Sample records for second-order hyperbolic fuchsian

  1. On the Behavior of Eisenstein Series Through Elliptic Degeneration

    NASA Astrophysics Data System (ADS)

    Garbin, D.; Pippich, A.-M. V.

    2009-12-01

    Let Γ be a Fuchsian group of the first kind acting on the hyperbolic upper half plane {mathbb{H}}, and let {M = Γbackslash mathbb{H}} be the associated finite volume hyperbolic Riemann surface. If γ is a primitive parabolic, hyperbolic, resp. elliptic element of Γ, there is an associated parabolic, hyperbolic, resp. elliptic Eisenstein series. In this article, we study the limiting behavior of these Eisenstein series on an elliptically degenerating family of finite volume hyperbolic Riemann surfaces. In particular, we prove the following result. The elliptic Eisenstein series associated to a degenerating elliptic element converges up to a factor to the parabolic Eisenstein series associated to the parabolic element which fixes the newly developed cusp on the limit surface.

  2. High-Order Residual-Distribution Schemes for Discontinuous Problems on Irregular Triangular Grids

    NASA Technical Reports Server (NTRS)

    Mazaheri, Alireza; Nishikawa, Hiroaki

    2016-01-01

    In this paper, we develop second- and third-order non-oscillatory shock-capturing hyperbolic residual distribution schemes for irregular triangular grids, extending our second- and third-order schemes to discontinuous problems. We present extended first-order N- and Rusanov-scheme formulations for hyperbolic advection-diffusion system, and demonstrate that the hyperbolic diffusion term does not affect the solution of inviscid problems for vanishingly small viscous coefficient. We then propose second- and third-order blended hyperbolic residual-distribution schemes with the extended first-order Rusanov-scheme. We show that these proposed schemes are extremely accurate in predicting non-oscillatory solutions for discontinuous problems. We also propose a characteristics-based nonlinear wave sensor for accurately detecting shocks, compression, and expansion regions. Using this proposed sensor, we demonstrate that the developed hyperbolic blended schemes do not produce entropy-violating solutions (unphysical stocks). We then verify the design order of accuracy of these blended schemes on irregular triangular grids.

  3. Second level semi-degenerate fields in W_3 Toda theory: matrix element and differential equation

    NASA Astrophysics Data System (ADS)

    Belavin, Vladimir; Cao, Xiangyu; Estienne, Benoit; Santachiara, Raoul

    2017-03-01

    In a recent study we considered W_3 Toda 4-point functions that involve matrix elements of a primary field with the highest-weight in the adjoint representation of sl_3 . We generalize this result by considering a semi-degenerate primary field, which has one null vector at level two. We obtain a sixth-order Fuchsian differential equation for the conformal blocks. We discuss the presence of multiplicities, the matrix elements and the fusion rules.

  4. High-resolution schemes for hyperbolic conservation laws

    NASA Technical Reports Server (NTRS)

    Harten, A.

    1982-01-01

    A class of new explicit second order accurate finite difference schemes for the computation of weak solutions of hyperbolic conservation laws is presented. These highly nonlinear schemes are obtained by applying a nonoscillatory first order accurae scheme to an appropriately modified flux function. The so derived second order accurate schemes achieve high resolution while preserving the robustness of the original nonoscillatory first order accurate scheme.

  5. Second- and third-order upwind difference schemes for hyperbolic conservation laws

    NASA Technical Reports Server (NTRS)

    Yang, J. Y.

    1984-01-01

    Second- and third-order two time-level five-point explicit upwind-difference schemes are described for the numerical solution of hyperbolic systems of conservation laws and applied to the Euler equations of inviscid gas dynamics. Nonliner smoothing techniques are used to make the schemes total variation diminishing. In the method both hyperbolicity and conservation properties of the hyperbolic conservation laws are combined in a very natural way by introducing a normalized Jacobian matrix of the hyperbolic system. Entropy satisfying shock transition operators which are consistent with the upwind differencing are locally introduced when transonic shock transition is detected. Schemes thus constructed are suitable for shockcapturing calculations. The stability and the global order of accuracy of the proposed schemes are examined. Numerical experiments for the inviscid Burgers equation and the compressible Euler equations in one and two space dimensions involving various situations of aerodynamic interest are included and compared.

  6. Pseudo almost periodic solutions to some systems of nonlinear hyperbolic second-order partial differential equations

    NASA Astrophysics Data System (ADS)

    Al-Islam, Najja Shakir

    In this Dissertation, the existence of pseudo almost periodic solutions to some systems of nonlinear hyperbolic second-order partial differential equations is established. For that, (Al-Islam [4]) is first studied and then obtained under some suitable assumptions. That is, the existence of pseudo almost periodic solutions to a hyperbolic second-order partial differential equation with delay. The second-order partial differential equation (1) represents a mathematical model for the dynamics of gas absorption, given by uxt+a x,tux=Cx,t,u x,t , u0,t=4 t, 1 where a : [0, L] x RR , C : [0, L] x R x RR , and ϕ : RR are (jointly) continuous functions ( t being the greatest integer function) and L > 0. The results in this Dissertation generalize those of Poorkarimi and Wiener [22]. Secondly, a generalization of the above-mentioned system consisting of the non-linear hyperbolic second-order partial differential equation uxt+a x,tux+bx,t ut+cx,tu=f x,t,u, x∈ 0,L,t∈ R, 2 equipped with the boundary conditions ux,0 =40x, u0,t=u 0t, uxx,0=y 0x, x∈0,L, t∈R, 3 where a, b, c : [0, L ] x RR and f : [0, L] x R x RR are (jointly) continuous functions is studied. Under some suitable assumptions, the existence and uniqueness of pseudo almost periodic solutions to particular cases, as well as the general case of the second-order hyperbolic partial differential equation (2) are studied. The results of all studies contained within this text extend those obtained by Aziz and Meyers [6] in the periodic setting.

  7. High-Order Hyperbolic Residual-Distribution Schemes on Arbitrary Triangular Grids

    NASA Technical Reports Server (NTRS)

    Mazaheri, Alireza; Nishikawa, Hiroaki

    2015-01-01

    In this paper, we construct high-order hyperbolic residual-distribution schemes for general advection-diffusion problems on arbitrary triangular grids. We demonstrate that the second-order accuracy of the hyperbolic schemes can be greatly improved by requiring the scheme to preserve exact quadratic solutions. We also show that the improved second-order scheme can be easily extended to third-order by further requiring the exactness for cubic solutions. We construct these schemes based on the LDA and the SUPG methodology formulated in the framework of the residual-distribution method. For both second- and third-order-schemes, we construct a fully implicit solver by the exact residual Jacobian of the second-order scheme, and demonstrate rapid convergence of 10-15 iterations to reduce the residuals by 10 orders of magnitude. We demonstrate also that these schemes can be constructed based on a separate treatment of the advective and diffusive terms, which paves the way for the construction of hyperbolic residual-distribution schemes for the compressible Navier-Stokes equations. Numerical results show that these schemes produce exceptionally accurate and smooth solution gradients on highly skewed and anisotropic triangular grids, including curved boundary problems, using linear elements. We also present Fourier analysis performed on the constructed linear system and show that an under-relaxation parameter is needed for stabilization of Gauss-Seidel relaxation.

  8. Generalized heat-transport equations: parabolic and hyperbolic models

    NASA Astrophysics Data System (ADS)

    Rogolino, Patrizia; Kovács, Robert; Ván, Peter; Cimmelli, Vito Antonio

    2018-03-01

    We derive two different generalized heat-transport equations: the most general one, of the first order in time and second order in space, encompasses some well-known heat equations and describes the hyperbolic regime in the absence of nonlocal effects. Another, less general, of the second order in time and fourth order in space, is able to describe hyperbolic heat conduction also in the presence of nonlocal effects. We investigate the thermodynamic compatibility of both models by applying some generalizations of the classical Liu and Coleman-Noll procedures. In both cases, constitutive equations for the entropy and for the entropy flux are obtained. For the second model, we consider a heat-transport equation which includes nonlocal terms and study the resulting set of balance laws, proving that the corresponding thermal perturbations propagate with finite speed.

  9. Poincarés philosophy of geometry, or does geometric conventionalism deserve its name?

    NASA Astrophysics Data System (ADS)

    Zahar, E. G.

    Two main aims are pursued in this paper. The first is to show that, in mathematical geometry, Poincaré was a conventionalist who rejected all forms of synthetic a priori geometric intuition. He moreover followed a unified heuristic based on the study of certain groups of Möbius transformations. This method was informed by his work on the theory of Fuchsian functions; it yielded two models of hyperbolic geometry: the disk model and the Poincaré half-plane, which are connected by a Möbius transformation. From these group-theoretic considerations Poincaré derived an expression for the Riemannian distance. I secondly defend the thesis that, in physical geometry, Poincaré was a structural realist whose so-called conventionalism was epistemological, not ontological. Here he started directly from a Riemannian metric together with an associated universal field. He adopted a realist attitude towards both the field and that geometry which is most coherently integrated into some highly unified and empirically confirmed hypothesis. More generally, he looked upon the degree of unity of any system as an index of its verisimilitude. I finally show that, by Einsteins own admission, GTR is compatible with Poincarés epistemological theses.

  10. A New Discretization Method of Order Four for the Numerical Solution of One-Space Dimensional Second-Order Quasi-Linear Hyperbolic Equation

    ERIC Educational Resources Information Center

    Mohanty, R. K.; Arora, Urvashi

    2002-01-01

    Three level-implicit finite difference methods of order four are discussed for the numerical solution of the mildly quasi-linear second-order hyperbolic equation A(x, t, u)u[subscript xx] + 2B(x, t, u)u[subscript xt] + C(x, t, u)u[subscript tt] = f(x, t, u, u[subscript x], u[subscript t]), 0 less than x less than 1, t greater than 0 subject to…

  11. High-Order Residual-Distribution Hyperbolic Advection-Diffusion Schemes: 3rd-, 4th-, and 6th-Order

    NASA Technical Reports Server (NTRS)

    Mazaheri, Alireza R.; Nishikawa, Hiroaki

    2014-01-01

    In this paper, spatially high-order Residual-Distribution (RD) schemes using the first-order hyperbolic system method are proposed for general time-dependent advection-diffusion problems. The corresponding second-order time-dependent hyperbolic advection- diffusion scheme was first introduced in [NASA/TM-2014-218175, 2014], where rapid convergences over each physical time step, with typically less than five Newton iterations, were shown. In that method, the time-dependent hyperbolic advection-diffusion system (linear and nonlinear) was discretized by the second-order upwind RD scheme in a unified manner, and the system of implicit-residual-equations was solved efficiently by Newton's method over every physical time step. In this paper, two techniques for the source term discretization are proposed; 1) reformulation of the source terms with their divergence forms, and 2) correction to the trapezoidal rule for the source term discretization. Third-, fourth, and sixth-order RD schemes are then proposed with the above techniques that, relative to the second-order RD scheme, only cost the evaluation of either the first derivative or both the first and the second derivatives of the source terms. A special fourth-order RD scheme is also proposed that is even less computationally expensive than the third-order RD schemes. The second-order Jacobian formulation was used for all the proposed high-order schemes. The numerical results are then presented for both steady and time-dependent linear and nonlinear advection-diffusion problems. It is shown that these newly developed high-order RD schemes are remarkably efficient and capable of producing the solutions and the gradients to the same order of accuracy of the proposed RD schemes with rapid convergence over each physical time step, typically less than ten Newton iterations.

  12. Cell-centered high-order hyperbolic finite volume method for diffusion equation on unstructured grids

    NASA Astrophysics Data System (ADS)

    Lee, Euntaek; Ahn, Hyung Taek; Luo, Hong

    2018-02-01

    We apply a hyperbolic cell-centered finite volume method to solve a steady diffusion equation on unstructured meshes. This method, originally proposed by Nishikawa using a node-centered finite volume method, reformulates the elliptic nature of viscous fluxes into a set of augmented equations that makes the entire system hyperbolic. We introduce an efficient and accurate solution strategy for the cell-centered finite volume method. To obtain high-order accuracy for both solution and gradient variables, we use a successive order solution reconstruction: constant, linear, and quadratic (k-exact) reconstruction with an efficient reconstruction stencil, a so-called wrapping stencil. By the virtue of the cell-centered scheme, the source term evaluation was greatly simplified regardless of the solution order. For uniform schemes, we obtain the same order of accuracy, i.e., first, second, and third orders, for both the solution and its gradient variables. For hybrid schemes, recycling the gradient variable information for solution variable reconstruction makes one order of additional accuracy, i.e., second, third, and fourth orders, possible for the solution variable with less computational work than needed for uniform schemes. In general, the hyperbolic method can be an effective solution technique for diffusion problems, but instability is also observed for the discontinuous diffusion coefficient cases, which brings necessity for further investigation about the monotonicity preserving hyperbolic diffusion method.

  13. First-Order Hyperbolic System Method for Time-Dependent Advection-Diffusion Problems

    NASA Technical Reports Server (NTRS)

    Mazaheri, Alireza; Nishikawa, Hiroaki

    2014-01-01

    A time-dependent extension of the first-order hyperbolic system method for advection-diffusion problems is introduced. Diffusive/viscous terms are written and discretized as a hyperbolic system, which recovers the original equation in the steady state. The resulting scheme offers advantages over traditional schemes: a dramatic simplification in the discretization, high-order accuracy in the solution gradients, and orders-of-magnitude convergence acceleration. The hyperbolic advection-diffusion system is discretized by the second-order upwind residual-distribution scheme in a unified manner, and the system of implicit-residual-equations is solved by Newton's method over every physical time step. The numerical results are presented for linear and nonlinear advection-diffusion problems, demonstrating solutions and gradients produced to the same order of accuracy, with rapid convergence over each physical time step, typically less than five Newton iterations.

  14. Second-order numerical solution of time-dependent, first-order hyperbolic equations

    NASA Technical Reports Server (NTRS)

    Shah, Patricia L.; Hardin, Jay

    1995-01-01

    A finite difference scheme is developed to find an approximate solution of two similar hyperbolic equations, namely a first-order plane wave and spherical wave problem. Finite difference approximations are made for both the space and time derivatives. The result is a conditionally stable equation yielding an exact solution when the Courant number is set to one.

  15. On solvability of boundary value problems for hyperbolic fourth-order equations with nonlocal boundary conditions of integral type

    NASA Astrophysics Data System (ADS)

    Popov, Nikolay S.

    2017-11-01

    Solvability of some initial-boundary value problems for linear hyperbolic equations of the fourth order is studied. A condition on the lateral boundary in these problems relates the values of a solution or the conormal derivative of a solution to the values of some integral operator applied to a solution. Nonlocal boundary-value problems for one-dimensional hyperbolic second-order equations with integral conditions on the lateral boundary were considered in the articles by A.I. Kozhanov. Higher-dimensional hyperbolic equations of higher order with integral conditions on the lateral boundary were not studied earlier. The existence and uniqueness theorems of regular solutions are proven. The method of regularization and the method of continuation in a parameter are employed to establish solvability.

  16. Trace theorem for quasi-Fuchsian groups

    NASA Astrophysics Data System (ADS)

    Connes, A.; Sukochev, F. A.; Zanin, D. V.

    2017-10-01

    We complete the proof of the Trace Theorem in the quantized calculus for quasi-Fuchsian groups which was stated and sketched, but not fully proved, on pp. 322-325 of the book Noncommutative geometry of the first author. Bibliography: 34 titles.

  17. Covariant path integrals on hyperbolic surfaces

    NASA Astrophysics Data System (ADS)

    Schaefer, Joe

    1997-11-01

    DeWitt's covariant formulation of path integration [B. De Witt, "Dynamical theory in curved spaces. I. A review of the classical and quantum action principles," Rev. Mod. Phys. 29, 377-397 (1957)] has two practical advantages over the traditional methods of "lattice approximations;" there is no ordering problem, and classical symmetries are manifestly preserved at the quantum level. Applying the spectral theorem for unbounded self-adjoint operators, we provide a rigorous proof of the convergence of certain path integrals on Riemann surfaces of constant curvature -1. The Pauli-DeWitt curvature correction term arises, as in DeWitt's work. Introducing a Fuchsian group Γ of the first kind, and a continuous, bounded, Γ-automorphic potential V, we obtain a Feynman-Kac formula for the automorphic Schrödinger equation on the Riemann surface ΓH. We analyze the Wick rotation and prove the strong convergence of the so-called Feynman maps [K. D. Elworthy, Path Integration on Manifolds, Mathematical Aspects of Superspace, edited by Seifert, Clarke, and Rosenblum (Reidel, Boston, 1983), pp. 47-90] on a dense set of states. Finally, we give a new proof of some results in C. Grosche and F. Steiner, "The path integral on the Poincare upper half plane and for Liouville quantum mechanics," Phys. Lett. A 123, 319-328 (1987).

  18. Hyperbolic Method for Dispersive PDEs: Same High-Order of Accuracy for Solution, Gradient, and Hessian

    NASA Technical Reports Server (NTRS)

    Mazaheri, Alireza; Ricchiuto, Mario; Nishikawa, Hiroaki

    2016-01-01

    In this paper, we introduce a new hyperbolic first-order system for general dispersive partial differential equations (PDEs). We then extend the proposed system to general advection-diffusion-dispersion PDEs. We apply the fourth-order RD scheme of Ref. 1 to the proposed hyperbolic system, and solve time-dependent dispersive equations, including the classical two-soliton KdV and a dispersive shock case. We demonstrate that the predicted results, including the gradient and Hessian (second derivative), are in a very good agreement with the exact solutions. We then show that the RD scheme applied to the proposed system accurately captures dispersive shocks without numerical oscillations. We also verify that the solution, gradient and Hessian are predicted with equal order of accuracy.

  19. Computational methods for estimation of parameters in hyperbolic systems

    NASA Technical Reports Server (NTRS)

    Banks, H. T.; Ito, K.; Murphy, K. A.

    1983-01-01

    Approximation techniques for estimating spatially varying coefficients and unknown boundary parameters in second order hyperbolic systems are discussed. Methods for state approximation (cubic splines, tau-Legendre) and approximation of function space parameters (interpolatory splines) are outlined and numerical findings for use of the resulting schemes in model "one dimensional seismic inversion' problems are summarized.

  20. Estimation of coefficients and boundary parameters in hyperbolic systems

    NASA Technical Reports Server (NTRS)

    Banks, H. T.; Murphy, K. A.

    1984-01-01

    Semi-discrete Galerkin approximation schemes are considered in connection with inverse problems for the estimation of spatially varying coefficients and boundary condition parameters in second order hyperbolic systems typical of those arising in 1-D surface seismic problems. Spline based algorithms are proposed for which theoretical convergence results along with a representative sample of numerical findings are given.

  1. Causal dissipation for the relativistic dynamics of ideal gases

    NASA Astrophysics Data System (ADS)

    Freistühler, Heinrich; Temple, Blake

    2017-05-01

    We derive a general class of relativistic dissipation tensors by requiring that, combined with the relativistic Euler equations, they form a second-order system of partial differential equations which is symmetric hyperbolic in a second-order sense when written in the natural Godunov variables that make the Euler equations symmetric hyperbolic in the first-order sense. We show that this class contains a unique element representing a causal formulation of relativistic dissipative fluid dynamics which (i) is equivalent to the classical descriptions by Eckart and Landau to first order in the coefficients of viscosity and heat conduction and (ii) has its signal speeds bounded sharply by the speed of light. Based on these properties, we propose this system as a natural candidate for the relativistic counterpart of the classical Navier-Stokes equations.

  2. Causal dissipation for the relativistic dynamics of ideal gases

    PubMed Central

    2017-01-01

    We derive a general class of relativistic dissipation tensors by requiring that, combined with the relativistic Euler equations, they form a second-order system of partial differential equations which is symmetric hyperbolic in a second-order sense when written in the natural Godunov variables that make the Euler equations symmetric hyperbolic in the first-order sense. We show that this class contains a unique element representing a causal formulation of relativistic dissipative fluid dynamics which (i) is equivalent to the classical descriptions by Eckart and Landau to first order in the coefficients of viscosity and heat conduction and (ii) has its signal speeds bounded sharply by the speed of light. Based on these properties, we propose this system as a natural candidate for the relativistic counterpart of the classical Navier–Stokes equations. PMID:28588397

  3. Causal dissipation for the relativistic dynamics of ideal gases.

    PubMed

    Freistühler, Heinrich; Temple, Blake

    2017-05-01

    We derive a general class of relativistic dissipation tensors by requiring that, combined with the relativistic Euler equations, they form a second-order system of partial differential equations which is symmetric hyperbolic in a second-order sense when written in the natural Godunov variables that make the Euler equations symmetric hyperbolic in the first-order sense. We show that this class contains a unique element representing a causal formulation of relativistic dissipative fluid dynamics which (i) is equivalent to the classical descriptions by Eckart and Landau to first order in the coefficients of viscosity and heat conduction and (ii) has its signal speeds bounded sharply by the speed of light. Based on these properties, we propose this system as a natural candidate for the relativistic counterpart of the classical Navier-Stokes equations.

  4. Chaotic Oscillations of Second Order Linear Hyperbolic Equations with Nonlinear Boundary Conditions: A Factorizable but Noncommutative Case

    NASA Astrophysics Data System (ADS)

    Li, Liangliang; Huang, Yu; Chen, Goong; Huang, Tingwen

    If a second order linear hyperbolic partial differential equation in one-space dimension can be factorized as a product of two first order operators and if the two first order operators commute, with one boundary condition being the van der Pol type and the other being linear, one can establish the occurrence of chaos when the parameters enter a certain regime [Chen et al., 2014]. However, if the commutativity of the two first order operators fails to hold, then the treatment in [Chen et al., 2014] no longer works and significant new challenges arise in determining nonlinear boundary conditions that engenders chaos. In this paper, we show that by incorporating a linear memory effect, a nonlinear van der Pol boundary condition can cause chaotic oscillations when the parameter enters a certain regime. Numerical simulations illustrating chaotic oscillations are also presented.

  5. Absorbing boundary conditions for second-order hyperbolic equations

    NASA Technical Reports Server (NTRS)

    Jiang, Hong; Wong, Yau Shu

    1989-01-01

    A uniform approach to construct absorbing artificial boundary conditions for second-order linear hyperbolic equations is proposed. The nonlocal boundary condition is given by a pseudodifferential operator that annihilates travelling waves. It is obtained through the dispersion relation of the differential equation by requiring that the initial-boundary value problem admits the wave solutions travelling in one direction only. Local approximation of this global boundary condition yields an nth-order differential operator. It is shown that the best approximations must be in the canonical forms which can be factorized into first-order operators. These boundary conditions are perfectly absorbing for wave packets propagating at certain group velocities. A hierarchy of absorbing boundary conditions is derived for transonic small perturbation equations of unsteady flows. These examples illustrate that the absorbing boundary conditions are easy to derive, and the effectiveness is demonstrated by the numerical experiments.

  6. Conformal and covariant Z4 formulation of the Einstein equations: Strongly hyperbolic first-order reduction and solution with discontinuous Galerkin schemes

    NASA Astrophysics Data System (ADS)

    Dumbser, Michael; Guercilena, Federico; Köppel, Sven; Rezzolla, Luciano; Zanotti, Olindo

    2018-04-01

    We present a strongly hyperbolic first-order formulation of the Einstein equations based on the conformal and covariant Z4 system (CCZ4) with constraint-violation damping, which we refer to as FO-CCZ4. As CCZ4, this formulation combines the advantages of a conformal and traceless formulation, with the suppression of constraint violations given by the damping terms, but being first order in time and space, it is particularly suited for a discontinuous Galerkin (DG) implementation. The strongly hyperbolic first-order formulation has been obtained by making careful use of first and second-order ordering constraints. A proof of strong hyperbolicity is given for a selected choice of standard gauges via an analytical computation of the entire eigenstructure of the FO-CCZ4 system. The resulting governing partial differential equations system is written in nonconservative form and requires the evolution of 58 unknowns. A key feature of our formulation is that the first-order CCZ4 system decouples into a set of pure ordinary differential equations and a reduced hyperbolic system of partial differential equations that contains only linearly degenerate fields. We implement FO-CCZ4 in a high-order path-conservative arbitrary-high-order-method-using-derivatives (ADER)-DG scheme with adaptive mesh refinement and local time-stepping, supplemented with a third-order ADER-WENO subcell finite-volume limiter in order to deal with singularities arising with black holes. We validate the correctness of the formulation through a series of standard tests in vacuum, performed in one, two and three spatial dimensions, and also present preliminary results on the evolution of binary black-hole systems. To the best of our knowledge, these are the first successful three-dimensional simulations of moving punctures carried out with high-order DG schemes using a first-order formulation of the Einstein equations.

  7. Gummel Symmetry Test on charge based drain current expression using modified first-order hyperbolic velocity-field expression

    NASA Astrophysics Data System (ADS)

    Singh, Kirmender; Bhattacharyya, A. B.

    2017-03-01

    Gummel Symmetry Test (GST) has been a benchmark industry standard for MOSFET models and is considered as one of important tests by the modeling community. BSIM4 MOSFET model fails to pass GST as the drain current equation is not symmetrical because drain and source potentials are not referenced to bulk. BSIM6 MOSFET model overcomes this limitation by taking all terminal biases with reference to bulk and using proper velocity saturation (v -E) model. The drain current equation in BSIM6 is charge based and continuous in all regions of operation. It, however, adopts a complicated method to compute source and drain charges. In this work we propose to use conventional charge based method formulated by Enz for obtaining simpler analytical drain current expression that passes GST. For this purpose we adopt two steps: (i) In the first step we use a modified first-order hyperbolic v -E model with adjustable coefficients which is integrable, simple and accurate, and (ii) In the second we use a multiplying factor in the modified first-order hyperbolic v -E expression to obtain correct monotonic asymptotic behavior around the origin of lateral electric field. This factor is of empirical form, which is a function of drain voltage (vd) and source voltage (vs) . After considering both the above steps we obtain drain current expression whose accuracy is similar to that obtained from second-order hyperbolic v -E model. In modified first-order hyperbolic v -E expression if vd and vs is replaced by smoothing functions for the effective drain voltage (vdeff) and effective source voltage (vseff), it will as well take care of discontinuity between linear to saturation regions of operation. The condition of symmetry is shown to be satisfied by drain current and its higher order derivatives, as both of them are odd functions and their even order derivatives smoothly pass through the origin. In strong inversion region and technology node of 22 nm the GST is shown to pass till sixth-order derivative and for weak inversion it is shown till fifth-order derivative. In the expression of drain current major short channel phenomena like vertical field mobility reduction, velocity saturation and velocity overshoot have been taken into consideration.

  8. Fuchsian triangle groups and Grothendieck dessins. Variations on a theme of Belyi

    NASA Astrophysics Data System (ADS)

    Cohen, Paula Beazley; Itzykson, Claude; Wolfart, Jürgen

    1994-07-01

    According to a theorem of Belyi, a smooth projective algebraic curve is defined over a number field if and only if there exists a non-constant element of its function field ramified only over 0, 1 and . The existence of such a Belyi function is equivalent to that of a representation of the curve as a possibly compactified quotient space of the Poincaré upper half plane by a subgroup of finite index in a Fuchsian triangle group. On the other hand, Fuchsian triangle groups arise in many contexts, such as in the theory of hypergeometric functions and certain triangular billiard problems, which would appear at first sight to have no relation to the Galois problems that motivated the above discovery of Belyi. In this note we review several results related to Belyi's theorem and we develop certain aspects giving examples. For preliminary accounts, see the preprint [Wo1], the conference proceedings article [BauItz] and the Comptes Rendus note [CoWo2].

  9. Theoretical stability in coefficient inverse problems for general hyperbolic equations with numerical reconstruction

    NASA Astrophysics Data System (ADS)

    Yu, Jie; Liu, Yikan; Yamamoto, Masahiro

    2018-04-01

    In this article, we investigate the determination of the spatial component in the time-dependent second order coefficient of a hyperbolic equation from both theoretical and numerical aspects. By the Carleman estimates for general hyperbolic operators and an auxiliary Carleman estimate, we establish local Hölder stability with either partial boundary or interior measurements under certain geometrical conditions. For numerical reconstruction, we minimize a Tikhonov functional which penalizes the gradient of the unknown function. Based on the resulting variational equation, we design an iteration method which is updated by solving a Poisson equation at each step. One-dimensional prototype examples illustrate the numerical performance of the proposed iteration.

  10. Power and Roots by Recursion.

    ERIC Educational Resources Information Center

    Aieta, Joseph F.

    1987-01-01

    This article illustrates how questions from elementary finance can serve as motivation for studying high order powers, roots, and exponential functions using Logo procedures. A second discussion addresses a relatively unknown algorithm for the trigonometric exponential and hyperbolic functions. (PK)

  11. Fourth order difference methods for hyperbolic IBVP's

    NASA Technical Reports Server (NTRS)

    Gustafsson, Bertil; Olsson, Pelle

    1994-01-01

    Fourth order difference approximations of initial-boundary value problems for hyperbolic partial differential equations are considered. We use the method of lines approach with both explicit and compact implicit difference operators in space. The explicit operator satisfies an energy estimate leading to strict stability. For the implicit operator we develop boundary conditions and give a complete proof of strong stability using the Laplace transform technique. We also present numerical experiments for the linear advection equation and Burgers' equation with discontinuities in the solution or in its derivative. The first equation is used for modeling contact discontinuities in fluid dynamics, the second one for modeling shocks and rarefaction waves. The time discretization is done with a third order Runge-Kutta TVD method. For solutions with discontinuities in the solution itself we add a filter based on second order viscosity. In case of the non-linear Burger's equation we use a flux splitting technique that results in an energy estimate for certain different approximations, in which case also an entropy condition is fulfilled. In particular we shall demonstrate that the unsplit conservative form produces a non-physical shock instead of the physically correct rarefaction wave. In the numerical experiments we compare our fourth order methods with a standard second order one and with a third order TVD-method. The results show that the fourth order methods are the only ones that give good results for all the considered test problems.

  12. High-Order Hyperbolic Residual-Distribution Schemes on Arbitrary Triangular Grids

    DTIC Science & Technology

    2015-06-22

    Galerkin methodology formulated in the framework of the residual-distribution method. For both second- and third- 1. REPORT DATE (DD-MM-YYYY) 4. TITLE AND...construct these schemes based on the Low-Diffusion-A and the Streamwise-Upwind-Petrov-Galerkin methodology formulated in the framework of the residual...methodology formulated in the framework of the residual-distribution method. For both second- and third-order-schemes, we construct a fully implicit

  13. Boundary-field-driven control of discontinuous phase transitions on hyperbolic lattices

    NASA Astrophysics Data System (ADS)

    Lee, Yoju; Verstraete, Frank; Gendiar, Andrej

    2016-08-01

    The multistate Potts models on two-dimensional hyperbolic lattices are studied with respect to various boundary effects. The free energy is numerically calculated using the corner transfer matrix renormalization group method. We analyze phase transitions of the Potts models in the thermodynamic limit with respect to contracted boundary layers. A false phase transition is present even if a couple of the boundary layers are contracted. Its significance weakens, as the number of the contracted boundary layers increases, until the correct phase transition (deep inside the bulk) prevails over the false one. For this purpose, we derive a thermodynamic quantity, the so-called bulk excess free energy, which depends on the contracted boundary layers and memorizes additional boundary effects. In particular, the magnetic field is imposed on the outermost boundary layer. While the boundary magnetic field does not affect the second-order phase transition in the bulk if suppressing all the boundary effects on the hyperbolic lattices, the first-order (discontinuous) phase transition is significantly sensitive to the boundary magnetic field. Contrary to the phase transition on the Euclidean lattices, the discontinuous phase transition on the hyperbolic lattices can be continuously controlled (within a certain temperature coexistence region) by varying the boundary magnetic field.

  14. Analytic properties for the honeycomb lattice Green function at the origin

    NASA Astrophysics Data System (ADS)

    Joyce, G. S.

    2018-05-01

    The analytic properties of the honeycomb lattice Green function are investigated, where is a complex variable which lies in a plane. This double integral defines a single-valued analytic function provided that a cut is made along the real axis from w  =  ‑3 to . In order to analyse the behaviour of along the edges of the cut it is convenient to define the limit function where . It is shown that and can be evaluated exactly for all in terms of various hypergeometric functions, where the argument function is always real-valued and rational. The second-order linear Fuchsian differential equation satisfied by is also used to derive series expansions for and which are valid in the neighbourhood of the regular singular points and . Integral representations are established for and , where with . In particular, it is proved that where J 0(z) and Y 0(z) denote Bessel functions of the first and second kind, respectively. The results derived in the paper are utilized to evaluate the associated logarithmic integral where w lies in the cut plane. A new set of orthogonal polynomials which are connected with the honeycomb lattice Green function are also briefly discussed. Finally, a link between and the theory of Pearson random walks in a plane is established.

  15. High order ADER schemes for a unified first order hyperbolic formulation of Newtonian continuum mechanics coupled with electro-dynamics

    NASA Astrophysics Data System (ADS)

    Dumbser, Michael; Peshkov, Ilya; Romenski, Evgeniy; Zanotti, Olindo

    2017-11-01

    In this paper, we propose a new unified first order hyperbolic model of Newtonian continuum mechanics coupled with electro-dynamics. The model is able to describe the behavior of moving elasto-plastic dielectric solids as well as viscous and inviscid fluids in the presence of electro-magnetic fields. It is actually a very peculiar feature of the proposed PDE system that viscous fluids are treated just as a special case of elasto-plastic solids. This is achieved by introducing a strain relaxation mechanism in the evolution equations of the distortion matrix A, which in the case of purely elastic solids maps the current configuration to the reference configuration. The model also contains a hyperbolic formulation of heat conduction as well as a dissipative source term in the evolution equations for the electric field given by Ohm's law. Via formal asymptotic analysis we show that in the stiff limit, the governing first order hyperbolic PDE system with relaxation source terms tends asymptotically to the well-known viscous and resistive magnetohydrodynamics (MHD) equations. Furthermore, a rigorous derivation of the model from variational principles is presented, together with the transformation of the Euler-Lagrange differential equations associated with the underlying variational problem from Lagrangian coordinates to Eulerian coordinates in a fixed laboratory frame. The present paper hence extends the unified first order hyperbolic model of Newtonian continuum mechanics recently proposed in [110,42] to the more general case where the continuum is coupled with electro-magnetic fields. The governing PDE system is symmetric hyperbolic and satisfies the first and second principle of thermodynamics, hence it belongs to the so-called class of symmetric hyperbolic thermodynamically compatible systems (SHTC), which have been studied for the first time by Godunov in 1961 [61] and later in a series of papers by Godunov and Romenski [67,69,119]. An important feature of the proposed model is that the propagation speeds of all physical processes, including dissipative processes, are finite. The model is discretized using high order accurate ADER discontinuous Galerkin (DG) finite element schemes with a posteriori subcell finite volume limiter and using high order ADER-WENO finite volume schemes. We show numerical test problems that explore a rather large parameter space of the model ranging from ideal MHD, viscous and resistive MHD over pure electro-dynamics to moving dielectric elastic solids in a magnetic field.

  16. Code Development of Three-Dimensional General Relativistic Hydrodynamics with AMR (Adaptive-Mesh Refinement) and Results from Special and General Relativistic Hydrodynamics

    NASA Astrophysics Data System (ADS)

    Dönmez, Orhan

    2004-09-01

    In this paper, the general procedure to solve the general relativistic hydrodynamical (GRH) equations with adaptive-mesh refinement (AMR) is presented. In order to achieve, the GRH equations are written in the conservation form to exploit their hyperbolic character. The numerical solutions of GRH equations are obtained by high resolution shock Capturing schemes (HRSC), specifically designed to solve nonlinear hyperbolic systems of conservation laws. These schemes depend on the characteristic information of the system. The Marquina fluxes with MUSCL left and right states are used to solve GRH equations. First, different test problems with uniform and AMR grids on the special relativistic hydrodynamics equations are carried out to verify the second-order convergence of the code in one, two and three dimensions. Results from uniform and AMR grid are compared. It is found that adaptive grid does a better job when the number of resolution is increased. Second, the GRH equations are tested using two different test problems which are Geodesic flow and Circular motion of particle In order to do this, the flux part of GRH equations is coupled with source part using Strang splitting. The coupling of the GRH equations is carried out in a treatment which gives second order accurate solutions in space and time.

  17. Triangle based TVD schemes for hyperbolic conservation laws

    NASA Technical Reports Server (NTRS)

    Durlofsky, Louis J.; Osher, Stanley; Engquist, Bjorn

    1990-01-01

    A triangle based total variation diminishing (TVD) scheme for the numerical approximation of hyperbolic conservation laws in two space dimensions is constructed. The novelty of the scheme lies in the nature of the preprocessing of the cell averaged data, which is accomplished via a nearest neighbor linear interpolation followed by a slope limiting procedures. Two such limiting procedures are suggested. The resulting method is considerably more simple than other triangle based non-oscillatory approximations which, like this scheme, approximate the flux up to second order accuracy. Numerical results for linear advection and Burgers' equation are presented.

  18. Application of TVD schemes for the Euler equations of gas dynamics. [total variation diminishing for nonlinear hyperbolic systems

    NASA Technical Reports Server (NTRS)

    Yee, H. C.; Warming, R. F.; Harten, A.

    1985-01-01

    First-order, second-order, and implicit total variation diminishing (TVD) schemes are reviewed using the modified flux approach. Some transient and steady-state calculations are then carried out to illustrate the applicability of these schemes to the Euler equations. It is shown that the second-order explicit TVD schemes generate good shock resolution for both transient and steady-state one-dimensional and two-dimensional problems. Numerical experiments for a quasi-one-dimensional nozzle problem show that the second-order implicit TVD scheme produces a fairly rapid convergence rate and remains stable even when running with a Courant number of 10 to the 6th.

  19. Total Variation Diminishing (TVD) schemes of uniform accuracy

    NASA Technical Reports Server (NTRS)

    Hartwich, PETER-M.; Hsu, Chung-Hao; Liu, C. H.

    1988-01-01

    Explicit second-order accurate finite-difference schemes for the approximation of hyperbolic conservation laws are presented. These schemes are nonlinear even for the constant coefficient case. They are based on first-order upwind schemes. Their accuracy is enhanced by locally replacing the first-order one-sided differences with either second-order one-sided differences or central differences or a blend thereof. The appropriate local difference stencils are selected such that they give TVD schemes of uniform second-order accuracy in the scalar, or linear systems, case. Like conventional TVD schemes, the new schemes avoid a Gibbs phenomenon at discontinuities of the solution, but they do not switch back to first-order accuracy, in the sense of truncation error, at extrema of the solution. The performance of the new schemes is demonstrated in several numerical tests.

  20. High order ADER schemes for a unified first order hyperbolic formulation of continuum mechanics: Viscous heat-conducting fluids and elastic solids

    NASA Astrophysics Data System (ADS)

    Dumbser, Michael; Peshkov, Ilya; Romenski, Evgeniy; Zanotti, Olindo

    2016-06-01

    This paper is concerned with the numerical solution of the unified first order hyperbolic formulation of continuum mechanics recently proposed by Peshkov and Romenski [110], further denoted as HPR model. In that framework, the viscous stresses are computed from the so-called distortion tensor A, which is one of the primary state variables in the proposed first order system. A very important key feature of the HPR model is its ability to describe at the same time the behavior of inviscid and viscous compressible Newtonian and non-Newtonian fluids with heat conduction, as well as the behavior of elastic and visco-plastic solids. Actually, the model treats viscous and inviscid fluids as generalized visco-plastic solids. This is achieved via a stiff source term that accounts for strain relaxation in the evolution equations of A. Also heat conduction is included via a first order hyperbolic system for the thermal impulse, from which the heat flux is computed. The governing PDE system is hyperbolic and fully consistent with the first and the second principle of thermodynamics. It is also fundamentally different from first order Maxwell-Cattaneo-type relaxation models based on extended irreversible thermodynamics. The HPR model represents therefore a novel and unified description of continuum mechanics, which applies at the same time to fluid mechanics and solid mechanics. In this paper, the direct connection between the HPR model and the classical hyperbolic-parabolic Navier-Stokes-Fourier theory is established for the first time via a formal asymptotic analysis in the stiff relaxation limit. From a numerical point of view, the governing partial differential equations are very challenging, since they form a large nonlinear hyperbolic PDE system that includes stiff source terms and non-conservative products. We apply the successful family of one-step ADER-WENO finite volume (FV) and ADER discontinuous Galerkin (DG) finite element schemes to the HPR model in the stiff relaxation limit, and compare the numerical results with exact or numerical reference solutions obtained for the Euler and Navier-Stokes equations. Numerical convergence results are also provided. To show the universality of the HPR model, the paper is rounded-off with an application to wave propagation in elastic solids, for which one only needs to switch off the strain relaxation source term in the governing PDE system. We provide various examples showing that for the purpose of flow visualization, the distortion tensor A seems to be particularly useful.

  1. On the identification of continuous vibrating systems modelled by hyperbolic partial differential equations

    NASA Technical Reports Server (NTRS)

    Udwadia, F. E.; Garba, J. A.

    1983-01-01

    This paper deals with the identification of spatially varying parameters in systems of finite spatial extent which can be described by second order hyperbolic differential equations. Two questions have been addressed. The first deals with 'partial identification' and inquires into the possibility of retrieving all the eigenvalues of the system from response data obtained at one location x-asterisk epsilon (0, 1). The second deals with the identification of the distributed coefficients rho(x), a(x) and b(x). Sufficient conditions for unique identification of all the eigenvalues of the system are obtained, and conditions under which the coefficients can be uniquely identified using suitable response data obtained at one point in the spatial domain are determined. Application of the results and their usefulness is demonstrated in the identification of the properties of tall building structural systems subjected to dynamic load environments.

  2. Spectral approach to homogenization of hyperbolic equations with periodic coefficients

    NASA Astrophysics Data System (ADS)

    Dorodnyi, M. A.; Suslina, T. A.

    2018-06-01

    In L2 (Rd ;Cn), we consider selfadjoint strongly elliptic second order differential operators Aε with periodic coefficients depending on x / ε, ε > 0. We study the behavior of the operators cos ⁡ (Aε1/2 τ) and Aε-1/2 sin ⁡ (Aε1/2 τ), τ ∈ R, for small ε. Approximations for these operators in the (Hs →L2)-operator norm with a suitable s are obtained. The results are used to study the behavior of the solution vε of the Cauchy problem for the hyperbolic equation ∂τ2 vε = -Aεvε + F. General results are applied to the acoustics equation and the system of elasticity theory.

  3. [Hyperbolic growth of marine and continental biodiversity through the phanerozoic and community evolution].

    PubMed

    Markov, A V; Korotaev, A V

    2008-01-01

    Among diverse models that are used to describe and interpret the changes in global biodiversity through the Phanerozoic, the exponential and logistic models (traditionally used in population biology) are the most popular. As we have recently demonstrated (Markov, Korotayev, 2007), the growth of the Phanerozoic marine biodiversity at genus level correlates better with the hyperbolic model (widely used in demography and macrosociology). Here we show that the hyperbolic model is also applicable to the Phanerozoic continental biota at genus and family levels, and to the marine biota at species, genus, and family levels. There are many common features in the evolutionary dynamics of the marine and continental biotas that imply similarity and common nature of the factors and mechanisms underlying the hyperbolic growth. Both marine and continental biotas are characterized by continuous growth of the mean longevity of taxa, by decreasing extinction and origination rates, by similar pattern of replacement of dominant groups, by stepwise accumulation of evolutionary stable, adaptable and "physiologically buffered" taxa with effective mechanisms of parental care, protection of early developmental stages, etc. At the beginning of the development of continental biota, the observed taxonomic diversity was substantially lower than that predicted by the hyperbolic model. We suggest that this is due, firstly, to the fact that, during the earliest stages of the continental biota evolution, the groups that are not preserved in the fossil record (such as soil bacteria, unicellular algae, lichens, etc.) played a fundamental role, and secondly, to the fact that the continental biota initially formed as a marginal portion of the marine biota, rather than a separate system. The hyperbolic dynamics is most prominent when both marine and continental biotas are considered together. This fact can be interpreted as a proof of the integrated nature of the biosphere. In the macrosociological models, the hyperbolic pattern of the world population growth arises from a non-linear second-order positive feedback between the demographic growth and technological development (more people - more potential inventors - faster technological growth - the carrying capacity of the Earth grows faster - faster population growth - more people - more potential inventors, and so on). Based on the analogy with macrosociological models and diverse paleontological data, we suggest that the hyperbolic character of biodiversity growth can be similarly accounted for by a non-linear second-order positive feedback between the diversity growth and community structure complexity. The feedback can work via two parallel mechanisms: 1) decreasing extinction rate (more taxa- higher alpha diversity, or mean number of taxa in a community - communities become more complex and stable - extinction rate decreases - more taxa, and so on) and 2) increasing origination rate (new taxa facilitate niche construction; newly formed niches can be occupied by the next "generation" of taxa). The latter possibility makes the mechanisms underlying the hyperbolic growth of biodiversity and human population even more similar, because the total ecospace of the biota is analogous to the "carrying capacity of the Earth" in demography. As far as new species can increase ecospace and facilitate opportunities for additional species entering the community, they are analogous to the "inventors" of the demographic models whose inventions increase the carrying capacity of the Earth. The hyperbolic growth of the Phanerozoic biodiverstiy suggests that "cooperative" interactions between taxa can play an important role in evolution, along with generally accepted competitive interactions. Due to this "cooperation", the evolution of biodiversity acquires some features of a self-accelerating process. Macroevolutionary "cooperation" reveals itself in: 1) increasing stability of communities that arises from alpha diversity growth; 2) ability of species to facilitate opportunities for additional species entering the community.

  4. Computations of Eisenstein series on Fuchsian groups

    NASA Astrophysics Data System (ADS)

    Avelin, Helen

    2008-09-01

    We present numerical investigations of the value distribution and distribution of Fourier coefficients of the Eisenstein series E(z;s) on arithmetic and non-arithmetic Fuchsian groups. Our numerics indicate a Gaussian limit value distribution for a real-valued rotation of E(z;s) as operatorname{Re} sD1/2 , operatorname{Im} sto infty and also, on non-arithmetic groups, a complex Gaussian limit distribution for E(z;s) when operatorname{Re} s>1/2 near 1/2 and operatorname{Im} sto infty , at least if we allow operatorname{Re} sto 1/2 at some rate. Furthermore, on non-arithmetic groups and for fixed s with operatorname{Re} s ge 1/2 near 1/2 , our numerics indicate a Gaussian limit distribution for the appropriately normalized Fourier coefficients.

  5. Focal surfaces of hyperbolic cylinders

    NASA Astrophysics Data System (ADS)

    Georgiev, Georgi Hristov; Pavlov, Milen Dimov

    2017-12-01

    Cylindrical surfaces have many applications in geometric modeling, architecture and other branches of engineering. In this paper, we describe two cylindrical surfaces associated to a given hyperbolic cylinder. The first one is a focal surface which is determined by reciprocal principle curvature of the hyperbolic cylinder. The second one is a generalized focal surface obtained by reciprocal mean curvature of the same hyperbolic cylinder. In particular, we show that each of these surfaces admits three different parametric representations. As consequence, it is proved that the focal and generalized focal surfaces of the hyperbolic cylinder are rational surfaces. An illustrative example is included.

  6. The surface-induced spatial-temporal structures in confined binary alloys

    NASA Astrophysics Data System (ADS)

    Krasnyuk, Igor B.; Taranets, Roman M.; Chugunova, Marina

    2014-12-01

    This paper examines surface-induced ordering in confined binary alloys. The hyperbolic initial boundary value problem (IBVP) is used to describe a scenario of spatiotemporal ordering in a disordered phase for concentration of one component of binary alloy and order parameter with non-linear dynamic boundary conditions. This hyperbolic model consists of two coupled second order differential equations for order parameter and concentration. It also takes into account effects of the “memory” on the ordering of atoms and their densities in the alloy. The boundary conditions characterize surface velocities of order parameter and concentration changing which is due to surface (super)cooling on walls confining the binary alloy. It is shown that for large times there are three classes of dynamic non-linear boundary conditions which lead to three different types of attractor’s elements for the IBVP. Namely, the elements of attractor are the limit periodic simple shock waves with fronts of “discontinuities” Γ. If Γ is finite, then the attractor contains spatiotemporal functions of relaxation type. If Γ is infinite and countable then we observe the functions of pre-turbulent type. If Γ is infinite and uncountable then we obtain the functions of turbulent type.

  7. Boundary Closures for Fourth-order Energy Stable Weighted Essentially Non-Oscillatory Finite Difference Schemes

    NASA Technical Reports Server (NTRS)

    Fisher, Travis C.; Carpenter, Mark H.; Yamaleev, Nail K.; Frankel, Steven H.

    2009-01-01

    A general strategy exists for constructing Energy Stable Weighted Essentially Non Oscillatory (ESWENO) finite difference schemes up to eighth-order on periodic domains. These ESWENO schemes satisfy an energy norm stability proof for both continuous and discontinuous solutions of systems of linear hyperbolic equations. Herein, boundary closures are developed for the fourth-order ESWENO scheme that maintain wherever possible the WENO stencil biasing properties, while satisfying the summation-by-parts (SBP) operator convention, thereby ensuring stability in an L2 norm. Second-order, and third-order boundary closures are developed that achieve stability in diagonal and block norms, respectively. The global accuracy for the second-order closures is three, and for the third-order closures is four. A novel set of non-uniform flux interpolation points is necessary near the boundaries to simultaneously achieve 1) accuracy, 2) the SBP convention, and 3) WENO stencil biasing mechanics.

  8. A numerical study of the axisymmetric Couette-Taylor problem using a fast high-resolution second-order central scheme

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kupferman, R.

    The author presents a numerical study of the axisymmetric Couette-Taylor problem using a finite difference scheme. The scheme is based on a staggered version of a second-order central-differencing method combined with a discrete Hodge projection. The use of central-differencing operators obviates the need to trace the characteristic flow associated with the hyperbolic terms. The result is a simple and efficient scheme which is readily adaptable to other geometries and to more complicated flows. The scheme exhibits competitive performance in terms of accuracy, resolution, and robustness. The numerical results agree accurately with linear stability theory and with previous numerical studies.

  9. High resolution schemes and the entropy condition

    NASA Technical Reports Server (NTRS)

    Osher, S.; Chakravarthy, S.

    1983-01-01

    A systematic procedure for constructing semidiscrete, second order accurate, variation diminishing, five point band width, approximations to scalar conservation laws, is presented. These schemes are constructed to also satisfy a single discrete entropy inequality. Thus, in the convex flux case, convergence is proven to be the unique physically correct solution. For hyperbolic systems of conservation laws, this construction is used formally to extend the first author's first order accurate scheme, and show (under some minor technical hypotheses) that limit solutions satisfy an entropy inequality. Results concerning discrete shocks, a maximum principle, and maximal order of accuracy are obtained. Numerical applications are also presented.

  10. Very high order PNPM schemes on unstructured meshes for the resistive relativistic MHD equations

    NASA Astrophysics Data System (ADS)

    Dumbser, Michael; Zanotti, Olindo

    2009-10-01

    In this paper we propose the first better than second order accurate method in space and time for the numerical solution of the resistive relativistic magnetohydrodynamics (RRMHD) equations on unstructured meshes in multiple space dimensions. The nonlinear system under consideration is purely hyperbolic and contains a source term, the one for the evolution of the electric field, that becomes stiff for low values of the resistivity. For the spatial discretization we propose to use high order PNPM schemes as introduced in Dumbser et al. [M. Dumbser, D. Balsara, E.F. Toro, C.D. Munz, A unified framework for the construction of one-step finite volume and discontinuous Galerkin schemes, Journal of Computational Physics 227 (2008) 8209-8253] for hyperbolic conservation laws and a high order accurate unsplit time-discretization is achieved using the element-local space-time discontinuous Galerkin approach proposed in Dumbser et al. [M. Dumbser, C. Enaux, E.F. Toro, Finite volume schemes of very high order of accuracy for stiff hyperbolic balance laws, Journal of Computational Physics 227 (2008) 3971-4001] for one-dimensional balance laws with stiff source terms. The divergence-free character of the magnetic field is accounted for through the divergence cleaning procedure of Dedner et al. [A. Dedner, F. Kemm, D. Kröner, C.-D. Munz, T. Schnitzer, M. Wesenberg, Hyperbolic divergence cleaning for the MHD equations, Journal of Computational Physics 175 (2002) 645-673]. To validate our high order method we first solve some numerical test cases for which exact analytical reference solutions are known and we also show numerical convergence studies in the stiff limit of the RRMHD equations using PNPM schemes from third to fifth order of accuracy in space and time. We also present some applications with shock waves such as a classical shock tube problem with different values for the conductivity as well as a relativistic MHD rotor problem and the relativistic equivalent of the Orszag-Tang vortex problem. We have verified that the proposed method can handle equally well the resistive regime and the stiff limit of ideal relativistic MHD. For these reasons it provides a powerful tool for relativistic astrophysical simulations involving the appearance of magnetic reconnection.

  11. Magnetostatic modes in ferromagnetic samples with inhomogeneous internal fields

    NASA Astrophysics Data System (ADS)

    Arias, Rodrigo

    2015-03-01

    Magnetostatic modes in ferromagnetic samples are very well characterized and understood in samples with uniform internal magnetic fields. More recently interest has shifted to the study of magnetization modes in ferromagnetic samples with inhomogeneous internal fields. The present work shows that under the magnetostatic approximation and for samples of arbitrary shape and/or arbitrary inhomogeneous internal magnetic fields the modes can be classified as elliptic or hyperbolic, and their associated frequency spectrum can be delimited. This results from the analysis of the character of the second order partial differential equation for the magnetostatic potential under these general conditions. In general, a sample with an inhomogeneous internal field and at a given frequency, may have regions of elliptic and hyperbolic character separated by a boundary. In the elliptic regions the magnetostatic modes have a smooth monotonic character (generally decaying form the surfaces (a ``tunneling'' behavior)) and in hyperbolic regions an oscillatory wave-like character. A simple local criterion distinguishes hyperbolic from elliptic regions: the sign of a susceptibility parameter. This study shows that one may control to some extent magnetostatic modes via external fields or geometry. R.E.A. acknowledges Financiamiento Basal para Centros Cientificos y Tecnologicos de Excelencia under Project No. FB 0807 (Chile), Grant No. ICM P10-061-F by Fondo de Innovacion para la Competitividad-MINECON, and Proyecto Fondecyt 1130192.

  12. Efficient High-Order Accurate Methods using Unstructured Grids for Hydrodynamics and Acoustics

    DTIC Science & Technology

    2007-08-31

    Leer. On upstream differencing and godunov-type schemes for hyperbolic conservation laws. SIAM Review, 25(1):35-61, 1983. [46] F . Eleuterio Toro ...early stage [4-61. The basic idea can be surmised from simple approximation theory. If a continuous function f is to be approximated over a set of...a2f 4h4 a4ff(x+eh) = f (x)+-- + _ •-+• e +0 +... (1) where 0 < e < 1 for approximations inside the interval of width h. For a second-order approximation

  13. Green operators for low regularity spacetimes

    NASA Astrophysics Data System (ADS)

    Sanchez Sanchez, Yafet; Vickers, James

    2018-02-01

    In this paper we define and construct advanced and retarded Green operators for the wave operator on spacetimes with low regularity. In order to do so we require that the spacetime satisfies the condition of generalised hyperbolicity which is equivalent to well-posedness of the classical inhomogeneous problem with zero initial data where weak solutions are properly supported. Moreover, we provide an explicit formula for the kernel of the Green operators in terms of an arbitrary eigenbasis of H 1 and a suitable Green matrix that solves a system of second order ODEs.

  14. The representation of spacetime through steep time functions

    NASA Astrophysics Data System (ADS)

    Minguzzi, Ettore

    2018-02-01

    In a recent work I showed that the family of smooth steep time functions can be used to recover the order, the topology and the (Lorentz-Finsler) distance of spacetime. In this work I present the main ideas entering the proof of the (smooth) distance formula, particularly the product trick which converts metric statements into causal ones. The paper ends with a second proof of the distance formula valid for globally hyperbolic Lorentzian spacetimes.

  15. Hyperbolicity measures democracy in real-world networks

    NASA Astrophysics Data System (ADS)

    Borassi, Michele; Chessa, Alessandro; Caldarelli, Guido

    2015-09-01

    In this work, we analyze the hyperbolicity of real-world networks, a geometric quantity that measures if a space is negatively curved. We provide two improvements in our understanding of this quantity: first of all, in our interpretation, a hyperbolic network is "aristocratic", since few elements "connect" the system, while a non-hyperbolic network has a more "democratic" structure with a larger number of crucial elements. The second contribution is the introduction of the average hyperbolicity of the neighbors of a given node. Through this definition, we outline an "influence area" for the vertices in the graph. We show that in real networks the influence area of the highest degree vertex is small in what we define "local" networks (i.e., social or peer-to-peer networks), and large in "global" networks (i.e., power grid, metabolic networks, or autonomous system networks).

  16. Counting surface-kernel epimorphisms from a co-compact Fuchsian group to a cyclic group with motivations from string theory and QFT

    NASA Astrophysics Data System (ADS)

    Bibak, Khodakhast; Kapron, Bruce M.; Srinivasan, Venkatesh

    2016-09-01

    Graphs embedded into surfaces have many important applications, in particular, in combinatorics, geometry, and physics. For example, ribbon graphs and their counting is of great interest in string theory and quantum field theory (QFT). Recently, Koch et al. (2013) [12] gave a refined formula for counting ribbon graphs and discussed its applications to several physics problems. An important factor in this formula is the number of surface-kernel epimorphisms from a co-compact Fuchsian group to a cyclic group. The aim of this paper is to give an explicit and practical formula for the number of such epimorphisms. As a consequence, we obtain an 'equivalent' form of Harvey's famous theorem on the cyclic groups of automorphisms of compact Riemann surfaces. Our main tool is an explicit formula for the number of solutions of restricted linear congruence recently proved by Bibak et al. using properties of Ramanujan sums and of the finite Fourier transform of arithmetic functions.

  17. Anomalous resonances of an optical microcavity with a hyperbolic metamaterial core

    NASA Astrophysics Data System (ADS)

    Travkin, Evgenij; Kiel, Thomas; Sadofev, Sergey; Busch, Kurt; Benson, Oliver; Kalusniak, Sascha

    2018-05-01

    We embed a hyperbolic metamaterial based on stacked layer pairs of epitaxially grown ZnO/ZnO:Ga in a monolithic optical microcavity, and we investigate the arising unique resonant effects experimentally and theoretically. Unlike traditional metals, the semiconductor-based approach allows us to utilize all three permittivity regions of the hyperbolic metamaterial in the near-infrared spectral range. This configuration gives rise to modes of identical orders appearing at different frequencies, a zeroth-order resonance in an all-positive permittivity region, and a continuum of high-order modes. In addition, an unusual lower cutoff frequency is introduced to the resonator mode spectrum. The observed effects expand the possibilities for customization of optical resonators; in particular, the zeroth-order and high-order modes hold strong potential for the realization of deeply subwavelength cavity sizes.

  18. General relativistic hydrodynamics with Adaptive-Mesh Refinement (AMR) and modeling of accretion disks

    NASA Astrophysics Data System (ADS)

    Donmez, Orhan

    We present a general procedure to solve the General Relativistic Hydrodynamical (GRH) equations with Adaptive-Mesh Refinement (AMR) and model of an accretion disk around a black hole. To do this, the GRH equations are written in a conservative form to exploit their hyperbolic character. The numerical solutions of the general relativistic hydrodynamic equations is done by High Resolution Shock Capturing schemes (HRSC), specifically designed to solve non-linear hyperbolic systems of conservation laws. These schemes depend on the characteristic information of the system. We use Marquina fluxes with MUSCL left and right states to solve GRH equations. First, we carry out different test problems with uniform and AMR grids on the special relativistic hydrodynamics equations to verify the second order convergence of the code in 1D, 2 D and 3D. Second, we solve the GRH equations and use the general relativistic test problems to compare the numerical solutions with analytic ones. In order to this, we couple the flux part of general relativistic hydrodynamic equation with a source part using Strang splitting. The coupling of the GRH equations is carried out in a treatment which gives second order accurate solutions in space and time. The test problems examined include shock tubes, geodesic flows, and circular motion of particle around the black hole. Finally, we apply this code to the accretion disk problems around the black hole using the Schwarzschild metric at the background of the computational domain. We find spiral shocks on the accretion disk. They are observationally expected results. We also examine the star-disk interaction near a massive black hole. We find that when stars are grounded down or a hole is punched on the accretion disk, they create shock waves which destroy the accretion disk.

  19. Design of algorithms for a dispersive hyperbolic problem

    NASA Technical Reports Server (NTRS)

    Roe, Philip L.; Arora, Mohit

    1991-01-01

    In order to develop numerical schemes for stiff problems, a model of relaxing heat flow is studied. To isolate those errors unavoidably associated with discretization, a method of characteristics is developed, containing three free parameters depending on the stiffness ratio. It is shown that such 'decoupled' schemes do not take into account the interaction between the wave families, and hence result in incorrect wavespeeds. Schemes can differ by up to two orders of magnitude in their rms errors, even while maintaining second-order accuracy. 'Coupled' schemes which account for the interactions are developed to obtain two additional free parameters. Numerical results are given for several decoupled and coupled schemes.

  20. Investigating the use of a rational Runge Kutta method for transport modelling

    NASA Astrophysics Data System (ADS)

    Dougherty, David E.

    An unconditionally stable explicit time integrator has recently been developed for parabolic systems of equations. This rational Runge Kutta (RRK) method, proposed by Wambecq 1 and Hairer 2, has been applied by Liu et al.3 to linear heat conduction problems in a time-partitioned solution context. An important practical question is whether the method has application for the solution of (nearly) hyperbolic equations as well. In this paper the RRK method is applied to a nonlinear heat conduction problem, the advection-diffusion equation, and the hyperbolic Buckley-Leverett problem. The method is, indeed, found to be unconditionally stable for the linear heat conduction problem and performs satisfactorily for the nonlinear heat flow case. A heuristic limitation on the utility of RRK for the advection-diffusion equation arises in the Courant number; for the second-order accurate one-step two-stage RRK method, a limiting Courant number of 2 applies. First order upwinding is not as effective when used with RRK as with Euler one-step methods. The method is found to perform poorly for the Buckley-Leverett problem.

  1. Features in simulation of crystal growth using the hyperbolic PFC equation and the dependence of the numerical solution on the parameters of the computational grid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Starodumov, Ilya; Kropotin, Nikolai

    2016-08-10

    We investigate the three-dimensional mathematical model of crystal growth called PFC (Phase Field Crystal) in a hyperbolic modification. This model is also called the modified model PFC (originally PFC model is formulated in parabolic form) and allows to describe both slow and rapid crystallization processes on atomic length scales and on diffusive time scales. Modified PFC model is described by the differential equation in partial derivatives of the sixth order in space and second order in time. The solution of this equation is possible only by numerical methods. Previously, authors created the software package for the solution of the Phasemore » Field Crystal problem, based on the method of isogeometric analysis (IGA) and PetIGA program library. During further investigation it was found that the quality of the solution can strongly depends on the discretization parameters of a numerical method. In this report, we show the features that should be taken into account during constructing the computational grid for the numerical simulation.« less

  2. Hyperbolic/parabolic development for the GIM-STAR code. [flow fields in supersonic inlets

    NASA Technical Reports Server (NTRS)

    Spradley, L. W.; Stalnaker, J. F.; Ratliff, A. W.

    1980-01-01

    Flow fields in supersonic inlet configurations were computed using the eliptic GIM code on the STAR computer. Spillage flow under the lower cowl was calculated to be 33% of the incoming stream. The shock/boundary layer interaction on the upper propulsive surface was computed including separation. All shocks produced by the flow system were captured. Linearized block implicit (LBI) schemes were examined to determine their application to the GIM code. Pure explicit methods have stability limitations and fully implicit schemes are inherently inefficient; however, LBI schemes show promise as an effective compromise. A quasiparabolic version of the GIM code was developed using elastical parabolized Navier-Stokes methods combined with quasitime relaxation. This scheme is referred to as quasiparabolic although it applies equally well to hyperbolic supersonic inviscid flows. Second order windward differences are used in the marching coordinate and either explicit or linear block implicit time relaxation can be incorporated.

  3. A numerical algorithm for MHD of free surface flows at low magnetic Reynolds numbers

    NASA Astrophysics Data System (ADS)

    Samulyak, Roman; Du, Jian; Glimm, James; Xu, Zhiliang

    2007-10-01

    We have developed a numerical algorithm and computational software for the study of magnetohydrodynamics (MHD) of free surface flows at low magnetic Reynolds numbers. The governing system of equations is a coupled hyperbolic-elliptic system in moving and geometrically complex domains. The numerical algorithm employs the method of front tracking and the Riemann problem for material interfaces, second order Godunov-type hyperbolic solvers, and the embedded boundary method for the elliptic problem in complex domains. The numerical algorithm has been implemented as an MHD extension of FronTier, a hydrodynamic code with free interface support. The code is applicable for numerical simulations of free surface flows of conductive liquids or weakly ionized plasmas. The code has been validated through the comparison of numerical simulations of a liquid metal jet in a non-uniform magnetic field with experiments and theory. Simulations of the Muon Collider/Neutrino Factory target have also been discussed.

  4. High-order central ENO finite-volume scheme for hyperbolic conservation laws on three-dimensional cubed-sphere grids

    NASA Astrophysics Data System (ADS)

    Ivan, L.; De Sterck, H.; Susanto, A.; Groth, C. P. T.

    2015-02-01

    A fourth-order accurate finite-volume scheme for hyperbolic conservation laws on three-dimensional (3D) cubed-sphere grids is described. The approach is based on a central essentially non-oscillatory (CENO) finite-volume method that was recently introduced for two-dimensional compressible flows and is extended to 3D geometries with structured hexahedral grids. Cubed-sphere grids feature hexahedral cells with nonplanar cell surfaces, which are handled with high-order accuracy using trilinear geometry representations in the proposed approach. Varying stencil sizes and slope discontinuities in grid lines occur at the boundaries and corners of the six sectors of the cubed-sphere grid where the grid topology is unstructured, and these difficulties are handled naturally with high-order accuracy by the multidimensional least-squares based 3D CENO reconstruction with overdetermined stencils. A rotation-based mechanism is introduced to automatically select appropriate smaller stencils at degenerate block boundaries, where fewer ghost cells are available and the grid topology changes, requiring stencils to be modified. Combining these building blocks results in a finite-volume discretization for conservation laws on 3D cubed-sphere grids that is uniformly high-order accurate in all three grid directions. While solution-adaptivity is natural in the multi-block setting of our code, high-order accurate adaptive refinement on cubed-sphere grids is not pursued in this paper. The 3D CENO scheme is an accurate and robust solution method for hyperbolic conservation laws on general hexahedral grids that is attractive because it is inherently multidimensional by employing a K-exact overdetermined reconstruction scheme, and it avoids the complexity of considering multiple non-central stencil configurations that characterizes traditional ENO schemes. Extensive numerical tests demonstrate fourth-order convergence for stationary and time-dependent Euler and magnetohydrodynamic flows on cubed-sphere grids, and robustness against spurious oscillations at 3D shocks. Performance tests illustrate efficiency gains that can be potentially achieved using fourth-order schemes as compared to second-order methods for the same error level. Applications on extended cubed-sphere grids incorporating a seventh root block that discretizes the interior of the inner sphere demonstrate the versatility of the spatial discretization method.

  5. A Novel Hyperbolization Procedure for The Two-Phase Six-Equation Flow Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Samet Y. Kadioglu; Robert Nourgaliev; Nam Dinh

    2011-10-01

    We introduce a novel approach for the hyperbolization of the well-known two-phase six equation flow model. The six-equation model has been frequently used in many two-phase flow applications such as bubbly fluid flows in nuclear reactors. One major drawback of this model is that it can be arbitrarily non-hyperbolic resulting in difficulties such as numerical instability issues. Non-hyperbolic behavior can be associated with complex eigenvalues that correspond to characteristic matrix of the system. Complex eigenvalues are often due to certain flow parameter choices such as the definition of inter-facial pressure terms. In our method, we prevent the characteristic matrix receivingmore » complex eigenvalues by fine tuning the inter-facial pressure terms with an iterative procedure. In this way, the characteristic matrix possesses all real eigenvalues meaning that the characteristic wave speeds are all real therefore the overall two-phase flowmodel becomes hyperbolic. The main advantage of this is that one can apply less diffusive highly accurate high resolution numerical schemes that often rely on explicit calculations of real eigenvalues. We note that existing non-hyperbolic models are discretized mainly based on low order highly dissipative numerical techniques in order to avoid stability issues.« less

  6. Algorithm Development and Application of High Order Numerical Methods for Shocked and Rapid Changing Solutions

    DTIC Science & Technology

    2007-12-06

    high order well-balanced schemes to a class of hyperbolic systems with source terms, Boletin de la Sociedad Espanola de Matematica Aplicada, v34 (2006...schemes to a class of hyperbolic systems with source terms, Boletin de la Sociedad Espanola de Matematica Aplicada, v34 (2006), pp.69-80. 39. Y. Xu and C.-W

  7. High-order upwind schemes for the wave equation on overlapping grids: Maxwell's equations in second-order form

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Angel, Jordan B.; Banks, Jeffrey W.; Henshaw, William D.

    High-order accurate upwind approximations for the wave equation in second-order form on overlapping grids are developed. Although upwind schemes are well established for first-order hyperbolic systems, it was only recently shown by Banks and Henshaw how upwinding could be incorporated into the second-order form of the wave equation. This new upwind approach is extended here to solve the time-domain Maxwell's equations in second-order form; schemes of arbitrary order of accuracy are formulated for general curvilinear grids. Taylor time-stepping is used to develop single-step space-time schemes, and the upwind dissipation is incorporated by embedding the exact solution of a local Riemannmore » problem into the discretization. Second-order and fourth-order accurate schemes are implemented for problems in two and three space dimensions, and overlapping grids are used to treat complex geometry and problems with multiple materials. Stability analysis of the upwind-scheme on overlapping grids is performed using normal mode theory. The stability analysis and computations confirm that the upwind scheme remains stable on overlapping grids, including the difficult case of thin boundary grids when the traditional non-dissipative scheme becomes unstable. The accuracy properties of the scheme are carefully evaluated on a series of classical scattering problems for both perfect conductors and dielectric materials in two and three space dimensions. Finally, the upwind scheme is shown to be robust and provide high-order accuracy.« less

  8. High-order upwind schemes for the wave equation on overlapping grids: Maxwell's equations in second-order form

    DOE PAGES

    Angel, Jordan B.; Banks, Jeffrey W.; Henshaw, William D.

    2017-09-28

    High-order accurate upwind approximations for the wave equation in second-order form on overlapping grids are developed. Although upwind schemes are well established for first-order hyperbolic systems, it was only recently shown by Banks and Henshaw how upwinding could be incorporated into the second-order form of the wave equation. This new upwind approach is extended here to solve the time-domain Maxwell's equations in second-order form; schemes of arbitrary order of accuracy are formulated for general curvilinear grids. Taylor time-stepping is used to develop single-step space-time schemes, and the upwind dissipation is incorporated by embedding the exact solution of a local Riemannmore » problem into the discretization. Second-order and fourth-order accurate schemes are implemented for problems in two and three space dimensions, and overlapping grids are used to treat complex geometry and problems with multiple materials. Stability analysis of the upwind-scheme on overlapping grids is performed using normal mode theory. The stability analysis and computations confirm that the upwind scheme remains stable on overlapping grids, including the difficult case of thin boundary grids when the traditional non-dissipative scheme becomes unstable. The accuracy properties of the scheme are carefully evaluated on a series of classical scattering problems for both perfect conductors and dielectric materials in two and three space dimensions. Finally, the upwind scheme is shown to be robust and provide high-order accuracy.« less

  9. High-order upwind schemes for the wave equation on overlapping grids: Maxwell's equations in second-order form

    NASA Astrophysics Data System (ADS)

    Angel, Jordan B.; Banks, Jeffrey W.; Henshaw, William D.

    2018-01-01

    High-order accurate upwind approximations for the wave equation in second-order form on overlapping grids are developed. Although upwind schemes are well established for first-order hyperbolic systems, it was only recently shown by Banks and Henshaw [1] how upwinding could be incorporated into the second-order form of the wave equation. This new upwind approach is extended here to solve the time-domain Maxwell's equations in second-order form; schemes of arbitrary order of accuracy are formulated for general curvilinear grids. Taylor time-stepping is used to develop single-step space-time schemes, and the upwind dissipation is incorporated by embedding the exact solution of a local Riemann problem into the discretization. Second-order and fourth-order accurate schemes are implemented for problems in two and three space dimensions, and overlapping grids are used to treat complex geometry and problems with multiple materials. Stability analysis of the upwind-scheme on overlapping grids is performed using normal mode theory. The stability analysis and computations confirm that the upwind scheme remains stable on overlapping grids, including the difficult case of thin boundary grids when the traditional non-dissipative scheme becomes unstable. The accuracy properties of the scheme are carefully evaluated on a series of classical scattering problems for both perfect conductors and dielectric materials in two and three space dimensions. The upwind scheme is shown to be robust and provide high-order accuracy.

  10. Effect of Proton Radiation on the Kinetics of Phosphorescence Decay in the Ceramic Material ZnS-Cu

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuchakova, T.A.; Vesna, G.V.; Makara, V.A.

    2004-11-01

    The results of studying the dose dependences of the decay kinetics of phosphorescence excited by X-ray radiation in luminescent ZnS-Cu ceramic material before and after irradiation with 50-MeV protons are considered. An anomalous variation in the exponent of the hyperbolic phosphorescence curves was observed experimentally as the accumulated light sum increased. It is found from an analysis of the data obtained that two processes are involved in the decay: one of these is monomolecular and corresponds to the first-order kinetics; the other is bimolecular and corresponds to the second-order kinetics. Transitions of charge carriers delocalized from traps occur at themore » nonradiative-recombination centers induced by proton radiation. Recombination of these charge carriers at the emission centers in the course of decay is described by the second-order kinetics.« less

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dumbser, Michael, E-mail: michael.dumbser@unitn.it; Peshkov, Ilya, E-mail: peshkov@math.nsc.ru; Romenski, Evgeniy, E-mail: evrom@math.nsc.ru

    Highlights: • High order schemes for a unified first order hyperbolic formulation of continuum mechanics. • The mathematical model applies simultaneously to fluid mechanics and solid mechanics. • Viscous fluids are treated in the frame of hyper-elasticity as generalized visco-plastic solids. • Formal asymptotic analysis reveals the connection with the Navier–Stokes equations. • The distortion tensor A in the model appears to be well-suited for flow visualization. - Abstract: This paper is concerned with the numerical solution of the unified first order hyperbolic formulation of continuum mechanics recently proposed by Peshkov and Romenski [110], further denoted as HPR model. Inmore » that framework, the viscous stresses are computed from the so-called distortion tensor A, which is one of the primary state variables in the proposed first order system. A very important key feature of the HPR model is its ability to describe at the same time the behavior of inviscid and viscous compressible Newtonian and non-Newtonian fluids with heat conduction, as well as the behavior of elastic and visco-plastic solids. Actually, the model treats viscous and inviscid fluids as generalized visco-plastic solids. This is achieved via a stiff source term that accounts for strain relaxation in the evolution equations of A. Also heat conduction is included via a first order hyperbolic system for the thermal impulse, from which the heat flux is computed. The governing PDE system is hyperbolic and fully consistent with the first and the second principle of thermodynamics. It is also fundamentally different from first order Maxwell–Cattaneo-type relaxation models based on extended irreversible thermodynamics. The HPR model represents therefore a novel and unified description of continuum mechanics, which applies at the same time to fluid mechanics and solid mechanics. In this paper, the direct connection between the HPR model and the classical hyperbolic–parabolic Navier–Stokes–Fourier theory is established for the first time via a formal asymptotic analysis in the stiff relaxation limit. From a numerical point of view, the governing partial differential equations are very challenging, since they form a large nonlinear hyperbolic PDE system that includes stiff source terms and non-conservative products. We apply the successful family of one-step ADER–WENO finite volume (FV) and ADER discontinuous Galerkin (DG) finite element schemes to the HPR model in the stiff relaxation limit, and compare the numerical results with exact or numerical reference solutions obtained for the Euler and Navier–Stokes equations. Numerical convergence results are also provided. To show the universality of the HPR model, the paper is rounded-off with an application to wave propagation in elastic solids, for which one only needs to switch off the strain relaxation source term in the governing PDE system. We provide various examples showing that for the purpose of flow visualization, the distortion tensor A seems to be particularly useful.« less

  12. On hyperbolicity and Gevrey well-posedness. Part two: Scalar or degenerate transitions

    NASA Astrophysics Data System (ADS)

    Morisse, Baptiste

    2018-04-01

    For first-order quasi-linear systems of partial differential equations, we formulate an assumption of a transition from initial hyperbolicity to ellipticity. This assumption bears on the principal symbol of the first-order operator. Under such an assumption, we prove a strong Hadamard instability for the associated Cauchy problem, namely an instantaneous defect of Hölder continuity of the flow from Gσ to L2, with 0 < σ <σ0, the limiting Gevrey index σ0 depending on the nature of the transition. We restrict here to scalar transitions, and non-scalar transitions in which the boundary of the hyperbolic zone satisfies a flatness condition. As in our previous work for initially elliptic Cauchy problems [B. Morisse, On hyperbolicity and Gevrey well-posedness. Part one: the elliptic case, arxiv:arXiv:1611.07225], the instability follows from a long-time Cauchy-Kovalevskaya construction for highly oscillating solutions. This extends recent work of N. Lerner, T. Nguyen, and B. Texier [The onset of instability in first-order systems, to appear in J. Eur. Math. Soc.].

  13. A high-order relaxation method with projective integration for solving nonlinear systems of hyperbolic conservation laws

    NASA Astrophysics Data System (ADS)

    Lafitte, Pauline; Melis, Ward; Samaey, Giovanni

    2017-07-01

    We present a general, high-order, fully explicit relaxation scheme which can be applied to any system of nonlinear hyperbolic conservation laws in multiple dimensions. The scheme consists of two steps. In a first (relaxation) step, the nonlinear hyperbolic conservation law is approximated by a kinetic equation with stiff BGK source term. Then, this kinetic equation is integrated in time using a projective integration method. After taking a few small (inner) steps with a simple, explicit method (such as direct forward Euler) to damp out the stiff components of the solution, the time derivative is estimated and used in an (outer) Runge-Kutta method of arbitrary order. We show that, with an appropriate choice of inner step size, the time step restriction on the outer time step is similar to the CFL condition for the hyperbolic conservation law. Moreover, the number of inner time steps is also independent of the stiffness of the BGK source term. We discuss stability and consistency, and illustrate with numerical results (linear advection, Burgers' equation and the shallow water and Euler equations) in one and two spatial dimensions.

  14. Uniformly high-order accurate non-oscillatory schemes, 1

    NASA Technical Reports Server (NTRS)

    Harten, A.; Osher, S.

    1985-01-01

    The construction and the analysis of nonoscillatory shock capturing methods for the approximation of hyperbolic conservation laws was begun. These schemes share many desirable properties with total variation diminishing schemes (TVD), but TVD schemes have at most first order accuracy, in the sense of truncation error, at extreme of the solution. A uniformly second order approximation was constucted, which is nonoscillatory in the sense that the number of extrema of the discrete solution is not increasing in time. This is achieved via a nonoscillatory piecewise linear reconstruction of the solution from its cell averages, time evolution through an approximate solution of the resulting initial value problem, and averaging of this approximate solution over each cell.

  15. First-Order Hyperbolic System Method for Time-Dependent Advection-Diffusion Problems

    DTIC Science & Technology

    2014-03-01

    accuracy, with rapid convergence over each physical time step, typically less than five Newton iter - ations. 1 Contents 1 Introduction 3 2 Hyperbolic...however, we employ the Gauss - Seidel (GS) relaxation, which is also an O(N) method for the discretization arising from hyperbolic advection-diffusion system...advection-diffusion scheme. The linear dependency of the iterations on Table 1: Boundary layer problem ( Convergence criteria: Residuals < 10−8.) log10Re

  16. Micro-scale extensional rheometry using hyperbolic converging/diverging channels and jet breakup

    PubMed Central

    Keshavarz, Bavand

    2016-01-01

    Understanding the elongational rheology of dilute polymer solutions plays an important role in many biological and industrial applications ranging from microfluidic lab-on-a-chip diagnostics to phenomena such as fuel atomization and combustion. Making quantitative measurements of the extensional viscosity for dilute viscoelastic fluids is a long-standing challenge and it motivates developments in microfluidic fabrication techniques and high speed/strobe imaging of millifluidic capillary phenomena in order to develop new classes of instruments. In this paper, we study the elongational rheology of a family of dilute polymeric solutions in two devices: first, steady pressure-driven flow through a hyperbolic microfluidic contraction/expansion and, second, the capillary driven breakup of a thin filament formed from a small diameter jet (Dj∼O(100 μm)). The small length scale of the device allows very large deformation rates to be achieved. Our results show that in certain limits of low viscosity and elasticity, jet breakup studies offer significant advantages over the hyperbolic channel measurements despite the more complex implementation. Using our results, together with scaling estimates of the competing viscous, elastic, inertial and capillary timescales that control the dynamics, we construct a dimensionless map or nomogram summarizing the operating space for each instrument. PMID:27375824

  17. An efficient and accurate two-stage fourth-order gas-kinetic scheme for the Euler and Navier-Stokes equations

    NASA Astrophysics Data System (ADS)

    Pan, Liang; Xu, Kun; Li, Qibing; Li, Jiequan

    2016-12-01

    For computational fluid dynamics (CFD), the generalized Riemann problem (GRP) solver and the second-order gas-kinetic scheme (GKS) provide a time-accurate flux function starting from a discontinuous piecewise linear flow distributions around a cell interface. With the adoption of time derivative of the flux function, a two-stage Lax-Wendroff-type (L-W for short) time stepping method has been recently proposed in the design of a fourth-order time accurate method for inviscid flow [21]. In this paper, based on the same time-stepping method and the second-order GKS flux function [42], a fourth-order gas-kinetic scheme is constructed for the Euler and Navier-Stokes (NS) equations. In comparison with the formal one-stage time-stepping third-order gas-kinetic solver [24], the current fourth-order method not only reduces the complexity of the flux function, but also improves the accuracy of the scheme. In terms of the computational cost, a two-dimensional third-order GKS flux function takes about six times of the computational time of a second-order GKS flux function. However, a fifth-order WENO reconstruction may take more than ten times of the computational cost of a second-order GKS flux function. Therefore, it is fully legitimate to develop a two-stage fourth order time accurate method (two reconstruction) instead of standard four stage fourth-order Runge-Kutta method (four reconstruction). Most importantly, the robustness of the fourth-order GKS is as good as the second-order one. In the current computational fluid dynamics (CFD) research, it is still a difficult problem to extend the higher-order Euler solver to the NS one due to the change of governing equations from hyperbolic to parabolic type and the initial interface discontinuity. This problem remains distinctively for the hypersonic viscous and heat conducting flow. The GKS is based on the kinetic equation with the hyperbolic transport and the relaxation source term. The time-dependent GKS flux function provides a dynamic process of evolution from the kinetic scale particle free transport to the hydrodynamic scale wave propagation, which provides the physics for the non-equilibrium numerical shock structure construction to the near equilibrium NS solution. As a result, with the implementation of the fifth-order WENO initial reconstruction, in the smooth region the current two-stage GKS provides an accuracy of O ((Δx) 5 ,(Δt) 4) for the Euler equations, and O ((Δx) 5 ,τ2 Δt) for the NS equations, where τ is the time between particle collisions. Many numerical tests, including difficult ones for the Navier-Stokes solvers, have been used to validate the current method. Perfect numerical solutions can be obtained from the high Reynolds number boundary layer to the hypersonic viscous heat conducting flow. Following the two-stage time-stepping framework, the third-order GKS flux function can be used as well to construct a fifth-order method with the usage of both first-order and second-order time derivatives of the flux function. The use of time-accurate flux function may have great advantages on the development of higher-order CFD methods.

  18. Porting a Hall MHD Code to a Graphic Processing Unit

    NASA Technical Reports Server (NTRS)

    Dorelli, John C.

    2011-01-01

    We present our experience porting a Hall MHD code to a Graphics Processing Unit (GPU). The code is a 2nd order accurate MUSCL-Hancock scheme which makes use of an HLL Riemann solver to compute numerical fluxes and second-order finite differences to compute the Hall contribution to the electric field. The divergence of the magnetic field is controlled with Dedner?s hyperbolic divergence cleaning method. Preliminary benchmark tests indicate a speedup (relative to a single Nehalem core) of 58x for a double precision calculation. We discuss scaling issues which arise when distributing work across multiple GPUs in a CPU-GPU cluster.

  19. Optical nonlinearities in plasmonic metamaterials (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Zayats, Anatoly V.

    2016-04-01

    Metals exhibit strong and fast nonlinearities making metallic, plasmonic, structures very promising for ultrafast all-optical applications at low light intensities. Combining metallic nanostructures in metamaterials provides additional functionalities via prospect of precise engineering of spectral response and dispersion. From this point of view, hyperbolic metamaterials, in particular those based on plasmonic nanorod arrays, provide wealth of exciting possibilities in nonlinear optics offering designed linear and nonlinear properties, polarization control, spontaneous emission control and many others. Experiments and modeling have already demonstrated very strong Kerr-nonlinear response and its ultrafast recovery due to the nonlocal nature of the plasmonic mode of the metamaterial, so that small changes in the permittivity of the metallic component under the excitation modify the nonlocal response that in turn leads to strong changes of the metamaterial transmission. In this talk, we will discuss experimental studies and numerical modeling of second- and third-order nonlinear optical processes in hyperbolic metamaterials based on metallic nanorods and other plasmonic systems where coupling between the resonances plays important role in defining nonlinear response. Second-harmonic generation and ultrafast Kerr-type nonlinearity originating from metallic component of the metamaterial will be considered, including nonlinear magneto-optical effects. Nonlinear optical response of stand-alone as well as integrated metamaterial components will be presented. Some of the examples to be discussed include nonlinear polarization control, nonlinear metamaterial integrated in silicon photonic circuitry and second-harmonic generation, including magneto-optical effects.

  20. A method for the investigation of hyperbolic motions in the gravitational field of a spheroidal planet

    NASA Astrophysics Data System (ADS)

    Konks, V. Ia.

    1981-05-01

    Barrar's (1961) method for the analysis of the motion of a satellite of an oblate planet is extended to the case of hyperbolic motion. An analysis is presented of the motion of a material point in the gravitational field of a fixed center, combined with a gravitational dipole located at the point of inertia of a dynamically symmetric planet. Formulas are obtained for the hyperbolic motion of a spacecraft in the gravitational field of a spheroidal planet with an accuracy up to the second zonal harmonic of the expansion of its potential into a Legendre polynomial series in spherical coordinates.

  1. An almost symmetric Strang splitting scheme for nonlinear evolution equations.

    PubMed

    Einkemmer, Lukas; Ostermann, Alexander

    2014-07-01

    In this paper we consider splitting methods for the time integration of parabolic and certain classes of hyperbolic partial differential equations, where one partial flow cannot be computed exactly. Instead, we use a numerical approximation based on the linearization of the vector field. This is of interest in applications as it allows us to apply splitting methods to a wider class of problems from the sciences. However, in the situation described, the classic Strang splitting scheme, while still being a method of second order, is not longer symmetric. This, in turn, implies that the construction of higher order methods by composition is limited to order three only. To remedy this situation, based on previous work in the context of ordinary differential equations, we construct a class of Strang splitting schemes that are symmetric up to a desired order. We show rigorously that, under suitable assumptions on the nonlinearity, these methods are of second order and can then be used to construct higher order methods by composition. In addition, we illustrate the theoretical results by conducting numerical experiments for the Brusselator system and the KdV equation.

  2. An almost symmetric Strang splitting scheme for nonlinear evolution equations☆

    PubMed Central

    Einkemmer, Lukas; Ostermann, Alexander

    2014-01-01

    In this paper we consider splitting methods for the time integration of parabolic and certain classes of hyperbolic partial differential equations, where one partial flow cannot be computed exactly. Instead, we use a numerical approximation based on the linearization of the vector field. This is of interest in applications as it allows us to apply splitting methods to a wider class of problems from the sciences. However, in the situation described, the classic Strang splitting scheme, while still being a method of second order, is not longer symmetric. This, in turn, implies that the construction of higher order methods by composition is limited to order three only. To remedy this situation, based on previous work in the context of ordinary differential equations, we construct a class of Strang splitting schemes that are symmetric up to a desired order. We show rigorously that, under suitable assumptions on the nonlinearity, these methods are of second order and can then be used to construct higher order methods by composition. In addition, we illustrate the theoretical results by conducting numerical experiments for the Brusselator system and the KdV equation. PMID:25844017

  3. A class of high resolution explicit and implicit shock-capturing methods

    NASA Technical Reports Server (NTRS)

    Yee, H. C.

    1989-01-01

    An attempt is made to give a unified and generalized formulation of a class of high resolution, explicit and implicit shock capturing methods, and to illustrate their versatility in various steady and unsteady complex shock wave computations. Included is a systematic review of the basic design principle of the various related numerical methods. Special emphasis is on the construction of the basis nonlinear, spatially second and third order schemes for nonlinear scalar hyperbolic conservation laws and the methods of extending these nonlinear scalar schemes to nonlinear systems via the approximate Riemann solvers and the flux vector splitting approaches. Generalization of these methods to efficiently include equilibrium real gases and large systems of nonequilibrium flows are discussed. Some issues concerning the applicability of these methods that were designed for homogeneous hyperbolic conservation laws to problems containing stiff source terms and shock waves are also included. The performance of some of these schemes is illustrated by numerical examples for 1-, 2- and 3-dimensional gas dynamics problems.

  4. The theoretical accuracy of Runge-Kutta time discretizations for the initial boundary value problem: A careful study of the boundary error

    NASA Technical Reports Server (NTRS)

    Carpenter, Mark H.; Gottlieb, David; Abarbanel, Saul; Don, Wai-Sun

    1993-01-01

    The conventional method of imposing time dependent boundary conditions for Runge-Kutta (RK) time advancement reduces the formal accuracy of the space-time method to first order locally, and second order globally, independently of the spatial operator. This counter intuitive result is analyzed in this paper. Two methods of eliminating this problem are proposed for the linear constant coefficient case: (1) impose the exact boundary condition only at the end of the complete RK cycle, (2) impose consistent intermediate boundary conditions derived from the physical boundary condition and its derivatives. The first method, while retaining the RK accuracy in all cases, results in a scheme with much reduced CFL condition, rendering the RK scheme less attractive. The second method retains the same allowable time step as the periodic problem. However it is a general remedy only for the linear case. For non-linear hyperbolic equations the second method is effective only for for RK schemes of third order accuracy or less. Numerical studies are presented to verify the efficacy of each approach.

  5. High order filtering methods for approximating hyperbolic systems of conservation laws

    NASA Technical Reports Server (NTRS)

    Lafon, F.; Osher, S.

    1991-01-01

    The essentially nonoscillatory (ENO) schemes, while potentially useful in the computation of discontinuous solutions of hyperbolic conservation-law systems, are computationally costly relative to simple central-difference methods. A filtering technique is presented which employs central differencing of arbitrarily high-order accuracy except where a local test detects the presence of spurious oscillations and calls upon the full ENO apparatus to remove them. A factor-of-three speedup is thus obtained over the full-ENO method for a wide range of problems, with high-order accuracy in regions of smooth flow.

  6. Path integration on the hyperbolic plane with a magnetic field

    NASA Astrophysics Data System (ADS)

    Grosche, Christian

    1990-08-01

    In this paper I discuss the path integrals on three formulations of hyperbolic geometry, where a constant magnetic field B is included. These are: the pseudosphere Λ2, the Poincaré disc D, and the hyperbolic strip S. The corresponding path integrals can be reformulated in terms of the path integral for the modified Pöschl-Teller potential. The wave-functions and the energy spectrum for the discrete and continuous part of the spectrum are explicitly calculated in each case. First the results are compared for the limit B → 0 with previous calculations and second with the path integration on the Poincaré upper half-plane U. This work is a continuation of the path integral calculations for the free motion on the various formulations on the hyperbolic plane and for the case of constant magnetic field on the Poincaré upper half-plane U.

  7. Extension of Nikiforov-Uvarov method for the solution of Heun equation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karayer, H., E-mail: hale.karayer@gmail.com; Demirhan, D.; Büyükkılıç, F.

    2015-06-15

    We report an alternative method to solve second order differential equations which have at most four singular points. This method is developed by changing the degrees of the polynomials in the basic equation of Nikiforov-Uvarov (NU) method. This is called extended NU method for this paper. The eigenvalue solutions of Heun equation and confluent Heun equation are obtained via extended NU method. Some quantum mechanical problems such as Coulomb problem on a 3-sphere, two Coulombically repelling electrons on a sphere, and hyperbolic double-well potential are investigated by this method.

  8. Numerical simulation of the hydrodynamic instabilities of Richtmyer-Meshkov and Rayleigh-Taylor

    NASA Astrophysics Data System (ADS)

    Fortova, S. V.; Shepelev, V. V.; Troshkin, O. V.; Kozlov, S. A.

    2017-09-01

    The paper presents the results of numerical simulation of the development of hydrodynamic instabilities of Richtmyer-Meshkov and Rayleigh-Taylor encountered in experiments [1-3]. For the numerical solution used the TPS software package (Turbulence Problem Solver) that implements a generalized approach to constructing computer programs for a wide range of problems of hydrodynamics, described by the system of equations of hyperbolic type. As numerical methods are used the method of large particles and ENO-scheme of the second order with Roe solver for the approximate solution of the Riemann problem.

  9. Links between quantum physics and thought.

    PubMed

    Robson, Barry

    2009-01-01

    Quantum mechanics (QM) provides a variety of ideas that can assist in developing Artificial Intelligence for healthcare, and opens the possibility of developing a unified system of Best Practice for inference that will embrace both QM and classical inference. Of particular interest is inference in the hyperbolic-complex plane, the counterpart of the normal i-complex plane of basic QM. There are two reasons. First, QM appears to rotate from i-complex Hilbert space to hyperbolic-complex descriptions when observations are made on wave functions as particles, yielding classical results, and classical laws of probability manipulation (e.g. the law of composition of probabilities) then hold, whereas in the i-complex plane they do not. Second, i-complex Hilbert space is not the whole story in physics. Hyperbolic complex planes arise in extension from the Dirac-Clifford calculus to particle physics, in relativistic correction thereby, and in regard to spinors and twisters. Generalization of these forms resemble grammatical constructions and promote the idea that probability-weighted algebraic elements can be used to hold dimensions of syntactic and semantic meaning. It is also starting to look as though when a solution is reached by an inference system in the hyperbolic-complex, the hyperbolic-imaginary values disappear, while conversely hyperbolic-imaginary values are associated with the un-queried state of a system and goal seeking behavior.

  10. A numerical method for systems of conservation laws of mixed type admitting hyperbolic flux splitting

    NASA Technical Reports Server (NTRS)

    Shu, Chi-Wang

    1992-01-01

    The present treatment of elliptic regions via hyperbolic flux-splitting and high order methods proposes a flux splitting in which the corresponding Jacobians have real and positive/negative eigenvalues. While resembling the flux splitting used in hyperbolic systems, the present generalization of such splitting to elliptic regions allows the handling of mixed-type systems in a unified and heuristically stable fashion. The van der Waals fluid-dynamics equation is used. Convergence with good resolution to weak solutions for various Riemann problems are observed.

  11. Generation of three-dimensional body-fitted grids by solving hyperbolic partial differential equations

    NASA Technical Reports Server (NTRS)

    Steger, Joseph L.

    1989-01-01

    Hyperbolic grid generation procedures are described which have been used in external flow simulations about complex configurations. For many practical applications a single well-ordered (i.e., structured) grid can be used to mesh an entire configuration, in other problems, composite or unstructured grid procedures are needed. Although the hyperbolic partial differential equation grid generation procedure has mainly been utilized to generate structured grids, an extension of the procedure to semiunstructured grids is briefly described. Extensions of the methodology are also described using two-dimensional equations.

  12. Generation of three-dimensional body-fitted grids by solving hyperbolic and parabolic partial differential equations

    NASA Technical Reports Server (NTRS)

    Steger, Joseph L.

    1989-01-01

    Hyperbolic grid generation procedures are described which have been used in external flow simulations about complex configurations. For many practical applications a single well-ordered (i.e., structured) grid can be used to mesh an entire configuration, in other problems, composite or unstructured grid procedures are needed. Although the hyperbolic partial differential equation grid generation procedure has mainly been utilized to generate structured grids, extension of the procedure to semiunstructured grids is briefly described. Extensions of the methodology are also described using two-dimensional equations.

  13. Scalable explicit implementation of anisotropic diffusion with Runge-Kutta-Legendre super-time stepping

    NASA Astrophysics Data System (ADS)

    Vaidya, Bhargav; Prasad, Deovrat; Mignone, Andrea; Sharma, Prateek; Rickler, Luca

    2017-12-01

    An important ingredient in numerical modelling of high temperature magnetized astrophysical plasmas is the anisotropic transport of heat along magnetic field lines from higher to lower temperatures. Magnetohydrodynamics typically involves solving the hyperbolic set of conservation equations along with the induction equation. Incorporating anisotropic thermal conduction requires to also treat parabolic terms arising from the diffusion operator. An explicit treatment of parabolic terms will considerably reduce the simulation time step due to its dependence on the square of the grid resolution (Δx) for stability. Although an implicit scheme relaxes the constraint on stability, it is difficult to distribute efficiently on a parallel architecture. Treating parabolic terms with accelerated super-time-stepping (STS) methods has been discussed in literature, but these methods suffer from poor accuracy (first order in time) and also have difficult-to-choose tuneable stability parameters. In this work, we highlight a second-order (in time) Runge-Kutta-Legendre (RKL) scheme (first described by Meyer, Balsara & Aslam 2012) that is robust, fast and accurate in treating parabolic terms alongside the hyperbolic conversation laws. We demonstrate its superiority over the first-order STS schemes with standard tests and astrophysical applications. We also show that explicit conduction is particularly robust in handling saturated thermal conduction. Parallel scaling of explicit conduction using RKL scheme is demonstrated up to more than 104 processors.

  14. An approach to the development of numerical algorithms for first order linear hyperbolic systems in multiple space dimensions: The constant coefficient case

    NASA Technical Reports Server (NTRS)

    Goodrich, John W.

    1995-01-01

    Two methods for developing high order single step explicit algorithms on symmetric stencils with data on only one time level are presented. Examples are given for the convection and linearized Euler equations with up to the eighth order accuracy in both space and time in one space dimension, and up to the sixth in two space dimensions. The method of characteristics is generalized to nondiagonalizable hyperbolic systems by using exact local polynominal solutions of the system, and the resulting exact propagator methods automatically incorporate the correct multidimensional wave propagation dynamics. Multivariate Taylor or Cauchy-Kowaleskaya expansions are also used to develop algorithms. Both of these methods can be applied to obtain algorithms of arbitrarily high order for hyperbolic systems in multiple space dimensions. Cross derivatives are included in the local approximations used to develop the algorithms in this paper in order to obtain high order accuracy, and improved isotropy and stability. Efficiency in meeting global error bounds is an important criterion for evaluating algorithms, and the higher order algorithms are shown to be up to several orders of magnitude more efficient even though they are more complex. Stable high order boundary conditions for the linearized Euler equations are developed in one space dimension, and demonstrated in two space dimensions.

  15. Numerical solution of the unsteady Navier-Stokes equation

    NASA Technical Reports Server (NTRS)

    Osher, Stanley J.; Engquist, Bjoern

    1985-01-01

    The construction and the analysis of nonoscillatory shock capturing methods for the approximation of hyperbolic conservation laws are discussed. These schemes share many desirable properties with total variation diminishing schemes, but TVD schemes have at most first-order accuracy, in the sense of truncation error, at extrema of the solution. In this paper a uniformly second-order approximation is constructed, which is nonoscillatory in the sense that the number of extrema of the discrete solution is not increasing in time. This is achieved via a nonoscillatory piecewise linear reconstruction of the solution from its cell averages, time evolution through an approximate solution of the resulting initial value problem, and averaging of this approximate solution over each cell.

  16. A priori error estimates for an hp-version of the discontinuous Galerkin method for hyperbolic conservation laws

    NASA Technical Reports Server (NTRS)

    Bey, Kim S.; Oden, J. Tinsley

    1993-01-01

    A priori error estimates are derived for hp-versions of the finite element method for discontinuous Galerkin approximations of a model class of linear, scalar, first-order hyperbolic conservation laws. These estimates are derived in a mesh dependent norm in which the coefficients depend upon both the local mesh size h(sub K) and a number p(sub k) which can be identified with the spectral order of the local approximations over each element.

  17. On the superconvergence of Galerkin methods for hyperbolic IBVP

    NASA Technical Reports Server (NTRS)

    Gottlieb, David; Gustafsson, Bertil; Olsson, Pelle; Strand, BO

    1993-01-01

    Finite element Galerkin methods for periodic first order hyperbolic equations exhibit superconvergence on uniform grids at the nodes, i.e., there is an error estimate 0(h(sup 2r)) instead of the expected approximation order 0(h(sup r)). It will be shown that no matter how the approximating subspace S(sup h) is chosen, the superconvergence property is lost if there are characteristics leaving the domain. The implications of this result when constructing compact implicit difference schemes is also discussed.

  18. Time-stable boundary conditions for finite-difference schemes solving hyperbolic systems: Methodology and application to high-order compact schemes

    NASA Technical Reports Server (NTRS)

    Carpenter, Mark H.; Gottlieb, David; Abarbanel, Saul

    1993-01-01

    We present a systematic method for constructing boundary conditions (numerical and physical) of the required accuracy, for compact (Pade-like) high-order finite-difference schemes for hyperbolic systems. First, a roper summation-by-parts formula is found for the approximate derivative. A 'simultaneous approximation term' (SAT) is then introduced to treat the boundary conditions. This procedure leads to time-stable schemes even in the system case. An explicit construction of the fourth-order compact case is given. Numerical studies are presented to verify the efficacy of the approach.

  19. Modified Taylor series method for solving nonlinear differential equations with mixed boundary conditions defined on finite intervals.

    PubMed

    Vazquez-Leal, Hector; Benhammouda, Brahim; Filobello-Nino, Uriel Antonio; Sarmiento-Reyes, Arturo; Jimenez-Fernandez, Victor Manuel; Marin-Hernandez, Antonio; Herrera-May, Agustin Leobardo; Diaz-Sanchez, Alejandro; Huerta-Chua, Jesus

    2014-01-01

    In this article, we propose the application of a modified Taylor series method (MTSM) for the approximation of nonlinear problems described on finite intervals. The issue of Taylor series method with mixed boundary conditions is circumvented using shooting constants and extra derivatives of the problem. In order to show the benefits of this proposal, three different kinds of problems are solved: three-point boundary valued problem (BVP) of third-order with a hyperbolic sine nonlinearity, two-point BVP for a second-order nonlinear differential equation with an exponential nonlinearity, and a two-point BVP for a third-order nonlinear differential equation with a radical nonlinearity. The result shows that the MTSM method is capable to generate easily computable and highly accurate approximations for nonlinear equations. 34L30.

  20. Hyperbolic Prismatic Grid Generation and Solution of Euler Equations on Prismatic Grids

    NASA Technical Reports Server (NTRS)

    Pandya, S. A.; Chattot, JJ; Hafez, M. M.; Kutler, Paul (Technical Monitor)

    1994-01-01

    A hyperbolic grid generation method is used to generate prismatic grids and an approach using prismatic grids to solve the Euler equations is presented. The theory of the stability and feasibility of the hyperbolic grid generation method is presented. The hyperbolic grid generation method of Steger et al for structured grids is applied to a three dimensional triangularized surface definition to generate a grid that is unstructured on each successive layer. The grid, however, retains structure in the body-normal direction and has a computational cell shaped like a triangular prism. In order to take advantage of the structure in the normal direction, a finite-volume scheme that treats the unknowns along the normal direction implicitly is introduced and the flow over a sphere is simulated.

  1. Comparing the Performance of Hyperbolic and Circular Rod Quadrupole Mass Spectrometers with Applied Higher Order Auxiliary Excitation

    NASA Technical Reports Server (NTRS)

    Gershman, D.J.; Block, B.P.; Rubin, M.; Benna, M.; Mahaffy, P. R.; Zurbuchen, T. H.

    2012-01-01

    This work applies higher order auxiliary excitation techniques to two types of quadrupole mass spectrometers (QMSs): commercial systems and spaceborne instruments. The operational settings of a circular rod geometry commercial system and an engineering test-bed for a hyperbolic rod geometry spaceborne instrument were matched, with the relative performance of each sensor characterized with and without applied excitation using isotopic measurements of Kr+. Each instrument was operated at the limit of the test electronics to determine the effect of auxiliary excitation on extending instrument capabilities. For the circular rod sensor, with applied excitation, a doubling of the mass resolution at 1% of peak transmission resulted from the elimination of the low-mass side peak tail typical of such rod geometries. The mass peak stability and ion rejection efficiency were also increased by factors of 2 and 10, respectively, with voltage scan lines passing through the center of stability islands formed from auxiliary excitation. Auxiliary excitation also resulted in factors of 6 and 2 in peak stability and ion rejection efficiency, respectively, for the hyperbolic rod sensor. These results not only have significant implications for the use of circular rod quadrupoles with applied excitation as a suitable replacement for traditional hyperbolic rod sensors, but also for extending the capabilities of existing hyperbolic rod QMSs for the next generation of spaceborne instruments and low-mass commercial systems.

  2. COED Transactions, Vol. IX, No. 2, February 1977. Prism: An Educational Aide to Symbolic Differentiation and Simplification of Algebraic Expressions.

    ERIC Educational Resources Information Center

    Marcovitz, Alan B., Ed.

    A computer program for numeric and symbolic manipulation and the methodology underlying its development are presented. Some features of the program are: an option for implied multiplication; computation of higher-order derivatives; differentiation of 26 different trigonometric, hyperbolic, inverse trigonometric, and inverse hyperbolic functions;…

  3. Modified hyperbolic sine model for titanium dioxide-based memristive thin films

    NASA Astrophysics Data System (ADS)

    Abu Bakar, Raudah; Syahirah Kamarozaman, Nur; Fazlida Hanim Abdullah, Wan; Herman, Sukreen Hana

    2018-03-01

    Since the emergence of memristor as the newest fundamental circuit elements, studies on memristor modeling have been evolved. To date, the developed models were based on the linear model, linear ionic drift model using different window functions, tunnelling barrier model and hyperbolic-sine function based model. Although using hyperbolic-sine function model could predict the memristor electrical properties, the model was not well fitted to the experimental data. In order to improve the performance of the hyperbolic-sine function model, the state variable equation was modified. On the one hand, the addition of window function cannot provide an improved fitting. By multiplying the Yakopcic’s state variable model to Chang’s model on the other hand resulted in the closer agreement with the TiO2 thin film experimental data. The percentage error was approximately 2.15%.

  4. 3-D conditional hyperbolic method of moments for high-fidelity Euler-Euler simulations of particle-laden flows

    NASA Astrophysics Data System (ADS)

    Patel, Ravi; Kong, Bo; Capecelatro, Jesse; Fox, Rodney; Desjardins, Olivier

    2017-11-01

    Particle-laden turbulent flows are important features of many environmental and industrial processes. Euler-Euler (EE) simulations of these flows are more computationally efficient than Euler-Lagrange (EL) simulations. However, traditional EE methods, such as the two-fluid model, cannot faithfully capture dilute regions of flow with finite Stokes number particles. For this purpose, the multi-valued nature of the particle velocity field must be treated with a polykinetic description. Various quadrature-based moment methods (QBMM) can be used to approximate the full kinetic description by solving for a set of moments of the particle velocity distribution function (VDF) and providing closures for the higher-order moments. Early QBMM fail to maintain the strict hyperbolicity of the kinetic equations, producing unphysical delta shocks (i.e., mass accumulation at a point). In previous work, a 2-D conditional hyperbolic quadrature method of moments (CHyQMOM) was proposed as a fourth-order QBMM closure that maintains strict hyperbolicity. Here, we present the 3-D extension of CHyQMOM. We compare results from CHyQMOM to other QBMM and EL in the context of particle trajectory crossing, cluster-induced turbulence, and particle-laden channel flow. NSF CBET-1437903.

  5. Breathers and rogue waves in a Heisenberg ferromagnetic spin chain or an alpha helical protein

    NASA Astrophysics Data System (ADS)

    Yang, Jin-Wei; Gao, Yi-Tian; Su, Chuan-Qi; Wang, Qi-Min; Lan, Zhong-Zhou

    2017-07-01

    In this paper, a fourth-order variable-coefficient nonlinear Schrödinger equation for a one-dimensional continuum anisotropic Heisenberg ferromagnetic spin chain or an alpha helical protein has been investigated. Breathers and rogue waves are constructed via the Darboux transformation and generalized Darboux transformation, respectively. Results of the breathers and rogue waves are presented: (1) The first- and second-order Akhmediev breathers and Kuznetsov-Ma solitons are presented with different values of variable coefficients which are related to the energy transfer or higher-order excitations and interactions in the helical protein, or related to the spin excitations resulting from the lowest order continuum approximation and octupole-dipole interaction in a Heisenberg ferromagnetic spin chain, and the nonlinear periodic breathers resulting from the Akhmediev breathers are studied as well; (2) For the first- and second-order rogue waves, we find that they can be split into many similar components when the variable coefficients are polynomial functions of time; (3) Rogue waves can also be split when the variable coefficients are hyperbolic secant functions of time, but the profile of each component in such a case is different.

  6. A Hermite WENO reconstruction for fourth order temporal accurate schemes based on the GRP solver for hyperbolic conservation laws

    NASA Astrophysics Data System (ADS)

    Du, Zhifang; Li, Jiequan

    2018-02-01

    This paper develops a new fifth order accurate Hermite WENO (HWENO) reconstruction method for hyperbolic conservation schemes in the framework of the two-stage fourth order accurate temporal discretization in Li and Du (2016) [13]. Instead of computing the first moment of the solution additionally in the conventional HWENO or DG approach, we can directly take the interface values, which are already available in the numerical flux construction using the generalized Riemann problem (GRP) solver, to approximate the first moment. The resulting scheme is fourth order temporal accurate by only invoking the HWENO reconstruction twice so that it becomes more compact. Numerical experiments show that such compactness makes significant impact on the resolution of nonlinear waves.

  7. A simple finite element method for linear hyperbolic problems

    DOE PAGES

    Mu, Lin; Ye, Xiu

    2017-09-14

    Here, we introduce a simple finite element method for solving first order hyperbolic equations with easy implementation and analysis. Our new method, with a symmetric, positive definite system, is designed to use discontinuous approximations on finite element partitions consisting of arbitrary shape of polygons/polyhedra. Error estimate is established. Extensive numerical examples are tested that demonstrate the robustness and flexibility of the method.

  8. A simple finite element method for linear hyperbolic problems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mu, Lin; Ye, Xiu

    Here, we introduce a simple finite element method for solving first order hyperbolic equations with easy implementation and analysis. Our new method, with a symmetric, positive definite system, is designed to use discontinuous approximations on finite element partitions consisting of arbitrary shape of polygons/polyhedra. Error estimate is established. Extensive numerical examples are tested that demonstrate the robustness and flexibility of the method.

  9. A Few New 2+1-Dimensional Nonlinear Dynamics and the Representation of Riemann Curvature Tensors

    NASA Astrophysics Data System (ADS)

    Wang, Yan; Zhang, Yufeng; Zhang, Xiangzhi

    2016-09-01

    We first introduced a linear stationary equation with a quadratic operator in ∂x and ∂y, then a linear evolution equation is given by N-order polynomials of eigenfunctions. As applications, by taking N=2, we derived a (2+1)-dimensional generalized linear heat equation with two constant parameters associative with a symmetric space. When taking N=3, a pair of generalized Kadomtsev-Petviashvili equations with the same eigenvalues with the case of N=2 are generated. Similarly, a second-order flow associative with a homogeneous space is derived from the integrability condition of the two linear equations, which is a (2+1)-dimensional hyperbolic equation. When N=3, the third second flow associative with the homogeneous space is generated, which is a pair of new generalized Kadomtsev-Petviashvili equations. Finally, as an application of a Hermitian symmetric space, we established a pair of spectral problems to obtain a new (2+1)-dimensional generalized Schrödinger equation, which is expressed by the Riemann curvature tensors.

  10. Lagrangian particle method for compressible fluid dynamics

    NASA Astrophysics Data System (ADS)

    Samulyak, Roman; Wang, Xingyu; Chen, Hsin-Chiang

    2018-06-01

    A new Lagrangian particle method for solving Euler equations for compressible inviscid fluid or gas flows is proposed. Similar to smoothed particle hydrodynamics (SPH), the method represents fluid cells with Lagrangian particles and is suitable for the simulation of complex free surface/multiphase flows. The main contributions of our method, which is different from SPH in all other aspects, are (a) significant improvement of approximation of differential operators based on a polynomial fit via weighted least squares approximation and the convergence of prescribed order, (b) a second-order particle-based algorithm that reduces to the first-order upwind method at local extremal points, providing accuracy and long term stability, and (c) more accurate resolution of entropy discontinuities and states at free interfaces. While the method is consistent and convergent to a prescribed order, the conservation of momentum and energy is not exact and depends on the convergence order. The method is generalizable to coupled hyperbolic-elliptic systems. Numerical verification tests demonstrating the convergence order are presented as well as examples of complex multiphase flows.

  11. On the removal of boundary errors caused by Runge-Kutta integration of non-linear partial differential equations

    NASA Technical Reports Server (NTRS)

    Abarbanel, Saul; Gottlieb, David; Carpenter, Mark H.

    1994-01-01

    It has been previously shown that the temporal integration of hyperbolic partial differential equations (PDE's) may, because of boundary conditions, lead to deterioration of accuracy of the solution. A procedure for removal of this error in the linear case has been established previously. In the present paper we consider hyperbolic (PDE's) (linear and non-linear) whose boundary treatment is done via the SAT-procedure. A methodology is present for recovery of the full order of accuracy, and has been applied to the case of a 4th order explicit finite difference scheme.

  12. A zonally symmetric model for the monsoon-Hadley circulation with stochastic convective forcing

    NASA Astrophysics Data System (ADS)

    De La Chevrotière, Michèle; Khouider, Boualem

    2017-02-01

    Idealized models of reduced complexity are important tools to understand key processes underlying a complex system. In climate science in particular, they are important for helping the community improve our ability to predict the effect of climate change on the earth system. Climate models are large computer codes based on the discretization of the fluid dynamics equations on grids of horizontal resolution in the order of 100 km, whereas unresolved processes are handled by subgrid models. For instance, simple models are routinely used to help understand the interactions between small-scale processes due to atmospheric moist convection and large-scale circulation patterns. Here, a zonally symmetric model for the monsoon circulation is presented and solved numerically. The model is based on the Galerkin projection of the primitive equations of atmospheric synoptic dynamics onto the first modes of vertical structure to represent free tropospheric circulation and is coupled to a bulk atmospheric boundary layer (ABL) model. The model carries bulk equations for water vapor in both the free troposphere and the ABL, while the processes of convection and precipitation are represented through a stochastic model for clouds. The model equations are coupled through advective nonlinearities, and the resulting system is not conservative and not necessarily hyperbolic. This makes the design of a numerical method for the solution of this system particularly difficult. Here, we develop a numerical scheme based on the operator time-splitting strategy, which decomposes the system into three pieces: a conservative part and two purely advective parts, each of which is solved iteratively using an appropriate method. The conservative system is solved via a central scheme, which does not require hyperbolicity since it avoids the Riemann problem by design. One of the advective parts is a hyperbolic diagonal matrix, which is easily handled by classical methods for hyperbolic equations, while the other advective part is a nilpotent matrix, which is solved via the method of lines. Validation tests using a synthetic exact solution are presented, and formal second-order convergence under grid refinement is demonstrated. Moreover, the model is tested under realistic monsoon conditions, and the ability of the model to simulate key features of the monsoon circulation is illustrated in two distinct parameter regimes.

  13. On vector-valued Poincaré series of weight 2

    NASA Astrophysics Data System (ADS)

    Meneses, Claudio

    2017-10-01

    Given a pair (Γ , ρ) of a Fuchsian group of the first kind, and a unitary representation ρ of Γ of arbitrary rank, the problem of construction of vector-valued Poincaré series of weight 2 is considered. Implications in the theory of parabolic bundles are discussed. When the genus of the group is zero, it is shown how an explicit basis for the space of these functions can be constructed.

  14. Exponential Boundary Observers for Pressurized Water Pipe

    NASA Astrophysics Data System (ADS)

    Hermine Som, Idellette Judith; Cocquempot, Vincent; Aitouche, Abdel

    2015-11-01

    This paper deals with state estimation on a pressurized water pipe modeled by nonlinear coupled distributed hyperbolic equations for non-conservative laws with three known boundary measures. Our objective is to estimate the fourth boundary variable, which will be useful for leakage detection. Two approaches are studied. Firstly, the distributed hyperbolic equations are discretized through a finite-difference scheme. By using the Lipschitz property of the nonlinear term and a Lyapunov function, the exponential stability of the estimation error is proven by solving Linear Matrix Inequalities (LMIs). Secondly, the distributed hyperbolic system is preserved for state estimation. After state transformations, a Luenberger-like PDE boundary observer based on backstepping mathematical tools is proposed. An exponential Lyapunov function is used to prove the stability of the resulted estimation error. The performance of the two observers are shown on a water pipe prototype simulated example.

  15. An HP Adaptive Discontinuous Galerkin Method for Hyperbolic Conservation Laws. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Bey, Kim S.

    1994-01-01

    This dissertation addresses various issues for model classes of hyperbolic conservation laws. The basic approach developed in this work employs a new family of adaptive, hp-version, finite element methods based on a special discontinuous Galerkin formulation for hyperbolic problems. The discontinuous Galerkin formulation admits high-order local approximations on domains of quite general geometry, while providing a natural framework for finite element approximations and for theoretical developments. The use of hp-versions of the finite element method makes possible exponentially convergent schemes with very high accuracies in certain cases; the use of adaptive hp-schemes allows h-refinement in regions of low regularity and p-enrichment to deliver high accuracy, while keeping problem sizes manageable and dramatically smaller than many conventional approaches. The use of discontinuous Galerkin methods is uncommon in applications, but the methods rest on a reasonable mathematical basis for low-order cases and has local approximation features that can be exploited to produce very efficient schemes, especially in a parallel, multiprocessor environment. The place of this work is to first and primarily focus on a model class of linear hyperbolic conservation laws for which concrete mathematical results, methodologies, error estimates, convergence criteria, and parallel adaptive strategies can be developed, and to then briefly explore some extensions to more general cases. Next, we provide preliminaries to the study and a review of some aspects of the theory of hyperbolic conservation laws. We also provide a review of relevant literature on this subject and on the numerical analysis of these types of problems.

  16. Psychophysics of time perception and intertemporal choice models

    NASA Astrophysics Data System (ADS)

    Takahashi, Taiki; Oono, Hidemi; Radford, Mark H. B.

    2008-03-01

    Intertemporal choice and psychophysics of time perception have been attracting attention in econophysics and neuroeconomics. Several models have been proposed for intertemporal choice: exponential discounting, general hyperbolic discounting (exponential discounting with logarithmic time perception of the Weber-Fechner law, a q-exponential discount model based on Tsallis's statistics), simple hyperbolic discounting, and Stevens' power law-exponential discounting (exponential discounting with Stevens' power time perception). In order to examine the fitness of the models for behavioral data, we estimated the parameters and AICc (Akaike Information Criterion with small sample correction) of the intertemporal choice models by assessing the points of subjective equality (indifference points) at seven delays. Our results have shown that the orders of the goodness-of-fit for both group and individual data were [Weber-Fechner discounting (general hyperbola) > Stevens' power law discounting > Simple hyperbolic discounting > Exponential discounting], indicating that human time perception in intertemporal choice may follow the Weber-Fechner law. Indications of the results for neuropsychopharmacological treatments of addiction and biophysical processing underlying temporal discounting and time perception are discussed.

  17. The Hyperbolic Higgs

    NASA Astrophysics Data System (ADS)

    Cohen, Timothy; Craig, Nathaniel; Giudice, Gian F.; McCullough, Matthew

    2018-05-01

    We introduce the Hyperbolic Higgs, a novel solution to the little hierarchy problem that features Standard Model neutral scalar top partners. At one-loop order, the protection from ultraviolet sensitivity is due to an accidental non-compact symmetry of the Higgs potential that emerges in the infrared. Once the general features of the effective description are detailed, a completion that relies on a five dimensional supersymmetric framework is provided. Novel phenomenology is compared and contrasted with the Twin Higgs scenario.

  18. A higher-order conservation element solution element method for solving hyperbolic differential equations on unstructured meshes

    NASA Astrophysics Data System (ADS)

    Bilyeu, David

    This dissertation presents an extension of the Conservation Element Solution Element (CESE) method from second- to higher-order accuracy. The new method retains the favorable characteristics of the original second-order CESE scheme, including (i) the use of the space-time integral equation for conservation laws, (ii) a compact mesh stencil, (iii) the scheme will remain stable up to a CFL number of unity, (iv) a fully explicit, time-marching integration scheme, (v) true multidimensionality without using directional splitting, and (vi) the ability to handle two- and three-dimensional geometries by using unstructured meshes. This algorithm has been thoroughly tested in one, two and three spatial dimensions and has been shown to obtain the desired order of accuracy for solving both linear and non-linear hyperbolic partial differential equations. The scheme has also shown its ability to accurately resolve discontinuities in the solutions. Higher order unstructured methods such as the Discontinuous Galerkin (DG) method and the Spectral Volume (SV) methods have been developed for one-, two- and three-dimensional application. Although these schemes have seen extensive development and use, certain drawbacks of these methods have been well documented. For example, the explicit versions of these two methods have very stringent stability criteria. This stability criteria requires that the time step be reduced as the order of the solver increases, for a given simulation on a given mesh. The research presented in this dissertation builds upon the work of Chang, who developed a fourth-order CESE scheme to solve a scalar one-dimensional hyperbolic partial differential equation. The completed research has resulted in two key deliverables. The first is a detailed derivation of a high-order CESE methods on unstructured meshes for solving the conservation laws in two- and three-dimensional spaces. The second is the code implementation of these numerical methods in a computer code. For code development, a one-dimensional solver for the Euler equations was developed. This work is an extension of Chang's work on the fourth-order CESE method for solving a one-dimensional scalar convection equation. A generic formulation for the nth-order CESE method, where n ≥ 4, was derived. Indeed, numerical implementation of the scheme confirmed that the order of convergence was consistent with the order of the scheme. For the two- and three-dimensional solvers, SOLVCON was used as the basic framework for code implementation. A new solver kernel for the fourth-order CESE method has been developed and integrated into the framework provided by SOLVCON. The main part of SOLVCON, which deals with unstructured meshes and parallel computing, remains intact. The SOLVCON code for data transmission between computer nodes for High Performance Computing (HPC). To validate and verify the newly developed high-order CESE algorithms, several one-, two- and three-dimensional simulations where conducted. For the arbitrary order, one-dimensional, CESE solver, three sets of governing equations were selected for simulation: (i) the linear convection equation, (ii) the linear acoustic equations, (iii) the nonlinear Euler equations. All three systems of equations were used to verify the order of convergence through mesh refinement. In addition the Euler equations were used to solve the Shu-Osher and Blastwave problems. These two simulations demonstrated that the new high-order CESE methods can accurately resolve discontinuities in the flow field.For the two-dimensional, fourth-order CESE solver, the Euler equation was employed in four different test cases. The first case was used to verify the order of convergence through mesh refinement. The next three cases demonstrated the ability of the new solver to accurately resolve discontinuities in the flows. This was demonstrated through: (i) the interaction between acoustic waves and an entropy pulse, (ii) supersonic flow over a circular blunt body, (iii) supersonic flow over a guttered wedge. To validate and verify the three-dimensional, fourth-order CESE solver, two different simulations where selected. The first used the linear convection equations to demonstrate fourth-order convergence. The second used the Euler equations to simulate supersonic flow over a spherical body to demonstrate the scheme's ability to accurately resolve shocks. All test cases used are well known benchmark problems and as such, there are multiple sources available to validate the numerical results. Furthermore, the simulations showed that the high-order CESE solver was stable at a CFL number near unity.

  19. A boundary-value problem for a first-order hyperbolic system in a two-dimensional domain

    NASA Astrophysics Data System (ADS)

    Zhura, N. A.; Soldatov, A. P.

    2017-06-01

    We consider a strictly hyperbolic first-order system of three equations with constant coefficients in a bounded piecewise-smooth domain. The boundary of the domain is assumed to consist of six smooth non-characteristic arcs. A boundary-value problem in this domain is posed by alternately prescribing one or two linear combinations of the components of the solution on these arcs. We show that this problem has a unique solution under certain additional conditions on the coefficients of these combinations, the boundary of the domain and the behaviour of the solution near the characteristics passing through the corner points of the domain.

  20. Lump solutions and interaction phenomenon to the third-order nonlinear evolution equation

    NASA Astrophysics Data System (ADS)

    Kofane, T. C.; Fokou, M.; Mohamadou, A.; Yomba, E.

    2017-11-01

    In this work, the lump solution and the kink solitary wave solution from the (2 + 1) -dimensional third-order evolution equation, using the Hirota bilinear method are obtained through symbolic computation with Maple. We have assumed that the lump solution is centered at the origin, when t = 0 . By considering a mixing positive quadratic function with exponential function, as well as a mixing positive quadratic function with hyperbolic cosine function, interaction solutions like lump-exponential and lump-hyperbolic cosine are presented. A completely non-elastic interaction between a lump and kink soliton is observed, showing that a lump solution can be swallowed by a kink soliton.

  1. Parallel High Order Accuracy Methods Applied to Non-Linear Hyperbolic Equations and to Problems in Materials Sciences

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jan Hesthaven

    2012-02-06

    Final report for DOE Contract DE-FG02-98ER25346 entitled Parallel High Order Accuracy Methods Applied to Non-Linear Hyperbolic Equations and to Problems in Materials Sciences. Principal Investigator Jan S. Hesthaven Division of Applied Mathematics Brown University, Box F Providence, RI 02912 Jan.Hesthaven@Brown.edu February 6, 2012 Note: This grant was originally awarded to Professor David Gottlieb and the majority of the work envisioned reflects his original ideas. However, when Prof Gottlieb passed away in December 2008, Professor Hesthaven took over as PI to ensure proper mentoring of students and postdoctoral researchers already involved in the project. This unusual circumstance has naturally impacted themore » project and its timeline. However, as the report reflects, the planned work has been accomplished and some activities beyond the original scope have been pursued with success. Project overview and main results The effort in this project focuses on the development of high order accurate computational methods for the solution of hyperbolic equations with application to problems with strong shocks. While the methods are general, emphasis is on applications to gas dynamics with strong shocks.« less

  2. Terahertz radiation in graphene hyperbolic medium excited by an electric dipole.

    PubMed

    Feng, Xiaodong; Gong, Sen; Zhong, Renbin; Zhao, Tao; Hu, Min; Zhang, Chao; Liu, Shenggang

    2018-03-01

    In this Letter, the enhanced and directional radiation in a wide terahertz (THz) frequency range in a graphene hyperbolic medium excited by an electric dipole is presented. The numerical simulations and theoretical analyses indicate that the enhanced radiation comes from the strong surface plasmon couplings in the graphene hyperbolic medium, consisting of alternative graphene and dielectric substrate layers. The simulation results also show that the peak power flow of the enhanced THz radiation in the graphene hyperbolic medium is dramatically enhanced by more than 1 order of magnitude over that in a general medium within a certain distance from the dipole, and the electromagnetic fields are strongly concentrated in a narrow angle. Also, the radiation fields can be manipulated, and the fields' angular distributions can be tuned by adjusting the dielectric permittivity and thickness of the substrates, and the chemical potential of graphene. Accordingly, it provides a good opportunity for developing miniature, integratable, high-power-density, and tunable radiation sources in the THz band at room temperature.

  3. The algebraic-hyperbolic approach to the linearized gravitational constraints on a Minkowski background

    NASA Astrophysics Data System (ADS)

    Winicour, Jeffrey

    2017-08-01

    An algebraic-hyperbolic method for solving the Hamiltonian and momentum constraints has recently been shown to be well posed for general nonlinear perturbations of the initial data for a Schwarzschild black hole. This is a new approach to solving the constraints of Einstein’s equations which does not involve elliptic equations and has potential importance for the construction of binary black hole data. In order to shed light on the underpinnings of this approach, we consider its application to obtain solutions of the constraints for linearized perturbations of Minkowski space. In that case, we find the surprising result that there are no suitable Cauchy hypersurfaces in Minkowski space for which the linearized algebraic-hyperbolic constraint problem is well posed.

  4. A Well-Balanced Path-Integral f-Wave Method for Hyperbolic Problems with Source Terms

    PubMed Central

    2014-01-01

    Systems of hyperbolic partial differential equations with source terms (balance laws) arise in many applications where it is important to compute accurate time-dependent solutions modeling small perturbations of equilibrium solutions in which the source terms balance the hyperbolic part. The f-wave version of the wave-propagation algorithm is one approach, but requires the use of a particular averaged value of the source terms at each cell interface in order to be “well balanced” and exactly maintain steady states. A general approach to choosing this average is developed using the theory of path conservative methods. A scalar advection equation with a decay or growth term is introduced as a model problem for numerical experiments. PMID:24563581

  5. The limit space of a Cauchy sequence of globally hyperbolic spacetimes

    NASA Astrophysics Data System (ADS)

    Noldus, Johan

    2004-02-01

    In this second paper, I construct a limit space of a Cauchy sequence of globally hyperbolic spacetimes. In section 2, I work gradually towards a construction of the limit space. I prove that the limit space is unique up to isometry. I also show that, in general, the limit space has quite complicated causal behaviour. This work prepares the final paper in which I shall study in more detail properties of the limit space and the moduli space of (compact) globally hyperbolic spacetimes (cobordisms). As a fait divers, I give in this paper a suitable definition of dimension of a Lorentz space in agreement with the one given by Gromov in the Riemannian case. The difference in philosophy between Lorentzian and Riemannian geometry is one of relativism versus absolutism. In the latter every point distinguishes itself while in the former in general two elements get distinguished by a third, different, one.

  6. Incorporating inductances in tissue-scale models of cardiac electrophysiology

    NASA Astrophysics Data System (ADS)

    Rossi, Simone; Griffith, Boyce E.

    2017-09-01

    In standard models of cardiac electrophysiology, including the bidomain and monodomain models, local perturbations can propagate at infinite speed. We address this unrealistic property by developing a hyperbolic bidomain model that is based on a generalization of Ohm's law with a Cattaneo-type model for the fluxes. Further, we obtain a hyperbolic monodomain model in the case that the intracellular and extracellular conductivity tensors have the same anisotropy ratio. In one spatial dimension, the hyperbolic monodomain model is equivalent to a cable model that includes axial inductances, and the relaxation times of the Cattaneo fluxes are strictly related to these inductances. A purely linear analysis shows that the inductances are negligible, but models of cardiac electrophysiology are highly nonlinear, and linear predictions may not capture the fully nonlinear dynamics. In fact, contrary to the linear analysis, we show that for simple nonlinear ionic models, an increase in conduction velocity is obtained for small and moderate values of the relaxation time. A similar behavior is also demonstrated with biophysically detailed ionic models. Using the Fenton-Karma model along with a low-order finite element spatial discretization, we numerically analyze differences between the standard monodomain model and the hyperbolic monodomain model. In a simple benchmark test, we show that the propagation of the action potential is strongly influenced by the alignment of the fibers with respect to the mesh in both the parabolic and hyperbolic models when using relatively coarse spatial discretizations. Accurate predictions of the conduction velocity require computational mesh spacings on the order of a single cardiac cell. We also compare the two formulations in the case of spiral break up and atrial fibrillation in an anatomically detailed model of the left atrium, and we examine the effect of intracellular and extracellular inductances on the virtual electrode phenomenon.

  7. Selective radiative heating of nanostructures using hyperbolic metamaterials

    DOE PAGES

    Ding, Ding; Minnich, Austin J

    2015-01-01

    Hyperbolic metamaterials (HMM) are of great interest due to their ability to break the diffraction limit for imaging and enhance near-field radiative heat transfer. Here we demonstrate that an annular, transparent HMM enables selective heating of a sub-wavelength plasmonic nanowire by controlling the angular mode number of a plasmonic resonance. A nanowire emitter, surrounded by an HMM, appears dark to incoming radiation from an adjacent nanowire emitter unless the second emitter is surrounded by an identical lens such that the wavelength and angular mode of the plasmonic resonance match. Our result can find applications in radiative thermal management.

  8. Theory of hyperbolic stratified nanostructures for surface-enhanced Raman scattering

    NASA Astrophysics Data System (ADS)

    Wong, Herman M. K.; Dezfouli, Mohsen Kamandar; Axelrod, Simon; Hughes, Stephen; Helmy, Amr S.

    2017-11-01

    We theoretically investigate the enhancement of surface enhanced Raman spectroscopy (SERS) using hyperbolic stratified nanostructures and compare to metal nanoresonators. The photon Green function of each nanostructure within its environment is first obtained from a semianalytical modal theory, which is used in a quantum optics formalism of the molecule-nanostructure interaction to model the SERS spectrum. An intuitive methodology is presented for calculating the single-molecule enhancement factor (SMEF), which is also able to predict known experimental SERS enhancement factors of a gold nanodimer. We elucidate the important figures-of-merit of the enhancement and explore these for different designs. We find that the use of hyperbolic stratified materials can enhance the photonic local density of states (LDOS) by close to two times in comparison to pure metal nanostructures, when both designed to work at the same operating wavelengths. However, the increased LDOS is accompanied by higher electric field concentration within the lossy hyperbolic material, which leads to increased quenching that serves to reduce the overall detected SERS enhancement in the far field. For nanoresonators with resonant localized surface plasmon wavelengths in the near-infrared, the SMEF for the hyperbolic stratified nanostructure is approximately one order of magnitude lower than the pure metal counterpart. Conversely, we show that by detecting the Raman signal using a near-field probe, hyperbolic materials can provide an improvement in SERS enhancement compared to using pure metal nanostructures when the probe is sufficiently close (<50 nm ) to the Raman active molecule at the plasmonic hotspot.

  9. Quintic quasi-topological gravity

    NASA Astrophysics Data System (ADS)

    Cisterna, Adolfo; Guajardo, Luis; Hassaïne, Mokhtar; Oliva, Julio

    2017-04-01

    We construct a quintic quasi-topological gravity in five dimensions, i.e. a theory with a Lagrangian containing {\\mathcal{R}}^5 terms and whose field equations are of second order on spherically (hyperbolic or planar) symmetric spacetimes. These theories have recently received attention since when formulated on asymptotically AdS spacetimes might provide for gravity duals of a broad class of CFTs. For simplicity we focus on five dimensions. We show that this theory fulfils a Birkhoff's Theorem as it is the case in Lovelock gravity and therefore, for generic values of the couplings, there is no s-wave propagating mode. We prove that the spherically symmetric solution is determined by a quintic algebraic polynomial equation which resembles Wheeler's polynomial of Lovelock gravity. For the black hole solutions we compute the temperature, mass and entropy and show that the first law of black holes thermodynamics is fulfilled. Besides of being of fourth order in general, we show that the field equations, when linearized around AdS are of second order, and therefore the theory does not propagate ghosts around this background. Besides the class of theories originally introduced in arXiv:1003.4773, the general geometric structure of these Lagrangians remains an open problem.

  10. Origin of hyperbolicity in brain-to-brain coordination networks

    NASA Astrophysics Data System (ADS)

    Tadić, Bosiljka; Andjelković, Miroslav; Šuvakov, Milovan

    2018-02-01

    Hyperbolicity or negative curvature of complex networks is the intrinsic geometric proximity of nodes in the graph metric space, which implies an improved network function. Here, we investigate hidden combinatorial geometries in brain-to-brain coordination networks arising through social communications. The networks originate from correlations among EEG signals previously recorded during spoken communications comprising of 14 individuals with 24 speaker-listener pairs. We find that the corresponding networks are delta-hyperbolic with delta_max=1 and the graph diameter D=3 in each brain. While the emergent hyperbolicity in the two-brain networks satisfies delta_max/D/2 < 1 and can be attributed to the topology of the subgraph formed around the cross-brains linking channels. We identify these subgraphs in each studied two-brain network and decompose their structure into simple geometric descriptors (triangles, tetrahedra and cliques of higher orders) that contribute to hyperbolicity. Considering topologies that exceed two separate brain networks as a measure of coordination synergy between the brains, we identify different neuronal correlation patterns ranging from weak coordination to super-brain structure. These topology features are in qualitative agreement with the listener’s self-reported ratings of own experience and quality of the speaker, suggesting that studies of the cross-brain connector networks can reveal new insight into the neural mechanisms underlying human social behavior.

  11. Sur les processus linéaires de naissance et de mort sous-critiques dans un environnement aléatoire.

    PubMed

    Bacaër, Nicolas

    2017-07-01

    An explicit formula is found for the rate of extinction of subcritical linear birth-and-death processes in a random environment. The formula is illustrated by numerical computations of the eigenvalue with largest real part of the truncated matrix for the master equation. The generating function of the corresponding eigenvector satisfies a Fuchsian system of singular differential equations. A particular attention is set on the case of two environments, which leads to Riemann's differential equation.

  12. A Novel Higher Order Artificial Neural Networks

    NASA Astrophysics Data System (ADS)

    Xu, Shuxiang

    2010-05-01

    In this paper a new Higher Order Neural Network (HONN) model is introduced and applied in several data mining tasks. Data Mining extracts hidden patterns and valuable information from large databases. A hyperbolic tangent function is used as the neuron activation function for the new HONN model. Experiments are conducted to demonstrate the advantages and disadvantages of the new HONN model, when compared with several conventional Artificial Neural Network (ANN) models: Feedforward ANN with the sigmoid activation function; Feedforward ANN with the hyperbolic tangent activation function; and Radial Basis Function (RBF) ANN with the Gaussian activation function. The experimental results seem to suggest that the new HONN holds higher generalization capability as well as abilities in handling missing data.

  13. Derivation of the Effective Nonlinear Schrodinger Equations for Dark and Power Law Spatial Plasmon-Polariton Solitons Using Nano Self-Focusing

    DTIC Science & Technology

    2011-03-01

    An e?ective Nonlinear Schr?dinger Equation for propagation is derived for optical dark and power law spatial solitons at the subwavelength with a... soliton amplitude profiles are displayed as a hyperbolic secant function and hold there profile at short distances on the order of centimeters. Dark ...spatial solitons are similar but have hyperbolic tangent type profiles. Dark spatial solitons were first observed by Jerominek in 1985 and Belanger and

  14. Lagrangian particle method for compressible fluid dynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Samulyak, Roman; Wang, Xingyu; Chen, Hsin -Chiang

    A new Lagrangian particle method for solving Euler equations for compressible inviscid fluid or gas flows is proposed. Similar to smoothed particle hydrodynamics (SPH), the method represents fluid cells with Lagrangian particles and is suitable for the simulation of complex free surface / multi-phase flows. The main contributions of our method, which is different from SPH in all other aspects, are (a) significant improvement of approximation of differential operators based on a polynomial fit via weighted least squares approximation and the convergence of prescribed order, (b) a second-order particle-based algorithm that reduces to the first-order upwind method at local extremalmore » points, providing accuracy and long term stability, and (c) more accurate resolution of entropy discontinuities and states at free inter-faces. While the method is consistent and convergent to a prescribed order, the conservation of momentum and energy is not exact and depends on the convergence order . The method is generalizable to coupled hyperbolic-elliptic systems. As a result, numerical verification tests demonstrating the convergence order are presented as well as examples of complex multiphase flows.« less

  15. Lagrangian particle method for compressible fluid dynamics

    DOE PAGES

    Samulyak, Roman; Wang, Xingyu; Chen, Hsin -Chiang

    2018-02-09

    A new Lagrangian particle method for solving Euler equations for compressible inviscid fluid or gas flows is proposed. Similar to smoothed particle hydrodynamics (SPH), the method represents fluid cells with Lagrangian particles and is suitable for the simulation of complex free surface / multi-phase flows. The main contributions of our method, which is different from SPH in all other aspects, are (a) significant improvement of approximation of differential operators based on a polynomial fit via weighted least squares approximation and the convergence of prescribed order, (b) a second-order particle-based algorithm that reduces to the first-order upwind method at local extremalmore » points, providing accuracy and long term stability, and (c) more accurate resolution of entropy discontinuities and states at free inter-faces. While the method is consistent and convergent to a prescribed order, the conservation of momentum and energy is not exact and depends on the convergence order . The method is generalizable to coupled hyperbolic-elliptic systems. As a result, numerical verification tests demonstrating the convergence order are presented as well as examples of complex multiphase flows.« less

  16. Geometry in a dynamical system without space: Hyperbolic Geometry in Kuramoto Oscillator Systems

    NASA Astrophysics Data System (ADS)

    Engelbrecht, Jan; Chen, Bolun; Mirollo, Renato

    Kuramoto oscillator networks have the special property that their time evolution is constrained to lie on 3D orbits of the Möbius group acting on the N-fold torus TN which explains the N - 3 constants of motion discovered by Watanabe and Strogatz. The dynamics for phase models can be further reduced to 2D invariant sets in T N - 1 which have a natural geometry equivalent to the unit disk Δ with hyperbolic metric. We show that the classic Kuramoto model with order parameter Z1 (the first moment of the oscillator configuration) is a gradient flow in this metric with a unique fixed point on each generic 2D invariant set, corresponding to the hyperbolic barycenter of an oscillator configuration. This gradient property makes the dynamics especially easy to analyze. We exhibit several new families of Kuramoto oscillator models which reduce to gradient flows in this metric; some of these have a richer fixed point structure including non-hyperbolic fixed points associated with fixed point bifurcations. Work Supported by NSF DMS 1413020.

  17. A parallel second-order adaptive mesh algorithm for incompressible flow in porous media.

    PubMed

    Pau, George S H; Almgren, Ann S; Bell, John B; Lijewski, Michael J

    2009-11-28

    In this paper, we present a second-order accurate adaptive algorithm for solving multi-phase, incompressible flow in porous media. We assume a multi-phase form of Darcy's law with relative permeabilities given as a function of the phase saturation. The remaining equations express conservation of mass for the fluid constituents. In this setting, the total velocity, defined to be the sum of the phase velocities, is divergence free. The basic integration method is based on a total-velocity splitting approach in which we solve a second-order elliptic pressure equation to obtain a total velocity. This total velocity is then used to recast component conservation equations as nonlinear hyperbolic equations. Our approach to adaptive refinement uses a nested hierarchy of logically rectangular grids with simultaneous refinement of the grids in both space and time. The integration algorithm on the grid hierarchy is a recursive procedure in which coarse grids are advanced in time, fine grids are advanced multiple steps to reach the same time as the coarse grids and the data at different levels are then synchronized. The single-grid algorithm is described briefly, but the emphasis here is on the time-stepping procedure for the adaptive hierarchy. Numerical examples are presented to demonstrate the algorithm's accuracy and convergence properties and to illustrate the behaviour of the method.

  18. Quantum error correcting codes and 4-dimensional arithmetic hyperbolic manifolds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guth, Larry, E-mail: lguth@math.mit.edu; Lubotzky, Alexander, E-mail: alex.lubotzky@mail.huji.ac.il

    2014-08-15

    Using 4-dimensional arithmetic hyperbolic manifolds, we construct some new homological quantum error correcting codes. They are low density parity check codes with linear rate and distance n{sup ε}. Their rate is evaluated via Euler characteristic arguments and their distance using Z{sub 2}-systolic geometry. This construction answers a question of Zémor [“On Cayley graphs, surface codes, and the limits of homological coding for quantum error correction,” in Proceedings of Second International Workshop on Coding and Cryptology (IWCC), Lecture Notes in Computer Science Vol. 5557 (2009), pp. 259–273], who asked whether homological codes with such parameters could exist at all.

  19. An approximation theory for the identification of linear thermoelastic systems

    NASA Technical Reports Server (NTRS)

    Rosen, I. G.; Su, Chien-Hua Frank

    1990-01-01

    An abstract approximation framework and convergence theory for the identification of thermoelastic systems is developed. Starting from an abstract operator formulation consisting of a coupled second order hyperbolic equation of elasticity and first order parabolic equation for heat conduction, well-posedness is established using linear semigroup theory in Hilbert space, and a class of parameter estimation problems is then defined involving mild solutions. The approximation framework is based upon generic Galerkin approximation of the mild solutions, and convergence of solutions of the resulting sequence of approximating finite dimensional parameter identification problems to a solution of the original infinite dimensional inverse problem is established using approximation results for operator semigroups. An example involving the basic equations of one dimensional linear thermoelasticity and a linear spline based scheme are discussed. Numerical results indicate how the approach might be used in a study of damping mechanisms in flexible structures.

  20. Bound-preserving modified exponential Runge-Kutta discontinuous Galerkin methods for scalar hyperbolic equations with stiff source terms

    NASA Astrophysics Data System (ADS)

    Huang, Juntao; Shu, Chi-Wang

    2018-05-01

    In this paper, we develop bound-preserving modified exponential Runge-Kutta (RK) discontinuous Galerkin (DG) schemes to solve scalar hyperbolic equations with stiff source terms by extending the idea in Zhang and Shu [43]. Exponential strong stability preserving (SSP) high order time discretizations are constructed and then modified to overcome the stiffness and preserve the bound of the numerical solutions. It is also straightforward to extend the method to two dimensions on rectangular and triangular meshes. Even though we only discuss the bound-preserving limiter for DG schemes, it can also be applied to high order finite volume schemes, such as weighted essentially non-oscillatory (WENO) finite volume schemes as well.

  1. Hyperbolic Interfaces

    NASA Astrophysics Data System (ADS)

    Giomi, Luca

    2012-09-01

    Fluid interfaces, such as soap films, liquid droplets, or lipid membranes, are known to give rise to several special geometries, whose complexity and beauty continue to fascinate us, as observers of the natural world, and challenge us as scientists. Here I show that a special class of surfaces of constant negative Gaussian curvature can be obtained in fluid interfaces equipped with an orientational ordered phase. These arise in various soft and biological materials, such as nematic liquid crystals, cytoskeletal assemblies, or hexatic colloidal suspensions. The purely hyperbolic morphology originates from the competition between surface tension, that reduces the area of the interface at the expense of increasing its Gaussian curvature, and the orientational elasticity of the ordered phase, that in turn suffers for the distortion induced by the underlying curvature.

  2. Local bounds preserving stabilization for continuous Galerkin discretization of hyperbolic systems

    NASA Astrophysics Data System (ADS)

    Mabuza, Sibusiso; Shadid, John N.; Kuzmin, Dmitri

    2018-05-01

    The objective of this paper is to present a local bounds preserving stabilized finite element scheme for hyperbolic systems on unstructured meshes based on continuous Galerkin (CG) discretization in space. A CG semi-discrete scheme with low order artificial dissipation that satisfies the local extremum diminishing (LED) condition for systems is used to discretize a system of conservation equations in space. The low order artificial diffusion is based on approximate Riemann solvers for hyperbolic conservation laws. In this case we consider both Rusanov and Roe artificial diffusion operators. In the Rusanov case, two designs are considered, a nodal based diffusion operator and a local projection stabilization operator. The result is a discretization that is LED and has first order convergence behavior. To achieve high resolution, limited antidiffusion is added back to the semi-discrete form where the limiter is constructed from a linearity preserving local projection stabilization operator. The procedure follows the algebraic flux correction procedure usually used in flux corrected transport algorithms. To further deal with phase errors (or terracing) common in FCT type methods, high order background dissipation is added to the antidiffusive correction. The resulting stabilized semi-discrete scheme can be discretized in time using a wide variety of time integrators. Numerical examples involving nonlinear scalar Burgers equation, and several shock hydrodynamics simulations for the Euler system are considered to demonstrate the performance of the method. For time discretization, Crank-Nicolson scheme and backward Euler scheme are utilized.

  3. Chosen interval methods for solving linear interval systems with special type of matrix

    NASA Astrophysics Data System (ADS)

    Szyszka, Barbara

    2013-10-01

    The paper is devoted to chosen direct interval methods for solving linear interval systems with special type of matrix. This kind of matrix: band matrix with a parameter, from finite difference problem is obtained. Such linear systems occur while solving one dimensional wave equation (Partial Differential Equations of hyperbolic type) by using the central difference interval method of the second order. Interval methods are constructed so as the errors of method are enclosed in obtained results, therefore presented linear interval systems contain elements that determining the errors of difference method. The chosen direct algorithms have been applied for solving linear systems because they have no errors of method. All calculations were performed in floating-point interval arithmetic.

  4. Critical time for acoustic wavesin weakly nonlinear poroelastic materials

    NASA Astrophysics Data System (ADS)

    Wilmanski, K.

    2005-05-01

    The final time of existence (critical time) of acoustic waves is a characteristic feature of nonlinear hyperbolic models. We consider such a problem for poroelastic saurated materials of which the material properties are described by Signorini-type constitutitve relations for stresses in the skeleton, and whose material parameters depend on the current porosity. In the one-dimensional case under consideration, the governing set of equations describes changes of extension of the skeleton, a mass density of the fluid, partial velocities of the skeleton and of the fluid and a porosity. We rely on a second order approximation. Relations of the critical time to an initial porosity and to an initial amplitude are discussed. The connection to the threshold of liquefaction is indicated.

  5. Discretizing singular point sources in hyperbolic wave propagation problems

    DOE PAGES

    Petersson, N. Anders; O'Reilly, Ossian; Sjogreen, Bjorn; ...

    2016-06-01

    Here, we develop high order accurate source discretizations for hyperbolic wave propagation problems in first order formulation that are discretized by finite difference schemes. By studying the Fourier series expansions of the source discretization and the finite difference operator, we derive sufficient conditions for achieving design accuracy in the numerical solution. Only half of the conditions in Fourier space can be satisfied through moment conditions on the source discretization, and we develop smoothness conditions for satisfying the remaining accuracy conditions. The resulting source discretization has compact support in physical space, and is spread over as many grid points as themore » number of moment and smoothness conditions. In numerical experiments we demonstrate high order of accuracy in the numerical solution of the 1-D advection equation (both in the interior and near a boundary), the 3-D elastic wave equation, and the 3-D linearized Euler equations.« less

  6. Recent advances in high-order WENO finite volume methods for compressible multiphase flows

    NASA Astrophysics Data System (ADS)

    Dumbser, Michael

    2013-10-01

    We present two new families of better than second order accurate Godunov-type finite volume methods for the solution of nonlinear hyperbolic partial differential equations with nonconservative products. One family is based on a high order Arbitrary-Lagrangian-Eulerian (ALE) formulation on moving meshes, which allows to resolve the material contact wave in a very sharp way when the mesh is moved at the speed of the material interface. The other family of methods is based on a high order Adaptive Mesh Refinement (AMR) strategy, where the mesh can be strongly refined in the vicinity of the material interface. Both classes of schemes have several building blocks in common, in particular: a high order WENO reconstruction operator to obtain high order of accuracy in space; the use of an element-local space-time Galerkin predictor step which evolves the reconstruction polynomials in time and that allows to reach high order of accuracy in time in one single step; the use of a path-conservative approach to treat the nonconservative terms of the PDE. We show applications of both methods to the Baer-Nunziato model for compressible multiphase flows.

  7. Model Predictive Optimal Control of a Time-Delay Distributed-Parameter Systems

    NASA Technical Reports Server (NTRS)

    Nguyen, Nhan

    2006-01-01

    This paper presents an optimal control method for a class of distributed-parameter systems governed by first order, quasilinear hyperbolic partial differential equations that arise in many physical systems. Such systems are characterized by time delays since information is transported from one state to another by wave propagation. A general closed-loop hyperbolic transport model is controlled by a boundary control embedded in a periodic boundary condition. The boundary control is subject to a nonlinear differential equation constraint that models actuator dynamics of the system. The hyperbolic equation is thus coupled with the ordinary differential equation via the boundary condition. Optimality of this coupled system is investigated using variational principles to seek an adjoint formulation of the optimal control problem. The results are then applied to implement a model predictive control design for a wind tunnel to eliminate a transport delay effect that causes a poor Mach number regulation.

  8. A model and numerical method for compressible flows with capillary effects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schmidmayer, Kevin, E-mail: kevin.schmidmayer@univ-amu.fr; Petitpas, Fabien, E-mail: fabien.petitpas@univ-amu.fr; Daniel, Eric, E-mail: eric.daniel@univ-amu.fr

    2017-04-01

    A new model for interface problems with capillary effects in compressible fluids is presented together with a specific numerical method to treat capillary flows and pressure waves propagation. This new multiphase model is in agreement with physical principles of conservation and respects the second law of thermodynamics. A new numerical method is also proposed where the global system of equations is split into several submodels. Each submodel is hyperbolic or weakly hyperbolic and can be solved with an adequate numerical method. This method is tested and validated thanks to comparisons with analytical solutions (Laplace law) and with experimental results onmore » droplet breakup induced by a shock wave.« less

  9. Causal dissipation and shock profiles in the relativistic fluid dynamics of pure radiation.

    PubMed

    Freistühler, Heinrich; Temple, Blake

    2014-06-08

    CURRENT THEORIES OF DISSIPATION IN THE RELATIVISTIC REGIME SUFFER FROM ONE OF TWO DEFICITS: either their dissipation is not causal or no profiles for strong shock waves exist. This paper proposes a relativistic Navier-Stokes-Fourier-type viscosity and heat conduction tensor such that the resulting second-order system of partial differential equations for the fluid dynamics of pure radiation is symmetric hyperbolic. This system has causal dissipation as well as the property that all shock waves of arbitrary strength have smooth profiles. Entropy production is positive both on gradients near those of solutions to the dissipation-free equations and on gradients of shock profiles. This shows that the new dissipation stress tensor complies to leading order with the principles of thermodynamics. Whether higher order modifications of the ansatz are required to obtain full compatibility with the second law far from the zero-dissipation equilibrium is left to further investigations. The system has exactly three a priori free parameters χ , η , ζ , corresponding physically to heat conductivity, shear viscosity and bulk viscosity. If the bulk viscosity is zero (as is stated in the literature) and the total stress-energy tensor is trace free, the entire viscosity and heat conduction tensor is determined to within a constant factor.

  10. Causal dissipation and shock profiles in the relativistic fluid dynamics of pure radiation

    PubMed Central

    Freistühler, Heinrich; Temple, Blake

    2014-01-01

    Current theories of dissipation in the relativistic regime suffer from one of two deficits: either their dissipation is not causal or no profiles for strong shock waves exist. This paper proposes a relativistic Navier–Stokes–Fourier-type viscosity and heat conduction tensor such that the resulting second-order system of partial differential equations for the fluid dynamics of pure radiation is symmetric hyperbolic. This system has causal dissipation as well as the property that all shock waves of arbitrary strength have smooth profiles. Entropy production is positive both on gradients near those of solutions to the dissipation-free equations and on gradients of shock profiles. This shows that the new dissipation stress tensor complies to leading order with the principles of thermodynamics. Whether higher order modifications of the ansatz are required to obtain full compatibility with the second law far from the zero-dissipation equilibrium is left to further investigations. The system has exactly three a priori free parameters χ,η,ζ, corresponding physically to heat conductivity, shear viscosity and bulk viscosity. If the bulk viscosity is zero (as is stated in the literature) and the total stress–energy tensor is trace free, the entire viscosity and heat conduction tensor is determined to within a constant factor. PMID:24910526

  11. On a fourth order accurate implicit finite difference scheme for hyperbolic conservation laws. I - Nonstiff strongly dynamic problems

    NASA Technical Reports Server (NTRS)

    Harten, A.; Tal-Ezer, H.

    1981-01-01

    An implicit finite difference method of fourth order accuracy in space and time is introduced for the numerical solution of one-dimensional systems of hyperbolic conservation laws. The basic form of the method is a two-level scheme which is unconditionally stable and nondissipative. The scheme uses only three mesh points at level t and three mesh points at level t + delta t. The dissipative version of the basic method given is conditionally stable under the CFL (Courant-Friedrichs-Lewy) condition. This version is particularly useful for the numerical solution of problems with strong but nonstiff dynamic features, where the CFL restriction is reasonable on accuracy grounds. Numerical results are provided to illustrate properties of the proposed method.

  12. CASTRO: A NEW COMPRESSIBLE ASTROPHYSICAL SOLVER. II. GRAY RADIATION HYDRODYNAMICS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, W.; Almgren, A.; Bell, J.

    We describe the development of a flux-limited gray radiation solver for the compressible astrophysics code, CASTRO. CASTRO uses an Eulerian grid with block-structured adaptive mesh refinement based on a nested hierarchy of logically rectangular variable-sized grids with simultaneous refinement in both space and time. The gray radiation solver is based on a mixed-frame formulation of radiation hydrodynamics. In our approach, the system is split into two parts, one part that couples the radiation and fluid in a hyperbolic subsystem, and another parabolic part that evolves radiation diffusion and source-sink terms. The hyperbolic subsystem is solved explicitly with a high-order Godunovmore » scheme, whereas the parabolic part is solved implicitly with a first-order backward Euler method.« less

  13. Discontinuous Galerkin finite element method for the nonlinear hyperbolic problems with entropy-based artificial viscosity stabilization

    NASA Astrophysics Data System (ADS)

    Zingan, Valentin Nikolaevich

    This work develops a discontinuous Galerkin finite element discretization of non- linear hyperbolic conservation equations with efficient and robust high order stabilization built on an entropy-based artificial viscosity approximation. The solutions of equations are represented by elementwise polynomials of an arbitrary degree p > 0 which are continuous within each element but discontinuous on the boundaries. The discretization of equations in time is done by means of high order explicit Runge-Kutta methods identified with respective Butcher tableaux. To stabilize a numerical solution in the vicinity of shock waves and simultaneously preserve the smooth parts from smearing, we add some reasonable amount of artificial viscosity in accordance with the physical principle of entropy production in the interior of shock waves. The viscosity coefficient is proportional to the local size of the residual of an entropy equation and is bounded from above by the first-order artificial viscosity defined by a local wave speed. Since the residual of an entropy equation is supposed to be vanishingly small in smooth regions (of the order of the Local Truncation Error) and arbitrarily large in shocks, the entropy viscosity is almost zero everywhere except the shocks, where it reaches the first-order upper bound. One- and two-dimensional benchmark test cases are presented for nonlinear hyperbolic scalar conservation laws and the system of compressible Euler equations. These tests demonstrate the satisfactory stability properties of the method and optimal convergence rates as well. All numerical solutions to the test problems agree well with the reference solutions found in the literature. We conclude that the new method developed in the present work is a valuable alternative to currently existing techniques of viscous stabilization.

  14. Error analysis of finite difference schemes applied to hyperbolic initial boundary value problems

    NASA Technical Reports Server (NTRS)

    Skollermo, G.

    1979-01-01

    Finite difference methods for the numerical solution of mixed initial boundary value problems for hyperbolic equations are studied. The reported investigation has the objective to develop a technique for the total error analysis of a finite difference scheme, taking into account initial approximations, boundary conditions, and interior approximation. Attention is given to the Cauchy problem and the initial approximation, the homogeneous problem in an infinite strip with inhomogeneous boundary data, the reflection of errors in the boundaries, and two different boundary approximations for the leapfrog scheme with a fourth order accurate difference operator in space.

  15. Summation by parts, projections, and stability

    NASA Technical Reports Server (NTRS)

    Olsson, Pelle

    1993-01-01

    We have derived stability results for high-order finite difference approximations of mixed hyperbolic-parabolic initial-boundary value problems (IBVP). The results are obtained using summation by parts and a new way of representing general linear boundary conditions as an orthogonal projection. By slightly rearranging the analytic equations, we can prove strict stability for hyperbolic-parabolic IBVP. Furthermore, we generalize our technique so as to yield strict stability on curvilinear non-smooth domains in two space dimensions. Finally, we show how to incorporate inhomogeneous boundary data while retaining strict stability. Using the same procedure one can prove strict stability in higher dimensions as well.

  16. A Numerical Model for Trickle Bed Reactors

    NASA Astrophysics Data System (ADS)

    Propp, Richard M.; Colella, Phillip; Crutchfield, William Y.; Day, Marcus S.

    2000-12-01

    Trickle bed reactors are governed by equations of flow in porous media such as Darcy's law and the conservation of mass. Our numerical method for solving these equations is based on a total-velocity splitting, sequential formulation which leads to an implicit pressure equation and a semi-implicit mass conservation equation. We use high-resolution finite-difference methods to discretize these equations. Our solution scheme extends previous work in modeling porous media flows in two ways. First, we incorporate physical effects due to capillary pressure, a nonlinear inlet boundary condition, spatial porosity variations, and inertial effects on phase mobilities. In particular, capillary forces introduce a parabolic component into the recast evolution equation, and the inertial effects give rise to hyperbolic nonconvexity. Second, we introduce a modification of the slope-limiting algorithm to prevent our numerical method from producing spurious shocks. We present a numerical algorithm for accommodating these difficulties, show the algorithm is second-order accurate, and demonstrate its performance on a number of simplified problems relevant to trickle bed reactor modeling.

  17. Stability of Blowup for a 1D Model of Axisymmetric 3D Euler Equation

    NASA Astrophysics Data System (ADS)

    Do, Tam; Kiselev, Alexander; Xu, Xiaoqian

    2016-10-01

    The question of the global regularity versus finite- time blowup in solutions of the 3D incompressible Euler equation is a major open problem of modern applied analysis. In this paper, we study a class of one-dimensional models of the axisymmetric hyperbolic boundary blow-up scenario for the 3D Euler equation proposed by Hou and Luo (Multiscale Model Simul 12:1722-1776, 2014) based on extensive numerical simulations. These models generalize the 1D Hou-Luo model suggested in Hou and Luo Luo and Hou (2014), for which finite-time blowup has been established in Choi et al. (arXiv preprint. arXiv:1407.4776, 2014). The main new aspects of this work are twofold. First, we establish finite-time blowup for a model that is a closer approximation of the three-dimensional case than the original Hou-Luo model, in the sense that it contains relevant lower-order terms in the Biot-Savart law that have been discarded in Hou and Luo Choi et al. (2014). Secondly, we show that the blow-up mechanism is quite robust, by considering a broader family of models with the same main term as in the Hou-Luo model. Such blow-up stability result may be useful in further work on understanding the 3D hyperbolic blow-up scenario.

  18. Upwind and symmetric shock-capturing schemes

    NASA Technical Reports Server (NTRS)

    Yee, H. C.

    1987-01-01

    The development of numerical methods for hyperbolic conservation laws has been a rapidly growing area for the last ten years. Many of the fundamental concepts and state-of-the-art developments can only be found in meeting proceedings or internal reports. This review paper attempts to give an overview and a unified formulation of a class of shock-capturing methods. Special emphasis is on the construction of the basic nonlinear scalar second-order schemes and the methods of extending these nonlinear scalar schemes to nonlinear systems via the extact Riemann solver, approximate Riemann solvers, and flux-vector splitting approaches. Generalization of these methods to efficiently include real gases and large systems of nonequilibrium flows is discussed. The performance of some of these schemes is illustrated by numerical examples for one-, two- and three-dimensional gas dynamics problems.

  19. On a fourth order accurate implicit finite difference scheme for hyperbolic conservation laws. II - Five-point schemes

    NASA Technical Reports Server (NTRS)

    Harten, A.; Tal-Ezer, H.

    1981-01-01

    This paper presents a family of two-level five-point implicit schemes for the solution of one-dimensional systems of hyperbolic conservation laws, which generalized the Crank-Nicholson scheme to fourth order accuracy (4-4) in both time and space. These 4-4 schemes are nondissipative and unconditionally stable. Special attention is given to the system of linear equations associated with these 4-4 implicit schemes. The regularity of this system is analyzed and efficiency of solution-algorithms is examined. A two-datum representation of these 4-4 implicit schemes brings about a compactification of the stencil to three mesh points at each time-level. This compact two-datum representation is particularly useful in deriving boundary treatments. Numerical results are presented to illustrate some properties of the proposed scheme.

  20. Diffusive instabilities in a hyperbolic activator-inhibitor system with superdiffusion

    NASA Astrophysics Data System (ADS)

    Mvogo, Alain; Macías-Díaz, Jorge E.; Kofané, Timoléon Crépin

    2018-03-01

    We investigate analytically and numerically the conditions for wave instabilities in a hyperbolic activator-inhibitor system with species undergoing anomalous superdiffusion. In the present work, anomalous superdiffusion is modeled using the two-dimensional Weyl fractional operator, with derivative orders α ∈ [1,2]. We perform a linear stability analysis and derive the conditions for diffusion-driven wave instabilities. Emphasis is placed on the effect of the superdiffusion exponent α , the diffusion ratio d , and the inertial time τ . As the superdiffusive exponent increases, so does the wave number of the Turing instability. Opposite to the requirement for Turing instability, the activator needs to diffuse sufficiently faster than the inhibitor in order for the wave instability to occur. The critical wave number for wave instability decreases with the superdiffusive exponent and increases with the inertial time. The maximum value of the inertial time for a wave instability to occur in the system is τmax=3.6 . As one of the main results of this work, we conclude that both anomalous diffusion and inertial time influence strongly the conditions for wave instabilities in hyperbolic fractional reaction-diffusion systems. Some numerical simulations are conducted as evidence of the analytical predictions derived in this work.

  1. MUSTA fluxes for systems of conservation laws

    NASA Astrophysics Data System (ADS)

    Toro, E. F.; Titarev, V. A.

    2006-08-01

    This paper is about numerical fluxes for hyperbolic systems and we first present a numerical flux, called GFORCE, that is a weighted average of the Lax-Friedrichs and Lax-Wendroff fluxes. For the linear advection equation with constant coefficient, the new flux reduces identically to that of the Godunov first-order upwind method. Then we incorporate GFORCE in the framework of the MUSTA approach [E.F. Toro, Multi-Stage Predictor-Corrector Fluxes for Hyperbolic Equations. Technical Report NI03037-NPA, Isaac Newton Institute for Mathematical Sciences, University of Cambridge, UK, 17th June, 2003], resulting in a version that we call GMUSTA. For non-linear systems this gives results that are comparable to those of the Godunov method in conjunction with the exact Riemann solver or complete approximate Riemann solvers, noting however that in our approach, the solution of the Riemann problem in the conventional sense is avoided. Both the GFORCE and GMUSTA fluxes are extended to multi-dimensional non-linear systems in a straightforward unsplit manner, resulting in linearly stable schemes that have the same stability regions as the straightforward multi-dimensional extension of Godunov's method. The methods are applicable to general meshes. The schemes of this paper share with the family of centred methods the common properties of being simple and applicable to a large class of hyperbolic systems, but the schemes of this paper are distinctly more accurate. Finally, we proceed to the practical implementation of our numerical fluxes in the framework of high-order finite volume WENO methods for multi-dimensional non-linear hyperbolic systems. Numerical results are presented for the Euler equations and for the equations of magnetohydrodynamics.

  2. The Use of the City-Block Metric in Multidimensional Scaling.

    ERIC Educational Resources Information Center

    Busk, Patricia

    A specific Normative Location Theory procedure, called hyperbolic approximation (HAP), is suggested as a possible "new" initial-configuration strategy for multidimensional scaling in the city-block metric. First, the performance of this strategy was investigated using fourteen simulated data sets. Second, the scaling in Euclidean space…

  3. Fuchsia : A tool for reducing differential equations for Feynman master integrals to epsilon form

    NASA Astrophysics Data System (ADS)

    Gituliar, Oleksandr; Magerya, Vitaly

    2017-10-01

    We present Fuchsia - an implementation of the Lee algorithm, which for a given system of ordinary differential equations with rational coefficients ∂x J(x , ɛ) = A(x , ɛ) J(x , ɛ) finds a basis transformation T(x , ɛ) , i.e., J(x , ɛ) = T(x , ɛ) J‧(x , ɛ) , such that the system turns into the epsilon form : ∂xJ‧(x , ɛ) = ɛ S(x) J‧(x , ɛ) , where S(x) is a Fuchsian matrix. A system of this form can be trivially solved in terms of polylogarithms as a Laurent series in the dimensional regulator ɛ. That makes the construction of the transformation T(x , ɛ) crucial for obtaining solutions of the initial system. In principle, Fuchsia can deal with any regular systems, however its primary task is to reduce differential equations for Feynman master integrals. It ensures that solutions contain only regular singularities due to the properties of Feynman integrals. Program Files doi:http://dx.doi.org/10.17632/zj6zn9vfkh.1 Licensing provisions: MIT Programming language:Python 2.7 Nature of problem: Feynman master integrals may be calculated from solutions of a linear system of differential equations with rational coefficients. Such a system can be easily solved as an ɛ-series when its epsilon form is known. Hence, a tool which is able to find the epsilon form transformations can be used to evaluate Feynman master integrals. Solution method: The solution method is based on the Lee algorithm (Lee, 2015) which consists of three main steps: fuchsification, normalization, and factorization. During the fuchsification step a given system of differential equations is transformed into the Fuchsian form with the help of the Moser method (Moser, 1959). Next, during the normalization step the system is transformed to the form where eigenvalues of all residues are proportional to the dimensional regulator ɛ. Finally, the system is factorized to the epsilon form by finding an unknown transformation which satisfies a system of linear equations. Additional comments including Restrictions and Unusual features: Systems of single-variable differential equations are considered. A system needs to be reducible to Fuchsian form and eigenvalues of its residues must be of the form n + m ɛ, where n is integer. Performance depends upon the input matrix, its size, number of singular points and their degrees. It takes around an hour to reduce an example 74 × 74 matrix with 20 singular points on a PC with a 1.7 GHz Intel Core i5 CPU. An additional slowdown is to be expected for matrices with complex and/or irrational singular point locations, as these are particularly difficult for symbolic algebra software to handle.

  4. Design of fast earth-return trajectories from a lunar base

    NASA Astrophysics Data System (ADS)

    Anhorn, Walter

    1991-09-01

    The Apollo Lunar Program utilized efficient transearth trajectories which employed parking orbits in order to minimize energy requirements. This thesis concentrates on a different type of transearth trajectory. These are direct-ascent, hyperbolic trajectories which omit the parking orbits in order to achieve short flight times to and from a future lunar base. The object of the thesis is the development of a three-dimensional transearth trajectory model and associated computer program for exploring trade-offs between flight-time and energy, given various mission constraints. The program also targets the Moon with a hyperbolic trajectory, which can be used for targeting Earth impact points. The first-order model is based on an Earth-centered conic and a massless spherical Moon, using MathCAD version 3.0. This model is intended as the basis for future patched-conic formulations for the design of fast Earth-return trajectories. Applications include placing nuclear deterrent arsenals on the Moon, various space support related activities, and finally protection against Earth-threatening asteroids and comets using lunar bases.

  5. The Geometry of the Universe: Part 2

    ERIC Educational Resources Information Center

    Francis, Stephanie

    2009-01-01

    Hyperbolic geometry occurs on hyperbolic planes--the most commonly cited one being a saddle shape. In this article, the author explores negative hyperbolic curvature, and provides a detailed description of how she constructed two hyperbolic paraboloids. Hyperbolic geometry occurs on surfaces that have negative curvature. (Contains 11 figures and 4…

  6. Radiation from a D-dimensional collision of shock waves: Two-dimensional reduction and Carter-Penrose diagram

    NASA Astrophysics Data System (ADS)

    Coelho, Flávio S.; Sampaio, Marco O. P.

    2016-05-01

    We analyze the causal structure of the two-dimensional (2D) reduced background used in the perturbative treatment of a head-on collision of two D-dimensional Aichelburg-Sexl gravitational shock waves. After defining all causal boundaries, namely the future light-cone of the collision and the past light-cone of a future observer, we obtain characteristic coordinates using two independent methods. The first is a geometrical construction of the null rays which define the various light cones, using a parametric representation. The second is a transformation of the 2D reduced wave operator for the problem into a hyperbolic form. The characteristic coordinates are then compactified allowing us to represent all causal light rays in a conformal Carter-Penrose diagram. Our construction holds to all orders in perturbation theory. In particular, we can easily identify the singularities of the source functions and of the Green’s functions appearing in the perturbative expansion, at each order, which is crucial for a successful numerical evaluation of any higher order corrections using this method.

  7. Surface waves on multilayer hyperbolic metamaterials: Operator approach to effective medium approximation

    NASA Astrophysics Data System (ADS)

    Popov, Vladislav; Lavrinenko, Andrei V.; Novitsky, Andrey

    2018-03-01

    In this paper, we elaborate on the operator effective medium approximation developed recently in Popov et al. [Phys. Rev. B 94, 085428 (2016), 10.1103/PhysRevB.94.085428] to get insight into the surface polariton excitation at the interface of a multilayer hyperbolic metamaterial (HMM). In particular, we find that HMMs with bilayer unit cells support the TE- and TM-polarized surface waves beyond the Maxwell Garnett approximation due to the spatial dispersion interpreted as effective magnetoelectric coupling. The latter is also responsible for the dependence of surface wave propagation on the order of layers in the unit cell. Elimination of the magnetoelectric coupling in three-layer unit cells complying with inversion symmetry restores the qualitative regularity of the Maxwell Garnett approximation, as well as strongly suppresses the influence of the order of layers in the unit cell.

  8. On the proof of the C 0-inextendibility of the Schwarzschild spacetime

    NASA Astrophysics Data System (ADS)

    Sbierski, Jan

    2018-02-01

    This article presents a streamlined version of the author’s original proof of the C 0-inextendibility of the maximal analytic Schwarzschild spacetime. Firstly, we deviate from the original proof by using the result, recently established in collaboration with Galloway and Ling, that given a C 0-extension of a globally hyperbolic spacetime, one can find a timelike geodesic that leaves this spacetime. This result much simplifies the proof of the inextendibility through the exterior region of the Schwarzschild spacetime. Secondly, we give a more flexible and shorter argument for the inextendibility through the interior region. Furthermore, we present a small new structural result for the boundary of a globally hyperbolic spacetime within a C 0-extension which serves as a new and simpler starting point for the proof.

  9. Cauchy problem as a two-surface based ‘geometrodynamics’

    NASA Astrophysics Data System (ADS)

    Rácz, István

    2015-01-01

    Four-dimensional spacetimes foliated by a two-parameter family of homologous two-surfaces are considered in Einstein's theory of gravity. By combining a 1 + (1 + 2) decomposition, the canonical form of the spacetime metric and a suitable specification of the conformal structure of the foliating two-surfaces, a gauge fixing is introduced. It is shown that, in terms of the chosen geometrically distinguished variables, the 1 + 3 Hamiltonian and momentum constraints can be recast into the form of a parabolic equation and a first order symmetric hyperbolic system, respectively. Initial data to this system can be given on one of the two-surfaces foliating the three-dimensional initial data surface. The 1 + 3 reduced Einstein's equations are also determined. By combining the 1 + 3 momentum constraint with the reduced system of the secondary 1 + 2 decomposition, a mixed hyperbolic-hyperbolic system is formed. It is shown that solutions to this mixed hyperbolic-hyperbolic system are also solutions to the full set of Einstein's equations provided that the 1 + 3 Hamiltonian constraint is solved on the initial data surface {{Σ }0} and the 1 + 2 Hamiltonian and momentum type expressions vanish on a world-tube yielded by the Lie transport of one of the two-surfaces foliating {{Σ }0} along the time evolution vector field. Whenever the foliating two-surfaces are compact without boundary in the spacetime and a regular origin exists on the time-slices—this is the location where the foliating two-surfaces smoothly reduce to a point—it suffices to guarantee that the 1 + 3 Hamiltonian constraint holds on the initial data surface. A short discussion on the use of the geometrically distinguished variables in identifying the degrees of freedom of gravity are also included. Dedicated to Zoltán Cseke on the occasion of his 70th birthday.

  10. Output Tracking for Systems with Non-Hyperbolic and Near Non-Hyperbolic Internal Dynamics: Helicopter Hover Control

    NASA Technical Reports Server (NTRS)

    Devasia, Santosh

    1996-01-01

    A technique to achieve output tracking for nonminimum phase linear systems with non-hyperbolic and near non-hyperbolic internal dynamics is presented. This approach integrates stable inversion techniques, that achieve exact-tracking, with approximation techniques, that modify the internal dynamics to achieve desirable performance. Such modification of the internal dynamics is used (1) to remove non-hyperbolicity which an obstruction to applying stable inversion techniques and (2) to reduce large pre-actuation time needed to apply stable inversion for near non-hyperbolic cases. The method is applied to an example helicopter hover control problem with near non-hyperbolic internal dynamic for illustrating the trade-off between exact tracking and reduction of pre-actuation time.

  11. Four-mirror extreme ultraviolet (EUV) lithography projection system

    DOEpatents

    Cohen, Simon J; Jeong, Hwan J; Shafer, David R

    2000-01-01

    The invention is directed to a four-mirror catoptric projection system for extreme ultraviolet (EUV) lithography to transfer a pattern from a reflective reticle to a wafer substrate. In order along the light path followed by light from the reticle to the wafer substrate, the system includes a dominantly hyperbolic convex mirror, a dominantly elliptical concave mirror, spherical convex mirror, and spherical concave mirror. The reticle and wafer substrate are positioned along the system's optical axis on opposite sides of the mirrors. The hyperbolic and elliptical mirrors are positioned on the same side of the system's optical axis as the reticle, and are relatively large in diameter as they are positioned on the high magnification side of the system. The hyperbolic and elliptical mirrors are relatively far off the optical axis and hence they have significant aspherical components in their curvatures. The convex spherical mirror is positioned on the optical axis, and has a substantially or perfectly spherical shape. The spherical concave mirror is positioned substantially on the opposite side of the optical axis from the hyperbolic and elliptical mirrors. Because it is positioned off-axis to a degree, the spherical concave mirror has some asphericity to counter aberrations. The spherical concave mirror forms a relatively large, uniform field on the wafer substrate. The mirrors can be tilted or decentered slightly to achieve further increase in the field size.

  12. Functional entropy variables: A new methodology for deriving thermodynamically consistent algorithms for complex fluids, with particular reference to the isothermal Navier–Stokes–Korteweg equations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Ju, E-mail: jliu@ices.utexas.edu; Gomez, Hector; Evans, John A.

    2013-09-01

    We propose a new methodology for the numerical solution of the isothermal Navier–Stokes–Korteweg equations. Our methodology is based on a semi-discrete Galerkin method invoking functional entropy variables, a generalization of classical entropy variables, and a new time integration scheme. We show that the resulting fully discrete scheme is unconditionally stable-in-energy, second-order time-accurate, and mass-conservative. We utilize isogeometric analysis for spatial discretization and verify the aforementioned properties by adopting the method of manufactured solutions and comparing coarse mesh solutions with overkill solutions. Various problems are simulated to show the capability of the method. Our methodology provides a means of constructing unconditionallymore » stable numerical schemes for nonlinear non-convex hyperbolic systems of conservation laws.« less

  13. Implicit Total Variation Diminishing (TVD) schemes for steady-state calculations

    NASA Technical Reports Server (NTRS)

    Yee, H. C.; Warming, R. F.; Harten, A.

    1983-01-01

    The application of a new implicit unconditionally stable high resolution total variation diminishing (TVD) scheme to steady state calculations. It is a member of a one parameter family of explicit and implicit second order accurate schemes developed by Harten for the computation of weak solutions of hyperbolic conservation laws. This scheme is guaranteed not to generate spurious oscillations for a nonlinear scalar equation and a constant coefficient system. Numerical experiments show that this scheme not only has a rapid convergence rate, but also generates a highly resolved approximation to the steady state solution. A detailed implementation of the implicit scheme for the one and two dimensional compressible inviscid equations of gas dynamics is presented. Some numerical computations of one and two dimensional fluid flows containing shocks demonstrate the efficiency and accuracy of this new scheme.

  14. Explicit and implicit compact high-resolution shock-capturing methods for multidimensional Euler equations 1: Formulation

    NASA Technical Reports Server (NTRS)

    Yee, H. C.

    1995-01-01

    Two classes of explicit compact high-resolution shock-capturing methods for the multidimensional compressible Euler equations for fluid dynamics are constructed. Some of these schemes can be fourth-order accurate away from discontinuities. For the semi-discrete case their shock-capturing properties are of the total variation diminishing (TVD), total variation bounded (TVB), total variation diminishing in the mean (TVDM), essentially nonoscillatory (ENO), or positive type of scheme for 1-D scalar hyperbolic conservation laws and are positive schemes in more than one dimension. These fourth-order schemes require the same grid stencil as their second-order non-compact cousins. One class does not require the standard matrix inversion or a special numerical boundary condition treatment associated with typical compact schemes. Due to the construction, these schemes can be viewed as approximations to genuinely multidimensional schemes in the sense that they might produce less distortion in spherical type shocks and are more accurate in vortex type flows than schemes based purely on one-dimensional extensions. However, one class has a more desirable high-resolution shock-capturing property and a smaller operation count in 3-D than the other class. The extension of these schemes to coupled nonlinear systems can be accomplished using the Roe approximate Riemann solver, the generalized Steger and Warming flux-vector splitting or the van Leer type flux-vector splitting. Modification to existing high-resolution second- or third-order non-compact shock-capturing computer codes is minimal. High-resolution shock-capturing properties can also be achieved via a variant of the second-order Lax-Friedrichs numerical flux without the use of Riemann solvers for coupled nonlinear systems with comparable operations count to their classical shock-capturing counterparts. The simplest extension to viscous flows can be achieved by using the standard fourth-order compact or non-compact formula for the viscous terms.

  15. Traveling wave and exact solutions for the perturbed nonlinear Schrödinger equation with Kerr law nonlinearity

    NASA Astrophysics Data System (ADS)

    Akram, Ghazala; Mahak, Nadia

    2018-06-01

    The nonlinear Schrödinger equation (NLSE) with the aid of three order dispersion terms is investigated to find the exact solutions via the extended (G'/G2)-expansion method and the first integral method. Many exact traveling wave solutions, such as trigonometric, hyperbolic, rational, soliton and complex function solutions, are characterized with some free parameters of the problem studied. It is corroborated that the proposed techniques are manageable, straightforward and powerful tools to find the exact solutions of nonlinear partial differential equations (PDEs). Some figures are plotted to describe the propagation of traveling wave solutions expressed by the hyperbolic functions, trigonometric functions and rational functions.

  16. BOOK REVIEW: Partial Differential Equations in General Relativity

    NASA Astrophysics Data System (ADS)

    Halburd, Rodney G.

    2008-11-01

    Although many books on general relativity contain an overview of the relevant background material from differential geometry, very little attention is usually paid to background material from the theory of differential equations. This is understandable in a first course on relativity but it often limits the kinds of problems that can be studied rigorously. Einstein's field equations lie at the heart of general relativity. They are a system of partial differential equations (PDEs) relating the curvature of spacetime to properties of matter. A central part of most problems in general relativity is to extract information about solutions of these equations. Most standard texts achieve this by studying exact solutions or numerical and analytical approximations. In the book under review, Alan Rendall emphasises the role of rigorous qualitative methods in general relativity. There has long been a need for such a book, giving a broad overview of the relevant background from the theory of partial differential equations, and not just from differential geometry. It should be noted that the book also covers the basic theory of ordinary differential equations. Although there are many good books on the rigorous theory of PDEs, methods related to the Einstein equations deserve special attention, not only because of the complexity and importance of these equations, but because these equations do not fit into any of the standard classes of equations (elliptic, parabolic, hyperbolic) that one typically encounters in a course on PDEs. Even specifying exactly what ones means by a Cauchy problem in general relativity requires considerable care. The main problem here is that the manifold on which the solution is defined is determined by the solution itself. This means that one does not simply define data on a submanifold. Rendall's book gives a good overview of applications and results from the qualitative theory of PDEs to general relativity. It would be impossible to give detailed proofs of the main results in a self-contained book of reasonable length. Instead, the author concentrates on providing key definitions together with their motivations and explaining the main results, tools and difficulties for each topic. There is a section at the end of each chapter which points the reader to appropriate literature for further details. In this way, Rendall manages to describe the central issues concerning many subjects. Each of the twelve chapters (except for one on functional analysis) contains an important application to general relativity. For example, the chapter on ODEs discusses Bianchi spacetimes and the Einstein constraint equations are discussed in the chapter on elliptic equations. In the chapter on hyperbolic equations, the Einstein dust system is considered in the context of Leray hyperbolicity and Gowdy spacetimes are analysed in the section on Fuchsian methods. The book concludes with four chapters purely on applications to general relativity, namely The Cauchy problem for the Einstein equations, Global results, The Einstein-Vlasov system and The Einstein-scalar field systems. On reading this book, someone with a basic understanding of relativity could rapidly develop a picture, painted in broad brush strokes, of the main problems and tools in the area. It would be particularly useful for someone, such as a graduate student, just entering the field, or for someone who wants a general idea of the main issues. For those who want to go further, a lot more reading will be necessary but the author has sign-posted appropriate entry points to the literature throughout the book. Ultimately, this is a very technical subject and this book can only provide an overview. I believe that Alan Rendall's book is a valuable contribution to the field of mathematical relativity.

  17. Compatible diagonal-norm staggered and upwind SBP operators

    NASA Astrophysics Data System (ADS)

    Mattsson, Ken; O'Reilly, Ossian

    2018-01-01

    The main motivation with the present study is to achieve a provably stable high-order accurate finite difference discretisation of linear first-order hyperbolic problems on a staggered grid. The use of a staggered grid makes it non-trivial to discretise advective terms. To overcome this difficulty we discretise the advective terms using upwind Summation-By-Parts (SBP) operators, while the remaining terms are discretised using staggered SBP operators. The upwind and staggered SBP operators (for each order of accuracy) are compatible, here meaning that they are based on the same diagonal norms, allowing for energy estimates to be formulated. The boundary conditions are imposed using a penalty (SAT) technique, to guarantee linear stability. The resulting SBP-SAT approximations lead to fully explicit ODE systems. The accuracy and stability properties are demonstrated for linear hyperbolic problems in 1D, and for the 2D linearised Euler equations with constant background flow. The newly derived upwind and staggered SBP operators lead to significantly more accurate numerical approximations, compared with the exclusive usage of (previously derived) central-difference first derivative SBP operators.

  18. Hyperbolic and semi-hyperbolic surface codes for quantum storage

    NASA Astrophysics Data System (ADS)

    Breuckmann, Nikolas P.; Vuillot, Christophe; Campbell, Earl; Krishna, Anirudh; Terhal, Barbara M.

    2017-09-01

    We show how a hyperbolic surface code could be used for overhead-efficient quantum storage. We give numerical evidence for a noise threshold of 1.3 % for the \\{4,5\\}-hyperbolic surface code in a phenomenological noise model (as compared with 2.9 % for the toric code). In this code family, parity checks are of weight 4 and 5, while each qubit participates in four different parity checks. We introduce a family of semi-hyperbolic codes that interpolate between the toric code and the \\{4,5\\}-hyperbolic surface code in terms of encoding rate and threshold. We show how these hyperbolic codes outperform the toric code in terms of qubit overhead for a target logical error probability. We show how Dehn twists and lattice code surgery can be used to read and write individual qubits to this quantum storage medium.

  19. Representation of the contextual statistical model by hyperbolic amplitudes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khrennikov, Andrei

    We continue the development of a so-called contextual statistical model (here context has the meaning of a complex of physical conditions). It is shown that, besides contexts producing the conventional trigonometric cos-interference, there exist contexts producing the hyperbolic cos-interference. Starting with the corresponding interference formula of total probability we represent such contexts by hyperbolic probabilistic amplitudes or in the abstract formalism by normalized vectors of a hyperbolic analogue of the Hilbert space. There is obtained a hyperbolic Born's rule. Incompatible observables are represented by noncommutative operators. This paper can be considered as the first step towards hyperbolic quantum probability. Wemore » also discuss possibilities of experimental verification of hyperbolic quantum mechanics: in physics of elementary particles, string theory as well as in experiments with nonphysical systems, e.g., in psychology, cognitive sciences, and economy.« less

  20. Representation of the contextual statistical model by hyperbolic amplitudes

    NASA Astrophysics Data System (ADS)

    Khrennikov, Andrei

    2005-06-01

    We continue the development of a so-called contextual statistical model (here context has the meaning of a complex of physical conditions). It is shown that, besides contexts producing the conventional trigonometric cos-interference, there exist contexts producing the hyperbolic cos-interference. Starting with the corresponding interference formula of total probability we represent such contexts by hyperbolic probabilistic amplitudes or in the abstract formalism by normalized vectors of a hyperbolic analogue of the Hilbert space. There is obtained a hyperbolic Born's rule. Incompatible observables are represented by noncommutative operators. This paper can be considered as the first step towards hyperbolic quantum probability. We also discuss possibilities of experimental verification of hyperbolic quantum mechanics: in physics of elementary particles, string theory as well as in experiments with nonphysical systems, e.g., in psychology, cognitive sciences, and economy.

  1. Tailoring High Order Time Discretizations for Use with Spatial Discretizations of Hyperbolic PDEs

    DTIC Science & Technology

    2015-05-19

    Duration of Grant Sigal Gottlieb, Professor of Mathematics, UMass Dartmouth. Daniel Higgs , Graduate Student, UMass Dartmouth. Zachary Grant, Undergraduate...Grant, and D. Higgs , “Optimal Explicit Strong Stability Preserving Runge– Kutta Methods with High Linear Order and optimal Nonlinear Order.” Accepted...for publica- tion in Mathematics of Computation. Available on Arxiv at http://arxiv.org/abs/1403. 6519 4. C. Bresten, S. Gottlieb, Z. Grant, D. Higgs

  2. Impact of hyperbolicity on chimera states in ensembles of nonlocally coupled chaotic oscillators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Semenova, N.; Anishchenko, V.; Zakharova, A.

    2016-06-08

    In this work we analyse nonlocally coupled networks of identical chaotic oscillators. We study both time-discrete and time-continuous systems (Henon map, Lozi map, Lorenz system). We hypothesize that chimera states, in which spatial domains of coherent (synchronous) and incoherent (desynchronized) dynamics coexist, can be obtained only in networks of chaotic non-hyperbolic systems and cannot be found in networks of hyperbolic systems. This hypothesis is supported by numerical simulations for hyperbolic and non-hyperbolic cases.

  3. A Geometric Perspective on the Method of Descent

    NASA Astrophysics Data System (ADS)

    Wang, Qian

    2018-06-01

    We derive a first order representation formula for the tensorial wave equation \\Box_g φ^I=F^I in globally hyperbolic Lorentzian spacetimes {(M^{2+1}, g) by giving a geometric formulation of the method of descent which is applicable for any dimension.

  4. Hyperbolic geometry of cosmological attractors

    NASA Astrophysics Data System (ADS)

    Carrasco, John Joseph M.; Kallosh, Renata; Linde, Andrei; Roest, Diederik

    2015-08-01

    Cosmological α attractors give a natural explanation for the spectral index ns of inflation as measured by Planck while predicting a range for the tensor-to-scalar ratio r , consistent with all observations, to be measured more precisely in future B-mode experiments. We highlight the crucial role of the hyperbolic geometry of the Poincaré disk or half plane in the supergravity construction. These geometries are isometric under Möbius transformations, which include the shift symmetry of the inflaton field. We introduce a new Kähler potential frame that explicitly preserves this symmetry, enabling the inflaton to be light. Moreover, we include higher-order curvature deformations, which can stabilize a direction orthogonal to the inflationary trajectory. We illustrate this new framework by stabilizing the single superfield α attractors.

  5. An intrinsic approach in the curved n-body problem: The negative curvature case

    NASA Astrophysics Data System (ADS)

    Diacu, Florin; Pérez-Chavela, Ernesto; Reyes Victoria, J. Guadalupe

    We consider the motion of n point particles of positive masses that interact gravitationally on the 2-dimensional hyperbolic sphere, which has negative constant Gaussian curvature. Using the stereographic projection, we derive the equations of motion of this curved n-body problem in the Poincaré disk, where we study the elliptic relative equilibria. Then we obtain the equations of motion in the Poincaré upper half plane in order to analyze the hyperbolic and parabolic relative equilibria. Using techniques of Riemannian geometry, we characterize each of the above classes of periodic orbits. For n=2 and n=3 we recover some previously known results and find new qualitative results about relative equilibria that were not apparent in an extrinsic setting.

  6. Contracting singular horseshoe

    NASA Astrophysics Data System (ADS)

    Morales, C. A.; San Martín, B.

    2017-11-01

    We suggest a notion of hyperbolicity adapted to the geometric Rovella attractor (Robinson 2012 An Introduction to Dynamical Systems—Continuous and Discrete (Pure and Applied Undergraduate Texts vol 19) 2nd edn (Providence, RI: American Mathematical Society)) . More precisely, we call a partially hyperbolic set asymptotically sectional-hyperbolic if its singularities are hyperbolic and if its central subbundle is asymptotically sectional expanding outside the stable manifolds of the singularities. We prove that there are highly chaotic flows with Rovella-like singularities exhibiting this kind of hyperbolicity. We shall call them contracting singular horseshoes.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dyachenko, Sergey A.; Zlotnik, Anatoly; Korotkevich, Alexander O.

    Here, we develop an operator splitting method to simulate flows of isothermal compressible natural gas over transmission pipelines. The method solves a system of nonlinear hyperbolic partial differential equations (PDEs) of hydrodynamic type for mass flow and pressure on a metric graph, where turbulent losses of momentum are modeled by phenomenological Darcy-Weisbach friction. Mass flow balance is maintained through the boundary conditions at the network nodes, where natural gas is injected or withdrawn from the system. Gas flow through the network is controlled by compressors boosting pressure at the inlet of the adjoint pipe. Our operator splitting numerical scheme ismore » unconditionally stable and it is second order accurate in space and time. The scheme is explicit, and it is formulated to work with general networks with loops. We test the scheme over range of regimes and network configurations, also comparing its performance with performance of two other state of the art implicit schemes.« less

  8. Utilizing a Coupled Nonlinear Schrödinger Model to Solve the Linear Modal Problem for Stratified Flows

    NASA Astrophysics Data System (ADS)

    Liu, Tianyang; Chan, Hiu Ning; Grimshaw, Roger; Chow, Kwok Wing

    2017-11-01

    The spatial structure of small disturbances in stratified flows without background shear, usually named the `Taylor-Goldstein equation', is studied by employing the Boussinesq approximation (variation in density ignored except in the buoyancy). Analytical solutions are derived for special wavenumbers when the Brunt-Väisälä frequency is quadratic in hyperbolic secant, by comparison with coupled systems of nonlinear Schrödinger equations intensively studied in the literature. Cases of coupled Schrödinger equations with four, five and six components are utilized as concrete examples. Dispersion curves for arbitrary wavenumbers are obtained numerically. The computations of the group velocity, second harmonic, induced mean flow, and the second derivative of the angular frequency can all be facilitated by these exact linear eigenfunctions of the Taylor-Goldstein equation in terms of hyperbolic function, leading to a cubic Schrödinger equation for the evolution of a wavepacket. The occurrence of internal rogue waves can be predicted if the dispersion and cubic nonlinearity terms of the Schrödinger equations are of the same sign. Partial financial support has been provided by the Research Grants Council contract HKU 17200815.

  9. Relationship Between β-cell Response and Insulin Sensitivity in Horses based on the Oral Sugar Test and the Euglycemic Hyperinsulinemic Clamp.

    PubMed

    Lindåse, S; Nostell, K; Söder, J; Bröjer, J

    2017-09-01

    A hyperbolic relationship between β-cell response and insulin sensitivity (IS) has been described in several species including rodents, dogs, and humans. This relationship has not been elucidated in the horse. To determine whether the hyperbolic relationship between β-cell response and IS exists in horses by using indices of β-cell response from the oral sugar test (OST) and IS measurements from the euglycemic hyperinsulinemic clamp (EHC). A second aim was to compare how well IS estimates from the OST and EHC correlate. Forty-nine horses with different degrees of insulin regulation (normal-to-severe insulin dysregulation). Cross-sectional study. Horses were examined with an OST and an EHC. Decreased IS was associated with increased β-cell response in the horses. Nine of 12 comparisons between indices of β-cell response and IS measures fulfilled the criteria for a hyperbolic relationship. Indices of IS calculated from the OST correlated highly with the insulin-dependent glucose disposal rate (M) and the insulin-dependent glucose disposal rate per unit of insulin (M/I) determined from the EHC (r = 0.81-0.87). A hyperbolic relationship between β-cell response and IS exists in horses, which suggest that horses with insulin dysregulation respond not only with postprandial hyperinsulinemia but are also insulin resistant. The OST is primarily a test for β-cell response rather than a test for IS, but calculated indices of IS from the OST may be useful to estimate IS in horses, especially when the horse is insulin resistant. Copyright © 2017 The Authors. Journal of Veterinary Internal Medicine published by Wiley Periodicals, Inc. on behalf of the American College of Veterinary Internal Medicine.

  10. A discontinuous Galerkin approach for conservative modeling of fully nonlinear and weakly dispersive wave transformations

    NASA Astrophysics Data System (ADS)

    Sharifian, Mohammad Kazem; Kesserwani, Georges; Hassanzadeh, Yousef

    2018-05-01

    This work extends a robust second-order Runge-Kutta Discontinuous Galerkin (RKDG2) method to solve the fully nonlinear and weakly dispersive flows, within a scope to simultaneously address accuracy, conservativeness, cost-efficiency and practical needs. The mathematical model governing such flows is based on a variant form of the Green-Naghdi (GN) equations decomposed as a hyperbolic shallow water system with an elliptic source term. Practical features of relevance (i.e. conservative modeling over irregular terrain with wetting and drying and local slope limiting) have been restored from an RKDG2 solver to the Nonlinear Shallow Water (NSW) equations, alongside new considerations to integrate elliptic source terms (i.e. via a fourth-order local discretization of the topography) and to enable local capturing of breaking waves (i.e. via adding a detector for switching off the dispersive terms). Numerical results are presented, demonstrating the overall capability of the proposed approach in achieving realistic prediction of nearshore wave processes involving both nonlinearity and dispersion effects within a single model.

  11. Longitudinal and bulk viscosities of Lennard-Jones fluids

    NASA Astrophysics Data System (ADS)

    Tankeshwar, K.; Pathak, K. N.; Ranganathan, S.

    1996-12-01

    Expressions for the longitudinal and bulk viscosities have been derived using Green Kubo formulae involving the time integral of the longitudinal and bulk stress autocorrelation functions. The time evolution of stress autocorrelation functions are determined using the Mori formalism and a memory function which is obtained from the Mori equation of motion. The memory function is of hyperbolic secant form and involves two parameters which are related to the microscopic sum rules of the respective autocorrelation function. We have derived expressions for the zeroth-, second-and fourth- order sum rules of the longitudinal and bulk stress autocorrelation functions. These involve static correlation functions up to four particles. The final expressions for these have been put in a form suitable for numerical calculations using low- order decoupling approximations. The numerical results have been obtained for the sum rules of longitudinal and bulk stress autocorrelation functions. These have been used to calculate the longitudinal and bulk viscosities and time evolution of the longitudinal stress autocorrelation function of the Lennard-Jones fluids over wide ranges of densities and temperatures. We have compared our results with the available computer simulation data and found reasonable agreement.

  12. Method for analyzing soil structure according to the size of structural elements

    NASA Astrophysics Data System (ADS)

    Wieland, Ralf; Rogasik, Helmut

    2015-02-01

    The soil structure in situ is the result of cropping history and soil development over time. It can be assessed by the size distribution of soil structural elements such as air-filled macro-pores, aggregates and stones, which are responsible for important water and solute transport processes, gas exchange, and the stability of the soil against compacting and shearing forces exerted by agricultural machinery. A method was developed to detect structural elements of the soil in selected horizontal slices of soil core samples with different soil structures in order for them to be implemented accordingly. In the second step, a fitting tool (Eureqa) based on artificial programming was used to find a general function to describe ordered sets of detected structural elements. It was shown that all the samples obey a hyperbolic function: Y(k) = A /(B + k) , k ∈ { 0 , 1 , 2 , … }. This general behavior can be used to develop a classification method based on parameters {A and B}. An open source software program in Python was developed, which can be downloaded together with a selection of soil samples.

  13. Individual discount rates and smoking: evidence from a field experiment in Denmark.

    PubMed

    Harrison, Glenn W; Lau, Morten I; Rutström, E Elisabet

    2010-09-01

    We elicit measures of individual discount rates from a representative sample of the Danish population and test two substantive hypotheses. The first hypothesis is that smokers have higher individual discount rates than non-smokers. The second hypothesis is that smokers are more likely to have time inconsistent preferences than non-smokers, where time inconsistency is indicated by a hyperbolic discounting function. We control for the concavity of the utility function in our estimates of individual discount rates and find that male smokers have significantly higher discount rates than male non-smokers. However, smoking has no significant association with discount rates among women. This result is robust across exponential and hyperbolic discounting functions. We consider the sensitivity of our conclusions to a statistical specification that allows each observation to potentially be generated by more than one latent data-generating process. Copyright 2010 Elsevier B.V. All rights reserved.

  14. The exact solutions and approximate analytic solutions of the (2 + 1)-dimensional KP equation based on symmetry method.

    PubMed

    Gai, Litao; Bilige, Sudao; Jie, Yingmo

    2016-01-01

    In this paper, we successfully obtained the exact solutions and the approximate analytic solutions of the (2 + 1)-dimensional KP equation based on the Lie symmetry, the extended tanh method and the homotopy perturbation method. In first part, we obtained the symmetries of the (2 + 1)-dimensional KP equation based on the Wu-differential characteristic set algorithm and reduced it. In the second part, we constructed the abundant exact travelling wave solutions by using the extended tanh method. These solutions are expressed by the hyperbolic functions, the trigonometric functions and the rational functions respectively. It should be noted that when the parameters are taken as special values, some solitary wave solutions are derived from the hyperbolic function solutions. Finally, we apply the homotopy perturbation method to obtain the approximate analytic solutions based on four kinds of initial conditions.

  15. The art and science of hyperbolic tessellations.

    PubMed

    Van Dusen, B; Taylor, R P

    2013-04-01

    The visual impact of hyperbolic tessellations has captured artists' imaginations ever since M.C. Escher generated his Circle Limit series in the 1950s. The scaling properties generated by hyperbolic geometry are different to the fractal scaling properties found in nature's scenery. Consequently, prevalent interpretations of Escher's art emphasize the lack of connection with nature's patterns. However, a recent collaboration between the two authors proposed that Escher's motivation for using hyperbolic geometry was as a method to deliberately distort nature's rules. Inspired by this hypothesis, this year's cover artist, Ben Van Dusen, embeds natural fractals such as trees, clouds and lightning into a hyperbolic scaling grid. The resulting interplay of visual structure at multiple size scales suggests that hybridizations of fractal and hyperbolic geometries provide a rich compositional tool for artists.

  16. Linear guided waves in a hyperbolic planar waveguide. Dispersion relations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lyashko, E I; Maimistov, A I

    2015-11-30

    We have theoretically investigated waveguide modes propagating in a planar waveguide formed by a layer of an isotropic dielectric surrounded by hyperbolic media. The case, when the optical axis of hyperbolic media is perpendicular to the interface, is considered. Dispersion relations are derived for the cases of TE and TM waves. The differences in the characteristics of a hyperbolic and a conventional dielectric waveguide are found. In particular, it is shown that in hyperbolic waveguides for each TM mode there are two cut-off frequencies and the number of propagating modes is always limited. (metamaterials)

  17. Hyperbolic Rendezvous at Mars: Risk Assessments and Mitigation Strategies

    NASA Technical Reports Server (NTRS)

    Jedrey, Ricky; Landau, Damon; Whitley, Ryan

    2015-01-01

    Given the current interest in the use of flyby trajectories for human Mars exploration, a key requirement is the capability to execute hyperbolic rendezvous. Hyperbolic rendezvous is used to transport crew from a Mars centered orbit, to a transiting Earth bound habitat that does a flyby. Representative cases are taken from future potential missions of this type, and a thorough sensitivity analysis of the hyperbolic rendezvous phase is performed. This includes early engine cutoff, missed burn times, and burn misalignment. A finite burn engine model is applied that assumes the hyperbolic rendezvous phase is done with at least two burns.

  18. Andrei Andreevich Bolibrukh's works on the analytic theory of differential equations

    NASA Astrophysics Data System (ADS)

    Anosov, Dmitry V.; Leksin, Vladimir P.

    2011-02-01

    This paper contains an account of A.A. Bolibrukh's results obtained in the new directions of research that arose in the analytic theory of differential equations as a consequence of his sensational counterexample to the Riemann-Hilbert problem. A survey of results of his students in developing topics first considered by Bolibrukh is also presented. The main focus is on the role of the reducibility/irreducibility of systems of linear differential equations and their monodromy representations. A brief synopsis of results on the multidimensional Riemann-Hilbert problem and on isomonodromic deformations of Fuchsian systems is presented, and the main methods in the modern analytic theory of differential equations are sketched. Bibliography: 69 titles.

  19. Composite scheme using localized relaxation with non-standard finite difference method for hyperbolic conservation laws

    NASA Astrophysics Data System (ADS)

    Kumar, Vivek; Raghurama Rao, S. V.

    2008-04-01

    Non-standard finite difference methods (NSFDM) introduced by Mickens [ Non-standard Finite Difference Models of Differential Equations, World Scientific, Singapore, 1994] are interesting alternatives to the traditional finite difference and finite volume methods. When applied to linear hyperbolic conservation laws, these methods reproduce exact solutions. In this paper, the NSFDM is first extended to hyperbolic systems of conservation laws, by a novel utilization of the decoupled equations using characteristic variables. In the second part of this paper, the NSFDM is studied for its efficacy in application to nonlinear scalar hyperbolic conservation laws. The original NSFDMs introduced by Mickens (1994) were not in conservation form, which is an important feature in capturing discontinuities at the right locations. Mickens [Construction and analysis of a non-standard finite difference scheme for the Burgers-Fisher equations, Journal of Sound and Vibration 257 (4) (2002) 791-797] recently introduced a NSFDM in conservative form. This method captures the shock waves exactly, without any numerical dissipation. In this paper, this algorithm is tested for the case of expansion waves with sonic points and is found to generate unphysical expansion shocks. As a remedy to this defect, we use the strategy of composite schemes [R. Liska, B. Wendroff, Composite schemes for conservation laws, SIAM Journal of Numerical Analysis 35 (6) (1998) 2250-2271] in which the accurate NSFDM is used as the basic scheme and localized relaxation NSFDM is used as the supporting scheme which acts like a filter. Relaxation schemes introduced by Jin and Xin [The relaxation schemes for systems of conservation laws in arbitrary space dimensions, Communications in Pure and Applied Mathematics 48 (1995) 235-276] are based on relaxation systems which replace the nonlinear hyperbolic conservation laws by a semi-linear system with a stiff relaxation term. The relaxation parameter ( λ) is chosen locally on the three point stencil of grid which makes the proposed method more efficient. This composite scheme overcomes the problem of unphysical expansion shocks and captures the shock waves with an accuracy better than the upwind relaxation scheme, as demonstrated by the test cases, together with comparisons with popular numerical methods like Roe scheme and ENO schemes.

  20. Hamiltonian structures for systems of hyperbolic conservation laws

    NASA Astrophysics Data System (ADS)

    Olver, Peter J.; Nutku, Yavuz

    1988-07-01

    The bi-Hamiltonian structure for a large class of one-dimensional hyberbolic systems of conservation laws in two field variables, including the equations of gas dynamics, shallow water waves, one-dimensional elastic media, and the Born-Infeld equation from nonlinear electrodynamics, is exhibited. For polytropic gas dynamics, these results lead to a quadri-Hamiltonian structure. New higher-order entropy-flux pairs (conservation laws) and higher-order symmetries are exhibited.

  1. High-order centered difference methods with sharp shock resolution

    NASA Technical Reports Server (NTRS)

    Gustafsson, Bertil; Olsson, Pelle

    1994-01-01

    In this paper we consider high-order centered finite difference approximations of hyperbolic conservation laws. We propose different ways of adding artificial viscosity to obtain sharp shock resolution. For the Riemann problem we give simple explicit formulas for obtaining stationary one and two-point shocks. This can be done for any order of accuracy. It is shown that the addition of artificial viscosity is equivalent to ensuring the Lax k-shock condition. We also show numerical experiments that verify the theoretical results.

  2. Some results on numerical methods for hyperbolic conservation laws

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang Huanan.

    1989-01-01

    This dissertation contains some results on the numerical solutions of hyperbolic conservation laws. (1) The author introduced an artificial compression method as a correction to the basic ENO schemes. The method successfully prevents contact discontinuities from being smeared. This is achieved by increasing the slopes of the ENO reconstructions in such a way that the essentially non-oscillatory property of the schemes is kept. He analyzes the non-oscillatory property of the new artificial compression method by applying it to the UNO scheme which is a second order accurate ENO scheme, and proves that the resulting scheme is indeed non-oscillatory. Extensive 1-Dmore » numerical results and some preliminary 2-D ones are provided to show the strong performance of the method. (2) He combines the ENO schemes and the centered difference schemes into self-adjusting hybrid schemes which will be called the localized ENO schemes. At or near the jumps, he uses the ENO schemes with the field by field decompositions, otherwise he simply uses the centered difference schemes without the field by field decompositions. The method involves a new interpolation analysis. In the numerical experiments on several standard test problems, the quality of the numerical results of this method is close to that of the pure ENO results. The localized ENO schemes can be equipped with the above artificial compression method. In this way, he dramatically improves the resolutions of the contact discontinuities at very little additional costs. (3) He introduces a space-time mesh refinement method for time dependent problems.« less

  3. Hyperbolic-symmetry vector fields.

    PubMed

    Gao, Xu-Zhen; Pan, Yue; Cai, Meng-Qiang; Li, Yongnan; Tu, Chenghou; Wang, Hui-Tian

    2015-12-14

    We present and construct a new kind of orthogonal coordinate system, hyperbolic coordinate system. We present and design a new kind of local linearly polarized vector fields, which is defined as the hyperbolic-symmetry vector fields because the points with the same polarization form a series of hyperbolae. We experimentally demonstrate the generation of such a kind of hyperbolic-symmetry vector optical fields. In particular, we also study the modified hyperbolic-symmetry vector optical fields with the twofold and fourfold symmetric states of polarization when introducing the mirror symmetry. The tight focusing behaviors of these vector fields are also investigated. In addition, we also fabricate micro-structures on the K9 glass surfaces by several tightly focused (modified) hyperbolic-symmetry vector fields patterns, which demonstrate that the simulated tightly focused fields are in good agreement with the fabricated micro-structures.

  4. Probability Weighting Functions Derived from Hyperbolic Time Discounting: Psychophysical Models and Their Individual Level Testing.

    PubMed

    Takemura, Kazuhisa; Murakami, Hajime

    2016-01-01

    A probability weighting function (w(p)) is considered to be a nonlinear function of probability (p) in behavioral decision theory. This study proposes a psychophysical model of probability weighting functions derived from a hyperbolic time discounting model and a geometric distribution. The aim of the study is to show probability weighting functions from the point of view of waiting time for a decision maker. Since the expected value of a geometrically distributed random variable X is 1/p, we formulized the probability weighting function of the expected value model for hyperbolic time discounting as w(p) = (1 - k log p)(-1). Moreover, the probability weighting function is derived from Loewenstein and Prelec's (1992) generalized hyperbolic time discounting model. The latter model is proved to be equivalent to the hyperbolic-logarithmic weighting function considered by Prelec (1998) and Luce (2001). In this study, we derive a model from the generalized hyperbolic time discounting model assuming Fechner's (1860) psychophysical law of time and a geometric distribution of trials. In addition, we develop median models of hyperbolic time discounting and generalized hyperbolic time discounting. To illustrate the fitness of each model, a psychological experiment was conducted to assess the probability weighting and value functions at the level of the individual participant. The participants were 50 university students. The results of individual analysis indicated that the expected value model of generalized hyperbolic discounting fitted better than previous probability weighting decision-making models. The theoretical implications of this finding are discussed.

  5. On the local well-posedness of Lovelock and Horndeski theories

    NASA Astrophysics Data System (ADS)

    Papallo, Giuseppe; Reall, Harvey S.

    2017-08-01

    We investigate local well-posedness of the initial value problem for Lovelock and Horndeski theories of gravity. A necessary condition for local well-posedness is strong hyperbolicity of the equations of motion. Even weak hyperbolicity can fail for strong fields so we restrict to weak fields. The Einstein equation is known to be strongly hyperbolic in harmonic gauge so we study Lovelock theories in harmonic gauge. We show that the equation of motion is always weakly hyperbolic for weak fields but, in a generic weak-field background, it is not strongly hyperbolic. For Horndeski theories, we prove that, for weak fields, the equation of motion is always weakly hyperbolic in any generalized harmonic gauge. For some Horndeski theories there exists a generalized harmonic gauge for which the equation of motion is strongly hyperbolic in a weak-field background. This includes "k-essence" like theories. However, for more general Horndeski theories, there is no generalized harmonic gauge for which the equation of motion is strongly hyperbolic in a generic weak-field background. Our results show that the standard method used to establish local well-posedness of the Einstein equation does not extend to Lovelock or general Horndeski theories. This raises the possibility that these theories may not admit a well-posed initial value problem even for weak fields.

  6. Computation techniques and computer programs to analyze Stirling cycle engines using characteristic dynamic energy equations

    NASA Technical Reports Server (NTRS)

    Larson, V. H.

    1982-01-01

    The basic equations that are used to describe the physical phenomena in a Stirling cycle engine are the general energy equations and equations for the conservation of mass and conversion of momentum. These equations, together with the equation of state, an analytical expression for the gas velocity, and an equation for mesh temperature are used in this computer study of Stirling cycle characteristics. The partial differential equations describing the physical phenomena that occurs in a Stirling cycle engine are of the hyperbolic type. The hyperbolic equations have real characteristic lines. By utilizing appropriate points along these curved lines the partial differential equations can be reduced to ordinary differential equations. These equations are solved numerically using a fourth-fifth order Runge-Kutta integration technique.

  7. Stability of an abstract system of coupled hyperbolic and parabolic equations

    NASA Astrophysics Data System (ADS)

    Hao, Jianghao; Liu, Zhuangyi

    2013-08-01

    In this paper, we provide a complete stability analysis for an abstract system of coupled hyperbolic and parabolic equations = -Au + γ A^{α} θ, quad θ_t = -γ A^{α}u_t - kA^{β}θ, u(0) = u_0, quad u_t(0) = v_0, quad θ(0) = θ_0 where A is a self-adjoint, positive definite operator on a Hilbert space H. For {(α,β) in [0,1] × [0,1]} , the region of exponential stability had been identified in Ammar-Khodja et al. (ESAIM Control Optim Calc Var 4:577-593,1999). Our contribution is to show that the rest of the region can be classified as region of polynomial stability and region of instability. Moreover, we obtain the optimality of the order of polynomial stability.

  8. Non-oscillatory central differencing for hyperbolic conservation laws

    NASA Technical Reports Server (NTRS)

    Nessyahu, Haim; Tadmor, Eitan

    1988-01-01

    Many of the recently developed high resolution schemes for hyperbolic conservation laws are based on upwind differencing. The building block for these schemes is the averaging of an appropriate Godunov solver; its time consuming part involves the field-by-field decomposition which is required in order to identify the direction of the wind. Instead, the use of the more robust Lax-Friedrichs (LxF) solver is proposed. The main advantage is simplicity: no Riemann problems are solved and hence field-by-field decompositions are avoided. The main disadvantage is the excessive numerical viscosity typical to the LxF solver. This is compensated for by using high-resolution MUSCL-type interpolants. Numerical experiments show that the quality of results obtained by such convenient central differencing is comparable with those of the upwind schemes.

  9. Hyperbolic metamaterials: Novel physics and applications

    NASA Astrophysics Data System (ADS)

    Smolyaninov, Igor I.; Smolyaninova, Vera N.

    2017-10-01

    Hyperbolic metamaterials were originally introduced to overcome the diffraction limit of optical imaging. Soon thereafter it was realized that hyperbolic metamaterials demonstrate a number of novel phenomena resulting from the broadband singular behavior of their density of photonic states. These novel phenomena and applications include super resolution imaging, new stealth technologies, enhanced quantum-electrodynamic effects, thermal hyperconductivity, superconductivity, and interesting gravitation theory analogues. Here we briefly review typical material systems, which exhibit hyperbolic behavior and outline important novel applications of hyperbolic metamaterials. In particular, we will describe recent imaging experiments with plasmonic metamaterials and novel VCSEL geometries, in which the Bragg mirrors may be engineered in such a way that they exhibit hyperbolic metamaterial properties in the long wavelength infrared range, so that they may be used to efficiently remove excess heat from the laser cavity. We will also discuss potential applications of three-dimensional self-assembled photonic hypercrystals, which are based on cobalt ferrofluids in external magnetic field. This system bypasses 3D nanofabrication issues, which typically limit metamaterial applications. Photonic hypercrystals combine the most interesting features of hyperbolic metamaterials and photonic crystals.

  10. The distribution of the intervals between neural impulses in the maintained discharges of retinal ganglion cells.

    PubMed

    Levine, M W

    1991-01-01

    Simulated neural impulse trains were generated by a digital realization of the integrate-and-fire model. The variability in these impulse trains had as its origin a random noise of specified distribution. Three different distributions were used: the normal (Gaussian) distribution (no skew, normokurtic), a first-order gamma distribution (positive skew, leptokurtic), and a uniform distribution (no skew, platykurtic). Despite these differences in the distribution of the variability, the distributions of the intervals between impulses were nearly indistinguishable. These inter-impulse distributions were better fit with a hyperbolic gamma distribution than a hyperbolic normal distribution, although one might expect a better approximation for normally distributed inverse intervals. Consideration of why the inter-impulse distribution is independent of the distribution of the causative noise suggests two putative interval distributions that do not depend on the assumed noise distribution: the log normal distribution, which is predicated on the assumption that long intervals occur with the joint probability of small input values, and the random walk equation, which is the diffusion equation applied to a random walk model of the impulse generating process. Either of these equations provides a more satisfactory fit to the simulated impulse trains than the hyperbolic normal or hyperbolic gamma distributions. These equations also provide better fits to impulse trains derived from the maintained discharges of ganglion cells in the retinae of cats or goldfish. It is noted that both equations are free from the constraint that the coefficient of variation (CV) have a maximum of unity.(ABSTRACT TRUNCATED AT 250 WORDS)

  11. 13-Moment System with Global Hyperbolicity for Quantum Gas

    NASA Astrophysics Data System (ADS)

    Di, Yana; Fan, Yuwei; Li, Ruo

    2017-06-01

    We point out that the quantum Grad's 13-moment system (Yano in Physica A 416:231-241, 2014) is lack of global hyperbolicity, and even worse, the thermodynamic equilibrium is not an interior point of the hyperbolicity region of the system. To remedy this problem, by fully considering Grad's expansion, we split the expansion into the equilibrium part and the non-equilibrium part, and propose a regularization for the system with the help of the new hyperbolic regularization theory developed in Cai et al. (SIAM J Appl Math 75(5):2001-2023, 2015) and Fan et al. (J Stat Phys 162(2):457-486, 2016). This provides us a new model which is hyperbolic for all admissible thermodynamic states, and meanwhile preserves the approximate accuracy of the original system. It should be noted that this procedure is not a trivial application of the hyperbolic regularization theory.

  12. Magnetic hyperbolic optical metamaterials

    DOE PAGES

    Kruk, Sergey S.; Wong, Zi Jing; Pshenay-Severin, Ekaterina; ...

    2016-04-13

    Strongly anisotropic media where the principal components of electric permittivity or magnetic permeability tensors have opposite signs are termed as hyperbolic media. Such media support propagating electromagnetic waves with extremely large wave vectors exhibiting unique optical properties. However, in all artificial and natural optical materials studied to date, the hyperbolic dispersion originates solely from the electric response. This then restricts material functionality to one polarization of light and inhibits free-space impedance matching. Such restrictions can be overcome in media having components of opposite signs for both electric and magnetic tensors. Here we present the experimental demonstration of the magnetic hyperbolicmore » dispersion in three-dimensional metamaterials. We also measure metamaterial isofrequency contours and reveal the topological phase transition between the elliptic and hyperbolic dispersion. In the hyperbolic regime, we demonstrate the strong enhancement of thermal emission, which becomes directional, coherent and polarized. These findings show the possibilities for realizing efficient impedance-matched hyperbolic media for unpolarized light.« less

  13. Hyperbolic Discounting: Value and Time Processes of Substance Abusers and Non-Clinical Individuals in Intertemporal Choice

    PubMed Central

    2014-01-01

    The single parameter hyperbolic model has been frequently used to describe value discounting as a function of time and to differentiate substance abusers and non-clinical participants with the model's parameter k. However, k says little about the mechanisms underlying the observed differences. The present study evaluates several alternative models with the purpose of identifying whether group differences stem from differences in subjective valuation, and/or time perceptions. Using three two-parameter models, plus secondary data analyses of 14 studies with 471 indifference point curves, results demonstrated that adding a valuation, or a time perception function led to better model fits. However, the gain in fit due to the flexibility granted by a second parameter did not always lead to a better understanding of the data patterns and corresponding psychological processes. The k parameter consistently indexed group and context (magnitude) differences; it is thus a mixed measure of person and task level effects. This was similar for a parameter meant to index payoff devaluation. A time perception parameter, on the other hand, fluctuated with contexts in a non-predicted fashion and the interpretation of its values was inconsistent with prior findings that supported enlarged perceived delays for substance abusers compared to controls. Overall, the results provide mixed support for hyperbolic models of intertemporal choice in terms of the psychological meaning afforded by their parameters. PMID:25390941

  14. The Hype over Hyperbolic Browsers.

    ERIC Educational Resources Information Center

    Allen, Maryellen Mott

    2002-01-01

    Considers complaints about the usability in the human-computer interaction aspect of information retrieval and discusses information visualization, the Online Library of Information Visualization Environments, hyperbolic information structure, subject searching, real-world applications, relational databases and hyperbolic trees, and the future of…

  15. Point coordinates extraction from localized hyperbolic reflections in GPR data

    NASA Astrophysics Data System (ADS)

    Ristić, Aleksandar; Bugarinović, Željko; Vrtunski, Milan; Govedarica, Miro

    2017-09-01

    In this paper, we propose an automated detection algorithm for the localization of apexes and points on the prongs of hyperbolic reflection incurred as a result of GPR scanning technology. The objects of interest encompass cylindrical underground utilities that have a distinctive form of hyperbolic reflection in radargram. Algorithm involves application of trained neural network to analyze radargram in the form of raster image, resulting with extracted segments of interest that contain hyperbolic reflections. This significantly reduces the amount of data for further analysis. Extracted segments represent the zone for localization of apices. This is followed by extraction of points on prongs of hyperbolic reflections which is carried out until stopping criterion is satisfied, regardless the borders of segment of interest. In final step a classification of false hyperbolic reflections caused by the constructive interference and their removal is done. The algorithm is implemented in MATLAB environment. There are several advantages of the proposed algorithm. It can successfully recognize true hyperbolic reflections in radargram images and extracts coordinates, with very low rate of false detections and without prior knowledge about the number of hyperbolic reflections or buried utilities. It can be applied to radargrams containing single and multiple hyperbolic reflections, intersected, distorted, as well as incomplete (asymmetric) hyperbolic reflections, all in the presence of higher level of noise. Special feature of algorithm is developed procedure for analysis and removal of false hyperbolic reflections generated by the constructive interference from reflectors associated with the utilities. Algorithm was tested on a number of synthetic and radargram acquired in the field survey. To illustrate the performances of the proposed algorithm, we present the characteristics of the algorithm through five representative radargrams obtained in real conditions. In these examples we present different acquisition scenarios by varying the number of buried objects, their disposition, size, and level of noise. Example with highest complexity was tested also as a synthetic radargram generated by gprMax. Processing time in examples with one or two hyperbolic reflections is from 0.1 to 0.3 s, while for the most complex examples it is from 2.2 to 4.9 s. In general, the obtained experimental results show that the proposed algorithm exhibits promising performances both in terms of utility detection and processing speed of the algorithm.

  16. A high-order gas-kinetic Navier-Stokes flow solver

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li Qibing, E-mail: lqb@tsinghua.edu.c; Xu Kun, E-mail: makxu@ust.h; Fu Song, E-mail: fs-dem@tsinghua.edu.c

    2010-09-20

    The foundation for the development of modern compressible flow solver is based on the Riemann solution of the inviscid Euler equations. The high-order schemes are basically related to high-order spatial interpolation or reconstruction. In order to overcome the low-order wave interaction mechanism due to the Riemann solution, the temporal accuracy of the scheme can be improved through the Runge-Kutta method, where the dynamic deficiencies in the first-order Riemann solution is alleviated through the sub-step spatial reconstruction in the Runge-Kutta process. The close coupling between the spatial and temporal evolution in the original nonlinear governing equations seems weakened due to itsmore » spatial and temporal decoupling. Many recently developed high-order methods require a Navier-Stokes flux function under piece-wise discontinuous high-order initial reconstruction. However, the piece-wise discontinuous initial data and the hyperbolic-parabolic nature of the Navier-Stokes equations seem inconsistent mathematically, such as the divergence of the viscous and heat conducting terms due to initial discontinuity. In this paper, based on the Boltzmann equation, we are going to present a time-dependent flux function from a high-order discontinuous reconstruction. The theoretical basis for such an approach is due to the fact that the Boltzmann equation has no specific requirement on the smoothness of the initial data and the kinetic equation has the mechanism to construct a dissipative wave structure starting from an initially discontinuous flow condition on a time scale being larger than the particle collision time. The current high-order flux evaluation method is an extension of the second-order gas-kinetic BGK scheme for the Navier-Stokes equations (BGK-NS). The novelty for the easy extension from a second-order to a higher order is due to the simple particle transport and collision mechanism on the microscopic level. This paper will present a hierarchy to construct such a high-order method. The necessity to couple spatial and temporal evolution nonlinearly in the flux evaluation can be clearly observed through the numerical performance of the scheme for the viscous flow computations.« less

  17. Wavelets and Affine Distributions: A Time-Frequency Perspective

    DTIC Science & Technology

    2005-01-07

    Ville Distribution ( WVD ) • Prominent member of the AC: the WVD • Properties of the WVD : – Covariant to TF scaling and time shift (of course) – Covariant...QTFRs • Wigner - Ville distribution and affine smoothing • Doppler tolerance and hyperbolic impulses • Hyperbolic TF localization and Bertrand P0...satisfy hyperbolic TF localization property: • Not satisfied by WVD ! 25 – 49 –WAMA-04 Cargèse, France The Bertrand P0 distribution • The hyperbolic

  18. Thermal emitter comprising near-zero permittivity materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luk, Ting S.; Campione, Salvatore; Sinclair, Michael B.

    A novel thermal source comprising a semiconductor hyperbolic metamaterial provides control of the emission spectrum and the angular emission pattern. These properties arise because of epsilon-near-zero conditions in the semiconductor hyperbolic metamaterial. In particular, the thermal emission is dominated by the epsilon-near-zero effect in the doped quantum wells composing the semiconductor hyperbolic metamaterial. Furthermore, different properties are observed for s and p polarizations, following the characteristics of the strong anisotropy of hyperbolic metamaterials.

  19. Dispersive wave propagation in two-dimensional rigid periodic blocky materials with elastic interfaces

    NASA Astrophysics Data System (ADS)

    Bacigalupo, Andrea; Gambarotta, Luigi

    2017-05-01

    Dispersive waves in two-dimensional blocky materials with periodic microstructure made up of equal rigid units, having polygonal centro-symmetric shape with mass and gyroscopic inertia, connected with each other through homogeneous linear interfaces, have been analyzed. The acoustic behavior of the resulting discrete Lagrangian model has been obtained through a Floquet-Bloch approach. From the resulting eigenproblem derived by the Euler-Lagrange equations for harmonic wave propagation, two acoustic branches and an optical branch are obtained in the frequency spectrum. A micropolar continuum model to approximate the Lagrangian model has been derived based on a second-order Taylor expansion of the generalized macro-displacement field. The constitutive equations of the equivalent micropolar continuum have been obtained, with the peculiarity that the positive definiteness of the second-order symmetric tensor associated to the curvature vector is not guaranteed and depends both on the ratio between the local tangent and normal stiffness and on the block shape. The same results have been obtained through an extended Hamiltonian derivation of the equations of motion for the equivalent continuum that is related to the Hill-Mandel macro homogeneity condition. Moreover, it is shown that the hermitian matrix governing the eigenproblem of harmonic wave propagation in the micropolar model is exact up to the second order in the norm of the wave vector with respect to the same matrix from the discrete model. To appreciate the acoustic behavior of some relevant blocky materials and to understand the reliability and the validity limits of the micropolar continuum model, some blocky patterns have been analyzed: rhombic and hexagonal assemblages and running bond masonry. From the results obtained in the examples, the obtained micropolar model turns out to be particularly accurate to describe dispersive functions for wavelengths greater than 3-4 times the characteristic dimension of the block. Finally, in consideration that the positive definiteness of the second order elastic tensor of the micropolar model is not guaranteed, the hyperbolicity of the equation of motion has been investigated by considering the Legendre-Hadamard ellipticity conditions requiring real values for the wave velocity.

  20. Multi-Hamiltonian structure of the Born-Infeld equation

    NASA Astrophysics Data System (ADS)

    Arik, Metin; Neyzi, Fahrünisa; Nutku, Yavuz; Olver, Peter J.; Verosky, John M.

    1989-06-01

    The multi-Hamiltonian structure, conservation laws, and higher order symmetries for the Born-Infeld equation are exhibited. A new transformation of the Born-Infeld equation to the equations of a Chaplygin gas is presented and explored. The Born-Infeld equation is distinguished among two-dimensional hyperbolic systems by its wealth of such multi-Hamiltonian structures.

  1. High Order Finite Difference Methods with Subcell Resolution for 2D Detonation Waves

    NASA Technical Reports Server (NTRS)

    Wang, W.; Shu, C. W.; Yee, H. C.; Sjogreen, B.

    2012-01-01

    In simulating hyperbolic conservation laws in conjunction with an inhomogeneous stiff source term, if the solution is discontinuous, spurious numerical results may be produced due to different time scales of the transport part and the source term. This numerical issue often arises in combustion and high speed chemical reacting flows.

  2. Resin-Impregnated Carbon Ablator: A New Ablative Material for Hyperbolic Entry Speeds

    NASA Technical Reports Server (NTRS)

    Esper, Jaime; Lengowski, Michael

    2012-01-01

    Ablative materials are required to protect a space vehicle from the extreme temperatures encountered during the most demanding (hyperbolic) atmospheric entry velocities, either for probes launched toward other celestial bodies, or coming back to Earth from deep space missions. To that effect, the resin-impregnated carbon ablator (RICA) is a high-temperature carbon/phenolic ablative thermal protection system (TPS) material designed to use modern and commercially viable components in its manufacture. Heritage carbon/phenolic ablators intended for this use rely on materials that are no longer in production (i.e., Galileo, Pioneer Venus); hence the development of alternatives such as RICA is necessary for future NASA planetary entry and Earth re-entry missions. RICA s capabilities were initially measured in air for Earth re-entry applications, where it was exposed to a heat flux of 14 MW/sq m for 22 seconds. Methane tests were also carried out for potential application in Saturn s moon Titan, with a nominal heat flux of 1.4 MW/sq m for up to 478 seconds. Three slightly different material formulations were manufactured and subsequently tested at the Plasma Wind Tunnel of the University of Stuttgart in Germany (PWK1) in the summer and fall of 2010. The TPS integrity was well preserved in most cases, and results show great promise.

  3. Traveling wave to a reaction-hyperbolic system for axonal transport

    NASA Astrophysics Data System (ADS)

    Huang, Feimin; Li, Xing; Zhang, Yinglong

    2017-07-01

    In this paper, we study a class of nonlinear reaction-hyperbolic systems modeling the neuronal signal transfer in neuroscience. This reaction-hyperbolic system can be regarded as n × n (n ≥ 2) hyperbolic system with relaxation. We first prove the existence of traveling wave by Gershgorin circle theorem and mathematically describe the neuronal signal transport. Then for a special case n = 2, we show the traveling wave is nonlinearly stable, and obtain the convergence rate simultaneously by a weighted estimate.

  4. Infrared hyperbolic metasurface based on nanostructured van der Waals materials

    NASA Astrophysics Data System (ADS)

    Li, Peining; Dolado, Irene; Alfaro-Mozaz, Francisco Javier; Casanova, Fèlix; Hueso, Luis E.; Liu, Song; Edgar, James H.; Nikitin, Alexey Y.; Vélez, Saül; Hillenbrand, Rainer

    2018-02-01

    Metasurfaces with strongly anisotropic optical properties can support deep subwavelength-scale confined electromagnetic waves (polaritons), which promise opportunities for controlling light in photonic and optoelectronic applications. We developed a mid-infrared hyperbolic metasurface by nanostructuring a thin layer of hexagonal boron nitride that supports deep subwavelength-scale phonon polaritons that propagate with in-plane hyperbolic dispersion. By applying an infrared nanoimaging technique, we visualize the concave (anomalous) wavefronts of a diverging polariton beam, which represent a landmark feature of hyperbolic polaritons. The results illustrate how near-field microscopy can be applied to reveal the exotic wavefronts of polaritons in anisotropic materials and demonstrate that nanostructured van der Waals materials can form a highly variable and compact platform for hyperbolic infrared metasurface devices and circuits.

  5. Hyperbolic metamaterials: new physics behind a classical problem.

    PubMed

    Drachev, Vladimir P; Podolskiy, Viktor A; Kildishev, Alexander V

    2013-06-17

    Hyperbolic materials enable numerous surprising applications that include far-field subwavelength imaging, nanolithography, and emission engineering. The wavevector of a plane wave in these media follows the surface of a hyperboloid in contrast to an ellipsoid for conventional anisotropic dielectric. The consequences of hyperbolic dispersion were first studied in the 50's pertaining to the problems of electromagnetic wave propagation in the Earth's ionosphere and in the stratified artificial materials of transmission lines. Recent years have brought explosive growth in optics and photonics of hyperbolic media based on metamaterials across the optical spectrum. Here we summarize earlier theories in the Clemmow's prescription for transformation of the electromagnetic field in hyperbolic media and provide a review of recent developments in this active research area.

  6. Polyhedra and packings from hyperbolic honeycombs.

    PubMed

    Pedersen, Martin Cramer; Hyde, Stephen T

    2018-06-20

    We derive more than 80 embeddings of 2D hyperbolic honeycombs in Euclidean 3 space, forming 3-periodic infinite polyhedra with cubic symmetry. All embeddings are "minimally frustrated," formed by removing just enough isometries of the (regular, but unphysical) 2D hyperbolic honeycombs [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text], and [Formula: see text] to allow embeddings in Euclidean 3 space. Nearly all of these triangulated "simplicial polyhedra" have symmetrically identical vertices, and most are chiral. The most symmetric examples include 10 infinite "deltahedra," with equilateral triangular faces, 6 of which were previously unknown and some of which can be described as packings of Platonic deltahedra. We describe also related cubic crystalline packings of equal hyperbolic discs in 3 space that are frustrated analogues of optimally dense hyperbolic disc packings. The 10-coordinated packings are the least "loosened" Euclidean embeddings, although frustration swells all of the hyperbolic disc packings to give less dense arrays than the flat penny-packing even though their unfrustrated analogues in [Formula: see text] are denser.

  7. Boundary causality versus hyperbolicity for spherical black holes in Gauss-Bonnet gravity

    NASA Astrophysics Data System (ADS)

    Andrade, Tomás; Cáceres, Elena; Keeler, Cynthia

    2017-07-01

    We explore the constraints boundary causality places on the allowable Gauss-Bonnet gravitational couplings in asymptotically AdS spaces, specifically considering spherical black hole solutions. We additionally consider the hyperbolicity properties of these solutions, positing that hyperbolicity-violating solutions are sick solutions whose causality properties provide no information about the theory they reside in. For both signs of the Gauss-Bonnet coupling, spherical black holes violate boundary causality at smaller absolute values of the coupling than planar black holes do. For negative coupling, as we tune the Gauss-Bonnet coupling away from zero, both spherical and planar black holes violate hyperbolicity before they violate boundary causality. For positive coupling, the only hyperbolicity-respecting spherical black holes which violate boundary causality do not do so appreciably far from the planar bound. Consequently, eliminating hyperbolicity-violating solutions means the bound on Gauss-Bonnet couplings from the boundary causality of spherical black holes is no tighter than that from planar black holes.

  8. Nanoimaging of resonating hyperbolic polaritons in linear boron nitride antennas

    PubMed Central

    Alfaro-Mozaz, F. J.; Alonso-González, P.; Vélez, S.; Dolado, I.; Autore, M.; Mastel, S.; Casanova, F.; Hueso, L. E.; Li, P.; Nikitin, A. Y.; Hillenbrand, R.

    2017-01-01

    Polaritons in layered materials—including van der Waals materials—exhibit hyperbolic dispersion and strong field confinement, which makes them highly attractive for applications including optical nanofocusing, sensing and control of spontaneous emission. Here we report a near-field study of polaritonic Fabry–Perot resonances in linear antennas made of a hyperbolic material. Specifically, we study hyperbolic phonon–polaritons in rectangular waveguide antennas made of hexagonal boron nitride (h-BN, a prototypical van der Waals crystal). Infrared nanospectroscopy and nanoimaging experiments reveal sharp resonances with large quality factors around 100, exhibiting atypical modal near-field patterns that have no analogue in conventional linear antennas. By performing a detailed mode analysis, we can assign the antenna resonances to a single waveguide mode originating from the hybridization of hyperbolic surface phonon–polaritons (Dyakonov polaritons) that propagate along the edges of the h-BN waveguide. Our work establishes the basis for the understanding and design of linear waveguides, resonators, sensors and metasurface elements based on hyperbolic materials and metamaterials. PMID:28589941

  9. Cascades of Particles Moving at Finite Velocity in Hyperbolic Spaces

    NASA Astrophysics Data System (ADS)

    Cammarota, V.; Orsingher, E.

    2008-12-01

    A branching process of particles moving at finite velocity over the geodesic lines of the hyperbolic space (Poincaré half-plane and Poincaré disk) is examined. Each particle can split into two particles only once at Poisson spaced times and deviates orthogonally when splitted. At time t, after N( t) Poisson events, there are N( t)+1 particles moving along different geodesic lines. We are able to obtain the exact expression of the mean hyperbolic distance of the center of mass of the cloud of particles. We derive such mean hyperbolic distance from two different and independent ways and we study the behavior of the relevant expression as t increases and for different values of the parameters c (hyperbolic velocity of motion) and λ (rate of reproduction). The mean hyperbolic distance of each moving particle is also examined and a useful representation, as the distance of a randomly stopped particle moving over the main geodesic line, is presented.

  10. Super-Coulombic atom–atom interactions in hyperbolic media

    PubMed Central

    Cortes, Cristian L.; Jacob, Zubin

    2017-01-01

    Dipole–dipole interactions, which govern phenomena such as cooperative Lamb shifts, superradiant decay rates, Van der Waals forces and resonance energy transfer rates, are conventionally limited to the Coulombic near-field. Here we reveal a class of real-photon and virtual-photon long-range quantum electrodynamic interactions that have a singularity in media with hyperbolic dispersion. The singularity in the dipole–dipole coupling, referred to as a super-Coulombic interaction, is a result of an effective interaction distance that goes to zero in the ideal limit irrespective of the physical distance. We investigate the entire landscape of atom–atom interactions in hyperbolic media confirming the giant long-range enhancement. We also propose multiple experimental platforms to verify our predicted effect with phonon–polaritonic hexagonal boron nitride, plasmonic super-lattices and hyperbolic meta-surfaces as well. Our work paves the way for the control of cold atoms above hyperbolic meta-surfaces and the study of many-body physics with hyperbolic media. PMID:28120826

  11. Super-Coulombic atom-atom interactions in hyperbolic media

    NASA Astrophysics Data System (ADS)

    Cortes, Cristian L.; Jacob, Zubin

    2017-01-01

    Dipole-dipole interactions, which govern phenomena such as cooperative Lamb shifts, superradiant decay rates, Van der Waals forces and resonance energy transfer rates, are conventionally limited to the Coulombic near-field. Here we reveal a class of real-photon and virtual-photon long-range quantum electrodynamic interactions that have a singularity in media with hyperbolic dispersion. The singularity in the dipole-dipole coupling, referred to as a super-Coulombic interaction, is a result of an effective interaction distance that goes to zero in the ideal limit irrespective of the physical distance. We investigate the entire landscape of atom-atom interactions in hyperbolic media confirming the giant long-range enhancement. We also propose multiple experimental platforms to verify our predicted effect with phonon-polaritonic hexagonal boron nitride, plasmonic super-lattices and hyperbolic meta-surfaces as well. Our work paves the way for the control of cold atoms above hyperbolic meta-surfaces and the study of many-body physics with hyperbolic media.

  12. Spreading out Muscle Mass within a Hill-Type Model: A Computer Simulation Study

    PubMed Central

    Günther, Michael; Röhrle, Oliver; Haeufle, Daniel F. B.; Schmitt, Syn

    2012-01-01

    It is state of the art that muscle contraction dynamics is adequately described by a hyperbolic relation between muscle force and contraction velocity (Hill relation), thereby neglecting muscle internal mass inertia (first-order dynamics). Accordingly, the vast majority of modelling approaches also neglect muscle internal inertia. Assuming that such first-order contraction dynamics yet interacts with muscle internal mass distribution, this study investigates two questions: (i) what is the time scale on which the muscle responds to a force step? (ii) How does this response scale with muscle design parameters? Thereto, we simulated accelerated contractions of alternating sequences of Hill-type contractile elements and point masses. We found that in a typical small muscle the force levels off after about 0.2 ms, contraction velocity after about 0.5 ms. In an upscaled version representing bigger mammals' muscles, the force levels off after about 20 ms, and the theoretically expected maximum contraction velocity is not reached. We conclude (i) that it may be indispensable to introduce second-order contributions into muscle models to understand high-frequency muscle responses, particularly in bigger muscles. Additionally, (ii) constructing more elaborate measuring devices seems to be worthwhile to distinguish viscoelastic and inertia properties in rapid contractile responses of muscles. PMID:23227110

  13. A Non-Dissipative Staggered Fourth-Order Accurate Explicit Finite Difference Scheme for the Time-Domain Maxwell's Equations

    NASA Technical Reports Server (NTRS)

    Yefet, Amir; Petropoulos, Peter G.

    1999-01-01

    We consider a divergence-free non-dissipative fourth-order explicit staggered finite difference scheme for the hyperbolic Maxwell's equations. Special one-sided difference operators are derived in order to implement the scheme near metal boundaries and dielectric interfaces. Numerical results show the scheme is long-time stable, and is fourth-order convergent over complex domains that include dielectric interfaces and perfectly conducting surfaces. We also examine the scheme's behavior near metal surfaces that are not aligned with the grid axes, and compare its accuracy to that obtained by the Yee scheme.

  14. Initial value formulation of dynamical Chern-Simons gravity

    NASA Astrophysics Data System (ADS)

    Delsate, Térence; Hilditch, David; Witek, Helvi

    2015-01-01

    We derive an initial value formulation for dynamical Chern-Simons gravity, a modification of general relativity involving parity-violating higher derivative terms. We investigate the structure of the resulting system of partial differential equations thinking about linearization around arbitrary backgrounds. This type of consideration is necessary if we are to establish well-posedness of the Cauchy problem. Treating the field equations as an effective field theory we find that weak necessary conditions for hyperbolicity are satisfied. For the full field equations we find that there are states from which subsequent evolution is not determined. Generically the evolution system closes, but is not hyperbolic in any sense that requires a first order pseudodifferential reduction. In a cursory mode analysis we find that the equations of motion contain terms that may cause ill-posedness of the initial value problem.

  15. Computation of Quasiperiodic Normally Hyperbolic Invariant Tori: Rigorous Results

    NASA Astrophysics Data System (ADS)

    Canadell, Marta; Haro, Àlex

    2017-12-01

    The development of efficient methods for detecting quasiperiodic oscillations and computing the corresponding invariant tori is a subject of great importance in dynamical systems and their applications in science and engineering. In this paper, we prove the convergence of a new Newton-like method for computing quasiperiodic normally hyperbolic invariant tori carrying quasiperiodic motion in smooth families of real-analytic dynamical systems. The main result is stated as an a posteriori KAM-like theorem that allows controlling the inner dynamics on the torus with appropriate detuning parameters, in order to obtain a prescribed quasiperiodic motion. The Newton-like method leads to several fast and efficient computational algorithms, which are discussed and tested in a companion paper (Canadell and Haro in J Nonlinear Sci, 2017. doi: 10.1007/s00332-017-9388-z), in which new mechanisms of breakdown are presented.

  16. ICASE Semiannual Report. April 1, 1993 through September 30, 1993

    DTIC Science & Technology

    1993-12-01

    scientists from universities and industry who have resident appointments for limited periods of time as well as by visiting and resident consultants... time integration. One of these is the time advancement of systems of hyperbolic partial differential equations via high order Runge- Kutta algorithms...Typically if the R-K methods is of, say, fourth order accuracy then there will be four intermediate steps between time level t = n6 and t + 6 = (n + 1)b

  17. A nonuniform popularity-similarity optimization (nPSO) model to efficiently generate realistic complex networks with communities

    NASA Astrophysics Data System (ADS)

    Muscoloni, Alessandro; Vittorio Cannistraci, Carlo

    2018-05-01

    The investigation of the hidden metric space behind complex network topologies is a fervid topic in current network science and the hyperbolic space is one of the most studied, because it seems associated to the structural organization of many real complex systems. The popularity-similarity-optimization (PSO) model simulates how random geometric graphs grow in the hyperbolic space, generating realistic networks with clustering, small-worldness, scale-freeness and rich-clubness. However, it misses to reproduce an important feature of real complex networks, which is the community organization. The geometrical-preferential-attachment (GPA) model was recently developed in order to confer to the PSO also a soft community structure, which is obtained by forcing different angular regions of the hyperbolic disk to have a variable level of attractiveness. However, the number and size of the communities cannot be explicitly controlled in the GPA, which is a clear limitation for real applications. Here, we introduce the nonuniform PSO (nPSO) model. Differently from GPA, the nPSO generates synthetic networks in the hyperbolic space where heterogeneous angular node attractiveness is forced by sampling the angular coordinates from a tailored nonuniform probability distribution (for instance a mixture of Gaussians). The nPSO differs from GPA in other three aspects: it allows one to explicitly fix the number and size of communities; it allows one to tune their mixing property by means of the network temperature; it is efficient to generate networks with high clustering. Several tests on the detectability of the community structure in nPSO synthetic networks and wide investigations on their structural properties confirm that the nPSO is a valid and efficient model to generate realistic complex networks with communities.

  18. An improved numerical method for the kernel density functional estimation of disperse flow

    NASA Astrophysics Data System (ADS)

    Smith, Timothy; Ranjan, Reetesh; Pantano, Carlos

    2014-11-01

    We present an improved numerical method to solve the transport equation for the one-point particle density function (pdf), which can be used to model disperse flows. The transport equation, a hyperbolic partial differential equation (PDE) with a source term, is derived from the Lagrangian equations for a dilute particle system by treating position and velocity as state-space variables. The method approximates the pdf by a discrete mixture of kernel density functions (KDFs) with space and time varying parameters and performs a global Rayleigh-Ritz like least-square minimization on the state-space of velocity. Such an approximation leads to a hyperbolic system of PDEs for the KDF parameters that cannot be written completely in conservation form. This system is solved using a numerical method that is path-consistent, according to the theory of non-conservative hyperbolic equations. The resulting formulation is a Roe-like update that utilizes the local eigensystem information of the linearized system of PDEs. We will present the formulation of the base method, its higher-order extension and further regularization to demonstrate that the method can predict statistics of disperse flows in an accurate, consistent and efficient manner. This project was funded by NSF Project NSF-DMS 1318161.

  19. Extended Thermodynamics: a Theory of Symmetric Hyperbolic Field Equations

    NASA Astrophysics Data System (ADS)

    Müller, Ingo

    2008-12-01

    Extended thermodynamics is based on a set of equations of balance which are supplemented by local and instantaneous constitutive equations so that the field equations are quasi-linear first order differential equations. If the constitutive functions are subject to the requirements of the entropy principle, one may write them in symmetric hyperbolic form by a suitable choice of fields. The kinetic theory of gases, or the moment theories based on the Boltzmann equation provide an explicit example for extended thermodynamics. The theory proves its usefulness and practicality in the successful treatment of light scattering in rarefied gases. This presentation is based upon the book [1] of which the author of this paper is a co-author. For more details about the motivation and exploitation of the basic principles the interested reader is referred to that reference. It would seem that extended thermodynamics is worthy of the attention of mathematicians. It may offer them a non-trivial field of study concerning hyperbolic equations, if ever they get tired of the Burgers equation. Physicists may prefer to appreciate the success of extended thermodynamics in light scattering and to work on the open problems concerning the modification of the Navier-Stokes-Fourier theory in rarefied gases as predicted by extended thermodynamics of 13, 14, and more moments.

  20. On the hyperbolicity and stability of 3+1 formulations of metric f( R) gravity

    NASA Astrophysics Data System (ADS)

    Mongwane, Bishop

    2016-11-01

    3+1 formulations of the Einstein field equations have become an invaluable tool in Numerical relativity, having been used successfully in modeling spacetimes of black hole collisions, stellar collapse and other complex systems. It is plausible that similar considerations could prove fruitful for modified gravity theories. In this article, we pursue from a numerical relativistic viewpoint the 3+1 formulation of metric f( R) gravity as it arises from the fourth order equations of motion, without invoking the dynamical equivalence with Brans-Dicke theories. We present the resulting system of evolution and constraint equations for a generic function f( R), subject to the usual viability conditions. We confirm that the time propagation of the f( R) Hamiltonian and Momentum constraints take the same Mathematical form as in general relativity, irrespective of the f( R) model. We further recast the 3+1 system in a form akin to the BSSNOK formulation of numerical relativity. Without assuming any specific model, we show that the ADM version of f( R) is weakly hyperbolic and is plagued by similar zero speed modes as in the general relativity case. On the other hand the BSSNOK version is strongly hyperbolic and hence a promising formulation for numerical simulations in metric f( R) theories.

  1. Lift of noninvariant solutions of heavenly equations from three to four dimensions and new ultra-hyperbolic metrics

    NASA Astrophysics Data System (ADS)

    Malykh, A. A.; Nutku, Y.; Sheftel, M. B.

    2007-08-01

    We demonstrate that partner symmetries provide a lift of noninvariant solutions of the three-dimensional Boyer-Finley equation to noninvariant solutions of the four-dimensional hyperbolic complex Monge-Ampère equation. The lift is applied to noninvariant solutions of the Boyer-Finley equation, obtained earlier by the method of group foliation, to yield noninvariant solutions of the hyperbolic complex Monge-Ampère equation. Using these solutions we construct new Ricci-flat ultra-hyperbolic metrics with non-zero curvature tensor that have no Killing vectors.

  2. On the lagrangian 1-form structure of the hyperbolic calogero-moser system

    NASA Astrophysics Data System (ADS)

    Jairuk, Umpon; Tanasittikosol, Monsit; Yoo-Kong, Sikarin

    2017-06-01

    In this work, we present the Lagrangian 1-form structure of the hyperbolic Calogero-Moser system in both discrete-time level and continuous-time level. The discrete-time hyperbolic Calogero-Moser system is obtained by considering pole reduction of the semi-discrete Kadomtsev-Petviashvili (KP) equation. Furthermore, it is shown that the hyperbolic Calogero-Moser system possesses the key relation, known as the discrete-time closure relation. This relation is a consequence of the compatibility property of the temporal Lax matrices. The continuous-time hierarchy of the hyperbolic Calogero-Moser system is obtained by taking two successive continuum limits, namely, the skewed limit and full limit. With these successive limits, the continuous-time closure relation is also obtained and is shown to hold at the continuous level.

  3. Hyperbolic phonon polaritons in hexagonal boron nitride (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Dai, Siyuan; Ma, Qiong; Fei, Zhe; Liu, Mengkun; Goldflam, Michael D.; Andersen, Trond; Garnett, William; Regan, Will; Wagner, Martin; McLeod, Alexander S.; Rodin, Alexandr; Zhu, Shou-En; Watanabe, Kenji; Taniguchi, T.; Dominguez, Gerado; Thiemens, Mark; Castro Neto, Antonio H.; Janssen, Guido C. A. M.; Zettl, Alex; Keilmann, Fritz; Jarillo-Herrero, Pablo; Fogler, Michael M.; Basov, Dmitri N.

    2016-09-01

    Uniaxial materials whose axial and tangential permittivities have opposite signs are referred to as indefinite or hyperbolic media. While hyperbolic responses are normally achieved with metamaterials, hexagonal boron nitride (hBN) naturally possesses this property due to the anisotropic phonons in the mid-infrared. Using scattering-type scanning near-field optical microscopy, we studied polaritonic phenomena in hBN. We performed infrared nano-imaging of highly confined and low-loss hyperbolic phonon polaritons in hBN. The polariton wavelength was shown to be governed by the hBN thickness according to a linear law persisting down to few atomic layers [1]. Additionally, we carried out the modification of hyperbolic response in meta-structures comprised of a mononlayer graphene deposited on hBN [2]. Electrostatic gating of the top graphene layer allows for the modification of wavelength and intensity of hyperbolic phonon polaritons in bulk hBN. The physics of the modification originates from the plasmon-phonon coupling in the hyperbolic medium. Furthermore, we demonstrated the "hyperlens" for subdiffractional focusing and imaging using a slab of hBN [3]. References [1] S. Dai et al., Science, 343, 1125 (2014). [2] S. Dai et al., Nature Nanotechnology, 10, 682 (2015). [3] S. Dai et al., Nature Communications, 6, 6963 (2015).

  4. A simple smoothness indicator for the WENO scheme with adaptive order

    NASA Astrophysics Data System (ADS)

    Huang, Cong; Chen, Li Li

    2018-01-01

    The fifth order WENO scheme with adaptive order is competent for solving hyperbolic conservation laws, its reconstruction is a convex combination of a fifth order linear reconstruction and three third order linear reconstructions. Note that, on uniform mesh, the computational cost of smoothness indicator for fifth order linear reconstruction is comparable with the sum of ones for three third order linear reconstructions, thus it is too heavy; on non-uniform mesh, the explicit form of smoothness indicator for fifth order linear reconstruction is difficult to be obtained, and its computational cost is much heavier than the one on uniform mesh. In order to overcome these problems, a simple smoothness indicator for fifth order linear reconstruction is proposed in this paper.

  5. Plasmons and Polaritons in Low Dimensional Systems

    NASA Astrophysics Data System (ADS)

    Sun, Zhiyuan

    Nearly everything relies on the electromagnetic (EM) force to be in its current form. Therefore, light-matter interaction is both a fundamental and a practical subject in physics. Focusing on the electromagnetic field, the matter degrees of freedom can be encoded into its response to the EM field in the form of charge density and urrent. Reshaped by the EM response, the photons in condensed matter systems appear as various collective modes. In this doctoral dissertation, I present our investigation of the linear and nonlinear EM response theory especially in the hydrodynamic regime of electron systems. Electrons in pristine solids behave as a hydrodynamic fluid in a certain range of temperatures and frequencies. We show that the response of such a fluid to electromagnetic field is different from what is predicted by the usual kinetic theory. Certain aspects of this response are universal, for example, a direct relation between the linear and second-order nonlinear optical conductivities. Discovery of this relation enriches our understanding of the light-matter interaction in diverse electron systems and new materials such as graphene. Subsequently, I study the properties of the charged collective modes, the plasmons and demons in 2D Dirac fluids, e.g., the electron-hole system in graphene. Under non-equilibrium situation, the amplitudes of these collective modes could possibly grow due to an effect of adiabatic amplification. I also present our study of the hyperbolic polaritons, the EM modes in hyperbolic materials. When confined in cavities, they develop isolated eigen modes which could be efficiently predicted by applying semi-classical quantization rules to fictitious particles. We demonstrate this Hamiltonian Optics analytically for cavities of spheroidal shapes, and predict novel geometric patterns of the electric field distribution due to classical periodic orbits.

  6. A structure-preserving method for a class of nonlinear dissipative wave equations with Riesz space-fractional derivatives

    NASA Astrophysics Data System (ADS)

    Macías-Díaz, J. E.

    2017-12-01

    In this manuscript, we consider an initial-boundary-value problem governed by a (1 + 1)-dimensional hyperbolic partial differential equation with constant damping that generalizes many nonlinear wave equations from mathematical physics. The model considers the presence of a spatial Laplacian of fractional order which is defined in terms of Riesz fractional derivatives, as well as the inclusion of a generic continuously differentiable potential. It is known that the undamped regime has an associated positive energy functional, and we show here that it is preserved throughout time under suitable boundary conditions. To approximate the solutions of this model, we propose a finite-difference discretization based on fractional centered differences. Some discrete quantities are proposed in this work to estimate the energy functional, and we show that the numerical method is capable of conserving the discrete energy under the same boundary conditions for which the continuous model is conservative. Moreover, we establish suitable computational constraints under which the discrete energy of the system is positive. The method is consistent of second order, and is both stable and convergent. The numerical simulations shown here illustrate the most important features of our numerical methodology.

  7. Optimal control of suspended sediment distribution model of Talaga lake

    NASA Astrophysics Data System (ADS)

    Ratianingsih, R.; Resnawati, Azim, Mardlijah, Widodo, B.

    2017-08-01

    Talaga Lake is one of several lakes in Central Sulawesi that potentially to be managed in multi purposes scheme because of its characteristic. The scheme is addressed not only due to the lake maintenance because of its sediment but also due to the Algae farming for its biodiesel fuel. This paper governs a suspended sediment distribution model of Talaga lake. The model is derived from the two dimensional hydrodynamic shallow water equations of the mass and momentum conservation law of sediment transport. An order reduction of the model gives six equations of hyperbolic systems of the depth, two dimension directional velocities and sediment concentration while the bed elevation as the second order of turbulent diffusion and dispersion are neglected. The system is discreted and linearized such that could be solved numerically by box-Keller method for some initial and boundary condition. The solutions shows that the downstream velocity is play a role in transversal direction of stream function flow. The downstream accumulated sediment indicate that the suspended sediment and its changing should be controlled by optimizing the downstream velocity and transversal suspended sediment changing due to the ideal algae growth need.

  8. First-principles X-ray absorption dose calculation for time-dependent mass and optical density.

    PubMed

    Berejnov, Viatcheslav; Rubinstein, Boris; Melo, Lis G A; Hitchcock, Adam P

    2018-05-01

    A dose integral of time-dependent X-ray absorption under conditions of variable photon energy and changing sample mass is derived from first principles starting with the Beer-Lambert (BL) absorption model. For a given photon energy the BL dose integral D(e, t) reduces to the product of an effective time integral T(t) and a dose rate R(e). Two approximations of the time-dependent optical density, i.e. exponential A(t) = c + aexp(-bt) for first-order kinetics and hyperbolic A(t) = c + a/(b + t) for second-order kinetics, were considered for BL dose evaluation. For both models three methods of evaluating the effective time integral are considered: analytical integration, approximation by a function, and calculation of the asymptotic behaviour at large times. Data for poly(methyl methacrylate) and perfluorosulfonic acid polymers measured by scanning transmission soft X-ray microscopy were used to test the BL dose calculation. It was found that a previous method to calculate time-dependent dose underestimates the dose in mass loss situations, depending on the applied exposure time. All these methods here show that the BL dose is proportional to the exposure time D(e, t) ≃ K(e)t.

  9. Continuous and Discrete Structured Population Models with Applications to Epidemiology and Marine Mammals

    NASA Astrophysics Data System (ADS)

    Tang, Tingting

    In this dissertation, we develop structured population models to examine how changes in the environmental affect population processes. In Chapter 2, we develop a general continuous time size structured model describing a susceptible-infected (SI) population coupled with the environment. This model applies to problems arising in ecology, epidemiology, and cell biology. The model consists of a system of quasilinear hyperbolic partial differential equations coupled with a system of nonlinear ordinary differential equations that represent the environment. We develop a second-order high resolution finite difference scheme to numerically solve the model. Convergence of this scheme to a weak solution with bounded total variation is proved. We numerically compare the second order high resolution scheme with a first order finite difference scheme. Higher order of convergence and high resolution property are observed in the second order finite difference scheme. In addition, we apply our model to a multi-host wildlife disease problem, questions regarding the impact of the initial population structure and transition rate within each host are numerically explored. In Chapter 3, we use a stage structured matrix model for wildlife population to study the recovery process of the population given an environmental disturbance. We focus on the time it takes for the population to recover to its pre-event level and develop general formulas to calculate the sensitivity or elasticity of the recovery time to changes in the initial population distribution, vital rates and event severity. Our results suggest that the recovery time is independent of the initial population size, but is sensitive to the initial population structure. Moreover, it is more sensitive to the reduction proportion to the vital rates of the population caused by the catastrophe event relative to the duration of impact of the event. We present the potential application of our model to the amphibian population dynamic and the recovery of a certain plant population. In addition, we explore, in details, the application of the model to the sperm whale population in Gulf of Mexico after the Deepwater Horizon oil spill. In Chapter 4, we summarize the results from Chapter 2 and Chapter 3 and explore some further avenues of our research.

  10. "That's Really Clever!" Ironic Hyperbole Understanding in Children

    ERIC Educational Resources Information Center

    Aguert, Marc; Le Vallois, Coralie; Martel, Karine; Laval, Virginie

    2018-01-01

    Hyperbole supports irony comprehension in adults by heightening the contrast between what is said and the actual situation. Because young children do not perceive the communication situation as a whole, but rather give precedence to either the utterance or the context, we predicted that hyperbole would reduce irony comprehension in six-year-olds…

  11. Operator splitting method for simulation of dynamic flows in natural gas pipeline networks

    DOE PAGES

    Dyachenko, Sergey A.; Zlotnik, Anatoly; Korotkevich, Alexander O.; ...

    2017-09-19

    Here, we develop an operator splitting method to simulate flows of isothermal compressible natural gas over transmission pipelines. The method solves a system of nonlinear hyperbolic partial differential equations (PDEs) of hydrodynamic type for mass flow and pressure on a metric graph, where turbulent losses of momentum are modeled by phenomenological Darcy-Weisbach friction. Mass flow balance is maintained through the boundary conditions at the network nodes, where natural gas is injected or withdrawn from the system. Gas flow through the network is controlled by compressors boosting pressure at the inlet of the adjoint pipe. Our operator splitting numerical scheme ismore » unconditionally stable and it is second order accurate in space and time. The scheme is explicit, and it is formulated to work with general networks with loops. We test the scheme over range of regimes and network configurations, also comparing its performance with performance of two other state of the art implicit schemes.« less

  12. Does temporal discounting explain unhealthy behavior? A systematic review and reinforcement learning perspective

    PubMed Central

    Story, Giles W.; Vlaev, Ivo; Seymour, Ben; Darzi, Ara; Dolan, Raymond J.

    2014-01-01

    The tendency to make unhealthy choices is hypothesized to be related to an individual's temporal discount rate, the theoretical rate at which they devalue delayed rewards. Furthermore, a particular form of temporal discounting, hyperbolic discounting, has been proposed to explain why unhealthy behavior can occur despite healthy intentions. We examine these two hypotheses in turn. We first systematically review studies which investigate whether discount rates can predict unhealthy behavior. These studies reveal that high discount rates for money (and in some instances food or drug rewards) are associated with several unhealthy behaviors and markers of health status, establishing discounting as a promising predictive measure. We secondly examine whether intention-incongruent unhealthy actions are consistent with hyperbolic discounting. We conclude that intention-incongruent actions are often triggered by environmental cues or changes in motivational state, whose effects are not parameterized by hyperbolic discounting. We propose a framework for understanding these state-based effects in terms of the interplay of two distinct reinforcement learning mechanisms: a “model-based” (or goal-directed) system and a “model-free” (or habitual) system. Under this framework, while discounting of delayed health may contribute to the initiation of unhealthy behavior, with repetition, many unhealthy behaviors become habitual; if health goals then change, habitual behavior can still arise in response to environmental cues. We propose that the burgeoning development of computational models of these processes will permit further identification of health decision-making phenotypes. PMID:24659960

  13. Does temporal discounting explain unhealthy behavior? A systematic review and reinforcement learning perspective.

    PubMed

    Story, Giles W; Vlaev, Ivo; Seymour, Ben; Darzi, Ara; Dolan, Raymond J

    2014-01-01

    The tendency to make unhealthy choices is hypothesized to be related to an individual's temporal discount rate, the theoretical rate at which they devalue delayed rewards. Furthermore, a particular form of temporal discounting, hyperbolic discounting, has been proposed to explain why unhealthy behavior can occur despite healthy intentions. We examine these two hypotheses in turn. We first systematically review studies which investigate whether discount rates can predict unhealthy behavior. These studies reveal that high discount rates for money (and in some instances food or drug rewards) are associated with several unhealthy behaviors and markers of health status, establishing discounting as a promising predictive measure. We secondly examine whether intention-incongruent unhealthy actions are consistent with hyperbolic discounting. We conclude that intention-incongruent actions are often triggered by environmental cues or changes in motivational state, whose effects are not parameterized by hyperbolic discounting. We propose a framework for understanding these state-based effects in terms of the interplay of two distinct reinforcement learning mechanisms: a "model-based" (or goal-directed) system and a "model-free" (or habitual) system. Under this framework, while discounting of delayed health may contribute to the initiation of unhealthy behavior, with repetition, many unhealthy behaviors become habitual; if health goals then change, habitual behavior can still arise in response to environmental cues. We propose that the burgeoning development of computational models of these processes will permit further identification of health decision-making phenotypes.

  14. A mixed fluid-kinetic solver for the Vlasov-Poisson equations

    NASA Astrophysics Data System (ADS)

    Cheng, Yongtao

    Plasmas are ionized gases that appear in a wide range of applications including astrophysics and space physics, as well as in laboratory settings such as in magnetically confined fusion. There are two prevailing types of modeling strategies to describe a plasma system: kinetic models and fluid models. Kinetic models evolve particle probability density distributions (PDFs) in phase space, which are accurate but computationally expensive. Fluid models evolve a small number of moments of the distribution function and reduce the dimension of the solution. However, some approximation is necessary to close the system, and finding an accurate moment closure that correctly captures the dynamics away from thermodynamic equilibrium is a difficult and still open problem. The main contributions of the present work can be divided into two main parts: (1) a new class of moment closures, based on a modification of existing quadrature-based moment-closure methods, is developed using bi-B-spline and bi-bubble representations; and (2) a novel mixed solver that combines a fluid and a kinetic solver is proposed, which uses the new class of moment-closure methods described in the first part. For the newly developed quadrature-based moment-closure based on bi-B-spline and bi-bubble representation, the explicit form of flux terms and the moment-realizability conditions are given. It is shown that while the bi-delta system is weakly hyperbolic, the newly proposed fluid models are strongly hyperbolic. Using a high-order Runge-Kutta discontinuous Galerkin method together with Strang operator splitting, the resulting models are applied to the Vlasov-Poisson-Fokker-Planck system in the high field limit. In the second part of this work, results from kinetic solver are used to provide a corrected closure to the fluid model. This correction keeps the fluid model hyperbolic and gives fluid results that match the moments as computed from the kinetic solution. Furthermore, a prolongation operation based on the bi-bubble moment-closure is used to make the first few moments of the kinetic and fluid solvers match. This results in a kinetic solver that exactly conserves mass and total energy. This mixed fluid-kinetic solver is applied to standard test problems for the Vlasov-Poisson system, including two-stream-instability problem and Landau damping.

  15. Investigation of statistical iterative reconstruction for dedicated breast CT

    PubMed Central

    Makeev, Andrey; Glick, Stephen J.

    2013-01-01

    Purpose: Dedicated breast CT has great potential for improving the detection and diagnosis of breast cancer. Statistical iterative reconstruction (SIR) in dedicated breast CT is a promising alternative to traditional filtered backprojection (FBP). One of the difficulties in using SIR is the presence of free parameters in the algorithm that control the appearance of the resulting image. These parameters require tuning in order to achieve high quality reconstructions. In this study, the authors investigated the penalized maximum likelihood (PML) method with two commonly used types of roughness penalty functions: hyperbolic potential and anisotropic total variation (TV) norm. Reconstructed images were compared with images obtained using standard FBP. Optimal parameters for PML with the hyperbolic prior are reported for the task of detecting microcalcifications embedded in breast tissue. Methods: Computer simulations were used to acquire projections in a half-cone beam geometry. The modeled setup describes a realistic breast CT benchtop system, with an x-ray spectra produced by a point source and an a-Si, CsI:Tl flat-panel detector. A voxelized anthropomorphic breast phantom with 280 μm microcalcification spheres embedded in it was used to model attenuation properties of the uncompressed woman's breast in a pendant position. The reconstruction of 3D images was performed using the separable paraboloidal surrogates algorithm with ordered subsets. Task performance was assessed with the ideal observer detectability index to determine optimal PML parameters. Results: The authors' findings suggest that there is a preferred range of values of the roughness penalty weight and the edge preservation threshold in the penalized objective function with the hyperbolic potential, which resulted in low noise images with high contrast microcalcifications preserved. In terms of numerical observer detectability index, the PML method with optimal parameters yielded substantially improved performance (by a factor of greater than 10) compared to FBP. The hyperbolic prior was also observed to be superior to the TV norm. A few of the best-performing parameter pairs for the PML method also demonstrated superior performance for various radiation doses. In fact, using PML with certain parameter values results in better images, acquired using 2 mGy dose, than FBP-reconstructed images acquired using 6 mGy dose. Conclusions: A range of optimal free parameters for the PML algorithm with hyperbolic and TV norm-based potentials is presented for the microcalcification detection task, in dedicated breast CT. The reported values can be used as starting values of the free parameters, when SIR techniques are used for image reconstruction. Significant improvement in image quality can be achieved by using PML with optimal combination of parameters, as compared to FBP. Importantly, these results suggest improved detection of microcalcifications can be obtained by using PML with lower radiation dose to the patient, than using FBP with higher dose. PMID:23927318

  16. Classification of Tidal Disruption Events Based on Stellar Orbital Properties

    NASA Astrophysics Data System (ADS)

    Hayasaki, Kimitake; Zhong, Shiyan; Li, Shuo; Berczik, Peter; Spurzem, Rainer

    2018-03-01

    We study the rates of tidal disruption of stars on bound to unbound orbits by intermediate-mass to supermassive black holes using high-accuracy direct N-body experiments. Stars from the star cluster approaching the black hole can have three types of orbit: eccentric, parabolic, and hyperbolic. Since the mass fallback rate shows different variabilities depending on the orbital type, we can classify tidal disruption events (TDEs) into three main categories: eccentric, parabolic, and hyperbolic. The respective TDEs are characterized by two critical values of the orbital eccentricity: the lower critical eccentricity is the one below which stars on eccentric orbits cause finite, intense accretion, and the upper critical eccentricity is the one above which stars on hyperbolic orbits cause no accretion. Moreover, we find that parabolic TDEs can be divided into three subclasses: precisely parabolic, marginally eccentric, and marginally hyperbolic. We analytically derive that the mass fallback rate of marginally eccentric TDEs can be flatter and slightly higher than the standard fallback rate proportional to t ‑5/3, whereas it can be flatter and lower for marginally hyperbolic TDEs. We confirm using N-body experiments that only a few eccentric, precisely parabolic, and hyperbolic TDEs can occur in a spherical stellar system with a single intermediate-mass to supermassive black hole. A substantial fraction of the stars approaching the black hole would cause marginally eccentric or marginally hyperbolic TDEs.

  17. Curvature bound from gravitational catalysis

    NASA Astrophysics Data System (ADS)

    Gies, Holger; Martini, Riccardo

    2018-04-01

    We determine bounds on the curvature of local patches of spacetime from the requirement of intact long-range chiral symmetry. The bounds arise from a scale-dependent analysis of gravitational catalysis and its influence on the effective potential for the chiral order parameter, as induced by fermionic fluctuations on a curved spacetime with local hyperbolic properties. The bound is expressed in terms of the local curvature scalar measured in units of a gauge-invariant coarse-graining scale. We argue that any effective field theory of quantum gravity obeying this curvature bound is safe from chiral symmetry breaking through gravitational catalysis and thus compatible with the simultaneous existence of chiral fermions in the low-energy spectrum. With increasing number of dimensions, the curvature bound in terms of the hyperbolic scale parameter becomes stronger. Applying the curvature bound to the asymptotic safety scenario for quantum gravity in four spacetime dimensions translates into bounds on the matter content of particle physics models.

  18. Conservation laws with coinciding smooth solutions but different conserved variables

    NASA Astrophysics Data System (ADS)

    Colombo, Rinaldo M.; Guerra, Graziano

    2018-04-01

    Consider two hyperbolic systems of conservation laws in one space dimension with the same eigenvalues and (right) eigenvectors. We prove that solutions to Cauchy problems with the same initial data differ at third order in the total variation of the initial datum. As a first application, relying on the classical Glimm-Lax result (Glimm and Lax in Decay of solutions of systems of nonlinear hyperbolic conservation laws. Memoirs of the American Mathematical Society, No. 101. American Mathematical Society, Providence, 1970), we obtain estimates improving those in Saint-Raymond (Arch Ration Mech Anal 155(3):171-199, 2000) on the distance between solutions to the isentropic and non-isentropic inviscid compressible Euler equations, under general equations of state. Further applications are to the general scalar case, where rather precise estimates are obtained, to an approximation by Di Perna of the p-system and to a traffic model.

  19. Numerical simulation of idealized front motion in neutral and stratified atmosphere with a hyperbolic system of equations

    NASA Astrophysics Data System (ADS)

    Yudin, M. S.

    2017-11-01

    In the present paper, stratification effects on surface pressure in the propagation of an atmospheric gravity current (cold front) over flat terrain are estimated with a non-hydrostatic finite-difference model of atmospheric dynamics. Artificial compressibility is introduced into the model in order to make its equations hyperbolic. For comparison with available simulation data, the physical processes under study are assumed to be adiabatic. The influence of orography is also eliminated. The front surface is explicitly described by a special equation. A time filter is used to suppress the non-physical oscillations. The results of simulations of surface pressure under neutral and stable stratification are presented. Under stable stratification the front moves faster and shows an abrupt pressure jump at the point of observation. This fact is in accordance with observations and the present-day theory of atmospheric fronts.

  20. Essentially Non-Oscillatory and Weighted Essentially Non-Oscillatory Schemes for Hyperbolic Conservation Laws

    NASA Technical Reports Server (NTRS)

    Shu, Chi-Wang

    1997-01-01

    In these lecture notes we describe the construction, analysis, and application of ENO (Essentially Non-Oscillatory) and WENO (Weighted Essentially Non-Oscillatory) schemes for hyperbolic conservation laws and related Hamilton- Jacobi equations. ENO and WENO schemes are high order accurate finite difference schemes designed for problems with piecewise smooth solutions containing discontinuities. The key idea lies at the approximation level, where a nonlinear adaptive procedure is used to automatically choose the locally smoothest stencil, hence avoiding crossing discontinuities in the interpolation procedure as much as possible. ENO and WENO schemes have been quite successful in applications, especially for problems containing both shocks and complicated smooth solution structures, such as compressible turbulence simulations and aeroacoustics. These lecture notes are basically self-contained. It is our hope that with these notes and with the help of the quoted references, the reader can understand the algorithms and code them up for applications.

  1. Delay, Probability, and Social Discounting in a Public Goods Game

    ERIC Educational Resources Information Center

    Jones, Bryan A.; Rachlin, Howard

    2009-01-01

    A human social discount function measures the value to a person of a reward to another person at a given social distance. Just as delay discounting is a hyperbolic function of delay, and probability discounting is a hyperbolic function of odds-against, social discounting is a hyperbolic function of social distance. Experiment 1 obtained individual…

  2. Hyperbolic spoof plasmonic metasurfaces

    DOE PAGES

    Yang, Yihao; Jing, Liqiao; Shen, Lian; ...

    2017-08-25

    Hyperbolic metasurfaces have recently emerged as a new research frontier because of the unprecedented capabilities to manipulate surface plasmon polaritons (SPPs) and many potential applications. But, thus far, the existence of hyperbolic metasurfaces has neither been observed nor predicted at low frequencies because noble metals cannot support SPPs at longer wavelengths. Here, we propose and experimentally demonstrate spoof plasmonic metasurfaces with a hyperbolic dispersion, where the spoof SPPs propagate on complementary H-shaped, perfectly conducting surfaces at low frequencies. Therefore, non-divergent diffractions, negative refraction and dispersion-dependent spin-momentum locking are observed as the spoof SPPs travel over the hyperbolic spoof plasmonic metasurfacesmore » (HSPMs). The HSPMs provide fundamental new platforms to explore the propagation and spin of spoof SPPs. They show great capabilities for designing advanced surface wave devices such as spatial multiplexers, focusing and imaging devices, planar hyperlenses, and dispersion-dependent directional couplers, at both microwave and terahertz frequencies.« less

  3. Lamb Shift in the Near Field of Hyperbolic Metamaterial Half Space

    NASA Astrophysics Data System (ADS)

    Deng, Nai Jing; Yu, Kin Wah

    2013-03-01

    Hyperbolic metamaterials give a large magnification of the density of states in a specific frequency ranges, and has motivated various applications in emission lifetime reduction, strong absorption, and extraordinary black body radiation, etc. The boost of vacuum energy, which is proportional to the density of states, is expected in hyperbolic metamaterial. We have studied the Lamb shift in vacuum-hyperbolic-metamterial half spaces and shown the non-trivial role of vacuum energy. In our calculation, the easy-fabricated multilayer structure is employed to generate a hyperbolic dispersion relation. The spectrum of hydrogen atoms is calculated with a perturbation method after quantizing the half spaces with a complete mode expansion. It appears that the shift of spectrum is mainly contributed by the terahertz response of materials, which has been well described and predicted in both theories and experiments. Work supported by the General Research Fund of the Hong Kong SAR Government

  4. Quantification and Visualization of Variation in Anatomical Trees

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Amenta, Nina; Datar, Manasi; Dirksen, Asger

    This paper presents two approaches to quantifying and visualizing variation in datasets of trees. The first approach localizes subtrees in which significant population differences are found through hypothesis testing and sparse classifiers on subtree features. The second approach visualizes the global metric structure of datasets through low-distortion embedding into hyperbolic planes in the style of multidimensional scaling. A case study is made on a dataset of airway trees in relation to Chronic Obstructive Pulmonary Disease.

  5. Analysis of a Bianchi-like equation satisfied by the Mars-Simon tensor

    NASA Astrophysics Data System (ADS)

    Beyer, Florian; Paetz, Tim-Torben

    2018-02-01

    The Mars-Simon tensor (MST), which, e.g., plays a crucial role to provide gauge invariant characterizations of the Kerr-NUT-(A)(dS) family, satisfies a Bianchi-like equation. In this paper, we analyze this equation in close analogy to the Bianchi equation, in particular it will be shown that the constraints are preserved supposing that a generalized Buchdahl condition holds. This permits the systematic construction of solutions to this equation in terms of a well-posed Cauchy problem. A particular emphasis lies on the asymptotic Cauchy problem, where data are prescribed on a space-like I (i.e., for ∧ > 0). In contrast to the Bianchi equation, the MST equation is of Fuchsian type at I , for which existence and uniqueness results are derived.

  6. International Conference on Hyperbolic Problems Theory, Numerics, Applications Held in Stony Brook, New York on 13-17 June 1994

    DTIC Science & Technology

    1994-07-25

    these equations, see Antman [1]. fourth order methods are the only ones that give good results Keyfits and Xranser [(3 considered the string with a...produces a weak solution to the Cauchy problem for arbitrarily large initial data by working in L 2 spaces. [1] Stuart S. Antman , "The Equations for

  7. Highly accurate adaptive finite element schemes for nonlinear hyperbolic problems

    NASA Astrophysics Data System (ADS)

    Oden, J. T.

    1992-08-01

    This document is a final report of research activities supported under General Contract DAAL03-89-K-0120 between the Army Research Office and the University of Texas at Austin from July 1, 1989 through June 30, 1992. The project supported several Ph.D. students over the contract period, two of which are scheduled to complete dissertations during the 1992-93 academic year. Research results produced during the course of this effort led to 6 journal articles, 5 research reports, 4 conference papers and presentations, 1 book chapter, and two dissertations (nearing completion). It is felt that several significant advances were made during the course of this project that should have an impact on the field of numerical analysis of wave phenomena. These include the development of high-order, adaptive, hp-finite element methods for elastodynamic calculations and high-order schemes for linear and nonlinear hyperbolic systems. Also, a theory of multi-stage Taylor-Galerkin schemes was developed and implemented in the analysis of several wave propagation problems, and was configured within a general hp-adaptive strategy for these types of problems. Further details on research results and on areas requiring additional study are given in the Appendix.

  8. High-Order Energy Stable WENO Schemes

    NASA Technical Reports Server (NTRS)

    Yamaleev, Nail K.; Carpenter, Mark H.

    2009-01-01

    A third-order Energy Stable Weighted Essentially Non-Oscillatory (ESWENO) finite difference scheme developed by Yamaleev and Carpenter was proven to be stable in the energy norm for both continuous and discontinuous solutions of systems of linear hyperbolic equations. Herein, a systematic approach is presented that enables 'energy stable' modifications for existing WENO schemes of any order. The technique is demonstrated by developing a one-parameter family of fifth-order upwind-biased ESWENO schemes; ESWENO schemes up to eighth order are presented in the appendix. New weight functions are also developed that provide (1) formal consistency, (2) much faster convergence for smooth solutions with an arbitrary number of vanishing derivatives, and (3) improved resolution near strong discontinuities.

  9. Curvature and temperature of complex networks.

    PubMed

    Krioukov, Dmitri; Papadopoulos, Fragkiskos; Vahdat, Amin; Boguñá, Marián

    2009-09-01

    We show that heterogeneous degree distributions in observed scale-free topologies of complex networks can emerge as a consequence of the exponential expansion of hidden hyperbolic space. Fermi-Dirac statistics provides a physical interpretation of hyperbolic distances as energies of links. The hidden space curvature affects the heterogeneity of the degree distribution, while clustering is a function of temperature. We embed the internet into the hyperbolic plane and find a remarkable congruency between the embedding and our hyperbolic model. Besides proving our model realistic, this embedding may be used for routing with only local information, which holds significant promise for improving the performance of internet routing.

  10. Elliptical, parabolic, and hyperbolic exchanges of energy in drag reducing plane Couette flows

    NASA Astrophysics Data System (ADS)

    Pereira, Anselmo S.; Mompean, Gilmar; Thompson, Roney L.; Soares, Edson J.

    2017-11-01

    In the present paper, we investigate the polymer-turbulence interaction by discriminating between the mechanical responses of this system to three different subdomains: elliptical, parabolic, and hyperbolic, corresponding to regions where the magnitude of vorticity is greater than, equal to, or less than the magnitude of the rate of strain, respectively, in accordance with the Q-criterion. Recently, it was recognized that hyperbolic structures play a crucial role in the drag reduction phenomenon of viscoelastic turbulent flows, thanks to the observation that hyperbolic structures, as well as vortical ones, are weakened by the action of polymers in turbulent flows in a process that can be referred to as flow parabolization. We employ direct numerical simulations of a viscoelastic finite extensible nonlinear elastic model with the Peterlin approximation to examine the transient evolution and statistically steady regimes of a plane Couette flow that has been perturbed from a laminar flow at an initial time and developed a turbulent regime as a result of this perturbation. We have found that even more activity is located within the confines of the hyperbolic structures than in the elliptical ones, which highlights the importance of considering the role of hyperbolic structures in the drag reduction mechanism.

  11. Multifunctional Hyperbolic Nanogroove Metasurface for Submolecular Detection.

    PubMed

    Jiang, Li; Zeng, Shuwen; Xu, Zhengji; Ouyang, Qingling; Zhang, Dao-Hua; Chong, Peter Han Joo; Coquet, Philippe; He, Sailing; Yong, Ken-Tye

    2017-08-01

    Metasurface serves as a promising plasmonic sensing platform for engineering the enhanced light-matter interactions. Here, a hyperbolic metasurface with the nanogroove structure in the subwavelength scale is designed. This metasurface is able to modify the wavefront and wavelength of surface plasmon wave with the variation of the nanogroove width or periodicity. At the specific optical frequency, surface plasmon polaritons are tightly confined and propagated with a diffraction-free feature due to the epsilon-near-zero effect. Most importantly, the groove hyperbolic metasurface can enhance the plasmonic sensing with an ultrahigh phase sensitivity of 30 373 deg RIU -1 and Goos-Hänchen shift sensitivity of 10.134 mm RIU -1 . The detection resolution for refractive index change of glycerol solution is achieved as 10 -8 RIU based on the phase measurement. The detection limit of bovine serum albumin (BSA) molecule is measured as low as 0.1 × 10 -18 m (1 × 10 -19 mol L -1 ), which corresponds to a submolecular detection level (0.13 BSA mm -2 ). As for low-weight biotin molecule, the detection limit is estimated below 1 × 10 -15 m (1 × 10 -15 mol L -1 , 1300 biotin mm -2 ). This enhanced plasmonic sensing performance is two orders of magnitude higher than those with current state-of-art plasmonic metamaterials and metasurfaces. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Synchronization of relativistic particles in the hyperbolic Kuramoto model

    NASA Astrophysics Data System (ADS)

    Ritchie, Louis M.; Lohe, M. A.; Williams, Anthony G.

    2018-05-01

    We formulate a noncompact version of the Kuramoto model by replacing the invariance group SO(2) of the plane rotations by the noncompact group SO(1, 1). The N equations of the system are expressed in terms of hyperbolic angles αi and are similar to those of the Kuramoto model, except that the trigonometric functions are replaced by hyperbolic functions. Trajectories are generally unbounded, nevertheless synchronization occurs for any positive couplings κi, arbitrary positive multiplicative parameters λi and arbitrary exponents ωi. There are no critical values for the coupling constants. We measure the onset of synchronization by means of several order and disorder parameters. We show numerically and by means of exact solutions for N = 2 that solutions can develop singularities if the coupling constants are negative, or if the initial values are not suitably restricted. We describe a physical interpretation of the system as a cluster of interacting relativistic particles in 1 + 1 dimensions, subject to linear repulsive forces with space-time trajectories parametrized by the rapidity αi. The trajectories synchronize provided that the particle separations remain predominantly time-like, and the synchronized cluster can be viewed as a bound state of N relativistic particle constituents. We extend the defining equations of the system to higher dimensions by means of vector equations which are covariant with respect to SO(p, q).

  13. A new method of imposing boundary conditions for hyperbolic equations

    NASA Technical Reports Server (NTRS)

    Funaro, D.; ative.

    1987-01-01

    A new method to impose boundary conditions for pseudospectral approximations to hyperbolic equations is suggested. This method involves the collocation of the equation at the boundary nodes as well as satisfying boundary conditions. Stability and convergence results are proven for the Chebyshev approximation of linear scalar hyperbolic equations. The eigenvalues of this method applied to parabolic equations are shown to be real and negative.

  14. Euler and Navier-Stokes equations on the hyperbolic plane.

    PubMed

    Khesin, Boris; Misiolek, Gerard

    2012-11-06

    We show that nonuniqueness of the Leray-Hopf solutions of the Navier-Stokes equation on the hyperbolic plane (2) observed by Chan and Czubak is a consequence of the Hodge decomposition. We show that this phenomenon does not occur on (n) whenever n ≥ 3. We also describe the corresponding general Hamiltonian framework of hydrodynamics on complete Riemannian manifolds, which includes the hyperbolic setting.

  15. The Arabic Hyperbolic Pattern "Fa??al" in Two Recent Translations of the Qur'an

    ERIC Educational Resources Information Center

    El-Zawawy, Amr M.

    2014-01-01

    The present study addresses the problem of rendering the ?? ?? 'fa??al' hyperbolic pattern into English in two recent translations of the Qur'an. Due to the variety of Qur'an translations and the large amount of hyperbolic forms of Arabic verbs recorded in the Qur'an, only two translations of the Qur'an are consulted and analyzed: these two…

  16. Some remarks on the topology of hyperbolic actions of Rn on n-manifolds

    NASA Astrophysics Data System (ADS)

    Bouloc, Damien

    2017-11-01

    This paper contains some results on the topology of a nondegenerate action of Rn on a compact connected n-manifold M when the action is totally hyperbolic (i.e. its toric degree is zero). We study the R-action generated by a fixed vector of Rn, that provides some results on the number of hyperbolic domains and the number of fixed points of the action. We study with more details the case of the 2-sphere, in particular we investigate some combinatorial properties of the associated 4-valent graph embedded in S2. We also construct hyperbolic actions in dimension 3, on the sphere S3 and on the projective space RP3.

  17. Hyperbolic polaritons in nanoparticles

    NASA Astrophysics Data System (ADS)

    Sun, Zhiyuan; Rubio, Angel; Guinea, Francisco; Basov, Dimitri; Fogler, Michael

    2015-03-01

    Hyperbolic optical materials (HM) are characterized by permittivity tensor that has both positive and negative principal values. Collective electromagnetic modes (polaritons) of HM have novel properties promising for various applications including subdiffractional imaging and on-chip optical communication. Hyperbolic response is actively investigated in the context of metamaterials, anisotropic polar insulators, and layered superconductors. We study polaritons in spheroidal HM nanoparticles using Hamiltonian optics. The field equations are mapped to classical dynamics of fictitious particles (wave packets) of an indefinite Hamiltonian. This dynamics is quantized using the Einstein-Brillouin-Keller quantization rule. The eigenmodes are classified as either bulk or surface according to whether their transverse momenta are real or imaginary. To model how such hyperbolic polaritons can be probed by near-field experiments, we compute the field distribution induced inside and outside the spheroid by an external point dipole. At certain magic frequencies the field shows striking geometric patterns whose origin is traced to the classical periodic orbits. The theory is applied to natural hyperbolic materials hexagonal boron nitride and superconducting LaSrCuO.

  18. ADER schemes for scalar non-linear hyperbolic conservation laws with source terms in three-space dimensions

    NASA Astrophysics Data System (ADS)

    Toro, E. F.; Titarev, V. A.

    2005-01-01

    In this paper we develop non-linear ADER schemes for time-dependent scalar linear and non-linear conservation laws in one-, two- and three-space dimensions. Numerical results of schemes of up to fifth order of accuracy in both time and space illustrate that the designed order of accuracy is achieved in all space dimensions for a fixed Courant number and essentially non-oscillatory results are obtained for solutions with discontinuities. We also present preliminary results for two-dimensional non-linear systems.

  19. Tensor tomography on Cartan–Hadamard manifolds

    NASA Astrophysics Data System (ADS)

    Lehtonen, Jere; Railo, Jesse; Salo, Mikko

    2018-04-01

    We study the geodesic x-ray transform on Cartan–Hadamard manifolds, generalizing the x-ray transforms on Euclidean and hyperbolic spaces that arise in medical and seismic imaging. We prove solenoidal injectivity of this transform acting on functions and tensor fields of any order. The functions are assumed to be exponentially decaying if the sectional curvature is bounded, and polynomially decaying if the sectional curvature decays at infinity. This work extends the results of Lehtonen (2016 arXiv:1612.04800) to dimensions n ≥slant 3 and to the case of tensor fields of any order.

  20. Positive mass and Penrose type inequalities for asymptotically hyperbolic hypersurfaces

    NASA Astrophysics Data System (ADS)

    de Lima, Levi Lopes; Girão, Frederico

    2015-03-01

    We establish versions of the positive mass and Penrose inequalities for a class of asymptotically hyperbolic hypersurfaces. In particular, under the usual dominant energy condition, we prove in all dimensions an optimal Penrose inequality for certain graphs in hyperbolic space whose boundary has constant mean curvature . This settles, for this class of manifolds, an inequality first conjectured by Wang (J Differ Geom 57(2):273-299, 2001).

  1. Euler and Navier–Stokes equations on the hyperbolic plane

    PubMed Central

    Khesin, Boris; Misiołek, Gerard

    2012-01-01

    We show that nonuniqueness of the Leray–Hopf solutions of the Navier–Stokes equation on the hyperbolic plane ℍ2 observed by Chan and Czubak is a consequence of the Hodge decomposition. We show that this phenomenon does not occur on ℍn whenever n ≥ 3. We also describe the corresponding general Hamiltonian framework of hydrodynamics on complete Riemannian manifolds, which includes the hyperbolic setting. PMID:23091015

  2. Policy Effects in Hyperbolic vs. Exponential Models of Consumption and Retirement

    PubMed Central

    Gustman, Alan L.; Steinmeier, Thomas L.

    2012-01-01

    This paper constructs a structural retirement model with hyperbolic preferences and uses it to estimate the effect of several potential Social Security policy changes. Estimated effects of policies are compared using two models, one with hyperbolic preferences and one with standard exponential preferences. Sophisticated hyperbolic discounters may accumulate substantial amounts of wealth for retirement. We find it is frequently difficult to distinguish empirically between models with the two types of preferences on the basis of asset accumulation paths or consumption paths around the period of retirement. Simulations suggest that, despite the much higher initial time preference rate, individuals with hyperbolic preferences may actually value a real annuity more than individuals with exponential preferences who have accumulated roughly equal amounts of assets. This appears to be especially true for individuals with relatively high time preference rates or who have low assets for whatever reason. This affects the tradeoff between current benefits and future benefits on which many of the retirement incentives of the Social Security system rest. Simulations involving increasing the early entitlement age and increasing the delayed retirement credit do not show a great deal of difference whether exponential or hyperbolic preferences are used, but simulations for eliminating the earnings test show a non-trivially greater effect when exponential preferences are used. PMID:22711946

  3. Policy Effects in Hyperbolic vs. Exponential Models of Consumption and Retirement.

    PubMed

    Gustman, Alan L; Steinmeier, Thomas L

    2012-06-01

    This paper constructs a structural retirement model with hyperbolic preferences and uses it to estimate the effect of several potential Social Security policy changes. Estimated effects of policies are compared using two models, one with hyperbolic preferences and one with standard exponential preferences. Sophisticated hyperbolic discounters may accumulate substantial amounts of wealth for retirement. We find it is frequently difficult to distinguish empirically between models with the two types of preferences on the basis of asset accumulation paths or consumption paths around the period of retirement. Simulations suggest that, despite the much higher initial time preference rate, individuals with hyperbolic preferences may actually value a real annuity more than individuals with exponential preferences who have accumulated roughly equal amounts of assets. This appears to be especially true for individuals with relatively high time preference rates or who have low assets for whatever reason. This affects the tradeoff between current benefits and future benefits on which many of the retirement incentives of the Social Security system rest.Simulations involving increasing the early entitlement age and increasing the delayed retirement credit do not show a great deal of difference whether exponential or hyperbolic preferences are used, but simulations for eliminating the earnings test show a non-trivially greater effect when exponential preferences are used.

  4. The hyperbolic step potential: Anti-bound states, SUSY partners and Wigner time delays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gadella, M.; Kuru, Ş.; Negro, J., E-mail: jnegro@fta.uva.es

    We study the scattering produced by a one dimensional hyperbolic step potential, which is exactly solvable and shows an unusual interest because of its asymmetric character. The analytic continuation of the scattering matrix in the momentum representation has a branch cut and an infinite number of simple poles on the negative imaginary axis which are related with the so called anti-bound states. This model does not show resonances. Using the wave functions of the anti-bound states, we obtain supersymmetric (SUSY) partners which are the series of Rosen–Morse II potentials. We have computed the Wigner reflection and transmission time delays formore » the hyperbolic step and such SUSY partners. Our results show that the more bound states a partner Hamiltonian has the smaller is the time delay. We also have evaluated time delays for the hyperbolic step potential in the classical case and have obtained striking similitudes with the quantum case. - Highlights: • The scattering matrix of hyperbolic step potential is studied. • The scattering matrix has a branch cut and an infinite number of poles. • The poles are associated to anti-bound states. • Susy partners using antibound states are computed. • Wigner time delays for the hyperbolic step and partner potentials are compared.« less

  5. Where the Solar system meets the solar neighbourhood: patterns in the distribution of radiants of observed hyperbolic minor bodies

    NASA Astrophysics Data System (ADS)

    de la Fuente Marcos, Carlos; de la Fuente Marcos, Raúl; Aarseth, Sverre J.

    2018-05-01

    Observed hyperbolic minor bodies might have an interstellar origin, but they can be natives of the Solar system as well. Fly-bys with the known planets or the Sun may result in the hyperbolic ejection of an originally bound minor body; in addition, members of the Oort cloud could be forced to follow inbound hyperbolic paths as a result of secular perturbations induced by the Galactic disc or, less frequently, due to impulsive interactions with passing stars. These four processes must leave distinctive signatures in the distribution of radiants of observed hyperbolic objects, both in terms of coordinates and velocity. Here, we perform a systematic numerical exploration of the past orbital evolution of known hyperbolic minor bodies using a full N-body approach and statistical analyses to study their radiants. Our results confirm the theoretical expectations that strong anisotropies are present in the data. We also identify a statistically significant overdensity of high-speed radiants towards the constellation of Gemini that could be due to the closest and most recent known fly-by of a star to the Solar system, that of the so-called Scholz's star. In addition to and besides 1I/2017 U1 (`Oumuamua), we single out eight candidate interstellar comets based on their radiants' velocities.

  6. Collisions with meteoroid streams as one possible mechanism for the formation of hyperbolic cometary orbits

    NASA Astrophysics Data System (ADS)

    Guliyev, Ayyub; Nabiyev, Shaig

    2017-07-01

    This paper presents the results of a statistical analysis of the dynamic parameters of 300 comets that have osculating hyperbolic orbits. It is shown that such comets differ from other comets by their large perihelion distances and by a predominance of retrograde motion. It is shown that the values of i, the inclination of the hyperbolic comets, are in comparative excess over the interval 90-120°. The dominance by q, the perihelion distance, renders it difficult to suggest that the excess hyperbolic velocity of these comets can be the result of physical processes that take place in their nuclei. Aspects of the following working hypothesis, that the hyperbolic excess of parameter e might be formed after comets pass through meteoroid streams, are also studied. To evaluate this hypothesis, the distribution of the orbits of hyperbolic comets relative to the plane of motion of 112 established meteoroid streams are analyzed. The number (N) of orbit nodes for hyperbolic comets with respect to the plane of each stream at various distances is calculated. To determine the degree of redundancy of N, a special computing algorithm was applied that provided the expected value nav as well as the standard deviation σ for the number of cometary nodes at the plane of each stream. A comparative analysis of the N and nav values that take σ into account suggests an excess in 40 stream cases. This implies that the passage of comets through meteoroid streams can lead to an acceleration of the comets' heliocentric velocity.

  7. High-order cyclo-difference techniques: An alternative to finite differences

    NASA Technical Reports Server (NTRS)

    Carpenter, Mark H.; Otto, John C.

    1993-01-01

    The summation-by-parts energy norm is used to establish a new class of high-order finite-difference techniques referred to here as 'cyclo-difference' techniques. These techniques are constructed cyclically from stable subelements, and require no numerical boundary conditions; when coupled with the simultaneous approximation term (SAT) boundary treatment, they are time asymptotically stable for an arbitrary hyperbolic system. These techniques are similar to spectral element techniques and are ideally suited for parallel implementation, but do not require special collocation points or orthogonal basis functions. The principal focus is on methods of sixth-order formal accuracy or less; however, these methods could be extended in principle to any arbitrary order of accuracy.

  8. Investigation of statistical iterative reconstruction for dedicated breast CT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Makeev, Andrey; Glick, Stephen J.

    2013-08-15

    Purpose: Dedicated breast CT has great potential for improving the detection and diagnosis of breast cancer. Statistical iterative reconstruction (SIR) in dedicated breast CT is a promising alternative to traditional filtered backprojection (FBP). One of the difficulties in using SIR is the presence of free parameters in the algorithm that control the appearance of the resulting image. These parameters require tuning in order to achieve high quality reconstructions. In this study, the authors investigated the penalized maximum likelihood (PML) method with two commonly used types of roughness penalty functions: hyperbolic potential and anisotropic total variation (TV) norm. Reconstructed images weremore » compared with images obtained using standard FBP. Optimal parameters for PML with the hyperbolic prior are reported for the task of detecting microcalcifications embedded in breast tissue.Methods: Computer simulations were used to acquire projections in a half-cone beam geometry. The modeled setup describes a realistic breast CT benchtop system, with an x-ray spectra produced by a point source and an a-Si, CsI:Tl flat-panel detector. A voxelized anthropomorphic breast phantom with 280 μm microcalcification spheres embedded in it was used to model attenuation properties of the uncompressed woman's breast in a pendant position. The reconstruction of 3D images was performed using the separable paraboloidal surrogates algorithm with ordered subsets. Task performance was assessed with the ideal observer detectability index to determine optimal PML parameters.Results: The authors' findings suggest that there is a preferred range of values of the roughness penalty weight and the edge preservation threshold in the penalized objective function with the hyperbolic potential, which resulted in low noise images with high contrast microcalcifications preserved. In terms of numerical observer detectability index, the PML method with optimal parameters yielded substantially improved performance (by a factor of greater than 10) compared to FBP. The hyperbolic prior was also observed to be superior to the TV norm. A few of the best-performing parameter pairs for the PML method also demonstrated superior performance for various radiation doses. In fact, using PML with certain parameter values results in better images, acquired using 2 mGy dose, than FBP-reconstructed images acquired using 6 mGy dose.Conclusions: A range of optimal free parameters for the PML algorithm with hyperbolic and TV norm-based potentials is presented for the microcalcification detection task, in dedicated breast CT. The reported values can be used as starting values of the free parameters, when SIR techniques are used for image reconstruction. Significant improvement in image quality can be achieved by using PML with optimal combination of parameters, as compared to FBP. Importantly, these results suggest improved detection of microcalcifications can be obtained by using PML with lower radiation dose to the patient, than using FBP with higher dose.« less

  9. A Systematic Methodology for Constructing High-Order Energy-Stable WENO Schemes

    NASA Technical Reports Server (NTRS)

    Yamaleev, Nail K.; Carpenter, Mark H.

    2008-01-01

    A third-order Energy Stable Weighted Essentially Non-Oscillatory (ESWENO) finite difference scheme developed by Yamaleev and Carpenter (AIAA 2008-2876, 2008) was proven to be stable in the energy norm for both continuous and discontinuous solutions of systems of linear hyperbolic equations. Herein, a systematic approach is presented that enables \\energy stable" modifications for existing WENO schemes of any order. The technique is demonstrated by developing a one-parameter family of fifth-order upwind-biased ESWENO schemes; ESWENO schemes up to eighth order are presented in the appendix. New weight functions are also developed that provide (1) formal consistency, (2) much faster convergence for smooth solutions with an arbitrary number of vanishing derivatives, and (3) improved resolution near strong discontinuities.

  10. A new adaptively central-upwind sixth-order WENO scheme

    NASA Astrophysics Data System (ADS)

    Huang, Cong; Chen, Li Li

    2018-03-01

    In this paper, we propose a new sixth-order WENO scheme for solving one dimensional hyperbolic conservation laws. The new WENO reconstruction has three properties: (1) it is central in smooth region for low dissipation, and is upwind near discontinuities for numerical stability; (2) it is a convex combination of four linear reconstructions, in which one linear reconstruction is sixth order, and the others are third order; (3) its linear weights can be any positive numbers with requirement that their sum equals one. Furthermore, we propose a simple smoothness indicator for the sixth-order linear reconstruction, this smooth indicator not only can distinguish the smooth region and discontinuities exactly, but also can reduce the computational cost, thus it is more efficient than the classical one.

  11. A Systematic Methodology for Constructing High-Order Energy Stable WENO Schemes

    NASA Technical Reports Server (NTRS)

    Yamaleev, Nail K.; Carpenter, Mark H.

    2009-01-01

    A third-order Energy Stable Weighted Essentially Non{Oscillatory (ESWENO) finite difference scheme developed by Yamaleev and Carpenter [1] was proven to be stable in the energy norm for both continuous and discontinuous solutions of systems of linear hyperbolic equations. Herein, a systematic approach is presented that enables "energy stable" modifications for existing WENO schemes of any order. The technique is demonstrated by developing a one-parameter family of fifth-order upwind-biased ESWENO schemes; ESWENO schemes up to eighth order are presented in the appendix. New weight functions are also developed that provide (1) formal consistency, (2) much faster convergence for smooth solutions with an arbitrary number of vanishing derivatives, and (3) improved resolution near strong discontinuities.

  12. High-Order Implicit-Explicit Multi-Block Time-stepping Method for Hyperbolic PDEs

    NASA Technical Reports Server (NTRS)

    Nielsen, Tanner B.; Carpenter, Mark H.; Fisher, Travis C.; Frankel, Steven H.

    2014-01-01

    This work seeks to explore and improve the current time-stepping schemes used in computational fluid dynamics (CFD) in order to reduce overall computational time. A high-order scheme has been developed using a combination of implicit and explicit (IMEX) time-stepping Runge-Kutta (RK) schemes which increases numerical stability with respect to the time step size, resulting in decreased computational time. The IMEX scheme alone does not yield the desired increase in numerical stability, but when used in conjunction with an overlapping partitioned (multi-block) domain significant increase in stability is observed. To show this, the Overlapping-Partition IMEX (OP IMEX) scheme is applied to both one-dimensional (1D) and two-dimensional (2D) problems, the nonlinear viscous Burger's equation and 2D advection equation, respectively. The method uses two different summation by parts (SBP) derivative approximations, second-order and fourth-order accurate. The Dirichlet boundary conditions are imposed using the Simultaneous Approximation Term (SAT) penalty method. The 6-stage additive Runge-Kutta IMEX time integration schemes are fourth-order accurate in time. An increase in numerical stability 65 times greater than the fully explicit scheme is demonstrated to be achievable with the OP IMEX method applied to 1D Burger's equation. Results from the 2D, purely convective, advection equation show stability increases on the order of 10 times the explicit scheme using the OP IMEX method. Also, the domain partitioning method in this work shows potential for breaking the computational domain into manageable sizes such that implicit solutions for full three-dimensional CFD simulations can be computed using direct solving methods rather than the standard iterative methods currently used.

  13. Tunable VO2/Au Hyperbolic Metamaterial

    DTIC Science & Technology

    2016-02-12

    phenomenon having a potential of advancing the control of light-matter interaction . Metamaterials are engineered composite materials containing sub...ellipsoids15 – the phenomenon known as hyperbolic dispersion. Hyperbolic metamaterials can propagate light waves with very large wave vectors and have a...incidence angles equal to 15°, 45° and 65°. The spectra measured at 45o are depicted in Fig. 6(a). The wavy pattern in the spectra is due to the parasitic

  14. Concave utility, transaction costs, and risk in measuring discounting of delayed rewards.

    PubMed

    Kirby, Kris N; Santiesteban, Mariana

    2003-01-01

    Research has consistently found that the decline in the present values of delayed rewards as delay increases is better fit by hyperbolic than by exponential delay-discounting functions. However, concave utility, transaction costs, and risk each could produce hyperbolic-looking data, even when the underlying discounting function is exponential. In Experiments 1 (N = 45) and 2 (N = 103), participants placed bids indicating their present values of real future monetary rewards in computer-based 2nd-price auctions. Both experiments suggest that utility is not sufficiently concave to account for the superior fit of hyperbolic functions. Experiment 2 provided no evidence that the effects of transaction costs and risk are large enough to account for the superior fit of hyperbolic functions.

  15. Guidance of Nonlinear Nonminimum-Phase Dynamic Systems

    NASA Technical Reports Server (NTRS)

    Devasia, Santosh

    1996-01-01

    The research work has advanced the inversion-based guidance theory for: systems with non-hyperbolic internal dynamics; systems with parameter jumps; and systems where a redesign of the output trajectory is desired. A technique to achieve output tracking for nonminimum phase linear systems with non-hyperbolic and near non-hyperbolic internal dynamics was developed. This approach integrated stable inversion techniques, that achieve exact-tracking, with approximation techniques, that modify the internal dynamics to achieve desirable performance. Such modification of the internal dynamics was used (a) to remove non-hyperbolicity which is an obstruction to applying stable inversion techniques and (b) to reduce large preactuation times needed to apply stable inversion for near non-hyperbolic cases. The method was applied to an example helicopter hover control problem with near non-hyperbolic internal dynamics for illustrating the trade-off between exact tracking and reduction of preactuation time. Future work will extend these results to guidance of nonlinear non-hyperbolic systems. The exact output tracking problem for systems with parameter jumps was considered. Necessary and sufficient conditions were derived for the elimination of switching-introduced output transient. While previous works had studied this problem by developing a regulator that maintains exact tracking through parameter jumps (switches), such techniques are, however, only applicable to minimum-phase systems. In contrast, our approach is also applicable to nonminimum-phase systems and leads to bounded but possibly non-causal solutions. In addition, for the case when the reference trajectories are generated by an exosystem, we developed an exact-tracking controller which could be written in a feedback form. As in standard regulator theory, we also obtained a linear map from the states of the exosystem to the desired system state, which was defined via a matrix differential equation.

  16. Ergodicity-breaking bifurcations and tunneling in hyperbolic transport models

    NASA Astrophysics Data System (ADS)

    Giona, M.; Brasiello, A.; Crescitelli, S.

    2015-11-01

    One of the main differences between parabolic transport, associated with Langevin equations driven by Wiener processes, and hyperbolic models related to generalized Kac equations driven by Poisson processes, is the occurrence in the latter of multiple stable invariant densities (Frobenius multiplicity) in certain regions of the parameter space. This phenomenon is associated with the occurrence in linear hyperbolic balance equations of a typical bifurcation, referred to as the ergodicity-breaking bifurcation, the properties of which are thoroughly analyzed.

  17. The curious case of large-N expansions on a (pseudo)sphere

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Polyakov, Alexander M.; Saleem, Zain H.; Stokes, James

    We elucidate the large-N dynamics of one-dimensional sigma models with spherical and hyperbolic target spaces and find a duality between the Lagrange multiplier and the angular momentum. In the hyperbolic model we propose a new class of operators based on the irreducible representations of hyperbolic space. We also uncover unexpected zero modes which lead to the double scaling of the 1/N expansion and explore these modes using Gelfand-Dikiy equations.

  18. The curious case of large-N expansions on a (pseudo)sphere

    DOE PAGES

    Polyakov, Alexander M.; Saleem, Zain H.; Stokes, James

    2015-02-03

    We elucidate the large-N dynamics of one-dimensional sigma models with spherical and hyperbolic target spaces and find a duality between the Lagrange multiplier and the angular momentum. In the hyperbolic model we propose a new class of operators based on the irreducible representations of hyperbolic space. We also uncover unexpected zero modes which lead to the double scaling of the 1/N expansion and explore these modes using Gelfand-Dikiy equations.

  19. New Techniques in Time-Frequency Analysis: Adaptive Band, Ultra-Wide Band and Multi-Rate Signal Processing

    DTIC Science & Technology

    2016-03-02

    Nyquist tiles and sampling groups in Euclidean geometry, and discussed the extension of these concepts to hyperbolic and spherical geometry and...hyperbolic or spherical spaces. We look to develop a structure for the tiling of frequency spaces in both Euclidean and non-Euclidean domains. In particular...we establish Nyquist tiles and sampling groups in Euclidean geometry, and discuss the extension of these concepts to hyperbolic and spherical geometry

  20. Fluid displacement between two parallel plates: a non-empirical model displaying change of type from hyperbolic to elliptic equations

    NASA Astrophysics Data System (ADS)

    Shariati, M.; Talon, L.; Martin, J.; Rakotomalala, N.; Salin, D.; Yortsos, Y. C.

    2004-11-01

    We consider miscible displacement between parallel plates in the absence of diffusion, with a concentration-dependent viscosity. By selecting a piecewise viscosity function, this can also be considered as ‘three-fluid’ flow in the same geometry. Assuming symmetry across the gap and based on the lubrication (‘equilibrium’) approximation, a description in terms of two quasi-linear hyperbolic equations is obtained. We find that the system is hyperbolic and can be solved analytically, when the mobility profile is monotonic, or when the mobility of the middle phase is smaller than its neighbours. When the mobility of the middle phase is larger, a change of type is displayed, an elliptic region developing in the composition space. Numerical solutions of Riemann problems of the hyperbolic system spanning the elliptic region, with small diffusion added, show good agreement with the analytical outside, but an unstable behaviour inside the elliptic region. In these problems, the elliptic region arises precisely at the displacement front. Crossing the elliptic region requires the solution of essentially an eigenvalue problem of the full higher-dimensional model, obtained here using lattice BGK simulations. The hyperbolic-to-elliptic change-of-type reflects the failing of the lubrication approximation, underlying the quasi-linear hyperbolic formalism, to describe the problem uniformly. The obtained solution is analogous to non-classical shocks recently suggested in problems with change of type.

  1. Higher-order jump conditions for conservation laws

    NASA Astrophysics Data System (ADS)

    Oksuzoglu, Hakan

    2018-04-01

    The hyperbolic conservation laws admit discontinuous solutions where the solution variables can have finite jumps in space and time. The jump conditions for conservation laws are expressed in terms of the speed of the discontinuity and the state variables on both sides. An example from the Gas Dynamics is the Rankine-Hugoniot conditions for the shock speed. Here, we provide an expression for the acceleration of the discontinuity in terms of the state variables and their spatial derivatives on both sides. We derive a jump condition for the shock acceleration. Using this general expression, we show how to obtain explicit shock acceleration formulas for nonlinear hyperbolic conservation laws. We start with the Burgers' equation and check the derived formula with an analytical solution. We next derive formulas for the Shallow Water Equations and the Euler Equations of Gas Dynamics. We will verify our formulas for the Euler Equations using an exact solution for the spherically symmetric blast wave problem. In addition, we discuss the potential use of these formulas for the implementation of shock fitting methods.

  2. A Theoretical Framework for Lagrangian Descriptors

    NASA Astrophysics Data System (ADS)

    Lopesino, C.; Balibrea-Iniesta, F.; García-Garrido, V. J.; Wiggins, S.; Mancho, A. M.

    This paper provides a theoretical background for Lagrangian Descriptors (LDs). The goal of achieving rigorous proofs that justify the ability of LDs to detect invariant manifolds is simplified by introducing an alternative definition for LDs. The definition is stated for n-dimensional systems with general time dependence, however we rigorously prove that this method reveals the stable and unstable manifolds of hyperbolic points in four particular 2D cases: a hyperbolic saddle point for linear autonomous systems, a hyperbolic saddle point for nonlinear autonomous systems, a hyperbolic saddle point for linear nonautonomous systems and a hyperbolic saddle point for nonlinear nonautonomous systems. We also discuss further rigorous results which show the ability of LDs to highlight additional invariants sets, such as n-tori. These results are just a simple extension of the ergodic partition theory which we illustrate by applying this methodology to well-known examples, such as the planar field of the harmonic oscillator and the 3D ABC flow. Finally, we provide a thorough discussion on the requirement of the objectivity (frame-invariance) property for tools designed to reveal phase space structures and their implications for Lagrangian descriptors.

  3. Discounting of reward sequences: a test of competing formal models of hyperbolic discounting

    PubMed Central

    Zarr, Noah; Alexander, William H.; Brown, Joshua W.

    2014-01-01

    Humans are known to discount future rewards hyperbolically in time. Nevertheless, a formal recursive model of hyperbolic discounting has been elusive until recently, with the introduction of the hyperbolically discounted temporal difference (HDTD) model. Prior to that, models of learning (especially reinforcement learning) have relied on exponential discounting, which generally provides poorer fits to behavioral data. Recently, it has been shown that hyperbolic discounting can also be approximated by a summed distribution of exponentially discounted values, instantiated in the μAgents model. The HDTD model and the μAgents model differ in one key respect, namely how they treat sequences of rewards. The μAgents model is a particular implementation of a Parallel discounting model, which values sequences based on the summed value of the individual rewards whereas the HDTD model contains a non-linear interaction. To discriminate among these models, we observed how subjects discounted a sequence of three rewards, and then we tested how well each candidate model fit the subject data. The results show that the Parallel model generally provides a better fit to the human data. PMID:24639662

  4. Department of Defense Doctrine Should Incorporate Sixty Years of Disaster Research in Order to Realistically Plan and Effectively Execute Disaster Response

    DTIC Science & Technology

    2013-05-01

    91 Provide Other Designated Support ........................................................................ 92 Fundamentals of Civil Support...consist of new work in political science, political philosophy, and law.20 Moral Theory The greatest test of any political idea or philosophy...and hyperbole.1 Common beliefs, more aptly termed myths, were included in the pioneer reseach conducted in the early 1950s, when the social sciences

  5. Research on Nonlinear Dynamical Systems.

    DTIC Science & Technology

    1983-01-10

    Applied Math., to appear. [26] Variational inequalities and flow in porous media, LCDS’Lecture Notes, Brown University #LN 82-1, July 1982. [27] On...approximation schemes for parabolic and hyperbolic systems of partial differential equations, including higher order equations of elasticity based on the...51,58,59,63,64,69]. Finally, stability and bifurcation in parabolic partial differential equations is the focus of [64,65,67,72,73]. In addition to these broad

  6. Contact microspherical nanoscopy: from fundamentals to biomedical applications

    NASA Astrophysics Data System (ADS)

    Astratov, V. N.; Maslov, A. V.; Brettin, A.; Blanchette, K. F.; Nesmelov, Y. E.; Limberopoulos, N. I.; Walker, D. E.; Urbas, A. M.

    2017-02-01

    The mechanisms of super-resolution imaging by contact microspherical or microcylindrical nanoscopy remain an enigmatic question since these lenses neither have an ability to amplify the near-fields like in the case of far-field superlens, nor they have a hyperbolic dispersion similar to hyperlenses. In this work, we present results along two lines. First, we performed numerical modeling of super-resolution properties of two-dimensional (2-D) circular lens in the limit of wavelength-scale diameters, λ <= D <= 2λ, and relatively high indices of refraction, n=2. Our preliminary results on imaging point dipoles indicate that the resolution is generally close to λ/4 however on resonance with whispering gallery modes it may be slightly higher. Second, experimentally, we used actin protein filaments for the resolution quantification in microspherical nanoscopy. The critical feature of our approach is based on using arrayed cladding layer with strong localized surface plasmon resonances. This layer is used for enhancing plasmonic near-field illumination of our objects. In combination with the magnification of virtual image, this technique resulted in the lateral resolution of actin protein filaments on the order of λ/7.

  7. A Second Order Semi-Discrete Cosserat Rod Model Suitable for Dynamic Simulations in Real Time

    NASA Astrophysics Data System (ADS)

    Lang, Holger; Linn, Joachim

    2009-09-01

    We present an alternative approach for a semi-discrete viscoelastic Cosserat rod model that allows both fast dynamic computations within milliseconds and accurate results compared to detailed finite element solutions. The model is able to represent extension, shearing, bending and torsion. For inner dissipation, a consistent damping potential from Antman is chosen. The continuous equations of motion, which consist a system of nonlinear hyperbolic partial differential algebraic equations, are derived from a two dimensional variational principle. The semi-discrete balance equations are obtained by spatial finite difference schemes on a staggered grid and standard index reduction techniques. The right-hand side of the model and its Jacobian can be chosen free of higher algebraic (e.g. root) or transcendent (e.g. trigonometric or exponential) functions and is therefore extremely cheap to evaluate numerically. For the time integration of the system, we use well established stiff solvers. As our model yields computational times within milliseconds, it is suitable for interactive manipulation. It reflects structural mechanics solutions sufficiently correct, as comparison with detailed finite element results shows.

  8. Computer simulation of two-dimensional unsteady flows in estuaries and embayments by the method of characteristics : basic theory and the formulation of the numerical method

    USGS Publications Warehouse

    Lai, Chintu

    1977-01-01

    Two-dimensional unsteady flows of homogeneous density in estuaries and embayments can be described by hyperbolic, quasi-linear partial differential equations involving three dependent and three independent variables. A linear combination of these equations leads to a parametric equation of characteristic form, which consists of two parts: total differentiation along the bicharacteristics and partial differentiation in space. For its numerical solution, the specified-time-interval scheme has been used. The unknown, partial space-derivative terms can be eliminated first by suitable combinations of difference equations, converted from the corresponding differential forms and written along four selected bicharacteristics and a streamline. Other unknowns are thus made solvable from the known variables on the current time plane. The computation is carried to the second-order accuracy by using trapezoidal rule of integration. Means to handle complex boundary conditions are developed for practical application. Computer programs have been written and a mathematical model has been constructed for flow simulation. The favorable computer outputs suggest further exploration and development of model worthwhile. (Woodard-USGS)

  9. Transformations of asymptotically AdS hyperbolic initial data and associated geometric inequalities

    NASA Astrophysics Data System (ADS)

    Cha, Ye Sle; Khuri, Marcus

    2018-01-01

    We construct transformations which take asymptotically AdS hyperbolic initial data into asymptotically flat initial data, and which preserve relevant physical quantities. This is used to derive geometric inequalities in the asymptotically AdS hyperbolic setting from counterparts in the asymptotically flat realm, whenever a geometrically motivated system of elliptic equations admits a solution. The inequalities treated here relate mass, angular momentum, charge, and horizon area. Furthermore, new mass-angular momentum inequalities in this setting are conjectured and discussed.

  10. Convergence results for pseudospectral approximations of hyperbolic systems by a penalty type boundary treatment

    NASA Technical Reports Server (NTRS)

    Funaro, Daniele; Gottlieb, David

    1989-01-01

    A new method of imposing boundary conditions in the pseudospectral approximation of hyperbolic systems of equations is proposed. It is suggested to collocate the equations, not only at the inner grid points, but also at the boundary points and use the boundary conditions as penalty terms. In the pseudo-spectral Legrendre method with the new boundary treatment, a stability analysis for the case of a constant coefficient hyperbolic system is presented and error estimates are derived.

  11. Hyperbolic heat conduction problems involving non-Fourier effects - Numerical simulations via explicit Lax-Wendroff/Taylor-Galerkin finite element formulations

    NASA Technical Reports Server (NTRS)

    Tamma, Kumar K.; Namburu, Raju R.

    1989-01-01

    Numerical simulations are presented for hyperbolic heat-conduction problems that involve non-Fourier effects, using explicit, Lax-Wendroff/Taylor-Galerkin FEM formulations as the principal computational tool. Also employed are smoothing techniques which stabilize the numerical noise and accurately predict the propagating thermal disturbances. The accurate capture of propagating thermal disturbances at characteristic time-step values is achieved; numerical test cases are presented which validate the proposed hyperbolic heat-conduction problem concepts.

  12. Corner-corrected diagonal-norm summation-by-parts operators for the first derivative with increased order of accuracy

    NASA Astrophysics Data System (ADS)

    Del Rey Fernández, David C.; Boom, Pieter D.; Zingg, David W.

    2017-02-01

    Combined with simultaneous approximation terms, summation-by-parts (SBP) operators offer a versatile and efficient methodology that leads to consistent, conservative, and provably stable discretizations. However, diagonal-norm operators with a repeating interior-point operator that have thus far been constructed suffer from a loss of accuracy. While on the interior, these operators are of degree 2p, at a number of nodes near the boundaries, they are of degree p, and therefore of global degree p - meaning the highest degree monomial for which the operators are exact at all nodes. This implies that for hyperbolic problems and operators of degree greater than unity they lead to solutions with a global order of accuracy lower than the degree of the interior-point operator. In this paper, we develop a procedure to construct diagonal-norm first-derivative SBP operators that are of degree 2p at all nodes and therefore can lead to solutions of hyperbolic problems of order 2 p + 1. This is accomplished by adding nonzero entries in the upper-right and lower-left corners of SBP operator matrices with a repeating interior-point operator. This modification necessitates treating these new operators as elements, where mesh refinement is accomplished by increasing the number of elements in the mesh rather than increasing the number of nodes. The significant improvements in accuracy of this new family, for the same repeating interior-point operator, are demonstrated in the context of the linear convection equation.

  13. Bifurcations and degenerate periodic points in a three dimensional chaotic fluid flow

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, L. D., E-mail: lachlan.smith@monash.edu; CSIRO Mineral Resources, Clayton, Victoria 3800; Rudman, M.

    2016-05-15

    Analysis of the periodic points of a conservative periodic dynamical system uncovers the basic kinematic structure of the transport dynamics and identifies regions of local stability or chaos. While elliptic and hyperbolic points typically govern such behaviour in 3D systems, degenerate (parabolic) points also play an important role. These points represent a bifurcation in local stability and Lagrangian topology. In this study, we consider the ramifications of the two types of degenerate periodic points that occur in a model 3D fluid flow. (1) Period-tripling bifurcations occur when the local rotation angle associated with elliptic points is reversed, creating a reversalmore » in the orientation of associated Lagrangian structures. Even though a single unstable point is created, the bifurcation in local stability has a large influence on local transport and the global arrangement of manifolds as the unstable degenerate point has three stable and three unstable directions, similar to hyperbolic points, and occurs at the intersection of three hyperbolic periodic lines. The presence of period-tripling bifurcation points indicates regions of both chaos and confinement, with the extent of each depending on the nature of the associated manifold intersections. (2) The second type of bifurcation occurs when periodic lines become tangent to local or global invariant surfaces. This bifurcation creates both saddle–centre bifurcations which can create both chaotic and stable regions, and period-doubling bifurcations which are a common route to chaos in 2D systems. We provide conditions for the occurrence of these tangent bifurcations in 3D conservative systems, as well as constraints on the possible types of tangent bifurcation that can occur based on topological considerations.« less

  14. Précis of Breakdown of Will.

    PubMed

    Ainslie, George

    2005-10-01

    Behavioral science has long been puzzled by the experience of temptation, the resulting impulsiveness, and the variably successful control of this impulsiveness. In conventional theories, a governing faculty like the ego evaluates future choices consistently over time, discounting their value for delay exponentially, that is, by a constant rate; impulses arise when this ego is confronted by a conditioned appetite. Breakdown of Will (Ainslie 2001) presents evidence that contradicts this model. Both people and nonhuman animals spontaneously discount the value of expected events in a curve where value is divided approximately by expected delay, a hyperbolic form that is more bowed than the rational, exponential curve. With hyperbolic discounting, options that pay off quickly will be temporarily preferred to richer but slower-paying alternatives, a phenomenon that, over periods from minutes to days, can account for impulsive behaviors, and over periods of fractional seconds can account for involuntary behaviors. Contradictory reward-getting processes can in effect bargain with each other, and stable preferences can be established by the perception of recurrent choices as test cases (precedents) in recurrent intertemporal prisoner's dilemmas. The resulting motivational pattern resembles traditional descriptions of the will, as well as of compulsive phenomena that can now be seen as side-effects of will: over-concern with precedent, intractable but circumscribed failures of self-control, a motivated ("dynamic") unconscious, and an inability to exploit emotional rewards. Hyperbolic curves also suggest a means of reducing classical conditioning to motivated choice, the last necessary step for modeling many involuntary processes like emotion and appetite as reward-seeking behaviors; such modeling, in turn, provides a rationale for empathic reward and the "construction" of reality.

  15. Deciphering infant mortality

    NASA Astrophysics Data System (ADS)

    Berrut, Sylvie; Pouillard, Violette; Richmond, Peter; Roehner, Bertrand M.

    2016-12-01

    This paper is about infant mortality. In line with reliability theory, "infant" refers to the time interval following birth during which the mortality (or failure) rate decreases. This definition provides a systems science perspective in which birth constitutes a sudden transition falling within the field of application of the Transient Shock (TS) conjecture put forward in Richmond and Roehner (2016c). This conjecture provides predictions about the timing and shape of the death rate peak. It says that there will be a death rate spike whenever external conditions change abruptly and drastically and also predicts that after a steep rise there will be a much longer hyperbolic relaxation process. These predictions can be tested by considering living organisms for which the transient shock occurs several days after birth. Thus, for fish there are three stages: egg, yolk-sac and young adult phases. The TS conjecture predicts a mortality spike at the end of the yolk-sac phase and this timing is indeed confirmed by observation. Secondly, the hyperbolic nature of the relaxation process can be tested using very accurate Swiss statistics for postnatal death rates spanning the period from one hour immediately after birth through to age 10 years. It turns out that since the 19th century despite a significant and large reduction in infant mortality, the shape of the age-specific death rate has remained basically unchanged. Moreover the hyperbolic pattern observed for humans is also found for small primates as recorded in the archives of zoological gardens. Our overall objective is to identify a series of cases which start from simple systems and move step by step to more complex organisms. The cases discussed here we believe represent initial landmarks in this quest.

  16. A new neural observer for an anaerobic bioreactor.

    PubMed

    Belmonte-Izquierdo, R; Carlos-Hernandez, S; Sanchez, E N

    2010-02-01

    In this paper, a recurrent high order neural observer (RHONO) for anaerobic processes is proposed. The main objective is to estimate variables of methanogenesis: biomass, substrate and inorganic carbon in a completely stirred tank reactor (CSTR). The recurrent high order neural network (RHONN) structure is based on the hyperbolic tangent as activation function. The learning algorithm is based on an extended Kalman filter (EKF). The applicability of the proposed scheme is illustrated via simulation. A validation using real data from a lab scale process is included. Thus, this observer can be successfully implemented for control purposes.

  17. Subdiffractional focusing and guiding of polaritonic rays in a natural hyperbolic material

    PubMed Central

    Dai, S.; Ma, Q.; Andersen, T.; Mcleod, A. S.; Fei, Z.; Liu, M. K.; Wagner, M.; Watanabe, K.; Taniguchi, T.; Thiemens, M.; Keilmann, F.; Jarillo-Herrero, P.; Fogler, M. M.; Basov, D. N.

    2015-01-01

    Uniaxial materials whose axial and tangential permittivities have opposite signs are referred to as indefinite or hyperbolic media. In such materials, light propagation is unusual leading to novel and often non-intuitive optical phenomena. Here we report infrared nano-imaging experiments demonstrating that crystals of hexagonal boron nitride, a natural mid-infrared hyperbolic material, can act as a ‘hyper-focusing lens' and as a multi-mode waveguide. The lensing is manifested by subdiffractional focusing of phonon–polaritons launched by metallic disks underneath the hexagonal boron nitride crystal. The waveguiding is revealed through the modal analysis of the periodic patterns observed around such launchers and near the sample edges. Our work opens new opportunities for anisotropic layered insulators in infrared nanophotonics complementing and potentially surpassing concurrent artificial hyperbolic materials with lower losses and higher optical localization. PMID:25902364

  18. "That's really clever!" Ironic hyperbole understanding in children.

    PubMed

    Aguert, Marc; LE Vallois, Coralie; Martel, Karine; Laval, Virginie

    2018-01-01

    Hyperbole supports irony comprehension in adults by heightening the contrast between what is said and the actual situation. Because young children do not perceive the communication situation as a whole, but rather give precedence to either the utterance or the context, we predicted that hyperbole would reduce irony comprehension in six-year-olds (n = 40) by overemphasizing what was said. By contrast, ten-year-olds (n = 40) would benefit from hyperbole in the way that adults do, as they would perceive the utterance and context as a whole, highlighted by the speaker's ironic intent. Short animated cartoons featuring ironic criticisms were shown to participants. We assessed comprehension of the speaker's belief and speaker's intent. Results supported our predictions. The development of mentalization during school years and its impact on the development of irony comprehension is discussed.

  19. Dispersive optical soliton solutions for the hyperbolic and cubic-quintic nonlinear Schrödinger equations via the extended sinh-Gordon equation expansion method

    NASA Astrophysics Data System (ADS)

    Seadawy, Aly R.; Kumar, Dipankar; Chakrabarty, Anuz Kumar

    2018-05-01

    The (2+1)-dimensional hyperbolic and cubic-quintic nonlinear Schrödinger equations describe the propagation of ultra-short pulses in optical fibers of nonlinear media. By using an extended sinh-Gordon equation expansion method, some new complex hyperbolic and trigonometric functions prototype solutions for two nonlinear Schrödinger equations were derived. The acquired new complex hyperbolic and trigonometric solutions are expressed by dark, bright, combined dark-bright, singular and combined singular solitons. The obtained results are more compatible than those of other applied methods. The extended sinh-Gordon equation expansion method is a more powerful and robust mathematical tool for generating new optical solitary wave solutions for many other nonlinear evolution equations arising in the propagation of optical pulses.

  20. Partner symmetries and non-invariant solutions of four-dimensional heavenly equations

    NASA Astrophysics Data System (ADS)

    Malykh, A. A.; Nutku, Y.; Sheftel, M. B.

    2004-07-01

    We extend our method of partner symmetries to the hyperbolic complex Monge-Ampère equation and the second heavenly equation of Plebañski. We show the existence of partner symmetries and derive the relations between them. For certain simple choices of partner symmetries the resulting differential constraints together with the original heavenly equations are transformed to systems of linear equations by an appropriate Legendre transformation. The solutions of these linear equations are generically non-invariant. As a consequence we obtain explicitly new classes of heavenly metrics without Killing vectors.

  1. Fourier analysis of finite element preconditioned collocation schemes

    NASA Technical Reports Server (NTRS)

    Deville, Michel O.; Mund, Ernest H.

    1990-01-01

    The spectrum of the iteration operator of some finite element preconditioned Fourier collocation schemes is investigated. The first part of the paper analyses one-dimensional elliptic and hyperbolic model problems and the advection-diffusion equation. Analytical expressions of the eigenvalues are obtained with use of symbolic computation. The second part of the paper considers the set of one-dimensional differential equations resulting from Fourier analysis (in the tranverse direction) of the 2-D Stokes problem. All results agree with previous conclusions on the numerical efficiency of finite element preconditioning schemes.

  2. Very Efficient High-order Hyperbolic Schemes for Time-dependent Advection Diffusion Problems: Third-, Fourth-, and Sixth-order

    DTIC Science & Technology

    2014-07-07

    boundary condition (x ¼ 7p =2; j ¼ 2p; U ¼ 1; m ¼ 1) on N ¼ 10 uniform nodes (Dt ¼ 0:01.) Table 10 Unsteady linear advection–diffusion problem with periodic...500 3rd 55 2 4th 55 2 6th 55 2 1000 3rd 116 2 4th 116 2 6th 116 2 Table 11 Unsteady linear advection–diffusion problem with oscillatory BC (x ¼ 7p =2; a...dependent problem with oscillatory BC (x ¼ 7p =2; a ¼ 1.) using the third-order RD-GT scheme with the BDF3 time discretization. Number of nodes Dt (BDF3

  3. Bifurcation of Limit Cycles in a Near-Hamiltonian System with a Cusp of Order Two and a Saddle

    NASA Astrophysics Data System (ADS)

    Bakhshalizadeh, Ali; Zangeneh, Hamid R. Z.; Kazemi, Rasool

    In this paper, the asymptotic expansion of first-order Melnikov function of a heteroclinic loop connecting a cusp of order two and a hyperbolic saddle for a planar near-Hamiltonian system is given. Next, we consider the limit cycle bifurcations of a hyper-elliptic Liénard system with this kind of heteroclinic loop and study the least upper bound of limit cycles bifurcated from the period annulus inside the heteroclinic loop, from the heteroclinic loop itself and the center. We find that at most three limit cycles can be bifurcated from the period annulus, also we present different distributions of bifurcated limit cycles.

  4. Non-analyticity of holographic Rényi entropy in Lovelock gravity

    NASA Astrophysics Data System (ADS)

    Puletti, V. Giangreco M.; Pourhasan, Razieh

    2017-08-01

    We compute holographic Rényi entropies for spherical entangling surfaces on the boundary while considering third order Lovelock gravity with negative cosmological constant in the bulk. Our study shows that third order Lovelock black holes with hyperbolic event horizon are unstable, and at low temperatures those with smaller mass are favoured, giving rise to first order phase transitions in the bulk. We determine regions in the Lovelock parameter space in arbitrary dimensions, where bulk phase transitions happen and where boundary causality constraints are met. We show that each of these points corresponds to a dual boundary conformal field theory whose Rényi entropy exhibits a kink at a certain critical index n.

  5. A Class of High-Resolution Explicit and Implicit Shock-Capturing Methods

    NASA Technical Reports Server (NTRS)

    Yee, H. C.

    1994-01-01

    The development of shock-capturing finite difference methods for hyperbolic conservation laws has been a rapidly growing area for the last decade. Many of the fundamental concepts, state-of-the-art developments and applications to fluid dynamics problems can only be found in meeting proceedings, scientific journals and internal reports. This paper attempts to give a unified and generalized formulation of a class of high-resolution, explicit and implicit shock capturing methods, and to illustrate their versatility in various steady and unsteady complex shock waves, perfect gases, equilibrium real gases and nonequilibrium flow computations. These numerical methods are formulated for the purpose of ease and efficient implementation into a practical computer code. The various constructions of high-resolution shock-capturing methods fall nicely into the present framework and a computer code can be implemented with the various methods as separate modules. Included is a systematic overview of the basic design principle of the various related numerical methods. Special emphasis will be on the construction of the basic nonlinear, spatially second and third-order schemes for nonlinear scalar hyperbolic conservation laws and the methods of extending these nonlinear scalar schemes to nonlinear systems via the approximate Riemann solvers and flux-vector splitting approaches. Generalization of these methods to efficiently include real gases and large systems of nonequilibrium flows will be discussed. Some perbolic conservation laws to problems containing stiff source terms and terms and shock waves are also included. The performance of some of these schemes is illustrated by numerical examples for one-, two- and three-dimensional gas-dynamics problems. The use of the Lax-Friedrichs numerical flux to obtain high-resolution shock-capturing schemes is generalized. This method can be extended to nonlinear systems of equations without the use of Riemann solvers or flux-vector splitting approaches and thus provides a large savings for multidimensional, equilibrium real gases and nonequilibrium flow computations.

  6. On the Theory of the Laval Nozzle

    NASA Technical Reports Server (NTRS)

    Falkovich, S. V.

    1949-01-01

    In the present paper, the motion of a gas in a plane-parallel Laval nozzle in the neighborhood of the transition from subsonic to supersonic velocities is studied. In a recently published paper, F. I. Frankl, applying the holograph method of Chaplygin, undertook a detailed investigation of the character of the flow near the line of transition from subsonic to supersonic velocities. From the results of Tricomi's investigation on the theory of differential equations of the mixed elliptic-hyperbolic type, Frankl introduced as one of the independent variables in place of the modulus of the velocity, a certain specially chosen function of this modulus. He thereby succeeded in explaining the character of the flow at the point of intersection of the transition line and the axis of symmetry (center of the nozzle) and in studying the behavior of the stream function in the neighborhood of this point by separating out the principal term having, together with its derivatives, the maximum value as compared with the corresponding corrections. This principal term is represented in Frankl's paper in the form of a linear combination of two hypergeometric functions. In order to find this linear combination, it is necessary to solve a number of boundary problems, which results in a complex analysis. In the investigation of the flow with which this paper is concerned, a second method is applied. This method is based on the transformation of the equations of motion to a form that may be called canonical for the system of differential equations of the mixed elliptic-hyperbolic type to which the system of equations of the motion of an ideal compressible fluid refers. By studying the behavior of the integrals of this system in the neighborhood of the parabolic line, the principal term of the solution is easily separated out in the form of a polynomial of the third degree. As a result, the computation of the transitional part of the nozzle is considerably simplified.

  7. Waves in hyperbolic and double negative metamaterials including rogues and solitons

    NASA Astrophysics Data System (ADS)

    Boardman, A. D.; Alberucci, A.; Assanto, G.; Grimalsky, V. V.; Kibler, B.; McNiff, J.; Nefedov, I. S.; Rapoport, Yu G.; Valagiannopoulos, C. A.

    2017-11-01

    The topics here deal with some current progress in electromagnetic wave propagation in a family of substances known as metamaterials. To begin with, it is discussed how a pulse can develop a leading edge that steepens and it is emphasised that such self-steepening is an important inclusion within a metamaterial environment together with Raman scattering and third-order dispersion whenever very short pulses are being investigated. It is emphasised that the self-steepening parameter is highly metamaterial-driven compared to Raman scattering, which is associated with a coefficient of the same form whether a normal positive phase, or a metamaterial waveguide is the vehicle for any soliton propagation. It is also shown that the influence of magnetooptics provides a beautiful and important control mechanism for metamaterial devices and that, in the future, this feature will have a significant impact upon the design of data control systems for optical computing. A major objective is fulfiled by the investigations of the fascinating properties of hyperbolic media that exhibit asymmetry of supported modes due to the tilt of optical axes. This is a topic that really merits elaboration because structural and optical asymmetry in optical components that end up manipulating electromagnetic waves is now the foundation of how to operate some of the most successful devices in photonics and electronics. It is pointed out, in this context, that graphene is one of the most famous plasmonic media with very low losses. It is a two-dimensional material that makes the implementation of an effective-medium approximation more feasible. Nonlinear non-stationary diffraction in active planar anisotropic hyperbolic metamaterials is discussed in detail and two approaches are compared. One of them is based on the averaging over a unit cell, while the other one does not include sort of averaging. The formation and propagation of optical spatial solitons in hyperbolic metamaterials is also considered with a model of the response of hyperbolic metamaterials in terms of the homogenisation (‘effective medium’) approach. The model has a macroscopic dielectric tensor encompassing at least one negative eigenvalue. It is shown that light propagating in the presence of hyperbolic dispersion undergoes negative (anomalous) diffraction. The theory is ten broadened out to include the influence of the orientation of the optical axis with respect to the propagation wave vector. Optical rogue waves are discussed in terms of how they are influenced, but not suppressed, by a metamaterial background. It is strongly discussed that metamaterials and optical rogue waves have both been making headlines in recent years and that they are, separately, large areas of research to study. A brief background of the inevitable linkage of them is considered and important new possibilities are discussed. After this background is revealed some new rogue wave configurations combining the two areas are presented alongside a discussion of the way forward for the future.

  8. Multi-time-scale heat transfer modeling of turbid tissues exposed to short-pulsed irradiations.

    PubMed

    Kim, Kyunghan; Guo, Zhixiong

    2007-05-01

    A combined hyperbolic radiation and conduction heat transfer model is developed to simulate multi-time-scale heat transfer in turbid tissues exposed to short-pulsed irradiations. An initial temperature response of a tissue to an ultrashort pulse irradiation is analyzed by the volume-average method in combination with the transient discrete ordinates method for modeling the ultrafast radiation heat transfer. This response is found to reach pseudo steady state within 1 ns for the considered tissues. The single pulse result is then utilized to obtain the temperature response to pulse train irradiation at the microsecond/millisecond time scales. After that, the temperature field is predicted by the hyperbolic heat conduction model which is solved by the MacCormack's scheme with error terms correction. Finally, the hyperbolic conduction is compared with the traditional parabolic heat diffusion model. It is found that the maximum local temperatures are larger in the hyperbolic prediction than the parabolic prediction. In the modeled dermis tissue, a 7% non-dimensional temperature increase is found. After about 10 thermal relaxation times, thermal waves fade away and the predictions between the hyperbolic and parabolic models are consistent.

  9. High-order Discontinuous Element-based Schemes for the Inviscid Shallow Water Equations: Spectral Multidomain Penalty and Discontinuous Galerkin Methods

    DTIC Science & Technology

    2011-07-19

    multidomain methods, Discontinuous Galerkin methods, interfacial treatment ∗ Jorge A. Escobar-Vargas, School of Civil and Environmental Engineering, Cornell...Click here to view linked References 1. Introduction Geophysical flows exhibit a complex structure and dynamics over a broad range of scales that...hyperbolic problems, where the interfacial patching was implemented with an upwind scheme based on a modified method of characteristics. This approach

  10. Hyperbolic chaos in the klystron-type microwave vacuum tube oscillator

    NASA Astrophysics Data System (ADS)

    Emel'yanov, V. V.; Kuznetsov, S. P.; Ryskin, N. M.

    2010-12-01

    The ring-loop oscillator consisting of two coupled klystrons which is capable of generating hyperbolic chaotic signal in the microwave band is considered. The system of delayed-differential equations describing the dynamics of the oscillator is derived. This system is further reduced to the two-dimensional return map under the assumption of the instantaneous build-up of oscillations in the cavities. The results of detailed numerical simulation for both models are presented showing that there exists large enough range of control parameters where the sustained regime corresponds to the structurally stable hyperbolic chaos.

  11. Motion Among Random Obstacles on a Hyperbolic Space

    NASA Astrophysics Data System (ADS)

    Orsingher, Enzo; Ricciuti, Costantino; Sisti, Francesco

    2016-02-01

    We consider the motion of a particle along the geodesic lines of the Poincaré half-plane. The particle is specularly reflected when it hits randomly-distributed obstacles that are assumed to be motionless. This is the hyperbolic version of the well-known Lorentz Process studied in the Euclidean context. We analyse the limit in which the density of the obstacles increases to infinity and the size of each obstacle vanishes: under a suitable scaling, we prove that our process converges to a Markovian process, namely a random flight on the hyperbolic manifold.

  12. Exotica and the status of the strong cosmic censor conjecture in four dimensions

    NASA Astrophysics Data System (ADS)

    Etesi, Gábor

    2017-12-01

    An immense class of physical counterexamples to the four dimensional strong cosmic censor conjecture—in its usual broad formulation—is exhibited. More precisely, out of any closed and simply connected 4-manifold an open Ricci-flat Lorentzian 4-manifold is constructed which is not globally hyperbolic, and no perturbation of which, in any sense, can be globally hyperbolic. This very stable non-global-hyperbolicity is the consequence of our open spaces having a ‘creased end’—i.e. an end diffeomorphic to an exotic \

  13. Obtaining high-resolution velocity spectra using weighted semblance

    NASA Astrophysics Data System (ADS)

    Ebrahimi, Saleh; Kahoo, Amin Roshandel; Porsani, Milton J.; Kalateh, Ali Nejati

    2017-02-01

    Velocity analysis employs coherency measurement along a hyperbolic or non-hyperbolic trajectory time window to build velocity spectra. Accuracy and resolution are strictly related to the method of coherency measurements. Semblance, the most common coherence measure, has poor resolution velocity which affects one's ability to distinguish and pick distinct peaks. Increase the resolution of the semblance velocity spectra causes the accuracy of estimated velocity for normal moveout correction and stacking is improved. The low resolution of semblance spectra depends on its low sensitivity to velocity changes. In this paper, we present a new weighted semblance method that ensures high-resolution velocity spectra. To increase the resolution of semblance spectra, we introduce two weighting functions based on the first to second singular values ratio of the time window and the position of the seismic wavelet in the time window to the semblance equation. We test the method on both synthetic and real field data to compare the resolution of weighted and conventional semblance methods. Numerical examples with synthetic and real seismic data indicate that the new proposed weighted semblance method provides higher resolution than conventional semblance and can separate the reflectors which are mixed in the semblance spectrum.

  14. A new look at the Feynman ‘hodograph’ approach to the Kepler first law

    NASA Astrophysics Data System (ADS)

    Cariñena, José F.; Rañada, Manuel F.; Santander, Mariano

    2016-03-01

    Hodographs for the Kepler problem are circles. This fact, known for almost two centuries, still provides the simplest path to derive the Kepler first law. Through Feynman’s ‘lost lecture’, this derivation has now reached a wider audience. Here we look again at Feynman’s approach to this problem, as well as the recently suggested modification by van Haandel and Heckman (vHH), with two aims in mind, both of which extend the scope of the approach. First we review the geometric constructions of the Feynman and vHH approaches (that prove the existence of elliptic orbits without making use of integral calculus or differential equations) and then extend the geometric approach to also cover the hyperbolic orbits (corresponding to E\\gt 0). In the second part we analyse the properties of the director circles of the conics, which are used to simplify the approach, and we relate with the properties of the hodographs and Laplace-Runge-Lenz vector the constant of motion specific to the Kepler problem. Finally, we briefly discuss the generalisation of the geometric method to the Kepler problem in configuration spaces of constant curvature, i.e. in the sphere and the hyperbolic plane.

  15. SAHARA: A package of PC computer programs for estimating both log-hyperbolic grain-size parameters and standard moments

    NASA Astrophysics Data System (ADS)

    Christiansen, Christian; Hartmann, Daniel

    This paper documents a package of menu-driven POLYPASCAL87 computer programs for handling grouped observations data from both sieving (increment data) and settling tube procedures (cumulative data). The package is designed deliberately for use on IBM-compatible personal computers. Two of the programs solve the numerical problem of determining the estimates of the four (main) parameters of the log-hyperbolic distribution and their derivatives. The package also contains a program for determining the mean, sorting, skewness. and kurtosis according to the standard moments. Moreover, the package contains procedures for smoothing and grouping of settling tube data. A graphic part of the package plots the data in a log-log plot together with the estimated log-hyperbolic curve. Along with the plot follows all estimated parameters. Another graphic option is a plot of the log-hyperbolic shape triangle with the (χ,ζ) position of the sample.

  16. Photonic spin Hall effect in hyperbolic metamaterials for polarization-controlled routing of subwavelength modes.

    PubMed

    Kapitanova, Polina V; Ginzburg, Pavel; Rodríguez-Fortuño, Francisco J; Filonov, Dmitry S; Voroshilov, Pavel M; Belov, Pavel A; Poddubny, Alexander N; Kivshar, Yuri S; Wurtz, Gregory A; Zayats, Anatoly V

    2014-01-01

    The routing of light in a deep subwavelength regime enables a variety of important applications in photonics, quantum information technologies, imaging and biosensing. Here we describe and experimentally demonstrate the selective excitation of spatially confined, subwavelength electromagnetic modes in anisotropic metamaterials with hyperbolic dispersion. A localized, circularly polarized emitter placed at the boundary of a hyperbolic metamaterial is shown to excite extraordinary waves propagating in a prescribed direction controlled by the polarization handedness. Thus, a metamaterial slab acts as an extremely broadband, nearly ideal polarization beam splitter for circularly polarized light. We perform a proof of concept experiment with a uniaxial hyperbolic metamaterial at radio-frequencies revealing the directional routing effect and strong subwavelength λ/300 confinement. The proposed concept of metamaterial-based subwavelength interconnection and polarization-controlled signal routing is based on the photonic spin Hall effect and may serve as an ultimate platform for either conventional or quantum electromagnetic signal processing.

  17. Luminescent hyperbolic metasurfaces

    NASA Astrophysics Data System (ADS)

    Smalley, J. S. T.; Vallini, F.; Montoya, S. A.; Ferrari, L.; Shahin, S.; Riley, C. T.; Kanté, B.; Fullerton, E. E.; Liu, Z.; Fainman, Y.

    2017-01-01

    When engineered on scales much smaller than the operating wavelength, metal-semiconductor nanostructures exhibit properties unobtainable in nature. Namely, a uniaxial optical metamaterial described by a hyperbolic dispersion relation can simultaneously behave as a reflective metal and an absorptive or emissive semiconductor for electromagnetic waves with orthogonal linear polarization states. Using an unconventional multilayer architecture, we demonstrate luminescent hyperbolic metasurfaces, wherein distributed semiconducting quantum wells display extreme absorption and emission polarization anisotropy. Through normally incident micro-photoluminescence measurements, we observe absorption anisotropies greater than a factor of 10 and degree-of-linear polarization of emission >0.9. We observe the modification of emission spectra and, by incorporating wavelength-scale gratings, show a controlled reduction of polarization anisotropy. We verify hyperbolic dispersion with numerical simulations that model the metasurface as a composite nanoscale structure and according to the effective medium approximation. Finally, we experimentally demonstrate >350% emission intensity enhancement relative to the bare semiconducting quantum wells.

  18. Realizing high-quality ultralarge momentum states and ultrafast topological transitions using semiconductor hyperbolic metamaterials

    DOE PAGES

    Campione, Salvatore; Liu, Sheng; Luk, Ting S.; ...

    2015-08-05

    We employ both the effective medium approximation (EMA) and Bloch theory to compare the dispersion properties of semiconductor hyperbolic metamaterials (SHMs) at mid-infrared frequencies and metallic hyperbolic metamaterials (MHMs) at visible frequencies. This analysis reveals the conditions under which the EMA can be safely applied for both MHMs and SHMs. We find that the combination of precise nanoscale layering and the longer infrared operating wavelengths puts the SHMs well within the effective medium limit and, in contrast to MHMs, allows for the attainment of very high photon momentum states. Additionally, SHMs allow for new phenomena such as ultrafast creation ofmore » the hyperbolic manifold through optical pumping. Furthermore, we examine the possibility of achieving ultrafast topological transitions through optical pumping which can photo-dope appropriately designed quantum wells on the femtosecond time scale.« less

  19. Chimeras and clusters in networks of hyperbolic chaotic oscillators

    NASA Astrophysics Data System (ADS)

    Cano, A. V.; Cosenza, M. G.

    2017-03-01

    We show that chimera states, where differentiated subsets of synchronized and desynchronized dynamical elements coexist, can emerge in networks of hyperbolic chaotic oscillators subject to global interactions. As local dynamics we employ Lozi maps, which possess hyperbolic chaotic attractors. We consider a globally coupled system of these maps and use two statistical quantities to describe its collective behavior: the average fraction of elements belonging to clusters and the average standard deviation of state variables. Chimera states, clusters, complete synchronization, and incoherence are thus characterized on the space of parameters of the system. We find that chimera states are related to the formation of clusters in the system. In addition, we show that chimera states arise for a sufficiently long range of interactions in nonlocally coupled networks of these maps. Our results reveal that, under some circumstances, hyperbolicity does not impede the formation of chimera states in networks of coupled chaotic systems, as it had been previously hypothesized.

  20. Hyperbolic metamaterial lens with hydrodynamic nonlocal response.

    PubMed

    Yan, Wei; Mortensen, N Asger; Wubs, Martijn

    2013-06-17

    We investigate the effects of hydrodynamic nonlocal response in hyperbolic metamaterials (HMMs), focusing on the experimentally realizable parameter regime where unit cells are much smaller than an optical wavelength but much larger than the wavelengths of the longitudinal pressure waves of the free-electron plasma in the metal constituents. We derive the nonlocal corrections to the effective material parameters analytically, and illustrate the noticeable nonlocal effects on the dispersion curves numerically. As an application, we find that the focusing characteristics of a HMM lens in the local-response approximation and in the hydrodynamic Drude model can differ considerably. In particular, the optimal frequency for imaging in the nonlocal theory is blueshifted with respect to that in the local theory. Thus, to detect whether nonlocal response is at work in a hyperbolic metamaterial, we propose to measure the near-field distribution of a hyperbolic metamaterial lens.

  1. Near-field heat transfer between graphene/hBN multilayers

    NASA Astrophysics Data System (ADS)

    Zhao, Bo; Guizal, Brahim; Zhang, Zhuomin M.; Fan, Shanhui; Antezza, Mauro

    2017-06-01

    We study the radiative heat transfer between multilayer structures made by a periodic repetition of a graphene sheet and a hexagonal boron nitride (hBN) slab. Surface plasmons in a monolayer graphene can couple with hyperbolic phonon polaritons in a single hBN film to form hybrid polaritons that can assist photon tunneling. For periodic multilayer graphene/hBN structures, the stacked metallic/dielectric array can give rise to a further effective hyperbolic behavior, in addition to the intrinsic natural hyperbolic behavior of hBN. The effective hyperbolicity can enable more hyperbolic polaritons that enhance the photon tunneling and hence the near-field heat transfer. However, the hybrid polaritons on the surface, i.e., surface plasmon-phonon polaritons, dominate the near-field heat transfer between multilayer structures when the topmost layer is graphene. The effective hyperbolic regions can be well predicted by the effective medium theory (EMT), thought EMT fails to capture the hybrid surface polaritons and results in a heat transfer rate much lower compared to the exact calculation. The chemical potential of the graphene sheets can be tuned through electrical gating and results in an additional modulation of the heat transfer. We found that the near-field heat transfer between multilayer structures does not increase monotonously with the number of layers in the stack, which provides a way to control the heat transfer rate by the number of graphene layers in the multilayer structure. The results may benefit the applications of near-field energy harvesting and radiative cooling based on hybrid polaritons in two-dimensional materials.

  2. Inverse-Square Orbits: A Geometric Approach.

    ERIC Educational Resources Information Center

    Rainwater, James C.; Weinstock, Robert

    1979-01-01

    Presents a derivation of Kepler's first law of planetary motion from Newtonian principles. Analogus derivations of the hyperbolic and parabolic orbits of nonreturning comets and the hyperbolic orbit for a particle in a repulsive inverse-square field are also presented. (HM)

  3. Use of hyperbolic partial differential equations to generate body fitted coordinates

    NASA Technical Reports Server (NTRS)

    Steger, J. L.; Sorenson, R. L.

    1980-01-01

    The hyperbolic scheme is used to efficiently generate smoothly varying grids with good step size control near the body. Although only two dimensional applications are presented, the basic concepts are shown to extend to three dimensions.

  4. Accuracy limitations of hyperbolic multilateration systems

    DOT National Transportation Integrated Search

    1973-03-22

    The report is an analysis of the accuracy limitations of hyperbolic multilateration systems. A central result is a demonstration that the inverse of the covariance matrix for positional errors corresponds to the moment of inertia matrix of a simple m...

  5. High order filtering methods for approximating hyberbolic systems of conservation laws

    NASA Technical Reports Server (NTRS)

    Lafon, F.; Osher, S.

    1990-01-01

    In the computation of discontinuous solutions of hyperbolic systems of conservation laws, the recently developed essentially non-oscillatory (ENO) schemes appear to be very useful. However, they are computationally costly compared to simple central difference methods. A filtering method which is developed uses simple central differencing of arbitrarily high order accuracy, except when a novel local test indicates the development of spurious oscillations. At these points, the full ENO apparatus is used, maintaining the high order of accuracy, but removing spurious oscillations. Numerical results indicate the success of the method. High order of accuracy was obtained in regions of smooth flow without spurious oscillations for a wide range of problems and a significant speed up of generally a factor of almost three over the full ENO method.

  6. High-Performance High-Order Simulation of Wave and Plasma Phenomena

    NASA Astrophysics Data System (ADS)

    Klockner, Andreas

    This thesis presents results aiming to enhance and broaden the applicability of the discontinuous Galerkin ("DG") method in a variety of ways. DG was chosen as a foundation for this work because it yields high-order finite element discretizations with very favorable numerical properties for the treatment of hyperbolic conservation laws. In a first part, I examine progress that can be made on implementation aspects of DG. In adapting the method to mass-market massively parallel computation hardware in the form of graphics processors ("GPUs"), I obtain an increase in computation performance per unit of cost by more than an order of magnitude over conventional processor architectures. Key to this advance is a recipe that adapts DG to a variety of hardware through automated self-tuning. I discuss new parallel programming tools supporting GPU run-time code generation which are instrumental in the DG self-tuning process and contribute to its reaching application floating point throughput greater than 200 GFlops/s on a single GPU and greater than 3 TFlops/s on a 16-GPU cluster in simulations of electromagnetics problems in three dimensions. I further briefly discuss the solver infrastructure that makes this possible. In the second part of the thesis, I introduce a number of new numerical methods whose motivation is partly rooted in the opportunity created by GPU-DG: First, I construct and examine a novel GPU-capable shock detector, which, when used to control an artificial viscosity, helps stabilize DG computations in gas dynamics and a number of other fields. Second, I describe my pursuit of a method that allows the simulation of rarefied plasmas using a DG discretization of the electromagnetic field. Finally, I introduce new explicit multi-rate time integrators for ordinary differential equations with multiple time scales, with a focus on applicability to DG discretizations of time-dependent problems.

  7. A numerical resolution study of high order essentially non-oscillatory schemes applied to incompressible flow

    NASA Technical Reports Server (NTRS)

    Weinan, E.; Shu, Chi-Wang

    1994-01-01

    High order essentially non-oscillatory (ENO) schemes, originally designed for compressible flow and in general for hyperbolic conservation laws, are applied to incompressible Euler and Navier-Stokes equations with periodic boundary conditions. The projection to divergence-free velocity fields is achieved by fourth-order central differences through fast Fourier transforms (FFT) and a mild high-order filtering. The objective of this work is to assess the resolution of ENO schemes for large scale features of the flow when a coarse grid is used and small scale features of the flow, such as shears and roll-ups, are not fully resolved. It is found that high-order ENO schemes remain stable under such situations and quantities related to large scale features, such as the total circulation around the roll-up region, are adequately resolved.

  8. A numerical resolution study of high order essentially non-oscillatory schemes applied to incompressible flow

    NASA Technical Reports Server (NTRS)

    Weinan, E.; Shu, Chi-Wang

    1992-01-01

    High order essentially non-oscillatory (ENO) schemes, originally designed for compressible flow and in general for hyperbolic conservation laws, are applied to incompressible Euler and Navier-Stokes equations with periodic boundary conditions. The projection to divergence-free velocity fields is achieved by fourth order central differences through Fast Fourier Transforms (FFT) and a mild high-order filtering. The objective of this work is to assess the resolution of ENO schemes for large scale features of the flow when a coarse grid is used and small scale features of the flow, such as shears and roll-ups, are not fully resolved. It is found that high-order ENO schemes remain stable under such situations and quantities related to large-scale features, such as the total circulation around the roll-up region, are adequately resolved.

  9. A spline-based parameter estimation technique for static models of elastic structures

    NASA Technical Reports Server (NTRS)

    Dutt, P.; Taasan, S.

    1986-01-01

    The problem of identifying the spatially varying coefficient of elasticity using an observed solution to the forward problem is considered. Under appropriate conditions this problem can be treated as a first order hyperbolic equation in the unknown coefficient. Some continuous dependence results are developed for this problem and a spline-based technique is proposed for approximating the unknown coefficient, based on these results. The convergence of the numerical scheme is established and error estimates obtained.

  10. A Posteriori Error Estimation for Discontinuous Galerkin Approximations of Hyperbolic Systems

    NASA Technical Reports Server (NTRS)

    Larson, Mats G.; Barth, Timothy J.

    1999-01-01

    This article considers a posteriori error estimation of specified functionals for first-order systems of conservation laws discretized using the discontinuous Galerkin (DG) finite element method. Using duality techniques, we derive exact error representation formulas for both linear and nonlinear functionals given an associated bilinear or nonlinear variational form. Weighted residual approximations of the exact error representation formula are then proposed and numerically evaluated for Ringleb flow, an exact solution of the 2-D Euler equations.

  11. Asymptotic-induced numerical methods for conservation laws

    NASA Technical Reports Server (NTRS)

    Garbey, Marc; Scroggs, Jeffrey S.

    1990-01-01

    Asymptotic-induced methods are presented for the numerical solution of hyperbolic conservation laws with or without viscosity. The methods consist of multiple stages. The first stage is to obtain a first approximation by using a first-order method, such as the Godunov scheme. Subsequent stages of the method involve solving internal-layer problems identified by using techniques derived via asymptotics. Finally, a residual correction increases the accuracy of the scheme. The method is derived and justified with singular perturbation techniques.

  12. Recent Developments and Open Problems in the Mathematical Theory of Viscoelasticity.

    DTIC Science & Technology

    1984-11-01

    integral terms . At each step of the iteration, we have to solve a linear parabolic equation with time-dependent coefficients. In Sobolevskii’s... parabolic Volterra integro- differential equation, SIAN J. Math. Anal. 13 (1982), ’ ~81-105. :-- 12. Heard, M. L., A class of hyperbolic Volterra ...then puts an n + 1 on the highest derivatives (the "principal terms " in the equation) and an n on lower order derivatives. Two things must then be

  13. The Clawpack Community of Codes

    NASA Astrophysics Data System (ADS)

    Mandli, K. T.; LeVeque, R. J.; Ketcheson, D.; Ahmadia, A. J.

    2014-12-01

    Clawpack, the Conservation Laws Package, has long been one of the standards for solving hyperbolic conservation laws but over the years has extended well beyond this role. Today a community of open-source codes have been developed that address a multitude of different needs including non-conservative balance laws, high-order accurate methods, and parallelism while remaining extensible and easy to use, largely by the judicious use of Python and the original Fortran codes that it wraps. This talk will present some of the recent developments in projects under the Clawpack umbrella, notably the GeoClaw and PyClaw projects. GeoClaw was originally developed as a tool for simulating tsunamis using adaptive mesh refinement but has since encompassed a large number of other geophysically relevant flows including storm surge and debris-flows. PyClaw originated as a Python version of the original Clawpack algorithms but has since been both a testing ground for new algorithmic advances in the Clawpack framework but also an easily extensible framework for solving hyperbolic balance laws. Some of these extensions include the addition of WENO high-order methods, massively parallel capabilities, and adaptive mesh refinement technologies, made possible largely by the flexibility of the Python language and community libraries such as NumPy and PETSc. Because of the tight integration with Python tecnologies, both packages have benefited also from the focus on reproducibility in the Python community, notably IPython notebooks.

  14. Novel Plasmonic and Hyberbolic Optical Materials for Control of Quantum Nanoemitters

    DTIC Science & Technology

    2016-12-08

    properties, metal ion implantation techniques, and multi- physics modeling to produce hyperbolic quantum nanoemitters. 15. SUBJECT TERMS nanotechnology 16...techniques, and multi- physics modeling to produce hyperbolic quantum nanoemitters. During the course of this project we studied plasmonic

  15. Explicit formulae for Chern-Simons invariants of the hyperbolic orbifolds of the knot with Conway's notation C(2n, 3)

    NASA Astrophysics Data System (ADS)

    Ham, Ji-Young; Lee, Joongul

    2017-03-01

    We calculate the Chern-Simons invariants of the hyperbolic orbifolds of the knot with Conway's notation C(2n, 3) using the Schläfli formula for the generalized Chern-Simons function on the family of C(2n, 3) cone-manifold structures. We present the concrete and explicit formula of them. We apply the general instructions of Hilden, Lozano, and Montesinos-Amilibia and extend the Ham and Lee's methods. As an application, we calculate the Chern-Simons invariants of cyclic coverings of the hyperbolic C(2n, 3) orbifolds.

  16. Congruence Approximations for Entrophy Endowed Hyperbolic Systems

    NASA Technical Reports Server (NTRS)

    Barth, Timothy J.; Saini, Subhash (Technical Monitor)

    1998-01-01

    Building upon the standard symmetrization theory for hyperbolic systems of conservation laws, congruence properties of the symmetrized system are explored. These congruence properties suggest variants of several stabilized numerical discretization procedures for hyperbolic equations (upwind finite-volume, Galerkin least-squares, discontinuous Galerkin) that benefit computationally from congruence approximation. Specifically, it becomes straightforward to construct the spatial discretization and Jacobian linearization for these schemes (given a small amount of derivative information) for possible use in Newton's method, discrete optimization, homotopy algorithms, etc. Some examples will be given for the compressible Euler equations and the nonrelativistic MHD equations using linear and quadratic spatial approximation.

  17. Time discounting and smoking behavior: evidence from a panel survey(*).

    PubMed

    Kang, Myong-Il; Ikeda, Shinsuke

    2014-12-01

    By using a panel survey of Japanese adults, we show that smoking behavior is associated with personal time discounting and its biases, such as hyperbolic discounting and the sign effect, in the way that theory predicts: smoking depends positively on the discount rate and the degree of hyperbolic discounting and negatively on the presence of the sign effect. Positive effects of hyperbolic discounting on smoking are salient for naïve people, who are not aware of their self-control problem. By estimating smoking participation and smokers' cigarette consumption in Cragg's two-part model, we find that the two smoking decisions depend on different sets of time-discounting variables. Particularly, smoking participation is affected by being a naïve hyperbolic discounter, whereas the discount rate, the presence of the sign effect, and a hyperbolic discounting proxy constructed from procrastination behavior vis-à-vis doing homework assignments affect both types of decision making. The panel data enable us to analyze the over-time instability of elicited discount rates. The instability is shown to come from measurement errors, rather than preference shocks on time preference. Several evidences indicate that the detected associations between time preferences and smoking behavior are interpersonal one, rather than within-personal one. Copyright © 2013 John Wiley & Sons, Ltd.

  18. Modeling of ultrashort pulsed laser irradiation in the cornea based on parabolic and hyperbolic heat equations using electrical analogy

    NASA Astrophysics Data System (ADS)

    Gheitaghy, A. M.; Takabi, B.; Alizadeh, M.

    2014-03-01

    Hyperbolic and parabolic heat equations are formulated to study a nonperfused homogeneous transparent cornea irradiated by high power and ultrashort pulsed laser in the Laser Thermo Keratoplasty (LTK) surgery. Energy absorption inside the cornea is modeled using the Beer-Lambert law that is incorporated as an exponentially decaying heat source. The hyperbolic and parabolic bioheat models of the tissue were solved by exploiting the mathematical analogy between thermal and electrical systems, by using robust circuit simulation program called Hspice to get the solutions of simultaneous RLC and RC transmission line networks. This method can be used to rapidly calculate the temperature in laser-irradiated tissue at time and space domain. It is found that internal energy gained from the irradiated field results in a rapid rise of temperature in the cornea surface during the early heating period, while the hyperbolic wave model predicts a higher temperature rise than the classical heat diffusion model. In addition, this paper investigates and examines the effect of some critical parameters such as relaxation time, convection coefficient, radiation, tear evaporation and variable thermal conductivity of cornea. Accordingly, it is found that a better accordance between hyperbolic and parabolic models will be achieved by time.

  19. The properties of borderlines in discontinuous conservative systems

    NASA Astrophysics Data System (ADS)

    Wang, X.-M.; Fang, Z.-J.

    2006-02-01

    The properties of the set of borderline images in discontinuous conservative systems are commonly investigated. The invertible system in which a stochastic web was found in 1999 is re-discussed here. The result shows that the set of images of the borderline actually forms the same stochastic web. The web has two typical local fine structures. Firstly, in some parts of the web the borderline crosses the manifold of hyperbolic points so that the chaotic diffusion is damped greatly; secondly, in other parts of phase space many holes and elliptic islands appear in the stochastic layer. This local structure shows infinite self-similarity. The noninvertible system in which the so-called chaotic quasi-attractor was found in [X.-M. Wang et al., Eur. Phys. J. D 19, 119 (2002)] is also studied here. The numerical investigation shows that such a chaotic quasi-attractor is confined by the preceding lower order images of the borderline. The mechanism of this confinement is revealed: a forbidden zone exists that any orbit can not visit, which is the sub-phase space of one side of the first image of the borderline. Each order of the images of the forbidden zone can be qualitatively divided into two sub-phase regions: one is the so-called escaping region that provides the orbit with an escaping channel, the other is the so-called dissipative region where the contraction of phase space occurs.

  20. A new method for recognizing quadric surfaces from range data and its application to telerobotics and automation

    NASA Technical Reports Server (NTRS)

    Alvertos, Nicolas; Dcunha, Ivan

    1992-01-01

    Pose and orientation of an object is one of the central issues in 3-D recognition problems. Most of today's available techniques require considerable pre-processing such as detecting edges or joints, fitting curves or surfaces to segment images, and trying to extract higher order features from the input images. We present a method based on analytical geometry, whereby all the rotation parameters of any quadric surface are determined and subsequently eliminated. This procedure is iterative in nature and was found to converge to the desired results in as few as three iterations. The approach enables us to position the quadric surface in a desired coordinate system, and then to utilize the presented shape information to explicitly represent and recognize the 3-D surface. Experiments were conducted with simulated data for objects such as hyperboloid of one and two sheets, elliptic and hyperbolic paraboloid, elliptic and hyperbolic cylinders, ellipsoids, and quadric cones. Real data of quadric cones and cylinders were also utilized. Both of these sets yielded excellent results.

  1. Anosov C-systems and random number generators

    NASA Astrophysics Data System (ADS)

    Savvidy, G. K.

    2016-08-01

    We further develop our previous proposal to use hyperbolic Anosov C-systems to generate pseudorandom numbers and to use them for efficient Monte Carlo calculations in high energy particle physics. All trajectories of hyperbolic dynamical systems are exponentially unstable, and C-systems therefore have mixing of all orders, a countable Lebesgue spectrum, and a positive Kolmogorov entropy. These exceptional ergodic properties follow from the C-condition introduced by Anosov. This condition defines a rich class of dynamical systems forming an open set in the space of all dynamical systems. An important property of C-systems is that they have a countable set of everywhere dense periodic trajectories and their density increases exponentially with entropy. Of special interest are the C-systems defined on higher-dimensional tori. Such C-systems are excellent candidates for generating pseudorandom numbers that can be used in Monte Carlo calculations. An efficient algorithm was recently constructed that allows generating long C-system trajectories very rapidly. These trajectories have good statistical properties and can be used for calculations in quantum chromodynamics and in high energy particle physics.

  2. Plasmonic Lithography Utilizing Epsilon Near Zero Hyperbolic Metamaterial.

    PubMed

    Chen, Xi; Zhang, Cheng; Yang, Fan; Liang, Gaofeng; Li, Qiaochu; Guo, L Jay

    2017-10-24

    In this work, a special hyperbolic metamaterial (HMM) metamaterial is investigated for plasmonic lithography of period reduction patterns. It is a type II HMM (ϵ ∥ < 0 and ϵ ⊥ > 0) whose tangential component of the permittivity ϵ ∥ is close to zero. Due to the high anisotropy of the type II epsilon-near-zero (ENZ) HMM, only one plasmonic mode can propagate horizontally with low loss in a waveguide system with ENZ HMM as its core. This work takes the advantage of a type II ENZ HMM composed of aluminum/aluminum oxide films and the associated unusual mode to expose a photoresist layer in a specially designed lithography system. Periodic patterns with a half pitch of 58.3 nm were achieved due to the interference of third-order diffracted light of the grating. The lines were 1/6 of the mask with a period of 700 nm and ∼1/7 of the wavelength of the incident light. Moreover, the theoretical analyses performed are widely applicable to structures made of different materials such as silver as well as systems working at deep ultraviolet wavelengths including 193, 248, and 365 nm.

  3. The CFL condition for spectral approximations to hyperbolic initial-boundary value problems

    NASA Technical Reports Server (NTRS)

    Gottlieb, David; Tadmor, Eitan

    1991-01-01

    The stability of spectral approximations to scalar hyperbolic initial-boundary value problems with variable coefficients are studied. Time is discretized by explicit multi-level or Runge-Kutta methods of order less than or equal to 3 (forward Euler time differencing is included), and spatial discretizations are studied by spectral and pseudospectral approximations associated with the general family of Jacobi polynomials. It is proved that these fully explicit spectral approximations are stable provided their time-step, delta t, is restricted by the CFL-like condition, delta t less than Const. N(exp-2), where N equals the spatial number of degrees of freedom. We give two independent proofs of this result, depending on two different choices of approximate L(exp 2)-weighted norms. In both approaches, the proofs hinge on a certain inverse inequality interesting for its own sake. The result confirms the commonly held belief that the above CFL stability restriction, which is extensively used in practical implementations, guarantees the stability (and hence the convergence) of fully-explicit spectral approximations in the nonperiodic case.

  4. The CFL condition for spectral approximations to hyperbolic initial-boundary value problems

    NASA Technical Reports Server (NTRS)

    Gottlieb, David; Tadmor, Eitan

    1990-01-01

    The stability of spectral approximations to scalar hyperbolic initial-boundary value problems with variable coefficients are studied. Time is discretized by explicit multi-level or Runge-Kutta methods of order less than or equal to 3 (forward Euler time differencing is included), and spatial discretizations are studied by spectral and pseudospectral approximations associated with the general family of Jacobi polynomials. It is proved that these fully explicit spectral approximations are stable provided their time-step, delta t, is restricted by the CFL-like condition, delta t less than Const. N(exp-2), where N equals the spatial number of degrees of freedom. We give two independent proofs of this result, depending on two different choices of approximate L(exp 2)-weighted norms. In both approaches, the proofs hinge on a certain inverse inequality interesting for its own sake. The result confirms the commonly held belief that the above CFL stability restriction, which is extensively used in practical implementations, guarantees the stability (and hence the convergence) of fully-explicit spectral approximations in the nonperiodic case.

  5. Spectrophotometric evaluation of stability constants of 1:1 weak complexes from continuous variation data.

    PubMed

    Sayago, Ana; Asuero, Agustin G

    2006-09-14

    A bilogarithmic hyperbolic cosine method for the spectrophotometric evaluation of stability constants of 1:1 weak complexes from continuous variation data has been devised and applied to literature data. A weighting scheme, however, is necessary in order to take into account the transformation for linearization. The method may be considered a useful alternative to methods in which one variable is involved on both sides of the basic equation (i.e. Heller and Schwarzenbach, Likussar and Adsul and Ramanathan). Classical least squares lead in those instances to biased and approximate stability constants and limiting absorbance values. The advantages of the proposed method are: the method gives a clear indication of the existence of only one complex in solution, it is flexible enough to allow for weighting of measurements and the computation procedure yield the best value of logbeta11 and its limit of error. The agreement between the values obtained by applying the weighted hyperbolic cosine method and the non-linear regression (NLR) method is good, being in both cases the mean quadratic error at a minimum.

  6. Orienteering in Knowledge Spaces: The Hyperbolic Geometry of Wikipedia Mathematics

    PubMed Central

    Leibon, Gregory; Rockmore, Daniel N.

    2013-01-01

    In this paper we show how the coupling of the notion of a network with directions with the adaptation of the four-point probe from materials testing gives rise to a natural geometry on such networks. This four-point probe geometry shares many of the properties of hyperbolic geometry wherein the network directions take the place of the sphere at infinity, enabling a navigation of the network in terms of pairs of directions: the geodesic through a pair of points is oriented from one direction to another direction, the pair of which are uniquely determined. We illustrate this in the interesting example of the pages of Wikipedia devoted to Mathematics, or “The MathWiki.” The applicability of these ideas extends beyond Wikipedia to provide a natural framework for visual search and to prescribe a natural mode of navigation for any kind of “knowledge space” in which higher order concepts aggregate various instances of information. Other examples would include genre or author organization of cultural objects such as books, movies, documents or even merchandise in an online store. PMID:23844017

  7. Orienteering in knowledge spaces: the hyperbolic geometry of Wikipedia Mathematics.

    PubMed

    Leibon, Gregory; Rockmore, Daniel N

    2013-01-01

    In this paper we show how the coupling of the notion of a network with directions with the adaptation of the four-point probe from materials testing gives rise to a natural geometry on such networks. This four-point probe geometry shares many of the properties of hyperbolic geometry wherein the network directions take the place of the sphere at infinity, enabling a navigation of the network in terms of pairs of directions: the geodesic through a pair of points is oriented from one direction to another direction, the pair of which are uniquely determined. We illustrate this in the interesting example of the pages of Wikipedia devoted to Mathematics, or "The MathWiki." The applicability of these ideas extends beyond Wikipedia to provide a natural framework for visual search and to prescribe a natural mode of navigation for any kind of "knowledge space" in which higher order concepts aggregate various instances of information. Other examples would include genre or author organization of cultural objects such as books, movies, documents or even merchandise in an online store.

  8. A simple robust and accurate a posteriori sub-cell finite volume limiter for the discontinuous Galerkin method on unstructured meshes

    NASA Astrophysics Data System (ADS)

    Dumbser, Michael; Loubère, Raphaël

    2016-08-01

    In this paper we propose a simple, robust and accurate nonlinear a posteriori stabilization of the Discontinuous Galerkin (DG) finite element method for the solution of nonlinear hyperbolic PDE systems on unstructured triangular and tetrahedral meshes in two and three space dimensions. This novel a posteriori limiter, which has been recently proposed for the simple Cartesian grid case in [62], is able to resolve discontinuities at a sub-grid scale and is substantially extended here to general unstructured simplex meshes in 2D and 3D. It can be summarized as follows: At the beginning of each time step, an approximation of the local minimum and maximum of the discrete solution is computed for each cell, taking into account also the vertex neighbors of an element. Then, an unlimited discontinuous Galerkin scheme of approximation degree N is run for one time step to produce a so-called candidate solution. Subsequently, an a posteriori detection step checks the unlimited candidate solution at time t n + 1 for positivity, absence of floating point errors and whether the discrete solution has remained within or at least very close to the bounds given by the local minimum and maximum computed in the first step. Elements that do not satisfy all the previously mentioned detection criteria are flagged as troubled cells. For these troubled cells, the candidate solution is discarded as inappropriate and consequently needs to be recomputed. Within these troubled cells the old discrete solution at the previous time tn is scattered onto small sub-cells (Ns = 2 N + 1 sub-cells per element edge), in order to obtain a set of sub-cell averages at time tn. Then, a more robust second order TVD finite volume scheme is applied to update the sub-cell averages within the troubled DG cells from time tn to time t n + 1. The new sub-grid data at time t n + 1 are finally gathered back into a valid cell-centered DG polynomial of degree N by using a classical conservative and higher order accurate finite volume reconstruction technique. Consequently, if the number Ns is sufficiently large (Ns ≥ N + 1), the subscale resolution capability of the DG scheme is fully maintained, while preserving at the same time an essentially non-oscillatory behavior of the solution at discontinuities. Many standard DG limiters only adjust the discrete solution in troubled cells, based on the limiting of higher order moments or by applying a nonlinear WENO/HWENO reconstruction on the data at the new time t n + 1. Instead, our new DG limiter entirely recomputes the troubled cells by solving the governing PDE system again starting from valid data at the old time level tn, but using this time a more robust scheme on the sub-grid level. In other words, the piecewise polynomials produced by the new limiter are the result of a more robust solution of the PDE system itself, while most standard DG limiters are simply based on a mere nonlinear data post-processing of the discrete solution. Technically speaking, the new method corresponds to an element-wise checkpointing and restarting of the solver, using a lower order scheme on the sub-grid. As a result, the present DG limiter is even able to cure floating point errors like NaN values that have occurred after divisions by zero or after the computation of roots from negative numbers. This is a unique feature of our new algorithm among existing DG limiters. The new a posteriori sub-cell stabilization approach is developed within a high order accurate one-step ADER-DG framework on multidimensional unstructured meshes for hyperbolic systems of conservation laws as well as for hyperbolic PDE with non-conservative products. The method is applied to the Euler equations of compressible gas dynamics, to the ideal magneto-hydrodynamics equations (MHD) as well as to the seven-equation Baer-Nunziato model of compressible multi-phase flows. A large set of standard test problems is solved in order to assess the accuracy and robustness of the new limiter.

  9. Correlation Functions of σ Fields with Values in a Hyperbolic Space

    NASA Astrophysics Data System (ADS)

    Haba, Z.

    It is shown that the functional integral for a σ field with values in the Poincare upper half-plane (and some other hyperbolic spaces) can be performed explicitly resulting in a conformal invariant noncanonical field theory in two dimensions.

  10. Distributions of Orbital Elements for Meteoroids on Near-Parabolic Orbits According to Radar Observational Data

    NASA Technical Reports Server (NTRS)

    Kolomiyets, S. V.

    2011-01-01

    Some results of the International Heliophysical Year (IHY) Coordinated Investigation Program (CIP) number 65 Meteors in the Earth Atmosphere and Meteoroids in the Solar System are presented. The problem of hyperbolic and near-parabolic orbits is discussed. Some possibilities for the solution of this problem can be obtained from the radar observation of faint meteors. The limiting magnitude of the Kharkov, Ukraine, radar observation program in the 1970 s was +12, resulting in a very large number of meteors being detected. 250,000 orbits down to even fainter limiting magnitude were determined in the 1972-78 period in Kharkov (out of them 7,000 are hyperbolic). The hypothesis of hyperbolic meteors was confirmed. In some radar meteor observations 1 10% of meteors are hyperbolic meteors. Though the Advanced Meteor Orbit Radar (AMOR, New Zealand) and Canadian Meteor Orbit Radar (CMOR, Canada) have accumulated millions of meteor orbits, there are difficulties in comparing the radar observational data obtained from these three sites (New Zealand, Canada, Kharkov). A new global program International Space Weather Initiative (ISWI) has begun in 2010 (http://www.iswi-secretariat.org). Today it is necessary to create the unified radar catalogue of nearparabolic and hyperbolic meteor orbits in the framework of the ISWI, or any other different way, in collaboration of Ukraine, Canada, New Zealand, the USA and, possibly, Japan. Involvement of the Virtual Meteor Observatory (Netherlands) and Meteor Data Centre (Slovakia) is desirable too. International unified radar catalogue of near-parabolic and hyperbolic meteor orbits will aid to a major advance in our understanding of the ecology of meteoroids within the Solar System and beyond.

  11. Powerless fluxes and forces, and change of scale in irreversible thermodynamics

    NASA Astrophysics Data System (ADS)

    Ostoja-Starzewski, M.; Zubelewicz, A.

    2011-08-01

    We show that the dissipation function of linear processes in continuum thermomechanics may be treated as the average of the statistically fluctuating dissipation rate on either coarse or small spatial scales. The first case involves thermodynamic orthogonality due to Ziegler, while the second one involves powerless forces in a general solution of the Clausius-Duhem inequality according to Poincaré and Edelen. This formulation is demonstrated using the example of parabolic versus hyperbolic heat conduction. The existence of macroscopic powerless heat fluxes is traced here to the hidden dissipative processes at lower temporal and spatial scales.

  12. Bianchi transformation between the real hyperbolic Monge-Ampère equation and the Born-Infeld equation

    NASA Astrophysics Data System (ADS)

    Mokhov, O. I.; Nutku, Y.

    1994-10-01

    By casting the Born-Infeld equation and the real hyperbolic Monge-Ampère equation into the form of equations of hydrodynamic type, we find that there exists an explicit transformation between them. This is Bianchi transformation.

  13. Transient modeling/analysis of hyperbolic heat conduction problems employing mixed implicit-explicit alpha method

    NASA Technical Reports Server (NTRS)

    Tamma, Kumar K.; D'Costa, Joseph F.

    1991-01-01

    This paper describes the evaluation of mixed implicit-explicit finite element formulations for hyperbolic heat conduction problems involving non-Fourier effects. In particular, mixed implicit-explicit formulations employing the alpha method proposed by Hughes et al. (1987, 1990) are described for the numerical simulation of hyperbolic heat conduction models, which involves time-dependent relaxation effects. Existing analytical approaches for modeling/analysis of such models involve complex mathematical formulations for obtaining closed-form solutions, while in certain numerical formulations the difficulties include severe oscillatory solution behavior (which often disguises the true response) in the vicinity of the thermal disturbances, which propagate with finite velocities. In view of these factors, the alpha method is evaluated to assess the control of the amount of numerical dissipation for predicting the transient propagating thermal disturbances. Numerical test models are presented, and pertinent conclusions are drawn for the mixed-time integration simulation of hyperbolic heat conduction models involving non-Fourier effects.

  14. Out-of-plane heat transfer in van der Waals stacks through electron-hyperbolic phonon coupling

    NASA Astrophysics Data System (ADS)

    Tielrooij, Klaas-Jan; Hesp, Niels C. H.; Principi, Alessandro; Lundeberg, Mark B.; Pogna, Eva A. A.; Banszerus, Luca; Mics, Zoltán; Massicotte, Mathieu; Schmidt, Peter; Davydovskaya, Diana; Purdie, David G.; Goykhman, Ilya; Soavi, Giancarlo; Lombardo, Antonio; Watanabe, Kenji; Taniguchi, Takashi; Bonn, Mischa; Turchinovich, Dmitry; Stampfer, Christoph; Ferrari, Andrea C.; Cerullo, Giulio; Polini, Marco; Koppens, Frank H. L.

    2018-01-01

    Van der Waals heterostructures have emerged as promising building blocks that offer access to new physics, novel device functionalities and superior electrical and optoelectronic properties1-7. Applications such as thermal management, photodetection, light emission, data communication, high-speed electronics and light harvesting8-16 require a thorough understanding of (nanoscale) heat flow. Here, using time-resolved photocurrent measurements, we identify an efficient out-of-plane energy transfer channel, where charge carriers in graphene couple to hyperbolic phonon polaritons17-19 in the encapsulating layered material. This hyperbolic cooling is particularly efficient, giving picosecond cooling times for hexagonal BN, where the high-momentum hyperbolic phonon polaritons enable efficient near-field energy transfer. We study this heat transfer mechanism using distinct control knobs to vary carrier density and lattice temperature, and find excellent agreement with theory without any adjustable parameters. These insights may lead to the ability to control heat flow in van der Waals heterostructures.

  15. Computation of Quasi-Periodic Normally Hyperbolic Invariant Tori: Algorithms, Numerical Explorations and Mechanisms of Breakdown

    NASA Astrophysics Data System (ADS)

    Canadell, Marta; Haro, Àlex

    2017-12-01

    We present several algorithms for computing normally hyperbolic invariant tori carrying quasi-periodic motion of a fixed frequency in families of dynamical systems. The algorithms are based on a KAM scheme presented in Canadell and Haro (J Nonlinear Sci, 2016. doi: 10.1007/s00332-017-9389-y), to find the parameterization of the torus with prescribed dynamics by detuning parameters of the model. The algorithms use different hyperbolicity and reducibility properties and, in particular, compute also the invariant bundles and Floquet transformations. We implement these methods in several 2-parameter families of dynamical systems, to compute quasi-periodic arcs, that is, the parameters for which 1D normally hyperbolic invariant tori with a given fixed frequency do exist. The implementation lets us to perform the continuations up to the tip of the quasi-periodic arcs, for which the invariant curves break down. Three different mechanisms of breakdown are analyzed, using several observables, leading to several conjectures.

  16. Infrared metamaterial by RF magnetron sputtered ZnO/Al:ZnO multilayers

    NASA Astrophysics Data System (ADS)

    Santiago, Kevin C.; Mundle, Rajeh; White, Curtis; Bahoura, Messaoud; Pradhan, Aswini K.

    2018-03-01

    Hyperbolic metamaterials create artificial anisotropy using metallic wires suspended in dielectric media or alternating layers of a metal and dielectric (Type I or Type II). In this study we fabricated ZnO/Al:ZnO (AZO) multilayers by the RF magnetron sputtering deposition technique. Our fabricated multilayers satisfy the requirements for a type II hyperbolic metamaterial. The optical response of individual AZO and ZnO films, as well as the multilayered film were investigated via UV-vis-IR transmittance and spectroscopic ellipsometry. The optical response of the multilayered system is calculated using the nonlocal-corrected Effective Medium Approximation (EMA). The spectroscopic ellipsometry data of the multilayered system was modeled using a uniaxial material model and EMA model. Both theoretical and experimental studies validate the fabricated multilayers undergo a hyperbolic transition at a wavelength of 2.2 μm. To our knowledge this is the first AZO/ZnO type II hyperbolic metamaterial system fabricated by magnetron sputtering deposition method.

  17. Can rodents conceive hyperbolic spaces?

    PubMed Central

    Urdapilleta, Eugenio; Troiani, Francesca; Stella, Federico; Treves, Alessandro

    2015-01-01

    The grid cells discovered in the rodent medial entorhinal cortex have been proposed to provide a metric for Euclidean space, possibly even hardwired in the embryo. Yet, one class of models describing the formation of grid unit selectivity is entirely based on developmental self-organization, and as such it predicts that the metric it expresses should reflect the environment to which the animal has adapted. We show that, according to self-organizing models, if raised in a non-Euclidean hyperbolic cage rats should be able to form hyperbolic grids. For a given range of grid spacing relative to the radius of negative curvature of the hyperbolic surface, such grids are predicted to appear as multi-peaked firing maps, in which each peak has seven neighbours instead of the Euclidean six, a prediction that can be tested in experiments. We thus demonstrate that a useful universal neuronal metric, in the sense of a multi-scale ruler and compass that remain unaltered when changing environments, can be extended to other than the standard Euclidean plane. PMID:25948611

  18. Onto the stability analysis of hyperbolic secant-shaped Bose-Einstein condensate

    NASA Astrophysics Data System (ADS)

    Sabari, S.; Murali, R.

    2018-05-01

    We analyze the stability of the hyperbolic secant-shaped attractive Bose-Einstein condensate in the absence of external trapping potential. The appropriate theoretical model for the system is described by the nonlinear mean-field Gross-Pitaevskii equation with time varying two-body interaction effects. Using the variational method, the stability of the system is analyzed under the influence of time varying two-body interactions. Further we confirm that the stability of the attractive condensate increases by considering the hyperbolic secant-shape profile instead of Gaussian shape. The analytical results are compared with the numerical simulation by employing the split-step Crank-Nicholson method.

  19. Interface conditions for domain decomposition with radical grid refinement

    NASA Technical Reports Server (NTRS)

    Scroggs, Jeffrey S.

    1991-01-01

    Interface conditions for coupling the domains in a physically motivated domain decomposition method are discussed. The domain decomposition is based on an asymptotic-induced method for the numerical solution of hyperbolic conservation laws with small viscosity. The method consists of multiple stages. The first stage is to obtain a first approximation using a first-order method, such as the Godunov scheme. Subsequent stages of the method involve solving internal-layer problem via a domain decomposition. The method is derived and justified via singular perturbation techniques.

  20. On the boundary treatment in spectral methods for hyperbolic systems

    NASA Technical Reports Server (NTRS)

    Canuto, C.; Quarteroni, A.

    1986-01-01

    Spectral methods were successfully applied to the simulation of slow transients in gas transportation networks. Implicit time advancing techniques are naturally suggested by the nature of the problem. The correct treatment of the boundary conditions are clarified in order to avoid any stability restriction originated by the boundaries. The Beam and Warming and the Lerat schemes are unconditionally linearly stable when used with a Chebyshev pseudospectral method. Engineering accuracy for a gas transportation problem is achieved at Courant numbers up to 100.

  1. On the boundary treatment in spectral methods for hyperbolic systems

    NASA Technical Reports Server (NTRS)

    Canuto, Claudio; Quarteroni, Alfio

    1987-01-01

    Spectral methods were successfully applied to the simulation of slow transients in gas transportation networks. Implicit time advancing techniques are naturally suggested by the nature of the problem. The correct treatment of the boundary conditions is clarified in order to avoid any stability restriction originated by the boundaries. The Beam and Warming and the Lerat schemes are unconditionally linearly stable when used with a Chebyshev pseudospectral method. Engineering accuracy for a gas transportation problem is achieved at Courant numbers up to 100.

  2. On the hyperbolicity of a two-fluid model for debris flows

    NASA Astrophysics Data System (ADS)

    Mineo, C.; Torrisi, M.

    2010-05-01

    We consider the system of partial differential equations associated with the mathematical model for debris flows proposed by E.B. Pitman and L. Le (Phil. Trans. R. Soc. A, 363, 1573-1601, 2005) and analyze the problem of the hyperbolicity of the model.

  3. Euclidean, Spherical, and Hyperbolic Shadows

    ERIC Educational Resources Information Center

    Hoban, Ryan

    2013-01-01

    Many classical problems in elementary calculus use Euclidean geometry. This article takes such a problem and solves it in hyperbolic and in spherical geometry instead. The solution requires only the ability to compute distances and intersections of points in these geometries. The dramatically different results we obtain illustrate the effect…

  4. On the coupling of hyperbolic and parabolic systems: Analytical and numerical approach

    NASA Technical Reports Server (NTRS)

    Gastaldi, Fabio; Quarteroni, Alfio

    1988-01-01

    The coupling of hyperbolic and parabolic systems is discussed in a domain Omega divided into two distinct subdomains omega(+) and omega(-). The main concern is to find the proper interface conditions to be fulfilled at the surface separating the two domains. Next, they are used in the numerical approximation of the problem. The justification of the interface conditions is based on a singular perturbation analysis, i.e., the hyperbolic system is rendered parabolic by adding a small artifical viscosity. As this goes to zero, the coupled parabolic-parabolic problem degenerates into the original one, yielding some conditions at the interface. These are taken as interface conditions for the hyperbolic-parabolic problem. Actually, two alternative sets of interface conditions are discussed according to whether the regularization procedure is variational or nonvariational. It is shown how these conditions can be used in the frame of a numerical approximation to the given problem. Furthermore, a method of resolution is discussed which alternates the resolution of the hyperbolic problem within omega(-) and of the parabolic one within omega(+). The spectral collocation method is proposed, as an example of space discretization (different methods could be used as well); both explicit and implicit time-advancing schemes are considered. The present study is a preliminary step toward the analysis of the coupling between Euler and Navier-Stokes equations for compressible flows.

  5. Dynamics and control of high area-to-mass ratio spacecraft and its application to geomagnetic exploration

    NASA Astrophysics Data System (ADS)

    Luo, Tong; Xu, Ming; Colombo, Camilla

    2018-04-01

    This paper studies the dynamics and control of a spacecraft, whose area-to-mass ratio is increased by deploying a reflective orientable surface such as a solar sail or a solar panel. The dynamical system describing the motion of a non-zero attitude angle high area-to-mass ratio spacecraft under the effects of the Earth's oblateness and solar radiation pressure admits the existence of equilibrium points, whose number and the eccentricity values depend on the semi-major axis, the area-to-mass ratio and the attitude angle of the spacecraft together. When two out of three parameters are fixed, five different dynamical topologies successively occur through varying the third parameter. Two of these five topologies are critical cases characterized by the appearance of the bifurcation phenomena. A conventional Hamiltonian structure-preserving (HSP) controller and an improved HSP controller are both constructed to stabilize the hyperbolic equilibrium point. Through the use of a conventional HSP controller, a bounded trajectory around the hyperbolic equilibrium point is obtained, while an improved HSP controller allows the spacecraft to easily transfer to the hyperbolic equilibrium point and to follow varying equilibrium points. A bifurcation control using topologies and changes of behavior areas can also stabilize a spacecraft near a hyperbolic equilibrium point. Natural trajectories around stable equilibrium point and these stabilized trajectories around hyperbolic equilibrium point can all be applied to geomagnetic exploration.

  6. Targeted ENO schemes with tailored resolution property for hyperbolic conservation laws

    NASA Astrophysics Data System (ADS)

    Fu, Lin; Hu, Xiangyu Y.; Adams, Nikolaus A.

    2017-11-01

    In this paper, we extend the range of targeted ENO (TENO) schemes (Fu et al. (2016) [18]) by proposing an eighth-order TENO8 scheme. A general formulation to construct the high-order undivided difference τK within the weighting strategy is proposed. With the underlying scale-separation strategy, sixth-order accuracy for τK in the smooth solution regions is designed for good performance and robustness. Furthermore, a unified framework to optimize independently the dispersion and dissipation properties of high-order finite-difference schemes is proposed. The new framework enables tailoring of dispersion and dissipation as function of wavenumber. The optimal linear scheme has minimum dispersion error and a dissipation error that satisfies a dispersion-dissipation relation. Employing the optimal linear scheme, a sixth-order TENO8-opt scheme is constructed. A set of benchmark cases involving strong discontinuities and broadband fluctuations is computed to demonstrate the high-resolution properties of the new schemes.

  7. Parallel discontinuous Galerkin FEM for computing hyperbolic conservation law on unstructured grids

    NASA Astrophysics Data System (ADS)

    Ma, Xinrong; Duan, Zhijian

    2018-04-01

    High-order resolution Discontinuous Galerkin finite element methods (DGFEM) has been known as a good method for solving Euler equations and Navier-Stokes equations on unstructured grid, but it costs too much computational resources. An efficient parallel algorithm was presented for solving the compressible Euler equations. Moreover, the multigrid strategy based on three-stage three-order TVD Runge-Kutta scheme was used in order to improve the computational efficiency of DGFEM and accelerate the convergence of the solution of unsteady compressible Euler equations. In order to make each processor maintain load balancing, the domain decomposition method was employed. Numerical experiment performed for the inviscid transonic flow fluid problems around NACA0012 airfoil and M6 wing. The results indicated that our parallel algorithm can improve acceleration and efficiency significantly, which is suitable for calculating the complex flow fluid.

  8. Big Data Clustering via Community Detection and Hyperbolic Network Embedding in IoT Applications.

    PubMed

    Karyotis, Vasileios; Tsitseklis, Konstantinos; Sotiropoulos, Konstantinos; Papavassiliou, Symeon

    2018-04-15

    In this paper, we present a novel data clustering framework for big sensory data produced by IoT applications. Based on a network representation of the relations among multi-dimensional data, data clustering is mapped to node clustering over the produced data graphs. To address the potential very large scale of such datasets/graphs that test the limits of state-of-the-art approaches, we map the problem of data clustering to a community detection one over the corresponding data graphs. Specifically, we propose a novel computational approach for enhancing the traditional Girvan-Newman (GN) community detection algorithm via hyperbolic network embedding. The data dependency graph is embedded in the hyperbolic space via Rigel embedding, allowing more efficient computation of edge-betweenness centrality needed in the GN algorithm. This allows for more efficient clustering of the nodes of the data graph in terms of modularity, without sacrificing considerable accuracy. In order to study the operation of our approach with respect to enhancing GN community detection, we employ various representative types of artificial complex networks, such as scale-free, small-world and random geometric topologies, and frequently-employed benchmark datasets for demonstrating its efficacy in terms of data clustering via community detection. Furthermore, we provide a proof-of-concept evaluation by applying the proposed framework over multi-dimensional datasets obtained from an operational smart-city/building IoT infrastructure provided by the Federated Interoperable Semantic IoT/cloud Testbeds and Applications (FIESTA-IoT) testbed federation. It is shown that the proposed framework can be indeed used for community detection/data clustering and exploited in various other IoT applications, such as performing more energy-efficient smart-city/building sensing.

  9. A Simple Mathematical Model Inspired by the Purkinje Cells: From Delayed Travelling Waves to Fractional Diffusion.

    PubMed

    Dipierro, Serena; Valdinoci, Enrico

    2018-07-01

    Recently, several experiments have demonstrated the existence of fractional diffusion in the neuronal transmission occurring in the Purkinje cells, whose malfunctioning is known to be related to the lack of voluntary coordination and the appearance of tremors. Also, a classical mathematical feature is that (fractional) parabolic equations possess smoothing effects, in contrast with the case of hyperbolic equations, which typically exhibit shocks and discontinuities. In this paper, we show how a simple toy-model of a highly ramified structure, somehow inspired by that of the Purkinje cells, may produce a fractional diffusion via the superposition of travelling waves that solve a hyperbolic equation. This could suggest that the high ramification of the Purkinje cells might have provided an evolutionary advantage of "smoothing" the transmission of signals and avoiding shock propagations (at the price of slowing a bit such transmission). Although an experimental confirmation of the possibility of such evolutionary advantage goes well beyond the goals of this paper, we think that it is intriguing, as a mathematical counterpart, to consider the time fractional diffusion as arising from the superposition of delayed travelling waves in highly ramified transmission media. The case of a travelling concave parabola with sufficiently small curvature is explicitly computed. The new link that we propose between time fractional diffusion and hyperbolic equation also provides a novelty with respect to the usual paradigm relating time fractional diffusion with parabolic equations in the limit. This paper is written in such a way as to be of interest to both biologists and mathematician alike. In order to accomplish this aim, both complete explanations of the objects considered and detailed lists of references are provided.

  10. Big Data Clustering via Community Detection and Hyperbolic Network Embedding in IoT Applications

    PubMed Central

    Sotiropoulos, Konstantinos

    2018-01-01

    In this paper, we present a novel data clustering framework for big sensory data produced by IoT applications. Based on a network representation of the relations among multi-dimensional data, data clustering is mapped to node clustering over the produced data graphs. To address the potential very large scale of such datasets/graphs that test the limits of state-of-the-art approaches, we map the problem of data clustering to a community detection one over the corresponding data graphs. Specifically, we propose a novel computational approach for enhancing the traditional Girvan–Newman (GN) community detection algorithm via hyperbolic network embedding. The data dependency graph is embedded in the hyperbolic space via Rigel embedding, allowing more efficient computation of edge-betweenness centrality needed in the GN algorithm. This allows for more efficient clustering of the nodes of the data graph in terms of modularity, without sacrificing considerable accuracy. In order to study the operation of our approach with respect to enhancing GN community detection, we employ various representative types of artificial complex networks, such as scale-free, small-world and random geometric topologies, and frequently-employed benchmark datasets for demonstrating its efficacy in terms of data clustering via community detection. Furthermore, we provide a proof-of-concept evaluation by applying the proposed framework over multi-dimensional datasets obtained from an operational smart-city/building IoT infrastructure provided by the Federated Interoperable Semantic IoT/cloud Testbeds and Applications (FIESTA-IoT) testbed federation. It is shown that the proposed framework can be indeed used for community detection/data clustering and exploited in various other IoT applications, such as performing more energy-efficient smart-city/building sensing. PMID:29662043

  11. Lagrangian statistics and flow topology in forced two-dimensional turbulence.

    PubMed

    Kadoch, B; Del-Castillo-Negrete, D; Bos, W J T; Schneider, K

    2011-03-01

    A study of the relationship between Lagrangian statistics and flow topology in fluid turbulence is presented. The topology is characterized using the Weiss criterion, which provides a conceptually simple tool to partition the flow into topologically different regions: elliptic (vortex dominated), hyperbolic (deformation dominated), and intermediate (turbulent background). The flow corresponds to forced two-dimensional Navier-Stokes turbulence in doubly periodic and circular bounded domains, the latter with no-slip boundary conditions. In the double periodic domain, the probability density function (pdf) of the Weiss field exhibits a negative skewness consistent with the fact that in periodic domains the flow is dominated by coherent vortex structures. On the other hand, in the circular domain, the elliptic and hyperbolic regions seem to be statistically similar. We follow a Lagrangian approach and obtain the statistics by tracking large ensembles of passively advected tracers. The pdfs of residence time in the topologically different regions are computed introducing the Lagrangian Weiss field, i.e., the Weiss field computed along the particles' trajectories. In elliptic and hyperbolic regions, the pdfs of the residence time have self-similar algebraic decaying tails. In contrast, in the intermediate regions the pdf has exponential decaying tails. The conditional pdfs (with respect to the flow topology) of the Lagrangian velocity exhibit Gaussian-like behavior in the periodic and in the bounded domains. In contrast to the freely decaying turbulence case, the conditional pdfs of the Lagrangian acceleration in forced turbulence show a comparable level of intermittency in both the periodic and the bounded domains. The conditional pdfs of the Lagrangian curvature are characterized, in all cases, by self-similar power-law behavior with a decay exponent of order -2.

  12. Effects of Mean Flow Profiles on Instability of a Low-Density Gas Jet Injected into a High-Density Gas

    NASA Technical Reports Server (NTRS)

    Vedantam, Nanda Kishore

    2003-01-01

    The objective of this study was to investigate the effects of the mean flow profiles on the instability characteristics in the near-injector region of low-density gas jets injected into high-density ambient gas mediums. To achieve this, a linear temporal stability analysis and a spatio-temporal stability analysis of a low-density round gas jet injected vertically upwards into a high-density ambient gas were performed by assuming three different sets of mean velocity and density profiles. The flow was assumed to be isothermal and locally parallel. Viscous and diffusive effects were ignored. The mean flow parameters were represented as the sum of the mean value and a small normal-mode fluctuation. A second order differential equation governing the pressure disturbance amplitude was derived from the basic conservation equations. The first set of mean velocity and density profiles assumed were those used by Monkewitz and Sohn for investigating absolute instability in hot jets. The second set of velocity and density profiles assumed for this study were the ones used by Lawson. And the third set of mean profiles included a parabolic velocity profile and a hyperbolic tangent density profile. The effects of the inhomogeneous shear layer and the Froude number (signifying the effects of gravity) on the temporal and spatio-temporal results for each set of mean profiles were delineated. Additional information is included in the original extended abstract.

  13. Equivalence of emergent de Sitter spaces from conformal field theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Asplund, Curtis T.; Callebaut, Nele; Zukowski, Claire

    Recently, two groups have made distinct proposals for a de Sitter space that is emergent from conformal field theory (CFT). The first proposal is that, for two-dimensional holographic CFTs, the kinematic space of geodesics on a space-like slice of the asymptotically anti-de Sitter bulk is two-dimensional de Sitter space (dS 2), with a metric that can be derived from the entanglement entropy of intervals in the CFT. In the second proposal, de Sitter dynamics emerges naturally from the first law of entanglement entropy for perturbations around the vacuum state of CFTs. We provide support for the equivalence of these twomore » emergent spacetimes in the vacuum case and beyond. In particular, we study the kinematic spaces of nontrivial solutions of 3d gravity, including the BTZ black string, BTZ black hole, and conical singularities. We argue that the resulting spaces are generically globally hyperbolic spacetimes that support dynamics given boundary conditions at future infinity. For the BTZ black string, corresponding to a thermal state of the CFT, we show that both prescriptions lead to an emergent hyperbolic patch of dS 2. As a result, we offer a general method for relating kinematic space and the auxiliary de Sitter space that is valid in the vacuum and thermal cases.« less

  14. Equivalence of emergent de Sitter spaces from conformal field theory

    DOE PAGES

    Asplund, Curtis T.; Callebaut, Nele; Zukowski, Claire

    2016-09-27

    Recently, two groups have made distinct proposals for a de Sitter space that is emergent from conformal field theory (CFT). The first proposal is that, for two-dimensional holographic CFTs, the kinematic space of geodesics on a space-like slice of the asymptotically anti-de Sitter bulk is two-dimensional de Sitter space (dS 2), with a metric that can be derived from the entanglement entropy of intervals in the CFT. In the second proposal, de Sitter dynamics emerges naturally from the first law of entanglement entropy for perturbations around the vacuum state of CFTs. We provide support for the equivalence of these twomore » emergent spacetimes in the vacuum case and beyond. In particular, we study the kinematic spaces of nontrivial solutions of 3d gravity, including the BTZ black string, BTZ black hole, and conical singularities. We argue that the resulting spaces are generically globally hyperbolic spacetimes that support dynamics given boundary conditions at future infinity. For the BTZ black string, corresponding to a thermal state of the CFT, we show that both prescriptions lead to an emergent hyperbolic patch of dS 2. As a result, we offer a general method for relating kinematic space and the auxiliary de Sitter space that is valid in the vacuum and thermal cases.« less

  15. Self-stimulation in the rat: quantitative characteristics of the reward pathway.

    PubMed

    Gallistel, C R

    1978-12-01

    Quantitative characteristics of the neural pathway that carries the reinforcing signal in electrical self-stimulation of the brain were established by finding which combinations of stimulation parameters give the same performance in a runway. The reward for each run was a train of evenly spaced monophasic cathodal pulses from a monopolar electrode. With train duration and pulse frequency held constant, the required current was a hyperbolic function of pulse duration, with chronaxie c approximately 1.5 msec. With pulse duration held constant, the required strength of the train (the charge delivered per second) was a hyperbolic function of train duration, with chronaxie C approximately 500 msec. To a first approximation, the values of c and C were independent of the choice either of train duration and pulse frequency or of pulse duration, respectively. Hence, the current intensity required by any choice of train duration, pulse frequency, and pulse duration dependent on only two basic parameters, c and C, and one quantity, Qi, the required impulse charge. These may reflect, respectively, current integration by directly excited neurons; temporal integration of neural activity by synaptic processes in a neural network; and the peak of the impulse response of the network, assuming that the network has linear dynamics and that the reward depends on the peak of the output of the network.

  16. A freestream-preserving fourth-order finite-volume method in mapped coordinates with adaptive-mesh refinement

    DOE PAGES

    Guzik, Stephen M.; Gao, Xinfeng; Owen, Landon D.; ...

    2015-12-20

    We present a fourth-order accurate finite-volume method for solving time-dependent hyperbolic systems of conservation laws on mapped grids that are adaptively refined in space and time. Some novel considerations for formulating the semi-discrete system of equations in computational space are combined with detailed mechanisms for accommodating the adapting grids. Furthermore, these considerations ensure that conservation is maintained and that the divergence of a constant vector field is always zero (freestream-preservation property). The solution in time is advanced with a fourth-order Runge-Kutta method. A series of tests verifies that the expected accuracy is achieved in smooth flows and the solution ofmore » a Mach reflection problem demonstrates the effectiveness of the algorithm in resolving strong discontinuities.« less

  17. Directional and monochromatic thermal emitter from epsilon-near-zero conditions in semiconductor hyperbolic metamaterials

    DOE PAGES

    Campione, Salvatore; Marquier, Francois; Hugonin, Jean -Paul; ...

    2016-10-05

    The development of novel thermal sources that control the emission spectrum and the angular emission pattern is of fundamental importance. In this paper, we investigate the thermal emission properties of semiconductor hyperbolic metamaterials (SHMs). Our structure does not require the use of any periodic corrugation to provide monochromatic and directional emission properties. We show that these properties arise because of epsilon-near-zero conditions in SHMs. The thermal emission is dominated by the epsilon-near-zero effect in the doped quantum wells composing the SHM. In conclusion, different properties are observed for s and p polarizations, following the characteristics of the strong anisotropy ofmore » hyperbolic metamaterials.« less

  18. Directional and monochromatic thermal emitter from epsilon-near-zero conditions in semiconductor hyperbolic metamaterials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Campione, Salvatore; Marquier, Francois; Hugonin, Jean -Paul

    The development of novel thermal sources that control the emission spectrum and the angular emission pattern is of fundamental importance. In this paper, we investigate the thermal emission properties of semiconductor hyperbolic metamaterials (SHMs). Our structure does not require the use of any periodic corrugation to provide monochromatic and directional emission properties. We show that these properties arise because of epsilon-near-zero conditions in SHMs. The thermal emission is dominated by the epsilon-near-zero effect in the doped quantum wells composing the SHM. In conclusion, different properties are observed for s and p polarizations, following the characteristics of the strong anisotropy ofmore » hyperbolic metamaterials.« less

  19. Single qubit operations using microwave hyperbolic secant pulses

    NASA Astrophysics Data System (ADS)

    Ku, H. S.; Long, J. L.; Wu, X.; Bal, M.; Lake, R. E.; Barnes, Edwin; Economou, Sophia E.; Pappas, D. P.

    2017-10-01

    It has been known since the early days of quantum mechanics that hyperbolic secant pulses possess the unique property that they can perform full-cycle Rabi oscillations on two-level quantum systems independently of the pulse detuning. More recently, it was realized that they induce detuning-controlled phases without changing state populations. Here, we experimentally demonstrate the properties of hyperbolic secant pulses on superconducting transmon qubits and contrast them with the more commonly used Gaussian and square waves. We further show that these properties can be exploited to implement phase gates, nominally without exiting the computational subspace. This enables us to demonstrate a microwave-driven Z rotation with a single control parameter, the detuning.

  20. Near-field radiative heat transfer between graphene-covered hyperbolic metamaterials

    NASA Astrophysics Data System (ADS)

    Hong, Xiao-Juan; Li, Jian-Wen; Wang, Tong-Biao; Zhang, De-Jian; Liu, Wen-Xing; Liao, Qing-Hua; Yu, Tian-Bao; Liu, Nian-Hua

    2018-04-01

    We propose the use of graphene-covered silicon carbide (SiC) nanowire arrays (NWAs) for theoretical studies of near-field radiative heat transfer. The SiC NWAs exhibit a hyperbolic characteristic at an appropriately selected filling-volume fraction. The surface plasmon supported by graphene and the hyperbolic modes supported by SiC NWAs significantly affect radiative heat transfer. The heat-transfer coefficient (HTC) between the proposed structures is larger than that between SiC NWAs. We also find that the chemical potential of graphene plays an important role in modulating the HTC. The tunability of chemical potential through gate voltage enables flexible control of heat transfer using the graphene-covered SiC NWAs.

  1. Automatic Control via Thermostats of a Hyperbolic Stefan Problem with Memory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Colli, P.; Grasselli, M.; Sprekels, J.

    1999-03-15

    A hyperbolic Stefan problem based on the linearized Gurtin-Pipkin heat conduction law is considered. The temperature and free boundary are controlled by a thermostat acting on the boundary. This feedback control is based on temperature measurements performed by real thermal sensors located within the domain containing the two-phase system and/or at its boundary. Three different types of thermostats are analyzed: simple switch, relay switch, and a Preisach hysteresis operator. The resulting models lead to integrodifferential hyperbolic Stefan problems with nonlinear and nonlocal boundary conditions. Existence results are proved in all the cases. Uniqueness is also shown, except in the situationmore » corresponding to the ideal switch.« less

  2. Abundant closed form solutions of the conformable time fractional Sawada-Kotera-Ito equation using (G‧ / G) -expansion method

    NASA Astrophysics Data System (ADS)

    Al-Shawba, Altaf Abdulkarem; Gepreel, K. A.; Abdullah, F. A.; Azmi, A.

    2018-06-01

    In current study, we use the (G‧ / G) -expansion method to construct the closed form solutions of the seventh order time fractional Sawada-Kotera-Ito (TFSKI) equation based on conformable fractional derivative. As a result, trigonometric, hyperbolic and rational functions solutions with arbitrary constants are obtained. When the arbitrary constants are taken some special values, the periodic and soliton solutions are obtained from the travelling wave solutions. The obtained solutions are new and not found elsewhere. The effect of the fractional order on some of these solutions are represented graphically to illustrate the behavior of the exact solutions when the parameter take some special choose.

  3. Asymptotic analysis of quasilinear parabolic-hyperbolic equations describing the large longitudinal motion of a light viscoelastic bar with a heavy attachment

    NASA Astrophysics Data System (ADS)

    Yip, Shui Cheung

    We study the longitudinal motion of a nonlinearly viscoelastic bar with one end fixed and the other end attached to a heavy tip mass. This problem is a precise continuum mechanical analog of the basic discrete mechanical problem of the motion of a mass point on a (massless) spring. This motion is governed by an initial-boundary-value problem for a class of third-order quasilinear parabolic-hyperbolic partial differential equations subject to a nonstandard boundary condition, which is the equation of motion of the tip mass. The ratio of the mass of the bar to that of the tip mass is taken to be a small parameter varepsilon. We prove that this problem has a unique regular solution that admits a valid asymptotic expansion, including an initial-layer expansion, in powers of varepsilon for varepsilon near 0. The fundamental constitutive hypothesis that the tension be a uniformly monotone function of the strain rate plays a critical role in a delicate proof that each term of the initial layer expansion decays exponentially in time. These results depend on new decay estimates for the solution of quasilinear parabolic equations. The constitutive hypothesis that the viscosity become large where the bar nears total compression leads to important uniform bounds for the strain and the strain rate. Higher-order energy estimates support the proof by the Schauder Fixed-Point Theorem of the existence of solutions having a level of regularity appropriate for the asymptotics.

  4. THREE-POINT BACKWARD FINITE DIFFERENCE METHOD FOR SOLVING A SYSTEM OF MIXED HYPERBOLIC-PARABOLIC PARTIAL DIFFERENTIAL EQUATIONS. (R825549C019)

    EPA Science Inventory

    A three-point backward finite-difference method has been derived for a system of mixed hyperbolic¯¯parabolic (convection¯¯diffusion) partial differential equations (mixed PDEs). The method resorts to the three-point backward differenci...

  5. The Hyperbolic Sine Cardinal and the Catenary

    ERIC Educational Resources Information Center

    Sanchez-Reyes, Javier

    2012-01-01

    The hyperbolic function sinh(x)/x receives scant attention in the literature. We show that it admits a clear geometric interpretation as the ratio between length and chord of a symmetric catenary segment. The inverse, together with the use of dimensionless parameters, furnishes a compact, explicit construction of a general catenary segment of…

  6. Nonlinear sigma models with compact hyperbolic target spaces

    NASA Astrophysics Data System (ADS)

    Gubser, Steven; Saleem, Zain H.; Schoenholz, Samuel S.; Stoica, Bogdan; Stokes, James

    2016-06-01

    We explore the phase structure of nonlinear sigma models with target spaces corresponding to compact quotients of hyperbolic space, focusing on the case of a hyperbolic genus-2 Riemann surface. The continuum theory of these models can be approximated by a lattice spin system which we simulate using Monte Carlo methods. The target space possesses interesting geometric and topological properties which are reflected in novel features of the sigma model. In particular, we observe a topological phase transition at a critical temperature, above which vortices proliferate, reminiscent of the Kosterlitz-Thouless phase transition in the O(2) model [1, 2]. Unlike in the O(2) case, there are many different types of vortices, suggesting a possible analogy to the Hagedorn treatment of statistical mechanics of a proliferating number of hadron species. Below the critical temperature the spins cluster around six special points in the target space known as Weierstrass points. The diversity of compact hyperbolic manifolds suggests that our model is only the simplest example of a broad class of statistical mechanical models whose main features can be understood essentially in geometric terms.

  7. Gauss Modular-Arithmetic Congruence = Signal X Noise PRODUCT: Clock-model Archimedes HYPERBOLICITY Centrality INEVITABILITY: Definition: Complexity= UTTER-SIMPLICITY: Natural-Philosophy UNITY SIMPLICITY Redux!!!

    NASA Astrophysics Data System (ADS)

    Kummer, E. E.; Siegel, Edward Carl-Ludwig

    2011-03-01

    Clock-model Archimedes [http://linkage.rockeller.edu/ wli/moved.8.04/ 1fnoise/ index. ru.html] HYPERBOLICITY inevitability throughout physics/pure-maths: Newton-law F=ma, Heisenberg and classical uncertainty-principle=Parseval/Plancherel-theorems causes FUZZYICS definition: (so miscalled) "complexity" = UTTER-SIMPLICITY!!! Watkins[www.secamlocal.ex.ac.uk/people/staff/mrwatkin/]-Hubbard[World According to Wavelets (96)-p.14!]-Franklin[1795]-Fourier[1795;1822]-Brillouin[1922] dual/inverse-space(k,w) analysis key to Fourier-unification in Archimedes hyperbolicity inevitability progress up Siegel cognition hierarchy-of-thinking (HoT): data-info.-know.-understand.-meaning-...-unity-simplicity = FUZZYICS!!! Frohlich-Mossbauer-Goldanskii-del Guidice [Nucl.Phys.B:251,375(85);275,185 (86)]-Young [arXiv-0705.4678y2, (5/31/07] theory of health/life=aqueous-electret/ ferroelectric protoplasm BEC = Archimedes-Siegel [Schrodinger Cent.Symp.(87); Symp.Fractals, MRS Fall Mtg.(89)-5-pprs] 1/w-"noise" Zipf-law power-spectrum hyperbolicity INEVITABILITY= Chi; Dirac delta-function limit w=0 concentration= BEC = Chi-Quong.

  8. A teacher-developed inquiry model to teach the molecular basis of hyperbolic kinetics in biological membrane transport.

    PubMed

    Marcus, Leanne; Plumeri, Julia; Baker, Gary M; Miller, Jon S

    2013-06-01

    A previously published classroom teaching method for helping students visualize and understand Michaelis-Menten kinetics (19) was used as an anticipatory set with high school and middle school science teachers in an Illinois Math and Science Partnership Program. As part of the activity, the teachers were asked to collect data by replicating the method and to analyze and report the data. All concluded that the rate data they had collected were hyperbolic. As part of a guided inquiry plan, teachers were then prompted to reexamine the method and evaluate its efficacy as a teaching strategy for developing specific kinetic concepts. After further data collection and analysis, the teachers discovered that their data trends were not, in fact, hyperbolic, which led to several teacher-developed revisions aimed at obtaining a true hyperbolic outcome. This article outlines the inquiry process that led to these revisions and illustrates their alignment with several key concepts, such as rapid equilibrium kinetics. Instructional decisions were necessary at several key points, and these are discussed.

  9. Nonlinear sigma models with compact hyperbolic target spaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gubser, Steven; Saleem, Zain H.; Schoenholz, Samuel S.

    We explore the phase structure of nonlinear sigma models with target spaces corresponding to compact quotients of hyperbolic space, focusing on the case of a hyperbolic genus-2 Riemann surface. The continuum theory of these models can be approximated by a lattice spin system which we simulate using Monte Carlo methods. The target space possesses interesting geometric and topological properties which are reflected in novel features of the sigma model. In particular, we observe a topological phase transition at a critical temperature, above which vortices proliferate, reminiscent of the Kosterlitz-Thouless phase transition in the O(2) model [1, 2]. Unlike in themore » O(2) case, there are many different types of vortices, suggesting a possible analogy to the Hagedorn treatment of statistical mechanics of a proliferating number of hadron species. Below the critical temperature the spins cluster around six special points in the target space known as Weierstrass points. In conclusion, the diversity of compact hyperbolic manifolds suggests that our model is only the simplest example of a broad class of statistical mechanical models whose main features can be understood essentially in geometric terms.« less

  10. Nonlinear sigma models with compact hyperbolic target spaces

    DOE PAGES

    Gubser, Steven; Saleem, Zain H.; Schoenholz, Samuel S.; ...

    2016-06-23

    We explore the phase structure of nonlinear sigma models with target spaces corresponding to compact quotients of hyperbolic space, focusing on the case of a hyperbolic genus-2 Riemann surface. The continuum theory of these models can be approximated by a lattice spin system which we simulate using Monte Carlo methods. The target space possesses interesting geometric and topological properties which are reflected in novel features of the sigma model. In particular, we observe a topological phase transition at a critical temperature, above which vortices proliferate, reminiscent of the Kosterlitz-Thouless phase transition in the O(2) model [1, 2]. Unlike in themore » O(2) case, there are many different types of vortices, suggesting a possible analogy to the Hagedorn treatment of statistical mechanics of a proliferating number of hadron species. Below the critical temperature the spins cluster around six special points in the target space known as Weierstrass points. In conclusion, the diversity of compact hyperbolic manifolds suggests that our model is only the simplest example of a broad class of statistical mechanical models whose main features can be understood essentially in geometric terms.« less

  11. Modeling of thin-walled structures interacting with acoustic media as constrained two-dimensional continua

    NASA Astrophysics Data System (ADS)

    Rabinskiy, L. N.; Zhavoronok, S. I.

    2018-04-01

    The transient interaction of acoustic media and elastic shells is considered on the basis of the transition function approach. The three-dimensional hyperbolic initial boundary-value problem is reduced to a two-dimensional problem of shell theory with integral operators approximating the acoustic medium effect on the shell dynamics. The kernels of these integral operators are determined by the elementary solution of the problem of acoustic waves diffraction at a rigid obstacle with the same boundary shape as the wetted shell surface. The closed-form elementary solution for arbitrary convex obstacles can be obtained at the initial interaction stages on the background of the so-called “thin layer hypothesis”. Thus, the shell–wave interaction model defined by integro-differential dynamic equations with analytically determined kernels of integral operators becomes hence two-dimensional but nonlocal in time. On the other hand, the initial interaction stage results in localized dynamic loadings and consequently in complex strain and stress states that require higher-order shell theories. Here the modified theory of I.N.Vekua–A.A.Amosov-type is formulated in terms of analytical continuum dynamics. The shell model is constructed on a two-dimensional manifold within a set of field variables, Lagrangian density, and constraint equations following from the boundary conditions “shifted” from the shell faces to its base surface. Such an approach allows one to construct consistent low-order shell models within a unified formal hierarchy. The equations of the N th-order shell theory are singularly perturbed and contain second-order partial derivatives with respect to time and surface coordinates whereas the numerical integration of systems of first-order equations is more efficient. Such systems can be obtained as Hamilton–de Donder–Weyl-type equations for the Lagrangian dynamical system. The Hamiltonian formulation of the elementary N th-order shell theory is here briefly described.

  12. Preliminary estimates of Gulf Stream characteristics from TOPEX data and a precise gravimetric geoid

    NASA Technical Reports Server (NTRS)

    Rapp, Richard H.; Smith, Dru A.

    1994-01-01

    TOPEX sea surface height data has been used, with a gravimetric geoid, to calculate sea surface topography across the Gulf Stream. This topography was initially computed for nine tracks on cycles 21 to 29. Due to inaccurate geoid undulations on one track, results for eight tracks are reported. The sea surface topography estimates were used to calculate parameters that describe Gulf Stream characteristics from two models of the Gulf Stream. One model was based on a Gaussian representation of the velocity while the other was a hyperbolic representation of velocity or the sea surface topography. The parameters of the Gaussian velocity model fit were a width parameter, a maximum velocity value, and the location of the maximum velocity. The parameters of the hyperbolic sea surface topography model were the width, the height jump, position, and sea surface topography at the center of the stream. Both models were used for the eight tracks and nine cycles studied. Comparisons were made between the width parameters, the maximum velocities, and the height jumps. Some of the parameter estimates were found to be highly (0.9) correlated when the hyperbolic sea surface topography fit was carried out, but such correlations were reduced for either the Gaussian velocity fits or the hyperbolic velocity model fit. A comparison of the parameters derived from 1-year TOPEX data showed good agreement with values derived by Kelly (1991) using 2.5 years of Geosat data near 38 deg N, 66 deg W longitude. Accuracy of the geoid undulations used in the calculations was of order of +/- 16 cm with the accuracy of a geoid undulation difference equal to +/- 15 cm over a 100-km line in areas with good terrestrial data coverage. This paper demonstrates that our knowledge or geoid undulations and undulation differences, in a portion of the Gulf Stream region, is sufficiently accurate to determine characteristics of the jet when used with TOPEX altimeter data. The method used here has not been shown to be more accurate than methods that average altimeter data to form a reference surface used in analysis to obtain the Gulf Stream characteristics. However, the results show the geoid approach may be used in areas where lack of current meandering reduces the accuracy of the average surface procedure.

  13. A direct Arbitrary-Lagrangian-Eulerian ADER-WENO finite volume scheme on unstructured tetrahedral meshes for conservative and non-conservative hyperbolic systems in 3D

    NASA Astrophysics Data System (ADS)

    Boscheri, Walter; Dumbser, Michael

    2014-10-01

    In this paper we present a new family of high order accurate Arbitrary-Lagrangian-Eulerian (ALE) one-step ADER-WENO finite volume schemes for the solution of nonlinear systems of conservative and non-conservative hyperbolic partial differential equations with stiff source terms on moving tetrahedral meshes in three space dimensions. A WENO reconstruction technique is used to achieve high order of accuracy in space, while an element-local space-time Discontinuous Galerkin finite element predictor on moving curved meshes is used to obtain a high order accurate one-step time discretization. Within the space-time predictor the physical element is mapped onto a reference element using a high order isoparametric approach, where the space-time basis and test functions are given by the Lagrange interpolation polynomials passing through a predefined set of space-time nodes. Since our algorithm is cell-centered, the final mesh motion is computed by using a suitable node solver algorithm. A rezoning step as well as a flattener strategy are used in some of the test problems to avoid mesh tangling or excessive element deformations that may occur when the computation involves strong shocks or shear waves. The ALE algorithm presented in this article belongs to the so-called direct ALE methods because the final Lagrangian finite volume scheme is based directly on a space-time conservation formulation of the governing PDE system, with the rezoned geometry taken already into account during the computation of the fluxes. We apply our new high order unstructured ALE schemes to the 3D Euler equations of compressible gas dynamics, for which a set of classical numerical test problems has been solved and for which convergence rates up to sixth order of accuracy in space and time have been obtained. We furthermore consider the equations of classical ideal magnetohydrodynamics (MHD) as well as the non-conservative seven-equation Baer-Nunziato model of compressible multi-phase flows with stiff relaxation source terms.

  14. Two-mirror, three-reflection telescopes as candidates for sky surveys in ground and space applications. The MINITRUST: an active optics warping telescope for wide-field astronomy

    NASA Astrophysics Data System (ADS)

    Viotti, Roberto F.; La Padula, Cesare D.; Vignato, Agostino; Lemaitre, Gerard R.; Montiel, Pierre; Dohlen, Kjetil

    2002-12-01

    A concept based on a two-mirror, three-reflection telescope has been investigated. Its anastigmatism and flat fielded properties, the compactness and optical performances over 2-2.5 arc deg field of view, make this optical system of high interest for the development of much larger telescopes than with Schmidt designs. The 2MTRT concept is a potential candidate for sky surveys with 2-3 meter class telescopes and particularily well adapted for UV space surveys. Preliminary developments have been carried out with the construction of a 30-cm prototype on Amoretti's design, providing encouraging results. At present, a 45-cm 2MTRT prototype has been realized for ground based sky survey of NEOs, based on active optics (MINITRUST), in order to overcome the difficulty of obtaining three aspherical surfaces. The primary and tertiary lie on the same double vase substrate, and have a rest profile. The hyperbolization is carried out in situ by air depressure. The secondary, in a tulip form substrate, has been hyperbolized by elastic relaxation. The project is planned for operation in 2003.

  15. Hyperbolic Positioning with Antenna Arrays and Multi-Channel Pseudolite for Indoor Localization

    PubMed Central

    Fujii, Kenjirou; Sakamoto, Yoshihiro; Wang, Wei; Arie, Hiroaki; Schmitz, Alexander; Sugano, Shigeki

    2015-01-01

    A hyperbolic positioning method with antenna arrays consisting of proximately-located antennas and a multi-channel pseudolite is proposed in order to overcome the problems of indoor positioning with conventional pseudolites (ground-based GPS transmitters). A two-dimensional positioning experiment using actual devices is conducted. The experimental result shows that the positioning accuracy varies centimeter- to meter-level according to the geometric relation between the pseudolite antennas and the receiver. It also shows that the bias error of the carrier-phase difference observables is more serious than their random error. Based on the size of the bias error of carrier-phase difference that is inverse-calculated from the experimental result, three-dimensional positioning performance is evaluated by computer simulation. In addition, in the three-dimensional positioning scenario, an initial value convergence analysis of the non-linear least squares is conducted. Its result shows that initial values that can converge to a right position exist at least under the proposed antenna setup. The simulated values and evaluation methods introduced in this work can be applied to various antenna setups; therefore, by using them, positioning performance can be predicted in advance of installing an actual system. PMID:26437405

  16. Strongly coupled stress waves in heterogeneous plates.

    NASA Technical Reports Server (NTRS)

    Wang, A. S. D.; Chou, P. C.; Rose, J. L.

    1972-01-01

    Consideration of coupled stress waves generated by an impulsive load applied at one end of a semiinfinite plate. For the field equations governing the one-dimensional coupled waves a hyperbolic system of equations is obtained in which a strong coupling in the second derivatives exists. The method of characteristics described by Chou and Mortimer (1967) is extended to cover the case of strong coupling, and a study is made of the transient stress waves in a semiinfinite plate subjected to an initial step input. Coupled discontinuity fronts are found to propagate at different velocities. The normal plate stress and the bending moment at different time regimes are illustrated by graphs.

  17. Dynamic analyses, FPGA implementation and engineering applications of multi-butterfly chaotic attractors generated from generalised Sprott C system

    NASA Astrophysics Data System (ADS)

    Lai, Qiang; Zhao, Xiao-Wen; Rajagopal, Karthikeyan; Xu, Guanghui; Akgul, Akif; Guleryuz, Emre

    2018-01-01

    This paper considers the generation of multi-butterfly chaotic attractors from a generalised Sprott C system with multiple non-hyperbolic equilibria. The system is constructed by introducing an additional variable whose derivative has a switching function to the Sprott C system. It is numerically found that the system creates two-, three-, four-, five-butterfly attractors and any other multi-butterfly attractors. First, the dynamic analyses of multi-butterfly chaotic attractors are presented. Secondly, the field programmable gate array implementation, electronic circuit realisation and random number generator are done with the multi-butterfly chaotic attractors.

  18. The Spectrum of Reversible Minimizers

    NASA Astrophysics Data System (ADS)

    Ureña, Antonio J.

    2018-05-01

    Poincaré and, later on, Carathéodory, showed that the Floquet multipliers of 1-dimensional periodic curves minimizing the Lagrangian action are real and positive. Even though Carathéodory himself observed that this result loses its validity in the general higherdimensional case, we shall show that it remains true for systems which are reversible in time. In this way, we also generalize a previous result by Offin on the hyperbolicity of nondegenerate symmetric minimizers. Our arguments rely on the higher-dimensional generalizations of the Sturm theory which were developed during the second half of the twentieth century by several authors, including Hartman, Morse or Arnol'd.

  19. Highly-Effective Purification of Air on the Fibrous Filtering Nozzles

    NASA Astrophysics Data System (ADS)

    Galtseva, O. V.; Bordunov, S. V.; Torgaev, S. N.

    2016-02-01

    A series of experiments by air purification on fibrous filtering nozzles was made. It is experimentally shown that the fibrous filter can operate in a wide rate range. The degree of trapping of fine aerosols of glass was 99% at a linear rate of 0.01 m/s. the degree of capture decreased to 85% at the increasing of filtration rate up to 0.06 m/s. Dustiness of the air ranged from 3 to 5 g/m3 at the course of the experiment. Hydraulic resistance changed from 5 to 25 mm of water column. The calculated data of resistance and falling of pressure on fibrous filters are given; these data were received on the equations from various sources in comparison with experimentally obtained data. According to the results of series of experiments the amendment of the well-known Fuchsian equation is calculated for calculation of the resistance of fibrous air filter. This amendment considers a form and defects of surface of the fibers received by centrifugal-spinneret method.

  20. Spherically Symmetric Gravitational Collapse of a Dust Cloud in Third-Order Lovelock Gravity

    NASA Astrophysics Data System (ADS)

    Zhou, Kang; Yang, Zhan-Ying; Zou, De-Cheng; Yue, Rui-Hong

    We investigate the spherically symmetric gravitational collapse of an incoherent dust cloud by considering a LTB-type spacetime in third-order Lovelock Gravity without cosmological constant, and give three families of LTB-like solutions which separately corresponding to hyperbolic, parabolic and elliptic. Notice that the contribution of high-order curvature corrections have a profound influence on the nature of the singularity, and the global structure of spacetime changes drastically from the analogous general relativistic case. Interestingly, the presence of high order Lovelock terms leads to the formation of massive, naked and timelike singularities in the 7D spacetime, which is disallowed in general relativity. Moveover, we point out that the naked singularities in the 7D case may be gravitational weak therefore may not be a serious threat to the cosmic censorship hypothesis, while the naked singularities in the D ≥ 8 inhomogeneous collapse violate the cosmic censorship hypothesis seriously.

  1. Well-balanced high-order solver for blood flow in networks of vessels with variable properties.

    PubMed

    Müller, Lucas O; Toro, Eleuterio F

    2013-12-01

    We present a well-balanced, high-order non-linear numerical scheme for solving a hyperbolic system that models one-dimensional flow in blood vessels with variable mechanical and geometrical properties along their length. Using a suitable set of test problems with exact solution, we rigorously assess the performance of the scheme. In particular, we assess the well-balanced property and the effective order of accuracy through an empirical convergence rate study. Schemes of up to fifth order of accuracy in both space and time are implemented and assessed. The numerical methodology is then extended to realistic networks of elastic vessels and is validated against published state-of-the-art numerical solutions and experimental measurements. It is envisaged that the present scheme will constitute the building block for a closed, global model for the human circulation system involving arteries, veins, capillaries and cerebrospinal fluid. Copyright © 2013 John Wiley & Sons, Ltd.

  2. The Hartman-Grobman theorem for semilinear hyperbolic evolution equations

    NASA Astrophysics Data System (ADS)

    Hein, Marie-Luise; Prüss, Jan

    2016-10-01

    The famous Hartman-Grobman theorem for ordinary differential equations is extended to abstract semilinear hyperbolic evolution equations in Banach spaces by means of simple direct proof. It is also shown that the linearising map is Hölder continuous. Several applications to abstract and specific damped wave equations are given, to demonstrate the strength of our results.

  3. Some remarks on the current status of the control theory of single space dimension hyperbolic systems

    NASA Technical Reports Server (NTRS)

    Russell, D. L.

    1983-01-01

    Various aspects of the control theory of hyperbolic systems, including controllability, stabilization, control canonical form theory, etc., are reviewed. To allow a unified and not excessively technical treatment, attention is restricted to the case of a single space variable. A newly developed procedure of canonical augmentation is discussed.

  4. A Runge-Kutta discontinuous Galerkin approach to solve reactive flows: The hyperbolic operator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Billet, G., E-mail: billet@onera.f; Ryan, J., E-mail: ryan@onera.f

    2011-02-20

    A Runge-Kutta discontinuous Galerkin method to solve the hyperbolic part of reactive Navier-Stokes equations written in conservation form is presented. Complex thermodynamics laws are taken into account. Particular care has been taken to solve the stiff gaseous interfaces correctly with no restrictive hypothesis. 1D and 2D test cases are presented.

  5. Modelling the growth of porous alumina matrix for creating hyperbolic media

    NASA Astrophysics Data System (ADS)

    Aryslanova, E. M.; Alfimov, A. V.; Chivilikhin, S. A.

    2016-08-01

    Porous aluminum oxide is a regular self-assembled structure. During anodization it is possible to control nano-parameters of the structure using macroscopic parameters of anodization. Porous alumina films can be used as a template for the creation of hyperbolic media. In this work we consider the anodization process, our model takes into account the influence of layers of aluminum and electrolyte on the rate of growth of aluminum oxide, as well as the effect of surface diffusion. As a result of our model we obtain the minimum distance between centers of alumina pores in the beginning of anodizing process. We also present the results obtained by numerical modelling of hyperbolic media based on porous alumina film.

  6. Clawpack: Building an open source ecosystem for solving hyperbolic PDEs

    USGS Publications Warehouse

    Iverson, Richard M.; Mandli, K.T.; Ahmadia, Aron J.; Berger, M.J.; Calhoun, Donna; George, David L.; Hadjimichael, Y.; Ketcheson, David I.; Lemoine, Grady L.; LeVeque, Randall J.

    2016-01-01

    Clawpack is a software package designed to solve nonlinear hyperbolic partial differential equations using high-resolution finite volume methods based on Riemann solvers and limiters. The package includes a number of variants aimed at different applications and user communities. Clawpack has been actively developed as an open source project for over 20 years. The latest major release, Clawpack 5, introduces a number of new features and changes to the code base and a new development model based on GitHub and Git submodules. This article provides a summary of the most significant changes, the rationale behind some of these changes, and a description of our current development model. Clawpack: building an open source ecosystem for solving hyperbolic PDEs.

  7. Fast sweeping methods for hyperbolic systems of conservation laws at steady state II

    NASA Astrophysics Data System (ADS)

    Engquist, Björn; Froese, Brittany D.; Tsai, Yen-Hsi Richard

    2015-04-01

    The idea of using fast sweeping methods for solving stationary systems of conservation laws has previously been proposed for efficiently computing solutions with sharp shocks. We further develop these methods to allow for a more challenging class of problems including problems with sonic points, shocks originating in the interior of the domain, rarefaction waves, and two-dimensional systems. We show that fast sweeping methods can produce higher-order accuracy. Computational results validate the claims of accuracy, sharp shock curves, and optimal computational efficiency.

  8. Development of an Integrated Modeling Framework for Simulations of Coastal Processes in Deltaic Environments Using High-Performance Computing

    DTIC Science & Technology

    2008-01-01

    exceeds the local water depth. The approximation eliminates the vertical dimension of the elliptic equation that is normally required for the fully non...used for vertical resolution. The shallow water equations (SWE) are a set of non-linear hyperbolic equations. As the equations are derived under...linear standing wave with a wavelength of 10 m in a square 10 m by 10 m basin. The still water depth is 0.5 m. In order to compare with the analytical

  9. Island of stability for consistent deformations of Einstein's gravity.

    PubMed

    Berkhahn, Felix; Dietrich, Dennis D; Hofmann, Stefan; Kühnel, Florian; Moyassari, Parvin

    2012-03-30

    We construct deformations of general relativity that are consistent and phenomenologically viable, since they respect, in particular, cosmological backgrounds. These deformations have unique symmetries in accordance with their Minkowski cousins (Fierz-Pauli theory for massive gravitons) and incorporate a background curvature induced self-stabilizing mechanism. Self-stabilization is essential in order to guarantee hyperbolic evolution in and unitarity of the covariantized theory, as well as the deformation's uniqueness. We show that the deformation's parameter space contains islands of absolute stability that are persistent through the entire cosmic evolution.

  10. Orbit of Comet C/1850 Q1 (Bond)

    NASA Astrophysics Data System (ADS)

    Branham, Richard L., Jr.

    Comet C/1850 Q1 (Bond) is one of a number of comets catalogued with parabolic orbits. Given that there are sufficient observations, 104in right ascension and 103in declination, it proves possible to calculate a better orbit. Some of the difficulties of working with 19th century observations, which show considerable scatter, are discussed. Rectangular coordinates, both of the comet and the Sun, are interpolated by a recursive version of Aitken's method, rendering unnecessary the need to specify an order for the interpolation. Comet Bond's orbit is slightly hyperbolic.

  11. Dynamical analysis of continuous higher-order hopfield networks for combinatorial optimization.

    PubMed

    Atencia, Miguel; Joya, Gonzalo; Sandoval, Francisco

    2005-08-01

    In this letter, the ability of higher-order Hopfield networks to solve combinatorial optimization problems is assessed by means of a rigorous analysis of their properties. The stability of the continuous network is almost completely clarified: (1) hyperbolic interior equilibria, which are unfeasible, are unstable; (2) the state cannot escape from the unitary hypercube; and (3) a Lyapunov function exists. Numerical methods used to implement the continuous equation on a computer should be designed with the aim of preserving these favorable properties. The case of nonhyperbolic fixed points, which occur when the Hessian of the target function is the null matrix, requires further study. We prove that these nonhyperbolic interior fixed points are unstable in networks with three neurons and order two. The conjecture that interior equilibria are unstable in the general case is left open.

  12. The Local Discontinuous Galerkin Method for Time-Dependent Convection-Diffusion Systems

    NASA Technical Reports Server (NTRS)

    Cockburn, Bernardo; Shu, Chi-Wang

    1997-01-01

    In this paper, we study the Local Discontinuous Galerkin methods for nonlinear, time-dependent convection-diffusion systems. These methods are an extension of the Runge-Kutta Discontinuous Galerkin methods for purely hyperbolic systems to convection-diffusion systems and share with those methods their high parallelizability, their high-order formal accuracy, and their easy handling of complicated geometries, for convection dominated problems. It is proven that for scalar equations, the Local Discontinuous Galerkin methods are L(sup 2)-stable in the nonlinear case. Moreover, in the linear case, it is shown that if polynomials of degree k are used, the methods are k-th order accurate for general triangulations; although this order of convergence is suboptimal, it is sharp for the LDG methods. Preliminary numerical examples displaying the performance of the method are shown.

  13. Computational electrodynamics in material media with constraint-preservation, multidimensional Riemann solvers and sub-cell resolution - Part II, higher order FVTD schemes

    NASA Astrophysics Data System (ADS)

    Balsara, Dinshaw S.; Garain, Sudip; Taflove, Allen; Montecinos, Gino

    2018-02-01

    The Finite Difference Time Domain (FDTD) scheme has served the computational electrodynamics community very well and part of its success stems from its ability to satisfy the constraints in Maxwell's equations. Even so, in the previous paper of this series we were able to present a second order accurate Godunov scheme for computational electrodynamics (CED) which satisfied all the same constraints and simultaneously retained all the traditional advantages of Godunov schemes. In this paper we extend the Finite Volume Time Domain (FVTD) schemes for CED in material media to better than second order of accuracy. From the FDTD method, we retain a somewhat modified staggering strategy of primal variables which enables a very beneficial constraint-preservation for the electric displacement and magnetic induction vector fields. This is accomplished with constraint-preserving reconstruction methods which are extended in this paper to third and fourth orders of accuracy. The idea of one-dimensional upwinding from Godunov schemes has to be significantly modified to use the multidimensionally upwinded Riemann solvers developed by the first author. In this paper, we show how they can be used within the context of a higher order scheme for CED. We also report on advances in timestepping. We show how Runge-Kutta IMEX schemes can be adapted to CED even in the presence of stiff source terms brought on by large conductivities as well as strong spatial variations in permittivity and permeability. We also formulate very efficient ADER timestepping strategies to endow our method with sub-cell resolving capabilities. As a result, our method can be stiffly-stable and resolve significant sub-cell variation in the material properties within a zone. Moreover, we present ADER schemes that are applicable to all hyperbolic PDEs with stiff source terms and at all orders of accuracy. Our new ADER formulation offers a treatment of stiff source terms that is much more efficient than previous ADER schemes. The computer algebra system scripts for generating ADER time update schemes for any general PDE with stiff source terms are also given in the electronic supplements to this paper. Second, third and fourth order accurate schemes for numerically solving Maxwell's equations in material media are presented in this paper. Several stringent tests are also presented to show that the method works and meets its design goals even when material permittivity and permeability vary by an order of magnitude over just a few zones. Furthermore, since the method is unconditionally stable and sub-cell-resolving in the presence of stiff source terms (i.e. for problems involving giant variations in conductivity over just a few zones), it can accurately handle such problems without any reduction in timestep. We also show that increasing the order of accuracy offers distinct advantages for resolving sub-cell variations in material properties. Most importantly, we show that when the accuracy requirements are stringent the higher order schemes offer the shortest time to solution. This makes a compelling case for the use of higher order, sub-cell resolving schemes in CED.

  14. Well-posedness of characteristic symmetric hyperbolic systems

    NASA Astrophysics Data System (ADS)

    Secchi, Paolo

    1996-06-01

    We consider the initial-boundary-value problem for quasi-linear symmetric hyperbolic systems with characteristic boundary of constant multiplicity. We show the well-posedness in Hadamard's sense (i.e., existence, uniqueness and continuous dependence of solutions on the data) of regular solutions in suitable functions spaces which take into account the loss of regularity in the normal direction to the characteristic boundary.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cololla, P.

    This review describes a structured approach to adaptivity. The Automated Mesh Refinement (ARM) algorithms developed by M Berger are described, touching on hyperbolic and parabolic applications. Adaptivity is achieved by overlaying finer grids only in areas flagged by a generalized error criterion. The author discusses some of the issues involved in abutting disparate-resolution grids, and demonstrates that suitable algorithms exist for dissipative as well as hyperbolic systems.

  16. Addendum to "An update on the classical and quantum harmonic oscillators on the sphere and the hyperbolic plane in polar coordinates" [Phys. Lett. A 379 (26-27) (2015) 1589-1593

    NASA Astrophysics Data System (ADS)

    Quesne, C.

    2016-02-01

    The classical and quantum solutions of a nonlinear model describing harmonic oscillators on the sphere and the hyperbolic plane, derived in polar coordinates in a recent paper (Quesne, 2015) [1], are extended by the inclusion of an isotonic term.

  17. Hyperbolic conservation laws and numerical methods

    NASA Technical Reports Server (NTRS)

    Leveque, Randall J.

    1990-01-01

    The mathematical structure of hyperbolic systems and the scalar equation case of conservation laws are discussed. Linear, nonlinear systems and the Riemann problem for the Euler equations are also studied. The numerical methods for conservation laws are presented in a nonstandard manner which leads to large time steps generalizations and computations on irregular grids. The solution of conservation laws with stiff source terms is examined.

  18. Navigability of Random Geometric Graphs in the Universe and Other Spacetimes.

    PubMed

    Cunningham, William; Zuev, Konstantin; Krioukov, Dmitri

    2017-08-18

    Random geometric graphs in hyperbolic spaces explain many common structural and dynamical properties of real networks, yet they fail to predict the correct values of the exponents of power-law degree distributions observed in real networks. In that respect, random geometric graphs in asymptotically de Sitter spacetimes, such as the Lorentzian spacetime of our accelerating universe, are more attractive as their predictions are more consistent with observations in real networks. Yet another important property of hyperbolic graphs is their navigability, and it remains unclear if de Sitter graphs are as navigable as hyperbolic ones. Here we study the navigability of random geometric graphs in three Lorentzian manifolds corresponding to universes filled only with dark energy (de Sitter spacetime), only with matter, and with a mixture of dark energy and matter. We find these graphs are navigable only in the manifolds with dark energy. This result implies that, in terms of navigability, random geometric graphs in asymptotically de Sitter spacetimes are as good as random hyperbolic graphs. It also establishes a connection between the presence of dark energy and navigability of the discretized causal structure of spacetime, which provides a basis for a different approach to the dark energy problem in cosmology.

  19. The behavioral economics of will in recovery from addiction.

    PubMed

    Monterosso, John; Ainslie, George

    2007-09-01

    Behavioral economic studies demonstrate that rewards are discounted proportionally with their delay (hyperbolic discounting). Hyperbolic discounting implies temporary preference for smaller rewards when they are imminent, and this concept has been widely considered by researchers interested in the causes of addictive behavior. Far less consideration has been given to the fact that systematic preference reversal also predicts various self-control phenomena, which may also be analyzed from a behavioral economic perspective. Here we summarize self-control phenomena predicted by hyperbolic discounting, particularly with application to the field of addiction. Of greatest interest is the phenomenon of choice bundling, an increase in motivation to wait for delayed rewards that can be expected to result from making choices in whole categories. Specifically, when a person's expectations about her own future behavior are conditional upon her current behavior, the value of these expectations is added to the contingencies for the current behavior, resulting in reduced impulsivity. Hyperbolic discounting provides a bottom-up basis for the intuitive learning of choice bundling, the properties of which match common descriptions of willpower. We suggest that the bundling effect can also be discerned in the advice of 12-step programs.

  20. Doubly-focused echos from spheres unfold into a hyperbolic umbilic diffraction catastrophe

    NASA Astrophysics Data System (ADS)

    Dzikowicz, Ben; Marston, Philip L.

    2003-04-01

    An underwater spherical target resides in an Airy field formed by reflection off a curved surface representing the sea floor or sea surface. In prior work [B. Dzikowicz and P. L. Marston, J. Acoust. Soc Am. 110, 2778 (2001)] direct returns of a tone burst from the surface reflection focused toward the target were shown to have a dependence on the target position described by an Airy function. The return echo can also be focused again by the surface onto the source and receive transducer. This gives the square of an Airy function for the case of a point target. With a finite sized target (as in the experiment) this goes over to a hyperbolic umbilic catastrophe with symmetric arguments. The arguments of the hyperbolic umbilic function are derived from only the relative return times of a transient pulse. Experiment confirms the predicted merging of transient echoes in the time domain, as well as the hyperbolic umbilic diffraction integral amplitudes for a tone burst. This method would allow for the observation of a target at a greater distance in the presence of a focusing surface. [Research supported by ONR.

  1. The behavioral economics of will in recovery from addiction

    PubMed Central

    Monterosso, John; Ainslie, George

    2007-01-01

    Behavioral economic studies demonstrate that rewards are discounted proportionally with their delay (hyperbolic discounting). Hyperbolic discounting implies temporary preference for smaller rewards when they are imminent, and this concept has been widely considered by researchers interested in the causes of addictive behavior. Far less consideration has been given to the fact that systematic preference reversal also predicts various self-control phenomena, which may also be analyzed from a behavioral economic perspective. Here we summarize self-control phenomena predicted by hyperbolic discounting, particularly with application to the field of addiction. Of greatest interest is the phenomenon of choice bundling, an increase in motivation to wait for delayed rewards that can be expected to result from making choices in whole categories. Specifically, when a person’s expectations about her own future behavior are conditional upon her current behavior, the value of these expectations is added to the contingencies for the current behavior, resulting in reduced impulsivity. Hyperbolic discounting provides a bottom-up basis for the intuitive learning of choice bundling, the properties of which match common descriptions of willpower. We suggest that the bundling effect can also be discerned in the advice of 12-step programs. PMID:17034958

  2. Flux rope, hyperbolic flux tube, and late extreme ultraviolet phases in a non-eruptive circular-ribbon flare

    NASA Astrophysics Data System (ADS)

    Masson, Sophie; Pariat, Étienne; Valori, Gherardo; Deng, Na; Liu, Chang; Wang, Haimin; Reid, Hamish

    2017-08-01

    Context. The dynamics of ultraviolet (UV) emissions during solar flares provides constraints on the physical mechanisms involved in the trigger and the evolution of flares. In particular it provides some information on the location of the reconnection sites and the associated magnetic fluxes. In this respect, confined flares are far less understood than eruptive flares generating coronal mass ejections. Aims: We present a detailed study of a confined circular flare dynamics associated with three UV late phases in order to understand more precisely which topological elements are present and how they constrain the dynamics of the flare. Methods: We perform a non-linear force-free field extrapolation of the confined flare observed with the Helioseismic and Magnetic Imager (HMI) and Atmospheric Imaging Assembly (AIA) instruments on board Solar Dynamics Observatory (SDO). From the 3D magnetic field we compute the squashing factor and we analyse its distribution. Conjointly, we analyse the AIA extreme ultraviolet (EUV) light curves and images in order to identify the post-flare loops, and their temporal and thermal evolution. By combining the two analyses we are able to propose a detailed scenario that explains the dynamics of the flare. Results: Our topological analysis shows that in addition to a null-point topology with the fan separatrix, the spine lines and its surrounding quasi-separatix layer (QSL) halo (typical for a circular flare), a flux rope and its hyperbolic flux tube (HFT) are enclosed below the null. By comparing the magnetic field topology and the EUV post-flare loops we obtain an almost perfect match between the footpoints of the separatrices and the EUV 1600 Å ribbons and between the HFT field line footpoints and bright spots observed inside the circular ribbons. We show, for the first time in a confined flare, that magnetic reconnection occurred initially at the HFT below the flux rope. Reconnection at the null point between the flux rope and the overlying field is only initiated in a second phase. In addition, we showed that the EUV late phase observed after the main flare episode is caused by the cooling loops of different length which have all reconnected at the null point during the impulsive phase. Conclusions: Our analysis shows in one example that flux ropes are present in null-point topology not only for eruptive and jet events, but also for confined flares. This allows us to conjecture on the analogies between conditions that govern the generation of jets, confined flares or eruptive flares. A movie is available at http://www.aanda.org

  3. Modification of kinetic parameters of glycogen phosphorylase from mantle tissue of Mytilus galloprovincialis by a phosphorylation mechanism.

    PubMed

    San Juan Serrano, F; Fernández González, M; Sánchez López, J L; García Martín, L O

    1995-09-01

    Initial rate and affinity studies on mantle Mytilus phosphorylase a were carried out in order to find possible differences in its kinetic properties with respect to phosphorylase b. Phosphorylase a was not stimulated for any AMP concentrations. Michaelis constants (Km) are 0.05 mg/ml glycogen, 1.15 mM inorganic phosphate and 1.50 mM glucose-1-phosphate. The Kms for the substrates, in the direction of glycogen breakdown, are enhanced by non-saturating concentrations of cosubstrate, without reducing the apparent maximum velocity. First order and hyperbolic kinetics and values of the allosteric constant smaller than 2 were observed. These results suggest a catalytic mechanism different to that shown for mantle Mytilus phosphorylase b.

  4. Mathematical Methods for Physics and Engineering Third Edition Paperback Set

    NASA Astrophysics Data System (ADS)

    Riley, Ken F.; Hobson, Mike P.; Bence, Stephen J.

    2006-06-01

    Prefaces; 1. Preliminary algebra; 2. Preliminary calculus; 3. Complex numbers and hyperbolic functions; 4. Series and limits; 5. Partial differentiation; 6. Multiple integrals; 7. Vector algebra; 8. Matrices and vector spaces; 9. Normal modes; 10. Vector calculus; 11. Line, surface and volume integrals; 12. Fourier series; 13. Integral transforms; 14. First-order ordinary differential equations; 15. Higher-order ordinary differential equations; 16. Series solutions of ordinary differential equations; 17. Eigenfunction methods for differential equations; 18. Special functions; 19. Quantum operators; 20. Partial differential equations: general and particular; 21. Partial differential equations: separation of variables; 22. Calculus of variations; 23. Integral equations; 24. Complex variables; 25. Application of complex variables; 26. Tensors; 27. Numerical methods; 28. Group theory; 29. Representation theory; 30. Probability; 31. Statistics; Index.

  5. Lattice Boltzmann model for numerical relativity.

    PubMed

    Ilseven, E; Mendoza, M

    2016-02-01

    In the Z4 formulation, Einstein equations are written as a set of flux conservative first-order hyperbolic equations that resemble fluid dynamics equations. Based on this formulation, we construct a lattice Boltzmann model for numerical relativity and validate it with well-established tests, also known as "apples with apples." Furthermore, we find that by increasing the relaxation time, we gain stability at the cost of losing accuracy, and by decreasing the lattice spacings while keeping a constant numerical diffusivity, the accuracy and stability of our simulations improve. Finally, in order to show the potential of our approach, a linear scaling law for parallelization with respect to number of CPU cores is demonstrated. Our model represents the first step in using lattice kinetic theory to solve gravitational problems.

  6. A shifted hyperbolic augmented Lagrangian-based artificial fish two-swarm algorithm with guaranteed convergence for constrained global optimization

    NASA Astrophysics Data System (ADS)

    Rocha, Ana Maria A. C.; Costa, M. Fernanda P.; Fernandes, Edite M. G. P.

    2016-12-01

    This article presents a shifted hyperbolic penalty function and proposes an augmented Lagrangian-based algorithm for non-convex constrained global optimization problems. Convergence to an ?-global minimizer is proved. At each iteration k, the algorithm requires the ?-global minimization of a bound constrained optimization subproblem, where ?. The subproblems are solved by a stochastic population-based metaheuristic that relies on the artificial fish swarm paradigm and a two-swarm strategy. To enhance the speed of convergence, the algorithm invokes the Nelder-Mead local search with a dynamically defined probability. Numerical experiments with benchmark functions and engineering design problems are presented. The results show that the proposed shifted hyperbolic augmented Lagrangian compares favorably with other deterministic and stochastic penalty-based methods.

  7. Experimental demonstration of metamaterial "multiverse" in a ferrofluid.

    PubMed

    Smolyaninov, Igor I; Yost, Bradley; Bates, Evan; Smolyaninova, Vera N

    2013-06-17

    Extraordinary light rays propagating inside a hyperbolic metamaterial look similar to particle world lines in a 2 + 1 dimensional Minkowski spacetime. Magnetic nanoparticles in a ferrofluid are known to form nanocolumns aligned along the magnetic field, so that a hyperbolic metamaterial may be formed at large enough nanoparticle concentration nH. Here we investigate optical properties of such a metamaterial just below nH. While on average such a metamaterial is elliptical, thermal fluctuations of nanoparticle concentration lead to transient formation of hyperbolic regions (3D Minkowski spacetimes) inside this metamaterial. Thus, thermal fluctuations in a ferrofluid look similar to creation and disappearance of individual Minkowski spacetimes (universes) in the cosmological multiverse. This theoretical picture is supported by experimental measurements of polarization-dependent optical transmission of a cobalt based ferrofluid at 1500 nm.

  8. On Another Edge of Defocusing: Hyperbolicity of Asymmetric Lemon Billiards

    NASA Astrophysics Data System (ADS)

    Bunimovich, Leonid; Zhang, Hong-Kun; Zhang, Pengfei

    2016-02-01

    Defocusing mechanism provides a way to construct chaotic (hyperbolic) billiards with focusing components by separating all regular components of the boundary of a billiard table sufficiently far away from each focusing component. If all focusing components of the boundary of the billiard table are circular arcs, then the above separation requirement reduces to that all circles obtained by completion of focusing components are contained in the billiard table. In the present paper we demonstrate that a class of convex tables— asymmetric lemons, whose boundary consists of two circular arcs, generate hyperbolic billiards. This result is quite surprising because the focusing components of the asymmetric lemon table are extremely close to each other, and because these tables are perturbations of the first convex ergodic billiard constructed more than 40 years ago.

  9. Self-assembled tunable photonic hyper-crystals

    PubMed Central

    Smolyaninova, Vera N.; Yost, Bradley; Lahneman, David; Narimanov, Evgenii E.; Smolyaninov, Igor I.

    2014-01-01

    We demonstrate a novel artificial optical material, the “photonic hyper-crystal”, which combines the most interesting features of hyperbolic metamaterials and photonic crystals. Similar to hyperbolic metamaterials, photonic hyper-crystals exhibit broadband divergence in their photonic density of states due to the lack of usual diffraction limit on the photon wave vector. On the other hand, similar to photonic crystals, hyperbolic dispersion law of extraordinary photons is modulated by forbidden gaps near the boundaries of photonic Brillouin zones. Three dimensional self-assembly of photonic hyper-crystals has been achieved by application of external magnetic field to a cobalt nanoparticle-based ferrofluid. Unique spectral properties of photonic hyper-crystals lead to extreme sensitivity of the material to monolayer coatings of cobalt nanoparticles, which should find numerous applications in biological and chemical sensing. PMID:25027947

  10. Self-assembled tunable photonic hyper-crystals.

    PubMed

    Smolyaninova, Vera N; Yost, Bradley; Lahneman, David; Narimanov, Evgenii E; Smolyaninov, Igor I

    2014-07-16

    We demonstrate a novel artificial optical material, the "photonic hyper-crystal", which combines the most interesting features of hyperbolic metamaterials and photonic crystals. Similar to hyperbolic metamaterials, photonic hyper-crystals exhibit broadband divergence in their photonic density of states due to the lack of usual diffraction limit on the photon wave vector. On the other hand, similar to photonic crystals, hyperbolic dispersion law of extraordinary photons is modulated by forbidden gaps near the boundaries of photonic Brillouin zones. Three dimensional self-assembly of photonic hyper-crystals has been achieved by application of external magnetic field to a cobalt nanoparticle-based ferrofluid. Unique spectral properties of photonic hyper-crystals lead to extreme sensitivity of the material to monolayer coatings of cobalt nanoparticles, which should find numerous applications in biological and chemical sensing.

  11. Three-dimensional elastic wave analysis of the October 2, 2004 tremor at Mount St. Helens, Washington.

    NASA Astrophysics Data System (ADS)

    Denlinger, R. P.

    2006-12-01

    On October 2, 2004, three component, broad-frequency band seismometers as far as 250 km away from Mount St. Helens volcano detected a prominent low-frequency resonance associated with the onset of eruptive volcanic activity. The energy is dominantly in the 0.5 to 10 Hz range. Since gas emissions were low, I investigate a gas-free tremor mechanism generated by sudden extension of a pressurized, cylindrical, visco- elastic magma conduit beneath the mountain as it forces its way through a brittle crust. The concept is that rapid faulting of the crust around and above the magma results in a sudden drop in resistance and, consequently, a concurrent extension of the magma in the magma column at a rate greater than magma can resupply the column. The result is a rapid pressure drop in the magma, causing the column to oscillate and radiate elastic energy into the surrounding crust. The full wavefield generated by this physical mechanism is analyzed using the finite volume method of Leveque (2002), with the approximation outlined in Langseth and Leveque (2000) for hyperbolic conservation laws. In this method, the three-dimensional equations of elasticity are written as a first order set of conservation equations, with a solution vector composed of 3 velocity components and 6 stress components. The eigenvectors of the jacobian matrices of these conservation equations are used in a fourth-order Taylors series expansion of the solution vector around a small increment in time. This method is robust, allows waves to cleanly propagate off of a finite computational grid, and includes surface and interface waves. The method also allows for extremely large contrasts in elastic moduli across internal boundaries in the grid, necessary to accommodate the large variations in rigidity between a hot, visco-elastic magma at depth and the Earth's crust. Analyzing the October 2, 2004 tremor observed at Johnson Ridge Observatory, 9 km north of the mountain, for pressure drop in a 10 km long conduit, I obtain 0.3 +/- .05 MPa, which is consistent with elastic analysis of crustal deformation around the mountain during this time period. Langseth, J.O., and R.J. LeVeque, 2000, A wave propagation method for 3D hyperbolic conservation laws, J. Comp. Phys., 165, 126-166. Leveque, R.J., 2002, Finite volume methods for hyperbolic problems, Cambridge U. Press, 558 p.

  12. Age spectrometry of infant death rates as a probe of immunity: Identification of two peaks due to viral and bacterial diseases respectively

    NASA Astrophysics Data System (ADS)

    Berrut, Sylvie; Richmond, Peter; Roehner, Bertrand M.

    2017-11-01

    After birth, setting up an effective immune system is a major challenge for all living organisms. In this paper we show that this process can be explored by using the age-specific infant death rate as a kind of sensor. This is made possible because, as shown by the authors in Berrut et al. (2016), between birth and a critical age tc, for all mammals the death rate decreases with age as a smooth hyperbolic function. For humans tc is equal to 10 years. It turns out that for some causes of deaths and specific ages the hyperbolic fall displays temporary spikes which, it is assumed, correspond to specific events in the organism's response to exogenous factors. One of these spikes occurs 10 days after birth and there is another at the age of 300 days. It is shown that the first spike is related to viral infections whereas the second is related to bacterial diseases. By going back to former time periods during which infant mortality was much higher than it is currently, one gets a magnified view of these peaks. They give us useful information about how an organism adapts to new conditions. Apart from the reaction to pathogens, the same methodology can be used to study the response to changes in other external conditions, e.g. temperature or oxygen level.

  13. Efficient Low Dissipative High Order Schemes for Multiscale MHD Flows

    NASA Technical Reports Server (NTRS)

    Sjoegreen, Bjoern; Yee, Helen C.; Mansour, Nagi (Technical Monitor)

    2002-01-01

    Accurate numerical simulations of complex multiscale compressible viscous flows, especially high speed turbulence combustion and acoustics, demand high order schemes with adaptive numerical dissipation controls. Standard high resolution shock-capturing methods are too dissipative to capture the small scales and/or long-time wave propagations without extreme grid refinements and small time steps. An integrated approach for the control of numerical dissipation in high order schemes for the compressible Euler and Navier-Stokes equations has been developed and verified by the authors and collaborators. These schemes are suitable for the problems in question. Basically, the scheme consists of sixth-order or higher non-dissipative spatial difference operators as the base scheme. To control the amount of numerical dissipation, multiresolution wavelets are used as sensors to adaptively limit the amount and to aid the selection and/or blending of the appropriate types of numerical dissipation to be used. Magnetohydrodynamics (MHD) waves play a key role in drag reduction in highly maneuverable high speed combat aircraft, in space weather forecasting, and in the understanding of the dynamics of the evolution of our solar system and the main sequence stars. Although there exist a few well-studied second and third-order high-resolution shock-capturing schemes for the MHD in the literature, these schemes are too diffusive and not practical for turbulence/combustion MHD flows. On the other hand, extension of higher than third-order high-resolution schemes to the MHD system of equations is not straightforward. Unlike the hydrodynamic equations, the inviscid MHD system is non-strictly hyperbolic with non-convex fluxes. The wave structures and shock types are different from their hydrodynamic counterparts. Many of the non-traditional hydrodynamic shocks are not fully understood. Consequently, reliable and highly accurate numerical schemes for multiscale MHD equations pose a great challenge to algorithm development. In addition, controlling the numerical error of the divergence free condition of the magnetic fields for high order methods has been a stumbling block. Lower order methods are not practical for the astrophysical problems in question. We propose to extend our hydrodynamics schemes to the MHD equations with several desired properties over commonly used MHD schemes.

  14. An iterative method for systems of nonlinear hyperbolic equations

    NASA Technical Reports Server (NTRS)

    Scroggs, Jeffrey S.

    1989-01-01

    An iterative algorithm for the efficient solution of systems of nonlinear hyperbolic equations is presented. Parallelism is evident at several levels. In the formation of the iteration, the equations are decoupled, thereby providing large grain parallelism. Parallelism may also be exploited within the solves for each equation. Convergence of the interation is established via a bounding function argument. Experimental results in two-dimensions are presented.

  15. Singularities and non-hyperbolic manifolds do not coincide

    NASA Astrophysics Data System (ADS)

    Simányi, Nándor

    2013-06-01

    We consider the billiard flow of elastically colliding hard balls on the flat ν-torus (ν ⩾ 2), and prove that no singularity manifold can even locally coincide with a manifold describing future non-hyperbolicity of the trajectories. As a corollary, we obtain the ergodicity (actually the Bernoulli mixing property) of all such systems, i.e. the verification of the Boltzmann-Sinai ergodic hypothesis.

  16. Cascaded K-means convolutional feature learner and its application to face recognition

    NASA Astrophysics Data System (ADS)

    Zhou, Daoxiang; Yang, Dan; Zhang, Xiaohong; Huang, Sheng; Feng, Shu

    2017-09-01

    Currently, considerable efforts have been devoted to devise image representation. However, handcrafted methods need strong domain knowledge and show low generalization ability, and conventional feature learning methods require enormous training data and rich parameters tuning experience. A lightened feature learner is presented to solve these problems with application to face recognition, which shares similar topology architecture as a convolutional neural network. Our model is divided into three components: cascaded convolution filters bank learning layer, nonlinear processing layer, and feature pooling layer. Specifically, in the filters learning layer, we use K-means to learn convolution filters. Features are extracted via convoluting images with the learned filters. Afterward, in the nonlinear processing layer, hyperbolic tangent is employed to capture the nonlinear feature. In the feature pooling layer, to remove the redundancy information and incorporate the spatial layout, we exploit multilevel spatial pyramid second-order pooling technique to pool the features in subregions and concatenate them together as the final representation. Extensive experiments on four representative datasets demonstrate the effectiveness and robustness of our model to various variations, yielding competitive recognition results on extended Yale B and FERET. In addition, our method achieves the best identification performance on AR and labeled faces in the wild datasets among the comparative methods.

  17. Thermal Non-Equilibrium Flows in Three Space Dimensions

    NASA Astrophysics Data System (ADS)

    Zeng, Yanni

    2016-01-01

    We study the equations describing the motion of a thermal non-equilibrium gas in three space dimensions. It is a hyperbolic system of six equations with a relaxation term. The dissipation mechanism induced by the relaxation is weak in the sense that the Shizuta-Kawashima criterion is violated. This implies that a perturbation of a constant equilibrium state consists of two parts: one decays in time while the other stays. In fact, the entropy wave grows weakly along the particle path as the process is irreversible. We study thermal properties related to the well-posedness of the nonlinear system. We also obtain a detailed pointwise estimate on the Green's function for the Cauchy problem when the system is linearized around an equilibrium constant state. The Green's function provides a complete picture of the wave pattern, with an exact and explicit leading term. Comparing with existing results for one dimensional flows, our results reveal a new feature of three dimensional flows: not only does the entropy wave not decay, but the velocity also contains a non-decaying part, strongly coupled with its decaying one. The new feature is supported by the second order approximation via the Chapman-Enskog expansions, which are the Navier-Stokes equations with vanished shear viscosity and heat conductivity.

  18. Baseline Computational Fluid Dynamics Methodology for Longitudinal-Mode Liquid-Propellant Rocket Combustion Instability

    NASA Technical Reports Server (NTRS)

    Litchford, R. J.

    2005-01-01

    A computational method for the analysis of longitudinal-mode liquid rocket combustion instability has been developed based on the unsteady, quasi-one-dimensional Euler equations where the combustion process source terms were introduced through the incorporation of a two-zone, linearized representation: (1) A two-parameter collapsed combustion zone at the injector face, and (2) a two-parameter distributed combustion zone based on a Lagrangian treatment of the propellant spray. The unsteady Euler equations in inhomogeneous form retain full hyperbolicity and are integrated implicitly in time using second-order, high-resolution, characteristic-based, flux-differencing spatial discretization with Roe-averaging of the Jacobian matrix. This method was initially validated against an analytical solution for nonreacting, isentropic duct acoustics with specified admittances at the inflow and outflow boundaries. For small amplitude perturbations, numerical predictions for the amplification coefficient and oscillation period were found to compare favorably with predictions from linearized small-disturbance theory as long as the grid exceeded a critical density (100 nodes/wavelength). The numerical methodology was then exercised on a generic combustor configuration using both collapsed and distributed combustion zone models with a short nozzle admittance approximation for the outflow boundary. In these cases, the response parameters were varied to determine stability limits defining resonant coupling onset.

  19. Advanced Methods in Fluorescence Microscopy

    PubMed Central

    Fritzky, Luke; Lagunoff, David

    2013-01-01

    It requires a good deal of will power to resist hyperbole in considering the advances that have been achieved in fluorescence microscopy in the last 25 years. Our effort has been to survey the modalities of microscopic fluorescence imaging available to cell biologists and perhaps useful for diagnostic pathologists. The gamut extends from established confocal laser scanning through multiphoton and TIRF to the emerging technologies of super-resolution microscopy that breech the Abbé limit of resolution. Also considered are the recent innovations in structured and light sheet illumination, the use of FRET and molecular beacons that exploit specific characteristics of designer fluorescent proteins, fluorescence speckles, and second harmonic generation for native anisometric structures like collagen, microtubules and sarcomeres. PMID:23271142

  20. Advanced methods in fluorescence microscopy.

    PubMed

    Fritzky, Luke; Lagunoff, David

    2013-01-01

    It requires a good deal of will power to resist hyperbole in considering the advances that have been achieved in fluorescence microscopy in the last 25 years. Our effort has been to survey the modalities of microscopic fluorescence imaging available to cell biologists and perhaps useful for diagnostic pathologists. The gamut extends from established confocal laser scanning through multiphoton and TIRF to the emerging technologies of super-resolution microscopy that breech the Abbe limit of resolution. Also considered are the recent innovations in structured and light sheet illumination, the use of FRET and molecular beacons that exploit specific characteristics of designer fluorescent proteins, fluorescence speckles, and second harmonic generation for native anisometric structures like collagen, microtubules and sarcomeres.

  1. Advanced methods in fluorescence microscopy.

    PubMed

    Fritzky, Luke; Lagunoff, David

    2013-01-01

    It requires a good deal of will power to resist hyperbole in considering the advances that have been achieved in fluorescence microscopy in the last 25 years. Our effort has been to survey the modalities of microscopic fluorescence imaging available to cell biologists and perhaps useful for diagnostic pathologists. The gamut extends from established confocal laser scanning through multiphoton and TIRF to the emerging technologies of super-resolution microscopy that breech the Abbé limit of resolution. Also considered are the recent innovations in structured and light sheet illumination, the use of FRET and molecular beacons that exploit specific characteristics of designer fluorescent proteins, fluorescence speckles, and second harmonic generation for native anisometric structures like collagen, microtubules and sarcomeres.

  2. Notes on integral identities for 3d supersymmetric dualities

    NASA Astrophysics Data System (ADS)

    Aghaei, Nezhla; Amariti, Antonio; Sekiguchi, Yuta

    2018-04-01

    Four dimensional N=2 Argyres-Douglas theories have been recently conjectured to be described by N=1 Lagrangian theories. Such models, once reduced to 3d, should be mirror dual to Lagrangian N=4 theories. This has been numerically checked through the matching of the partition functions on the three sphere. In this article, we provide an analytic derivation for this result in the A 2 n-1 case via hyperbolic hypergeometric integrals. We study the D 4 case as well, commenting on some open questions and possible resolutions. In the second part of the paper we discuss other integral identities leading to the matching of the partition functions in 3d dual pairs involving higher monopole superpotentials.

  3. Strong coupling of collection of emitters on hyperbolic meta-material

    NASA Astrophysics Data System (ADS)

    Biehs, Svend-Age; Xu, Chenran; Agarwal, Girish S.

    2018-04-01

    Recently, considerable effort has been devoted to the realization of a strong coupling regime of the radiation matter interaction in the context of an emitter at a meta surface. The strong interaction is well realized in cavity quantum electrodynamics, which also show that strong coupling is much easier to realize using a collection of emitters. Keeping this in mind, we study if emitters on a hyperbolic meta materials can yield a strong coupling regime. We show that strong coupling can be realized for densities of emitters exceeding a critical value. A way to detect strong coupling between emitters and hyperbolic metamaterials is to use the Kretschman-Raether configuration. The strong coupling appears as the splitting of the reflectivity dip. In the weak coupling regime, the dip position shifts. The shift and splitting can be used to sense active molecules at surfaces.

  4. Free vibration of laminated composite stiffened hyperbolic paraboloid shell panel with cutout

    NASA Astrophysics Data System (ADS)

    Sahoo, Sarmila

    2016-08-01

    Composite shell structures are extensively used in aerospace, civil, marine and other engineering applications. In practical civil engineering applications, the necessity of covering large column free open areas is often an issue and hyperbolic paraboloid shells are used as roofing units. Quite often, to save weight and also to provide a facility for inspection, cutouts are provided in shell panels. The paper considers free vibration characteristics of stiffened composite hyperbolic paraboloid shell panel with cutout in terms of natural frequency and mode shapes. A finite element code is developed for the purpose by combining an eight noded curved shell element with a three noded curved beam element. The size of the cutouts and their positions with respect to the shell centre are varied for different edge conditions to arrive at a set of inferences of practical engineering significances.

  5. Subwavelength focusing of terahertz waves in silicon hyperbolic metamaterials.

    PubMed

    Kannegulla, Akash; Cheng, Li-Jing

    2016-08-01

    We theoretically demonstrate the subwavelength focusing of terahertz (THz) waves in a hyperbolic metamaterial (HMM) based on a two-dimensional subwavelength silicon pillar array microstructure. The silicon microstructure with a doping concentration of at least 1017  cm-3 offers a hyperbolic dispersion at terahertz frequency range and promises the focusing of terahertz Gaussian beams. The results agree with the simulation based on effective medium theory. The focusing effect can be controlled by the doping concentration, which determines the real part of the out-of-plane permittivity and, therefore, the refraction angles in HMM. The focusing property in the HMM structure allows the propagation of terahertz wave through a subwavelength aperture. The silicon-based HMM structure can be realized using microfabrication technologies and has the potential to advance terahertz imaging with subwavelength resolution.

  6. Doubly stratified MHD tangent hyperbolic nanofluid flow due to permeable stretched cylinder

    NASA Astrophysics Data System (ADS)

    Nagendramma, V.; Leelarathnam, A.; Raju, C. S. K.; Shehzad, S. A.; Hussain, T.

    2018-06-01

    An investigation is exhibited to analyze the presence of heat source and sink in doubly stratified MHD incompressible tangent hyperbolic fluid due to stretching of cylinder embedded in porous space under nanoparticles. To develop the mathematical model of tangent hyperbolic nanofluid, movement of Brownian and thermophoretic are accounted. The established equations of continuity, momentum, thermal and solutal boundary layers are reassembled into sets of non-linear expressions. These assembled expressions are executed with the help of Runge-Kutta scheme with MATLAB. The impacts of sundry parameters are illustrated graphically and the engineering interest physical quantities like skin friction, Nusselt and Sherwood number are examined by computing numerical values. It is clear that the power-law index parameter and curvature parameter shows favorable effect on momentum boundary layer thickness whereas Weissennberg number reveals inimical influence.

  7. Designing optical metamaterial with hyperbolic dispersion based on Al:ZnO/ZnO nano-layered structure using Atomic Layer Deposition technique

    DOE PAGES

    Kelly, Priscilla; Liu, Mingzhao; Kuznetsova, Lyuba

    2016-04-07

    In this study, nano-layered Al:ZnO/ZnO hyperbolic dispersion metamaterial with a large number of layers was fabricated using the atomic layer deposition (ALD) technique. Experimental dielectric functions for Al:ZnO/ZnO structures are obtained by an ellipsometry technique in the visible and near-infrared spectral ranges. The theoretical modeling of the Al:ZnO/ZnO dielectric permittivity is done using effective medium approximation. A method for analysis of spectroscopic ellipsometry data is demonstrated to extract the optical permittivity for this highly anisotropic nano-layered metamaterial. The results of the ellipsometry analysis show that Al:ZnO/ZnO structures with a 1:9 ALD cycle ratio exhibit hyperbolic dispersion transition change near 1.8more » μm wavelength.« less

  8. Universal properties of the near-horizon optical geometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gibbons, G. W.; Warnick, C. M.

    2009-03-15

    Making use of the fact that the optical geometry near a static nondegenerate Killing horizon is asymptotically hyperbolic, we investigate some universal features of black-hole horizons. Applying the Gauss-Bonnet theorem allows us to establish some general properties of gravitational lensing, valid for all black holes. Hyperbolic geometry allows us to find rates for the loss of scalar, vector, and fermionic ''hair'' as objects fall quasistatically towards the horizon, extending previous results for Schwarzschild to all static Killing horizons. In the process we find the Lienard-Wiechert potential for hyperbolic space and calculate the force between electrons mediated by neutrinos, extending themore » flat space result of Feinberg and Sucher. We further demonstrate how these techniques allow us to derive the exact Copson-Linet potential due to a point charge in a Schwarzschild background in a simple fashion.« less

  9. Tunable angle absorption of hyperbolic metamaterials based on plasma photonic crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiao, Zheng; Ning, Renxia, E-mail: nrxxiner@hsu.edu.cn; Xu, Yuan

    2016-06-15

    We present the design of a multilayer structure of hyperbolic metamaterials based on plasma photonic crystals which composed of two kinds of traditional dielectric and plasma. The relative permittivity of hyperbolic metamaterials has been studied at certain frequency range. The absorption and reflection of the multilayer period structure at normal and oblique incident have been investigated by the transfer matrix method. We discussed that the absorption is affected by the thickness of material and the electron collision frequency γ of the plasma. The results show that an absorption band at the low frequency can be obtained at normal incident anglemore » and another absorption band at the high frequency can be found at a large incident angle. The results may be applied by logical gate, stealth, tunable angle absorber, and large angle filter.« less

  10. Hyperbolic reformulation of a 1D viscoelastic blood flow model and ADER finite volume schemes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Montecinos, Gino I.; Müller, Lucas O.; Toro, Eleuterio F.

    2014-06-01

    The applicability of ADER finite volume methods to solve hyperbolic balance laws with stiff source terms in the context of well-balanced and non-conservative schemes is extended to solve a one-dimensional blood flow model for viscoelastic vessels, reformulated as a hyperbolic system, via a relaxation time. A criterion for selecting relaxation times is found and an empirical convergence rate assessment is carried out to support this result. The proposed methodology is validated by applying it to a network of viscoelastic vessels for which experimental and numerical results are available. The agreement between the results obtained in the present paper and thosemore » available in the literature is satisfactory. Key features of the present formulation and numerical methodologies, such as accuracy, efficiency and robustness, are fully discussed in the paper.« less

  11. Analysis of generalized negative binomial distributions attached to hyperbolic Landau levels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chhaiba, Hassan, E-mail: chhaiba.hassan@gmail.com; Demni, Nizar, E-mail: nizar.demni@univ-rennes1.fr; Mouayn, Zouhair, E-mail: mouayn@fstbm.ac.ma

    2016-07-15

    To each hyperbolic Landau level of the Poincaré disc is attached a generalized negative binomial distribution. In this paper, we compute the moment generating function of this distribution and supply its atomic decomposition as a perturbation of the negative binomial distribution by a finitely supported measure. Using the Mandel parameter, we also discuss the nonclassical nature of the associated coherent states. Next, we derive a Lévy-Khintchine-type representation of its characteristic function when the latter does not vanish and deduce that it is quasi-infinitely divisible except for the lowest hyperbolic Landau level corresponding to the negative binomial distribution. By considering themore » total variation of the obtained quasi-Lévy measure, we introduce a new infinitely divisible distribution for which we derive the characteristic function.« less

  12. Wave field features of shallow vertical discontinuity and their application in non-destructive detection

    USGS Publications Warehouse

    Liu, J.; Xia, J.; Luo, Y.; Chen, C.; Li, X.; Huang, Y.

    2007-01-01

    The geotechnical integrity of critical infrastructure can be seriously compromised by the presence of fractures or crevices. Non-destructive techniques to accurately detect fractures in critical infrastructure such as dams and highways could be of significant benefit to the geotechnical industry. This paper investigates the application of shallow seismic and georadar methods to the detection of a vertical discontinuity using numerical simulations. The objective is to address the kinematical analysis of a vertical discontinuity, determine the resulting wave field characteristics, and provide the basis for determining the existence of vertical discontinuities based on the recorded signals. Simulation results demonstrate that: (1) A reflection from a vertical discontinuity produces a hyperbolic feature on a seismic or georadar profile; (2) In order for a reflection from a vertical discontinuity to be produced, a reflecting horizon below the discontinuity must exist, the offset between source and receiver (x0) must be non-zero, on the same side of the vertical discontinuity; (3) The range of distances from the vertical discontinuity where a reflection event is observed is proportional to its length and to x0; (4) Should the vertical crevice (or fracture) pass through a reflecting horizon, dual hyperbolic features can be observed on the records, and this can be used as a determining factor that the vertical crevice passes through the interface; and (5) diffractions from the edges of the discontinuity can be recorded with relatively smaller amplitude than reflections and their ranges are not constrained by the length of discontinuity. If the length of discontinuity is short enough, diffractions are the dominant feature. Real-world examples show that the shallow seismic reflection method and the georadar method are capable of recording the hyperbolic feature, which can be interpreted as vertical discontinuity. Thus, these methods show some promise as effective non-destructive detection methods for locating vertical discontinuities (e.g., fractures or crevices) in infrastructure such as dams and highway pavement. ?? 2007 Elsevier B.V. All rights reserved.

  13. Optimal disturbance rejecting control of hyperbolic systems

    NASA Technical Reports Server (NTRS)

    Biswas, Saroj K.; Ahmed, N. U.

    1994-01-01

    Optimal regulation of hyperbolic systems in the presence of unknown disturbances is considered. Necessary conditions for determining the optimal control that tracks a desired trajectory in the presence of the worst possible perturbations are developed. The results also characterize the worst possible disturbance that the system will be able to tolerate before any degradation of the system performance. Numerical results on the control of a vibrating beam are presented.

  14. Long-range propagation of plasmon and phonon polaritons in hyperbolic-metamaterial waveguides

    NASA Astrophysics Data System (ADS)

    Babicheva, Viktoriia E.

    2017-12-01

    We study photonic multilayer waveguides that include layers of materials and metamaterials with a hyperbolic dispersion (HMM). We consider the long-range propagation of plasmon and phonon polaritons at the dielectric-HMM interface in different waveguide geometries (single boundary or different layers of symmetric cladding). In contrast to the traditional analysis of geometrical parameters, we make an emphasis on the optical properties of constituent materials: solving dispersion equations, we analyze how dielectric and HMM permittivities affect propagation length and mode size of waveguide eigenmodes. We derive figures of merit that should be used for each waveguide in a broad range of permittivity values as well as compare them with plasmonic waveguides. We show that the conventional plasmonic quality factor, which is the ratio of real to imaginary parts of permittivity, is not applicable to the case of waveguides with complex structure. Both telecommunication wavelengths and mid-infrared spectral ranges are of interest considering recent advances in van der Waals materials, such as hexagonal boron nitride. We evaluate the performance of the waveguides with hexagonal boron nitride in the range where it possesses hyperbolic dispersion (wavelength 6.3-7.3 μm), and we show that these waveguides with natural hyperbolic properties have higher propagation lengths than metal-based HMM waveguides.

  15. Phase space barriers and dividing surfaces in the absence of critical points of the potential energy: Application to roaming in ozone

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mauguière, Frédéric A. L., E-mail: frederic.mauguiere@bristol.ac.uk; Collins, Peter, E-mail: peter.collins@bristol.ac.uk; Wiggins, Stephen, E-mail: stephen.wiggins@mac.com

    We examine the phase space structures that govern reaction dynamics in the absence of critical points on the potential energy surface. We show that in the vicinity of hyperbolic invariant tori, it is possible to define phase space dividing surfaces that are analogous to the dividing surfaces governing transition from reactants to products near a critical point of the potential energy surface. We investigate the problem of capture of an atom by a diatomic molecule and show that a normally hyperbolic invariant manifold exists at large atom-diatom distances, away from any critical points on the potential. This normally hyperbolic invariantmore » manifold is the anchor for the construction of a dividing surface in phase space, which defines the outer or loose transition state governing capture dynamics. We present an algorithm for sampling an approximate capture dividing surface, and apply our methods to the recombination of the ozone molecule. We treat both 2 and 3 degrees of freedom models with zero total angular momentum. We have located the normally hyperbolic invariant manifold from which the orbiting (outer) transition state is constructed. This forms the basis for our analysis of trajectories for ozone in general, but with particular emphasis on the roaming trajectories.« less

  16. Deep-Ultraviolet Hyperbolic Metacavity Laser.

    PubMed

    Shen, Kun-Ching; Ku, Chen-Ta; Hsieh, Chiieh; Kuo, Hao-Chung; Cheng, Yuh-Jen; Tsai, Din Ping

    2018-05-01

    Given the high demand for miniaturized optoelectronic circuits, plasmonic devices with the capability of generating coherent radiation at deep subwavelength scales have attracted great interest for diverse applications such as nanoantennas, single photon sources, and nanosensors. However, the design of such lasing devices remains a challenging issue because of the long structure requirements for producing strong radiation feedback. Here, a plasmonic laser made by using a nanoscale hyperbolic metamaterial cube, called hyperbolic metacavity, on a multiple quantum-well (MQW), deep-ultraviolet emitter is presented. The specifically designed metacavity merges plasmon resonant modes within the cube and provides a unique resonant radiation feedback to the MQW. This unique plasmon field allows the dipoles of the MQW with various orientations into radiative emission, achieving enhancement of spontaneous emission rate by a factor of 33 and of quantum efficiency by a factor of 2.5, which is beneficial for coherent laser action. The hyperbolic metacavity laser shows a clear clamping of spontaneous emission above the threshold, which demonstrates a near complete radiation coupling of the MQW with the metacavity. This approach shown here can greatly simplify the requirements of plasmonic nanolaser with a long plasmonic structure, and the metacavity effect can be extended to many other material systems. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Dynamic hyperbolic geometry: building intuition and understanding mediated by a Euclidean model

    NASA Astrophysics Data System (ADS)

    Moreno-Armella, Luis; Brady, Corey; Elizondo-Ramirez, Rubén

    2018-05-01

    This paper explores a deep transformation in mathematical epistemology and its consequences for teaching and learning. With the advent of non-Euclidean geometries, direct, iconic correspondences between physical space and the deductive structures of mathematical inquiry were broken. For non-Euclidean ideas even to become thinkable the mathematical community needed to accumulate over twenty centuries of reflection and effort: a precious instance of distributed intelligence at the cultural level. In geometry education after this crisis, relations between intuitions and geometrical reasoning must be established philosophically, rather than taken for granted. One approach seeks intuitive supports only for Euclidean explorations, viewing non-Euclidean inquiry as fundamentally non-intuitive in nature. We argue for moving beyond such an impoverished approach, using dynamic geometry environments to develop new intuitions even in the extremely challenging setting of hyperbolic geometry. Our efforts reverse the typical direction, using formal structures as a source for a new family of intuitions that emerge from exploring a digital model of hyperbolic geometry. This digital model is elaborated within a Euclidean dynamic geometry environment, enabling a conceptual dance that re-configures Euclidean knowledge as a support for building intuitions in hyperbolic space-intuitions based not directly on physical experience but on analogies extending Euclidean concepts.

  18. GRID2D/3D: A computer program for generating grid systems in complex-shaped two- and three-dimensional spatial domains. Part 2: User's manual and program listing

    NASA Technical Reports Server (NTRS)

    Bailey, R. T.; Shih, T. I.-P.; Nguyen, H. L.; Roelke, R. J.

    1990-01-01

    An efficient computer program, called GRID2D/3D, was developed to generate single and composite grid systems within geometrically complex two- and three-dimensional (2- and 3-D) spatial domains that can deform with time. GRID2D/3D generates single grid systems by using algebraic grid generation methods based on transfinite interpolation in which the distribution of grid points within the spatial domain is controlled by stretching functions. All single grid systems generated by GRID2D/3D can have grid lines that are continuous and differentiable everywhere up to the second-order. Also, grid lines can intersect boundaries of the spatial domain orthogonally. GRID2D/3D generates composite grid systems by patching together two or more single grid systems. The patching can be discontinuous or continuous. For continuous composite grid systems, the grid lines are continuous and differentiable everywhere up to the second-order except at interfaces where different single grid systems meet. At interfaces where different single grid systems meet, the grid lines are only differentiable up to the first-order. For 2-D spatial domains, the boundary curves are described by using either cubic or tension spline interpolation. For 3-D spatial domains, the boundary surfaces are described by using either linear Coon's interpolation, bi-hyperbolic spline interpolation, or a new technique referred to as 3-D bi-directional Hermite interpolation. Since grid systems generated by algebraic methods can have grid lines that overlap one another, GRID2D/3D contains a graphics package for evaluating the grid systems generated. With the graphics package, the user can generate grid systems in an interactive manner with the grid generation part of GRID2D/3D. GRID2D/3D is written in FORTRAN 77 and can be run on any IBM PC, XT, or AT compatible computer. In order to use GRID2D/3D on workstations or mainframe computers, some minor modifications must be made in the graphics part of the program; no modifications are needed in the grid generation part of the program. The theory and method used in GRID2D/3D is described.

  19. GRID2D/3D: A computer program for generating grid systems in complex-shaped two- and three-dimensional spatial domains. Part 1: Theory and method

    NASA Technical Reports Server (NTRS)

    Shih, T. I.-P.; Bailey, R. T.; Nguyen, H. L.; Roelke, R. J.

    1990-01-01

    An efficient computer program, called GRID2D/3D was developed to generate single and composite grid systems within geometrically complex two- and three-dimensional (2- and 3-D) spatial domains that can deform with time. GRID2D/3D generates single grid systems by using algebraic grid generation methods based on transfinite interpolation in which the distribution of grid points within the spatial domain is controlled by stretching functions. All single grid systems generated by GRID2D/3D can have grid lines that are continuous and differentiable everywhere up to the second-order. Also, grid lines can intersect boundaries of the spatial domain orthogonally. GRID2D/3D generates composite grid systems by patching together two or more single grid systems. The patching can be discontinuous or continuous. For continuous composite grid systems, the grid lines are continuous and differentiable everywhere up to the second-order except at interfaces where different single grid systems meet. At interfaces where different single grid systems meet, the grid lines are only differentiable up to the first-order. For 2-D spatial domains, the boundary curves are described by using either cubic or tension spline interpolation. For 3-D spatial domains, the boundary surfaces are described by using either linear Coon's interpolation, bi-hyperbolic spline interpolation, or a new technique referred to as 3-D bi-directional Hermite interpolation. Since grid systems generated by algebraic methods can have grid lines that overlap one another, GRID2D/3D contains a graphics package for evaluating the grid systems generated. With the graphics package, the user can generate grid systems in an interactive manner with the grid generation part of GRID2D/3D. GRID2D/3D is written in FORTRAN 77 and can be run on any IBM PC, XT, or AT compatible computer. In order to use GRID2D/3D on workstations or mainframe computers, some minor modifications must be made in the graphics part of the program; no modifications are needed in the grid generation part of the program. This technical memorandum describes the theory and method used in GRID2D/3D.

  20. Collision Index and Stability of Elliptic Relative Equilibria in Planar {n}-body Problem

    NASA Astrophysics Data System (ADS)

    Hu, Xijun; Ou, Yuwei

    2016-12-01

    It is well known that a planar central configuration of the {n}-body problem gives rise to solutions where each particle moves on a specific Keplerian orbit while the totality of the particles move on a homographic motion. When the eccentricity {e} of the Keplerian orbit belongs in {[0,1)}, following Meyer and Schmidt, we call such solutions elliptic relative equilibria (shortly, ERE). In order to study the linear stability of ERE in the near-collision case, namely when {1-e} is small enough, we introduce the collision index for planar central configurations. The collision index is a Maslov-type index for heteroclinic orbits and orbits parametrised by half-lines that, according to the definition given by Hu and Portaluri (An index theory for unbounded motions of Hamiltonian systems, Hu and Portaluri (2015, preprint)), we shall refer to as half-clinic orbits and whose definition in this context, is essentially based on a blow up technique in the case {e=1}. We get the fundamental properties of collision index and approximation theorems. As applications, we give some new hyperbolic criteria and prove that, generically, the ERE of minimal central configurations are hyperbolic in the near-collision case, and we give a detailed analysis of Euler collinear orbits in the near-collision case.

  1. The lifespan of 3D radial solutions to the non-isentropic relativistic Euler equations

    NASA Astrophysics Data System (ADS)

    Wei, Changhua

    2017-10-01

    This paper investigates the lower bound of the lifespan of three-dimensional spherically symmetric solutions to the non-isentropic relativistic Euler equations, when the initial data are prescribed as a small perturbation with compact support to a constant state. Based on the structure of the hyperbolic system, we show the almost global existence of the smooth solutions to Eulerian flows (polytropic gases and generalized Chaplygin gases) with genuinely nonlinear characteristics. While for the Eulerian flows (Chaplygin gas and stiff matter) with mild linearly degenerate characteristics, we show the global existence of the radial solutions, moreover, for the non-strictly hyperbolic system (pressureless perfect fluid) satisfying the mild linearly degenerate condition, we prove the blowup phenomenon of the radial solutions and show that the lifespan of the solutions is of order O(ɛ ^{-1}), where ɛ denotes the width of the perturbation. This work can be seen as a complement of our work (Lei and Wei in Math Ann 367:1363-1401, 2017) for relativistic Chaplygin gas and can also be seen as a generalization of the classical Eulerian fluids (Godin in Arch Ration Mech Anal 177:497-511, 2005, J Math Pures Appl 87:91-117, 2007) to the relativistic Eulerian fluids.

  2. An efficient technique for higher order fractional differential equation.

    PubMed

    Ali, Ayyaz; Iqbal, Muhammad Asad; Ul-Hassan, Qazi Mahmood; Ahmad, Jamshad; Mohyud-Din, Syed Tauseef

    2016-01-01

    In this study, we establish exact solutions of fractional Kawahara equation by using the idea of [Formula: see text]-expansion method. The results of different studies show that the method is very effective and can be used as an alternative for finding exact solutions of nonlinear evolution equations (NLEEs) in mathematical physics. The solitary wave solutions are expressed by the hyperbolic, trigonometric, exponential and rational functions. Graphical representations along with the numerical data reinforce the efficacy of the used procedure. The specified idea is very effective, expedient for fractional PDEs, and could be extended to other physical problems.

  3. On the implementation of a class of upwind schemes for system of hyperbolic conservation laws

    NASA Technical Reports Server (NTRS)

    Yee, H. C.

    1985-01-01

    The relative computational effort among the spatially five point numerical flux functions of Harten, van Leer, and Osher and Chakravarthy is explored. These three methods typify the design principles most often used in constructing higher than first order upwind total variation diminishing (TVD) schemes. For the scalar case the difference in operation count between any two algorithms may be very small and yet the operation count for their system counterparts might be vastly different. The situation occurs even though one starts with two different yet equivalent representations for the scalar case.

  4. The path integral on the pseudosphere

    NASA Astrophysics Data System (ADS)

    Grosche, C.; Steiner, F.

    1988-02-01

    A rigorous path integral treatment for the d-dimensional pseudosphere Λd-1 , a Riemannian manifold of constant negative curvature, is presented. The path integral formulation is based on a canonical approach using Weyl-ordering and the Hamiltonian path integral defined on midpoints. The time-dependent and energy-dependent Feynman kernels obtain different expressions in the even- and odd-dimensional cases, respectively. The special case of the three-dimensional pseudosphere, which is analytically equivalent to the Poincaré upper half plane, the Poincaré disc, and the hyperbolic strip, is discussed in detail including the energy spectrum and the normalised wave-functions.

  5. Multiple reentrant phase transitions and triple points in Lovelock thermodynamics

    NASA Astrophysics Data System (ADS)

    Frassino, Antonia M.; Kubizňák, David; Mann, Robert B.; Simovic, Fil

    2014-09-01

    We investigate the effects of higher curvature corrections from Lovelock gravity on the phase structure of asymptotically AdS black holes, treating the cosmological constant as a thermodynamic pressure. We examine how various thermodynamic phenomena, such as Van der Waals behaviour, reentrant phase transitions (RPT), and tricritical points are manifest for U(1) charged black holes in Gauss-Bonnet and 3rd-order Lovelock gravities. We furthermore observe a new phenomenon of `multiple RPT' behaviour, in which for fixed pressure the small/large/small/large black hole phase transition occurs as the temperature of the system increases. We also find that when the higher-order Lovelock couplings are related in a particular way, a peculiar isolated critical point emerges for hyperbolic black holes and is characterized by non-standard critical exponents.

  6. Student Solution Manual for Mathematical Methods for Physics and Engineering Third Edition

    NASA Astrophysics Data System (ADS)

    Riley, K. F.; Hobson, M. P.

    2006-03-01

    Preface; 1. Preliminary algebra; 2. Preliminary calculus; 3. Complex numbers and hyperbolic functions; 4. Series and limits; 5. Partial differentiation; 6. Multiple integrals; 7. Vector algebra; 8. Matrices and vector spaces; 9. Normal modes; 10. Vector calculus; 11. Line, surface and volume integrals; 12. Fourier series; 13. Integral transforms; 14. First-order ordinary differential equations; 15. Higher-order ordinary differential equations; 16. Series solutions of ordinary differential equations; 17. Eigenfunction methods for differential equations; 18. Special functions; 19. Quantum operators; 20. Partial differential equations: general and particular; 21. Partial differential equations: separation of variables; 22. Calculus of variations; 23. Integral equations; 24. Complex variables; 25. Application of complex variables; 26. Tensors; 27. Numerical methods; 28. Group theory; 29. Representation theory; 30. Probability; 31. Statistics.

  7. Multidimensional FEM-FCT schemes for arbitrary time stepping

    NASA Astrophysics Data System (ADS)

    Kuzmin, D.; Möller, M.; Turek, S.

    2003-05-01

    The flux-corrected-transport paradigm is generalized to finite-element schemes based on arbitrary time stepping. A conservative flux decomposition procedure is proposed for both convective and diffusive terms. Mathematical properties of positivity-preserving schemes are reviewed. A nonoscillatory low-order method is constructed by elimination of negative off-diagonal entries of the discrete transport operator. The linearization of source terms and extension to hyperbolic systems are discussed. Zalesak's multidimensional limiter is employed to switch between linear discretizations of high and low order. A rigorous proof of positivity is provided. The treatment of non-linearities and iterative solution of linear systems are addressed. The performance of the new algorithm is illustrated by numerical examples for the shock tube problem in one dimension and scalar transport equations in two dimensions.

  8. Overset meshing coupled with hybridizable discontinuous Galerkin finite elements

    DOE PAGES

    Kauffman, Justin A.; Sheldon, Jason P.; Miller, Scott T.

    2017-03-01

    We introduce the use of hybridizable discontinuous Galerkin (HDG) finite element methods on overlapping (overset) meshes. Overset mesh methods are advantageous for solving problems on complex geometrical domains. We also combine geometric flexibility of overset methods with the advantages of HDG methods: arbitrarily high-order accuracy, reduced size of the global discrete problem, and the ability to solve elliptic, parabolic, and/or hyperbolic problems with a unified form of discretization. This approach to developing the ‘overset HDG’ method is to couple the global solution from one mesh to the local solution on the overset mesh. We present numerical examples for steady convection–diffusionmore » and static elasticity problems. The examples demonstrate optimal order convergence in all primal fields for an arbitrary amount of overlap of the underlying meshes.« less

  9. Upwind methods for the Baer–Nunziato equations and higher-order reconstruction using artificial viscosity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fraysse, F., E-mail: francois.fraysse@rs2n.eu; E. T. S. de Ingeniería Aeronáutica y del Espacio, Universidad Politécnica de Madrid, Madrid; Redondo, C.

    This article is devoted to the numerical discretisation of the hyperbolic two-phase flow model of Baer and Nunziato. A special attention is paid on the discretisation of intercell flux functions in the framework of Finite Volume and Discontinuous Galerkin approaches, where care has to be taken to efficiently approximate the non-conservative products inherent to the model equations. Various upwind approximate Riemann solvers have been tested on a bench of discontinuous test cases. New discretisation schemes are proposed in a Discontinuous Galerkin framework following the criterion of Abgrall and the path-conservative formalism. A stabilisation technique based on artificial viscosity is appliedmore » to the high-order Discontinuous Galerkin method and compared against classical TVD-MUSCL Finite Volume flux reconstruction.« less

  10. Nonlinear Hyperbolic Equations - Theory, Computation Methods, and Applications. Volume 24. Note on Numerical Fluid Mechanics

    DTIC Science & Technology

    1989-01-01

    Calculations and Experiments (B.van den Berg/ D.A. Humphreysl E. Krause /J.P. F. Lindhout) Volume 20 Proceedings of the Seventh GAMM-Conference on...GRID METHODS FOR HYPERBOLIC PROBLEMS Wolfgang Hackbusch Sigrid Hagemann Institut fUr Informatik und Praktische Mathematik Christian-Albrechts...Euler Equations. Proceedings of the 8th Inter- national Conference on Numerical Methods in Fluid Dynamics (E. Krause , ed.), Aachen, 1988. Springer

  11. A New Time-Space Accurate Scheme for Hyperbolic Problems. 1; Quasi-Explicit Case

    NASA Technical Reports Server (NTRS)

    Sidilkover, David

    1998-01-01

    This paper presents a new discretization scheme for hyperbolic systems of conservations laws. It satisfies the TVD property and relies on the new high-resolution mechanism which is compatible with the genuinely multidimensional approach proposed recently. This work can be regarded as a first step towards extending the genuinely multidimensional approach to unsteady problems. Discontinuity capturing capabilities and accuracy of the scheme are verified by a set of numerical tests.

  12. A chaotic jerk system with non-hyperbolic equilibrium: Dynamics, effect of time delay and circuit realisation

    NASA Astrophysics Data System (ADS)

    Rajagopal, Karthikeyan; Pham, Viet-Thanh; Tahir, Fadhil Rahma; Akgul, Akif; Abdolmohammadi, Hamid Reza; Jafari, Sajad

    2018-04-01

    The literature on chaos has highlighted several chaotic systems with special features. In this work, a novel chaotic jerk system with non-hyperbolic equilibrium is proposed. The dynamics of this new system is revealed through equilibrium analysis, phase portrait, bifurcation diagram and Lyapunov exponents. In addition, we investigate the time-delay effects on the proposed system. Realisation of such a system is presented to verify its feasibility.

  13. Note on the displacement of a trajectory of hyperbolic motion in curved space-time

    NASA Astrophysics Data System (ADS)

    Krikorian, R. A.

    2012-04-01

    The object of this note is to present a physical application of the theory of the infinitesimal deformations or displacements of curves developed by Yano using the concept of Lie derivative. It is shown that an infinitesimal point transformation which carries a given trajectory of hyperbolic motion into a trajectory of the same type, and preserves the affine parametrization of the trajectory, defines a homothetic motion.

  14. Hyperbolic Cross Truncations for Stochastic Fourier Cosine Series

    PubMed Central

    Zhang, Zhihua

    2014-01-01

    Based on our decomposition of stochastic processes and our asymptotic representations of Fourier cosine coefficients, we deduce an asymptotic formula of approximation errors of hyperbolic cross truncations for bivariate stochastic Fourier cosine series. Moreover we propose a kind of Fourier cosine expansions with polynomials factors such that the corresponding Fourier cosine coefficients decay very fast. Although our research is in the setting of stochastic processes, our results are also new for deterministic functions. PMID:25147842

  15. Lipschitz stability for an inverse hyperbolic problem of determining two coefficients by a finite number of observations

    NASA Astrophysics Data System (ADS)

    Beilina, L.; Cristofol, M.; Li, S.; Yamamoto, M.

    2018-01-01

    We consider an inverse problem of reconstructing two spatially varying coefficients in an acoustic equation of hyperbolic type using interior data of solutions with suitable choices of initial condition. Using a Carleman estimate, we prove Lipschitz stability estimates which ensure unique reconstruction of both coefficients. Our theoretical results are justified by numerical studies on the reconstruction of two unknown coefficients using noisy backscattered data.

  16. On the construction and application of implicit factored schemes for conservation laws. [in computational fluid dynamics

    NASA Technical Reports Server (NTRS)

    Warming, R. F.; Beam, R. M.

    1978-01-01

    Efficient, noniterative, implicit finite difference algorithms are systematically developed for nonlinear conservation laws including purely hyperbolic systems and mixed hyperbolic parabolic systems. Utilization of a rational fraction or Pade time differencing formulas, yields a direct and natural derivation of an implicit scheme in a delta form. Attention is given to advantages of the delta formation and to various properties of one- and two-dimensional algorithms.

  17. Design and fabrication of a basic mass analyzer and vacuum system

    NASA Technical Reports Server (NTRS)

    Judson, C. M.; Josias, C.; Lawrence, J. L., Jr.

    1977-01-01

    A two-inch hyperbolic rod quadrupole mass analyzer with a mass range of 400 to 200 amu and a sensitivity exceeding 100 packs per billion has been developed and tested. This analyzer is the basic hardware portion of a microprocessor-controlled quadrupole mass spectrometer for a Gas Analysis and Detection System (GADS). The development and testing of the hyperbolic-rod quadrupole mass spectrometer and associated hardware are described in detail.

  18. Hyperbolic and semi-parametric models in finance

    NASA Astrophysics Data System (ADS)

    Bingham, N. H.; Kiesel, Rüdiger

    2001-02-01

    The benchmark Black-Scholes-Merton model of mathematical finance is parametric, based on the normal/Gaussian distribution. Its principal parametric competitor, the hyperbolic model of Barndorff-Nielsen, Eberlein and others, is briefly discussed. Our main theme is the use of semi-parametric models, incorporating the mean vector and covariance matrix as in the Markowitz approach, plus a non-parametric part, a scalar function incorporating features such as tail-decay. Implementation is also briefly discussed.

  19. A graphene Zener-Klein transistor cooled by a hyperbolic substrate

    NASA Astrophysics Data System (ADS)

    Yang, Wei; Berthou, Simon; Lu, Xiaobo; Wilmart, Quentin; Denis, Anne; Rosticher, Michael; Taniguchi, Takashi; Watanabe, Kenji; Fève, Gwendal; Berroir, Jean-Marc; Zhang, Guangyu; Voisin, Christophe; Baudin, Emmanuel; Plaçais, Bernard

    2018-01-01

    The engineering of cooling mechanisms is a bottleneck in nanoelectronics. Thermal exchanges in diffusive graphene are mostly driven by defect-assisted acoustic phonon scattering, but the case of high-mobility graphene on hexagonal boron nitride (hBN) is radically different, with a prominent contribution of remote phonons from the substrate. Bilayer graphene on a hBN transistor with a local gate is driven in a regime where almost perfect current saturation is achieved by compensation of the decrease in the carrier density and Zener-Klein tunnelling (ZKT) at high bias. Using noise thermometry, we show that the ZKT triggers a new cooling pathway due to the emission of hyperbolic phonon polaritons in hBN by out-of-equilibrium electron-hole pairs beyond the super-Planckian regime. The combination of ZKT transport and hyperbolic phonon polariton cooling renders graphene on BN transistors a valuable nanotechnology for power devices and RF electronics.

  20. Lagrangian Coherent Structures, Hyperbolicity, and Lyapunov Exponents

    NASA Astrophysics Data System (ADS)

    Haller, George

    2010-05-01

    We review the fundamental physical motivation behind the definition of Lagrangian Coherent Structures (LCS) and show how it leads to the concept of finite-time hyperbolicity in non-autonomous dynamical systems. Using this concept of hyperbolicity, we obtain a self-consistent criterion for the existence of attracting and repelling material surfaces in unsteady fluid flows, such as those in the atmosphere and the ocean. The existence of LCS is often postulated in terms of features of the Finite-Time Lyapunov Exponent (FTLE) field associated with the system. As simple examples show, however, the FTLE field does not necessarily highlight LCS, or may ighlight structures that are not LCS. Under appropriate nondegeneracy conditions, we show that ridges of the FTLE field indeed coincide with LCS in volume-preserving flows. For general flows, we obtain a more general scalar field whose ridges correspond to LCS. We finally review recent applications of LCS techniques to flight safety analysis at Hong Kong International Airport.

Top