced with help of a MAPLE computer algebra system. Restrictions: The computer memory requirements depend on: (a) the number of differential equations; (b) the number and order of finite-elements; (c) the total number of hyperradial points; and (d) the number of eigensolutions required. Restrictions due to dimension sizes may be easily alleviated by altering PARAMETER statements (see Long Write-Up and listing for details). The user must also supply subroutine POTCAL for evaluating potential matrix elements. The user should supply subroutines ASYMEV (when solving the eigenvalue problem) or ASYMSC (when solving the scattering problem) that evaluate the asymptotics of the radial wave functions at the right boundary point in case of a boundary condition of the third type, respectively. Running time: The running time depends critically upon: (a) the number of differential equations; (b) the number and order of finite-elements; (c) the total number of hyperradial points on interval [0,ρ]; and (d) the number of eigensolutions required. The test run which accompanies this paper took 28.48 s without calculation of matrix potentials on the Intel Pentium IV 2.4 GHz.

  19. A-posteriori error estimation for second order mechanical systems

    NASA Astrophysics Data System (ADS)

    Ruiner, Thomas; Fehr, Jörg; Haasdonk, Bernard; Eberhard, Peter

    2012-06-01

    One important issue for the simulation of flexible multibody systems is the reduction of the flexible bodies degrees of freedom. As far as safety questions are concerned knowledge about the error introduced by the reduction of the flexible degrees of freedom is helpful and very important. In this work, an a-posteriori error estimator for linear first order systems is extended for error estimation of mechanical second order systems. Due to the special second order structure of mechanical systems, an improvement of the a-posteriori error estimator is achieved. A major advantage of the a-posteriori error estimator is that the estimator is independent of the used reduction technique. Therefore, it can be used for moment-matching based, Gramian matrices based or modal based model reduction techniques. The capability of the proposed technique is demonstrated by the a-posteriori error estimation of a mechanical system, and a sensitivity analysis of the parameters involved in the error estimation process is conducted.

  20. Unified formalism for the generalized kth-order Hamilton-Jacobi problem

    NASA Astrophysics Data System (ADS)

    Colombo, Leonardo; de Léon, Manuel; Prieto-Martínez, Pedro Daniel; Román-Roy, Narciso

    2014-08-01

    The geometric formulation of the Hamilton-Jacobi theory enables us to generalize it to systems of higher-order ordinary differential equations. In this work we introduce the unified Lagrangian-Hamiltonian formalism for the geometric Hamilton-Jacobi theory on higher-order autonomous dynamical systems described by regular Lagrangian functions.

  1. The Effect of Incentives and Meta-incentives on the Evolution of Cooperation.

    PubMed

    Okada, Isamu; Yamamoto, Hitoshi; Toriumi, Fujio; Sasaki, Tatsuya

    2015-05-01

    Although positive incentives for cooperators and/or negative incentives for free-riders in social dilemmas play an important role in maintaining cooperation, there is still the outstanding issue of who should pay the cost of incentives. The second-order free-rider problem, in which players who do not provide the incentives dominate in a game, is a well-known academic challenge. In order to meet this challenge, we devise and analyze a meta-incentive game that integrates positive incentives (rewards) and negative incentives (punishments) with second-order incentives, which are incentives for other players' incentives. The critical assumption of our model is that players who tend to provide incentives to other players for their cooperative or non-cooperative behavior also tend to provide incentives to their incentive behaviors. In this paper, we solve the replicator dynamics for a simple version of the game and analytically categorize the game types into four groups. We find that the second-order free-rider problem is completely resolved without any third-order or higher (meta) incentive under the assumption. To do so, a second-order costly incentive, which is given individually (peer-to-peer) after playing donation games, is needed. The paper concludes that (1) second-order incentives for first-order reward are necessary for cooperative regimes, (2) a system without first-order rewards cannot maintain a cooperative regime, (3) a system with first-order rewards and no incentives for rewards is the worst because it never reaches cooperation, and (4) a system with rewards for incentives is more likely to be a cooperative regime than a system with punishments for incentives when the cost-effect ratio of incentives is sufficiently large. This solution is general and strong in the sense that the game does not need any centralized institution or proactive system for incentives.

  2. The Effect of Incentives and Meta-incentives on the Evolution of Cooperation

    PubMed Central

    Okada, Isamu; Yamamoto, Hitoshi; Toriumi, Fujio; Sasaki, Tatsuya

    2015-01-01

    Although positive incentives for cooperators and/or negative incentives for free-riders in social dilemmas play an important role in maintaining cooperation, there is still the outstanding issue of who should pay the cost of incentives. The second-order free-rider problem, in which players who do not provide the incentives dominate in a game, is a well-known academic challenge. In order to meet this challenge, we devise and analyze a meta-incentive game that integrates positive incentives (rewards) and negative incentives (punishments) with second-order incentives, which are incentives for other players’ incentives. The critical assumption of our model is that players who tend to provide incentives to other players for their cooperative or non-cooperative behavior also tend to provide incentives to their incentive behaviors. In this paper, we solve the replicator dynamics for a simple version of the game and analytically categorize the game types into four groups. We find that the second-order free-rider problem is completely resolved without any third-order or higher (meta) incentive under the assumption. To do so, a second-order costly incentive, which is given individually (peer-to-peer) after playing donation games, is needed. The paper concludes that (1) second-order incentives for first-order reward are necessary for cooperative regimes, (2) a system without first-order rewards cannot maintain a cooperative regime, (3) a system with first-order rewards and no incentives for rewards is the worst because it never reaches cooperation, and (4) a system with rewards for incentives is more likely to be a cooperative regime than a system with punishments for incentives when the cost-effect ratio of incentives is sufficiently large. This solution is general and strong in the sense that the game does not need any centralized institution or proactive system for incentives. PMID:25974684

  3. A Rasch Differential Item Functioning Analysis of the Massachusetts Youth Screening Instrument: Identifying Race and Gender Differential Item Functioning among Juvenile Offenders

    ERIC Educational Resources Information Center

    Cauffman, Elizabeth; MacIntosh, Randall

    2006-01-01

    The juvenile justice system needs a tool that can identify and assess mental health problems among youths quickly with validity and reliability. The goal of this article is to evaluate the racial/ethnic and gender differential item functioning (DIF) of the Massachusetts Youth Screening Instrument-Second Version (MAYSI-2) using the Rasch Model.…

  4. Long-period fiber gratings as ultrafast optical differentiators.

    PubMed

    Kulishov, Mykola; Azaña, José

    2005-10-15

    It is demonstrated that a single, uniform long-period fiber grating (LPFG) working in the linear regime inherently behaves as an ultrafast optical temporal differentiator. Specifically, we show that the output temporal waveform in the core mode of a LPFG providing full energy coupling into the cladding mode is proportional to the first derivative of the optical temporal signal (e.g., optical pulse) launched at the input of the LPFG. Moreover, a LPFG providing full energy recoupling back from the cladding mode into the core mode inherently implements second-order temporal differentiation. Our numerical results have confirmed the feasibility of this simple, all-fiber approach to processing optical signals with temporal features in the picosecond and subpicosecond ranges.

  5. Stability and stabilization of the lattice Boltzmann method

    NASA Astrophysics Data System (ADS)

    Brownlee, R. A.; Gorban, A. N.; Levesley, J.

    2007-03-01

    We revisit the classical stability versus accuracy dilemma for the lattice Boltzmann methods (LBM). Our goal is a stable method of second-order accuracy for fluid dynamics based on the lattice Bhatnager-Gross-Krook method (LBGK). The LBGK scheme can be recognized as a discrete dynamical system generated by free flight and entropic involution. In this framework the stability and accuracy analysis are more natural. We find the necessary and sufficient conditions for second-order accurate fluid dynamics modeling. In particular, it is proven that in order to guarantee second-order accuracy the distribution should belong to a distinguished surface—the invariant film (up to second order in the time step). This surface is the trajectory of the (quasi)equilibrium distribution surface under free flight. The main instability mechanisms are identified. The simplest recipes for stabilization add no artificial dissipation (up to second order) and provide second-order accuracy of the method. Two other prescriptions add some artificial dissipation locally and prevent the system from loss of positivity and local blowup. Demonstration of the proposed stable LBGK schemes are provided by the numerical simulation of a one-dimensional (1D) shock tube and the unsteady 2D flow around a square cylinder up to Reynolds number Rẽ20000 .

  6. Second harmonic generation of q-Gaussian laser beam in preformed collisional plasma channel with nonlinear absorption

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gupta, Naveen, E-mail: naveens222@rediffmail.com; Singh, Arvinder, E-mail: arvinder6@lycos.com; Singh, Navpreet, E-mail: navpreet.nit@gmail.com

    2015-11-15

    This paper presents a scheme for second harmonic generation of an intense q-Gaussian laser beam in a preformed parabolic plasma channel, where collisional nonlinearity is operative with nonlinear absorption. Due to nonuniform irradiance of intensity along the wavefront of the laser beam, nonuniform Ohmic heating of plasma electrons takes place. Due to this nonuniform heating of plasma, the laser beam gets self-focused and produces strong density gradients in the transverse direction. The generated density gradients excite an electron plasma wave at pump frequency that interacts with the pump beam to produce its second harmonics. The formulation is based on amore » numerical solution of the nonlinear Schrodinger wave equation in WKB approximation followed by moment theory approach. A second order nonlinear differential equation governing the propagation dynamics of the laser beam with distance of propagation has been obtained and is solved numerically by Runge Kutta fourth order technique. The effect of nonlinear absorption on self-focusing of the laser beam and conversion efficiency of its second harmonics has been investigated.« less

  7. Synergies from using higher order symplectic decompositions both for ordinary differential equations and quantum Monte Carlo methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matuttis, Hans-Georg; Wang, Xiaoxing

    Decomposition methods of the Suzuki-Trotter type of various orders have been derived in different fields. Applying them both to classical ordinary differential equations (ODEs) and quantum systems allows to judge their effectiveness and gives new insights for many body quantum mechanics where reference data are scarce. Further, based on data for 6 × 6 system we conclude that sampling with sign (minus-sign problem) is probably detrimental to the accuracy of fermionic simulations with determinant algorithms.

  8. Forced oscillations of cracked beam under the stochastic cyclic loading

    NASA Astrophysics Data System (ADS)

    Matsko, I.; Javors'kyj, I.; Yuzefovych, R.; Zakrzewski, Z.

    2018-05-01

    An analysis of forced oscillations of cracked beam using statistical methods for periodically correlated random processes is presented. The oscillation realizations are obtained on the basis of numerical solutions of differential equations of the second order, for the case when applied force is described by a sum of harmonic and stationary random process. It is established that due to crack appearance forced oscillations acquire properties of second-order periodical non-stationarity. It is shown that in a super-resonance regime covariance and spectral characteristics, which describe non-stationary structure of forced oscillations, are more sensitive to crack growth than the characteristics of the oscillation's deterministic part. Using diagnostic indicators formed on their basis allows the detection of small cracks.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buckdahn, Rainer, E-mail: Rainer.Buckdahn@univ-brest.fr; Li, Juan, E-mail: juanli@sdu.edu.cn; Ma, Jin, E-mail: jinma@usc.edu

    In this paper we study the optimal control problem for a class of general mean-field stochastic differential equations, in which the coefficients depend, nonlinearly, on both the state process as well as of its law. In particular, we assume that the control set is a general open set that is not necessary convex, and the coefficients are only continuous on the control variable without any further regularity or convexity. We validate the approach of Peng (SIAM J Control Optim 2(4):966–979, 1990) by considering the second order variational equations and the corresponding second order adjoint process in this setting, and wemore » extend the Stochastic Maximum Principle of Buckdahn et al. (Appl Math Optim 64(2):197–216, 2011) to this general case.« less

  10. Agonist-specific coupling of a cloned Drosophila octopamine/tyramine receptor to multiple second messenger systems.

    PubMed Central

    Robb, S; Cheek, T R; Hannan, F L; Hall, L M; Midgley, J M; Evans, P D

    1994-01-01

    A cloned seven transmembrane-spanning Drosophila octopamine/tyramine receptor, permanently expressed in a Chinese hamster ovary cell line, both inhibits adenylate cyclase activity and leads to the elevation of intracellular Ca2+ levels by separate G-protein-coupled pathways. Agonists of this receptor (octopamine and tyramine), differing by only a single hydroxyl group in their side chain, may be capable of differentially coupling it to different second messenger systems. Thus, a single receptor may have a different pharmacological profile depending on which second messenger system is used to assay its efficacy. PMID:8137817

  11. Second kind Chebyshev operational matrix algorithm for solving differential equations of Lane-Emden type

    NASA Astrophysics Data System (ADS)

    Doha, E. H.; Abd-Elhameed, W. M.; Youssri, Y. H.

    2013-10-01

    In this paper, we present a new second kind Chebyshev (S2KC) operational matrix of derivatives. With the aid of S2KC, an algorithm is described to obtain numerical solutions of a class of linear and nonlinear Lane-Emden type singular initial value problems (IVPs). The idea of obtaining such solutions is essentially based on reducing the differential equation with its initial conditions to a system of algebraic equations. Two illustrative examples concern relevant physical problems (the Lane-Emden equations of the first and second kind) are discussed to demonstrate the validity and applicability of the suggested algorithm. Numerical results obtained are comparing favorably with the analytical known solutions.

  12. Generalized Gibbs state with modified Redfield solution: Exact agreement up to second order

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thingna, Juzar; Wang, Jian-Sheng; Haenggi, Peter

    A novel scheme for the steady state solution of the standard Redfield quantum master equation is developed which yields agreement with the exact result for the corresponding reduced density matrix up to second order in the system-bath coupling strength. We achieve this objective by use of an analytic continuation of the off-diagonal matrix elements of the Redfield solution towards its diagonal limit. Notably, our scheme does not require the provision of yet higher order relaxation tensors. Testing this modified method for a heat bath consisting of a collection of harmonic oscillators we assess that the system relaxes towards its correctmore » coupling-dependent, generalized quantum Gibbs state in second order. We numerically compare our formulation for a damped quantum harmonic system with the nonequilibrium Green's function formalism: we find good agreement at low temperatures for coupling strengths that are even larger than expected from the very regime of validity of the second-order Redfield quantum master equation. Yet another advantage of our method is that it markedly reduces the numerical complexity of the problem; thus, allowing to study efficiently large-sized system Hilbert spaces.« less

  13. Control of Chemical Effects in the Separation Process of a Differential Mobility / Mass Spectrometer System

    PubMed Central

    Schneider, Bradley B.; Coy, Stephen L.; Krylov, Evgeny V.; Nazarov, Erkinjon G.

    2013-01-01

    Differential mobility spectrometry (DMS) separates ions on the basis of the difference in their migration rates under high versus low electric fields. Several models describing the physical nature of this field mobility dependence have been proposed but emerging as a dominant effect is the clusterization model sometimes referred to as the dynamic cluster-decluster model. DMS resolution and peak capacity is strongly influenced by the addition of modifiers which results in the formation and dissociation of clusters. This process increases selectivity due to the unique chemical interactions that occur between an ion and neutral gas phase molecules. It is thus imperative to bring the parameters influencing the chemical interactions under control and find ways to exploit them in order to improve the analytical utility of the device. In this paper we describe three important areas that need consideration in order to stabilize and capitalize on the chemical processes that dominate a DMS separation. The first involves means of controlling the dynamic equilibrium of the clustering reactions with high concentrations of specific reagents. The second area involves a means to deal with the unwanted heterogeneous cluster ion populations emitted from the electrospray ionization process that degrade resolution and sensitivity. The third involves fine control of parameters that affect the fundamental collision processes, temperature and pressure. PMID:20065515

  14. A time correlation function theory describing static field enhanced third order optical effects at interfaces.

    PubMed

    Neipert, Christine; Space, Brian

    2006-12-14

    Sum vibrational frequency spectroscopy, a second order optical process, is interface specific in the dipole approximation. At charged interfaces, there exists a static field, and as a direct consequence, the experimentally detected signal is a combination of enhanced second and static field induced third order contributions. There is significant evidence in the literature of the importance/relative magnitude of this third order contribution, but no previous molecularly detailed approach existed to separately calculate the second and third order contributions. Thus, for the first time, a molecularly detailed time correlation function theory is derived here that allows for the second and third order contributions to sum frequency vibrational spectra to be individually determined. Further, a practical, molecular dynamics based, implementation procedure for the derived correlation functions that describe the third order phenomenon is also presented. This approach includes a novel generalization of point atomic polarizability models to calculate the hyperpolarizability of a molecular system. The full system hyperpolarizability appears in the time correlation functions responsible for third order contributions in the presence of a static field.

  15. A higher-order conservation element solution element method for solving hyperbolic differential equations on unstructured meshes

    NASA Astrophysics Data System (ADS)

    Bilyeu, David

    This dissertation presents an extension of the Conservation Element Solution Element (CESE) method from second- to higher-order accuracy. The new method retains the favorable characteristics of the original second-order CESE scheme, including (i) the use of the space-time integral equation for conservation laws, (ii) a compact mesh stencil, (iii) the scheme will remain stable up to a CFL number of unity, (iv) a fully explicit, time-marching integration scheme, (v) true multidimensionality without using directional splitting, and (vi) the ability to handle two- and three-dimensional geometries by using unstructured meshes. This algorithm has been thoroughly tested in one, two and three spatial dimensions and has been shown to obtain the desired order of accuracy for solving both linear and non-linear hyperbolic partial differential equations. The scheme has also shown its ability to accurately resolve discontinuities in the solutions. Higher order unstructured methods such as the Discontinuous Galerkin (DG) method and the Spectral Volume (SV) methods have been developed for one-, two- and three-dimensional application. Although these schemes have seen extensive development and use, certain drawbacks of these methods have been well documented. For example, the explicit versions of these two methods have very stringent stability criteria. This stability criteria requires that the time step be reduced as the order of the solver increases, for a given simulation on a given mesh. The research presented in this dissertation builds upon the work of Chang, who developed a fourth-order CESE scheme to solve a scalar one-dimensional hyperbolic partial differential equation. The completed research has resulted in two key deliverables. The first is a detailed derivation of a high-order CESE methods on unstructured meshes for solving the conservation laws in two- and three-dimensional spaces. The second is the code implementation of these numerical methods in a computer code. For code development, a one-dimensional solver for the Euler equations was developed. This work is an extension of Chang's work on the fourth-order CESE method for solving a one-dimensional scalar convection equation. A generic formulation for the nth-order CESE method, where n ≥ 4, was derived. Indeed, numerical implementation of the scheme confirmed that the order of convergence was consistent with the order of the scheme. For the two- and three-dimensional solvers, SOLVCON was used as the basic framework for code implementation. A new solver kernel for the fourth-order CESE method has been developed and integrated into the framework provided by SOLVCON. The main part of SOLVCON, which deals with unstructured meshes and parallel computing, remains intact. The SOLVCON code for data transmission between computer nodes for High Performance Computing (HPC). To validate and verify the newly developed high-order CESE algorithms, several one-, two- and three-dimensional simulations where conducted. For the arbitrary order, one-dimensional, CESE solver, three sets of governing equations were selected for simulation: (i) the linear convection equation, (ii) the linear acoustic equations, (iii) the nonlinear Euler equations. All three systems of equations were used to verify the order of convergence through mesh refinement. In addition the Euler equations were used to solve the Shu-Osher and Blastwave problems. These two simulations demonstrated that the new high-order CESE methods can accurately resolve discontinuities in the flow field.For the two-dimensional, fourth-order CESE solver, the Euler equation was employed in four different test cases. The first case was used to verify the order of convergence through mesh refinement. The next three cases demonstrated the ability of the new solver to accurately resolve discontinuities in the flows. This was demonstrated through: (i) the interaction between acoustic waves and an entropy pulse, (ii) supersonic flow over a circular blunt body, (iii) supersonic flow over a guttered wedge. To validate and verify the three-dimensional, fourth-order CESE solver, two different simulations where selected. The first used the linear convection equations to demonstrate fourth-order convergence. The second used the Euler equations to simulate supersonic flow over a spherical body to demonstrate the scheme's ability to accurately resolve shocks. All test cases used are well known benchmark problems and as such, there are multiple sources available to validate the numerical results. Furthermore, the simulations showed that the high-order CESE solver was stable at a CFL number near unity.

  16. [Psychotherapeutically-Systemic Acting in the Integrated Family Counseling Presented by the Example of Child-Centered Educational Counseling].

    PubMed

    Herrmann, Ines

    2015-01-01

    The article gives an insight into the practice of Integrated Family Counseling and identifies their interfaces with psychotherapeutic approaches. The example of the child-centered educational counseling shows how consultancy, systemic and psychotherapeutic interventions interact in order to meet the parents educational needs defined by the parents. The first part of the article explains the term of Integrated Family Counseling, differentiates the various substantive areas of work and outlines the systematic attitude. The second part describes the psychotherapy-systemic action in the child-centered educational counseling from the perspective of the practice. Main priorities in the course of counseling, including cause-related behavioral and developmental diagnostics, play therapy intervention and parental involvement are presented. Here the systemic approach, major methodological elements as well as their effects are pointed up. The third part is devoted to the reflection of the relationship between counseling and psychotherapy. It becomes clear that in particular the intended effectiveness of an intervention determines their methodological design to a large extent.

  17. Les systemes approximatifs et l'enseignement des langues secondes (Approximative Systems and the Teaching of Second Languages).

    ERIC Educational Resources Information Center

    High, Virginia Lacastro

    Errors can be considered concrete representations of stages through which one must go in order to acquire one's native language and a second language. It has been discovered that certain errors appear systematically, revealing an approximate system, or "interlanguage," behind the erroneous utterances. Present research in second language…

  18. Generalized vector calculus on convex domain

    NASA Astrophysics Data System (ADS)

    Agrawal, Om P.; Xu, Yufeng

    2015-06-01

    In this paper, we apply recently proposed generalized integral and differential operators to develop generalized vector calculus and generalized variational calculus for problems defined over a convex domain. In particular, we present some generalization of Green's and Gauss divergence theorems involving some new operators, and apply these theorems to generalized variational calculus. For fractional power kernels, the formulation leads to fractional vector calculus and fractional variational calculus for problems defined over a convex domain. In special cases, when certain parameters take integer values, we obtain formulations for integer order problems. Two examples are presented to demonstrate applications of the generalized variational calculus which utilize the generalized vector calculus developed in the paper. The first example leads to a generalized partial differential equation and the second example leads to a generalized eigenvalue problem, both in two dimensional convex domains. We solve the generalized partial differential equation by using polynomial approximation. A special case of the second example is a generalized isoperimetric problem. We find an approximate solution to this problem. Many physical problems containing integer order integrals and derivatives are defined over arbitrary domains. We speculate that future problems containing fractional and generalized integrals and derivatives in fractional mechanics will be defined over arbitrary domains, and therefore, a general variational calculus incorporating a general vector calculus will be needed for these problems. This research is our first attempt in that direction.

  19. Transient analysis of an adaptive system for optimization of design parameters

    NASA Technical Reports Server (NTRS)

    Bayard, D. S.

    1992-01-01

    Averaging methods are applied to analyzing and optimizing the transient response associated with the direct adaptive control of an oscillatory second-order minimum-phase system. The analytical design methods developed for a second-order plant can be applied with some approximation to a MIMO flexible structure having a single dominant mode.

  20. Towards a coherent European approach for taxation of combustible waste.

    PubMed

    Dubois, Maarten

    2013-08-01

    Although intra-European trade of combustible waste has grown strongly in the last decade, incineration and landfill taxes remain disparate within Europe. The paper proposes a more coherent taxation approach for Europe that is based on the principle of Pigovian taxation, i.e. the internalization of environmental damage costs. The approach aims to create a level playing field between European regions while reinforcing incentives for sustainable management of combustible waste. Three important policy recommendations emerge. First, integrating waste incineration into the European Emissions Trading System for greenhouse gases (EU ETS) reduces the risk of tax competition between regions. Second, because taxation of every single air pollutant from waste incineration is cumbersome, a differentiated waste incineration tax based on NO(x) emissions can serve as a second-best instrument. Finally, in order to strengthen incentives for ash treatment, a landfill tax should apply for landfilled incineration residues. An example illustrates the coherence of the policy recommendations for incineration technologies with diverse environmental effects. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. The ship edge feature detection based on high and low threshold for remote sensing image

    NASA Astrophysics Data System (ADS)

    Li, Xuan; Li, Shengyang

    2018-05-01

    In this paper, a method based on high and low threshold is proposed to detect the ship edge feature due to the low accuracy rate caused by the noise. Analyze the relationship between human vision system and the target features, and to determine the ship target by detecting the edge feature. Firstly, using the second-order differential method to enhance the quality of image; Secondly, to improvement the edge operator, we introduction of high and low threshold contrast to enhancement image edge and non-edge points, and the edge as the foreground image, non-edge as a background image using image segmentation to achieve edge detection, and remove the false edges; Finally, the edge features are described based on the result of edge features detection, and determine the ship target. The experimental results show that the proposed method can effectively reduce the number of false edges in edge detection, and has the high accuracy of remote sensing ship edge detection.

  2. Second-order Compton-Getting effect on arbitrary intensity distribution

    NASA Technical Reports Server (NTRS)

    Ng, C. K.

    1985-01-01

    Theoretical studies of energetic particles in space are often referred to a special frame of reference. To compare theory with experiment, one has to transform the particle distribution from the special frame to the observer's frame, or vice versa. Various methods have been derived to obtain the directional distribution in the comoving frame from the directional fluxes measured on a spacecraft. These methods have become progressively complicated as increasingly detailed directional particle data become available. A set of 2nd order correct formulae for the transformation of an arbitrary differential intensity distribution, expressed as a series of spherical harmonics, between any two frames in constant relative motion is presented. These formulae greatly simplify the complicated procedures currently in use for the determination of the differential intensity distribution in a comoving frame.

  3. Phase transformations during the growth of paracetamol crystals from the vapor phase

    NASA Astrophysics Data System (ADS)

    Belyaev, A. P.; Rubets, V. P.; Antipov, V. V.; Bordei, N. S.

    2014-07-01

    Phase transformations during the growth of paracetamol crystals from the vapor phase are studied by differential scanning calorimetry. It is found that the vapor-crystal phase transition is actually a superposition of two phase transitions: a first-order phase transition with variable density and a second-order phase transition with variable ordering. The latter, being a diffuse phase transition, results in the formation of a new, "pretransition," phase irreversibly spent in the course of the transition, which ends in the appearance of orthorhombic crystals. X-ray diffraction data and micrograph are presented.

  4. On solutions of the fifth-order dispersive equations with porous medium type non-linearity

    NASA Astrophysics Data System (ADS)

    Kocak, Huseyin; Pinar, Zehra

    2018-07-01

    In this work, we focus on obtaining the exact solutions of the fifth-order semi-linear and non-linear dispersive partial differential equations, which have the second-order diffusion-like (porous-type) non-linearity. The proposed equations were not studied in the literature in the sense of the exact solutions. We reveal solutions of the proposed equations using the classical Riccati equations method. The obtained exact solutions, which can play a key role to simulate non-linear waves in the medium with dispersion and diffusion, are illustrated and discussed in details.

  5. A critical analysis of some popular methods for the discretisation of the gradient operator in finite volume methods

    NASA Astrophysics Data System (ADS)

    Syrakos, Alexandros; Varchanis, Stylianos; Dimakopoulos, Yannis; Goulas, Apostolos; Tsamopoulos, John

    2017-12-01

    Finite volume methods (FVMs) constitute a popular class of methods for the numerical simulation of fluid flows. Among the various components of these methods, the discretisation of the gradient operator has received less attention despite its fundamental importance with regards to the accuracy of the FVM. The most popular gradient schemes are the divergence theorem (DT) (or Green-Gauss) scheme and the least-squares (LS) scheme. Both are widely believed to be second-order accurate, but the present study shows that in fact the common variant of the DT gradient is second-order accurate only on structured meshes whereas it is zeroth-order accurate on general unstructured meshes, and the LS gradient is second-order and first-order accurate, respectively. This is explained through a theoretical analysis and is confirmed by numerical tests. The schemes are then used within a FVM to solve a simple diffusion equation on unstructured grids generated by several methods; the results reveal that the zeroth-order accuracy of the DT gradient is inherited by the FVM as a whole, and the discretisation error does not decrease with grid refinement. On the other hand, use of the LS gradient leads to second-order accurate results, as does the use of alternative, consistent, DT gradient schemes, including a new iterative scheme that makes the common DT gradient consistent at almost no extra cost. The numerical tests are performed using both an in-house code and the popular public domain partial differential equation solver OpenFOAM.

  6. A numerical solution for a variable-order reaction-diffusion model by using fractional derivatives with non-local and non-singular kernel

    NASA Astrophysics Data System (ADS)

    Coronel-Escamilla, A.; Gómez-Aguilar, J. F.; Torres, L.; Escobar-Jiménez, R. F.

    2018-02-01

    A reaction-diffusion system can be represented by the Gray-Scott model. The reaction-diffusion dynamic is described by a pair of time and space dependent Partial Differential Equations (PDEs). In this paper, a generalization of the Gray-Scott model by using variable-order fractional differential equations is proposed. The variable-orders were set as smooth functions bounded in (0 , 1 ] and, specifically, the Liouville-Caputo and the Atangana-Baleanu-Caputo fractional derivatives were used to express the time differentiation. In order to find a numerical solution of the proposed model, the finite difference method together with the Adams method were applied. The simulations results showed the chaotic behavior of the proposed model when different variable-orders are applied.

  7. An Investigation of Differential Encoding and Retrieval in Older Adult College Students.

    ERIC Educational Resources Information Center

    Shaughnessy, Michael F.; Reif, Laurie

    Three experiments were conducted in order to clarify the encoding/retrieval dilemma in older adult students; and the recognition/recall test issue was also explored. First, a mnemonic technique based on the "key word" method of Funk and Tarshis was used; secondly, a semantic processing task was tried; and lastly, a repetition task, based…

  8. Task-Oriented Spoken Dialog System for Second-Language Learning

    ERIC Educational Resources Information Center

    Kwon, Oh-Woog; Kim, Young-Kil; Lee, Yunkeun

    2016-01-01

    This paper introduces a Dialog-Based Computer Assisted second-Language Learning (DB-CALL) system using task-oriented dialogue processing technology. The system promotes dialogue with a second-language learner for a specific task, such as purchasing tour tickets, ordering food, passing through immigration, etc. The dialog system plays a role of a…

  9. A sensitive, handheld vapor sensor based on microcantilevers

    NASA Astrophysics Data System (ADS)

    Pinnaduwage, L. A.; Hedden, D. L.; Gehl, A.; Boiadjiev, V. I.; Hawk, J. E.; Farahi, R. H.; Thundat, T.; Houser, E. J.; Stepnowski, S.; McGill, R. A.; Deel, L.; Lareau, R. T.

    2004-11-01

    We report the development of a handheld sensor based on piezoresistive microcantilevers that does not depend on optical detection, yet has high detection sensitivity. The sensor is able to detect vapors from the plastic explosives pentaerythritol tetranitrate and hexahydro-1,3,5-triazine at levels below 10 parts per trillion within few seconds of exposure under ambient conditions. A differential measurement technique has yielded a rugged sensor that is unaffected by vibration and is able to function as a "sniffer." The microelectromechanical system sensor design allows for the incorporation of hundreds of microcantilevers with suitable coatings in order to achieve sufficient selectivity in the future, and thus could provide an inexpensive, unique platform for the detection of chemical, biological, and explosive materials.

  10. Hopf and Bautin Bifurcation in a Tritrophic Food Chain Model with Holling Functional Response Types III and IV

    NASA Astrophysics Data System (ADS)

    Castellanos, Víctor; Castillo-Santos, Francisco Eduardo; Dela-Rosa, Miguel Angel; Loreto-Hernández, Iván

    In this paper, we analyze the Hopf and Bautin bifurcation of a given system of differential equations, corresponding to a tritrophic food chain model with Holling functional response types III and IV for the predator and superpredator, respectively. We distinguish two cases, when the prey has linear or logistic growth. In both cases we guarantee the existence of a limit cycle bifurcating from an equilibrium point in the positive octant of ℝ3. In order to do so, for the Hopf bifurcation we compute explicitly the first Lyapunov coefficient, the transversality Hopf condition, and for the Bautin bifurcation we also compute the second Lyapunov coefficient and verify the regularity conditions.

  11. Classes of exact Einstein Maxwell solutions

    NASA Astrophysics Data System (ADS)

    Komathiraj, K.; Maharaj, S. D.

    2007-12-01

    We find new classes of exact solutions to the Einstein Maxwell system of equations for a charged sphere with a particular choice of the electric field intensity and one of the gravitational potentials. The condition of pressure isotropy is reduced to a linear, second order differential equation which can be solved in general. Consequently we can find exact solutions to the Einstein Maxwell field equations corresponding to a static spherically symmetric gravitational potential in terms of hypergeometric functions. It is possible to find exact solutions which can be written explicitly in terms of elementary functions, namely polynomials and product of polynomials and algebraic functions. Uncharged solutions are regainable with our choice of electric field intensity; in particular we generate the Einstein universe for particular parameter values.

  12. Spacecraft attitude determination using a second-order nonlinear filter

    NASA Technical Reports Server (NTRS)

    Vathsal, S.

    1987-01-01

    The stringent attitude determination accuracy and faster slew maneuver requirements demanded by present-day spacecraft control systems motivate the development of recursive nonlinear filters for attitude estimation. This paper presents the second-order filter development for the estimation of attitude quaternion using three-axis gyro and star tracker measurement data. Performance comparisons have been made by computer simulation of system models and filter mechanization. It is shown that the second-order filter consistently performs better than the extended Kalman filter when the performance index of the root sum square estimation error of the quaternion vector is compared. The second-order filter identifies the gyro drift rates faster than the extended Kalman filter. The uniqueness of this algorithm is the online generation of the time-varying process and measurement noise covariance matrices, derived as a function or the process and measurement nonlinearity, respectively.

  13. Time-ordered product expansions for computational stochastic system biology.

    PubMed

    Mjolsness, Eric

    2013-06-01

    The time-ordered product framework of quantum field theory can also be used to understand salient phenomena in stochastic biochemical networks. It is used here to derive Gillespie's stochastic simulation algorithm (SSA) for chemical reaction networks; consequently, the SSA can be interpreted in terms of Feynman diagrams. It is also used here to derive other, more general simulation and parameter-learning algorithms including simulation algorithms for networks of stochastic reaction-like processes operating on parameterized objects, and also hybrid stochastic reaction/differential equation models in which systems of ordinary differential equations evolve the parameters of objects that can also undergo stochastic reactions. Thus, the time-ordered product expansion can be used systematically to derive simulation and parameter-fitting algorithms for stochastic systems.

  14. Using some results about the Lie evolution of differential operators to obtain the Fokker-Planck equation for non-Hamiltonian dynamical systems of interest

    NASA Astrophysics Data System (ADS)

    Bianucci, Marco

    2018-05-01

    Finding the generalized Fokker-Planck Equation (FPE) for the reduced probability density function of a subpart of a given complex system is a classical issue of statistical mechanics. Zwanzig projection perturbation approach to this issue leads to the trouble of resumming a series of commutators of differential operators that we show to correspond to solving the Lie evolution of first order differential operators along the unperturbed Liouvillian of the dynamical system of interest. In this paper, we develop in a systematic way the procedure to formally solve this problem. In particular, here we show which the basic assumptions are, concerning the dynamical system of interest, necessary for the Lie evolution to be a group on the space of first order differential operators, and we obtain the coefficients of the so-evolved operators. It is thus demonstrated that if the Liouvillian of the system of interest is not a first order differential operator, in general, the FPE structure breaks down and the master equation contains all the power of the partial derivatives, up to infinity. Therefore, this work shed some light on the trouble of the ubiquitous emergence of both thermodynamics from microscopic systems and regular regression laws at macroscopic scales. However these results are very general and can be applied also in other contexts that are non-Hamiltonian as, for example, geophysical fluid dynamics, where important events, like El Niño, can be considered as large time scale phenomena emerging from the observation of few ocean degrees of freedom of a more complex system, including the interaction with the atmosphere.

  15. Period of vibration of axially vibrating truly nonlinear rod

    NASA Astrophysics Data System (ADS)

    Cveticanin, L.

    2016-07-01

    In this paper the axial vibration of a muscle whose fibers are parallel to the direction of muscle compression is investigated. The model is a clamped-free rod with a strongly nonlinear elastic property. Axial vibration is described by a nonlinear partial differential equation. A solution of the equation is constructed for special initial conditions by using the method of separation of variables. The partial differential equation is separated into two uncoupled strongly nonlinear second order differential equations. Both equations, with displacement function and with time function are exactly determined. Exact solutions are given in the form of inverse incomplete and inverse complete Beta function. Using boundary and initial conditions, the frequency of vibration is obtained. It has to be mentioned that the determined frequency represents the exact analytic description for the axially vibrating truly nonlinear clamped-free rod. The procedure suggested in this paper is applied for calculation of the frequency of the longissimus dorsi muscle of a cow. The influence of elasticity order and elasticity coefficient on the frequency property is tested.

  16. Fluid-dynamically coupled solid propellant combustion instability - cold flow simulation

    NASA Astrophysics Data System (ADS)

    Ben-Reuven, M.

    1983-10-01

    The near-wall processes in an injected, axisymmetric, viscous flow is examined. Solid propellant rocket instability, in which cold flow simulation is evaluated as a tool to elucidate possible instability driving mechanisms is studied. One such prominent mechanism seems to be visco-acoustic coupling. The formulation is presented in terms of a singular boundary layer problem, with detail (up to second order) given only to the near wall region. The injection Reynolds number is assumed large, and its inverse square root serves as an appropriate small perturbation quantity. The injected Mach number is also small, and taken of the same order as the aforesaid small quantity. The radial-dependence of the inner solutions up to second order is solved, in polynominal form. This leaves the (x,t) dependence to much simpler partial differential equations. Particular results demonstrate the existence of a first order pressure perturbation, which arises due to the dissipative near wall processes. This pressure and the associated viscous friction coefficient are shown to agree very well with experimental injected flow data.

  17. Sensitivity of Dynamical Systems to Banach Space Parameters

    DTIC Science & Technology

    2005-02-13

    We consider general nonlinear dynamical systems in a Banach space with dependence on parameters in a second Banach space. An abstract theoretical ... framework for sensitivity equations is developed. An application to measure dependent delay differential systems arising in a class of HIV models is presented.

  18. Improving transportation systems management and operations (TSM&O), capability maturity model workshop white paper : systems and technology.

    DOT National Transportation Integrated Search

    2015-04-01

    Research done through the Second Strategic Highway Research Program (SHRP 2) determined that agencies with the most effective transportation systems management and operations (TSM&O) activities were differentiated not by budgets or technical skills a...

  19. Traction Drives for Zero Stick-Slip Robots, and Reaction Free, Momentum Balanced Systems

    NASA Technical Reports Server (NTRS)

    Anderson, William J.; Shipitalo, William; Newman, Wyatt

    1995-01-01

    Two differential (dual input, single output) drives (a roller-gear and a pure roller), and a momentum balanced (single input, dual output) drive (pure roller ) were designed, fabricated, and tested. The differential drives are each rated at 295 rad/sec (2800 rpm) input speed, 450 N-m (4,000 in-lbf) output torque. The momentum balanced drive is rated at 302 rad/sec (2880 rpm) input speed, and dual output torques of 434N-m (3840 in-lbf). The Dual Input Differential Roller-Gear Drive (DC-700) has a planetary roller-gear system with a reduction ratio (one input driving the output with the second input fixed) of 29.23: 1. The Dual Input Differential Roller Drive (DC-500) has a planetary roller system with a reduction ratio of approximately 24:1. Each of the differential drives features dual roller-gear or roller arrangements consisting of a sun, four first row planets, four second row planets, and a ring. The Momentum Balanced (Grounded Ring) Drive (DC-400) has a planetary roller system with a reduction ratio of 24:1 with both outputs counterrotating at equal speed. Its single roller cluster consists of a sun, five first and five second row planets, a roller cage or spider and a ring. Outputs are taken from both the roller cage and the ring which counterrotate. Test results reported for all three drives include angular and torque ripple (linearity and cogging), viscous and Coulomb friction, and forward and reverse power efficiency. Of the two differential drives, the Differential Roller Drive had better linearity and less cogging than did the Differential Roller-Gear Drive, but it had higher friction and lower efficiency (particularly at low power throughput levels). Use of full preloading rather than a variable preload system in the Differential Roller Drive assessed a heavy penalty in part load efficiency. Maximum measured efficiency (ratio of power out to power in) was 95% for the Differential Roller-Gear Drive and 86% for the Differential Roller Drive. The Momentum Balanced (Grounded Ring) Drive performed as expected kinematically. Reduction r-atios to the two counterrotating outputs (design nominal=24:1) were measured to be 23.98:1 and 24.12:1 at zero load.. At 25ONm (2200 in-lbf) output torque the ratio changed 2% due to roller creep. This drive was the smoothest of all three as determined from linearity and cogging tests, and maximum measured efficiency (ratio of power out to power in) was 95%. The disadvantages of full preloading as comvared to variable preload were apparent in this drive as in the Differential Roller Drive. Efficiencies at part load were low, but improved dramatically with increases in torque. These were consistent with friction measurements which indicated losses primarily from Coulomb friction. The initial preload level setting was low so roller slip was encountered at higher torques during testing.

  20. Two-D results on human operator perception

    NASA Technical Reports Server (NTRS)

    Siapkara, A. A.; Sheridan, T. B.

    1981-01-01

    The application of multidimensional scaling methodology in human factors engineering is presented. The nonorthogonality of internally perceived task variables is exhibited for first and second order plants with both dependent and independent task variables. Directions of operator preference are shown for actual performance, pilot opinion rating, and subjective measures of fatigue, adaptability, and system recognition. Improvement of performance in second order systems is exhibited by the use of bang-bang feedback information. Dissimilarity measures for system comparison are suggested in order to account for human operator rotations and subjective sense of time.

  1. Solvability of the Initial Value Problem to the Isobe-Kakinuma Model for Water Waves

    NASA Astrophysics Data System (ADS)

    Nemoto, Ryo; Iguchi, Tatsuo

    2017-09-01

    We consider the initial value problem to the Isobe-Kakinuma model for water waves and the structure of the model. The Isobe-Kakinuma model is the Euler-Lagrange equations for an approximate Lagrangian which is derived from Luke's Lagrangian for water waves by approximating the velocity potential in the Lagrangian. The Isobe-Kakinuma model is a system of second order partial differential equations and is classified into a system of nonlinear dispersive equations. Since the hypersurface t=0 is characteristic for the Isobe-Kakinuma model, the initial data have to be restricted in an infinite dimensional manifold for the existence of the solution. Under this necessary condition and a sign condition, which corresponds to a generalized Rayleigh-Taylor sign condition for water waves, on the initial data, we show that the initial value problem is solvable locally in time in Sobolev spaces. We also discuss the linear dispersion relation to the model.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dyachenko, Sergey A.; Zlotnik, Anatoly; Korotkevich, Alexander O.

    Here, we develop an operator splitting method to simulate flows of isothermal compressible natural gas over transmission pipelines. The method solves a system of nonlinear hyperbolic partial differential equations (PDEs) of hydrodynamic type for mass flow and pressure on a metric graph, where turbulent losses of momentum are modeled by phenomenological Darcy-Weisbach friction. Mass flow balance is maintained through the boundary conditions at the network nodes, where natural gas is injected or withdrawn from the system. Gas flow through the network is controlled by compressors boosting pressure at the inlet of the adjoint pipe. Our operator splitting numerical scheme ismore » unconditionally stable and it is second order accurate in space and time. The scheme is explicit, and it is formulated to work with general networks with loops. We test the scheme over range of regimes and network configurations, also comparing its performance with performance of two other state of the art implicit schemes.« less

  3. Debris flow cartography using differential GNSS and Theodolite measurements

    NASA Astrophysics Data System (ADS)

    Khazaradze, Giorgi; Guinau, Marta; Calvet, Jaume; Furdada, Gloria; Victoriano, Ane; Génova, Mar; Suriñach, Emma

    2016-04-01

    The presented results form part of a CHARMA project, which pursues a broad objective of reducing damage caused by uncontrolled mass movements, such as rockfalls, snow avalanches and debris flows. Ultimate goal of the project is to contribute towards the establishment of new scientific knowledge and tools that can help in the design and creation of early warning systems. Here we present the specific results that deal with the application of differential GNSS and classical geodetic (e.g. theodolite) methods for mapping debris and torrential flows. Specifically, we investigate the Portainé stream located in the Pallars Sobirà region of Catalonia (Spain), in the eastern Pyrenees. In the last decade more than ten debris-flow type phenomena have affected the region, causing considerable economic losses. Since early 2014, we have conducted several field campaigns within the study area, where we have employed a multi-disciplinary approach, consisting of geomorphological, dendro-chronological and geodetic methods, in order to map the river bed and reconstruct the history of the extreme flooding and debris flow events. Geodetic studies included several approaches, using the classical and satellite based methods. The former consisted of angle and distance measurements between the Geodolite 502 total station and the reflecting prisms placed on top of the control points located within the riverbed. These type of measurements are precise, although present several disadvantages such as the lack of absolute coordinates that makes the geo-referencing difficult, as well as a relatively time-consuming process that involves two persons. For this reason, we have also measured the same control points using the differential GNSS system, in order to evaluate the feasibility of replacing the total station measurements with the GNSS. The latter measuring method is fast and can be conducted by one person. However, the fact that the study area is within the riverbed, often below the trees, limits the visibility of the satellites and thus, can result in meter-level errors while estimating the positions. We have conducted 2 measurements using various differential GNSS systems in March and in September of 2015. During these measurements we used Leica Viva GS14 receiver as a rover station, which was equipped with a GSM card to establish an internet connection in order to receive differential corrections from continuous GNSS networks. During the first campaign we have used the RTK positioning method using the SmartNet network (http://es.smartnet-eu.com) operated by Leica. This system had the advantage of transmitting differential corrections for GPS and GLONASS systems. During the second campaign, we have had an access to the ICGC (http://www.icc.cat) CatNet permanent GPS network, which only provides GPS satellite corrections. Here we present the analysis of the obtained precisions from these two RTK systems. Additionally, we have analyzed the geodetic data in a post-processing mode using the Leica Geo Office 8.4 software with IGS estimated final orbits. For this procedure, in addition to using the data from nearby CatNet CGPS stations, we have also used data from the base station(s) specifically setup near the study area during the campaign period. The work has been supported by the Spanish Ministry of Science and Innovation project CHARMA: CHAracterization and ContRol of MAss Movements. A Challenge for Geohazard Mitigation (CGL2013-40828-R) and RISKNAT group (2014GR/1243).

  4. Second-order processing of four-stroke apparent motion.

    PubMed

    Mather, G; Murdoch, L

    1999-05-01

    In four-stroke apparent motion displays, pattern elements oscillate between two adjacent positions and synchronously reverse in contrast, but appear to move unidirectionally. For example, if rightward shifts preserve contrast but leftward shifts reverse contrast, consistent rightward motion is seen. In conventional first-order displays, elements reverse in luminance contrast (e.g. light elements become dark, and vice-versa). The resulting perception can be explained by responses in elementary motion detectors turned to spatio-temporal orientation. Second-order motion displays contain texture-defined elements, and there is some evidence that they excite second-order motion detectors that extract spatio-temporal orientation following the application of a non-linear 'texture-grabbing' transform by the visual system. We generated a variety of second-order four-stroke displays, containing texture-contrast reversals instead of luminance contrast reversals, and used their effectiveness as a diagnostic test for the presence of various forms of non-linear transform in the second-order motion system. Displays containing only forward or only reversed phi motion sequences were also tested. Displays defined by variation in luminance, contrast, orientation, and size were effective. Displays defined by variation in motion, dynamism, and stereo were partially or wholly ineffective. Results obtained with contrast-reversing and four-stroke displays indicate that only relatively simple non-linear transforms (involving spatial filtering and rectification) are available during second-order energy-based motion analysis.

  5. Contrast gain control in first- and second-order motion perception.

    PubMed

    Lu, Z L; Sperling, G

    1996-12-01

    A novel pedestal-plus-test paradigm is used to determine the nonlinear gain-control properties of the first-order (luminance) and the second-order (texture-contrast) motion systems, that is, how these systems' responses to motion stimuli are reduced by pedestals and other masking stimuli. Motion-direction thresholds were measured for test stimuli consisting of drifting luminance and texture-contrast-modulation stimuli superimposed on pedestals of various amplitudes. (A pedestal is a static sine-wave grating of the same type and same spatial frequency as the moving test grating.) It was found that first-order motion-direction thresholds are unaffected by small pedestals, but at pedestal contrasts above 1-2% (5-10 x pedestal threshold), motion thresholds increase proportionally to pedestal amplitude (a Weber law). For first-order stimuli, pedestal masking is specific to the spatial frequency of the test. On the other hand, motion-direction thresholds for texture-contrast stimuli are independent of pedestal amplitude (no gain control whatever) throughout the accessible pedestal amplitude range (from 0 to 40%). However, when baseline carrier contrast increases (with constant pedestal modulation amplitude), motion thresholds increase, showing that gain control in second-order motion is determined not by the modulator (as in first-order motion) but by the carrier. Note that baseline contrast of the carrier is inherently independent of spatial frequency of the modulator. The drastically different gain-control properties of the two motion systems and prior observations of motion masking and motion saturation are all encompassed in a functional theory. The stimulus inputs to both first- and second-order motion process are normalized by feedforward, shunting gain control. The different properties arise because the modulator is used to control the first-order gain and the carrier is used to control the second-order gain.

  6. Analytic calculations of anharmonic infrared and Raman vibrational spectra

    PubMed Central

    Louant, Orian; Ruud, Kenneth

    2016-01-01

    Using a recently developed recursive scheme for the calculation of high-order geometric derivatives of frequency-dependent molecular properties [Ringholm et al., J. Comp. Chem., 2014, 35, 622], we present the first analytic calculations of anharmonic infrared (IR) and Raman spectra including anharmonicity both in the vibrational frequencies and in the IR and Raman intensities. In the case of anharmonic corrections to the Raman intensities, this involves the calculation of fifth-order energy derivatives—that is, the third-order geometric derivatives of the frequency-dependent polarizability. The approach is applicable to both Hartree–Fock and Kohn–Sham density functional theory. Using generalized vibrational perturbation theory to second order, we have calculated the anharmonic infrared and Raman spectra of the non- and partially deuterated isotopomers of nitromethane, where the inclusion of anharmonic effects introduces combination and overtone bands that are observed in the experimental spectra. For the major features of the spectra, the inclusion of anharmonicities in the calculation of the vibrational frequencies is more important than anharmonic effects in the calculated infrared and Raman intensities. Using methanimine as a trial system, we demonstrate that the analytic approach avoids errors in the calculated spectra that may arise if numerical differentiation schemes are used. PMID:26784673

  7. A Modified Differential Coherent Bit Synchronization Algorithm for BeiDou Weak Signals with Large Frequency Deviation.

    PubMed

    Han, Zhifeng; Liu, Jianye; Li, Rongbing; Zeng, Qinghua; Wang, Yi

    2017-07-04

    BeiDou system navigation messages are modulated with a secondary NH (Neumann-Hoffman) code of 1 kbps, where frequent bit transitions limit the coherent integration time to 1 millisecond. Therefore, a bit synchronization algorithm is necessary to obtain bit edges and NH code phases. In order to realize bit synchronization for BeiDou weak signals with large frequency deviation, a bit synchronization algorithm based on differential coherent and maximum likelihood is proposed. Firstly, a differential coherent approach is used to remove the effect of frequency deviation, and the differential delay time is set to be a multiple of bit cycle to remove the influence of NH code. Secondly, the maximum likelihood function detection is used to improve the detection probability of weak signals. Finally, Monte Carlo simulations are conducted to analyze the detection performance of the proposed algorithm compared with a traditional algorithm under the CN0s of 20~40 dB-Hz and different frequency deviations. The results show that the proposed algorithm outperforms the traditional method with a frequency deviation of 50 Hz. This algorithm can remove the effect of BeiDou NH code effectively and weaken the influence of frequency deviation. To confirm the feasibility of the proposed algorithm, real data tests are conducted. The proposed algorithm is suitable for BeiDou weak signal bit synchronization with large frequency deviation.

  8. Monitoring heavy metal Cr in soil based on hyperspectral data using regression analysis

    NASA Astrophysics Data System (ADS)

    Zhang, Ningyu; Xu, Fuyun; Zhuang, Shidong; He, Changwei

    2016-10-01

    Heavy metal pollution in soils is one of the most critical problems in the global ecology and environment safety nowadays. Hyperspectral remote sensing and its application is capable of high speed, low cost, less risk and less damage, and provides a good method for detecting heavy metals in soil. This paper proposed a new idea of applying regression analysis of stepwise multiple regression between the spectral data and monitoring the amount of heavy metal Cr by sample points in soil for environmental protection. In the measurement, a FieldSpec HandHeld spectroradiometer is used to collect reflectance spectra of sample points over the wavelength range of 325-1075 nm. Then the spectral data measured by the spectroradiometer is preprocessed to reduced the influence of the external factors, and the preprocessed methods include first-order differential equation, second-order differential equation and continuum removal method. The algorithms of stepwise multiple regression are established accordingly, and the accuracy of each equation is tested. The results showed that the accuracy of first-order differential equation works best, which makes it feasible to predict the content of heavy metal Cr by using stepwise multiple regression.

  9. An approximation technique for predicting the transient response of a second order nonlinear equation

    NASA Technical Reports Server (NTRS)

    Laurenson, R. M.; Baumgarten, J. R.

    1975-01-01

    An approximation technique has been developed for determining the transient response of a nonlinear dynamic system. The nonlinearities in the system which has been considered appear in the system's dissipation function. This function was expressed as a second order polynomial in the system's velocity. The developed approximation is an extension of the classic Kryloff-Bogoliuboff technique. Two examples of the developed approximation are presented for comparative purposes with other approximation methods.

  10. KANTBP 2.0: New version of a program for computing energy levels, reaction matrix and radial wave functions in the coupled-channel hyperspherical adiabatic approach

    NASA Astrophysics Data System (ADS)

    Chuluunbaatar, O.; Gusev, A. A.; Vinitsky, S. I.; Abrashkevich, A. G.

    2008-11-01

    A FORTRAN 77 program for calculating energy values, reaction matrix and corresponding radial wave functions in a coupled-channel approximation of the hyperspherical adiabatic approach is presented. In this approach, a multi-dimensional Schrödinger equation is reduced to a system of the coupled second-order ordinary differential equations on a finite interval with homogeneous boundary conditions: (i) the Dirichlet, Neumann and third type at the left and right boundary points for continuous spectrum problem, (ii) the Dirichlet and Neumann type conditions at left boundary point and Dirichlet, Neumann and third type at the right boundary point for the discrete spectrum problem. The resulting system of radial equations containing the potential matrix elements and first-derivative coupling terms is solved using high-order accuracy approximations of the finite element method. As a test desk, the program is applied to the calculation of the reaction matrix and radial wave functions for 3D-model of a hydrogen-like atom in a homogeneous magnetic field. This version extends the previous version 1.0 of the KANTBP program [O. Chuluunbaatar, A.A. Gusev, A.G. Abrashkevich, A. Amaya-Tapia, M.S. Kaschiev, S.Y. Larsen, S.I. Vinitsky, Comput. Phys. Commun. 177 (2007) 649-675]. Program summaryProgram title: KANTBP Catalogue identifier: ADZH_v2_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADZH_v2_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 20 403 No. of bytes in distributed program, including test data, etc.: 147 563 Distribution format: tar.gz Programming language: FORTRAN 77 Computer: Intel Xeon EM64T, Alpha 21264A, AMD Athlon MP, Pentium IV Xeon, Opteron 248, Intel Pentium IV Operating system: OC Linux, Unix AIX 5.3, SunOS 5.8, Solaris, Windows XP RAM: This depends on the number of differential equations; the number and order of finite elements; the number of hyperradial points; and the number of eigensolutions required. The test run requires 2 MB Classification: 2.1, 2.4 External routines: GAULEG and GAUSSJ [2] Nature of problem: In the hyperspherical adiabatic approach [3-5], a multidimensional Schrödinger equation for a two-electron system [6] or a hydrogen atom in magnetic field [7-9] is reduced by separating radial coordinate ρ from the angular variables to a system of the second-order ordinary differential equations containing the potential matrix elements and first-derivative coupling terms. The purpose of this paper is to present the finite element method procedure based on the use of high-order accuracy approximations for calculating approximate eigensolutions of the continuum spectrum for such systems of coupled differential equations on finite intervals of the radial variable ρ∈[ρ,ρ]. This approach can be used in the calculations of effects of electron screening on low-energy fusion cross sections [10-12]. Solution method: The boundary problems for the coupled second-order differential equations are solved by the finite element method using high-order accuracy approximations [13]. The generalized algebraic eigenvalue problem AF=EBF with respect to pair unknowns ( E,F) arising after the replacement of the differential problem by the finite-element approximation is solved by the subspace iteration method using the SSPACE program [14]. The generalized algebraic eigenvalue problem (A-EB)F=λDF with respect to pair unknowns ( λ,F) arising after the corresponding replacement of the scattering boundary problem in open channels at fixed energy value, E, is solved by the LDL factorization of symmetric matrix and back-substitution methods using the DECOMP and REDBAK programs, respectively [14]. As a test desk, the program is applied to the calculation of the reaction matrix and corresponding radial wave functions for 3D-model of a hydrogen-like atom in a homogeneous magnetic field described in [9] on finite intervals of the radial variable ρ∈[ρ,ρ]. For this benchmark model the required analytical expressions for asymptotics of the potential matrix elements and first-derivative coupling terms, and also asymptotics of radial solutions of the boundary problems for coupled differential equations have been produced with help of a MAPLE computer algebra system. Restrictions: The computer memory requirements depend on: the number of differential equations; the number and order of finite elements; the total number of hyperradial points; and the number of eigensolutions required. Restrictions due to dimension sizes may be easily alleviated by altering PARAMETER statements (see Section 3 and [1] for details). The user must also supply subroutine POTCAL for evaluating potential matrix elements. The user should also supply subroutines ASYMEV (when solving the eigenvalue problem) or ASYMS0 and ASYMSC (when solving the scattering problem) which evaluate asymptotics of the radial wave functions at left and right boundary points in case of a boundary condition of the third type for the above problems. Running time: The running time depends critically upon: the number of differential equations; the number and order of finite elements; the total number of hyperradial points on interval [ ρ,ρ]; and the number of eigensolutions required. The test run which accompanies this paper took 2 s without calculation of matrix potentials on the Intel Pentium IV 2.4 GHz. References: [1] O. Chuluunbaatar, A.A. Gusev, A.G. Abrashkevich, A. Amaya-Tapia, M.S. Kaschiev, S.Y. Larsen, S.I. Vinitsky, Comput. Phys. Commun. 177 (2007) 649-675; http://cpc.cs.qub.ac.uk/summaries/ADZHv10.html. [2] W.H. Press, S.A. Teukolsky, W.T. Vetterling, B.P. Flannery, Numerical Recipes: The Art of Scientific Computing, Cambridge University Press, Cambridge, 1986. [3] J. Macek, J. Phys. B 1 (1968) 831-843. [4] U. Fano, Rep. Progr. Phys. 46 (1983) 97-165. [5] C.D. Lin, Adv. Atom. Mol. Phys. 22 (1986) 77-142. [6] A.G. Abrashkevich, D.G. Abrashkevich, M. Shapiro, Comput. Phys. Commun. 90 (1995) 311-339. [7] M.G. Dimova, M.S. Kaschiev, S.I. Vinitsky, J. Phys. B 38 (2005) 2337-2352. [8] O. Chuluunbaatar, A.A. Gusev, V.L. Derbov, M.S. Kaschiev, L.A. Melnikov, V.V. Serov, S.I. Vinitsky, J. Phys. A 40 (2007) 11485-11524. [9] O. Chuluunbaatar, A.A. Gusev, V.P. Gerdt, V.A. Rostovtsev, S.I. Vinitsky, A.G. Abrashkevich, M.S. Kaschiev, V.V. Serov, Comput. Phys. Commun. 178 (2007) 301 330; http://cpc.cs.qub.ac.uk/summaries/AEAAv10.html. [10] H.J. Assenbaum, K. Langanke, C. Rolfs, Z. Phys. A 327 (1987) 461-468. [11] V. Melezhik, Nucl. Phys. A 550 (1992) 223-234. [12] L. Bracci, G. Fiorentini, V.S. Melezhik, G. Mezzorani, P. Pasini, Phys. Lett. A 153 (1991) 456-460. [13] A.G. Abrashkevich, D.G. Abrashkevich, M.S. Kaschiev, I.V. Puzynin, Comput. Phys. Commun. 85 (1995) 40-64. [14] K.J. Bathe, Finite Element Procedures in Engineering Analysis, Englewood Cliffs, Prentice-Hall, New York, 1982.

  11. Data-driven Modeling of the Solar Corona by a New Three-dimensional Path-conservative Osher-Solomon MHD Model

    NASA Astrophysics Data System (ADS)

    Feng, Xueshang; Li, Caixia; Xiang, Changqing; Zhang, Man; Li, HuiChao; Wei, Fengsi

    2017-11-01

    A second-order path-conservative scheme with a Godunov-type finite-volume method has been implemented to advance the equations of single-fluid solar wind plasma magnetohydrodynamics (MHD) in time. This code operates on the six-component composite grid system in three-dimensional spherical coordinates with hexahedral cells of quadrilateral frustum type. The generalized Osher-Solomon Riemann solver is employed based on a numerical integration of the path-dependent dissipation matrix. For simplicity, the straight line segment path is used, and the path integral is evaluated in a fully numerical way by a high-order numerical Gauss-Legendre quadrature. Besides its very close similarity to Godunov type, the resulting scheme retains the attractive features of the original solver: it is nonlinear, free of entropy-fix, differentiable, and complete, in that each characteristic field results in a different numerical viscosity, due to the full use of the MHD eigenstructure. By using a minmod limiter for spatial oscillation control, the path-conservative scheme is realized for the generalized Lagrange multiplier and the extended generalized Lagrange multiplier formulation of solar wind MHD systems. This new model that is second order in space and time is written in the FORTRAN language with Message Passing Interface parallelization and validated in modeling the time-dependent large-scale structure of the solar corona, driven continuously by Global Oscillation Network Group data. To demonstrate the suitability of our code for the simulation of solar wind, we present selected results from 2009 October 9 to 2009 December 29 show its capability of producing a structured solar corona in agreement with solar coronal observations.

  12. Data-Driven Modeling of Solar Corona by a New 3d Path-Conservative Osher-Solomon MHD Odel

    NASA Astrophysics Data System (ADS)

    Feng, X. S.; Li, C.

    2017-12-01

    A second-order path-conservative scheme with Godunov-type finite volume method (FVM) has been implemented to advance the equations of single-fluid solar wind plasma magnetohydrodynamics (MHD) in time. This code operates on the six-component composite grid system in 3D spherical coordinates with hexahedral cells of quadrilateral frustum type. The generalized Osher-Solomon Riemann solver is employed based on a numerical integration of the path-dependentdissipation matrix. For simplicity, the straight line segment path is used and the path-integral is evaluated in a fully numerical way by high-order numerical Gauss-Legendre quadrature. Besides its closest similarity to Godunov, the resulting scheme retains the attractive features of the original solver: it is nonlinear, free of entropy-fix, differentiable and complete in that each characteristic field results in a different numerical viscosity, due to the full use of the MHD eigenstructure. By using a minmod limiter for spatial oscillation control, the pathconservative scheme is realized for the generalized Lagrange multiplier (GLM) and the extended generalized Lagrange multiplier (EGLM) formulation of solar wind MHD systems. This new model of second-order in space and time is written in FORTRAN language with Message Passing Interface (MPI) parallelization, and validated in modeling time-dependent large-scale structure of solar corona, driven continuously by the Global Oscillation Network Group (GONG) data. To demonstrate the suitability of our code for the simulation of solar wind, we present selected results from October 9th, 2009 to December 29th, 2009 , & Year 2008 to show its capability of producing structured solar wind in agreement with the observations.

  13. New Operational Matrices for Solving Fractional Differential Equations on the Half-Line

    PubMed Central

    2015-01-01

    In this paper, the fractional-order generalized Laguerre operational matrices (FGLOM) of fractional derivatives and fractional integration are derived. These operational matrices are used together with spectral tau method for solving linear fractional differential equations (FDEs) of order ν (0 < ν < 1) on the half line. An upper bound of the absolute errors is obtained for the approximate and exact solutions. Fractional-order generalized Laguerre pseudo-spectral approximation is investigated for solving nonlinear initial value problem of fractional order ν. The extension of the fractional-order generalized Laguerre pseudo-spectral method is given to solve systems of FDEs. We present the advantages of using the spectral schemes based on fractional-order generalized Laguerre functions and compare them with other methods. Several numerical examples are implemented for FDEs and systems of FDEs including linear and nonlinear terms. We demonstrate the high accuracy and the efficiency of the proposed techniques. PMID:25996369

  14. New operational matrices for solving fractional differential equations on the half-line.

    PubMed

    Bhrawy, Ali H; Taha, Taha M; Alzahrani, Ebraheem O; Alzahrani, Ebrahim O; Baleanu, Dumitru; Alzahrani, Abdulrahim A

    2015-01-01

    In this paper, the fractional-order generalized Laguerre operational matrices (FGLOM) of fractional derivatives and fractional integration are derived. These operational matrices are used together with spectral tau method for solving linear fractional differential equations (FDEs) of order ν (0 < ν < 1) on the half line. An upper bound of the absolute errors is obtained for the approximate and exact solutions. Fractional-order generalized Laguerre pseudo-spectral approximation is investigated for solving nonlinear initial value problem of fractional order ν. The extension of the fractional-order generalized Laguerre pseudo-spectral method is given to solve systems of FDEs. We present the advantages of using the spectral schemes based on fractional-order generalized Laguerre functions and compare them with other methods. Several numerical examples are implemented for FDEs and systems of FDEs including linear and nonlinear terms. We demonstrate the high accuracy and the efficiency of the proposed techniques.

  15. Lines of Eigenvectors and Solutions to Systems of Linear Differential Equations

    ERIC Educational Resources Information Center

    Rasmussen, Chris; Keynes, Michael

    2003-01-01

    The purpose of this paper is to describe an instructional sequence where students invent a method for locating lines of eigenvectors and corresponding solutions to systems of two first order linear ordinary differential equations with constant coefficients. The significance of this paper is two-fold. First, it represents an innovative alternative…

  16. Quasi-generalized variables

    NASA Technical Reports Server (NTRS)

    Baumgarten, J.; Ostermeyer, G. P.

    1986-01-01

    The numerical solution of a system of differential and algebraic equations is difficult, due to the appearance of numerical instabilities. A method is presented here which permits numerical solutions of such a system to be obtained which satisfy the algebraic constraint equations exactly without reducing the order of the differential equations. The method is demonstrated using examples from mechanics.

  17. Design of distributed PID-type dynamic matrix controller for fractional-order systems

    NASA Astrophysics Data System (ADS)

    Wang, Dawei; Zhang, Ridong

    2018-01-01

    With the continuous requirements for product quality and safety operation in industrial production, it is difficult to describe the complex large-scale processes with integer-order differential equations. However, the fractional differential equations may precisely represent the intrinsic characteristics of such systems. In this paper, a distributed PID-type dynamic matrix control method based on fractional-order systems is proposed. First, the high-order approximate model of integer order is obtained by utilising the Oustaloup method. Then, the step response model vectors of the plant is obtained on the basis of the high-order model, and the online optimisation for multivariable processes is transformed into the optimisation of each small-scale subsystem that is regarded as a sub-plant controlled in the distributed framework. Furthermore, the PID operator is introduced into the performance index of each subsystem and the fractional-order PID-type dynamic matrix controller is designed based on Nash optimisation strategy. The information exchange among the subsystems is realised through the distributed control structure so as to complete the optimisation task of the whole large-scale system. Finally, the control performance of the designed controller in this paper is verified by an example.

  18. Optimal second order sliding mode control for linear uncertain systems.

    PubMed

    Das, Madhulika; Mahanta, Chitralekha

    2014-11-01

    In this paper an optimal second order sliding mode controller (OSOSMC) is proposed to track a linear uncertain system. The optimal controller based on the linear quadratic regulator method is designed for the nominal system. An integral sliding mode controller is combined with the optimal controller to ensure robustness of the linear system which is affected by parametric uncertainties and external disturbances. To achieve finite time convergence of the sliding mode, a nonsingular terminal sliding surface is added with the integral sliding surface giving rise to a second order sliding mode controller. The main advantage of the proposed OSOSMC is that the control input is substantially reduced and it becomes chattering free. Simulation results confirm superiority of the proposed OSOSMC over some existing. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.

  19. A neuro approach to solve fuzzy Riccati differential equations

    NASA Astrophysics Data System (ADS)

    Shahrir, Mohammad Shazri; Kumaresan, N.; Kamali, M. Z. M.; Ratnavelu, Kurunathan

    2015-10-01

    There are many applications of optimal control theory especially in the area of control systems in engineering. In this paper, fuzzy quadratic Riccati differential equation is estimated using neural networks (NN). Previous works have shown reliable results using Runge-Kutta 4th order (RK4). The solution can be achieved by solving the 1st Order Non-linear Differential Equation (ODE) that is found commonly in Riccati differential equation. Research has shown improved results relatively to the RK4 method. It can be said that NN approach shows promising results with the advantage of continuous estimation and improved accuracy that can be produced over RK4.

  20. A neuro approach to solve fuzzy Riccati differential equations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shahrir, Mohammad Shazri, E-mail: mshazri@gmail.com; Telekom Malaysia, R&D TM Innovation Centre, LingkaranTeknokrat Timur, 63000 Cyberjaya, Selangor; Kumaresan, N., E-mail: drnk2008@gmail.com

    There are many applications of optimal control theory especially in the area of control systems in engineering. In this paper, fuzzy quadratic Riccati differential equation is estimated using neural networks (NN). Previous works have shown reliable results using Runge-Kutta 4th order (RK4). The solution can be achieved by solving the 1st Order Non-linear Differential Equation (ODE) that is found commonly in Riccati differential equation. Research has shown improved results relatively to the RK4 method. It can be said that NN approach shows promising results with the advantage of continuous estimation and improved accuracy that can be produced over RK4.

  1. Silicon optical modulators for optical digital and analog communications (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Yang, Lin; Ding, Jianfeng; Zhang, Lei; Shao, Sizu

    2017-02-01

    Silicon photonics is considered as a promising technology to overcome the difficulties of the existing digital and analog optical communication systems, such as low integration, high cost, and high power consumption. Silicon optical modulator, as a component to transfer data from electronic domain to optical one, has attracted extensive attentions in the past decade. In this paper, we review the statuses of the silicon optical modulators for digital and analog optical communications and introduce our efforts on these topics. We analyze the relationship between the performance and the structural parameters of the silicon optical modulator and present how to optimize its performance including electro-optical bandwidth, modulation efficiency, optical bandwidth and insertion loss. The fabricated silicon optical modulator has an electro-optical bandwidth of 30 GHz. Its extinction ratios are 14.0 dB, 11.2 dB and 9.0 dB at the speeds of 40 Gbps, 50 Gbps and 64 Gbps for OOK modulation. The high extinction ratio of the silicon optical modulator at the high speed makes it very appropriate for the application of optical coherent modulation, such as QPSK and 16-QAM. The fabricated silicon optical modulator also can be utilized for analog optical communication. With respect to a noise floor of -165 dBc, the dynamic ranges for the second-order harmonic and the third-order intermodulation distortion are 90.8 dB and 110.5 dB respectively. By adopting a differential driving structure, the dynamic range for the second-order harmonic can be further improved to 100.0 dB while the third-order intermodulation distortion remains the same level.

  2. Linear and non-linear regression analysis for the sorption kinetics of methylene blue onto activated carbon.

    PubMed

    Kumar, K Vasanth

    2006-10-11

    Batch kinetic experiments were carried out for the sorption of methylene blue onto activated carbon. The experimental kinetics were fitted to the pseudo first-order and pseudo second-order kinetics by linear and a non-linear method. The five different types of Ho pseudo second-order expression have been discussed. A comparison of linear least-squares method and a trial and error non-linear method of estimating the pseudo second-order rate kinetic parameters were examined. The sorption process was found to follow a both pseudo first-order kinetic and pseudo second-order kinetic model. Present investigation showed that it is inappropriate to use a type 1 and type pseudo second-order expressions as proposed by Ho and Blanachard et al. respectively for predicting the kinetic rate constants and the initial sorption rate for the studied system. Three correct possible alternate linear expressions (type 2 to type 4) to better predict the initial sorption rate and kinetic rate constants for the studied system (methylene blue/activated carbon) was proposed. Linear method was found to check only the hypothesis instead of verifying the kinetic model. Non-linear regression method was found to be the more appropriate method to determine the rate kinetic parameters.

  3. Procedural learning in Parkinson's disease, specific language impairment, dyslexia, schizophrenia, developmental coordination disorder, and autism spectrum disorders: A second-order meta-analysis.

    PubMed

    Clark, Gillian M; Lum, Jarrad A G

    2017-10-01

    The serial reaction time task (SRTT) has been used to study procedural learning in clinical populations. In this report, second-order meta-analysis was used to investigate whether disorder type moderates performance on the SRTT. Using this approach to quantitatively summarise past research, it was tested whether autism spectrum disorder, developmental coordination disorder, dyslexia, Parkinson's disease, schizophrenia, and specific language impairment differentially affect procedural learning on the SRTT. The main analysis revealed disorder type moderated SRTT performance (p=0.010). This report demonstrates comparable levels of procedural learning impairment in developmental coordination disorder, dyslexia, Parkinson's disease, schizophrenia, and specific language impairment. However, in autism, procedural learning is spared. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Numerical analysis for trajectory controllability of a coupled multi-order fractional delay differential system via the shifted Jacobi method

    NASA Astrophysics Data System (ADS)

    Priya, B. Ganesh; Muthukumar, P.

    2018-02-01

    This paper deals with the trajectory controllability for a class of multi-order fractional linear systems subject to a constant delay in state vector. The solution for the coupled fractional delay differential equation is established by the Mittag-Leffler function. The necessary and sufficient condition for the trajectory controllability is formulated and proved by the generalized Gronwall's inequality. The approximate trajectory for the proposed system is obtained through the shifted Jacobi operational matrix method. The numerical simulation of the approximate solution shows the theoretical results. Finally, some remarks and comments on the existing results of constrained controllability for the fractional dynamical system are also presented.

  5. The Differential Impact of Video-Stimulated Recall and Concurrent Questioning Methods on Beginning Readers' Verbalization about Self-Monitoring during Oral Reading

    ERIC Educational Resources Information Center

    Pratt, Sharon M.; Martin, Anita M.

    2017-01-01

    This pilot study explored two methods of eliciting beginning readers' verbalizations of their thinking when self-monitoring oral reading: video-stimulated recall and concurrent questioning. First and second graders (N = 11) were asked to explain their thinking about repetitions, attempts to self-correct, and successful self-corrects, in order to…

  6. On a modified streamline curvature method for the Euler equations

    NASA Technical Reports Server (NTRS)

    Cordova, Jeffrey Q.; Pearson, Carl E.

    1988-01-01

    A modification of the streamline curvature method leads to a quasilinear second-order partial differential equation for the streamline coordinate function. The existence of a stream function is not required. The method is applied to subsonic and supersonic nozzle flow, and to axially symmetric flow with swirl. For many situations, the associated numerical method is both fast and accurate.

  7. Investigating the Theoretical Structure of the DAS-II Core Battery at School Age Using Bayesian Structural Equation Modeling

    ERIC Educational Resources Information Center

    Dombrowski, Stefan C.; Golay, Philippe; McGill, Ryan J.; Canivez, Gary L.

    2018-01-01

    Bayesian structural equation modeling (BSEM) was used to investigate the latent structure of the Differential Ability Scales-Second Edition core battery using the standardization sample normative data for ages 7-17. Results revealed plausibility of a three-factor model, consistent with publisher theory, expressed as either a higher-order (HO) or a…

  8. On method of solving third-order ordinary differential equations directly using Bernstein polynomials

    NASA Astrophysics Data System (ADS)

    Khataybeh, S. N.; Hashim, I.

    2018-04-01

    In this paper, we propose for the first time a method based on Bernstein polynomials for solving directly a class of third-order ordinary differential equations (ODEs). This method gives a numerical solution by converting the equation into a system of algebraic equations which is solved directly. Some numerical examples are given to show the applicability of the method.

  9. EXPONENTIAL TIME DIFFERENCING FOR HODGKIN–HUXLEY-LIKE ODES

    PubMed Central

    Börgers, Christoph; Nectow, Alexander R.

    2013-01-01

    Several authors have proposed the use of exponential time differencing (ETD) for Hodgkin–Huxley-like partial and ordinary differential equations (PDEs and ODEs). For Hodgkin–Huxley-like PDEs, ETD is attractive because it can deal effectively with the stiffness issues that diffusion gives rise to. However, large neuronal networks are often simulated assuming “space-clamped” neurons, i.e., using the Hodgkin–Huxley ODEs, in which there are no diffusion terms. Our goal is to clarify whether ETD is a good idea even in that case. We present a numerical comparison of first- and second-order ETD with standard explicit time-stepping schemes (Euler’s method, the midpoint method, and the classical fourth-order Runge–Kutta method). We find that in the standard schemes, the stable computation of the very rapid rising phase of the action potential often forces time steps of a small fraction of a millisecond. This can result in an expensive calculation yielding greater overall accuracy than needed. Although it is tempting at first to try to address this issue with adaptive or fully implicit time-stepping, we argue that neither is effective here. The main advantage of ETD for Hodgkin–Huxley-like systems of ODEs is that it allows underresolution of the rising phase of the action potential without causing instability, using time steps on the order of one millisecond. When high quantitative accuracy is not necessary and perhaps, because of modeling inaccuracies, not even useful, ETD allows much faster simulations than standard explicit time-stepping schemes. The second-order ETD scheme is found to be substantially more accurate than the first-order one even for large values of Δt. PMID:24058276

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Delgado-Acosta, E. G.; Napsuciale, Mauro; Rodriguez, Simon

    We develop a second order formalism for massive spin 1/2 fermions based on the projection over Poincare invariant subspaces in the ((1/2),0)+(0,(1/2)) representation of the homogeneous Lorentz group. Using the U(1){sub em} gauge principle we obtain a second order description for the electromagnetic interactions of a spin 1/2 fermion with two free parameters, the gyromagnetic factor g and a parameter {xi} related to odd-parity Lorentz structures. We calculate Compton scattering in this formalism. In the particular case g=2, {xi}=0, and for states with well-defined parity, we recover Dirac results. In general, we find the correct classical limit and a finitemore » value r{sub c}{sup 2} for the forward differential cross section, independent of the photon energy and of the value of the parameters g and {xi}. The differential cross section vanishes at high energies for all g, {xi} except in the forward direction. The total cross section at high energies vanishes only for g=2, {xi}=0. We argue that this formalism is more convenient than Dirac theory in the description of low energy electromagnetic properties of baryons and illustrate the point with the proton case.« less

  11. Effect of heat flux on differential rotation in turbulent convection.

    PubMed

    Kleeorin, Nathan; Rogachevskii, Igor

    2006-04-01

    We studied the effect of the turbulent heat flux on the Reynolds stresses in a rotating turbulent convection. To this end we solved a coupled system of dynamical equations which includes the equations for the Reynolds stresses, the entropy fluctuations, and the turbulent heat flux. We used a spectral tau approximation in order to close the system of dynamical equations. We found that the ratio of the contributions to the Reynolds stresses caused by the turbulent heat flux and the anisotropic eddy viscosity is of the order of approximately 10(L rho/l0)2, where l0 is the maximum scale of turbulent motions and L rho is the fluid density variation scale. This effect is crucial for the formation of the differential rotation and should be taken into account in the theories of the differential rotation of the Sun, stars, and planets. In particular, we demonstrated that this effect may cause the differential rotation which is comparable with the typical solar differential rotation.

  12. Cellular internalization of LiNbO3 nanocrystals for second harmonic imaging and the effects on stem cell differentiation

    NASA Astrophysics Data System (ADS)

    Li, Jianhua; Qiu, Jichuan; Guo, Weibo; Wang, Shu; Ma, Baojin; Mou, Xiaoning; Tanes, Michael; Jiang, Huaidong; Liu, Hong

    2016-03-01

    Second harmonic generation (SHG) nanocrystals have recently been reported to label cancer cells and other functional cell lines due to their unique double-frequency property. In this paper, we report for the first time the use of lithium niobate (LiNbO3, LN) nanocrystals as SHG labels for imaging stem cells. Rat mesenchymal stem cells (rMSCs) were labeled with LN nanocrystals in order to study the cellular internalization of the nanocrystals and the influence on stem cell differentiation. The results showed that LN nanocrystals were endocytosed by the rMSCs and the distribution of the internalized nanoparticles demonstrated a high consistency with the orientation of the actin filaments. Besides, LN-labeled rMSCs showed a concentration-dependent viability. Most importantly, rMSCs labeled with 50 μg per mL of LN nanocrystals retained their ability to differentiate into both osteogenic and adipogenic lineages. The results prove that LN nanocrystals can be used as a cytocompatible, near-infrared (NIR) light driven cell label for long-term imaging, without hindering stem cell differentiation. This work will promote the use of LN nanocrystals to broader applications like deep-tissue tracking, remote drug delivery and stem cell therapy.Second harmonic generation (SHG) nanocrystals have recently been reported to label cancer cells and other functional cell lines due to their unique double-frequency property. In this paper, we report for the first time the use of lithium niobate (LiNbO3, LN) nanocrystals as SHG labels for imaging stem cells. Rat mesenchymal stem cells (rMSCs) were labeled with LN nanocrystals in order to study the cellular internalization of the nanocrystals and the influence on stem cell differentiation. The results showed that LN nanocrystals were endocytosed by the rMSCs and the distribution of the internalized nanoparticles demonstrated a high consistency with the orientation of the actin filaments. Besides, LN-labeled rMSCs showed a concentration-dependent viability. Most importantly, rMSCs labeled with 50 μg per mL of LN nanocrystals retained their ability to differentiate into both osteogenic and adipogenic lineages. The results prove that LN nanocrystals can be used as a cytocompatible, near-infrared (NIR) light driven cell label for long-term imaging, without hindering stem cell differentiation. This work will promote the use of LN nanocrystals to broader applications like deep-tissue tracking, remote drug delivery and stem cell therapy. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr00785f

  13. Parallel Coding of First- and Second-Order Stimulus Attributes by Midbrain Electrosensory Neurons

    PubMed Central

    McGillivray, Patrick; Vonderschen, Katrin; Fortune, Eric S.; Chacron, Maurice J.

    2015-01-01

    Natural stimuli often have time-varying first-order (i.e., mean) and second-order (i.e., variance) attributes that each carry critical information for perception and can vary independently over orders of magnitude. Experiments have shown that sensory systems continuously adapt their responses based on changes in each of these attributes. This adaptation creates ambiguity in the neural code as multiple stimuli may elicit the same neural response. While parallel processing of first- and second-order attributes by separate neural pathways is sufficient to remove this ambiguity, the existence of such pathways and the neural circuits that mediate their emergence have not been uncovered to date. We recorded the responses of midbrain electrosensory neurons in the weakly electric fish Apteronotus leptorhynchus to stimuli with first- and second-order attributes that varied independently in time. We found three distinct groups of midbrain neurons: the first group responded to both first- and second-order attributes, the second group responded selectively to first-order attributes, and the last group responded selectively to second-order attributes. In contrast, all afferent hindbrain neurons responded to both first- and second-order attributes. Using computational analyses, we show how inputs from a heterogeneous population of ON- and OFF-type afferent neurons are combined to give rise to response selectivity to either first- or second-order stimulus attributes in midbrain neurons. Our study thus uncovers, for the first time, generic and widely applicable mechanisms by which parallel processing of first- and second-order stimulus attributes emerges in the brain. PMID:22514313

  14. Monitoring by forward scatter radar techniques: an improved second-order analytical model

    NASA Astrophysics Data System (ADS)

    Falconi, Marta Tecla; Comite, Davide; Galli, Alessandro; Marzano, Frank S.; Pastina, Debora; Lombardo, Pierfrancesco

    2017-10-01

    In this work, a second-order phase approximation is introduced to provide an improved analytical model of the signal received in forward scatter radar systems. A typical configuration with a rectangular metallic object illuminated while crossing the baseline, in far- or near-field conditions, is considered. An improved second-order model is compared with a simplified one already proposed by the authors and based on a paraxial approximation. A phase error analysis is carried out to investigate benefits and limitations of the second-order modeling. The results are validated by developing full-wave numerical simulations implementing the relevant scattering problem on a commercial tool.

  15. Controlling flexible structures with second order actuator dynamics

    NASA Technical Reports Server (NTRS)

    Inman, Daniel J.; Umland, Jeffrey W.; Bellos, John

    1989-01-01

    The control of flexible structures for those systems with actuators that are modeled by second order dynamics is examined. Two modeling approaches are investigated. First a stability and performance analysis is performed using a low order finite dimensional model of the structure. Secondly, a continuum model of the flexible structure to be controlled, coupled with lumped parameter second order dynamic models of the actuators performing the control is used. This model is appropriate in the modeling of the control of a flexible panel by proof-mass actuators as well as other beam, plate and shell like structural numbers. The model is verified with experimental measurements.

  16. Limit cycles in planar piecewise linear differential systems with nonregular separation line

    NASA Astrophysics Data System (ADS)

    Cardin, Pedro Toniol; Torregrosa, Joan

    2016-12-01

    In this paper we deal with planar piecewise linear differential systems defined in two zones. We consider the case when the two linear zones are angular sectors of angles α and 2 π - α, respectively, for α ∈(0 , π) . We study the problem of determining lower bounds for the number of isolated periodic orbits in such systems using Melnikov functions. These limit cycles appear studying higher order piecewise linear perturbations of a linear center. It is proved that the maximum number of limit cycles that can appear up to a sixth order perturbation is five. Moreover, for these values of α, we prove the existence of systems with four limit cycles up to fifth order and, for α = π / 2, we provide an explicit example with five up to sixth order. In general, the nonregular separation line increases the number of periodic orbits in comparison with the case where the two zones are separated by a straight line.

  17. Regular and Chaotic Quantum Dynamics of Two-Level Atoms in a Selfconsistent Radiation Field

    NASA Technical Reports Server (NTRS)

    Konkov, L. E.; Prants, S. V.

    1996-01-01

    Dynamics of two-level atoms interacting with their own radiation field in a single-mode high-quality resonator is considered. The dynamical system consists of two second-order differential equations, one for the atomic SU(2) dynamical-group parameter and another for the field strength. With the help of the maximal Lyapunov exponent for this set, we numerically investigate transitions from regularity to deterministic quantum chaos in such a simple model. Increasing the collective coupling constant b is identical with 8(pi)N(sub 0)(d(exp 2))/hw, we observed for initially unexcited atoms a usual sharp transition to chaos at b(sub c) approx. equal to 1. If we take the dimensionless individual Rabi frequency a = Omega/2w as a control parameter, then a sequence of order-to-chaos transitions has been observed starting with the critical value a(sub c) approx. equal to 0.25 at the same initial conditions.

  18. Modeling of aircraft unsteady aerodynamic characteristics. Part 1: Postulated models

    NASA Technical Reports Server (NTRS)

    Klein, Vladislav; Noderer, Keith D.

    1994-01-01

    A short theoretical study of aircraft aerodynamic model equations with unsteady effects is presented. The aerodynamic forces and moments are expressed in terms of indicial functions or internal state variables. The first representation leads to aircraft integro-differential equations of motion; the second preserves the state-space form of the model equations. The formulations of unsteady aerodynamics is applied in two examples. The first example deals with a one-degree-of-freedom harmonic motion about one of the aircraft body axes. In the second example, the equations for longitudinal short-period motion are developed. In these examples, only linear aerodynamic terms are considered. The indicial functions are postulated as simple exponentials and the internal state variables are governed by linear, time-invariant, first-order differential equations. It is shown that both approaches to the modeling of unsteady aerodynamics lead to identical models.

  19. Effectiveness of a Class-Wide Peer-Mediated Elementary Math Differentiation Strategy

    ERIC Educational Resources Information Center

    Lloyd, Jason D.

    2017-01-01

    Approximately 60% of classroom students have insufficient math skills. Within a Multi-Tiered Systems of Support (MTSS) framework, teachers can implement core differentiation strategies targeted at improving math skills of an entire class of students. Differentiation programs are developed in order to target academic skills of groups of students…

  20. An estimator for the standard deviation of a natural frequency. II.

    NASA Technical Reports Server (NTRS)

    Schiff, A. J.; Bogdanoff, J. L.

    1971-01-01

    A method has been presented for estimating the variability of a system's natural frequencies arising from the variability of the system's parameters. The only information required to obtain the estimates is the member variability, in the form of second-order properties, and the natural frequencies and mode shapes of the mean system. It has also been established for the systems studied by means of Monte Carlo estimates that the specification of second-order properties is an adequate description of member variability.

  1. Differential Measurement Periodontal Structures Mapping System

    NASA Technical Reports Server (NTRS)

    Companion, John A. (Inventor)

    1998-01-01

    This invention relates to a periodontal structure mapping system employing a dental handpiece containing first and second acoustic sensors for locating the Cemento-Enamel Junction (CEJ) and measuring the differential depth between the CEJ and the bottom of the periodontal pocket. Measurements are taken at multiple locations on each tooth of a patient, observed, analyzed by an optical analysis subsystem, and archived by a data storage system for subsequent study and comparison with previous and subsequent measurements. Ultrasonic transducers for the first and second acoustic sensors are contained within the handpiece and in connection with a control computer. Pressurized water is provided for the depth measurement sensor and a linearly movable probe sensor serves as the sensor for the CEJ finder. The linear movement of the CEJ sensor is obtained by a control computer actuated by the prober. In an alternate embodiment, the CEJ probe is an optical fiber sensor with appropriate analysis structure provided therefor.

  2. Numerical scheme approximating solution and parameters in a beam equation

    NASA Astrophysics Data System (ADS)

    Ferdinand, Robert R.

    2003-12-01

    We present a mathematical model which describes vibration in a metallic beam about its equilibrium position. This model takes the form of a nonlinear second-order (in time) and fourth-order (in space) partial differential equation with boundary and initial conditions. A finite-element Galerkin approximation scheme is used to estimate model solution. Infinite-dimensional model parameters are then estimated numerically using an inverse method procedure which involves the minimization of a least-squares cost functional. Numerical results are presented and future work to be done is discussed.

  3. An efficient and robust algorithm for two dimensional time dependent incompressible Navier-Stokes equations: High Reynolds number flows

    NASA Technical Reports Server (NTRS)

    Goodrich, John W.

    1991-01-01

    An algorithm is presented for unsteady two-dimensional incompressible Navier-Stokes calculations. This algorithm is based on the fourth order partial differential equation for incompressible fluid flow which uses the streamfunction as the only dependent variable. The algorithm is second order accurate in both time and space. It uses a multigrid solver at each time step. It is extremely efficient with respect to the use of both CPU time and physical memory. It is extremely robust with respect to Reynolds number.

  4. On the construction of recurrence relations for the expansion and connection coefficients in series of Jacobi polynomials

    NASA Astrophysics Data System (ADS)

    Doha, E. H.

    2004-01-01

    Formulae expressing explicitly the Jacobi coefficients of a general-order derivative (integral) of an infinitely differentiable function in terms of its original expansion coefficients, and formulae for the derivatives (integrals) of Jacobi polynomials in terms of Jacobi polynomials themselves are stated. A formula for the Jacobi coefficients of the moments of one single Jacobi polynomial of certain degree is proved. Another formula for the Jacobi coefficients of the moments of a general-order derivative of an infinitely differentiable function in terms of its original expanded coefficients is also given. A simple approach in order to construct and solve recursively for the connection coefficients between Jacobi-Jacobi polynomials is described. Explicit formulae for these coefficients between ultraspherical and Jacobi polynomials are deduced, of which the Chebyshev polynomials of the first and second kinds and Legendre polynomials are important special cases. Two analytical formulae for the connection coefficients between Laguerre-Jacobi and Hermite-Jacobi are developed.

  5. High-order space charge effects using automatic differentiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reusch, Michael F.; Bruhwiler, David L.; Computer Accelerator Physics Conference Williamsburg, Virginia 1996

    1997-02-01

    The Northrop Grumman Topkark code has been upgraded to Fortran 90, making use of operator overloading, so the same code can be used to either track an array of particles or construct a Taylor map representation of the accelerator lattice. We review beam optics and beam dynamics simulations conducted with TOPKARK in the past and we present a new method for modeling space charge forces to high-order with automatic differentiation. This method generates an accurate, high-order, 6-D Taylor map of the phase space variable trajectories for a bunched, high-current beam. The spatial distribution is modeled as the product of amore » Taylor Series times a Gaussian. The variables in the argument of the Gaussian are normalized to the respective second moments of the distribution. This form allows for accurate representation of a wide range of realistic distributions, including any asymmetries, and allows for rapid calculation of the space charge fields with free space boundary conditions. An example problem is presented to illustrate our approach.« less

  6. The Riemann-Lanczos equations in general relativity and their integrability

    NASA Astrophysics Data System (ADS)

    Dolan, P.; Gerber, A.

    2008-06-01

    The aim of this paper is to examine the Riemann-Lanczos equations and how they can be made integrable. They consist of a system of linear first-order partial differential equations that arise in general relativity, whereby the Riemann curvature tensor is generated by an unknown third-order tensor potential field called the Lanczos tensor. Our approach is based on the theory of jet bundles, where all field variables and all their partial derivatives of all relevant orders are treated as independent variables alongside the local manifold coordinates (xa) on the given space-time manifold M. This approach is adopted in (a) Cartan's method of exterior differential systems, (b) Vessiot's dual method using vector field systems, and (c) the Janet-Riquier theory of systems of partial differential equations. All three methods allow for the most general situations under which integrability conditions can be found. They give equivalent results, namely, that involutivity is always achieved at all generic points of the jet manifold M after a finite number of prolongations. Two alternative methods that appear in the general relativity literature to find integrability conditions for the Riemann-Lanczos equations generate new partial differential equations for the Lanczos potential that introduce a source term, which is nonlinear in the components of the Riemann tensor. We show that such sources do not occur when either of method (a), (b), or (c) are used.

  7. Belavkin filter for mixture of quadrature and photon counting process with some control techniques

    NASA Astrophysics Data System (ADS)

    Garg, Naman; Parthasarathy, Harish; Upadhyay, D. K.

    2018-03-01

    The Belavkin filter for the H-P Schrödinger equation is derived when the measurement process consists of a mixture of quantum Brownian motions and conservation/Poisson process. Higher-order powers of the measurement noise differentials appear in the Belavkin dynamics. For simulation, we use a second-order truncation. Control of the Belavkin filtered state by infinitesimal unitary operators is achieved in order to reduce the noise effects in the Belavkin filter equation. This is carried out along the lines of Luc Bouten. Various optimization criteria for control are described like state tracking and Lindblad noise removal.

  8. Improving transportation systems management and operations (TSM&O), capability maturity model workshop white paper : business processes.

    DOT National Transportation Integrated Search

    2015-04-01

    Research done through the Second Strategic Highway Research Program (SHRP 2) determined that agencies with the most effective transportation systems management and operations (TSM&O) activities were differentiated not by budgets or technical skills a...

  9. Improving transportation systems management and operations (TSM&O), capability maturity model workshop white paper : collaboration.

    DOT National Transportation Integrated Search

    2015-04-01

    Research done through the Second Strategic Highway Research Program (SHRP 2) determined that agencies with the most effective transportation systems management and operations (TSM&O) activities were differentiated not by budgets or technical skills a...

  10. Improving transportation systems management and operations (TSM&O), capability maturity model workshop white paper : culture.

    DOT National Transportation Integrated Search

    2015-04-01

    Research done through the Second Strategic Highway Research Program (SHRP 2) determined that agencies with the most effective transportation systems management and operations (TSM&O) activities were differentiated not by budgets or technical skills a...

  11. Improving transportation systems management and operations (TSM&O), capability maturity model workshop white paper : performance measurement.

    DOT National Transportation Integrated Search

    2015-04-01

    Research done through the Second Strategic Highway Research Program (SHRP 2) determined that agencies with the most effective transportation systems management and operations (TSM&O) activities were differentiated not by budgets or technical skills a...

  12. Some operational tools for solving fractional and higher integer order differential equations: A survey on their mutual relations

    NASA Astrophysics Data System (ADS)

    Kiryakova, Virginia S.

    2012-11-01

    The Laplace Transform (LT) serves as a basis of the Operational Calculus (OC), widely explored by engineers and applied scientists in solving mathematical models for their practical needs. This transform is closely related to the exponential and trigonometric functions (exp, cos, sin) and to the classical differentiation and integration operators, reducing them to simple algebraic operations. Thus, the classical LT and the OC give useful tool to handle differential equations and systems with constant coefficients. Several generalizations of the LT have been introduced to allow solving, in a similar way, of differential equations with variable coefficients and of higher integer orders, as well as of fractional (arbitrary non-integer) orders. Note that fractional order mathematical models are recently widely used to describe better various systems and phenomena of the real world. This paper surveys briefly some of our results on classes of such integral transforms, that can be obtained from the LT by means of "transmutations" which are operators of the generalized fractional calculus (GFC). On the list of these Laplace-type integral transforms, we consider the Borel-Dzrbashjan, Meijer, Krätzel, Obrechkoff, generalized Obrechkoff (multi-index Borel-Dzrbashjan) transforms, etc. All of them are G- and H-integral transforms of convolutional type, having as kernels Meijer's G- or Fox's H-functions. Besides, some special functions (also being G- and H-functions), among them - the generalized Bessel-type and Mittag-Leffler (M-L) type functions, are generating Gel'fond-Leontiev (G-L) operators of generalized differentiation and integration, which happen to be also operators of GFC. Our integral transforms have operational properties analogous to those of the LT - they do algebrize the G-L generalized integrations and differentiations, and thus can serve for solving wide classes of differential equations with variable coefficients of arbitrary, including non-integer order. Throughout the survey, we illustrate the parallels in the relationships: Laplace type integral transforms - special functions as kernels - operators of generalized integration and differentiation generated by special functions - special functions as solutions of related differential equations. The role of the so-called Special Functions of Fractional Calculus is emphasized.

  13. Chaotic interactions of self-replicating RNA.

    PubMed

    Forst, C V

    1996-03-01

    A general system of high-order differential equations describing complex dynamics of replicating biomolecules is given. Symmetry relations and coordinate transformations of general replication systems leading to topologically equivalent systems are derived. Three chaotic attractors observed in Lotka-Volterra equations of dimension n = 3 are shown to represent three cross-sections of one and the same chaotic regime. Also a fractal torus in a generalized three-dimensional Lotka-Volterra Model has been linked to one of the chaotic attractors. The strange attractors are studied in the equivalent four-dimensional catalytic replicator network. The fractal torus has been examined in adapted Lotka-Volterra equations. Analytic expressions are derived for the Lyapunov exponents of the flow in the replicator system. Lyapunov spectra for different pathways into chaos has been calculated. In the generalized Lotka-Volterra system a second inner rest point--coexisting with (quasi)-periodic orbits--can be observed; with an abundance of different bifurcations. Pathways from chaotic tori, via quasi-periodic tori, via limit cycles, via multi-periodic orbits--emerging out of periodic doubling bifurcations--to "simple" chaotic attractors can be found.

  14. Power transmission device for four wheel drive vehicle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Iwatsuki, T.; Kawamoto, M.; Kano, T.

    This patent describes a power transmission device with an improved differential motion limiting mechanism for a four wheel drive vehicle having automatic transmission means, front wheel differential gear means, differential motion limiting means and transfer unit means including center differential gear means, comprising: a first gear mount casing having a gear adapted to mesh with an output of a transmission; a differential motion limiting device arranged together with a front wheel differential gear in the first gear mount casing. The front wheel differential gear having a first diff-carrier and the differential motion limiting device comprising a hydraulic friction clutch formore » engaging and disengaging the first gear mount casing with the first diff-carrier of the front wheel differential gear; a second gear mount casing disposed coaxially with respect to the first gear mount casing; and a transfer unit including a center differential gear arranged in the second gear mount casing, the center differential gear comprising a second diff-carrier coupled with the first gear mount casing, a first side gear coupled with the first diff-carrier of the front wheel differential gear, and a second side gear coupled with the second gear mount casing for transmitting power to the rear wheels.« less

  15. A Galerkin formulation of the MIB method for three dimensional elliptic interface problems

    PubMed Central

    Xia, Kelin; Wei, Guo-Wei

    2014-01-01

    We develop a three dimensional (3D) Galerkin formulation of the matched interface and boundary (MIB) method for solving elliptic partial differential equations (PDEs) with discontinuous coefficients, i.e., the elliptic interface problem. The present approach builds up two sets of elements respectively on two extended subdomains which both include the interface. As a result, two sets of elements overlap each other near the interface. Fictitious solutions are defined on the overlapping part of the elements, so that the differentiation operations of the original PDEs can be discretized as if there was no interface. The extra coefficients of polynomial basis functions, which furnish the overlapping elements and solve the fictitious solutions, are determined by interface jump conditions. Consequently, the interface jump conditions are rigorously enforced on the interface. The present method utilizes Cartesian meshes to avoid the mesh generation in conventional finite element methods (FEMs). We implement the proposed MIB Galerkin method with three different elements, namely, rectangular prism element, five-tetrahedron element and six-tetrahedron element, which tile the Cartesian mesh without introducing any new node. The accuracy, stability and robustness of the proposed 3D MIB Galerkin are extensively validated over three types of elliptic interface problems. In the first type, interfaces are analytically defined by level set functions. These interfaces are relatively simple but admit geometric singularities. In the second type, interfaces are defined by protein surfaces, which are truly arbitrarily complex. The last type of interfaces originates from multiprotein complexes, such as molecular motors. Near second order accuracy has been confirmed for all of these problems. To our knowledge, it is the first time for an FEM to show a near second order convergence in solving the Poisson equation with realistic protein surfaces. Additionally, the present work offers the first known near second order accurate method for C1 continuous or H2 continuous solutions associated with a Lipschitz continuous interface in a 3D setting. PMID:25309038

  16. Entropy criteria applied to pattern selection in systems with free boundaries

    NASA Astrophysics Data System (ADS)

    Kirkaldy, J. S.

    1985-10-01

    The steady state differential or integral equations which describe patterned dissipative structures, typically to be identified with first order phase transformation morphologies like isothermal pearlites, are invariably degenerate in one or more order parameters (the lamellar spacing in the pearlite case). It is often observed that a different pattern is attained at the steady state for each initial condition (the hysteresis or metastable case). Alternatively, boundary perturbations and internal fluctuations during transition up to, or at the steady state, destroy the path coherence. In this case a statistical ensemble of imperfect patterns often emerges which represents a fluctuating but recognizably patterned and unique average steady state. It is cases like cellular, lamellar pearlite, involving an assembly of individual cell patterns which are regularly perturbed by local fluctuation and growth processes, which concern us here. Such weakly fluctuating nonlinear steady state ensembles can be arranged in a thought experiment so as to evolve as subsystems linking two very large mass-energy reservoirs in isolation. Operating on this discontinuous thermodynamic ideal, Onsager’s principle of maximum path probability for isolated systems, which we interpret as a minimal time correlation function connecting subsystem and baths, identifies the stable steady state at a parametric minimum or maximum (or both) in the dissipation rate. This nonlinear principle is independent of the Principle of Minimum Dissipation which is applicable in the linear regime of irreversible thermodynamics. The statistical argument is equivalent to the weak requirement that the isolated system entropy as a function of time be differentiable to the second order despite the macroscopic pattern fluctuations which occur in the subsystem. This differentiability condition is taken for granted in classical stability theory based on the 2nd Law. The optimal principle as applied to isothermal and forced velocity pearlites (in this case maximal) possesses a Le Chatelier (perturbation) Principle which can be formulated exactly via Langer’s conjecture that “each lamella must grow in a direction which is perpendicular to the solidification front”. This is the first example of such an equivalence to be experimentally and theoretically recognized in nonlinear irreversible thermodynamics. A further application to binary solidification cells is reviewed. In this case the optimum in the dissipation is a minimum and the closure between theory and experiment is excellent. Other applications in thermal-hydraulics, biology, and solid state physics are briefy described.

  17. Differentiated Products Demand Systems from a Combination of Micro and Macro Data: The New Car Market

    ERIC Educational Resources Information Center

    Berry, Steven; Levinsohn, James; Pakes, Ariel

    2004-01-01

    In this paper, we consider how rich sources of information on consumer choice can help to identify demand parameters in a widely used class of differentiated products demand models. Most important, we show how to use "second-choice" data on automotive purchases to obtain good estimates of substitution patterns in the automobile industry. We use…

  18. Neural correlates of processing facial identity based on features versus their spacing.

    PubMed

    Maurer, D; O'Craven, K M; Le Grand, R; Mondloch, C J; Springer, M V; Lewis, T L; Grady, C L

    2007-04-08

    Adults' expertise in recognizing facial identity involves encoding subtle differences among faces in the shape of individual facial features (featural processing) and in the spacing among features (a type of configural processing called sensitivity to second-order relations). We used fMRI to investigate the neural mechanisms that differentiate these two types of processing. Participants made same/different judgments about pairs of faces that differed only in the shape of the eyes and mouth, with minimal differences in spacing (featural blocks), or pairs of faces that had identical features but differed in the positions of those features (spacing blocks). From a localizer scan with faces, objects, and houses, we identified regions with comparatively more activity for faces, including the fusiform face area (FFA) in the right fusiform gyrus, other extrastriate regions, and prefrontal cortices. Contrasts between the featural and spacing conditions revealed distributed patterns of activity differentiating the two conditions. A region of the right fusiform gyrus (near but not overlapping the localized FFA) showed greater activity during the spacing task, along with multiple areas of right frontal cortex, whereas left prefrontal activity increased for featural processing. These patterns of activity were not related to differences in performance between the two tasks. The results indicate that the processing of facial features is distinct from the processing of second-order relations in faces, and that these functions are mediated by separate and lateralized networks involving the right fusiform gyrus, although the FFA as defined from a localizer scan is not differentially involved.

  19. Asymptotic integration algorithms for nonhomogeneous, nonlinear, first order, ordinary differential equations

    NASA Technical Reports Server (NTRS)

    Walker, K. P.; Freed, A. D.

    1991-01-01

    New methods for integrating systems of stiff, nonlinear, first order, ordinary differential equations are developed by casting the differential equations into integral form. Nonlinear recursive relations are obtained that allow the solution to a system of equations at time t plus delta t to be obtained in terms of the solution at time t in explicit and implicit forms. Examples of accuracy obtained with the new technique are given by considering systems of nonlinear, first order equations which arise in the study of unified models of viscoplastic behaviors, the spread of the AIDS virus, and predator-prey populations. In general, the new implicit algorithm is unconditionally stable, and has a Jacobian of smaller dimension than that which is acquired by current implicit methods, such as the Euler backward difference algorithm; yet, it gives superior accuracy. The asymptotic explicit and implicit algorithms are suitable for solutions that are of the growing and decaying exponential kinds, respectively, whilst the implicit Euler-Maclaurin algorithm is superior when the solution oscillates, i.e., when there are regions in which both growing and decaying exponential solutions exist.

  20. On Mechanical Transitions in Biologically Motivated Soft Matter Systems

    NASA Astrophysics Data System (ADS)

    Fogle, Craig

    The notion of phase transitions as a characterization of a change in physical properties pervades modern physics. Such abrupt and fundamental changes in the behavior of physical systems are evident in condensed matter system and also occur in nuclear and subatomic settings. While this concept is less prevalent in the field of biology, recent advances have pointed to its relevance in a number of settings. Recent studies have modeled both the cell cycle and cancer as phase transition in physical systems. In this dissertation we construct simplified models for two biological systems. As described by those models, both systems exhibit phase transitions. The first model is inspired by the shape transition in the nuclei of neutrophils during differentiation. During differentiation the nucleus transitions from spherical to a shape often described as "beads on a string." As a simplified model of this system, we investigate the spherical-to-wrinkled transition in an elastic core bounded to a fluid shell system. We find that this model exhibits a first-order phase transition, and the shape that minimizes the energy of the system scales as (micror3/kappa). . The second system studied is motivated by the dynamics of globular proteins. These proteins may undergoes conformational changes with large displacements relative to their size. Transitions between conformational states are not possible if the dynamics are governed strictly by linear elasticity. We construct a model consisting of an predominantly elastic region near the energetic minimum of the system and a non-linear softening of the system at a critical displacement. We find that this simple model displays very rich dynamics include a sharp dynamical phase transition and driving-force-dependent symmetry breaking.

  1. Quantum speed limit constraints on a nanoscale autonomous refrigerator

    NASA Astrophysics Data System (ADS)

    Mukhopadhyay, Chiranjib; Misra, Avijit; Bhattacharya, Samyadeb; Pati, Arun Kumar

    2018-06-01

    Quantum speed limit, furnishing a lower bound on the required time for the evolution of a quantum system through the state space, imposes an ultimate natural limitation to the dynamics of physical devices. Quantum absorption refrigerators, however, have attracted a great deal of attention in the past few years. In this paper, we discuss the effects of quantum speed limit on the performance of a quantum absorption refrigerator. In particular, we show that there exists a tradeoff relation between the steady cooling rate of the refrigerator and the minimum time taken to reach the steady state. Based on this, we define a figure of merit called "bounding second order cooling rate" and show that this scales linearly with the unitary interaction strength among the constituent qubits. We also study the increase of bounding second-order cooling rate with the thermalization strength. We subsequently demonstrate that coherence in the initial three qubit system can significantly increase the bounding second-order cooling rate. We study the efficiency of the refrigerator at maximum bounding second-order cooling rate and, in a limiting case, we show that the efficiency at maximum bounding second-order cooling rate is given by a simple formula resembling the Curzon-Ahlborn relation.

  2. A powerful local shear instability in weakly magnetized disks. I - Linear analysis. II - Nonlinear evolution

    NASA Technical Reports Server (NTRS)

    Balbus, Steven A.; Hawley, John F.

    1991-01-01

    A broad class of astronomical accretion disks is presently shown to be dynamically unstable to axisymmetric disturbances in the presence of a weak magnetic field, an insight with consequently broad applicability to gaseous, differentially-rotating systems. In the first part of this work, a linear analysis is presented of the instability, which is local and extremely powerful; the maximum growth rate, which is of the order of the angular rotation velocity, is independent of the strength of the magnetic field. Fluid motions associated with the instability directly generate both poloidal and toroidal field components. In the second part of this investigation, the scaling relation between the instability's wavenumber and the Alfven velocity is demonstrated, and the independence of the maximum growth rate from magnetic field strength is confirmed.

  3. The Effect of Multigrid Parameters in a 3D Heat Diffusion Equation

    NASA Astrophysics Data System (ADS)

    Oliveira, F. De; Franco, S. R.; Pinto, M. A. Villela

    2018-02-01

    The aim of this paper is to reduce the necessary CPU time to solve the three-dimensional heat diffusion equation using Dirichlet boundary conditions. The finite difference method (FDM) is used to discretize the differential equations with a second-order accuracy central difference scheme (CDS). The algebraic equations systems are solved using the lexicographical and red-black Gauss-Seidel methods, associated with the geometric multigrid method with a correction scheme (CS) and V-cycle. Comparisons are made between two types of restriction: injection and full weighting. The used prolongation process is the trilinear interpolation. This work is concerned with the study of the influence of the smoothing value (v), number of mesh levels (L) and number of unknowns (N) on the CPU time, as well as the analysis of algorithm complexity.

  4. Dynamic Programming and Error Estimates for Stochastic Control Problems with Maximum Cost

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bokanowski, Olivier, E-mail: boka@math.jussieu.fr; Picarelli, Athena, E-mail: athena.picarelli@inria.fr; Zidani, Hasnaa, E-mail: hasnaa.zidani@ensta.fr

    2015-02-15

    This work is concerned with stochastic optimal control for a running maximum cost. A direct approach based on dynamic programming techniques is studied leading to the characterization of the value function as the unique viscosity solution of a second order Hamilton–Jacobi–Bellman (HJB) equation with an oblique derivative boundary condition. A general numerical scheme is proposed and a convergence result is provided. Error estimates are obtained for the semi-Lagrangian scheme. These results can apply to the case of lookback options in finance. Moreover, optimal control problems with maximum cost arise in the characterization of the reachable sets for a system ofmore » controlled stochastic differential equations. Some numerical simulations on examples of reachable analysis are included to illustrate our approach.« less

  5. Higher order explicit symmetric integrators for inseparable forms of coordinates and momenta

    NASA Astrophysics Data System (ADS)

    Liu, Lei; Wu, Xin; Huang, Guoqing; Liu, Fuyao

    2016-06-01

    Pihajoki proposed the extended phase-space second-order explicit symmetric leapfrog methods for inseparable Hamiltonian systems. On the basis of this work, we survey a critical problem on how to mix the variables in the extended phase space. Numerical tests show that sequent permutations of coordinates and momenta can make the leapfrog-like methods yield the most accurate results and the optimal long-term stabilized error behaviour. We also present a novel method to construct many fourth-order extended phase-space explicit symmetric integration schemes. Each scheme represents the symmetric production of six usual second-order leapfrogs without any permutations. This construction consists of four segments: the permuted coordinates, triple product of the usual second-order leapfrog without permutations, the permuted momenta and the triple product of the usual second-order leapfrog without permutations. Similarly, extended phase-space sixth, eighth and other higher order explicit symmetric algorithms are available. We used several inseparable Hamiltonian examples, such as the post-Newtonian approach of non-spinning compact binaries, to show that one of the proposed fourth-order methods is more efficient than the existing methods; examples include the fourth-order explicit symplectic integrators of Chin and the fourth-order explicit and implicit mixed symplectic integrators of Zhong et al. Given a moderate choice for the related mixing and projection maps, the extended phase-space explicit symplectic-like methods are well suited for various inseparable Hamiltonian problems. Samples of these problems involve the algorithmic regularization of gravitational systems with velocity-dependent perturbations in the Solar system and post-Newtonian Hamiltonian formulations of spinning compact objects.

  6. Bifurcation theory for finitely smooth planar autonomous differential systems

    NASA Astrophysics Data System (ADS)

    Han, Maoan; Sheng, Lijuan; Zhang, Xiang

    2018-03-01

    In this paper we establish bifurcation theory of limit cycles for planar Ck smooth autonomous differential systems, with k ∈ N. The key point is to study the smoothness of bifurcation functions which are basic and important tool on the study of Hopf bifurcation at a fine focus or a center, and of Poincaré bifurcation in a period annulus. We especially study the smoothness of the first order Melnikov function in degenerate Hopf bifurcation at an elementary center. As we know, the smoothness problem was solved for analytic and C∞ differential systems, but it was not tackled for finitely smooth differential systems. Here, we present their optimal regularity of these bifurcation functions and their asymptotic expressions in the finite smooth case.

  7. Phase separation and second-order phase transition in the phenomenological model for a Coulomb-frustrated two-dimensional system

    NASA Astrophysics Data System (ADS)

    Mamin, R. F.; Shaposhnikova, T. S.; Kabanov, V. V.

    2018-03-01

    We have considered the model of the phase transition of the second order for the Coulomb frustrated 2D charged system. The coupling of the order parameter with the charge was considered as the local temperature. We have found that in such a system, an appearance of the phase-separated state is possible. By numerical simulation, we have obtained different types ("stripes," "rings," "snakes") of phase-separated states and determined the parameter ranges for these states. Thus the system undergoes a series of phase transitions when the temperature decreases. First, the system moves from the homogeneous state with a zero order parameter to the phase-separated state with two phases in one of which the order parameter is zero and, in the other, it is nonzero (τ >0 ). Then a first-order transition occurs to another phase-separated state, in which both phases have different and nonzero values of the order parameter (for τ <0 ). Only a further decrease of temperature leads to a transition to a homogeneous ordered state.

  8. Dynamic equations for an isotropic spherical shell using the power series method and surface differential operators

    NASA Astrophysics Data System (ADS)

    Okhovat, Reza; Boström, Anders

    2017-04-01

    Dynamic equations for an isotropic spherical shell are derived by using a series expansion technique. The displacement field is split into a scalar (radial) part and a vector (tangential) part. Surface differential operators are introduced to decrease the length of all equations. The starting point is a power series expansion of the displacement components in the thickness coordinate relative to the mid-surface of the shell. By using the expansions of the displacement components, the three-dimensional elastodynamic equations yield a set of recursion relations among the expansion functions that can be used to eliminate all but the four of lowest order and to express higher order expansion functions in terms of those of lowest orders. Applying the boundary conditions on the surfaces of the spherical shell and eliminating all but the four lowest order expansion functions give the shell equations as a power series in the shell thickness. After lengthy manipulations, the final four shell equations are obtained in a relatively compact form which are given to second order in shell thickness explicitly. The eigenfrequencies are compared to exact three-dimensional theory with excellent agreement and to membrane theory.

  9. Efficient and accurate time-stepping schemes for integrate-and-fire neuronal networks.

    PubMed

    Shelley, M J; Tao, L

    2001-01-01

    To avoid the numerical errors associated with resetting the potential following a spike in simulations of integrate-and-fire neuronal networks, Hansel et al. and Shelley independently developed a modified time-stepping method. Their particular scheme consists of second-order Runge-Kutta time-stepping, a linear interpolant to find spike times, and a recalibration of postspike potential using the spike times. Here we show analytically that such a scheme is second order, discuss the conditions under which efficient, higher-order algorithms can be constructed to treat resets, and develop a modified fourth-order scheme. To support our analysis, we simulate a system of integrate-and-fire conductance-based point neurons with all-to-all coupling. For six-digit accuracy, our modified Runge-Kutta fourth-order scheme needs a time-step of Delta(t) = 0.5 x 10(-3) seconds, whereas to achieve comparable accuracy using a recalibrated second-order or a first-order algorithm requires time-steps of 10(-5) seconds or 10(-9) seconds, respectively. Furthermore, since the cortico-cortical conductances in standard integrate-and-fire neuronal networks do not depend on the value of the membrane potential, we can attain fourth-order accuracy with computational costs normally associated with second-order schemes.

  10. Robust control for fractional variable-order chaotic systems with non-singular kernel

    NASA Astrophysics Data System (ADS)

    Zuñiga-Aguilar, C. J.; Gómez-Aguilar, J. F.; Escobar-Jiménez, R. F.; Romero-Ugalde, H. M.

    2018-01-01

    This paper investigates the chaos control for a class of variable-order fractional chaotic systems using robust control strategy. The variable-order fractional models of the non-autonomous biological system, the King Cobra chaotic system, the Halvorsen's attractor and the Burke-Shaw system, have been derived using the fractional-order derivative with Mittag-Leffler in the Liouville-Caputo sense. The fractional differential equations and the control law were solved using the Adams-Bashforth-Moulton algorithm. To test the control stability efficiency, different statistical indicators were introduced. Finally, simulation results demonstrate the effectiveness of the proposed robust control.

  11. Improving transportation systems management and operations (TSM&O), capability maturity model workshop white paper : organization and staffing.

    DOT National Transportation Integrated Search

    2015-04-01

    Research done through the Second Strategic Highway Research Program (SHRP 2) determined that agencies with the most effective transportation systems management and operations (TSM&O) activities were differentiated not by budgets or technical skills a...

  12. A data driven nonlinear stochastic model for blood glucose dynamics.

    PubMed

    Zhang, Yan; Holt, Tim A; Khovanova, Natalia

    2016-03-01

    The development of adequate mathematical models for blood glucose dynamics may improve early diagnosis and control of diabetes mellitus (DM). We have developed a stochastic nonlinear second order differential equation to describe the response of blood glucose concentration to food intake using continuous glucose monitoring (CGM) data. A variational Bayesian learning scheme was applied to define the number and values of the system's parameters by iterative optimisation of free energy. The model has the minimal order and number of parameters to successfully describe blood glucose dynamics in people with and without DM. The model accounts for the nonlinearity and stochasticity of the underlying glucose-insulin dynamic process. Being data-driven, it takes full advantage of available CGM data and, at the same time, reflects the intrinsic characteristics of the glucose-insulin system without detailed knowledge of the physiological mechanisms. We have shown that the dynamics of some postprandial blood glucose excursions can be described by a reduced (linear) model, previously seen in the literature. A comprehensive analysis demonstrates that deterministic system parameters belong to different ranges for diabetes and controls. Implications for clinical practice are discussed. This is the first study introducing a continuous data-driven nonlinear stochastic model capable of describing both DM and non-DM profiles. Copyright © 2015 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  13. Computational Algorithms or Identification of Distributed Parameter Systems

    DTIC Science & Technology

    1993-04-24

    delay-differential equations, Volterra integral equations, and partial differential equations with memory terms . In particular we investigated a...tested for estimating parameters in a Volterra integral equation arising from a viscoelastic model of a flexible structure with Boltzmann damping. In...particular, one of the parameters identified was the order of the derivative in Volterra integro-differential equations containing fractional

  14. Stochastic simulation of reaction-diffusion systems: A fluctuating-hydrodynamics approach

    NASA Astrophysics Data System (ADS)

    Kim, Changho; Nonaka, Andy; Bell, John B.; Garcia, Alejandro L.; Donev, Aleksandar

    2017-03-01

    We develop numerical methods for stochastic reaction-diffusion systems based on approaches used for fluctuating hydrodynamics (FHD). For hydrodynamic systems, the FHD formulation is formally described by stochastic partial differential equations (SPDEs). In the reaction-diffusion systems we consider, our model becomes similar to the reaction-diffusion master equation (RDME) description when our SPDEs are spatially discretized and reactions are modeled as a source term having Poisson fluctuations. However, unlike the RDME, which becomes prohibitively expensive for an increasing number of molecules, our FHD-based description naturally extends from the regime where fluctuations are strong, i.e., each mesoscopic cell has few (reactive) molecules, to regimes with moderate or weak fluctuations, and ultimately to the deterministic limit. By treating diffusion implicitly, we avoid the severe restriction on time step size that limits all methods based on explicit treatments of diffusion and construct numerical methods that are more efficient than RDME methods, without compromising accuracy. Guided by an analysis of the accuracy of the distribution of steady-state fluctuations for the linearized reaction-diffusion model, we construct several two-stage (predictor-corrector) schemes, where diffusion is treated using a stochastic Crank-Nicolson method, and reactions are handled by the stochastic simulation algorithm of Gillespie or a weakly second-order tau leaping method. We find that an implicit midpoint tau leaping scheme attains second-order weak accuracy in the linearized setting and gives an accurate and stable structure factor for a time step size of an order of magnitude larger than the hopping time scale of diffusing molecules. We study the numerical accuracy of our methods for the Schlögl reaction-diffusion model both in and out of thermodynamic equilibrium. We demonstrate and quantify the importance of thermodynamic fluctuations to the formation of a two-dimensional Turing-like pattern and examine the effect of fluctuations on three-dimensional chemical front propagation. By comparing stochastic simulations to deterministic reaction-diffusion simulations, we show that fluctuations accelerate pattern formation in spatially homogeneous systems and lead to a qualitatively different disordered pattern behind a traveling wave.

  15. Stochastic simulation of reaction-diffusion systems: A fluctuating-hydrodynamics approach

    DOE PAGES

    Kim, Changho; Nonaka, Andy; Bell, John B.; ...

    2017-03-24

    Here, we develop numerical methods for stochastic reaction-diffusion systems based on approaches used for fluctuating hydrodynamics (FHD). For hydrodynamic systems, the FHD formulation is formally described by stochastic partial differential equations (SPDEs). In the reaction-diffusion systems we consider, our model becomes similar to the reaction-diffusion master equation (RDME) description when our SPDEs are spatially discretized and reactions are modeled as a source term having Poisson fluctuations. However, unlike the RDME, which becomes prohibitively expensive for an increasing number of molecules, our FHD-based description naturally extends from the regime where fluctuations are strong, i.e., each mesoscopic cell has few (reactive) molecules,more » to regimes with moderate or weak fluctuations, and ultimately to the deterministic limit. By treating diffusion implicitly, we avoid the severe restriction on time step size that limits all methods based on explicit treatments of diffusion and construct numerical methods that are more efficient than RDME methods, without compromising accuracy. Guided by an analysis of the accuracy of the distribution of steady-state fluctuations for the linearized reaction-diffusion model, we construct several two-stage (predictor-corrector) schemes, where diffusion is treated using a stochastic Crank-Nicolson method, and reactions are handled by the stochastic simulation algorithm of Gillespie or a weakly second-order tau leaping method. We find that an implicit midpoint tau leaping scheme attains second-order weak accuracy in the linearized setting and gives an accurate and stable structure factor for a time step size of an order of magnitude larger than the hopping time scale of diffusing molecules. We study the numerical accuracy of our methods for the Schlögl reaction-diffusion model both in and out of thermodynamic equilibrium. We demonstrate and quantify the importance of thermodynamic fluctuations to the formation of a two-dimensional Turing-like pattern and examine the effect of fluctuations on three-dimensional chemical front propagation. Furthermore, by comparing stochastic simulations to deterministic reaction-diffusion simulations, we show that fluctuations accelerate pattern formation in spatially homogeneous systems and lead to a qualitatively different disordered pattern behind a traveling wave.« less

  16. Numerical Solution of Systems of Loaded Ordinary Differential Equations with Multipoint Conditions

    NASA Astrophysics Data System (ADS)

    Assanova, A. T.; Imanchiyev, A. E.; Kadirbayeva, Zh. M.

    2018-04-01

    A system of loaded ordinary differential equations with multipoint conditions is considered. The problem under study is reduced to an equivalent boundary value problem for a system of ordinary differential equations with parameters. A system of linear algebraic equations for the parameters is constructed using the matrices of the loaded terms and the multipoint condition. The conditions for the unique solvability and well-posedness of the original problem are established in terms of the matrix made up of the coefficients of the system of linear algebraic equations. The coefficients and the righthand side of the constructed system are determined by solving Cauchy problems for linear ordinary differential equations. The solutions of the system are found in terms of the values of the desired function at the initial points of subintervals. The parametrization method is numerically implemented using the fourth-order accurate Runge-Kutta method as applied to the Cauchy problems for ordinary differential equations. The performance of the constructed numerical algorithms is illustrated by examples.

  17. Effect of Impacts on the Cooling Rates of Differentiated Planetesimals

    NASA Astrophysics Data System (ADS)

    Lyons, R. J.; Bowling, T. J.; Ciesla, F. J.; Davison, T. M.; Collins, G. S.

    2018-05-01

    I have modeled planetismal impacts in the early solar system, following their formation, differentiation, and cooling. I found that small collisions can expose the core, resulting in more than an order of magnitude increase in the cooling rates.

  18. Ghost-Free Theory with Third-Order Time Derivatives

    NASA Astrophysics Data System (ADS)

    Motohashi, Hayato; Suyama, Teruaki; Yamaguchi, Masahide

    2018-06-01

    As the first step to extend our understanding of higher-derivative theories, within the framework of analytic mechanics of point particles, we construct a ghost-free theory involving third-order time derivatives in Lagrangian. While eliminating linear momentum terms in the Hamiltonian is necessary and sufficient to kill the ghosts associated with higher derivatives for Lagrangian with at most second-order derivatives, we find that this is necessary but not sufficient for the Lagrangian with higher than second-order derivatives. We clarify a set of ghost-free conditions under which we show that the Hamiltonian is bounded, and that equations of motion are reducible into a second-order system.

  19. Limit cycles via higher order perturbations for some piecewise differential systems

    NASA Astrophysics Data System (ADS)

    Buzzi, Claudio A.; Lima, Maurício Firmino Silva; Torregrosa, Joan

    2018-05-01

    A classical perturbation problem is the polynomial perturbation of the harmonic oscillator, (x‧ ,y‧) =(- y + εf(x , y , ε) , x + εg(x , y , ε)) . In this paper we study the limit cycles that bifurcate from the period annulus via piecewise polynomial perturbations in two zones separated by a straight line. We prove that, for polynomial perturbations of degree n , no more than Nn - 1 limit cycles appear up to a study of order N. We also show that this upper bound is reached for orders one and two. Moreover, we study this problem in some classes of piecewise Liénard differential systems providing better upper bounds for higher order perturbation in ε, showing also when they are reached. The Poincaré-Pontryagin-Melnikov theory is the main technique used to prove all the results.

  20. Multi-Hamiltonian structure of Plebanski's second heavenly equation

    NASA Astrophysics Data System (ADS)

    Neyzi, F.; Nutku, Y.; Sheftel, M. B.

    2005-09-01

    We show that Plebanski's second heavenly equation, when written as a first-order nonlinear evolutionary system, admits multi-Hamiltonian structure. Therefore by Magri's theorem it is a completely integrable system. Thus it is an example of a completely integrable system in four dimensions.

Top