Cheng, J L; Vermeulen, N; Sipe, J E
2017-03-06
We present a practical scheme to separate the contributions of the electric quadrupole-like and the magnetic dipole-like effects to the forbidden second order optical nonlinear response of graphene, and give analytic expressions for the second order optical conductivities, calculated from the independent particle approximation, with relaxation described in a phenomenological way. We predict strong second order nonlinear effects, including second harmonic generation, photon drag, and difference frequency generation. We discuss in detail the controllability of these effects by tuning the chemical potential, taking advantage of the dominant role played by interband optical transitions in the response.
An, Honglin; Fleming, Simon
2005-05-02
The spatial distribution of second-order nonlinearity in thermally poled optical fibers was characterized by second-harmonic microscopy. The second-order nonlinearity was found to be confined to a thin layer close to the anode surface and progressed further into the silica as the poling time increased. Position uncertainty of the anode metal wire was observed to have an effect, as the nonlinear layers were found not always symmetrically located around the nearest points between the anode and cathode. Optical microscopy results were obtained on etched poled fiber cross-sections and compared with those from second-harmonic microscopy.
Large optical second-order nonlinearity of poled WO3-TeO2 glass.
Tanaka, K; Narazaki, A; Hirao, K
2000-02-15
Second-harmonic generation, one of the second-order nonlinear optical properties of thermally and electrically poled WO>(3)-TeO>(2) glasses, has been examined. We poled glass samples with two thicknesses (0.60 and 0.86 mm) at various temperatures to explore the effects of external electric field strength and poling temperature on second-order nonlinearity. The dependence of second-harmonic intensity on the poling temperature is maximum at a specific poling temperature. A second-order nonlinear susceptibility of 2.1 pm/V was attained for the 0.60-mm-thick glass poled at 250 degrees C. This value is fairly large compared with those for poled silica and tellurite glasses reported thus far. We speculate that the large third-order nonlinear susceptibility of WO>(3)- TeO>(2) glasses gives rise to the large second-order nonlinearity by means of a X((2)) = 3X((3)) E(dc) process.
Second-order nonlinearity induced transparency.
Zhou, Y H; Zhang, S S; Shen, H Z; Yi, X X
2017-04-01
In analogy to electromagnetically induced transparency, optomechanically induced transparency was proposed recently in [Science330, 1520 (2010)SCIEAS0036-807510.1126/science.1195596]. In this Letter, we demonstrate another form of induced transparency enabled by second-order nonlinearity. A practical application of the second-order nonlinearity induced transparency is to measure the second-order nonlinear coefficient. Our scheme might find applications in quantum optics and quantum information processing.
Unsymmetrical squaraines for nonlinear optical materials
NASA Technical Reports Server (NTRS)
Marder, Seth R. (Inventor); Chen, Chin-Ti (Inventor); Cheng, Lap-Tak (Inventor)
1996-01-01
Compositions for use in non-linear optical devices. The compositions have first molecular electronic hyperpolarizability (.beta.) either positive or negative in sign and therefore display second order non-linear optical properties when incorporated into non-linear optical devices.
{open_quotes}Quadrupoled{close_quotes} materials for second-order nonlinear optics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hubbard, S.F.; Petschek, R.G.; Singer, K.D.
1997-10-01
We describe a new approach to second-order nonlinear optical materials, namely quadrupoling. This approach is valid in the regime of Kleinman (full permutation) symmetry breaking, and thus requires a two- or three dimensional microscopic nonlinearity at wavelengths away from material resonances. This {open_quotes}quadrupolar{close_quotes} nonlinearity arises from the second rank pseudotensor of the rotationally invariant representation of the second-order nonlinear optical tensor. We have experimentally investigated candidate molecules comprised of chiral camphorquinone derivatives by measuring the scalar invariant associated with the rank two pseudotensor using hyper-Rayleigh scattering. We have found sizable scalar figures of merit for several compounds using light formore » which the second harmonic wavelengths are greater than 100 nm longer than the absorption peak location. At these wavelengths, the quadrupolar scalar is as large as the polar (EFISH) scalar of p-nitroaniline. Prospects for applications are discussed.« less
Optical nonlinearities of excitons in monolayer MoS2
NASA Astrophysics Data System (ADS)
Soh, Daniel B. S.; Rogers, Christopher; Gray, Dodd J.; Chatterjee, Eric; Mabuchi, Hideo
2018-04-01
We calculate linear and nonlinear optical susceptibilities arising from the excitonic states of monolayer MoS2 for in-plane light polarizations, using second-quantized bound and unbound exciton operators. Optical selection rules are critical for obtaining the susceptibilities. We derive the valley-chirality rule for the second-order harmonic generation in monolayer MoS2 and find that the third-order harmonic process is efficient only for linearly polarized input light while the third-order two-photon process (optical Kerr effect) is efficient for circularly polarized light using a higher order exciton state. The absence of linear absorption due to the band gap and the unusually strong two-photon third-order nonlinearity make the monolayer MoS2 excitonic structure a promising resource for coherent nonlinear photonics.
Characterization of second and third order optical nonlinearities of ZnO sputtered films
NASA Astrophysics Data System (ADS)
Larciprete, M. C.; Haertle, D.; Belardini, A.; Bertolotti, M.; Sarto, F.; Günter, P.
2006-03-01
We measured the second and third order optical nonlinearity of zinc oxide, grown on glass substrates by the ion beam sputtering technique. Second and third harmonic generation measurements were performed by means of the rotational Maker fringes technique for different polarization configurations, thus allowing the determination of all non-zero components of the second order susceptibility at three different fundamental beam wavelengths, i.e., 1064 nm, 1542 nm and 1907 nm. The dispersion of the nonlinear optical coefficients has been evaluated, while the nonlinear optical coefficients were found to range between 0.9 pm/V and 0.16 pm/V for d33, 0.53 pm/V and 0.08 pm/V for |d15|, 0.31 and 0.08 pm/V for |d31|, with increasing wavelength. Finally, one third order susceptibility, χijkl (3), has been determined by third harmonic generation measurements at a fundamental wavelength λ=1907 nm and a value for χ3333 (3) of 185×10-20 m2/V2 has been found.
NASA Technical Reports Server (NTRS)
Liu, Ansheng; Chuang, S.-L.; Ning, C. Z.; Woo, Alex (Technical Monitor)
1999-01-01
Second-order nonlinear optical processes including second-harmonic generation, optical rectification, and difference-frequency generation associated with intersubband transitions in wurtzite GaN/AlGaN quantum well (QW) are investigated theoretically. Taking into account the strain-induced piezoelectric (PZ) effects, we solve the electronic structure of the QW from coupled effective-mass Schrodinger equation and Poisson equation including the exchange-correlation effect under the local-density approximation. We show that the large PZ field in the QW breaks the symmetry of the confinement potential profile and leads to large second-order susceptibilities. We also show that the interband optical pump-induced electron-hole plasma results in an enhancement in the maximum value of the nonlinear coefficients and a redshift of the peak position in the nonlinear optical spectrum. By use of the difference-frequency generation, THz radiation can be generated from a GaN/Al(0.75)Ga(0.25)N with a pump laser of 1.55 micron.
Nonlinear optical effects on the surface of acridine yellow-doped lead-tin fluorophosphate glass
NASA Technical Reports Server (NTRS)
He, K. X.; Bryant, William; Venkateswarlu, Putcha
1991-01-01
The second- and third-order nonlinear optical properties of acridine yellow-doped lead-tin fluorophosphate (LTF) glass have been directly studied by measurement of surface enhanced second harmonic generation and third harmonic generation. The three photon excitation fluorescence is also observed. Based on these results, the large nonlinearities of the acridine LTF system which is a new nonlinear optical material are experimentally demonstrated.
NASA Astrophysics Data System (ADS)
Williams, David J.
The present volume on nonlinear optical properties of organic materials discusses organic nonlinear optics, polymers for nonlinear optics, characterization of nonlinear properties, photorefractive and second-order materials, harmonic generation in organic materials, and devices and applications. Particular attention is given to organic semiconductor-doped polymer glasses as novel nonlinear media, heterocyclic nonlinear optical materials, loss measurements in electrooptic polymer waveguides, the phase-matched second-harmonic generation in planar waveguides, electrooptic measurements in poled polymers, transient effects in spatial light modulation by nonlinearity-absorbing molecules, the electrooptic effects in organic single crystals, surface acoustic wave propagation in an organic nonlinear optical crystal, nonlinear optics of astaxanthin thin films; and advanced high-temperature polymers for integrated optical waveguides. (No individual items are abstracted in this volume)
Further efforts in optimizing nonlinear optical molecules
NASA Astrophysics Data System (ADS)
Dirk, Carl W.; Caballero, Noel; Tan, Alarice; Kuzyk, Mark G.; Cheng, Lap-Tak A.; Katz, Howard E.; Shilling, Marcia; King, Lori A.
1993-02-01
We summarize some of our past work in the field on optimizing molecules for second order and third order nonlinear optical applications. We also present some previously unpublished results suggesting a particular optimization of the popular cyano- and nitrovinyl acceptor groups. In addition we provide some new quadratic electro-optic results which serve to further verify our choice of a restricted three-level model suitable for optimizing third order nonlinearities in molecules. Finally we present a new squarylium dye with a large third order optical nonlinearity (-9.5 X 10-34 cm7/esu2; EFISH (gamma) at 1906 nm).
Theory of plasmonic effects in nonlinear optics: the case of graphene
NASA Astrophysics Data System (ADS)
Rostami, Habib; Katsnelson, Mikhail I.; Polini, Marco; Mikhail I. Katsnelson Collaboration; Habib Rostami; Marco Polini Collaboration
The nonlinear optical properties of two-dimensional electronic systems are beginning to attract considerable interest both in the theoretical and experimental sectors. Recent experiments on the nonlinear optical properties of graphene reveal considerably strong third harmonic generation and four-wave mixing of this single-atomic-layer electronic system. We develop a large-N theory of electron-electron interaction corrections to multi-legged Feynman diagrams describing second- and third-order nonlinear response functions. Our theory is completely general and is useful to understand all second- and third-order nonlinear effects, including harmonic generation, wave mixing, and photon drag. We apply our theoretical framework to the case of graphene, by carrying out microscopic calculations of the second- and third-order nonlinear response functions of an interacting two-dimensional gas of massless Dirac fermions. We compare our results with recent measurements, where all-optical launching of graphene plasmons has been achieved. This work was supported by Fondazione Istituto Italiano di Tecnologia, the European Union's Horizon 2020 research and innovation programme under Grant agreement No. 696656 GrapheneCore, and the ERC Advanced Grant 338957 FEMTO/NANO (M.I.K.).
NASA Astrophysics Data System (ADS)
Saripalli, Ravi Kiran; Katturi, Naga Krishnakanth; Soma, Venugopal Rao; Bhat, H. L.; Elizabeth, Suja
2017-12-01
The linear, second order, and third order nonlinear optical properties of glucuronic acid γ-lactone single crystals were investigated. The optic axes and principal dielectric axes were identified through optical conoscopy and the principal refractive indices were obtained using the Brewster's angle method. Conic sections were observed which is perceived to be due to spontaneous non-collinear phase matching. The direction of collinear phase matching was determined and the deff evaluated in this direction was 0.71 pm/V. Open and closed aperture Z-scan measurements with femtosecond pulses revealed high third order nonlinearity in the form of self-defocusing, two-photon absorption, as well as saturable absorption.
Explicit formulation of second and third order optical nonlinearity in the FDTD framework
NASA Astrophysics Data System (ADS)
Varin, Charles; Emms, Rhys; Bart, Graeme; Fennel, Thomas; Brabec, Thomas
2018-01-01
The finite-difference time-domain (FDTD) method is a flexible and powerful technique for rigorously solving Maxwell's equations. However, three-dimensional optical nonlinearity in current commercial and research FDTD softwares requires solving iteratively an implicit form of Maxwell's equations over the entire numerical space and at each time step. Reaching numerical convergence demands significant computational resources and practical implementation often requires major modifications to the core FDTD engine. In this paper, we present an explicit method to include second and third order optical nonlinearity in the FDTD framework based on a nonlinear generalization of the Lorentz dispersion model. A formal derivation of the nonlinear Lorentz dispersion equation is equally provided, starting from the quantum mechanical equations describing nonlinear optics in the two-level approximation. With the proposed approach, numerical integration of optical nonlinearity and dispersion in FDTD is intuitive, transparent, and fully explicit. A strong-field formulation is also proposed, which opens an interesting avenue for FDTD-based modelling of the extreme nonlinear optics phenomena involved in laser filamentation and femtosecond micromachining of dielectrics.
Off-resonant third-order optical nonlinearities of squarylium and croconium dyes
NASA Astrophysics Data System (ADS)
Li, Zhongyu; Xu, Song; Niu, Lihong; Zhang, Zhi; Chen, Zihui; Zhang, Fushi
2008-01-01
The magnitude and dynamic response of the third-order optical nonlinearities of squarylium and croconium dyes in methanol solution were measured by femtosecond degenerate four-wave mixing (DFWM) technique at 800 nm. Ultrafast nonlinear optical responses have been observed, and the magnitude of the second-order hyperpolarizabilities was evaluated to be 5.80 × 10 -31 esu for the squarylium dye and 8.69 × 10 -31 esu for the croconium dye, respectively. The large optical nonlinearities of the dyes can be attributed to their rigid and intramolecular charge transfer structure, and the instantaneous NLO responses of dyes are shorter than the experimental time resolution (50 fs), which is mainly contributed from the electron delocalization. The fast nonlinear response and large third-order optical nonlinearities show that the studied squarylium and croconium dyes might a kind of promising materials for the applications in all-optical switching and modulator.
Remarkable Second-Order Optical Nonlinearity of Nano-Sized Au Cluster: A TDDFT Study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Kechen; Li, Jun; Lin, Chensheng
2004-04-21
The dipole polarizability, static first hyperpolarizability, and UV-vis spectrum of the recently identified nano-sized tetrahedral cluster of Au have been investigated by using time-dependent density functional response theory. We have discovered that the Au cluster possesses remarkably large molecular second-order optical nonlinearity with the first hyperpolarizabilty (xyz) calculated to be 14.3 x 10 electrostatic unit (esu). The analysis of the low-energy absorption band suggests that the charge transfer from the edged gold atoms to the vertex ones plays the key role in nonlinear optical (NLO) response of Au.
Second-harmonic generation in substoichiometric silicon nitride layers
NASA Astrophysics Data System (ADS)
Pecora, Emanuele; Capretti, Antonio; Miano, Giovanni; Dal Negro, Luca
2013-03-01
Harmonic generation in optical circuits offers the possibility to integrate wavelength converters, light amplifiers, lasers, and multiple optical signal processing devices with electronic components. Bulk silicon has a negligible second-order nonlinear optical susceptibility owing to its crystal centrosymmetry. Silicon nitride has its place in the microelectronic industry as an insulator and chemical barrier. In this work, we propose to take advantage of silicon excess in silicon nitride to increase the Second Harmonic Generation (SHG) efficiency. Thin films have been grown by reactive magnetron sputtering and their nonlinear optical properties have been studied by femtosecond pumping over a wide range of excitation wavelengths, silicon nitride stoichiometry and thermal processes. We demonstrate SHG in the visible range (375 - 450 nm) using a tunable 150 fs Ti:sapphire laser, and we optimize the SH emission at a silicon excess of 46 at.% demonstrating a maximum SHG efficiency of 4x10-6 in optimized films. Polarization properties, generation efficiency, and the second order nonlinear optical susceptibility are measured for all the investigated samples and discussed in terms of an effective theoretical model. Our findings show that the large nonlinear optical response demonstrated in optimized Si-rich silicon nitride materials can be utilized for the engineering of nonlinear optical functions and devices on a Si chip.
3D simulation for solitons used in optical fibers
NASA Astrophysics Data System (ADS)
Vasile, F.; Tebeica, C. M.; Schiopu, P.; Vladescu, M.
2016-12-01
In this paper is described 3D simulation for solitions used in optical fibers. In the scientific works is started from nonlinear propagation equation and the solitons represents its solutions. This paper presents the simulation of the fundamental soliton in 3D together with simulation of the second order soliton in 3D. These simulations help in the study of the optical fibers for long distances and in the interactions between the solitons. This study helps the understanding of the nonlinear propagation equation and for nonlinear waves. These 3D simulations are obtained using MATLAB programming language, and we can observe fundamental difference between the soliton and the second order/higher order soliton and in their evolution.
NASA Astrophysics Data System (ADS)
Shelkovnikov, Vladimir; Selivanova, Galina; Lyubas, Gleb; Korotaev, Sergey; Shundrina, Inna; Tretyakov, Evgeny; Zueva, Ekaterina; Plekhanov, Alexander; Mikerin, Sergey; Simanchuk, Andrey
2017-07-01
The composite material of new synthesized 4-((4-(N,N-n-dibutylamino) phenyl)diazenyl)-biphenyl-2,3,4-tricarbonitrile (GAS dye) in commercial poly(styrene-co-methyl methacrylate) (PSMMA) was prepared, poled and its nonlinear optical properties compared with DR1 dye were studied. High thermal stability of the composite material was revealed, and the maximal concentration of the chromophore was found to reach ∼20 wt%. The dipole moment, polarizability tensor, and first hyperpolarizability tensor of the investigated dyes were calculated by within the framework of the coupled perturbed density functional theory. A nanosecond second-harmonic generation Maker fringes technique was used which is capable of providing the magnitude of the second-order nonlinearity of optical materials at a wavelength of 1064 nm. For the tested GAS-PSMMA composite material, maximal coefficient d33 was found to be 50 pm/V. The nonlinear optical response, which was achieved here, shows possible usefulness of the GAS dye as a component for molecular design of nonlinear-optical materials with advanced characteristics.
Theoretical analysis of optical poling and frequency doubling effect based on classical model
NASA Astrophysics Data System (ADS)
Feng, Xi; Li, Fuquan; Lin, Aoxiang; Wang, Fang; Chai, Xiangxu; Wang, Zhengping; Zhu, Qihua; Sun, Xun; Zhang, Sen; Sun, Xibo
2018-03-01
Optical poling and frequency doubling effect is one of the effective manners to induce second order nonlinearity and realize frequency doubling in glass materials. The classical model believes that an internal electric field is built in glass when it's exposed by fundamental and frequency-doubled light at the same time, and second order nonlinearity appears as a result of the electric field and the orientation of poles. The process of frequency doubling in glass is quasi phase matched. In this letter, the physical process of poling and doubling process in optical poling and frequency doubling effect is deeply discussed in detail. The magnitude and direction of internal electric field, second order nonlinear coefficient and its components, strength and direction of frequency doubled output signal, quasi phase matched coupled wave equations are given in analytic expression. Model of optical poling and frequency doubling effect which can be quantitatively analyzed are constructed in theory, which set a foundation for intensive study of optical poling and frequency doubling effect.
Studies on third-order nonlinear optical properties of chalcone derivatives in polymer host
NASA Astrophysics Data System (ADS)
Shettigar, Seetharam; Umesh, G.; Chandrasekharan, K.; Sarojini, B. K.; Narayana, B.
2008-04-01
In this paper we present the experimental study of the third-order nonlinear optical properties of two chalcone derivatives, viz., 1-(4-methoxyphenyl)-3-(4-butyloxyphenyl)-prop-2-en-1-one and 1-(4-methoxyphenyl)-3-(4-propyloxyphenyl)-prop-2-en-1-one in PMMA host, with the prospective of reaching a compromise between good processability and high nonlinear optical properties. The nonlinear optical properties have been investigated by Z-scan technique using 7 ns laser pulses at 532 nm. The nonlinear refractive index, nonlinear absorption coefficient, magnitude of third-order susceptibility and the coupling factor have been determined. The values obtained are of the order of 10 -14 cm 2/W, 1 cm/GW, 10 -13 esu and 0.2, respectively. The molecular second hyperpolarizability for the chalcone derivatives in polymer is of the order of 10 -31 esu. Different guest/host concentrations have also been studied. The results suggest that the nonlinear properties of the chalcones have been improved when they are used as dopants in polymer matrix. The nonlinear parameters obtained are comparable with the reported values of II-VI compound semiconductors. Hence, these chalcons are a promising class of nonlinear optical dopant materials for optical device applications.
Vincenti, M A; de Ceglia, D; Scalora, Michael
2016-08-01
We investigate nonlinear absorption in films of epsilon-near-zero materials. The combination of large local electric fields at the fundamental frequency and material losses at the harmonic frequencies induce unusual intensity-dependent phenomena. We predict that the second-order nonlinearity of a low-damping, epsilon-near-zero slab produces an optical limiting effect that mimics a two-photon absorption process. Anomalous absorption profiles that depend on low permittivity values at the pump frequency are also predicted for third-order nonlinearities. These findings suggest new opportunities for all-optical light control and novel ways to design reconfigurable and tunable nonlinear devices.
Rigorous theory of molecular orientational nonlinear optics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kwak, Chong Hoon, E-mail: chkwak@ynu.ac.kr; Kim, Gun Yeup
2015-01-15
Classical statistical mechanics of the molecular optics theory proposed by Buckingham [A. D. Buckingham and J. A. Pople, Proc. Phys. Soc. A 68, 905 (1955)] has been extended to describe the field induced molecular orientational polarization effects on nonlinear optics. In this paper, we present the generalized molecular orientational nonlinear optical processes (MONLO) through the calculation of the classical orientational averaging using the Boltzmann type time-averaged orientational interaction energy in the randomly oriented molecular system under the influence of applied electric fields. The focal points of the calculation are (1) the derivation of rigorous tensorial components of the effective molecularmore » hyperpolarizabilities, (2) the molecular orientational polarizations and the electronic polarizations including the well-known third-order dc polarization, dc electric field induced Kerr effect (dc Kerr effect), optical Kerr effect (OKE), dc electric field induced second harmonic generation (EFISH), degenerate four wave mixing (DFWM) and third harmonic generation (THG). We also present some of the new predictive MONLO processes. For second-order MONLO, second-order optical rectification (SOR), Pockels effect and difference frequency generation (DFG) are described in terms of the anisotropic coefficients of first hyperpolarizability. And, for third-order MONLO, third-order optical rectification (TOR), dc electric field induced difference frequency generation (EFIDFG) and pump-probe transmission are presented.« less
Second harmonic generation in resonant optical structures
Eichenfield, Matt; Moore, Jeremy; Friedmann, Thomas A.; Olsson, Roy H.; Wiwi, Michael; Padilla, Camille; Douglas, James Kenneth; Hattar, Khalid Mikhiel
2018-01-09
An optical second-harmonic generator (or spontaneous parametric down-converter) includes a microresonator formed of a nonlinear optical medium. The microresonator supports at least two modes that can be phase matched at different frequencies so that light can be converted between them: A first resonant mode having substantially radial polarization and a second resonant mode having substantially vertical polarization. The first and second modes have the same radial order. The thickness of the nonlinear medium is less than one-half the pump wavelength within the medium.
Optical polarization based logic functions (XOR or XNOR) with nonlinear Gallium nitride nanoslab.
Bovino, F A; Larciprete, M C; Giardina, M; Belardini, A; Centini, M; Sibilia, C; Bertolotti, M; Passaseo, A; Tasco, V
2009-10-26
We present a scheme of XOR/XNOR logic gate, based on non phase-matched noncollinear second harmonic generation from a medium of suitable crystalline symmetry, Gallium nitride. The polarization of the noncollinear generated beam is a function of the polarization of both pump beams, thus we experimentally investigated all possible polarization combinations, evidencing that only some of them are allowed and that the nonlinear interaction of optical signals behaves as a polarization based XOR. The experimental results show the peculiarity of the nonlinear optical response associated with noncollinear excitation, and are explained using the expression for the effective second order optical nonlinearity in noncollinear scheme.
Chmielak, Bartos; Matheisen, Christopher; Ripperda, Christian; Bolten, Jens; Wahlbrink, Thorsten; Waldow, Michael; Kurz, Heinrich
2013-10-21
We present detailed investigations of the local strain distribution and the induced second-order optical nonlinearity within strained silicon waveguides cladded with a Si₃N₄ strain layer. Micro-Raman Spectroscopy mappings and electro-optic characterization of waveguides with varying width w(WG) show that strain gradients in the waveguide core and the effective second-order susceptibility χ(2)(yyz) increase with reduced w(WG). For 300 nm wide waveguides a mean effective χ(2)(yyz) of 190 pm/V is achieved, which is the highest value reported for silicon so far. To gain more insight into the origin of the extraordinary large optical second-order nonlinearity of strained silicon waveguides numerical simulations of edge induced strain gradients in these structures are presented and discussed.
NASA Astrophysics Data System (ADS)
Pérez-Moreno, Javier; Clays, Koen
The generalized Thomas-Kuhn sum rules are used to characterize the nonlinear optical response of organic chromophores in terms of fundamental parameters that can be measured experimentally. The nonlinear optical performance of organic molecules is evaluated from the combination of hyper-Rayleigh scattering measurements and the analysis in terms of the fundamental limits. Different strategies for the enhancement of nonlinear optical behavior at the molecular and supramolecular level are evaluated and new paradigms for the design of more efficient nonlinear optical molecules are proposed and investigated.
Effets non-lineaires de second ordre dans les verres de silice
NASA Astrophysics Data System (ADS)
Godbout, Nicolas
Materials possessing inversion symmetry can not have a non-zero second-order susceptibility tensor. Since silica glasses are amorphous and isotropic, they possess this symmetry and therefore do not exhibit second-order nonlinear optical effects. However, the symmetry can be broken by several processes. The central question of this thesis is the determination of the mechanisms responsible for the second-order susceptibility in silica glasses after thermal poling. The presence of this nonlinearity arises through one of these mechanisms: the orientation of dipolar moieties possessing a second-order hyperpolarisability, or the build-up of a permanent electric field by charge motion which creates an apparent χ(2) through the already present χ (3). The dipole orientation model has a bigger potential of generating high optical nonlinearities than the built-in field model. This conclusion is based on a study of the crystalline structures of silica. The measurement of Maker fringes is the most informative technique for characterization of the optical properties of bulk poled samples. Measurements on Infrasil™ and Suprasil™ samples show an optically active layer of approximately 9 and 23 microns, with χ(2) susceptibilities of approximately 0.07 pm/V and 0.02 pm/V respectively. The analysis of Maker fringes in a similar sample suggests that the sign of the surface and bulk χ (2)-s is different, supporting the built-in field model as the origin of χ(2). Based on the results analyzed in this thesis, the second- order susceptibility of silica glasses after thermal poling results from the creation of a permanent built-in electric field caused by the movement of cations coupled to the pre-existing third-order nonlinearity. This claim is based on: the observed pump polarization dependence of Maker fringes, predictions of a steady-state ion migration model about the resulting optical properties and their confirmation by optical measurements; the presence of a bulk nonlinearity and its apparent opposite sign to the one of the surface; polarization and depolarization currents showing only signs of ion migration. (Abstract shortened by UMI.)
Characterization of the third-order optical nonlinearity spectrum of barium borate glasses
NASA Astrophysics Data System (ADS)
Santos, S. N. C.; Almeida, J. M. P.; Paula, K. T.; Tomazio, N. B.; Mastelaro, V. R.; Mendonça, C. R.
2017-11-01
Borate glasses have proven to be an important material for applications ranging from radiation dosimetry to nonlinear optics. In particular, B2O3-BaO based glasses are attractive to frequency generation since their barium metaborate phase (β-BaB2O4 or β-BBO) may be crystallized under proper heat treatment. Despite the vast literature covering their linear and second-order optical nonlinear properties, their third-order nonlinearities remain overlooked. This paper thus reports a study on the nonlinear refraction (n2) of BBO and BBS-DyEu glasses through femtosecond Z-scan technique. The results were modeled using the BGO approach, which showed that oxygen ions are playing a role in the nonlinear optical properties of the glasses studied here. In addition, the barium borate glasses containing rare-earths ions were found to exhibit larger nonlinearities, which is in agreement with previous studies.
Zhang, Yongqiang; Martinez-Perdiguero, Josu; Baumeister, Ute; Walker, Christopher; Etxebarria, Jesus; Prehm, Marko; Ortega, Josu; Tschierske, Carsten; O'Callaghan, Michael J; Harant, Adam; Handschy, Mark
2009-12-30
Two classes of laterally azo-bridged H-shaped ferroelectric liquid crystals (FLCs), incorporating azobenzene and disperse red 1 (DR-1) chromophores along the FLC polar axes, were synthesized and characterized by polarized light microscopy, differential scanning calorimetry, 2D X-ray diffraction analysis, and electro-optical investigations. They represent the first H-shaped FLC materials exhibiting the ground-state, thermodynamically stable enantiotropic SmC* phase, i.e., ground-state ferroelectricity. Second harmonic generation measurements of one compound incorporating a DR-1 chromophore at the incident wavelength of 1064 nm give a nonlinear coefficient of d(22) = 17 pm/V, the largest nonlinear optics coefficient reported to date for calamitic FLCs. This value enables viable applications of FLCs in nonlinear optics.
Optical nonlinearities in plasmonic metamaterials (Conference Presentation)
NASA Astrophysics Data System (ADS)
Zayats, Anatoly V.
2016-04-01
Metals exhibit strong and fast nonlinearities making metallic, plasmonic, structures very promising for ultrafast all-optical applications at low light intensities. Combining metallic nanostructures in metamaterials provides additional functionalities via prospect of precise engineering of spectral response and dispersion. From this point of view, hyperbolic metamaterials, in particular those based on plasmonic nanorod arrays, provide wealth of exciting possibilities in nonlinear optics offering designed linear and nonlinear properties, polarization control, spontaneous emission control and many others. Experiments and modeling have already demonstrated very strong Kerr-nonlinear response and its ultrafast recovery due to the nonlocal nature of the plasmonic mode of the metamaterial, so that small changes in the permittivity of the metallic component under the excitation modify the nonlocal response that in turn leads to strong changes of the metamaterial transmission. In this talk, we will discuss experimental studies and numerical modeling of second- and third-order nonlinear optical processes in hyperbolic metamaterials based on metallic nanorods and other plasmonic systems where coupling between the resonances plays important role in defining nonlinear response. Second-harmonic generation and ultrafast Kerr-type nonlinearity originating from metallic component of the metamaterial will be considered, including nonlinear magneto-optical effects. Nonlinear optical response of stand-alone as well as integrated metamaterial components will be presented. Some of the examples to be discussed include nonlinear polarization control, nonlinear metamaterial integrated in silicon photonic circuitry and second-harmonic generation, including magneto-optical effects.
Microgravity Processing and Photonic Applications of Organic and Polymeric Materials
NASA Technical Reports Server (NTRS)
Frazier, Donald 0; Penn, Benjamin G.; Smith, David; Witherow, William K.; Paley, M. S.; Abdeldayem, Hossin A.
1998-01-01
In recent years, a great deal of interest has been directed toward the use of organic materials in the development of high-efficiency optoelectronic and photonic devices. There is a myriad of possibilities among organic which allow flexibility in the design of unique structures with a variety of functional groups. The use of nonlinear optical (NLO) organic materials such as thin-film waveguides allows full exploitation of their desirable qualities by permitting long interaction lengths and large susceptibilities allowing modest power input. There are several methods in use to prepare thin films, such as Langmuir-Blodgett (LB) and self-assembly techniques, vapor deposition, growth from sheared solution or melt, and melt growth between glass plates. Organics have many features that make Abstract: them desirable for use in optical devices such as high second- and third-order nonlinearities, flexibility of molecular design, and damage resistance to optical radiation. However, their use in devices has been hindered by processing difficulties for crystals and thin films. In this chapter, we discuss photonic and optoelectronic applications of a few organic materials and the potential role of microgravity on processing these materials. It is of interest to note how materials with second- and third-order nonlinear optical behavior may be improved in a diffusion-limited environment and ways in which convection may be detrimental to these materials. We focus our discussion on third-order materials for all-optical switching, and second-order materials for all-optical switching, and second-order materials for frequency conversion and electrooptics.
Tunable pulsed narrow bandwidth light source
Powers, Peter E.; Kulp, Thomas J.
2002-01-01
A tunable pulsed narrow bandwidth light source and a method of operating a light source are provided. The light source includes a pump laser, first and second non-linear optical crystals, a tunable filter, and light pulse directing optics. The method includes the steps of operating the pump laser to generate a pulsed pump beam characterized by a nanosecond pulse duration and arranging the light pulse directing optics so as to (i) split the pulsed pump beam into primary and secondary pump beams; (ii) direct the primary pump beam through an input face of the first non-linear optical crystal such that a primary output beam exits from an output face of the first non-linear optical crystal; (iii) direct the primary output beam through the tunable filter to generate a sculpted seed beam; and direct the sculpted seed beam and the secondary pump beam through an input face of the second non-linear optical crystal such that a secondary output beam characterized by at least one spectral bandwidth on the order of about 0.1 cm.sup.-1 and below exits from an output face of the second non-linear optical crystal.
NASA Astrophysics Data System (ADS)
Ortyl, E.; Chan, S. W.; Nunzi, J.-M.; Kucharski, S.
2006-11-01
Polyurethane polymers containing azo sulfonamide chromophores were obtained by coupling reaction of the precursor polyurethane with corresponding diazonium salts. The chromophores, showing high hyperpolarizability value on molecular scale, were found to undergo orientation by all-optical poling method yielding macroscopic nonlinear optical response. The rate of generation and decay of the second-order nonlinear susceptibility was evaluated as a function of time. It was established that the polymers containing sulfonamide type chromophores showed higher stability of the nonlinear optical signal as compared with those modified with a nitro-acceptor groups of the Disperse Red type.
Second and third order nonlinear optical properties of conjugated molecules and polymers
NASA Technical Reports Server (NTRS)
Perry, Joseph W.; Stiegman, Albert E.; Marder, Seth R.; Coulter, Daniel R.; Beratan, David N.; Brinza, David E.
1988-01-01
Second- and third-order nonlinear optical properties of some newly synthesized organic molecules and polymers are reported. Powder second-harmonic-generation efficiencies of up to 200 times urea have been realized for asymmetric donor-acceptor acetylenes. Third harmonic generation chi(3)s have been determined for a series of small conjugated molecules in solution. THG chi(3)s have also been determined for a series of soluble conjugated copolymers prepared using ring-opening metathesis polymerization. The results are discussed in terms of relevant molecular and/or macroscopic structural features of these conjugated organic materials.
NASA Astrophysics Data System (ADS)
Li, Zhong-Yu; Xu, Song; Chen, Zi-Hui; Zhang, Fu-Shi; Kasatani, Kazuo
2011-08-01
Third-order optical nonlinearities of two squarylium dyes with benzothiazole donor groups (BSQ1 and BSQ2) in chloroform solution are measured by a picosecond Z-scan technique at 532 nm. It is found that the two compounds show the saturation absorption and nonlinear self-focus refraction effect. The molecular second hyperpolarizabilities are calculated to be 7.46 × 10-31 esu and 5.01 × 10-30 esu for BSQ1 and BSQ2, respectively. The large optical nonlinearities of squarylium dyes can be attributed to their rigid and intramolecular charge transfer structure. The difference in γ values is attributed to the chloro group of benzene rings of BSQ2 and the one-photon resonance effect. It is found that the third-order nonlinear susceptibilities of two squarylium dyes are mainly determined by the real parts of χ(3), and the large optical nonlinearities of studied squarylium dyes can be attributed to the nonlinear refraction.
Boixel, Julien; Guerchais, Véronique; Le Bozec, Hubert; Chantzis, Agisilaos; Jacquemin, Denis; Colombo, Alessia; Dragonetti, Claudia; Marinotto, Daniele; Roberto, Dominique
2015-05-07
An unprecedented DTE-based Pt(II) complex, 2(o), which stands as the first example of a sequential double nonlinear optical switch, induced first by protonation and next upon irradiation with UV light is presented.
NASA Astrophysics Data System (ADS)
Huttunen, Mikko J.; Rasekh, Payman; Boyd, Robert W.; Dolgaleva, Ksenia
2018-05-01
Collective responses of localized surface plasmon resonances, known as surface lattice resonances (SLRs) in metal nanoparticle arrays, can lead to high quality factors (˜100 ), large local-field enhancements, and strong light-matter interactions. SLRs have found many applications in linear optics, but little work of the influence of SLRs on nonlinear optics has been reported. Here we show how SLRs could be utilized to enhance nonlinear optical interactions. We devote special attention to the sum-frequency, difference-frequency, and third-harmonic generation processes because of their potential for the realization of novel sources of light. We also demonstrate how such arrays could be engineered to enhance higher-order nonlinear optical interactions through cascaded nonlinear processes. In particular, we demonstrate how the efficiency of third-harmonic generation could be engineered via cascaded second-order responses.
Rodríguez, Mario; Ramos-Ortíz, Gabriel; Maldonado, José Luis; Herrera-Ambriz, Víctor M; Domínguez, Oscar; Santillan, Rosa; Farfán, Norberto; Nakatani, Keitaro
2011-09-01
Macroscopic single crystals of (E)-5-(diethylamino)-2-((3,5-dinitrophenylimino)methyl)phenol (DNP) were obtained from slow cooling of chloroform or dichlorometane saturated solutions at controlled temperature. X-ray diffraction analysis showed that this compound crystallizes in a noncentrosymmetric space group (P2(1)2(1)2(1)). Thermal analysis was performed and indicated that the crystals are stable until 260 °C. Second-order nonlinear optical properties of DNP were experimentally investigated in solution through EFISH technique and in solid state through the Kurtz-Perry powder technique. Crystals of compound DNP exhibited a second-harmonic signals 39 times larger than of the technologically useful potassium dihydrogenphosphate (KDP) under excitation at infrared wavelengths. In addition, the second-order nonlinear optical properties of DNP were also studied at visible wavelengths through the photorefractive effect and applied to demonstrate dynamic holographic reconstruction. Copyright © 2011 Elsevier B.V. All rights reserved.
Chowdhury, A; Staus, C; Boland, B F; Kuech, T F; McCaughan, L
2001-09-01
We present results of what is to our knowledge the first experimental demonstration of simultaneous optical wavelength interchange by use of a two-dimensional second-order nonlinear photonic crystal. Fabrication and performance parameters of a 1535-1555-nm wavelength interchange nonlinear photonic crystal fabricated in lithium niobate are discussed.
Flat nonlinear optics: metasurfaces for efficient frequency mixing
NASA Astrophysics Data System (ADS)
Nookala, Nishant; Lee, Jongwon; Liu, Yingnan; Bishop, Wells; Tymchenko, Mykhailo; Gomez-Diaz, J. Sebastian; Demmerle, Frederic; Boehm, Gerhard; Amann, Markus-Christian; Wolf, Omri; Brener, Igal; Alu, Andrea; Belkin, Mikhail A.
2017-02-01
Gradient metasurfaces, or ultrathin optical components with engineered transverse impedance gradients along the surface, are able to locally control the phase and amplitude of the scattered fields over subwavelength scales, enabling a broad range of linear components in a flat, integrable platform1-4. On the contrary, due to the weakness of their nonlinear optical responses, conventional nonlinear optical components are inherently bulky, with stringent requirements associated with phase matching and poor control over the phase and amplitude of the generated beam. Nonlinear metasurfaces have been recently proposed to enable frequency conversion in thin films without phase-matching constraints and subwavelength control of the local nonlinear phase5-8. However, the associated optical nonlinearities are far too small to produce significant nonlinear conversion efficiency and compete with conventional nonlinear components for pump intensities below the materials damage threshold. Here, we report multi-quantum-well based gradient nonlinear metasurfaces with second-order nonlinear susceptibility over 106 pm/V for second harmonic generation at a fundamental pump wavelength of 10 μm, 5-6 orders of magnitude larger than traditional crystals. Further, we demonstrate the efficacy of this approach to designing metasurfaces optimized for frequency conversion over a large range of wavelengths, by reporting multi-quantum-well and metasurface structures optimized for a pump wavelength of 6.7 μm. Finally, we demonstrate how the phase of this nonlinearly generated light can be locally controlled well below the diffraction limit using the Pancharatnam-Berry phase approach5,7,9, opening a new paradigm for ultrathin, flat nonlinear optical components.
Studies of Second Order Optical Nonlinearities of 4-Aminobenzophenone (ABP) Single Crystal Films
NASA Astrophysics Data System (ADS)
Bhowmik, Achintya; Thakur, Mrinal
1998-03-01
Specific organic materials exhibit very high second order optical susceptibilities. Growth of single crystal films of these materials and characterization of nonlinear optical properties are necessary for implementation of device applications. We have grown large-area films ( 1 cm^2 area, 4 μm thick) of ABP by a modification of the shear method. Single crystal nature of the films was confirmed by polarized optical microscopy. X-ray diffraction analysis showed a [100] surface orientation. The absorption spectra revealed transparency from 390 nm to 1940 nm. Significant elements of the second order optical susceptibility tensor were measured by detailed SHG experiments using a Nd:YAG laser (1064 nm, 100 ps, 82 MHz). Second-harmonic power was measured using lock-in detection with carefully selected polarization conditions while the film was rotated about the propagation direction. Using LiNbØas the reference, d-coefficients of ABP were found to be d_23=7.2 pm/V and d_22=0.7 pm/V. Type-I and type-II phase-matching directions were identified on the film by analyzing the optical indicatrix surfaces at fundamental and second-harmonic frequencies.
Optical nonlinearities of excitonic states in atomically thin 2D transition metal dichalcogenides
DOE Office of Scientific and Technical Information (OSTI.GOV)
Soh, Daniel Beom Soo
We calculated the optical nonlinearities of the atomically thin monolayer transition metal dichalcogenide material (particularly MoS 2), particularly for those linear and nonlinear transition processes that utilize the bound exciton states. We adopted the bound and the unbound exciton states as the basis for the Hilbert space, and derived all the dynamical density matrices that provides the induced current density, from which the nonlinear susceptibilities can be drawn order-by-order via perturbative calculations. We provide the nonlinear susceptibilities for the linear, the second-harmonic, the third-harmonic, and the kerr-type two-photon processes.
NASA Astrophysics Data System (ADS)
Samoc, A.; Holland, A.; Tsuchimori, M.; Watanabe, O.; Samoc, M.; Luther-Davies, B.; Kolev, V. Z.
2005-09-01
We investigated linear optical and second-order nonlinear optical (NLO) properties of films of urethane-urea copolymer (UU2) functionalised with a high concentration of an azobenzene chromophore. The polymer films on ITO-coated substrate were corona poled to induce a noncentrosymmetric organization of chromophore dipoles and data on the second harmonic generated with the laser beam (the fundamental wavelength 1053 nm, 6 ps/pulse, 20 Hz repetition rate) was acquired as a function of time and temperature. Second harmonic generation (SHG) was used to monitor in situ the polar alignment and relaxation of orientation of the side-chain Disperse Red-like chromophore molecules in the films poled at room temperature and high above the glass transition temperature (Tg 140-150oC). The deff coefficient was determined from the Maker-fringe method and corrected for absorption. A strong second harmonic effect with a fast relaxation was observed in "cold" (room temperature) poling experiments. A large second-order resonantly enhanced optical nonlinearity (d33 of the order of 200 pm/V) was obtained in high temperature poling. A strong and stable nonlinearity has persisted for years after the films were high-temperature poled.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Altürk, Sümeyye, E-mail: sumeyye-alturk@hotmail.com; Avci, Davut, E-mail: davci@sakarya.edu.tr; Tamer, Ömer, E-mail: omertamer@sakarya.edu.tr
2016-03-25
It is well known that the practical applications of second-order and third-order nonlinear optical (NLO) materials have been reported in modern technology, such as optical data processing, transmission and storage, etc. In this respect, the linear and nonlinear optical parameters (the molecular static polarizability (α), and the first–order static hyperpolarizability (β{sub 0}), the second–order static hyperpolarizability (γ)), UV-vis spectra and HOMO and LUMO energies of 2-(1′-(4’’’-Methoxyphenyl)-5′-(thien-2″-yl)pyrrol-2′-yl)-1,3-benzothiazole were investigated by using the HSEh1PBE/6–311G(d,p) level of density functional theory. The UV–vis spectra were simulated using TD/HSEh1PBE/6– 311G(d,p) level, and the major contributions to the electronic transitions were obtained. The molecular hardness (η)more » and electronegativity (χ) parameters were also obtained by using molecular frontier orbital energies. The NLO parameters of the title compound were calculated, and obtained data were compared with that of para-Nitroaniline (pNA) which is a typical NLO material and the corresponding experimental data. Obtained data of the chromosphere display significant molecular second-and third-nonlinearity.« less
NASA Astrophysics Data System (ADS)
Abdel Wahab, F. A.; El-Diasty, Fouad; Abdel-Baki, Manal
2009-10-01
A method correlates Fresnel-based spectrophotometric measurements and Lorentz dispersion theory is presented to study the dispersion of nonlinear optical parameters in particularly oxide glasses in a very wide range of angular frequency. The second-order refractive index and third-order optical susceptibility of Cr-doped glasses are determined from linear refractive index. Furthermore, both real and imaginary components of the complex susceptibility are carried out. The study reveals the importance of determining the dispersion of nonlinear absorption (two-photon absorption coefficient) to find the maximum resonant and nonresonant susceptibilities of investigated glasses. The present method is applied on Cr-doped lithium aluminum silicate (LAS) glasses due to their semiconductor-like behavior and also to their application in laser industry.
Electrical control of second-harmonic generation in a WSe 2 monolayer transistor
Seyler, Kyle L.; Schaibley, John R.; Gong, Pu; ...
2015-04-20
Nonlinear optical frequency conversion, in which optical fields interact with a nonlinear medium to produce new field frequencies, is ubiquitous in modern photonic systems. However, the nonlinear electric susceptibilities that give rise to such phenomena are often challenging to tune in a given material and, so far, dynamical control of optical nonlinearities remains confined to research laboratories as a spectroscopic tool. In this paper, we report a mechanism to electrically control second-order optical nonlinearities in monolayer WSe 2, an atomically thin semiconductor. We show that the intensity of second-harmonic generation at the A-exciton resonance is tunable by over an ordermore » of magnitude at low temperature and nearly a factor of four at room temperature through electrostatic doping in a field-effect transistor. Such tunability arises from the strong exciton charging effects in monolayer semiconductors, which allow for exceptional control over the oscillator strengths at the exciton and trion resonances. The exciton-enhanced second-harmonic generation is counter-circularly polarized to the excitation laser due to the combination of the two-photon and one-photon valley selection rules, which have opposite helicity in the monolayer. Finally, our study paves the way towards a new platform for chip-scale, electrically tunable nonlinear optical devices based on two-dimensional semiconductors.« less
Design considerations for multi component molecular-polymeric nonlinear optical materials
NASA Astrophysics Data System (ADS)
Singer, K. D.; Kuzyk, M. G.; Fang, T.; Holland, W. R.; Cahill, P. A.
1990-08-01
We review our work on multi component polymeric nonlinear optical materials. These materials consist of nonlinear optical molecules incorporated in a polymeric host. A cross-linked triazine polymer incorporating a dicyanovinyl terminated azo dye was found to be relatively stable at 85 deg and possess an electro-optic coefficient of 11pm/V. We have also observed the zero dispersion condition in a new anomalous dispersion dye for phase matched second harmonic generation, and expect efficient conversion to the blue. A squarylium dye, ISQ, has been found to possess a large third order nonlinearity, and may display two-level behavior.
Lee, Seung-Heon; Lu, Jian; Lee, Seung-Jun; Han, Jae-Hyun; Jeong, Chan-Uk; Lee, Seung-Chul; Li, Xian; Jazbinšek, Mojca; Yoon, Woojin; Yun, Hoseop; Kang, Bong Joo; Rotermund, Fabian; Nelson, Keith A; Kwon, O-Pil
2017-08-01
Highly efficient nonlinear optical organic crystals are very attractive for various photonic applications including terahertz (THz) wave generation. Up to now, only two classes of ionic crystals based on either pyridinium or quinolinium with extremely large macroscopic optical nonlinearity have been developed. This study reports on a new class of organic nonlinear optical crystals introducing electron-accepting benzothiazolium, which exhibit higher electron-withdrawing strength than pyridinium and quinolinium in benchmark crystals. The benzothiazolium crystals consisting of new acentric core HMB (2-(4-hydroxy-3-methoxystyryl)-3-methylbenzo[d]thiazol-3-ium) exhibit extremely large macroscopic optical nonlinearity with optimal molecular ordering for maximizing the diagonal second-order nonlinearity. HMB-based single crystals prepared by simple cleaving method satisfy all required crystal characteristics for intense THz wave generation such as large crystal size with parallel surfaces, moderate thickness and high optical quality with large optical transparency range (580-1620 nm). Optical rectification of 35 fs pulses at the technologically very important wavelength of 800 nm in 0.26 mm thick HMB crystal leads to one order of magnitude higher THz wave generation efficiency with remarkably broader bandwidth compared to standard inorganic 0.5 mm thick ZnTe crystal. Therefore, newly developed HMB crystals introducing benzothiazolium with extremely large macroscopic optical nonlinearity are very promising materials for intense broadband THz wave generation and other nonlinear optical applications. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Nonlinear Optical Spectroscopy of Two-Dimensional Materials
NASA Astrophysics Data System (ADS)
Cui, Qiannan
Nonlinear optical properties of two-dimensional (2D) materials, such as transition metal dichalcogenides (TMDs), graphene, black phosphorus, and so on, play a key role of understanding nanoscale light-matter interactions, as well as developing nanophotonics applications from solar cells to quantum computation. With ultrafast lasers, we experimentally study nonlinear optical properties of 2D materials. Employing transient absorption microscopy, we study several members of 2D materials, such as WSe2, TiS3 and ReS2. The dynamical saturable absorption process of 2D excitons is spatiotemporally resolved. Intrinsic parameters of these 2D materials, such as exciton lifetime, exciton diffusion coefficient, and exciton mobility, are effectively measured. Especially, in-plane anisotropy of transient absorption and diffusive transport is observed for 2D excitons in monolayer ReS2, demonstrating the in-plane degree of freedom. Furthermore, with quantum interference and control nanoscopy, we all-optically inject, detect and manipulate nanoscale ballistic charge currents in a ReS2 thin film. By tuning the phase difference between one photon absorption and two photon absorption transition paths, sub-picosecond timescale of ballistic currents is coherently controlled for the first time in TMDs. In addition, the spatial resolution is two-order of magnitude smaller than optical diffraction limit. The second-order optical nonlinearity of 2D monolayers is resolved by second harmonic generation (SHG) microscopy. We measure the second-order susceptibility of monolayer MoS 2. The angular dependence of SHG in monolayer MoS2 shows strong symmetry dependence on its crystal lattice structure. Hence, second harmonic generation microscopy can serve as a powerful tool to noninvasively determine the crystalline directions of 2D monolayers. The real and imaginary parts of third-order optical nonlinearity of 2D monolayers are resolved by third harmonic generation (THG) microscopy and two-photon transient absorption microscopy, respectively. With third harmonic generation microscopy, we observe strong and anisotropic THG in monolayer and multilayer ReS2. Comparing with 2D materials with hexagonal lattice, such as MoS2, the third-order susceptibility is higher by one order of magnitude in ReS2 with a distorted 1T structure. The in-plane anisotropy of THG is attributed to the lattice distortion in ReS2 after comparing with a symmetry analysis. With two-photon transient absorption microscopy, we observe a giant two-photon absorption coefficient of monolayer WS2.
Micro-/nanoscale multi-field coupling in nonlinear photonic devices
NASA Astrophysics Data System (ADS)
Yang, Qing; Wang, Yubo; Tang, Mingwei; Xu, Pengfei; Xu, Yingke; Liu, Xu
2017-08-01
The coupling of mechanics/electronics/photonics may improve the performance of nanophotonic devices not only in the linear region but also in the nonlinear region. This review letter mainly presents the recent advances on multi-field coupling in nonlinear photonic devices. The nonlinear piezoelectric effect and piezo-phototronic effects in quantum wells and fibers show that large second-order nonlinear susceptibilities can be achieved, and second harmonic generation and electro-optic modulation can be enhanced and modulated. Strain engineering can tune the lattice structures and induce second order susceptibilities in central symmetry semiconductors. By combining the absorption-based photoacoustic effect and intensity-dependent photobleaching effect, subdiffraction imaging can be achieved. This review will also discuss possible future applications of these novel effects and the perspective of their research. The review can help us develop a deeper knowledge of the substance of photon-electron-phonon interaction in a micro-/nano- system. Moreover, it can benefit the design of nonlinear optical sensors and imaging devices with a faster response rate, higher efficiency, more sensitivity and higher spatial resolution which could be applied in environmental detection, bio-sensors, medical imaging and so on.
NASA Astrophysics Data System (ADS)
Pérez-Moreno, Javier; Clays, Koen; Kuzyk, Mark G.
2010-05-01
We present a procedure for the modeling of the dispersion of the nonlinear optical response of complex molecular structures that is based strictly on the results from experimental characterization. We show how under some general conditions, the use of the Thomas-Kuhn sum-rules leads to a successful modeling of the nonlinear response of complex molecular structures.
Nonlinear Optics and Applications
NASA Technical Reports Server (NTRS)
Abdeldayem, Hossin A. (Editor); Frazier, Donald O. (Editor)
2007-01-01
Nonlinear optics is the result of laser beam interaction with materials and started with the advent of lasers in the early 1960s. The field is growing daily and plays a major role in emerging photonic technology. Nonlinear optics play a major role in many of the optical applications such as optical signal processing, optical computers, ultrafast switches, ultra-short pulsed lasers, sensors, laser amplifiers, and many others. This special review volume on Nonlinear Optics and Applications is intended for those who want to be aware of the most recent technology. This book presents a survey of the recent advances of nonlinear optical applications. Emphasis will be on novel devices and materials, switching technology, optical computing, and important experimental results. Recent developments in topics which are of historical interest to researchers, and in the same time of potential use in the fields of all-optical communication and computing technologies, are also included. Additionally, a few new related topics which might provoke discussion are presented. The book includes chapters on nonlinear optics and applications; the nonlinear Schrodinger and associated equations that model spatio-temporal propagation; the supercontinuum light source; wideband ultrashort pulse fiber laser sources; lattice fabrication as well as their linear and nonlinear light guiding properties; the second-order EO effect (Pockels), the third-order (Kerr) and thermo-optical effects in optical waveguides and their applications in optical communication; and, the effect of magnetic field and its role in nonlinear optics, among other chapters.
Probing the interatomic potential of solids with strong-field nonlinear phononics
NASA Astrophysics Data System (ADS)
von Hoegen, A.; Mankowsky, R.; Fechner, M.; Först, M.; Cavalleri, A.
2018-03-01
Nonlinear optical techniques at visible frequencies have long been applied to condensed matter spectroscopy. However, because many important excitations of solids are found at low energies, much can be gained from the extension of nonlinear optics to mid-infrared and terahertz frequencies. For example, the nonlinear excitation of lattice vibrations has enabled the dynamic control of material functions. So far it has only been possible to exploit second-order phonon nonlinearities at terahertz field strengths near one million volts per centimetre. Here we achieve an order-of-magnitude increase in field strength and explore higher-order phonon nonlinearities. We excite up to five harmonics of the A1 (transverse optical) phonon mode in the ferroelectric material lithium niobate. By using ultrashort mid-infrared laser pulses to drive the atoms far from their equilibrium positions, and measuring the large-amplitude atomic trajectories, we can sample the interatomic potential of lithium niobate, providing a benchmark for ab initio calculations for the material. Tomography of the energy surface by high-order nonlinear phononics could benefit many aspects of materials research, including the study of classical and quantum phase transitions.
Second harmonic generation and crystal growth of new chalcone derivatives
NASA Astrophysics Data System (ADS)
Patil, P. S.; Dharmaprakash, S. M.; Ramakrishna, K.; Fun, Hoong-Kun; Sai Santosh Kumar, R.; Narayana Rao, D.
2007-05-01
We report on the synthesis, crystal structure and optical characterization of chalcone derivatives developed for second-order nonlinear optics. The investigation of a series of five chalcone derivatives with the second harmonic generation powder test according to Kurtz and Perry revealed that these chalcones show efficient second-order nonlinear activity. Among them, high-quality single crystals of 3-Br-4'-methoxychalcone (3BMC) were grown by solvent evaporation solution growth technique. Grown crystals were characterized by X-ray powder diffraction (XRD), laser damage threshold, UV-vis-NIR and refractive index measurement studies. Infrared spectroscopy, thermogravimetric analysis and differential thermal analysis measurements were performed to study the molecular vibration and thermal behavior of 3BMC crystal. Thermal analysis does not show any structural phase transition.
NASA Astrophysics Data System (ADS)
Patil, Parutagouda Shankaragouda; Shkir, Mohd; Maidur, Shivaraj R.; AlFaify, S.; Arora, M.; Rao, S. Venugopal; Abbas, Haider; Ganesh, V.
2017-10-01
In the current work a new third-order nonlinear optical organic single crystal of (2E)-3-(4-Methylphenyl)-1-(3-nitrophenyl) prop-2-en-1-one (ML3NC) has been grown with well-defined morphology using the slow evaporation solution growth technique. X-ray diffraction technique was used to confirm the crystal system. The presence of functional groups in the molecular structure was identified by robust FT-IR and FT-Raman spectra by experimental and theoretical analysis. The ultraviolet-visible-near infrared and photoluminescence studies shows that the grown crystals possess excellent transparency window and green emission band (∼560 nm) confirms their use in green OLEDs. The third-order nonlinear and optical limiting studies have been performed using femtosecond (fs) Z-scan technique. The third-order nonlinear optical susceptibility (χ(3)), second-order hyperpolarizability (γ), nonlinear refractive index (n2) and limiting threshold values are found to be 4.03 × 10-12 esu, 14.2 × 10-32 esu, -4.33 × 10-14 cm2/W and 2.41 mJ/cm2, respectively. Furthermore, the quantum chemical studies were carried out to achieve the ground state molecular geometry and correlate with experimental results. The experimental value of absorption wavelength (λabs = 328 nm) is found to be in excellent accord with the theoretical value (λabs = 328 nm) at TD-DFT/B3LYP/6-31G* level of theory. To understand the static and dynamic NLO behavior, the polarizability (α) and second hyperpolarizability (γ) values were determined using TD-HF method. The computed second hyperpolarizability γ(-3ω; ω,ω,ω) at 800 nm wavelength was found to be 0.499 × 10-32 esu which is in good agreement with experimental value at the same wavelength. These results confirms the applied nature of title molecule in optoelectronic and nonlinear optical devices.
NASA Astrophysics Data System (ADS)
Sakthy Priya, S.; Alexandar, A.; Surendran, P.; Lakshmanan, A.; Rameshkumar, P.; Sagayaraj, P.
2017-04-01
An efficient organic nonlinear optical single crystal of L-arginine maleate dihydrate (LAMD) has been grown by slow evaporation solution technique (SEST) and slow cooling technique (SCT). The crystalline perfection of the crystal was examined using high-resolution X-ray diffractometry (HRXRD) analysis. Photoluminescence study confirmed the optical properties and defects level in the crystal lattice. Electromechanical behaviour was observed using piezoelectric co-efficient (d33) analysis. The photoconductivity analysis confirmed the negative photoconducting nature of the material. The dielectric constant and loss were measured as a function of frequency with varying temperature and vice-versa. The laser damage threshold (LDT) measurement was carried out using Nd:YAG Laser with a wavelength of 1064 nm (Focal length is 35 cm) and the obtained results showed that LDT value of the crystal is high compared to KDP crystal. The high laser damage threshold of the grown crystal makes it a potential candidate for second and higher order nonlinear optical device application. The third order nonlinear optical parameters of LAMD crystal is determined by open-aperture and closed-aperture studies using Z-scan technique. The third order linear and nonlinear optical parameters such as the nonlinear refractive index (n2), two photon absorption coefficient (β), Real part (Reχ3) and imaginary part (Imχ3) of third-order nonlinear optical susceptibility are calculated.
NASA Astrophysics Data System (ADS)
Lu, Shih-I.
2018-01-01
We use the discrete solvent reaction field model to evaluate the linear and second-order nonlinear optical susceptibilities of 3-methyl-4-nitropyridine-1-oxyde crystal. In this approach, crystal environment is created by supercell architecture. A self-consistent procedure is used to obtain charges and polarizabilities for environmental atoms. Impact of atomic polarizabilities on the properties of interest is highlighted. This approach is shown to give the second-order nonlinear optical susceptibilities within error bar of experiment as well as the linear optical susceptibilities in the same order as experiment. Similar quality of calculations are also applied to both 4-N,N-dimethylamino-3-acetamidonitrobenzene and 2-methyl-4-nitroaniline crystals.
Optical rogue waves generation in a nonlinear metamaterial
NASA Astrophysics Data System (ADS)
Onana Essama, Bedel Giscard; Atangana, Jacques; Biya-Motto, Frederick; Mokhtari, Bouchra; Cherkaoui Eddeqaqi, Noureddine; Kofane, Timoleon Crepin
2014-11-01
We investigate the behavior of electromagnetic wave which propagates in a metamaterial for negative index regime. The optical pulse propagation is described by the nonlinear Schrödinger equation with cubic-quintic nonlinearities, second- and third-order dispersion effects. The behavior obtained for negative index regime is compared to that observed for positive index regime. The characterization of electromagnetic wave uses some pulse parameters obtained analytically and called collective coordinates such as amplitude, temporal position, width, chirp, frequency shift and phase. Six frequency ranges have been pointed out where a numerical evolution of collective coordinates and their stability are studied under a typical example to verify our analysis. It appears that a robust soliton due to a perfect compensation process between second-order dispersion and cubic-nonlinearity is presented at each frequency range for both negative and positive index regimes. Thereafter, the stability of the soliton pulse and physical conditions leading to optical rogue waves generation are discussed at each frequency range for both regimes, when third-order dispersion and quintic-nonlinearity come into play. We have demonstrated that collective coordinates give much useful information on external and internal behavior of rogue events. Firstly, we determine at what distance begins the internal excitation leading to rogue waves. Secondly, what kind of internal modification and how it modifies the system in order to build-up rogue events. These results lead to a best comprehension of the mechanism of rogue waves generation. So, it clearly appears that the rogue wave behavior strongly depends on nonlinearity strength of distortion, frequency and regime considered.
NASA Astrophysics Data System (ADS)
Saravanan, M.; Abraham Rajasekar, S.
2016-04-01
The crystals (benzaldehyde 4-nitro phenyl hydrazone (BPH)) appropriate for NLO appliance were grown by the slow cooling method. The solubility and metastable zone width measurement of BPH specimen was studied. The material crystallizes in the monoclinic crystal system with noncentrosymmetric space group of Cc. The optical precision in the whole visible region was found to be excellent for non-linear optical claim. Excellence of the grown crystal is ascertained by the HRXRD and etching studies. Laser Damage Threshold and Photoluminescence studies designate that the grown crystal contains less imperfection. The mechanical behaviour of BPH sample at different temperatures was investigated to determine the hardness stability of the grown specimen. The piezoelectric temperament and the relative Second Harmonic Generation (for diverse particle sizes) of the material were also studied. The dielectric studies were executed at varied temperatures and frequencies to investigate the electrical properties. Photoconductivity measurement enumerates consummate of inducing dipoles due to strong incident radiation and also divulge the nonlinear behaviour of the material. The third order nonlinear optical properties of BPH crystals were deliberate by Z-scan method.
Incorporation of New Benzofulvene Derivatives Into Polymers to Give New NLO Materials
NASA Technical Reports Server (NTRS)
Bowens, Andrea D.; Bu, Xiu; Mintz, Eric A.; Zhang, Yue
1996-01-01
The need for fast electro-optic switches and modulators for optical communication, and laser frequency conversion has created a demand for new second-order non-linear optical materials. One approach to produce such materials is to align chromophores with large molecular hyperpolarizabilities in polymers. Recently fulvenes and benzofulvenes which contain electron donating groups have been shown to exhibit large second-order non-linear optical properties. The resonance structures shown below suggest that intramolecular charge transfer (ICT) should be favorable in omega - (hydroxyphenyl)benzofulvenes and even more favorable in omega-omega - (phenoxy)benzofulvenes because of the enhanced donor properties of the O group. This ICT should lead to enormously enhanced second-order hyperpolarizability. We have prepared all three new omega - (hydroxyphenyl)benzofulvenes by the condensation of indene with the appropriate hydroxyaryl aldehyde in MeOH or MeOH/H2O under base catalysis. In a similar fashion we have prepared substituted benzofulvenes with multipal donor groups. Preliminary studies show that some of our benzofulvene derivatives exhibit second order harmonic generation (SHG). Measurements were carried out by preparing host-guest polymers. The results of our work on benzofulvene derivatives in host-guest polymers when covalently bonded in the polymer will be described.
Evaluation of polymer based third order nonlinear integrated optics devices
NASA Astrophysics Data System (ADS)
Driessen, A.; Hoekstra, H. J. W. M.; Blom, F. C.; Horst, F.; Krijnen, G. J. M.; van Schoot, J. B. P.; Lambeck, P. V.; Popma, Th. J. A.; Diemeer, M. B.
1998-01-01
Nonlinear polymers are promising materials for high speed active integrated optics devices. In this paper we evaluate the perspectives polymer based nonlinear optical devices can offer. Special attention is directed to the materials aspects. In our experimental work we applied mainly Akzo Nobel DANS side-chain polymer that exhibits large second and third order coefficients. This material has been characterized by third harmonic generation, z-scan and pump-probe measurements. In addition, various waveguiding structures have been used to measure the nonlinear absorption (two photon absorption) on a ps time-scale. Finally an integrated optics Mach Zehnder interferometer has been realized and evaluated. It is shown that the DANS side-chain polymer has many of the desired properties: the material is easily processable in high-quality optical waveguiding structures, has low linear absorption and its nonlinearity has a pure electronic origin. More materials research has to be done to arrive at materials with higher nonlinear coefficients to allow switching at moderate light intensity ( < 1 W peak power) and also with lower nonlinear absorption coefficients.
Second-order nonlinear optical microscopy of spider silk
NASA Astrophysics Data System (ADS)
Zhao, Yue; Hien, Khuat Thi Thu; Mizutani, Goro; Rutt, Harvey N.
2017-06-01
Asymmetric β-sheet protein structures in spider silk should induce nonlinear optical interaction such as second harmonic generation (SHG) which is experimentally observed for a radial line and dragline spider silk using an imaging femtosecond laser SHG microscope. By comparing different spider silks, we found that the SHG signal correlates with the existence of the protein β-sheets. Measurements of the polarization dependence of SHG from the dragline indicated that the β-sheet has a nonlinear response depending on the direction of the incident electric field. We propose a model of what orientation the β-sheet takes in spider silk.
Optical response of semiconductors in a dc-electric field
NASA Astrophysics Data System (ADS)
Prussel, Lucie; Veniard, Valerie
A deep understanding of the optical properties of solids is crucial for the improvement of nonlinear materials and devices. It offers the opportunity to search for new materials with specific properties. One way to tune some of those properties is to apply an electrostatic field. This gives rise to electro-optic effects. The most known among those is the Pockel or linear electro-optic effect (LEO), which is a second order response property described by the susceptibility χ (2) (- ω ω , 0) . An important nonlinear process is the second harmonic generation (SHG), where two photons are absorbed by the material. While this process is sensitive to the symmetry of the material, adding a static field would enable a nonlinear response from every material, including centrosymmetric ones. This happens through a third order process, named EFISH (Electric Field Induced Second Harmonic) for which the susceptibility of interest is χ (3) (- 2 ω ω , ω , 0) . We have developed a theoretical approach and a numerical tool to study these two nonlinear properties (LEO and EFISH) in the context of Time-dependent Density Functional Theory (TDDFT), and we have applied it to the case of bulk SiC and GaAs as well as layered systems such as Ge/SiGe.
Resonantly enhanced second-harmonic generation using III–V semiconductor all-dielectric metasurfaces
Liu, Sheng; Sinclair, Michael B.; Saravi, Sina; ...
2016-08-08
Nonlinear optical phenomena in nanostructured materials have been challenging our perceptions of nonlinear optical processes that have been explored since the invention of lasers. For example, the ability to control optical field confinement, enhancement, and scattering almost independently allows nonlinear frequency conversion efficiencies to be enhanced by many orders of magnitude compared to bulk materials. Also, the subwavelength length scale renders phase matching issues irrelevant. Compared with plasmonic nanostructures, dielectric resonator metamaterials show great promise for enhanced nonlinear optical processes due to their larger mode volumes. Here, we present, for the first time, resonantly enhanced second-harmonic generation (SHG) using galliummore » arsenide (GaAs) based dielectric metasurfaces. Using arrays of cylindrical resonators we observe SHG enhancement factors as large as 10 4 relative to unpatterned GaAs. At the magnetic dipole resonance, we measure an absolute nonlinear conversion efficiency of ~2 × 10 –5 with ~3.4 GW/cm 2 pump intensity. In conclusion, the polarization properties of the SHG reveal that both bulk and surface nonlinearities play important roles in the observed nonlinear process.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cole, Jacqueline M.; Lin, Tze-Chia; Edwards, Alison J.
2015-03-04
DAST (4-dimethylamino-N-methyl-4-stilbazolium tosylate) is the most commercially successful organic nonlinear optical (NLO) material for frequency-doubling, integrated optics, and THz wave applications. Its success is predicated on its high optical nonlinearity with concurrent sufficient thermal stability. Many chemical derivatives of DAST have therefore been developed to optimize their properties; yet, to date, none have surpassed the overall superiority of DAST for NLO photonic applications. This is perhaps because DAST is an ionic salt wherein its NLO-active cation is influenced by multiple types of subtle intermolecular forces that are hard to quantify, thus, making difficult the molecular engineering of better functioning DASTmore » derivatives. Here, we establish a model parameter, ηinter, that isolates the influence of intermolecular interactions on second-order optical nonlinearity in DAST and its derivatives, using second-harmonic generation (SHG) as a qualifier; by systematically mapping intercorrelations of all possible pairs of intermolecular interactions to ηinter, we uncover a relationship between concerted intermolecular interactions and SHG output. This correlation reveals that a sixfold gain in the intrinsic second-order NLO performance of DAST is possible, by eliminating the identified interactions. This prediction offers the first opportunity to systematically design next-generation DAST-based photonic device nanotechnology to realize such a prospect.« less
NASA Astrophysics Data System (ADS)
Romaniuk, Ryszard S.
2008-01-01
This is the second part of a paper on nonlinear properties of optical glasses and metaglasses. A subject of the paper is a review of the basic properties of several families of high optical quality glasses for photonics. The emphasis is put on nonlinear properties of these glasses, including nonlinearities of higher order. Nonlinear effects were debated and systematized. Interactions between optical wave of high power density with glass were described. All parameters of the glass increasing the optical nonlinearities were categorized. Optical nonlinearities in glasses were grouped into the following categories: time and frequency domain, amplitude and phase, resonant and non-resonant, elastic and inelastic, lossy and lossless, reversible and irreversible, instant and slow, adiabatic and non-adiabatic, with virtual versus real excitation of glass, destroying and non-destroying, etc. Nonlinear effects in glasses are based on the following effects: optical, thermal, mechanical and/or acoustic, electrical, magnetic, density and refraction modulation, chemical, etc.
1990-03-23
Paciorek Dr. William B. Moniz Ultrasystems Defense and Space, Inc. Code 6120 16775 Von Karman Avenue Naval Research Laboratory Irvine, CA 92714 Washington...413h004 Dr. Les H. Sperling Dr. Richard S. Stein Materials Research Center #32 Polymer Research Institute Lehigh University University of Massachusetts
Synthetic magnetism for photon fluids
NASA Astrophysics Data System (ADS)
Westerberg, N.; Maitland, C.; Faccio, D.; Wilson, K.; Öhberg, P.; Wright, E. M.
2016-08-01
We develop a theory of artificial gauge fields in photon fluids for the cases of both second-order and third-order optical nonlinearities. This applies to weak excitations in the presence of pump fields carrying orbital angular momentum and is thus a type of Bogoliubov theory. The resulting artificial gauge fields experienced by the weak excitations are an interesting generalization of previous cases and reflect the PT-symmetry properties of the underlying non-Hermitian Hamiltonian. We illustrate the observable consequences of the resulting synthetic magnetic fields for examples involving both second-order and third-order nonlinearities.
Nonlinear anomalous photocurrents in Weyl semimetals
NASA Astrophysics Data System (ADS)
Rostami, Habib; Polini, Marco
2018-05-01
We study the second-order nonlinear optical response of a Weyl semimetal (WSM), i.e., a three-dimensional metal with linear band touchings acting as pointlike sources of Berry curvature in momentum space, termed "Weyl-Berry monopoles." We first show that the anomalous second-order photocurrent of WSMs can be elegantly parametrized in terms of Weyl-Berry dipole and quadrupole moments. We then calculate the corresponding charge and node conductivities of WSMs with either broken time-reversal invariance or inversion symmetry. In particular, we predict a dissipationless second-order anomalous node conductivity for WSMs belonging to the TaAs family.
Multipolar second-harmonic generation by Mie-resonant dielectric nanoparticles
NASA Astrophysics Data System (ADS)
Smirnova, Daria; Smirnov, Alexander I.; Kivshar, Yuri S.
2018-01-01
By combining analytical and numerical approaches, we study resonantly enhanced second-harmonic generation by individual high-index dielectric nanoparticles made of centrosymmetric materials. Considering both bulk and surface nonlinearities, we describe second-harmonic nonlinear scattering from a silicon nanoparticle optically excited in the vicinity of the magnetic and electric dipolar resonances. We discuss the contributions of different nonlinear sources and the effect of the low-order optical Mie modes on the characteristics of the generated far field. We demonstrate that the multipolar expansion of the radiated field is dominated by dipolar and quadrupolar modes (two axially symmetric electric quadrupoles, an electric dipole, and a magnetic quadrupole) and the interference of these modes can ensure directivity of the nonlinear scattering. The developed multipolar analysis can be instructive for interpreting the far-field measurements of the nonlinear scattering and it provides prospective insights into a design of complementary metal-oxide-semiconductor compatible nonlinear nanoantennas fully integrated with silicon-based photonic circuits, as well as methods of nonlinear diagnostics.
All-Optical Control of Linear and Nonlinear Energy Transfer via the Zeno Effect
NASA Astrophysics Data System (ADS)
Guo, Xiang; Zou, Chang-Ling; Jiang, Liang; Tang, Hong X.
2018-05-01
Microresonator-based nonlinear processes are fundamental to applications including microcomb generation, parametric frequency conversion, and harmonics generation. While nonlinear processes involving either second- (χ(2 )) or third- (χ(3 )) order nonlinearity have been extensively studied, the interaction between these two basic nonlinear processes has seldom been reported. In this paper we demonstrate a coherent interplay between second- and third- order nonlinear processes. The parametric (χ(2 ) ) coupling to a lossy ancillary mode shortens the lifetime of the target photonic mode and suppresses its density of states, preventing the photon emissions into the target photonic mode via the Zeno effect. Such an effect is then used to control the stimulated four-wave mixing process and realize a suppression ratio of 34.5.
Influence of optical activity on rogue waves propagating in chiral optical fibers.
Temgoua, D D Estelle; Kofane, T C
2016-06-01
We derive the nonlinear Schrödinger (NLS) equation in chiral optical fiber with right- and left-hand nonlinear polarization. We use the similarity transformation to reduce the generalized chiral NLS equation to the higher-order integrable Hirota equation. We present the first- and second-order rational solutions of the chiral NLS equation with variable and constant coefficients, based on the modified Darboux transformation method. For some specific set of parameters, the features of chiral optical rogue waves are analyzed from analytical results, showing the influence of optical activity on waves. We also generate the exact solutions of the two-component coupled nonlinear Schrödinger equations, which describe optical activity effects on the propagation of rogue waves, and their properties in linear and nonlinear coupling cases are investigated. The condition of modulation instability of the background reveals the existence of vector rogue waves and the number of stable and unstable branches. Controllability of chiral optical rogue waves is examined by numerical simulations and may bring potential applications in optical fibers and in many other physical systems.
NASA Astrophysics Data System (ADS)
Pérez-Moreno, Javier; Clays, Koen; Kuzyk, Mark G.
2010-08-01
We introduce a self-consistent theory for the description of the optical linear and nonlinear response of molecules that is based strictly on the results of the experimental characterization. We show how the Thomas-Kuhn sum-rules can be used to eliminate the dependence of the nonlinear response on parameters that are not directly measurable. Our approach leads to the successful modeling of the dispersion of the nonlinear response of complex molecular structures with different geometries (dipolar and octupolar), and can be used as a guide towards the modeling in terms of fundamental physical parameters.
View from... JSAP Spring Meeting: A marriage of materials and optics
NASA Astrophysics Data System (ADS)
Horiuchi, Noriaki
2017-04-01
A laser-annealing technique for increasing the dopant concentration in semiconductors, the creation of a glass with second-order optical nonlinearity and the realization of optical topological insulators were highlights at the Japan Society of Applied Physics Spring Meeting.
NASA Astrophysics Data System (ADS)
Erande, Yogesh; Kothavale, Shantaram; Sreenath, Mavila C.; Chitrambalam, Subramaniyan; Joe, Isaac H.; Sekar, Nagaiyan
2018-02-01
Triphenylamine derived bis- and tris-branched donor-pi-acceptor coumarins with acetyl and benzothiazolyl acceptors are studied for their linear and nonlinear optical properties that originate from their photophysical and molecular structure. Plots of solvent polarities versus the Stokes shift, frontier molecular orbital analysis and Generalised Mulliken Hush analysis have established their strong charge transfer character supported by the strong emission solvatochromism of these chromophores. On the basis of excited state intramolecular charge transfer, the first-, second- and third-order polarizability of these dyes are determined by a solvatochromic method and supported by density functional theory calculations using CAM-B3LYP/6-31g(d). Compared to the acetyl group, the benzothiazolyl group is a strong acceptor, and its corresponding derivatives show enhanced absorption, emission maxima and non-linear optical response. Bond length alternation and bond order alternation analysis reveals that these chromophores approach the cyanine-like framework which is responsible for maximum perturbation to produce high nonlinear optical response. Third order nonlinear susceptibility for dyes 1 and 2 is determined by Z-scan measurement. All of these methods are used to determine the nonlinear optical properties, and thermogravimetric analysis suggests that these chromophores are thermally robust and efficient nonlinear optical materials.
NASA Astrophysics Data System (ADS)
Ogata, Yoichi; Mizutani, Goro
2013-08-01
We have measured optical second harmonic generation (SHG) intensity from three types of Pt nanowires with 7 nm widths of elliptical and boomerang cross-sectional shapes and with 2 nm width elliptical cross-sectional shapes on the MgO faceted templates. From the SHG intensities, we calculated the absolute value of the nonlinear susceptibility χ(2) integrated in the direction of the wire-layer thickness. The tentatively obtained bulk χ(2)B of the wire layer was very large, approaching the value of the well-known nonlinear optical material BaTiO3.
Prediction of nonlinear optical properties of organic materials. General theoretical considerations
NASA Technical Reports Server (NTRS)
Cardelino, B.; Moore, C.; Zutaut, S.
1993-01-01
The prediction of nonlinear optical properties of organic materials is geared to assist materials scientists in the selection of good candidate molecules. A brief summary of the quantum mechanical methods used for estimating hyperpolarizabilities will be presented. The advantages and limitations of each technique will be discussed. Particular attention will be given to the finite-field method for calculating first and second order hyperpolarizabilities, since this method is better suited for large molecules. Corrections for dynamic fields and bulk effects will be discussed in detail, focusing on solvent effects, conformational isomerization, core effects, dispersion, and hydrogen bonding. Several results will be compared with data obtained from third-harmonic-generation (THG) and dc-induced second harmonic generation (EFISH) measurements. These comparisons will demonstrate the qualitative ability of the method to predict the relative strengths of hyperpolarizabilities of a class of compounds. The future application of molecular mechanics, as well as other techniques, in the study of bulk properties and solid state defects will be addressed. The relationship between large values for nonlinear optical properties and large conjugation lengths is well known, and is particularly important for third-order processes. For this reason, the materials with the largest observed nonresonant third-order properties are conjugated polymers. An example of this type of polymer is polydiacetylene. One of the problems in dealing with polydiacetylene is that substituents which may enhance its nonlinear properties may ultimately prevent it from polymerizing. A model which attempts to predict the likelihood of solid-state polymerization is considered, along with the implications of the assumptions that are used. Calculations of the third-order optical properties and their relationship to first-order properties and energy gaps will be discussed. The relationship between monomeric and polymeric third-order optical properties will also be considered.
Cascaded second-order processes for the efficient generation of narrowband terahertz radiation
NASA Astrophysics Data System (ADS)
Cirmi, Giovanni; Hemmer, Michael; Ravi, Koustuban; Reichert, Fabian; Zapata, Luis E.; Calendron, Anne-Laure; Çankaya, Hüseyin; Ahr, Frederike; Mücke, Oliver D.; Matlis, Nicholas H.; Kärtner, Franz X.
2017-02-01
The generation of high-energy narrowband terahertz radiation has gained heightened importance in recent years due to its potentially transformative impact on spectroscopy, high-resolution radar and more recently electron acceleration. Among various applications, such terahertz radiation is particularly important for table-top free electron lasers, which are at the moment a subject of extensive research. Second-order nonlinear optical methods are among the most promising techniques to achieve the required coherent radiation with energy > 10 mJ, peak field > 100 MV m-1, and frequency between 0.1 and 1 THz. However, they are conventionally thought to suffer from low efficiencies < ˜10-3, due to the high ratio between optical and terahertz photon energies, in what is known as the Manley-Rowe limitation. In this paper, we review the current second-order nonlinear optical methods for the generation of narrowband terahertz radiation. We explain how to employ spectral cascading to increase the efficiency beyond the Manley-Rowe limit and describe the first experimental results in the direction of a terahertz-cascaded optical parametric amplifier, a novel technique which promises to fully exploit spectral cascading to generate narrowband terahertz radiation with few percent optical-to-terahertz conversion efficiency.
Phased-array sources based on nonlinear metamaterial nanocavities
Wolf, Omri; Campione, Salvatore; Benz, Alexander; Ravikumar, Arvind P.; Liu, Sheng; Luk, Ting S.; Kadlec, Emil A.; Shaner, Eric A.; Klem, John F.; Sinclair, Michael B.; Brener, Igal
2015-01-01
Coherent superposition of light from subwavelength sources is an attractive prospect for the manipulation of the direction, shape and polarization of optical beams. This phenomenon constitutes the basis of phased arrays, commonly used at microwave and radio frequencies. Here we propose a new concept for phased-array sources at infrared frequencies based on metamaterial nanocavities coupled to a highly nonlinear semiconductor heterostructure. Optical pumping of the nanocavity induces a localized, phase-locked, nonlinear resonant polarization that acts as a source feed for a higher-order resonance of the nanocavity. Varying the nanocavity design enables the production of beams with arbitrary shape and polarization. As an example, we demonstrate two second harmonic phased-array sources that perform two optical functions at the second harmonic wavelength (∼5 μm): a beam splitter and a polarizing beam splitter. Proper design of the nanocavity and nonlinear heterostructure will enable such phased arrays to span most of the infrared spectrum. PMID:26126879
Polar self-assembled thin films for non-linear optical materials
Yang, XiaoGuang; Swanson, Basil I.; Li, DeQuan
2000-01-01
The design and synthesis of a family of calix[4]arene-based nonlinear optical (NLO) chromophores are discussed. The calixarene chromophores are macrocyclic compounds consisting of four simple D-.pi.-A units bridged by methylene groups. These molecules were synthesized such that four D-.pi.-A units of the calix[4]arene were aligned along the same direction with the calixarene in a cone conformation. These nonlinear optical super-chromophores were subsequently fabricated into covalently bound self-assembled monolayers on the surfaces of fused silica and silicon. Spectroscopic second harmonic generation (SHG) measurements were carried out to determine the absolute value of the dominant element of the second-order nonlinear susceptibility, d.sub.33, and the average molecular alignment, .PSI.. A value of d.sub.33 =60 pm/V at a fundamental wavelength of 890 nm, and .PSI..about.36.degree. was found with respect to the surface normal.
NASA Astrophysics Data System (ADS)
Anbu, V.; Vijayalakshmi, K. A.; Karthick, T.; Tandon, Poonam; Narayana, B.
2017-09-01
In the proposed work, the non-linear optical response, spectroscopic signature and binding activity of 4-Benzyloxybenzaldehyde (4BB) has been investigated. In order to find the vibrational contribution of functional groups in mixed or coupled modes in the experimental FT-IR and FT-Raman spectra, the potential energy distribution (PED) based on the internal coordinates have been computed. Since the molecule exists in the form of dimer in solid state, the electronic structure of dimer has been proposed in order to explain the intermolecular hydrogen bonding interactions via aldehyde group. The experimental and simulated powder X-ray diffraction data was compared and the miller indices which define the crystallographic planes in the crystal lattices were identified. Optical transmittance and absorbance measurement were taken at ambient temperature in order to investigate the transparency and optical band gap. For screening the material for nonlinear applications, theoretical second order hyperpolarizability studies were performed and compared with the standard reference urea. To validate the theoretical results, powder second harmonic generation (SHG) studies were carried out using Kurtz and Perry technique. The results show that the molecule studied in this work exhibit considerable non-linear optical (NLO) response. In addition to the characterization and NLO studies, we also claimed based on the experimental and theoretical data that the molecule shows antioxidant property and inhibition capability. Since the title molecule shows significant binding with Tau protein that helps to stabilize microtubules in the nervous system, the molecular docking investigation was performed to find the inhibition constant, binding affinity and active binding residues.
DOE Office of Scientific and Technical Information (OSTI.GOV)
D'silva, E.D., E-mail: deepak.dsilva@gmail.com; Podagatlapalli, G. Krishna; Venugopal Rao, S., E-mail: soma_venu@yahoo.com
Graphical abstract: Photograph and schematic representation of Z-scan experimental setup used to investigate third order nonlinear properties of the chalcone materials. Highlights: ► Br and NO{sub 2} substituted chalcone derivatives were exposed to picosecond laser pulses. ► Third-order nonlinear optical (NLO) properties were investigated. ► Compounds show promising third-order and optical limiting properties. ► These materials found suitable for electrical and optical applications. -- Abstract: In this paper we present results from the experimental study of third-order nonlinear optical (NLO) properties of three molecules of Br and NO{sub 2} substituted chalcone derivatives namely (2E)-1-(4-bromophenyl)-3-[4(methylsulfanyl)phenyl]prop-2-en-1-one (4Br4MSP), (2E)-1-(3-bromophenyl)-3-[4-(methylsulfanyl) phenyl]prop-2-en-1-one (3Br4MSP) and (2E)-3[4(methylsulfanyl)more » phenyl]-1-(4-nitrophenyl)prop-2-en-1-one (4N4MSP). The NLO properties have been investigated by Z-scan technique using 2 ps laser pulses at 800 nm. The nonlinear refractive indices, nonlinear absorption coefficient, and the magnitude of third-order susceptibility have been determined. The values obtained are of the order of 10{sup −7} cm{sup 2}/GW, 10{sup −3} cm/GW and 10{sup −14} esu respectively. The molecular second hyperpolarizability for the chalcone derivatives is of the order of 10{sup −32} esu. The coupling factor, excited state cross section, ground state cross section etc. were determined. The optical limiting (OL) property was studied. The results suggest that the nonlinear properties investigated for present chalcones are comparable with some of the reported chalcone derivatives and can be desirable for NLO applications.« less
NASA Astrophysics Data System (ADS)
Ravindraswami, K.; Janardhana, K.; Gowda, Jayaprakash; Moolya, B. Narayana
2018-04-01
Non linear optical 1-phenyl-3-(4-dimethylamino phenyl) prop-2-en-1-one (PDAC) was synthesized using Claisen - Schmidt condensation method and studied for optical nonlinearity with an emphasis on structure-property relationship. The structural confirmation studies were carried out using 1H-NMR, FT-IR and single crystal XRD techniques. The nonlinear absorption and nonlinear refraction parameters in z-scan with nano second laser pulses were obtained by measuring the profile of propagated beam through the samples. The real and imaginary parts of third-order bulk susceptibility χ(3) were evaluated. Thermo gravimetric analysis is carried out to investigate the thermal stability.
From SHG to mid-infrared SPDC generation in strained silicon waveguides
NASA Astrophysics Data System (ADS)
Castellan, Claudio; Trenti, Alessandro; Mancinelli, Mattia; Marchesini, Alessandro; Ghulinyan, Mher; Pucker, Georg; Pavesi, Lorenzo
2017-08-01
The centrosymmetric crystalline structure of Silicon inhibits second order nonlinear optical processes in this material. We report here that, by breaking the silicon symmetry with a stressing silicon nitride over-layer, Second Harmonic Generation (SHG) is obtained in suitably designed waveguides where multi-modal phase-matching is achieved. The modeling of the generated signal provides an effective strain-induced second order nonlinear coefficient of χ(2) = (0.30 +/- 0.02) pm/V. Our work opens also interesting perspectives on the reverse process, the Spontaneous Parametric Down Conversion (SPDC), through which it is possible to generate mid-infrared entangled photon pairs.
ERIC Educational Resources Information Center
Hamilton, M. W.
2007-01-01
A nonlinear aspect of the acousto-optic interaction that is analogous to multi-photon absorption is discussed. An experiment is described in which the second-order acousto-optically scattered intensity is measured and found to scale with the square of the acoustic intensity. This experiment using a commercially available acousto-optic modulator is…
NASA Astrophysics Data System (ADS)
Deniset-Besseau, A.; De Sa Peixoto, P.; Duboisset, J.; Loison, C.; Hache, F.; Benichou, E.; Brevet, P.-F.; Mosser, G.; Schanne-Klein, M.-C.
2010-02-01
Collagen is characterized by triple helical domains and plays a central role in the formation of fibrillar and microfibrillar networks, basement membranes, as well as other structures of the connective tissue. Remarkably, fibrillar collagen exhibits efficient Second Harmonic Generation (SHG) and SHG microscopy proved to be a sensitive tool to score fibrotic pathologies. However, the nonlinear optical response of fibrillar collagen is not fully characterized yet and quantitative data are required to further process SHG images. We therefore performed Hyper-Rayleigh Scattering (HRS) experiments and measured a second order hyperpolarisability of 1.25 10-27 esu for rat-tail type I collagen. This value is surprisingly large considering that collagen presents no strong harmonophore in its amino-acid sequence. In order to get insight into the physical origin of this nonlinear process, we performed HRS measurements after denaturation of the collagen triple helix and for a collagen-like short model peptide [(Pro-Pro-Gly)10]3. It showed that the collagen large nonlinear response originates in the tight alignment of a large number of weakly efficient harmonophores, presumably the peptide bonds, resulting in a coherent amplification of the nonlinear signal along the triple helix. To illustrate this mechanism, we successfully recorded SHG images in collagen liquid solutions by achieving liquid crystalline ordering of the collagen triple helices.
Wang, Zhuo; Dong, Zhaogang; Zhu, Hai; Jin, Lei; Chiu, Ming-Hui; Li, Lain-Jong; Xu, Qing-Hua; Eda, Goki; Maier, Stefan A; Wee, Andrew T S; Qiu, Cheng-Wei; Yang, Joel K W
2018-02-27
Monolayer two-dimensional transition-metal dichalcogenides (2D TMDCs) exhibit promising characteristics in miniaturized nonlinear optical frequency converters, due to their inversion asymmetry and large second-order nonlinear susceptibility. However, these materials usually have very short light interaction lengths with the pump laser because they are atomically thin, such that second-harmonic generation (SHG) is generally inefficient. In this paper, we fabricate a judiciously structured 150 nm-thick planar surface consisting of monolayer tungsten diselenide and sub-20 nm-wide gold trenches on flexible substrates, reporting ∼7000-fold SHG enhancement without peak broadening or background in the spectra as compared to WSe 2 on as-grown sapphire substrates. Our proof-of-concept experiment yields effective second-order nonlinear susceptibility of 2.1 × 10 4 pm/V. Three orders of magnitude enhancement is maintained with pump wavelength ranging from 800 to 900 nm, breaking the limitation of narrow pump wavelength range for cavity-enhanced SHG. In addition, SHG amplitude can be dynamically controlled via selective excitation of the lateral gap plasmon by rotating the laser polarization. Such a fully open, flat, and ultrathin profile enables a great variety of functional samples with high SHG from one patterned silicon substrate, favoring scalable production of nonlinear converters. The surface accessibility also enables integration with other optical components for information processing in an ultrathin and flexible form.
NASA Astrophysics Data System (ADS)
Li, Zhongguo; Gao, Feng; Xiao, Zhengguo; Wu, Xingzhi; Zuo, Jinglin; Song, Yinglin
2018-07-01
The third-order nonlinear optical properties of two di-lanthanide (Ln = Tb and Dy) sandwich complexes with mixed phthalocyanine and Schiff-base ligands were studied using Z-scan technique at 532 nm with 20 ps and 4 ns pulses. Both complexes exhibit reverse saturable absorption and self-focusing effect in ps regime, while the second-order hyperpolarizability decreases from Dy to Tb. Interestingly, the Tb triple-decker complexes show larger nonlinear absorption than Dy complexes on ns timescale. The time-resolved pump-probe measurements demonstrate that the nonlinear optical response was caused by excited-state mechanism related to the five-level model, while the singlet state lifetime of Dy complexes is 3 times shorter than that of Tb complexes. Our results indicate the lanthanide ions play a critical role in the photo-physical properties of triple-decker phthalocyanine complexes for their application as optical limiting materials.
Eye/Sensor Protection against Laser Irradiation Organic Nonlinear Optical Materials
1989-06-12
the dipole. When the electric field is small compared to the internal fields due to the electron!, the molecular polarizability (p), which is...polarizability tensors, respectively, the linear polarizability and the second and third-order hyperpolarizability. At lower field intensities ( small E’s) only...nonlinear optical effect: the bonding electrons are well localized so only small changes in charge distribution with changes in local field environments
Optical nonlinearity in gelatin layer film containing Au nanoparticles
NASA Astrophysics Data System (ADS)
Hirose, Tomohiro; Arisawa, Michiko; Omatsu, Takashige; Kuge, Ken'ichi; Hasegawa, Akira; Tateda, Mitsuhiro
2002-09-01
We demonstrate a novel technique to fabricate a gelatin film containing Au-nano-particles. The technique is based on silver halide photographic development. We investigated third-order non-linearity of the film by forward-four-wave-mixing technique. Peak absorption appeared at the wavelength of 560nm. Self-diffraction by the use of third order nonlinear grating formed by intense pico-second pulses was observed. Experimental diffraction efficiency was proportional to the square of the pump intensity. Third-order susceptibility c(3) of the film was estimated to be 1.8?~10^-7esu.
Plasmon-enhanced versatile optical nonlinearities in a Au-Ag-Au multi-segmental hybrid structure.
Yao, Lin-Hua; Zhang, Jun-Pei; Dai, Hong-Wei; Wang, Ming-Shan; Zhang, Lu-Man; Wang, Xia; Han, Jun-Bo
2018-06-27
A Au-Ag-Au multi-segmental hybrid structure has been synthesized by using an electrodeposition method based on an anodic aluminum oxide (AAO) membrane. The third-order optical nonlinearities, second harmonic generation (SHG) and photoluminescence (PL) properties containing ultrafast supercontinuum generation and plasmon mediated thermal emission have been investigated. Significant optical enhancements have been obtained near surface plasmon resonance wavelength in all the abovementioned nonlinear processes. Comparative studies between the Au-Ag-Au multi-segmental hybrid structure and the corresponding single-component Au and Ag hybrid structures demonstrate that the Au-Ag-Au multi-segmental hybrid structure has much larger optical nonlinearities than its counterparts. These results demonstrate that the Au-Ag-Au hybrid structure is a promising candidate for applications in plasmonic devices and enhancement substrates.
Material characterisation with methods of nonlinear optics
NASA Astrophysics Data System (ADS)
Prylepa, A.; Reitböck, C.; Cobet, M.; Jesacher, A.; Jin, X.; Adelung, R.; Schatzl-Linder, M.; Luckeneder, G.; Stellnberger, K.-H.; Steck, T.; Faderl, J.; Stehrer, T.; Stifter, D.
2018-01-01
In this review, we present nonlinear optical methods, based on the second and third order nonlinear polarization, especially in the context of material characterization tasks outside the area of life sciences—for which these techniques are mostly designed. An overview of application studies reported to date is given, together with a discussion on the advantages and limits of the individual methods. Furthermore, new ways of experimentally combining different optical concepts are introduced, and their potential for characterisation and inspection tasks is evaluated in the context of various case studies, including the investigation of semiconductor surfaces, metals and related corrosion products, as well as of organic materials.
NASA Technical Reports Server (NTRS)
Pearson, Earl F.
1994-01-01
Organic compounds offer the possibility of molecular engineering in order to optimize the nonlinearity and minimize damage due to the high-power lasers used in nonlinear optical devices. Recently dicyanovinylanisole (DIVA), ((2-methoxyphenyl) methylenepropanedinitrile) has been shown to have a second order nonlinearity 40 times that of alpha-quartz. Debe et. al. have shown that a high degree of orientational order exists for thin films of phthalocyanine grown by physical vapor transport in microgravity. The microgravity environment eliminates convective flow and was critical to the formation of highly ordered dense continuous films in these samples. This work seeks to discover the parameters necessary for the production of thin continuous films of high optical quality in Earth gravity. These parameters must be known before the experiment can be planned for growing DIVA in a microgravity environment. The microgravity grown films are expected to be denser and of better optical quality than the unit gravity films as was observed in the phthalocyanine films.
NASA Astrophysics Data System (ADS)
Inc, Mustafa; Isa Aliyu, Aliyu; Yusuf, Abdullahi; Baleanu, Dumitru
2017-12-01
This paper obtains the dark, bright, dark-bright or combined optical and singular solitons to the nonlinear Schrödinger equation (NLSE) with group velocity dispersion coefficient and second-order spatio-temporal dispersion coefficient, which arises in photonics and waveguide optics and in optical fibers. The integration algorithm is the sine-Gordon equation method (SGEM). Furthermore, the explicit solutions of the equation are derived by considering the power series solutions (PSS) theory and the convergence of the solutions is guaranteed. Lastly, the modulation instability analysis (MI) is studied based on the standard linear-stability analysis and the MI gain spectrum is obtained.
NASA Astrophysics Data System (ADS)
Wei, Jing; Wang, Jin-Yun; Zhang, Min-Yi; Chai, Guo-Liang; Lin, Chen-Sheng; Cheng, Wen-Dan
2013-01-01
We investigate the effect of side chain on the first-order hyperpolarizability in α-helical polyalanine peptide with the 10th alanine mutation (Acetyl(ala)9X(ala)7NH2). Structures of various substituted peptides are optimized by ONIOM (DFT: AM1) scheme, and then linear and nonlinear optical properties are calculated by SOS//CIS/6-31G∗ method. The polarizability and first-order hyperpolarizability increase obviously only when 'X' represents phenylalanine, tyrosine and tryptophan. We also discuss the origin of nonlinear optical response and determine what caused the increase of first-order hyperpolarizability. Our results strongly suggest that side chains containing benzene, phenol and indole have important contributions to first-order hyperpolarizability.
Sun, Zhihua; Luo, Junhua; Zhang, Shuquan; Ji, Chengmin; Zhou, Lei; Li, Shenhui; Deng, Feng; Hong, Maochun
2013-08-14
Exceptional nonlinear optical (NLO) switching behavior, including an extremely large contrast (on/off) of ∼35 and high NLO coefficients, is displayed by a solid-state reversible quadratic NLO switch. The favorable results, induced by very fast molecular motion and anionic ordering, provides impetus for the design of a novel second-harmonic-generation switch involving molecular motion. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Wang, Wen-Yong; Ma, Na-Na; Sun, Shi-Ling; Qiu, Yong-Qing
2014-03-14
The studies of geometrical structures, thermal stabilities, redox properties, nonlinear responses and optoelectronic properties have been carried out on a series of novel ferrocenyl (Fc) chromophores with the view of assessing their switchable and tailorable second order nonlinear optics (NLO). The use of a constant Fc donor and a 4,4'-bipyridinium acceptor and varied conjugated bridges makes it possible to systematically determine the contribution of organic connectors to chromophore nonlinear optical activities. The structures reveal that both the reduction reactions and organic connectors have a significant influence on 4,4'-bipyridinium. The potential energy surface maps along with plots of reduced density gradient mirror the thermal stabilities of the Fc-based chromophores. The first and second reductions take place preferentially at the 4,4'-bipyridinium moieties. Significantly, the reduction processes result in the molecular switches with large NLO contrast varying from zero or very small to a large value. Moreover, time-dependent density functional theory results indicate that the absorption peaks are mainly attributed to Fc to 4,4'-bipyridinium charge transfer and the mixture of intramolecular charge transfer within the two respective 4,4'-bipyridinium moieties coupled with interlayer charge transfer between the two 4,4'-bipyridinium moieties. This provides us with comprehensive information on the effect of organic connectors on the NLO properties.
Phased-array sources based on nonlinear metamaterial nanocavities
Wolf, Omri; Campione, Salvatore; Benz, Alexander; ...
2015-07-01
Coherent superposition of light from subwavelength sources is an attractive prospect for the manipulation of the direction, shape and polarization of optical beams. This phenomenon constitutes the basis of phased arrays, commonly used at microwave and radio frequencies. Here we propose a new concept for phased-array sources at infrared frequencies based on metamaterial nanocavities coupled to a highly nonlinear semiconductor heterostructure. Optical pumping of the nanocavity induces a localized, phase-locked, nonlinear resonant polarization that acts as a source feed for a higher-order resonance of the nanocavity. Varying the nanocavity design enables the production of beams with arbitrary shape and polarization.more » As an example, we demonstrate two second harmonic phased-array sources that perform two optical functions at the second harmonic wavelength (~5 μm): a beam splitter and a polarizing beam splitter. As a result, proper design of the nanocavity and nonlinear heterostructure will enable such phased arrays to span most of the infrared spectrum.« less
Bolea, Mario; Mora, José; Ortega, Beatriz; Capmany, José
2012-03-12
A novel all-optical technique based on the incoherent processing of optical signals using high-order dispersive elements is analyzed for microwave arbitrary pulse generation. We show an approach which allows a full reconfigurability of a pulse in terms of chirp, envelope and central frequency by the proper control of the second-order dispersion and the incoherent optical source power distribution, achieving large values of time-bandwidth product.
NASA Astrophysics Data System (ADS)
Bennett, Kochise; Chernyak, Vladimir Y.; Mukamel, Shaul
2017-03-01
The nonlinear optical response of a system of molecules often contains contributions whereby the products of lower-order processes in two separate molecules give signals that appear on top of a genuine direct higher-order process with a single molecule. These many-body contributions are known as cascading and complicate the interpretation of multidimensional stimulated Raman and other nonlinear signals. In a quantum electrodynamic treatment, these cascading processes arise from second-order expansion in the molecular coupling to vacuum modes of the radiation field, i.e., single-photon exchange between molecules, which also gives rise to other collective effects. We predict the relative phase of the direct and cascading nonlinear signals and its dependence on the microscopic dynamics as well as the sample geometry. This phase may be used to identify experimental conditions for distinguishing the direct and cascading signals by their phase. Higher-order cascading processes involving the exchange of several photons between more than two molecules are discussed.
Nonlinear optical waves with the second Painleve transcendent shape of envelope in Kerr media
NASA Astrophysics Data System (ADS)
Shcherbakov, Alexandre S.; Tepichin Rodriguez, Eduardo; Sanchez Sanchez, Mauro
2004-05-01
Nonlinear optical wave packets with the second Painleve transcendent shape of envelope are revealed in Kerr media, manifesting weakly focusing cubic nonlinearity, square-law dispersion, and linear losses. When the state of nonlinear optical transmission is realized, two possible types of boundary conditions turn out to be satisfied for these wave packets. The propagation of initially unchirped optical wave packets under consideration could be supported by lossless medium in both normal and anomalous dispersion regimes. At the same time initially chirped optical waves with the second Painleve transcendent shape in low-loss medium and need matching the magnitude of optical losses by the dispersion and nonlinear properties of that medium.
Second- and third-order nonlinear optical properties of unsubstituted and mono-substituted chalcones
NASA Astrophysics Data System (ADS)
Abegão, Luis M. G.; Fonseca, Ruben D.; Santos, Francisco A.; Souza, Gabriela B.; Barreiros, André Luis B. S.; Barreiros, Marizeth L.; Alencar, M. A. R. C.; Mendonça, Cleber R.; Silva, Daniel L.; De Boni, Leonardo; Rodrigues, J. J.
2016-03-01
This work describes the second and third orders of nonlinear optics properties of unsubstituted chalcone (C15H12O) and mono-substituted chalcone (C16H14O2) in solution, using hyper-Rayleigh scattering and Z-Scan techniques to determine the first molecular hyperpolarizability (β) and the two-photon absorption (2PA) cross section respectively. β Values of 25.4 × 10-30 esu and 31.6 × 10-30 esu, for unsubstituted and mono-substituted chalcone, respectively, dissolved in methanol have been obtained. The highest values of 2PA cross-sections obtained were 9 GM and 14 GM for unsubstituted and mono-substituted chalcone, respectively. The experimental 2PA cross sections obtained for each chalcone are in good agreement with theoretical results.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kafka, Gene
2015-05-01
The Integrable Optics Test Accelerator (IOTA) storage ring at Fermilab will serve as the backbone for a broad spectrum of Advanced Accelerator R&D (AARD) experiments, and as such, must be designed with signi cant exibility in mind, but without compromising cost e ciency. The nonlinear experiments at IOTA will include: achievement of a large nonlinear tune shift/spread without degradation of dynamic aperture; suppression of strong lattice resonances; study of stability of nonlinear systems to perturbations; and studies of di erent variants of nonlinear magnet design. The ring optics control has challenging requirements that reach or exceed the present state ofmore » the art. The development of a complete self-consistent design of the IOTA ring optics, meeting the demands of all planned AARD experiments, is presented. Of particular interest are the precise control for nonlinear integrable optics experiments and the transverse-to-longitudinal coupling and phase stability for the Optical Stochastic Cooling Experiment (OSC). Since the beam time-of- ight must be tightly controlled in the OSC section, studies of second order corrections in this section are presented.« less
NASA Astrophysics Data System (ADS)
Kafka, Gene
The Integrable Optics Test Accelerator (IOTA) storage ring at Fermilab will serve as the backbone for a broad spectrum of Advanced Accelerator R&D (AARD) experiments, and as such, must be designed with significant flexibility in mind, but without compromising cost efficiency. The nonlinear experiments at IOTA will include: achievement of a large nonlinear tune shift/spread without degradation of dynamic aperture; suppression of strong lattice resonances; study of stability of nonlinear systems to perturbations; and studies of different variants of nonlinear magnet design. The ring optics control has challenging requirements that reach or exceed the present state of the art. The development of a complete self-consistent design of the IOTA ring optics, meeting the demands of all planned AARD experiments, is presented. Of particular interest are the precise control for nonlinear integrable optics experiments and the transverse-to-longitudinal coupling and phase stability for the Optical Stochastic Cooling Experiment (OSC). Since the beam time-of-flight must be tightly controlled in the OSC section, studies of second order corrections in this section are presented.
NASA Astrophysics Data System (ADS)
Patel, Dhananjay; Singh, Vinay Kumar; Dalal, U. D.
2017-01-01
Single mode fibers (SMF) are typically used in Wide Area Networks (WAN), Metropolitan Area Networks (MAN) and also find applications in Radio over Fiber (RoF) architectures supporting data transmission in Fiber to the Home (FTTH), Remote Antenna Units (RAUs), in-building networks etc. Multi-mode fibers (MMFs) with low cost, ease of installation and low maintenance are predominantly (85-90%) deployed in-building networks providing data access in local area networks (LANs). The transmission of millimeter wave signals through the SMF in WAN and MAN, along with the reuse of MMF in-building networks will not levy fiber reinstallation cost. The transmission of the millimeter waves experiences signal impairments due to the transmitter non-linearity and modal dispersion of the MMF. The MMF exhibiting large modal dispersion limits the bandwidth-length product of the fiber. The second and higher-order harmonics present in the optical signal fall within the system bandwidth. This causes degradation in the received signal and an unwanted radiation of power at the RAU. The power of these harmonics is proportional to the non-linearity of the transmitter and the modal dispersion of the MMF and should be maintained below the standard values as per the international norms. In this paper, a mathematical model is developed for Second-order Harmonic Distortion (HD2) generated due to non-linearity of the transmitter and chromatic-modal dispersion of the SMF-MMF optic link. This is also verified using a software simulation. The model consists of a Mach Zehnder Modulator (MZM) that generates two m-QAM OFDM Single Sideband (SSB) signals based on phase shift of the hybrid coupler (90° and 120°). Our results show that the SSB signal with 120° hybrid coupler has suppresses the higher-order harmonics and makes the system more robust against the HD2 in the SMF-MMF optic link.
NASA Astrophysics Data System (ADS)
Gonçalves, Hugo; Saavedra, Inês; Ferreira, Rute AS; Lopes, PE; de Matos Gomes, Etelvina; Belsley, Michael
2018-03-01
Intense well polarized second harmonic light was generated by poly(methyl methacrylate) nanofibres with embedded para-nitroaniline nanocrystals. Subwavelength diameter fibres were electro-spun using a 1:2 weight ratio of chromophore to polymer. Analysis of the generated second harmonic light indicates that the para-nitroaniline molecules, which nominally crystalize in the centrosymmetric space group, were organized into noncentrosymmetric structures leading to a second order susceptibility dominated by a single tensor element. Under the best deposition conditions, the nanofibrers display an effective nonlinear optical susceptibility approximately two orders of magnitude greater than that of potassium dihydrogen phosphate. Generalizing this approach to a broad range of organic molecules with strong individual molecular second order nonlinear responses, but which nominally form centrosymmetric organic crystals, could open a new pathway for the fabrication of efficient sub-micron sized second harmonic light generators.
Biswas, Sushmita; Liu, Xiaoying; Jarrett, Jeremy W; Brown, Dean; Pustovit, Vitaliy; Urbas, Augustine; Knappenberger, Kenneth L; Nealey, Paul F; Vaia, Richard A
2015-03-11
Metal nanoparticle assemblies are promising materials for nanophotonic applications due to novel linear and nonlinear optical properties arising from their plasmon modes. However, scalable fabrication approaches that provide both precision nano- and macroarchitectures, and performance commensurate with design and model predictions, have been limiting. Herein, we demonstrate controlled and efficient nanofocusing of the fundamental and second harmonic frequencies of incident linearly and circularly polarized light using reduced symmetry gold nanoparticle dimers formed by surface-directed assembly of colloidal nanoparticles. Large ordered arrays (>100) of these C∞v heterodimers (ratio of radii R1/R2 = 150 nm/50 nm = 3; gap distance l = 1 ± 0.5 nm) exhibit second harmonic generation and structure-dependent chiro-optic activity with the circular dichroism ratio of individual heterodimers varying less than 20% across the array, demonstrating precision and uniformity at a large scale. These nonlinear optical properties were mediated by interparticle plasmon coupling. Additionally, the versatility of the fabrication is demonstrated on a variety of substrates including flexible polymers. Numerical simulations guide architecture design as well as validating the experimental results, thus confirming the ability to optimize second harmonic yield and induce chiro-optical responses for compact sensors, optical modulators, and tunable light sources by rational design and fabrication of the nanostructures.
Apparatus and methods for using achromatic phase matching at high orders of dispersion
Richman, Bruce; Trebino, Rick; Bisson, Scott; Sidick, Erkin
2001-01-01
Achromatic phase-matching (APM) is used for efficiently multiplying the frequency of broad bandwidth light by using a nonlinear optical medium comprising a second-harmonic generation (SHG) crystal. Stationary optical elements whose configuration, properties, and arrangement have been optimized to match the dispersion characteristics of the SHG crystal to at least the second order. These elements include a plurality of prismatic elements for directing an input light beam onto the SHG crystal such that each ray wavelength is aligned to match the phase-matching angle for the crystal at each wavelength of light to at least the second order and such that every ray wavelength overlap within the crystal.
Image storage in coumarin-based copolymer thin films by photoinduced dimerization.
Gindre, Denis; Iliopoulos, Konstantinos; Krupka, Oksana; Champigny, Emilie; Morille, Yohann; Sallé, Marc
2013-11-15
We report a technique to encode grayscale digital images in thin films composed of copolymers containing coumarins. A nonlinear microscopy setup was implemented and two nonlinear optical processes were used to store and read information. A third-order process (two-photon absorption) was used to photoinduce a controlled dimer-to-monomer ratio within a defined tiny volume in the material, which corresponds to each recorded bit of data. Moreover, a second-order process (second-harmonic generation) was used to read the stored information, which has been found to be highly dependent upon the monomer-to-dimer ratio.
Seidler, Tomasz; Stadnicka, Katarzyna; Champagne, Benoît
2013-09-21
In this paper it is shown that modest calculations combining first principles evaluations of the molecular properties with electrostatic interaction schemes to account for the crystal environment effects are reliable for predicting and interpreting the experimentally measured electric linear and second-order nonlinear optical susceptibilities of molecular crystals within the experimental error bars. This is illustrated by considering two molecular crystals, namely: 2-methyl-4-nitroaniline and 4-(N,N-dimethylamino)-3-acetamidonitrobenzene. Three types of surrounding effects should be accounted for (i) the polarization due to the surrounding molecules, described here by static electric fields originating from their electric dipoles or charge distributions, (ii) the intermolecular interactions, which affect the geometry and particularly the molecular conformation, and (iii) the screening of the external electric field by the constitutive molecules. This study further highlights the role of electron correlation on the linear and nonlinear responses of molecular crystals and the challenge of describing frequency dispersion.
Vibrational spectroscopic and non-linear optical activity studies on nicotinanilide : A DFT approach
NASA Astrophysics Data System (ADS)
Premkumar, S.; Jawahar, A.; Mathavan, T.; Dhas, M. Kumara; Benial, A. Milton Franklin
2015-06-01
The molecular structure of nicotinanilide was optimized by the DFT/B3LYP method with cc-pVTZ basis set using Gaussian 09 program. The first order hyperpolarizability of the molecule was calculated, which exhibits the higher nonlinear optical activity. The natural bond orbital analysis confirms the presence of intramolecular charge transfer and the hydrogen bonding interaction, which leads to the higher nonlinear optical activity of the molecule. The Frontier molecular orbitals analysis of the molecule shows that the delocalization of electron density occurs within the molecule. The lower energy gap indicates that the hydrogen bond formation between the charged species. The vibrational frequencies were calculated and assigned on the basis of potential energy distribution calculation using the VEDA 4.0 program and the corresponding vibrational spectra were simulated. Hence, the nicotinanilide molecule can be a good candidate for second-order NLO material.
Optical Asymmetry and Nonlinear Light Scattering from Colloidal Gold Nanorods.
Lien, Miao-Bin; Kim, Ji-Young; Han, Myung-Geun; Chang, You-Chia; Chang, Yu-Chung; Ferguson, Heather J; Zhu, Yimei; Herzing, Andrew A; Schotland, John C; Kotov, Nicholas A; Norris, Theodore B
2017-06-27
A systematic study is presented of the intensity-dependent nonlinear light scattering spectra of gold nanorods under resonant excitation of the longitudinal surface plasmon resonance (SPR). The spectra exhibit features due to coherent second and third harmonic generation as well as a broadband feature that has been previously attributed to multiphoton photoluminescence arising primarily from interband optical transitions in the gold. A detailed study of the spectral dependence of the scaling of the scattered light with excitation intensity shows unexpected scaling behavior of the coherent signals, which is quantitatively accounted for by optically induced damping of the SPR mode through a Fermi liquid model of the electronic scattering. The broadband feature is shown to arise not from luminescence, but from scattering of the second-order longitudinal SPR mode with the electron gas, where efficient excitation of the second order mode arises from an optical asymmetry of the nanorod. The electronic-temperature-dependent plasmon damping and the Fermi-Dirac distribution together determine the intensity dependence of the broadband emission, and the structure-dependent absorption spectrum determines the spectral shape through the fluctuation-dissipation theorem. Hence a complete self-consistent picture of both coherent and incoherent light scattering is obtained with a single set of physical parameters.
Enhancement of nonlinear optical susceptibility of CuPc films by ITO layer
NASA Astrophysics Data System (ADS)
Ganesh, V.; Zahran, H. Y.; Yahia, I. S.; Shkir, Mohd; AlFaify, S.
2016-12-01
In the present study, the Copper Phthalocyanine (CuPc)/ITO thin film was fabricated using thermal evaporation method. The structural property was analyzed by X-ray diffraction study and confirms that the thin film has been preferentially grown along (200) plane. The atomic force microscope study was carried out on deposited film and quality of thin films is assessed by calculating the roughness of the films. The direct and indirect band gap, linear and nonlinear optical characteristics of grown films were calculated by using UV-Vis-NIR spectrometer studies. The calculated values of the first direct and indirect band gaps (Eg1(d) &Eg1(ind)) are 1.879 and 1.644 eV as a fundamental gap, while the values of second direct and indirect band gap (Eg2(d) &Eg2(ind)) are 1.660 and 1.498 eV as an onset gap for CuPc. The values of nonlinear refractive index (n2) and third order nonlinear optical susceptibility (χ3) are found to be 5 × 10-8 and 8 × 10-9 (theoretical) and 5.2 × 10-8 and 1.56 × 10-7 (experimental) respectively. The optical band and third order nonlinear properties suggest that the as-prepared films are may be applied in optoelectronic and nonlinear applications.
Wolf, Omri; Allerman, Andrew A.; Ma, Xuedan; ...
2015-10-15
We use planar metamaterial resonators to enhance, by more than two orders of magnitude, the optical second harmonic generation, in the near infrared, obtained from intersubband transitions in III-Nitride heterostructures. The improvement arises from two factors: employing an asymmetric double quantum well design and aligning the resonators’ cross-polarized resonances with the intersubband transition energies. The resulting nonlinear metamaterial operates at wavelengths where single photon detection is available, and represents a new class of sources for quantum photonics related phenomena.
Microgravity Processing and Photonic Applications of Organic and Polymeric Materials
NASA Technical Reports Server (NTRS)
Frazier, Donald O.; Penn, Benjamin G.; Smith, David D.; Witherow, William K.; Paley, Mark S.; Abdeldayem, Hossin A.
1997-01-01
In recent years, a great deal of interest has been directed toward the use of organic materials in the development of high-efficiency optoelectronic and photonic devices. There is a myriad of possibilities among organics which allow flexibility in the design of unique structures with a variety of functional groups. The use of nonlinear optical (NLO) organic materials such as thin-film waveguides allows full exploitation of their desirable qualities by permitting long interaction lengths and large susceptibilities allowing modest power input. There are several methods in use to prepare thin films, such as Langmuir-Blodgett (LB) and self-assembly techniques, vapor deposition, growth from sheared solution or melt, and melt growth between glass plates. Organics have many features that make them desirable for use in optical devices such as high second- and third-order nonlinearities, flexibility of molecular design, and damage resistance to optical radiation. However, their use in devices has been hindered by processing difficulties for crystals and thin films. In this chapter, we discuss photonic and optoelectronic applications of a few organic materials and the potential role of microgravity on processing these materials. It is of interest to note how materials with second- and third-order nonlinear optical behavior may be improved in a diffusion-limited environment and ways in which convection may be detrimental to these materials.
Nonlinear Optical Properties of Traditional and Novel Materials
NASA Astrophysics Data System (ADS)
Krupa, Sean J.
Nonlinear optical processes are an excellent candidate to provide the heralded, indistinguishable, or entangled photons necessary for development of quantum mechanics based technology which currently lack bright sources of these photons. In order to support these technologies, and others, two classes of materials: traditional and novel, were investigated via optical characterization methods with goal of gaining insight into which materials and experimental conditions yield the greatest nonlinear optical effects. Optical characterization of periodically poled lithium niobate (PPLN) helped support the development of a simple, efficient photon pair source that could be easily integrated into optical networks. Additionally, an in-situ measurement of the 2nd order nonlinear optical coefficient was developed to aid in the characterization of PPLN pair sources. Lastly, an undergraduate demonstration of quantum key distribution was constructed such that students could see the primary application for PPLN photon pair sources in an affordable, approachable demonstration. A class of novel optical materials known as 2D materials has been identified as potential replacements to the traditional nonlinear optical materials discussed in Part I. Through optical characterization of second harmonic generation (SHG) the ideal conditions for spontaneous parametric downconversion were established as well as signal thresholds for successful detection. Attempts to observe SPDC produces hints that weak generate SPDC may be present in WS2 samples however this is incredibly difficult to confirm. As growth techniques of 2D materials improve, a photonic device constructed from these materials may be possible, however it will need some mechanism e.g. stacking, a cavity, etc. to help enhance the SPDC signal.
Biomolecular Imaging with Coherent Nonlinear Vibrational Microscopy
Chung, Chao-Yu; Boik, John; Potma, Eric O.
2014-01-01
Optical imaging with spectroscopic vibrational contrast is a label-free solution for visualizing, identifying, and quantifying a wide range of biomolecular compounds in biological materials. Both linear and nonlinear vibrational microscopy techniques derive their imaging contrast from infrared active or Raman allowed molecular transitions, which provide a rich palette for interrogating chemical and structural details of the sample. Yet nonlinear optical methods, which include both second-order sum-frequency generation (SFG) and third-order coherent Raman scattering (CRS) techniques, offer several improved imaging capabilities over their linear precursors. Nonlinear vibrational microscopy features unprecedented vibrational imaging speeds, provides strategies for higher spatial resolution, and gives access to additional molecular parameters. These advances have turned vibrational microscopy into a premier tool for chemically dissecting live cells and tissues. This review discusses the molecular contrast of SFG and CRS microscopy and highlights several of the advanced imaging capabilities that have impacted biological and biomedical research. PMID:23245525
Optical increase of photo-integrated micro- and nano-periodic susceptibility lattices
NASA Astrophysics Data System (ADS)
Smirnov, Vitaly A.; Vostrikova, Liubov I.
2015-03-01
It is demonstrated that the nonlinear photo-integrated micro- and nano-periodic second-order susceptibility lattices with very small amplitudes which were preliminarily recorded using bi-chromatic powerful laser light in amorphous glass materials can be increased up to some orders of magnitude under the action of a simple coherent monochromatic radiation. The optical increase of the small lattices takes place independent of the polarization and direction of propagation of the optical amplifying radiation and is achieved at various wavelengths. The observed phenomenon is not be explained only by nonlinear wave interaction in medium and also may be related to the microscopic asymmetry processes of the optical transitions between local centers in an isotropic medium that leads to the appearance and growth of the all-optically induced small micro- and nano-periodic electrical charges separations inside the sample. Possible mechanisms that may be responsible for the observed effects in the studied phosphate glasses are discussed.
Ultrafast Plasmonic Control of Second Harmonic Generation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Davidson, Roderick B.; Yanchenko, Anna; Ziegler, Jed I.
Efficient frequency conversion techniques are crucial to the development of plasmonic metasurfaces for information processing and signal modulation. In principle, nanoscale electric-field confinement in nonlinear materials enables higher harmonic conversion efficiencies per unit volume than those attainable in bulk materials. Here we demonstrate efficient second-harmonic generation (SHG) in a serrated nanogap plasmonic geometry that generates steep electric field gradients on a dielectric metasurface. An ultrafast control pulse is used to control plasmon-induced electric fields in a thin-film material with inversion symmetry that, without plasmonic enhancement, does not exhibit an even-order nonlinear optical response. The temporal evolution of the plasmonic near-fieldmore » is characterized with ~100 as resolution using a novel nonlinear interferometric technique. The serrated nanogap is a unique platform in which to investigate optically controlled, plasmonically enhanced harmonic generation in dielectric materials on an ultrafast time scale. Lastly, this metamaterial geometry can also be readily extended to all-optical control of other nonlinear phenomena, such as four-wave mixing and sum- and difference-frequency generation, in a wide variety of dielectric materials.« less
Ultrafast Plasmonic Control of Second Harmonic Generation
Davidson, Roderick B.; Yanchenko, Anna; Ziegler, Jed I.; ...
2016-06-01
Efficient frequency conversion techniques are crucial to the development of plasmonic metasurfaces for information processing and signal modulation. In principle, nanoscale electric-field confinement in nonlinear materials enables higher harmonic conversion efficiencies per unit volume than those attainable in bulk materials. Here we demonstrate efficient second-harmonic generation (SHG) in a serrated nanogap plasmonic geometry that generates steep electric field gradients on a dielectric metasurface. An ultrafast control pulse is used to control plasmon-induced electric fields in a thin-film material with inversion symmetry that, without plasmonic enhancement, does not exhibit an even-order nonlinear optical response. The temporal evolution of the plasmonic near-fieldmore » is characterized with ~100 as resolution using a novel nonlinear interferometric technique. The serrated nanogap is a unique platform in which to investigate optically controlled, plasmonically enhanced harmonic generation in dielectric materials on an ultrafast time scale. Lastly, this metamaterial geometry can also be readily extended to all-optical control of other nonlinear phenomena, such as four-wave mixing and sum- and difference-frequency generation, in a wide variety of dielectric materials.« less
NASA Astrophysics Data System (ADS)
Liu, Lei; Tian, Bo; Wu, Xiao-Yu; Sun, Yan
2018-02-01
Under investigation in this paper is the higher-order rogue wave-like solutions for a nonautonomous nonlinear Schrödinger equation with external potentials which can be applied in the nonlinear optics, hydrodynamics, plasma physics and Bose-Einstein condensation. Based on the Kadomtsev-Petviashvili hierarchy reduction, we construct the Nth order rogue wave-like solutions in terms of the Gramian under the integrable constraint. With the help of the analytic and graphic analysis, we exhibit the first-, second- and third-order rogue wave-like solutions through the different dispersion, nonlinearity and linear potential coefficients. We find that only if the dispersion and nonlinearity coefficients are proportional to each other, heights of the background of those rogue waves maintain unchanged with time increasing. Due to the existence of complex parameters, such nonautonomous rogue waves in the higher-order cases have more complex features than those in the lower.
Third order nonlinear optical response exhibited by mono- and few-layers of WS 2
Torres-Torres, Carlos; Perea-López, Néstor; Elías, Ana Laura; ...
2016-04-13
In this work, strong third order nonlinear optical properties exhibited by WS 2 layers are presented. Optical Kerr effect was identified as the dominant physical mechanism responsible for these third order optical nonlinearities. An extraordinary nonlinear refractive index together with an important contribution of a saturated absorptive response was observed to depend on the atomic layer stacking. Comparative experiments performed in mono- and few-layer samples of WS 2 revealed that this material is potentially capable of modulating nonlinear optical processes by selective near resonant induced birefringence. In conclusion, we envision applications for developing all-optical bidimensional nonlinear optical devices.
Nonlinear Optical Properties of High-Temperature Organic Structures
NASA Astrophysics Data System (ADS)
Shi, Rui-Fang
In this thesis, we report the discovery of a new class of electro-optic organic structures, 1,8-naphthoylene -benzimidazoles, developed with computer aided molecular design combined with actual syntheses. These structures are similar to polyimide repeat units and possess high thermal, chemical and photo stabilities. Thermal analysis shows that the new class retains its linear and nonlinear optical properties well above 300^circ C in both pure forms and guest/host polyimide systems. Importantly, side group substitutions not only increase the second-order optical responses but also enhance the thermal stability. The origin of the relatively large second order optical responses of the new class is revealed by quantum many-electron calculations that explicitly take electron -electron correlations into consideration. Contour diagrams indicate that electrons are decreased on the benzimidazole -donor-substituted side and increased on the naphthoylene side upon virtual excitations, illustrating the fact that the naphthoylene group acts both as an electron acceptor and a pi-bridge that provides the necessary electron delocalization. Results for most structures show that the most dominant virtual excitation process to beta_{ijk}(-omega _3;omega_1,omega_2) involves the ground (S_0) and first excited (S_1) pi -electronic states. Importantly, increasing the electron donor strength increase the electric dipole moments and transition moments, therefore second order optical responses are enhanced. Interestingly, it is found that the position of a donor group in the new class has a significant effect on second order optical responses. DC-induced second harmonic generation (DCSHG) dispersion measurements characterize the nonlinear optical properties of the new class, using both nanosecond and picosecond tunable laser sources ranging from 1400 to 2148 nm in wavelength. Comparison between theory and experiment demonstrates that there is good agreement between them over a wide nonresonant photon energy region, illustrating the great success of our understanding of the nonlinear optical responses even in these relatively complicated organic structures. In addition, it is found that these chromophores have large beta_{ijk }: for SY177 in solution with 1,4-dioxane, mu_{x}beta_ {x}(-2omega;omega,omega) + < gamma(-2omega;omega,omega,0) > 5kT = 418 times 10 ^{-48} esu and beta _{x}(-2omega;omega,omega ) 92 times 10^ {-30} esu at hbaromega = 0.65 eV. For SY215 in solution with CH _2Cl_2, mu_ {x}beta_{x}(-2omega; omega,omega) + < gamma( -2omega;omega,omega,0) > 5kT = 1468 times 10^{-48} esu and beta_{x}(-2omega; omega,omega) = 268 times 10^{-30} esu at hbaromega = 0.65 eV. The discovery and characterization of the new high temperature class represents a critical step in the development of new materials that are suitable for practical device applications. Work is underway to optimize these structures and incorporate them into waveguide devices.
Nonlinear optical effects in organic microstructures
NASA Astrophysics Data System (ADS)
Novikov, Vladimir B.; Mamonov, Evgeniy A.; Kopylov, Denis A.; Mitetelo, Nikolai V.; Venkatakrishnarao, D.; Narayana, YSLV; Chandrasekar, R.; Murzina, Tatiana V.
2017-05-01
Organic microstructures attract much attention due to their unique properties originating from the design of their shape and optical parameters. In this work we discuss the linear, second- and third-order nonlinear optical effects in arrays and in individual organic microstructures composed by self-assembling technique and formed randomly on top of a solid substrate. The structures under study consist of micro-spheres, -hemispheres or -frustums made of red laser dye and reveal an intense fluorescence (FL) in the visible spectral range. Importantly, that due to a high value of the refractive index and confined geometry, such micro-structures support the excitation of whispering gallery modes (WGM), which brings about strong and spectrally-selected light localization. We show that an amplification of the nonlinear optical effects is observed for these structures as compared to a homogeneous dye film of similar composition. The obtained data are in agreement with the results of the FDTD calculations performed for the structures of different dimensions. Perspectives of application of such type of organic nonlinear microresonators in optical devices are discussed.
NASA Astrophysics Data System (ADS)
Erande, Yogesh; Sreenath, Mavila C.; Chitrambalam, Subramaniyan; Joe, Isaac H.; Sekar, Nagaiyan
2017-04-01
The dicyanoisophorone acceptor based NLOphores with Intramolecular Charge Transfer (ICT) character are newly synthesised, characterised and explored for linear and non linear optical (NLO) property investigation. Strong ICT character of these D-π-A styryl NLOphores is established with support of emission solvatochromism, polarity functions and Generalised Mulliken Hush (GMH) analysis. First, second and third order polarizability of these NLOphores is investigated by spectroscopic and TDDFT computational approach using CAM/B3LYP-6-311 + g (d, p) method. BLA and BOA values of these chromophores are evaluated from ground and excited state optimized geometries and found that the respective structures are approaching towards cyanine limit. Third order nonlinear susceptibility (X(3)) along with nonlinear absorption coefficient (β) and nonlinear refraction (n2) are evaluated for these NLOphores using Z-scan experiment. All four chromophores exhibit large polarization anisotropy (Δα), first order hyperpolarizability (β0), second order hyperpolarizability (γ) and third order nonlinear susceptibility (X(3)). TGA analysis proved these NLOphores are stable up to 320 °C and hence can be used in device fabrication.
Z-scan: A simple technique for determination of third-order optical nonlinearity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singh, Vijender, E-mail: chahal-gju@rediffmail.com; Aghamkar, Praveen, E-mail: p-aghamkar@yahoo.co.in
Z-scan is a simple experimental technique to measure intensity dependent nonlinear susceptibilities of third-order nonlinear optical materials. This technique is used to measure the sign and magnitude of both real and imaginary part of the third order nonlinear susceptibility (χ{sup (3)}) of nonlinear optical materials. In this paper, we investigate third-order nonlinear optical properties of Ag-polymer composite film by using single beam z-scan technique with Q-switched, frequency doubled Nd: YAG laser (λ=532 nm) at 5 ns pulse. The values of nonlinear absorption coefficient (β), nonlinear refractive index (n{sub 2}) and third-order nonlinear optical susceptibility (χ{sup (3)}) of permethylazine were found to bemore » 9.64 × 10{sup −7} cm/W, 8.55 × 10{sup −12} cm{sup 2}/W and 5.48 × 10{sup −10} esu, respectively.« less
NASA Astrophysics Data System (ADS)
Sunil Kumar Reddy, N.; Badam, Rajashekar; Sattibabu, Romala; Molli, Muralikrishna; Sai Muthukumar, V.; Siva Sankara Sai, S.; Rao, G. Nageswara
2014-11-01
We report here the nonlinear optical (NLO) properties of eight bis-chalcones of D-π-A-π-D type. These dibenzylideneacetone (DBA) derivatives are synthesized by Claisen-Schmidt reaction. The compounds are characterized by UV-vis, FTIR, 1H NMR, 13C NMR, mass spectroscopy and powder XRD. By substituting different groups (electron withdrawing and electron donating) at 'para' and 'meta' positions of the aromatic ring, we observed an enhancement in second harmonic generation with substitution at 'para' position. These compounds have also showed higher two-photon absorption compared to other chalcones reported in literature. These compounds, exhibiting both second and third order NLO effects, are plausible candidate materials in photonic devices.
Nonlinear optical polymers for electro-optic signal processing
NASA Technical Reports Server (NTRS)
Lindsay, Geoffrey A.
1991-01-01
Photonics is an emerging technology, slated for rapid growth in communications systems, sensors, imagers, and computers. Its growth is driven by the need for speed, reliability, and low cost. New nonlinear polymeric materials will be a key technology in the new wave of photonics devices. Electron-conjubated polymeric materials offer large electro-optic figures of merit, ease of processing into films and fibers, ruggedness, low cost, and a plethora of design options. Several new broad classes of second-order nonlinear optical polymers were developed at the Navy's Michelson Laboratory at China Lake, California. Polar alignment in thin film waveguides was achieved by electric-field poling and Langmuir-Blodgett processing. Our polymers have high softening temperatures and good aging properties. While most of the films can be photobleached with ultraviolet (UV) light, some have excellent stability in the 500-1600 nm range, and UV stability in the 290-310 nm range. The optical nonlinear response of these polymers is subpicosecond. Electro-optic switches, frequency doublers, light modulators, and optical data storage media are some of the device applications anticipated for these polymers.
Nonlinear optical response in narrow graphene nanoribbons
NASA Astrophysics Data System (ADS)
Karimi, Farhad; Knezevic, Irena
We present an iterative method to calculate the nonlinear optical response of armchair graphene nanoribbons (aGNRs) and zigzag graphene nanoribbons (zGNRs) while including the effects of dissipation. In contrast to methods that calculate the nonlinear response in the ballistic (dissipation-free) regime, here we obtain the nonlinear response of an electronic system to an external electromagnetic field while interacting with a dissipative environment (to second order). We use a self-consistent-field approach within a Markovian master-equation formalism (SCF-MMEF) coupled with full-wave electromagnetic equations, and we solve the master equation iteratively to obtain the higher-order response functions. We employ the SCF-MMEF to calculate the nonlinear conductance and susceptibility, as well as to calculate the dependence of the plasmon dispersion and plasmon propagation length on the intensity of the electromagnetic field in GNRs. The electron scattering mechanisms included in this work are scattering with intrinsic phonons, ionized impurities, surface optical phonons, and line-edge roughness. Unlike in wide GNRs, where ionized-impurity scattering dominates dissipation, in ultra-narrow nanoribbons on polar substrates optical-phonon scattering and ionized-impurity scattering are equally prominent. Support by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering under Award DE-SC0008712.
Nonlinear, anisotropic, and giant photoconductivity in intrinsic and doped graphene
NASA Astrophysics Data System (ADS)
Singh, Ashutosh; Ghosh, Saikat; Agarwal, Amit
2018-01-01
We present a framework to calculate the anisotropic and nonlinear photoconductivity for two band systems with application to graphene. In contrast to the usual perturbative (second order in the optical field strength) techniques, we calculate photoconductivity to all orders in the optical field strength. In particular, for graphene, we find the photoresponse to be giant (at large optical field strengths) and anisotropic. The anisotropic photoresponse in graphene is correlated with polarization of the incident field, with the response being similar to that of a half-wave plate. We predict that the anisotropy in the simultaneous measurement of longitudinal (σx x) and transverse (σy x) photoconductivity, with four probes, offers a unique experimental signature of the photovoltaic response, distinguishing it from the thermal-Seebeck and bolometric effects in photoresponse.
200-m optical fiber with an integrated electrode and its poling.
Lee, Kenneth; Hu, Peifang; Blows, Justin L; Thorncraft, David; Baxter, John
2004-09-15
More than 200 m of germanosilica optical fiber is manufactured with an internal wire electrode running parallel to the core. In this new fabrication method the wire is integrated into the fiber during the draw process. This length of fiber is an order of magnitude longer than other previously reported fibers with internal electrodes. The optical loss is less than our measurement floor of 0.5 dB/m at 1550 nm. A 0.9-m section of the fiber is thermally poled, inducing a permanent second-order nonlinearity of 0.0125 pm/V. Methods to increase the induced nonlinearity are discussed. Integrating the wire into the fiber during the draw allows lengths of fiber with internal electrodes greater than 1 km to be manufactured and subsequently poled.
Competition between SFG and two SHGs in broadband type-I QPM
NASA Astrophysics Data System (ADS)
Dang, Weirui; Chen, Yuping; Gong, Mingjun; Chen, Xianfeng
2013-03-01
In this paper, we have studied the characteristics of second-order nonlinear interactions with band-overlapped type-I quasi-phase-matching (QPM) second harmonic generation (SHG) and sum-frequency generation (SFG), and predicted a blue-shift with a band-narrowing of their bands and a sunken response in the SFG curve, which are due to the phase-matching-dependent competition between band-overlapped SHG and SFG processes. This prediction is then verified by the experiment in an 18-mm-long bulk MgO-doped periodically poled lithium niobate crystal (MgO:PPLN) and may provide the candidate solution to output controlling for flexible broadcast wavelength conversion, channel-selective wavelength conversion and all-optical logic gates by cascaded QPM second-order nonlinear processes.
Ren, Ming-Liang; Li, Zhi-Yuan
2009-08-17
We theoretically investigate second harmonic generation (SHG) in one-dimensional multilayer nonlinear photonic crystal (NPC) structures with distributed Bragg reflector (DBR) as mirrors. The NPC structures have periodic modulation on both the linear and second-order susceptibility. Three major physical mechanisms, quasi-phase matching (QPM) effect, slow light effect at photonic band gap edges, and cavity effect induced by DBR mirrors can be harnessed to enhance SHG. Selection of appropriate structural parameters can facilitate coexistence of these mechanisms to act collectively and constructively to create very high SHG conversion efficiency with an enhancement by up to seven orders of magnitude compared with the ordinary NPC where only QPM works. (c) 2009 Optical Society of America
NASA Astrophysics Data System (ADS)
Wang, Gang; Zhu, Peiwang; Marks, Tobin J.; Ketterson, J. B.
2002-09-01
Thin films consisting of self-assembled chromophoric superlattices exhibit very large second-order nonlinear responses [chi](2). Using such films, a "static" diffraction grating is created by the interference of two coherent infrared beams from a pulsed yttritium-aluminum-garnet laser. This grating is used to switch the second-harmonic and third-harmonic "signal" beams (generated from the fundamental "pump" beam or mixed within the chromophoric superlattice) into different channels (directions). Ultrafast switching response as a function of the time overlap of the pumping beams is demonstrated. It is suggested that such devices can be used to spatially and temporally separate signal trains consisting of pulses having different frequencies and arrival times.
Proceedings of the Second Annual Symposium for Nondestructive Evaluation of Bond Strength
NASA Technical Reports Server (NTRS)
Roberts, Mark J. (Compiler)
1999-01-01
Ultrasonics, microwaves, optically stimulated electron emission (OSEE), and computational chemistry approaches have shown relevance to bond strength determination. Nonlinear ultrasonic nondestructive evaluation methods, however, have shown the most effectiveness over other methods on adhesive bond analysis. Correlation to changes in higher order material properties due to microstructural changes using nonlinear ultrasonics has been shown related to bond strength. Nonlinear ultrasonic energy is an order of magnitude more sensitive than linear ultrasound to these material parameter changes and to acoustic velocity changes caused by the acoustoelastic effect when a bond is prestressed. Signal correlations between non-linear ultrasonic measurements and initialization of bond failures have been measured. This paper reviews bond strength research efforts presented by university and industry experts at the Second Annual Symposium for Nondestructive Evaluation of Bond Strength organized by the NDE Sciences Branch at NASA Langley in November 1998.
NASA Astrophysics Data System (ADS)
Chitrambalam, S.; Manimaran, D.; Hubert Joe, I.; Rastogi, V. K.; Ul Hassan, Israr
2018-01-01
The organometallic crystal of Dichlorobis(DL-valine)zinc(II) was grown by solution growth method. The computed structural geometry, vibrational wavenumbers and UV-visible spectra were compared with experimental results. Hirshfeld surface map was used to locate electron density and the fingerprint plots percentages are responsible for the stabilization of intermolecular interactions in molecular crystal. The second-order hyperpolarizability value of the molecule was also calculated at density functional theory method. The surface resistance and third-order nonlinear optical property of the crystal were studied by laser induced surface damage threshold and Z-scan techniques, respectively using Nd:YAG laser with wavelength 532 nm. The open aperture result exhibits the reverse saturation absorption, which indicate that this material has potential candidate for optical limiting and optoelectronic applications.
Sinha, Raju; Karabiyik, Mustafa; Al-Amin, Chowdhury; Vabbina, Phani K; Güney, Durdu Ö; Pala, Nezih
2015-03-24
We propose and systematically investigate a novel tunable, compact room temperature terahertz (THz) source based on difference frequency generation in a hybrid optical and THz micro-ring resonator. We describe detailed design steps of the source capable of generating THz wave in 0.5-10 THz with a tunability resolution of 0.05 THz by using high second order optical susceptibility (χ((2))) in crystals and polymers. In order to enhance THz generation compared to bulk nonlinear material, we employ a nonlinear optical micro-ring resonator with high-Q resonant modes for infrared input waves. Another ring oscillator with the same outer radius underneath the nonlinear ring with an insulation of SiO2 layer supports the generated THz with resonant modes and out-couples them into a THz waveguide. The phase matching condition is satisfied by engineering both the optical and THz resonators with appropriate effective indices. We analytically estimate THz output power of the device by using practical values of susceptibility in available crystals and polymers. The proposed source can enable tunable, compact THz emitters, on-chip integrated spectrometers, inspire a broader use of THz sources and motivate many important potential THz applications in different fields.
Sinha, Raju; Karabiyik, Mustafa; Al-Amin, Chowdhury; Vabbina, Phani K.; Güney, Durdu Ö.; Pala, Nezih
2015-01-01
We propose and systematically investigate a novel tunable, compact room temperature terahertz (THz) source based on difference frequency generation in a hybrid optical and THz micro-ring resonator. We describe detailed design steps of the source capable of generating THz wave in 0.5–10 THz with a tunability resolution of 0.05 THz by using high second order optical susceptibility (χ(2)) in crystals and polymers. In order to enhance THz generation compared to bulk nonlinear material, we employ a nonlinear optical micro-ring resonator with high-Q resonant modes for infrared input waves. Another ring oscillator with the same outer radius underneath the nonlinear ring with an insulation of SiO2 layer supports the generated THz with resonant modes and out-couples them into a THz waveguide. The phase matching condition is satisfied by engineering both the optical and THz resonators with appropriate effective indices. We analytically estimate THz output power of the device by using practical values of susceptibility in available crystals and polymers. The proposed source can enable tunable, compact THz emitters, on-chip integrated spectrometers, inspire a broader use of THz sources and motivate many important potential THz applications in different fields. PMID:25800287
NASA Astrophysics Data System (ADS)
Nageshwari, M.; Jayaprakash, P.; Kumari, C. Rathika Thaya; Vinitha, G.; Caroline, M. Lydia
2017-04-01
An efficient nonlinear optical semiorganic material L-valinium L-valine chloride (LVVCl) was synthesized and grown-up by means of slow evaporation process. Single crystal XRD evince that LVVCl corresponds to monoclinic system having acentric space group P21. The diverse functional groups existing in LVVCl were discovered with FTIR spectral investigation. The UV-Visible and photoluminescence spectrum discloses the optical and electronic properties respectively for the grown crystal. Several optical properties specifically extinction coefficient, reflectance, linear refractive index, electrical and optical conductivity were also determined. The SEM analysis was also carried out and it portrayed the surface morphology of LVVCl. The calculated value of laser damage threshold was 2.59 GW/cm2. The mechanical and dielectric property of LVVCl was investigated employing microhardness and dielectric studies. The second and third order nonlinear optical characteristics of LVVCl was characterized utilizing Kurtz Perry and Z scan technique respectively clearly suggest its suitability in the domain of optics and photonics.
NASA Astrophysics Data System (ADS)
Wu, Xiao-Yu; Tian, Bo; Chai, Han-Peng; Du, Zhong
2018-03-01
Under investigation in this paper is a discrete (2+1)-dimensional Ablowitz-Ladik equation, which is used to model the nonlinear waves in the nonlinear optics and Bose-Einstein condensation. Employing the Kadomtsev-Petviashvili hierarchy reduction, we obtain the rogue wave solutions in terms of the Gramian. We graphically study the first-, second- and third-order rogue waves with the influence of the focusing coefficient and coupling strength. When the value of the focusing coefficient increases, both the peak of the rogue wave and background decrease. When the value of the coupling strength increases, the rogue wave raises and decays in a shorter time. High-order rogue waves are exhibited as one single highest peak and some lower humps, and such lower humps are shown as the triangular and circular patterns.
Investigation of broadband terahertz generation from metasurface
NASA Astrophysics Data System (ADS)
Fang, Ming; Niu, Kaikun; Huang, Zhiaxiang; Sha, Wei E. I.; Wu, Xianliang; Koschny, Thomas; Soukoulis, Costas M.
2018-05-01
The nonlinear metamaterials have been shown to provide nonlinear properties with high nonlinear conversion efficiency and in a myriad of light manipulation. Here we study terahertz generation from nonlinear metasurface consisting of single layer nanoscale split-ring resonator array. The terahertz generation due to optical rectification by the second-order nonlinearity of the split-ring resonator is investigated by a time-domain implementation of the hydrodynamic model for electron dynamics in metal. The results show that the nonlinear metasurface enables us to generate broadband terahertz radiation and free from quasi-phase-matching conditions. The proposed scheme provides a new concept of broadband THz source and designing nonlinear plasmonic metamaterials.
Investigation of broadband terahertz generation from metasurface.
Fang, Ming; Niu, Kaikun; Huang, Zhiaxiang; Sha, Wei E I; Wu, Xianliang; Koschny, Thomas; Soukoulis, Costas M
2018-05-28
The nonlinear metamaterials have been shown to provide nonlinear properties with high nonlinear conversion efficiency and in a myriad of light manipulation. Here we study terahertz generation from nonlinear metasurface consisting of single layer nanoscale split-ring resonator array. The terahertz generation due to optical rectification by the second-order nonlinearity of the split-ring resonator is investigated by a time-domain implementation of the hydrodynamic model for electron dynamics in metal. The results show that the nonlinear metasurface enables us to generate broadband terahertz radiation and free from quasi-phase-matching conditions. The proposed scheme provides a new concept of broadband THz source and designing nonlinear plasmonic metamaterials.
Sub-wavelength modulation of χ (2) optical nonlinearity in organic thin films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yan, Yixin; Yuan, Yakun; Wang, Baomin
Modulating the second-order nonlinear optical susceptibility (χ (2)) of materials at the nanoscale represents an ongoing technological challenge for a variety of integrated frequency conversion and nonlinear nanophotonic applications. Here we exploit the large hyperpolarizability of intermolecular charge transfer states, naturally aligned at an organic semiconductor donor–acceptor (DA) interface, as a means to control the magnitude and sign of χ (2) at the nanoscale. Focusing initially on a single pentacene-C 60 DA interface, we confirm that the charge transfer transition is strongly aligned orthogonal to the heterojunction and find that it is responsible for a large interfacial nonlinearity probed viamore » second harmonic generation that is sufficient to achieve d 33 > 10pm V –1, when incorporated in a non-centrosymmetric DA multilayer stack. Lastly, using grating-shadowed oblique-angle deposition to laterally structure the DA interface distribution in such multilayers subsequently enables the demonstration of a χ (2) grating with 280 nm periodicity, which is the shortest reported to date.« less
Sub-wavelength modulation of χ(2) optical nonlinearity in organic thin films
NASA Astrophysics Data System (ADS)
Yan, Yixin; Yuan, Yakun; Wang, Baomin; Gopalan, Venkatraman; Giebink, Noel C.
2017-01-01
Modulating the second-order nonlinear optical susceptibility (χ(2)) of materials at the nanoscale represents an ongoing technological challenge for a variety of integrated frequency conversion and nonlinear nanophotonic applications. Here we exploit the large hyperpolarizability of intermolecular charge transfer states, naturally aligned at an organic semiconductor donor-acceptor (DA) interface, as a means to control the magnitude and sign of χ(2) at the nanoscale. Focusing initially on a single pentacene-C60 DA interface, we confirm that the charge transfer transition is strongly aligned orthogonal to the heterojunction and find that it is responsible for a large interfacial nonlinearity probed via second harmonic generation that is sufficient to achieve d33>10 pm V-1, when incorporated in a non-centrosymmetric DA multilayer stack. Using grating-shadowed oblique-angle deposition to laterally structure the DA interface distribution in such multilayers subsequently enables the demonstration of a χ(2) grating with 280 nm periodicity, which is the shortest reported to date.
Sub-wavelength modulation of χ (2) optical nonlinearity in organic thin films
Yan, Yixin; Yuan, Yakun; Wang, Baomin; ...
2017-01-27
Modulating the second-order nonlinear optical susceptibility (χ (2)) of materials at the nanoscale represents an ongoing technological challenge for a variety of integrated frequency conversion and nonlinear nanophotonic applications. Here we exploit the large hyperpolarizability of intermolecular charge transfer states, naturally aligned at an organic semiconductor donor–acceptor (DA) interface, as a means to control the magnitude and sign of χ (2) at the nanoscale. Focusing initially on a single pentacene-C 60 DA interface, we confirm that the charge transfer transition is strongly aligned orthogonal to the heterojunction and find that it is responsible for a large interfacial nonlinearity probed viamore » second harmonic generation that is sufficient to achieve d 33 > 10pm V –1, when incorporated in a non-centrosymmetric DA multilayer stack. Lastly, using grating-shadowed oblique-angle deposition to laterally structure the DA interface distribution in such multilayers subsequently enables the demonstration of a χ (2) grating with 280 nm periodicity, which is the shortest reported to date.« less
NASA Astrophysics Data System (ADS)
Shcherbakov, Alexandre S.; Moreno Zarate, Pedro
2010-02-01
We describe the conditions of shaping regular trains of optical dissipative solitary pulses, excited by multi-pulse sequences of periodic modulating signals, in the actively mode-locked semiconductor laser heterostructure with an external long-haul single-mode silicon fiber exhibiting square-law dispersion, cubic Kerr nonlinearity, and linear optical losses. The presented model for the analysis includes three principal contributions associated with the modulated gain, optical losses, as well as linear and nonlinear phase shifts. In fact, the trains of optical dissipative solitary pulses appear within simultaneous presenting and a balance of mutually compensating interactions between the second-order dispersion and cubic-law Kerr nonlinearity as well as between active medium gain and linear optical losses in the combined cavity. Within such a model, a contribution of the nonlinear Ginzburg-Landau operator to shaping the parameters of optical dissipative solitary pulses is described via exploiting an approximate variational procedure involving the technique of trial functions. Finally, the results of the illustrating proof-of-principle experiments are briefly presented and discussed in terms of optical dissipative solitary pulses.
Studies of third-order optical nonlinearities and optical limiting properties of azo dyes.
Gayathri, C; Ramalingam, A
2008-03-01
In order to protect optical sensors and human eyes from debilitating laser effects, the intensity of the incoming laser light has to be opportunely reduced. Here, we report our results on the third-order optical nonlinearity and optical limiting properties of three azo dyes exposed to a 532nm continuous wave laser. We have observed low power optical limiting based on nonlinear refraction in our samples.
NASA Astrophysics Data System (ADS)
Li, Haipeng; Zhang, Yi; Bi, Zetong; Xu, Runfeng; Li, Mingxue; Shen, Xiaopeng; Tang, Gang; Han, Kui
2017-12-01
In this paper, density functional theory method was employed to study the electronic absorption spectrum and electronic static second hyperpolarisability of X-shaped pyrazine derivatives with two-dimensional charge-transfer structures. Computational results show that the push-pull electron abilities of the substituent groups and the length of the conjugated chains affect the electronic spectrum and static second hyperpolarisability of the pyrazine derivatives. As the push-pull electron abilities of the substituent groups or the length of the conjugated chains increases, the frontier molecular orbital energy gap decreases, resulting in increased second hyperpolarisability and redshift of the electronic absorption bands. The electronic absorption spectra of the pyrazine derivatives maintain good transparency in the blue light band. The electronic static second hyperpolarisability exhibits a linear relationship to the frontier molecular orbital energy gap. Particularly, increasing/decreasing the push-pull electron abilities of the substituent groups considerably affect the static second hyperpolarisability in long conjugated systems, which is important to the modulation of molecular organic nonlinear optical (NLO) properties. The studied pyrazine derivatives show large third-order NLO response and good transparency in the blue light band and are thus promising candidates as NLO materials for photonics applications.
Efficient optical nonlinear Langmuir-Blodgett films: roles of matrix molecules
NASA Astrophysics Data System (ADS)
Ma, Shihong; Lu, Xingze; Liu, Liying; Han, Kui; Wang, Wencheng; Zhang, Zhi-Ming
1996-10-01
A novel bifat-chain amphiphilic molecule nitrogencrown (NC) was adopted as an inert material for fabrication of optical nonlinear Langmuir-Blodgett (LB) multilayers. Structural improvement in the Z-type mixed fullerene derivative (C60-Be)/NC LB multilayers samples was realized by insertion of the C60-Be molecules between two hydrophobic chains of the NC molecules. The relatively large third-order susceptibility (chi) (3)xxxx(- 3(omega) ;(omega) ,(omega) ,(omega) ) equals 2.9 multiplied by 10-19 M2V-2 (or 2.1 multiplied by 10-11 esu) was deduced by measuring third harmonic generation (THG) from the C60-Be samples. The second harmonic generation (SHG) intensity increased quadratically with the bilayer number (up to 116 bilayers) in Y-type hemicyanine (HEM)/NC interleaving LB multilayers due to improvement of the structural properties by insertion of the long hydrophobic tail of HEM molecules between two chains of NC molecules. The second-order susceptibility (chi) (2)zxx(-2(omega) ;(omega) ,(omega) ) equals 18 pM V-1 (or 4.35 multiplied by 10-8 esu) was obtained by measuring SHG from the HEM samples. The NC molecule has attractive features as a matrix material in fabrications of LB multilayers made from optically nonlinear materials with hydrophobic long tails or ball-like molecules.
Jeong, Mi-Yun; Cho, Bong Rae
2015-02-01
We summarize the nonlinear optical (NLO) properties of octupolar molecules, crystals, and films developed in our laboratory. We present the design strategy, structure-property relationship, and second-order NLO properties of 1,3,5-trinitro- and 1,3,5-tricyano-2,4,6-tris(p-diethylaminostyryl)benzene (TTB) derivatives, TTB crystals, and films prepared by free-casting TTB in poly(methyl methacrylate) (PMMA). The first hyperpolarizability of TTB was fivefold larger than that of the dipolar analogue. Moreover, the TTB crystal showed unprecedentedly large second-harmonic generation (SHG). While TTB crystal films (20 wt% TTB/PMMA) on various substrates showed appreciable SHG values, the cylinder film exhibited much larger SHG values and large electro-optic (EO) coefficients. The large SHG values and EO coefficients, as well as the high thermal stability of the cylinder film, will make it a potential candidate for NLO device applications. Copyright © 2014 The Chemical Society of Japan and Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Few-cycle optical rogue waves: complex modified Korteweg-de Vries equation.
He, Jingsong; Wang, Lihong; Li, Linjing; Porsezian, K; Erdélyi, R
2014-06-01
In this paper, we consider the complex modified Korteweg-de Vries (mKdV) equation as a model of few-cycle optical pulses. Using the Lax pair, we construct a generalized Darboux transformation and systematically generate the first-, second-, and third-order rogue wave solutions and analyze the nature of evolution of higher-order rogue waves in detail. Based on detailed numerical and analytical investigations, we classify the higher-order rogue waves with respect to their intrinsic structure, namely, fundamental pattern, triangular pattern, and ring pattern. We also present several new patterns of the rogue wave according to the standard and nonstandard decomposition. The results of this paper explain the generalization of higher-order rogue waves in terms of rational solutions. We apply the contour line method to obtain the analytical formulas of the length and width of the first-order rogue wave of the complex mKdV and the nonlinear Schrödinger equations. In nonlinear optics, the higher-order rogue wave solutions found here will be very useful to generate high-power few-cycle optical pulses which will be applicable in the area of ultrashort pulse technology.
NASA Astrophysics Data System (ADS)
Shcherbakov, Alexandre S.; Campos Acosta, Joaquin; Pons Aglio, Alicia; Moreno Zarate, Pedro; Mansurova, Svetlana
2010-06-01
We present an advanced approach to describing low-power trains of bright picosecond optical dissipative solitary pulses with an internal frequency modulation in practically important case of exploiting semiconductor heterolaser operating in near-infrared range in the active mode-locking regime. In the chosen schematic arrangement, process of the active mode-locking is caused by a hybrid nonlinear cavity consisting of this heterolaser and an external rather long single-mode optical fiber exhibiting square-law dispersion, cubic Kerr nonlinearity, and small linear optical losses. Our analysis of shaping dissipative solitary pulses includes three principal contributions associated with the modulated gain, total optical losses, as well as with linear and nonlinear phase shifts. In fact, various trains of the non-interacting to one another optical dissipative solitons appear within simultaneous balance between the second-order dispersion and cubic-law Kerr nonlinearity as well as between active medium gain and linear optical losses in a hybrid cavity. Our specific approach makes possible taking the modulating signals providing non-conventional composite regimes of a multi-pulse active mode-locking. Within our model, a contribution of the appearing nonlinear Ginzburg-Landau operator to the parameters of dissipative solitary pulses is described via exploiting an approximate variational procedure involving the technique of trial functions.
Nonlinear optical and light emission studies of special organic molecules and crystals
NASA Astrophysics Data System (ADS)
Bhowmik, Achintya K.
The nonlinear optical properties and light emission characteristics of some special organic molecules and crystals have been studied in detail. The second-order nonlinear optical effects were measured in the single- crystal films of the materials. The crystallographic orientations of the films were determined using x-ray diffraction measurements. The second-order susceptibility tensor elements of 4-aminobenzophenone (ABP) and 8- (4'-acetylphenyl)-1,4-dioxa-8- azaspiro[4.5]decane (APDA) films were measured using polarization selective second-harmonic generation experiments. The d-coefficients of ABP are: d 23 = 7.3 +/- 0.4 pm/V and d22 = 0.73 +/- 0.04 pm/V, while those of APDA are: d33 = 54 +/- 6 pm/V and d15 = 18 +/- 3 pm/V at 1064 nm. Phase-matched propagation directions were identified on the films. The application of these films in measuring ultra-short laser pulse-width was demonstrated. Polarized optical absorption and photo- luminescence were measured in 4'- dimethylamino-N-methyl-4-stilbazolium tosylate (DAST). The electro-optic properties of single- crystal films of DAST and styryl pyridinium cyanine dye (SPCD) were studied over a broad range of wavelengths. The measured r-coefficients are the largest reported in any material. Thin-film electro-optic modulators were demonstrated using these films which have insignificant insertion and propagation losses compared to the traditional waveguide based devices. The response was observed to be flat over the measured frequency range (2 kHz-100 MHz), which indicates the origin of the electro-optic effect to be predominantly electronic. Thus these materials have significant potential for applications in high-speed optical signal processing. Spectral broadening of femtosecond laser pulses in poly- [2,4 hexadiyne-1,6 diol-bis-(p-toluene sulfonate)] (PTS) single-crystals due to self-phase modulation was studied. The magnitudes of the nonlinear refractive index were determined over the wavelength range of 720-1064 nm. The two-photon absorption spectrum, determined from nonlinear transmission measurements, was observed to have no discernible influence on the dispersion of the nonlinear index at these wavelengths. Highly efficient spectrally narrowed emission has been observed for the first time in strongly dipolar organic salts based on the stilbazolium chromophore. An unusually high conversion efficiency (40%) with a low excitation threshold (<1 μJ) has been observed despite a very low photoluminescence efficiency (~0.3%). The results are explained in terms of cooperative emission upon short-pulse optical excitation. These materials have a wide range of potential applications in photonics, including frequency conversion, high-speed electro-optic modulation, sensors, and novel laser-like light sources.
Nonlinear Optical Properties of Carotenoid and Chlorophyll Harmonophores
NASA Astrophysics Data System (ADS)
Tokarz, Danielle Barbara
Information regarding the structure and function of living tissues and cells is instrumental to the advancement of cell biology and biophysics. Nonlinear optical microscopy can provide such information, but only certain biological structures generate nonlinear optical signals. Therefore, structural specificity can be achieved by introducing labels for nonlinear optical microscopy. Few studies exist in the literature about labels that facilitate harmonic generation, coined "harmonophores". This thesis consists of the first major investigation of harmonophores for third harmonic generation (THG) microscopy. Carotenoids and chlorophylls were investigated as potential harmonophores. Their nonlinear optical properties were studied by the THG ratio technique. In addition, a tunable refractometer was built in order to determine their second hyperpolarizability (gamma). At 830 nm excitation wavelength, carotenoids and chlorophylls were found to have large negative gamma values however, at 1028 nm, the sign of gamma reversed for carotenoids and remained negative for chlorophylls. Consequently, at 1028 nm wavelength, THG signal is canceled with mixtures of carotenoids and chlorophylls. Furthermore, when such molecules are covalently bonded as dyads or interact within photosynthetic pigment-protein complexes, it is found that additive effects with the gamma values still play a role, however, the overall gamma value is also influenced by the intra-pigment and inter-pigment interaction. The nonlinear optical properties of aggregates containing chlorophylls and carotenoids were the target of subsequent investigations. Carotenoid aggregates were imaged with polarization-dependent second harmonic generation and THG microscopy. Both techniques revealed crystallographic information pertaining to H and J aggregates and beta-carotene crystalline aggregates found in orange carrot. In order to demonstrate THG enhancement due to labeling, cultured cells were labeled with carotenoid incorporated liposomes. In addition, Drosophila melanogaster larvae muscle as well as keratin structures in the hair cortex were labeled with beta-carotene. Polarization-dependent THG studies may be particularly useful in understanding the structural organization that occurs within biological structures containing carotenoids and chlorophylls such as photosynthetic pigment-protein complexes and carotenoid aggregates in plants and alga. Further, artificial labeling with carotenoids and chlorophylls may be useful in clinical applications since they are nontoxic, nutritionally valuable, and they can aid in visualizing structural changes in cellular components.
Effets optiques et structurels de l'implantation ionique dans des couches minces polymeres
NASA Astrophysics Data System (ADS)
Cottin, Pierre
The main goal of this work is to highlight the effect of ion implantation---a widely spread technique to modify chemical, electrical or optical properties of materials---on the third order nonlinear optical properties (chi (3)) of polymers. This study was limited to four polymers (PMMA, PVK, PVA, CA) for which we developed a fabrication process to obtain high optical quality thin films and controlled thickness compatible with ion implantation depth. Moreover, these polymers show different chemical structures and have in common to have very low nonlinear optical properties. Two faces of the problem were studied. First, the chemical structure of these polymers was characterized using ultraviolet and infrared spectroscopy before and after ion implantation and then was compared with which of intrinsic nonlinear optical polymers. These analysis have clearly shown that from one hand, ion implantation leads to a great number of bond breaks but from the other hand, it creates a high concentration of conjugated bonds characteristic of nonlinear optical polymers. Second, the third order nonlinear optical properties of ion implanted polymers were measured by nonlinear waveguide coupling and by third harmonic generation. For the first method, the coupling function was performed by a diffraction grating etched in a glass substrate whose fabrication process was developed in this particular case. In both cases, the used laser wave-length was 1064 nm with pulse duration of 30 ps and 5 ns respectively. The corresponding modelization for each of these techniques was established and numerically implemented. Both techniques have shown an increase of chi(3) for these polymers after ion implantation but however, they can not reach the performance of chemically designed nonlinear optical polymers. The best results were obtained for 50 keV helium implanted PMMA given |chi(3)(-3o; o, o, o)| = 7.2 x 10-21 m2.V-2 which is six time greater than the pristine material.
NASA Astrophysics Data System (ADS)
Renugadevi, R.; Kesavasamy, R.
2015-09-01
The growth of organic nonlinear optical (NLO) crystal 2-amino-5-chloropyridinium trichloroacetate (2A5CPTCA) has been synthesized and single crystals have been grown from methanol solvent by slow evaporation technique. The grown crystals were subjected to various characterization analyses in order to find out the suitability for device fabrication. Single crystal X-ray diffraction analysis reveals that 2A5CPTCA crystallizes in monoclinic system with the space group Cc. The grown crystal was further characterized by Fourier transform infrared spectral analysis to find out the functional groups. The nuclear magnetic resonance spectroscopy is a research technique that exploits the magnetic properties of certain atomic nuclei. The optical transparency window in the visible and near-IR (200--1100 nm) regions was found to be good for NLO applications. Thermogravimetric analysis and differential thermal analysis were used to study its thermal properties. The powder second harmonic generation efficiency measurement with Nd:YAG laser (1064 nm) radiation shows that the highest value when compared with the standard potassium dihydrogen phosphate crystal.
Diode end pumped laser and harmonic generator using same
NASA Technical Reports Server (NTRS)
Byer, Robert L. (Inventor); Dixon, George J. (Inventor); Kane, Thomas J. (Inventor)
1988-01-01
A second harmonic, optical generator is disclosed in which a laser diode produces an output pumping beam which is focused by means of a graded, refractive index rod lens into a rod of lasant material, such as Nd:YAG, disposed within an optical resonator to pump the lasant material and to excite the optical resonator at a fundamental wavelength. A non-linear electro-optic material such as MgO:LiNbO.sub.3 is coupled to the excited, fundamental mode of the optical resonator to produce a non-linear interaction with the fundamental wavelength producing a harmonic. In one embodiment, the gain medium and the non-linear material are disposed within an optical resonator defined by a pair of reflectors, one of which is formed on a face of the gain medium and the second of which is formed on a face of the non-linear medium. In another embodiment, the non-linear, electro-optic material is doped with the lasant ion such that the gain medium and the non-linear doubling material are co-extensive in volume. In another embodiment, a non-linear, doubling material is disposed in an optical resonator external of the laser gai medium for improved stability of the second harmonic generation process. In another embodiment, the laser gain medium andthe non-linear material are bonded together by means of an optically transparent cement to form a mechanically stable, monolithic structure. In another embodiment, the non-linear material has reflective faces formed thereon to define a ring resonator to decouple reflections from the non-linear medium back to the gain medium for improved stability.
Synthesis and photoluminescent and nonlinear optical properties of manganese doped ZnS nanoparticles
NASA Astrophysics Data System (ADS)
Nazerdeylami, Somayeh; Saievar-Iranizad, Esmaiel; Dehghani, Zahra; Molaei, Mehdi
2011-01-01
In this work we synthesized ZnS:Mn 2+ nanoparticles by chemical method using PVP (polyvinylpyrrolidone) as a capping agent in aqueous solution. The structure and optical properties of the resultant product were characterized using UV-vis optical spectroscopy, X-ray diffraction (XRD), photoluminescence (PL) and z-scan techniques. UV-vis spectra for all samples showed an excitonic peak at around 292 nm, indicating that concentration of Mn 2+ ions does not alter the band gap of nanoparticles. XRD patterns showed that the ZnS:Mn 2+ nanoparticles have zinc blende structure with the average crystalline sizes of about 2 nm. The room temperature photoluminescence (PL) spectrum of ZnS:Mn 2+ exhibited an orange-red emission at 594 nm due to the 4T 1- 6A 1 transition in Mn 2+. The PL intensity increased with increase in the Mn 2+ ion concentration. The second-order nonlinear optical properties of nanoparticles were studied using a continuous-wave (CW) He-Ne laser by z-scan technique. The nonlinear refractive indices of nanoparticles were in the order of 10 -8 cm 2/W with negative sign and the nonlinear absorption indices of these nanoparticles were obtained to be about 10 -3 cm/W with positive sign.
Field-controllable second harmonic generation at a graphene oxide heterointerface
NASA Astrophysics Data System (ADS)
Fernandes, Gustavo E.; Kim, Jin Ho; Osgood, Richard, III; Xu, Jimmy
2018-03-01
We report on the voltage-dependent SHG signal obtained in a reduced-graphene oxide (rGO)/p-type Si heterointerface. A simple qualitative model considering the interaction between the heterointerface depletion region potential and the naturally occurring surface dipole layer on the rGO is introduced to account for the characteristics of the SHG signal, specifically, a minimum point at ≈ -3 V bias on the rGO side of the interface. This feature-rich system has the potential to provide field-controllable surface-dipole moments and second-order nonlinearities, which may find applications in tunable nonlinear photonic devices for realizing second-harmonic generation and optical-rectification.
Investigation of broadband terahertz generation from metasurface
Fang, Ming; Niu, Kaikun; Huang, ZHixiang; ...
2018-01-01
The nonlinear metamaterials have been shown to provide nonlinear properties with high nonlinear conversion efficiency and in a myriad of light manipulation. Here we study terahertz generation from nonlinear metasurface consisting of single layer nanoscale split-ring resonator array. The terahertz generation due to optical rectification by the second-order nonlinearity of the split-ring resonator is investigated by a time-domain implementation of the hydrodynamic model for electron dynamics in metal. The results show that the nonlinear metasurface enables us to generate broadband terahertz radiation and free from quasi-phase-matching conditions. The proposed scheme provides a new concept of broadband THz source and designingmore » nonlinear plasmonic metamaterials.« less
Investigation of broadband terahertz generation from metasurface
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fang, Ming; Niu, Kaikun; Huang, ZHixiang
The nonlinear metamaterials have been shown to provide nonlinear properties with high nonlinear conversion efficiency and in a myriad of light manipulation. Here we study terahertz generation from nonlinear metasurface consisting of single layer nanoscale split-ring resonator array. The terahertz generation due to optical rectification by the second-order nonlinearity of the split-ring resonator is investigated by a time-domain implementation of the hydrodynamic model for electron dynamics in metal. The results show that the nonlinear metasurface enables us to generate broadband terahertz radiation and free from quasi-phase-matching conditions. The proposed scheme provides a new concept of broadband THz source and designingmore » nonlinear plasmonic metamaterials.« less
Investigation of broadband terahertz generation from metasurface
Fang, Ming; Niu, Kaikun; Huang, ZHixiang; ...
2018-05-21
The nonlinear metamaterials have been shown to provide nonlinear properties with high nonlinear conversion efficiency and in a myriad of light manipulation. Here we study terahertz generation from nonlinear metasurface consisting of single layer nanoscale split-ring resonator array. The terahertz generation due to optical rectification by the second-order nonlinearity of the split-ring resonator is investigated by a time-domain implementation of the hydrodynamic model for electron dynamics in metal. The results show that the nonlinear metasurface enables us to generate broadband terahertz radiation and free from quasi-phase-matching conditions. The proposed scheme provides a new concept of broadband THz source and designingmore » nonlinear plasmonic metamaterials.« less
Nonparaxial rogue waves in optical Kerr media.
Temgoua, D D Estelle; Kofane, T C
2015-06-01
We consider the inhomogeneous nonparaxial nonlinear Schrödinger (NLS) equation with varying dispersion, nonlinearity, and nonparaxiality coefficients, which governs the nonlinear wave propagation in an inhomogeneous optical fiber system. We present the similarity and Darboux transformations and for the chosen specific set of parameters and free functions, the first- and second-order rational solutions of the nonparaxial NLS equation are generated. In particular, the features of rogue waves throughout polynomial and Jacobian elliptic functions are analyzed, showing the nonparaxial effects. It is shown that the nonparaxiality increases the intensity of rogue waves by increasing the length and reducing the width simultaneously, by the way it increases their speed and penalizes interactions between them. These properties and the characteristic controllability of the nonparaxial rogue waves may give another opportunity to perform experimental realizations and potential applications in optical fibers.
Osewski, Pawel; Belardini, Alessandro; Petronijevic, Emilija; Centini, Marco; Leahu, Grigore; Diduszko, Ryszard; Pawlak, Dorota A.; Sibilia, Concita
2017-01-01
Second-order nonlinear optical materials are used to generate new frequencies by exploiting second-harmonic generation (SHG), a phenomenon where a nonlinear material generates light at double the optical frequency of the input beam. Maximum SHG is achieved when the pump and the generated waves are in phase, for example through birefringence in uniaxial crystals. However, applying these materials usually requires a complicated cutting procedure to yield a crystal with a particular orientation. Here we demonstrate the first example of phase matching under the normal incidence of SHG in a biaxial monoclinic single crystal of zinc tungstate. The crystal was grown by the micro-pulling-down method with the (102) plane perpendicular to the growth direction. Additionally, at the same time white light was generated as a result of stimulated Raman scattering and multiphoton luminescence induced by higher-order effects such as three-photon luminescence enhanced by cascaded third-harmonic generation. The annealed crystal offers SHG intensities approximately four times larger than the as grown one; optimized growth and annealing conditions may lead to much higher SHG intensities. PMID:28338074
NASA Astrophysics Data System (ADS)
Osewski, Pawel; Belardini, Alessandro; Petronijevic, Emilija; Centini, Marco; Leahu, Grigore; Diduszko, Ryszard; Pawlak, Dorota A.; Sibilia, Concita
2017-03-01
Second-order nonlinear optical materials are used to generate new frequencies by exploiting second-harmonic generation (SHG), a phenomenon where a nonlinear material generates light at double the optical frequency of the input beam. Maximum SHG is achieved when the pump and the generated waves are in phase, for example through birefringence in uniaxial crystals. However, applying these materials usually requires a complicated cutting procedure to yield a crystal with a particular orientation. Here we demonstrate the first example of phase matching under the normal incidence of SHG in a biaxial monoclinic single crystal of zinc tungstate. The crystal was grown by the micro-pulling-down method with the (102) plane perpendicular to the growth direction. Additionally, at the same time white light was generated as a result of stimulated Raman scattering and multiphoton luminescence induced by higher-order effects such as three-photon luminescence enhanced by cascaded third-harmonic generation. The annealed crystal offers SHG intensities approximately four times larger than the as grown one; optimized growth and annealing conditions may lead to much higher SHG intensities.
Nonlinear Silicon Photonics: Extending Platforms, Control, and Applications
NASA Astrophysics Data System (ADS)
Miller, Steven Andrew
Silicon photonics is a revolutionary technology that enables the control of light inside a silicon chip and holds promise to impact many applications from data center optical interconnects to optical sensing and even quantum optics. The tight confinement of light inside these chips greatly enhances light-matter interactions, making this an ideal platform for nonlinear photonics. Recently, microresonator-based Kerr frequency comb generation has become a prevalent emerging field, enabling the generation of a broadband optical pulse train by inputting a low-power continuous-wave laser into a low-loss chip-scale micro-cavity. These chip-scale combs have a wide variety of applications, including optical clocks, optical spectroscopy, and data communications. Several important applications in biological, chemical and atmospheric areas require combs generated in the visible and mid-infrared wavelength ranges, where there has been far less research and development compared with the near-infrared. Additionally, most platforms widely for combs are passive, limiting the ability to control and optimize the frequency combs. In this dissertation, we set out to address these shortcomings and introduce new tunability as well as wavelength flexibility in order to enable new applications for microresonator frequency combs. The silicon nitride platform for near-infrared combs is generally a passive platform with limited tuning capabilities. We overcome dispersion limitations in the visible range by leveraging the second-order nonlinearity of silicon nitride and demonstrate visible comb lines. We then further investigate the second-order nonlinearity of silicon nitride by measuring the linear electro-optic effect, a potential tuning mechanism. Finally, we introduce thermal tuning onto the silicon nitride platform and demonstrate tuning of the resonance extinction and dispersion of a micro-cavity using a coupled cavity design. We also address the silicon mid-infrared frequency comb platform. The transparency range of the traditional silicon platform prohibits operation beyond 4 mum wavelength. Here we show that a silicon photonics platform can be leveraged for broadband mid-infrared operation without introducing complexity in fabrication. Both an air-clad and fully suspended silicon platform can enable broadband, low-loss propagation and comb generation as high as 6 mum. We demonstrate a high quality factor resonator near 4 mum wavelength, more than an order of magnitude higher than the traditional platform. Finally, we discuss future avenues of research building on the work presented here.
Femtosecond Kerr index of cyclic olefin co/polymers for THz nonlinear optics
NASA Astrophysics Data System (ADS)
Noskovicova, E.; Lorenc, D.; Slusna, L.; Velic, D.
2016-10-01
The second-order nonlinear refractive index n2 (Kerr index) of cyclic olefin copolymer (TOPAS) and cyclic olefin polymers (ZEONEX, ZEONOR) was determined at the wavelength of 800 nm within this work. Bulk samples of ZEONEX, ZEONOR and TOPAS were measured using the single-beam Z-scan technique and the values of their nonlinear refractive index were determined to be approximately 2 × 10-20 m2W-1 for all cases. The obtained values of n2 play a vital role for ultrafast pulse evolution and corresponding phenomena such as nonlinear spectral transformation.
Continuous-Variable Triple-Photon States Quantum Entanglement
NASA Astrophysics Data System (ADS)
González, E. A. Rojas; Borne, A.; Boulanger, B.; Levenson, J. A.; Bencheikh, K.
2018-01-01
We investigate the quantum entanglement of the three modes associated with the three-photon states obtained by triple-photon generation in a phase-matched third-order nonlinear optical interaction. Although the second-order processes have been extensively dealt with, there is no direct analogy between the second and third-order mechanisms. We show, for example, the absence of quantum entanglement between the quadratures of the three modes in the case of spontaneous parametric triple-photon generation. However, we show robust, seeding-dependent, genuine triple-photon entanglement in the fully seeded case.
Continuous-Variable Triple-Photon States Quantum Entanglement.
González, E A Rojas; Borne, A; Boulanger, B; Levenson, J A; Bencheikh, K
2018-01-26
We investigate the quantum entanglement of the three modes associated with the three-photon states obtained by triple-photon generation in a phase-matched third-order nonlinear optical interaction. Although the second-order processes have been extensively dealt with, there is no direct analogy between the second and third-order mechanisms. We show, for example, the absence of quantum entanglement between the quadratures of the three modes in the case of spontaneous parametric triple-photon generation. However, we show robust, seeding-dependent, genuine triple-photon entanglement in the fully seeded case.
NASA Astrophysics Data System (ADS)
Wen, Xiao-Yong; Zhang, Guoqiang
2018-01-01
Under investigation in this paper is the Kundu equation, which may be used to describe the propagation process of ultrashort optical pulses in nonlinear optics. The modulational instability of the plane-wave for the possible reason of the formation of the rogue wave (RW) is studied for the system. Based on our proposed generalized perturbation (n,N - n)-fold Darboux transformation (DT), some new higher-order implicit RW solutions in terms of determinants are obtained by means of the generalized perturbation (1,N - 1)-fold DT, when choosing different special parameters, these results will reduce to the RW solutions of the Kaup-Newell (KN) equation, Chen-Lee-Liu (CLL) equation and Gerjikov-Ivanov (GI) equation, respectively. The relevant wave structures are shown graphically, which display abundant interesting wave structures. The dynamical behaviors and propagation stability of the first-order and second-order RW solutions are discussed by using numerical simulations, the higher-order nonlinear terms for the Kundu equation have an impact on the propagation instability of the RW. The method can also be extended to find the higher-order RW or rational solutions of other integrable nonlinear equations.
NASA Astrophysics Data System (ADS)
Dalstein, L.; Revel, A.; Humbert, C.; Busson, B.
2018-04-01
We experimentally determine the effective nonlinear second-order susceptibility of gold over the visible spectral range. To reach that goal, we probe by vibrational two-color sum-frequency generation spectroscopy the methyl stretching region of a dodecanethiol self-assembled monolayer adsorbed on a gold film. The sum-frequency generation spectra show a remarkable shape reversal when the visible probe wavelength is tuned from 435 to 705 nm. After correcting from Fresnel effects, the methyl stretching vibrations serve as an internal reference, allowing to extract the dispersion of the absolute phase and relative amplitude of the effective nonlinear optical response of gold in the visible range.
Layer-Dependent Third-Harmonic Generation in Graphene
NASA Astrophysics Data System (ADS)
Yang, Hao; Guan, Honghua; Dadap, Jerry; Osgood, Richard; Richard Osgood Team
Graphene has become a subject of intense interest and study because of its remarkable 2D electronic properties. Multilayer graphene also offers an array of properties that are also of interest for optical physics and devices. Despite its second-order-nonlinear optical response is intrinsically weak, third-order nonlinear optical effects in graphene are symmetry-allowed thus leading to studies of several third-order process in few-layer graphene. In this work, we report third-harmonic generation in multilayer graphene mounted on fused silica and with thicknesses which approach the bulk continuum. THG signals show cubic power dependence with respect to the intensity of fundamental beam. Third-harmonic generation spectroscopy enables a good fit using linear optical detection, which shows strong contrast for different layer number graphene. The maximum THG efficiency appears at layer number around 30. Two models are used for describing this layer dependent phenomenon and shows absorption plays a key role in THG of multilayer graphene. This work also provides a new imaging technology for graphene detection and identification with better contrast and resolution. U.S. Department of Energy under Contract No. DE-FG 02-04-ER-46157.
Decrease and enhancement of third-order optical nonlinearity in metal-dielectric composite films
NASA Astrophysics Data System (ADS)
Ning, Tingyin; Lu, Heng; Zhou, Yueliang; Man, Baoyuan
2018-04-01
We investigate third-order optical nonlinearity in gold nanoparticles embedded in CaCu3Ti4O12 (CCTO) films using the Z-scan method. We observe that the effective third-order nonlinear optical susceptibilities in such composite films can not only be enhanced, in line with the conventional behavior, but also be decreased, depending on the volume concentration of gold. In particular, the nonlinear absorption behavior can be changed from saturable absorption in pure CCTO films to reversed saturable absorption in composite films, and theoretically, even zero nonlinear absorption could be obtained. These results indicate that it should be possible to tune the third-order optical nonlinearity in Au:CCTO composite films by altering the gold concentration, thus making them suitable for applications in photonic devices.
Tunable ultraviolet radiation by second-harmonic generation in periodically poled lithium tantalate.
Meyn, J P; Fejer, M M
1997-08-15
We describe electric-field poling of fine-pitch ferroelectric domain gratings in lithium tantalate and characterization of nonlinear-optical properties by single-pass quasi-phase-matched second-harmonic generation (QPM SHG). With a 7.5-microm-period grating, the observed effective nonlinear coefficient for first-order QPM SHG of 532-nm radiation is 9 pm/V, whereas for a grating with a 2.625-microm period, 2.6 pm/V was observed for second-order QPM SHG of 325-nm radiation. These values are 100% and 55% of the theoretically expected values, respectively. We derive a temperature-dependent Sellmeier equation for lithium tantalate that is valid deeper into the UV than currently available results, based on temperature-tuning experiments at different QPM grating periods combined with refractive-index data in the literature.
NASA Astrophysics Data System (ADS)
Sun, Zhiyuan; Basov, Dimitri; Fogler, Michael
We study theoretically the second-order nonlinear optical conductivity σ (2) of graphene as a function of frequency and momentum. We distinguish two regimes. At frequencies ω higher than the temperature-dependent electron-electron collision rate γee- 1 , the conductivity σ (2) can be derived from the semiclassical kinetic equation. The calculation requires taking into account the photon drag (Lorentz force) due to the ac magnetic field. In the low-frequency hydrodynamic regime ω <<γee- 1 , the nonlinear conductivity has a different form and the photon drag effect is suppressed. As a consequence of the nonlinearity, a strong enough photoexcitation can cause spontaneous generation of collective modes in a graphene strip: plasmons in the high-frequency regime and energy waves (demons) in the hydrodynamic one. The dominant instability occurs at frequency ω / 2 .
Ultrafast light-induced symmetry changes in single BaTiO 3 nanowires
Kuo, Yi -Hong; Nah, Sanghee; He, Kai; ...
2017-01-23
The coupling of light to nanoscale ferroelectric materials enables novel means of controlling their coupled degrees of freedom and engineering new functionality. Here we present femtosecond time-resolution nonlinear-optical measurements of light-induced dynamics within single ferroelectric barium titanate nanowires. By analyzing the time-dependent and polarization-dependent second harmonic intensity generated by the nanowire, we identify its crystallographic orientation and then make use of this information in order to probe its dynamic structural response and change in symmetry. Here, we show that photo-excitation leads to ultrafast, non-uniform modulations in the second order nonlinear susceptibility tensor, indicative of changes in the local symmetry ofmore » the nanostructure occurring on sub-picosecond time-scales.« less
Nanoantenna harmonic sensor: theoretical analysis of contactless detection of molecules with light
NASA Astrophysics Data System (ADS)
Farhat, Mohamed; Cheng, Mark M. C.; Le, Khai Q.; Chen, Pai-Yen
2015-10-01
The nonlinear harmonic sensor is a popular wireless sensor and radiofrequency identification (RFID) technique, which allows high-performance sensing in a severe interference/clutter background by transmitting a radio wave and detecting its modulated higher-order harmonics. Here we introduce the concept and design of optical harmonic tags based on nonlinear nanoantennas that can contactlessly detect electronic (e.g. electron affinity) and optical (e.g. relative permittivity) characteristics of molecules. By using a dual-resonance gold-molecule-silver nanodipole antenna within the quantum mechanical realm, the spectral form of the second-harmonic scattering can sensitively reveal the physical properties of molecules, paving a new route towards optical molecular sensors and optical identification (OPID) of biological, genetic, and medical events for the ‘Internet of Nano-Things’.
Nanoantenna harmonic sensor: theoretical analysis of contactless detection of molecules with light.
Farhat, Mohamed; Cheng, Mark M C; Le, Khai Q; Chen, Pai-Yen
2015-10-16
The nonlinear harmonic sensor is a popular wireless sensor and radiofrequency identification (RFID) technique, which allows high-performance sensing in a severe interference/clutter background by transmitting a radio wave and detecting its modulated higher-order harmonics. Here we introduce the concept and design of optical harmonic tags based on nonlinear nanoantennas that can contactlessly detect electronic (e.g. electron affinity) and optical (e.g. relative permittivity) characteristics of molecules. By using a dual-resonance gold-molecule-silver nanodipole antenna within the quantum mechanical realm, the spectral form of the second-harmonic scattering can sensitively reveal the physical properties of molecules, paving a new route towards optical molecular sensors and optical identification (OPID) of biological, genetic, and medical events for the 'Internet of Nano-Things'.
NASA Astrophysics Data System (ADS)
Du, Zhong; Tian, Bo; Wu, Xiao-Yu; Liu, Lei; Sun, Yan
2017-07-01
Subpicosecond or femtosecond optical pulse propagation in the inhomogeneous fiber can be described by a higher-order nonlinear Schrödinger equation with variable coefficients, which is investigated in the paper. Via the Ablowitz-Kaup-Newell-Segur system and symbolic computation, the Lax pair and infinitely-many conservation laws are deduced. Based on the Lax pair and a modified Darboux transformation technique, the first- and second-order rogue wave solutions are constructed. Effects of the groupvelocity dispersion and third-order dispersion on the properties of the first- and second-order rouge waves are graphically presented and analyzed: The groupvelocity dispersion and third-order dispersion both affect the ranges and shapes of the first- and second-order rogue waves: The third-order dispersion can produce a skew angle of the first-order rogue wave and the skew angle rotates counterclockwise with the increase of the groupvelocity dispersion, when the groupvelocity dispersion and third-order dispersion are chosen as the constants; When the groupvelocity dispersion and third-order dispersion are taken as the functions of the propagation distance, the linear, X-shaped and parabolic trajectories of the rogue waves are obtained.
NASA Astrophysics Data System (ADS)
Ushiwata, Takami; Okamoto, Etsuya; Komatsu, Kyoji; Kaino, Toshikuni
2001-06-01
Novel second order nonlinear optical (NLO) polymethacrylate or polyacrylate polymers with high glass transition temperatures containing an azo dye attached as side-chain have been prepared using a new approach from polymethacrylic acid or polyacrylic acid as starting materials. Glass transition temperatures of 150 approximately 170 degree Celsius were obtained for Disperse red 1 dye attached polymethacrylic acid. These are attributed to the hydrogen bonding between the residual carboxyl groups in the starting polymers. Poled films by corona poling exhibited large NLO susceptibilities, (chi) (2)33 up to 53 pm/V at a wavelength of 1.3 micrometer. Due to the high glass transition temperatures of the polymers, long-term stability of the optical nonlinearity at 100 degrees Celsius was observed for 200 hrs or more. However residual carboxyl groups caused absorbance decrease mainly by hydrolysis of the ester bonds of the polymers investigated by UV-Vis absorption measurement. The stability of induced polar order of the NLO polymer was enhanced by using aminoalkyl chromophore and imidizing it thermally to introduce imide structure into the polymer main-chain. This imidized polymer exhibited (chi) (2)33 of 45 pm/V at a wavelength of 1.3 micrometer and maintained about 90% of the initial value after 230 hrs or more at 100 degrees Celsius.
Substituent Dependence of Third-Order Optical Nonlinearity in Chalcone Derivatives
NASA Astrophysics Data System (ADS)
Kiran, Anthony John; Satheesh Rai, Nooji; Chandrasekharan, Keloth; Kalluraya, Balakrishna; Rotermund, Fabian
2008-08-01
The third-order nonlinear optical properties of derivatives of dibenzylideneacetone were investigated using the single beam z-scan technique at 532 nm. A strong dependence of third-order optical nonlinearity on electron donor and acceptor type of substituents was observed. An enhancement in χ(3)-value of one order of magnitude was achieved upon the substitution of strong electron donors compared to that of the molecule substituted with an electron acceptor. The magnitude of nonlinear refractive index of these chalcones is as high as of 10-11 esu. Their nonlinear optical coefficients are larger than those of widely used thiophene oligomers and trans-1-[p-(p-dimethylaminobenzyl-azo)-benzyl]-2-(N-methyl-4-pyridinium)-ethene iodide (DABA-PEI) organic compounds.
Li, Xiujian; Liao, Jiali; Nie, Yongming; Marko, Matthew; Jia, Hui; Liu, Ju; Wang, Xiaochun; Wong, Chee Wei
2015-04-20
We demonstrate the temporal and spectral evolution of picosecond soliton in the slow light silicon photonic crystal waveguides (PhCWs) by sum frequency generation cross-correlation frequency resolved optical grating (SFG-XFROG) and nonlinear Schrödinger equation (NLSE) modeling. The reference pulses for the SFG-XFROG measurements are unambiguously pre-characterized by the second harmonic generation frequency resolved optical gating (SHG-FROG) assisted with the combination of NLSE simulations and optical spectrum analyzer (OSA) measurements. Regardless of the inevitable nonlinear two photon absorption, high order soliton compressions have been observed remarkably owing to the slow light enhanced nonlinear effects in the silicon PhCWs. Both the measurements and the further numerical analyses of the pulse dynamics indicate that, the free carrier dispersion (FCD) enhanced by the slow light effects is mainly responsible for the compression, the acceleration, and the spectral blue shift of the soliton.
Optical sideband generation up to room temperature with mid-infrared quantum cascade lasers.
Houver, S; Cavalié, P; St-Jean, M Renaudat; Amanti, M I; Sirtori, C; Li, L H; Davies, A G; Linfield, E H; Pereira, T A S; Lebreton, A; Tignon, J; Dhillon, S S
2015-02-23
Mid-infrared (MIR) sideband generation on a near infrared (NIR) optical carrier is demonstrated within a quantum cascade laser (QCL). By employing an externally injected NIR beam, E(NIR), that is resonant with the interband transitions of the quantum wells in the QCL, the nonlinear susceptibility is enhanced, leading to both frequency mixing and sideband generation. A GaAs-based MIR QCL (E(QCL) = 135 meV) with an aluminum-reinforced waveguide was utilized to overlap the NIR and MIR modes with the optical nonlinearity of the active region. The resulting difference sideband (E(NIR) - E(QCL)) shows a resonant behavior as a function of NIR pump wavelength and a maximum second order nonlinear susceptibility, χ((2)), of ~1 nm/V was obtained. Further, the sideband intensity showed little dependence with the operating temperature of the QCL, allowing sideband generation to be realized at room temperature.
NASA Astrophysics Data System (ADS)
Saravanan, M.
2016-08-01
The crystals (dimethyl amino pyridinium 4-nitrophenolate 4-nitrophenol [DMAPNP] suitable for NLO applications were grown by the slow cooling method. The solubility and metastable zone width measurement of DMAPNP specimen was studied. The material crystallizes in the orthorhombic crystal system with noncentrosymmetric space group of P212121. The ocular precision in the intact visible region was found to be good for non-linear optical claim. Quality of the grown crystal is ascertained by the HRXRD and etching studies. Laser Damage Threshold and Photoluminescence studies designate that the grown crystal contains less imperfection. The mechanical behaviour of DMAPNP sample at different temperatures was investigated to determine the hardness stability of the grown specimen. The piezoelectric temperament and the relative Second Harmonic Generation (for diverse particle sizes) of the material were also studied. The third order nonlinear optical properties of DMAPNP crystals were premeditated by Z-scan method. Birefringence and optical homogeneity of the crystal were evaluated using modified channel spectrum method. The half wave voltage of the grown crystal deliberate from the elector optic experimentation. Photoconductivity measurement specified consummate of inducing dipoles owing to brawny incident radiation and also disclose the nonlinear activities of the grown specimen.
Synthesis of a polar ordered oxynitride perovskite
NASA Astrophysics Data System (ADS)
Vadapoo, Rajasekarakumar; Ahart, Muhtar; Somayazulu, Maddury; Holtgrewe, Nicholas; Meng, Yue; Konopkova, Zuzana; Hemley, Russell J.; Cohen, R. E.
2017-06-01
For decades, numerous attempts have been made to produce polar oxynitride perovskites, where some of the oxygen is replaced by nitrogen, but a polar ordered oxynitride has never been demonstrated. Caracas and Cohen [Appl. Phys. Lett. 91, 092902 (2007), 10.1063/1.2776370] studied possible ordered polar oxynitrides within density-functional theory (DFT) and found a few candidates that were predicted to be insulating and at least metastable. YSi O2N stood out with huge predicted polarization and nonlinear optic coefficients. In this study, we demonstrate the synthesis of perovskite-structured YSi O2N by using a combination of a diamond-anvil cell and in situ laser-heating techniques. Subsequent in situ x-ray diffraction, second-harmonic generation, and Raman-scattering measurements confirm that it is polar and a strong nonlinear optical material, with structure and properties similar to those predicted by DFT.
Synthesis of a polar ordered oxynitride perovskite
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vadapoo, Rajasekarakumar; Ahart, Muhtar; Somayazulu, Maddury
For decades, numerous attempts have been made to produce polar oxynitride perovskites, where some of the oxygen is replaced by nitrogen, but a polar ordered oxynitride has never been demonstrated. Caracas and Cohen [Appl. Phys. Lett. 91, 092902 (2007)] studied possible ordered polar oxynitrides within density-functional theory (DFT) and found a few candidates that were predicted to be insulating and at least metastable. YSi O 2 N stood out with huge predicted polarization and nonlinear optic coefficients. In this study, we demonstrate the synthesis of perovskite-structured YSi O 2 N by using a combination of a diamond-anvil cell and inmore » situ laser-heating techniques. Subsequent in situ x-ray diffraction, second-harmonic generation, and Raman-scattering measurements confirm that it is polar and a strong nonlinear optical material, with structure and properties similar to those predicted by DFT.« less
The Dynamics and Evolution of Poles and Rogue Waves for Nonlinear Schrödinger Equations*
NASA Astrophysics Data System (ADS)
Chiu, Tin Lok; Liu, Tian Yang; Chan, Hiu Ning; Wing Chow, Kwok
2017-09-01
Rogue waves are unexpectedly large deviations from equilibrium or otherwise calm positions in physical systems, e.g. hydrodynamic waves and optical beam intensities. The profiles and points of maximum displacements of these rogue waves are correlated with the movement of poles of the exact solutions extended to the complex plane through analytic continuation. Such links are shown to be surprisingly precise for the first order rogue wave of the nonlinear Schrödinger (NLS) and the derivative NLS equations. A computational study on the second order rogue waves of the NLS equation also displays remarkable agreements.
Optical ranked-order filtering using threshold decomposition
Allebach, Jan P.; Ochoa, Ellen; Sweeney, Donald W.
1990-01-01
A hybrid optical/electronic system performs median filtering and related ranked-order operations using threshold decomposition to encode the image. Threshold decomposition transforms the nonlinear neighborhood ranking operation into a linear space-invariant filtering step followed by a point-to-point threshold comparison step. Spatial multiplexing allows parallel processing of all the threshold components as well as recombination by a second linear, space-invariant filtering step. An incoherent optical correlation system performs the linear filtering, using a magneto-optic spatial light modulator as the input device and a computer-generated hologram in the filter plane. Thresholding is done electronically. By adjusting the value of the threshold, the same architecture is used to perform median, minimum, and maximum filtering of images. A totally optical system is also disclosed.
Kumar, K Vasanth
2007-04-02
Kinetic experiments were carried out for the sorption of safranin onto activated carbon particles. The kinetic data were fitted to pseudo-second order model of Ho, Sobkowsk and Czerwinski, Blanchard et al. and Ritchie by linear and non-linear regression methods. Non-linear method was found to be a better way of obtaining the parameters involved in the second order rate kinetic expressions. Both linear and non-linear regression showed that the Sobkowsk and Czerwinski and Ritchie's pseudo-second order models were the same. Non-linear regression analysis showed that both Blanchard et al. and Ho have similar ideas on the pseudo-second order model but with different assumptions. The best fit of experimental data in Ho's pseudo-second order expression by linear and non-linear regression method showed that Ho pseudo-second order model was a better kinetic expression when compared to other pseudo-second order kinetic expressions.
Photoinduced second-order optical susceptibilities of Er 2O 3 doped TeO 2-GeO 2-PbO glasses
NASA Astrophysics Data System (ADS)
Kassab, L. R. P.; Pinto, R. de A.; Kobayashi, R. A.; Piasecki, M.; Bragiel, P.; Kityk, I. V.
2007-06-01
Second-order optical susceptibilities were established in the optically poled erbium doped tellurite glasses near the melting temperature. The non-linear optical susceptibility was formed by bicolor coherent optical treatment performed by two coherent laser beams originated from 50 ps Nd-YAG laser ( λ = 1.32 μm) exciting the high pressure hydrogen laser cell emitting at 1907 nm. The non-centrosymmetric grating of the medium was created by coherent superposition of the fundamental laser illumination at 1907 nm and the doubled frequency one at 953.5 nm. The maximally all-optically poled SHG occurs for 2% doped Er 2O 3 (in weighting units) TeO 2-GeO 2-PbO glass. It was found that the photoinduced SHG demonstrates a saturation during the photo-treatment of 9-10 min using the two beams polarized at angle about 45° between them. During the coherent bicolor optical treatment it was achieved the value of second-order susceptibility up to 3.6 pm/V at 1907 nm. The optimal ratio between the fundamental beam with power density about 1.1 GW/cm 2 and writing doubled frequency seeding beam about 0.015 GW/cm 2 corresponds to the maximal of photoinduced SHG. For glasses with lower concentration of Er 2O 3, the relaxation of the second-order optical susceptibility is substantially longer and achieves SHG value that corresponds to 80% of the maximal ones. It is necessary to emphasize that efficient optically-poled grating exists only within the narrow temperature range near the glassing temperature. Possible physical mechanisms of the phenomenon observed are discussed. Generally the used glasses possess better parameters than early investigated germinate glasses.
Polycarbonate-Based Blends for Optical Non-linear Applications.
Stanculescu, F; Stanculescu, A
2016-12-01
This paper presents some investigations on the optical and morphological properties of the polymer (matrix):monomer (inclusion) composite materials obtained from blends of bisphenol A polycarbonate and amidic monomers. For the preparation of the composite films, we have selected monomers characterised by a maleamic acid structure and synthesised them starting from maleic anhydride and aniline derivatives with -COOH, -NO2, -N(C2H5)2 functional groups attached to the benzene ring. The composite films have been deposited by spin coating using a mixture of two solutions, one containing the matrix and the other the inclusion, both components of the composite system being dissolved in the same solvent. The optical transmission and photoluminescence properties of the composite films have been investigated in correlation with the morphology of the films. The scanning electron microscopy and atomic force microscopy have revealed a non-uniform morphology characterised by the development of two distinct phases. We have also investigated the generation of some optical non-linear (ONL) phenomena in these composite systems. The composite films containing as inclusions monomers characterised by the presence of one -COOH or two -NO2 substituent groups to the aromatic nucleus have shown the most intense second-harmonic generation (SHG). The second-order optical non-linear coefficients have been evaluated for these films, and the effect of the laser power on the ONL behaviour of these materials has also been emphasised.
Polycarbonate-Based Blends for Optical Non-linear Applications
NASA Astrophysics Data System (ADS)
Stanculescu, F.; Stanculescu, A.
2016-02-01
This paper presents some investigations on the optical and morphological properties of the polymer (matrix):monomer (inclusion) composite materials obtained from blends of bisphenol A polycarbonate and amidic monomers. For the preparation of the composite films, we have selected monomers characterised by a maleamic acid structure and synthesised them starting from maleic anhydride and aniline derivatives with -COOH, -NO2, -N(C2H5)2 functional groups attached to the benzene ring. The composite films have been deposited by spin coating using a mixture of two solutions, one containing the matrix and the other the inclusion, both components of the composite system being dissolved in the same solvent. The optical transmission and photoluminescence properties of the composite films have been investigated in correlation with the morphology of the films. The scanning electron microscopy and atomic force microscopy have revealed a non-uniform morphology characterised by the development of two distinct phases. We have also investigated the generation of some optical non-linear (ONL) phenomena in these composite systems. The composite films containing as inclusions monomers characterised by the presence of one -COOH or two -NO2 substituent groups to the aromatic nucleus have shown the most intense second-harmonic generation (SHG). The second-order optical non-linear coefficients have been evaluated for these films, and the effect of the laser power on the ONL behaviour of these materials has also been emphasised.
NASA Astrophysics Data System (ADS)
Martínez-Orozco, J. C.; Rojas-Briseño, J. G.; Rodríguez-Magdaleno, K. A.; Rodríguez-Vargas, I.; Mora-Ramos, M. E.; Restrepo, R. L.; Ungan, F.; Kasapoglu, E.; Duque, C. A.
2017-11-01
In this paper we are reporting the computation for the Nonlinear Optical Rectification (NOR) and the Second and Third Harmonic Generation (SHG and THG) related with electronic states of asymmetric double Si-δ-doped quantum well in a GaAs matrix when this is subjected to an in-plane (x-oriented) constant magnetic field effect. The work is performed in the effective mass and parabolic band approximations in order to compute the electronic structure for the system by a diagonalization procedure. The expressions for the nonlinear optical susceptibilities, χ0(2), χ2ω(2), and χ3ω(3), are those arising from the compact matrix density formulation and stand for the NOR, SHG, and THG, respectively. This asymmetric double δ-doped quantum well potential profile actually exhibits nonzero NOR, SHG, and THG responses which can be easily controlled by the in-plane (x-direction) externally applied magnetic field. In particular we find that for the chosen configuration the harmonic generation is in the far-infrared/THz region, thus and becoming suitable building blocks for photodetectors in this range of the electromagnetic spectra.
Third-order nonlinear optical properties of ADP crystal
NASA Astrophysics Data System (ADS)
Wang, Mengxia; Wang, Zhengping; Chai, Xiangxu; Sun, Yuxiang; Sui, Tingting; Sun, Xun; Xu, Xinguang
2018-05-01
By using the Z-scan method, we investigated the third-order nonlinear optical (NLO) properties of ADP crystal at different wavelengths (355, 532, and 1064 nm) and different orientations ([001], [100], [110], I and II). The experimental data were fitted by NLO theory, to give out the two photon absorption (TPA) coefficient β 2 and the nonlinear refractive index n 2. When the light source changed from a 40 ps, 1064 nm fundamental laser to a 30 ps, 355 nm third-harmonic-generation (THG) laser, the β 2 value increased about 5 times (0.2 × 10‑2 → 1 × 10‑2 cm GW‑1), and the n 2 value increased about 1.5 times (1.5 × 10‑16 → 2.2 × 10‑16 cm2 W‑1). Among all of the orientations, the [110] sample exhibits the smallest β 2, and the second smallest n 2. It indicates that this orientation and its surroundings will be the preferred directions for high-power laser applications of ADP crystal.
NASA Astrophysics Data System (ADS)
Maidur, Shivaraj R.; Patil, Parutagouda Shankaragouda; Ekbote, Anusha; Chia, Tze Shyang; Quah, Ching Kheng
2017-09-01
In the present work, the title chalcone, (2E)-3-(4-fluorophenyl)-1-(4-{[(1E)-(4-fluorophenyl) methylene]amino}phenyl)prop-2-en-1-one (abbreviated as FAMFC), was synthesized and structurally characterized by single-crystal X-ray diffraction. The compound is crystallized in the monoclinic system with non-centrosymmetric space group P21 and hence it satisfies the essential condition for materials to exhibit second-order nonlinear optical properties. The molecular structure was further confirmed by using FT-IR and 1H NMR spectroscopic techniques. The title crystal is transparent in the Vis-NIR region and has a direct band gap. The third-order nonlinear optical properties were investigated in solution (0.01 M) by Z-scan technique using a continuous wave (CW) DPSS laser at the wavelength of 532 nm. The title chalcone exhibited significant two-photon absorption (β = 35.8 × 10- 5 cm W- 1), negative nonlinear refraction (n2 = - 0.18 × 10- 8 cm2 W- 1) and optical limiting (OL threshold = 2.73 kJ cm- 2) under the CW regime. In support of the experimental results, a comprehensive theoretical study was carried out on the molecule of FAMFC using density functional theory (DFT). The optimized geometries and frontier molecular orbitals were calculated by employing B3LYP/6-31 + G level of theory. The optimized molecular structure was confirmed computationally by IR vibrational and 1H NMR spectral analysis. The experimental UV-Vis-NIR spectrum was interpreted using computational chemistry under time-dependent DFT. The static and dynamic NLO properties such as dipole moments (μ), polarizability (α), and first hyperpolarizabilities (β) were computed by using finite field method. The obtained dynamic first hyperpolarizability β(- 2ω;ω,ω) at input frequency ω = 0.04282 a.u. is predicted to be 161 times higher than urea standard. The electronic excitation energies and HOMO-LUMO band gap for FAMFC were also evaluated by DFT. The experimental and theoretical results are in good agreement, and the NLO study suggests that FAMFC molecule can be a potential candidate in the nonlinear optical applications.
Maidur, Shivaraj R; Patil, Parutagouda Shankaragouda; Ekbote, Anusha; Chia, Tze Shyang; Quah, Ching Kheng
2017-09-05
In the present work, the title chalcone, (2E)-3-(4-fluorophenyl)-1-(4-{[(1E)-(4-fluorophenyl) methylene]amino}phenyl)prop-2-en-1-one (abbreviated as FAMFC), was synthesized and structurally characterized by single-crystal X-ray diffraction. The compound is crystallized in the monoclinic system with non-centrosymmetric space group P2 1 and hence it satisfies the essential condition for materials to exhibit second-order nonlinear optical properties. The molecular structure was further confirmed by using FT-IR and 1 H NMR spectroscopic techniques. The title crystal is transparent in the Vis-NIR region and has a direct band gap. The third-order nonlinear optical properties were investigated in solution (0.01M) by Z-scan technique using a continuous wave (CW) DPSS laser at the wavelength of 532nm. The title chalcone exhibited significant two-photon absorption (β=35.8×10 -5 cmW -1 ), negative nonlinear refraction (n 2 =-0.18×10 -8 cm 2 W -1 ) and optical limiting (OL threshold=2.73kJcm -2 ) under the CW regime. In support of the experimental results, a comprehensive theoretical study was carried out on the molecule of FAMFC using density functional theory (DFT). The optimized geometries and frontier molecular orbitals were calculated by employing B3LYP/6-31+G level of theory. The optimized molecular structure was confirmed computationally by IR vibrational and 1 H NMR spectral analysis. The experimental UV-Vis-NIR spectrum was interpreted using computational chemistry under time-dependent DFT. The static and dynamic NLO properties such as dipole moments (μ), polarizability (α), and first hyperpolarizabilities (β) were computed by using finite field method. The obtained dynamic first hyperpolarizability β(-2ω;ω,ω) at input frequency ω=0.04282a.u. is predicted to be 161 times higher than urea standard. The electronic excitation energies and HOMO-LUMO band gap for FAMFC were also evaluated by DFT. The experimental and theoretical results are in good agreement, and the NLO study suggests that FAMFC molecule can be a potential candidate in the nonlinear optical applications. Copyright © 2017 Elsevier B.V. All rights reserved.
Application of classical models of chirality to optical rectification
NASA Astrophysics Data System (ADS)
Wang, Xiao-Ou; Gong, Li-Jing; Li, Chun-Fei
2008-08-01
Classical models of chirality are used to investigate the optical rectification effect in chiral molecular media. Calculation of the zero frequency first hyperpolarizabilities of chiral molecules with different structures is performed and applied to the derivation of a dc electric-dipole polarization. The expression of second-order nonlinear static-electric-dipole susceptibilities is obtained by theoretical derivation in the isotropic chiral thin films. The microscopic mechanism producing optical rectification is analyzed in view of this calculation. We find that optical rectification is derived from interaction between the electric field gradient (spatial dispersion) and chiral molecules in optically active liquids and solution by our calculation, which is consistent with the result given by Woźniak and Wagnière [Opt. Commun. 114, 131 (1995)]: The optical rectification depends on the fourth-order electric-dipole susceptibilities.
NASA Technical Reports Server (NTRS)
Leslie, Thomas M.
1995-01-01
Data obtained from the electric field induced second harmonic generation (EFISH) and Kurtz Powder Methods will be provided to MSFC for further refinement of their method. A theoretical model for predicting the second-order nonlinearities of organic salts is being worked on. Another task is the synthesis of a number of salts with various counterions. Several salts with promising SHG activities and new salts will be tested for the presence of two crystalline forms. The materials will be recrystallized from dry and wet solvents and compared for SHG efficiency. Salts that have a high SHG efficiency and no tendency to form hydrates will be documented. The synthesis of these materials are included in this report. A third task involves method to aid in the growth of large, high quality single crystals by solution processes. These crystals will be characterized for their applicability in the fabrication of devices that will be incorporated into optical computers in future programs. Single crystals of optimum quality may be obtained by crystal growth in low-gravity. The final task is the design of a temperature lowering single crystal growth apparatus for ground based work. At least one prototype will be built.
NASA Astrophysics Data System (ADS)
Rajesh, K.; Arun, A.; Mani, A.; Praveen Kumar, P.
2016-10-01
The 4-methylimidazolium picrate has been synthesized and characterized successfully. Single and powder x-ray diffraction studies were conducted which confirmed the crystal structure, and the value of the strain was calculated. The crystal perfection was determined by a HRXR diffractometer. The transmission spectrum exhibited a better transmittance of the crystal in the entire visible region with a lower cut-off wavelength of 209 nm. The linear absorption value was calculated by the optical limiting method. A birefringence study was also carried out. Second and third order nonlinear optical properties of the crystal were found by second harmonic generation and the z-scan technique. The crystals were also characterized by dielectric measurement and a photoconductivity analyzer to determine the dielectric property and the optical conductivity of the crystal. The laser damage threshold activity of the grown crystal was studied by a Q-switched Nd:YAG laser beam. Thermal studies established that the compound did not undergo a phase transition and was stable up to 240 °C.
Multipolar second harmonic generation in a symmetric nonlinear metamaterial
Wolf, Omri; Campione, Salvatore; Yang, Yuanmu; ...
2017-08-14
Optical nonlinearities are intimately related to the spatial symmetry of the nonlinear media. For example, the second order susceptibility vanishes for centrosymmetric materials under the dipole approximation. The latter concept has been naturally extended to the metamaterials’ realm, sometimes leading to the (erroneous) hypothesis that second harmonic (SH) generation is negligible in highly symmetric meta-atoms. In this work we aim to show that such symmetric meta-atoms can radiate SH light efficiently. In particular, we investigate in-plane centrosymmetric meta-atom designs where the approximation for meta-atoms breaks down. In a periodic array this building block allows us to control the directionality ofmore » the SH radiation. We conclude by showing that the use of symmetry considerations alone allows for the manipulation of the nonlinear multipolar response of a meta-atom, resulting in e.g. dipolar, quadrupolar, or multipolar emission on demand. This is because the size of the meta-atom is comparable with the free-space wavelength, thus invalidating the dipolar approximation for meta-atoms.« less
NASA Astrophysics Data System (ADS)
Yesilgul, U.; Sari, H.; Ungan, F.; Martínez-Orozco, J. C.; Restrepo, R. L.; Mora-Ramos, M. E.; Duque, C. A.; Sökmen, I.
2017-03-01
In this study, the effects of electric and magnetic fields on the optical rectification and second and third harmonic generation in asymmetric double quantum well under the intense non-resonant laser field is theoretically investigated. We calculate the optical rectification and second and third harmonic generation within the compact density-matrix approach. The theoretical findings show that the influence of electric, magnetic, and intense laser fields leads to significant changes in the coefficients of nonlinear optical rectification, second and third harmonic generation.
Dynamics of Nonlinear Excitation of the High-Order Mode in a Single-Mode Step-Index Optical Fiber
NASA Astrophysics Data System (ADS)
Burdin, V.; Bourdine, A.
2018-04-01
This work is concerned with approximate model of higher-order mode nonlinear excitation in a singlemode silica optical fiber. We present some results of simulation for step-index optical fiber under femtosecond optical pulse launching, which confirm ability of relatively stable higher-order mode excitation in such singlemode optical fiber over sufficiently narrow range of launched optical power variation.
Time-reversed wave mixing in nonlinear optics
Zheng, Yuanlin; Ren, Huaijin; Wan, Wenjie; Chen, Xianfeng
2013-01-01
Time-reversal symmetry is important to optics. Optical processes can run in a forward or backward direction through time when such symmetry is preserved. In linear optics, a time-reversed process of laser emission can enable total absorption of coherent light fields inside an optical cavity of loss by time-reversing the original gain medium. Nonlinearity, however, can often destroy such symmetry in nonlinear optics, making it difficult to study time-reversal symmetry with nonlinear optical wave mixings. Here we demonstrate time-reversed wave mixings for optical second harmonic generation (SHG) and optical parametric amplification (OPA) by exploring this well-known but underappreciated symmetry in nonlinear optics. This allows us to observe the annihilation of coherent beams. Our study offers new avenues for flexible control in nonlinear optics and has potential applications in efficient wavelength conversion, all-optical computing. PMID:24247906
Cascading second-order nonlinear processes in a lithium niobate-on-insulator microdisk.
Liu, Shijie; Zheng, Yuanlin; Chen, Xianfeng
2017-09-15
Whispering-gallery-mode (WGM) microcavities are very important in both fundamental science and practical applications, among which on-chip second-order nonlinear microresonators play an important role in integrated photonic functionalities. Here we demonstrate resonant second-harmonic generation (SHG) and cascaded third-harmonic generation (THG) in a lithium niobate-on-insulator (LNOI) microdisk resonator. Efficient SHG in the visible range was obtained with only several mW input powers at telecom wavelengths. THG was also observed through a cascading process, which reveals simultaneous phase matching and strong mode coupling in the resonator. Cascading of second-order nonlinear processes gives rise to an effectively large third-order nonlinearity, which makes on-chip second-order nonlinear microresonators a promising frequency converter for integrated nonlinear photonics.
NASA Astrophysics Data System (ADS)
Murzina, T. V.; Kim, E. M.; Kapra, R. V.; Moshnina, I. V.; Aktsipetrov, O. A.; Kurdyukov, D. A.; Kaplan, S. F.; Golubev, V. G.; Bader, M. A.; Marowsky, G.
2006-01-01
Three-dimensional magnetophotonic crystals (MPCs) based on artificial opals infiltrated by yttrium iron garnet (YIG) are fabricated and their structural, optical, and nonlinear optical properties are studied. The formation of the crystalline YIG inside the opal matrix is checked by x-ray analysis. Two templates are used for the infiltration by YIG: bare opals and those covered by a thin platinum film. Optical second-harmonic generation (SHG) technique is used to study the magnetization-induced nonlinear-optical properties of the composed MPCs. A high nonlinear magneto-optical Kerr effect in the SHG intensity is observed at the edge of the photonic band gap of the MPCs.
Samim, Masood; Sandkuijl, Daaf; Tretyakov, Ian; Cisek, Richard; Barzda, Virginijus
2013-09-09
Differential polarization nonlinear optical microscopy has the potential to become an indispensable tool for structural investigations of ordered biological assemblies and microcrystalline aggregates. Their microscopic organization can be probed through fast and sensitive measurements of nonlinear optical signal anisotropy, which can be achieved with microscopic spatial resolution by using time-multiplexed pulsed laser beams with perpendicular polarization orientations and photon-counting detection electronics for signal demultiplexing. In addition, deformable membrane mirrors can be used to correct for optical aberrations in the microscope and simultaneously optimize beam overlap using a genetic algorithm. The beam overlap can be achieved with better accuracy than diffraction limited point-spread function, which allows to perform polarization-resolved measurements on the pixel-by-pixel basis. We describe a newly developed differential polarization microscope and present applications of the differential microscopy technique for structural studies of collagen and cellulose. Both, second harmonic generation, and fluorescence-detected nonlinear absorption anisotropy are used in these investigations. It is shown that the orientation and structural properties of the fibers in biological tissue can be deduced and that the orientation of fluorescent molecules (Congo Red), which label the fibers, can be determined. Differential polarization microscopy sidesteps common issues such as photobleaching and sample movement. Due to tens of megahertz alternating polarization of excitation pulses fast data acquisition can be conveniently applied to measure changes in the nonlinear signal anisotropy in dynamically changing in vivo structures.
Efficient Second-Harmonic Generation in Nanocrystalline Silicon Nanoparticles.
Makarov, Sergey V; Petrov, Mihail I; Zywietz, Urs; Milichko, Valentin; Zuev, Dmitry; Lopanitsyna, Natalia; Kuksin, Alexey; Mukhin, Ivan; Zograf, George; Ubyivovk, Evgeniy; Smirnova, Daria A; Starikov, Sergey; Chichkov, Boris N; Kivshar, Yuri S
2017-05-10
Recent trends to employ high-index dielectric particles in nanophotonics are motivated by their reduced dissipative losses and large resonant enhancement of nonlinear effects at the nanoscale. Because silicon is a centrosymmetric material, the studies of nonlinear optical properties of silicon nanoparticles have been targeting primarily the third-harmonic generation effects. Here we demonstrate, both experimentally and theoretically, that resonantly excited nanocrystalline silicon nanoparticles fabricated by an optimized laser printing technique can exhibit strong second-harmonic generation (SHG) effects. We attribute an unexpectedly high yield of the nonlinear conversion to a nanocrystalline structure of nanoparticles supporting the Mie resonances. The demonstrated efficient SHG at green light from a single silicon nanoparticle is 2 orders of magnitude higher than that from unstructured silicon films. This efficiency is significantly higher than that of many plasmonic nanostructures and small silicon nanoparticles in the visible range, and it can be useful for a design of nonlinear nanoantennas and silicon-based integrated light sources.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nagapandiselvi, P., E-mail: nagapandiselvip@ssn.edu.in; Baby, C.; Gopalakrishnan, R.
2016-09-15
Highlights: • 2MIDP crystals were grown by slow evaporation solution growth technique. • Single crystal XRD revealed self-assembled supramolecular framework. • Z scan technique is employed for third order nonlinear optical susceptibility. • Structure-property correlation is established. - Abstract: A new semi-organic compound, 2-methyl imidazolium dihydrogen phosphate (2MIDP), was prepared and good quality single crystals of 2MIDP were grown by slow evaporation solution growth technique. Crystal structure elucidated using Single crystal XRD showed that 2MIDP crystallizes in monoclinic system with P2{sub 1}/c space group. FT-IR, UV-Vis-NIR, Fluorescence and FT-NMR spectra confirm the molecular structure of 2MIDP. The UV-Vis-NIR spectra establishedmore » the suitability of the compound for NLO applications. TG-DSC showed that 2MIDP is thermally stable up to 200 °C. Mechanical characteristics like hardness number (H{sub v}), stiffness constant (C{sub 11}), yield strength (σ{sub v}), fracture toughness (K{sub c}) and brittleness index (B{sub i}) were assessed using Vicker’s microhardness tester. Third order nonlinear optical properties determined from Z-scan measurement using femto and picosecond lasers showed two photon reverse saturable absorption. The enhancement of nonlinear optical properties in femto second laser, revealed the suitability of 2MIDP for optical limiting applications.« less
NASA Astrophysics Data System (ADS)
Boopathi, K.; Babu, S. Moorthy; Ramasamy, P.
2018-04-01
Tetrabromo (piperazinium) zincate, a new metal-organic crystal has been synthesized and its single crystal grown by slow evaporation method. The grown crystal has characterized by structural, spectral, thermal, linear and nonlinear optical properties. Single crystal X-ray diffractions study reveals that grown crystal belongs to orthorhombic crystal system with space group P212121. The presence of functional groups is identified by FT-IR spectral analysis. Thermal stability of the crystal was ascertained by TG-DTA measurement. The second order harmonic generation efficiency was measured using Kurtz and Perry technique and it was found to be 1.5 times that of KDP.
Espa, Davide; Pilia, Luca; Marchiò, Luciano; Artizzu, Flavia; Serpe, Angela; Mercuri, Maria Laura; Simão, Dulce; Almeida, Manuel; Pizzotti, Maddalena; Tessore, Francesca; Deplano, Paola
2012-03-28
The mixed-ligand dithiolene complex [Pt(Bz(2)pipdt)(dcbdt)] (1) bearing the two ligands Bz(2)pipdt = 1,4-dibenzyl-piperazine-3,2-dithione and dcbdt = dicyanobenzodithiolato, has been synthesized, characterized and studied to evaluate its second-order optical nonlinearity. The dithione/dithiolato character of the two ligands gives rise to an asymmetric distribution of the charge in the molecule. This is reflected by structural data showing that in the C(2)S(2)PtS(2)C(2) dithiolene core the four sulfur atoms define a square-planar coordination environment of the metal where the Pt-S bond distances involving the two ligands are similar, while the C-S bond distances in the C(2)S(2) units exhibit a significant difference in Bz(2)pipdt (dithione) and dcbdt (dithiolato). 1 shows a moderately strong absorption peak in the visible region, which can be related to a HOMO-LUMO transition, where the dcbdt ligand (dithiolato) contributes mostly to the HOMO, and the Bz(2)pipdt one (dithione) mostly to the LUMO. Thus this transition has ligand-to-ligand charge transfer (CT) character with some contribution of the metal and undergoes negative solvatochromism and molecular quadratic optical nonlinearity (μβ(0) = -1296 × 10(-48) esu), which was determined by the EFISH (electric-field-induced second-harmonic generation) technique and compared with the values of similar complexes on varying the dithiolato ligand (mnt = maleonitriledithiolato, dmit = 2-thioxo-1,3-dithiole-4,5-dithiolato). Theoretical calculations help to elucidate the role of the dithiolato ligands in affecting the molecular quadratic optical nonlinearity of these complexes.
Optical ranked-order filtering using threshold decomposition
Allebach, J.P.; Ochoa, E.; Sweeney, D.W.
1987-10-09
A hybrid optical/electronic system performs median filtering and related ranked-order operations using threshold decomposition to encode the image. Threshold decomposition transforms the nonlinear neighborhood ranking operation into a linear space-invariant filtering step followed by a point-to-point threshold comparison step. Spatial multiplexing allows parallel processing of all the threshold components as well as recombination by a second linear, space-invariant filtering step. An incoherent optical correlation system performs the linear filtering, using a magneto-optic spatial light modulator as the input device and a computer-generated hologram in the filter plane. Thresholding is done electronically. By adjusting the value of the threshold, the same architecture is used to perform median, minimum, and maximum filtering of images. A totally optical system is also disclosed. 3 figs.
NASA Astrophysics Data System (ADS)
Arivuselvi, R.; Babu, P. Ramesh
2018-03-01
Borates family crystals were plays vital role in the field of non linear optics (NLO) due to needs of wide range of applications. In this report, NLO crystals (potassium penta borate tetra hydrate (KB5H8O12) are grown by slow evaporation method at room temperature (28° C) and studied their physical properties. The harvested single crystals are transparent with the dimension of 12 × 10 × 6 mm3 and colourless. X-ray diffraction of single crystals reveals that the grown crystal belongs to orthorhombic system with non-centrosymmetric space group Pba2. All the absorbed functional groups are present in the order of inorganic compounds expect 1688 cm-1 because of water (Osbnd H sbnd O blending) molecule present in the pristine. Crystals show transparent in the entire visible region with 5.9 eV optical band gap and also it shows excellence in both second and third order nonlinear optical properties. Crystals can withstand upto 154 °C without any phase changes which is observed using thermal (TGA/DTA) analysis.
NASA Astrophysics Data System (ADS)
Triki, Houria; Biswas, Anjan; Milović, Daniela; Belić, Milivoj
2016-05-01
We consider a high-order nonlinear Schrödinger equation with competing cubic-quintic-septic nonlinearities, non-Kerr quintic nonlinearity, self-steepening, and self-frequency shift. The model describes the propagation of ultrashort (femtosecond) optical pulses in highly nonlinear optical fibers. A new ansatz is adopted to obtain nonlinear chirp associated with the propagating femtosecond soliton pulses. It is shown that the resultant elliptic equation of the problem is of high order, contains several new terms and is more general than the earlier reported results, thus providing a systematic way to find exact chirped soliton solutions of the septic model. Novel soliton solutions, including chirped bright, dark, kink and fractional-transform soliton solutions are obtained for special choices of parameters. Furthermore, we present the parameter domains in which these optical solitons exist. The nonlinear chirp associated with each of the solitonic solutions is also determined. It is shown that the chirping is proportional to the intensity of the wave and depends on higher-order nonlinearities. Of special interest is the soliton solution of the bright and dark type, determined for the general case when all coefficients in the equation have nonzero values. These results can be useful for possible chirped-soliton-based applications of highly nonlinear optical fiber systems.
Li, Guixin; Wu, Lin; Li, King F; Chen, Shumei; Schlickriede, Christian; Xu, Zhengji; Huang, Siya; Li, Wendi; Liu, Yanjun; Pun, Edwin Y B; Zentgraf, Thomas; Cheah, Kok W; Luo, Yu; Zhang, Shuang
2017-12-13
The spin and orbital angular momentum (SAM and OAM) of light is providing a new gateway toward high capacity and robust optical communications. While the generation of light with angular momentum is well studied in linear optics, its further integration into nonlinear optical devices will open new avenues for increasing the capacity of optical communications through additional information channels at new frequencies. However, it has been challenging to manipulate the both SAM and OAM of nonlinear signals in harmonic generation processes with conventional nonlinear materials. Here, we report the generation of spin-controlled OAM of light in harmonic generations by using ultrathin photonic metasurfaces. The spin manipulation of OAM mode of harmonic waves is experimentally verified by using second harmonic generation (SHG) from gold meta-atom with 3-fold rotational symmetry. By introducing nonlinear phase singularity into the metasurface devices, we successfully generate and measure the topological charges of spin-controlled OAM mode of SHG through an on-chip metasurface interferometer. The nonlinear photonic metasurface proposed in this work not only opens new avenues for manipulating the OAM of nonlinear optical signals but also benefits the understanding of the nonlinear spin-orbit interaction of light in nanoscale devices.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bičiūnas, A.; Arlauskas, A.; Adamonis, J.
We report on terahertz (THz) emission from tellurium crystal surfaces excited by femtosecond optical pulses. Measurements were performed on three differently cut Te samples and with different wavelength optical excitation pulses. THz pulse amplitude dependences on the azimuthal angle measured at various excitation wavelengths have evidenced that three different mechanisms are responsible for THz generation in tellurium: second order nonlinear optical rectification effect, dominating at lower excitation photon energies, as well as transverse and ordinary photo-Dember effects, which emerge at energies larger than 0.9 eV. The shapes of the azimuthal angle dependences were also explained by theoretical model.
Kumar, K Vasanth; Sivanesan, S
2006-08-25
Pseudo second order kinetic expressions of Ho, Sobkowsk and Czerwinski, Blanachard et al. and Ritchie were fitted to the experimental kinetic data of malachite green onto activated carbon by non-linear and linear method. Non-linear method was found to be a better way of obtaining the parameters involved in the second order rate kinetic expressions. Both linear and non-linear regression showed that the Sobkowsk and Czerwinski and Ritchie's pseudo second order model were the same. Non-linear regression analysis showed that both Blanachard et al. and Ho have similar ideas on the pseudo second order model but with different assumptions. The best fit of experimental data in Ho's pseudo second order expression by linear and non-linear regression method showed that Ho pseudo second order model was a better kinetic expression when compared to other pseudo second order kinetic expressions. The amount of dye adsorbed at equilibrium, q(e), was predicted from Ho pseudo second order expression and were fitted to the Langmuir, Freundlich and Redlich Peterson expressions by both linear and non-linear method to obtain the pseudo isotherms. The best fitting pseudo isotherm was found to be the Langmuir and Redlich Peterson isotherm. Redlich Peterson is a special case of Langmuir when the constant g equals unity.
NASA Astrophysics Data System (ADS)
Uesu, Y.; Kurimura, S.; Yamamoto, Y.
1995-04-01
Applied is a microscope to observations of 90 deg ferroelectric domain structure in BaTiO3 and inverted periodically are ferroelectric domains in LiTaO3. It is founded that the second harmonic generation microscope gives information which cannot be obtained by ordinary optical microscopes. The developed nonlinear optical microscope builds two dimensional second harmonic image of a specimen with inhomogenous distribution of d(sub ijk) and applied the microscope to observations of inhomogeneity in some nonlinear-optical organic microcrystals.
Engineered Quasi-Phase Matching for Nonlinear Quantum Optics in Waveguides
NASA Astrophysics Data System (ADS)
Van Camp, Mackenzie A.
Entanglement is the hallmark of quantum mechanics. Quantum entanglement--putting two or more identical particles into a non-factorable state--has been leveraged for applications ranging from quantum computation and encryption to high-precision metrology. Entanglement is a practical engineering resource and a tool for sidestepping certain limitations of classical measurement and communication. Engineered nonlinear optical waveguides are an enabling technology for generating entangled photon pairs and manipulating the state of single photons. This dissertation reports on: i) frequency conversion of single photons from the mid-infrared to 843nm as a tool for incorporating quantum memories in quantum networks, ii) the design, fabrication, and test of a prototype broadband source of polarization and frequency entangled photons; and iii) a roadmap for further investigations of this source, including applications in quantum interferometry and high-precision optical metrology. The devices presented herein are quasi-phase-matched lithium niobate waveguides. Lithium niobate is a second-order nonlinear optical material and can mediate optical energy conversion to different wavelengths. This nonlinear effect is the basis of both quantum frequency conversion and entangled photon generation, and is enhanced by i) confining light in waveguides to increase conversion efficiency, and ii) quasi-phase matching, a technique for engineering the second-order nonlinear response by locally altering the direction of a material's polarization vector. Waveguides are formed by diffusing titanium into a lithium niobate wafer. Quasi-phase matching is achieved by electric field poling, with multiple stages of process development and optimization to fabricate the delicate structures necessary for broadband entangled photon generation. The results presented herein update and optimize past fabrication techniques, demonstrate novel optical devices, and propose future avenues for device development. Quantum frequency conversion from 1848nm to 843nm is demonstrated for the first time, with >75% single-photon conversion efficiency. A new electric field poling methodology is presented, combining elements from multiple historical techniques with a new fast-feedback control system. This poling technique is used to fabricate the first chirped-and-apodized Type-II quasi-phase-matched structures in titanium-diffused lithium niobate waveguides, culminating in a measured phasematching spectrum that is predominantly Gaussian ( R2 = 0.80), nearly eight times broader than the unchirped spectrum, and agrees well with simulations.
NASA Astrophysics Data System (ADS)
Bharathi, M. Divya; Bhuvaneswari, R.; Srividya, J.; Vinitha, G.; Prithiviraajan, R. N.; Anbalagan, G.
2018-02-01
Single crystals of 8-hydroxyquinolinium 2-carboxy-6-nitrophthalate monohydrate (8HQNP) were obtained from slow evaporation solution growth method using methanol-water (1:1) as a solvent. Powder X-ray diffraction was utilized to compute the unit cell parameters and dislocation density of 8HQNP crystal. The crystalline perfection of the as-grown crystal was investigated by high-resolution X-ray diffraction at room temperature. The molecular structure was analyzed by identifying the functional groups from FT-IR and FT-Raman spectra. The cut-off wavelength and the corresponding optical band gap obtained from an optical spectrum were 376 nm and 3.29 eV respectively. The dispersion nature of refractive index was investigated by the single-oscillator Wemple and Di-Domenico model. Red emission was observed in the photoluminescence spectrum when excited with 376 nm. The low birefringence and high laser damage threshold (8.538 GW/cm2) values dictate the suitability of the crystal for optical devices. Z-scan studies revealed the third order nonlinear absorption coefficient (β) and refractive index (n2) of the 8HQNP crystal. The theoretical value of third order nonlinear susceptibility obtained from density function theory is good accordance with the experimental value. The frontier molecular orbital energy gap decreases with increasing external electric field in different directions which attributed to the enhancement of the second hyperpolarizability. The grown title crystal is thermally stable up to 102 °C which was identified using thermal analysis. Mechanical strength of 8HQNP was estimated by using Vicker's microhardness studies.
NASA Astrophysics Data System (ADS)
Pramodini, S.; Sudhakar, Y. N.; SelvaKumar, M.; Poornesh, P.
2014-04-01
We present the synthesis and characterization of third-order optical nonlinearity and optical limiting of the conducting polymers poly (aniline-co-o-anisidine) and poly (aniline-co-pyrrole). Nonlinear optical studies were carried out by employing the z-scan technique using a He-Ne laser operating in continuous wave mode at 633 nm. The copolymers exhibited a reverse saturable absorption process and self-defocusing properties under the experimental conditions. The estimated values of βeff, n2 and χ(3) were found to be of the order of 10-2 cm W-1, 10-5 esu and 10-7 esu respectively. Self-diffraction rings were observed due to refractive index change when exposed to the laser beam. The copolymers possess a lower limiting threshold and clamping level, which is essential to a great extent for power limiting devices. Therefore, copolymers of aniline emerge as a potential candidate for nonlinear optical device applications.
Third-order nonlinear optical properties of acid green 25 dye by Z-scan method
NASA Astrophysics Data System (ADS)
Jeyaram, S.; Geethakrishnan, T.
2017-03-01
Third-order nonlinear optical (NLO) properties of aqueous solutions of an anthraquinone dye (Acid green 25 dye, color index: 61570) have been studied by Z-scan method with a 5 mW continuous wave (CW) diode laser operating at 635 nm. The nonlinear refractive index (n2) and the absorption coefficient (β) have been evaluated respectively from the closed and open aperture Z-scan data and the values of these parameters are found to increase with increase in concentration of the dye solution. The negative sign of the observed nonlinear refractive index (n2) indicates that the aqueous solution of acid green 25 dye exhibits self-defocusing type optical nonlinearity. The mechanism of the observed nonlinear absorption (NLA) and nonlinear refraction (NLR) is attributed respectively to reverse saturable absorption (RSA) and thermal nonlinear effects. The magnitudes of n2 and β are found to be of the order of 10-7 cm2/W and 10-3 cm/W respectively. With these experimental results, the authors suggest that acid green 25 dye may have potential applications in nonlinear optics.
Pockels effect in strained silicon photonics (Conference Presentation)
NASA Astrophysics Data System (ADS)
Vivien, Laurent; Berciano, Mathias; Damas, Pedro; Marcaud, Guillaume; Le Roux, Xavier; Crozat, Paul; Alonso-Ramos, Carlos A.; Benedikovic, Daniel; Marris-Morini, Delphine; Cassan, Eric
2017-05-01
Silicon photonics has generated a strong interest in recent years, mainly for optical communications and optical interconnects in CMOS circuits. The main motivations for silicon photonics are the reduction of photonic system costs and the increase of the number of functionalities on the same integrated chip by combining photonics and electronics, along with a strong reduction of power consumption. However, one of the constraints of silicon as an active photonic material is its vanishing second order optical susceptibility, the so called χ(2) , due to the centrosymmety of the silicon crystal. To overcome this limitation, strain has been used as a way to deform the crystal and destroy the centrosymmetry which inhibits χ(2). The paper presents the recent advances in the development of second-order nonlinearities including discussions from fundamental origin of Pockels effect in silicon until its implementation in a real device. Carrier effects induced by an electric field leading to an electro-optics behavior will also be discussed.
Giant Kerr response of ultrathin gold films from quantum size effect.
Qian, Haoliang; Xiao, Yuzhe; Liu, Zhaowei
2016-10-10
With the size of plasmonic devices entering into the nanoscale region, the impact of quantum physics needs to be considered. In the past, the quantum size effect on linear material properties has been studied extensively. However, the nonlinear aspects have not been explored much so far. On the other hand, much effort has been put into the field of integrated nonlinear optics and a medium with large nonlinearity is desirable. Here we study the optical nonlinear properties of a nanometre scale gold quantum well by using the z-scan method and nonlinear spectrum broadening technique. The quantum size effect results in a giant optical Kerr susceptibility, which is four orders of magnitude higher than the intrinsic value of bulk gold and several orders larger than traditional nonlinear media. Such high nonlinearity enables efficient nonlinear interaction within a microscopic footprint, making quantum metallic films a promising candidate for integrated nonlinear optical applications.
Third order nonlinearity in pulsed laser deposited LiNbO{sub 3} thin films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tumuluri, Anil; Rapolu, Mounika; Rao, S. Venugopal, E-mail: kcjrsp@uohyd.ernet.in, E-mail: svrsp@uohyd.ernet.in
2016-05-06
Lithium niobate (LiNbO{sub 3}) thin films were prepared using pulsed laser deposition technique. Structural properties of the same were examined from XRD and optical band gap of the thin films were measured from transmittance spectra recorded using UV-Visible spectrophotometer. Nonlinear optical properties of the thin films were recorded using Z-Scan technique. The films were exhibiting third order nonlinearity and their corresponding two photon absorption, nonlinear refractive index, real and imaginary part of nonlinear susceptibility were calculated from open aperture and closed aperture transmission curves. From these studies, it suggests that these films have potential applications in nonlinear optical devices.
Baev, Alexander; Autschbach, Jochen; Boyd, Robert W; Prasad, Paras N
2010-04-12
Herein, we develop a phenomenological model for microscopic cascading and substantiate it with ab initio calculations. It is shown that the concept of local microscopic cascading of a second-order nonlinearity can lead to a third-order nonlinearity, without introducing any new loss mechanisms that could limit the usefulness of our approach. This approach provides a new molecular design protocol, in which the current great successes achieved in producing molecules with extremely large second-order nonlinearity can be used in a supra molecular organization in a preferred orientation to generate very large third-order response magnitudes. The results of density functional calculations for a well-known second-order molecule, (para)nitroaniline, show that a head-to-tail dimer configuration exhibits enhanced third-order nonlinearity, in agreement with the phenomenological model which suggests that such an arrangement will produce cascading due to local field effects.
Self-excited oscillation and monostable operation of a bistable light emitting diode (BILED)
NASA Astrophysics Data System (ADS)
Okumura, K.; Ogawa, Y.; Ito, H.; Inaba, H.
1983-07-01
A new simple opto-electronic bistable device has been obtained by combining a light emitting diode (LED) and a photodetector (PD) with electronic feedback using a broad bandpass filter. This has interesting dynamic characteristics which are expected to have such various applications as optical oscillators, optical pulse generators and optical pulsewidth modulators. The dynamic characteristics are represented by second-order nonlinear differential equations. In the analyses of these nonlinear systems, instead of numerical analyses with a computer, an approximate analytical method devised for this purpose has been used. This method has been used for investigating the characteristics of the proposed device quantitatively. These include the frequency of oscillations, pulsewidths and hysteresis. The results of the analyses agree approximately with experimentally observed values, thus the dynamic characteristics of the proposed device can be explained.
Confined energy distribution for charged particle beams
Jason, Andrew J.; Blind, Barbara
1990-01-01
A charged particle beam is formed to a relatively larger area beam which is well-contained and has a beam area which relatively uniformly deposits energy over a beam target. Linear optics receive an accelerator beam and output a first beam with a first waist defined by a relatively small size in a first dimension normal to a second dimension. Nonlinear optics, such as an octupole magnet, are located about the first waist and output a second beam having a phase-space distribution which folds the beam edges along the second dimension toward the beam core to develop a well-contained beam and a relatively uniform particle intensity across the beam core. The beam may then be expanded along the second dimension to form the uniform ribbon beam at a selected distance from the nonlinear optics. Alternately, the beam may be passed through a second set of nonlinear optics to fold the beam edges in the first dimension. The beam may then be uniformly expanded along the first and second dimensions to form a well-contained, two-dimensional beam for illuminating a two-dimensional target with a relatively uniform energy deposition.
Riporto, Jérémy; Demierre, Alexis; Kilin, Vasyl; Balciunas, Tadas; Schmidt, Cédric; Campargue, Gabriel; Urbain, Mathias; Baltuska, Andrius; Le Dantec, Ronan; Wolf, Jean-Pierre; Mugnier, Yannick; Bonacina, Luigi
2018-05-03
We demonstrate the simultaneous generation of second, third, and fourth harmonics from a single dielectric bismuth ferrite nanoparticle excited using a telecom fiber laser at 1560 nm. We first characterize the signals associated with different nonlinear orders in terms of spectrum, excitation intensity dependence, and relative signal strengths. Successively, on the basis of the polarization-resolved emission curves of the three harmonics, we discuss the interplay of susceptibility tensor components at different orders and show how polarization can be used as an optical handle to control the relative frequency conversion properties.
Second-harmonic generation in shear wave beams with different polarizations
NASA Astrophysics Data System (ADS)
Spratt, Kyle S.; Ilinskii, Yurii A.; Zabolotskaya, Evgenia A.; Hamilton, Mark F.
2015-10-01
A coupled pair of nonlinear parabolic equations was derived by Zabolotskaya [1] that model the transverse components of the particle motion in a collimated shear wave beam propagating in an isotropic elastic solid. Like the KZK equation, the parabolic equation for shear wave beams accounts consistently for the leading order effects of diffraction, viscosity and nonlinearity. The nonlinearity includes a cubic nonlinear term that is equivalent to that present in plane shear waves, as well as a quadratic nonlinear term that is unique to diffracting beams. The work by Wochner et al. [2] considered shear wave beams with translational polarizations (linear, circular and elliptical), wherein second-order nonlinear effects vanish and the leading order nonlinear effect is third-harmonic generation by the cubic nonlinearity. The purpose of the current work is to investigate the quadratic nonlinear term present in the parabolic equation for shear wave beams by considering second-harmonic generation in Gaussian beams as a second-order nonlinear effect using standard perturbation theory. In order for second-order nonlinear effects to be present, a broader class of source polarizations must be considered that includes not only the familiar translational polarizations, but also polarizations accounting for stretching, shearing and rotation of the source plane. It is found that the polarization of the second harmonic generated by the quadratic nonlinearity is not necessarily the same as the polarization of the source-frequency beam, and we are able to derive a general analytic solution for second-harmonic generation from a Gaussian source condition that gives explicitly the relationship between the polarization of the source-frequency beam and the polarization of the second harmonic.
Conversion of the optical orbital angular momentum in a plasmon-assisted second-harmonic generation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Yongmei; Wei, Dunzhao; Zhu, Yunzhi
We experimentally demonstrate the plasmon-assisted second-harmonic generation of an optical orbital angular momentum (OAM) beam. Because of the shape resonance, the plasmons in a periodic array of rectangular metal holes greatly enhance the nonlinear optical conversion of an OAM state. The OAM conservation (i.e., 2l{sub 1} = l{sub 2} with l{sub 1} and l{sub 2} being the OAM numbers of the fundamental and second-harmonic waves, respectively) holds well under our experimental configuration. Our results provide a potential way to realize nonlinear optical manipulation of an OAM mode in a nano-photonic device.
Nonlinear multilayers as optical limiters
NASA Astrophysics Data System (ADS)
Turner-Valle, Jennifer Anne
1998-10-01
In this work we present a non-iterative technique for computing the steady-state optical properties of nonlinear multilayers and we examine nonlinear multilayer designs for optical limiters. Optical limiters are filters with intensity-dependent transmission designed to curtail the transmission of incident light above a threshold irradiance value in order to protect optical sensors from damage due to intense light. Thin film multilayers composed of nonlinear materials exhibiting an intensity-dependent refractive index are used as the basis for optical limiter designs in order to enhance the nonlinear filter response by magnifying the electric field in the nonlinear materials through interference effects. The nonlinear multilayer designs considered in this work are based on linear optical interference filter designs which are selected for their spectral properties and electric field distributions. Quarter wave stacks and cavity filters are examined for their suitability as sensor protectors and their manufacturability. The underlying non-iterative technique used to calculate the optical response of these filters derives from recognizing that the multi-valued calculation of output irradiance as a function of incident irradiance may be turned into a single-valued calculation of incident irradiance as a function of output irradiance. Finally, the benefits and drawbacks of using nonlinear multilayer for optical limiting are examined and future research directions are proposed.
Second-order non-linear optical studies on CdS microcrystallite-doped alkali borosilicate glasses
NASA Astrophysics Data System (ADS)
Liu, Hao; Liu, Qiming; Wang, Mingliang; Zhao, Xiujian
2007-05-01
CdS microcrystal-doped alkali borosilicate glasses were prepared by conventional fusion and heat-treatment method. Utilizing Maker fringe method, second-harmonic generation (SHG) was both observed from CdS-doped glasses before and after certain thermal/electrical poling. While because the direction of polarization axes of CdS crystals formed in the samples is random or insufficient interferences of generated SH waves occur, the fringe patterns obtained in samples without poling treatments showed no fine structures. For the poled samples, larger SH intensity has been obtained than that of the samples without any poling treatments. It was considered that the increase of an amount of hexagonal CdS in the anode surface layer caused by the applied dc field increased the SH intensity. The second-order non-linearity χ(2) was estimated to be 1.23 pm/V for the sample poled with 2.5 kV at 360 °C for 30 min.
NASA Astrophysics Data System (ADS)
Shcherbakov, Alexandre S.; Campos Acosta, Joaquin; Moreno Zarate, Pedro; Pons Aglio, Alicia
2011-02-01
An advanced qualitative characterization of simultaneously existing various low-power trains of ultra-short optical pulses with an internal frequency modulation in a distributed laser system based on semiconductor heterostructure is presented. The scheme represents a hybrid cavity consisting of a single-mode heterolaser operating in the active mode-locking regime and an external long single-mode optical fiber exhibiting square-law dispersion, cubic Kerr nonlinearity, and linear optical losses. In fact, we consider the trains of optical dissipative solitons, which appear within double balance between the second-order dispersion and cubic-law nonlinearity as well as between the active-medium gain and linear optical losses in a hybrid cavity. Moreover, we operate on specially designed modulating signals providing non-conventional composite regimes of simultaneous multi-pulse active mode-locking. As a result, the mode-locking process allows shaping regular trains of picosecond optical pulses excited by multi-pulse independent on each other sequences of periodic modulations. In so doing, we consider the arranged hybrid cavity as a combination of a quasi-linear part responsible for the active mode-locking by itself and a nonlinear part determining the regime of dissipative soliton propagation. Initially, these parts are analyzed individually, and then the primarily obtained data are coordinated with each other. Within this approach, a contribution of the appeared cubically nonlinear Ginzburg-Landau operator is analyzed via exploiting an approximate variational procedure involving the technique of trial functions.
The synthesis of branched TCP chromophores and the research on their electro-optical properties
NASA Astrophysics Data System (ADS)
Bo, Shuhui; Chen, Zhuo; Gao, Wu; Zhen, Zhen; Liu, Xinhou
2012-10-01
In order to minimize the intermolecular electrostatic interactions and effectively translate high value of chromophore into macroscopic electro-optical (EO) coeffcient (r33), the shape-modification of aniline-pyrroline (TCP) chromophore by combining three kinds of dendritic groups respectively to the N atom of pyrroline acceptor produced three kinds of dendritic chromophores. Their spherical structures can minimize intermolecular electrostatic interactions, and thus the poling efficience was higher than the chromophores without dendritic groups when chromophores as a guest in the host polymer APC. A large electro-optical (EO) coefficient was achieved as high as 75 pm/V at 1315 nm with 9% chromophores loading in APC film. On the basis of the above TCP chromophores, two kinds of novel molecular glasses based on self-assembly dendritic chromophores are also designed and synthesized as second-order nonlinear optical (NLO) materials, which named ETO and ETF. The NLO chromophore glasses ETO and ETF showed excellent filmforming ability by themselves. Their glass transition temperatures (Tg) were determined at 41° and 39°, respectively. The in-situ second harmonic generation (SHG) measurement revealed the resonant electro-optical (EO) coefficient (d33) values of 38 and 32 pm/V for the poled films of ETO and ETF, respectively. The results indicate molecular glasses provide a new possible way different from the conventional polymer approach to prepare second-order NLO materials.
Enhancing light-atom interactions via atomic bunching
NASA Astrophysics Data System (ADS)
Schmittberger, Bonnie L.; Gauthier, Daniel J.
2014-07-01
There is a broad interest in enhancing the strength of light-atom interactions to the point where injecting a single photon induces a nonlinear material response. Here we show theoretically that sub-Doppler-cooled two-level atoms that are spatially organized by weak optical fields give rise to a nonlinear material response that is greatly enhanced beyond that attainable in a homogeneous gas. Specifically, in the regime where the intensity of the applied optical fields is much less than the off-resonance saturation intensity, we show that the third-order nonlinear susceptibility scales inversely with atomic temperature and, due to this scaling, can be two orders of magnitude larger than that of a homogeneous gas for typical experimental parameters. As a result, we predict that spatially bunched two-level atoms can exhibit single-photon nonlinearities. Our model is valid for all regimes of atomic bunching and simultaneously accounts for the backaction of the atoms on the optical fields. Our results agree with previous theoretical and experimental results for light-atom interactions that have considered only limited regimes of atomic bunching. For lattice beams tuned to the low-frequency side of the atomic transition, we find that the nonlinearity transitions from a self-focusing type to a self-defocusing type at a critical intensity. We also show that higher than third-order nonlinear optical susceptibilities are significant in the regime where the dipole potential energy is on the order of the atomic thermal energy. We therefore find that it is crucial to retain high-order nonlinearities to accurately predict interactions of laser fields with spatially organized ultracold atoms. The model presented here is a foundation for modeling low-light-level nonlinear optical processes for ultracold atoms in optical lattices.
NASA Astrophysics Data System (ADS)
Subhashini, R.; Sathya, D.; Sivashankar, V.; Latha Mageshwari, P. S.; Arjunan, S.
2016-12-01
Highly transparent solitary nonlinear semiorganic optical material Bis(L-threonine) copper (II) monohydrate [BLTCM], was synthesized by a conventional slow evaporation solution growth technique. The grown crystals were subjected to structural, optical, electrical, thermal, mechanical, SHG and Laser damage threshold studies. Single crystal XRD shows that the material crystallizes in monoclinic system with noncentrosymmetric space group P21. FT-IR and FT-RAMAN analyses confirm the various functional groups present in the grown crystal. The transparency range of BLTCM was determined by UV-vis-NIR studies and various optical constants such as extinction coefficient (K), refractive index, optical conductivity and electric susceptibility with real and imaginary parts of dielectric constant were calculated using the transmittance data which have applications in optoelectronic devices. Dielectric studies of the crystal were carried out at different frequencies and temperatures to analyze the electrical properties. TGA and DSC analyses were performed to study the thermal behaviour of the sample. The hardness stability of the grown specimen was investigated by Vickers microhardness test. The output intensity of second harmonic generation was confirmed using the Kurtz and Perry powder method. The laser induced surface damage threshold of the crystal was measured using Nd:YAG laser.
Third-order optical nonlinearity of N-doped graphene oxide nanocomposites at different GO ratios
NASA Astrophysics Data System (ADS)
Kimiagar, Salimeh; Abrinaei, Fahimeh
2018-05-01
In the present work, the influence of GO ratios on the structural, linear and nonlinear optical properties of nitrogen-doped graphene oxide nanocomposites (N-GO NCs) has been studied. N-GO NCs were synthesized by hydrothermal method. The XRD, FTIR, SEM, and TEM results confirmed the reduction of GO by nitrogen doping. The energy band gaps of N-GO NCs calculated from UV-Vis analyzed by using Tauc plot. To obtain further insight into potential optical changes in the N-GO NCs by increasing GO contents, Z-scan analysis was performed with nanosecond Nd-YAG laser at 532 nm. The nonlinear absorption coefficient, β, and nonlinear refractive index, n2, for N-GO NCs at the laser intensity of 113 MW/cm were measured and an increase was observed in both parameters after addition of nitrogen to GO. The third-order nonlinear optical susceptibilities of N-GO NCs were measured in the order of 10-9 esu. The results showed that N-GO NCs have negative nonlinearity which can be controlled by GO contents to obtain the highest values for nonlinear optical parameters. The nonlinear optical results not only imply that N-GO NCs can serve as an important material in the advancing of optoelectronics but also open new possibilities for the design of new graphene-based materials by variation of N and GO ratios as well as manufacturing conditions.
Mapping the nonlinear optical susceptibility by noncollinear second-harmonic generation.
Larciprete, M C; Bovino, F A; Giardina, M; Belardini, A; Centini, M; Sibilia, C; Bertolotti, M; Passaseo, A; Tasco, V
2009-07-15
We present a method, based on noncollinear second-harmonic generation, to evaluate the nonzero elements of the nonlinear optical susceptibility. At a fixed incidence angle, the generated signal is investigated by varying the polarization state of both fundamental beams. The resulting polarization charts allows us to verify if Kleinman's symmetry rules can be applied to a given material or to retrieve the absolute value of the nonlinear optical tensor terms, from a reference measurement. Experimental measurements obtained from gallium nitride layers are reported. The proposed method does not require an angular scan and thus is useful when the generated signal is strongly affected by sample rotation.
Design rules for quasi-linear nonlinear optical structures
NASA Astrophysics Data System (ADS)
Lytel, Richard; Mossman, Sean M.; Kuzyk, Mark G.
2015-09-01
The maximization of the intrinsic optical nonlinearities of quantum structures for ultrafast applications requires a spectrum scaling as the square of the energy eigenstate number or faster. This is a necessary condition for an intrinsic response approaching the fundamental limits. A second condition is a design generating eigenstates whose ground and lowest excited state probability densities are spatially separated to produce large differences in dipole moments while maintaining a reasonable spatial overlap to produce large off-diagonal transition moments. A structure whose design meets both conditions will necessarily have large first or second hyperpolarizabilities. These two conditions are fundamental heuristics for the design of any nonlinear optical structure.
Lin, Gong-Ru; Chiu, I-Hsiang
2005-10-31
Femtosecond nonlinear pulse compression of a wavelength-tunable, backward dark-optical-comb injection harmonic-mode-locked semiconductor optical amplifier based fiber laser (SOAFL) is demonstrated for the first time. Shortest mode-locked SOAFL pulsewidth of 15 ps at 1 GHz is generated, which can further be compressed to 180 fs after linear chirp compensation, nonlinear soliton compression, and birefringent filtering. A maximum pulsewidth compression ratio for the compressed eighth-order SOAFL soliton of up to 80 is reported. The pedestal-free eighth-order soliton can be obtained by injecting the amplified pulse with peak power of 51 W into a 107.5m-long single-mode fiber (SMF), providing a linewidth and time-bandwidth product of 13.8 nm and 0.31, respectively. The tolerance in SMF length is relatively large (100-300 m) for obtaining <200fs SOAFL pulsewidth at wavelength tuning range of 1530-1560 nm. By extending the repetition frequency of dark-optical-comb up to 10 GHz, the mode-locked SOAFL pulsewidth can be slightly shortened from 5.4 ps to 3.9 ps after dispersion compensating, and further to 560 fs after second-order soliton compression. The lasing linewidth, time-bandwidth product and pulsewidth suppressing ratio of the SOAFL soliton become 4.5 nm, 0.33, and 10, respectively.
Laser And Nonlinear Optical Materials For Laser Remote Sensing
NASA Technical Reports Server (NTRS)
Barnes, Norman P.
2005-01-01
NASA remote sensing missions involving laser systems and their economic impact are outlined. Potential remote sensing missions include: green house gasses, tropospheric winds, ozone, water vapor, and ice cap thickness. Systems to perform these measurements use lanthanide series lasers and nonlinear devices including second harmonic generators and parametric oscillators. Demands these missions place on the laser and nonlinear optical materials are discussed from a materials point of view. Methods of designing new laser and nonlinear optical materials to meet these demands are presented.
NASA Astrophysics Data System (ADS)
Kothavale, Shantaram; Katariya, Santosh; Sekar, Nagaiyan
2018-01-01
Rigid pyrazino-phenanthroline based donor-π-acceptor-π-auxiliary acceptor type compounds have been studied for their linear and non-linear optical properties. The non-linear optical (NLO) behavior of these dyes was studied by calculating the values of static α , β and γ using solvatochromic as well as computational methods. The results obtained by solvatochromic method are correlated theoretically with Density Functional Theory (DFT) using B3LYP/6-31G (d), CAM B3LYP/6-31 G(d), B3LYP/6-31++ g(d,P) and CAM B3LYP/6-31++ g(d,P) methods. The results reveal that, among all four computational methods CAM-B3LYP/6-31++ g(d,P) performs well for the calculation of linear polarizability (α) and first order hyperpolarizability (β), while CAM-B3LYP/6-31 g(d,P) for the calculation of second order hyperpolarizability (ϒ). Overall TPA depends on the molecular structure variation with increase in complexity and molecular weight, which implies that both the number of branches and the size of π-framework are important factors for the molecular TPA in this chromophoric system. Generalized Mulliken-Hush (GMH) analysis is performed to study the effective charge transfer from donor to acceptor.
Second harmonic generation polarization properties of myofilaments
NASA Astrophysics Data System (ADS)
Samim, Masood; Prent, Nicole; Dicenzo, Daniel; Stewart, Bryan; Barzda, Virginijus
2014-05-01
Second harmonic generation (SHG) polarization microscopy was used to investigate the organization of myosin nanomotors in myofilaments of muscle cells. The distribution of the second-order nonlinear susceptibility component ratio χzzz(2)/χzxx(2) along anisotropic bands of sarcomeres revealed differences between the headless and head-containing regions of myofilaments. The polarization-in polarization-out SHG measurements of headless myosin mutants of indirect flight muscle in Drosophila melanogaster confirmed a lower susceptibility component ratio compared to the head-containing myocytes with wild-type myosins. The increase in the ratio is assigned to the change in the deflection angle of the myosin S2 domain and possible contribution of myosin heads. The nonlinear susceptibility component ratio is a sensitive indicator of the myosin structure, and therefore, it can be used for conformational studies of myosin nanomotors. The measured ratio values can also be used as the reference for ab initio calculations of nonlinear optical properties of different parts of myosins.
Fast novel nonlinear optical NLC system with local response
NASA Astrophysics Data System (ADS)
Iljin, Andrey; Residori, Stefania; Bortolozzo, Umberto
2017-06-01
Nonlinear optical performance of a novel liquid crystalline (LC) cell has been studied in two-wave mixing experiments revealing high diffraction efficiency within extremely wide intensity range, fast recording times and spatial resolution. Photo-induced modulation of the LC order parameter resulting from trans-cis isomerisation of dye molecules causes consequent changes of refractive indices of the medium (Light-Induced Order Modification, LIOM-mechanism) and is proved to be the main mechanism of optical nonlinearity. The proposed arrangement of the electric-field-stabilised homeotropic alignment hinders the LC director reorientation, prevents appearance of surface effects and ensures the optical cell quality. The LIOM-type nonlinearity, characterised with the substantially local nonlinear optical response, could also be extended for the recording of arbitrary phase profiles as requested in several applications for light-beam manipulation, recording of dynamic volume holograms and photonic lattices.
Nonlinear optical studies on 1,3-disubstituent chalcones doped polymer films
NASA Astrophysics Data System (ADS)
Poornesh, P.; Shettigar, Seetharam; Umesh, G.; Manjunatha, K. B.; Prakash Kamath, K.; Sarojini, B. K.; Narayana, B.
2009-04-01
We report the measurements of the third-order nonlinear optical properties of recently synthesized and characterized two different 1,3-disubstituent chalcones doped PMMA films, with the prospective of reaching a good compromise between processability and high nonlinear optical properties. The measurements were done using nanosecond Z-scan at 532 nm. The Z-scan spectra reveal a large negative nonlinear refraction coefficient n2 of the order 10 -11 esu and the molecular two photon absorption cross section is 10 -46 cm 4 s/photon. The doped films exhibit good optical power limiting property under nanosecond regime and the two photon absorption (TPA) is the dominating process leading to the nonlinear behavior. The improvement in the nonlinear properties has been observed when methylenedioxy group is replaced by dimethoxy group due to increase in conjugation length. The observed nonlinear parameters of chalcone derivatives doped PMMA film is comparable with stilbazolieum derivatives, a well-known class of optical materials for photonics and biophotonics applications, which suggests that, these moieties have potential for the application of all-optical limiting and switching devices.
Hang, Chao; Huang, Guoxiang; Deng, L
2006-03-01
We investigate the influence of high-order dispersion and nonlinearity on the propagation of ultraslow optical solitons in a lifetime broadened four-state atomic system under a Raman excitation. Using a standard method of multiple-scales we derive a generalized nonlinear Schrödinger equation and show that for realistic physical parameters and at the pulse duration of 10(-6)s, the effects of third-order linear dispersion, nonlinear dispersion, and delay in nonlinear refractive index can be significant and may not be considered as perturbations. We provide exact soliton solutions for the generalized nonlinear Schrödinger equation and demonstrate that optical solitons obtained may still have ultraslow propagating velocity. Numerical simulations on the stability and interaction of these ultraslow optical solitons in the presence of linear and differential absorptions are also presented.
Nonlinear optical memory for manipulation of orbital angular momentum of light.
de Oliveira, R A; Borba, G C; Martins, W S; Barreiro, S; Felinto, D; Tabosa, J W R
2015-11-01
We report on the demonstration of a nonlinear optical memory (NOM) for storage and on-demand manipulation of orbital angular momentum (OAM) of light via higher-order nonlinear processes in cold cesium atoms. A spatially resolved phase-matching technique is used to select each order of the nonlinear susceptibility associated, respectively, with time-delayed four-, six-, and eight-wave mixing processes. For a specific configuration of the stored OAM of the incident beams, we demonstrated that the OAM of the retrieved beam can be manipulated according to the order of the nonlinear process chosen by the operator for reading out the NOM. This demonstration indicates new pathways for applications in classical and quantum information processing where OAM of light is used to encode optical information.
NASA Astrophysics Data System (ADS)
Antony, Albin; Pramodini, S.; Poornesh, P.; Kityk, I. V.; Fedorchuk, A. O.; Sanjeev, Ganesh
2016-12-01
We present the studies on third-order nonlinear optical properties of Al doped ZnO thin films irradiated with electron beam at different dose rate. Al doped ZnO thin films were deposited on a glass substrate by spray pyrolysis deposition technique. The thin films were irradiated using the 8 MeV electron beam from microtron ranging from 1 kG y to 5 kG y. Nonlinear optical studies were carried out by employing the single beam Z-scan technique to determine the sign and magnitude of absorptive and refractive nonlinearities of the irradiated thin films. Continuous wave He-Ne laser operating at 633 nm was used as source of excitation. The open aperture Z-scan measurements indicated the sample displays reverse saturable absorption (RSA) process. The negative sign of the nonlinear refractive index n2 was noted from the closed aperture Z-scan measurements indicates, the films exhibit self-defocusing property due to thermal nonlinearity. The third-order nonlinear optical susceptibility χ(3) varies from 8.17 × 10-5 esu to 1.39 × 10-3 esu with increase in electron beam irradiation. The present study reveals that the irradiation of electron beam leads to significant changes in the third-order optical nonlinearity. Al doped ZnO displays good optical power handling capability with optical clamping of about ∼5 mW. The irradiation study endorses that the Al doped ZnO under investigation is a promising candidate photonic device applications such as all-optical power limiting.
de Melo, P B; Nunes, A M; Omena, L; do Nascimento, S M S; da Silva, M G A; Meneghetti, M R; de Oliveira, I N
2015-10-01
The present work is devoted to the study of the thermo-optical and nonlinear optical properties of smectic samples containing gold nanoparticles with different shapes. By using the time-resolved Z-scan technique, we determine the effects of nanoparticle addition on the critical behavior of the thermal diffusivity and thermo-optical coefficient at the vicinity of the smectic-A-nematic phase transition. Our results reveal that introduction of gold nanoparticles affects the temperature dependence of thermo-optical parameters, due to the local distortions in the orientational order and heat generation provided by guest particles during the laser exposure. Further, we show that a nonlinear optical response may take place at temperatures where the smectic order is well established. We provide a detailed discussion of the effects associated with the introduction gold nanoparticles on the mechanisms behind the thermal transport and optical nonlinearity in liquid-crystal samples.
NASA Astrophysics Data System (ADS)
Katariya, Santosh B.; Patil, Dinesh; Rhyman, Lydia; Alswaidan, Ibrahim A.; Ramasami, Ponnadurai; Sekar, Nagaiyan
2017-12-01
The static first and second hyperpolarizability and their related properties were calculated for triphenylamine-based "push-pull" dyes using the B3LYP, CAM-B3LYP and BHHLYP functionals in conjunction with the 6-311+G(d,p) basis set. The electronic coupling for the electron transfer reaction of the dyes were calculated with the generalized Mulliken-Hush method. The results obtained were correlated with the polarizability parameter αCT , first hyperpolarizability parameter βCT, and the solvatochromic descriptor of 〈 γ〉 SD obtained by the solvatochromic method. The dyes studied show a high total first order hyperpolarizability (70-238 times) and second order hyperpolarizability (412-778 times) compared to urea. Among the three functionals, the CAM-B3LYP and BHHLYP functionals show hyperpolarizability values closer to experimental values. Experimental absorption and emission wavelengths measured for all the synthesized dyes are in good agreement with those predicted using the time-dependent density functional theory. The theoretical examination on non-linear optical properties was performed on the key parameters of polarizability and hyperpolarizability. A remarkable increase in non-linear optical response is observed on insertion of benzothiazole unit compared to benzimidazole unit.
Yu, Hai-Ling; Hong, Bo; Yang, Ning; Zhao, Hong-Yan
2015-09-01
The photoinduced proton-coupled electron transfer chemistry is very crucial to the development of nonlinear optical (NLO) materials with large first hyperpolarizability contrast. We have performed a systematic investigation on the geometric structures, NLO switching, and simulated absorption spectra of rhenium(I) complexes via density functional theory (DFT). The results show that the first hyperpolarizabilities (βvec) increase remarkably with further extending of the organic connectors. In addition, the solvent leads to a slight enhancement of the hyperpolarizability and frequency dependent hyperpolarizability. Furthermore, the proton abstraction plays an important role in tuning the second-order NLO response. It is found that deprotonation not only increases the absolute value of βvec but also changes the sign of βvec from positive to negative. This different sign can be explained by the opposite dipole moments. The efficient enhancement of first hyperpolarizability is attributed to the better delocalization of the π-electron system and the more obvious degree of charge transfer. Therefore, these kinds of complexes might be promising candidates for designed as proton driven molecular second-order NLO switching. Copyright © 2015 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Almeida, Gustavo F. B.; Almeida, Juliana M. P.; Martins, Renato J.; De Boni, Leonardo; Arnold, Craig B.; Mendonca, Cleber R.
2018-01-01
The development of advanced photonics devices requires materials with large optical nonlinearities, fast response times and high optical transparency, while at the same time allowing for the micro/nano-processing needed for integrated photonics. In this context, glasses have been receiving considerable attention given their relevant optical properties which can be specifically tailored by compositional control. Corning Gorilla® Glass (strengthened alkali aluminosilicate glass) is well-known for its use as a protective screen in mobile devices, and has attracted interest as a potential candidate for optical devices. Therefore, it is crucial not only to expand the knowledge on the fabrication of waveguides in Gorilla Glass under different regimes, but also to determine its nonlinear optical response, both using fs-laser pulses. Thus, this paper reports, for the first time, characterization of the third-order optical nonlinearities of Gorilla Glass, as well as linear and nonlinear characterization of waveguide written with femtosecond pulses under the low repetition rate regime (1 kHz).
Preparation of polymeric diacetylene thin films for nonlinear optical applications
NASA Technical Reports Server (NTRS)
Frazier, Donald O. (Inventor); Mcmanus, Samuel P. (Inventor); Paley, Mark S. (Inventor); Donovan, David N. (Inventor)
1995-01-01
A method for producing polymeric diacetylene thin films having desirable nonlinear optical characteristics has been achieved by producing amorphous diacetylene polymeric films by simultaneous polymerization of diacetylene monomers in solution and deposition of polymerized diacetylenes on to the surface of a transparent substrate through which ultraviolet light has been transmitted. These amorphous polydiacetylene films produced by photo-deposition from solution possess very high optical quality and exhibit large third order nonlinear optical susceptibilities, such properties being suitable for nonlinear optical devices such as waveguides and integrated optics.
Structures and Optical Properties of Hydrazones Derived from Biological Polyenes
NASA Astrophysics Data System (ADS)
Nakashima, Takayasu; Yamada, Takashi; Hashimoto, Hideki; Kobayashi, Takayoshi
2001-08-01
A set of hydrazone molecules was derived from a series of biological polyenes that have different polyene chain-lengths with common substituent group of 2,4-dinitrophenylhydrazine. Their structures were determined by high-resolution NMR spectroscopy as well as X-ray crystallography, and their optical properties were investigated by room and low temperature optical absorption spectroscopy. Among the derivatives so far synthesized, the one that has the shortest polyene chain (C13-DNPH) afforded single crystals without inversion symmetry, hence applicable for the second-order nonlinear optical devices. Molecular structures in the crystals were closely inspected in order to explain the cause to violate the inversion symmetry. Hydrazones derived in this study gave rise to two transition moments along the molecular axis. Comparison of the optical absorption spectra among the derivatives showed a unique phenomenon that could be attributed to the crossover of the excited state potential energy surfaces along the elongation of the polyene chain-lengths.
Structures and Optical Properties of Hydrazones Derived from Biological Polyenes
NASA Astrophysics Data System (ADS)
Nakashima, Takayasu; Yamada, Takashi; Hashimoto, Hideki; Kobayashi, Takayoshi
A set of hydrazone molecules was derived from a series of biological polyenes that have different polyene chain-lengths with common substituent group of 2,4-dinitrophenylhydrazine. Their structures were determined by high-resolution NMR spectroscopy as well as X-ray crystallography, and their optical properties were investigated by room and low temperature optical absorption spectroscopy. Among the derivatives so far synthesized, the one that has the shortest polyene chain (C13-DNPH) afforded single crystals without inversion symmetry, hence applicable for the second-order nonlinear optical devices. Molecular structures in the crystals were closely inspected in order to explain the cause to violate the inversion symmetry. Hydrazones derived in this study gave rise to two transition moments along the molecular axis. Comparison of the optical absorption spectra among the derivatives showed a unique phenomenon that could be attributed to the crossover of the excited state potential energy surfaces along the elongation of the polyene chain-lengths.
Ultrathin Nonlinear Metasurface for Optical Image Encoding.
Walter, Felicitas; Li, Guixin; Meier, Cedrik; Zhang, Shuang; Zentgraf, Thomas
2017-05-10
Security of optical information is of great importance in modern society. Many cryptography techniques based on classical and quantum optics have been widely explored in the linear optical regime. Nonlinear optical encryption in which encoding and decoding involve nonlinear frequency conversions represents a new strategy for securing optical information. Here, we demonstrate that an ultrathin nonlinear photonic metasurface, consisting of meta-atoms with 3-fold rotational symmetry, can be used to hide optical images under illumination with a fundamental wave. However, the hidden image can be read out from second harmonic generation (SHG) waves. This is achieved by controlling the destructive and constructive interferences of SHG waves from two neighboring meta-atoms. In addition, we apply this concept to obtain gray scale SHG imaging. Nonlinear metasurfaces based on space variant optical interference open new avenues for multilevel image encryption, anticounterfeiting, and background free image reconstruction.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sartorello, Giovanni; Olivier, Nicolas; Zhang, Jingjing
2016-08-17
We design and fabricate a metasurface composed of gold cut-disk resonators that exhibits a strong coherent nonlinear response. We experimentally demonstrate all-optical modulation of both second- and third-harmonic signals on a subpicosecond time scale. Pump probe experiments and numerical models show that the observed effects are due to the ultrafast response of the electronic excitations in the metal under external illumination. These effects pave the way for the development of novel active nonlinear metasurfaces with controllable and switchable coherent nonlinear response.
Periodic and rational solutions of the reduced Maxwell-Bloch equations
NASA Astrophysics Data System (ADS)
Wei, Jiao; Wang, Xin; Geng, Xianguo
2018-06-01
We investigate the reduced Maxwell-Bloch (RMB) equations which describe the propagation of short optical pulses in dielectric materials with resonant non-degenerate transitions. The general Nth-order periodic solutions are provided by means of the Darboux transformation. The Nth-order degenerate periodic and Nth-order rational solutions containing several free parameters with compact determinant representations are derived from two different limiting cases of the obtained general periodic solutions, respectively. Explicit expressions of these solutions from first to second order are presented. Typical nonlinear wave patterns for the four components of the RMB equations such as single-peak, double-peak-double-dip, double-peak and single-dip structures in the second-order rational solutions are shown. This kind of the rational solutions correspond to rogue waves in the reduced Maxwell-Bloch equations.
NASA Astrophysics Data System (ADS)
Selvakumar, S.; Boobalan, Maria Susai; Anthuvan Babu, S.; Ramalingam, S.; Leo Rajesh, A.
2016-12-01
Single crystals of sodium para-nitrophenolate para-nitrophenol dihydrate (SPPD) were grown by slow evaporation technique and its structure has been studied by FT-IR, FT-Raman and single crystal X-ray diffraction techniques. The optical and electrical properties were characterized by UV-Vis spectrum, and dielectric studies respectively. SPPD was thermally stable up to 128 °C as determined by TG-DTA curves. Using the Kurtz-Perry powder method, the second-harmonic generation efficiency was found to be five times to that of KDP. Third-order nonlinear response was studied using Z-scan technique with a He-Ne laser (632.8 nm) and NLO parameters such as intensity dependent refractive index, nonlinear absorption coefficient and third-order susceptibility were also estimated. The molecular geometry from X-ray experiment in the ground state has been compared using density functional theory (DFT) with appropriate basis set. The first-order hyperpolarizability also calculated using DFT approaches. Stability of the molecule arising from hyperconjugative interactions leading to its nonlinear optical activity and charge delocalization were analyzed using natural bond orbital technique. HOMO-LUMO energy gap value suggests the possibility of charge transfer within the molecule. Based on optimized ground state geometries, Natural bond orbital (NBO) analysis was performed to study donor-acceptor interactions.
Guest-host polymer fibers for nonlinear optics
NASA Astrophysics Data System (ADS)
Kuzyk, M. G.; Paek, U. C.; Dirk, C. W.
1991-08-01
We report on the fabrication of poly(methyl methacrylate) (PMMA) nonlinear optical fibers with dye-doped cores. The dye-doped cores have an elevated refractive index that defines a waveguiding region with a large third-order susceptibility and with single-mode dimensions. The measured third-order susceptibility of a squarylium-doped PMMA film material and the measured optical loss of the dye-doped fiber core results in a figure of merit that is suitable for all-optical device applications at λ=1.3 μm. The impact of further improvements in PMMA loss and chromophore nonlinearity are also discussed.
NASA Astrophysics Data System (ADS)
Valligatla, Sreeramulu; Haldar, Krishna Kanta; Patra, Amitava; Desai, Narayana Rao
2016-10-01
The semiconductor nanocrystals are found to be promising class of third order nonlinear optical materials because of quantum confinement effects. Here, we highlight the nonlinear optical switching and optical limiting of cadmium selenide (CdSe) quantum dots (QDs) using nanosecond Z-scan measurement. The intensity dependent nonlinear absorption and nonlinear refraction of CdSe QDs were investigated by applying the Z-scan technique with 532 nm, nanosecond laser pulses. At lower intensities, the nonlinear process is dominated by saturable absorption (SA) and it is changed to reverse saturable absorption (RSA) at higher intensities. The SA behaviour is attributed to the ground state bleaching and the RSA is ascribed to free carrier absorption (FCA) of CdSe QDs. The nonlinear optical switching behaviour and reverse saturable absorption makes CdSe QDs are good candidate for all-optical device and optical limiting applications.
Linear and nonlinear optical properties of Sb-doped GeSe2 thin films
NASA Astrophysics Data System (ADS)
Zhang, Zhen-Ying; Chen, Fen; Lu, Shun-Bin; Wang, Yong-Hui; Shen, Xiang; Dai, Shi-Xun; Nie, Qiu-Hua
2015-06-01
Sb-doped GeSe2 chalcogenide thin films are prepared by the magnetron co-sputtering method. The linear optical properties of as-deposited films are derived by analyzing transmission spectra. The refractive index rises and the optical band gap decreases from 2.08 eV to 1.41 eV with increasing the Sb content. X-ray photoelectron spectra further confirm the formation of a covalent Sb-Se bond. The third-order nonlinear optical properties of thin films are investigated under femtosecond laser excitation at 800 nm. The results show that the third-order nonlinear optical properties are enhanced with increasing the concentration of Sb. The nonlinear refraction indices of these thin films are measured to be on the order of 10-18 m2/W with a positive sign and the nonlinear absorption coefficients are obtained to be on the order of 10-10 m/W. These excellent properties indicate that Sb-doped Ge-Se films have a good prospect in the applications of nonlinear optical devices. Project supported by the National Key Basic Research Program of China (Grant No. 2012CB722703), the National Natural Science Foundation of China (Grant No. 61377061), the Young Leaders of Academic Climbing Project of the Education Department of Zhejiang Province, China (Grant No. pd2013092), the Program for Innovative Research Team of Ningbo City, China (Grant No. 2009B217), and the K. C. Wong Magna Fund in Ningbo University, China.
An Index-Mismatch Scattering Approach to Optical Limiting
DOE Office of Scientific and Technical Information (OSTI.GOV)
Exarhos, Gregory J.; Ferris, Kim F.; Windisch, Charles F.
A densely packed bed of alkaline earth fluoride particles percolated by a fluid medium has been investigated as a potential index-matched optical limiter in the spirit of a Christiansen-Shelyubskii filter. Marked optical limiting was observed through this transparent medium under conditions where the focused second-harmonic output of a Q-swtiched Nd: YAG laser was on the order of about 1 J/cm2. An open-aperture Z-scan technique was used to quantify the limiting behavior. In this case, the mechanism of optical limiting is thought to be a nonlinear shift in the fluid index of refraction, resulting in an index mismatch between the disparatemore » phases at high laser fluence.« less
Nonlinear optical behavior of DNA-functionalized gold nanoparticles
NASA Astrophysics Data System (ADS)
Kulyk, B.; Krupka, O.; Smokal, V.; Figà, V.; Czaplicki, R.; Sahraoui, B.
2018-03-01
The third-order nonlinear optical properties of gold nanoparticles embedded in the DNA-based composites were investigated by means of the third harmonic generation. With this purpose, the thin films comprising DNA-based complexes and Au nanoparticles were spin-deposited on glass substrate and their optical and nonlinear optical features were studied using the Maker-fringe technique at a laser fundamental wavelength of 1064 nm. The values of the third-order susceptibility χ (3)(- 3ω; ω, ω, ω) of the composite films based on DNA complex doped with 5 wt% of N-ethyl-N-(2-hydroxyethyl)-4-(4-nitrophenylazo)aniline were found to be significantly higher than those for pure composite films. Meanwhile, the presence of Au nanoparticles noticeable decreases the third-order nonlinear response of DNA-based composite mainly due to the enhanced absorption and scattering of laser and generated beam, respectively.
Real-Time Nonlinear Optical Information Processing.
1979-06-01
operations aree presented. One approach realizes the halftone method of nonlinear optical processing in real time by replacing the conventional...photographic recording medium with a real-time image transducer. In the second approach halftoning is eliminated and the real-time device is used directly
NASA Astrophysics Data System (ADS)
Arshad, Muhammad; Seadawy, Aly R.; Lu, Dianchen
2018-01-01
In mono-mode optical fibers, the higher order non-linear Schrödinger equation (NLSE) describes the propagation of enormously short light pulses. We constructed optical solitons and, solitary wave solutions of higher order NLSE mono-mode optical fibers via employing modified extended mapping method which has important applications in Mathematics and physics. Furthermore, the formation conditions are also given on parameters in which optical bright and dark solitons can exist for this media. The moment of the obtained solutions are also given graphically, that helps to realize the physical phenomena's of this model. The modulation instability analysis is utilized to discuss the model stability, which verifies that all obtained solutions are exact and stable. Many other such types of models arising in applied sciences can also be solved by this reliable, powerful and effective method. The method can also be functional to other sorts of higher order nonlinear problems in contemporary areas of research.
Ho, Yuh-Shan
2006-01-01
A comparison was made of the linear least-squares method and a trial-and-error non-linear method of the widely used pseudo-second-order kinetic model for the sorption of cadmium onto ground-up tree fern. Four pseudo-second-order kinetic linear equations are discussed. Kinetic parameters obtained from the four kinetic linear equations using the linear method differed but they were the same when using the non-linear method. A type 1 pseudo-second-order linear kinetic model has the highest coefficient of determination. Results show that the non-linear method may be a better way to obtain the desired parameters.
NASA Astrophysics Data System (ADS)
Menezes, Anthoni Praveen; Jayarama, A.; Ng, Seik Weng
2015-05-01
An efficient nonlinear optical material 2E-3-(4-bromophenyl)-1-(pyridin-3-yl) prop-2-en-1-one (BPP) was synthesized and single crystals were grown using slow evaporation solution growth technique at room temperature. Grown crystal had prismatic morphology and its structure was confirmed by various spectroscopic studies, elemental analysis, and single crystal X-ray diffraction (XRD) technique. The single crystal XRD of the crystal showed that BPP crystallizes in monoclinic system with noncentrosymmetric space group P21 and the cell parameters are a = 5.6428(7) Å, b = 3.8637(6) Å, c = 26.411(2) Å, β = 97.568(11) deg and v = 575.82(12) Å3. The UV-Visible spectrum reveals that the crystal is optically transparent and has high optical energy band gap of 3.1 eV. The powder second harmonic generation efficiency (SHG) of BPP is 6.8 times that of KDP. From thermal analysis it is found that the crystal melts at 139 °C and decomposes at 264 °C. High optical transparency down to blue region, higher powder SHG efficiency and better thermal stability than that of urea makes this chalcone derivative a promising candidate for SHG applications. Furthermore, effect of molecular planarity on SHG efficiency and role of pyridine ring adjacent to carbonyl group in forming noncentrosymmetric crystal systems of chalcone family is also discussed.
NASA Astrophysics Data System (ADS)
Jayakrishnan, K.; Joseph, Antony; Bhattathiripad, Jayakrishnan; Ramesan, M. T.; Chandrasekharan, K.; Siji Narendran, N. K.
2016-04-01
We report our results on the identification of large order enhancement in nonlinear optical coefficients of polymerized indole and its comparative study with reference to its monomer counterpart. Indole monomer shows virtually little third order effects whereas its polymerized version exhibits phenomenal increase in its third order nonlinear optical parameters such as nonlinear refractive index and nonlinear absorption. Open aperture Z-scan trace of polyindole done with Q-switched Nd:YAG laser source (532 nm, 7 ns), shows β value as high as 89 cm/GW at a beam energy of 0.83 GW/cm2. Closed aperture Z-scan done at identical energies reveals nonlinear refractive index of the order of -3.55 × 10-17 m2/W. Band gap measurement of polyindole was done with UV-Vis absorption spectra and compared with that of Indole. FTIR spectra of the monomer and polymerized versions were recorded and relevant bond formations were confirmed from the characteristic peaks. Photo luminescent spectra were investigated to know the emission features of both molecules. Beam energy (I0) versus nonlinear absorption coefficient (β) plot indicates reverse saturable type of absorption behaviour in polyindole molecules. Degenerate Four Wave Mixing (DFWM) plot of polyindole reveals quite a cubic dependence between probe and phase conjugate signal and the resulting χ(3) is comparable with Z-scan results. Optical limiting efficiency of polyindole is comparable with certain derivatives of porphyrins, phthalocyanines and graphene oxides.
Using naturally occurring polysaccharides to align molecules with nonlinear optical activity
NASA Technical Reports Server (NTRS)
Prasthofer, Thomas
1996-01-01
The Biophysics and Advanced Materials Branch of the Microgravity Science and Applications Division at Marshall Space Flight Center has been investigating polymers with the potential for nonlinear optical (NLO) applications for a number of years. Some of the potential applications for NLO materials include optical communications, computing, and switching. To this point the branch's research has involved polydiacetylenes, phthalocyanins, and other synthetic polymers which have inherent NLO properties. The aim of the present research is to investigate the possibility of using naturally occurring polymers such as polysaccharides or proteins to trap and align small organic molecules with useful NLO properties. Ordering molecules with NLO properties enhances 3rd order nonlinear effects and is required for 2nd order nonlinear effects. Potential advantages of such a system are the flexibility to use different small molecules with varying chemical and optical properties, the stability and cost of the polymers, and the ability to form thin, optically transparent films. Since the quality of any polymer films depends on optimizing ordering and minimizing defects, this work is particularly well suited for microgravity experiments. Polysaccharide and protein polymers form microscopic crystallites which must align to form ordered arrays. The ordered association of crystallites is disrupted by gravity effects and NASA research on protein crystal growth has demonstrated that low gravity conditions can improve crystal quality.
Ultra-large nonlinear parameter in graphene-silicon waveguide structures.
Donnelly, Christine; Tan, Dawn T H
2014-09-22
Mono-layer graphene integrated with optical waveguides is studied for the purpose of maximizing E-field interaction with the graphene layer, for the generation of ultra-large nonlinear parameters. It is shown that the common approach used to minimize the waveguide effective modal area does not accurately predict the configuration with the maximum nonlinear parameter. Both photonic and plasmonic waveguide configurations and graphene integration techniques realizable with today's fabrication tools are studied. Importantly, nonlinear parameters exceeding 10(4) W(-1)/m, two orders of magnitude larger than that in silicon on insulator waveguides without graphene, are obtained for the quasi-TE mode in silicon waveguides incorporating mono-layer graphene in the evanescent part of the optical field. Dielectric loaded surface plasmon polariton waveguides incorporating mono-layer graphene are observed to generate nonlinear parameters as large as 10(5) W(-1)/m, three orders of magnitude larger than that in silicon on insulator waveguides without graphene. The ultra-large nonlinear parameters make such waveguides promising platforms for nonlinear integrated optics at ultra-low powers, and for previously unobserved nonlinear optical effects to be studied in a waveguide platform.
Rogue waves generation in a left-handed nonlinear transmission line with series varactor diodes
NASA Astrophysics Data System (ADS)
Onana Essama, B. G.; Atangana, J.; Biya Motto, F.; Mokhtari, B.; Cherkaoui Eddeqaqi, N.; Kofane, Timoleon C.
2014-07-01
We investigate the electromagnetic wave behavior and its characterization using collective variables technique. Second-order dispersion, first- and second-order nonlinearities, which strongly act in a left-handed nonlinear transmission line with series varactor diodes, are taken into account. Four frequency ranges have been found. The first one gives the so-called energetic soliton due to a perfect combination of second-order dispersion and first-order nonlinearity. The second frequency range presents a dispersive soliton leading to the collapse of the electromagnetic wave at the third frequency range. But the fourth one shows physical conditions which are able to provoke the appearance of wave trains generation with some particular waves, the rogue waves. Moreover, we demonstrate that the number of rogue waves increases with frequency. The soliton, thereafter, gains a relative stability when second-order nonlinearity comes into play with some specific values in the fourth frequency range. Furthermore, the stability conditions of the electromagnetic wave at high frequencies have been also discussed.
Transmission Measurement of the Third-Order Susceptibility of Gold
NASA Technical Reports Server (NTRS)
Smith, David D.; Yoon, Youngkwon; Boyd, Robert W.; Crooks, Richard M.; George, Michael
1999-01-01
Gold nanoparticle composites are known to display large optical nonlinearities. In order to assess the validity of generalized effective medium theories (EMT's) for describing the linear and nonlinear optical properties of metal nanoparticle composites, knowledge of the linear and nonlinear susceptibilities of the constituent materials is a prerequisite. In this study the inherent nonlinearity of the metal is measured directly (rather than deduced from a suitable EMT) using a very thin gold film. Specifically, we have used the z-scan technique at a wavelength near the transmission window of bulk gold to measure the third-order susceptibility of a continuous thin gold film deposited on a quartz substrate surface-modified with a self-assembled monolayer to promote adhesion and uniformity without affecting the optical properties. We compare our results with predictions which ascribe the nonlinear response to a Fermi-smearing mechanism. Further, we note that the sign of the nonlinear susceptibility is reversed from that of gold nanoparticle composites.
Spatiotemporal polarization modulation microscopy with a microretarder array
NASA Astrophysics Data System (ADS)
Ding, Changqin; Ulcickas, James R. W.; Simpson, Garth J.
2018-02-01
A patterned microretarder array positioned in the rear conjugate plane of a microscope enables rapid polarizationdependent nonlinear optical microscopy. The pattern introduced to the array results in periodic modulation of the polarization-state of the incident light as a function of position within the field of view with no moving parts or active control. Introduction of a single stationary optical element and a fixed polarizer into the beam of a nonlinear optical microscope enabled nonlinear optical tensor recovery, which informs on local structure and orientation. Excellent agreement was observed between the measured and predicted second harmonic generation (SHG) of z-cut quartz, selected as a test system with well-established nonlinear optical properties. Subsequent studies of spatially varying samples further support the general applicability of this relatively simple strategy for detailed polarization analysis in both conventional and nonlinear optical imaging of structurally diverse samples.
Berry curvature dipole in Weyl semimetal materials: An ab initio study
NASA Astrophysics Data System (ADS)
Zhang, Yang; Sun, Yan; Yan, Binghai
2018-01-01
Noncentrosymmetric metals are anticipated to exhibit a dc photocurrent in the nonlinear optical response caused by the Berry curvature dipole in momentum space. Weyl semimetals (WSMs) are expected to be excellent candidates for observing these nonlinear effects because they carry a large Berry curvature concentrated in small regions, i.e., near the Weyl points. We have implemented the semiclassical Berry curvature dipole formalism into an ab initio scheme and investigated the second-order nonlinear response for two representative groups of materials: the TaAs-family type-I WSMs and the MoTe2-family type-II WSMs. Both types of WSMs exhibited a Berry curvature dipole in which type-II Weyl points are usually superior to the type-I WSM because of the strong tilt. Corresponding nonlinear susceptibilities in several materials promise a nonlinear Hall effect in the dc field limit, which is within the experimentally detectable range.
Mechanisms of the anomalous Pockels effect in bulk water
NASA Astrophysics Data System (ADS)
Yukita, Shunpei; Suzuki, Yuto; Shiokawa, Naoyuki; Kobayashi, Takayoshi; Tokunaga, Eiji
2018-04-01
The "anomalous" Pockels effect is a phenomenon that a light beam passing between two electrodes in an aqueous electrolyte solution is deflected by an AC voltage applied between the electrodes: the deflection angle is proportional to the voltage such that the incident beam alternately changes its direction. This phenomenon, the Pockels effect in bulk water, apparently contradicts what is believed in nonlinear optics, i.e., macroscopic inversion symmetry should be broken for the second-order nonlinear optical effect to occur such as the first-order electro-optic effect, i.e., the Pockels effect. To clarify the underlying mechanism, the dependence of the effect on the electrode material is investigated to find that the Pockels coefficient with Pt electrodes is two orders of magnitude smaller than with indium tin oxide (ITO) electrodes. It is experimentally confirmed that the Pockels effect of interfacial water in the electric double layer (EDL) on these electrodes shows an electrode dependence similar to the effect in bulk water while the effects depend on the frequency of the AC voltage such that the interfacial signal decreases with frequency but the bulk signal increases with frequency up to 221 Hz. These experimental results lead to a conclusion that the beam deflection is caused by the refractive index gradient in the bulk water region, which is formed transiently by the Pockels effect of interfacial water in the EDL when an AC electric field is applied. The refractive index gradient is caused by the diffuse layer spreading into the bulk region to work as a breaking factor of inversion symmetry of bulk water due to its charge-biased ionic distribution. This mechanism does not contradict the principle of nonlinear optics.
Controllable optical rogue waves via nonlinearity management.
Yang, Zhengping; Zhong, Wei-Ping; Belić, Milivoj; Zhang, Yiqi
2018-03-19
Using a similarity transformation, we obtain analytical solutions to a class of nonlinear Schrödinger (NLS) equations with variable coefficients in inhomogeneous Kerr media, which are related to the optical rogue waves of the standard NLS equation. We discuss the dynamics of such optical rogue waves via nonlinearity management, i.e., by selecting the appropriate nonlinearity coefficients and integration constants, and presenting the solutions. In addition, we investigate higher-order rogue waves by suitably adjusting the nonlinearity coefficient and the rogue wave parameters, which could help in realizing complex but controllable optical rogue waves in properly engineered fibers and other photonic materials.
Enhanced Third-Order Optical Nonlinearity Driven by Surface-Plasmon Field Gradients.
Kravtsov, Vasily; AlMutairi, Sultan; Ulbricht, Ronald; Kutayiah, A Ryan; Belyanin, Alexey; Raschke, Markus B
2018-05-18
Efficient nonlinear optical frequency mixing in small volumes is key for future on-chip photonic devices. However, the generally low conversion efficiency severely limits miniaturization to nanoscale dimensions. Here we demonstrate that gradient-field effects can provide for an efficient, conventionally dipole-forbidden nonlinear response. We show that a longitudinal nonlinear source current can dominate the third-order optical nonlinearity of the free electron response in gold in the technologically important near-IR frequency range where the nonlinearities due to other mechanisms are particularly small. Using adiabatic nanofocusing to spatially confine the excitation fields, from measurements of the 2ω_{1}-ω_{2} four-wave mixing response as a function of detuning ω_{1}-ω_{2}, we find up to 10^{-5} conversion efficiency with a gradient-field contribution to χ_{Au}^{(3)} of up to 10^{-19} m^{2}/V^{2}. The results are in good agreement with the theory based on plasma hydrodynamics and underlying electron dynamics. The associated increase in the nonlinear conversion efficiency with a decreasing sample size, which can even overcompensate the volume decrease, offers a new approach for enhanced nonlinear nano-optics. This will enable more efficient nonlinear optical devices and the extension of coherent multidimensional spectroscopies to the nanoscale.
Enhanced Third-Order Optical Nonlinearity Driven by Surface-Plasmon Field Gradients
NASA Astrophysics Data System (ADS)
Kravtsov, Vasily; AlMutairi, Sultan; Ulbricht, Ronald; Kutayiah, A. Ryan; Belyanin, Alexey; Raschke, Markus B.
2018-05-01
Efficient nonlinear optical frequency mixing in small volumes is key for future on-chip photonic devices. However, the generally low conversion efficiency severely limits miniaturization to nanoscale dimensions. Here we demonstrate that gradient-field effects can provide for an efficient, conventionally dipole-forbidden nonlinear response. We show that a longitudinal nonlinear source current can dominate the third-order optical nonlinearity of the free electron response in gold in the technologically important near-IR frequency range where the nonlinearities due to other mechanisms are particularly small. Using adiabatic nanofocusing to spatially confine the excitation fields, from measurements of the 2 ω1-ω2 four-wave mixing response as a function of detuning ω1-ω2, we find up to 10-5 conversion efficiency with a gradient-field contribution to χAu(3 ) of up to 10-19 m2/V2 . The results are in good agreement with the theory based on plasma hydrodynamics and underlying electron dynamics. The associated increase in the nonlinear conversion efficiency with a decreasing sample size, which can even overcompensate the volume decrease, offers a new approach for enhanced nonlinear nano-optics. This will enable more efficient nonlinear optical devices and the extension of coherent multidimensional spectroscopies to the nanoscale.
Boursier, Elodie; Segonds, Patricia; Boulanger, Benoit; Félix, Corinne; Debray, Jérôme; Jegouso, David; Ménaert, Bertrand; Roshchupkin, Dmitry; Shoji, Ichiro
2014-07-01
We directly measured phase-matching directions of second harmonic, sum, and difference frequency generations in the Langatate La₃Ga(5.5)Ta(0.5)O₁₄ (LGT) uniaxial crystal. The simultaneous fit of the data enabled us to refine the Sellmeier equations of the ordinary and extraordinary principal refractive indices over the entire transparency range of the crystal, and to calculate the phase-matching curves and efficiencies of LGT for infrared optical parametric generation.
Chang, Lin; Pfeiffer, Martin H P; Volet, Nicolas; Zervas, Michael; Peters, Jon D; Manganelli, Costanza L; Stanton, Eric J; Li, Yifei; Kippenberg, Tobias J; Bowers, John E
2017-02-15
An ideal photonic integrated circuit for nonlinear photonic applications requires high optical nonlinearities and low loss. This work demonstrates a heterogeneous platform by bonding lithium niobate (LN) thin films onto a silicon nitride (Si3N4) waveguide layer on silicon. It not only provides large second- and third-order nonlinear coefficients, but also shows low propagation loss in both the Si3N4 and the LN-Si3N4 waveguides. The tapers enable low-loss-mode transitions between these two waveguides. This platform is essential for various on-chip applications, e.g., modulators, frequency conversions, and quantum communications.
NASA Astrophysics Data System (ADS)
Khater, Mostafa M. A.; Seadawy, Aly R.; Lu, Dianchen
2018-01-01
In this research, we apply new technique for higher order nonlinear Schrödinger equation which is representing the propagation of short light pulses in the monomode optical fibers and the evolution of slowly varying packets of quasi-monochromatic waves in weakly nonlinear media that have dispersion. Nonlinear Schrödinger equation is one of the basic model in fiber optics. We apply new auxiliary equation method for nonlinear Sasa-Satsuma equation to obtain a new optical forms of solitary traveling wave solutions. Exact and solitary traveling wave solutions are obtained in different kinds like trigonometric, hyperbolic, exponential, rational functions, …, etc. These forms of solutions that we represent in this research prove the superiority of our new technique on almost thirteen powerful methods. The main merits of this method over the other methods are that it gives more general solutions with some free parameters.
Subwavelength nonlinear phase control and anomalous phase matching in plasmonic metasurfaces
NASA Astrophysics Data System (ADS)
Almeida, Euclides; Shalem, Guy; Prior, Yehiam
2016-01-01
Metasurfaces, and in particular those containing plasmonic-based metallic elements, constitute an attractive set of materials with a potential for replacing standard bulky optical elements. In recent years, increasing attention has been focused on their nonlinear optical properties, particularly in the context of second and third harmonic generation and beam steering by phase gratings. Here, we harness the full phase control enabled by subwavelength plasmonic elements to demonstrate a unique metasurface phase matching that is required for efficient nonlinear processes. We discuss the difference between scattering by a grating and by subwavelength phase-gradient elements. We show that for such interfaces an anomalous phase-matching condition prevails, which is the nonlinear analogue of the generalized Snell's law. The subwavelength phase control of optical nonlinearities paves the way for the design of ultrathin, flat nonlinear optical elements. We demonstrate nonlinear metasurface lenses, which act both as generators and as manipulators of the frequency-converted signal.
Kolakoski sequence as an element to radiate giant forward and backward second harmonic signals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parvini, T. S.; Tehranchi, M. M., E-mail: m-hamidi@sbu.ac.ir, E-mail: teranchi@sbu.ac.ir; Laser and Plasma Research Institute, Shahid Beheshti University, Tehran
2015-11-14
We propose a novel type of aperiodic one-dimensional photonic crystal structures which can be used for generating giant forward and backward second harmonic signals. The studied structure is formed by stacking together the air and nonlinear layers according to the Kolakoski self-generation scheme in which each nonlinear layer contains a pair of antiparallel 180° poled LiNbO{sub 3} crystal layers. For different generation stages of the structure, conversion efficiencies of forward and backward second harmonic waves have been calculated by nonlinear transfer matrix method. Numerical simulations show that conversion efficiencies in the Kolakoski-based multilayer are larger than the perfect ones formore » at least one order of magnitude. Especially for 33rd and 39th generation stages, forward second harmonic wave are 42 and 19 times larger, respectively. In this paper, we validate the strong fundamental field enhancement and localization within Kolakoski-based multilayer due to periodicity breaking which consequently leads to very strong radiation of backward and forward second harmonic signals. Following the applications of analogous aperiodic structures, we expect that Kolakosi-based multilayer can play a role in optical parametric devices such as multicolor second harmonic generators with high efficiency.« less
Probing optically silent superfluid stripes in cuprates
NASA Astrophysics Data System (ADS)
Rajasekaran, S.; Okamoto, J.; Mathey, L.; Fechner, M.; Thampy, V.; Gu, G. D.; Cavalleri, A.
2018-02-01
Unconventional superconductivity in the cuprates coexists with other types of electronic order. However, some of these orders are invisible to most experimental probes because of their symmetry. For example, the possible existence of superfluid stripes is not easily validated with linear optics, because the stripe alignment causes interlayer superconducting tunneling to vanish on average. Here we show that this frustration is removed in the nonlinear optical response. A giant terahertz third harmonic, characteristic of nonlinear Josephson tunneling, is observed in La1.885Ba0.115CuO4 above the transition temperature Tc = 13 kelvin and up to the charge-ordering temperature Tco = 55 kelvin. We model these results by hypothesizing the presence of a pair density wave condensate, in which nonlinear mixing of optically silent tunneling modes drives large dipole-carrying supercurrents.
NASA Astrophysics Data System (ADS)
Karakas, A.; Karakaya, M.; Ceylan, Y.; El Kouari, Y.; Taboukhat, S.; Boughaleb, Y.; Sofiani, Z.
2016-06-01
In this talk, after a short introduction on the methodologies used for computing dipole polarizability (α), second and third-order hyperpolarizability and susceptibility; the results of theoretical studies performed on density functional theory (DFT) and ab-initio quantum mechanical calculations of nonlinear optical (NLO) properties for a few selected organic compounds and polymers will be explained. The electric dipole moments (μ) and dispersion-free first hyperpolarizabilities (β) for a family of azo-azulenes and a styrylquinolinium dye have been determined by DFT at B3LYP level. To reveal the frequency-dependent NLO behavior, the dynamic α, second hyperpolarizabilities (γ), second (χ(2)) and third-order (χ(3)) susceptibilites have been evaluated using time-dependent HartreeFock (TDHF) procedure. To provide an insight into the third-order NLO phenomena of a series of pyrrolo-tetrathiafulvalene-based molecules and pushpull azobenzene polymers, two-photon absorption (TPA) characterizations have been also investigated by means of TDHF. All computed results of the examined compounds are compared with their previous experimental findings and the measured data for similar structures in the literature. The one-photon absorption (OPA) characterizations of the title molecules have been theoretically obtained by configuration interaction (CI) method. The highest occupied molecular orbitals (HOMO), the lowest unoccupied molecular orbitals (LUMO) and the HOMO-LUMO band gaps have been revealed by DFT at B3LYP level for azo-azulenes, styrylquinolinium dye, push-pull azobenzene polymers and by parametrization method 6 (PM6) for pyrrolo-tetrathiafulvalene-based molecules.
Third-order nonlinear optical property of a polyphenylene oligomer: poly(2,5-dialkozyphenylene)
NASA Astrophysics Data System (ADS)
Wu, Jianyao; Yan, Jun; Sun, Diechi; Li, Fuming; Zhou, Luwei; Sun, Meng
1997-02-01
The third-order nonlinear optical (NLO) property of a soluble, π-backbone conjugated polymer poly(2,5-dialkozyphenylene) (for abbreviation called dialkozy-PP) is studied at the picosecond time region. The near resonance third-order hyperpolarizability γxxxx at 532 nm is 8.2×10 -30 esu, and the corresponding macroscopic third-order susceptibility χ(3)(- ω, ω, ω, - ω) and nonlinear refractive index n2 are estimated to be 6.3×10 -10 esu and 1.4×10 -8 esu, respectively. The half-width of the laser pulse is 35 ps.
Optimal second order sliding mode control for nonlinear uncertain systems.
Das, Madhulika; Mahanta, Chitralekha
2014-07-01
In this paper, a chattering free optimal second order sliding mode control (OSOSMC) method is proposed to stabilize nonlinear systems affected by uncertainties. The nonlinear optimal control strategy is based on the control Lyapunov function (CLF). For ensuring robustness of the optimal controller in the presence of parametric uncertainty and external disturbances, a sliding mode control scheme is realized by combining an integral and a terminal sliding surface. The resulting second order sliding mode can effectively reduce chattering in the control input. Simulation results confirm the supremacy of the proposed optimal second order sliding mode control over some existing sliding mode controllers in controlling nonlinear systems affected by uncertainty. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.
Nonlinear optical measurements of conducting copolymers of aniline under CW laser excitation
NASA Astrophysics Data System (ADS)
Pramodini, S.; Poornesh, P.
2015-08-01
Synthesis and measurements of third-order optical nonlinearity and optical limiting of conducting copolymers of aniline are presented. Single beam z-scan technique was employed for the nonlinear optical studies. Continuous wave He-Ne laser operating at 633 nm was used as the source of excitation. Copolymer samples exhibited reverse saturable absorption (RSA) process. The nonlinear refraction studies depict that the copolymers exhibit self-defocusing property. The estimated values of βeff, n2 and χ(3) were found to be of the order of 10-2 cm/W, 10-5 esu and 10-7 esu respectively. Self-diffraction rings were observed due to refractive index change when exposed to the laser beam. A good optical limiting and clamping of power of ∼0.9 mW and ∼0.05 mW was observed. Therefore, copolymers of aniline emerge as a potential candidate for photonic device applications.
Third order nonlinear optical properties of Mn doped CeO2 nanostructures
NASA Astrophysics Data System (ADS)
Mani Rahulan, K.; Angeline Little Flower, N.; Annie Sujatha, R.; Mohana Priya, P.; Gopalakrishnan, C.
2018-05-01
Mn doped CeO2 nanoparticles with different ratios of Mn were synthesized by hydrothermal method and their structural properties were characterized using X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and Scanning electron microscopy (SEM). XRD patterns revealed that the peaks are highly crystalline structure with no segregation of Mn. The surface morphology from SEM reveals that particle size decreases with increase in Mn concentration. Nonlinear optical studies of the samples were measured by single-beam open aperture Z-scan technique using 5 ns laser pulses at 532 nm. The measured optical nonlinearity of all the samples exhibit typical third order nonlinear optical behavior including two-photon absorption (2 PA) and reverse saturable absorption (RSA). The experimental results show that the presence of RSA in these nanoparticles makes them a promising material for the fabrication of optical limiting devices. .
Second-Order Nonlinear Optical Dendrimers and Dendronized Hyperbranched Polymers.
Tang, Runli; Li, Zhen
2017-01-01
Second-order nonlinear optical (NLO) dendrimers with a special topological structure were regarded as the most promising candidates for practical applications in the field of optoelectronic materials. Dendronized hyperbranched polymers (DHPs), a new type of polymers with dendritic structures, proposed and named by us recently, demonstrated interesting properties and some advantages over other polymers. Some of our work concerning these two types of polymers are presented herein, especially focusing on the design idea and structure-property relationship. To enhance their comprehensive NLO performance, dendrimers were designed and synthesized by adjusting their isolation mode, increasing the number of the dendritic generation, modifying their topological structure, introducing isolation chromophores, and utilizing the Ar-Ar F self-assembly effect. To make full use of the advantages of both the structural integrity of dendrimers and the convenient one-pot synthesis of hyperbranched polymers, DHPs were explored by utilizing low-generation dendrons as big monomers to construct hyperbranched polymers. These selected works could provide valuable information to deeply understand the relationship between the structure and properties of functional polymers with dendritic structures, but not only limited to the NLO ones, and might contribute much to the further development of functional polymers with rational design. © 2017 The Chemical Society of Japan & Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Nonlinear optical studies of curcumin metal derivatives with cw laser
DOE Office of Scientific and Technical Information (OSTI.GOV)
Henari, F. Z., E-mail: fzhenari@rcsi-mub.com; Cassidy, S.
2015-03-30
We report on measurements of the nonlinear refractive index and nonlinear absorption coefficients for curcumin and curcumin metal complexes of boron, copper, and iron at different wavelengths using the Z-scan technique. These materials are found to be novel nonlinear media. It was found that the addition of metals slightly influences its nonlinearity. These materials show a large negative nonlinear refractive index of the order of 10{sup −7} cm{sup 2}/W and negative nonlinear absorption of the order of 10{sup −6} cm/W. The origin of the nonlinearity was investigated by comparison of the formalism that is known as the Gaussian decomposition modelmore » with the thermal lens model. The optical limiting behavior based on the nonlinear refractive index was also investigated.« less
Discrete retardance second harmonic generation ellipsometry.
Dehen, Christopher J; Everly, R Michael; Plocinik, Ryan M; Hedderich, Hartmut G; Simpson, Garth J
2007-01-01
A new instrument was constructed to perform discrete retardance nonlinear optical ellipsometry (DR-NOE). The focus of the design was to perform second harmonic generation NOE while maximizing sample and application flexibility and minimizing data acquisition time. The discrete retardance configuration results in relatively simple computational algorithms for performing nonlinear optical ellipsometric analysis. NOE analysis of a disperse red 19 monolayer yielded results that were consistent with previously reported values for the same surface system, but with significantly reduced acquisition times.
Nonlinear microscopy of collagen fibers
NASA Astrophysics Data System (ADS)
Strupler, M.; Pena, A.-M.; Hernest, M.; Tharaux, P.-L.; Fabre, A.; Marchal-Somme, J.; Crestani, B.; Débarre, D.; Martin, J.-L.; Beaurepaire, E.; Schanne-Klein, M.-C.
2007-02-01
We used intrinsic Second Harmonic Generation (SHG) by fibrillar collagen to visualize the three-dimensional architecture of collagen fibrosis at the micrometer scale using laser scanning nonlinear microscopy. We showed that SHG signals are highly specific to fibrillar collagen and provide a sensitive probe of the micrometer-scale structural organization of collagen in tissues. Moreover, recording simultaneously other nonlinear optical signals in a multimodal setup, we visualized the tissue morphology using Two-Photon Excited Fluorescence (2PEF) signals from endogenous chromophores such as NADH or elastin. We then compared different methods to determine accurate indexes of collagen fibrosis using nonlinear microscopy, given that most collagen fibrils are smaller than the microscope resolution and that second harmonic generation is a coherent process. In order to define a robust method to process our three-dimensional images, we either calculated the fraction of the images occupied by a significant SHG signal, or averaged SHG signal intensities. We showed that these scores provide an estimation of the extension of renal and pulmonary fibrosis in murine models, and that they clearly sort out the fibrotic mice.
NASA Astrophysics Data System (ADS)
Bairy, Raghavendra; Jayarama, A.; Shivakumar, G. K.; Patil, P. S.; Bhat, K. Udaya
2018-04-01
Thin films of undoped and zinc doped CdO have been deposited on glass substrate using spray pyrolysis technique with various dopant concentrations of Zn such as 1, 5 and 10%. Influence of Zn doping on CdO thin films for the structural, morphological, optical and nonlinear optical properties are reported. XRD analysis reveals that as prepared pure and Zn doped CdO films show polycrystalline nature with face centered cubic structure. Also, Zn doping does not significantly modify the crystallinity and not much increase in the crystallite size of the film. SEM images shows grains which are uniform and grain size with increase in dopant concentration. The transmittance of the prepared CdO films recorded in the UV visible spectra and it shows 50 to 60% in the visible region. The estimated optical band gap increases from 2.60 to 2.70 eV for various dopant concentrations. The nonlinear optical absorption of Zn-doped CdO films have been measured used the Z-scan technique at a wavelength 532 nm. The nonlinear optical absorption coefficient (β), nonlinear refractive index (n2) and the third order nonlinear optical susceptibility (χ(3)) of the pure and Zn doped films were determined.
Rana, Anup; Lee, Sangsu; Kim, Dongho; Panda, Pradeepta K
2015-05-04
A novel electron deficient β-octakis(methylthio)porphycene, along with its Zn(ii) and Ni(ii) derivatives, was synthesized for the first time. The macrocyclic structure exhibits core ruffling with a largely red shifted absorption band (∼750 nm) and also a large enhancement in the third order nonlinear optical response.
Study of nonlinear refraction of organic dye by Z-scan technique using He-Ne laser
DOE Office of Scientific and Technical Information (OSTI.GOV)
Medhekar, S.; Kumar, R.; Mukherjee, S.
2013-02-05
Laser induced third-order nonlinear optical responses of Brilliant Green solution has been investigated by utilizing single beam Z-scan technique with a continuous-wave He-Ne laser radiation at 632.8 nm. It was observed that the material exhibits self-defocusing type optical nonlinearity. The measurements of nonlinear refraction were carried out at different dye concentrations and found that the increase in solution concentration leads to the linear increase of the nonlinear refractive index. The experimental results confirm great potential of the Brilliant Green for the application in nonlinear optical devices.
Strain-induced three-photon effects
NASA Astrophysics Data System (ADS)
Jeong, Jae-Woo; Shin, Sung-Chul; Lyubchanskii, I. L.; Varyukhin, V. N.
2000-11-01
Strain-induced three-photon effects such as optical second-harmonic generation and hyper-Rayleigh light scattering, characterized by electromagnetic radiation at the double frequency of an incident light, are phenomenologically investigated by adopting a nonlinear photoelastic interaction. The relations between the strain and the nonlinear optical susceptibility for crystal surfaces with point symmetries of 4mm and 3m are described by a symmetry analysis of the nonlinear photoelastic tensor. We theoretically demonstrate a possibility of determining the strain components by measuring the rotational anisotropy of radiation at the second-harmonic frequency. Hyper-Rayleigh light scattering by dislocation strain is also described using a nonlinear photoelastic tensor. The angular dependencies of light scattered at the double frequency of an incident light for different scattering geometries are analyzed.
Chip-Scale Architectures for Precise Optical Frequency Synthesis
NASA Astrophysics Data System (ADS)
Yang, Jinghui
Scientists and engineers have investigated various types of stable and accurate optical synthesizers, where mode-locked laser based optical frequency comb synthesizers have been widely investigated. These frequency combs bridge the frequencies from optical domain to microwave domain with orders of magnitude difference, providing a metrological tool for various platforms. The demand for highly robust, scalable, compact and cost-effective femtosecond-laser synthesizers, however, are of great importance for applications in air- or space-borne platforms, where low cost and rugged packaging are particularly required. This has been afforded in the past several years due to breakthroughs in chip-scale nanofabrication, bringing advances in optical frequency combs down to semiconductor chips. These platforms, with significantly enhanced light-matter interaction, provide a fertile sandbox for research rich in nonlinear dynamics, and offer a reliable route towards low-phase noise photonic oscillators, broadband optical frequency synthesizers, miniaturized optical clockwork, and coherent terabit communications. The dissertation explores various types of optical frequency comb synthesizers based on nonlinear microresonators. Firstly, the fundamental mechanism of mode-locking in a high-quality factor microresonator is examined, supported by ultrafast optical characterizations, analytical closed-form solutions and numerical modeling. In the evolution of these frequency microcombs, the key nonlinear dynamical effect governing the comb state coherence is rigorously analyzed. Secondly, a prototype of chip-scale optical frequency synthesizer is demonstrated, with the laser frequency comb stabilized down to instrument-limited 50-mHz RF frequency inaccuracies and 10-16 fractional frequency inaccuracies, near the fundamental limits. Thirdly, a globally stable Turing pattern is achieved and characterized in these nonlinear resonators with high-efficiency conversion, subsequently generating coherent high-power terahertz radiation via plasmonic photomixers. Finally, a new universal modality of frequency combs is discussed, including satellite states, dynamical tunability, and high efficiency conversion towards direct chip-scale optical frequency synthesis at the precision metrology frontiers.
NASA Astrophysics Data System (ADS)
Carrillo-Delgado, C.; García-Gil, C. I.; Trejo-Valdez, M.; Torres-Torres, C.; García-Merino, J. A.; Martínez-Gutiérrez, H.; Khomenko, A. V.; Torres-Martínez, R.
2016-01-01
Measurements of the third-order nonlinear optical properties exhibited by a ZnO thin solid film deposited on a SnO2 substrate are presented. The samples were prepared by a spray pyrolysis processing route. Scanning electron microscopy analysis and UV-Vis spectroscopy studies were carried out. The picosecond response at 1064 nm was explored by the z-scan technique. A large optical Kerr effect with two-photon absorption was obtained. The inhibition of the nonlinear optical absorption together with a noticeable enhancement in the optical Kerr effect in the sample was achieved by the incorporation of Au nanoparticles into the ZnO film. Additionally, a two-wave mixing configuration at 532 nm was performed and an optical Kerr effect was identified as the main cause of the nanosecond third-order optical nonlinearity. The relaxation time of the photothermal response of the sample was estimated to be about 1 s when the sample was excited by nanosecond single-shots. The rotation of the sample during the nanosecond two-wave mixing experiments was analyzed. It was stated that a non-monotonic relation between rotating frequency and pulse repetition rate governs the thermal contribution to the nonlinear refractive index exhibited by a rotating film. Potential applications for switching photothermal interactions in rotating samples can be contemplated. A rotary logic system dependent on Kerr transmittance in a two-wave mixing experiment was proposed.
NASA Astrophysics Data System (ADS)
Yang, Qin; Zhang, Jie-Fang
Optical quasi-soliton solutions for the cubic-quintic nonlinear Schrödinger equation (CQNLSE) with variable coefficients are considered. Based on the extended tanh-function method, we not only successfully obtained bright and dark quasi-soliton solutions, but also obtained the kink quasi-soliton solutions under certain parametric conditions. We conclude that the quasi-solitons induced by the combined effects of the group velocity dispersion (GVD) distribution, the nonlinearity distribution, higher-order nonlinearity distribution, and the amplification or absorption coefficient are quite different from those of the solitons induced only by the combined effects of the GVD, the nonlinearity distribution, and the amplification or absorption coefficient without considering the higher-order nonlinearity distribution (i.e. α(z)=0). Furthermore, we choose appropriate optical fiber parameters D(z) and R(z) to control the velocity of quasi-soliton and time shift, and discuss the evolution behavior of the special quasi-soliton.
Tian, Tian; Cai, Bin; Sugihara, Okihiro
2016-12-07
A substrate-supported rapid evaporation crystallization (SSREC) method was used to develop a highly nonlinear optical material, 4-N,N-dimethylamino-4'-N'-methyl-stilbazolium tosylate (DAST), which satisfies the Rayleigh scattering requirement for the fabrication of highly transparent composites. DAST nanocrystals have a second harmonic generation active crystal structure and a high signal-to-noise ratio second harmonic generation signal when excited by using a 1064 nm cw laser. The nanocrystals also possess size-dependent UV-vis absorption and fluorescence behavior which is not seen in the bulk state. SSREC offers a very convenient means of nanocrystal size control for fabricating nonlinear optical nanomaterials, and the unique properties of these DAST NCs provide potential applications in the fields of lasing, fluorescence probes, and other nonlinear optical photonics.
New styryl phenanthroline derivatives as model D-π-A-π-D materials for non-linear optics.
Bonaccorso, Carmela; Cesaretti, Alessio; Elisei, Fausto; Mencaroni, Letizia; Spalletti, Anna; Fortuna, Cosimo Gianluca
2018-04-27
Four novel push-pull systems combining a central phenanthroline acceptor moiety and two substituted benzene rings, as a part of the conjugated π-system between the donor and the acceptor moieties, have been synthetized through a straightforward and efficient one-step synthetic procedure. The chromophores display high fluorescence and a peculiar fluorosolvatochromic behavior. Ultrafast investigation by means of state-of-the-art femtosecond-resolved transient absorption and fluorescence up-conversion spectroscopies allowed the role of intramolecular charge transfer (ICT) states to be evidenced, also revealing the crucial role played by both the polarity and proticity of the medium on the excited state dynamics of the chromophores. The ICT processes, responsible for the solvatochromism, also lead to interesting non-linear optical (NLO) properties: namely great two photon absorption cross-sections (hundreds of GM), investigated by the Two Photon Excited Fluorescence (TPEF) technique, and large second order hyperpolarizability coefficients, estimated through a convenient solvatochromic method. These features thus make the investigated styryl phenanthroline molecules model D-π-A-π-D compounds for non-linear optical applications. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Astigmatism transfer phenomena in the optical parametric amplification process
NASA Astrophysics Data System (ADS)
Li, Wenkai; Chen, Yun; Li, Yanyan; Xu, Yi; Guo, Xiaoyang; Lu, Jun; Leng, Yuxin
2017-01-01
We numerically and experimentally investigate the astigmatism transfer phenomena in femtosecond optical parametric amplification (OPA). We model the OPA process based on the coupled second-order three-wave nonlinear propagation equations. The numerical and experimental results support that the input pump pulse astigmatism can be transferred into the idler pulse but not the signal pulse, and the idler pulse astigmatism originating from spatial walk-off is less than the idler pulse astigmatism received from the pump. Thus, we can provide a clear understanding of astigmatism transfer mechanisms in the OPA process, and make better use of broadband tunable OPA sources.
NASA Astrophysics Data System (ADS)
Holmgren, Stefan J.; Pasiskevicius, Valdas; Wang, Shunhua; Laurell, Fredrik
2003-09-01
A novel technique for characterization of the second-order nonlinearity in nonlinear crystals is presented. It utilizes group-velocity walk-off between femtosecond pulses in type II SHG to achieve three-dimensional resolution of the nonlinearity. The longitudinal and transversal spatial resolution can be set independently. The technique is especially useful for characterizing quasi-phase-matched nonlinear crystals, and it is demonstrated in potassium titanyl phosphate.
Relating the structure of geminal amido esters to their molecular hyperpolarizability
Cole, Jacqueline M.; Lin, Tze -Chia; Ashcroft, Christopher M.; ...
2016-12-05
Advanced organic non-linear optical (NLO) materials have attracted increasing attention due to their multitude of applications in modern telecommunication devices. Arguably the most important advantage of organic NLO materials, relative to traditionally used inorganic NLO materials, is their short optical response time. Geminal amido esters with their donor-x-acceptor (D-π-A) architecture exhibit high levels of electron delocalization and substantial intramolecular charge transfer, which should endow these materials with short optical response times and large molecular (hyper)polarizabilities. In order to test this hypothesis, the linear and second-order non-linear optical properties of five geminal amido esters, ( E)-ethyl 3-(X-phenylamino)-2-(Y-phenylcarbamoyl)acrylate (1: X = 4-H,Ymore » = 4-H; 2: X= 4-CH 3, Y = 4-CH 3; 3: X = 4-NO 2, Y = 2,5-OCH 3; 4: X = 2-Cl, Y = 2-Cl; 5: X = 4-Cl, Y = 4-Cl) were synthesized and characterized, whereby NLO structure-function relationships were established including intramolecular charge transfer characteristics, crystal field effects, and molecular first hyperpolarizabilities β. Given the typically large errors (10-30%) associated with the determination of (β) coefficients, three independent methods were used: i) density functional theory, ii) hyper-Rayleigh scattering, and iii) high-resolution X-ray diffraction data analysis based on multipolar modeling of electron densities at each atom. These three methods delivered consistent values of β, and based on these results, 3 should hold the most promise for NLO applications. In conclusion, the correlation between the molecular structure of these geminal amido esters and their linear and non-linear optical properties thus provide molecular design guidelines for organic NLO materials; this leads to the ultimate goal of generating bespoke organic molecules to suit a given NLO device application.« less
Measurement of ultrashort laser pulses using single-crystal films of 4-aminobenzophenone
NASA Astrophysics Data System (ADS)
Bhowmik, Achintya K.; Tan, Shida; Ahyi, Ayayi C.; Dharmadhikari, J. A.; Dharmadhikari, A. K.; Mathur, D.
2007-12-01
Single-crystal thin-film of an organic second-order nonlinear optical material, 4-aminobenzophenone (ABP), is used to measure the pulsewidth of a Ti-Sapphire laser producing ˜45 fs pulses at 1 kHz repetition rate, by the non-collinear second-harmonic generation (SHG) intensity autocorrelation technique. These films are suitable for measurements over a broad wavelength range, down to 780 nm, due to their wide optical transparency. The single-crystal film with thickness (˜3 μm) less than the coherence length requires no phase-matching for efficient broadband SHG. Pulse walk-off due to group-velocity mismatch (GVM) and temporal broadening of the pulses due to group-velocity dispersion (GVD) are found to be negligible. These effects have been estimated for pulse width down to few-cycle pulses (˜10 fs), and the analyses show that these films can be used to characterize such ultrashort optical pulses.
Angle-Resolved Second-Harmonic Light Scattering from Colloidal Particles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, N.; Angerer, W. E.; Yodh, A. G.
2001-09-03
We report angle-resolved second-harmonic generation (SHG) measurements from suspensions of centrosymmetric micron-size polystyrene spheres with surface-adsorbed dye (malachite green). The second-harmonic scattering profiles differ qualitatively from linear light scattering profiles of the same particles. We investigated these radiation patterns using several polarization configurations and particle diameters. We introduce a simple Rayleigh-Gans-Debye model to account for the SHG scattering anisotropy. The model compares favorably with our experimental data. Our measurements suggest scattering anisotropy may be used to isolate particle nonlinear optics from other bulk nonlinear optical effects in suspension.
Relaxation oscillation suppression in continuous-wave intracavity optical parametric oscillators.
Stothard, David J M; Dunn, Malcolm H
2010-01-18
We report a solution to the long standing problem of the occurrence of spontaneous and long-lived bursts of relaxation oscillations which occur when a continuous-wave optical parametric oscillator is operated within the cavity of the parent pump-laser. By placing a second nonlinear crystal within the pump-wave cavity for the purpose of second-harmonic-generation of the pump-wave the additional nonlinear loss thereby arising due to up-conversion effectively suppresses the relaxation oscillations with very little reduction in down-converted power.
NASA Astrophysics Data System (ADS)
Heflin, J. R.; Marciu, D.; Figura, C.; Wang, S.; Burbank, P.; Stevenson, S.; Dorn, H. C.
1998-06-01
A new mechanism for increasing the third-order nonlinear optical susceptibility, χ(3), is described for endohedral metallofullerenes. A two to three orders of magnitude increase in the nonlinear response is reported for degenerate four-wave mixing experiments conducted with solutions of Er2@C82 (isomer III) relative to empty-cage fullerenes. A value of -8.7×10-32esu is found for the molecular susceptibility, γxyyx, of Er2@C82 compared to previously reported values of γxxxx=3×10-34 esu and γxyyx=4×10-35 esu for C60. The results confirm the importance of the metal-to-cage charge-transfer mechanism for enhancing the nonlinear optical response in endohedral metallofullerenes.
NASA Astrophysics Data System (ADS)
Tanak, H.; Pawlus, K.; Marchewka, M. K.; Pietraszko, A.
2014-01-01
In this work, we report a combined experimental and theoretical study on molecular structure, vibrational spectra and NBO analysis of the potential nonlinear optical (NLO) material anilinium trichloroacetate. The FT-IR and FT-Raman spectra of the compound have been recorded together between 4000-80 cm-1 and 3600-80 cm-1 regions, respectively. The compound crystallizes in the noncentrosymmetric space group of monoclinic system. The optimized molecular structure, vibrational wavenumbers, IR intensities and Raman activities have been calculated by using density functional method (B3LYP) with 6-311++G(d,p) as higher basis set. The obtained vibrational wavenumbers and optimized geometric parameters were seen to be in good agreement with the experimental data. DSC measurements on powder samples do not indicate clearly on the occurrence of phase transitions in the temperature 113-293 K. The Kurtz and Perry powder reflection technique appeared to be very effective in studies of second-order nonlinear optical properties of the molecule. The non-linear optical properties are also addressed theoretically. The predicted NLO properties of the title compound are much greater than ones of urea. In addition, DFT calculations of the title compound, molecular electrostatic potential, frontier orbitals and thermodynamic properties were also performed at 6-311++G(d,p) level of theory. For title crystal the SHG efficiency was estimated by Kurtz-Perry method to be deff = 0.70 deff (KDP).
Tanak, H; Pawlus, K; Marchewka, M K; Pietraszko, A
2014-01-24
In this work, we report a combined experimental and theoretical study on molecular structure, vibrational spectra and NBO analysis of the potential nonlinear optical (NLO) material anilinium trichloroacetate. The FT-IR and FT-Raman spectra of the compound have been recorded together between 4000-80 cm(-1) and 3600-80 cm(-1) regions, respectively. The compound crystallizes in the noncentrosymmetric space group of monoclinic system. The optimized molecular structure, vibrational wavenumbers, IR intensities and Raman activities have been calculated by using density functional method (B3LYP) with 6-311++G(d,p) as higher basis set. The obtained vibrational wavenumbers and optimized geometric parameters were seen to be in good agreement with the experimental data. DSC measurements on powder samples do not indicate clearly on the occurrence of phase transitions in the temperature 113-293 K. The Kurtz and Perry powder reflection technique appeared to be very effective in studies of second-order nonlinear optical properties of the molecule. The non-linear optical properties are also addressed theoretically. The predicted NLO properties of the title compound are much greater than ones of urea. In addition, DFT calculations of the title compound, molecular electrostatic potential, frontier orbitals and thermodynamic properties were also performed at 6-311++G(d,p) level of theory. For title crystal the SHG efficiency was estimated by Kurtz-Perry method to be d(eff)=0.70 d(eff) (KDP). Copyright © 2013 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Liu, Xu-chun; Xu, Gang; Si, Jin-hai; Ye, Pei-xian; Lin, Tong; Peng, Bi-xian
1999-08-01
A series of squarylium cyanine dyes with different substituents were synthesized and the third-order optical nonlinearities of their ground and excited states were investigated by backward degenerate four-wave-mixing. For the ground state, the molecular hyperpolarizability γg increases with the red-shift of the absorption peak λmaxab of the squaraine with different substituents, whereas for the excited-state molecular hyperpolarizability γe, the nonlinear enhancement γe/γg decreases, which may indicate that in the excited state the electron accepting-donating ability of different substituents changes in the reverse order compared with the order in the ground state.
NASA Astrophysics Data System (ADS)
Motiei, H.; Jafari, A.; Naderali, R.
2017-02-01
In this paper, two chemically synthesized organic azo dyes, 2-(2,5-Dichloro-phenyazo)-5,5-dimethyl-cyclohexane-1,3-dione (azo dye (i)) and 5,5-Dimethyl-2-tolylazo-cyclohexane-1,3-dione (azo dye (ii)), have been studied from optical Kerr nonlinearity point of view. These materials were characterized by Ultraviolet-visible spectroscopy. Experiments were performed using a continous wave diode-pumped laser at 532 nm wavelength in three intensities of the laser beam. Nonlinear absorption (β), refractive index (n2) and third-order susceptibility (χ (3)) of dyes, were calculated. Nonlinear absorption coefficient of dyes have been calculated from two methods; 1) using theoretical fits and experimental data in the Z-scan technique, 2) using the strength of nonlinearity curves. The values of β obtained from both of the methods were approximately the same. The results demonstrated that azo dye (ii) displays better nonlinearity and has a lower two-photon absorption threshold than azo dye (i). Calculated parameter related to strength of nonlinearity for azo dye (ii) was higher than azo dye (i), It may be due to presence of methyl in azo dye (ii) instead of chlorine in azo dye (i). Furthermore, The measured values of third order susceptibility of azo dyes were from the order of 10-9 esu . These azo dyes can be suitable candidate for optical switching devices.
NASA Astrophysics Data System (ADS)
Bijlani, Bhavin J.
2011-07-01
This thesis explored the theory, design, fabrication and characterization of AlGaAs Bragg reflection waveguides (BRW) towards the goal of a platform for monolithic integration of active and optically nonlinear devices. Through integration of a diode laser and nonlinear phase-matched cavity, the possibility of on-chip nonlinear frequency generation was explored. Such integrated devices would be highly useful as a robust, alignment free, small footprint and electrically injected alternative to bulk optic systems. A theoretical framework for modal analysis of arbitrary 1-D photonic crystal defect waveguides is developed. This method relies on the transverse resonance condition. It is then demonstrated in the context of several types of Bragg reflection waveguides. The framework is then extended to phase-match second-order nonlinearities and incorporating quantum-wells for diode lasers. Experiments within a slab and ridge waveguide demonstrated phase-matched Type-I second harmonic generation at fundamental wavelength of 1587 and 1600 nm, respectively; a first for this type of waveguide. For the slab waveguide, conversion efficiency was 0.1 %/W. In the more strongly confined ridge waveguides, efficiency increased to 8.6 %/W owing to the increased intensity. The normalized conversion efficiency was estimated to be at 600 %/Wcm2. Diode lasers emitting at 980 nm in the BRW mode were also fabricated. Verification of the Bragg mode was performed through imaging the near- field of the mode. Propagation loss of this type of mode was measured directly for the first time at ≈ 14 cm-1. The lasers were found to be very insensitive with characteristic temperature at 215 K. Two designs incorporating both laser and phase-matched nonlinearity within the same cavity were fabricated, for degenerate and non-degenerate down-conversion. Though the lasers were sub-optimal, a parametric fluorescence signal was readily detected. Fluorescence power as high as 4 nW for the degenerate design and 5 nW for the non-degenerate design were detected. The conversion efficiency was 4176 %/Wcm2 and 874 %/Wcm2, respectively. Neither design was found to emit near the design wavelength. In general, the signal is between 1600-1800 nm and the idler is between 2200-2400 nm. Improvements in laser performance are expected to drastically increase the conversion efficiency.
NASA Astrophysics Data System (ADS)
Rush, James D.; Holdcroft, Geoffrey E.; Dunn, Peter L.
1989-03-01
The growth and characterisation of fibres containing a crystalline core of the nonlinear organic compound DAN in silica and higher refractive index capillaries is described. In addition to measuring the optical properties in transmission a method is described of measuring the sideways scatter from such fibres in order that a fuller understanding be made of factors which limit the achievement of very high SHG efficiencies.
Nonlinear and quantum optics near nanoparticles
NASA Astrophysics Data System (ADS)
Dhayal, Suman
We study the behavior of electric fields in and around dielectric and metal nanoparticles, and prepare the ground for their applications to a variety of systems viz. photovoltaics, imaging and detection techniques, and molecular spectroscopy. We exploit the property of nanoparticles being able to focus the radiation field into small regions and study some of the interesting nonlinear, and quantum coherence and interference phenomena near them. The traditional approach to study the nonlinear light-matter interactions involves the use of the slowly varying amplitude approximation (SVAA) as it simplifies the theoretical analysis. However, SVVA cannot be used for systems which are of the order of the wavelength of the light. We use the exact solutions of the Maxwell's equations to obtain the fields created due to metal and dielectric nanoparticles, and study nonlinear and quantum optical phenomena near these nanoparticles. We begin with the theoretical description of the electromagnetic fields created due to the nonlinear wavemixing process, namely, second-order nonlinearity in an nonlinear sphere. The phase-matching condition has been revisited in such particles and we found that it is not satisfied in the sphere. We have suggested a way to obtain optimal conditions for any type and size of material medium. We have also studied the modifications of the electromagnetic fields in a collection of nanoparticles due to strong near field nonlinear interactions using the generalized Mie theory for the case of many particles applicable in photovoltaics (PV). We also consider quantum coherence phenomena such as modification of dark states, stimulated Raman adiabatic passage (STIRAP), optical pumping in 4-level atoms near nanoparticles by using rotating wave approximation to describe the Hamiltonian of the atomic system. We also considered the behavior of atomic and the averaged atomic polarization in 7-level atoms near nanoparticles. This could be used as a prototype to study any n-level atomic system experimentally in the presence of ensembles of quantum emitters. In the last chapter, we suggested a variant of a pulse-shaping technique applicable in stimulated Raman spectroscopy (SRS) for detection of atoms and molecules in multiscattering media. We used discrete-dipole approximation to obtain the fields created by the nanoparticles.
Frequency-resolved optical gating with the use of second-harmonic generation
DOE Office of Scientific and Technical Information (OSTI.GOV)
DeLong, K.W.; Trebino, R.; Hunter, J.
1994-11-01
We discuss the use of second-harmonic generation (SHG) as the nonlinearity in the technique of frequency-resolved optical gating (FROG) for measuring the full intensity and phase evolution of an arbitrary ultrashort pulse. FROG that uses a third-order nonlinearity in the polarization-gate geometry has proved extremely successful, and the algorithm required for extraction of the intensity and the phase from the experimental data is quite robust. However, for pulse intensities less than [similar to] 1 MW, third-order nonlinearities generate insufficient signal strength, and therefore SHG FROG appears necessary. We discuss the theoretical, algorithmic, and experimental considerations of SHG FROG in detail.more » SHG FROG has an ambiguity in the direction of time, and its traces are somewhat unintuitive. Also, previously published algorithms are generally ineffective at extracting the intensity and the phase of an arbitrary laser pulse from the SHG FROG trace. We present an improved pulse-retrieval algorithm, based on the method of generalized projections, that is far superior to the previously published algorithms, although it is still not so robust as the polarization-gate algorithm. We discuss experimental sources of error such as pump depletion and group-velocity mismatch. We also present several experimental examples of pulses measured with SHG FROG and show that the derived intensities and phases are in agreement with more conventional diagnostic techniques, and we demonstrate the high-dynamic-range capability of SHG FROG. We conclude that, despite the above drawbacks, SHG FROG should be useful in measuring low-energy pulses.« less
Effect of reduction time on third order optical nonlinearity of reduced graphene oxide
NASA Astrophysics Data System (ADS)
Sreeja, V. G.; Vinitha, G.; Reshmi, R.; Anila, E. I.; Jayaraj, M. K.
2017-04-01
We report the influence of reduction time on structural, linear and nonlinear optical properties of reduced graphene oxide (rGO) thin films synthesized by spin coating method. We observed that the structural, linear and nonlinear optical properties can be tuned with reduction time in GO is due to the increased structural ordering because of the restoration of sp2 carbon atoms with the time of reduction. The nonlinear absorption studies by open aperture Z-scan technique exhibited a saturable absorption. The nonlinear refraction studies showed the self de focusing nature of rGO by closed aperture Z scan technique. The nonlinear absorption coefficient and saturation intensity varies with the time for reduction of GO which is attributed to the depletion of valence band and the conduction band filling effect. Our results emphasize duration for reduction of GO dependent optical nonlinearity of rGO thin films to a great extent and explore its applications Q switched mode locking laser systems for generating ultra short laser pulses and in optical sensors. The rGO coated films were characterized by X-Ray diffraction method (XRD), Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, UV-Vis absorption spectroscopy (UV-Vis), Photoluminescence (PL) and Scanning electron microscope (SEM) measurements.
Nonlinear evolution of energetic-particles-driven waves in collisionless plasmas
NASA Astrophysics Data System (ADS)
Li, Shuhan; Liu, Jinyuan; Wang, Feng; Shen, Wei; Li, Dong
2018-06-01
A one-dimensional electrostatic collisionless particle-in-cell code has been developed to study the nonlinear interaction between electrostatic waves and energetic particles (EPs). For a single wave, the results are clear and agree well with the existing theories. For coexisting two waves, although the mode nonlinear coupling between two wave fields is ignored, the second-order phase space islands can still exist between first-order islands generated by the two waves. However, the second-order phase islands are not formed by the superposed wave fields and the perturbed motions of EPs induced by the combined effect of two main resonances make these structures in phase space. Owing to these second-order islands, energy can be transferred between waves, even if the overlap of two main resonances never occurs. Depending on the distance between the main resonance islands in velocity space, the second-order island can affect the nonlinear dynamics and saturations of waves.
NASA Astrophysics Data System (ADS)
Kumara, K.; Shetty, T. C. S.; Patil, P. S.; Maidur, Shivaraj R.; Dharmaprakash, S. M.
2018-04-01
Graphene quantum dots (GQDs) have drawn more attention due to their multifunctional characteristics which can be used for various applications. However, literature on nonlinear optical (NLO) properties of GQDs is scarcely available. Therefore more investigations are required on NLO properties of GQDs. We report preparation of GQDs from pyrolysis method using citric acid as starting material. Third order nonlinear optical (TNLO) properties are studied using Z-scan technique employing continuous wavelength laser. Study reveals that GQD's show self defocusing effect. This is due to thermal heating of solvent which leads to negative nonlinear refractive index of the material. Open aperture (OA) Z-scan reveals reverse saturation absorption (RSA) nature of the material indicating optical limiting (OL) property. A broad UV absorbance spectrum reveals photoluminescence (PL) emission of the material which is independent of excitation wavelength.
Oscillation theorems for second order nonlinear forced differential equations.
Salhin, Ambarka A; Din, Ummul Khair Salma; Ahmad, Rokiah Rozita; Noorani, Mohd Salmi Md
2014-01-01
In this paper, a class of second order forced nonlinear differential equation is considered and several new oscillation theorems are obtained. Our results generalize and improve those known ones in the literature.
Zhuo, G-Y; Lee, H; Hsu, K-J; Huttunen, M J; Kauranen, M; Lin, Y-Y; Chu, S-W
2014-03-01
Chirality is one of the most fundamental and essential structural properties of biological molecules. Many important biological molecules including amino acids and polysaccharides are intrinsically chiral. Conventionally, chiral species can be distinguished by interaction with circularly polarized light, and circular dichroism is one of the best-known approaches for chirality detection. As a linear optical process, circular dichroism suffers from very low signal contrast and lack of spatial resolution in the axial direction. It has been demonstrated that by incorporating nonlinear interaction with circularly polarized excitation, second-harmonic generation circular dichroism can provide much higher signal contrast. However, previous circular dichroism and second-harmonic generation circular dichroism studies are mostly limited to probe chiralities at surfaces and interfaces. It is known that second-harmonic generation, as a second-order nonlinear optical effect, provides excellent optical sectioning capability when combined with a laser-scanning microscope. In this work, we combine the axial resolving power of second-harmonic generation and chiral sensitivity of second-harmonic generation circular dichroism to realize three-dimensional chiral detection in biological tissues. Within the point spread function of a tight focus, second-harmonic generation circular dichroism could arise from the macroscopic supramolecular packing as well as the microscopic intramolecular chirality, so our aim is to clarify the origins of second-harmonic generation circular dichroism response in complicated three-dimensional biological systems. The sample we use is starch granules whose second-harmonic generation-active molecules are amylopectin with both microscopic chirality due to its helical structure and macroscopic chirality due to its crystallized packing. We found that in a starch granule, the second-harmonic generation for right-handed circularly polarized excitation is significantly different from second-harmonic generation for left-handed one, offering excellent second-harmonic generation circular dichroism contrast that approaches 100%. In addition, three-dimensional visualization of second-harmonic generation circular dichroism distribution with sub-micrometer spatial resolution is realized. We observed second-harmonic generation circular dichroism sign change across the starch granules, and the result suggests that in thick biological tissue, second-harmonic generation circular dichroism arises from macroscopic molecular packing. Our result provides a new method to visualize the organization of three-dimensional structures of starch granules. The second-harmonic generation circular dichroism imaging method expands the horizon of nonlinear chiroptical studies from simplified surface/solution environments to complicated biological tissues. © 2014 The Authors Journal of Microscopy © 2014 Royal Microscopical Society.
NASA Astrophysics Data System (ADS)
Chandra Shekhara Shetty, T.; Chidan Kumar, C. S.; Gagan Patel, K. N.; Chia, Tze Shyang; Dharmaprakash, S. M.; Ramasami, Ponnadurai; Umar, Yunusa; Chandraju, Siddegowda; Quah, Ching Kheng
2017-09-01
Two new chalcones namely, (2E)-1-(3-fluoro-4-methoxyphenyl)-3-(4-methoxyphenyl) prop-2-en-1-one and (2E)-3-(4-chlorophenyl)-1-(3-fluoro-4-methoxyphenyl)prop-2-en-1-one were synthesized and grown as single crystals by slow evaporation technique in methanol. The FTIR spectrum recorded confirms the presence of functional groups in these materials. The molecular conformation of the compounds was achieved by single crystal X-ray diffraction studies. The thermal stability of the crystals was determined from TGA/DSC curve. The third order optical nonlinearity of the chalcone compounds in DMF solution has been carried out using an Nd:YAG laser at 532 nm as the source of excitation. The nonlinear optical response was characterized by measuring the intensity dependent refractive index n2 of the medium using Z-scan technique. It is seen that the molecules exhibit a negative (defocusing) nonlinearity and large nonlinear refractive index of the order of -1.8 × 10-11 esu. The third-order nonlinearity of the studied chalcones is dominated by nonlinear refraction, which leads to strong optical limiting of laser. The result reveals that these two new chalcone molecules would be a promising material for optical limiting applications. In addition, the optimized molecular geometry, vibrational frequencies in gas, and the Molecular Electrostatic Potential (MEP) surface parameters of the two molecules were calculated using DFT/B3LYP method with 6-311++G(d,p) basis set in ground state. All the theoretical calculations were found in good agreement with experimental data.
Probing Graphene χ((2)) Using a Gold Photon Sieve.
Lobet, Michaël; Sarrazin, Michaël; Cecchet, Francesca; Reckinger, Nicolas; Vlad, Alexandru; Colomer, Jean-François; Lis, Dan
2016-01-13
Nonlinear second harmonic optical activity of graphene covering a gold photon sieve was determined for different polarizations. The photon sieve consists of a subwavelength gold nanohole array placed on glass. It combines the benefits of efficient light trapping and surface plasmon propagation to unravel different elements of graphene second-order susceptibility χ((2)). Those elements efficiently contribute to second harmonic generation. In fact, the graphene-coated photon sieve produces a second harmonic intensity at least two orders of magnitude higher compared with a bare, flat gold layer and an order of magnitude coming from the plasmonic effect of the photon sieve; the remaining enhancement arises from the graphene layer itself. The measured second harmonic generation yield, supplemented by semianalytical computations, provides an original method to constrain the graphene χ((2)) elements. The values obtained are |d31 + d33| ≤ 8.1 × 10(3) pm(2)/V and |d15| ≤ 1.4 × 10(6) pm(2)/V for a second harmonic signal at 780 nm. This original method can be applied to any kind of 2D materials covering such a plasmonic structure.
NASA Astrophysics Data System (ADS)
Wu, Xingzhi; Xiao, Jinchong; Sun, Ru; Jia, Jidong; Yang, Junyi; Ao, Guanghong; Shi, Guang; Wang, Yuxiao; Zhang, Xueru; Song, Yinglin
2018-06-01
Spindle-type molecules containing twisted acenes (PyBTA-1 &PyBTA-2) are designed, synthesized characterized. Picosecond Z-scan experiments under 532 nm show reverse saturable absorption and negative nonlinear refraction, indicating large third-order optical nonlinearity in PyBTA-1. The mechanism of the optical nonlinearity is investigated and the results show that the nonlinear absorption and refraction in PyBTA-1 originates from a charge transfer (CT) state. Furthermore, relatively long lifetime and absorptive cross section of the CT state are measured. Based on the excited state absorption in PyBTA-1, strong optical limiting with ∼0.3 J/cm2 thresholds are obtained when excited by picoseconds and nanoseconds pulses. The findings on nonlinear optics suggest PyBTA-1 a promising material of all optical modulation and laser protection, which enrich the potential applications of these spindle-type molecules. Comparing to the previously reported spindle-type molecules with analogous structures, the introduction of ICT in PyBTA-1 &PyBTA-2 dramatically decreases the two-photon absorption while enhances the nonlinear refraction. The results could be used to selectively tailor the optical nonlinearity in such kind of compounds.
Magnetic ordering induced giant optical property change in tetragonal BiFeO3
NASA Astrophysics Data System (ADS)
Tong, Wen-Yi; Ding, Hang-Chen; Gong, Shi Jing; Wan, Xiangang; Duan, Chun-Gang
2015-12-01
Magnetic ordering could have significant influence on band structures, spin-dependent transport, and other important properties of materials. Its measurement, especially for the case of antiferromagnetic (AFM) ordering, however, is generally difficult to be achieved. Here we demonstrate the feasibility of magnetic ordering detection using a noncontact and nondestructive optical method. Taking the tetragonal BiFeO3 (BFO) as an example and combining density functional theory calculations with tight-binding models, we find that when BFO changes from C1-type to G-type AFM phase, the top of valance band shifts from the Z point to Γ point, which makes the original direct band gap become indirect. This can be explained by Slater-Koster parameters using the Harrison approach. The impact of magnetic ordering on band dispersion dramatically changes the optical properties. For the linear ones, the energy shift of the optical band gap could be as large as 0.4 eV. As for the nonlinear ones, the change is even larger. The second-harmonic generation coefficient d33 of G-AFM becomes more than 13 times smaller than that of C1-AFM case. Finally, we propose a practical way to distinguish the two AFM phases of BFO using the optical method, which is of great importance in next-generation information storage technologies.
Second-harmonic generation using tailored whispering gallery modes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dumeige, Yannick; Feron, Patrice
It has been shown that whispering gallery modes can be used to obtain a combination of modal and geometrical quasi-phase-matching in second-harmonic generation. This could be achieved in isotropic, nonferroelectric, strongly dispersive and highly nonlinear materials such as III-V semiconductors. Unfortunately the poor overlap between the second-harmonic field and second order nonlinear polarization limits the conversion efficiency. In this paper we show that by engineering the refractive index it is possible to increase field overlap and to enhance effective second order nonlinear polarization of semiconductor microdisks.
NASA Astrophysics Data System (ADS)
Sunatkari, A. L.; Talwatkar, S. S.; Tamgadge, Y. S.; Muley, G. G.
2018-05-01
Highly stable colloidal gold nanoparticles (GNPs) stabilised in l-arginine were synthesized and embedded in polyvinyl pyrrolidone (PVP) polymer matrix to fabricate thin films by spin coating method. Nonlinear optical response of GNP-PVP nanocomposite were investigated using single beam Z-scan technique using He-Ne laser beam in CW regime operated at 632.8 nm as an excitation source. The sign of nonlinear refractive index was found negative, which is of self-defocusing nature. The nonlinear optical parameters estimated for GNP-PVP nanocomposite and found values as large as n2≈(1.7 -3.1 ) ×10-4c m2W-1, β ≈(2.40 -4.69 ) ×10-5c m W-1 and χef f (3 )≈(2.30 -4.34 ) ×10-4e s u . The nonlinear refractive index, absorption coefficient and third order nonlinear susceptibility have found decreasing with the increase in the concentration of l-arginine. Localized surface plasmon resonance (LSPR) peaks show the blue shift. The average size of the GNPs is found reducing from 11 nm to 7.5 nm with the increase in the stabilizer concentration, as analysed by transmission electron microscopy. The XRD study reveals face-centred cubic (fcc) structure of GNPs. The huge nonlinearity is attributed to the thermo-optic phenomenon. The huge enhancement in third order nonlinear susceptibility and nonlinear refractive index indicates that this optical material possess a high potential for various optoelectronic devices applications.
NASA Astrophysics Data System (ADS)
Kasatani, Kazuo; Okamoto, Hiroaki; Takenaka, Shunsuke
2003-11-01
Third-order optical nonlinearities of sol-gel silica coating films containing metal porphyrin derivatives were measured under resonant conditions by the femtosecond degenerate four-wave mixing (DFWM) technique. Temporal profiles of the DFWM signal were measured with a time resolution of 0.3 ps, and were found to consist of two components, the coherent instantaneous nonlinear response and the delayed response with a decay time constant of several to several hundred ps. The latter can be attributed to population grating of an excited state, and contribution of slow component was very little for a zinc porphyrin derivative. The values of electronic component of the optical nonlinear susceptibility, χ(3) xxxx, for these films were ca. 2 x 10-10 esu.
ONIOM Investigation of the Second-Order Nonlinear Optical Responses of Fluorescent Proteins.
de Wergifosse, Marc; Botek, Edith; De Meulenaere, Evelien; Clays, Koen; Champagne, Benoît
2018-05-17
The first hyperpolarizability (β) of six fluorescent proteins (FPs), namely, enhanced green fluorescent protein, enhanced yellow fluorescent protein, SHardonnay, ZsYellow, DsRed, and mCherry, has been calculated to unravel the structure-property relationships on their second-order nonlinear optical properties, owing to their potential for multidimensional biomedical imaging. The ONIOM scheme has been employed and several of its refinements have been addressed to incorporate efficiently the effects of the microenvironment on the nonlinear optical responses of the FP chromophore that is embedded in a protective β-barrel protein cage. In the ONIOM scheme, the system is decomposed into several layers (here two) treated at different levels of approximation (method1/method2), from the most elaborated method (method1) for its core (called the high layer) to the most approximate one (method2) for the outer surrounding (called the low layer). We observe that a small high layer can already account for the variations of β as a function of the nature of the FP, provided the low layer is treated at an ab initio level to describe properly the effects of key H-bonds. Then, for semiquantitative reproduction of the experimental values obtained from hyper-Rayleigh scattering experiments, it is necessary to incorporate electron correlation as described at the second-order Møller-Plesset perturbation theory (MP2) level as well as implicit solvent effects accounted for using the polarizable continuum model (PCM). This led us to define the MP2/6-31+G(d):HF/6-31+G(d)/IEFPCM scheme as an efficient ONIOM approach and the MP2/6-31+G(d):HF/6-31G(d)/IEFPCM as a better compromise between accuracy and computational needs. Using these methods, we demonstrate that many parameters play a role on the β response of FPs, including the length of the π-conjugated segment, the variation of the bond length alternation, and the presence of π-stacking interactions. Then, noticing the small diversity of the FP chromophores, these results highlight the key role of the β-barrel and surrounding residues on β, not only because they can locally break the noncentrosymmetry vital to a β response but also because it can impose geometrical constraints on the chromophore.
NASA Astrophysics Data System (ADS)
Altürk, Sümeyye; Avcı, Davut; Tamer, Ömer; Atalay, Yusuf; Şahin, Onur
2016-11-01
A cobalt(II) complex of 6-methylpicolinic acid, [Co(6-Mepic)2(H2O)2]·2H2O, was prepared and fully determined by single crystal X-ray crystal structure analysis as well as FT-IR, FT-Raman. UV-vis spectra were recorded within different solvents, to illustrate electronic transitions and molecular charge transfer within complex 1. The coordination sphere of complex 1 is a distorted octahedron according to single crystal X-ray results. Moreover, DFT (density functional theory) calculations with HSEH1PBE/6-311 G(d,p) level were carried out to back up the experimental results, and form base for future work in advanced level. Hyperconjugative interactions, intramolecular charge transfer (ICT), molecular stability and bond strength were researched by the using natural bond orbital (NBO) analysis. X-ray and NBO analysis results demonsrate that O-H···O hydrogen bonds between the water molecules and carboxylate oxygen atoms form a 2D supramolecular network, and also adjacent 2D networks connected by C-H···π and π···π interactions to form a 3D supramolecular network. Additionally, the second- and third-order nonlinear optical parameters of complex 1 were computed at DFT/HSEH1PBE/6-311 G(d,p) level. The refractive index (n) was calculated by using the Lorentz-Lorenz equation in order to investigate polarization behavior of complex 1 in different solvent polarities. The first-order static hyperpolarizability (β) value is found to be lower than pNA value because of the inversion symmetry around Co (II). But the second-order static hyperpolarizability (γ) value is 2.45 times greater than pNA value (15×10-30 esu). According to these results, Co(II) complex can be considered as a candidate to NLO material. Lastly molecular electrostatic potential (MEP), frontier molecular orbital energies and related molecular parameters for complex 1 were evaluated.
Double-clad photonic crystal fiber coupler for compact nonlinear optical microscopy imaging.
Fu, Ling; Gu, Min
2006-05-15
A 1 x 2 double-clad photonic crystal fiber coupler is fabricated by the fused tapered method, showing a low excess loss of 1.1 dB and a splitting ratio of 97/3 over the entire visible and near-infrared wavelength range. In addition to the property of splitting the laser power, the double-clad feature of the coupler facilitates the separation of a near-infrared single-mode beam from a visible multimode beam, which is ideal for nonlinear optical microscopy imaging. In conjunction with a gradient-index lens, this coupler is used to construct a miniaturized microscope based on two-photon fluorescence and second-harmonic generation. Three-dimensional nonlinear optical images demonstrate potential applications of the coupler to compact all-fiber and nonlinear optical microscopy and endoscopy.
Zheng, Wei; Liu, Xiao; Hanbicki, Aubrey T.; ...
2015-10-19
Nonlinear magneto-plasmonics (NMP) describes systems where nonlinear optics, magnetics and plasmonics are all involved. In such systems, nonlinear magneto-optical Kerr effect (nonlinear MOKE) plays an important role as a characterization method, and Surface Plasmons (SPs) work as catalyst to induce many new effects. Magnetization-induced second-harmonic generation (MSHG) is the major nonlinear magneto-optical process involved. The new effects include enhanced MSHG, controlled and enhanced magnetic contrast, etc. Nanostructures such as thin films, nanoparticles, nanogratings, and nanoarrays are critical for the excitation of SPs, which makes NMP an interdisciplinary research field in nanoscience and nanotechnology. In this review article, we organize recentmore » work in this field into two categories: surface plasmon polaritons (SPPs) representing propagating surface plasmons, and localized surface plasmons (LSPs), also called particle plasmons. We review the structures, experiments, findings, and the applications of NMP from various groups.« less
Progress in linear optics, non-linear optics and surface alignment of liquid crystals
NASA Astrophysics Data System (ADS)
Ong, H. L.; Meyer, R. B.; Hurd, A. J.; Karn, A. J.; Arakelian, S. M.; Shen, Y. R.; Sanda, P. N.; Dove, D. B.; Jansen, S. A.; Hoffmann, R.
We first discuss the progress in linear optics, in particular, the formulation and application of geometrical-optics approximation and its generalization. We then discuss the progress in non-linear optics, in particular, the enhancement of a first-order Freedericksz transition and intrinsic optical bistability in homeotropic and parallel oriented nematic liquid crystal cells. Finally, we discuss the liquid crystal alignment and surface effects on field-induced Freedericksz transition.
Nonlinear optical and microscopic analysis of Cu2+ doped zinc thiourea chloride (ZTC) monocrystal
NASA Astrophysics Data System (ADS)
Ramteke, S. P.; Anis, Mohd; Pandian, M. S.; Kalainathan, S.; Baig, M. I.; Ramasamy, P.; Muley, G. G.
2018-02-01
Organometallic crystals offer considerable nonlinear response therefore, present article focuses on bulk growth and investigation of Cu2+ ion doped zinc thiourea chloride (ZTC) crystal to explore its technological impetus for laser assisted nonlinear optical (NLO) device applications. The Cu2+ ion doped ZTC bulk single crystal of dimension 03 × 2.4 × 0.4 cm3 has been grown from pH controlled aqueous solution by employing slow solvent evaporation technique. The structural analysis has been performed by means of single crystal X-ray diffraction technique. The doping of Cu2+ ion in ZTC crystal matrix has been confirmed by means of energy dispersive spectroscopic (EDS) technique. The origin of nonlinear optical properties in Cu2+ ion doped ZTC crystal has been studied by employing the Kurtz-Perry test and Z-scan analysis. The remarkable enhancement in second harmonic generation (SHG) efficiency of Cu2+ ion doped ZTC crystal with reference to ZTC crystal has been determined. The He-Ne laser assisted Z-scan analysis has been performed to determine the third order nonlinear optical (TONLO) nature of grown crystal. The TONLO parameters such as susceptibility, absorption coefficient, refractive index and figure of merit of Cu-ZTC crystal have been evaluated using the Z-scan transmittance data. The laser damage threshold of grown crystal to high intensity of Nd:YAG laser is found to be 706.2 MW/cm2. The hardness number, work hardening index, yield strength and elastic stiffness coefficient of grown crystal has been investigated under microhardness study. The etching study has been carried out to determine the growth likelihood, nature of etch pits and surface quality of grown crystal.
NASA Astrophysics Data System (ADS)
Sousani, Abbas; Motiei, Hamideh; Najafimoghadam, Peyman; Hasanzade, Reza
2017-05-01
In this study new nanocompoites based on polyglycidylmethacrylate grafted 4-[(4-methoxyphenyl) diazenyl] phenol (Azo-PGMA) and Carboxylicacid functionalized multi-walled carbon nanotubes (MWCNT-COOH) were prepared. The nanocomposites structure was characterized by FT-IR, TGA and SEM. The Z-scan technique was applied for measuring the nonlinear parameters of nanocomposites. The samples after solving in AWM solution (equal ratio of acetone, deionized water and methanol) were investigated by using closed aperture Z-scan technique and a diode-pumped laser at the line 532 nm. All the nonlinear refractive index of the samples at three concentrations of carbon nanotubes in three different intensities of the laser beam were investigated and the nonlinear optical response of them are compared under the same condition. Because of high order of nonlinear refractive coefficient and good nonlinearity, these compounds are suitable candidate for optical switching, optical limiting and electro-optical devices.
Intrinsic polymer optical fiber sensors for high-strain applications
NASA Astrophysics Data System (ADS)
Kiesel, Sharon; Van Vickle, Patrick; Peters, Kara; Hassan, Tasnim; Kowalsky, Mervyn
2006-03-01
This paper presents intrinsic polymer fiber (POF) sensors for high-strain applications such as health monitoring of civil infrastructure systems subjected to earthquake loading or structures with large shape changes such as morphing aircraft. POFs provide a potential maximum strain range of 6-12%, are more flexible that silica optical fibers, and are more durable in harsh chemical or environmental conditions. Recent advances in the fabrication of singlemode POFs have made it possible to extend POFs to interferometric sensor capabilities. Furthermore, the interferometric nature of intrinsic sensors permits high accuracy for such measurements. However, several challenges, addressed in this paper, make the application of the POF interferometer more difficult than its silica counterpart. These include the finite deformation of the POF cross-section at high strain values, nonlinear strain optic effects in the polymer, and the attenuation with strain of the POF. In order to predict the response of the sensor a second-order (in strain) photoelastic effect is derived and combined with the second-order solution of the deformation of the optical fiber when loaded. It is determined that for the small deformation region four constants are required (two mechanical and two photoelastic properties) and for the large deformation region six additional constants are required (two mechanical and four photoelastic properties). This paper also presents initial measurements of the mechanical response of the sensor and comparison to previously reported POFs.
Resonant second harmonic generation in a gallium nitride two-dimensional photonic crystal on silicon
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zeng, Y.; Roland, I.; Checoury, X.
We demonstrate second harmonic generation in a gallium nitride photonic crystal cavity embedded in a two-dimensional free-standing photonic crystal platform on silicon. The photonic crystal nanocavity is optically pumped with a continuous-wave laser at telecom wavelengths in the transparency window of the nitride material. The harmonic generation is evidenced by the spectral range of the emitted signal, the quadratic power dependence vs. input power, and the spectral dependence of second harmonic signal. The harmonic emission pattern is correlated to the harmonic polarization generated by the second-order nonlinear susceptibilities χ{sub zxx}{sup (2)}, χ{sub zyy}{sup (2)} and the electric fields of the fundamentalmore » cavity mode.« less
NASA Astrophysics Data System (ADS)
Anis, Mohd; Muley, Gajanan. G.
2017-05-01
In current scenario good quality crystals are demanded for NLO device application hence present communication is aimed to grow bulk crystal and investigate the doping effect of rare earth element Nd3+ on structural, linear-nonlinear optical, luminescence, mechanical and dielectric properties of zinc thiourea chloride (ZTC) crystal. The ZTC crystal of dimension 21×10×8 mm3 and the Nd3+ doped ZTC crystal of dimension 27×17×5 mm3 have been grown from aqueous solution by slow evaporation technique. The elemental analysis of Nd3+ doped ZTC single crystal has been performed by means of energy dispersive spectroscopic technique. The powder X-ray diffraction technique has been employed to confirm the crystalline phase and identify the effect of Nd3+ doping on structural dimensions of ZTC crystal. The grown crystals have been characterized by UV-Vis-NIR study in the range of 190-1100 nm to ascertain the enhancement in optical transparency of ZTC crystal facilitated by dopant Nd3+. The recorded transmittance data has been utilized to investigate the vital optical constants of grown crystals. The second order nonlinear optical behavior of grown crystals has been evaluated by means of Kurtz-Perry test and the second harmonic generation efficiency of Nd3+ doped ZTC crystal is found to be 1.24 times higher than ZTC crystal. The luminescence analysis has been performed to examine the electronic purity and the color centered photoluminescence emission nature of pure and Nd3+ doped ZTC crystals. The influence of Nd3+ ion on mechanical behavior of ZTC crystal has been investigated by means of microhardness studies. The nature of dielectric constant and dielectric loss of pure and Nd3+ doped ZTC crystal has been examined in the range of 40-100 °C under dielectric study. The Z-scan technique has been employed using the He-Ne laser to investigate the third order nonlinear optical (TONLO) nature of Nd3+ doped ZTC single crystal. The magnitude of TONLO susceptibility, absorption coefficient and refraction has been determined using the Z-scan transmittance data.
Materials For Second and Third Order Nonlinear Optical Applications.
1996-02-05
the ,Ieneral reaction scheme below in Fig. 1 is reminiscent of the synthetic method of Jutz, using Grignard reagents which were treated with N-methyl...N- phenylpropen-l-al (1[1]) or its higher vinylog, 1[2] in yields of 5-95%. In our procedure, we used a wide variety of organolithium reagents ...be synthesized from a facile high yield procedure for bromination of julolidine. Here we demonstrated that organolithium reagents add to known co-N,N
ERIC Educational Resources Information Center
Greco, Patrick F.
2012-01-01
Part I. The design and development of organic second-order nonlinear optical (NLO) materials have attracted much interest due to their applications in optoelectronic devices and modern communications technology. Donor-pi-acceptor compounds, D-(CH=CH)[subscript n]-A, often exhibit hyperpolarizability that results in laser frequency doubling (second…
Ultra-fast nonlinear optical properties and photophysical mechanism of a novel pyrene derivative
NASA Astrophysics Data System (ADS)
Zhang, Youwei; Yang, Junyi; Xiao, Zhengguo; Song, Yinglin
2016-10-01
The third-order nonlinear optical properties of 1-(pyrene-1-y1)-3-(3-methylthiophene) acrylic keton named PMTAK was investigated by using Z-scan technique. The light sources for picoseconds(ps) and femtosecond(fs) Z-scan were a mode-locked Nd: YAG laser (21 ps, 532 nm,10 Hz) and an Yb: KGW based fiber laser (190 fs, 515 nm,532 nm, 20 Hz), respectively. In the two cases, reverse saturation absorption(RSA) are observed. The dynamics of the sample's optical nonlinearity is discussed via the femtosecond time-resolved pump probe with phase object at 515nm. We believe that the molecules in excited state of particle population count is caused by two-photon absorption(TPA). The five-level theoretical model is used to analysis the optical nonlinear mechanism. Combining with the result of picosecond Z-scan experiment, a set of optical nonlinear parameters are calculated out. The femtosecond Z-scan experiment is taken to confirm these parameters. The obvious excited-state nonlinearity is found by the set of parameters. The result shows that the sample has good optical nonlinearity which indicates it has potential applications in nonlinear optics field.
Nonlinear identification of the total baroreflex arc: higher-order nonlinearity
Moslehpour, Mohsen; Kawada, Toru; Sunagawa, Kenji; Sugimachi, Masaru
2016-01-01
The total baroreflex arc is the open-loop system relating carotid sinus pressure (CSP) to arterial pressure (AP). The nonlinear dynamics of this system were recently characterized. First, Gaussian white noise CSP stimulation was employed in open-loop conditions in normotensive and hypertensive rats with sectioned vagal and aortic depressor nerves. Nonparametric system identification was then applied to measured CSP and AP to establish a second-order nonlinear Uryson model. The aim in this study was to assess the importance of higher-order nonlinear dynamics via development and evaluation of a third-order nonlinear model of the total arc using the same experimental data. Third-order Volterra and Uryson models were developed by employing nonparametric and parametric identification methods. The R2 values between the AP predicted by the best third-order Volterra model and measured AP in response to Gaussian white noise CSP not utilized in developing the model were 0.69 ± 0.03 and 0.70 ± 0.03 for normotensive and hypertensive rats, respectively. The analogous R2 values for the best third-order Uryson model were 0.71 ± 0.03 and 0.73 ± 0.03. These R2 values were not statistically different from the corresponding values for the previously established second-order Uryson model, which were both 0.71 ± 0.03 (P > 0.1). Furthermore, none of the third-order models predicted well-known nonlinear behaviors including thresholding and saturation better than the second-order Uryson model. Additional experiments suggested that the unexplained AP variance was partly due to higher brain center activity. In conclusion, the second-order Uryson model sufficed to represent the sympathetically mediated total arc under the employed experimental conditions. PMID:27629885
NASA Astrophysics Data System (ADS)
Bijeesh, M. M.; Shakhi, P. K.; Varier, Geetha K.; Nandakumar, P.
2018-06-01
We report on the nonlinear optical absorption coefficient of Au/BaTiO3 nanocomposite films and its dependence on gold nanoparticle concentration. Au/BaTiO3 nanocomposite films with different molar ratio of Au/Ba are prepared by sol-gel technique and characterized by X-ray diffraction, UV Visible absorption spectroscopy and high resolution transmission electron microscopy. An open aperture Z-scan technique is employed to study the third order nonlinear optical properties of Au/BaTiO3 thin films. An Nd:YAG laser operating at 532 nm wavelength having a pulse width of 5 ns is used for the measurements. The two-photon absorption coefficient of the films increases linearly with gold nanoparticle concentration and significant enhancement of nonlinear optical absorption is observed. This ability to fine tune the nonlinear optical coefficients of Au/BaTiO3 films would be handy in optical device applications.
Nonlinear plasmonic imaging techniques and their biological applications
NASA Astrophysics Data System (ADS)
Deka, Gitanjal; Sun, Chi-Kuang; Fujita, Katsumasa; Chu, Shi-Wei
2017-01-01
Nonlinear optics, when combined with microscopy, is known to provide advantages including novel contrast, deep tissue observation, and minimal invasiveness. In addition, special nonlinearities, such as switch on/off and saturation, can enhance the spatial resolution below the diffraction limit, revolutionizing the field of optical microscopy. These nonlinear imaging techniques are extremely useful for biological studies on various scales from molecules to cells to tissues. Nevertheless, in most cases, nonlinear optical interaction requires strong illumination, typically at least gigawatts per square centimeter intensity. Such strong illumination can cause significant phototoxicity or even photodamage to fragile biological samples. Therefore, it is highly desirable to find mechanisms that allow the reduction of illumination intensity. Surface plasmon, which is the collective oscillation of electrons in metal under light excitation, is capable of significantly enhancing the local field around the metal nanostructures and thus boosting up the efficiency of nonlinear optical interactions of the surrounding materials or of the metal itself. In this mini-review, we discuss the recent progress of plasmonics in nonlinear optical microscopy with a special focus on biological applications. The advancement of nonlinear imaging modalities (including incoherent/coherent Raman scattering, two/three-photon luminescence, and second/third harmonic generations that have been amalgamated with plasmonics), as well as the novel subdiffraction limit imaging techniques based on nonlinear behaviors of plasmonic scattering, is addressed.
NASA Astrophysics Data System (ADS)
Ray, Cédric; Caillau, Mathieu; Jonin, Christian; Benichou, Emmanuel; Moulin, Christophe; Salmon, Estelle; Maldonado, Melissa E.; Gomes, Anderson S. L.; Monnier, Virginie; Laurenceau, Emmanuelle; Leclercq, Jean-Louis; Chevolot, Yann; Delair, Thierry; Brevet, Pierre-François
2018-06-01
We report the use of the Second Harmonic Generation response from a riboflavin doped chitosan film as a characterization method of the film morphology. This film is of particular interest in the development of new and bio-sourced material for eco-friendly UV lithography. The method allows us to determine how riboflavin is distributed as a function of film depth in the sample. This possibility is of importance in order to have a better understanding of the riboflavin influence in chitosan films during the lithography process. On the contrary, linear optical techniques provide no information beyond the mere confirmation of the riboflavin presence.
Non-linear non-local molecular electrodynamics with nano-optical fields.
Chernyak, Vladimir Y; Saurabh, Prasoon; Mukamel, Shaul
2015-10-28
The interaction of optical fields sculpted on the nano-scale with matter may not be described by the dipole approximation since the fields may vary appreciably across the molecular length scale. Rather than incrementally adding higher multipoles, it is advantageous and more physically transparent to describe the optical process using non-local response functions that intrinsically include all multipoles. We present a semi-classical approach for calculating non-local response functions based on the minimal coupling Hamiltonian. The first, second, and third order response functions are expressed in terms of correlation functions of the charge and the current densities. This approach is based on the gauge invariant current rather than the polarization, and on the vector potential rather than the electric and magnetic fields.
Bondu, Flavie; Quertinmont, Jean; Rodriguez, Vincent; Pozzo, Jean-Luc; Plaquet, Aurélie; Champagne, Benoît; Castet, Frédéric
2015-12-14
The nonlinear optical (NLO) properties of a double photochrome molecular switch are reported for the first time by considering the four trans forms of a dithienylethene-indolinooxazolidine hybrid. The four forms are characterized by means of hyper-Rayleigh scattering (HRS) experiments and quantum chemical calculations. Experimental measurements provide evidence that the pH- and light-triggered transformations between the different forms of the hybrid are accompanied by large variations of the first hyperpolarizability, which makes this compound an effective multistate NLO switch. Quantum chemical calculations conducted at the time-dependent Hartree-Fock and time-dependent DFT levels agree with the experimental data and allow a complete rationalization of the NLO responses of the different forms. The HRS signal of the forms with an open indolinooxazolidine moiety are more than one order of magnitude larger than that measured for the other forms, whereas the open/closed status of the dithienylethene subunit barely influences the dynamic NLO properties. However, extrapolation of the NLO responses to the static limit leads to univocally distinguishable intrinsic responses for three of the various forms. This hybrid system thus acts as a highly efficient multistate NLO switch for eventual exploitation in optical memory systems with multiple storage and nondestructive readout capacity. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Savant, Gajendra D.; Jannson, Joanna L.
1991-07-01
The increased emphasis on speed of operation, wavelength selectivity, compactness, and ruggedization has focused a great deal of attention on the solutions offered by all-optic devices and by hybrid electro-optic systems. In fact, many photonic devices are being considered for use as partial replacements for electronic systems. Optical components, which include modulators, switches, 3-D memory storage devices, wavelength division multiplexers, holographic optical elements, and others, are examples of such devices. The success or failure of these modern optical devices depends, to a great extent, on the performance and survivability of the optical materials used. This is particularly true for volume holographic filters, organic memory media, second- and third-order nonlinear material-based processors and neural networks. Due to the critical importance of these materials and their lack of availability, Physical Optics Corporation (POC) undertook a global advanced optical materials program which has enabled it to introduce several optical devices, based on the new and improved materials which will be described in this article.
NASA Astrophysics Data System (ADS)
Rani, Monika; Bhatti, Harbax S.; Singh, Vikramjeet
2017-11-01
In optical communication, the behavior of the ultrashort pulses of optical solitons can be described through nonlinear Schrodinger equation. This partial differential equation is widely used to contemplate a number of physically important phenomena, including optical shock waves, laser and plasma physics, quantum mechanics, elastic media, etc. The exact analytical solution of (1+n)-dimensional higher order nonlinear Schrodinger equation by He's variational iteration method has been presented. Our proposed solutions are very helpful in studying the solitary wave phenomena and ensure rapid convergent series and avoid round off errors. Different examples with graphical representations have been given to justify the capability of the method.
First principles crystal engineering of nonlinear optical materials. I. Prototypical case of urea
NASA Astrophysics Data System (ADS)
Masunov, Artëm E.; Tannu, Arman; Dyakov, Alexander A.; Matveeva, Anastasia D.; Freidzon, Alexandra Ya.; Odinokov, Alexey V.; Bagaturyants, Alexander A.
2017-06-01
The crystalline materials with nonlinear optical (NLO) properties are critically important for several technological applications, including nanophotonic and second harmonic generation devices. Urea is often considered to be a standard NLO material, due to the combination of non-centrosymmetric crystal packing and capacity for intramolecular charge transfer. Various approaches to crystal engineering of non-centrosymmetric molecular materials were reported in the literature. Here we propose using global lattice energy minimization to predict the crystal packing from the first principles. We developed a methodology that includes the following: (1) parameter derivation for polarizable force field AMOEBA; (2) local minimizations of crystal structures with these parameters, combined with the evolutionary algorithm for a global minimum search, implemented in program USPEX; (3) filtering out duplicate polymorphs produced; (4) reoptimization and final ranking based on density functional theory (DFT) with many-body dispersion (MBD) correction; and (5) prediction of the second-order susceptibility tensor by finite field approach. This methodology was applied to predict virtual urea polymorphs. After filtering based on packing similarity, only two distinct packing modes were predicted: one experimental and one hypothetical. DFT + MBD ranking established non-centrosymmetric crystal packing as the global minimum, in agreement with the experiment. Finite field approach was used to predict nonlinear susceptibility, and H-bonding was found to account for a 2.5-fold increase in molecular hyperpolarizability to the bulk value.
Advanced laser architectures for high power eyesafe illuminators
NASA Astrophysics Data System (ADS)
Baranova, N.; Pati, B.; Stebbins, K.; Bystryak, I.; Rayno, M.; Ezzo, K.; DePriest, C.
2018-02-01
Q-Peak has demonstrated a novel pulsed eyesafe laser architecture operating with >50 mJ pulse energies at Pulse Repetition Frequencies (PRFs) as high as 320 Hz. The design leverages an Optical Parametric Oscillator (OPO) and Optical Parametric Amplifier (OPA) geometry, which provides the unique capability for high power in a comparatively compact package, while also offering the potential for additional eyesafe power scaling. The laser consists of a Commercial Off-the-Shelf (COTS) Q-switched front-end seed laser to produce pulse-widths around 10 ns at 1.06-μm, which is then followed by a pair of Multi-Pass Amplifier (MPA) architectures (comprised of side-pumped, multi-pass Nd:YAG slabs with a compact diode-pump-array imaging system), and finally involving two sequential nonlinear optical conversion architectures for transfer into the eyesafe regime. The initial seed beam is first amplified through the MPA, and then split into parallel optical paths. An OPO provides effective nonlinear conversion on one optical path, while a second MPA further amplifies the 1.06-μm beam for use in pumping an OPA on the second optical path. These paths are then recombined prior to seeding the OPA. Each nonlinear conversion subsystem utilizes Potassium Titanyl Arsenate (KTA) for effective nonlinear conversion with lower risk to optical damage. This laser architecture efficiently produces pulse energies of >50 mJ in the eyesafe band at PRFs as high as 320 Hz, and has been designed to fit within a volume of 4,500 in3 (0.074 m3 ). We will discuss theoretical and experimental details of the nonlinear optical system for achieving higher eyesafe powers.
NASA Astrophysics Data System (ADS)
Rasal, Y. B.; Shaikh, R. N.; Shirsat, M. D.; Kalainathan, S.; Hussaini, S. S.
2017-03-01
A single crystal of bis-thiourea nickel nitrate (BTNN) doped potassium dihydrogen phosphate (KDP) has been grown from solution at room temperature by a slow evaporation technique. The cell parameters of the grown crystals were determined using single crystal x-ray diffraction analysis. The different functional groups of the grown crystal were confirmed using Fourier transform infrared analysis. The improved optical parameters of the grown crystal have been evaluated in the range of 200-900 nm using UV-visible spectral analysis. The grown crystal was transparent in the entire visible region and the band gap value was found to be 4.96 eV. The influence of BTNN on the third order nonlinear optical properties of KDP crystal has been investigated by means of the Z-scan technique. The second harmonic generation (SHG) efficiency of grown crystal measured using a Nd-YAG laser is 1.98 times higher than that of pure KDP. The third order nonlinear optical susceptibility (χ 3) and nonlinear absorption coefficient (β) of BTNN doped KDP crystal is found to be 1.77 × 10-5 esu and 5.57 × 10-6 cm W-1 respectively. The laser damage threshold (LDT) energy for the grown crystal has been measured by using a Q-switched Nd:YAG laser source. The bis-thiourea nickel nitrate shows authoritative impact on the dielectric properties of doped crystal. The influence of bis-thiourea nickel nitrate on the mechanical behavior of KDP crystal has been investigated using Vickers microhardness intender. The thermal behavior of BTNN doped KDP crystal has been analyzed by TGA/DTA analysis.
A mixed-order nonlinear diffusion compressed sensing MR image reconstruction.
Joy, Ajin; Paul, Joseph Suresh
2018-03-07
Avoid formation of staircase artifacts in nonlinear diffusion-based MR image reconstruction without compromising computational speed. Whereas second-order diffusion encourages the evolution of pixel neighborhood with uniform intensities, fourth-order diffusion considers smooth region to be not necessarily a uniform intensity region but also a planar region. Therefore, a controlled application of fourth-order diffusivity function is used to encourage second-order diffusion to reconstruct the smooth regions of the image as a plane rather than a group of blocks, while not being strong enough to introduce the undesirable speckle effect. Proposed method is compared with second- and fourth-order nonlinear diffusion reconstruction, total variation (TV), total generalized variation, and higher degree TV using in vivo data sets for different undersampling levels with application to dictionary learning-based reconstruction. It is observed that the proposed technique preserves sharp boundaries in the image while preventing the formation of staircase artifacts in the regions of smoothly varying pixel intensities. It also shows reduced error measures compared with second-order nonlinear diffusion reconstruction or TV and converges faster than TV-based methods. Because nonlinear diffusion is known to be an effective alternative to TV for edge-preserving reconstruction, the crucial aspect of staircase artifact removal is addressed. Reconstruction is found to be stable for the experimentally determined range of fourth-order regularization parameter, and therefore not does not introduce a parameter search. Hence, the computational simplicity of second-order diffusion is retained. © 2018 International Society for Magnetic Resonance in Medicine.
A novel method for predicting the power outputs of wave energy converters
NASA Astrophysics Data System (ADS)
Wang, Yingguang
2018-03-01
This paper focuses on realistically predicting the power outputs of wave energy converters operating in shallow water nonlinear waves. A heaving two-body point absorber is utilized as a specific calculation example, and the generated power of the point absorber has been predicted by using a novel method (a nonlinear simulation method) that incorporates a second order random wave model into a nonlinear dynamic filter. It is demonstrated that the second order random wave model in this article can be utilized to generate irregular waves with realistic crest-trough asymmetries, and consequently, more accurate generated power can be predicted by subsequently solving the nonlinear dynamic filter equation with the nonlinearly simulated second order waves as inputs. The research findings demonstrate that the novel nonlinear simulation method in this article can be utilized as a robust tool for ocean engineers in their design, analysis and optimization of wave energy converters.
NASA Astrophysics Data System (ADS)
Ramya, M.; Nideep, T. K.; Vijesh, K. R.; Nampoori, V. P. N.; Kailasnath, M.
2018-07-01
In present work, we report the synthesis of stable ZnO nanocolloids through a simple solution method which exhibit enhanced optical limiting threshold. The influences of reaction temperature on the crystal structure as well as linear and nonlinear optical properties of prepared ZnO nanoparticles were carried out. The XRD and Raman analysis reveal that the prepared ZnO nanoparticles retain the hexagonal wurtzite crystal structure. HRTEM analysis confirms the effect of reaction temperature, solvent effect on crystallinity as well as nanostructure of ZnO nanoparticles. It has been found that crystallinity and average diameter increase with reaction temperature where ethylene glycol act as both solvent and growth inhibiter. EDS spectra shows formation of pure ZnO nanoparticles. The direct energy band gap of the nanoparticles increases with decrease in particle size due to quantum confinement effect. The third order nonlinear optical properties of ZnO nanoparticles were investigated by z scan technique using a frequency doubled Nd-YAG nanosecond laser at 532 nm wavelength. The z-scan result reveals that the prepared ZnO nanoparticles exhibit self - defocusing nonlinearity. The two photon absorption coefficient and third - order nonlinear optical susceptibility increases with increasing particle size. The third-order susceptibility of the ZnO nanoparticles is found to be in the order of 10-10 esu, which is at least three order magnitude greater than the bulk ZnO. The optical limiting threshold of the nanoparticles varies in the range of 54 to 17 MW/cm2. The results suggest that ZnO nanoparticles considered as a promising candidates for the future photonic devices.
Efficient nonlinear optical conversion of 1.319-micron laser radiation
NASA Astrophysics Data System (ADS)
Byer, Robert L.; Eckardt, Robert C.
1993-01-01
The accomplishments of this program are in the development and application of periodically poled nonlinear optical materials for nonlinear frequency-conversion. We have demonstrated the use of periodically poled lithium niobate (PPLN) as a bulk material for external resonant cavity second-harmonic generation with continuous-wave (cw) output power of 1.7 W. Work that is following this investigation is showing that planar waveguides of PPLN may well be the most satisfactory method of generation of 10's of mW of the 659-nm harmonic of the 1.32-micrometer Nd:YAG laser. We encountered major obstacles obtaining multilayer dielectric coatings necessary to pursue our proposed design of monolithic bulk optical harmonic generators. Additional alternative approaches such as discrete component resonant second harmonic generation employing single domain and periodically poled bulk crystals and monolithic single domain resonators formed by total internal reflection remain under investigation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paarmann, Alexander, E-mail: alexander.paarmann@fhi-berlin.mpg.de; Razdolski, Ilya; Melnikov, Alexey
2015-08-24
The Reststrahl spectral region of silicon carbide has recently attracted much attention owing to its potential for mid-infrared nanophotonic applications based on surface phonon polaritons (SPhPs). Studies of optical phonon resonances responsible for surface polariton formation, however, have so far been limited to linear optics. In this Letter, we report the first nonlinear optical investigation of the Reststrahl region of SiC, employing an infrared free-electron laser to perform second harmonic generation (SHG) spectroscopy. We observe two distinct resonance features in the SHG spectra, one attributed to resonant enhancement of the nonlinear susceptibility χ{sup (2)} and the other due to amore » resonance in the Fresnel transmission. Our work clearly demonstrates high sensitivity of mid-infrared SHG to phonon-driven phenomena and opens a route to studying nonlinear effects in nanophotonic structures based on SPhPs.« less
Integrated liquid-core optical fibers for ultra-efficient nonlinear liquid photonics.
Kieu, K; Schneebeli, L; Norwood, R A; Peyghambarian, N
2012-03-26
We have developed a novel integrated platform for liquid photonics based on liquid core optical fiber (LCOF). The platform is created by fusion splicing liquid core optical fiber to standard single-mode optical fiber making it fully integrated and practical - a major challenge that has greatly hindered progress in liquid-photonic applications. As an example, we report here the realization of ultralow threshold Raman generation using an integrated CS₂ filled LCOF pumped with sub-nanosecond pulses at 532 nm and 1064 nm. The measured energy threshold for the Stokes generation is 1nJ, about three orders of magnitude lower than previously reported values in the literature for hydrogen gas, a popular Raman medium. The integrated LCOF platform opens up new possibilities for ultralow power nonlinear optics such as efficient white light generation for displays, mid-IR generation, slow light generation, parametric amplification, all-optical switching and wavelength conversion using liquids that have orders of magnitude larger optical nonlinearities compared with silica glass.
NASA Astrophysics Data System (ADS)
Pressl, B.; Laiho, K.; Chen, H.; Günthner, T.; Schlager, A.; Auchter, S.; Suchomel, H.; Kamp, M.; Höfling, S.; Schneider, C.; Weihs, G.
2018-04-01
Semiconductor alloys of aluminum gallium arsenide (AlGaAs) exhibit strong second-order optical nonlinearities. This makes them prime candidates for the integration of devices for classical nonlinear optical frequency conversion or photon-pair production, for example, through the parametric down-conversion (PDC) process. Within this material system, Bragg-reflection waveguides (BRW) are a promising platform, but the specifics of the fabrication process and the peculiar optical properties of the alloys require careful engineering. Previously, BRW samples have been mostly derived analytically from design equations using a fixed set of aluminum concentrations. This approach limits the variety and flexibility of the device design. Here, we present a comprehensive guide to the design and analysis of advanced BRW samples and show how to automatize these tasks. Then, nonlinear optimization techniques are employed to tailor the BRW epitaxial structure towards a specific design goal. As a demonstration of our approach, we search for the optimal effective nonlinearity and mode overlap which indicate an improved conversion efficiency or PDC pair production rate. However, the methodology itself is much more versatile as any parameter related to the optical properties of the waveguide, for example the phasematching wavelength or modal dispersion, may be incorporated as design goals. Further, we use the developed tools to gain a reliable insight in the fabrication tolerances and challenges of real-world sample imperfections. One such example is the common thickness gradient along the wafer, which strongly influences the photon-pair rate and spectral properties of the PDC process. Detailed models and a better understanding of the optical properties of a realistic BRW structure are not only useful for investigating current samples, but also provide important feedback for the design and fabrication of potential future turn-key devices.
Phase-referenced nonlinear spectroscopy of the α-quartz/water interface
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ohno, Paul E.; Saslow, Sarah A.; Wang, Hong-fei
2016-12-13
Probing the polarization of water molecules at charged interfaces by second harmonic generation spectroscopy has been heretofore limited to isotropic materials. Here we report non-resonant nonlinear optical measurements at the interface of anisotropic z-cut α-quartz and water under conditions of dynamically changing ionic strength and bulk solution pH. We find that the product of the third-order susceptibility and the interfacial potential, χ (3) × Φ(0), is given by (χ1 (3)–iχ2 (3)) × Φ(0), and that the interference between this product and the second-order susceptibility of bulk quartz depends on the rotation angle of α-quartz around the z axis. Our experimentsmore » show that this newly identified term, iχ (3) × Φ(0), which is out of phase from the surface terms, is of bulk origin. Lastly, the possibility of internally phase referencing the interfacial response for the interfacial orientation analysis of species or materials in contact with α-quartz is discussed along with the implications for conditions of resonance enhancement.« less
Wang, B; Switowski, K; Cojocaru, C; Roppo, V; Sheng, Y; Scalora, M; Kisielewski, J; Pawlak, D; Vilaseca, R; Akhouayri, H; Krolikowski, W; Trull, J
2018-01-22
We present an indirect, non-destructive optical method for domain statistic characterization in disordered nonlinear crystals having homogeneous refractive index and spatially random distribution of ferroelectric domains. This method relies on the analysis of the wave-dependent spatial distribution of the second harmonic, in the plane perpendicular to the optical axis in combination with numerical simulations. We apply this technique to the characterization of two different media, Calcium Barium Niobate and Strontium Barium Niobate, with drastically different statistical distributions of ferroelectric domains.
Second-harmonic generation from a thin spherical layer and No-generation conditions
NASA Astrophysics Data System (ADS)
Kapshai, V. N.; Shamyna, A. A.
2017-09-01
In the Rayleigh-Gans-Debye approximation, we solve the problem of second-harmonic generation by an elliptically polarized electromagnetic wave incident on the surface of a spherical particle that is coated by an optically nonlinear layer and is placed in a dielectric. The formulas obtained characterize the spatial distribution of the electric field of the second harmonic in the far-field zone. The most general form of the second-order dielectric susceptibility tensor is considered, which contains four independent components, with three of them being nonchiral and one, chiral. Consistency and inconsistencies between the obtained solution and formulas from works of other authors are found. We analyze the directivity patterns that characterize the spatial distribution of the generated radiation for the nonchiral layer and their dependences on the anisotropy and ellipticity coefficients of the incident wave. It is found that, with increasing radius of the nonlinear layer, the generated radiation becomes more directional. Combinations of parameters for which no radiation is generated are revealed. Based on this, we propose methods for experimental determination of the anisotropy coefficients.
NASA Astrophysics Data System (ADS)
Gopal, S. Veena; Chitrambalam, S.; Joe, I. Hubert
2018-01-01
Third-order nonlinear response of synthesized polyethylene glycol coated Fe3O4 nanoparticles dispersed in a suitable solvent, polyethylene glycol has been studied. The structural characterization of the synthesized magnetite nanoparticles were carried out. The linear optical property of the synthesized magnetite nanoparticles was investigated using UV-visible technique. Both closed and open aperture Z-scan techniques have been performed at 532 nm with pulse width 5 ns and repetition rate 10 Hz. It was found that polyethylene glycol coated magnetite exhibits reverse saturable absorption, with significant nonlinear absorption coefficient. Two-photon absorption intensity dependent positive nonlinear refraction coefficients indicate self focusing phenomena. Results show that higher concentration gives better nonlinear and optical limiting properties.
Crystal growth of organics for nonlinear optical applications
NASA Technical Reports Server (NTRS)
Singh, N. B.; Mazelsky, R.
1993-01-01
The crystal growth and characterization of organic and inorganic nonlinear optical materials were extensively studied. For example, inorganic crystals such as thallium arsenic selenide were studied in our laboratory for several years and crystals in sizes over 2.5 cm in diameter are available. Organic crystals are suitable for the ultraviolet and near infrared region, but are relatively less developed than their inorganic counterparts. Very high values of the second harmonic conversion efficiency and the electro-optic coefficient were reported for organic compounds. Single crystals of a binary organic alloy based on m.NA and CNA were grown and higher second harmonic conversion efficiency than the values reported for m.NA were observed.
Nonlinear optical properties of flux growth KTiOPO4
NASA Astrophysics Data System (ADS)
Stolzenberger, Richard A.
1988-09-01
The properties of large flux grown KTiOPO4 second harmonic generators were measured. A technique which provides a sensitive assessment of crystal uniformity is described. Optically perfect second harmonic generation crystals of up to 1 cu cm were found to have nonlinear optical properties comparable with those grown by other methods. A Q-switched Nd:YAG laser was used to determine temperature acceptance width-length product (20 C cm), angular acceptance width-length product (13 mrad cm), and doubling efficiency (50 percent). Spectral bandwidth (4.5 A cm) and wavefront distortion (1/4 wave at 633 nm) were also measured. The dependence of these properties on crystal homogeneity is demonstrated.
NASA Astrophysics Data System (ADS)
Lowney, Joseph Daniel
Methods to generate, manipulate, and measure optical and atomic fields with global or local angular momentum have a wide range of applications in both fundamental physics research and technology development. In optics, the engineering of angular momentum states of light can aid studies of orbital angular momentum (OAM) exchange between light and matter. The engineering of optical angular momentum states can also be used to increase the bandwidth of optical communications or serve as a means to distribute quantum keys, for example. Similar capabilities in Bose-Einstein condensates are being investigated to improve our understanding of superfluid dynamics, superconductivity, and turbulence, the last of which is widely considered to be one of most ubiquitous yet poorly understood subjects in physics. The first part of this two-part dissertation presents an analysis of techniques for measuring and manipulating quantized vortices in BECs. The second part of this dissertation presents theoretical and numerical analyses of new methods to engineer the OAM spectra of optical beams. The superfluid dynamics of a BEC are often well described by a nonlinear Schrodinger equation. The nonlinearity arises from interatomic scattering and enables BECs to support quantized vortices, which have quantized circulation and are fundamental structural elements of quantum turbulence. With the experimental tools to dynamically manipulate and measure quantized vortices, BECs are proving to be a useful medium for testing the theoretical predictions of quantum turbulence. In this dissertation we analyze a method for making minimally destructive in situ observations of quantized vortices in a BEC. Secondly, we numerically study a mechanism to imprint vortex dipoles in a BEC. With these advancements, more robust experiments of vortex dynamics and quantum turbulence will be within reach. A more complete understanding of quantum turbulence will enable principles of microscopic fluid flow to be related to the statistical properties of turbulence in a superfluid. In the second part of this dissertation we explore frequency mixing, a subset of nonlinear optical processes in which one or more input optical beam(s) are converted into one or more output beams with different optical frequencies. The ability of parametric nonlinear processes such as second harmonic generation or parametric amplification to manipulate the OAM spectra of optical beams is an active area of research. In a theoretical and numerical investigation, two complimentary methods for sculpting the OAM spectra are developed. The first method employs second harmonic generation with two non-collinear input beams to develop a broad spectrum of OAM states in an optical field. The second method utilizes parametric amplification with collinear input beams to develop an OAM-dependent gain or attenuation, termed dichroism for OAM, to effectively narrow the OAM spectrum of an optical beam. The theoretical principles developed in this dissertation enhance our understanding of how nonlinear processes can be used to engineer the OAM spectra of optical beams and could serve as methods to increase the bandwidth of an optical signal by multiplexing over a range of OAM states.
Nonlinear optical response in graphene nanoribbons: The critical role of electron scattering
NASA Astrophysics Data System (ADS)
Karimi, F.; Davoody, A. H.; Knezevic, I.
2018-06-01
Nonlinear nanophotonics has many potential applications, such as in mode locking, frequency-comb generation, and all-optical switching. The development of materials with large nonlinear susceptibility is key to realizing nonlinear nanophotonics. Nanostructured graphene systems, such as graphene nanoribbons and nanoislands, have been predicted to have a strong plasmon-enhanced nonlinear optical behavior in the nonretarded regime. Plasmons concentrate the light field down to subwavelength scales and can enhance the nonlinear optical effects; however, plasmon resonances are narrowband and sensitive to the nanostructure geometry. Here we show that graphene nanoribbons, particularly armchair graphene nanoribbons, have a remarkably strong nonlinear optical response in the long-wavelength regime and over a broad frequency range, from terahertz to the near infrared. We use a quantum-mechanical master equation with a detailed treatment of scattering and show that, in the retarded regime, electron scattering has a critical effect on the optical nonlinearity of graphene nanoribbons, which cannot be captured via the commonly used relaxation-time approximation. At terahertz frequencies, where intraband optical transitions dominate, the strong nonlinearity (in particular, third-order Kerr nonlinearity) stems from the jagged shape of the electron energy distribution, caused by the interband electron scattering mechanisms along with the intraband inelastic scattering mechanisms. We show that the relaxation-time approximation fails to capture this quantum-mechanical phenomenon and results in a significant underestimation of the intraband nonlinearity. At the midinfrared to near infrared frequencies, where interband optical transitions dominate, the Kerr nonlinearity is significantly overestimated within the relaxation-time approximation. These findings unveil the critical effect of electron scattering on the optical nonlinearity of nanostructured graphene, and also underscore the capability of this class of materials for nonlinear nanophotonic applications.
Peddie, Victoria; Anderson, Jack; Harvey, Joanne E; Smith, Gerald J; Kay, Andrew
2014-11-07
We report details of the synthesis of a series of bi- and trichromophores. These compounds contain mixtures of chromophores that have zwitterionic (ZWI) and neutral ground state (NGS) components covalently attached to each other. The neutral ground state moieties are based on dyes with aniline donors--such as Disperse Red 1--whereas the zwitterionic components are derived from chromophores with pro-aromatic donors such as 1,4-dihydropyridinylidene. By combining both ZWI and NGS components, we aim to develop novel compounds for nonlinear optics in which there is an enhancement of the overall hyperpolarizability coupled with a decrease in the net dipole moment. Thus, this approach should eliminate the electrostatic effects that result when only one type of chromophore is used, and so reduce the likelihood of undesirable aggregation occurring. This, in turn, should enable us to realize organic materials with large macroscopic optical nonlinearities. An analysis of the UV-vis results suggests that there is a strong dependence on solvent polarity that determines whether the embedded constituents should be treated as discrete elements; in low polarity solvents, there appear to be strong intramolecular interactions occurring, particularly when a 1,4-quinolinylidene-based donor is used in the ZWI component.
NASA Astrophysics Data System (ADS)
Karthigha, S.; Krishnamoorthi, C.
2018-03-01
An organic quinolinium derivative nonlinear optical (NLO) crystal, 1-ethyl-2-[2-(4-nitro-phenyl)-vinyl]-quinolinium iodide (PNQI) was synthesized and successfully grown by slow evaporation solution growth technique. Formation of a crystalline compound was confirmed by single crystal X-ray diffraction. The quinolinium compound PNQI crystallizes in the triclinic crystal system with a centrosymmetric space group of P-1 symmetry. The molecular structure of PNQI was confirmed by 1H NMR and 13C NMR spectral studies. The thermal properties of the crystal have been investigated by thermogravimetric (TG) and differential scanning calorimetry (DSC) studies. The optical characteristics obtained from UV-Vis-NIR spectral data were described and the cut-off wavelength observed at 506 nm. The etching study was performed to analyse the growth features of PNQI single crystal. The third order NLO properties such as nonlinear refractive index (n2), nonlinear absorption coefficient (β) and nonlinear susceptibility (χ (3)) of the crystal were investigated using Z-scan technique at 632.8 nm of Hesbnd Ne laser.
NASA Astrophysics Data System (ADS)
Tsia, Kevin K.; Jalali, Bahram
2010-05-01
An intriguing optical property of silicon is that it exhibits a large third-order optical nonlinearity, with orders-ofmagnitude larger than that of silica glass in the telecommunication band. This allows efficient nonlinear optical interaction at relatively low power levels in a small footprint. Indeed, we have witnessed a stunning progress in harnessing the Raman and Kerr effects in silicon as the mechanisms for enabling chip-scale optical amplification, lasing, and wavelength conversion - functions that until recently were perceived to be beyond the reach of silicon. With all the continuous efforts developing novel techniques, nonlinear silicon photonics is expected to be able to reach even beyond the prior achievements. Instead of providing a comprehensive overview of this field, this manuscript highlights a number of new branches of nonlinear silicon photonics, which have not been fully recognized in the past. In particular, they are two-photon photovoltaic effect, mid-wave infrared (MWIR) silicon photonics, broadband Raman effects, inverse Raman scattering, and periodically-poled silicon (PePSi). These novel effects and techniques could create a new paradigm for silicon photonics and extend its utility beyond the traditionally anticipated applications.
NASA Astrophysics Data System (ADS)
Xie, Xi-Yang; Tian, Bo; Liu, Lei; Guan, Yue-Yang; Jiang, Yan
2017-06-01
In this paper, we investigate a generalized nonautonomous nonlinear equation, which describes the ultrashort optical pulse propagating in a nonlinear inhomogeneous fiber. Under certain integrable constraints, bilinear forms, bright one- and two-soliton solutions are obtained. Via certain transformation, we investigate the properties of the solitons with the first-order dispersion parameter σ1(x, t), second-order dispersion parameter σ2(x, t), third-order dispersion parameter σ3(x, t), phase modulation and gain (loss) v(x, t). Soliton propagation and collision are graphically presented and analyzed: One soliton is shown to maintain its amplitude and width during the propagation. When we choose σ1(x, t), σ2(x, t) and σ3(x, t) differently, travelling direction of the soliton is found to alter. v(x, t) is observed to affect the amplitude of the soliton. Head-on collision between the two solitons is presented with σ1(x, t), σ2(x, t), σ3(x, t) and v(x, t) as the constants, and solitons' amplitudes are the same before and after the collision. When σ1(x, t), σ2(x, t) and σ3(x, t) are chosen as certain functions, the solitons' traveling directions change during the collision. v(x, t) can influence the amplitudes of the two solitons.
Optical Kerr effect in graphene: Theoretical analysis of the optical heterodyne detection technique
NASA Astrophysics Data System (ADS)
Savostianova, N. A.; Mikhailov, S. A.
2018-04-01
Graphene is an atomically thin two-dimensional material demonstrating strong optical nonlinearities, including harmonics generation, four-wave mixing, Kerr, and other nonlinear effects. In this paper we theoretically analyze the optical heterodyne detection (OHD) technique of measuring the optical Kerr effect (OKE) in two-dimensional crystals and show how to relate the quantities measured in such experiments with components of the third-order conductivity tensor σαβ γ δ (3 )(ω1,ω2,ω3) of the two-dimensional crystal. Using results of a recently developed quantum theory of the third-order nonlinear electrodynamic response of graphene, we analyze the frequency, charge carrier density, temperature, and other dependencies of the OHD-OKE response of this material. We compare our results with a recent OHD-OKE experiment in graphene and find good agreement between the theory and experiment.
Vapor deposition and characterization of supramolecular assemblies for integrated nonlinear optics
NASA Astrophysics Data System (ADS)
Esembeson, Bweh
Very recently, some organic molecules have been developed that are very compact and have exceptionally high molecular polarizabilities which approach the fundamental quantum limit. Supramolecular assemblies created from such highly nonlinear molecules could find applications in integrated nonlinear optics such as all-optical signal processing, electro-optic modulators and frequency conversion. In this work, we have constructed a versatile vacuum deposition system for the creation of organic thin films from these molecules that can be sublimated without decomposition. We have used deposition temperatures of the order of 100--200°C in a high vacuum of 10-6--10 -7 Torrs. While some molecules showed a tendency to form polycrystalline films, others led to very high optical quality films, with a roughness of less than 10 nm over tens of micrometers and no grains detected down to a size of 2 nm, as seen in Atomic Force and Scanning Electron Microscopy studies. The best material we developed has a linear refractive index of 1.8 +/- 0.1 at 1.5 mum and an off-resonant third order susceptibility, chi (3), measured through Degenerate Four Wave Mixing, of 2 +/- 1 x 10-19 m2V-2 at 1.5 mum, a value three orders of magnitude larger than fused silica. This vapor deposited thin film may represent one of the best materials demonstrated to date whereby a large third order susceptibility, high optical quality, and simplicity of fabrication and integration are in perfect harmony for integrated nonlinear optical applications. We have used this novel organic material to create a hybrid organic/silicon-on-insulator waveguide that showed a record high nonlinearity coefficient of 10 5 W-1m-1 and has been used as an all-optical switch for demultiplexing a 120 Gbit/s data stream to 10 Gbit/s on a 6 mm long device.
Zhang, Jian-Hui; Liu, Chong
2017-01-01
We study the higher-order generalized nonlinear Schrödinger (NLS) equation describing the propagation of ultrashort optical pulse in optical fibres. By using Darboux transformation, we derive the superregular breather solution that develops from a small localized perturbation. This type of solution can be used to characterize the nonlinear stage of the modulation instability (MI) of the condensate. In particular, we show some novel characteristics of the nonlinear stage of MI arising from higher-order effects: (i) coexistence of a quasi-Akhmediev breather and a multipeak soliton; (ii) two multipeak solitons propagation in opposite directions; (iii) a beating pattern followed by two multipeak solitons in the same direction. It is found that these patterns generated from a small localized perturbation do not have the analogues in the standard NLS equation. Our results enrich Zakharov’s theory of superregular breathers and could provide helpful insight on the nonlinear stage of MI in presence of the higher-order effects. PMID:28413335
A novel nonlinear adaptive filter using a pipelined second-order Volterra recurrent neural network.
Zhao, Haiquan; Zhang, Jiashu
2009-12-01
To enhance the performance and overcome the heavy computational complexity of recurrent neural networks (RNN), a novel nonlinear adaptive filter based on a pipelined second-order Volterra recurrent neural network (PSOVRNN) is proposed in this paper. A modified real-time recurrent learning (RTRL) algorithm of the proposed filter is derived in much more detail. The PSOVRNN comprises of a number of simple small-scale second-order Volterra recurrent neural network (SOVRNN) modules. In contrast to the standard RNN, these modules of a PSOVRNN can be performed simultaneously in a pipelined parallelism fashion, which can lead to a significant improvement in its total computational efficiency. Moreover, since each module of the PSOVRNN is a SOVRNN in which nonlinearity is introduced by the recursive second-order Volterra (RSOV) expansion, its performance can be further improved. Computer simulations have demonstrated that the PSOVRNN performs better than the pipelined recurrent neural network (PRNN) and RNN for nonlinear colored signals prediction and nonlinear channel equalization. However, the superiority of the PSOVRNN over the PRNN is at the cost of increasing computational complexity due to the introduced nonlinear expansion of each module.
Zhu, Yu; Hu, Xiaoyong; Fu, Yulan; Yang, Hong; Gong, Qihuang
2013-01-01
Actively all-optical tunable plasmon-induced transparency in metamaterials paves the way for achieving ultrahigh-speed quantum information processing chips. Unfortunately, up to now, very small experimental progress has been made for all-optical tunable plasmon-induced transparency in metamaterials in the visible and near-infrared range because of small third-order optical nonlinearity of conventional materials. The achieved operating pump intensity was as high as several GW/cm(2) order. Here, we report an ultralow-power and ultrafast all-optical tunable plasmon-induced transparency in metamaterials coated on polycrystalline indium-tin oxide layer at the optical communication range. Compared with previous reports, the threshold pump intensity is reduced by four orders of magnitude, while an ultrafast response time of picoseconds order is maintained. This work not only offers a way to constructing photonic materials with large nonlinearity and ultrafast response, but also opens up the possibility for realizing quantum solid chips and ultrafast integrated photonic devices based on metamaterials.
Zhu, Yu; Hu, Xiaoyong; Fu, Yulan; Yang, Hong; Gong, Qihuang
2013-01-01
Actively all-optical tunable plasmon-induced transparency in metamaterials paves the way for achieving ultrahigh-speed quantum information processing chips. Unfortunately, up to now, very small experimental progress has been made for all-optical tunable plasmon-induced transparency in metamaterials in the visible and near-infrared range because of small third-order optical nonlinearity of conventional materials. The achieved operating pump intensity was as high as several GW/cm2 order. Here, we report an ultralow-power and ultrafast all-optical tunable plasmon-induced transparency in metamaterials coated on polycrystalline indium-tin oxide layer at the optical communication range. Compared with previous reports, the threshold pump intensity is reduced by four orders of magnitude, while an ultrafast response time of picoseconds order is maintained. This work not only offers a way to constructing photonic materials with large nonlinearity and ultrafast response, but also opens up the possibility for realizing quantum solid chips and ultrafast integrated photonic devices based on metamaterials. PMID:23903825
NASA Astrophysics Data System (ADS)
Chen, G. K. C.
1981-06-01
A nonlinear macromodel for the bipolar transistor integrated circuit operational amplifier is derived from the macromodel proposed by Boyle. The nonlinear macromodel contains only two nonlinear transistors in the input stage in a differential amplifier configuration. Parasitic capacitance effects are represented by capacitors placed at the collectors and emitters of the input transistors. The nonlinear macromodel is effective in predicting the second order intermodulation effect of operational amplifiers in a unity gain buffer amplifier configuration. The nonlinear analysis computer program NCAP is used for the analysis. Accurate prediction of demodulation of amplitude modulated RF signals with RF carrier frequencies in the 0.05 to 100 MHz range is achieved. The macromodel predicted results, presented in the form of second order nonlinear transfer function, come to within 6 dB of the full model predictions for the 741 type of operational amplifiers for values of the second order transfer function greater than -40 dB.
Ulvila, Ville; Phillips, C R; Halonen, Lauri; Vainio, Markku
2013-11-01
We report optical frequency comb generation by a continuous-wave pumped optical parametric oscillator (OPO) without any active modulation. The OPO is configured as singly resonant with an additional nonlinear crystal (periodically poled MgO:LiNbO3) placed inside the OPO for phase mismatched second harmonic generation (SHG) of the resonating signal beam. The phase mismatched SHG causes cascading χ(2) nonlinearities, which can substantially increase the effective χ(3) nonlinearity in MgO:LiNbO3, leading to spectral broadening of the OPO signal beam via self-phase modulation. The OPO generates a stable 4 THz wide (-30 dB) frequency comb centered at 1.56 μm.
Higher-order modulation instability in nonlinear fiber optics.
Erkintalo, Miro; Hammani, Kamal; Kibler, Bertrand; Finot, Christophe; Akhmediev, Nail; Dudley, John M; Genty, Goëry
2011-12-16
We report theoretical, numerical, and experimental studies of higher-order modulation instability in the focusing nonlinear Schrödinger equation. This higher-order instability arises from the nonlinear superposition of elementary instabilities, associated with initial single breather evolution followed by a regime of complex, yet deterministic, pulse splitting. We analytically describe the process using the Darboux transformation and compare with experiments in optical fiber. We show how a suitably low frequency modulation on a continuous wave field induces higher-order modulation instability splitting with the pulse characteristics at different phases of evolution related by a simple scaling relationship. We anticipate that similar processes are likely to be observed in many other systems including plasmas, Bose-Einstein condensates, and deep water waves. © 2011 American Physical Society
NASA Astrophysics Data System (ADS)
Li, Zhongyu; Jin, Zhaohui; Kasatani, Kazuo
2005-01-01
The third-order optical nonlinearities and responses of thin films containing the J-aggregates of a cyanine dye or a squarylium dye were measured using the degenerate four-wave mixing (DFWM) technique under resonant conditions. The sol-gel silica coating films containing the J-aggregates of the cyanine dye, NK-3261, are stable at room temperature and durable against laser beam irradiation. The temporal profiles of the DFWM signal were measured with a time resolution of 0.3 ps, and were found to consist of at least three components, i.e., the coherent instantaneous nonlinear response and the two slow responses with delay time constants of ca. 1.0 ps and ca. 5.6 ps. The contribution of the later was small. The electronic component of the effective third-order optical nonlinear susceptibility of the film had value of as high as ca. 3.0 x 10-7 esu. We also studied the neat film of a squarylium dye J-aggregates. The temporal profile of the DFWM signal of the neat film of squarylium dye was also found to consist of at least three components, the coherent instantaneous nonlinear response and the delayed response with decay time constants of ca. 0.6 ps and ca. 6.5 ps. The contribution of the slow tail was also very small. The electronic component of effective third-order optical nonlinear susceptibility of the neat film of squarylium dye had value of as high as ca. 3.6 x 10-8 esu.
NASA Astrophysics Data System (ADS)
Kumar, P.; Kaur, J.; Tripathi, S. K.; Sharma, I.
2017-12-01
Non-crystalline thin films of Ge20Te80-xSbx (x = 0, 2, 4, 6, 10) systems were deposited on glass substrate using thermal evaporation technique. The optical coefficients were accurately determined by transmission spectra using Swanepoel envelope method in the spectral region of 400-1600 nm. The refractive index was found to increase from 2.38 to 2.62 with the corresponding increase in Sb content over the entire spectral range. The dispersion of refractive index was discussed in terms of the single oscillator Wemple-DiDomenico model. Tauc relation for the allowed indirect transition showed decrease in optical band gap. To explore non-linearity, the spectral dependence of third order susceptibility of a-Ge-Te-Sb thin films was evaluated from change of index of refraction using Miller's rule. Susceptibility values were found to enhance rapidly from 10-13 to 10-12 (esu), with the red shift in the absorption edge. Non-linear refractive index was calculated by Fourier and Snitzer formula. The values were of the order of 10-12 esu. At telecommunication wavelength, these non-linear refractive index values showed three orders higher than that of silica glass. Dielectric constant and optical conductivity were also reported. The prepared Sb doped thin films on glass substrate with observed improved functional properties have a noble prospect in the application of nonlinear optical devices and might be used for a high speed communication fiber. Non-linear parameters showed good agreement with the values given in the literature.
Constraining modified theories of gravity with the galaxy bispectrum
NASA Astrophysics Data System (ADS)
Yamauchi, Daisuke; Yokoyama, Shuichiro; Tashiro, Hiroyuki
2017-12-01
We explore the use of the galaxy bispectrum induced by the nonlinear gravitational evolution as a possible probe to test general scalar-tensor theories with second-order equations of motion. We find that time dependence of the leading second-order kernel is approximately characterized by one parameter, the second-order index, which is expected to trace the higher-order growth history of the Universe. We show that our new parameter can significantly carry new information about the nonlinear growth of structure. We forecast future constraints on the second-order index as well as the equation-of-state parameter and the growth index.
Liu, Xianwen; Sun, Changzheng; Xiong, Bing; Wang, Jian; Wang, Lai; Han, Yanjun; Hao, Zhibiao; Li, Hongtao; Luo, Yi; Yan, Jianchang; Wei, Tong Bo; Zhang, Yun; Wang, Junxi
2016-08-01
An all-optically tunable microwave photonic phase shifter is demonstrated based on an epitaxial aluminum nitride (AlN) microring with an intrinsic quality factor of 3.2×106. The microring adopts a pedestal structure, which allows overcoupling with 700 nm gap size and facilitates the fabrication process. A phase shift for broadband signals from 4 to 25 GHz is demonstrated by employing the thermo-optic effect and the separate carrier tuning technique. A phase tuning range of 0°-332° is recorded with a 3 dB radio frequency (RF) power variation and 48 mW optical power consumption. In addition, AlN exhibits intrinsic second-order optical nonlinearity. Thus, our work presents a novel platform with a low propagation loss and the capability of electro-optic modulation for applications in integrated microwave photonics.
Probing optically silent superfluid stripes in cuprates
Rajasekaran, S.; Okamoto, J.; Mathey, L.; ...
2018-02-02
Unconventional superconductivity in the cuprates coexists with other types of electronic order. However, some of these orders are invisible to most experimental probes because of their symmetry. For example, the possible existence of superfluid stripes is not easily validated with linear optics, because the stripe alignment causes interlayer superconducting tunneling to vanish on average. In this paper, we show that this frustration is removed in the nonlinear optical response. A giant terahertz third harmonic, characteristic of nonlinear Josephson tunneling, is observed in La 1.885Ba 0.115CuO 4 above the transition temperature T c = 13 kelvin and up to the charge-orderingmore » temperature T co = 55 kelvin. We model these results by hypothesizing the presence of a pair density wave condensate, in which nonlinear mixing of optically silent tunneling modes drives large dipole-carrying supercurrents.« less
Probing optically silent superfluid stripes in cuprates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rajasekaran, S.; Okamoto, J.; Mathey, L.
Unconventional superconductivity in the cuprates coexists with other types of electronic order. However, some of these orders are invisible to most experimental probes because of their symmetry. For example, the possible existence of superfluid stripes is not easily validated with linear optics, because the stripe alignment causes interlayer superconducting tunneling to vanish on average. In this paper, we show that this frustration is removed in the nonlinear optical response. A giant terahertz third harmonic, characteristic of nonlinear Josephson tunneling, is observed in La 1.885Ba 0.115CuO 4 above the transition temperature T c = 13 kelvin and up to the charge-orderingmore » temperature T co = 55 kelvin. We model these results by hypothesizing the presence of a pair density wave condensate, in which nonlinear mixing of optically silent tunneling modes drives large dipole-carrying supercurrents.« less
NASA Astrophysics Data System (ADS)
Zulina, Natalia A.; Pavlovetc, Ilia M.; Baranov, Mikhail A.; Denisyuk, Igor Yu.
2017-03-01
In this work Ag nanoparticles (NPs) stable colloid solution were prepared by laser ablation of chemically pure silver rod in liquid monomer isodecyl acrylate (IDA). Sizes of obtained nanoparticles were determined by scanning electron microscope and vary from 27 to 120 nm. Nanocomposites films were prepared from obtained stable colloid solution of AgNPs by photocuring. For aliphatic polymer IDA long molecules cross-linking Diurethane dimethacrylate, 1,6-Hexandiol diacrylate and Tetra (ethylene glycol) diacrylate were used. Prepared nanomaterials exhibit strong third-order nonlinear optical responses, which was estimated by using z-scan technique. The third-order nonlinear optical coefficients of the studied nanocomposites were found to be up to Reχ(3)=1.31×10-5 (esu) and Imχ(3)=7.64×10-5 (esu).
Chen, Yong; Yan, Zhenya
2016-03-22
Solitons are of the important significant in many fields of nonlinear science such as nonlinear optics, Bose-Einstein condensates, plamas physics, biology, fluid mechanics, and etc. The stable solitons have been captured not only theoretically and experimentally in both linear and nonlinear Schrödinger (NLS) equations in the presence of non-Hermitian potentials since the concept of the parity-time -symmetry was introduced in 1998. In this paper, we present novel bright solitons of the NLS equation with third-order dispersion in some complex -symmetric potentials (e.g., physically relevant -symmetric Scarff-II-like and harmonic-Gaussian potentials). We find stable nonlinear modes even if the respective linear -symmetric phases are broken. Moreover, we also use the adiabatic changes of the control parameters to excite the initial modes related to exact solitons to reach stable nonlinear modes. The elastic interactions of two solitons are exhibited in the third-order NLS equation with -symmetric potentials. Our results predict the dynamical phenomena of soliton equations in the presence of third-order dispersion and -symmetric potentials arising in nonlinear fiber optics and other physically relevant fields.
Chen, Yong; Yan, Zhenya
2016-01-01
Solitons are of the important significant in many fields of nonlinear science such as nonlinear optics, Bose-Einstein condensates, plamas physics, biology, fluid mechanics, and etc. The stable solitons have been captured not only theoretically and experimentally in both linear and nonlinear Schrödinger (NLS) equations in the presence of non-Hermitian potentials since the concept of the parity-time -symmetry was introduced in 1998. In this paper, we present novel bright solitons of the NLS equation with third-order dispersion in some complex -symmetric potentials (e.g., physically relevant -symmetric Scarff-II-like and harmonic-Gaussian potentials). We find stable nonlinear modes even if the respective linear -symmetric phases are broken. Moreover, we also use the adiabatic changes of the control parameters to excite the initial modes related to exact solitons to reach stable nonlinear modes. The elastic interactions of two solitons are exhibited in the third-order NLS equation with -symmetric potentials. Our results predict the dynamical phenomena of soliton equations in the presence of third-order dispersion and -symmetric potentials arising in nonlinear fiber optics and other physically relevant fields. PMID:27002543
Saito, Kyosuke; Tanabe, Tadao; Oyama, Yutaka
2014-07-14
Terahertz (THz) wave generation via difference frequency mixing (DFM) process in strain silicon membrane waveguides by introducing the straining layer is theoretically investigated. The Si(3)N(4) straining layer induces anisotropic compressive strain in the silicon core and results in the appearance of the bulk second order nonlinear susceptibility χ((2)) by breaking the crystal symmetry. We have proposed waveguide structures for THz wave generation under the DFM process by .using the modal birefringence in the waveguide core. Our simulations show that an output power of up to 0.95 mW can be achieved at 9.09 THz. The strained silicon optical device may open a widow in the field of the silicon-based active THz photonic device applications.
NASA Astrophysics Data System (ADS)
Olivares-Vargas, A.; Trejo-Durán, M.; Alvarado-Méndez, E.; Cornejo-Monroy, D.; Mata-Chávez, R. I.; Estudillo-Ayala, J. M.; Castaño-Meneses, V.
2013-09-01
Research of nonlinear optical properties of materials for manufacturing opto-electronic devices, had a great growth in the last years. The solutions with nanoparticle metals present nonlinear optical properties. In this work we present the results of characterizing, analyzing and determining the magnitude and sign of the nonlinear refractive index, using the z-scan technique in solutions with nanoparticles of gold, lipoic acid and sodium chloride. We used a continuous Argon laser at 514 nm with variable power, an 18 cms lens, and a chopper. We determined the nonlinear refractive index in the order of 10-9. These materials have potential applications mainly as optical limiters.
Self-Organization of Light in Optical Media with Competing Nonlinearities.
Maucher, F; Pohl, T; Skupin, S; Krolikowski, W
2016-04-22
We study the propagation of light beams through optical media with competing nonlocal nonlinearities. We demonstrate that the nonlocality of competing focusing and defocusing nonlinearities gives rise to self-organization and stationary states with stable hexagonal intensity patterns, akin to transverse crystals of light filaments. Signatures of this long-range ordering are shown to be observable in the propagation of light in optical waveguides and even in free space. We consider a specific form of the nonlinear response that arises in atomic vapor upon proper light coupling. Yet, the general phenomenon of self-organization is a generic consequence of competing nonlocal nonlinearities, and may, hence, also be observed in other settings.
The third-order optical nonlinearities of Ge-Ga-Sb(In)-S chalcogenide glasses
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guo, Haitao, E-mail: guoht_001@opt.ac.cn; Chen, Hongyan; Hou, Chaoqi
2011-05-15
Research highlights: {yields} It is firstly demonstrated that the nonlinear refractive index n{sub 2} is dependent on the covalency of bonds in chalcogenide glass. {yields} Homopolar metallic bonds in chalcogenide glass have positive contribution to large nonlinear refractive index n{sub 2} also. {yields} The 80GeS{sub 2}.20Sb{sub 2}S{sub 3} glass would be expected to be used in the all-optical switches working at 1330 nm and 1550 nm telecommunication wavelengths. -- Abstract: The third-order optical nonlinearities of 80GeS{sub 2}.(20 - x)Ga{sub 2}S{sub 3}.xY{sub 2}S{sub 3} (x = 0, 5, 10, 15, 20 and Y = Sb or In) chalcogenide glasses were investigatedmore » utilizing the Z-scan method at the wavelength of 800 nm and their linear optical properties and structure were also studied. By analyzing the compositional dependences and possible influencing factors including the linear refractive index, the concentration of lone electron pairs, the optical bandgap and the amount of weak covalent/homopolar bonds, it indicates that the electronic contribution in weak heteropolar covalent and homopolar metallic bonds is responsible for large nonlinear refractive index n{sub 2} in the chalcogenide glasses. These chalcogenide glasses have characteristics of environmentally friendship, wide transparency in the visible region, high nonlinear refractive index n{sub 2} and low nonlinear absorption coefficient {beta}, and would be expected to be used in the all-optical switches working at 1330 nm and 1550 nm telecommunication wavelengths.« less
2015-03-13
Nowacki, H.S. Oh, C. Zanlorenzi, H.S. Jee, A. Baev, P.N. Prasad, and L. Akcelrud, "Design and synthesis of polymers for chiral photonics ...rationally design and create organic materials with high nonlinear refractive index and low single· and two- photon absorption at wavelengths relevant to...can also enhance 3rd-order NLO response through microscopic cascading of 2nd-order nonlinearity. Chiral control of nonlinearity bas also been
Achromatic phase-matching second harmonic generation for a tunable laser
Jacobson, A.G.; Bisson, S.; Trebino, R.
1998-01-20
An optical system uses a nonlinear optical medium to alter the frequency of a relatively narrow band light source tunable over a plurality of different frequencies using an optical system for passively directing light to the nonlinear medium at a correct phase matching angle. In this manner, the light from the tunable light source can be efficiently frequency-doubled or frequency-tripled without the need of moving parts. An all prism design provides a system of optimal efficiency. 6 figs.
Achromatic phase-matching second harmonic generation for a tunable laser
Jacobson, Alexander Gerson; Bisson, Scott; Trebino, Rick
1998-01-01
An optical system uses a nonlinear optical medium to alter the frequency of a relatively narrow band light source tunable over a plurality of different frequencies using an optical system for passively directing light to the nonlinear medium at a correct phase matching angle. In this manner, the light from the tunable light source can be efficiently frequency-doubled or frequency-tripled without the need of moving parts. An all prism design provides a system of optimal efficiency.
Nonlinear electro-optic tuning of plasmonic nano-filter
NASA Astrophysics Data System (ADS)
Kotb, Rehab; Ismail, Yehea; Swillam, Mohamed A.
2015-03-01
Efficient, easy and accurate tuning techniques to a plasmonic nano-filter are investigated. The proposed filter supports both blue and red shift in the resonance wavelength. By varying the refractive index with a very small change (in the order of 10-3), the resonance wavelength can be controlled efficiently. Using Pockels material, an electrical tuning to the response of the filter is demonstrated. In addition, the behavior of the proposed filter can be controlled optically using Kerr material. A new approach of multi-stage electro-optic controlling is introduced. By cascading two stages and filling the first stage with pockels material and the second stage with kerr material, the output response of the second stage can be controlled by controlling the output response of the first stage electrically. Due to the sharp response of the proposed filter, 60nm shift in the resonance wavelength per 10 voltages is achieved. This nano-filter has compact size, low loss, sharp response and wide range of tunabilty which is highly demandable in many biological and sensing applications.
Xu, Huajun; Yang, Dan; Liu, Fenggang; Fu, Mingkai; Bo, Shuhui; Liu, Xinhou; Cao, Yuan
2015-11-28
In this work, we investigated the enhancement of the electro-optic response by introducing electron-rich heteroatoms as additional donors into the donor or bridge of a conventional second-order nonlinear optical chromophore. A series of chromophores C2-C4 based on the same tricyanofuran acceptor (TCF) but with different heteroatoms in the alkylamino phenyl donor (C2 or C3) or thiophene bridge (C4) have been synthesized and systematically investigated. Density functional theory calculations suggested that chromophores C2-C4 had a smaller energy gap and larger first-order hyperpolarizability (β) than traditional chromophore C1 due to the additional heteroatoms. Single crystal structure analyses and optimized configurations indicate that the rationally introduced heteroatom group would bring larger β and weaker intermolecular interactions which were beneficial for translating molecular β into macro-electro-optic activity in electric field poled films. The electro-optic coefficient of poled films containing 25 wt% of these new chromophores doped in amorphous poly-carbonate afforded values of 83 and 91 pm V(-1) at 1310 nm for chromophores C3 and C4, respectively, which are two times higher than that of the traditional chromophore C1 (39 pm V(-1)). High r33 values indicated that introducing heteroatoms to the donor and bridge of a conventional molecular structure can efficiently improve the electron-donating ability, which improves the β. The long-chain on the donor or bridge part, acting as the isolation group, may reduce inter-molecular electrostatic interactions, thus enhancing the macroscopic EO activity. These results, together with good solubility and compatibility with the polymer, show the new chromophore's potential application in electro-optic devices.
Koike-Akino, Toshiaki; Duan, Chunjie; Parsons, Kieran; Kojima, Keisuke; Yoshida, Tsuyoshi; Sugihara, Takashi; Mizuochi, Takashi
2012-07-02
Fiber nonlinearity has become a major limiting factor to realize ultra-high-speed optical communications. We propose a fractionally-spaced equalizer which exploits a trained high-order statistics to deal with data-pattern dependent nonlinear impairments in fiber-optic communications. The computer simulation reveals that the proposed 3-tap equalizer improves Q-factor by more than 2 dB for long-haul transmissions of 5,230 km distance and 40 Gbps data rate. We also demonstrate that the joint use of a digital backpropagation (DBP) and the proposed equalizer offers an additional 1-2 dB performance improvement due to the channel shortening gain. A performance in high-speed transmissions of 100 Gbps and beyond is evaluated as well.
Dielectric Characterization of a Nonlinear Optical Material
Lunkenheimer, P.; Krohns, S.; Gemander, F.; Schmahl, W. W.; Loidl, A.
2014-01-01
Batisite was reported to be a nonlinear optical material showing second harmonic generation. Using dielectric spectroscopy and polarization measurements, we provide a thorough investigation of the dielectric and charge-transport properties of this material. Batisite shows the typical characteristics of a linear lossy dielectric. No evidence for ferro- or antiferroelectric polarization is found. As the second-harmonic generation observed in batisite points to a non-centrosymmetric structure, this material is piezoelectric, but most likely not ferroelectric. In addition, we found evidence for hopping charge transport of localized charge carriers and a relaxational process at low temperatures. PMID:25109553
Kumar, K Vasanth
2006-10-11
Batch kinetic experiments were carried out for the sorption of methylene blue onto activated carbon. The experimental kinetics were fitted to the pseudo first-order and pseudo second-order kinetics by linear and a non-linear method. The five different types of Ho pseudo second-order expression have been discussed. A comparison of linear least-squares method and a trial and error non-linear method of estimating the pseudo second-order rate kinetic parameters were examined. The sorption process was found to follow a both pseudo first-order kinetic and pseudo second-order kinetic model. Present investigation showed that it is inappropriate to use a type 1 and type pseudo second-order expressions as proposed by Ho and Blanachard et al. respectively for predicting the kinetic rate constants and the initial sorption rate for the studied system. Three correct possible alternate linear expressions (type 2 to type 4) to better predict the initial sorption rate and kinetic rate constants for the studied system (methylene blue/activated carbon) was proposed. Linear method was found to check only the hypothesis instead of verifying the kinetic model. Non-linear regression method was found to be the more appropriate method to determine the rate kinetic parameters.
Soliton interactions and the formation of solitonic patterns
NASA Astrophysics Data System (ADS)
Sears, Suzanne M.
From the stripes of a zebra, to the spirals of cream in a hot cup of coffee, we are surrounded by patterns in the natural world. But why are there patterns? Why drives their formation? In this thesis we study some of the diverse ways patterns can arise due to the interactions between solitary waves in nonlinear systems, sometimes starting from nothing more than random noise. What follows is a set of three studies. In the first, we show how a nonlinear system that supports solitons can be driven to generate exact (regular) Cantor set fractals. As an example, we use numerical simulations to demonstrate the formation of Cantor set fractals by temporal optical solitons. This fractal formation occurs in a cascade of nonlinear optical fibers through the dynamical evolution of a single input soliton. In the second study, we investigate pattern formation initiated by modulation instability in nonlinear partially coherent wave fronts and show that anisotropic noise and/or anisotropic correlation statistics can lead to ordered patterns such as grids and stripes. For the final study, we demonstrate the spontaneous clustering of solitons in partially coherent wavefronts during the final stages of pattern formation initiated by modulation instability and noise. Experimental observations are in agreement with theoretical predictions and are confirmed using numerical simulations.
NASA Astrophysics Data System (ADS)
Patel, Dhananjay; Singh, Vinay Kumar; Dalal, U. D.
2016-07-01
This work addresses the analytical and numerical investigations of the transmission performance of an optical Single Sideband (SSB) modulation technique generated by a Mach Zehnder Modulator (MZM) with a 90° and 120° hybrid coupler. It takes into account the problem of chromatic dispersion in single mode fibers in Passive Optical Networks (PON), which severely degrades the performance of the system. Considering the transmission length of the fiber, the SSB modulation generated by maintaining a phase shift of π/2 between the two electrodes of the MZM provides better receiver sensitivity. However, the power of higher-order harmonics generated due to the nonlinearity of the MZM is directly proportional to the modulation index, making the SSB look like a quasi-double sideband (DSB) and causing power fading due to chromatic dispersion. To eliminate one of the second-order harmonics, the SSB signal based on an MZM with a 120° hybrid coupler is simulated. An analytical model of conventional SSB using 90° and 120° hybrid couplers is established. The latter suppresses unwanted (upper/lower) first-order and second-order (lower/upper) sidebands. For the analysis, a varying quadrature amplitude modulation (QAM) Orthogonal Frequency Division Multiplexing (OFDM) signal with a data rate of 5 Gb/s is upconverted using both of the SSB techniques and is transmitted over a distance of 75 km in Single Mode Fiber (SMF). The simulation results show that the SSB with 120° hybrid coupler proves to be more immune to chromatic dispersion as compared to the conventional SSB technique. This is in tandem with the theoretical analysis presented in the article.
NASA Astrophysics Data System (ADS)
Shettigar, Nayana; Pramodini, S.; Kityk, I. V.; Abd-Lefdil, M.; Eljald, E. M.; Regragui, M.; Antony, Albin; Rao, Ashok; Sanjeev, Ganesh; Ajeyakashi, K. C.; Poornesh, P.
2017-11-01
We report the third-order nonlinear optical properties of electron beam treated Indium doped ZnO (Zn1-xInxO (x = 0.03) thin films at different dose rate. Zn1-xInxO (x = 0.03) thin films prepared by spray pyrolysis deposition technique were irradiated using 8 MeV electron beam at dose rates ranging from 1 kGy to 4 kGy. X-ray diffraction patterns were obtained to examine the structural changes, The transformation from sphalerite to wurtzite structure of ZnO was observed which indicates occurrence of structural changes due to irradiation. Morphology of irradiated thin films examined using atomic force microscopy (AFM) technique indicates the surface roughness varying with irradiation dose rate. The switching over from Saturable Absorption (SA) to Reverse Saturable Absorption (RSA) behaviour was noted when the irradiation dose rate was increased from 1 kGy to 4 kGy. The significant changes observed in the third-order nonlinear optical susceptibility χ(3) of the Zn1-xInxO (x = 0.03) thin films is attributed mainly due to electron beam irradiation. The study indicates that nonlinear optical parameters can be controlled by electron beam irradiation by choosing appropriate dose rate which is very much essential for device applications. Hence Zn1-xInxO (x = 0.03) materialize as a promising material for use in nonlinear optical device applications.
Nonlinear optical properties of Nd3+-Li+ co-doped ZnS-PVP thin films
NASA Astrophysics Data System (ADS)
Talwatkar, S. S.; Sunatkari, A. L.; Tamgadge, Y. S.; Muley, G. G.
2018-04-01
The nonlinear optical properties of Nd3+-Li+ co-doped ZnS-PVP nanocomposite were studied using a continuous wave (CW) He-Ne laser (λ = 632.8 nm)by z-scan technique. The nonlinear refractive index (n2), absorption coefficient (β) and third order nonlinear susceptibility (χ(3)) of PVP thin films embedded with Nd3+-Li+ co-doped ZnS NPs was found in the order of 10-7 cm2/W, 10-6 cm/W and 10-7 esu respectively. The nonlinearity found increasing with Nd3+-Li+ co-dopant concentration. Based on the results, it is proposed that this material is a new class of luminescent material suitable in optoelectronics devices application, especially in light-emitting devices, electroluminescent devices, display devices, etc.
Modal method for Second Harmonic Generation in nanostructures
NASA Astrophysics Data System (ADS)
Héron, S.; Pardo, F.; Bouchon, P.; Pelouard, J.-L.; Haïdar, R.
2015-05-01
Nanophotonic devices show interesting features for nonlinear response enhancement but numerical tools are mandatory to fully determine their behaviour. To address this need, we present a numerical modal method dedicated to nonlinear optics calculations under the undepleted pump approximation. It is brie y explained in the frame of Second Harmonic Generation for both plane waves and focused beams. The nonlinear behaviour of selected nanostructures is then investigated to show comparison with existing analytical results and study the convergence of the code.
Fu, Haijin; Wang, Yue; Tan, Jiubin; Fan, Zhigang
2018-01-01
Even after the Heydemann correction, residual nonlinear errors, ranging from hundreds of picometers to several nanometers, are still found in heterodyne laser interferometers. This is a crucial factor impeding the realization of picometer level metrology, but its source and mechanism have barely been investigated. To study this problem, a novel nonlinear model based on optical mixing and coupling with ghost reflection is proposed and then verified by experiments. After intense investigation of this new model’s influence, results indicate that new additional high-order and negative-order nonlinear harmonics, arising from ghost reflection and its coupling with optical mixing, have only a negligible contribution to the overall nonlinear error. In real applications, any effect on the Lissajous trajectory might be invisible due to the small ghost reflectance. However, even a tiny ghost reflection can significantly worsen the effectiveness of the Heydemann correction, or even make this correction completely ineffective, i.e., compensation makes the error larger rather than smaller. Moreover, the residual nonlinear error after correction is dominated only by ghost reflectance. PMID:29498685
NASA Astrophysics Data System (ADS)
Kasatani, Kazuo
2003-01-01
Third-order optical nonlinearities of several cyanine dyes were measured under resonant conditions by the femtosecond degenerate four-wave mixing (DFWM) technique. Temporal profiles of the DFWM signal were measured with a time resolution of 0.3 ps, and were found to consist of at least two components, the coherent instantaneous nonlinear response and the delayed response with a decay time constant of several hundred picoseconds. The latter can be attributed to molecular rotational relaxation of these dyes. The values of electronic component of the optical nonlinear susceptibility, χ e xxxx (3), for these dyes were ≈2×10 -12 esu at the very low concentration of 1×10 -5 mol dm -3. The electronic component of molecular hyperpolarizability, γe, was calculated to be ≈1×10 -28 esu for each dye.
Topological nature of nonlinear optical effects in solids.
Morimoto, Takahiro; Nagaosa, Naoto
2016-05-01
There are a variety of nonlinear optical effects including higher harmonic generations, photovoltaic effects, and nonlinear Kerr rotations. They are realized by strong light irradiation to materials that results in nonlinear polarizations in the electric field. These are of great importance in studying the physics of excited states of the system as well as for applications to optical devices and solar cells. Nonlinear properties of materials are usually described by nonlinear susceptibilities, which have complex expressions including many matrix elements and energy denominators. On the other hand, a nonequilibrium steady state under an electric field periodic in time has a concise description in terms of the Floquet bands of electrons dressed by photons. We show theoretically, using the Floquet formalism, that various nonlinear optical effects, such as the shift current in noncentrosymmetric materials, photovoltaic Hall response, and photo-induced change of order parameters under the continuous irradiation of monochromatic light, can be described in a unified fashion by topological quantities involving the Berry connection and Berry curvature. We found that vector fields defined with the Berry connections in the space of momentum and/or parameters govern the nonlinear responses. This topological view offers a route to designing nonlinear optical materials.
Topological nature of nonlinear optical effects in solids
Morimoto, Takahiro; Nagaosa, Naoto
2016-01-01
There are a variety of nonlinear optical effects including higher harmonic generations, photovoltaic effects, and nonlinear Kerr rotations. They are realized by strong light irradiation to materials that results in nonlinear polarizations in the electric field. These are of great importance in studying the physics of excited states of the system as well as for applications to optical devices and solar cells. Nonlinear properties of materials are usually described by nonlinear susceptibilities, which have complex expressions including many matrix elements and energy denominators. On the other hand, a nonequilibrium steady state under an electric field periodic in time has a concise description in terms of the Floquet bands of electrons dressed by photons. We show theoretically, using the Floquet formalism, that various nonlinear optical effects, such as the shift current in noncentrosymmetric materials, photovoltaic Hall response, and photo-induced change of order parameters under the continuous irradiation of monochromatic light, can be described in a unified fashion by topological quantities involving the Berry connection and Berry curvature. We found that vector fields defined with the Berry connections in the space of momentum and/or parameters govern the nonlinear responses. This topological view offers a route to designing nonlinear optical materials. PMID:27386523
Nonlinear second order evolution inclusions with noncoercive viscosity term
NASA Astrophysics Data System (ADS)
Papageorgiou, Nikolaos S.; Rădulescu, Vicenţiu D.; Repovš, Dušan D.
2018-04-01
In this paper we deal with a second order nonlinear evolution inclusion, with a nonmonotone, noncoercive viscosity term. Using a parabolic regularization (approximation) of the problem and a priori bounds that permit passing to the limit, we prove that the problem has a solution.
NASA Astrophysics Data System (ADS)
Aditya, Pusala; Kumar, Hari; Kumar, Sunil; Rajashekar, Muralikrishna, M.; Muthukumar, V. Sai; Kumar, B. Siva; Sai, S. Siva Sankara; Rao, G. Nageshwar
2013-06-01
We report here the optical and non-linear optical properties of six different novel bis-chalcones of D-π-A-π-D derivatives of diarylideneacetone (DBA). These derivatives have been synthesized by Claisen-Schmidt condensation reaction and were well characterized by using FTIR, 1HNMR, 13CNMR, UV-Visible absorption and mass spectroscopic techniques. The optical bandgap for each of the DBA derivatives were determined both experimentally (UV-Visible spectra & Tauc Plot) and theoretically by ab intio DFT calculations using SIESTA software package. They were found to be in close agreement with each other. The Second Harmonic Generation from these organic chromophores were studied by standard Kurtz and Perry Powder SHG method at 1064 nm. They were found to have superior SHG conversion efficiency when compared to urea (standard sample). Further, we investigated the Multi-Photon absorption properties were using conventional open aperture z-scan technique. These DBA derivatives exhibited strong two photon absorption in the order of 1e-11m/W. Hence, these are potential candidate for various photonic applications like optical power limiting, photonic switching and frequency conversion.
Utilizing strongly absorbing materials for low-loss surface-wave nonlinear optics
NASA Astrophysics Data System (ADS)
Grosse, Nicolai B.; Franz, Philipp; Heckmann, Jan; Pufahl, Karsten; Woggon, Ulrike
2018-04-01
Optical media endowed with large nonlinear susceptibilities are highly prized for their employment in frequency conversion and the generation of nonclassical states of light. Although the presence of an optical resonance can greatly increase the nonlinear response (e.g., in epsilon-near-zero materials), the non-negligible increase in linear absorption often precludes the application of such materials in nonlinear optics. Absorbing materials prepared as thin films, however, can support a low-loss surface wave: the long-range surface exciton polariton (LRSEP). Its propagation lifetime increases with greater intrinsic absorption and reduced film thickness, provided that the film is embedded in a transparent medium (symmetric cladding). We explore LRSEP propagation in a molybdenum film by way of a prism-coupling configuration. Our observations show that excitation of the LRSEP mode leads to a dramatic increase in the yield of second-harmonic generation. This implies that the LRSEP mode is an effective vehicle for utilizing the nonlinear response of absorbing materials.
Bennett, Kochise; Mukamel, Shaul
2014-01-28
The semi-classical theory of radiation-matter coupling misses local-field effects that may alter the pulse time-ordering and cascading that leads to the generation of new signals. These are then introduced macroscopically by solving Maxwell's equations. This procedure is convenient and intuitive but ad hoc. We show that both effects emerge naturally by including coupling to quantum modes of the radiation field that are initially in the vacuum state to second order. This approach is systematic and suggests a more general class of corrections that only arise in a QED framework. In the semi-classical theory, which only includes classical field modes, the susceptibility of a collection of N non-interacting molecules is additive and scales as N. Second-order coupling to a vacuum mode generates an effective retarded interaction that leads to cascading and local field effects both of which scale as N(2).
Constrained State Estimation for Individual Localization in Wireless Body Sensor Networks
Feng, Xiaoxue; Snoussi, Hichem; Liang, Yan; Jiao, Lianmeng
2014-01-01
Wireless body sensor networks based on ultra-wideband radio have recently received much research attention due to its wide applications in health-care, security, sports and entertainment. Accurate localization is a fundamental problem to realize the development of effective location-aware applications above. In this paper the problem of constrained state estimation for individual localization in wireless body sensor networks is addressed. Priori knowledge about geometry among the on-body nodes as additional constraint is incorporated into the traditional filtering system. The analytical expression of state estimation with linear constraint to exploit the additional information is derived. Furthermore, for nonlinear constraint, first-order and second-order linearizations via Taylor series expansion are proposed to transform the nonlinear constraint to the linear case. Examples between the first-order and second-order nonlinear constrained filters based on interacting multiple model extended kalman filter (IMM-EKF) show that the second-order solution for higher order nonlinearity as present in this paper outperforms the first-order solution, and constrained IMM-EKF obtains superior estimation than IMM-EKF without constraint. Another brownian motion individual localization example also illustrates the effectiveness of constrained nonlinear iterative least square (NILS), which gets better filtering performance than NILS without constraint. PMID:25390408
NASA Astrophysics Data System (ADS)
Kamath, Laxminarayana; Manjunatha, K. B.; Shettigar, Seetharam; Umesh, G.; Narayana, B.; Samshuddin, S.; Sarojini, B. K.
2014-03-01
A series of new chalcones containing terphenyl as a core and with different functional groups has been successfully synthesized by Claisen-Schmidt condensation method in search of new nonlinear optical (NLO) materials. Molecular structural characterization for the compounds was achieved by FTIR and single crystal X-ray diffraction. The third-order NLO absorption and refraction coefficients were simultaneously determined by Z-scan technique. The measurements were performed at 532 nm with 7 ns laser pulses using a Nd:YAG laser in solution form. The Z-scan experiments reveal that the compounds exhibit strong nonlinear refraction coefficient of the order 10-11 esu and the molecular two photon absorption cross section is 10-46 cm4 s/photon. The results also show that the structures of the compounds have great impact on NLO properties. The compounds show optical power limiting behavior due to two-photon absorption (TPA).
NASA Astrophysics Data System (ADS)
Yu, Weiguo; Jia, Jianhong; Gao, Jianrong; Han, Liang; Li, Yujin
2016-09-01
Herein we reported the preparation of a new type of ferrocene-based compounds with large conjugated system containing symmetrical aromatic vinyl and Schiff base moieties and the study of their third-order nonlinear optical (NLO) properties. Their third-order NLO properties were measured using femtosecond laser and degenerate four-wave mixing (DFWM) technique. The obtained χ(3), n2 and γ values of these molecules were found in the range of 0.998-1.429 × 10-12 esu,1.847-2.646 × 10-11 esu and 1.026-1.449 × 10-30 esu, respectively. The response time ranged from 43.65 fs to 61.71 fs. The results indicate that these compounds have potential nonlinear optical applications.
Third-order nonlinear optical properties of thin sputtered gold films
NASA Astrophysics Data System (ADS)
Xenogiannopoulou, E.; Aloukos, P.; Couris, S.; Kaminska, E.; Piotrowska, A.; Dynowska, E.
2007-07-01
Au films of thickness ranging between 5 and 52 nm were prepared by sputtering on quartz substrates and their third-order nonlinear optical response was investigated by Optical Kerr effect (OKE) and Z-scan techniques using 532 nm, 35 ps laser pulses. All prepared films were characterized by XRD, AFM and UV-VIS-NIR spectrophotometry while their third-order susceptibility χ(3) was measured and found to be of the order of 10 -9 esu. The real and imaginary parts of the third-order susceptibility were found in very good agreement with experimental results and theoretical predictions reported by Smith et al. [D.D. Smith, Y. Yoon, R.W. Boyd, Y.K. Cambell, L.A. Baker, R.M. Crooks, M. George, J. Appl. Phys. 86 (1999) 6200].
Nonlinear optical properties of rigid-rod polymers
NASA Technical Reports Server (NTRS)
Trimmer, Mark S.; Wang, Ying
1992-01-01
The purpose of this research project was to integrate enhanced third order nonlinear optical (NLO) properties, especially high x(exp (3)) (greater than 10(exp -8) esu), into Maxdem's novel conjugated rigid-rod polymers while retaining their desirable processing, mechanical, and thermal properties. This work primarily involved synthetic approaches to optimized materials.
NASA Astrophysics Data System (ADS)
Mushahali, Hahaer; Mu, Baoxia; Wang, Qian; Mamat, Mamatrishat; Cao, Haibin; Yang, Guang; Jing, Qun
2018-07-01
The finite-field methods can be used to intuitively learn about the optical response and find out the atomic contributions to the birefringence and SHG tensors. In this paper, the linear and second-order nonlinear optical properties of ABe2BO3F2 family (A = K, Rb, Cs) compounds are investigated using the finite-field methods within different exchange-correlation functionals. The results show that the obtained birefringence and SHG tensors are in good agreement with the experimental values. The atomic contribution to the total birefringence was further investigated using the variation of the atomic charges, and the Born effective charges. The results show that the boron-oxygen groups give main contribution to the anisotropic birefringence.
NASA Astrophysics Data System (ADS)
Claude, Charles
1995-01-01
Materials for optical waveguides were developed from two different approaches, inorganic-organic composites and soft gel polymers. Inorganic-organic composites were developed from alkoxysilane and organically modified silanes based on nonlinear optical chromophores. Organically modified silanes based on N-((3^' -trialkoxysilyl)propyl)-4-nitroaniline were synthesized and sol-gelled with trimethoxysilane. After a densification process at 190^circC with a corona discharge, the second harmonic of the film was measured with a Nd:YAG laser with a fundamental wavelength of 1064nm, d_{33} = 13pm/V. The decay of the second harmonic was expressed by a stretched bi-exponential equation. The decay time (tau _2) was equal to 3374 hours, and was comparable to nonlinear optical systems based on epoxy/Disperse Orange 1. The processing temperature of the organically modified silane was limited to 200^circC due to the decomposition of the organic chromophore. Soft gel polymers were synthesized and characterized for the development of optical waveguides with dc-electrical field assisted phase-matching. Polymers based on 4-nitroaniline terminated poly(ethylene oxide-co-propylene oxide) were shown to exhibit second harmonic generation that were optically phase-matched in an electrical field. The optical signals were stable and reproducible. Siloxane polymers modified with 1-mercapto-4-nitrobenzene and 1-mercapto-4-methylsulfonylstilbene nonlinear optical chromophores were synthesized. The physical and the linear and nonlinear optical properties of the polymers were characterized. Waveguides were developed from the polymers which were optically phase -matched and had an efficiency of 8.1%. The siloxane polymers exhibited optical phase-matching in an applied electrical field and can be used with a semiconductor laser. Organic lanthanide ion complexes for electroluminescence and optical amplifiers were synthesized and characterized. The complexes were characterized for their thermal and oxidative stability and for their optical properties. Organic-europium ion complexes based on derivatives of 2-benzoyl benzoate are stable to a temperature 70^circ C higher than the europium beta -diketonate complexes. The optical and fluorescence properties of the organic-europium ion complexes were characterized. The methoxy and the t-butyl derivatives of the europium 2-benzoylbenzoate complexes exhibited fluorescence quantum efficiencies that were comparable to europium tris(thenoyl trifluoroacetonate) in methylene chloride but the extinction coefficient was two-thirds of the europium thenoyltrifluoroacetonate complexes. The last complex characterized was the europium bis(diphenylphosphino)imine complex. The complex exhibited thermal stability to 550 ^circC under nitrogen.
Optimal antibunching in passive photonic devices based on coupled nonlinear resonators
NASA Astrophysics Data System (ADS)
Ferretti, S.; Savona, V.; Gerace, D.
2013-02-01
We propose the use of weakly nonlinear passive materials for prospective applications in integrated quantum photonics. It is shown that strong enhancement of native optical nonlinearities by electromagnetic field confinement in photonic crystal resonators can lead to single-photon generation only exploiting the quantum interference of two coupled modes and the effect of photon blockade under resonant coherent driving. For realistic system parameters in state of the art microcavities, the efficiency of such a single-photon source is theoretically characterized by means of the second-order correlation function at zero-time delay as the main figure of merit, where major sources of loss and decoherence are taken into account within a standard master equation treatment. These results could stimulate the realization of integrated quantum photonic devices based on non-resonant material media, fully integrable with current semiconductor technology and matching the relevant telecom band operational wavelengths, as an alternative to single-photon nonlinear devices based on cavity quantum electrodynamics with artificial atoms or single atomic-like emitters.
NASA Astrophysics Data System (ADS)
Le Rouge, A.; El Hamzaoui, H.; Capoen, B.; Bernard, R.; Cristini-Robbe, O.; Martinelli, G.; Cassagne, C.; Boudebs, G.; Bouazaoui, M.; Bigot, L.
2015-05-01
A new approach to dope a silica glass with gold nanoparticles (GNPs) is presented. It consisted in embedding zirconia-coated GNPs in a silica sol to form a doped silica gel. Then, the sol-doped nanoporous silica xerogel is densified leading to the formation of a glass monolith. The spectral position and shape of the surface plasmon resonance (SPR) reported around 520 nm remain compatible with small spherical GNPs in a silica matrix. The saturable absorption behavior of this gold/zirconia-doped silica glass has been evidenced by Z-scan technique. A second-order nonlinear absorption coefficient β of about -13.7 cm GW-1 has been obtained at a wavelength near the SPR of the GNPs.
Collins, Joel T; Hooper, David C; Mark, Andrew G; Kuppe, Christian; Valev, Ventsislav Kolev
2018-05-31
Chiral plasmonic nanostructures, those lacking mirror symmetry, can be designed to manipulate the polarization of incident light resulting in chiroptical (chiral optical) effects such as circular dichroism (CD) and optical rotation (OR). Due to high symmetry sensitivity, corresponding effects in second harmonic generation (SHG-CD and SHG-OR) are typically much stronger in comparison. These nonlinear effects have long been used for chiral molecular analysis and characterization, however both linear and nonlinear optical rotation can occur even in achiral structures, if the structure is birefringent due to anisotropy. Crucially, chiroptical effects resulting from anisotropy typically exhibit a strong dependence on structural orientation. Here we report large second-harmonic generation optical rotation of ±45°, due to intrinsic chirality in a highly anisotropic helical metamaterial. The SHG intensity is found to strongly relate to the structural anisotropy, however the angle of SHG-OR is invariant under sample rotation. We show that by tuning the geometry of anisotropic nanostructures, the interaction between anisotropy, chirality, and experiment geometry can allow even greater control over the chiroptical properties of plasmonic metamaterials.
NASA Astrophysics Data System (ADS)
Jayaprakash, P.; Sangeetha, P.; Kumari, C. Rathika Thaya; Caroline, M. Lydia
2017-08-01
A nonlinear optical bulk single crystal of L-methionine admixtured D-mandelic acid (LMDMA) has been grown by slow solvent evaporation technique using water as solvent at ambient temperature. The crystallized LMDMA single crystal subjected to single crystal X-ray diffraction study confirmed monoclinic system with the acentric space group P21. The FTIR analysis gives information about the modes of vibration in the various functional groups present in LMDMA. The UV-visible spectral analysis assessed the optical quality and linear optical properties such as extinction coefficient, reflectance, refractive index and from which optical conductivity and electric susceptibility were also evaluated. The frequency doubling efficiency was observed using Kurtz Perry powder technique. A multiple shot laser was utilized to evaluate the laser damage threshold energy of the crystal. Discrete thermodynamic properties were carried out by TG-DTA studies. The hardness, Meyer's index, yield strength, elastic stiffness constant, Knoop hardness, fracture toughness and brittleness index were analyzed using Vickers microhardness tester. Layer growth pattern and the surface defect were examined by chemical etching studies using optical microscope. Fluorescence emission spectrum was recorded and lifetime was also studied. The electric field response of crystal was investigated from the dielectric studies at various temperatures at different frequencies. The third-order nonlinear optical response in LMDMA has been investigated using Z-scan technique with He-Ne laser at 632.8 nm and nonlinear parameters such as refractive index (n2), absorption coefficient (β) and susceptibility (χ3) investigated extensively for they are in optical phase conjucation, high-speed optical switches and optical dielectric devices.
Liu, Gang; Jayathilake, Pahala Gedara; Khoo, Boo Cheong
2014-02-01
Two nonlinear models are proposed to investigate the focused acoustic waves that the nonlinear effects will be important inside the liquid around the scatterer. Firstly, the one dimensional solutions for the widely used Westervelt equation with different coordinates are obtained based on the perturbation method with the second order nonlinear terms. Then, by introducing the small parameter (Mach number), a dimensionless formulation and asymptotic perturbation expansion via the compressible potential flow theory is applied. This model permits the decoupling between the velocity potential and enthalpy to second order, with the first potential solutions satisfying the linear wave equation (Helmholtz equation), whereas the second order solutions are associated with the linear non-homogeneous equation. Based on the model, the local nonlinear effects of focused acoustic waves on certain volume are studied in which the findings may have important implications for bubble cavitation/initiation via focused ultrasound called HIFU (High Intensity Focused Ultrasound). The calculated results show that for the domain encompassing less than ten times the radius away from the center of the scatterer, the non-linear effect exerts a significant influence on the focused high intensity acoustic wave. Moreover, at the comparatively higher frequencies, for the model of spherical wave, a lower Mach number may result in stronger nonlinear effects. Copyright © 2013 Elsevier B.V. All rights reserved.
Gordon Research Conference on Nonlinear Optics and Lasers
NASA Astrophysics Data System (ADS)
Haus, Hermann
1992-02-01
The topics chosen were production of X rays with high power lasers, generation of millimeter waves with femtosecond pulses, microcavities and microlasers, second harmonic generation in fibers and advances in photorefractivity and parallel optical processing. It introduces ways of thinking and scientific methods in fields that are related, but would not generally appear in specialized conferences. There were three such examples: the methods of nonlinear optics as applied to electronic signal processing, the concept of squeezing (special quantum states of the electromagnetic field) as used to explain the generation of gravitational waves in the expanding universe, and particle interferometers with particle- instead of wave-gratings. By asking Nobel laureate Bloembergen one year in advance to give the traditional after dinner speech, we were privileged to hear him speak of the history of optics over the centuries resulting in the various principles of linear optics, and the highly accelerated pace of discovery of the analogous principles in nonlinear optics.
Kardaś, Tomasz M; Nejbauer, Michał; Wnuk, Paweł; Resan, Bojan; Radzewicz, Czesław; Wasylczyk, Piotr
2017-02-22
Although new optical materials continue to open up access to more and more wavelength bands where femtosecond laser pulses can be generated, light frequency conversion techniques are still indispensable in filling the gaps on the ultrafast spectral scale. With high repetition rate, low pulse energy laser sources (oscillators) tight focusing is necessary for a robust wave mixing and the efficiency of broadband nonlinear conversion is limited by diffraction as well as spatial and temporal walk-off. Here we demonstrate a miniature third harmonic generator (tripler) with conversion efficiency exceeding 30%, producing 246 fs UV pulses via cascaded second order processes within a single laser beam focus. Designing this highly efficient and ultra compact frequency converter was made possible by full 3-dimentional modelling of propagation of tightly focused, broadband light fields in nonlinear and birefringent media.
NASA Astrophysics Data System (ADS)
Kardaś, Tomasz M.; Nejbauer, Michał; Wnuk, Paweł; Resan, Bojan; Radzewicz, Czesław; Wasylczyk, Piotr
2017-02-01
Although new optical materials continue to open up access to more and more wavelength bands where femtosecond laser pulses can be generated, light frequency conversion techniques are still indispensable in filling the gaps on the ultrafast spectral scale. With high repetition rate, low pulse energy laser sources (oscillators) tight focusing is necessary for a robust wave mixing and the efficiency of broadband nonlinear conversion is limited by diffraction as well as spatial and temporal walk-off. Here we demonstrate a miniature third harmonic generator (tripler) with conversion efficiency exceeding 30%, producing 246 fs UV pulses via cascaded second order processes within a single laser beam focus. Designing this highly efficient and ultra compact frequency converter was made possible by full 3-dimentional modelling of propagation of tightly focused, broadband light fields in nonlinear and birefringent media.
Sum-Frequency Generation from a Thin Cylindrical Layer
NASA Astrophysics Data System (ADS)
Shamyna, A. A.; Kapshai, V. N.
2018-01-01
In the Rayleigh-Gans-Debye approximation, we have solved the problem of the sum-frequency generation by two plane elliptically polarized electromagnetic waves from the surface of a dielectric particle of a cylindrical shape that is coated by a thin layer possessing nonlinear optical properties. The formulas that describe the sum-frequency field have been presented in the tensor and vector forms for the second-order nonlinear dielectric susceptibility tensor, which was chosen in the general form, containing chiral components. Expressions describing the sum-frequency field from the cylindrical particle ends have been obtained for the case of a nonlinear layer possessing chiral properties. Three-dimensional directivity patterns of the sum-frequency radiation have been analyzed for different combinations of parameters (angles of incidence, degrees of ellipticity, orientations of polarization ellipses, cylindrical particle dimensions). The mathematical properties of the spatial distribution functions of the sum-frequency field, which characterize the symmetry of directivity patterns, have been revealed.
Ankiewicz, Adrian
2016-07-01
Analysis of short-pulse propagation in positive dispersion media, e.g., in optical fibers and in shallow water, requires assorted high-order derivative terms. We present an infinite-order "dark" hierarchy of equations, starting from the basic defocusing nonlinear Schrödinger equation. We present generalized soliton solutions, plane-wave solutions, and periodic solutions of all orders. We find that "even"-order equations in the set affect phase and "stretching factors" in the solutions, while "odd"-order equations affect the velocities. Hence odd-order equation solutions can be real functions, while even-order equation solutions are complex. There are various applications in optics and water waves.
Spherical tensor analysis of polar liquid crystals with biaxial and chiral molecules
NASA Astrophysics Data System (ADS)
Iwamoto, Mitsumasa; Zhong-can, Ou-Yang
2012-11-01
With the help of spherical tensor expression, an irreducible calculus of a Lth-rank macroscopic susceptibility χ for a polar liquid crystal (PLC) of biaxial and chiral molecules written as the average of molecular hyperpolarizability tensor β associated with their spherical orientational order parameters
Ultra-fast dynamics in the nonlinear optical response of silver nanoprism ordered arrays.
Sánchez-Esquivel, Héctor; Raygoza-Sanchez, Karen Y; Rangel-Rojo, Raúl; Kalinic, Boris; Michieli, Niccolò; Cesca, Tiziana; Mattei, Giovanni
2018-03-15
In this work we present the study of the ultra-fast dynamics of the nonlinear optical response of a honeycomb array of silver triangular nanoprisms, performed using a femtosecond pulsed laser tuned with the dipolar surface plasmon resonance of the nanoarray. Nonlinear absorption and refraction, and their time-dependence, were explored using the z-scan and time-resolved excite-probe techniques. Nonlinear absorption is shown to change sign with the input irradiance and the behavior was explained on the basis of a three-level model. The response time was determined to be in the picosecond regime. A technique based on a variable frequency chopper was also used in order to discriminate the thermal and electronic contributions to the nonlinearity, which were found to have opposite signs. All these findings propel the investigated nanoprism arrays as good candidates for applications in advanced ultra-fast nonlinear nanophotonic devices.
Nonlinear optics and crystalline whispering gallery mode resonators
NASA Technical Reports Server (NTRS)
Matsko, Andrey B.; Savchenkov, Anatoliy A.; Ilchenko, Vladimir S.; Maleki, Lute
2004-01-01
We report on our recent results concerning fabrication of high-Q whispering gallery mode (WGM) crystalline resonators, and discuss some possible applications of lithium niobate WGM resonators in nonlinear optics and photonics. In particular, we demonstrate experimentally a tunable third-order optical filter fabricated from the three metalized resonators; and report observation of parametric frequency dobuling in a WGM resonator made of periodically poled lithium niobate (PPLN).
Stabilized nonlinear optical chromophore alignment in high-? guest - host polycarbonates
NASA Astrophysics Data System (ADS)
Healy, D.; Bloor, D.; Gray, D.; Cross, G. H.
1997-11-01
Electric-field-poling studies of two polycarbonates doped with 2-(N,N dimethylamino)-5-nitroacetanilide revealed a long-term room-temperature alignment stability. This stability at room temperature is compared with that of similarly doped poly(methyl methacrylate) (PMMA) which displays short-term relaxation. Despite several previous suggestions that hydrogen bonding between guest and host plays a major role in these effects, infra-red spectroscopic studies refuted the idea that stronger hydrogen bond formation in the polycarbonate rather than in PMMA is the dominant influence. Rather we show, using an examination of the poling currents during poling, that the re-orientation dynamics in the polycarbonate systems are markedly different. In the case of PMMA-doped films, the deposited surface charge is compensated by poling currents at a rate at least comparable to the rate of deposition of corona charge. The compensation rate for polycarbonate-doped systems was markedly lower, however, suggesting that polar re-orientation is slower. Studies of the second-order optical nonlinearities of poled thin films using second-harmonic generation revealed an apparent enhancement of the second-harmonic coefficient compared with the predictions of conventional theories. However, we note that the use of microscopic parameters (the dipole moment and the first hyperpolarizability) obtained from measurements in non-dipolar media may give rise to the apparent anomaly since high reaction fields in polycarbonate films may act to modify these parameters.
Z-scan and optical limiting properties of Hibiscus Sabdariffa dye
NASA Astrophysics Data System (ADS)
Diallo, A.; Zongo, S.; Mthunzi, P.; Rehman, S.; Alqaradawi, S. Y.; Soboyejo, W.; Maaza, M.
2014-12-01
The intensity-dependent refractive index n 2 and the nonlinear susceptibility χ (3) of Hibiscus Sabdariffa dye solutions in the nanosecond regime at 532 nm are reported. More presicely, the variation of n 2, β, and real and imaginary parts of χ (3) versus the natural dye extract concentration has been carried out by z-scan and optical limiting techniques. The third-order nonlinearity of the Hibiscus Sabdariffa dye solutions was found to be dominated by nonlinear refraction, which leads to strong optical limiting of laser.
Spacecraft attitude determination using a second-order nonlinear filter
NASA Technical Reports Server (NTRS)
Vathsal, S.
1987-01-01
The stringent attitude determination accuracy and faster slew maneuver requirements demanded by present-day spacecraft control systems motivate the development of recursive nonlinear filters for attitude estimation. This paper presents the second-order filter development for the estimation of attitude quaternion using three-axis gyro and star tracker measurement data. Performance comparisons have been made by computer simulation of system models and filter mechanization. It is shown that the second-order filter consistently performs better than the extended Kalman filter when the performance index of the root sum square estimation error of the quaternion vector is compared. The second-order filter identifies the gyro drift rates faster than the extended Kalman filter. The uniqueness of this algorithm is the online generation of the time-varying process and measurement noise covariance matrices, derived as a function or the process and measurement nonlinearity, respectively.
NASA Astrophysics Data System (ADS)
Pandey, Priyanka; Rai, R. N.
2018-05-01
Two novel organic inter-molecular compounds (IMCs), (3-(4-chloro-3-nitrophenylimino) methyl) phenol) (CNMP) and urea ̶ 4-dimethylaminopyridine complex (UDMAP), have been synthesized by solid state reaction. These two IMCs were identified by phase diagram study of CNA-HB and U-DMAP systems. The single crystals of newly obtained IMCs were grown by slow solvent evaporation technique at room temperature. Both the IMCs were further studied for their thermal, spectral, single crystal XRD for their atomic packing in molecule, crystallinity, optical and nonlinear optical behaviour. In both the cases, melting point of inter-molecular compounds was found to be higher than that of their parent components, CNMP was found to be thermally stable up to 158 °C while UDMAP was stable up to 144 °C, which indicate their extra stability than their parents. The single crystal XRD studies confirmed that CNMP has crystallized in orthorhombic unit cell with non-centrosymmetric space group P212121 while UDMAP has crystallized in monoclinic unit cell with centrosymmetric space group C2/c. The absorption spectrum of CNMP was found to be in between the absorption of parents, while broadening of peak and red shift was observed in UDMAP as compared to the parents. Second order nonlinear optical property of CNMP and UDMAP was studied using Kurtz Perry powder technique and intense green light emission was observed with CNMP on excitation with 1064 nm of Nd:YAG laser while no emission was observed with UDMAP.
Nonlinear Optical Characterization of Membrane Protein Microcrystals and Nanocrystals.
Newman, Justin A; Simpson, Garth J
2016-01-01
Nonlinear optical methods such as second harmonic generation (SHG) and two-photon excited UV fluorescence (TPE-UVF) imaging are promising approaches to address bottlenecks in the membrane protein structure determination pipeline. The general principles of SHG and TPE-UVF are discussed here along with instrument design considerations. Comparisons to conventional methods in high throughput crystallization condition screening and crystal quality assessment prior to X-ray diffraction are also discussed.
Xu, Wei-Jian; He, Chun-Ting; Ji, Cheng-Min; Chen, Shao-Li; Huang, Rui-Kang; Lin, Rui-Biao; Xue, Wei; Luo, Jun-Hua; Zhang, Wei-Xiong; Chen, Xiao-Ming
2016-07-01
The changeable molecular dynamics of flexible polar cations in the variable confined space between inorganic chains brings about a new type of two-step nonlinear optical (NLO) switch with genuine "off-on-off" second harmonic generation (SHG) conversion between one NLO-active state and two NLO-inactive states. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Theory and design of nonlinear metamaterials
NASA Astrophysics Data System (ADS)
Rose, Alec Daniel
If electronics are ever to be completely replaced by optics, a significant possibility in the wake of the fiber revolution, it is likely that nonlinear materials will play a central and enabling role. Indeed, nonlinear optics is the study of the mechanisms through which light can change the nature and properties of matter and, as a corollary, how one beam or color of light can manipulate another or even itself within such a material. However, of the many barriers preventing such a lofty goal, the narrow and limited range of properties supported by nonlinear materials, and natural materials in general, stands at the forefront. Many industries have turned instead to artificial and composite materials, with homogenizable metamaterials representing a recent extension of such composites into the electromagnetic domain. In particular, the inclusion of nonlinear elements has caused metamaterials research to spill over into the field of nonlinear optics. Through careful design of their constituent elements, nonlinear metamaterials are capable of supporting an unprecedented range of interactions, promising nonlinear devices of novel design and scale. In this context, I cast the basic properties of nonlinear metamaterials in the conventional formalism of nonlinear optics. Using alternately transfer matrices and coupled mode theory, I develop two complementary methods for characterizing and designing metamaterials with arbitrary nonlinear properties. Subsequently, I apply these methods in numerical studies of several canonical metamaterials, demonstrating enhanced electric and magnetic nonlinearities, as well as predicting the existence of nonlinear magnetoelectric and off-diagonal nonlinear tensors. I then introduce simultaneous design of the linear and nonlinear properties in the context of phase matching, outlining five different metamaterial phase matching methods, with special emphasis on the phase matching of counter propagating waves in mirrorless parametric amplifiers and oscillators. By applying this set of tools and knowledge to microwave metamaterials, I experimentally confirm several novel nonlinear phenomena. Most notably, I construct a backward wave nonlinear medium from varactor-loaded split ring resonators loaded in a rectangular waveguide, capable of generating second-harmonic opposite to conventional nonlinear materials with a conversion efficiency as high as 1.5%. In addition, I confirm nonlinear magnetoelectric coupling in two dual gap varactor-loaded split ring resonator metamaterials through measurement of the amplitude and phase of the second-harmonic generated in the forward and backward directions from a thin slab. I then use the presence of simultaneous nonlinearities in such metamaterials to observe nonlinear interference, manifest as unidirectional difference frequency generation with contrasts of 6 and 12 dB in the forward and backward directions, respectively. Finally, I apply these principles and intuition to several plasmonic platforms with the goal of achieving similar enhancements and configurations at optical frequencies. Using the example of fluorescence enhancement in optical patch antennas, I develop a semi-classical numerical model for the calculation of field-induced enhancements to both excitation and spontaneous emission rates of an embedded fluorophore, showing qualitative agreement with experimental results, with enhancement factors of more than 30,000. Throughout these series of works, I emphasize the indispensability of effective design and retrieval tools in understanding and optimizing both metamaterials and plasmonic systems. Ultimately, when weighed against the disadvantages in fabrication and optical losses, the results presented here provide a context for the application of nonlinear metamaterials within three distinct areas where a competitive advantage over conventional materials might be obtained: fundamental science demonstrations, linear and nonlinear anisotropy engineering, and extremely compact resonant all-optical devices.
NASA Astrophysics Data System (ADS)
Garg, Kavita; Shanmugam, Ramakrishanan; Ramamurthy, Praveen C.
2018-02-01
Tetrathia-rubyrin and graphene oxide (GO) covalent adduct was synthesized, characterised and optical properties were studied. GO-Rubyrin adducts showed fluorescence quenching of rubyrin due to electron or energy transfer from rubyrin to graphene oxide, which also reflected in UV-vis absorbance spectroscopy. The non-linear optical responses were measured through Z scan technique in nano-second regime. The enhanced optical non-linearity was observed after attachment of GO with rubyrin, can be ascribed to the photo-induced electron or energy transfer from the electron rich rubyrin moiety to the electron deficient GO.
NASA Astrophysics Data System (ADS)
Li, Ming-Zhen; Tian, Bo; Qu, Qi-Xing; Chai, Han-Peng; Liu, Lei; Du, Zhong
2017-12-01
In this paper, under investigation is a coupled variable-coefficient higher-order nonlinear Schrödinger system, which describes the simultaneous propagation of optical pulses in an inhomogeneous optical fiber. Based on the Lax pair and binary Darboux transformation, we present the nondegenerate N-dark-dark soliton solutions. With the graphical simulation, soliton propagation and interaction are discussed with the group velocity dispersion and fourth-order dispersion effects, which affect the velocity but have no effect on the amplitude. Linear, parabolic and periodic one dark-dark solitons are displayed. Interactions between the two solitons are presented as well, which are all elastic.
Kohlgraf-Owens, Dana C; Kik, Pieter G
2009-08-17
The linear and nonlinear optical properties of a composite containing interacting spherical silver nanoparticles embedded in a dielectric host are studied as a function of interparticle separation using three dimensional frequency domain simulations. It is shown that for a fixed amount of metal, the effective third-order nonlinear susceptibility of the composite chi((3))(omega) can be significantly enhanced with respect to the linear optical properties, due to a combination of resonant surface plasmon excitation and local field redistribution. It is shown that this geometry-dependent susceptibility enhancement can lead to an improved figure of merit for nonlinear absorption. Enhancement factors for the nonlinear susceptibility of the composite are calculated, and the complex nature of the enhancement factors is discussed.
NASA Astrophysics Data System (ADS)
Rani, Sunita; Mohan, Devendra; Kumar, Manish; Sanjay
2018-05-01
Third order nonlinear susceptibility of (GeSe3.5)100-xBix (x = 0, 10, 14) and ZnxSySe100-x-y (x = 2, y = 28; x = 4, y = 20; x = 6, y = 12; x = 8, y = 4) amorphous chalcogenide thin films prepared using thermal evaporation technique is estimated. The dielectric constant at incident and third harmonic wavelength is calculated using "PARAV" computer program. 1064 nm wavelength of Nd: YAG laser is incident on thin film and third harmonic signal at 355 nm wavelength alongwith fundamental light is obtained in reflection that is separated from 1064 nm using suitable optical filter. Reflected third harmonic signal is measured to trace the influence of Bi and Zn on third order nonlinear susceptibility and is found to increase with increase in Bi and Zn content in (GeSe3.5)100-xBix, and ZnxSySe100-x-y chalcogenide thin films respectively. The excellent optical nonlinear property shows the use of chalcogenide thin films in photonics for wavelength conversion and optical data processing.
NASA Technical Reports Server (NTRS)
Mickens, Ronald E.
1987-01-01
It is shown that a discrete multi-time method can be constructed to obtain approximations to the periodic solutions of a special class of second-order nonlinear difference equations containing a small parameter. Three examples illustrating the method are presented.
NASA Astrophysics Data System (ADS)
Balu, Mihaela; Saytashev, Ilyas; Hou, Jue; Dantus, Marcos; Tromberg, Bruce J.
2015-12-01
Advancing the practical utility of nonlinear optical microscopy requires continued improvement in imaging depth and contrast. We evaluated second-harmonic generation (SHG) and third-harmonic generation images from ex vivo human skin and showed that a sub-40 fs, 1060-nm Yb-fiber laser can enhance SHG penetration depth by up to 80% compared to a >100 fs, 800 nm Ti:sapphire source. These results demonstrate the potential of fiber-based laser systems to address a key performance limitation related to nonlinear optical microscopy (NLOM) technology while providing a low-barrier-to-access alternative to Ti:sapphire sources that could help accelerate the movement of NLOM into clinical practice.
Reis, H; Papadopoulos, M G; Grzybowski, A
2006-09-21
This is the second part of a study to elucidate the local field effects on the nonlinear optical properties of p-nitroaniline (pNA) in three solvents of different multipolar character, that is, cyclohexane (CH), 1,4-dioxane (DI), and tetrahydrofuran (THF), employing a discrete description of the solutions. By the use of liquid structure information from molecular dynamics simulations and molecular properties computed by high-level ab initio methods, the local field and local field gradients on p-nitroaniline and the solvent molecules are computed in quadrupolar approximation. To validate the simulations and the induction model, static and dynamic (non)linear properties of the pure solvents are also computed. With the exception of the static dielectric constant of pure THF, a good agreement between computed and experimental refractive indices, dielectric constants, and third harmonic generation signals is obtained for the solvents. For the solutions, it is found that multipole moments up to two orders higher than quadrupole have a negligible influence on the local fields on pNA, if a simple distribution model is employed for the electric properties of pNA. Quadrupole effects are found to be nonnegligible in all three solvents but are especially pronounced in the 1,4-dioxane solvent, in which the local fields are similar to those in THF, although the dielectric constant of DI is 2.2 and that of the simulated THF is 5.4. The electric-field-induced second harmonic generation (EFISH) signal and the hyper-Rayleigh scattering signal of pNA in the solutions computed with the local field are in good to fair agreement with available experimental results. This confirms the effect of the "dioxane anomaly" also on nonlinear optical properties. Predictions based on an ellipsoidal Onsager model as applied by experimentalists are in very good agreement with the discrete model predictions. This is in contrast to a recent discrete reaction field calculation of pNA in 1,4-dioxane, which found that the predicted first hyperpolarizability of pNA deviated strongly from the predictions obtained using Onsager-Lorentz local field factors.
Optical Limiting Based on Liquid-Liquid Immiscibility
DOE Office of Scientific and Technical Information (OSTI.GOV)
Exarhos, Gregory J.; Ferris, Kim F.; Samuels, William D.
A nonionic surfactant is used to stabilize a dispersed droplet phase in a continuous liquid phase when two immiscible liquids are mixed. As both liquid phases approach the index matched condition, interfacial scattering is suppressed, and the mixture takes on the characteristics of a Christiansen-Shelyubskii filter. If, in addition, one of the liquids exhibits a substantial nonlinear optical response, then interfacial light scattering can be reversibly turned on when a laser beam incident upon the filter exceeds a critical fluence. To demonstrate this effect, an organic phase (dichloroethane) was dispersed in an aqueous phase containing sodium thiocyanate (NaSCN) using anmore » alkyl end-capped polyethylene glycol ether. The salt concentration was adjusted so that the index-matched mixture exhibited a large pass band. Marked optical limiting was observed through this transparent medium under conditions where the focused second-harmonic output of a Q-Switched Nd:YAG laser was on the order of about 50 mJ/cm2. An open-aperture Z-scan technique was used to quantify the limiting behavior. Since the thiocyanate anion is both isostructural and isoelectronic with carbon disulfide which exhibits a large optical nonlinearity, the mechanism of optical limiting is thought to be a nonlinear shift in the aqueous fluid index of refraction, resulting in an index mismatch between the disparate phases at high laser fluence. Index mismatch between the two phases leads to multiple reflections, loss of coherence, and a significant transmission decrease due to Mie scattering. The presence of many boundaries significantly amplifies the effect. Experiments also were conducted on the phase-inverted system (aqueous phase in organic liquid). Fundamental studies of such systems are used to verify theoretical predictions of the limiting effect, and aid in the design and development of improved limiters based upon this optical deflection approach.« less
Chaitanya, N. Apurv; Jabir, M. V.; Banerji, J.; Samanta, G. K.
2016-01-01
Hollow Gaussian beams (HGB) are a special class of doughnut shaped beams that do not carry orbital angular momentum (OAM). Such beams have a wide range of applications in many fields including atomic optics, bio-photonics, atmospheric science, and plasma physics. Till date, these beams have been generated using linear optical elements. Here, we show a new way of generating HGBs by three-wave mixing in a nonlinear crystal. Based on nonlinear interaction of photons having OAM and conservation of OAM in nonlinear processes, we experimentally generated ultrafast HGBs of order as high as 6 and power >180 mW at 355 nm. This generic concept can be extended to any wavelength, timescales (continuous-wave and ultrafast) and any orders. We show that the removal of azimuthal phase of vortices does not produce Gaussian beam. We also propose a new and only method to characterize the order of the HGBs. PMID:27581625
NASA Astrophysics Data System (ADS)
Diao, Liyong
This thesis deals with design, fabrication and modeling of bistable and multi-stable switching dynamics and second-harmonic generation in two groups of thin film coupled cavity photonic crystal structures. The first component studies optical bistability and multistability in such structures. Optical bistability and multistability are modelled by a nonlinear transfer matrix method. The second component is focused on the modelling and experimental measurement of second-harmonic generation in such structures. It is found that coupled cavity structures can reduce the threshold and index change for bistable operation, but single cavity structures can do the same. However, there is a clear advantage in using coupled cavity structures for multistability in that the threshold for multistability can be reduced. Second-harmonic generation is enhanced by field localization due to the resonant effect at the fundamental wavelength in single and coupled cavity structures by simulated and measured results. The work in this thesis makes three significant contributions. First, in the successful fabrication of thin film coupled cavity structures, the simulated linear transmissions of such structures match those of the fabricated structures almost exactly. Second, the newly defined figure of merit at the maximum transmission point on the bistable curve can be used to compare the material damage tolerance to any other Kerr effect nonlinear gate. Third, the simulated second-harmonic generation agrees excellently with experimental results. More generally optical thin film fabrication has commercial applications in many industry sections, such as electronics, opto-electronics, optical coating, solar cell and MEMS.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gupta, Naveen, E-mail: naveens222@rediffmail.com; Singh, Arvinder, E-mail: arvinder6@lycos.com; Singh, Navpreet, E-mail: navpreet.nit@gmail.com
2015-11-15
This paper presents a scheme for second harmonic generation of an intense q-Gaussian laser beam in a preformed parabolic plasma channel, where collisional nonlinearity is operative with nonlinear absorption. Due to nonuniform irradiance of intensity along the wavefront of the laser beam, nonuniform Ohmic heating of plasma electrons takes place. Due to this nonuniform heating of plasma, the laser beam gets self-focused and produces strong density gradients in the transverse direction. The generated density gradients excite an electron plasma wave at pump frequency that interacts with the pump beam to produce its second harmonics. The formulation is based on amore » numerical solution of the nonlinear Schrodinger wave equation in WKB approximation followed by moment theory approach. A second order nonlinear differential equation governing the propagation dynamics of the laser beam with distance of propagation has been obtained and is solved numerically by Runge Kutta fourth order technique. The effect of nonlinear absorption on self-focusing of the laser beam and conversion efficiency of its second harmonics has been investigated.« less
Karvonen, Lasse; Säynätjoki, Antti; Mehravar, Soroush; Rodriguez, Raul D.; Hartmann, Susanne; Zahn, Dietrich R. T.; Honkanen, Seppo; Norwood, Robert A.; Peyghambarian, N.; Kieu, Khanh; Lipsanen, Harri; Riikonen, Juha
2015-01-01
Gallium selenide (GaSe) is a layered semiconductor and a well-known nonlinear optical crystal. The discovery of graphene has created a new vast research field focusing on two-dimensional materials. We report on the nonlinear optical properties of few-layer GaSe using multiphoton microscopy. Both second- and third-harmonic generation from few-layer GaSe flakes were observed. Unexpectedly, even the peak at the wavelength of 390 nm, corresponding to the fourth-harmonic generation or the sum frequency generation from third-harmonic generation and pump light, was detected during the spectral measurements in thin GaSe flakes. PMID:25989113
Strategic placement of stereogenic centers in molecular materials for second harmonic generation.
Gangopadhyay, P; Rao, D Narayana; Agranat, Israel; Radhakrishnan, T P
2002-01-01
Basic aspects of the nonlinear optical phenomenon of second harmonic generation (SHG) and the assembly of molecular materials for SHG are reviewed. Extensive use of chirality as a convenient tool to generate noncentrosymmetricity in molecular lattices, an essential requirement for the development of quadratic nonlinear optical materials, is noted. An overview of our investigations of chiral diaminodicyanoquinodimethanes is presented, which provides insight into a systematic approach to the effective deployment of chirality to achieve optimal molecular orientations for enhanced solid state SHG. Extension of these ideas to the realization of strong SHG in materials based on helical superstructures is outlined.
NASA Astrophysics Data System (ADS)
Shneider, M. N.; Voronin, A. A.; Zheltikov, A. M.
2011-11-01
The Goldman-Albus treatment of the action-potential dynamics is combined with a phenomenological description of molecular hyperpolarizabilities into a closed-form model of the action-potential-sensitive second-harmonic response of myelinated nerve fibers with nodes of Ranvier. This response is shown to be sensitive to nerve demyelination, thus enabling an optical diagnosis of various demyelinating diseases, including multiple sclerosis. The model is applied to examine the nonlinear-optical response of a three-neuron reverberating circuit—the basic element of short-term memory.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ritboon, Atirach, E-mail: atirach.3.14@gmail.com; Department of Physics, Faculty of Science, Prince of Songkla University, Hat Yai 90112; Daengngam, Chalongrat, E-mail: chalongrat.d@psu.ac.th
2016-08-15
Biakynicki-Birula introduced a photon wave function similar to the matter wave function that satisfies the Schrödinger equation. Its second quantization form can be applied to investigate nonlinear optics at nearly full quantum level. In this paper, we applied the photon wave function formalism to analyze both linear optical processes in the well-known Mach–Zehnder interferometer and nonlinear optical processes for sum-frequency generation in dispersive and lossless medium. Results by photon wave function formalism agree with the well-established Maxwell treatments and existing experimental verifications.
Fe induced optical limiting properties of Zn1-xFexS nanospheres
NASA Astrophysics Data System (ADS)
Vineeshkumar, T. V.; Raj, D. Rithesh; Prasanth, S.; Unnikrishnan, N. V.; Mahadevan Pillai, V. P.; Sudarasanakumar, C.
2018-02-01
Zn1-xFexS (x = 0.00, 0.01, 0.03, 0.05) nanospheres were synthesized by polyethylene glycol assisted hydrothermal method. XRD studies revealed that samples of all concentrations exhibited cubic structure with crystallite grain size 7-9 nm. TEM and SEM show the formation of nanospheres by dense aggregation of smaller particles. Increasing Zn/Fe ratio tune the band gap from 3.4 to 3.2 eV and also quenches the green luminescence. FTIR spectra reveal the presence of capping agent, intensity variation and shifting of LO and TO phonon modes confirm the presence of Fe ions. Nonlinear optical properties were measured using open and closed aperture z-scan techniques, employing frequency doubled 532 nm pumping sources which indicated reverse saturable absorption (RSA) process. The nonlinear optical coefficients are obtained by two photon absorption (2PA). Composition dependent nonlinear optical coefficients ;β;, nonlinear refractive index, third order susceptibility and optical limiting threshold were estimated. The sample shows good nonlinear absorption and enhancement of optical limiting behavior with increasing Fe volume fraction. Contribution of RSA on optical nonlinearity of Zn1-xFexS nanospheres are also investigated using three different input energies. Zn1-xFexS with comparatively small limiting threshold value is a promising candidate for optical power limiting applications.
Theoretical investigation of intensity-dependent optical nonlinearity in graphene-aided D-microfiber
NASA Astrophysics Data System (ADS)
Shah, Manoj Kumar; Lu, Rongguo; Zhang, Yali; Ye, Shengwei; Zhang, Shangjian; Liu, Yong
2018-01-01
We theoretically investigate the intensity-dependent optical nonlinearity in graphene-aided D-microfiber, by tuning the chemical potential of graphene and varying radial distance and radii of the D-microfiber. Utilizing an interplay between graphene and the enhanced evanescent field of a guided mode in the waveguide of interest, the net utility of nonlinear coefficient is harnessed up to a very high value of 106 W-1m-1. Importantly, which is ∼ two orders of magnitude larger than in PMMA-graphene-PMMA waveguide. The highly dispersive nature of the waveguide, D ∼ 103 ps/nm-km, and large nonlinear figure-of-merit, FOMNL ∼ 1.29, have raised the possibilities of utilizing slow light structures to operate devices at few watts power level with microscale length. These studies have opened one window towards the next-generation all fiber-optic graphene nonlinear optical devices.
Brant, Jacilynn A; Clark, Daniel J; Kim, Yong Soo; Jang, Joon I; Weiland, Ashley; Aitken, Jennifer A
2015-03-16
The new Li2MnGeS4 and Li2CoSnS4 compounds result from employing a rational and simple design strategy that guides the discovery of diamond-like semiconductors (DLSs) with wide regions of optical transparency, high laser damage threshold, and efficient second-order optical nonlinearity. Single-crystal X-ray diffraction was used to solve and refine the crystal structures of Li2MnGeS4 and Li2CoSnS4, which crystallize in the noncentrosymmetric space groups Pna21 and Pn, respectively. Synchrotron X-ray powder diffraction (SXRPD) was used to assess the phase purity, and diffuse reflectance UV-vis-NIR spectroscopy was used to estimate the bandgaps of Li2MnGeS4 (Eg = 3.069(3) eV) and Li2CoSnS4 (Eg = 2.421(3) eV). In comparison with Li2FeGeS4, Li2FeSnS4, and Li2CoSnS4 DLSs, Li2MnGeS4 exhibits the widest region of optical transparency (0.60-25 μm) and phase matchability (≥1.6 μm). All four of the DLSs exhibit second-harmonic generation and are compared with the benchmark NLO material, AgGaSe2. Most remarkably, Li2MnGeS4 does not undergo two- or three-photon absorption upon exposure to a fundamental Nd:YAG beam (λ = 1.064 μm) and exhibits a laser damage threshold > 16 GW/cm(2).
NASA Astrophysics Data System (ADS)
Park, Kyoung-Duck; Raschke, Markus B.
2018-05-01
Controlling the propagation and polarization vectors in linear and nonlinear optical spectroscopy enables to probe the anisotropy of optical responses providing structural symmetry selective contrast in optical imaging. Here we present a novel tilted antenna-tip approach to control the optical vector-field by breaking the axial symmetry of the nano-probe in tip-enhanced near-field microscopy. This gives rise to a localized plasmonic antenna effect with significantly enhanced optical field vectors with control of both \\textit{in-plane} and \\textit{out-of-plane} components. We use the resulting vector-field specificity in the symmetry selective nonlinear optical response of second-harmonic generation (SHG) for a generalized approach to optical nano-crystallography and -imaging. In tip-enhanced SHG imaging of monolayer MoS$_2$ films and single-crystalline ferroelectric YMnO$_3$, we reveal nano-crystallographic details of domain boundaries and domain topology with enhanced sensitivity and nanoscale spatial resolution. The approach is applicable to any anisotropic linear and nonlinear optical response, and provides for optical nano-crystallographic imaging of molecular or quantum materials.
Hilbert complexes of nonlinear elasticity
NASA Astrophysics Data System (ADS)
Angoshtari, Arzhang; Yavari, Arash
2016-12-01
We introduce some Hilbert complexes involving second-order tensors on flat compact manifolds with boundary that describe the kinematics and the kinetics of motion in nonlinear elasticity. We then use the general framework of Hilbert complexes to write Hodge-type and Helmholtz-type orthogonal decompositions for second-order tensors. As some applications of these decompositions in nonlinear elasticity, we study the strain compatibility equations of linear and nonlinear elasticity in the presence of Dirichlet boundary conditions and the existence of stress functions on non-contractible bodies. As an application of these Hilbert complexes in computational mechanics, we briefly discuss the derivation of a new class of mixed finite element methods for nonlinear elasticity.
N-dark-dark solitons for the coupled higher-order nonlinear Schrödinger equations in optical fibers
NASA Astrophysics Data System (ADS)
Zhang, Hai-Qiang; Wang, Yue
2017-11-01
In this paper, we construct the binary Darboux transformation on the coupled higher-order dispersive nonlinear Schrödinger equations in optical fibers. We present the N-fold iterative transformation in terms of the determinants. By the limit technique, we derive the N-dark-dark soliton solutions from the non-vanishing background. Based on the obtained solutions, we find that the collision mechanisms of dark vector solitons exhibit the standard elastic collisions in both two components.
Third-order optical nonlinearity studies of bilayer Au/Ag metallic films
NASA Astrophysics Data System (ADS)
Mezher, M. H.; Chong, W. Y.; Zakaria, R.
2016-05-01
This paper presents nonlinear optical studies of bilayer metallic films of gold (Au) and silver (Ag) on glass substrate prepared using electron beam evaporation. The preparation of Au and Ag nanoparticles (NPs) on the substrate involved the use of electron beam deposition, then thermal annealing at 600 °C and 270 °C, respectively, to produce a randomly distributed layer of Au and a layer of Ag NPs. Observation of field-effect scanning electron microscope images indicated the size of the NPs. Details of the optical properties related to peak absorption of surface plasmon resonance of the nanoparticle were revealed by use of UV-Vis spectroscopy. The Z-scan technique was used to measure the nonlinear absorption and nonlinear refraction of the fabricated NP layers. The third-order nonlinear refractive index coefficients for Au and Ag are (-9.34 and -1.61) × 10-11 cm2 W-1 given lower n 2, in comparison with bilayer (Au and Ag) NPs at -1.24 × 10-10 cm2 W-1. The results show bilayer NPs have higher refractive index coefficients thus enhance the nonlinearity effects.
Strong second harmonic generation in two-dimensional ferroelectric IV-monochalcogenides
NASA Astrophysics Data System (ADS)
Panday, Suman Raj; Fregoso, Benjamin M.
2017-11-01
The two-dimensional ferroelectrics GeS, GeSe, SnS and SnSe are expected to have large spontaneous in-plane electric polarization and enhanced shift-current response. Using density functional methods, we show that these materials also exhibit the largest effective second harmonic generation reported so far. It can reach magnitudes up to 10~nm~V-1 which is about an order of magnitude larger than that of prototypical GaAs. To rationalize this result we model the optical response with a simple one-dimensional two-band model along the spontaneous polarization direction. Within this model the second-harmonic generation tensor is proportional to the shift-current response tensor. The large shift current and second harmonic responses of GeS, GeSe, SnS and SnSe make them promising non-linear materials for optoelectronic applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tian, Si-Cong, E-mail: tiansicong@ciomp.ac.cn; Tong, Cun-Zhu, E-mail: tongcz@ciomp.ac.cn; Zhang, Jin-Long
The optical bistability of a triangular quantum dot molecules embedded inside a unidirectional ring cavity is studied. The type, the threshold and the hysteresis loop of the optical bistability curves can be modified by the tunneling parameters, as well as the probe laser field. The linear and nonlinear susceptibilities of the medium are also studied to interpret the corresponding results. The physical interpretation is that the tunneling can induce the quantum interference, which modifies the linear and the nonlinear response of the medium. As a consequence, the characteristics of the optical bistability are changed. The scheme proposed here can bemore » utilized for optimizing and controlling the optical switching process.« less
Development of a nonlinear fiber-optic spectrometer for human lung tissue exploration
Peyrot, Donald A.; Lefort, Claire; Steffenhagen, Marie; Mansuryan, Tigran; Ducourthial, Guillaume; Abi-Haidar, Darine; Sandeau, Nicolas; Vever-Bizet, Christine; Kruglik, Sergei G.; Thiberville, Luc; Louradour, Frédéric; Bourg-Heckly, Geneviève
2012-01-01
Several major lung pathologies are characterized by early modifications of the extracellular matrix (ECM) fibrillar collagen and elastin network. We report here the development of a nonlinear fiber-optic spectrometer, compatible with an endoscopic use, primarily intended for the recording of second-harmonic generation (SHG) signal of collagen and two-photon excited fluorescence (2PEF) of both collagen and elastin. Fiber dispersion is accurately compensated by the use of a specific grism-pair stretcher, allowing laser pulse temporal width around 70 fs and excitation wavelength tunability from 790 to 900 nm. This spectrometer was used to investigate the excitation wavelength dependence (from 800 to 870 nm) of SHG and 2PEF spectra originating from ex vivo human lung tissue samples. The results were compared with spectral responses of collagen gel and elastin powder reference samples and also with data obtained using standard nonlinear microspectroscopy. The excitation-wavelength-tunable nonlinear fiber-optic spectrometer presented in this study allows performing nonlinear spectroscopy of human lung tissue ECM through the elastin 2PEF and the collagen SHG signals. This work opens the way to tunable excitation nonlinear endomicroscopy based on both distal scanning of a single optical fiber and proximal scanning of a fiber-optic bundle. PMID:22567579
Optical super-resolution effect induced by nonlinear characteristics of graphene oxide films
NASA Astrophysics Data System (ADS)
Zhao, Yong-chuang; Nie, Zhong-quan; Zhai, Ai-ping; Tian, Yan-ting; Liu, Chao; Shi, Chang-kun; Jia, Bao-hua
2018-01-01
In this work, we focus on the optical super-resolution effect induced by strong nonlinear saturation absorption (NSA) of graphene oxide (GO) membranes. The third-order optical nonlinearities are characterized by the canonical Z-scan technique under femtosecond laser (wavelength: 800 nm, pulse width: 100 fs) excitation. Through controlling the applied femtosecond laser energy, NSA of the GO films can be tuned continuously. The GO film is placed at the focal plane as a unique amplitude filter to improve the resolution of the focused field. A multi-layer system model is proposed to present the generation of a deep sub-wavelength spot associated with the nonlinearity of GO films. Moreover, the parameter conditions to achieve the best resolution (˜λ/6) are determined entirely. The demonstrated results here are useful for high density optical recoding and storage, nanolithography, and super-resolution optical imaging.
Scalora, Michael; Mattiucci, Nadia; D'Aguanno, Giuseppe; Larciprete, MariaCristina; Bloemer, Mark J
2006-01-01
We numerically study the nonlinear optical properties of metal-dielectric photonic band gap structures in the pulsed regime. We exploit the high chi3 of copper metal to induce nonlinear effects such as broadband optical limiting, self-phase modulation, and unusual spectral narrowing of high intensity pulses. We show that in a single pass through a typical, chirped multilayer stack nonlinear transmittance and peak powers can be reduced by nearly two orders of magnitude compared to low light intensity levels across the entire visible range. Chirping dielectric layer thickness dramatically improves the linear transmittance through the stack and achieves large fields inside the copper to access the large nonlinearity. At the same time, the linear properties of the stack block most of the remaining electromagnetic spectrum.
Multi-scale Eulerian model within the new National Environmental Modeling System
NASA Astrophysics Data System (ADS)
Janjic, Zavisa; Janjic, Tijana; Vasic, Ratko
2010-05-01
The unified Non-hydrostatic Multi-scale Model on the Arakawa B grid (NMMB) is being developed at NCEP within the National Environmental Modeling System (NEMS). The finite-volume horizontal differencing employed in the model preserves important properties of differential operators and conserves a variety of basic and derived dynamical and quadratic quantities. Among these, conservation of energy and enstrophy improves the accuracy of nonlinear dynamics of the model. Within further model development, advection schemes of fourth order of formal accuracy have been developed. It is argued that higher order advection schemes should not be used in the thermodynamic equation in order to preserve consistency with the second order scheme used for computation of the pressure gradient force. Thus, the fourth order scheme is applied only to momentum advection. Three sophisticated second order schemes were considered for upgrade. Two of them, proposed in Janjic(1984), conserve energy and enstrophy, but with enstrophy calculated differently. One of them conserves enstrophy as computed by the most accurate second order Laplacian operating on stream function. The other scheme conserves enstrophy as computed from the B grid velocity. The third scheme (Arakawa 1972) is arithmetic mean of the former two. It does not conserve enstrophy strictly, but it conserves other quadratic quantities that control the nonlinear energy cascade. Linearization of all three schemes leads to the same second order linear advection scheme. The second order term of the truncation error of the linear advection scheme has a special form so that it can be eliminated by simply preconditioning the advected quantity. Tests with linear advection of a cone confirm the advantage of the fourth order scheme. However, if a localized, large amplitude and high wave-number pattern is present in initial conditions, the clear advantage of the fourth order scheme disappears. In real data runs, problems with noisy data may appear due to mountains. Thus, accuracy and formal accuracy may not be synonymous. The nonlinear fourth order schemes are quadratic conservative and reduce to the Arakawa Jacobian in case of non-divergent flow. In case of general flow the conservation properties of the new momentum advection schemes impose stricter constraint on the nonlinear cascade than the original second order schemes. However, for non-divergent flow, the conservation properties of the fourth order schemes cannot be proven in the same way as those of the original second order schemes. Therefore, nonlinear tests were carried out in order to check how well the fourth order schemes control the nonlinear energy cascade. In the tests nonlinear shallow water equations are solved in a rotating rectangular domain (Janjic, 1984). The domain is covered with only 17 x 17 grid points. A diagnostic quantity is used to monitor qualitative changes in the spectrum over 116 days of simulated time. All schemes maintained meaningful solutions throughout the test. Among the second order schemes, the best result was obtained with the scheme that conserved enstrophy as computed by the second order Laplacian of the stream function. It was closely followed by the Arakawa (1972) scheme, while the remaining scheme was distant third. The fourth order schemes ranked in the same order, and were competitive throughout the experiments with their second order counterparts in preventing accumulation of energy at small scales. Finally, the impact was examined of the fourth order momentum advection on global medium range forecasts. The 500 mb anomaly correlation coefficient is used as a measure of success of the forecasts. Arakawa, A., 1972: Design of the UCLA general circulation model. Tech. Report No. 7, Department of Meteorology, University of California, Los Angeles, 116 pp. Janjic, Z. I., 1984: Non-linear advection schemes and energy cascade on semi-staggered grids. Monthly Weather Review, 112, 1234-1245.
Optical Asymmetry and Nonlinear Light Scattering from Colloidal Gold Nanorods
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lien, Miao-Bin; Kim, Ji-Young; Han, Myung-Geun
A systematic study is presented of the intensity-dependent nonlinear light scattering spectra of gold nanorods under resonant excitation of the longitudinal surface plasmon resonance (SPR). The spectra exhibit features due to coherent second and third harmonic generation as well as a broadband feature that has been previously attributed to multiphoton photoluminescence arising primarily from interband optical transitions in the gold. A detailed study of the spectral dependence of the scaling of the scattered light with excitation intensity shows unexpected scaling behavior of the coherent signals, which is quantitatively accounted for by optically induced damping of the SPR mode through amore » Fermi liquid model of the electronic scattering. The broadband feature is shown to arise not from luminescence, but from scattering of the secondorder longitudinal SPR mode with the electron gas, where efficient excitation of the 2nd order mode arises from an optical asymmetry of the nanorod. The electronic-temperature-dependent plasmon damping and the Fermi-Dirac distribution together determine the intensity dependence of the broadband emission, and the structure-dependent absorption spectrum determines the spectral shape through the fluctuation-dissipation theorem. Hence a complete self-consistent picture of both coherent and incoherent light scattering is obtained with a single set of physical parameters.« less
Optical Asymmetry and Nonlinear Light Scattering from Colloidal Gold Nanorods
Lien, Miao-Bin; Kim, Ji-Young; Han, Myung-Geun; ...
2017-05-16
A systematic study is presented of the intensity-dependent nonlinear light scattering spectra of gold nanorods under resonant excitation of the longitudinal surface plasmon resonance (SPR). The spectra exhibit features due to coherent second and third harmonic generation as well as a broadband feature that has been previously attributed to multiphoton photoluminescence arising primarily from interband optical transitions in the gold. A detailed study of the spectral dependence of the scaling of the scattered light with excitation intensity shows unexpected scaling behavior of the coherent signals, which is quantitatively accounted for by optically induced damping of the SPR mode through amore » Fermi liquid model of the electronic scattering. The broadband feature is shown to arise not from luminescence, but from scattering of the secondorder longitudinal SPR mode with the electron gas, where efficient excitation of the 2nd order mode arises from an optical asymmetry of the nanorod. The electronic-temperature-dependent plasmon damping and the Fermi-Dirac distribution together determine the intensity dependence of the broadband emission, and the structure-dependent absorption spectrum determines the spectral shape through the fluctuation-dissipation theorem. Hence a complete self-consistent picture of both coherent and incoherent light scattering is obtained with a single set of physical parameters.« less
NASA Technical Reports Server (NTRS)
Laurenson, R. M.; Baumgarten, J. R.
1975-01-01
An approximation technique has been developed for determining the transient response of a nonlinear dynamic system. The nonlinearities in the system which has been considered appear in the system's dissipation function. This function was expressed as a second order polynomial in the system's velocity. The developed approximation is an extension of the classic Kryloff-Bogoliuboff technique. Two examples of the developed approximation are presented for comparative purposes with other approximation methods.
In vivo multimodal nonlinear optical imaging of mucosal tissue
NASA Astrophysics Data System (ADS)
Sun, Ju; Shilagard, Tuya; Bell, Brent; Motamedi, Massoud; Vargas, Gracie
2004-05-01
We present a multimodal nonlinear imaging approach to elucidate microstructures and spectroscopic features of oral mucosa and submucosa in vivo. The hamster buccal pouch was imaged using 3-D high resolution multiphoton and second harmonic generation microscopy. The multimodal imaging approach enables colocalization and differentiation of prominent known spectroscopic and structural features such as keratin, epithelial cells, and submucosal collagen at various depths in tissue. Visualization of cellular morphology and epithelial thickness are in excellent agreement with histological observations. These results suggest that multimodal nonlinear optical microscopy can be an effective tool for studying the physiology and pathology of mucosal tissue.
Mode matching in multiresonant plasmonic nanoantennas for enhanced second harmonic generation
NASA Astrophysics Data System (ADS)
Celebrano, Michele; Wu, Xiaofei; Baselli, Milena; Großmann, Swen; Biagioni, Paolo; Locatelli, Andrea; de Angelis, Costantino; Cerullo, Giulio; Osellame, Roberto; Hecht, Bert; Duò, Lamberto; Ciccacci, Franco; Finazzi, Marco
2015-05-01
Boosting nonlinear frequency conversion in extremely confined volumes remains a challenge in nano-optics research, but can enable applications in nanomedicine, photocatalysis and background-free biosensing. To obtain brighter nonlinear nanoscale sources, approaches that enhance the electromagnetic field intensity and counter the lack of phase matching in nanoplasmonic systems are often employed. However, the high degree of symmetry in the crystalline structure of plasmonic materials (metals in particular) and in nanoantenna designs strongly quenches second harmonic generation. Here, we describe doubly-resonant single-crystalline gold nanostructures with no axial symmetry displaying spatial mode overlap at both the excitation and second harmonic wavelengths. The combination of these features allows the attainment of a nonlinear coefficient for second harmonic generation of ˜5 × 10-10 W-1, enabling a second harmonic photon yield higher than 3 × 106 photons per second. Theoretical estimations point toward the use of our nonlinear plasmonic nanoantennas as efficient platforms for label-free molecular sensing.
Multiphoton correlations in parametric down-conversion and their measurement in the pulsed regime
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ivanova, O A; Iskhakov, T Sh; Penin, A N
2006-10-31
We consider normalised intensity correlation functions (CFs) of different orders for light emitted via parametric down-conversion (PDC) and their dependence on the number of photons per mode. The main problem in measuring such correlation functions is their extremely small width, which considerably reduces their contrast. It is shown that if the radiation under study is modulated by a periodic sequence of pulses that are short compared to the CF width, no decrease in the contrast occurs. A procedure is proposed for measuring normalised CFs of various orders in the pulsed regime. For nanosecond-pulsed PDC radiation, normalised second-order CF is measuredmore » experimentally as a function of the mean photon number. (nonlinear optical phenomena)« less
Transient response of nonlinear magneto-optic rotation in a paraffin-coated Rb vapor cell
DOE Office of Scientific and Technical Information (OSTI.GOV)
Momeen, M. Ummal; Rangarajan, G.; Natarajan, Vasant
2010-01-15
We study resonant nonlinear magneto-optic rotation (NMOR) in a paraffin-coated Rb vapor cell as the magnetic field is swept. At low sweep rates, the nonlinear rotation appears as a narrow resonance signal with a linewidth of about '300 muG' (2pix420 Hz). At high sweep rates, the signal shows transient response with an oscillatory decay. The decay time constant is of order 100 ms. The behavior is different for transitions starting from the lower or the upper hyperfine level of the ground state because of optical pumping effects.
Nonlinear femtosecond near infrared laser structuring in oxide glasses
NASA Astrophysics Data System (ADS)
Royon, Arnaud
Three-dimensional femtosecond laser structuring has a growing interest because of its ease of implementation and the numerous possible applications in the domain of photonic components. Structures such as waveguides, diffraction gratings, optical memories or photonic crystals can be fabricated thanks to this technique. Its use with oxide glasses is promising because of several advantages; they are resistant to flux and ageing, their chemical composition can easily be changed to fit the well-defined requirements of an application. They can already be found in Raman amplifiers, optical fibers, fiber lasers, and other devices. This thesis is based on two axes. The first axis consists in characterizing the linear and nonlinear optical properties of bulk vitreous materials in order to optimize their composition with a particular application in view. Within this context, the nonlinear optical properties, their physical origins (electronic and nuclear) as well as their characteristic response times (from a few femtoseconds to a few hundreds of picoseconds) are described within the Born-Oppenheimer approximation. Fused silica and several sodium-borophosphate glasses containing different concentrations in niobium oxide have been studied. Results show that the nonlinear optical properties of fused silica are mainly from electronic origin, whereas in the sodium-borophosphate glasses, the contribution from nuclear origin becomes predominant when the concentration of niobium oxide exceeds 30%. The second axis is based on the structuring of materials. Three commercially available fused silica samples presenting different fabrication conditions (therefore distinct impurity levels) and irradiated with a near infrared femtosecond laser have been studied. The laser induced defects have been identified by means of several spectroscopic techniques. They show the formation of color centers as well as a densification inside the irradiated area. Their linear refractive index and nonlinear third-order susceptibility properties have been measured. Moreover, the structuring of fused silica at the subwavelength scale into "nanogratings" is observed and the form of birefringence induced by these structures is discussed. In addition to the fused silica samples, several oxide glasses presenting very distinct chemical compositions have been studied. A sodium-borophosphate glass containing niobium oxide exhibits micro-cracks and nano-crystallites following irradiation. A silicate glass with or without a silver component reveals fluorescent rings or "nanograting" structures. A zinc phosphate glass containing silver also presents fluorescent ring structures, with a size of the order of 80 nm, well below the diffraction limit. Pump-probe microscope techniques have been performed on this glass to investigate the laser-glass interaction. The absorption mechanism is determined to be four-photon absorption. The generated free electron density is ˜ 1017 cm-3, which suggests the conclusion that an electron gas rather than a plasma is formed during the laser irradiation.
Effects of graphene quantum dots on linear and nonlinear optical behavior of malignant ovarian cells
NASA Astrophysics Data System (ADS)
Mohajer, Salman; Ara, Mohammad Hossein Majles; Serahatjoo, Leila
2016-07-01
We investigate linear and nonlinear optical properties of standard human ovarian cancer cells (cell line: A2780cp) in vitro. Cells were treated by graphene quantum dots (GQDs) with two special concentrations. Nontoxicity of GQDs was examined in standard biological viability tests. Cancerous cells were fixed on a glass slide; then, interaction of light with biofilms was studied in linear and nonlinear regimes. Absorption spectra of untreated biofilms and biofilms with two different concentrations of GQDs was studied by UV-visible spectrophotometer. Optical behavior of biofilms in a linear regime of intensity (with low-intensity laser exposure) was reported using a simple optical setup. After that, we compared the attenuation of light in biofilm of cancerous cells with and without GQDs. Nonlinear behavior of these biofilms was investigated by a Z-scan setup using a continued wave He-Ne laser. Results showed that GQDs decreased the extinction coefficient and changed the sign and exact value of the nonlinear refractive index of malignant ovarian cells noticeably. The nonlinear refractive index of studied cells with no GQDs treatment was in the order of 10-8 (cm2/w) with a positive sign. This quantity changed to the same order of magnitude with a negative sign after GQDs treatment. Thus, GQDs can be used for cancer diagnosis under laser irradiation.
Cousin, Seth L; Bueno, Juan M; Forget, Nicolas; Austin, Dane R; Biegert, J
2012-08-01
We demonstrate a simplified arrangement for spatiotemporal ultrashort pulse characterization called Hartmann-Shack assisted, multidimensional, shaper-based technique for electric-field reconstruction. It employs an acousto-optic pulse shaper in combination with a second-order nonlinear crystal and a Hartmann-Shack wavefront sensor. The shaper is used as a tunable bandpass filter, and the wavefronts and intensities of quasimonochromatic spectral slices of the pulse are obtained using the Hartmann-Shack wavefront sensor. The wavefronts and intensities of the spectral slices are related to one another using shaper-assisted frequency-resolved optical gating measurements, performed at particular points in the beam. This enables a three-dimensional reconstruction of the amplitude and phase of the pulse. We present some example pulse measurements and discuss the operating parameters of the device.
Non-linear power spectra in the synchronous gauge
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hwang, Jai-chan; Noh, Hyerim; Jeong, Donghui
2015-05-01
We study the non-linear corrections to the matter and velocity power spectra in the synchronous gauge (SG). For the leading correction to the non-linear power spectra, we consider the perturbations up to third order in a zero-pressure fluid in a flat cosmological background. Although the equations in the SG happen to coincide with those in the comoving gauge (CG) to linear order, they differ from second order. In particular, the second order hydrodynamic equations in the SG are apparently in the Lagrangian form, whereas those in the CG are in the Eulerian form. The non-linear power spectra naively presented inmore » the original SG show rather pathological behavior quite different from the result of the Newtonian theory even on sub-horizon scales. We show that the pathology in the nonlinear power spectra is due to the absence of the convective terms in, thus the Lagrangian nature of, the SG. We show that there are many different ways of introducing the corrective convective terms in the SG equations. However, the convective terms (Eulerian modification) can be introduced only through gauge transformations to other gauges which should be the same as the CG to the second order. In our previous works we have shown that the density and velocity perturbation equations in the CG exactly coincide with the Newtonian equations to the second order, and the pure general relativistic correction terms starting to appear from the third order are substantially suppressed compared with the relativistic/Newtonian terms in the power spectra. As a result, we conclude that the SG per se is an inappropriate coordinate choice in handling the non-linear matter and velocity power spectra of the large-scale structure where observations meet with theories.« less
NASA Astrophysics Data System (ADS)
Yu, Chuanxi; Xue, Yan Ling; Liu, Ying
2014-07-01
Based on the dispersive Drude model in metamaterials (MMs), coupled nonlinear Schodinger equations are derived for two co-propagating optical waves with higher-order dispersions and cubic-quintic nonlinearities. And modulation instabilities induced by the cross -phase modulation (XMI) are studied. The impact of 3rd-, 4th-order of dispersion and quintic nonlinearity on the gain spectra of XMI is analyzed. It is shown that the 3rd-order dispersion has no effect on XMI and its gain spectra. With the increment of 4th-order dispersion, the gain spectra appear in higher frequency region (2nd spectrum region) and gain peaks become smaller.
Yu, Fajun
2017-02-01
Starting from a discrete spectral problem, we derive a hierarchy of nonlinear discrete equations which include the Ablowitz-Ladik (AL) equation. We analytically study the discrete rogue-wave (DRW) solutions of AL equation with three free parameters. The trajectories of peaks and depressions of profiles for the first- and second-order DRWs are produced by means of analytical and numerical methods. In particular, we study the solutions with dispersion in parity-time ( PT) symmetric potential for Ablowitz-Musslimani equation. And we consider the non-autonomous DRW solutions, parameters controlling and their interactions with variable coefficients, and predict the long-living rogue wave solutions. Our results might provide useful information for potential applications of synthetic PT symmetric systems in nonlinear optics and condensed matter physics.
Suppression of Even-Order Photodiode Nonlinearities in Multioctave Photonic Links
NASA Astrophysics Data System (ADS)
Hastings, Alexander S.; Urick, Vincent J.; Sunderman, Christopher; Diehl, John F.; McKinney, Jason D.; Tulchinsky, David A.; Devgan, Preetpaul S.; Williams, Keith J.
2008-08-01
A balanced photonic receiver is demonstrated to suppress photodiode-generated even-order nonlinearities in a photonic link. This result is especially important for multioctave analog applications. Experimental results are presented for a high-frequency (2-30 MHz) link exhibiting 33-dB suppression of the second harmonic, resulting in an output intercept point of 99 dBm due to second-order intermodulation distortion at 26-mA average photocurrent.
Wang, Chao; Yuan, Yizhong
2018-06-20
The external molecular environment like the aggregation of molecules can significantly change the intrinsic third-order nonlinear optical (NLO) property of π-conjugated chromophores. A combined experimental and theoretical study was performed to understand the influence of the aggregation of cyanines on the third-order NLO property in spin-coated thin films. Our result indicates that the H and J type cyanine dimers prefer the polyene-like structures and the P type dimer displays a comparatively smaller bond length alternation (BLA). The polarizable continuum model (PCM)-tuned, range-separated (RSE) density functional approach was used to describe the screening effect of the cyanine aggregation. In the thin film, the P aggregate has very small positive isotropic averaged second hyperpolarizability γ, while the J aggregate has the largest positive γ due to the most polarized face-to-tail cyanine-cyanine interaction. Hence, the γ of the isolated cyanines (negative γ) may get cancelled against that of the cyanine aggregates (positive γ) in the thin film. The forward degenerate four-wave mixing technique also confirms a decrease in the magnitude of γ with an increase in the aggregation degree of cyanines. Since the large positive γ of the cyanine also implies strong two-photon absorption (TPA), the J aggregation of cyanines can be used as a potential fabrication method for applications involving TPA.
Hou, Huazhou; Zhang, Qingling
2016-11-01
In this paper we investigate the finite-time synchronization for second-order multi-agent system via pinning exponent sliding mode control. Firstly, for the nonlinear multi-agent system, differential mean value theorem is employed to transfer the nonlinear system into linear system, then, by pinning only one node in the system with novel exponent sliding mode control, we can achieve synchronization in finite time. Secondly, considering the 3-DOF helicopter system with nonlinear dynamics and disturbances, the novel exponent sliding mode control protocol is applied to only one node to achieve the synchronization. Finally, the simulation results show the effectiveness and the advantages of the proposed method. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Edison, D. Joseph; Nirmala, W.; Kumar, K. Deva Arun; Valanarasu, S.; Ganesh, V.; Shkir, Mohd.; AlFaify, S.
2017-10-01
Aluminium doped (i.e. 3 at%) zinc oxide (AZO) thin films were prepared by simple successive ionic layer adsorption and reaction (SILAR) method with different dipping cycles. The structural and surface morphology of AZO thin films were studied by using X-ray diffraction (XRD) and scanning electron microscopy (SEM). The optical parameters such as, transmittance, band gap, refractive index, extinction coefficient, dielectric constant and nonlinear optical properties of AZO films were investigated. XRD pattern revealed the formation of hexagonal phase ZnO and the intensity of the film was found to increase with increasing dipping cycle. The crystallite size was found to be in the range of 29-37 nm. Scanning Electron Microscope (SEM) images show the presence of small sized grains, revealing that the smoothest surface was obtained at all the films. The EDAX spectrum of AZO conforms the presence of Zn, O and Al. The optical transmittance in the visible region is high 87% and the band gap value is 3.23 eV. The optical transmittance is decreased with respect to dipping cycles. The room temperature PL studies revealed that the AZO films prepared at (30 cycles) has good film quality with lesser defect density. The third order nonlinear optical parameters were also studied using Z-scan technique to know the applications of deposited films in nonlinear devices. The third order nonlinear susceptibility value is found to be 1.69 × 10-7, 3.34 × 10-8, 1.33 × 10-7and 2.52 × 10-7 for AZO films deposited after 15, 20, 25 and 30 dipping cycles.
Enhancement Of Sensing Capabilities And Functionalization Of Optical Microresonators
NASA Astrophysics Data System (ADS)
Cocking, Alexander
Optical microresonators have been demonstrated to provide a large enhancement in electric field by containing an resonant mode in a very small volume. This resonant enhancement is proportional to the quality of the resonator, which for microspheres has been demonstrated to be on the order of 1010. These devices can be leveraged to greatly improve light-matter interaction and for this reason the theoretical background of optical microresonators is discussed in the second chapter. This includes the use of COMSOL Multiphysics to model the mode structure and scattering from different resonator geometries. The second chapter also contains details on the fabrication and experimental design of optical microresonators. This includes the fabrication of fiber tapers for evanescent wave coupling into the devices. Once the theoretical framework for utilizing resonators as tools for enhancement has been established in the second chapter, we progress to the discussion of the microbubble geometry and its potential for use as an on-chip sensor system. Topics covered include design, fabrication, and theoretical analysis of the mode structure in this geometry. Modal interaction with a liquid filled microbubble is demonstrated. Additionally, the use of microbubble resonators as highly accurate temperature sensors is demonstrated experimentally and theoretically. In chapter 4 we investigate the use of silica microspheres as sensing devices; specifically, using them for the purpose of sensing nano-particles and chemicals in incredibly minute quantities. In this section microresonators are demonstrated to provide enhancement to Raman scattering from nano-scale particles. This configuration retains the traditional sensing methods of resonators by observing mode shifting and splitting in the resonance spectrum, while adding in a label-free sensing ability to determine material composition on adhered micro and nanoparticles. The fifth chapter discusses the characterization of a new class of materials known as two dimensional materials (2D materials). Typically made from single atomic sheets of transition metal dichalcogenides, they are called two dimensional due to their incredibly small thickness. Monolayers of metal dichalcogenides offer large values for optical nonlinear susceptibility and can be used to generate highly efficient nonlinear optical phenomena. This chapter seeks to understand and describe the capabilities of these materials in a context of eventually integrating them into optical microresonators to create a new class of silica-based miniaturized nonlinear optical devices. The final chapter in this dissertation covers the proposed and in-progress work related to those topics already covered in previous chapters. This includes direct growth of transition metal dichalcogenides onto microsphere resonators to create narrow linewidth microscopic lasers. Another novel photonic device consists of a single mode optical fiber etched to expose the core onto which a monolayer of 2D material is adhered. This presents the capability to create a simple photonic device which can easily be integrated as a discrete optical component capable of producing guided photoluminescence or extremely high second harmonic generation. Finally, spectral holography is discussed as a potential tool to record the phase information of light traveling through optical microresonators, adhered particles, and directly grown 2D materials.
Mathew, Manoj; Santos, Susana I C O; Zalvidea, Dobryna; Loza-Alvarez, Pablo
2009-07-01
In this work we propose and build a multimodal optical workstation that extends a commercially available confocal microscope (Nikon Confocal C1-Si) to include nonlinear/multiphoton microscopy and optical manipulation/stimulation tools such as nanosurgery. The setup allows both subsystems (confocal and nonlinear) to work independently and simultaneously. The workstation enables, for instance, nanosurgery along with simultaneous confocal and brightfield imaging. The nonlinear microscopy capabilities are added around the commercial confocal microscope by exploiting all the flexibility offered by this microscope and without need for any mechanical or electronic modification of the confocal microscope systems. As an example, the standard differential interference contrast condenser and diascopic detector in the confocal microscope are readily used as a forward detection mount for second harmonic generation imaging. The various capabilities of this workstation, as applied directly to biology, are demonstrated using the model organism Caenorhabditis elegans.
Enhanced Second-Harmonic Generation Using Broken Symmetry III–V Semiconductor Fano Metasurfaces
Vabishchevich, Polina P.; Liu, Sheng; Sinclair, Michael B.; ...
2018-01-27
All-dielectric metasurfaces, two-dimensional arrays of subwavelength low loss dielectric inclusions, can be used not only to control the amplitude and phase of optical beams, but also to generate new wavelengths through enhanced nonlinear optical processes that are free from some of the constraints dictated by the use of bulk materials. Recently, high quality factor (Q) resonances in these metasurfaces have been revealed and utilized for applications such as sensing and lasing. The origin of these resonances stems from the interference of two nanoresonator modes with vastly different Q. Here we show that nonlinear optical processes can be further enhanced bymore » utilizing these high-Q resonances in broken symmetry all-dielectric metasurfaces. As a result, we study second harmonic generation from broken symmetry metasurfaces made from III–V semiconductors and observe nontrivial spectral shaping of second-harmonic and multifold efficiency enhancement induced by high field localization and enhancement inside the nanoresonators.« less
Study of Nonlinear Propagation of Ultrashort Laser Pulses and Its Application to Harmonic Generation
NASA Astrophysics Data System (ADS)
Weerawarne, Darshana L.
Laser filamentation, which is one of the exotic nonlinear optical phenomena, is self-guidance of high-power laser beams due to the dynamic balance between the optical Kerr effect (self-focusing) and other nonlinear effects such as plasma defocusing. It has many applications including supercontinuum generation (SCG), high-order harmonic generation (HHG), lightning guiding, stand-off sensing, and rain making. The main focus of this work is on studying odd-order harmonic generation (HG) (i.e., 3o, 5o, 7o, etc., where o is the angular frequency) in centrosymmetric media while a high-power, ultrashort harmonic-driving pulse undergoes nonlinear propagation such as laser filamentation. The investigation of highly-controversial nonlinear indices of refraction by measuring low-order HG in air is carried out. Furthermore, time-resolved (i.e., pump-probe) experiments and significant harmonic enhancements are presented and a novel HG mechanism based on higher-order nonlinearities is proposed to explain the experimental results. C/C++ numerical simulations are used to solve the nonlinear Schrodinger equation (NLSE) which supports the experimental findings. Another project which I have performed is selective sintering using lasers. Short-pulse lasers provide a fascinating tool for material processing, especially when the conventional oven-based techniques fail to process flexible materials for smart energy/electronics applications. I present experimental and theoretical studies on laser processing of nanoparticle-coated flexible materials, aiming to fabricate flexible electronic devices.
NASA Astrophysics Data System (ADS)
Ganguly, Jayanta; Saha, Surajit; Bera, Aindrila; Ghosh, Manas
2016-10-01
We examine the profiles of optical rectification (OR), second harmonic generation (SHG) and third harmonic generation (THG) of impurity doped QDs under the combined influence of hydrostatic pressure (HP) and temperature (T) in presence and absence of Gaussian white noise. Noise has been incorporated to the system additively and multiplicatively. In order to study the above nonlinear optical (NLO) properties the doped dot has been subjected to a polarized monochromatic electromagnetic field. Effect of application of noise is nicely reflected through alteration of peak shift (blue/red) and variation of peak height (increase/decrease) of above NLO properties as temperature and pressure are varied. All such changes again sensitively depends on mode of application (additive/multiplicative) of noise. The remarkable influence of interplay between noise strength and its mode of application on the said profiles has also been addressed. The findings illuminate fascinating role played by noise in tuning above NLO properties of doped QD system under the active presence of both hydrostatic pressure and temperature.
NASA Astrophysics Data System (ADS)
Dawson, Nathan J.; Andrews, James H.; Crescimanno, Michael
2013-12-01
A model for off-resonant microscopic cascading of (hyper)polarizabilities is developed using a self-consistent field approach to study mesoscopic systems of nonlinear polarizable atoms and molecules. We find enhancements in the higher-order susceptibilities resulting from geometrical and boundary orientation effects. We include an example of the dependence on excitation beam cross sectional structure and a simplified derivation of the microscopic cascading of the nonlinear-optical response in guest-host systems.
NASA Astrophysics Data System (ADS)
Furukawa, Hideaki; Makino, Takeshi; Asghari, Mohammad H.; Trinh, Paul; Jalali, Bahram; Wang, Xiaomin; Kobayashi, Tetsuya; Man, Wai S.; Tsang, Kwong Shing; Wada, Naoya
2017-02-01
Single-shot and long record length spectrum measurements of high-repetition-rate optical pulses are essential for research on nonlinear dynamics as well as for applications in sensing and communication. To achieve a continuous measurements we employ the Time Stretch Dispersive Fourier Transform. We show single-shot measurements of millions of sequential pulses at high repetition rate of 1 Giga spectra per second. Results were obtained using -100 ps/nm dispersive Fourier transform module and a 50 Gsample/s real-time digitizer of 16 GHz bandwidth. Single-shot spectroscopy of 1 GHz optical pulse train was achieved with the wavelength resolution of approximately 150 pm. This instrument is ideal for observation of complex nonlinear dynamics such as switching, mode locking and soliton dynamics in high repetition rate lasers.
Optical second harmonic generation from V-shaped chromium nanohole arrays
NASA Astrophysics Data System (ADS)
Khoa Quang, Ngo; Miyauchi, Yoshihiro; Mizutani, Goro; Charlton, Martin D.; Chen, Ruiqi; Boden, Stuart; Rutt, Harvey
2014-02-01
We observed rotational anisotropy of optical second harmonic generation (SHG) from an array of V-shaped chromium nanoholes fabricated by electron beam lithography. Phenomenological analysis indicated that the effective nonlinear susceptibility element \\chi _{313}^{(2)} had a characteristic contribution to the observed anisotropic SHG intensity patterns. Here, coordinate 1 is in the direction of the tip of V shapes in the substrate plane, and 3 indicates the direction perpendicular to the sample surface. The SHG intensity for the S-polarized output light was very weak, probably owing to the cancellation effect of the image dipoles generated at the metal-air boundary. The possible origin of the observed nonlinearity is discussed in terms of the susceptibility elements obtained.
Size dependence of second-harmonic generation at the surface of microspheres
DOE Office of Scientific and Technical Information (OSTI.GOV)
Viarbitskaya, Sviatlana; Meulen, Peter van der; Hansson, Tony
2010-05-15
The resonance-enhanced surface second-harmonic generation (SHG) from a suspension of polystyrene microspheres was investigated as a function of particle size in a range of the order of the fundamental wavelength for two different second-harmonic-enhancing dyes--malachite green and pyridine 1. The two dyes gave the same strongly modulated pattern of the forward second-harmonic scattering efficiency. Direct comparison to the nonlinear Rayleigh-Gans-Debye (NLRGD) and nonlinear Wentzel-Kramers-Brillouin (NLWKB) model predictions showed that the NLWKB model reproduces the overall trend in the size dependence but fails with respect to the strong modulations. The standard NLRGD model was found to fail altogether in the presentmore » particle size range, which was well beyond the observed upper particle size for which the NLRGD and NLWKB models give comparable results. A generalization of the NLRGD model to allow for dispersion and to use the particle refractive indices instead of those of the surrounding medium extended its applicability range by almost an order of magnitude in particle size. There is a pronounced maximal SHG efficiency for particles with a radius that is close to the fundamental wavelength inside the particle. The optically soft particle approximation is inadequate to describe the SHG in this particle size range, as refraction and reflection of the waves at the particle surface have a decisive influence. Dispersion of the media plays a negligible role for particle sizes up to about twice the optimal one for SHG.« less
Vogel, Martin; Wingert, Axel; Fink, Rainer H A; Hagl, Christian; Ganikhanov, Feruz; Pfeffer, Christian P
2015-10-01
Using an optical system made from fused silica catalogue optical components, third-order nonlinear microscopy has been enabled on conventional Ti:sapphire laser-based multiphoton microscopy setups. The optical system is designed using two lens groups with straightforward adaptation to other microscope stands when one of the lens groups is exchanged. Within the theoretical design, the optical system collects and transmits light with wavelengths between the near ultraviolet and the near infrared from an object field of at least 1 mm in diameter within a resulting numerical aperture of up to 0.56. The numerical aperture can be controlled with a variable aperture stop between the two lens groups of the condenser. We demonstrate this new detection capability in third harmonic generation imaging experiments at the harmonic wavelength of ∼300 nm and in multimodal nonlinear optical imaging experiments using third-order sum frequency generation and coherent anti-Stokes Raman scattering microscopy so that the wavelengths of the detected signals range from ∼300 nm to ∼660 nm. © 2015 The Authors Journal of Microscopy © 2015 Royal Microscopical Society.