Sample records for second-order wave equation

  1. Unsplit complex frequency shifted perfectly matched layer for second-order wave equation using auxiliary differential equations.

    PubMed

    Gao, Yingjie; Zhang, Jinhai; Yao, Zhenxing

    2015-12-01

    The complex frequency shifted perfectly matched layer (CFS-PML) can improve the absorbing performance of PML for nearly grazing incident waves. However, traditional PML and CFS-PML are based on first-order wave equations; thus, they are not suitable for second-order wave equation. In this paper, an implementation of CFS-PML for second-order wave equation is presented using auxiliary differential equations. This method is free of both convolution calculations and third-order temporal derivatives. As an unsplit CFS-PML, it can reduce the nearly grazing incidence. Numerical experiments show that it has better absorption than typical PML implementations based on second-order wave equation.

  2. A novel unsplit perfectly matched layer for the second-order acoustic wave equation.

    PubMed

    Ma, Youneng; Yu, Jinhua; Wang, Yuanyuan

    2014-08-01

    When solving acoustic field equations by using numerical approximation technique, absorbing boundary conditions (ABCs) are widely used to truncate the simulation to a finite space. The perfectly matched layer (PML) technique has exhibited excellent absorbing efficiency as an ABC for the acoustic wave equation formulated as a first-order system. However, as the PML was originally designed for the first-order equation system, it cannot be applied to the second-order equation system directly. In this article, we aim to extend the unsplit PML to the second-order equation system. We developed an efficient unsplit implementation of PML for the second-order acoustic wave equation based on an auxiliary-differential-equation (ADE) scheme. The proposed method can benefit to the use of PML in simulations based on second-order equations. Compared with the existing PMLs, it has simpler implementation and requires less extra storage. Numerical results from finite-difference time-domain models are provided to illustrate the validity of the approach. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choi, Cheong R.

    The structural changes of kinetic Alfvén solitary waves (KASWs) due to higher-order terms are investigated. While the first-order differential equation for KASWs provides the dispersion relation for kinetic Alfvén waves, the second-order differential equation describes the structural changes of the solitary waves due to higher-order nonlinearity. The reductive perturbation method is used to obtain the second-order and third-order partial differential equations; then, Kodama and Taniuti's technique [J. Phys. Soc. Jpn. 45, 298 (1978)] is applied in order to remove the secularities in the third-order differential equations and derive a linear second-order inhomogeneous differential equation. The solution to this new second-ordermore » equation indicates that, as the amplitude increases, the hump-type Korteweg-de Vries solution is concentrated more around the center position of the soliton and that dip-type structures form near the two edges of the soliton. This result has a close relationship with the interpretation of the complex KASW structures observed in space with satellites.« less

  4. High-order rogue waves of the Benjamin-Ono equation and the nonlocal nonlinear Schrödinger equation

    NASA Astrophysics Data System (ADS)

    Liu, Wei

    2017-10-01

    High-order rogue wave solutions of the Benjamin-Ono equation and the nonlocal nonlinear Schrödinger equation are derived by employing the bilinear method, which are expressed by simple polynomials. Typical dynamics of these high-order rogue waves are studied by analytical and graphical ways. For the Benjamin-Ono equation, there are two types of rogue waves, namely, bright rogue waves and dark rogue waves. In particular, the fundamental rogue wave pattern is different from the usual fundamental rogue wave patterns in other soliton equations. For the nonlocal nonlinear Schrödinger equation, the exact explicit rogue wave solutions up to the second order are presented. Typical rogue wave patterns such as Peregrine-type, triple and fundamental rogue waves are put forward. These high-order rogue wave patterns have not been shown before in the nonlocal Schrödinger equation.

  5. Extended nonlinear Schrödinger equation with higher-order odd and even terms and its rogue wave solutions.

    PubMed

    Ankiewicz, Adrian; Wang, Yan; Wabnitz, Stefan; Akhmediev, Nail

    2014-01-01

    We consider an extended nonlinear Schrödinger equation with higher-order odd (third order) and even (fourth order) terms with variable coefficients. The resulting equation has soliton solutions and approximate rogue wave solutions. We present these solutions up to second order. Moreover, specific constraints on the parameters of higher-order terms provide integrability of the resulting equation, providing a corresponding Lax pair. Particular cases of this equation are the Hirota and the Lakshmanan-Porsezian-Daniel equations. The resulting integrable equation admits exact rogue wave solutions. In particular cases, mentioned above, these solutions are reduced to the rogue wave solutions of the corresponding equations.

  6. Efficiency of perfectly matched layers for seismic wave modeling in second-order viscoelastic equations

    NASA Astrophysics Data System (ADS)

    Ping, Ping; Zhang, Yu; Xu, Yixian; Chu, Risheng

    2016-12-01

    In order to improve the perfectly matched layer (PML) efficiency in viscoelastic media, we first propose a split multi-axial PML (M-PML) and an unsplit convolutional PML (C-PML) in the second-order viscoelastic wave equations with the displacement as the only unknown. The advantage of these formulations is that it is easy and efficient to revise the existing codes of the second-order spectral element method (SEM) or finite-element method (FEM) with absorbing boundaries in a uniform equation, as well as more economical than the auxiliary differential equations PML. Three models which are easily suffered from late time instabilities are considered to validate our approaches. Through comparison the M-PML with C-PML efficiency of absorption and stability for long time simulation, it can be concluded that: (1) for an isotropic viscoelastic medium with high Poisson's ratio, the C-PML will be a sufficient choice for long time simulation because of its weak reflections and superior stability; (2) unlike the M-PML with high-order damping profile, the M-PML with second-order damping profile loses its stability in long time simulation for an isotropic viscoelastic medium; (3) in an anisotropic viscoelastic medium, the C-PML suffers from instabilities, while the M-PML with second-order damping profile can be a better choice for its superior stability and more acceptable weak reflections than the M-PML with high-order damping profile. The comparative analysis of the developed methods offers meaningful significance for long time seismic wave modeling in second-order viscoelastic wave equations.

  7. Second-harmonic generation in shear wave beams with different polarizations

    NASA Astrophysics Data System (ADS)

    Spratt, Kyle S.; Ilinskii, Yurii A.; Zabolotskaya, Evgenia A.; Hamilton, Mark F.

    2015-10-01

    A coupled pair of nonlinear parabolic equations was derived by Zabolotskaya [1] that model the transverse components of the particle motion in a collimated shear wave beam propagating in an isotropic elastic solid. Like the KZK equation, the parabolic equation for shear wave beams accounts consistently for the leading order effects of diffraction, viscosity and nonlinearity. The nonlinearity includes a cubic nonlinear term that is equivalent to that present in plane shear waves, as well as a quadratic nonlinear term that is unique to diffracting beams. The work by Wochner et al. [2] considered shear wave beams with translational polarizations (linear, circular and elliptical), wherein second-order nonlinear effects vanish and the leading order nonlinear effect is third-harmonic generation by the cubic nonlinearity. The purpose of the current work is to investigate the quadratic nonlinear term present in the parabolic equation for shear wave beams by considering second-harmonic generation in Gaussian beams as a second-order nonlinear effect using standard perturbation theory. In order for second-order nonlinear effects to be present, a broader class of source polarizations must be considered that includes not only the familiar translational polarizations, but also polarizations accounting for stretching, shearing and rotation of the source plane. It is found that the polarization of the second harmonic generated by the quadratic nonlinearity is not necessarily the same as the polarization of the source-frequency beam, and we are able to derive a general analytic solution for second-harmonic generation from a Gaussian source condition that gives explicitly the relationship between the polarization of the source-frequency beam and the polarization of the second harmonic.

  8. Second-order rogue wave breathers in the nonlinear Schrödinger equation with quadratic potential modulated by a spatially-varying diffraction coefficient.

    PubMed

    Zhong, Wei-Ping; Belić, Milivoj; Zhang, Yiqi

    2015-02-09

    Nonlinear Schrödinger equation with simple quadratic potential modulated by a spatially-varying diffraction coefficient is investigated theoretically. Second-order rogue wave breather solutions of the model are constructed by using the similarity transformation. A modal quantum number is introduced, useful for classifying and controlling the solutions. From the solutions obtained, the behavior of second order Kuznetsov-Ma breathers (KMBs), Akhmediev breathers (ABs), and Peregrine solitons is analyzed in particular, by selecting different modulation frequencies and quantum modal parameter. We show how to generate interesting second order breathers and related hybrid rogue waves. The emergence of true rogue waves - single giant waves that are generated in the interaction of KMBs, ABs, and Peregrine solitons - is explicitly displayed in our analytical solutions.

  9. Localized waves in three-component coupled nonlinear Schrödinger equation

    NASA Astrophysics Data System (ADS)

    Xu, Tao; Chen, Yong

    2016-09-01

    We study the generalized Darboux transformation to the three-component coupled nonlinear Schrödinger equation. First- and second-order localized waves are obtained by this technique. In first-order localized wave, we get the interactional solutions between first-order rogue wave and one-dark, one-bright soliton respectively. Meanwhile, the interactional solutions between one-breather and first-order rogue wave are also given. In second-order localized wave, one-dark-one-bright soliton together with second-order rogue wave is presented in the first component, and two-bright soliton together with second-order rogue wave are gained respectively in the other two components. Besides, we observe second-order rogue wave together with one-breather in three components. Moreover, by increasing the absolute values of two free parameters, the nonlinear waves merge with each other distinctly. These results further reveal the interesting dynamic structures of localized waves in the three-component coupled system. Project supported by the Global Change Research Program of China (Grant No. 2015CB953904), the National Natural Science Foundation of China (Grant Nos. 11275072 and 11435005), the Doctoral Program of Higher Education of China (Grant No. 20120076110024), the Network Information Physics Calculation of Basic Research Innovation Research Group of China (Grant No. 61321064), and Shanghai Collaborative Innovation Center of Trustworthy Software for Internet of Things, China (Grant No. ZF1213).

  10. Stability analysis for acoustic wave propagation in tilted TI media by finite differences

    NASA Astrophysics Data System (ADS)

    Bakker, Peter M.; Duveneck, Eric

    2011-05-01

    Several papers in recent years have reported instabilities in P-wave modelling, based on an acoustic approximation, for inhomogeneous transversely isotropic media with tilted symmetry axis (TTI media). In particular, instabilities tend to occur if the axis of symmetry varies rapidly in combination with strong contrasts of medium parameters, which is typically the case at the foot of a steeply dipping salt flank. In a recent paper, we have proposed and demonstrated a P-wave modelling approach for TTI media, based on rotated stress and strain tensors, in which the wave equations reduce to a coupled set of two second-order partial differential equations for two scalar stress components: a normal component along the variable axis of symmetry and a lateral component of stress in the plane perpendicular to that axis. Spatially constant density is assumed in this approach. A numerical discretization scheme was proposed which uses discrete second-derivative operators for the non-mixed second-order derivatives in the wave equations, and combined first-derivative operators for the mixed second-order derivatives. This paper provides a complete and rigorous stability analysis, assuming a uniformly sampled grid. Although the spatial discretization operator for the TTI acoustic wave equation is not self-adjoint, this operator still defines a complete basis of eigenfunctions of the solution space, provided that the solution space is somewhat restricted at locations where the medium is elliptically anisotropic. First, a stability analysis is given for a discretization scheme, which is purely based on first-derivative operators. It is shown that the coefficients of the central difference operators should satisfy certain conditions. In view of numerical artefacts, such a discretization scheme is not attractive, and the non-mixed second-order derivatives of the wave equation are discretized directly by second-derivative operators. It is shown that this modification preserves stability, provided that the central difference operators of the second-order derivatives dominate over the twice applied operators of the first-order derivatives. In practice, it turns out that this is almost the case. Stability of the desired discretization scheme is enforced by slightly weighting down the mixed second-order derivatives in the wave equation. This has a minor, practically negligible, effect on the kinematics of wave propagation. Finally, it is shown that non-reflecting boundary conditions, enforced by applying a taper at the boundaries of the grid, do not harm the stability of the discretization scheme.

  11. Rogue wave solutions for the infinite integrable nonlinear Schrödinger equation hierarchy.

    PubMed

    Ankiewicz, A; Akhmediev, N

    2017-07-01

    We present rogue wave solutions of the integrable nonlinear Schrödinger equation hierarchy with an infinite number of higher-order terms. The latter include higher-order dispersion and higher-order nonlinear terms. In particular, we derive the fundamental rogue wave solutions for all orders of the hierarchy, with exact expressions for velocities, phase, and "stretching factors" in the solutions. We also present several examples of exact solutions of second-order rogue waves, including rogue wave triplets.

  12. High-order upwind schemes for the wave equation on overlapping grids: Maxwell's equations in second-order form

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Angel, Jordan B.; Banks, Jeffrey W.; Henshaw, William D.

    High-order accurate upwind approximations for the wave equation in second-order form on overlapping grids are developed. Although upwind schemes are well established for first-order hyperbolic systems, it was only recently shown by Banks and Henshaw how upwinding could be incorporated into the second-order form of the wave equation. This new upwind approach is extended here to solve the time-domain Maxwell's equations in second-order form; schemes of arbitrary order of accuracy are formulated for general curvilinear grids. Taylor time-stepping is used to develop single-step space-time schemes, and the upwind dissipation is incorporated by embedding the exact solution of a local Riemannmore » problem into the discretization. Second-order and fourth-order accurate schemes are implemented for problems in two and three space dimensions, and overlapping grids are used to treat complex geometry and problems with multiple materials. Stability analysis of the upwind-scheme on overlapping grids is performed using normal mode theory. The stability analysis and computations confirm that the upwind scheme remains stable on overlapping grids, including the difficult case of thin boundary grids when the traditional non-dissipative scheme becomes unstable. The accuracy properties of the scheme are carefully evaluated on a series of classical scattering problems for both perfect conductors and dielectric materials in two and three space dimensions. Finally, the upwind scheme is shown to be robust and provide high-order accuracy.« less

  13. High-order upwind schemes for the wave equation on overlapping grids: Maxwell's equations in second-order form

    DOE PAGES

    Angel, Jordan B.; Banks, Jeffrey W.; Henshaw, William D.

    2017-09-28

    High-order accurate upwind approximations for the wave equation in second-order form on overlapping grids are developed. Although upwind schemes are well established for first-order hyperbolic systems, it was only recently shown by Banks and Henshaw how upwinding could be incorporated into the second-order form of the wave equation. This new upwind approach is extended here to solve the time-domain Maxwell's equations in second-order form; schemes of arbitrary order of accuracy are formulated for general curvilinear grids. Taylor time-stepping is used to develop single-step space-time schemes, and the upwind dissipation is incorporated by embedding the exact solution of a local Riemannmore » problem into the discretization. Second-order and fourth-order accurate schemes are implemented for problems in two and three space dimensions, and overlapping grids are used to treat complex geometry and problems with multiple materials. Stability analysis of the upwind-scheme on overlapping grids is performed using normal mode theory. The stability analysis and computations confirm that the upwind scheme remains stable on overlapping grids, including the difficult case of thin boundary grids when the traditional non-dissipative scheme becomes unstable. The accuracy properties of the scheme are carefully evaluated on a series of classical scattering problems for both perfect conductors and dielectric materials in two and three space dimensions. Finally, the upwind scheme is shown to be robust and provide high-order accuracy.« less

  14. High-order upwind schemes for the wave equation on overlapping grids: Maxwell's equations in second-order form

    NASA Astrophysics Data System (ADS)

    Angel, Jordan B.; Banks, Jeffrey W.; Henshaw, William D.

    2018-01-01

    High-order accurate upwind approximations for the wave equation in second-order form on overlapping grids are developed. Although upwind schemes are well established for first-order hyperbolic systems, it was only recently shown by Banks and Henshaw [1] how upwinding could be incorporated into the second-order form of the wave equation. This new upwind approach is extended here to solve the time-domain Maxwell's equations in second-order form; schemes of arbitrary order of accuracy are formulated for general curvilinear grids. Taylor time-stepping is used to develop single-step space-time schemes, and the upwind dissipation is incorporated by embedding the exact solution of a local Riemann problem into the discretization. Second-order and fourth-order accurate schemes are implemented for problems in two and three space dimensions, and overlapping grids are used to treat complex geometry and problems with multiple materials. Stability analysis of the upwind-scheme on overlapping grids is performed using normal mode theory. The stability analysis and computations confirm that the upwind scheme remains stable on overlapping grids, including the difficult case of thin boundary grids when the traditional non-dissipative scheme becomes unstable. The accuracy properties of the scheme are carefully evaluated on a series of classical scattering problems for both perfect conductors and dielectric materials in two and three space dimensions. The upwind scheme is shown to be robust and provide high-order accuracy.

  15. Symmetry Reductions and Group-Invariant Radial Solutions to the n-Dimensional Wave Equation

    NASA Astrophysics Data System (ADS)

    Feng, Wei; Zhao, Songlin

    2018-01-01

    In this paper, we derive explicit group-invariant radial solutions to a class of wave equation via symmetry group method. The optimal systems of one-dimensional subalgebras for the corresponding radial wave equation are presented in terms of the known point symmetries. The reductions of the radial wave equation into second-order ordinary differential equations (ODEs) with respect to each symmetry in the optimal systems are shown. Then we solve the corresponding reduced ODEs explicitly in order to write out the group-invariant radial solutions for the wave equation. Finally, several analytical behaviours and smoothness of the resulting solutions are discussed.

  16. Semirational rogue waves for the three-coupled fourth-order nonlinear Schrödinger equations in an alpha helical protein

    NASA Astrophysics Data System (ADS)

    Du, Zhong; Tian, Bo; Qu, Qi-Xing; Chai, Han-Peng; Wu, Xiao-Yu

    2017-12-01

    Investigated in this paper are the three-coupled fourth-order nonlinear Schrödinger equations, which describe the dynamics of alpha helical protein with the interspine coupling at the higher order. We show that the representation of the Lax pair with Expressions (42) -(45) in Ref. [25] is not correct, because the three-coupled fourth-order nonlinear Schrödinger equations can not be reproduced by the Lax pair with Expressions (42) -(45) in Ref. [25] through the compatibility condition. Therefore, we recalculate the Lax pair. Based on the recalculated Lax pair, we construct the generalized Darboux transformation, and derive the first- and second-order semirational solutions. Through such solutions, dark-bright-bright soliton, breather-breather-bright soliton, breather soliton and rogue waves are analyzed. It is found that the rogue waves in the three components are mutually proportional. Moreover, three types of the semirational rogue waves consisting of the rogue waves and solitons are presented: (1) consisting of the first-order rogue wave and one soliton; (2) consisting of the first-order rogue wave and two solitons; (3) consisting of the second-order rogue wave and two solitons.

  17. Second-order numerical solution of time-dependent, first-order hyperbolic equations

    NASA Technical Reports Server (NTRS)

    Shah, Patricia L.; Hardin, Jay

    1995-01-01

    A finite difference scheme is developed to find an approximate solution of two similar hyperbolic equations, namely a first-order plane wave and spherical wave problem. Finite difference approximations are made for both the space and time derivatives. The result is a conditionally stable equation yielding an exact solution when the Courant number is set to one.

  18. An Operator Method for Field Moments from the Extended Parabolic Wave Equation and Analytical Solutions of the First and Second Moments for Atmospheric Electromagnetic Wave Propagation

    NASA Technical Reports Server (NTRS)

    Manning, Robert M.

    2004-01-01

    The extended wide-angle parabolic wave equation applied to electromagnetic wave propagation in random media is considered. A general operator equation is derived which gives the statistical moments of an electric field of a propagating wave. This expression is used to obtain the first and second order moments of the wave field and solutions are found that transcend those which incorporate the full paraxial approximation at the outset. Although these equations can be applied to any propagation scenario that satisfies the conditions of application of the extended parabolic wave equation, the example of propagation through atmospheric turbulence is used. It is shown that in the case of atmospheric wave propagation and under the Markov approximation (i.e., the delta-correlation of the fluctuations in the direction of propagation), the usual parabolic equation in the paraxial approximation is accurate even at millimeter wavelengths. The comprehensive operator solution also allows one to obtain expressions for the longitudinal (generalized) second order moment. This is also considered and the solution for the atmospheric case is obtained and discussed. The methodology developed here can be applied to any qualifying situation involving random propagation through turbid or plasma environments that can be represented by a spectral density of permittivity fluctuations.

  19. A connection between the maximum displacements of rogue waves and the dynamics of poles in the complex plane.

    PubMed

    Liu, T Y; Chiu, T L; Clarkson, P A; Chow, K W

    2017-09-01

    Rogue waves of evolution systems are displacements which are localized in both space and time. The locations of the points of maximum displacements of the wave profiles may correlate with the trajectories of the poles of the exact solutions from the perspective of complex variables through analytic continuation. More precisely, the location of the maximum height of the rogue wave in laboratory coordinates (real space and time) is conjectured to be equal to the real part of the pole of the exact solution, if the spatial coordinate is allowed to be complex. This feature can be verified readily for the Peregrine breather (lowest order rogue wave) of the nonlinear Schrödinger equation. This connection is further demonstrated numerically here for more complicated scenarios, namely the second order rogue wave of the Boussinesq equation (for bidirectional long waves in shallow water), an asymmetric second order rogue wave for the nonlinear Schrödinger equation (as evolution system for slowly varying wave packets), and a symmetric second order rogue wave of coupled Schrödinger systems. Furthermore, the maximum displacements in physical space occur at a time instant where the trajectories of the poles in the complex plane reverse directions. This property is conjectured to hold for many other systems, and will help to determine the maximum amplitudes of rogue waves.

  20. A connection between the maximum displacements of rogue waves and the dynamics of poles in the complex plane

    NASA Astrophysics Data System (ADS)

    Liu, T. Y.; Chiu, T. L.; Clarkson, P. A.; Chow, K. W.

    2017-09-01

    Rogue waves of evolution systems are displacements which are localized in both space and time. The locations of the points of maximum displacements of the wave profiles may correlate with the trajectories of the poles of the exact solutions from the perspective of complex variables through analytic continuation. More precisely, the location of the maximum height of the rogue wave in laboratory coordinates (real space and time) is conjectured to be equal to the real part of the pole of the exact solution, if the spatial coordinate is allowed to be complex. This feature can be verified readily for the Peregrine breather (lowest order rogue wave) of the nonlinear Schrödinger equation. This connection is further demonstrated numerically here for more complicated scenarios, namely the second order rogue wave of the Boussinesq equation (for bidirectional long waves in shallow water), an asymmetric second order rogue wave for the nonlinear Schrödinger equation (as evolution system for slowly varying wave packets), and a symmetric second order rogue wave of coupled Schrödinger systems. Furthermore, the maximum displacements in physical space occur at a time instant where the trajectories of the poles in the complex plane reverse directions. This property is conjectured to hold for many other systems, and will help to determine the maximum amplitudes of rogue waves.

  1. Perturbation method for the second-order nonlinear effect of focused acoustic field around a scatterer in an ideal fluid.

    PubMed

    Liu, Gang; Jayathilake, Pahala Gedara; Khoo, Boo Cheong

    2014-02-01

    Two nonlinear models are proposed to investigate the focused acoustic waves that the nonlinear effects will be important inside the liquid around the scatterer. Firstly, the one dimensional solutions for the widely used Westervelt equation with different coordinates are obtained based on the perturbation method with the second order nonlinear terms. Then, by introducing the small parameter (Mach number), a dimensionless formulation and asymptotic perturbation expansion via the compressible potential flow theory is applied. This model permits the decoupling between the velocity potential and enthalpy to second order, with the first potential solutions satisfying the linear wave equation (Helmholtz equation), whereas the second order solutions are associated with the linear non-homogeneous equation. Based on the model, the local nonlinear effects of focused acoustic waves on certain volume are studied in which the findings may have important implications for bubble cavitation/initiation via focused ultrasound called HIFU (High Intensity Focused Ultrasound). The calculated results show that for the domain encompassing less than ten times the radius away from the center of the scatterer, the non-linear effect exerts a significant influence on the focused high intensity acoustic wave. Moreover, at the comparatively higher frequencies, for the model of spherical wave, a lower Mach number may result in stronger nonlinear effects. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. Conservation laws and rogue waves for a higher-order nonlinear Schrödinger equation with variable coefficients in the inhomogeneous fiber

    NASA Astrophysics Data System (ADS)

    Du, Zhong; Tian, Bo; Wu, Xiao-Yu; Liu, Lei; Sun, Yan

    2017-07-01

    Subpicosecond or femtosecond optical pulse propagation in the inhomogeneous fiber can be described by a higher-order nonlinear Schrödinger equation with variable coefficients, which is investigated in the paper. Via the Ablowitz-Kaup-Newell-Segur system and symbolic computation, the Lax pair and infinitely-many conservation laws are deduced. Based on the Lax pair and a modified Darboux transformation technique, the first- and second-order rogue wave solutions are constructed. Effects of the groupvelocity dispersion and third-order dispersion on the properties of the first- and second-order rouge waves are graphically presented and analyzed: The groupvelocity dispersion and third-order dispersion both affect the ranges and shapes of the first- and second-order rogue waves: The third-order dispersion can produce a skew angle of the first-order rogue wave and the skew angle rotates counterclockwise with the increase of the groupvelocity dispersion, when the groupvelocity dispersion and third-order dispersion are chosen as the constants; When the groupvelocity dispersion and third-order dispersion are taken as the functions of the propagation distance, the linear, X-shaped and parabolic trajectories of the rogue waves are obtained.

  3. Absorbing boundary conditions for second-order hyperbolic equations

    NASA Technical Reports Server (NTRS)

    Jiang, Hong; Wong, Yau Shu

    1989-01-01

    A uniform approach to construct absorbing artificial boundary conditions for second-order linear hyperbolic equations is proposed. The nonlocal boundary condition is given by a pseudodifferential operator that annihilates travelling waves. It is obtained through the dispersion relation of the differential equation by requiring that the initial-boundary value problem admits the wave solutions travelling in one direction only. Local approximation of this global boundary condition yields an nth-order differential operator. It is shown that the best approximations must be in the canonical forms which can be factorized into first-order operators. These boundary conditions are perfectly absorbing for wave packets propagating at certain group velocities. A hierarchy of absorbing boundary conditions is derived for transonic small perturbation equations of unsteady flows. These examples illustrate that the absorbing boundary conditions are easy to derive, and the effectiveness is demonstrated by the numerical experiments.

  4. The Dynamics and Evolution of Poles and Rogue Waves for Nonlinear Schrödinger Equations*

    NASA Astrophysics Data System (ADS)

    Chiu, Tin Lok; Liu, Tian Yang; Chan, Hiu Ning; Wing Chow, Kwok

    2017-09-01

    Rogue waves are unexpectedly large deviations from equilibrium or otherwise calm positions in physical systems, e.g. hydrodynamic waves and optical beam intensities. The profiles and points of maximum displacements of these rogue waves are correlated with the movement of poles of the exact solutions extended to the complex plane through analytic continuation. Such links are shown to be surprisingly precise for the first order rogue wave of the nonlinear Schrödinger (NLS) and the derivative NLS equations. A computational study on the second order rogue waves of the NLS equation also displays remarkable agreements.

  5. Periodic and rational solutions of the reduced Maxwell-Bloch equations

    NASA Astrophysics Data System (ADS)

    Wei, Jiao; Wang, Xin; Geng, Xianguo

    2018-06-01

    We investigate the reduced Maxwell-Bloch (RMB) equations which describe the propagation of short optical pulses in dielectric materials with resonant non-degenerate transitions. The general Nth-order periodic solutions are provided by means of the Darboux transformation. The Nth-order degenerate periodic and Nth-order rational solutions containing several free parameters with compact determinant representations are derived from two different limiting cases of the obtained general periodic solutions, respectively. Explicit expressions of these solutions from first to second order are presented. Typical nonlinear wave patterns for the four components of the RMB equations such as single-peak, double-peak-double-dip, double-peak and single-dip structures in the second-order rational solutions are shown. This kind of the rational solutions correspond to rogue waves in the reduced Maxwell-Bloch equations.

  6. High-order rogue waves in vector nonlinear Schrödinger equations.

    PubMed

    Ling, Liming; Guo, Boling; Zhao, Li-Chen

    2014-04-01

    We study the dynamics of high-order rogue waves (RWs) in two-component coupled nonlinear Schrödinger equations. We find that four fundamental rogue waves can emerge from second-order vector RWs in the coupled system, in contrast to the high-order ones in single-component systems. The distribution shape can be quadrilateral, triangle, and line structures by varying the proper initial excitations given by the exact analytical solutions. The distribution pattern for vector RWs is more abundant than that for scalar rogue waves. Possibilities to observe these new patterns for rogue waves are discussed for a nonlinear fiber.

  7. Modulational instability and dynamics of implicit higher-order rogue wave solutions for the Kundu equation

    NASA Astrophysics Data System (ADS)

    Wen, Xiao-Yong; Zhang, Guoqiang

    2018-01-01

    Under investigation in this paper is the Kundu equation, which may be used to describe the propagation process of ultrashort optical pulses in nonlinear optics. The modulational instability of the plane-wave for the possible reason of the formation of the rogue wave (RW) is studied for the system. Based on our proposed generalized perturbation (n,N - n)-fold Darboux transformation (DT), some new higher-order implicit RW solutions in terms of determinants are obtained by means of the generalized perturbation (1,N - 1)-fold DT, when choosing different special parameters, these results will reduce to the RW solutions of the Kaup-Newell (KN) equation, Chen-Lee-Liu (CLL) equation and Gerjikov-Ivanov (GI) equation, respectively. The relevant wave structures are shown graphically, which display abundant interesting wave structures. The dynamical behaviors and propagation stability of the first-order and second-order RW solutions are discussed by using numerical simulations, the higher-order nonlinear terms for the Kundu equation have an impact on the propagation instability of the RW. The method can also be extended to find the higher-order RW or rational solutions of other integrable nonlinear equations.

  8. A second-order theory for transverse ion heating and momentum coupling due to electrostatic ion cyclotron waves

    NASA Technical Reports Server (NTRS)

    Miller, Ronald H.; Winske, Dan; Gary, S. P.

    1992-01-01

    A second-order theory for electrostatic instabilities driven by counterstreaming ion beams is developed which describes momentum coupling and heating of the plasma via wave-particle interactions. Exchange rates between the waves and particles are derived, which are suitable for the fluid equations simulating microscopic effects on macroscopic scales. Using a fully kinetic simulation, the electrostatic ion cyclotron instability due to counterstreaming H(+) beams has been simulated. A power spectrum from the kinetic simulation is used to evaluate second-order exchange rates. The calculated heating and momentum loss from second-order theory is compared to the numerical simulation.

  9. Application of an Extended Parabolic Equation to the Calculation of the Mean Field and the Transverse and Longitudinal Mutual Coherence Functions Within Atmospheric Turbulence

    NASA Technical Reports Server (NTRS)

    Manning, Robert M.

    2005-01-01

    Solutions are derived for the generalized mutual coherence function (MCF), i.e., the second order moment, of a random wave field propagating through a random medium within the context of the extended parabolic equation. Here, "generalized" connotes the consideration of both the transverse as well as the longitudinal second order moments (with respect to the direction of propagation). Such solutions will afford a comparison between the results of the parabolic equation within the pararaxial approximation and those of the wide-angle extended theory. To this end, a statistical operator method is developed which gives a general equation for an arbitrary spatial statistical moment of the wave field. The generality of the operator method allows one to obtain an expression for the second order field moment in the direction longitudinal to the direction of propagation. Analytical solutions to these equations are derived for the Kolmogorov and Tatarskii spectra of atmospheric permittivity fluctuations within the Markov approximation.

  10. FAST TRACK COMMUNICATION Quasi self-adjoint nonlinear wave equations

    NASA Astrophysics Data System (ADS)

    Ibragimov, N. H.; Torrisi, M.; Tracinà, R.

    2010-11-01

    In this paper we generalize the classification of self-adjoint second-order linear partial differential equation to a family of nonlinear wave equations with two independent variables. We find a class of quasi self-adjoint nonlinear equations which includes the self-adjoint linear equations as a particular case. The property of a differential equation to be quasi self-adjoint is important, e.g. for constructing conservation laws associated with symmetries of the differential equation.

  11. Multi-Hamiltonian structure of equations of hydrodynamic type

    NASA Astrophysics Data System (ADS)

    Gümral, H.; Nutku, Y.

    1990-11-01

    The discussion of the Hamiltonian structure of two-component equations of hydrodynamic type is completed by presenting the Hamiltonian operators for Euler's equation governing the motion of plane sound waves of finite amplitude and another quasilinear second-order wave equation. There exists a doubly infinite family of conserved Hamiltonians for the equations of gas dynamics that degenerate into one, namely, the Benney sequence, for shallow-water waves. Infinite sequences of conserved quantities for these equations are also presented. In the case of multicomponent equations of hydrodynamic type, it is shown, that Kodama's generalization of the shallow-water equations admits bi-Hamiltonian structure.

  12. Computational procedures for mixed equations with shock waves

    NASA Technical Reports Server (NTRS)

    Yu, N. J.; Seebass, R.

    1974-01-01

    This paper discusses the procedures we have developed to treat a canonical problem involving a mixed nonlinear equation with boundary data that imply a discontinuous solution. This equation arises in various physical contexts and is basic to the description of the nonlinear acoustic behavior of a shock wave near a caustic. The numerical scheme developed is of second order, treats discontinuities as such by applying the appropriate jump conditions across them, and eliminates the numerical dissipation and dispersion associated with large gradients. Our results are compared with the results of a first-order scheme and with those of a second-order scheme we have developed. The algorithm used here can easily be generalized to more complicated problems, including transonic flows with imbedded shocks.

  13. The Complex-Step-Finite-Difference method

    NASA Astrophysics Data System (ADS)

    Abreu, Rafael; Stich, Daniel; Morales, Jose

    2015-07-01

    We introduce the Complex-Step-Finite-Difference method (CSFDM) as a generalization of the well-known Finite-Difference method (FDM) for solving the acoustic and elastic wave equations. We have found a direct relationship between modelling the second-order wave equation by the FDM and the first-order wave equation by the CSFDM in 1-D, 2-D and 3-D acoustic media. We present the numerical methodology in order to apply the introduced CSFDM and show an example for wave propagation in simple homogeneous and heterogeneous models. The CSFDM may be implemented as an extension into pre-existing numerical techniques in order to obtain fourth- or sixth-order accurate results with compact three time-level stencils. We compare advantages of imposing various types of initial motion conditions of the CSFDM and demonstrate its higher-order accuracy under the same computational cost and dispersion-dissipation properties. The introduced method can be naturally extended to solve different partial differential equations arising in other fields of science and engineering.

  14. Circularly polarized few-cycle optical rogue waves: rotating reduced Maxwell-Bloch equations.

    PubMed

    Xu, Shuwei; Porsezian, K; He, Jingsong; Cheng, Yi

    2013-12-01

    The rotating reduced Maxwell-Bloch (RMB) equations, which describe the propagation of few-cycle optical pulses in a transparent media with two isotropic polarized electronic field components, are derived from a system of complete Maxwell-Bloch equations without using the slowly varying envelope approximations. Two hierarchies of the obtained rational solutions, including rogue waves, which are also called few-cycle optical rogue waves, of the rotating RMB equations are constructed explicitly through degenerate Darboux transformation. In addition to the above, the dynamical evolution of the first-, second-, and third-order few-cycle optical rogue waves are constructed with different patterns. For an electric field E in the three lower-order rogue waves, we find that rogue waves correspond to localized large amplitude oscillations of the polarized electric fields. Further a complementary relationship of two electric field components of rogue waves is discussed in terms of analytical formulas as well as numerical figures.

  15. Newton's method for nonlinear stochastic wave equations driven by one-dimensional Brownian motion.

    PubMed

    Leszczynski, Henryk; Wrzosek, Monika

    2017-02-01

    We consider nonlinear stochastic wave equations driven by one-dimensional white noise with respect to time. The existence of solutions is proved by means of Picard iterations. Next we apply Newton's method. Moreover, a second-order convergence in a probabilistic sense is demonstrated.

  16. Improvements to embedded shock wave calculations for transonic flow-applications to wave drag and pressure rise predictions

    NASA Technical Reports Server (NTRS)

    Seebass, A. R.

    1974-01-01

    The numerical solution of a single, mixed, nonlinear equation with prescribed boundary data is discussed. A second order numerical procedure for solving the nonlinear equation and a shock fitting scheme was developed to treat the discontinuities that appear in the solution.

  17. Higher-Order Hamiltonian Model for Unidirectional Water Waves

    NASA Astrophysics Data System (ADS)

    Bona, J. L.; Carvajal, X.; Panthee, M.; Scialom, M.

    2018-04-01

    Formally second-order correct, mathematical descriptions of long-crested water waves propagating mainly in one direction are derived. These equations are analogous to the first-order approximations of KdV- or BBM-type. The advantage of these more complex equations is that their solutions corresponding to physically relevant initial perturbations of the rest state may be accurate on a much longer timescale. The initial value problem for the class of equations that emerges from our derivation is then considered. A local well-posedness theory is straightforwardly established by a contraction mapping argument. A subclass of these equations possess a special Hamiltonian structure that implies the local theory can be continued indefinitely.

  18. Few-cycle optical rogue waves: complex modified Korteweg-de Vries equation.

    PubMed

    He, Jingsong; Wang, Lihong; Li, Linjing; Porsezian, K; Erdélyi, R

    2014-06-01

    In this paper, we consider the complex modified Korteweg-de Vries (mKdV) equation as a model of few-cycle optical pulses. Using the Lax pair, we construct a generalized Darboux transformation and systematically generate the first-, second-, and third-order rogue wave solutions and analyze the nature of evolution of higher-order rogue waves in detail. Based on detailed numerical and analytical investigations, we classify the higher-order rogue waves with respect to their intrinsic structure, namely, fundamental pattern, triangular pattern, and ring pattern. We also present several new patterns of the rogue wave according to the standard and nonstandard decomposition. The results of this paper explain the generalization of higher-order rogue waves in terms of rational solutions. We apply the contour line method to obtain the analytical formulas of the length and width of the first-order rogue wave of the complex mKdV and the nonlinear Schrödinger equations. In nonlinear optics, the higher-order rogue wave solutions found here will be very useful to generate high-power few-cycle optical pulses which will be applicable in the area of ultrashort pulse technology.

  19. Fourth order difference methods for hyperbolic IBVP's

    NASA Technical Reports Server (NTRS)

    Gustafsson, Bertil; Olsson, Pelle

    1994-01-01

    Fourth order difference approximations of initial-boundary value problems for hyperbolic partial differential equations are considered. We use the method of lines approach with both explicit and compact implicit difference operators in space. The explicit operator satisfies an energy estimate leading to strict stability. For the implicit operator we develop boundary conditions and give a complete proof of strong stability using the Laplace transform technique. We also present numerical experiments for the linear advection equation and Burgers' equation with discontinuities in the solution or in its derivative. The first equation is used for modeling contact discontinuities in fluid dynamics, the second one for modeling shocks and rarefaction waves. The time discretization is done with a third order Runge-Kutta TVD method. For solutions with discontinuities in the solution itself we add a filter based on second order viscosity. In case of the non-linear Burger's equation we use a flux splitting technique that results in an energy estimate for certain different approximations, in which case also an entropy condition is fulfilled. In particular we shall demonstrate that the unsplit conservative form produces a non-physical shock instead of the physically correct rarefaction wave. In the numerical experiments we compare our fourth order methods with a standard second order one and with a third order TVD-method. The results show that the fourth order methods are the only ones that give good results for all the considered test problems.

  20. Topographical scattering of gravity waves

    NASA Astrophysics Data System (ADS)

    Miles, J. W.; Chamberlain, P. G.

    1998-04-01

    A systematic hierarchy of partial differential equations for linear gravity waves in water of variable depth is developed through the expansion of the average Lagrangian in powers of [mid R:][nabla del, Hamilton operator][mid R:] (h=depth, [nabla del, Hamilton operator]h=slope). The first and second members of this hierarchy, the Helmholtz and conventional mild-slope equations, are second order. The third member is fourth order but may be approximated by Chamberlain & Porter's (1995) ‘modified mild-slope’ equation, which is second order and comprises terms in [nabla del, Hamilton operator]2h and ([nabla del, Hamilton operator]h)2 that are absent from the mild-slope equation. Approximate solutions of the mild-slope and modified mild-slope equations for topographical scattering are determined through an iterative sequence, starting from a geometrical-optics approximation (which neglects reflection), then a quasi-geometrical-optics approximation, and on to higher-order results. The resulting reflection coefficient for a ramp of uniform slope is compared with the results of numerical integrations of each of the mild-slope equation (Booij 1983), the modified mild-slope equation (Porter & Staziker 1995), and the full linear equations (Booij 1983). Also considered is a sequence of sinusoidal sandbars, for which Bragg resonance may yield rather strong reflection and for which the modified mild-slope approximation is in close agreement with Mei's (1985) asymptotic approximation.

  1. Travelling wave solutions and conservation laws for the Korteweg-de Vries-Bejamin-Bona-Mahony equation

    NASA Astrophysics Data System (ADS)

    Simbanefayi, Innocent; Khalique, Chaudry Masood

    2018-03-01

    In this work we study the Korteweg-de Vries-Benjamin-Bona-Mahony (KdV-BBM) equation, which describes the two-way propagation of waves. Using Lie symmetry method together with Jacobi elliptic function expansion and Kudryashov methods we construct its travelling wave solutions. Also, we derive conservation laws of the KdV-BBM equation using the variational derivative approach. In this method, we begin by computing second-order multipliers for the KdV-BBM equation followed by a derivation of the respective conservation laws for each multiplier.

  2. A novel method for predicting the power outputs of wave energy converters

    NASA Astrophysics Data System (ADS)

    Wang, Yingguang

    2018-03-01

    This paper focuses on realistically predicting the power outputs of wave energy converters operating in shallow water nonlinear waves. A heaving two-body point absorber is utilized as a specific calculation example, and the generated power of the point absorber has been predicted by using a novel method (a nonlinear simulation method) that incorporates a second order random wave model into a nonlinear dynamic filter. It is demonstrated that the second order random wave model in this article can be utilized to generate irregular waves with realistic crest-trough asymmetries, and consequently, more accurate generated power can be predicted by subsequently solving the nonlinear dynamic filter equation with the nonlinearly simulated second order waves as inputs. The research findings demonstrate that the novel nonlinear simulation method in this article can be utilized as a robust tool for ocean engineers in their design, analysis and optimization of wave energy converters.

  3. Higher-order rogue wave-like solutions for a nonautonomous nonlinear Schrödinger equation with external potentials

    NASA Astrophysics Data System (ADS)

    Liu, Lei; Tian, Bo; Wu, Xiao-Yu; Sun, Yan

    2018-02-01

    Under investigation in this paper is the higher-order rogue wave-like solutions for a nonautonomous nonlinear Schrödinger equation with external potentials which can be applied in the nonlinear optics, hydrodynamics, plasma physics and Bose-Einstein condensation. Based on the Kadomtsev-Petviashvili hierarchy reduction, we construct the Nth order rogue wave-like solutions in terms of the Gramian under the integrable constraint. With the help of the analytic and graphic analysis, we exhibit the first-, second- and third-order rogue wave-like solutions through the different dispersion, nonlinearity and linear potential coefficients. We find that only if the dispersion and nonlinearity coefficients are proportional to each other, heights of the background of those rogue waves maintain unchanged with time increasing. Due to the existence of complex parameters, such nonautonomous rogue waves in the higher-order cases have more complex features than those in the lower.

  4. Application of the Finite Element Method in Atomic and Molecular Physics

    NASA Technical Reports Server (NTRS)

    Shertzer, Janine

    2007-01-01

    The finite element method (FEM) is a numerical algorithm for solving second order differential equations. It has been successfully used to solve many problems in atomic and molecular physics, including bound state and scattering calculations. To illustrate the diversity of the method, we present here details of two applications. First, we calculate the non-adiabatic dipole polarizability of Hi by directly solving the first and second order equations of perturbation theory with FEM. In the second application, we calculate the scattering amplitude for e-H scattering (without partial wave analysis) by reducing the Schrodinger equation to set of integro-differential equations, which are then solved with FEM.

  5. Theoretical and experimental evidence of non-symmetric doubly localized rogue waves.

    PubMed

    He, Jingsong; Guo, Lijuan; Zhang, Yongshuai; Chabchoub, Amin

    2014-11-08

    We present determinant expressions for vector rogue wave (RW) solutions of the Manakov system, a two-component coupled nonlinear Schrödinger (NLS) equation. As a special case, we generate a family of exact and non-symmetric RW solutions of the NLS equation up to third order, localized in both space and time. The derived non-symmetric doubly localized second-order solution is generated experimentally in a water wave flume for deep-water conditions. Experimental results, confirming the characteristic non-symmetric pattern of the solution, are in very good agreement with theory as well as with numerical simulations, based on the modified NLS equation, known to model accurately the dynamics of weakly nonlinear wave packets in deep water.

  6. Theoretical and experimental evidence of non-symmetric doubly localized rogue waves

    PubMed Central

    He, Jingsong; Guo, Lijuan; Zhang, Yongshuai; Chabchoub, Amin

    2014-01-01

    We present determinant expressions for vector rogue wave (RW) solutions of the Manakov system, a two-component coupled nonlinear Schrödinger (NLS) equation. As a special case, we generate a family of exact and non-symmetric RW solutions of the NLS equation up to third order, localized in both space and time. The derived non-symmetric doubly localized second-order solution is generated experimentally in a water wave flume for deep-water conditions. Experimental results, confirming the characteristic non-symmetric pattern of the solution, are in very good agreement with theory as well as with numerical simulations, based on the modified NLS equation, known to model accurately the dynamics of weakly nonlinear wave packets in deep water. PMID:25383023

  7. Coupling of Coastal Wave Transformation and Computational Fluid Dynamics Models for Seakeeping Analysis

    DTIC Science & Technology

    2017-04-03

    setup in terms of temporal and spatial discretization . The second component was an extension of existing depth-integrated wave models to describe...equations (Abbott, 1976). Discretization schemes involve numerical dispersion and dissipation that distort the true character of the governing equations...represent a leading-order approximation of the Boussinesq-type equations. Tam and Webb (1993) proposed a wavenumber-based discretization scheme to preserve

  8. On optimizing the treatment of exchange perturbations

    NASA Technical Reports Server (NTRS)

    Hirschfelder, J. O.; Chipman, D. M.

    1972-01-01

    A method using the zeroth plus first order wave functions, obtained by optimizing the basic equation used in exchange perturbation treatments, is utilized in an attempt to determine the exact energy and wave function in the exchange process. Attempts to determine the first order perturbation solution by optimizing the sum of the first and second order energies were unsuccessful.

  9. Enabling real-time ultrasound imaging of soft tissue mechanical properties by simplification of the shear wave motion equation.

    PubMed

    Engel, Aaron J; Bashford, Gregory R

    2015-08-01

    Ultrasound based shear wave elastography (SWE) is a technique used for non-invasive characterization and imaging of soft tissue mechanical properties. Robust estimation of shear wave propagation speed is essential for imaging of soft tissue mechanical properties. In this study we propose to estimate shear wave speed by inversion of the first-order wave equation following directional filtering. This approach relies on estimation of first-order derivatives which allows for accurate estimations using smaller smoothing filters than when estimating second-order derivatives. The performance was compared to three current methods used to estimate shear wave propagation speed: direct inversion of the wave equation (DIWE), time-to-peak (TTP) and cross-correlation (CC). The shear wave speed of three homogeneous phantoms of different elastic moduli (gelatin by weight of 5%, 7%, and 9%) were measured with each method. The proposed method was shown to produce shear speed estimates comparable to the conventional methods (standard deviation of measurements being 0.13 m/s, 0.05 m/s, and 0.12 m/s), but with simpler processing and usually less time (by a factor of 1, 13, and 20 for DIWE, CC, and TTP respectively). The proposed method was able to produce a 2-D speed estimate from a single direction of wave propagation in about four seconds using an off-the-shelf PC, showing the feasibility of performing real-time or near real-time elasticity imaging with dedicated hardware.

  10. Influence of optical activity on rogue waves propagating in chiral optical fibers.

    PubMed

    Temgoua, D D Estelle; Kofane, T C

    2016-06-01

    We derive the nonlinear Schrödinger (NLS) equation in chiral optical fiber with right- and left-hand nonlinear polarization. We use the similarity transformation to reduce the generalized chiral NLS equation to the higher-order integrable Hirota equation. We present the first- and second-order rational solutions of the chiral NLS equation with variable and constant coefficients, based on the modified Darboux transformation method. For some specific set of parameters, the features of chiral optical rogue waves are analyzed from analytical results, showing the influence of optical activity on waves. We also generate the exact solutions of the two-component coupled nonlinear Schrödinger equations, which describe optical activity effects on the propagation of rogue waves, and their properties in linear and nonlinear coupling cases are investigated. The condition of modulation instability of the background reveals the existence of vector rogue waves and the number of stable and unstable branches. Controllability of chiral optical rogue waves is examined by numerical simulations and may bring potential applications in optical fibers and in many other physical systems.

  11. Alternative stable qP wave equations in TTI media with their applications for reverse time migration

    NASA Astrophysics Data System (ADS)

    Zhou, Yang; Wang, Huazhong; Liu, Wenqing

    2015-10-01

    Numerical instabilities may arise if the spatial variation of symmetry axis is handled improperly when implementing P-wave modeling and reverse time migration in heterogeneous tilted transversely isotropic (TTI) media, especially in the cases where fast changes exist in TTI symmetry axis’ directions. Based on the pseudo-acoustic approximation to anisotropic elastic wave equations in Cartesian coordinates, alternative second order qP (quasi-P) wave equations in TTI media are derived in this paper. Compared with conventional stable qP wave equations, the proposed equations written in stress components contain only spatial derivatives of wavefield variables (stress components) and are free from spatial derivatives involving media parameters. These lead to an easy and efficient implementation for stable P-wave modeling and imaging. Numerical experiments demonstrate the stability and computational efficiency of the presented equations in complex TTI media.

  12. On a new class of completely integrable nonlinear wave equations. I. Infinitely many conservation laws

    NASA Astrophysics Data System (ADS)

    Nutku, Y.

    1985-06-01

    We point out a class of nonlinear wave equations which admit infinitely many conserved quantities. These equations are characterized by a pair of exact one-forms. The implication that they are closed gives rise to equations, the characteristics and Riemann invariants of which are readily obtained. The construction of the conservation laws requires the solution of a linear second-order equation which can be reduced to canonical form using the Riemann invariants. The hodograph transformation results in a similar linear equation. We discuss also the symplectic structure and Bäcklund transformations associated with these equations.

  13. Dispersive wave propagation in two-dimensional rigid periodic blocky materials with elastic interfaces

    NASA Astrophysics Data System (ADS)

    Bacigalupo, Andrea; Gambarotta, Luigi

    2017-05-01

    Dispersive waves in two-dimensional blocky materials with periodic microstructure made up of equal rigid units, having polygonal centro-symmetric shape with mass and gyroscopic inertia, connected with each other through homogeneous linear interfaces, have been analyzed. The acoustic behavior of the resulting discrete Lagrangian model has been obtained through a Floquet-Bloch approach. From the resulting eigenproblem derived by the Euler-Lagrange equations for harmonic wave propagation, two acoustic branches and an optical branch are obtained in the frequency spectrum. A micropolar continuum model to approximate the Lagrangian model has been derived based on a second-order Taylor expansion of the generalized macro-displacement field. The constitutive equations of the equivalent micropolar continuum have been obtained, with the peculiarity that the positive definiteness of the second-order symmetric tensor associated to the curvature vector is not guaranteed and depends both on the ratio between the local tangent and normal stiffness and on the block shape. The same results have been obtained through an extended Hamiltonian derivation of the equations of motion for the equivalent continuum that is related to the Hill-Mandel macro homogeneity condition. Moreover, it is shown that the hermitian matrix governing the eigenproblem of harmonic wave propagation in the micropolar model is exact up to the second order in the norm of the wave vector with respect to the same matrix from the discrete model. To appreciate the acoustic behavior of some relevant blocky materials and to understand the reliability and the validity limits of the micropolar continuum model, some blocky patterns have been analyzed: rhombic and hexagonal assemblages and running bond masonry. From the results obtained in the examples, the obtained micropolar model turns out to be particularly accurate to describe dispersive functions for wavelengths greater than 3-4 times the characteristic dimension of the block. Finally, in consideration that the positive definiteness of the second order elastic tensor of the micropolar model is not guaranteed, the hyperbolicity of the equation of motion has been investigated by considering the Legendre-Hadamard ellipticity conditions requiring real values for the wave velocity.

  14. Propagation of Finite Amplitude Sound in Multiple Waveguide Modes.

    NASA Astrophysics Data System (ADS)

    van Doren, Thomas Walter

    1993-01-01

    This dissertation describes a theoretical and experimental investigation of the propagation of finite amplitude sound in multiple waveguide modes. Quasilinear analytical solutions of the full second order nonlinear wave equation, the Westervelt equation, and the KZK parabolic wave equation are obtained for the fundamental and second harmonic sound fields in a rectangular rigid-wall waveguide. It is shown that the Westervelt equation is an acceptable approximation of the full nonlinear wave equation for describing guided sound waves of finite amplitude. A system of first order equations based on both a modal and harmonic expansion of the Westervelt equation is developed for waveguides with locally reactive wall impedances. Fully nonlinear numerical solutions of the system of coupled equations are presented for waveguides formed by two parallel planes which are either both rigid, or one rigid and one pressure release. These numerical solutions are compared to finite -difference solutions of the KZK equation, and it is shown that solutions of the KZK equation are valid only at frequencies which are high compared to the cutoff frequencies of the most important modes of propagation (i.e., for which sound propagates at small grazing angles). Numerical solutions of both the Westervelt and KZK equations are compared to experiments performed in an air-filled, rigid-wall, rectangular waveguide. Solutions of the Westervelt equation are in good agreement with experiment for low source frequencies, at which sound propagates at large grazing angles, whereas solutions of the KZK equation are not valid for these cases. At higher frequencies, at which sound propagates at small grazing angles, agreement between numerical solutions of the Westervelt and KZK equations and experiment is only fair, because of problems in specifying the experimental source condition with sufficient accuracy.

  15. Effect of Second-Order and Fully Nonlinear Wave Kinematics on a Tension-Leg-Platform Wind Turbine in Extreme Wave Conditions: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robertson, Amy N; Jonkman, Jason; Pegalajar-Jurado, Antonio

    In this study, we assess the impact of different wave kinematics models on the dynamic response of a tension-leg-platform wind turbine. Aero-hydro-elastic simulations of the floating wind turbine are carried out employing linear, second-order, and fully nonlinear kinematics using the Morison equation for the hydrodynamic forcing. The wave kinematics are computed from either theoretical or measured signals of free-surface elevation. The numerical results from each model are compared to results from wave basin tests on a scaled prototype. The comparison shows that sub and superharmonic responses can be introduced by second-order and fully nonlinear wave kinematics. The response at themore » wave frequency range is better reproduced when kinematics are generated from the measured surface elevation. In the future, the numerical response may be further improved by replacing the global, constant damping coefficients in the model by a more detailed, customizable definition of the user-defined numerical damping.« less

  16. Effect of Second-Order and Fully Nonlinear Wave Kinematics on a Tension-Leg-Platform Wind Turbine in Extreme Wave Conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robertson, Amy N; Jonkman, Jason; Pegalajar-Jurado, Antonio

    In this study, we assess the impact of different wave kinematics models on the dynamic response of a tension-leg-platform wind turbine. Aero-hydro-elastic simulations of the floating wind turbine are carried out employing linear, second-order, and fully nonlinear kinematics using the Morison equation for the hydrodynamic forcing. The wave kinematics are computed from either theoretical or measured signals of free-surface elevation. The numerical results from each model are compared to results from wave basin tests on a scaled prototype. The comparison shows that sub and superharmonic responses can be introduced by second-order and fully nonlinear wave kinematics. The response at themore » wave frequency range is better reproduced when kinematics are generated from the measured surface elevation. In the future, the numerical response may be further improved by replacing the global, constant damping coefficients in the model by a more detailed, customizable definition of the user-defined numerical damping.« less

  17. Second order kinetic theory of parallel momentum transport in collisionless drift wave turbulence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Yang, E-mail: lyang13@mails.tsinghua.edu.cn; Southwestern Institute of Physics, Chengdu 610041; Gao, Zhe

    A second order kinetic model for turbulent ion parallel momentum transport is presented. A new nonresonant second order parallel momentum flux term is calculated. The resonant component of the ion parallel electrostatic force is the momentum source, while the nonresonant component of the ion parallel electrostatic force compensates for that of the nonresonant second order parallel momentum flux. The resonant component of the kinetic momentum flux can be divided into three parts, including the pinch term, the diffusive term, and the residual stress. By reassembling the pinch term and the residual stress, the residual stress can be considered as amore » pinch term of parallel wave-particle resonant velocity, and, therefore, may be called as “resonant velocity pinch” term. Considering the resonant component of the ion parallel electrostatic force is the transfer rate between resonant ions and waves (or, equivalently, nonresonant ions), a conservation equation of the parallel momentum of resonant ions and waves is obtained.« less

  18. Simulating Seismic Wave Propagation in Viscoelastic Media with an Irregular Free Surface

    NASA Astrophysics Data System (ADS)

    Liu, Xiaobo; Chen, Jingyi; Zhao, Zhencong; Lan, Haiqiang; Liu, Fuping

    2018-05-01

    In seismic numerical simulations of wave propagation, it is very important for us to consider surface topography and attenuation, which both have large effects (e.g., wave diffractions, conversion, amplitude/phase change) on seismic imaging and inversion. An irregular free surface provides significant information for interpreting the characteristics of seismic wave propagation in areas with rugged or rapidly varying topography, and viscoelastic media are a better representation of the earth's properties than acoustic/elastic media. In this study, we develop an approach for seismic wavefield simulation in 2D viscoelastic isotropic media with an irregular free surface. Based on the boundary-conforming grid method, the 2D time-domain second-order viscoelastic isotropic equations and irregular free surface boundary conditions are transferred from a Cartesian coordinate system to a curvilinear coordinate system. Finite difference operators with second-order accuracy are applied to discretize the viscoelastic wave equations and the irregular free surface in the curvilinear coordinate system. In addition, we select the convolutional perfectly matched layer boundary condition in order to effectively suppress artificial reflections from the edges of the model. The snapshot and seismogram results from numerical tests show that our algorithm successfully simulates seismic wavefields (e.g., P-wave, Rayleigh wave and converted waves) in viscoelastic isotropic media with an irregular free surface.

  19. Rogue Waves and Lump Solitons of the (3+1)-Dimensional Generalized B-type Kadomtsev-Petviashvili Equation for Water Waves

    NASA Astrophysics Data System (ADS)

    Sun, Yan; Tian, Bo; Liu, Lei; Chai, Han-Peng; Yuan, Yu-Qiang

    2017-12-01

    In this paper, the (3+1)-dimensional generalized B-type Kadomtsev-Petviashvili equation for water waves is investigated. Through the Hirota method and Kadomtsev-Petviashvili hierarchy reduction, we obtain the first-order, higher-order, multiple rogue waves and lump solitons based on the solutions in terms of the Gramian. The first-order rogue waves are the line rogue waves which arise from the constant background and then disappear into the constant background again, while the first-order lump solitons propagate stably. Interactions among several first-order rogue waves which are described by the multiple rogue waves are presented. Elastic interactions of several first-order lump solitons are also presented. We find that the higher-order rogue waves and lump solitons can be treated as the superpositions of several first-order ones, while the interaction between the second-order lump solitons is inelastic. Supported by the National Natural Science Foundation of China under Grant Nos. 11772017, 11272023, and 11471050, by the Open Fund of State Key Laboratory of Information Photonics and Optical Communications (Beijing University of Posts and Telecommunications), China (IPOC: 2017ZZ05), and by the Fundamental Research Funds for the Central Universities of China under Grant No. 2011BUPTYB02

  20. Rogue waves for a discrete (2+1)-dimensional Ablowitz-Ladik equation in the nonlinear optics and Bose-Einstein condensation

    NASA Astrophysics Data System (ADS)

    Wu, Xiao-Yu; Tian, Bo; Chai, Han-Peng; Du, Zhong

    2018-03-01

    Under investigation in this paper is a discrete (2+1)-dimensional Ablowitz-Ladik equation, which is used to model the nonlinear waves in the nonlinear optics and Bose-Einstein condensation. Employing the Kadomtsev-Petviashvili hierarchy reduction, we obtain the rogue wave solutions in terms of the Gramian. We graphically study the first-, second- and third-order rogue waves with the influence of the focusing coefficient and coupling strength. When the value of the focusing coefficient increases, both the peak of the rogue wave and background decrease. When the value of the coupling strength increases, the rogue wave raises and decays in a shorter time. High-order rogue waves are exhibited as one single highest peak and some lower humps, and such lower humps are shown as the triangular and circular patterns.

  1. On optimizing the treatment of exchange perturbations.

    NASA Technical Reports Server (NTRS)

    Hirschfelder, J. O.; Chipman, D. M.

    1972-01-01

    Most theories of exchange perturbations would give the exact energy and wave function if carried out to an infinite order. However, the different methods give different values for the second-order energy, and different values for E(1), the expectation value of the Hamiltonian corresponding to the zeroth- plus first-order wave function. In the presented paper, it is shown that the zeroth- plus first-order wave function obtained by optimizing the basic equation which is used in most exchange perturbation treatments is the exact wave function for the perturbation system and E(1) is the exact energy.

  2. Kuznetsov-Ma waves train generation in a left-handed material

    NASA Astrophysics Data System (ADS)

    Atangana, Jacques; Giscard Onana Essama, Bedel; Biya-Motto, Frederick; Mokhtari, Bouchra; Cherkaoui Eddeqaqi, Noureddine; Crépin Kofane, Timoléon

    2015-03-01

    We analyze the behavior of an electromagnetic wave which propagates in a left-handed material. Second-order dispersion and cubic-quintic nonlinearities are considered. This behavior of an electromagnetic wave is modeled by a nonlinear Schrödinger equation which is solved by collective coordinates theory in order to characterize the light pulse intensity profile. More so, a specific frequency range has been outlined where electromagnetic wave behavior will be investigated. The perfect combination of second-order dispersion and cubic nonlinearity leads to a robust soliton. When the quintic nonlinearity comes into play, it provokes strong and long internal perturbations which lead to Benjamin-Feir instability. This phenomenon, also called modulational instability, induces appearance of a Kuznetsov-Ma waves train. We numerically verify the validity of Kuznetsov-Ma theory by presenting physical conditions which lead to Kuznetsov-Ma waves train generation. Thereafter, some properties of such waves train are also verified.

  3. Second Order Accurate Finite Difference Methods

    DTIC Science & Technology

    1984-08-20

    34Nonlinear Modulation of Torsional Waves in Elastic Rods," 3. Phys. Soc. Japan, V. 42, No. 6, pp. 2056-2064, 1977. 10. S. S. Antman and T. Liu. "Travelling...waves in a circular rod. The equations have been solved for coupling effects in torsional and longitudinal waves. Antman and Liu (10) have studied

  4. On solutions of the fifth-order dispersive equations with porous medium type non-linearity

    NASA Astrophysics Data System (ADS)

    Kocak, Huseyin; Pinar, Zehra

    2018-07-01

    In this work, we focus on obtaining the exact solutions of the fifth-order semi-linear and non-linear dispersive partial differential equations, which have the second-order diffusion-like (porous-type) non-linearity. The proposed equations were not studied in the literature in the sense of the exact solutions. We reveal solutions of the proposed equations using the classical Riccati equations method. The obtained exact solutions, which can play a key role to simulate non-linear waves in the medium with dispersion and diffusion, are illustrated and discussed in details.

  5. Numerical solution of the generalized, dissipative KdV-RLW-Rosenau equation with a compact method

    NASA Astrophysics Data System (ADS)

    Apolinar-Fernández, Alejandro; Ramos, J. I.

    2018-07-01

    The nonlinear dynamics of the one-dimensional, generalized Korteweg-de Vries-regularized-long wave-Rosenau (KdV-RLW-Rosenau) equation with second- and fourth-order dissipative terms subject to initial Gaussian conditions is analyzed numerically by means of three-point, fourth-order accurate, compact finite differences for the discretization of the spatial derivatives and a trapezoidal method for time integration. By means of a Fourier analysis and global integration techniques, it is shown that the signs of both the fourth-order dissipative and the mixed fifth-order derivative terms must be negative. It is also shown that an increase of either the linear drift or the nonlinear convection coefficients results in an increase of the steepness, amplitude and speed of the right-propagating wave, whereas the speed and amplitude of the wave decrease as the power of the nonlinearity is increased, if the amplitude of the initial Gaussian condition is equal to or less than one. It is also shown that the wave amplitude and speed decrease and the curvature of the wave's trajectory increases as the coefficients of the second- and fourth-order dissipative terms are increased, while an increase of the RLW coefficient was found to decrease both the damping and the phase velocity, and generate oscillations behind the wave. For some values of the coefficients of both the fourth-order dissipative and the Rosenau terms, it has been found that localized dispersion shock waves may form in the leading part of the right-propagating wave, and that the formation of a train of solitary waves that result from the breakup of the initial Gaussian conditions only occurs in the absence of both Rosenau's, Kortweg-de Vries's and second- and fourth-order dissipative terms, and for some values of the amplitude and width of the initial condition and the RLW coefficient. It is also shown that negative values of the KdV term result in steeper, larger amplitude and faster waves and a train of oscillations behind the wave, whereas positive values of that coefficient may result in negative phase and group velocities, no wave breakup and oscillations ahead of the right-propagating wave.

  6. A modified and stable version of a perfectly matched layer technique for the 3-d second order wave equation in time domain with an application to aeroacoustics

    PubMed Central

    Kaltenbacher, Barbara; Kaltenbacher, Manfred; Sim, Imbo

    2013-01-01

    We consider the second order wave equation in an unbounded domain and propose an advanced perfectly matched layer (PML) technique for its efficient and reliable simulation. In doing so, we concentrate on the time domain case and use the finite-element (FE) method for the space discretization. Our un-split-PML formulation requires four auxiliary variables within the PML region in three space dimensions. For a reduced version (rPML), we present a long time stability proof based on an energy analysis. The numerical case studies and an application example demonstrate the good performance and long time stability of our formulation for treating open domain problems. PMID:23888085

  7. Variational modelling of extreme waves through oblique interaction of solitary waves: application to Mach reflection

    NASA Astrophysics Data System (ADS)

    Gidel, Floriane; Bokhove, Onno; Kalogirou, Anna

    2017-01-01

    In this work, we model extreme waves that occur due to Mach reflection through the intersection of two obliquely incident solitary waves. For a given range of incident angles and amplitudes, the Mach stem wave grows linearly in length and amplitude, reaching up to 4 times the amplitude of the incident waves. A variational approach is used to derive the bidirectional Benney-Luke equations, an asymptotic equivalent of the three-dimensional potential-flow equations modelling water waves. This nonlinear and weakly dispersive model has the advantage of allowing wave propagation in two horizontal directions, which is not the case with the unidirectional Kadomtsev-Petviashvili (KP) equation used in most previous studies. A variational Galerkin finite-element method is applied to solve the system numerically in Firedrake with a second-order Störmer-Verlet temporal integration scheme, in order to obtain stable simulations that conserve the overall mass and energy of the system. Using this approach, we are able to get close to the 4-fold amplitude amplification predicted by Miles.

  8. Dispersion relations of elastic waves in one-dimensional piezoelectric/piezomagnetic phononic crystal with functionally graded interlayers.

    PubMed

    Guo, Xiao; Wei, Peijun; Lan, Man; Li, Li

    2016-08-01

    The effects of functionally graded interlayers on dispersion relations of elastic waves in a one-dimensional piezoelectric/piezomagnetic phononic crystal are studied in this paper. First, the state transfer equation of the functionally graded interlayer is derived from the motion equation by the reduction of order (from second order to first order). The transfer matrix of the functionally graded interlayer is obtained by solving the state transfer equation with the spatial-varying coefficient. Based on the transfer matrixes of the piezoelectric slab, the piezomagnetic slab and the functionally graded interlayers, the total transfer matrix of a single cell is obtained. Further, the Bloch theorem is used to obtain the resultant dispersion equations of in-plane and anti-plane Bloch waves. The dispersion equations are solved numerically and the numerical results are shown graphically. Five kinds of profiles of functionally graded interlayers between a piezoelectric slab and a piezomagnetic slab are considered. It is shown that the functionally graded interlayers have evident influences on the dispersion curves and the band gaps. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Exact analytic solution of position-dependent mass Schrödinger equation

    NASA Astrophysics Data System (ADS)

    Rajbongshi, Hangshadhar

    2018-03-01

    Exact analytic solution of position-dependent mass Schrödinger equation is generated by using extended transformation, a method of mapping a known system into a new system equipped with energy eigenvalues and corresponding wave functions. First order transformation is performed on D-dimensional radial Schrödinger equation with constant mass by taking trigonometric Pöschl-Teller potential as known system. The exactly solvable potentials with position-dependent mass generated for different choices of mass functions through first order transformation are also taken as known systems in the second order transformation performed on D-dimensional radial position-dependent mass Schrödinger equation. The solutions are fitted for "Zhu and Kroemer" ordering of ambiguity. All the wave functions corresponding to nonzero energy eigenvalues are normalizable. The new findings are that the normalizability condition of the wave functions remains independent of mass functions, and some of the generated potentials show a family relationship among themselves where power law potentials also get related to non-power law potentials and vice versa through the transformation.

  10. Three-dimensional seismic depth migration

    NASA Astrophysics Data System (ADS)

    Zhou, Hongbo

    1998-12-01

    One-pass 3-D modeling and migration for poststack seismic data may be implemented by replacing the traditional 45sp° one-way wave equation (a third-order partial differential equation) with a pair of second and first order partial differential equations. Except for an extra correction term, the resulting second order equation has a form similar to Claerbout's 15sp° one-way wave equation, which is known to have a nearly circular horizontal impulse response. In this approach, there is no need to compensate for splitting errors. Numerical tests on synthetic data show that this algorithm has the desirable attributes of being second-order in accuracy and economical to solve. A modification of the Crank-Nicholson implementation maintains stability. Absorbing boundary conditions play an important role in one-way wave extrapolations by reducing reflections at grid edges. Clayton and Engquist's 2-D absorbing boundary conditions for one-way wave extrapolation by depth-stepping in the frequency domain are extended to 3-D using paraxial approximations of the scalar wave equation. Internal consistency is retained by incorporating the interior extrapolation equation with the absorbing boundary conditions. Numerical schemes are designed to make the proposed absorbing boundary conditions both mathematically correct and efficient with negligible extra cost. Synthetic examples illustrate the effectiveness of the algorithm for extrapolation with the 3-D 45sp° one-way wave equation. Frequency-space domain Butterworth and Chebyshev dip filters are implemented. By regrouping the product terms in the filter transfer function into summations, a cascaded (serial) Butterworth dip filter can be made parallel. A parallel Chebyshev dip filter can be similarly obtained, and has the same form as the Butterworth filter; but has different coeffcients. One of the advantages of the Chebyshev filter is that it has a sharper transition zone than that of Butterworth filter of the same order. Both filters are incorporated into 3-D one-way frequency-space depth migration for evanescent energy removal and for phase compensation of splitting errors; a single filter achieves both goals. Synthetic examples illustrate the behavior of the parallel filters. For a given order of filter, the cost of the Butterworth and Chebyshev filters is the same. A Chebyshev filter is more effective for phase compensation than the Butterworth filter of the same order, at the expense of some wavenumber-dependent amplitude ripples. An analytical formula for geometrical spreading is derived for a horizontally layered transversely isotropic medium with a vertical symmetry axis. Under this expression, geometrical spreading can be determined only by the anisotropic parameters in the first layer, the traveltime derivatives, and source-receiver offset. An explicit, numerically feasible expression for geometrical spreading can be further obtained by considering some of the special cases of transverse isotropy, such as weak anisotropy or elliptic anisotropy. Therefore, with the techniques of non-hyerbolic moveout for transverse isotropic media, geometrical spreading can be calculated by using picked traveltimes of primary P-wave reflections without having to know the actual parameters in the deeper subsurface; no ray tracing is needed. Synthetic examples verify the algorithm and show that it is numerically feasible for calculation of geometrical spreading.

  11. Breather solutions of a fourth-order nonlinear Schrödinger equation in the degenerate, soliton, and rogue wave limits

    NASA Astrophysics Data System (ADS)

    Chowdury, Amdad; Krolikowski, Wieslaw; Akhmediev, N.

    2017-10-01

    We present one- and two-breather solutions of the fourth-order nonlinear Schrödinger equation. With several parameters to play with, the solution may take a variety of forms. We consider most of these cases including the general form and limiting cases when the modulation frequencies are 0 or coincide. The zero-frequency limit produces a combination of breather-soliton structures on a constant background. The case of equal modulation frequencies produces a degenerate solution that requires a special technique for deriving. A zero-frequency limit of this degenerate solution produces a rational second-order rogue wave solution with a stretching factor involved. Taking, in addition, the zero limit of the stretching factor transforms the second-order rogue waves into a soliton. Adding a differential shift in the degenerate solution results in structural changes in the wave profile. Moreover, the zero-frequency limit of the degenerate solution with differential shift results in a rogue wave triplet. The zero limit of the stretching factor in this solution, in turn, transforms the triplet into a singlet plus a low-amplitude soliton on the background. A large value of the differential shift parameter converts the triplet into a pure singlet.

  12. Breather solutions of a fourth-order nonlinear Schrödinger equation in the degenerate, soliton, and rogue wave limits.

    PubMed

    Chowdury, Amdad; Krolikowski, Wieslaw; Akhmediev, N

    2017-10-01

    We present one- and two-breather solutions of the fourth-order nonlinear Schrödinger equation. With several parameters to play with, the solution may take a variety of forms. We consider most of these cases including the general form and limiting cases when the modulation frequencies are 0 or coincide. The zero-frequency limit produces a combination of breather-soliton structures on a constant background. The case of equal modulation frequencies produces a degenerate solution that requires a special technique for deriving. A zero-frequency limit of this degenerate solution produces a rational second-order rogue wave solution with a stretching factor involved. Taking, in addition, the zero limit of the stretching factor transforms the second-order rogue waves into a soliton. Adding a differential shift in the degenerate solution results in structural changes in the wave profile. Moreover, the zero-frequency limit of the degenerate solution with differential shift results in a rogue wave triplet. The zero limit of the stretching factor in this solution, in turn, transforms the triplet into a singlet plus a low-amplitude soliton on the background. A large value of the differential shift parameter converts the triplet into a pure singlet.

  13. The Extended Parabolic Equation Method and Implication of Results for Atmospheric Millimeter-Wave and Optical Propagation

    NASA Technical Reports Server (NTRS)

    Manning, Robert M.

    2004-01-01

    The extended wide-angle parabolic wave equation applied to electromagnetic wave propagation in random media is considered. A general operator equation is derived which gives the statistical moments of an electric field of a propagating wave. This expression is used to obtain the first and second order moments of the wave field and solutions are found that transcend those which incorporate the full paraxial approximation at the outset. Although these equations can be applied to any propagation scenario that satisfies the conditions of application of the extended parabolic wave equation, the example of propagation through atmospheric turbulence is used. It is shown that in the case of atmospheric wave propagation and under the Markov approximation (i.e., the -correlation of the fluctuations in the direction of propagation), the usual parabolic equation in the paraxial approximation is accurate even at millimeter wavelengths. The methodology developed here can be applied to any qualifying situation involving random propagation through turbid or plasma environments that can be represented by a spectral density of permittivity fluctuations.

  14. Assessment of First- and Second-Order Wave-Excitation Load Models for Cylindrical Substructures: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pereyra, Brandon; Wendt, Fabian; Robertson, Amy

    2017-03-09

    The hydrodynamic loads on an offshore wind turbine's support structure present unique engineering challenges for offshore wind. Two typical approaches used for modeling these hydrodynamic loads are potential flow (PF) and strip theory (ST), the latter via Morison's equation. This study examines the first- and second-order wave-excitation surge forces on a fixed cylinder in regular waves computed by the PF and ST approaches to (1) verify their numerical implementations in HydroDyn and (2) understand when the ST approach breaks down. The numerical implementation of PF and ST in HydroDyn, a hydrodynamic time-domain solver implemented as a module in the FASTmore » wind turbine engineering tool, was verified by showing the consistency in the first- and second-order force output between the two methods across a range of wave frequencies. ST is known to be invalid at high frequencies, and this study investigates where the ST solution diverges from the PF solution. Regular waves across a range of frequencies were run in HydroDyn for a monopile substructure. As expected, the solutions for the first-order (linear) wave-excitation loads resulting from these regular waves are similar for PF and ST when the diameter of the cylinder is small compared to the length of the waves (generally when the diameter-to-wavelength ratio is less than 0.2). The same finding applies to the solutions for second-order wave-excitation loads, but for much smaller diameter-to-wavelength ratios (based on wavelengths of first-order waves).« less

  15. Assessment of First- and Second-Order Wave-Excitation Load Models for Cylindrical Substructures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pereyra, Brandon; Wendt, Fabian; Robertson, Amy

    2016-07-01

    The hydrodynamic loads on an offshore wind turbine's support structure present unique engineering challenges for offshore wind. Two typical approaches used for modeling these hydrodynamic loads are potential flow (PF) and strip theory (ST), the latter via Morison's equation. This study examines the first- and second-order wave-excitation surge forces on a fixed cylinder in regular waves computed by the PF and ST approaches to (1) verify their numerical implementations in HydroDyn and (2) understand when the ST approach breaks down. The numerical implementation of PF and ST in HydroDyn, a hydrodynamic time-domain solver implemented as a module in the FASTmore » wind turbine engineering tool, was verified by showing the consistency in the first- and second-order force output between the two methods across a range of wave frequencies. ST is known to be invalid at high frequencies, and this study investigates where the ST solution diverges from the PF solution. Regular waves across a range of frequencies were run in HydroDyn for a monopile substructure. As expected, the solutions for the first-order (linear) wave-excitation loads resulting from these regular waves are similar for PF and ST when the diameter of the cylinder is small compared to the length of the waves (generally when the diameter-to-wavelength ratio is less than 0.2). The same finding applies to the solutions for second-order wave-excitation loads, but for much smaller diameter-to-wavelength ratios (based on wavelengths of first-order waves).« less

  16. Application of fast Fourier transforms to the direct solution of a class of two-dimensional separable elliptic equations on the sphere

    NASA Technical Reports Server (NTRS)

    Moorthi, Shrinivas; Higgins, R. W.

    1993-01-01

    An efficient, direct, second-order solver for the discrete solution of a class of two-dimensional separable elliptic equations on the sphere (which generally arise in implicit and semi-implicit atmospheric models) is presented. The method involves a Fourier transformation in longitude and a direct solution of the resulting coupled second-order finite-difference equations in latitude. The solver is made efficient by vectorizing over longitudinal wave-number and by using a vectorized fast Fourier transform routine. It is evaluated using a prescribed solution method and compared with a multigrid solver and the standard direct solver from FISHPAK.

  17. Dynamics of nonautonomous discrete rogue wave solutions for an Ablowitz-Musslimani equation with PT-symmetric potential.

    PubMed

    Yu, Fajun

    2017-02-01

    Starting from a discrete spectral problem, we derive a hierarchy of nonlinear discrete equations which include the Ablowitz-Ladik (AL) equation. We analytically study the discrete rogue-wave (DRW) solutions of AL equation with three free parameters. The trajectories of peaks and depressions of profiles for the first- and second-order DRWs are produced by means of analytical and numerical methods. In particular, we study the solutions with dispersion in parity-time ( PT) symmetric potential for Ablowitz-Musslimani equation. And we consider the non-autonomous DRW solutions, parameters controlling and their interactions with variable coefficients, and predict the long-living rogue wave solutions. Our results might provide useful information for potential applications of synthetic PT symmetric systems in nonlinear optics and condensed matter physics.

  18. Fast, purely growing collisionless reconnection as an eigenfunction problem related to but not involving linear whistler waves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bellan, Paul M.

    If either finite electron inertia or finite resistivity is included in 2D magnetic reconnection, the two-fluid equations become a pair of second-order differential equations coupling the out-of-plane magnetic field and vector potential to each other to form a fourth-order system. The coupling at an X-point is such that out-of-plane even-parity electric and odd-parity magnetic fields feed off each other to produce instability if the scale length on which the equilibrium magnetic field changes is less than the ion skin depth. The instability growth rate is given by an eigenvalue of the fourth-order system determined by boundary and symmetry conditions. Themore » instability is a purely growing mode, not a wave, and has growth rate of the order of the whistler frequency. The spatial profile of both the out-of-plane electric and magnetic eigenfunctions consists of an inner concave region having extent of the order of the electron skin depth, an intermediate convex region having extent of the order of the equilibrium magnetic field scale length, and a concave outer exponentially decaying region. If finite electron inertia and resistivity are not included, the inner concave region does not exist and the coupled pair of equations reduces to a second-order differential equation having non-physical solutions at an X-point.« less

  19. Prestack reverse time migration for tilted transversely isotropic media

    NASA Astrophysics Data System (ADS)

    Jang, Seonghyung; Hien, Doan Huy

    2013-04-01

    According to having interest in unconventional resource plays, anisotropy problem is naturally considered as an important step for improving the seismic image quality. Although it is well known prestack depth migration for the seismic reflection data is currently one of the powerful tools for imaging complex geological structures, it may lead to migration error without considering anisotropy. Asymptotic analysis of wave propagation in transversely isotropic (TI) media yields a dispersion relation of couple P- and SV wave modes that can be converted to a fourth order scalar partial differential equation (PDE). By setting the shear wave velocity equal zero, the fourth order PDE, called an acoustic wave equation for TI media, can be reduced to couple of second order PDE systems and we try to solve the second order PDE by the finite difference method (FDM). The result of this P wavefield simulation is kinematically similar to elastic and anisotropic wavefield simulation. We develop prestack depth migration algorithm for tilted transversely isotropic media using reverse time migration method (RTM). RTM is a method for imaging the subsurface using inner product of source wavefield extrapolation in forward and receiver wavefield extrapolation in backward. We show the subsurface image in TTI media using the inner product of partial derivative wavefield with respect to physical parameters and observation data. Since the partial derivative wavefields with respect to the physical parameters require extremely huge computing time, so we implemented the imaging condition by zero lag crosscorrelation of virtual source and back propagating wavefield instead of partial derivative wavefields. The virtual source is calculated directly by solving anisotropic acoustic wave equation, the back propagating wavefield on the other hand is calculated by the shot gather used as the source function in the anisotropic acoustic wave equation. According to the numerical model test for a simple geological model including syncline and anticline, the prestack depth migration using TTI-RTM in weak anisotropic media shows the subsurface image is similar to the true geological model used to generate the shot gathers.

  20. Self-propulsion of a planar electric or magnetic microbot immersed in a polar viscous fluid

    NASA Astrophysics Data System (ADS)

    Felderhof, B. U.

    2011-05-01

    A planar sheet immersed in an electrically polar liquid like water can propel itself by means of a plane wave charge density propagating in the sheet. The corresponding running electric wave polarizes the fluid and causes an electrical torque density to act on the fluid. The sheet is convected by the fluid motion resulting from the conversion of rotational particle motion, generated by the torque density, into translational fluid motion by the mechanism of friction and spin diffusion. Similarly, a planar sheet immersed in a magnetic ferrofluid can propel itself by means of a plane wave current density in the sheet and the torque density acting on the fluid corresponding to the running wave magnetic field and magnetization. The effect is studied on the basis of the micropolar fluid equations of motion and Maxwell’s equations of electrostatics or magnetostatics, respectively. An analytic expression is derived for the velocity of the sheet by perturbation theory to second order in powers of the amplitude of the driving charge or current density. Under the assumption that the equilibrium magnetic equation of state may be used in linearized form and that higher harmonics than the first may be neglected, a set of self-consistent integral equations is derived which can be solved numerically by iteration. In typical situations the second-order perturbation theory turns out to be quite accurate.

  1. Numerical modeling of surface wave development under the action of wind

    NASA Astrophysics Data System (ADS)

    Chalikov, Dmitry

    2018-06-01

    The numerical modeling of two-dimensional surface wave development under the action of wind is performed. The model is based on three-dimensional equations of potential motion with a free surface written in a surface-following nonorthogonal curvilinear coordinate system in which depth is counted from a moving surface. A three-dimensional Poisson equation for the velocity potential is solved iteratively. A Fourier transform method, a second-order accuracy approximation of vertical derivatives on a stretched vertical grid and fourth-order Runge-Kutta time stepping are used. Both the input energy to waves and dissipation of wave energy are calculated on the basis of earlier developed and validated algorithms. A one-processor version of the model for PC allows us to simulate an evolution of the wave field with thousands of degrees of freedom over thousands of wave periods. A long-time evolution of a two-dimensional wave structure is illustrated by the spectra of wave surface and the input and output of energy.

  2. A fourth order accurate finite difference scheme for the computation of elastic waves

    NASA Technical Reports Server (NTRS)

    Bayliss, A.; Jordan, K. E.; Lemesurier, B. J.; Turkel, E.

    1986-01-01

    A finite difference for elastic waves is introduced. The model is based on the first order system of equations for the velocities and stresses. The differencing is fourth order accurate on the spatial derivatives and second order accurate in time. The model is tested on a series of examples including the Lamb problem, scattering from plane interf aces and scattering from a fluid-elastic interface. The scheme is shown to be effective for these problems. The accuracy and stability is insensitive to the Poisson ratio. For the class of problems considered here it is found that the fourth order scheme requires for two-thirds to one-half the resolution of a typical second order scheme to give comparable accuracy.

  3. Second harmonic generation of q-Gaussian laser beam in preformed collisional plasma channel with nonlinear absorption

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gupta, Naveen, E-mail: naveens222@rediffmail.com; Singh, Arvinder, E-mail: arvinder6@lycos.com; Singh, Navpreet, E-mail: navpreet.nit@gmail.com

    2015-11-15

    This paper presents a scheme for second harmonic generation of an intense q-Gaussian laser beam in a preformed parabolic plasma channel, where collisional nonlinearity is operative with nonlinear absorption. Due to nonuniform irradiance of intensity along the wavefront of the laser beam, nonuniform Ohmic heating of plasma electrons takes place. Due to this nonuniform heating of plasma, the laser beam gets self-focused and produces strong density gradients in the transverse direction. The generated density gradients excite an electron plasma wave at pump frequency that interacts with the pump beam to produce its second harmonics. The formulation is based on amore » numerical solution of the nonlinear Schrodinger wave equation in WKB approximation followed by moment theory approach. A second order nonlinear differential equation governing the propagation dynamics of the laser beam with distance of propagation has been obtained and is solved numerically by Runge Kutta fourth order technique. The effect of nonlinear absorption on self-focusing of the laser beam and conversion efficiency of its second harmonics has been investigated.« less

  4. A spectral tau algorithm based on Jacobi operational matrix for numerical solution of time fractional diffusion-wave equations

    NASA Astrophysics Data System (ADS)

    Bhrawy, A. H.; Doha, E. H.; Baleanu, D.; Ezz-Eldien, S. S.

    2015-07-01

    In this paper, an efficient and accurate spectral numerical method is presented for solving second-, fourth-order fractional diffusion-wave equations and fractional wave equations with damping. The proposed method is based on Jacobi tau spectral procedure together with the Jacobi operational matrix for fractional integrals, described in the Riemann-Liouville sense. The main characteristic behind this approach is to reduce such problems to those of solving systems of algebraic equations in the unknown expansion coefficients of the sought-for spectral approximations. The validity and effectiveness of the method are demonstrated by solving five numerical examples. Numerical examples are presented in the form of tables and graphs to make comparisons with the results obtained by other methods and with the exact solutions more easier.

  5. Semi-Analytic Reconstruction of Flux in Finite Volume Formulations

    NASA Technical Reports Server (NTRS)

    Gnoffo, Peter A.

    2006-01-01

    Semi-analytic reconstruction uses the analytic solution to a second-order, steady, ordinary differential equation (ODE) to simultaneously evaluate the convective and diffusive flux at all interfaces of a finite volume formulation. The second-order ODE is itself a linearized approximation to the governing first- and second- order partial differential equation conservation laws. Thus, semi-analytic reconstruction defines a family of formulations for finite volume interface fluxes using analytic solutions to approximating equations. Limiters are not applied in a conventional sense; rather, diffusivity is adjusted in the vicinity of changes in sign of eigenvalues in order to achieve a sufficiently small cell Reynolds number in the analytic formulation across critical points. Several approaches for application of semi-analytic reconstruction for the solution of one-dimensional scalar equations are introduced. Results are compared with exact analytic solutions to Burger s Equation as well as a conventional, upwind discretization using Roe s method. One approach, the end-point wave speed (EPWS) approximation, is further developed for more complex applications. One-dimensional vector equations are tested on a quasi one-dimensional nozzle application. The EPWS algorithm has a more compact difference stencil than Roe s algorithm but reconstruction time is approximately a factor of four larger than for Roe. Though both are second-order accurate schemes, Roe s method approaches a grid converged solution with fewer grid points. Reconstruction of flux in the context of multi-dimensional, vector conservation laws including effects of thermochemical nonequilibrium in the Navier-Stokes equations is developed.

  6. A shifted Jacobi collocation algorithm for wave type equations with non-local conservation conditions

    NASA Astrophysics Data System (ADS)

    Doha, Eid H.; Bhrawy, Ali H.; Abdelkawy, Mohammed A.

    2014-09-01

    In this paper, we propose an efficient spectral collocation algorithm to solve numerically wave type equations subject to initial, boundary and non-local conservation conditions. The shifted Jacobi pseudospectral approximation is investigated for the discretization of the spatial variable of such equations. It possesses spectral accuracy in the spatial variable. The shifted Jacobi-Gauss-Lobatto (SJ-GL) quadrature rule is established for treating the non-local conservation conditions, and then the problem with its initial and non-local boundary conditions are reduced to a system of second-order ordinary differential equations in temporal variable. This system is solved by two-stage forth-order A-stable implicit RK scheme. Five numerical examples with comparisons are given. The computational results demonstrate that the proposed algorithm is more accurate than finite difference method, method of lines and spline collocation approach

  7. Double-Wronskian solitons and rogue waves for the inhomogeneous nonlinear Schrödinger equation in an inhomogeneous plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Wen-Rong; Tian, Bo, E-mail: tian_bupt@163.com; Jiang, Yan

    2014-04-15

    Plasmas are the main constituent of the Universe and the cause of a vast variety of astrophysical, space and terrestrial phenomena. The inhomogeneous nonlinear Schrödinger equation is hereby investigated, which describes the propagation of an electron plasma wave packet with a large wavelength and small amplitude in a medium with a parabolic density and constant interactional damping. By virtue of the double Wronskian identities, the equation is proved to possess the double-Wronskian soliton solutions. Analytic one- and two-soliton solutions are discussed. Amplitude and velocity of the soliton are related to the damping coefficient. Asymptotic analysis is applied for us tomore » investigate the interaction between the two solitons. Overtaking interaction, head-on interaction and bound state of the two solitons are given. From the non-zero potential Lax pair, the first- and second-order rogue-wave solutions are constructed via a generalized Darboux transformation, and influence of the linear and parabolic density profiles on the background density and amplitude of the rogue wave is discussed. -- Highlights: •Double-Wronskian soliton solutions are obtained and proof is finished by virtue of some double Wronskian identities. •Asymptotic analysis is applied for us to investigate the interaction between the two solitons. •First- and second-order rogue-wave solutions are constructed via a generalized Darboux transformation. •Influence of the linear and parabolic density profiles on the background density and amplitude of the rogue wave is discussed.« less

  8. Nonminimal couplings, gravitational waves, and torsion in Horndeski's theory

    NASA Astrophysics Data System (ADS)

    Barrientos, José; Cordonier-Tello, Fabrizio; Izaurieta, Fernando; Medina, Perla; Narbona, Daniela; Rodríguez, Eduardo; Valdivia, Omar

    2017-10-01

    The Horndeski Lagrangian brings together all possible interactions between gravity and a scalar field that yield second-order field equations in four-dimensional spacetime. As originally proposed, it only addresses phenomenology without torsion, which is a non-Riemannian feature of geometry. Since torsion can potentially affect interesting phenomena such as gravitational waves and early universe inflation, in this paper we allow torsion to exist and propagate within the Horndeski framework. To achieve this goal, we cast the Horndeski Lagrangian in Cartan's first-order formalism and introduce wave operators designed to act covariantly on p -form fields that carry Lorentz indices. We find that nonminimal couplings and second-order derivatives of the scalar field in the Lagrangian are indeed generic sources of torsion. Metric perturbations couple to the background torsion, and new torsional modes appear. These may be detected via gravitational waves but not through Yang-Mills gauge bosons.

  9. Gravitational radiation from compact binary systems: Gravitational waveforms and energy loss to second post-Newtonian order

    NASA Astrophysics Data System (ADS)

    Will, Clifford M.; Wiseman, Alan G.

    1996-10-01

    We derive the gravitational waveform and gravitational-wave energy flux generated by a binary star system of compact objects (neutron stars or black holes), accurate through second post-Newtonian order (O[(v/c)4]=O[(Gm/rc2)2]) beyond the lowest-order quadrupole approximation. We cast the Einstein equations into the form of a flat-spacetime wave equation together with a harmonic gauge condition, and solve it formally as a retarded integral over the past null cone of the chosen field point. The part of this integral that involves the matter sources and the near-zone gravitational field is evaluated in terms of multipole moments using standard techniques; the remainder of the retarded integral, extending over the radiation zone, is evaluated in a novel way. The result is a manifestly convergent and finite procedure for calculating gravitational radiation to arbitrary orders in a post-Newtonian expansion. Through second post-Newtonian order, the radiation is also shown to propagate toward the observer along true null rays of the asymptotically Schwarzschild spacetime, despite having been derived using flat-spacetime wave equations. The method cures defects that plagued previous ``brute-force'' slow-motion approaches to the generation of gravitational radiation, and yields results that agree perfectly with those recently obtained by a mixed post-Minkowskian post-Newtonian method. We display explicit formulas for the gravitational waveform and the energy flux for two-body systems, both in arbitrary orbits and in circular orbits. In an appendix, we extend the formalism to bodies with finite spatial extent, and derive the spin corrections to the waveform and energy loss.

  10. Canonical structures for dispersive waves in shallow water

    NASA Astrophysics Data System (ADS)

    Neyzi, Fahrünisa; Nutku, Yavuz

    1987-07-01

    The canonical Hamiltonian structure of the equations of fluid dynamics obtained in the Boussinesq approximation are considered. New variational formulations of these equations are proposed and it is found that, as in the case of the KdV equation and the equations governing long waves in shallow water, they are degenerate Lagrangian systems. Therefore, in order to cast these equations into canonical form it is again necessary to use Dirac's theory of constraints. It is found that there are primary and secondary constraints which are second class and it is possible to construct the Hamiltonian in terms of canonical variables. Among the examples of Boussinesq equations that are discussed are the equations of Whitham-Broer-Kaup which Kupershmidt has recently expressed in symmetric form and shown to admit tri-Hamiltonian structure.

  11. Generation of long subharmonic internal waves by surface waves

    NASA Astrophysics Data System (ADS)

    Tahvildari, Navid; Kaihatu, James M.; Saric, William S.

    2016-10-01

    A new set of Boussinesq equations is derived to study the nonlinear interactions between long waves in a two-layer fluid. The fluid layers are assumed to be homogeneous, inviscid, incompressible, and immiscible. Based on the Boussinesq equations, an analytical model is developed using a second-order perturbation theory and applied to examine the transient evolution of a resonant triad composed of a surface wave and two oblique subharmonic internal waves. Wave damping due to weak viscosity in both layers is considered. The Boussinesq equations and the analytical model are verified. In contrast to previous studies which focus on short internal waves, we examine long waves and investigate some previously unexplored characteristics of this class of triad interaction. In viscous fluids, surface wave amplitudes must be larger than a threshold to overcome viscous damping and trigger internal waves. The dependency of this critical amplitude as well as the growth and damping rates of internal waves on important parameters in a two-fluid system, namely the directional angle of the internal waves, depth, density, and viscosity ratio of the fluid layers, and surface wave amplitude and frequency is investigated.

  12. Modulational instability, beak-shaped rogue waves, multi-dark-dark solitons and dynamics in pair-transition-coupled nonlinear Schrödinger equations.

    PubMed

    Zhang, Guoqiang; Yan, Zhenya; Wen, Xiao-Yong

    2017-07-01

    The integrable coupled nonlinear Schrödinger equations with four-wave mixing are investigated. We first explore the conditions for modulational instability of continuous waves of this system. Secondly, based on the generalized N -fold Darboux transformation (DT), beak-shaped higher-order rogue waves (RWs) and beak-shaped higher-order rogue wave pairs are derived for the coupled model with attractive interaction in terms of simple determinants. Moreover, we derive the simple multi-dark-dark and kink-shaped multi-dark-dark solitons for the coupled model with repulsive interaction through the generalizing DT. We explore their dynamics and classifications by different kinds of spatial-temporal distribution structures including triangular, pentagonal, 'claw-like' and heptagonal patterns. Finally, we perform the numerical simulations to predict that some dark solitons and RWs are stable enough to develop within a short time. The results would enrich our understanding on nonlinear excitations in many coupled nonlinear wave systems with transition coupling effects.

  13. 3D simulation for solitons used in optical fibers

    NASA Astrophysics Data System (ADS)

    Vasile, F.; Tebeica, C. M.; Schiopu, P.; Vladescu, M.

    2016-12-01

    In this paper is described 3D simulation for solitions used in optical fibers. In the scientific works is started from nonlinear propagation equation and the solitons represents its solutions. This paper presents the simulation of the fundamental soliton in 3D together with simulation of the second order soliton in 3D. These simulations help in the study of the optical fibers for long distances and in the interactions between the solitons. This study helps the understanding of the nonlinear propagation equation and for nonlinear waves. These 3D simulations are obtained using MATLAB programming language, and we can observe fundamental difference between the soliton and the second order/higher order soliton and in their evolution.

  14. Second-order dissipative hydrodynamics for plasma with chiral asymmetry and vorticity

    NASA Astrophysics Data System (ADS)

    Gorbar, E. V.; Rybalka, D. O.; Shovkovy, I. A.

    2017-05-01

    By making use of the chiral kinetic theory in the relaxation-time approximation, we derive an Israel-Stewart type formulation of the hydrodynamic equations for a chiral relativistic plasma made of neutral particles (e.g., neutrinos). The effects of chiral asymmetry are captured by including an additional continuity equation for the axial charge, as well as the leading-order quantum corrections due to the spin of particles. In a formulation of the chiral kinetic theory used, we introduce a symmetric form of the energy-momentum tensor that is suitable for the description of a weakly nonuniform chiral plasma. By construction, the energy and momentum are conserved to the same leading order in the Planck constant as the kinetic equation itself. By making use of such a chiral kinetic theory and the Chapman-Enskog approach, we obtain a set of second-order dissipative hydrodynamic equations. The effects of the fluid vorticity and velocity fluctuations on the dispersion relations of chiral vortical waves are analyzed.

  15. Effects of the non-extensive parameter on the propagation of ion acoustic waves in five-component cometary plasma system

    NASA Astrophysics Data System (ADS)

    Mahmoud, Abeer A.

    2018-01-01

    Some important evolution nonlinear partial differential equations are derived using the reductive perturbation method for unmagnetized collisionless system of five component plasma. This plasma system is a multi-ion contains negatively and positively charged Oxygen ions (heavy ions), positive Hydrogen ions (lighter ions), hot electrons from solar origin and colder electrons from cometary origin. The positive Hydrogen ion and the two types of electrons obey q-non-extensive distributions. The derived equations have three types of ion acoustic waves, which are soliton waves, shock waves and kink waves. The effects of the non-extensive parameters for the hot electrons, the colder electrons and the Hydrogen ions on the propagation of the envelope waves are studied. The compressive and rarefactive shapes of the three envelope waves appear in this system for the first order of the power of the nonlinearity strength with different values of non-extensive parameters. For the second order, the strength of nonlinearity will increase and the compressive type of the envelope wave only appears.

  16. Semiclassical Wheeler-DeWitt equation: Solutions for long-wavelength fields

    NASA Astrophysics Data System (ADS)

    Salopek, D. S.; Stewart, J. M.; Parry, J.

    1993-07-01

    In the long-wavelength approximation, a general set of semiclassical wave functionals is given for gravity and matter interacting in 3+1 dimensions. In the long-wavelength theory, one neglects second-order spatial gradients in the energy constraint. These solutions satisfy the Hamilton-Jacobi equation, the momentum constraint, and the equation of continuity. It is essential to introduce inhomogeneities to discuss the role of time. The time hypersurface is chosen to be a homogeneous field in the wave functional. It is shown how to introduce tracer particles through a dust field χ into the dynamical system. The formalism can be used to describe stochastic inflation.

  17. A high-order gas-kinetic Navier-Stokes flow solver

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li Qibing, E-mail: lqb@tsinghua.edu.c; Xu Kun, E-mail: makxu@ust.h; Fu Song, E-mail: fs-dem@tsinghua.edu.c

    2010-09-20

    The foundation for the development of modern compressible flow solver is based on the Riemann solution of the inviscid Euler equations. The high-order schemes are basically related to high-order spatial interpolation or reconstruction. In order to overcome the low-order wave interaction mechanism due to the Riemann solution, the temporal accuracy of the scheme can be improved through the Runge-Kutta method, where the dynamic deficiencies in the first-order Riemann solution is alleviated through the sub-step spatial reconstruction in the Runge-Kutta process. The close coupling between the spatial and temporal evolution in the original nonlinear governing equations seems weakened due to itsmore » spatial and temporal decoupling. Many recently developed high-order methods require a Navier-Stokes flux function under piece-wise discontinuous high-order initial reconstruction. However, the piece-wise discontinuous initial data and the hyperbolic-parabolic nature of the Navier-Stokes equations seem inconsistent mathematically, such as the divergence of the viscous and heat conducting terms due to initial discontinuity. In this paper, based on the Boltzmann equation, we are going to present a time-dependent flux function from a high-order discontinuous reconstruction. The theoretical basis for such an approach is due to the fact that the Boltzmann equation has no specific requirement on the smoothness of the initial data and the kinetic equation has the mechanism to construct a dissipative wave structure starting from an initially discontinuous flow condition on a time scale being larger than the particle collision time. The current high-order flux evaluation method is an extension of the second-order gas-kinetic BGK scheme for the Navier-Stokes equations (BGK-NS). The novelty for the easy extension from a second-order to a higher order is due to the simple particle transport and collision mechanism on the microscopic level. This paper will present a hierarchy to construct such a high-order method. The necessity to couple spatial and temporal evolution nonlinearly in the flux evaluation can be clearly observed through the numerical performance of the scheme for the viscous flow computations.« less

  18. Calculating qP-wave traveltimes in 2-D TTI media by high-order fast sweeping methods with a numerical quartic equation solver

    NASA Astrophysics Data System (ADS)

    Han, Song; Zhang, Wei; Zhang, Jie

    2017-09-01

    A fast sweeping method (FSM) determines the first arrival traveltimes of seismic waves by sweeping the velocity model in different directions meanwhile applying a local solver. It is an efficient way to numerically solve Hamilton-Jacobi equations for traveltime calculations. In this study, we develop an improved FSM to calculate the first arrival traveltimes of quasi-P (qP) waves in 2-D tilted transversely isotropic (TTI) media. A local solver utilizes the coupled slowness surface of qP and quasi-SV (qSV) waves to form a quartic equation, and solve it numerically to obtain possible traveltimes of qP-wave. The proposed quartic solver utilizes Fermat's principle to limit the range of the possible solution, then uses the bisection procedure to efficiently determine the real roots. With causality enforced during sweepings, our FSM converges fast in a few iterations, and the exact number depending on the complexity of the velocity model. To improve the accuracy, we employ high-order finite difference schemes and derive the second-order formulae. There is no weak anisotropy assumption, and no approximation is made to the complex slowness surface of qP-wave. In comparison to the traveltimes calculated by a horizontal slowness shooting method, the validity and accuracy of our FSM is demonstrated.

  19. Stability analysis and wave dynamics of an extended hybrid traffic flow model

    NASA Astrophysics Data System (ADS)

    Wang, Yu-Qing; Zhou, Chao-Fan; Li, Wei-Kang; Yan, Bo-Wen; Jia, Bin; Wang, Ji-Xin

    2018-02-01

    The stability analysis and wave dynamic properties of an extended hybrid traffic flow model, WZY model, are intensively studied in this paper. The linear stable condition obtained by the linear stability analysis is presented. Besides, by means of analyzing Korteweg-de Vries equation, we present soliton waves in the metastable region. Moreover, the multiscale perturbation technique is applied to derive the traveling wave solution of the model. Furthermore, by means of performing Darboux transformation, the first-order and second-order doubly-periodic solutions and rational solutions are presented. It can be found that analytical solutions match well with numerical simulations.

  20. Manipulating matter rogue waves and breathers in Bose-Einstein condensates.

    PubMed

    Manikandan, K; Muruganandam, P; Senthilvelan, M; Lakshmanan, M

    2014-12-01

    We construct higher-order rogue wave solutions and breather profiles for the quasi-one-dimensional Gross-Pitaevskii equation with a time-dependent interatomic interaction and external trap through the similarity transformation technique. We consider three different forms of traps: (i) the time-independent expulsive trap, (ii) time-dependent monotonous trap, and (iii) time-dependent periodic trap. Our results show that when we change a parameter appearing in the time-independent or time-dependent trap the second- and third-order rogue waves transform into the first-order-like rogue waves. We also analyze the density profiles of breather solutions. Here we also show that the shapes of the breathers change when we tune the strength of the trap parameter. Our results may help to manage rogue waves experimentally in a BEC system.

  1. Pair density waves in superconducting vortex halos

    NASA Astrophysics Data System (ADS)

    Wang, Yuxuan; Edkins, Stephen D.; Hamidian, Mohammad H.; Davis, J. C. Séamus; Fradkin, Eduardo; Kivelson, Steven A.

    2018-05-01

    We analyze the interplay between a d -wave uniform superconducting and a pair-density-wave (PDW) order parameter in the neighborhood of a vortex. We develop a phenomenological nonlinear sigma model, solve the saddle-point equation for the order-parameter configuration, and compute the resulting local density of states in the vortex halo. The intertwining of the two superconducting orders leads to a charge density modulation with the same periodicity as the PDW, which is twice the period of the charge density wave that arises as a second harmonic of the PDW itself. We discuss key features of the charge density modulation that can be directly compared with recent results from scanning tunneling microscopy and speculate on the role PDW order may play in the global phase diagram of the hole-doped cuprates.

  2. Complete spatial and temporal locking in phase-mismatched second-harmonic generation.

    PubMed

    Fazio, Eugenio; Pettazzi, Federico; Centini, Marco; Chauvet, Mathieu; Belardini, Alessandro; Alonzo, Massimo; Sibilia, Concita; Bertolotti, Mario; Scalora, Micheal

    2009-03-02

    We experimentally demonstrate simultaneous phase and group velocity locking of fundamental and generated second harmonic pulses in Lithium Niobate, under conditions of material phase mismatch. In phase-mismatched, pulsed second harmonic generation in addition to a reflected signal two forward-propagating pulses are also generated at the interface between a linear and a second order nonlinear material: the first pulse results from the solution of the homogeneous wave equation, and propagates at the group velocity expected from material dispersion; the second pulse is the solution of the inhomogeneous wave equation, is phase-locked and trapped by the pump pulse, and follows the pump trajectory. At normal incidence, the normal and phase locked pulses simply trail each other. At oblique incidence, the consequences can be quite dramatic. The homogeneous pulse refracts as predicted by material dispersion and Snell's law, yielding at least two spatially separate second harmonic spots at the medium's exit. We thus report the first experimental results showing that, at oblique incidence, fundamental and phase-locked second harmonic pulses travel with the same group velocity and follow the same trajectory. This is direct evidence that, at least up to first order, the effective dispersion of the phase-locked pulse is similar to the dispersion of the pump pulse.

  3. Nonlinear ultrasonic imaging with X wave

    NASA Astrophysics Data System (ADS)

    Du, Hongwei; Lu, Wei; Feng, Huanqing

    2009-10-01

    X wave has a large depth of field and may have important application in ultrasonic imaging to provide high frame rate (HFR). However, the HFR system suffers from lower spatial resolution. In this paper, a study of nonlinear imaging with X wave is presented to improve the resolution. A theoretical description of realizable nonlinear X wave is reported. The nonlinear field is simulated by solving the KZK nonlinear wave equation with a time-domain difference method. The results show that the second harmonic field of X wave has narrower mainlobe and lower sidelobes than the fundamental field. In order to evaluate the imaging effect with X wave, an imaging model involving numerical calculation of the KZK equation, Rayleigh-Sommerfeld integral, band-pass filtering and envelope detection is constructed to obtain 2D fundamental and second harmonic images of scatters in tissue-like medium. The results indicate that if X wave is used, the harmonic image has higher spatial resolution throughout the entire imaging region than the fundamental image, but higher sidelobes occur as compared to conventional focus imaging. A HFR imaging method with higher spatial resolution is thus feasible provided an apodization method is used to suppress sidelobes.

  4. Breathers and rogue waves in a Heisenberg ferromagnetic spin chain or an alpha helical protein

    NASA Astrophysics Data System (ADS)

    Yang, Jin-Wei; Gao, Yi-Tian; Su, Chuan-Qi; Wang, Qi-Min; Lan, Zhong-Zhou

    2017-07-01

    In this paper, a fourth-order variable-coefficient nonlinear Schrödinger equation for a one-dimensional continuum anisotropic Heisenberg ferromagnetic spin chain or an alpha helical protein has been investigated. Breathers and rogue waves are constructed via the Darboux transformation and generalized Darboux transformation, respectively. Results of the breathers and rogue waves are presented: (1) The first- and second-order Akhmediev breathers and Kuznetsov-Ma solitons are presented with different values of variable coefficients which are related to the energy transfer or higher-order excitations and interactions in the helical protein, or related to the spin excitations resulting from the lowest order continuum approximation and octupole-dipole interaction in a Heisenberg ferromagnetic spin chain, and the nonlinear periodic breathers resulting from the Akhmediev breathers are studied as well; (2) For the first- and second-order rogue waves, we find that they can be split into many similar components when the variable coefficients are polynomial functions of time; (3) Rogue waves can also be split when the variable coefficients are hyperbolic secant functions of time, but the profile of each component in such a case is different.

  5. Solvability of the Initial Value Problem to the Isobe-Kakinuma Model for Water Waves

    NASA Astrophysics Data System (ADS)

    Nemoto, Ryo; Iguchi, Tatsuo

    2017-09-01

    We consider the initial value problem to the Isobe-Kakinuma model for water waves and the structure of the model. The Isobe-Kakinuma model is the Euler-Lagrange equations for an approximate Lagrangian which is derived from Luke's Lagrangian for water waves by approximating the velocity potential in the Lagrangian. The Isobe-Kakinuma model is a system of second order partial differential equations and is classified into a system of nonlinear dispersive equations. Since the hypersurface t=0 is characteristic for the Isobe-Kakinuma model, the initial data have to be restricted in an infinite dimensional manifold for the existence of the solution. Under this necessary condition and a sign condition, which corresponds to a generalized Rayleigh-Taylor sign condition for water waves, on the initial data, we show that the initial value problem is solvable locally in time in Sobolev spaces. We also discuss the linear dispersion relation to the model.

  6. Simplified derivation of the gravitational wave stress tensor from the linearized Einstein field equations.

    PubMed

    Balbus, Steven A

    2016-10-18

    A conserved stress energy tensor for weak field gravitational waves propagating in vacuum is derived directly from the linearized general relativistic wave equation alone, for an arbitrary gauge. In any harmonic gauge, the form of the tensor leads directly to the classical expression for the outgoing wave energy. The method described here, however, is a much simpler, shorter, and more physically motivated approach than is the customary procedure, which involves a lengthy and cumbersome second-order (in wave-amplitude) calculation starting with the Einstein tensor. Our method has the added advantage of exhibiting the direct coupling between the outgoing wave energy flux and the work done by the gravitational field on the sources. For nonharmonic gauges, the directly derived wave stress tensor has an apparent index asymmetry. This coordinate artifact may be straightforwardly removed, and the symmetrized (still gauge-invariant) tensor then takes on its widely used form. Angular momentum conservation follows immediately. For any harmonic gauge, however, the stress tensor found is manifestly symmetric from the start, and its derivation depends, in its entirety, on the structure of the linearized wave equation.

  7. Identification of the Radiative and Nonradiative Parts of a Wave Field

    NASA Astrophysics Data System (ADS)

    Hoenders, B. J.; Ferwerda, H. A.

    2001-08-01

    We present a method for decomposing a wave field, described by a second-order ordinary differential equation, into a radiative component and a nonradiative one, using a biorthonormal system related to the problem under consideration. We show that it is possible to select a special system such that the wave field is purely radiating. We discuss the differences and analogies with approaches which, unlike our approach, start from the corresponding sources of the field.

  8. Asymptotic problems for stochastic partial differential equations

    NASA Astrophysics Data System (ADS)

    Salins, Michael

    Stochastic partial differential equations (SPDEs) can be used to model systems in a wide variety of fields including physics, chemistry, and engineering. The main SPDEs of interest in this dissertation are the semilinear stochastic wave equations which model the movement of a material with constant mass density that is exposed to both determinstic and random forcing. Cerrai and Freidlin have shown that on fixed time intervals, as the mass density of the material approaches zero, the solutions of the stochastic wave equation converge uniformly to the solutions of a stochastic heat equation, in probability. This is called the Smoluchowski-Kramers approximation. In Chapter 2, we investigate some of the multi-scale behaviors that these wave equations exhibit. In particular, we show that the Freidlin-Wentzell exit place and exit time asymptotics for the stochastic wave equation in the small noise regime can be approximated by the exit place and exit time asymptotics for the stochastic heat equation. We prove that the exit time and exit place asymptotics are characterized by quantities called quasipotentials and we prove that the quasipotentials converge. We then investigate the special case where the equation has a gradient structure and show that we can explicitly solve for the quasipotentials, and that the quasipotentials for the heat equation and wave equation are equal. In Chapter 3, we study the Smoluchowski-Kramers approximation in the case where the material is electrically charged and exposed to a magnetic field. Interestingly, if the system is frictionless, then the Smoluchowski-Kramers approximation does not hold. We prove that the Smoluchowski-Kramers approximation is valid for systems exposed to both a magnetic field and friction. Notably, we prove that the solutions to the second-order equations converge to the solutions of the first-order equation in an Lp sense. This strengthens previous results where convergence was proved in probability.

  9. Rogue-wave solutions of the Zakharov equation

    NASA Astrophysics Data System (ADS)

    Rao, Jiguang; Wang, Lihong; Liu, Wei; He, Jingsong

    2017-12-01

    Using the bilinear transformation method, we derive general rogue-wave solutions of the Zakharov equation. We present these Nth-order rogue-wave solutions explicitly in terms of Nth-order determinants whose matrix elements have simple expressions. We show that the fundamental rogue wave is a line rogue wave with a line profile on the plane ( x, y) arising from a constant background at t ≪ 0 and then gradually tending to the constant background for t ≫ 0. Higher-order rogue waves arising from a constant background and later disappearing into it describe the interaction of several fundamental line rogue waves. We also consider different structures of higher-order rogue waves. We present differences between rogue waves of the Zakharov equation and of the first type of the Davey-Stewartson equation analytically and graphically.

  10. Corrigenda of 'explicit wave-averaged primitive equations using a generalized Lagrangian Mean'

    NASA Astrophysics Data System (ADS)

    Ardhuin, F.; Rascle, N.; Belibassakis, K. A.

    2017-05-01

    Ardhuin et al. (2008) gave a second-order approximation in the wave slope of the exact Generalized Lagrangian Mean (GLM) equations derived by Andrews and McIntyre (1978), and also performed a coordinate transformation, going from GLM to a 'GLMz' set of equations. That latter step removed the wandering of the GLM mean sea level away from the Eulerian-mean sea level, making the GLMz flow non-divergent. That step contained some inaccuarate statements about the coordinate transformation, while the rest of the paper contained an error on the surface dynamic boundary condition for viscous stresses. I am thankful to Mathias Delpey and Hidenori Aiki for pointing out these errors, which are corrected below.

  11. Pulsed plane wave analytic solutions for generic shapes and the validation of Maxwell's equations solvers

    NASA Technical Reports Server (NTRS)

    Yarrow, Maurice; Vastano, John A.; Lomax, Harvard

    1992-01-01

    Generic shapes are subjected to pulsed plane waves of arbitrary shape. The resulting scattered electromagnetic fields are determined analytically. These fields are then computed efficiently at field locations for which numerically determined EM fields are required. Of particular interest are the pulsed waveform shapes typically utilized by radar systems. The results can be used to validate the accuracy of finite difference time domain Maxwell's equations solvers. A two-dimensional solver which is second- and fourth-order accurate in space and fourth-order accurate in time is examined. Dielectric media properties are modeled by a ramping technique which simplifies the associated gridding of body shapes. The attributes of the ramping technique are evaluated by comparison with the analytic solutions.

  12. Non-equilibrium effects of diatomic and polyatomic gases on the shock-vortex interaction based on the second-order constitutive model of the Boltzmann-Curtiss equation

    NASA Astrophysics Data System (ADS)

    Singh, S.; Karchani, A.; Myong, R. S.

    2018-01-01

    The rotational mode of molecules plays a critical role in the behavior of diatomic and polyatomic gases away from equilibrium. In order to investigate the essence of the non-equilibrium effects, the shock-vortex interaction problem was investigated by employing an explicit modal discontinuous Galerkin method. In particular, the first- and second-order constitutive models for diatomic and polyatomic gases derived rigorously from the Boltzmann-Curtiss kinetic equation were solved in conjunction with the physical conservation laws. As compared with a monatomic gas, the non-equilibrium effects result in a substantial change in flow fields in both macroscale and microscale shock-vortex interactions. Specifically, the computational results showed three major effects of diatomic and polyatomic gases on the shock-vortex interaction: (i) the generation of the third sound waves and additional reflected shock waves with strong and enlarged expansion, (ii) the dominance of viscous vorticity generation, and (iii) an increase in enstrophy with increasing bulk viscosity, related to the rotational mode of gas molecules. Moreover, it was shown that there is a significant discrepancy in flow fields between the microscale and macroscale shock-vortex interactions in diatomic and polyatomic gases. The quadrupolar acoustic wave source structures, which are typically observed in macroscale shock-vortex interactions, were not found in any microscale shock-vortex interactions. The physics of the shock-vortex interaction was also investigated in detail to examine vortex deformation and evolution dynamics over an incident shock wave. A comparative study of first- and second-order constitutive models was also conducted for the enstrophy and dissipation rate. Finally, the study was extended to the shock-vortex pair interaction case to examine the effects of pair interaction on vortex deformation and evolution dynamics.

  13. Second-order differential equations for bosons with spin j ≥ 1 and in the bases of general tensor-spinors of rank 2j

    NASA Astrophysics Data System (ADS)

    Banda Guzmán, V. M.; Kirchbach, M.

    2016-09-01

    A boson of spin j≥ 1 can be described in one of the possibilities within the Bargmann-Wigner framework by means of one sole differential equation of order twice the spin, which however is known to be inconsistent as it allows for non-local, ghost and acausally propagating solutions, all problems which are difficult to tackle. The other possibility is provided by the Fierz-Pauli framework which is based on the more comfortable to deal with second-order Klein-Gordon equation, but it needs to be supplemented by an auxiliary condition. Although the latter formalism avoids some of the pathologies of the high-order equations, it still remains plagued by some inconsistencies such as the acausal propagation of the wave fronts of the (classical) solutions within an electromagnetic environment. We here suggest a method alternative to the above two that combines their advantages while avoiding the related difficulties. Namely, we suggest one sole strictly D^{(j,0)oplus (0,j)} representation specific second-order differential equation, which is derivable from a Lagrangian and whose solutions do not violate causality. The equation under discussion presents itself as the product of the Klein-Gordon operator with a momentum-independent projector on Lorentz irreducible representation spaces constructed from one of the Casimir invariants of the spin-Lorentz group. The basis used is that of general tensor-spinors of rank 2 j.

  14. Nonparaxial rogue waves in optical Kerr media.

    PubMed

    Temgoua, D D Estelle; Kofane, T C

    2015-06-01

    We consider the inhomogeneous nonparaxial nonlinear Schrödinger (NLS) equation with varying dispersion, nonlinearity, and nonparaxiality coefficients, which governs the nonlinear wave propagation in an inhomogeneous optical fiber system. We present the similarity and Darboux transformations and for the chosen specific set of parameters and free functions, the first- and second-order rational solutions of the nonparaxial NLS equation are generated. In particular, the features of rogue waves throughout polynomial and Jacobian elliptic functions are analyzed, showing the nonparaxial effects. It is shown that the nonparaxiality increases the intensity of rogue waves by increasing the length and reducing the width simultaneously, by the way it increases their speed and penalizes interactions between them. These properties and the characteristic controllability of the nonparaxial rogue waves may give another opportunity to perform experimental realizations and potential applications in optical fibers.

  15. Numerical solution of the wave equation with variable wave speed on nonconforming domains by high-order difference potentials

    NASA Astrophysics Data System (ADS)

    Britt, S.; Tsynkov, S.; Turkel, E.

    2018-02-01

    We solve the wave equation with variable wave speed on nonconforming domains with fourth order accuracy in both space and time. This is accomplished using an implicit finite difference (FD) scheme for the wave equation and solving an elliptic (modified Helmholtz) equation at each time step with fourth order spatial accuracy by the method of difference potentials (MDP). High-order MDP utilizes compact FD schemes on regular structured grids to efficiently solve problems on nonconforming domains while maintaining the design convergence rate of the underlying FD scheme. Asymptotically, the computational complexity of high-order MDP scales the same as that for FD.

  16. A numerical study of microparticle acoustophoresis driven by acoustic radiation forces and streaming-induced drag forces.

    PubMed

    Muller, Peter Barkholt; Barnkob, Rune; Jensen, Mads Jakob Herring; Bruus, Henrik

    2012-11-21

    We present a numerical study of the transient acoustophoretic motion of microparticles suspended in a liquid-filled microchannel and driven by the acoustic forces arising from an imposed standing ultrasound wave: the acoustic radiation force from the scattering of sound waves on the particles and the Stokes drag force from the induced acoustic streaming flow. These forces are calculated numerically in two steps. First, the thermoacoustic equations are solved to first order in the imposed ultrasound field taking into account the micrometer-thin but crucial thermoviscous boundary layer near the rigid walls. Second, the products of the resulting first-order fields are used as source terms in the time-averaged second-order equations, from which the net acoustic forces acting on the particles are determined. The resulting acoustophoretic particle velocities are quantified for experimentally relevant parameters using a numerical particle-tracking scheme. The model shows the transition in the acoustophoretic particle motion from being dominated by streaming-induced drag to being dominated by radiation forces as a function of particle size, channel geometry, and material properties.

  17. Propagation of mechanical waves through a stochastic medium with spherical symmetry

    NASA Astrophysics Data System (ADS)

    Avendaño, Carlos G.; Reyes, J. Adrián

    2018-01-01

    We theoretically analyze the propagation of outgoing mechanical waves through an infinite isotropic elastic medium possessing spherical symmetry whose Lamé coefficients and density are spatial random functions characterized by well-defined statistical parameters. We derive the differential equation that governs the average displacement for a system whose properties depend on the radial coordinate. We show that such an equation is an extended version of the well-known Bessel differential equation whose perturbative additional terms contain coefficients that depend directly on the squared noise intensities and the autocorrelation lengths in an exponential decay fashion. We numerically solve the second order differential equation for several values of noise intensities and autocorrelation lengths and compare the corresponding displacement profiles with that of the exact analytic solution for the case of absent inhomogeneities.

  18. The interaction between a propagating coastal vortex and topographic waves

    NASA Astrophysics Data System (ADS)

    Parry, Simon Wyn

    This thesis investigates the motion of a point vortex near coastal topography in a rotating frame of reference at constant latitude (f-plane) in the linear and weakly nonlinear limits. Topography is considered in the form of an infinitely long escarpment running parallel to a wall. The vortex motion and topographic waves are governed by the conservation of quasi-geostrophic potential vorticity in shallow water, from which a nonlinear system of equations is derived. First the linear limit is studied for three cases; a weak vortex on- and off-shelf and a weak vortex close to the wall. For the first two cases it is shown that to leading order the vortex motion is stationary and a solution for the topographic waves at the escarpment can be found in terms of Fourier integrals. For a weak vortex close to a wall, the leading order solution is a steadily propagating vortex with a topographic wavetrain at the step. Numerical results for the higher order interactions are also presented and explained in terms of conservation of momentum in the along-shore direction. For the second case a resonant interaction between the vortex and the waves occurs when the vortex speed is equal to the maximum group velocity of the waves and the linear response becomes unbounded at large times. Thus it becomes necessary to examine the weakly nonlinear near-resonant case. Using a long wave approximation a nonlinear evolution equation for the interface separating the two regions of differing relative potential vorticity is derived and has similar form to the BDA (Benjamin, Davies, Acrivos 1967) equation. Results for the leading order steadily propagating vortex and for the vortex-wave feedback problem are calculated numerically using spectral multi-step Adams methods.

  19. Solitons and SeaSat,

    DTIC Science & Technology

    1984-08-01

    the Kadomtsev - • . Petviashvili (1) equations . A derivation of Eq. (1) in the case of . " * internal waves is given in reference (2). An important...second statement is demonstrated to be false. The% Kadomtsev -.1etviashvile equation relevant to Internal Waves is shown not to have SOliL -solutions. This...more than one space dimension. The second statement is demonstrated to be false. The Kadomtsev -Petviashvile equation relevant to Internal Waves Is

  20. On the propagation of decaying planar shock and blast waves through non-uniform channels

    NASA Astrophysics Data System (ADS)

    Peace, J. T.; Lu, F. K.

    2018-05-01

    The propagation of planar decaying shock and blast waves in non-uniform channels is investigated with the use of a two-equation approximation of the generalized CCW theory. The effects of flow non-uniformity for the cases of an arbitrary strength decaying shock and blast wave in the strong shock limit are considered. Unlike the original CCW theory, the two-equation approximation takes into account the effects of initial temporal flow gradients in the flow properties behind the shock as the shock encounters an area change. A generalized order-of-magnitude analysis is carried out to analyze under which conditions the classical area-Mach (A-M) relation and two-equation approximation are valid given a time constant of decay for the flow properties behind the shock. It is shown that the two-equation approximation extends the applicability of the CCW theory to problems where flow non-uniformity behind the shock is orders of magnitude above that for appropriate use of the A-M relation. The behavior of the two-equation solution is presented for converging and diverging channels and compared against the A-M relation. It is shown that the second-order approximation and A-M relation have good agreement for converging geometries, such that the influence of flow non-uniformity behind the shock is negligible compared to the effects of changing area. Alternatively, the two-equation approximation is shown to be strongly dependent on the initial magnitude of flow non-uniformity in diverging geometries. Further, in diverging geometries, the inclusion of flow non-uniformity yields shock solutions that tend toward an acoustic wave faster than that predicted by the A-M relation.

  1. 3D frequency-domain finite-difference modeling of acoustic wave propagation

    NASA Astrophysics Data System (ADS)

    Operto, S.; Virieux, J.

    2006-12-01

    We present a 3D frequency-domain finite-difference method for acoustic wave propagation modeling. This method is developed as a tool to perform 3D frequency-domain full-waveform inversion of wide-angle seismic data. For wide-angle data, frequency-domain full-waveform inversion can be applied only to few discrete frequencies to develop reliable velocity model. Frequency-domain finite-difference (FD) modeling of wave propagation requires resolution of a huge sparse system of linear equations. If this system can be solved with a direct method, solutions for multiple sources can be computed efficiently once the underlying matrix has been factorized. The drawback of the direct method is the memory requirement resulting from the fill-in of the matrix during factorization. We assess in this study whether representative problems can be addressed in 3D geometry with such approach. We start from the velocity-stress formulation of the 3D acoustic wave equation. The spatial derivatives are discretized with second-order accurate staggered-grid stencil on different coordinate systems such that the axis span over as many directions as possible. Once the discrete equations were developed on each coordinate system, the particle velocity fields are eliminated from the first-order hyperbolic system (following the so-called parsimonious staggered-grid method) leading to second-order elliptic wave equations in pressure. The second-order wave equations discretized on each coordinate system are combined linearly to mitigate the numerical anisotropy. Secondly, grid dispersion is minimized by replacing the mass term at the collocation point by its weighted averaging over all the grid points of the stencil. Use of second-order accurate staggered- grid stencil allows to reduce the bandwidth of the matrix to be factorized. The final stencil incorporates 27 points. Absorbing conditions are PML. The system is solved using the parallel direct solver MUMPS developed for distributed-memory computers. The MUMPS solver is based on a multifrontal method for LU factorization. We used the METIS algorithm to perform re-ordering of the matrix coefficients before factorization. Four grid points per minimum wavelength is used for discretization. We applied our algorithm to the 3D SEG/EAGE synthetic onshore OVERTHRUST model of dimensions 20 x 20 x 4.65 km. The velocities range between 2 and 6 km/s. We performed the simulations using 192 processors with 2 Gbytes of RAM memory per processor. We performed simulations for the 5 Hz, 7 Hz and 10 Hz frequencies in some fractions of the OVERTHRUST model. The grid interval was 100 m, 75 m and 50 m respectively. The grid dimensions were 207x207x53, 275x218x71 and 409x109x102 respectively corresponding to 100, 80 and 25 percents of the model respectively. The time for factorization is 20 mn, 108 mn and 163 mn respectively. The time for resolution was 3.8, 9.3 and 10.3 s per source. The total memory used during factorization is 143, 384 and 449 Gbytes respectively. One can note the huge memory requirement for factorization and the efficiency of the direct method to compute solutions for a large number of sources. This highlights the respective drawback and merit of the frequency-domain approach with respect to the time- domain counterpart. These results show that 3D acoustic frequency-domain wave propagation modeling can be performed at low frequencies using direct solver on large clusters of Pcs. This forward modeling algorithm may be used in the future as a tool to image the first kilometers of the crust by frequency-domain full-waveform inversion. For larger problems, we will use the out-of-core memory during factorization that has been implemented by the authors of MUMPS.

  2. Travelling-wave solutions of a weakly nonlinear two-dimensional higher-order Kadomtsev-Petviashvili dynamical equation for dispersive shallow-water waves

    NASA Astrophysics Data System (ADS)

    Seadawy, Aly R.

    2017-01-01

    The propagation of three-dimensional nonlinear irrotational flow of an inviscid and incompressible fluid of the long waves in dispersive shallow-water approximation is analyzed. The problem formulation of the long waves in dispersive shallow-water approximation lead to fifth-order Kadomtsev-Petviashvili (KP) dynamical equation by applying the reductive perturbation theory. By using an extended auxiliary equation method, the solitary travelling-wave solutions of the two-dimensional nonlinear fifth-order KP dynamical equation are derived. An analytical as well as a numerical solution of the two-dimensional nonlinear KP equation are obtained and analyzed with the effects of external pressure flow.

  3. On the exact solutions of high order wave equations of KdV type (I)

    NASA Astrophysics Data System (ADS)

    Bulut, Hasan; Pandir, Yusuf; Baskonus, Haci Mehmet

    2014-12-01

    In this paper, by means of a proper transformation and symbolic computation, we study high order wave equations of KdV type (I). We obtained classification of exact solutions that contain soliton, rational, trigonometric and elliptic function solutions by using the extended trial equation method. As a result, the motivation of this paper is to utilize the extended trial equation method to explore new solutions of high order wave equation of KdV type (I). This method is confirmed by applying it to this kind of selected nonlinear equations.

  4. Modulation instability and dissipative rogue waves in ion-beam plasma: Roles of ionization, recombination, and electron attachment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guo, Shimin, E-mail: gsm861@126.com; Mei, Liquan, E-mail: lqmei@mail.xjtu.edu.cn

    The amplitude modulation of ion-acoustic waves is investigated in an unmagnetized plasma containing positive ions, negative ions, and electrons obeying a kappa-type distribution that is penetrated by a positive ion beam. By considering dissipative mechanisms, including ionization, negative-positive ion recombination, and electron attachment, we introduce a comprehensive model for the plasma with the effects of sources and sinks. Via reductive perturbation theory, the modified nonlinear Schrödinger equation with a dissipative term is derived to govern the dynamics of the modulated waves. The effect of the plasma parameters on the modulation instability criterion for the modified nonlinear Schrödinger equation is numericallymore » investigated in detail. Within the unstable region, first- and second-order dissipative ion-acoustic rogue waves are present. The effect of the plasma parameters on the characteristics of the dissipative rogue waves is also discussed.« less

  5. Normal compression wave scattering by a permeable crack in a fluid-saturated poroelastic solid

    NASA Astrophysics Data System (ADS)

    Song, Yongjia; Hu, Hengshan; Rudnicki, John W.

    2017-04-01

    A mathematical formulation is presented for the dynamic stress intensity factor (mode I) of a finite permeable crack subjected to a time-harmonic propagating longitudinal wave in an infinite poroelastic solid. In particular, the effect of the wave-induced fluid flow due to the presence of a liquid-saturated crack on the dynamic stress intensity factor is analyzed. Fourier sine and cosine integral transforms in conjunction with Helmholtz potential theory are used to formulate the mixed boundary-value problem as dual integral equations in the frequency domain. The dual integral equations are reduced to a Fredholm integral equation of the second kind. It is found that the stress intensity factor monotonically decreases with increasing frequency, decreasing the fastest when the crack width and the slow wave wavelength are of the same order. The characteristic frequency at which the stress intensity factor decays the fastest shifts to higher frequency values when the crack width decreases.

  6. A second-order cell-centered Lagrangian ADER-MOOD finite volume scheme on multidimensional unstructured meshes for hydrodynamics

    NASA Astrophysics Data System (ADS)

    Boscheri, Walter; Dumbser, Michael; Loubère, Raphaël; Maire, Pierre-Henri

    2018-04-01

    In this paper we develop a conservative cell-centered Lagrangian finite volume scheme for the solution of the hydrodynamics equations on unstructured multidimensional grids. The method is derived from the Eucclhyd scheme discussed in [47,43,45]. It is second-order accurate in space and is combined with the a posteriori Multidimensional Optimal Order Detection (MOOD) limiting strategy to ensure robustness and stability at shock waves. Second-order of accuracy in time is achieved via the ADER (Arbitrary high order schemes using DERivatives) approach. A large set of numerical test cases is proposed to assess the ability of the method to achieve effective second order of accuracy on smooth flows, maintaining an essentially non-oscillatory behavior on discontinuous profiles, general robustness ensuring physical admissibility of the numerical solution, and precision where appropriate.

  7. On an Acoustic Wave Equation Arising in Non-Equilibrium Gasdynamics. Classroom Notes

    ERIC Educational Resources Information Center

    Chandran, Pallath

    2004-01-01

    The sixth-order wave equation governing the propagation of one-dimensional acoustic waves in a viscous, heat conducting gaseous medium subject to relaxation effects has been considered. It has been reduced to a system of lower order equations corresponding to the finite speeds occurring in the equation, following a method due to Whitham. The lower…

  8. Optical rogue waves generation in a nonlinear metamaterial

    NASA Astrophysics Data System (ADS)

    Onana Essama, Bedel Giscard; Atangana, Jacques; Biya-Motto, Frederick; Mokhtari, Bouchra; Cherkaoui Eddeqaqi, Noureddine; Kofane, Timoleon Crepin

    2014-11-01

    We investigate the behavior of electromagnetic wave which propagates in a metamaterial for negative index regime. The optical pulse propagation is described by the nonlinear Schrödinger equation with cubic-quintic nonlinearities, second- and third-order dispersion effects. The behavior obtained for negative index regime is compared to that observed for positive index regime. The characterization of electromagnetic wave uses some pulse parameters obtained analytically and called collective coordinates such as amplitude, temporal position, width, chirp, frequency shift and phase. Six frequency ranges have been pointed out where a numerical evolution of collective coordinates and their stability are studied under a typical example to verify our analysis. It appears that a robust soliton due to a perfect compensation process between second-order dispersion and cubic-nonlinearity is presented at each frequency range for both negative and positive index regimes. Thereafter, the stability of the soliton pulse and physical conditions leading to optical rogue waves generation are discussed at each frequency range for both regimes, when third-order dispersion and quintic-nonlinearity come into play. We have demonstrated that collective coordinates give much useful information on external and internal behavior of rogue events. Firstly, we determine at what distance begins the internal excitation leading to rogue waves. Secondly, what kind of internal modification and how it modifies the system in order to build-up rogue events. These results lead to a best comprehension of the mechanism of rogue waves generation. So, it clearly appears that the rogue wave behavior strongly depends on nonlinearity strength of distortion, frequency and regime considered.

  9. On the complete and partial integrability of non-Hamiltonian systems

    NASA Astrophysics Data System (ADS)

    Bountis, T. C.; Ramani, A.; Grammaticos, B.; Dorizzi, B.

    1984-11-01

    The methods of singularity analysis are applied to several third order non-Hamiltonian systems of physical significance including the Lotka-Volterra equations, the three-wave interaction and the Rikitake dynamo model. Complete integrability is defined and new completely integrable systems are discovered by means of the Painlevé property. In all these cases we obtain integrals, which reduce the equations either to a final quadrature or to an irreducible second order ordinary differential equation (ODE) solved by Painlevé transcendents. Relaxing the Painlevé property we find many partially integrable cases whose movable singularities are poles at leading order, with In( t- t0) terms entering at higher orders. In an Nth order, generalized Rössler model a precise relation is established between the partial fulfillment of the Painlevé conditions and the existence of N - 2 integrals of the motion.

  10. Nonexistence of global solutions of abstract wave equations with high energies.

    PubMed

    Esquivel-Avila, Jorge A

    2017-01-01

    We consider an undamped second order in time evolution equation. For any positive value of the initial energy, we give sufficient conditions to conclude nonexistence of global solutions. The analysis is based on a differential inequality. The success of our result is based in a detailed analysis which is different from the ones commonly used to prove blow-up. Several examples are given improving known results in the literature.

  11. Nearly spherical constant power detonation waves driven by focused radiation

    NASA Technical Reports Server (NTRS)

    George, Y. H.

    1973-01-01

    Shape and inner flow of a tridimensional spark are studied. The spark is created by focusing a laser beam in a gas. A second order fully non-linear equation is derived for the radial velocity on the axis of symmetry in the neighborhood of the origin. Solutions to that equation display the existence of a forbidden region near the focus, thus indicating the limits of applicability of a small perturbation solution.

  12. Light Diffraction by Large Amplitude Ultrasonic Waves in Liquids

    NASA Technical Reports Server (NTRS)

    Adler, Laszlo; Cantrell, John H.; Yost, William T.

    2016-01-01

    Light diffraction from ultrasound, which can be used to investigate nonlinear acoustic phenomena in liquids, is reported for wave amplitudes larger than that typically reported in the literature. Large amplitude waves result in waveform distortion due to the nonlinearity of the medium that generates harmonics and produces asymmetries in the light diffraction pattern. For standing waves with amplitudes above a threshold value, subharmonics are generated in addition to the harmonics and produce additional diffraction orders of the incident light. With increasing drive amplitude above the threshold a cascade of period-doubling subharmonics are generated, terminating in a region characterized by a random, incoherent (chaotic) diffraction pattern. To explain the experimental results a toy model is introduced, which is derived from traveling wave solutions of the nonlinear wave equation corresponding to the fundamental and second harmonic standing waves. The toy model reduces the nonlinear partial differential equation to a mathematically more tractable nonlinear ordinary differential equation. The model predicts the experimentally observed cascade of period-doubling subharmonics terminating in chaos that occurs with increasing drive amplitudes above the threshold value. The calculated threshold amplitude is consistent with the value estimated from the experimental data.

  13. Shock-wave-like structures induced by an exothermic neutralization reaction in miscible fluids

    NASA Astrophysics Data System (ADS)

    Bratsun, Dmitry; Mizev, Alexey; Mosheva, Elena; Kostarev, Konstantin

    2017-11-01

    We report shock-wave-like structures that are strikingly different from previously observed fingering instabilities, which occur in a two-layer system of miscible fluids reacting by a second-order reaction A +B →S in a vertical Hele-Shaw cell. While the traditional analysis expects the occurrence of a diffusion-controlled convection, we show both experimentally and theoretically that the exothermic neutralization reaction can also trigger a wave with a perfectly planar front and nearly discontinuous change in density across the front. This wave propagates fast compared with the characteristic diffusion times and separates the motionless fluid and the area with anomalously intense convective mixing. We explain its mechanism and introduce a new dimensionless parameter, which allows to predict the appearance of such a pattern in other systems. Moreover, we show that our governing equations, taken in the inviscid limit, are formally analogous to well-known shallow-water equations and adiabatic gas flow equations. Based on this analogy, we define the critical velocity for the onset of the shock wave which is found to be in the perfect agreement with the experiments.

  14. Infinite hierarchy of nonlinear Schrödinger equations and their solutions.

    PubMed

    Ankiewicz, A; Kedziora, D J; Chowdury, A; Bandelow, U; Akhmediev, N

    2016-01-01

    We study the infinite integrable nonlinear Schrödinger equation hierarchy beyond the Lakshmanan-Porsezian-Daniel equation which is a particular (fourth-order) case of the hierarchy. In particular, we present the generalized Lax pair and generalized soliton solutions, plane wave solutions, Akhmediev breathers, Kuznetsov-Ma breathers, periodic solutions, and rogue wave solutions for this infinite-order hierarchy. We find that "even- order" equations in the set affect phase and "stretching factors" in the solutions, while "odd-order" equations affect the velocities. Hence odd-order equation solutions can be real functions, while even-order equation solutions are always complex.

  15. A first-order k-space model for elastic wave propagation in heterogeneous media.

    PubMed

    Firouzi, K; Cox, B T; Treeby, B E; Saffari, N

    2012-09-01

    A pseudospectral model of linear elastic wave propagation is described based on the first order stress-velocity equations of elastodynamics. k-space adjustments to the spectral gradient calculations are derived from the dyadic Green's function solution to the second-order elastic wave equation and used to (a) ensure the solution is exact for homogeneous wave propagation for timesteps of arbitrarily large size, and (b) also allows larger time steps without loss of accuracy in heterogeneous media. The formulation in k-space allows the wavefield to be split easily into compressional and shear parts. A perfectly matched layer (PML) absorbing boundary condition was developed to effectively impose a radiation condition on the wavefield. The staggered grid, which is essential for accurate simulations, is described, along with other practical details of the implementation. The model is verified through comparison with exact solutions for canonical examples and further examples are given to show the efficiency of the method for practical problems. The efficiency of the model is by virtue of the reduced point-per-wavelength requirement, the use of the fast Fourier transform (FFT) to calculate the gradients in k space, and larger time steps made possible by the k-space adjustments.

  16. Modified Chapman-Enskog moment approach to diffusive phonon heat transport.

    PubMed

    Banach, Zbigniew; Larecki, Wieslaw

    2008-12-01

    A detailed treatment of the Chapman-Enskog method for a phonon gas is given within the framework of an infinite system of moment equations obtained from Callaway's model of the Boltzmann-Peierls equation. Introducing no limitations on the magnitudes of the individual components of the drift velocity or the heat flux, this method is used to derive various systems of hydrodynamic equations for the energy density and the drift velocity. For one-dimensional flow problems, assuming that normal processes dominate over resistive ones, it is found that the first three levels of the expansion (i.e., the zeroth-, first-, and second-order approximations) yield the equations of hydrodynamics which are linearly stable at all wavelengths. This result can be achieved either by examining the dispersion relations for linear plane waves or by constructing the explicit quadratic Lyapunov entropy functionals for the linear perturbation equations. The next order in the Chapman-Enskog expansion leads to equations which are unstable to some perturbations. Precisely speaking, the linearized equations of motion that describe the propagation of small disturbances in the flow have unstable plane-wave solutions in the short-wavelength limit of the dispersion relations. This poses no problem if the equations are used in their proper range of validity.

  17. The Bargmann-Wigner equations in spherical space

    NASA Astrophysics Data System (ADS)

    McKeon, D. G. C.; Sherry, T. N.

    2006-01-01

    The Bargmann-Wigner formalism is adapted to spherical surfaces embedded in three to eleven dimensions. This is demonstrated to generate wave equations in spherical space for a variety of antisymmetric tensor fields. Some of these equations are gauge invariant for particular values of the parameters characterizing them. For spheres embedded in three, four, and five dimensions, this gauge invariance can be generalized so as to become non-Abelian. This non-Abelian gauge invariance is shown to be a property of second-order models for two index antisymmetric tensor fields in any number of dimensions. The O(3) model is quantized and the two-point function is shown to vanish at the one-loop order.

  18. Soliton solutions to the fifth-order Korteweg-de Vries equation and their applications to surface and internal water waves

    NASA Astrophysics Data System (ADS)

    Khusnutdinova, K. R.; Stepanyants, Y. A.; Tranter, M. R.

    2018-02-01

    We study solitary wave solutions of the fifth-order Korteweg-de Vries equation which contains, besides the traditional quadratic nonlinearity and third-order dispersion, additional terms including cubic nonlinearity and fifth order linear dispersion, as well as two nonlinear dispersive terms. An exact solitary wave solution to this equation is derived, and the dependence of its amplitude, width, and speed on the parameters of the governing equation is studied. It is shown that the derived solution can represent either an embedded or regular soliton depending on the equation parameters. The nonlinear dispersive terms can drastically influence the existence of solitary waves, their nature (regular or embedded), profile, polarity, and stability with respect to small perturbations. We show, in particular, that in some cases embedded solitons can be stable even with respect to interactions with regular solitons. The results obtained are applicable to surface and internal waves in fluids, as well as to waves in other media (plasma, solid waveguides, elastic media with microstructure, etc.).

  19. Gaussian solitary waves and compactons in Fermi–Pasta–Ulam lattices with Hertzian potentials

    PubMed Central

    James, Guillaume; Pelinovsky, Dmitry

    2014-01-01

    We consider a class of fully nonlinear Fermi–Pasta–Ulam (FPU) lattices, consisting of a chain of particles coupled by fractional power nonlinearities of order α>1. This class of systems incorporates a classical Hertzian model describing acoustic wave propagation in chains of touching beads in the absence of precompression. We analyse the propagation of localized waves when α is close to unity. Solutions varying slowly in space and time are searched with an appropriate scaling, and two asymptotic models of the chain of particles are derived consistently. The first one is a logarithmic Korteweg–de Vries (KdV) equation and possesses linearly orbitally stable Gaussian solitary wave solutions. The second model consists of a generalized KdV equation with Hölder-continuous fractional power nonlinearity and admits compacton solutions, i.e. solitary waves with compact support. When , we numerically establish the asymptotically Gaussian shape of exact FPU solitary waves with near-sonic speed and analytically check the pointwise convergence of compactons towards the limiting Gaussian profile. PMID:24808748

  20. Distributed Seismic Moment Fault Model, Spectral Characteristics and Radiation Patterns

    NASA Astrophysics Data System (ADS)

    Shani-Kadmiel, Shahar; Tsesarsky, Michael; Gvirtzman, Zohar

    2014-05-01

    We implement a Distributed Seismic Moment (DSM) fault model, a physics-based representation of an earthquake source based on a skewed-Gaussian slip distribution over an elliptical rupture patch, for the purpose of forward modeling of seismic-wave propagation in 3-D heterogeneous medium. The elliptical rupture patch is described by 13 parameters: location (3), dimensions of the patch (2), patch orientation (1), focal mechanism (3), nucleation point (2), peak slip (1), rupture velocity (1). A node based second order finite difference approach is used to solve the seismic-wave equations in displacement formulation (WPP, Nilsson et al., 2007). Results of our DSM fault model are compared with three commonly used fault models: Point Source Model (PSM), Haskell's fault Model (HM), and HM with Radial (HMR) rupture propagation. Spectral features of the waveforms and radiation patterns from these four models are investigated. The DSM fault model best incorporates the simplicity and symmetry of the PSM with the directivity effects of the HMR while satisfying the physical requirements, i.e., smooth transition from peak slip at the nucleation point to zero at the rupture patch border. The implementation of the DSM in seismic-wave propagation forward models comes at negligible computational cost. Reference: Nilsson, S., Petersson, N. A., Sjogreen, B., and Kreiss, H.-O. (2007). Stable Difference Approximations for the Elastic Wave Equation in Second Order Formulation. SIAM Journal on Numerical Analysis, 45(5), 1902-1936.

  1. Localised Nonlinear Waves in the Three-Component Coupled Hirota Equations

    NASA Astrophysics Data System (ADS)

    Xu, Tao; Chen, Yong

    2017-10-01

    We construct the Lax pair and Darboux transformation for the three-component coupled Hirota equations including higher-order effects such as third-order dispersion, self-steepening, and stimulated Raman scattering. A special vector solution of the Lax pair with 4×4 matrices for the three-component Hirota system is elaborately generated, based on this vector solution, various types of mixed higher-order localised waves are derived through the generalised Darboux transformation. Instead of considering various arrangements of the three potential functions q1, q2, and q3, here, the same combination is considered as the same type solution. The first- and second-order localised waves are mainly discussed in six mixed types: (1) the hybrid solutions degenerate to the rational ones and three components are all rogue waves; (2) two components are hybrid solutions between rogue wave (RW) and breather (RW+breather), and one component is interactional solution between RW and dark soliton (RW+dark soliton); (3) two components are RW+dark soliton, and one component is RW+bright soliton; (4) two components are RW+breather, and one component is RW+bright soliton; (5) two components are RW+dark soliton, and one component is RW+bright soliton; (6) three components are all RW+breather. Moreover, these nonlinear localised waves merge with each other by increasing the absolute values of two free parameters α, β. These results further uncover some striking dynamic structures in the multicomponent coupled system.

  2. Traveling waves and conservation laws for highly nonlinear wave equations modeling Hertz chains

    NASA Astrophysics Data System (ADS)

    Przedborski, Michelle; Anco, Stephen C.

    2017-09-01

    A highly nonlinear, fourth-order wave equation that models the continuum theory of long wavelength pulses in weakly compressed, homogeneous, discrete chains with a general power-law contact interaction is studied. For this wave equation, all solitary wave solutions and all nonlinear periodic wave solutions, along with all conservation laws, are derived. The solutions are explicitly parameterized in terms of the asymptotic value of the wave amplitude in the case of solitary waves and the peak of the wave amplitude in the case of nonlinear periodic waves. All cases in which the solution expressions can be stated in an explicit analytic form using elementary functions are worked out. In these cases, explicit expressions for the total energy and total momentum for all solutions are obtained as well. The derivation of the solutions uses the conservation laws combined with an energy analysis argument to reduce the wave equation directly to a separable first-order differential equation that determines the wave amplitude in terms of the traveling wave variable. This method can be applied more generally to other highly nonlinear wave equations.

  3. Kinetic theory for electrostatic waves due to transverse velocity shears

    NASA Technical Reports Server (NTRS)

    Ganguli, G.; Lee, Y. C.; Palmadesso, P. J.

    1988-01-01

    A kinetic theory in the form of an integral equation is provided to study the electrostatic oscillations in a collisionless plasma immersed in a uniform magnetic field and a nonuniform transverse electric field. In the low temperature limit the dispersion differential equation is recovered for the transverse Kelvin-Helmholtz modes for arbitrary values of K parallel, where K parallel is the component of the wave vector in the direction of the external magnetic field assumed in the z direction. For higher temperatures the ion-cyclotron-like modes described earlier in the literature by Ganguli, Lee and Plamadesso are recovered. In this article, the integral equation is reduced to a second-order differential equation and a study is made of the kinetic Kelvin-Helmholtz and ion-cyclotron-like modes that constitute the two branches of oscillation in a magnetized plasma including a transverse inhomogeneous dc electric field.

  4. Computation of the stability derivatives via CFD and the sensitivity equations

    NASA Astrophysics Data System (ADS)

    Lei, Guo-Dong; Ren, Yu-Xin

    2011-04-01

    The method to calculate the aerodynamic stability derivates of aircrafts by using the sensitivity equations is extended to flows with shock waves in this paper. Using the newly developed second-order cell-centered finite volume scheme on the unstructured-grid, the unsteady Euler equations and sensitivity equations are solved simultaneously in a non-inertial frame of reference, so that the aerodynamic stability derivatives can be calculated for aircrafts with complex geometries. Based on the numerical results, behavior of the aerodynamic sensitivity parameters near the shock wave is discussed. Furthermore, the stability derivatives are analyzed for supersonic and hypersonic flows. The numerical results of the stability derivatives are found in good agreement with theoretical results for supersonic flows, and variations of the aerodynamic force and moment predicted by the stability derivatives are very close to those obtained by CFD simulation for both supersonic and hypersonic flows.

  5. 2D Time-lapse Seismic Tomography Using An Active Time Constraint (ATC) Approach

    EPA Science Inventory

    We propose a 2D seismic time-lapse inversion approach to image the evolution of seismic velocities over time and space. The forward modeling is based on solving the eikonal equation using a second-order fast marching method. The wave-paths are represented by Fresnel volumes rathe...

  6. A Study into Discontinuous Galerkin Methods for the Second Order Wave Equation

    DTIC Science & Technology

    2015-06-01

    2011, vol. 7. [9] J. Stewart , Calculus . Belmont, CA: Cengage Learning, 2011. [10] J. E. Kozdon and L. C. Wilcox, “Skew-symmetric splitting for...solution directly at a set of points in a domain. In terms of the calculus of finite differences, we are looking to approximate the derivatives by

  7. Soliton, rational, and periodic solutions for the infinite hierarchy of defocusing nonlinear Schrödinger equations.

    PubMed

    Ankiewicz, Adrian

    2016-07-01

    Analysis of short-pulse propagation in positive dispersion media, e.g., in optical fibers and in shallow water, requires assorted high-order derivative terms. We present an infinite-order "dark" hierarchy of equations, starting from the basic defocusing nonlinear Schrödinger equation. We present generalized soliton solutions, plane-wave solutions, and periodic solutions of all orders. We find that "even"-order equations in the set affect phase and "stretching factors" in the solutions, while "odd"-order equations affect the velocities. Hence odd-order equation solutions can be real functions, while even-order equation solutions are complex. There are various applications in optics and water waves.

  8. Computational methods and traveling wave solutions for the fourth-order nonlinear Ablowitz-Kaup-Newell-Segur water wave dynamical equation via two methods and its applications

    NASA Astrophysics Data System (ADS)

    Ali, Asghar; Seadawy, Aly R.; Lu, Dianchen

    2018-05-01

    The aim of this article is to construct some new traveling wave solutions and investigate localized structures for fourth-order nonlinear Ablowitz-Kaup-Newell-Segur (AKNS) water wave dynamical equation. The simple equation method (SEM) and the modified simple equation method (MSEM) are applied in this paper to construct the analytical traveling wave solutions of AKNS equation. The different waves solutions are derived by assigning special values to the parameters. The obtained results have their importance in the field of physics and other areas of applied sciences. All the solutions are also graphically represented. The constructed results are often helpful for studying several new localized structures and the waves interaction in the high-dimensional models.

  9. A high-order multiscale finite-element method for time-domain acoustic-wave modeling

    NASA Astrophysics Data System (ADS)

    Gao, Kai; Fu, Shubin; Chung, Eric T.

    2018-05-01

    Accurate and efficient wave equation modeling is vital for many applications in such as acoustics, electromagnetics, and seismology. However, solving the wave equation in large-scale and highly heterogeneous models is usually computationally expensive because the computational cost is directly proportional to the number of grids in the model. We develop a novel high-order multiscale finite-element method to reduce the computational cost of time-domain acoustic-wave equation numerical modeling by solving the wave equation on a coarse mesh based on the multiscale finite-element theory. In contrast to existing multiscale finite-element methods that use only first-order multiscale basis functions, our new method constructs high-order multiscale basis functions from local elliptic problems which are closely related to the Gauss-Lobatto-Legendre quadrature points in a coarse element. Essentially, these basis functions are not only determined by the order of Legendre polynomials, but also by local medium properties, and therefore can effectively convey the fine-scale information to the coarse-scale solution with high-order accuracy. Numerical tests show that our method can significantly reduce the computation time while maintain high accuracy for wave equation modeling in highly heterogeneous media by solving the corresponding discrete system only on the coarse mesh with the new high-order multiscale basis functions.

  10. A high-order multiscale finite-element method for time-domain acoustic-wave modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, Kai; Fu, Shubin; Chung, Eric T.

    Accurate and efficient wave equation modeling is vital for many applications in such as acoustics, electromagnetics, and seismology. However, solving the wave equation in large-scale and highly heterogeneous models is usually computationally expensive because the computational cost is directly proportional to the number of grids in the model. We develop a novel high-order multiscale finite-element method to reduce the computational cost of time-domain acoustic-wave equation numerical modeling by solving the wave equation on a coarse mesh based on the multiscale finite-element theory. In contrast to existing multiscale finite-element methods that use only first-order multiscale basis functions, our new method constructsmore » high-order multiscale basis functions from local elliptic problems which are closely related to the Gauss–Lobatto–Legendre quadrature points in a coarse element. Essentially, these basis functions are not only determined by the order of Legendre polynomials, but also by local medium properties, and therefore can effectively convey the fine-scale information to the coarse-scale solution with high-order accuracy. Numerical tests show that our method can significantly reduce the computation time while maintain high accuracy for wave equation modeling in highly heterogeneous media by solving the corresponding discrete system only on the coarse mesh with the new high-order multiscale basis functions.« less

  11. A high-order multiscale finite-element method for time-domain acoustic-wave modeling

    DOE PAGES

    Gao, Kai; Fu, Shubin; Chung, Eric T.

    2018-02-04

    Accurate and efficient wave equation modeling is vital for many applications in such as acoustics, electromagnetics, and seismology. However, solving the wave equation in large-scale and highly heterogeneous models is usually computationally expensive because the computational cost is directly proportional to the number of grids in the model. We develop a novel high-order multiscale finite-element method to reduce the computational cost of time-domain acoustic-wave equation numerical modeling by solving the wave equation on a coarse mesh based on the multiscale finite-element theory. In contrast to existing multiscale finite-element methods that use only first-order multiscale basis functions, our new method constructsmore » high-order multiscale basis functions from local elliptic problems which are closely related to the Gauss–Lobatto–Legendre quadrature points in a coarse element. Essentially, these basis functions are not only determined by the order of Legendre polynomials, but also by local medium properties, and therefore can effectively convey the fine-scale information to the coarse-scale solution with high-order accuracy. Numerical tests show that our method can significantly reduce the computation time while maintain high accuracy for wave equation modeling in highly heterogeneous media by solving the corresponding discrete system only on the coarse mesh with the new high-order multiscale basis functions.« less

  12. Exact finite difference schemes for the non-linear unidirectional wave equation

    NASA Technical Reports Server (NTRS)

    Mickens, R. E.

    1985-01-01

    Attention is given to the construction of exact finite difference schemes for the nonlinear unidirectional wave equation that describes the nonlinear propagation of a wave motion in the positive x-direction. The schemes constructed for these equations are compared with those obtained by using the usual procedures of numerical analysis. It is noted that the order of the exact finite difference models is equal to the order of the differential equation.

  13. An algorithm for solving the perturbed gas dynamic equations

    NASA Technical Reports Server (NTRS)

    Davis, Sanford

    1993-01-01

    The present application of a compact, higher-order central-difference approximation to the linearized Euler equations illustrates the multimodal character of these equations by means of computations for acoustic, vortical, and entropy waves. Such dissipationless central-difference methods are shown to propagate waves exhibiting excellent phase and amplitude resolution on the basis of relatively large time-steps; they can be applied to wave problems governed by systems of first-order partial differential equations.

  14. A computational study on the interaction between a vortex and a shock wave

    NASA Technical Reports Server (NTRS)

    Meadows, Kristine R.; Kumar, Ajay; Hussaini, M. Y.

    1989-01-01

    A computational study of two-dimensional shock vortex interaction is discussed in this paper. A second order upwind finite volume method is used to solve the Euler equations in conservation form. In this method, the shock wave is captured rather than fitted so that the cases where shock vortex interaction may cause secondary shocks can also be investigated. The effects of vortex strength on the computed flow and acoustic field generated by the interaction are qualitatively evaluated.

  15. Double absorbing boundaries for finite-difference time-domain electromagnetics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    LaGrone, John, E-mail: jlagrone@smu.edu; Hagstrom, Thomas, E-mail: thagstrom@smu.edu

    We describe the implementation of optimal local radiation boundary condition sequences for second order finite difference approximations to Maxwell's equations and the scalar wave equation using the double absorbing boundary formulation. Numerical experiments are presented which demonstrate that the design accuracy of the boundary conditions is achieved and, for comparable effort, exceeds that of a convolution perfectly matched layer with reasonably chosen parameters. An advantage of the proposed approach is that parameters can be chosen using an accurate a priori error bound.

  16. Oblique scattering from radially inhomogeneous dielectric cylinders: An exact Volterra integral equation formulation

    NASA Astrophysics Data System (ADS)

    Tsalamengas, John L.

    2018-07-01

    We study plane-wave electromagnetic scattering by radially and strongly inhomogeneous dielectric cylinders at oblique incidence. The method of analysis relies on an exact reformulation of the underlying field equations as a first-order 4 × 4 system of differential equations and on the ability to restate the associated initial-value problem in the form of a system of coupled linear Volterra integral equations of the second kind. The integral equations so derived are discretized via a sophisticated variant of the Nyström method. The proposed method yields results accurate up to machine precision without relying on approximations. Numerical results and case studies ably demonstrate the efficiency and high accuracy of the algorithms.

  17. Transport coefficients in ultrarelativistic kinetic theory

    NASA Astrophysics Data System (ADS)

    Ambruş, Victor E.

    2018-02-01

    A spatially periodic longitudinal wave is considered in relativistic dissipative hydrodynamics. At sufficiently small wave amplitudes, an analytic solution is obtained in the linearized limit of the macroscopic conservation equations within the first- and second-order relativistic hydrodynamics formulations. A kinetic solver is used to obtain the numerical solution of the relativistic Boltzmann equation for massless particles in the Anderson-Witting approximation for the collision term. It is found that, at small values of the Anderson-Witting relaxation time τ , the transport coefficients emerging from the relativistic Boltzmann equation agree with those predicted through the Chapman-Enskog procedure, while the relaxation times of the heat flux and shear pressure are equal to τ . These claims are further strengthened by considering a moment-type approximation based on orthogonal polynomials under which the Chapman-Enskog results for the transport coefficients are exactly recovered.

  18. a Bounded Finite-Difference Discretization of a Two-Dimensional Diffusion Equation with Logistic Nonlinear Reaction

    NASA Astrophysics Data System (ADS)

    Macías-Díaz, J. E.

    In the present manuscript, we introduce a finite-difference scheme to approximate solutions of the two-dimensional version of Fisher's equation from population dynamics, which is a model for which the existence of traveling-wave fronts bounded within (0,1) is a well-known fact. The method presented here is a nonstandard technique which, in the linear regime, approximates the solutions of the original model with a consistency of second order in space and first order in time. The theory of M-matrices is employed here in order to elucidate conditions under which the method is able to preserve the positivity and the boundedness of solutions. In fact, our main result establishes relatively flexible conditions under which the preservation of the positivity and the boundedness of new approximations is guaranteed. Some simulations of the propagation of a traveling-wave solution confirm the analytical results derived in this work; moreover, the experiments evince a good agreement between the numerical result and the analytical solutions.

  19. Theory of biaxial graded-index optical fiber. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Kawalko, Stephen F.

    1990-01-01

    A biaxial graded-index fiber with a homogeneous cladding is studied. Two methods, wave equation and matrix differential equation, of formulating the problem and their respective solutions are discussed. For the wave equation formulation of the problem it is shown that for the case of a diagonal permittivity tensor the longitudinal electric and magnetic fields satisfy a pair of coupled second-order differential equations. Also, a generalized dispersion relation is derived in terms of the solutions for the longitudinal electric and magnetic fields. For the case of a step-index fiber, either isotropic or uniaxial, these differential equations can be solved exactly in terms of Bessel functions. For the cases of an istropic graded-index and a uniaxial graded-index fiber, a solution using the Wentzel, Krammers and Brillouin (WKB) approximation technique is shown. Results for some particular permittivity profiles are presented. Also the WKB solutions is compared with the vector solution found by Kurtz and Streifer. For the matrix formulation it is shown that the tangential components of the electric and magnetic fields satisfy a system of four first-order differential equations which can be conveniently written in matrix form. For the special case of meridional modes, the system of equations splits into two systems of two equations. A general iterative technique, asymptotic partitioning of systems of equations, for solving systems of differential equations is presented. As a simple example, Bessel's differential equation is written in matrix form and is solved using this asymptotic technique. Low order solutions for particular examples of a biaxial and uniaxial graded-index fiber are presented. Finally numerical results obtained using the asymptotic technique are presented for particular examples of isotropic and uniaxial step-index fibers and isotropic, uniaxial and biaxial graded-index fibers.

  20. A Study of Alfven Wave Propagation and Heating the Chromosphere

    NASA Astrophysics Data System (ADS)

    Tu, J.; Song, P.

    2013-12-01

    Alfven wave propagation, reflection and heating of the solar atmosphere are studied for a one-dimensional solar atmosphere by self-consistently solving plasma and neutral fluid equations and Maxwell's equations with incorporation of the Hall effect, strong electron-neutral, electron-ion, and ion-neutral collisions. The governing equations are very stiff because of the strong coupling between the charged and neutral fluids. We have developed a numerical model based on an implicit backward difference formula (BDF2) of second order accuracy both in time and space to overcome the stiffness. A non-reflecting boundary condition is applied to the top boundary of the simulation domain so that the wave reflection within the domain due to the density gradient can be unambiguously determined. It is shown that the Alfven waves are partially reflected throughout the chromosphere. The reflection is increasingly stronger at higher altitudes and the strongest reflection occurs at the transition region. The waves are damped in the lower chromosphere dominantly through Joule dissipation due to electron collisions with neutrals and ions. The heating resulting from the wave damping is strong enough to balance the radiation energy loss for the quiet chromosphere. The collisional dissipation of the Alfven waves in the weakly collisional corona is negligible. The heating rates are larger for weaker background magnetic fields. In addition, higher frequency waves are subject to heavier damping. There is an upper cutoff frequency, depending on the background magnetic field, above which the waves are completely damped. At the frequencies below which the waves are not strongly damped, the waves may be strongly reflected at the transition region. The reflected waves interacting with the upward propagating waves may produce power at their double frequencies, which leads to more damping. Due to the reflection and damping, the energy flux of the waves transmitted to the corona is one order of magnitude smaller than that of the driving source.

  1. Self-Consistent Model of Magnetospheric Ring Current and Propagating Electromagnetic Ion Cyclotron Waves: Waves in Multi-Ion Magnetosphere

    NASA Technical Reports Server (NTRS)

    Khazanov, G. V.; Gamayunov, K. V.; Gallagher, D. L.; Kozyra, J. U.

    2006-01-01

    The further development of a self-consistent theoretical model of interacting ring current ions and electromagnetic ion cyclotron waves (Khazanov et al., 2003) is presented In order to adequately take into account wave propagation and refraction in a multi-ion magnetosphere, we explicitly include the ray tracing equations in our previous self-consistent model and use the general form of the wave kinetic equation. This is a major new feature of the present model and, to the best of our knowledge, the ray tracing equations for the first time are explicitly employed on a global magnetospheric scale in order to self-consistently simulate the spatial, temporal, and spectral evolution of the ring current and of electromagnetic ion cyclotron waves To demonstrate the effects of EMIC wave propagation and refraction on the wave energy distribution and evolution, we simulate the May 1998 storm. The main findings of our simulation can be summarized as follows. First, owing to the density gradient at the plasmapause, the net wave refraction is suppressed, and He+-mode grows preferably at the plasmapause. This result is in total agreement with previous ray tracing studies and is very clearly found in presented B field spectrograms. Second, comparison of global wave distributions with the results from another ring current model (Kozyra et al., 1997) reveals that this new model provides more intense and more highly plasmapause-organized wave distributions during the May 1998 storm period Finally, it is found that He(+)-mode energy distributions are not Gaussian distributions and most important that wave energy can occupy not only the region of generation, i.e., the region of small wave normal angles, but all wave normal angles, including those to near 90 . The latter is extremely crucial for energy transfer to thermal plasmaspheric electrons by resonant Landau damping and subsequent downward heat transport and excitation of stable auroral red arcs.

  2. General relativistic hydrodynamics with Adaptive-Mesh Refinement (AMR) and modeling of accretion disks

    NASA Astrophysics Data System (ADS)

    Donmez, Orhan

    We present a general procedure to solve the General Relativistic Hydrodynamical (GRH) equations with Adaptive-Mesh Refinement (AMR) and model of an accretion disk around a black hole. To do this, the GRH equations are written in a conservative form to exploit their hyperbolic character. The numerical solutions of the general relativistic hydrodynamic equations is done by High Resolution Shock Capturing schemes (HRSC), specifically designed to solve non-linear hyperbolic systems of conservation laws. These schemes depend on the characteristic information of the system. We use Marquina fluxes with MUSCL left and right states to solve GRH equations. First, we carry out different test problems with uniform and AMR grids on the special relativistic hydrodynamics equations to verify the second order convergence of the code in 1D, 2 D and 3D. Second, we solve the GRH equations and use the general relativistic test problems to compare the numerical solutions with analytic ones. In order to this, we couple the flux part of general relativistic hydrodynamic equation with a source part using Strang splitting. The coupling of the GRH equations is carried out in a treatment which gives second order accurate solutions in space and time. The test problems examined include shock tubes, geodesic flows, and circular motion of particle around the black hole. Finally, we apply this code to the accretion disk problems around the black hole using the Schwarzschild metric at the background of the computational domain. We find spiral shocks on the accretion disk. They are observationally expected results. We also examine the star-disk interaction near a massive black hole. We find that when stars are grounded down or a hole is punched on the accretion disk, they create shock waves which destroy the accretion disk.

  3. Expressions for tidal conversion at seafloor topography using physical space integrals

    NASA Astrophysics Data System (ADS)

    Schorghofer, Norbert

    2010-12-01

    The barotropic tide interacts with seafloor topography to generate internal gravity waves. Equations for streamfunction and power conversion are derived in terms of integrals over the topography in spatial coordinates. The slope of the topography does not need to be small. Explicit equations are derived up to second order in slope for general topography, and conversion by a bell-shaped topography is calculated analytically to this order. A concise formalism using Hilbert transforms is developed, the minimally converting topographic shape is discussed, and a numerical scheme for the evaluation of power conversion is designed that robustly deals with the singular integrand.

  4. Frequency domain finite-element and spectral-element acoustic wave modeling using absorbing boundaries and perfectly matched layer

    NASA Astrophysics Data System (ADS)

    Rahimi Dalkhani, Amin; Javaherian, Abdolrahim; Mahdavi Basir, Hadi

    2018-04-01

    Wave propagation modeling as a vital tool in seismology can be done via several different numerical methods among them are finite-difference, finite-element, and spectral-element methods (FDM, FEM and SEM). Some advanced applications in seismic exploration benefit the frequency domain modeling. Regarding flexibility in complex geological models and dealing with the free surface boundary condition, we studied the frequency domain acoustic wave equation using FEM and SEM. The results demonstrated that the frequency domain FEM and SEM have a good accuracy and numerical efficiency with the second order interpolation polynomials. Furthermore, we developed the second order Clayton and Engquist absorbing boundary condition (CE-ABC2) and compared it with the perfectly matched layer (PML) for the frequency domain FEM and SEM. In spite of PML method, CE-ABC2 does not add any additional computational cost to the modeling except assembling boundary matrices. As a result, considering CE-ABC2 is more efficient than PML for the frequency domain acoustic wave propagation modeling especially when computational cost is high and high-level absorbing performance is unnecessary.

  5. Cosmological perturbations in mimetic Horndeski gravity

    NASA Astrophysics Data System (ADS)

    Arroja, Frederico; Bartolo, Nicola; Karmakar, Purnendu; Matarrese, Sabino

    2016-04-01

    We study linear scalar perturbations around a flat FLRW background in mimetic Horndeski gravity. In the absence of matter, we show that the Newtonian potential satisfies a second-order differential equation with no spatial derivatives. This implies that the sound speed for scalar perturbations is exactly zero on this background. We also show that in mimetic G3 theories the sound speed is equally zero. We obtain the equation of motion for the comoving curvature perturbation (first order differential equation) and solve it to find that the comoving curvature perturbation is constant on all scales in mimetic Horndeski gravity. We find solutions for the Newtonian potential evolution equation in two simple models. Finally we show that the sound speed is zero on all backgrounds and therefore the system does not have any wave-like scalar degrees of freedom.

  6. Surface wave scattering from sharp lateral discontinuities

    NASA Astrophysics Data System (ADS)

    Pollitz, Fred F.

    1994-11-01

    The problem of surface wave scattering is re-explored, with quasi-degenerate normal mode coupling as the starting point. For coupling among specified spheroidal and toroidal mode dispersion branches, a set of coupled wave equations is derived in the frequency domain for first-arriving Rayleigh and Love waves. The solutions to these coupled wave equations using linear perturbation theory are surface integrals over the unit sphere covering the lateral distribution of perturbations in Earth structure. For isotropic structural perturbations and surface topographic perturbations, these solutions agree with the Born scattering theory previously obtained by Snieder and Romanowicz. By transforming these surface integrals into line integrals along the boundaries of the heterogeneous regions in the case of sharp discontinuities, and by using uniformly valid Green's functions, it is possible to extend the solution to the case of multiple scattering interactions. The proposed method allows the relatively rapid calculation of exact second order scattered wavefield potentials for scattering by sharp discontinuities, and it has many advantages not realized in earlier treatments. It employs a spherical Earth geometry, uses no far field approximation, and implicitly contains backward as well as forward scattering. Comparisons of asymptotic scattering and an exact solution with single scattering and multiple scattering integral formulations show that the phase perturbation predicted by geometrical optics breaks down for scatterers less than about six wavelengths in diameter, and second-order scattering predicts well both the amplitude and phase pattern of the exact wavefield for sufficiently small scatterers, less than about three wavelengths in diameter for anomalies of a few percent.

  7. Self-Consistent Model of Magnetospheric Ring Current and Propagating Electromagnetic Ion Cyclotron Waves. 1; Waves in Multi Ion Magnetosphere

    NASA Technical Reports Server (NTRS)

    Khazanov, G. V.; Gumayunov, K. V.; Gallagher, D. L.; Kozyra, J. U.

    2006-01-01

    The further development of a self-consistent theoretical model of interacting ring current ions and electromagnetic ion cyclotron waves [Khazanov et al., 2003] is presented. In order to adequately take into account the wave propagation and refraction in a multi-ion plasmasphere, we explicitly include the ray tracing equations in our previous self-consistent model and use the general form of the wave kinetic equation. This is a major new feature of the present model and, to the best of our knowledge, the ray tracing equations for the first time are explicitly employed on a global magnetospheric scale in order to self-consistently simulate spatial, temporal, and spectral evolutions of the ring current and electromagnetic ion cyclotron waves. To demonstrate the effects of EMIC wave propagation and refraction on the EMIC wave energy distributions and evolution we simulate the May 1998 storm. The main findings of our simulation can be summarized as follows. First, due to the density gradient at the plasmapause, the net wave refraction is suppressed, and He(+)-mode grows preferably at plasmapause. This result is in a total agreement with the previous ray tracing studies, and very clear observed in presented B-field spectrograms. Second, comparison the global wave distributions with the results from other ring current model [Kozyra et al., 1997] reveals that our model provides more intense and higher plasmapause organized distributions during the May, 1998 storm period. Finally, the found He(+)-mode energy distributions are not Gaussian distributions, and most important that wave energy can occupy not only the region of generation, i. e. the region of small wave normal angles, but the entire wave normal angle region and even only the region near 90 degrees. The latter is extremely crucial for energy transfer to thermal plasmaspheric electrons by resonant Landau damping, and subsequent downward heat transport and excitation of stable auroral red arcs.

  8. Super-rogue waves in simulations based on weakly nonlinear and fully nonlinear hydrodynamic equations.

    PubMed

    Slunyaev, A; Pelinovsky, E; Sergeeva, A; Chabchoub, A; Hoffmann, N; Onorato, M; Akhmediev, N

    2013-07-01

    The rogue wave solutions (rational multibreathers) of the nonlinear Schrödinger equation (NLS) are tested in numerical simulations of weakly nonlinear and fully nonlinear hydrodynamic equations. Only the lowest order solutions from 1 to 5 are considered. A higher accuracy of wave propagation in space is reached using the modified NLS equation, also known as the Dysthe equation. This numerical modeling allowed us to directly compare simulations with recent results of laboratory measurements in Chabchoub et al. [Phys. Rev. E 86, 056601 (2012)]. In order to achieve even higher physical accuracy, we employed fully nonlinear simulations of potential Euler equations. These simulations provided us with basic characteristics of long time evolution of rational solutions of the NLS equation in the case of near-breaking conditions. The analytic NLS solutions are found to describe the actual wave dynamics of steep waves reasonably well.

  9. Effects of Radiation Damping in Extreme Ultra-intense Laser-Plasma Interaction

    NASA Astrophysics Data System (ADS)

    Pandit, Rishi R.

    Recent advances in the development of intense short pulse lasers are significant. Now it is available to access a laser with intensity 1021W/cm2 by focusing a petawatt class laser. In a few years, the intensity will exceed 1022W/cm2 , at which intensity electrons accelerated by the laser get energy more than 100 MeV and start to emit radiation strongly. Resultingly, the damping of electron motion can become large. In order to study this problem, we developed a code to solve a set of equations describing the evolution of a strong electromagnetic wave interacting with a single electron. Usually the equation of motion of an electron including radiation damping under the influence of electromagnetic fields is derived from the Lorentz-Dirac equation treating the damping as a perturbation. So far people had used the first order damping equation. This is because the second order term seems to be small and actually it is negligible under 1022W/cm2 intensity. The derivation of 2nd order equation is also complicated and challenging. We derived the second order damping equations for the first time and implemented in the code. The code was then tested via single particle motion in the extreme intensity laser. It was found that the 1st order damping term is reasonable up to the intensity 1022W/cm2, but the 2nd oder term becomes not negligible and comparable in magnitude to the first order term beyond 1023W/cm2. The radiation damping model was introduced using a one-dimensional particle-in-cell code (PIC), and tested in the laser-plasma interaction at extreme intensity. The strong damping of hot electrons in high energy tail was demonstrated in PIC simulations.

  10. Causal dissipation and shock profiles in the relativistic fluid dynamics of pure radiation.

    PubMed

    Freistühler, Heinrich; Temple, Blake

    2014-06-08

    CURRENT THEORIES OF DISSIPATION IN THE RELATIVISTIC REGIME SUFFER FROM ONE OF TWO DEFICITS: either their dissipation is not causal or no profiles for strong shock waves exist. This paper proposes a relativistic Navier-Stokes-Fourier-type viscosity and heat conduction tensor such that the resulting second-order system of partial differential equations for the fluid dynamics of pure radiation is symmetric hyperbolic. This system has causal dissipation as well as the property that all shock waves of arbitrary strength have smooth profiles. Entropy production is positive both on gradients near those of solutions to the dissipation-free equations and on gradients of shock profiles. This shows that the new dissipation stress tensor complies to leading order with the principles of thermodynamics. Whether higher order modifications of the ansatz are required to obtain full compatibility with the second law far from the zero-dissipation equilibrium is left to further investigations. The system has exactly three a priori free parameters χ , η , ζ , corresponding physically to heat conductivity, shear viscosity and bulk viscosity. If the bulk viscosity is zero (as is stated in the literature) and the total stress-energy tensor is trace free, the entire viscosity and heat conduction tensor is determined to within a constant factor.

  11. Causal dissipation and shock profiles in the relativistic fluid dynamics of pure radiation

    PubMed Central

    Freistühler, Heinrich; Temple, Blake

    2014-01-01

    Current theories of dissipation in the relativistic regime suffer from one of two deficits: either their dissipation is not causal or no profiles for strong shock waves exist. This paper proposes a relativistic Navier–Stokes–Fourier-type viscosity and heat conduction tensor such that the resulting second-order system of partial differential equations for the fluid dynamics of pure radiation is symmetric hyperbolic. This system has causal dissipation as well as the property that all shock waves of arbitrary strength have smooth profiles. Entropy production is positive both on gradients near those of solutions to the dissipation-free equations and on gradients of shock profiles. This shows that the new dissipation stress tensor complies to leading order with the principles of thermodynamics. Whether higher order modifications of the ansatz are required to obtain full compatibility with the second law far from the zero-dissipation equilibrium is left to further investigations. The system has exactly three a priori free parameters χ,η,ζ, corresponding physically to heat conductivity, shear viscosity and bulk viscosity. If the bulk viscosity is zero (as is stated in the literature) and the total stress–energy tensor is trace free, the entire viscosity and heat conduction tensor is determined to within a constant factor. PMID:24910526

  12. Wave propagation in anisotropic elastic materials and curvilinear coordinates using a summation-by-parts finite difference method

    DOE PAGES

    Petersson, N. Anders; Sjogreen, Bjorn

    2015-07-20

    We develop a fourth order accurate finite difference method for solving the three-dimensional elastic wave equation in general heterogeneous anisotropic materials on curvilinear grids. The proposed method is an extension of the method for isotropic materials, previously described in the paper by Sjögreen and Petersson (2012) [11]. The method we proposed discretizes the anisotropic elastic wave equation in second order formulation, using a node centered finite difference method that satisfies the principle of summation by parts. The summation by parts technique results in a provably stable numerical method that is energy conserving. Also, we generalize and evaluate the super-grid far-fieldmore » technique for truncating unbounded domains. Unlike the commonly used perfectly matched layers (PML), the super-grid technique is stable for general anisotropic material, because it is based on a coordinate stretching combined with an artificial dissipation. Moreover, the discretization satisfies an energy estimate, proving that the numerical approximation is stable. We demonstrate by numerical experiments that sufficiently wide super-grid layers result in very small artificial reflections. Applications of the proposed method are demonstrated by three-dimensional simulations of anisotropic wave propagation in crystals.« less

  13. Vainshtein mechanism after GW170817

    NASA Astrophysics Data System (ADS)

    Crisostomi, Marco; Koyama, Kazuya

    2018-01-01

    The almost simultaneous detection of gravitational waves and a short gamma-ray burst from a neutron star merger has put a tight constraint on the difference between the speed of gravity and light. In the four-dimensional scalar-tensor theory with second-order equations of motion, the Horndeski theory, this translates into a significant reduction of the viable parameter space of the theory. Recently, extensions of Horndeski theory, which are free from Ostrogradsky ghosts despite the presence of higher-order derivatives in the equations of motion, have been identified and classified exploiting the degeneracy criterium. In these new theories, the fifth force mediated by the scalar field must be suppressed in order to evade the stringent Solar System constraints. We study the Vainshtein mechanism in the most general degenerate higher-order scalar-tensor theory in which light and gravity propagate at the same speed. We find that the Vainshtein mechanism generally works outside a matter source but it is broken inside matter, similarly to beyond Horndeski theories. This leaves interesting possibilities to test these theories that are compatible with gravitational wave observations using astrophysical objects.

  14. Quantitative kinetic theory of active matter

    NASA Astrophysics Data System (ADS)

    Ihle, Thomas; Chou, Yen-Liang

    2014-03-01

    Models of self-driven agents similar to the Vicsek model [Phys. Rev. Lett. 75 (1995) 1226] are studied by means of kinetic theory. In these models, particles try to align their travel directions with the average direction of their neighbours. At strong alignment a globally ordered state of collective motion forms. An Enskog-like kinetic theory is derived from the exact Chapman-Kolmogorov equation in phase space using Boltzmann's mean-field approximation of molecular chaos. The kinetic equation is solved numerically by a nonlocal Lattice-Boltzmann-like algorithm. Steep soliton-like waves are observed that lead to an abrupt jump of the global order parameter if the noise level is changed. The shape of the wave is shown to follow a novel scaling law and to quantitatively agree within 3 % with agent-based simulations at large particle speeds. This provides a mean-field mechanism to change the second-order character of the flocking transition to first order. Diagrammatic techniques are used to investigate small particle speeds, where the mean-field assumption of Molecular Chaos is invalid and where correlation effects need to be included.

  15. FDTD simulation of EM wave propagation in 3-D media

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, T.; Tripp, A.C.

    1996-01-01

    A finite-difference, time-domain solution to Maxwell`s equations has been developed for simulating electromagnetic wave propagation in 3-D media. The algorithm allows arbitrary electrical conductivity and permittivity variations within a model. The staggered grid technique of Yee is used to sample the fields. A new optimized second-order difference scheme is designed to approximate the spatial derivatives. Like the conventional fourth-order difference scheme, the optimized second-order scheme needs four discrete values to calculate a single derivative. However, the optimized scheme is accurate over a wider wavenumber range. Compared to the fourth-order scheme, the optimized scheme imposes stricter limitations on the time stepmore » sizes but allows coarser grids. The net effect is that the optimized scheme is more efficient in terms of computation time and memory requirement than the fourth-order scheme. The temporal derivatives are approximated by second-order central differences throughout. The Liao transmitting boundary conditions are used to truncate an open problem. A reflection coefficient analysis shows that this transmitting boundary condition works very well. However, it is subject to instability. A method that can be easily implemented is proposed to stabilize the boundary condition. The finite-difference solution is compared to closed-form solutions for conducting and nonconducting whole spaces and to an integral-equation solution for a 3-D body in a homogeneous half-space. In all cases, the finite-difference solutions are in good agreement with the other solutions. Finally, the use of the algorithm is demonstrated with a 3-D model. Numerical results show that both the magnetic field response and electric field response can be useful for shallow-depth and small-scale investigations.« less

  16. Efficient Low Dissipative High Order Schemes for Multiscale MHD Flows

    NASA Technical Reports Server (NTRS)

    Sjoegreen, Bjoern; Yee, Helen C.; Mansour, Nagi (Technical Monitor)

    2002-01-01

    Accurate numerical simulations of complex multiscale compressible viscous flows, especially high speed turbulence combustion and acoustics, demand high order schemes with adaptive numerical dissipation controls. Standard high resolution shock-capturing methods are too dissipative to capture the small scales and/or long-time wave propagations without extreme grid refinements and small time steps. An integrated approach for the control of numerical dissipation in high order schemes for the compressible Euler and Navier-Stokes equations has been developed and verified by the authors and collaborators. These schemes are suitable for the problems in question. Basically, the scheme consists of sixth-order or higher non-dissipative spatial difference operators as the base scheme. To control the amount of numerical dissipation, multiresolution wavelets are used as sensors to adaptively limit the amount and to aid the selection and/or blending of the appropriate types of numerical dissipation to be used. Magnetohydrodynamics (MHD) waves play a key role in drag reduction in highly maneuverable high speed combat aircraft, in space weather forecasting, and in the understanding of the dynamics of the evolution of our solar system and the main sequence stars. Although there exist a few well-studied second and third-order high-resolution shock-capturing schemes for the MHD in the literature, these schemes are too diffusive and not practical for turbulence/combustion MHD flows. On the other hand, extension of higher than third-order high-resolution schemes to the MHD system of equations is not straightforward. Unlike the hydrodynamic equations, the inviscid MHD system is non-strictly hyperbolic with non-convex fluxes. The wave structures and shock types are different from their hydrodynamic counterparts. Many of the non-traditional hydrodynamic shocks are not fully understood. Consequently, reliable and highly accurate numerical schemes for multiscale MHD equations pose a great challenge to algorithm development. In addition, controlling the numerical error of the divergence free condition of the magnetic fields for high order methods has been a stumbling block. Lower order methods are not practical for the astrophysical problems in question. We propose to extend our hydrodynamics schemes to the MHD equations with several desired properties over commonly used MHD schemes.

  17. Impacts of Ocean Waves on the Atmospheric Surface Layer: Simulations and Observations

    DTIC Science & Technology

    2008-06-06

    energy and pressure described in § 4 are solved using a mixed finite - difference pseudospectral scheme with a third-order Runge-Kutta time stepping with a...to that in our DNS code (Sullivan and McWilliams 2002; Sullivan et al. 2000). For our mixed finite - difference pseudospec- tral differencing scheme a...Poisson equation. The spatial discretization is pseu- dospectral along lines of constant or and second- order finite difference in the vertical

  18. A discontinuous Galerkin approach for conservative modeling of fully nonlinear and weakly dispersive wave transformations

    NASA Astrophysics Data System (ADS)

    Sharifian, Mohammad Kazem; Kesserwani, Georges; Hassanzadeh, Yousef

    2018-05-01

    This work extends a robust second-order Runge-Kutta Discontinuous Galerkin (RKDG2) method to solve the fully nonlinear and weakly dispersive flows, within a scope to simultaneously address accuracy, conservativeness, cost-efficiency and practical needs. The mathematical model governing such flows is based on a variant form of the Green-Naghdi (GN) equations decomposed as a hyperbolic shallow water system with an elliptic source term. Practical features of relevance (i.e. conservative modeling over irregular terrain with wetting and drying and local slope limiting) have been restored from an RKDG2 solver to the Nonlinear Shallow Water (NSW) equations, alongside new considerations to integrate elliptic source terms (i.e. via a fourth-order local discretization of the topography) and to enable local capturing of breaking waves (i.e. via adding a detector for switching off the dispersive terms). Numerical results are presented, demonstrating the overall capability of the proposed approach in achieving realistic prediction of nearshore wave processes involving both nonlinearity and dispersion effects within a single model.

  19. Analytical spectrum for a Hamiltonian of quantum dots with Rashba spin-orbit coupling

    NASA Astrophysics Data System (ADS)

    Dossa, Anselme F.; Avossevou, Gabriel Y. H.

    2014-12-01

    We determine the analytical solution for a Hamiltonian describing a confined charged particle in a quantum dot, including Rashba spin-orbit coupling and Zeeman splitting terms. The approach followed in this paper is straightforward and uses the symmetrization of the wave function's components. The eigenvalue problem for the Hamiltonian in Bargmann's Hilbert space reduces to a system of coupled first-order differential equations. Then we exploit the symmetry in the system to obtain uncoupled second-order differential equations, which are found to be the Whittaker-Ince limit of the confluent Heun equations. Analytical expressions as well as numerical results are obtained for the spectrum. One of the main features of such models, namely, the level splitting, is present through the spectrum obtained in this paper.

  20. Uniform high order spectral methods for one and two dimensional Euler equations

    NASA Technical Reports Server (NTRS)

    Cai, Wei; Shu, Chi-Wang

    1991-01-01

    Uniform high order spectral methods to solve multi-dimensional Euler equations for gas dynamics are discussed. Uniform high order spectral approximations with spectral accuracy in smooth regions of solutions are constructed by introducing the idea of the Essentially Non-Oscillatory (ENO) polynomial interpolations into the spectral methods. The authors present numerical results for the inviscid Burgers' equation, and for the one dimensional Euler equations including the interactions between a shock wave and density disturbance, Sod's and Lax's shock tube problems, and the blast wave problem. The interaction between a Mach 3 two dimensional shock wave and a rotating vortex is simulated.

  1. Study of shock-induced combustion using an implicit TVD scheme

    NASA Technical Reports Server (NTRS)

    Yungster, Shayne

    1992-01-01

    The supersonic combustion flowfields associated with various hypersonic propulsion systems, such as the ram accelerator, the oblique detonation wave engine, and the scramjet, are being investigated using a new computational fluid dynamics (CFD) code. The code solves the fully coupled Reynolds-averaged Navier-Stokes equations and species continuity equations in an efficient manner. It employs an iterative method and a second order differencing scheme to improve computational efficiency. The code is currently being applied to study shock wave/boundary layer interactions in premixed combustible gases, and to investigate the ram accelerator concept. Results obtained for a ram accelerator configuration indicate a new combustion mechanism in which a shock wave induces combustion in the boundary layer, which then propagates outward and downstream. The combustion process creates a high pressure region over the back of the projectile resulting in a net positive thrust forward.

  2. On the dimensionally correct kinetic theory of turbulence for parallel propagation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gaelzer, R., E-mail: rudi.gaelzer@ufrgs.br, E-mail: yoonp@umd.edu, E-mail: 007gasun@khu.ac.kr, E-mail: luiz.ziebell@ufrgs.br; Ziebell, L. F., E-mail: rudi.gaelzer@ufrgs.br, E-mail: yoonp@umd.edu, E-mail: 007gasun@khu.ac.kr, E-mail: luiz.ziebell@ufrgs.br; Yoon, P. H., E-mail: rudi.gaelzer@ufrgs.br, E-mail: yoonp@umd.edu, E-mail: 007gasun@khu.ac.kr, E-mail: luiz.ziebell@ufrgs.br

    2015-03-15

    Yoon and Fang [Phys. Plasmas 15, 122312 (2008)] formulated a second-order nonlinear kinetic theory that describes the turbulence propagating in directions parallel/anti-parallel to the ambient magnetic field. Their theory also includes discrete-particle effects, or the effects due to spontaneously emitted thermal fluctuations. However, terms associated with the spontaneous fluctuations in particle and wave kinetic equations in their theory contain proper dimensionality only for an artificial one-dimensional situation. The present paper extends the analysis and re-derives the dimensionally correct kinetic equations for three-dimensional case. The new formalism properly describes the effects of spontaneous fluctuations emitted in three-dimensional space, while the collectivelymore » emitted turbulence propagates predominantly in directions parallel/anti-parallel to the ambient magnetic field. As a first step, the present investigation focuses on linear wave-particle interaction terms only. A subsequent paper will include the dimensionally correct nonlinear wave-particle interaction terms.« less

  3. Dispersion of gravitational waves in cold spherical interstellar medium

    NASA Astrophysics Data System (ADS)

    Barta, Dániel; Vasúth, Mátyás

    We investigate the propagation of locally plane, small-amplitude, monochromatic gravitational waves (GWs) through cold compressible interstellar gas in order to provide a more accurate picture of expected waveforms for direct detection. The quasi-isothermal gas is concentrated in a spherical symmetric cloud held together by self-gravitation. Gravitational waves can be treated as linearized perturbations on the background inner Schwarzschild spacetime. The perturbed quantities lead to the field equations governing the gas dynamics and describe the interaction of gravitational waves with matter. We have shown that the transport equation of these amplitudes provides numerical solutions for the frequency-alteration. The decrease in frequency is driven by the energy dissipating process of GW-matter interactions. The decrease is significantly smaller than the magnitude of the original frequency and too small to be detectable by present second-generation and planned third-generation detectors. It exhibits a power-law relationship between original and decreased frequencies. The frequency deviation was examined particularly for the transient signal GW150914.

  4. A macroscopic plasma Lagrangian and its application to wave interactions and resonances

    NASA Technical Reports Server (NTRS)

    Peng, Y. K. M.

    1974-01-01

    The derivation of a macroscopic plasma Lagrangian is considered, along with its application to the description of nonlinear three-wave interaction in a homogeneous plasma and linear resonance oscillations in a inhomogeneous plasma. One approach to obtain the Lagrangian is via the inverse problem of the calculus of variations for arbitrary first and second order quasilinear partial differential systems. Necessary and sufficient conditions for the given equations to be Euler-Lagrange equations of a Lagrangian are obtained. These conditions are then used to determine the transformations that convert some classes of non-Euler-Lagrange equations to Euler-Lagrange equation form. The Lagrangians for a linear resistive transmission line and a linear warm collisional plasma are derived as examples. Using energy considerations, the correct macroscopic plasma Lagrangian is shown to differ from the velocity-integrated low Lagrangian by a macroscopic potential energy that equals twice the particle thermal kinetic energy plus the energy lost by heat conduction.

  5. General high-order breathers and rogue waves in the (3 + 1) -dimensional KP-Boussinesq equation

    NASA Astrophysics Data System (ADS)

    Sun, Baonan; Wazwaz, Abdul-Majid

    2018-11-01

    In this work, we investigate the (3 + 1) -dimensional KP-Boussinesq equation, which can be used to describe the nonlinear dynamic behavior in scientific and engineering applications. We derive general high-order soliton solutions by using the Hirota's bilinear method combined with the perturbation expansion technique. We also obtain periodic solutions comprising of high-order breathers, periodic line waves, and mixed solutions consisting of breathers and periodic line waves upon selecting particular parameter constraints of the obtained soliton solutions. Furthermore, smooth rational solutions are generated by taking a long wave limit of the soliton solutions. These smooth rational solutions include high-order rogue waves, high-order lumps, and hybrid solutions consisting of lumps and line rogue waves. To better understand the dynamical behaviors of these solutions, we discuss some illustrative graphical analyses. It is expected that our results can enrich the dynamical behavior of the (3 + 1) -dimensional nonlinear evolution equations of other forms.

  6. Extremely Fast Numerical Integration of Ocean Surface Wave Dynamics: Building Blocks for a Higher Order Method

    DTIC Science & Technology

    2006-09-30

    equation known as the Kadomtsev - Petviashvili (KP) equation ): (ηt + coηx +αηηx + βη )x +γηyy = 0 (4) where γ = co / 2 . The KdV equation ...using the spectral formulation of the Kadomtsev - Petviashvili equation , a standard equation for nonlinear, shallow water wave dynamics that is a... Petviashvili and nonlinear Schroedinger equations and higher order corrections have been developed as prerequisites to coding the Boussinesq and Euler

  7. Algebro-geometric Solutions for the Derivative Burgers Hierarchy

    NASA Astrophysics Data System (ADS)

    Hou, Yu; Fan, Engui; Qiao, Zhijun; Wang, Zhong

    2015-02-01

    Though completely integrable Camassa-Holm (CH) equation and Degasperis-Procesi (DP) equation are cast in the same peakon family, they possess the second- and third-order Lax operators, respectively. From the viewpoint of algebro-geometrical study, this difference lies in hyper-elliptic and non-hyper-elliptic curves. The non-hyperelliptic curves lead to great difficulty in the construction of algebro-geometric solutions of the DP equation. In this paper, we study algebro-geometric solutions for the derivative Burgers (DB) equation, which is derived by Qiao and Li (2004) as a short wave model of the DP equation with the help of functional gradient and a pair of Lenard operators. Based on the characteristic polynomial of a Lax matrix for the DB equation, we introduce a third order algebraic curve with genus , from which the associated Baker-Akhiezer functions, meromorphic function, and Dubrovin-type equations are constructed. Furthermore, the theory of algebraic curve is applied to derive explicit representations of the theta function for the Baker-Akhiezer functions and the meromorphic function. In particular, the algebro-geometric solutions are obtained for all equations in the whole DB hierarchy.

  8. Well-Balanced Second-Order Approximation of the Shallow Water Equations With Friction via Continuous Galerkin Finite Elements

    NASA Astrophysics Data System (ADS)

    Quezada de Luna, M.; Farthing, M.; Guermond, J. L.; Kees, C. E.; Popov, B.

    2017-12-01

    The Shallow Water Equations (SWEs) are popular for modeling non-dispersive incompressible water waves where the horizontal wavelength is much larger than the vertical scales. They can be derived from the incompressible Navier-Stokes equations assuming a constant vertical velocity. The SWEs are important in Geophysical Fluid Dynamics for modeling surface gravity waves in shallow regimes; e.g., in the deep ocean. Some common geophysical applications are the evolution of tsunamis, river flooding and dam breaks, storm surge simulations, atmospheric flows and others. This work is concerned with the approximation of the time-dependent Shallow Water Equations with friction using explicit time stepping and continuous finite elements. The objective is to construct a method that is at least second-order accurate in space and third or higher-order accurate in time, positivity preserving, well-balanced with respect to rest states, well-balanced with respect to steady sliding solutions on inclined planes and robust with respect to dry states. Methods fulfilling the desired goals are common within the finite volume literature. However, to the best of our knowledge, schemes with the above properties are not well developed in the context of continuous finite elements. We start this work based on a finite element method that is second-order accurate in space, positivity preserving and well-balanced with respect to rest states. We extend it by: modifying the artificial viscosity (via the entropy viscosity method) to deal with issues of loss of accuracy around local extrema, considering a singular Manning friction term handled via an explicit discretization under the usual CFL condition, considering a water height regularization that depends on the mesh size and is consistent with the polynomial approximation, reducing dispersive errors introduced by lumping the mass matrix and others. After presenting the details of the method we show numerical tests that demonstrate the well-balanced nature of the scheme and its convergence properties. We conclude with well-known benchmark problems including the Malpasset dam break (see the attached figure). All numerical experiments are performed and available in the Proteus toolkit, which is an open source python package for modeling continuum mechanical processes and fluid flow.

  9. Finite Difference Modeling of Wave Progpagation in Acoustic TiltedTI Media

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Linbin; Rector III, James W.; Hoversten, G. Michael

    2005-03-21

    Based on an acoustic assumption (shear wave velocity is zero) and a dispersion relation, we derive an acoustic wave equation for P-waves in tilted transversely isotropic (TTI) media (transversely isotropic media with a tilted symmetry axis). This equation has fewer parameters than an elastic wave equation in TTI media and yields an accurate description of P-wave traveltimes and spreading-related attenuation. Our TTI acoustic wave equation is a fourth-order equation in time and space. We demonstrate that the acoustic approximation allows the presence of shear waves in the solution. The substantial differences in traveltime and amplitude between data created using VTImore » and TTI assumptions is illustrated in examples.« less

  10. Rogue waves in the multicomponent Mel'nikov system and multicomponent Schrödinger-Boussinesq system

    NASA Astrophysics Data System (ADS)

    Sun, Baonan; Lian, Zhan

    2018-02-01

    By virtue of the bilinear method and the KP hierarchy reduction technique, exact explicit rational solutions of the multicomponent Mel'nikov equation and the multicomponent Schrödinger-Boussinesq equation are constructed, which contain multicomponent short waves and single-component long wave. For the multicomponent Mel'nikov equation, the fundamental rational solutions possess two different behaviours: lump and rogue wave. It is shown that the fundamental (simplest) rogue waves are line localised waves which arise from the constant background with a line profile and then disappear into the constant background again. The fundamental line rogue waves can be classified into three: bright, intermediate and dark line rogue waves. Two subclasses of non-fundamental rogue waves, i.e., multirogue waves and higher-order rogue waves are discussed. The multirogue waves describe interaction of several fundamental line rogue waves, in which interesting wave patterns appear in the intermediate time. Higher-order rogue waves exhibit dynamic behaviours that the wave structures start from lump and then retreat back to it. Moreover, by taking the parameter constraints further, general higher-order rogue wave solutions for the multicomponent Schrödinger-Boussinesq system are generated.

  11. Stability of dust ion acoustic solitary waves in a collisionless unmagnetized nonthermal plasma in presence of isothermal positrons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sardar, Sankirtan; Bandyopadhyay, Anup, E-mail: abandyopadhyay1965@gmail.com; Das, K. P.

    A three-dimensional KP (Kadomtsev Petviashvili) equation is derived here describing the propagation of weakly nonlinear and weakly dispersive dust ion acoustic wave in a collisionless unmagnetized plasma consisting of warm adiabatic ions, static negatively charged dust grains, nonthermal electrons, and isothermal positrons. When the coefficient of the nonlinear term of the KP-equation vanishes an appropriate modified KP (MKP) equation describing the propagation of dust ion acoustic wave is derived. Again when the coefficient of the nonlinear term of this MKP equation vanishes, a further modified KP equation is derived. Finally, the stability of the solitary wave solutions of the KPmore » and the different modified KP equations are investigated by the small-k perturbation expansion method of Rowlands and Infeld [J. Plasma Phys. 3, 567 (1969); 8, 105 (1972); 10, 293 (1973); 33, 171 (1985); 41, 139 (1989); Sov. Phys. - JETP 38, 494 (1974)] at the lowest order of k, where k is the wave number of a long-wavelength plane-wave perturbation. The solitary wave solutions of the different evolution equations are found to be stable at this order.« less

  12. Generation of localized patterns in anharmonic lattices with cubic-quintic nonlinearities and fourth-order dispersion via a variational approach

    NASA Astrophysics Data System (ADS)

    Wamba, Etienne; Tchakoutio Nguetcho, Aurélien S.

    2018-05-01

    We use the time-dependent variational method to examine the formation of localized patterns in dynamically unstable anharmonic lattices with cubic-quintic nonlinearities and fourth-order dispersion. The governing equation is an extended nonlinear Schrödinger equation known for modified Frankel-Kontorova models of atomic lattices and here derived from an extended Bose-Hubbard model of bosonic lattices with local three-body interactions. In presence of modulated waves, we derive and investigate the ordinary differential equations for the time evolution of the amplitude and phase of dynamical perturbation. Through an effective potential, we find the modulationally unstable domains of the lattice and discuss the effect of the fourth-order dispersion in the dynamics. Direct numerical simulations are performed to support our analytical results, and a good agreement is found. Various types of localized patterns, including breathers and solitonic chirped-like pulses, form in the system as a result of interplay between the cubic-quintic nonlinearities and the second- and fourth-order dispersions.

  13. Quintic quasi-topological gravity

    NASA Astrophysics Data System (ADS)

    Cisterna, Adolfo; Guajardo, Luis; Hassaïne, Mokhtar; Oliva, Julio

    2017-04-01

    We construct a quintic quasi-topological gravity in five dimensions, i.e. a theory with a Lagrangian containing {\\mathcal{R}}^5 terms and whose field equations are of second order on spherically (hyperbolic or planar) symmetric spacetimes. These theories have recently received attention since when formulated on asymptotically AdS spacetimes might provide for gravity duals of a broad class of CFTs. For simplicity we focus on five dimensions. We show that this theory fulfils a Birkhoff's Theorem as it is the case in Lovelock gravity and therefore, for generic values of the couplings, there is no s-wave propagating mode. We prove that the spherically symmetric solution is determined by a quintic algebraic polynomial equation which resembles Wheeler's polynomial of Lovelock gravity. For the black hole solutions we compute the temperature, mass and entropy and show that the first law of black holes thermodynamics is fulfilled. Besides of being of fourth order in general, we show that the field equations, when linearized around AdS are of second order, and therefore the theory does not propagate ghosts around this background. Besides the class of theories originally introduced in arXiv:1003.4773, the general geometric structure of these Lagrangians remains an open problem.

  14. Modeling TAE Response To Nonlinear Drives

    NASA Astrophysics Data System (ADS)

    Zhang, Bo; Berk, Herbert; Breizman, Boris; Zheng, Linjin

    2012-10-01

    Experiment has detected the Toroidal Alfven Eigenmodes (TAE) with signals at twice the eigenfrequency.These harmonic modes arise from the second order perturbation in amplitude of the MHD equation for the linear modes that are driven the energetic particle free energy. The structure of TAE in realistic geometry can be calculated by generalizing the linear numerical solver (AEGIS package). We have have inserted all the nonlinear MHD source terms, where are quadratic in the linear amplitudes, into AEGIS code. We then invert the linear MHD equation at the second harmonic frequency. The ratio of amplitudes of the first and second harmonic terms are used to determine the internal field amplitude. The spatial structure of energy and density distribution are investigated. The results can be directly employed to compare with experiments and determine the Alfven wave amplitude in the plasma region.

  15. Internal and external axial corner flows

    NASA Technical Reports Server (NTRS)

    Kutler, P.; Shankar, V.; Anderson, D. A.; Sorenson, R. L.

    1975-01-01

    The inviscid, internal, and external axial corner flows generated by two intersecting wedges traveling supersonically are obtained by use of a second-order shock-capturing, finite-difference approach. The governing equations are solved iteratively in conical coordinates to yield the complicated wave structure of the internal corner and the simple peripheral shock of the external corner. The numerical results for the internal flows compare favorably with existing experimental data.

  16. Efficient techniques for wave-based sound propagation in interactive applications

    NASA Astrophysics Data System (ADS)

    Mehra, Ravish

    Sound propagation techniques model the effect of the environment on sound waves and predict their behavior from point of emission at the source to the final point of arrival at the listener. Sound is a pressure wave produced by mechanical vibration of a surface that propagates through a medium such as air or water, and the problem of sound propagation can be formulated mathematically as a second-order partial differential equation called the wave equation. Accurate techniques based on solving the wave equation, also called the wave-based techniques, are too expensive computationally and memory-wise. Therefore, these techniques face many challenges in terms of their applicability in interactive applications including sound propagation in large environments, time-varying source and listener directivity, and high simulation cost for mid-frequencies. In this dissertation, we propose a set of efficient wave-based sound propagation techniques that solve these three challenges and enable the use of wave-based sound propagation in interactive applications. Firstly, we propose a novel equivalent source technique for interactive wave-based sound propagation in large scenes spanning hundreds of meters. It is based on the equivalent source theory used for solving radiation and scattering problems in acoustics and electromagnetics. Instead of using a volumetric or surface-based approach, this technique takes an object-centric approach to sound propagation. The proposed equivalent source technique generates realistic acoustic effects and takes orders of magnitude less runtime memory compared to prior wave-based techniques. Secondly, we present an efficient framework for handling time-varying source and listener directivity for interactive wave-based sound propagation. The source directivity is represented as a linear combination of elementary spherical harmonic sources. This spherical harmonic-based representation of source directivity can support analytical, data-driven, rotating or time-varying directivity function at runtime. Unlike previous approaches, the listener directivity approach can be used to compute spatial audio (3D audio) for a moving, rotating listener at interactive rates. Lastly, we propose an efficient GPU-based time-domain solver for the wave equation that enables wave simulation up to the mid-frequency range in tens of minutes on a desktop computer. It is demonstrated that by carefully mapping all the components of the wave simulator to match the parallel processing capabilities of the graphics processors, significant improvement in performance can be achieved compared to the CPU-based simulators, while maintaining numerical accuracy. We validate these techniques with offline numerical simulations and measured data recorded in an outdoor scene. We present results of preliminary user evaluations conducted to study the impact of these techniques on user's immersion in virtual environment. We have integrated these techniques with the Half-Life 2 game engine, Oculus Rift head-mounted display, and Xbox game controller to enable users to experience high-quality acoustics effects and spatial audio in the virtual environment.

  17. Bright, dark and W-shaped solitons with extended nonlinear Schrödinger's equation for odd and even higher-order terms

    NASA Astrophysics Data System (ADS)

    Bendahmane, Issam; Triki, Houria; Biswas, Anjan; Saleh Alshomrani, Ali; Zhou, Qin; Moshokoa, Seithuti P.; Belic, Milivoj

    2018-02-01

    We present solitary wave solutions of an extended nonlinear Schrödinger equation with higher-order odd (third-order) and even (fourth-order) terms by using an ansatz method. The including high-order dispersion terms have significant physical applications in fiber optics, the Heisenberg spin chain, and ocean waves. Exact envelope solutions comprise bright, dark and W-shaped solitary waves, illustrating the potentially rich set of solitary wave solutions of the extended model. Furthermore, we investigate the properties of these solitary waves in nonlinear and dispersive media. Moreover, specific constraints on the system parameters for the existence of these structures are discussed exactly. The results show that the higher-order dispersion and nonlinear effects play a crucial role for the formation and properties of propagating waves.

  18. Shock wave equation of state of muscovite

    NASA Technical Reports Server (NTRS)

    Sekine, Toshimori; Rubin, Allan M.; Ahrens, Thomas J.

    1991-01-01

    Shock wave data were obtained between 20 and 140 GPa for natural muscovite obtained from Methuen Township (Ontario), in order to provide a shock-wave equation of state for this crustal hydrous mineral. The shock equation of state data could be fit by a linear shock velocity (Us) versus particle velocity (Up) relation Us = 4.62 + 1.27 Up (km/s). Third-order Birch-Murnaghan equation of state parameters were found to be K(OS) = 52 +/-4 GPa and K-prime(OS) = 3.2 +/-0.3 GPa. These parameters are comparable to those of other hydrous minerals such as brucite, serpentine, and tremolite.

  19. Transverse instability of periodic and generalized solitary waves for a fifth-order KP model

    NASA Astrophysics Data System (ADS)

    Haragus, Mariana; Wahlén, Erik

    2017-02-01

    We consider a fifth-order Kadomtsev-Petviashvili equation which arises as a two-dimensional model in the classical water-wave problem. This equation possesses a family of generalized line solitary waves which decay exponentially to periodic waves at infinity. We prove that these solitary waves are transversely spectrally unstable and that this instability is induced by the transverse instability of the periodic tails. We rely upon a detailed spectral analysis of some suitably chosen linear operators.

  20. Chirped solitary pulses for a nonic nonlinear Schrödinger equation on a continuous-wave background

    NASA Astrophysics Data System (ADS)

    Triki, Houria; Porsezian, K.; Choudhuri, Amitava; Dinda, P. Tchofo

    2016-06-01

    A class of derivative nonlinear Schrödinger equation with cubic-quintic-septic-nonic nonlinear terms describing the propagation of ultrashort optical pulses through a nonlinear medium with higher-order Kerr responses is investigated. An intensity-dependent chirp ansatz is adopted for solving the two coupled amplitude-phase nonlinear equations of the propagating wave. We find that the dynamics of field amplitude in this system is governed by a first-order nonlinear ordinary differential equation with a tenth-degree nonlinear term. We demonstrate that this system allows the propagation of a very rich variety of solitary waves (kink, dark, bright, and gray solitary pulses) which do not coexist in the conventional nonlinear systems that have appeared so far in the literature. The stability of the solitary wave solution under some violation on the parametric conditions is investigated. Moreover, we show that, unlike conventional systems, the nonlinear Schrödinger equation considered here meets the special requirements for the propagation of a chirped solitary wave on a continuous-wave background, involving a balance among group velocity dispersion, self-steepening, and higher-order nonlinearities of different nature.

  1. Wave theory in rotating systems: Schrödinger equations bridge the gaps between the equatorial β-plane and the spherical earth

    NASA Astrophysics Data System (ADS)

    Paldor, N.

    2017-12-01

    The concise and elegant wave theory developed on the equatorial β-plane by Matsuno (1966, M66 hereafter) is based on the formulation of a Schrödinger equation associated with the governing Linear Rotating Shallow Water Equations (LRSWE). The theory yields explicit expressions for the dispersion relations and meridional amplitude structures of all zonally propagating waves - Rossby, Inertia-Gravity, Kelvin and Yanai. In contrast, the spherical wave theory of Longuet-Higgins (1968) is a collection of asymptotic expansions in many sub-ranges e.g. large, small (and even negative) Lamb Number; high and low frequency; low-latitudes, etc. that rests upon extensive numerical solutions of several Ordinary Differential Equations. The difference between the two theories is highlighted by their lengths. The essential elements of the former planar study are completely revealed in just 3-4 pages including the derivation of explicit formulae for the phase speeds and amplitude meridional structures. In comtrast, the latter spherical theory contains 97 pages and the results of the numerical calculations are summarized in 30 pages of tables filled with numerical values and about 31 figures, each of which containing many separate curves! In my talk I will re-visit the wave problem on a sphere by developing several Schrödinger equations that approximate the governing eigenvalue equation associated with zonally propagating waves. Each of the Schrödinger equations approximates the original second order Ordinary Differential Equation in a different range of the 3 parameters: Lamb-Number, frequency and zonal wavenumber. As in M66, each of the Schrödinger equations yields explicit expressions for the dispersion relations and meridional amplitude structure of Rossby and Inertia-Gravity waves. In addition, the analysis shows that Yanai wave exists on a sphere even tough the zonal velocity is regular everywhere there (in contrast to the β-plane where the zonal velocity is singular everywhere) and that Kelvin waves do not exist as a separate mode (but the eastward propagating n=0 Inertia-Gravity is nearly non-dispersive). References Longuet-Higgins, M. S. Phil. Trans. Roy. Soc. London; 262, 511-607; 1968 Matsuno, T.; J. Met. Soc. Japan. 44(1), 25-43; 1966

  2. Soliton's eigenvalue based analysis on the generation mechanism of rogue wave phenomenon in optical fibers exhibiting weak third order dispersion.

    PubMed

    Weerasekara, Gihan; Tokunaga, Akihiro; Terauchi, Hiroki; Eberhard, Marc; Maruta, Akihiro

    2015-01-12

    One of the extraordinary aspects of nonlinear wave evolution which has been observed as the spontaneous occurrence of astonishing and statistically extraordinary amplitude wave is called rogue wave. We show that the eigenvalues of the associated equation of nonlinear Schrödinger equation are almost constant in the vicinity of rogue wave and we validate that optical rogue waves are formed by the collision between quasi-solitons in anomalous dispersion fiber exhibiting weak third order dispersion.

  3. Classifying bilinear differential equations by linear superposition principle

    NASA Astrophysics Data System (ADS)

    Zhang, Lijun; Khalique, Chaudry Masood; Ma, Wen-Xiu

    2016-09-01

    In this paper, we investigate the linear superposition principle of exponential traveling waves to construct a sub-class of N-wave solutions of Hirota bilinear equations. A necessary and sufficient condition for Hirota bilinear equations possessing this specific sub-class of N-wave solutions is presented. We apply this result to find N-wave solutions to the (2+1)-dimensional KP equation, a (3+1)-dimensional generalized Kadomtsev-Petviashvili (KP) equation, a (3+1)-dimensional generalized BKP equation and the (2+1)-dimensional BKP equation. The inverse question, i.e., constructing Hirota Bilinear equations possessing N-wave solutions, is considered and a refined 3-step algorithm is proposed. As examples, we construct two very general kinds of Hirota bilinear equations of order 4 possessing N-wave solutions among which one satisfies dispersion relation and another does not satisfy dispersion relation.

  4. An efficient and accurate two-stage fourth-order gas-kinetic scheme for the Euler and Navier-Stokes equations

    NASA Astrophysics Data System (ADS)

    Pan, Liang; Xu, Kun; Li, Qibing; Li, Jiequan

    2016-12-01

    For computational fluid dynamics (CFD), the generalized Riemann problem (GRP) solver and the second-order gas-kinetic scheme (GKS) provide a time-accurate flux function starting from a discontinuous piecewise linear flow distributions around a cell interface. With the adoption of time derivative of the flux function, a two-stage Lax-Wendroff-type (L-W for short) time stepping method has been recently proposed in the design of a fourth-order time accurate method for inviscid flow [21]. In this paper, based on the same time-stepping method and the second-order GKS flux function [42], a fourth-order gas-kinetic scheme is constructed for the Euler and Navier-Stokes (NS) equations. In comparison with the formal one-stage time-stepping third-order gas-kinetic solver [24], the current fourth-order method not only reduces the complexity of the flux function, but also improves the accuracy of the scheme. In terms of the computational cost, a two-dimensional third-order GKS flux function takes about six times of the computational time of a second-order GKS flux function. However, a fifth-order WENO reconstruction may take more than ten times of the computational cost of a second-order GKS flux function. Therefore, it is fully legitimate to develop a two-stage fourth order time accurate method (two reconstruction) instead of standard four stage fourth-order Runge-Kutta method (four reconstruction). Most importantly, the robustness of the fourth-order GKS is as good as the second-order one. In the current computational fluid dynamics (CFD) research, it is still a difficult problem to extend the higher-order Euler solver to the NS one due to the change of governing equations from hyperbolic to parabolic type and the initial interface discontinuity. This problem remains distinctively for the hypersonic viscous and heat conducting flow. The GKS is based on the kinetic equation with the hyperbolic transport and the relaxation source term. The time-dependent GKS flux function provides a dynamic process of evolution from the kinetic scale particle free transport to the hydrodynamic scale wave propagation, which provides the physics for the non-equilibrium numerical shock structure construction to the near equilibrium NS solution. As a result, with the implementation of the fifth-order WENO initial reconstruction, in the smooth region the current two-stage GKS provides an accuracy of O ((Δx) 5 ,(Δt) 4) for the Euler equations, and O ((Δx) 5 ,τ2 Δt) for the NS equations, where τ is the time between particle collisions. Many numerical tests, including difficult ones for the Navier-Stokes solvers, have been used to validate the current method. Perfect numerical solutions can be obtained from the high Reynolds number boundary layer to the hypersonic viscous heat conducting flow. Following the two-stage time-stepping framework, the third-order GKS flux function can be used as well to construct a fifth-order method with the usage of both first-order and second-order time derivatives of the flux function. The use of time-accurate flux function may have great advantages on the development of higher-order CFD methods.

  5. Exact traveling wave solutions of fractional order Boussinesq-like equations by applying Exp-function method

    NASA Astrophysics Data System (ADS)

    Rahmatullah; Ellahi, Rahmat; Mohyud-Din, Syed Tauseef; Khan, Umar

    2018-03-01

    We have computed new exact traveling wave solutions, including complex solutions of fractional order Boussinesq-Like equations, occurring in physical sciences and engineering, by applying Exp-function method. The method is blended with fractional complex transformation and modified Riemann-Liouville fractional order operator. Our obtained solutions are verified by substituting back into their corresponding equations. To the best of our knowledge, no other technique has been reported to cope with the said fractional order nonlinear problems combined with variety of exact solutions. Graphically, fractional order solution curves are shown to be strongly related to each other and most importantly, tend to fixate on their integer order solution curve. Our solutions comprise high frequencies and very small amplitude of the wave responses.

  6. Remote recoil: a new wave mean interaction effect

    NASA Astrophysics Data System (ADS)

    Bühler, Oliver; McIntyre, Michael E.

    2003-10-01

    We present a theoretical study of a fundamentally new wave mean or wave vortex interaction effect able to force persistent, cumulative change in mean flows in the absence of wave breaking or other kinds of wave dissipation. It is associated with the refraction of non-dissipating waves by inhomogeneous mean (vortical) flows. The effect is studied in detail in the simplest relevant model, the two-dimensional compressible flow equations with a generic polytropic equation of state. This includes the usual shallow-water equations as a special case. The refraction of a narrow, slowly varying wavetrain of small-amplitude gravity or sound waves obliquely incident on a single weak (low Froude or Mach number) vortex is studied in detail. It is shown that, concomitant with the changes in the waves' pseudomomentum due to the refraction, there is an equal and opposite recoil force that is felt, in effect, by the vortex core. This effective force is called a ‘remote recoil’ to stress that there is no need for the vortex core and wavetrain to overlap in physical space. There is an accompanying ‘far-field recoil’ that is still more remote, as in classical vortex-impulse problems. The remote-recoil effects are studied perturbatively using the wave amplitude and vortex weakness as small parameters. The nature of the remote recoil is demonstrated in various set-ups with wavetrains of finite or infinite length. The effective recoil force {bm R}_V on the vortex core is given by an expression resembling the classical Magnus force felt by moving cylinders with circulation. In the case of wavetrains of infinite length, an explicit formula for the scattering angle theta_* of waves passing a vortex at a distance is derived correct to second order in Froude or Mach number. To this order {bm R}_V {~} theta_*. The formula is cross-checked against numerical integrations of the ray-tracing equations. This work is part of an ongoing study of internal-gravity-wave dynamics in the atmosphere and may be important for the development of future gravity-wave parametrization schemes in numerical models of the global atmospheric circulation. At present, all such schemes neglect remote-recoil effects caused by horizontally inhomogeneous mean flows. Taking these effects into account should make the parametrization schemes significantly more accurate.

  7. Rotation-induced nonlinear wavepackets in internal waves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Whitfield, A. J., E-mail: ashley.whitfield.12@ucl.ac.uk; Johnson, E. R., E-mail: e.johnson@ucl.ac.uk

    2014-05-15

    The long time effect of weak rotation on an internal solitary wave is the decay into inertia-gravity waves and the eventual formation of a localised wavepacket. Here this initial value problem is considered within the context of the Ostrovsky, or the rotation-modified Korteweg-de Vries (KdV), equation and a numerical method for obtaining accurate wavepacket solutions is presented. The flow evolutions are described in the regimes of relatively-strong and relatively-weak rotational effects. When rotational effects are relatively strong a second-order soliton solution of the nonlinear Schrödinger equation accurately predicts the shape, and phase and group velocities of the numerically determined wavepackets.more » It is suggested that these solitons may form from a local Benjamin-Feir instability in the inertia-gravity wave-train radiated when a KdV solitary wave rapidly adjusts to the presence of strong rotation. When rotational effects are relatively weak the initial KdV solitary wave remains coherent longer, decaying only slowly due to weak radiation and modulational instability is no longer relevant. Wavepacket solutions in this regime appear to consist of a modulated KdV soliton wavetrain propagating on a slowly varying background of finite extent.« less

  8. Computing many-body wave functions with guaranteed precision: the first-order Møller-Plesset wave function for the ground state of helium atom.

    PubMed

    Bischoff, Florian A; Harrison, Robert J; Valeev, Edward F

    2012-09-14

    We present an approach to compute accurate correlation energies for atoms and molecules using an adaptive discontinuous spectral-element multiresolution representation for the two-electron wave function. Because of the exponential storage complexity of the spectral-element representation with the number of dimensions, a brute-force computation of two-electron (six-dimensional) wave functions with high precision was not practical. To overcome the key storage bottlenecks we utilized (1) a low-rank tensor approximation (specifically, the singular value decomposition) to compress the wave function, and (2) explicitly correlated R12-type terms in the wave function to regularize the Coulomb electron-electron singularities of the Hamiltonian. All operations necessary to solve the Schrödinger equation were expressed so that the reconstruction of the full-rank form of the wave function is never necessary. Numerical performance of the method was highlighted by computing the first-order Møller-Plesset wave function of a helium atom. The computed second-order Møller-Plesset energy is precise to ~2 microhartrees, which is at the precision limit of the existing general atomic-orbital-based approaches. Our approach does not assume special geometric symmetries, hence application to molecules is straightforward.

  9. CMB B-mode auto-bispectrum produced by primordial gravitational waves

    NASA Astrophysics Data System (ADS)

    Tahara, Hiroaki W. H.; Yokoyama, Jun'ichi

    2018-01-01

    Gravitational waves from inflation induce polarization patterns in the cosmic microwave background (CMB). It is known that there are only two types of non-Gaussianities of the gravitational waves in the most general covariant scalar field theory having second-order field equations, namely, generalized G-inflation. One originates from the inherent non-Gaussianity in general relativity, and the other from a derivative coupling between the Einstein tensor and the scalar field. We calculate polarization bispectra induced by these non-Gaussianities by transforming them into separable forms by virtue of the Laplace transformation. It is shown that future experiments can constrain the new one but cannot detect the general relativistic one.

  10. Resonant behaviour of MHD waves on magnetic flux tubes. I - Connection formulae at the resonant surfaces. II - Absorption of sound waves by sunspots

    NASA Technical Reports Server (NTRS)

    Sakurai, Takashi; Goossens, Marcel; Hollweg, Joseph V.

    1991-01-01

    The present method of addressing the resonance problems that emerge in such MHD phenomena as the resonant absorption of waves at the Alfven resonance point avoids solving the fourth-order differential equation of dissipative MHD by recourse to connection formulae across the dissipation layer. In the second part of this investigation, the absorption of solar 5-min oscillations by sunspots is interpreted as the resonant absorption of sounds by a magnetic cylinder. The absorption coefficient is interpreted (1) analytically, under certain simplifying assumptions, and numerically, under more general conditions. The observed absorption coefficient magnitude is explained over suitable parameter ranges.

  11. On the Mathematical Modeling of Single and Multiple Scattering of Ultrasonic Guided Waves by Small Scatterers: A Structural Health Monitoring Measurement Model

    NASA Astrophysics Data System (ADS)

    Strom, Brandon William

    In an effort to assist in the paradigm shift from schedule based maintenance to conditioned based maintenance, we derive measurement models to be used within structural health monitoring algorithms. Our models are physics based, and use scattered Lamb waves to detect and quantify pitting corrosion. After covering the basics of Lamb waves and the reciprocity theorem, we develop a technique for the scattered wave solution. The first application is two-dimensional, and is employed in two different ways. The first approach integrates a traction distribution and replaces it by an equivalent force. The second approach is higher order and uses the actual traction distribution. We find that the equivalent force version of the solution technique holds well for small pits at low frequencies. The second application is three-dimensional. The equivalent force caused by the scattered wave of an arbitrary equivalent force is calculated. We obtain functions for the scattered wave displacements as a function of equivalent forces, equivalent forces as a function of incident wave, and scattered wave amplitudes as a function of incident amplitude. The third application uses self-consistency to derive governing equations for the scattered waves due to multiple corrosion pits. We decouple the implicit set of equations and solve explicitly by using a recursive series solution. Alternatively, we solve via an undetermined coefficient method which results in an interaction operator and solution via matrix inversion. The general solution is given for N pits including mode conversion. We show that the two approaches are equivalent, and give a solution for three pits. Various approximations are advanced to simplify the problem while retaining the leading order physics. As a final application, we use the multiple scattering model to investigate resonance of Lamb waves. We begin with a one-dimensional problem and progress to a three-dimensional problem. A directed graph enables interpretation of the interaction operator, and we show that a series solution converges due to loss of energy in the system. We see that there are four causes of resonance and plot the modulation depth as a function of spacing between the pits.

  12. Effects of Second-Order Sum- and Difference-Frequency Wave Forces on the Motion Response of a Tension-Leg Platform Considering the Set-down Motion

    NASA Astrophysics Data System (ADS)

    Wang, Bin; Tang, Yougang; Li, Yan; Cai, Runbo

    2018-04-01

    This paper presents a study on the motion response of a tension-leg platform (TLP) under first- and second-order wave forces, including the mean-drift force, difference and sum-frequency forces. The second-order wave force is calculated using the full-field quadratic transfer function (QTF). The coupled effect of the horizontal motions, such as surge, sway and yaw motions, and the set-down motion are taken into consideration by the nonlinear restoring matrix. The time-domain analysis with 50-yr random sea state is performed. A comparison of the results of different case studies is made to assess the influence of second-order wave force on the motions of the platform. The analysis shows that the second-order wave force has a major impact on motions of the TLP. The second-order difference-frequency wave force has an obvious influence on the low-frequency motions of surge and sway, and also will induce a large set-down motion which is an important part of heave motion. Besides, the second-order sum-frequency force will induce a set of high-frequency motions of roll and pitch. However, little influence of second-order wave force is found on the yaw motion.

  13. Solution of Dirac equation for Eckart potential and trigonometric Manning Rosen potential using asymptotic iteration method

    NASA Astrophysics Data System (ADS)

    Resita Arum, Sari; A, Suparmi; C, Cari

    2016-01-01

    The Dirac equation for Eckart potential and trigonometric Manning Rosen potential with exact spin symmetry is obtained using an asymptotic iteration method. The combination of the two potentials is substituted into the Dirac equation, then the variables are separated into radial and angular parts. The Dirac equation is solved by using an asymptotic iteration method that can reduce the second order differential equation into a differential equation with substitution variables of hypergeometry type. The relativistic energy is calculated using Matlab 2011. This study is limited to the case of spin symmetry. With the asymptotic iteration method, the energy spectra of the relativistic equations and equations of orbital quantum number l can be obtained, where both are interrelated between quantum numbers. The energy spectrum is also numerically solved using the Matlab software, where the increase in the radial quantum number nr causes the energy to decrease. The radial part and the angular part of the wave function are defined as hypergeometry functions and visualized with Matlab 2011. The results show that the disturbance of a combination of the Eckart potential and trigonometric Manning Rosen potential can change the radial part and the angular part of the wave function. Project supported by the Higher Education Project (Grant No. 698/UN27.11/PN/2015).

  14. A structure-preserving method for a class of nonlinear dissipative wave equations with Riesz space-fractional derivatives

    NASA Astrophysics Data System (ADS)

    Macías-Díaz, J. E.

    2017-12-01

    In this manuscript, we consider an initial-boundary-value problem governed by a (1 + 1)-dimensional hyperbolic partial differential equation with constant damping that generalizes many nonlinear wave equations from mathematical physics. The model considers the presence of a spatial Laplacian of fractional order which is defined in terms of Riesz fractional derivatives, as well as the inclusion of a generic continuously differentiable potential. It is known that the undamped regime has an associated positive energy functional, and we show here that it is preserved throughout time under suitable boundary conditions. To approximate the solutions of this model, we propose a finite-difference discretization based on fractional centered differences. Some discrete quantities are proposed in this work to estimate the energy functional, and we show that the numerical method is capable of conserving the discrete energy under the same boundary conditions for which the continuous model is conservative. Moreover, we establish suitable computational constraints under which the discrete energy of the system is positive. The method is consistent of second order, and is both stable and convergent. The numerical simulations shown here illustrate the most important features of our numerical methodology.

  15. On the coupled evolution of oceanic internal waves and quasi-geostrophic flow

    NASA Astrophysics Data System (ADS)

    Wagner, Gregory LeClaire

    Oceanic motion outside thin boundary layers is primarily a mixture of quasi-geostrophic flow and internal waves with either near-inertial frequencies or the frequency of the semidiurnal lunar tide. This dissertation seeks a deeper understanding of waves and flow through reduced models that isolate their nonlinear and coupled evolution from the Boussinesq equations. Three physical-space models are developed: an equation that describes quasi-geostrophic evolution in an arbitrary and prescribed field of hydrostatic internal waves; a three-component model that couples quasi-geostrophic flow to both near-inertial waves and the near-inertial second harmonic; and a model for the slow evolution of hydrostatic internal tides in quasi-geostrophic flow of near-arbitrary scale. This slow internal tide equation opens the path to a coupled model for the energetic interaction of quasi-geostrophic flow and oceanic internal tides. Four results emerge. First, the wave-averaged quasi-geostrophic equation reveals that finite-amplitude waves give rise to a mean flow that advects quasi-geostrophic potential vorticity. Second is the definition of a new material invariant: Available Potential Vorticity, or APV. APV isolates the part of Ertel potential vorticity available for balanced-flow evolution in Eulerian frames and proves necessary in the separating waves and quasi-geostrophic flow. The third result, hashed out for near-inertial waves and quasi-geostrophic flow, is that wave-flow interaction leads to energy exchange even under conditions of weak nonlinearity. For storm-forced oceanic near-inertial waves the interaction often energizes waves at the expense of flow. We call this extraction of balanced quasi-geostrophic energy 'stimulated generation' since it requires externally-forced rather than spontaneously-generated waves. The fourth result is that quasi-geostrophic flow can encourage or 'catalyze' a nonlinear interaction between a near-inertial wave field and its second harmonic that transfers energy to the small near-inertial vertical scales of wave breaking and mixing.

  16. The fifth-order partial differential equation for the description of the α + β Fermi-Pasta-Ulam model

    NASA Astrophysics Data System (ADS)

    Kudryashov, Nikolay A.; Volkov, Alexandr K.

    2017-01-01

    We study a new nonlinear partial differential equation of the fifth order for the description of perturbations in the Fermi-Pasta-Ulam mass chain. This fifth-order equation is an expansion of the Gardner equation for the description of the Fermi-Pasta-Ulam model. We use the potential of interaction between neighbouring masses with both quadratic and cubic terms. The equation is derived using the continuous limit. Unlike the previous works, we take into account higher order terms in the Taylor series expansions. We investigate the equation using the Painlevé approach. We show that the equation does not pass the Painlevé test and can not be integrated by the inverse scattering transform. We use the logistic function method and the Laurent expansion method to find travelling wave solutions of the fifth-order equation. We use the pseudospectral method for the numerical simulation of wave processes, described by the equation.

  17. Measurement of Shear Elastic Moduli in Quasi-Incompressible Soft Solids

    NASA Astrophysics Data System (ADS)

    Rénier, Mathieu; Gennisson, Jean-Luc; Barrière, Christophe; Catheline, Stefan; Tanter, Mickaël; Royer, Daniel; Fink, Mathias

    2008-06-01

    Recently a nonlinear equation describing the plane shear wave propagation in isotropic quasi-incompressible media has been developed using a new expression of the strain energy density, as a function of the second, third and fourth order shear elastic constants (respectively μ, A, D) [1]. In such a case, the shear nonlinearity parameter βs depends only from these last coefficients. To date, no measurement of the parameter D have been carried out in soft solids. Using a set of two experiments, acoustoelasticity and finite amplitude shear waves, the shear elastic moduli up to the fourth order of soft solids are measured. Firstly, this theoretical background is applied to the acoustoelasticity theory, giving the variations of the shear wave speed as a function of the stress applied to the medium. From such variations, both linear (μ) and third order shear modulus (A) are deduced in agar-gelatin phantoms. Experimentally the radiation force induced by a focused ultrasound beam is used to generate quasi-plane linear shear waves within the medium. Then the shear wave propagation is imaged with an ultrafast ultrasound scanner. Secondly, in order to give rise to finite amplitude plane shear waves, the radiation force generation technique is replaced by a vibrating plate applied at the surface of the phantoms. The propagation is also imaged using the same ultrafast scanner. From the assessment of the third harmonic amplitude, the nonlinearity parameter βS is deduced. Finally, combining these results with the acoustoelasticity experiment, the fourth order modulus (D) is deduced. This set of experiments provides the characterization, up to the fourth order, of the nonlinear shear elastic moduli in quasi-incompressible soft media. Measurements of the A moduli reveal that while the behaviors of both soft solids are close from a linear point of view, the corresponding nonlinear moduli A are quite different. In a 5% agar-gelatin phantom, the fourth order elastic constant D is found to be 30±10 kPa.

  18. Finite-difference model for 3-D flow in bays and estuaries

    USGS Publications Warehouse

    Smith, Peter E.; Larock, Bruce E.; ,

    1993-01-01

    This paper describes a semi-implicit finite-difference model for the numerical solution of three-dimensional flow in bays and estuaries. The model treats the gravity wave and vertical diffusion terms in the governing equations implicitly, and other terms explicitly. The model achieves essentially second-order accurate and stable solutions in strongly nonlinear problems by using a three-time-level leapfrog-trapezoidal scheme for the time integration.

  19. Kinematic parameters of internal waves of the second mode in the South China Sea

    NASA Astrophysics Data System (ADS)

    Kurkina, Oxana; Talipova, Tatyana; Soomere, Tarmo; Giniyatullin, Ayrat; Kurkin, Andrey

    2017-10-01

    Spatial distributions of the main properties of the mode function and kinematic and non-linear parameters of internal waves of the second mode are derived for the South China Sea for typical summer conditions in July. The calculations are based on the Generalized Digital Environmental Model (GDEM) climatology of hydrological variables, from which the local stratification is evaluated. The focus is on the phase speed of long internal waves and the coefficients at the dispersive, quadratic and cubic terms of the weakly non-linear Gardner model. Spatial distributions of these parameters, except for the coefficient at the cubic term, are qualitatively similar for waves of both modes. The dispersive term of Gardner's equation and phase speed for internal waves of the second mode are about a quarter and half, respectively, of those for waves of the first mode. Similarly to the waves of the first mode, the coefficients at the quadratic and cubic terms of Gardner's equation are practically independent of water depth. In contrast to the waves of the first mode, for waves of the second mode the quadratic term is mostly negative. The results can serve as a basis for expressing estimates of the expected parameters of internal waves for the South China Sea.

  20. Nonlinear evolution of energetic-particles-driven waves in collisionless plasmas

    NASA Astrophysics Data System (ADS)

    Li, Shuhan; Liu, Jinyuan; Wang, Feng; Shen, Wei; Li, Dong

    2018-06-01

    A one-dimensional electrostatic collisionless particle-in-cell code has been developed to study the nonlinear interaction between electrostatic waves and energetic particles (EPs). For a single wave, the results are clear and agree well with the existing theories. For coexisting two waves, although the mode nonlinear coupling between two wave fields is ignored, the second-order phase space islands can still exist between first-order islands generated by the two waves. However, the second-order phase islands are not formed by the superposed wave fields and the perturbed motions of EPs induced by the combined effect of two main resonances make these structures in phase space. Owing to these second-order islands, energy can be transferred between waves, even if the overlap of two main resonances never occurs. Depending on the distance between the main resonance islands in velocity space, the second-order island can affect the nonlinear dynamics and saturations of waves.

  1. Two-dimensional interaction of a shear flow with a free surface in a stratified fluid and its solitary-wave solutions via mathematical methods

    NASA Astrophysics Data System (ADS)

    Seadawy, Aly R.

    2017-12-01

    In this study, we presented the problem formulations of models for internal solitary waves in a stratified shear flow with a free surface. The nonlinear higher order of extended KdV equations for the free surface displacement is generated. We derived the coefficients of the nonlinear higher-order extended KdV equation in terms of integrals of the modal function for the linear long-wave theory. The wave amplitude potential and the fluid pressure of the extended KdV equation in the form of solitary-wave solutions are deduced. We discussed and analyzed the stability of the obtained solutions and the movement role of the waves by making graphs of the exact solutions.

  2. Higher-order geodesic deviation for charged particles and resonance induced by gravitational waves

    NASA Astrophysics Data System (ADS)

    Heydari-Fard, M.; Hasani, S. N.

    We generalize the higher-order geodesic deviation for the structure-less test particles to the higher-order geodesic deviation equations of the charged particles [R. Kerner, J. W. van Holten and R. Colistete Jr., Class. Quantum Grav. 18 (2001) 4725]. By solving these equations for charged particles moving in a constant magnetic field in the spacetime of a gravitational wave, we show for both cases when the gravitational wave is parallel and perpendicular to the constant magnetic field, a magnetic resonance appears at wg = Ω. This feature might be useful to detect the gravitational wave with high frequencies.

  3. Glimpses of Kolmogorov's spectral energy dynamics in nonlinear acoustic waves

    NASA Astrophysics Data System (ADS)

    Gupta, Prateek; Scalo, Carlo

    2017-11-01

    Gupta, Lodato, and Scalo (AIAA 2017) have demonstrated the existence of an equilibrium spectral energy cascade in shock waves formed as a result of continued modal thermoacoustic amplification consistent with Kolmogorov's theory for high-Reynolds-number hydrodynamic turbulence. In this talk we discuss the derivation of a perturbation energy density norm that guarantees energy conservation during the nonlinear wave steepening process, analogous to inertial subrange turbulent energy cascade dynamics. The energy cascade is investigated via a bi-spectral analysis limited to wave-numbers and frequencies lower than the ones associated with the shock, analogous to the viscous dissipation length scale in turbulence. The proposed norm is derived by recombining second-order nonlinear acoustic equations and is positive definite; moreover, it decays to zero in the presence of viscous dissipation and is hence classifiable as a Lyapunov function of acoustic perturbation variables. The cumulative energy spectrum wavenumber distribution demonstrates a -3/2 decay law in the inertial range. The governing equation for the thus-derived energy norm highlights terms responsible for energy cascade towards higher harmonics, analogous to vortex stretching terms in hydrodynamic turbulence.

  4. Higher-order rational solitons and rogue-like wave solutions of the (2 + 1)-dimensional nonlinear fluid mechanics equations

    NASA Astrophysics Data System (ADS)

    Wen, Xiao-Yong; Yan, Zhenya

    2017-02-01

    The novel generalized perturbation (n, M)-fold Darboux transformations (DTs) are reported for the (2 + 1)-dimensional Kadomtsev-Petviashvili (KP) equation and its extension by using the Taylor expansion of the Darboux matrix. The generalized perturbation (1 , N - 1) -fold DTs are used to find their higher-order rational solitons and rogue wave solutions in terms of determinants. The dynamics behaviors of these rogue waves are discussed in detail for different parameters and time, which display the interesting RW and soliton structures including the triangle, pentagon, heptagon profiles, etc. Moreover, we find that a new phenomenon that the parameter (a) can control the wave structures of the KP equation from the higher-order rogue waves (a ≠ 0) into higher-order rational solitons (a = 0) in (x, t)-space with y = const . These results may predict the corresponding dynamical phenomena in the models of fluid mechanics and other physically relevant systems.

  5. Spectral evolution and extreme value analysis of non-linear numerical simulations of narrow band random surface gravity waves.

    NASA Astrophysics Data System (ADS)

    Socquet-Juglard, H.; Dysthe, K. B.; Trulsen, K.; Liu, J.; Krogstad, H. E.

    2003-04-01

    Numerical simulations of a narrow band gaussian spectrum of random surface gravity waves have been carried out in two and three spatial dimensions [7]. Different types of non-linear Schr&{uml;o}dinger equations, [1] and [4], have been used in these simulations. Simulations have now been carried with a JONSWAP spectrum associated with a spreading function of the type cosine-squared [5]. The evolution of the spectrum, skewness, kurtosis, ... will be presented. In addition, some results about stochastic properties of the surface will be shown. Based on the approach found in [2], [3] and [6], the results are presented in terms of deviations from linear Gaussian theory and the standard second order small slope perturbation theory. begin{thebibliography}{9} bibitem{kk96} Trulsen, K. &Dysthe, K. B. (1996). A modified nonlinear Schr&{uml;o}dinger equation for broader bandwidth gravity waves on deep water. Wave Motion, 24, pp. 281-289. bibitem{BK2000} Krogstad, H.E. and S.F. Barstow (2000). A uniform approach to extreme value analysis of ocean waves, Proc. ISOPE'2000, Seattle, USA, 3, pp. 103-108. bibitem{PRK} Prevosto, M., H. E. Krogstad and A. Robin (2000). Probability distributions for maximum wave and crest heights, Coast. Eng., 40, 329-360. bibitem{ketal} Trulsen, K., Kliakhandler, I., Dysthe, K. B. &Velarde, M. G. (2000) On weakly nonlinear modulation of waves on deep water, Phys. Fluids, 12, pp. L25-L28. bibitem{onorato} Onorato, M., Osborne, A.R. and Serio, M. (2002) Extreme wave events in directional, random oceanic sea states, Phys. Fluids, 14, pp. 2432-2437. bibitem{BK2002} Krogstad, H.E. and S.F. Barstow (2002). Analysis and Applications of Second Order Models for the Maximum Crest height, % Proc. 21nd Int. Conf. Offshore Mechanics and Arctic Engineering, Oslo. Paper no. OMAE2002-28479. bibitem{JFMP} Dysthe, K. B., Trulsen, K., Krogstad, H. E. and Socquet-Juglard, H. (2002, in press) Evolution of a narrow band spectrum of random surface gravity waves, J. Fluid Mech.

  6. Assessment of numerical techniques for unsteady flow calculations

    NASA Technical Reports Server (NTRS)

    Hsieh, Kwang-Chung

    1989-01-01

    The characteristics of unsteady flow motions have long been a serious concern in the study of various fluid dynamic and combustion problems. With the advancement of computer resources, numerical approaches to these problems appear to be feasible. The objective of this paper is to assess the accuracy of several numerical schemes for unsteady flow calculations. In the present study, Fourier error analysis is performed for various numerical schemes based on a two-dimensional wave equation. Four methods sieved from the error analysis are then adopted for further assessment. Model problems include unsteady quasi-one-dimensional inviscid flows, two-dimensional wave propagations, and unsteady two-dimensional inviscid flows. According to the comparison between numerical and exact solutions, although second-order upwind scheme captures the unsteady flow and wave motions quite well, it is relatively more dissipative than sixth-order central difference scheme. Among various numerical approaches tested in this paper, the best performed one is Runge-Kutta method for time integration and six-order central difference for spatial discretization.

  7. One-step leapfrog ADI-FDTD method for simulating electromagnetic wave propagation in general dispersive media.

    PubMed

    Wang, Xiang-Hua; Yin, Wen-Yan; Chen, Zhi Zhang David

    2013-09-09

    The one-step leapfrog alternating-direction-implicit finite-difference time-domain (ADI-FDTD) method is reformulated for simulating general electrically dispersive media. It models material dispersive properties with equivalent polarization currents. These currents are then solved with the auxiliary differential equation (ADE) and then incorporated into the one-step leapfrog ADI-FDTD method. The final equations are presented in the form similar to that of the conventional FDTD method but with second-order perturbation. The adapted method is then applied to characterize (a) electromagnetic wave propagation in a rectangular waveguide loaded with a magnetized plasma slab, (b) transmission coefficient of a plane wave normally incident on a monolayer graphene sheet biased by a magnetostatic field, and (c) surface plasmon polaritons (SPPs) propagation along a monolayer graphene sheet biased by an electrostatic field. The numerical results verify the stability, accuracy and computational efficiency of the proposed one-step leapfrog ADI-FDTD algorithm in comparison with analytical results and the results obtained with the other methods.

  8. Analytic computation of energy derivatives - Relationships among partial derivatives of a variationally determined function

    NASA Technical Reports Server (NTRS)

    King, H. F.; Komornicki, A.

    1986-01-01

    Formulas are presented relating Taylor series expansion coefficients of three functions of several variables, the energy of the trial wave function (W), the energy computed using the optimized variational wave function (E), and the response function (lambda), under certain conditions. Partial derivatives of lambda are obtained through solution of a recursive system of linear equations, and solution through order n yields derivatives of E through order 2n + 1, extending Puley's application of Wigner's 2n + 1 rule to partial derivatives in couple perturbation theory. An examination of numerical accuracy shows that the usual two-term second derivative formula is less stable than an alternative four-term formula, and that previous claims that energy derivatives are stationary properties of the wave function are fallacious. The results have application to quantum theoretical methods for the computation of derivative properties such as infrared frequencies and intensities.

  9. Effective one-dimensional approach to the source reconstruction problem of three-dimensional inverse optoacoustics

    NASA Astrophysics Data System (ADS)

    Stritzel, J.; Melchert, O.; Wollweber, M.; Roth, B.

    2017-09-01

    The direct problem of optoacoustic signal generation in biological media consists of solving an inhomogeneous three-dimensional (3D) wave equation for an initial acoustic stress profile. In contrast, the more defiant inverse problem requires the reconstruction of the initial stress profile from a proper set of observed signals. In this article, we consider an effectively 1D approach, based on the assumption of a Gaussian transverse irradiation source profile and plane acoustic waves, in which the effects of acoustic diffraction are described in terms of a linear integral equation. The respective inverse problem along the beam axis can be cast into a Volterra integral equation of the second kind for which we explore here efficient numerical schemes in order to reconstruct initial stress profiles from observed signals, constituting a methodical progress of computational aspects of optoacoustics. In this regard, we explore the validity as well as the limits of the inversion scheme via numerical experiments, with parameters geared toward actual optoacoustic problem instances. The considered inversion input consists of synthetic data, obtained in terms of the effectively 1D approach, and, more generally, a solution of the 3D optoacoustic wave equation. Finally, we also analyze the effect of noise and different detector-to-sample distances on the optoacoustic signal and the reconstructed pressure profiles.

  10. The terminal area simulation system. Volume 1: Theoretical formulation

    NASA Technical Reports Server (NTRS)

    Proctor, F. H.

    1987-01-01

    A three-dimensional numerical cloud model was developed for the general purpose of studying convective phenomena. The model utilizes a time splitting integration procedure in the numerical solution of the compressible nonhydrostatic primitive equations. Turbulence closure is achieved by a conventional first-order diagnostic approximation. Open lateral boundaries are incorporated which minimize wave reflection and which do not induce domain-wide mass trends. Microphysical processes are governed by prognostic equations for potential temperature water vapor, cloud droplets, ice crystals, rain, snow, and hail. Microphysical interactions are computed by numerous Orville-type parameterizations. A diagnostic surface boundary layer is parameterized assuming Monin-Obukhov similarity theory. The governing equation set is approximated on a staggered three-dimensional grid with quadratic-conservative central space differencing. Time differencing is approximated by the second-order Adams-Bashforth method. The vertical grid spacing may be either linear or stretched. The model domain may translate along with a convective cell, even at variable speeds.

  11. An energy- and charge-conserving, nonlinearly implicit, electromagnetic 1D-3V Vlasov-Darwin particle-in-cell algorithm

    NASA Astrophysics Data System (ADS)

    Chen, G.; Chacón, L.

    2014-10-01

    A recent proof-of-principle study proposes a nonlinear electrostatic implicit particle-in-cell (PIC) algorithm in one dimension (Chen et al., 2011). The algorithm employs a kinetically enslaved Jacobian-free Newton-Krylov (JFNK) method, and conserves energy and charge to numerical round-off. In this study, we generalize the method to electromagnetic simulations in 1D using the Darwin approximation to Maxwell's equations, which avoids radiative noise issues by ordering out the light wave. An implicit, orbit-averaged, time-space-centered finite difference scheme is employed in both the 1D Darwin field equations (in potential form) and the 1D-3V particle orbit equations to produce a discrete system that remains exactly charge- and energy-conserving. Furthermore, enabled by the implicit Darwin equations, exact conservation of the canonical momentum per particle in any ignorable direction is enforced via a suitable scattering rule for the magnetic field. We have developed a simple preconditioner that targets electrostatic waves and skin currents, and allows us to employ time steps O(√{mi /me } c /veT) larger than the explicit CFL. Several 1D numerical experiments demonstrate the accuracy, performance, and conservation properties of the algorithm. In particular, the scheme is shown to be second-order accurate, and CPU speedups of more than three orders of magnitude vs. an explicit Vlasov-Maxwell solver are demonstrated in the "cold" plasma regime (where kλD ≪ 1).

  12. A family of wave equations with some remarkable properties.

    PubMed

    da Silva, Priscila Leal; Freire, Igor Leite; Sampaio, Júlio Cesar Santos

    2018-02-01

    We consider a family of homogeneous nonlinear dispersive equations with two arbitrary parameters. Conservation laws are established from the point symmetries and imply that the whole family admits square integrable solutions. Recursion operators are found for two members of the family investigated. For one of them, a Lax pair is also obtained, proving its complete integrability. From the Lax pair, we construct a Miura-type transformation relating the original equation to the Korteweg-de Vries (KdV) equation. This transformation, on the other hand, enables us to obtain solutions of the equation from the kernel of a Schrödinger operator with potential parametrized by the solutions of the KdV equation. In particular, this allows us to exhibit a kink solution to the completely integrable equation from the 1-soliton solution of the KdV equation. Finally, peakon-type solutions are also found for a certain choice of the parameters, although for this particular case the equation is reduced to a homogeneous second-order nonlinear evolution equation.

  13. A new multi-domain method based on an analytical control surface for linear and second-order mean drift wave loads on floating bodies

    NASA Astrophysics Data System (ADS)

    Liang, Hui; Chen, Xiaobo

    2017-10-01

    A novel multi-domain method based on an analytical control surface is proposed by combining the use of free-surface Green function and Rankine source function. A cylindrical control surface is introduced to subdivide the fluid domain into external and internal domains. Unlike the traditional domain decomposition strategy or multi-block method, the control surface here is not panelized, on which the velocity potential and normal velocity components are analytically expressed as a series of base functions composed of Laguerre function in vertical coordinate and Fourier series in the circumference. Free-surface Green function is applied in the external domain, and the boundary integral equation is constructed on the control surface in the sense of Galerkin collocation via integrating test functions orthogonal to base functions over the control surface. The external solution gives rise to the so-called Dirichlet-to-Neumann [DN2] and Neumann-to-Dirichlet [ND2] relations on the control surface. Irregular frequencies, which are only dependent on the radius of the control surface, are present in the external solution, and they are removed by extending the boundary integral equation to the interior free surface (circular disc) on which the null normal derivative of potential is imposed, and the dipole distribution is expressed as Fourier-Bessel expansion on the disc. In the internal domain, where the Rankine source function is adopted, new boundary integral equations are formulated. The point collocation is imposed over the body surface and free surface, while the collocation of the Galerkin type is applied on the control surface. The present method is valid in the computation of both linear and second-order mean drift wave loads. Furthermore, the second-order mean drift force based on the middle-field formulation can be calculated analytically by using the coefficients of the Fourier-Laguerre expansion.

  14. Rogue waves generation in a left-handed nonlinear transmission line with series varactor diodes

    NASA Astrophysics Data System (ADS)

    Onana Essama, B. G.; Atangana, J.; Biya Motto, F.; Mokhtari, B.; Cherkaoui Eddeqaqi, N.; Kofane, Timoleon C.

    2014-07-01

    We investigate the electromagnetic wave behavior and its characterization using collective variables technique. Second-order dispersion, first- and second-order nonlinearities, which strongly act in a left-handed nonlinear transmission line with series varactor diodes, are taken into account. Four frequency ranges have been found. The first one gives the so-called energetic soliton due to a perfect combination of second-order dispersion and first-order nonlinearity. The second frequency range presents a dispersive soliton leading to the collapse of the electromagnetic wave at the third frequency range. But the fourth one shows physical conditions which are able to provoke the appearance of wave trains generation with some particular waves, the rogue waves. Moreover, we demonstrate that the number of rogue waves increases with frequency. The soliton, thereafter, gains a relative stability when second-order nonlinearity comes into play with some specific values in the fourth frequency range. Furthermore, the stability conditions of the electromagnetic wave at high frequencies have been also discussed.

  15. Numerical studies of identification in nonlinear distributed parameter systems

    NASA Technical Reports Server (NTRS)

    Banks, H. T.; Lo, C. K.; Reich, Simeon; Rosen, I. G.

    1989-01-01

    An abstract approximation framework and convergence theory for the identification of first and second order nonlinear distributed parameter systems developed previously by the authors and reported on in detail elsewhere are summarized and discussed. The theory is based upon results for systems whose dynamics can be described by monotone operators in Hilbert space and an abstract approximation theorem for the resulting nonlinear evolution system. The application of the theory together with numerical evidence demonstrating the feasibility of the general approach are discussed in the context of the identification of a first order quasi-linear parabolic model for one dimensional heat conduction/mass transport and the identification of a nonlinear dissipation mechanism (i.e., damping) in a second order one dimensional wave equation. Computational and implementational considerations, in particular, with regard to supercomputing, are addressed.

  16. A Numerical Investigation of the Burnett Equations Based on the Second Law

    NASA Technical Reports Server (NTRS)

    Comeaux, Keith A.; Chapman, Dean R.; MacCormack, Robert W.; Edwards, Thomas A. (Technical Monitor)

    1995-01-01

    The Burnett equations have been shown to potentially violate the second law of thermodynamics. The objective of this investigation is to correlate the numerical problems experienced by the Burnett equations to the negative production of entropy. The equations have had a long history of numerical instability to small wavelength disturbances. Recently, Zhong corrected the instability problem and made solutions attainable for one dimensional shock waves and hypersonic blunt bodies. Difficulties still exist when attempting to solve hypersonic flat plate boundary layers and blunt body wake flows, however. Numerical experiments will include one-dimensional shock waves, quasi-one dimensional nozzles, and expanding Prandlt-Meyer flows and specifically examine the entropy production for these cases.

  17. Discrete integration of continuous Kalman filtering equations for time invariant second-order structural systems

    NASA Technical Reports Server (NTRS)

    Park, K. C.; Belvin, W. Keith

    1990-01-01

    A general form for the first-order representation of the continuous second-order linear structural-dynamics equations is introduced to derive a corresponding form of first-order continuous Kalman filtering equations. Time integration of the resulting equations is carried out via a set of linear multistep integration formulas. It is shown that a judicious combined selection of computational paths and the undetermined matrices introduced in the general form of the first-order linear structural systems leads to a class of second-order discrete Kalman filtering equations involving only symmetric sparse N x N solution matrices.

  18. Several reverse-time integrable nonlocal nonlinear equations: Rogue-wave solutions

    NASA Astrophysics Data System (ADS)

    Yang, Bo; Chen, Yong

    2018-05-01

    A study of rogue-wave solutions in the reverse-time nonlocal nonlinear Schrödinger (NLS) and nonlocal Davey-Stewartson (DS) equations is presented. By using Darboux transformation (DT) method, several types of rogue-wave solutions are constructed. Dynamics of these rogue-wave solutions are further explored. It is shown that the (1 + 1)-dimensional fundamental rogue-wave solutions in the reverse-time NLS equation can be globally bounded or have finite-time blowing-ups. It is also shown that the (2 + 1)-dimensional line rogue waves in the reverse-time nonlocal DS equations can be bounded for all space and time or develop singularities in critical time. In addition, the multi- and higher-order rogue waves exhibit richer structures, most of which have no counterparts in the corresponding local nonlinear equations.

  19. Modeling of thin-walled structures interacting with acoustic media as constrained two-dimensional continua

    NASA Astrophysics Data System (ADS)

    Rabinskiy, L. N.; Zhavoronok, S. I.

    2018-04-01

    The transient interaction of acoustic media and elastic shells is considered on the basis of the transition function approach. The three-dimensional hyperbolic initial boundary-value problem is reduced to a two-dimensional problem of shell theory with integral operators approximating the acoustic medium effect on the shell dynamics. The kernels of these integral operators are determined by the elementary solution of the problem of acoustic waves diffraction at a rigid obstacle with the same boundary shape as the wetted shell surface. The closed-form elementary solution for arbitrary convex obstacles can be obtained at the initial interaction stages on the background of the so-called “thin layer hypothesis”. Thus, the shell–wave interaction model defined by integro-differential dynamic equations with analytically determined kernels of integral operators becomes hence two-dimensional but nonlocal in time. On the other hand, the initial interaction stage results in localized dynamic loadings and consequently in complex strain and stress states that require higher-order shell theories. Here the modified theory of I.N.Vekua–A.A.Amosov-type is formulated in terms of analytical continuum dynamics. The shell model is constructed on a two-dimensional manifold within a set of field variables, Lagrangian density, and constraint equations following from the boundary conditions “shifted” from the shell faces to its base surface. Such an approach allows one to construct consistent low-order shell models within a unified formal hierarchy. The equations of the N th-order shell theory are singularly perturbed and contain second-order partial derivatives with respect to time and surface coordinates whereas the numerical integration of systems of first-order equations is more efficient. Such systems can be obtained as Hamilton–de Donder–Weyl-type equations for the Lagrangian dynamical system. The Hamiltonian formulation of the elementary N th-order shell theory is here briefly described.

  20. THE FUNDAMENTAL SOLUTIONS FOR MULTI-TERM MODIFIED POWER LAW WAVE EQUATIONS IN A FINITE DOMAIN.

    PubMed

    Jiang, H; Liu, F; Meerschaert, M M; McGough, R J

    2013-01-01

    Fractional partial differential equations with more than one fractional derivative term in time, such as the Szabo wave equation, or the power law wave equation, describe important physical phenomena. However, studies of these multi-term time-space or time fractional wave equations are still under development. In this paper, multi-term modified power law wave equations in a finite domain are considered. The multi-term time fractional derivatives are defined in the Caputo sense, whose orders belong to the intervals (1, 2], [2, 3), [2, 4) or (0, n ) ( n > 2), respectively. Analytical solutions of the multi-term modified power law wave equations are derived. These new techniques are based on Luchko's Theorem, a spectral representation of the Laplacian operator, a method of separating variables and fractional derivative techniques. Then these general methods are applied to the special cases of the Szabo wave equation and the power law wave equation. These methods and techniques can also be extended to other kinds of the multi-term time-space fractional models including fractional Laplacian.

  1. Higher-order Peregrine combs and Peregrine walls for the variable-coefficient Lenells-Fokas equation

    NASA Astrophysics Data System (ADS)

    Wang, Zi-Qi; Wang, Xin; Wang, Lei; Sun, Wen-Rong; Qi, Feng-Hua

    2017-02-01

    In this paper, we study the variable-coefficient Lenells-Fokas (LF) model. Under large periodic modulations in the variable coefficients of the LF model, the generalized Akhmediev breathers develop into the breather multiple births (BMBs) from which we obtain the Peregrine combs (PCs). The PCs can be considered as the limiting case of the BMBs and be transformed into the Peregrine walls (PWs) with a specific amplitude of periodic modulation. We further investigate the spatiotemporal characteristics of the PCs and PWs analytically. Based on the second-order breather and rogue-wave solutions, we derive the corresponding higher-order structures (higher-order PCs and PWs) under proper periodic modulations. What is particularly noteworthy is that the second-order PC can be converted into the Peregrine pyramid which exhibits the higher amplitude and thickness. Our results could be helpful for the design of experiments in the optical fiber communications.

  2. Exact solitary wave solution for higher order nonlinear Schrodinger equation using He's variational iteration method

    NASA Astrophysics Data System (ADS)

    Rani, Monika; Bhatti, Harbax S.; Singh, Vikramjeet

    2017-11-01

    In optical communication, the behavior of the ultrashort pulses of optical solitons can be described through nonlinear Schrodinger equation. This partial differential equation is widely used to contemplate a number of physically important phenomena, including optical shock waves, laser and plasma physics, quantum mechanics, elastic media, etc. The exact analytical solution of (1+n)-dimensional higher order nonlinear Schrodinger equation by He's variational iteration method has been presented. Our proposed solutions are very helpful in studying the solitary wave phenomena and ensure rapid convergent series and avoid round off errors. Different examples with graphical representations have been given to justify the capability of the method.

  3. Study of travelling wave solutions for some special-type nonlinear evolution equations

    NASA Astrophysics Data System (ADS)

    Song, Junquan; Hu, Lan; Shen, Shoufeng; Ma, Wen-Xiu

    2018-07-01

    The tanh-function expansion method has been improved and used to construct travelling wave solutions of the form U={\\sum }j=0n{a}j{\\tanh }jξ for some special-type nonlinear evolution equations, which have a variety of physical applications. The positive integer n can be determined by balancing the highest order linear term with the nonlinear term in the evolution equations. We improve the tanh-function expansion method with n = 0 by introducing a new transform U=-W\\prime (ξ )/{W}2. A nonlinear wave equation with source terms, and mKdV-type equations, are considered in order to show the effectiveness of the improved scheme. We also propose the tanh-function expansion method of implicit function form, and apply it to a Harry Dym-type equation as an example.

  4. True amplitude wave equation migration arising from true amplitude one-way wave equations

    NASA Astrophysics Data System (ADS)

    Zhang, Yu; Zhang, Guanquan; Bleistein, Norman

    2003-10-01

    One-way wave operators are powerful tools for use in forward modelling and inversion. Their implementation, however, involves introduction of the square root of an operator as a pseudo-differential operator. Furthermore, a simple factoring of the wave operator produces one-way wave equations that yield the same travel times as the full wave equation, but do not yield accurate amplitudes except for homogeneous media and for almost all points in heterogeneous media. Here, we present augmented one-way wave equations. We show that these equations yield solutions for which the leading order asymptotic amplitude as well as the travel time satisfy the same differential equations as the corresponding functions for the full wave equation. Exact representations of the square-root operator appearing in these differential equations are elusive, except in cases in which the heterogeneity of the medium is independent of the transverse spatial variables. Here, we address the fully heterogeneous case. Singling out depth as the preferred direction of propagation, we introduce a representation of the square-root operator as an integral in which a rational function of the transverse Laplacian appears in the integrand. This allows us to carry out explicit asymptotic analysis of the resulting one-way wave equations. To do this, we introduce an auxiliary function that satisfies a lower dimensional wave equation in transverse spatial variables only. We prove that ray theory for these one-way wave equations leads to one-way eikonal equations and the correct leading order transport equation for the full wave equation. We then introduce appropriate boundary conditions at z = 0 to generate waves at depth whose quotient leads to a reflector map and an estimate of the ray theoretical reflection coefficient on the reflector. Thus, these true amplitude one-way wave equations lead to a 'true amplitude wave equation migration' (WEM) method. In fact, we prove that applying the WEM imaging condition to these newly defined wavefields in heterogeneous media leads to the Kirchhoff inversion formula for common-shot data when the one-way wavefields are replaced by their ray theoretic approximations. This extension enhances the original WEM method. The objective of that technique was a reflector map, only. The underlying theory did not address amplitude issues. Computer output obtained using numerically generated data confirms the accuracy of this inversion method. However, there are practical limitations. The observed data must be a solution of the wave equation. Therefore, the data over the entire survey area must be collected from a single common-shot experiment. Multi-experiment data, such as common-offset data, cannot be used with this method as currently formulated. Research on extending the method is ongoing at this time.

  5. Kinetic theory of turbulence for parallel propagation revisited: Formal results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoon, Peter H., E-mail: yoonp@umd.edu

    2015-08-15

    In a recent paper, Gaelzer et al. [Phys. Plasmas 22, 032310 (2015)] revisited the second-order nonlinear kinetic theory for turbulence propagating in directions parallel/anti-parallel to the ambient magnetic field. The original work was according to Yoon and Fang [Phys. Plasmas 15, 122312 (2008)], but Gaelzer et al. noted that the terms pertaining to discrete-particle effects in Yoon and Fang's theory did not enjoy proper dimensionality. The purpose of Gaelzer et al. was to restore the dimensional consistency associated with such terms. However, Gaelzer et al. was concerned only with linear wave-particle interaction terms. The present paper completes the analysis bymore » considering the dimensional correction to nonlinear wave-particle interaction terms in the wave kinetic equation.« less

  6. Investigation of Convection and Pressure Treatment with Splitting Techniques

    NASA Technical Reports Server (NTRS)

    Thakur, Siddharth; Shyy, Wei; Liou, Meng-Sing

    1995-01-01

    Treatment of convective and pressure fluxes in the Euler and Navier-Stokes equations using splitting formulas for convective velocity and pressure is investigated. Two schemes - controlled variation scheme (CVS) and advection upstream splitting method (AUSM) - are explored for their accuracy in resolving sharp gradients in flows involving moving or reflecting shock waves as well as a one-dimensional combusting flow with a strong heat release source term. For two-dimensional compressible flow computations, these two schemes are implemented in one of the pressure-based algorithms, whose very basis is the separate treatment of convective and pressure fluxes. For the convective fluxes in the momentum equations as well as the estimation of mass fluxes in the pressure correction equation (which is derived from the momentum and continuity equations) of the present algorithm, both first- and second-order (with minmod limiter) flux estimations are employed. Some issues resulting from the conventional use in pressure-based methods of a staggered grid, for the location of velocity components and pressure, are also addressed. Using the second-order fluxes, both CVS and AUSM type schemes exhibit sharp resolution. Overall, the combination of upwinding and splitting for the convective and pressure fluxes separately exhibits robust performance for a variety of flows and is particularly amenable for adoption in pressure-based methods.

  7. Acoustic streaming in simplified liquid rocket engines with transverse mode oscillations

    NASA Astrophysics Data System (ADS)

    Fischbach, Sean R.; Flandro, Gary A.; Majdalani, Joseph

    2010-06-01

    This study considers a simplified model of a liquid rocket engine in which uniform injection is imposed at the faceplate. The corresponding cylindrical chamber has a small length-to-diameter ratio with respect to solid and hybrid rockets. Given their low chamber aspect ratios, liquid thrust engines are known to experience severe tangential and radial oscillation modes more often than longitudinal ones. In order to model this behavior, tangential and radial waves are superimposed onto a basic mean-flow model that consists of a steady, uniform axial velocity throughout the chamber. Using perturbation tools, both potential and viscous flow equations are then linearized in the pressure wave amplitude and solved to the second order. The effects of the headwall Mach number are leveraged as well. While the potential flow analysis does not predict any acoustic streaming effects, the viscous solution carried out to the second order gives rise to steady secondary flow patterns near the headwall. These axisymmetric, steady contributions to the tangential and radial traveling waves are induced by the convective flow motion through interactions with inertial and viscous forces. We find that suppressing either the convective terms or viscosity at the headwall leads to spurious solutions that are free from streaming. In our problem, streaming is initiated at the headwall, within the boundary layer, and then extends throughout the chamber. We find that nonlinear streaming effects of tangential and radial waves act to alter the outer solution inside a cylinder with headwall injection. As a result of streaming, the radial wave velocities are intensified in one-half of the domain and reduced in the opposite half at any instant of time. Similarly, the tangential waves are either enhanced or weakened in two opposing sectors that are at 90° angle to the radial velocity counterparts. The second-order viscous solution that we obtain clearly displays both an oscillating and a steady flow component. The steady part can be an important contributor to wave steepening, a mechanism that is often observed during the onset of acoustic instability.

  8. Accuracy Study of the Space-Time CE/SE Method for Computational Aeroacoustics Problems Involving Shock Waves

    NASA Technical Reports Server (NTRS)

    Wang, Xiao Yen; Chang, Sin-Chung; Jorgenson, Philip C. E.

    1999-01-01

    The space-time conservation element and solution element(CE/SE) method is used to study the sound-shock interaction problem. The order of accuracy of numerical schemes is investigated. The linear model problem.govemed by the 1-D scalar convection equation, sound-shock interaction problem governed by the 1-D Euler equations, and the 1-D shock-tube problem which involves moving shock waves and contact surfaces are solved to investigate the order of accuracy of numerical schemes. It is concluded that the accuracy of the CE/SE numerical scheme with designed 2nd-order accuracy becomes 1st order when a moving shock wave exists. However, the absolute error in the CE/SE solution downstream of the shock wave is on the same order as that obtained using a fourth-order accurate essentially nonoscillatory (ENO) scheme. No special techniques are used for either high-frequency low-amplitude waves or shock waves.

  9. An explicit dissipation-preserving method for Riesz space-fractional nonlinear wave equations in multiple dimensions

    NASA Astrophysics Data System (ADS)

    Macías-Díaz, J. E.

    2018-06-01

    In this work, we investigate numerically a model governed by a multidimensional nonlinear wave equation with damping and fractional diffusion. The governing partial differential equation considers the presence of Riesz space-fractional derivatives of orders in (1, 2], and homogeneous Dirichlet boundary data are imposed on a closed and bounded spatial domain. The model under investigation possesses an energy function which is preserved in the undamped regime. In the damped case, we establish the property of energy dissipation of the model using arguments from functional analysis. Motivated by these results, we propose an explicit finite-difference discretization of our fractional model based on the use of fractional centered differences. Associated to our discrete model, we also propose discretizations of the energy quantities. We establish that the discrete energy is conserved in the undamped regime, and that it dissipates in the damped scenario. Among the most important numerical features of our scheme, we show that the method has a consistency of second order, that it is stable and that it has a quadratic order of convergence. Some one- and two-dimensional simulations are shown in this work to illustrate the fact that the technique is capable of preserving the discrete energy in the undamped regime. For the sake of convenience, we provide a Matlab implementation of our method for the one-dimensional scenario.

  10. Non-equilibrium many-body influence on mode-locked Vertical External-cavity Surface-emitting Lasers

    NASA Astrophysics Data System (ADS)

    Kilen, Isak Ragnvald

    Vertical external-cavity surface-emitting lasers are ideal testbeds for studying the influence of the non-equilibrium many-body dynamics on mode locking. As we will show in this thesis, ultra short pulse generation involves a marked departure from Fermi carrier distributions assumed in prior theoretical studies. A quantitative model of the mode locking dynamics is presented, where the semiconductor Bloch equations with Maxwell's equation are coupled, in order to study the influences of quantum well carrier scattering on mode locking dynamics. This is the first work where the full model is solved without adiabatically eliminating the microscopic polarizations. In many instances we find that higher order correlation contributions (e.g. polarization dephasing, carrier scattering, and screening) can be represented by rate models, with the effective rates extracted at the level of second Born-Markov approximations. In other circumstances, such as continuous wave multi-wavelength lasing, we are forced to fully include these higher correlation terms. In this thesis we identify the key contributors that control mode locking dynamics, the stability of single pulse mode-locking, and the influence of higher order correlation in sustaining multi-wavelength continuous wave operation.

  11. High-Order Shock-Capturing Methods for Modeling Dynamics of the Solar Atmosphere

    NASA Technical Reports Server (NTRS)

    Bryson, Steve; Kosovichev, Alexander; Levy, Doron

    2004-01-01

    We use one-dimensional high-order central shock capturing numerical methods to study the response of various model solar atmospheres to forcing at the solar surface. The dynamics of the atmosphere is modeled with the Euler equations in a variable-sized flux tube in the presence of gravity. We study dynamics of the atmosphere suggestive of spicule formation and coronal oscillations. These studies are performed on observationally-derived model atmospheres above the quiet sun and above sunspots. To perform these simulations, we provide a new extension of existing second- and third- order shock-capturing methods to irregular grids. We also solve the problem of numerically maintaining initial hydrostatic balance via the introduction of new variables in the model equations and a careful initialization mechanism. We find several striking results: all model atmospheres respond to a single impulsive perturbation with several strong shock waves consistent with the rebound-shock model. These shock waves lift material and the transition region well into the initial corona, and the sensitivity of this lift to the initial impulse depends non-linearly on the details of the atmosphere model. We also reproduce an observed 3-minute coronal oscillation above sunspots compared to 5-minute oscillations above the quiet sun.

  12. Diffusion phenomenon for linear dissipative wave equations in an exterior domain

    NASA Astrophysics Data System (ADS)

    Ikehata, Ryo

    Under the general condition of the initial data, we will derive the crucial estimates which imply the diffusion phenomenon for the dissipative linear wave equations in an exterior domain. In order to derive the diffusion phenomenon for dissipative wave equations, the time integral method which was developed by Ikehata and Matsuyama (Sci. Math. Japon. 55 (2002) 33) plays an effective role.

  13. FAST TRACK COMMUNICATION: On the Liouvillian solution of second-order linear differential equations and algebraic invariant curves

    NASA Astrophysics Data System (ADS)

    Man, Yiu-Kwong

    2010-10-01

    In this communication, we present a method for computing the Liouvillian solution of second-order linear differential equations via algebraic invariant curves. The main idea is to integrate Kovacic's results on second-order linear differential equations with the Prelle-Singer method for computing first integrals of differential equations. Some examples on using this approach are provided.

  14. Wave-vortex interactions in the nonlinear Schrödinger equation

    NASA Astrophysics Data System (ADS)

    Guo, Yuan; Bühler, Oliver

    2014-02-01

    This is a theoretical study of wave-vortex interaction effects in the two-dimensional nonlinear Schrödinger equation, which is a useful conceptual model for the limiting dynamics of superfluid quantum condensates at zero temperature. The particular wave-vortex interaction effects are associated with the scattering and refraction of small-scale linear waves by the straining flows induced by quantized point vortices and, crucially, with the concomitant nonlinear back-reaction, the remote recoil, that these scattered waves exert on the vortices. Our detailed model is a narrow, slowly varying wavetrain of small-amplitude waves refracted by one or two vortices. Weak interactions are studied using a suitable perturbation method in which the nonlinear recoil force on the vortex then arises at second order in wave amplitude, and is computed in terms of a Magnus-type force expression for both finite and infinite wavetrains. In the case of an infinite wavetrain, an explicit asymptotic formula for the scattering angle is also derived and cross-checked against numerical ray tracing. Finally, under suitable conditions a wavetrain can be so strongly refracted that it collapses all the way onto a zero-size point vortex. This is a strong wave-vortex interaction by definition. The conditions for such a collapse are derived and the validity of ray tracing theory during the singular collapse is investigated.

  15. High-order rogue wave solutions of the classical massive Thirring model equations

    NASA Astrophysics Data System (ADS)

    Guo, Lijuan; Wang, Lihong; Cheng, Yi; He, Jingsong

    2017-11-01

    The nth-order solutions of the classical massive Thirring model (MTM) equations are derived by using the n-fold Darboux transformation. These solutions are expressed by the ratios of the two determinants consisted of 2n eigenfunctions under the reduction conditions. Using this method, rogue waves are constructed explicitly up to the third-order. Three patterns, i.e., fundamental, triangular and circular patterns, of the rogue waves are discussed. The parameter μ in the MTM model plays the role of the mass in the relativistic field theory while in optics it is related to the medium periodic constant, which also results in a significant rotation and a remarkable lengthening of the first-order rogue wave. These results provide new opportunities to observe rouge waves by using a combination of electromagnetically induced transparency and the Bragg scattering four-wave mixing because of large amplitudes.

  16. A Maxwell-Schrödinger solver for quantum optical few-level systems

    NASA Astrophysics Data System (ADS)

    Fleischhaker, Robert; Evers, Jörg

    2011-03-01

    The msprop program presented in this work is capable of solving the Maxwell-Schrödinger equations for one or several laser fields propagating through a medium of quantum optical few-level systems in one spatial dimension and in time. In particular, it allows to numerically treat systems in which a laser field interacts with the medium with both its electric and magnetic component at the same time. The internal dynamics of the few-level system is modeled by a quantum optical master equation which includes coherent processes due to optical transitions driven by the laser fields as well as incoherent processes due to decay and dephasing. The propagation dynamics of the laser fields is treated in slowly varying envelope approximation resulting in a first order wave equation for each laser field envelope function. The program employs an Adams predictor formula second order in time to integrate the quantum optical master equation and a Lax-Wendroff scheme second order in space and time to evolve the wave equations for the fields. The source function in the Lax-Wendroff scheme is specifically adapted to allow taking into account the simultaneous coupling of a laser field to the polarization and the magnetization of the medium. To reduce execution time, a customized data structure is implemented and explained. In three examples the features of the program are demonstrated and the treatment of a system with a phase-dependent cross coupling of the electric and magnetic field component of a laser field is shown. Program summaryProgram title: msprop Catalogue identifier: AEHR_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEHR_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 507 625 No. of bytes in distributed program, including test data, etc.: 10 698 552 Distribution format: tar.gz Programming language: C (C99 standard), Mathematica, bash script, gnuplot script Computer: Tested on x86 architecture Operating system: Unix/Linux environment RAM: Less than 30 MB Classification: 2.5 External routines: Standard C math library, accompanying bash script uses gnuplot, bc (basic calculator), and convert (ImageMagick) Nature of problem: We consider a system of quantum optical few-level atoms exposed to several near-resonant continuous-wave or pulsed laser fields. The complexity of the problem arises from the combination of the coherent and incoherent time evolution of the atoms and its dependence on the spatially varying fields. In systems with a coupling to the electric and magnetic field component the simultaneous treatment of both field components poses an additional challenge. Studying the system dynamics requires solving the quantum optical master equation coupled to the wave equations governing the spatio-temporal dynamics of the fields [1,2]. Solution method: We numerically integrate the equations of motion using a second order Adams predictor method for the time evolution of the atomic density matrix and a second order Lax-Wendroff scheme for iterating the fields in space [3]. For the Lax-Wendroff scheme, the source function is adapted such that a simultaneous coupling to the polarization and the magnetization of the medium can be taken into account. Restrictions: The evolution of the fields is treated in slowly varying envelope approximation [2] such that variations of the fields in space and time must be on a scale larger than the wavelength and the optical cycle. Propagation is restricted to the forward direction and to one dimension. Concerning the description of the atomic system, only a finite number of basis states can be treated and the laser-driven transitions have to be near-resonant such that the rotating-wave approximation can be applied [2]. Unusual features: The program allows the dipole interaction of both the electric and the magnetic component of a laser field to be taken into account at the same time. Thus, a system with a phase-dependent cross coupling of electric and magnetic field component can be treated (see Section 4.2 and [4]). Concerning the implementation of the data structure, it has been optimized for faster memory access. Compared to using standard memory allocation methods, shorter run times are achieved (see Section 3.2). Additional comments: Three examples are given. They each include a readme file, a Mathematica notebook to generate the C-code form of the quantum optical master equation, a parameter file, a bash script which runs the program and converts the numerical data into a movie, two gnuplot scripts, and all files that are produced by running the bash script. Running time: For the first two examples the running time is less than a minute, the third example takes about 12 minutes. On a Pentium 4 (3 GHz) system, a rough estimate can be made with a value of 1 second per million grid points and per field variable.

  17. Modification of 2-D Time-Domain Shallow Water Wave Equation using Asymptotic Expansion Method

    NASA Astrophysics Data System (ADS)

    Khairuman, Teuku; Nasruddin, MN; Tulus; Ramli, Marwan

    2018-01-01

    Generally, research on the tsunami wave propagation model can be conducted by using a linear model of shallow water theory, where a non-linear side on high order is ignored. In line with research on the investigation of the tsunami waves, the Boussinesq equation model underwent a change aimed to obtain an improved quality of the dispersion relation and non-linearity by increasing the order to be higher. To solve non-linear sides at high order is used a asymptotic expansion method. This method can be used to solve non linear partial differential equations. In the present work, we found that this method needs much computational time and memory with the increase of the number of elements.

  18. A well-balanced finite volume scheme for the Euler equations with gravitation. The exact preservation of hydrostatic equilibrium with arbitrary entropy stratification

    NASA Astrophysics Data System (ADS)

    Käppeli, R.; Mishra, S.

    2016-03-01

    Context. Many problems in astrophysics feature flows which are close to hydrostatic equilibrium. However, standard numerical schemes for compressible hydrodynamics may be deficient in approximating this stationary state, where the pressure gradient is nearly balanced by gravitational forces. Aims: We aim to develop a second-order well-balanced scheme for the Euler equations. The scheme is designed to mimic a discrete version of the hydrostatic balance. It therefore can resolve a discrete hydrostatic equilibrium exactly (up to machine precision) and propagate perturbations, on top of this equilibrium, very accurately. Methods: A local second-order hydrostatic equilibrium preserving pressure reconstruction is developed. Combined with a standard central gravitational source term discretization and numerical fluxes that resolve stationary contact discontinuities exactly, the well-balanced property is achieved. Results: The resulting well-balanced scheme is robust and simple enough to be very easily implemented within any existing computer code that solves time explicitly or implicitly the compressible hydrodynamics equations. We demonstrate the performance of the well-balanced scheme for several astrophysically relevant applications: wave propagation in stellar atmospheres, a toy model for core-collapse supernovae, convection in carbon shell burning, and a realistic proto-neutron star.

  19. Operator Factorization and the Solution of Second-Order Linear Ordinary Differential Equations

    ERIC Educational Resources Information Center

    Robin, W.

    2007-01-01

    The theory and application of second-order linear ordinary differential equations is reviewed from the standpoint of the operator factorization approach to the solution of ordinary differential equations (ODE). Using the operator factorization approach, the general second-order linear ODE is solved, exactly, in quadratures and the resulting…

  20. A High-Order Immersed Boundary Method for Acoustic Wave Scattering and Low-Mach Number Flow-Induced Sound in Complex Geometries

    PubMed Central

    Seo, Jung Hee; Mittal, Rajat

    2010-01-01

    A new sharp-interface immersed boundary method based approach for the computation of low-Mach number flow-induced sound around complex geometries is described. The underlying approach is based on a hydrodynamic/acoustic splitting technique where the incompressible flow is first computed using a second-order accurate immersed boundary solver. This is followed by the computation of sound using the linearized perturbed compressible equations (LPCE). The primary contribution of the current work is the development of a versatile, high-order accurate immersed boundary method for solving the LPCE in complex domains. This new method applies the boundary condition on the immersed boundary to a high-order by combining the ghost-cell approach with a weighted least-squares error method based on a high-order approximating polynomial. The method is validated for canonical acoustic wave scattering and flow-induced noise problems. Applications of this technique to relatively complex cases of practical interest are also presented. PMID:21318129

  1. The Kadomtsev-Petviashvili equation under rapid forcing

    NASA Astrophysics Data System (ADS)

    Moroz, Irene M.

    1997-06-01

    We consider the initial value problem for the forced Kadomtsev-Petviashvili equation (KP) when the forcing is assumed to be fast compared to the evolution of the unforced equation. This suggests the introduction of two time scales. Solutions to the forced KP are sought by expanding the dependent variable in powers of a small parameter, which is inversely related to the forcing time scale. The unforced system describes weakly nonlinear, weakly dispersive, weakly two-dimensional wave propagation and is studied in two forms, depending upon whether gravity dominates surface tension or vice versa. We focus on the effect that the forcing has on the one-lump solution to the KPI equation (where surface tension dominates) and on the one- and two-line soliton solutions to the KPII equation (when gravity dominates). Solutions to second order in the expansion are computed analytically for some specific choices of the forcing function, which are related to the choice of initial data.

  2. Oscillation criteria for a class of second-order Emden-Fowler delay dynamic equations on time scales

    NASA Astrophysics Data System (ADS)

    Han, Zhenlai; Sun, Shurong; Shi, Bao

    2007-10-01

    By means of Riccati transformation technique, we establish some new oscillation criteria for the second-order Emden-Fowler delay dynamic equationsx[Delta][Delta](t)+p(t)x[gamma]([tau](t))=0 on a time scale ; here [gamma] is a quotient of odd positive integers with p(t) real-valued positive rd-continuous functions defined on . To the best of our knowledge nothing is known regarding the qualitative behavior of these equations on time scales. Our results in this paper not only extend the results given in [R.P. Agarwal, M. Bohner, S.H. Saker, Oscillation of second-order delay dynamic equations, Can. Appl. Math. Q. 13 (1) (2005) 1-18] but also unify the oscillation of the second-order Emden-Fowler delay differential equation and the second-order Emden-Fowler delay difference equation.

  3. KP Equation in a Three-Dimensional Unmagnetized Warm Dusty Plasma with Variable Dust Charge

    NASA Astrophysics Data System (ADS)

    El-Shorbagy, Kh. H.; Mahassen, Hania; El-Bendary, Atef Ahmed

    2017-12-01

    In this work, we investigate the propagation of three-dimensional nonlinear dust-acoustic and dust-Coulomb waves in an unmagnetized warm dusty plasma consisting of electrons, ions, and charged dust particles. The grain charge fluctuation is incorporated through the current balance equation. Using the perturbation method, a Kadomtsev-Petviashvili (KP) equation is obtained. It has been shown that the charge fluctuation would modify the wave structures, and the waves in such systems are unstable due to high-order long wave perturbations.

  4. Secondary Bifurcation and Change of Type for Three Dimensional Standing Waves in Shallow Water.

    DTIC Science & Technology

    1986-02-01

    field of standing K-P waves. A set of two non-interacting (to first order) solutions of the K-P equation ( Kadomtsev - Petviashvili 1970). The K-P equation ...P equation was first derived by Kadomtsev & Petviashvili (1970) in their study of the stability of solitary waves to transverse perturbations. A...Scientists, Springer-Verlag 6. B.A. Dubrovin (1981), "Theta Functions and Non-linear Equations ", Russian Mat. Surveys, 36, 11-92 7 B.B. Kadomtsev

  5. Dispersive optical soliton solutions for higher order nonlinear Sasa-Satsuma equation in mono mode fibers via new auxiliary equation method

    NASA Astrophysics Data System (ADS)

    Khater, Mostafa M. A.; Seadawy, Aly R.; Lu, Dianchen

    2018-01-01

    In this research, we apply new technique for higher order nonlinear Schrödinger equation which is representing the propagation of short light pulses in the monomode optical fibers and the evolution of slowly varying packets of quasi-monochromatic waves in weakly nonlinear media that have dispersion. Nonlinear Schrödinger equation is one of the basic model in fiber optics. We apply new auxiliary equation method for nonlinear Sasa-Satsuma equation to obtain a new optical forms of solitary traveling wave solutions. Exact and solitary traveling wave solutions are obtained in different kinds like trigonometric, hyperbolic, exponential, rational functions, …, etc. These forms of solutions that we represent in this research prove the superiority of our new technique on almost thirteen powerful methods. The main merits of this method over the other methods are that it gives more general solutions with some free parameters.

  6. Series expansion solutions for the multi-term time and space fractional partial differential equations in two- and three-dimensions

    NASA Astrophysics Data System (ADS)

    Ye, H.; Liu, F.; Turner, I.; Anh, V.; Burrage, K.

    2013-09-01

    Fractional partial differential equations with more than one fractional derivative in time describe some important physical phenomena, such as the telegraph equation, the power law wave equation, or the Szabo wave equation. In this paper, we consider two- and three-dimensional multi-term time and space fractional partial differential equations. The multi-term time-fractional derivative is defined in the Caputo sense, whose order belongs to the interval (1,2],(2,3],(3,4] or (0, m], and the space-fractional derivative is referred to as the fractional Laplacian form. We derive series expansion solutions based on a spectral representation of the Laplacian operator on a bounded region. Some applications are given for the two- and three-dimensional telegraph equation, power law wave equation and Szabo wave equation.

  7. Measurement of attenuation coefficients of the fundamental and second harmonic waves in water

    NASA Astrophysics Data System (ADS)

    Zhang, Shuzeng; Jeong, Hyunjo; Cho, Sungjong; Li, Xiongbing

    2016-02-01

    Attenuation corrections in nonlinear acoustics play an important role in the study of nonlinear fluids, biomedical imaging, or solid material characterization. The measurement of attenuation coefficients in a nonlinear regime is not easy because they depend on the source pressure and requires accurate diffraction corrections. In this work, the attenuation coefficients of the fundamental and second harmonic waves which come from the absorption of water are measured in nonlinear ultrasonic experiments. Based on the quasilinear theory of the KZK equation, the nonlinear sound field equations are derived and the diffraction correction terms are extracted. The measured sound pressure amplitudes are adjusted first for diffraction corrections in order to reduce the impact on the measurement of attenuation coefficients from diffractions. The attenuation coefficients of the fundamental and second harmonics are calculated precisely from a nonlinear least squares curve-fitting process of the experiment data. The results show that attenuation coefficients in a nonlinear condition depend on both frequency and source pressure, which are much different from a linear regime. In a relatively lower drive pressure, the attenuation coefficients increase linearly with frequency. However, they present the characteristic of nonlinear growth in a high drive pressure. As the diffraction corrections are obtained based on the quasilinear theory, it is important to use an appropriate source pressure for accurate attenuation measurements.

  8. A mechanism for plasma waves at the harmonics of the plasma frequency foreshock boundary

    NASA Technical Reports Server (NTRS)

    Klimas, A. J.

    1982-01-01

    A bump-on-tail unstable reduced velocity distribution, constructed from data obtained at the upstream boundary of the electron foreshock by the GSFC electron spectrometer experiment on the ISEE-1 satellite, is used as the initial plasma state for a numerical integration of the 1D-Vlasov-Maxwell system of equations. The integration is carried through the growth of the instability, beyond its saturation, and well into the stabilized plasma regime. A power spectrum computed for the electric field of the stabilized plasma is dominated by a narrow peak at the Bohm-Gross frequency of the unstable field mode but also contains significant power at the harmonics of the Bohm-Gross frequency. The harmonic power is in sharp peaks which are split into closely spaced doublets. The fundamental peak at the Bohm-Gross frequency is split into a closely spaced triplet. The mechanism for excitation of the second harmonic is shown to be second order wave-wave coupling.

  9. Ideal GLM-MHD: About the entropy consistent nine-wave magnetic field divergence diminishing ideal magnetohydrodynamics equations

    NASA Astrophysics Data System (ADS)

    Derigs, Dominik; Winters, Andrew R.; Gassner, Gregor J.; Walch, Stefanie; Bohm, Marvin

    2018-07-01

    The paper presents two contributions in the context of the numerical simulation of magnetized fluid dynamics. First, we show how to extend the ideal magnetohydrodynamics (MHD) equations with an inbuilt magnetic field divergence cleaning mechanism in such a way that the resulting model is consistent with the second law of thermodynamics. As a byproduct of these derivations, we show that not all of the commonly used divergence cleaning extensions of the ideal MHD equations are thermodynamically consistent. Secondly, we present a numerical scheme obtained by constructing a specific finite volume discretization that is consistent with the discrete thermodynamic entropy. It includes a mechanism to control the discrete divergence error of the magnetic field by construction and is Galilean invariant. We implement the new high-order MHD solver in the adaptive mesh refinement code FLASH where we compare the divergence cleaning efficiency to the constrained transport solver available in FLASH (unsplit staggered mesh scheme).

  10. Mode-coupling and wave-particle interactions for unstable ion-acoustic waves.

    NASA Technical Reports Server (NTRS)

    Martin, P.; Fried, B. D.

    1972-01-01

    A theory for the spatial development of linearly unstable, coupled waves is presented in which both quasilinear and mode-coupling effects are treated in a self-consistent manner. Steady-state excitation of two waves is assumed at the boundary x = 0, the plasma being homogeneous in the y and z directions. Coupled equations are derived for the x dependence of the amplitudes of the primary waves and the secondary waves, correct through terms of second order in the wave amplitude, but without the usual approximation of small growth rates. This general formalism is then applied to the case of coupled ion-acoustic waves driven unstable by an ion beam streaming in the direction of the x axis. If the modifications of the ion beam by the waves (quasilinear effects) are ignored, explosive instabilities (singularities in all of the amplitudes at finite x) are found even when all of the waves have positive energy. If these wave-particle interactions are included, the solutions are no longer singular, and all of the amplitudes have finite maxima.

  11. Mode coupling and wave particle interactions for unstable ion acoustic waves

    NASA Technical Reports Server (NTRS)

    Martin, P.; Fried, B. D.

    1972-01-01

    A theory for the spatial development of linearly unstable, coupled waves is presented in which both quasi-linear and mode coupling effects are treated in a self-consistent manner. Steady state excitation of two waves is assumed at the boundary x = 0, the plasma being homogeneous in the y and z directions. Coupled equations are derived for the x dependence of the amplitudes of the primary waves and the secondary waves, correct through second order terms in the wave amplitude, but without usual approximation of small growth rates. This general formalism is then applied to the case of coupled ion acoustic waves driven unstable by an ion beam streaming in the direction of the x axis. If the modifications of the ion beam by the waves (quasi-linear effects) are ignored, explosive instabilities (singularities in all of the amplitudes at finite x) are found, even when all of the waves have positive energy. If these wave-particle interactions are included, the solutions are no longer singular, and all of the amplitudes have finite maxima.

  12. Nonlinear evolution of Benjamin-Feir wave group based on third order solution of Benjamin-Bona-Mahony equation

    NASA Astrophysics Data System (ADS)

    Zahnur; Halfiani, Vera; Salmawaty; Tulus; Ramli, Marwan

    2018-01-01

    This study concerns on the evolution of trichromatic wave group. It has been known that the trichromatic wave group undergoes an instability during its propagation, which results wave deformation and amplification on the waves amplitude. The previous results on the KdV wave group showed that the nonlinear effect will deform the wave and lead to large wave whose amplitude is higher than the initial input. In this study we consider the Benjamin-Bona-Mahony equation and the theory of third order side band approximation to investigate the peaking and splitting phenomena of the wave groups which is initially in trichromatic signal. The wave amplitude amplification and the maximum position will be observed through a quantity called Maximal Temporal Amplitude (MTA) which measures the maximum amplitude of the waves over time.

  13. Self-consistent Model of Magnetospheric Electric Field, RC and EMIC Waves

    NASA Technical Reports Server (NTRS)

    Gamayunov, K. V.; Khazanov, G. V.; Liemohn, M. W.; Fok, M.-C.

    2007-01-01

    Electromagnetic ion cyclotron (EMIC) waves are an important magnetospheric emission, which is excited near the magnetic equator with frequencies below the proton gyro-frequency. The source of bee energy for wave growth is provided by temperature anisotropy of ring current (RC) ions, which develops naturally during inward convection from the plasma sheet These waves strongly affect the dynamic s of resonant RC ions, thermal electrons and ions, and the outer radiation belt relativistic electrons, leading to non-adiabatic particle heating and/or pitch-angle scattering and loss to the atmosphere. The rate of ion and electron scattering/heating is strongly controlled by the Wave power spectral and spatial distributions, but unfortunately, the currently available observational information regarding EMIC wave power spectral density is poor. So combinations of reliable data and theoretical models should be utilized in order to obtain the power spectral density of EMIC waves over the entire magnetosphere throughout the different storm phases. In this study, we present the simulation results, which are based on two coupled RC models that our group has developed. The first model deals with the large-scale magnetosphere-ionosphere electrodynamic coupling, and provides a self-consistent description of RC ions/electrons and the magnetospheric electric field. The second model is based on a coupled system of two kinetic equations, one equation describes the RC ion dynamics and another equation describes the power spectral density evolution of EMIC waves, and self-consistently treats a micro-scale electrodynamic coupling of RC and EMIC waves. So far, these two models have been applied independently. However, the large-scale magnetosphere-ionosphere electrodynamics controls the convective patterns of both the RC ions and plasmasphere altering conditions for EMIC wave-particle interaction. In turn, the wave induced RC precipitation Changes the local field-aligned current distributions and the ionospheric conductances, which are crucial for a large-scale electrodynamics. The initial results from this new self-consistent model of the magnetospheric electric field, RC and EMIC waves will be shown in this presentation.

  14. Mechanical balance laws for fully nonlinear and weakly dispersive water waves

    NASA Astrophysics Data System (ADS)

    Kalisch, Henrik; Khorsand, Zahra; Mitsotakis, Dimitrios

    2016-10-01

    The Serre-Green-Naghdi system is a coupled, fully nonlinear system of dispersive evolution equations which approximates the full water wave problem. The system is known to describe accurately the wave motion at the surface of an incompressible inviscid fluid in the case when the fluid flow is irrotational and two-dimensional. The system is an extension of the well known shallow-water system to the situation where the waves are long, but not so long that dispersive effects can be neglected. In the current work, the focus is on deriving mass, momentum and energy densities and fluxes associated with the Serre-Green-Naghdi system. These quantities arise from imposing balance equations of the same asymptotic order as the evolution equations. In the case of an even bed, the conservation equations are satisfied exactly by the solutions of the Serre-Green-Naghdi system. The case of variable bathymetry is more complicated, with mass and momentum conservation satisfied exactly, and energy conservation satisfied only in a global sense. In all cases, the quantities found here reduce correctly to the corresponding counterparts in both the Boussinesq and the shallow-water scaling. One consequence of the present analysis is that the energy loss appearing in the shallow-water theory of undular bores is fully compensated by the emergence of oscillations behind the bore front. The situation is analyzed numerically by approximating solutions of the Serre-Green-Naghdi equations using a finite-element discretization coupled with an adaptive Runge-Kutta time integration scheme, and it is found that the energy is indeed conserved nearly to machine precision. As a second application, the shoaling of solitary waves on a plane beach is analyzed. It appears that the Serre-Green-Naghdi equations are capable of predicting both the shape of the free surface and the evolution of kinetic and potential energy with good accuracy in the early stages of shoaling.

  15. Local energy decay for linear wave equations with variable coefficients

    NASA Astrophysics Data System (ADS)

    Ikehata, Ryo

    2005-06-01

    A uniform local energy decay result is derived to the linear wave equation with spatial variable coefficients. We deal with this equation in an exterior domain with a star-shaped complement. Our advantage is that we do not assume any compactness of the support on the initial data, and its proof is quite simple. This generalizes a previous famous result due to Morawetz [The decay of solutions of the exterior initial-boundary value problem for the wave equation, Comm. Pure Appl. Math. 14 (1961) 561-568]. In order to prove local energy decay, we mainly apply two types of ideas due to Ikehata-Matsuyama [L2-behaviour of solutions to the linear heat and wave equations in exterior domains, Sci. Math. Japon. 55 (2002) 33-42] and Todorova-Yordanov [Critical exponent for a nonlinear wave equation with damping, J. Differential Equations 174 (2001) 464-489].

  16. Exact Solutions for the Integrable Sixth-Order Drinfeld-Sokolov-Satsuma-Hirota System by the Analytical Methods.

    PubMed

    Manafian Heris, Jalil; Lakestani, Mehrdad

    2014-01-01

    We establish exact solutions including periodic wave and solitary wave solutions for the integrable sixth-order Drinfeld-Sokolov-Satsuma-Hirota system. We employ this system by using a generalized (G'/G)-expansion and the generalized tanh-coth methods. These methods are developed for searching exact travelling wave solutions of nonlinear partial differential equations. It is shown that these methods, with the help of symbolic computation, provide a straightforward and powerful mathematical tool for solving nonlinear partial differential equations.

  17. Boundary Layer Flow Over a Moving Wavy Surface

    NASA Astrophysics Data System (ADS)

    Hendin, Gali; Toledo, Yaron

    2016-04-01

    Boundary Layer Flow Over a Moving Wavy Surface Gali Hendin(1), Yaron Toledo(1) January 13, 2016 (1)School of Mechanical Engineering, Tel-Aviv University, Israel Understanding the boundary layer flow over surface gravity waves is of great importance as various atmosphere-ocean processes are essentially coupled through these waves. Nevertheless, there are still significant gaps in our understanding of this complex flow behaviour. The present work investigates the fundamentals of the boundary layer air flow over progressive, small-amplitude waves. It aims to extend the well-known Blasius solution for a boundary layer over a flat plate to one over a moving wavy surface. The current analysis pro- claims the importance of the small curvature and the time-dependency as second order effects, with a meaningful impact on the similarity pattern in the first order. The air flow over the ocean surface is modelled using an outer, inviscid half-infinite flow, overlaying the viscous boundary layer above the wavy surface. The assumption of a uniform flow in the outer layer, used in former studies, is now replaced with a precise analytical solution of the potential flow over a moving wavy surface with a known celerity, wavelength and amplitude. This results in a conceptual change from former models as it shows that the pressure variations within the boundary layer cannot be neglected. In the boundary layer, time-dependent Navier-Stokes equations are formulated in a curvilinear, orthogonal coordinate system. The formulation is done in an elaborate way that presents additional, formerly neglected first-order effects, resulting from the time-varying coordinate system. The suggested time-dependent curvilinear orthogonal coordinate system introduces a platform that can also support the formulation of turbulent problems for any surface shape. In order to produce a self-similar Blasius-type solution, a small wave-steepness is assumed and a perturbation method is applied. Consequently, a novel self-similar solution is obtained from the first order set of equations. A second order solution is also obtained, stressing the role of small curvature on the boundary layer flow. The proposed model and solution for the boundary layer problem overlaying a moving wavy surface can also be used as a base flow for stability problems that can develop in a boundary layer, including phases of transitional states.

  18. Nonlinear and linear wave equations for propagation in media with frequency power law losses

    NASA Astrophysics Data System (ADS)

    Szabo, Thomas L.

    2003-10-01

    The Burgers, KZK, and Westervelt wave equations used for simulating wave propagation in nonlinear media are based on absorption that has a quadratic dependence on frequency. Unfortunately, most lossy media, such as tissue, follow a more general frequency power law. The authors first research involved measurements of loss and dispersion associated with a modification to Blackstock's solution to the linear thermoviscous wave equation [J. Acoust. Soc. Am. 41, 1312 (1967)]. A second paper by Blackstock [J. Acoust. Soc. Am. 77, 2050 (1985)] showed the loss term in the Burgers equation for plane waves could be modified for other known instances of loss. The authors' work eventually led to comprehensive time-domain convolutional operators that accounted for both dispersion and general frequency power law absorption [Szabo, J. Acoust. Soc. Am. 96, 491 (1994)]. Versions of appropriate loss terms were developed to extend the standard three nonlinear wave equations to these more general losses. Extensive experimental data has verified the predicted phase velocity dispersion for different power exponents for the linear case. Other groups are now working on methods suitable for solving wave equations numerically for these types of loss directly in the time domain for both linear and nonlinear media.

  19. Shock Waves in a Bose-Einstein Condensate

    NASA Technical Reports Server (NTRS)

    Kulikov, Igor; Zak, Michail

    2005-01-01

    A paper presents a theoretical study of shock waves in a trapped Bose-Einstein condensate (BEC). The mathematical model of the BEC in this study is a nonlinear Schroedinger equation (NLSE) in which (1) the role of the wave function of a single particle in the traditional Schroedinger equation is played by a space- and time-dependent complex order parameter (x,t) proportional to the square root of the density of atoms and (2) the atoms engage in a repulsive interaction characterized by a potential proportional to | (x,t)|2. Equations that describe macroscopic perturbations of the BEC at zero temperature are derived from the NLSE and simplifying assumptions are made, leading to equations for the propagation of sound waves and the transformation of sound waves into shock waves. Equations for the speeds of shock waves and the relationships between jumps of velocity and density across shock fronts are derived. Similarities and differences between this theory and the classical theory of sound waves and shocks in ordinary gases are noted. The present theory is illustrated by solving the equations for the example of a shock wave propagating in a cigar-shaped BEC.

  20. Reduced-order prediction of rogue waves in two-dimensional deep-water waves

    NASA Astrophysics Data System (ADS)

    Sapsis, Themistoklis; Farazmand, Mohammad

    2017-11-01

    We consider the problem of large wave prediction in two-dimensional water waves. Such waves form due to the synergistic effect of dispersive mixing of smaller wave groups and the action of localized nonlinear wave interactions that leads to focusing. Instead of a direct simulation approach, we rely on the decomposition of the wave field into a discrete set of localized wave groups with optimal length scales and amplitudes. Due to the short-term character of the prediction, these wave groups do not interact and therefore their dynamics can be characterized individually. Using direct numerical simulations of the governing envelope equations we precompute the expected maximum elevation for each of those wave groups. The combination of the wave field decomposition algorithm, which provides information about the statistics of the system, and the precomputed map for the expected wave group elevation, which encodes dynamical information, allows (i) for understanding of how the probability of occurrence of rogue waves changes as the spectrum parameters vary, (ii) the computation of a critical length scale characterizing wave groups with high probability of evolving to rogue waves, and (iii) the formulation of a robust and parsimonious reduced-order prediction scheme for large waves. T.S. has been supported through the ONR Grants N00014-14-1-0520 and N00014-15-1-2381 and the AFOSR Grant FA9550-16-1-0231. M.F. has been supported through the second Grant.

  1. Structure and Stability of One-Dimensional Detonations in Ethylene-Air Mixtures

    NASA Technical Reports Server (NTRS)

    Yungster, S.; Radhakrishnan, K.; Perkins, High D. (Technical Monitor)

    2003-01-01

    The propagation of one-dimensional detonations in ethylene-air mixtures is investigated numerically by solving the one-dimensional Euler equations with detailed finite-rate chemistry. The numerical method is based on a second-order spatially accurate total-variation-diminishing scheme and a point implicit, first-order-accurate, time marching algorithm. The ethylene-air combustion is modeled with a 20-species, 36-step reaction mechanism. A multi-level, dynamically adaptive grid is utilized, in order to resolve the structure of the detonation. Parametric studies over an equivalence ratio range of 0.5 less than phi less than 3 for different initial pressures and degrees of detonation overdrive demonstrate that the detonation is unstable for low degrees of overdrive, but the dynamics of wave propagation varies with fuel-air equivalence ratio. For equivalence ratios less than approximately 1.2 the detonation exhibits a short-period oscillatory mode, characterized by high-frequency, low-amplitude waves. Richer mixtures (phi greater than 1.2) exhibit a low-frequency mode that includes large fluctuations in the detonation wave speed; that is, a galloping propagation mode is established. At high degrees of overdrive, stable detonation wave propagation is obtained. A modified McVey-Toong short-period wave-interaction theory is in excellent agreement with the numerical simulations.

  2. Rethinking pedagogy for second-order differential equations: a simplified approach to understanding well-posed problems

    NASA Astrophysics Data System (ADS)

    Tisdell, Christopher C.

    2017-07-01

    Knowing an equation has a unique solution is important from both a modelling and theoretical point of view. For over 70 years, the approach to learning and teaching 'well posedness' of initial value problems (IVPs) for second- and higher-order ordinary differential equations has involved transforming the problem and its analysis to a first-order system of equations. We show that this excursion is unnecessary and present a direct approach regarding second- and higher-order problems that does not require an understanding of systems.

  3. Exact traveling wave solutions for system of nonlinear evolution equations.

    PubMed

    Khan, Kamruzzaman; Akbar, M Ali; Arnous, Ahmed H

    2016-01-01

    In this work, recently deduced generalized Kudryashov method is applied to the variant Boussinesq equations, and the (2 + 1)-dimensional breaking soliton equations. As a result a range of qualitative explicit exact traveling wave solutions are deduced for these equations, which motivates us to develop, in the near future, a new approach to obtain unsteady solutions of autonomous nonlinear evolution equations those arise in mathematical physics and engineering fields. It is uncomplicated to extend this method to higher-order nonlinear evolution equations in mathematical physics. And it should be possible to apply the same method to nonlinear evolution equations having more general forms of nonlinearities by utilizing the traveling wave hypothesis.

  4. Light rays and the tidal gravitational pendulum

    NASA Astrophysics Data System (ADS)

    Farley, A. N. St J.

    2018-05-01

    Null geodesic deviation in classical general relativity is expressed in terms of a scalar function, defined as the invariant magnitude of the connecting vector between neighbouring light rays in a null geodesic congruence projected onto a two-dimensional screen space orthogonal to the rays, where λ is an affine parameter along the rays. We demonstrate that η satisfies a harmonic oscillator-like equation with a λ-dependent frequency, which comprises terms accounting for local matter affecting the congruence and tidal gravitational effects from distant matter or gravitational waves passing through the congruence, represented by the amplitude, of a complex Weyl driving term. Oscillating solutions for η imply the presence of conjugate or focal points along the rays. A polarisation angle, is introduced comprising the orientation of the connecting vector on the screen space and the phase, of the Weyl driving term. Interpreting β as the polarisation of a gravitational wave encountering the light rays, we consider linearly polarised waves in the first instance. A highly non-linear, second-order ordinary differential equation, (the tidal pendulum equation), is then derived, so-called due to its analogy with the equation describing a non-linear, variable-length pendulum oscillating under gravity. The variable pendulum length is represented by the connecting vector magnitude, whilst the acceleration due to gravity in the familiar pendulum formulation is effectively replaced by . A tidal torque interpretation is also developed, where the torque is expressed as a coupling between the moment of inertia of the pendulum and the tidal gravitational field. Precessional effects are briefly discussed. A solution to the tidal pendulum equation in terms of familiar gravitational lensing variables is presented. The potential emergence of chaos in general relativity is discussed in the context of circularly, elliptically or randomly polarised gravitational waves encountering the null congruence.

  5. Theoretical analysis of optical poling and frequency doubling effect based on classical model

    NASA Astrophysics Data System (ADS)

    Feng, Xi; Li, Fuquan; Lin, Aoxiang; Wang, Fang; Chai, Xiangxu; Wang, Zhengping; Zhu, Qihua; Sun, Xun; Zhang, Sen; Sun, Xibo

    2018-03-01

    Optical poling and frequency doubling effect is one of the effective manners to induce second order nonlinearity and realize frequency doubling in glass materials. The classical model believes that an internal electric field is built in glass when it's exposed by fundamental and frequency-doubled light at the same time, and second order nonlinearity appears as a result of the electric field and the orientation of poles. The process of frequency doubling in glass is quasi phase matched. In this letter, the physical process of poling and doubling process in optical poling and frequency doubling effect is deeply discussed in detail. The magnitude and direction of internal electric field, second order nonlinear coefficient and its components, strength and direction of frequency doubled output signal, quasi phase matched coupled wave equations are given in analytic expression. Model of optical poling and frequency doubling effect which can be quantitatively analyzed are constructed in theory, which set a foundation for intensive study of optical poling and frequency doubling effect.

  6. Progressive wave expansions and open boundary problems

    NASA Technical Reports Server (NTRS)

    Hagstrom, T.; Hariharan, S. I.

    1995-01-01

    In this paper we construct progressive wave expansions and asymptotic boundary conditions for wave-like equations in exterior domains, including applications to electromagnetics, compressible flows and aero-acoustics. The development of the conditions will be discussed in two parts. The first part will include derivations of asymptotic conditions based on the well-known progressive wave expansions for the two-dimensional wave equations. A key feature in the derivations is that the resulting family of boundary conditions involves a single derivative in the direction normal to the open boundary. These conditions are easy to implement and an application in electromagnetics will be presented. The second part of the paper will discuss the theory for hyperbolic systems in two dimensions. Here, the focus will be to obtain the expansions in a general way and to use them to derive a class of boundary conditions that involve only time derivatives or time and tangential derivatives. Maxwell's equations and the compressible Euler equations are used as examples. Simulations with the linearized Euler equations are presented to validate the theory.

  7. Nonlinear ring resonator: spatial pattern generation

    NASA Astrophysics Data System (ADS)

    Ivanov, Vladimir Y.; Lachinova, Svetlana L.; Irochnikov, Nikita G.

    2000-03-01

    We consider theoretically spatial pattern formation processes in a unidirectional ring cavity with thin layer of Kerr-type nonlinear medium. Our method is based on studying of two coupled equations. The first is a partial differential equation for temporal dynamics of phase modulation of light wave in the medium. It describes nonlinear interaction in the Kerr-type lice. The second is a free propagation equation for the intracavity field complex amplitude. It involves diffraction effects of light wave in the cavity.

  8. Progress Toward Improving Jet Noise Predictions in Hot Jets

    NASA Technical Reports Server (NTRS)

    Khavaran, Abbas; Kenzakowski, Donald C.

    2007-01-01

    An acoustic analogy methodology for improving noise predictions in hot round jets is presented. Past approaches have often neglected the impact of temperature fluctuations on the predicted sound spectral density, which could be significant for heated jets, and this has yielded noticeable acoustic under-predictions in such cases. The governing acoustic equations adopted here are a set of linearized, inhomogeneous Euler equations. These equations are combined into a single third order linear wave operator when the base flow is considered as a locally parallel mean flow. The remaining second-order fluctuations are regarded as the equivalent sources of sound and are modeled. It is shown that the hot jet effect may be introduced primarily through a fluctuating velocity/enthalpy term. Modeling this additional source requires specialized inputs from a RANS-based flowfield simulation. The information is supplied using an extension to a baseline two equation turbulence model that predicts total enthalpy variance in addition to the standard parameters. Preliminary application of this model to a series of unheated and heated subsonic jets shows significant improvement in the acoustic predictions at the 90 degree observer angle.

  9. Investigation of the Wave Propagation of Vector Modes of Light in a Spherically Symmetric Refractive Index Profile

    NASA Astrophysics Data System (ADS)

    Pozderac, Preston; Leary, Cody

    We investigated the solutions to the Helmholtz equation in the case of a spherically symmetric refractive index using three different methods. The first method involves solving the Helmholtz equation for a step index profile and applying further constraints contained in Maxwell's equations. Utilizing these equations, we can simultaneously solve for the electric and magnetic fields as well as the allowed energies of photons propagating in this system. The second method applies a perturbative correction to these energies, which surfaces when deriving a Helmholtz type equation in a medium with an inhomogeneous refractive index. Applying first order perturbation theory, we examine how the correction term affects the energy of the photon. In the third method, we investigate the effects of the above perturbation upon solutions to the scalar Helmholtz equation, which are separable with respect to its polarization and spatial degrees of freedom. This work provides insights into the vector field structure of a photon guided by a glass microsphere.

  10. Time dependent wave envelope finite difference analysis of sound propagation

    NASA Technical Reports Server (NTRS)

    Baumeister, K. J.

    1984-01-01

    A transient finite difference wave envelope formulation is presented for sound propagation, without steady flow. Before the finite difference equations are formulated, the governing wave equation is first transformed to a form whose solution tends not to oscillate along the propagation direction. This transformation reduces the required number of grid points by an order of magnitude. Physically, the transformed pressure represents the amplitude of the conventional sound wave. The derivation for the wave envelope transient wave equation and appropriate boundary conditions are presented as well as the difference equations and stability requirements. To illustrate the method, example solutions are presented for sound propagation in a straight hard wall duct and in a two dimensional straight soft wall duct. The numerical results are in good agreement with exact analytical results.

  11. Second-order small-disturbance solutions for hypersonic flow over power-law bodies

    NASA Technical Reports Server (NTRS)

    Townsend, J. C.

    1975-01-01

    Similarity solutions were found which give the adiabatic flow of an ideal gas about two-dimensional and axisymmetric power-law bodies at infinite Mach number to second order in the body slenderness parameter. The flow variables were expressed as a sum of zero-order and perturbation similarity functions for which the axial variations in the flow equations separated out. The resulting similarity equations were integrated numerically. The solutions, which are universal functions, are presented in graphic and tabular form. To avoid a singularity in the calculations, the results are limited to body power-law exponents greater than about 0.85 for the two-dimensional case and 0.75 for the axisymmetric case. Because of the entropy layer induced by the nose bluntness (for power-law bodies other than cones and wedges), only the pressure function is valid at the body surface. The similarity results give excellent agreement with the exact solutions for inviscid flow over wedges and cones having half-angles up to about 20 deg. They give good agreement with experimental shock-wave shapes and surface-pressure distributions for 3/4-power axisymmetric bodies, considering that Mach number and boundary-layer displacement effects are not included in the theory.

  12. Thermal Non-Equilibrium Flows in Three Space Dimensions

    NASA Astrophysics Data System (ADS)

    Zeng, Yanni

    2016-01-01

    We study the equations describing the motion of a thermal non-equilibrium gas in three space dimensions. It is a hyperbolic system of six equations with a relaxation term. The dissipation mechanism induced by the relaxation is weak in the sense that the Shizuta-Kawashima criterion is violated. This implies that a perturbation of a constant equilibrium state consists of two parts: one decays in time while the other stays. In fact, the entropy wave grows weakly along the particle path as the process is irreversible. We study thermal properties related to the well-posedness of the nonlinear system. We also obtain a detailed pointwise estimate on the Green's function for the Cauchy problem when the system is linearized around an equilibrium constant state. The Green's function provides a complete picture of the wave pattern, with an exact and explicit leading term. Comparing with existing results for one dimensional flows, our results reveal a new feature of three dimensional flows: not only does the entropy wave not decay, but the velocity also contains a non-decaying part, strongly coupled with its decaying one. The new feature is supported by the second order approximation via the Chapman-Enskog expansions, which are the Navier-Stokes equations with vanished shear viscosity and heat conductivity.

  13. A fourth-order box method for solving the boundary layer equations

    NASA Technical Reports Server (NTRS)

    Wornom, S. F.

    1977-01-01

    A fourth order box method for calculating high accuracy numerical solutions to parabolic, partial differential equations in two variables or ordinary differential equations is presented. The method is the natural extension of the second order Keller Box scheme to fourth order and is demonstrated with application to the incompressible, laminar and turbulent boundary layer equations. Numerical results for high accuracy test cases show the method to be significantly faster than other higher order and second order methods.

  14. Bounded Error Schemes for the Wave Equation on Complex Domains

    NASA Technical Reports Server (NTRS)

    Abarbanel, Saul; Ditkowski, Adi; Yefet, Amir

    1998-01-01

    This paper considers the application of the method of boundary penalty terms ("SAT") to the numerical solution of the wave equation on complex shapes with Dirichlet boundary conditions. A theory is developed, in a semi-discrete setting, that allows the use of a Cartesian grid on complex geometries, yet maintains the order of accuracy with only a linear temporal error-bound. A numerical example, involving the solution of Maxwell's equations inside a 2-D circular wave-guide demonstrates the efficacy of this method in comparison to others (e.g. the staggered Yee scheme) - we achieve a decrease of two orders of magnitude in the level of the L2-error.

  15. Classifying the hierarchy of nonlinear-Schrödinger-equation rogue-wave solutions.

    PubMed

    Kedziora, David J; Ankiewicz, Adrian; Akhmediev, Nail

    2013-07-01

    We present a systematic classification for higher-order rogue-wave solutions of the nonlinear Schrödinger equation, constructed as the nonlinear superposition of first-order breathers via the recursive Darboux transformation scheme. This hierarchy is subdivided into structures that exhibit varying degrees of radial symmetry, all arising from independent degrees of freedom associated with physical translations of component breathers. We reveal the general rules required to produce these fundamental patterns. Consequently, we are able to extrapolate the general shape for rogue-wave solutions beyond order 6, at which point accuracy limitations due to current standards of numerical generation become non-negligible. Furthermore, we indicate how a large set of irregular rogue-wave solutions can be produced by hybridizing these fundamental structures.

  16. Distorted-wave methods for electron capture in ion-atom collisions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burgdoerfer, J.; Taulbjerg, K.

    1986-05-01

    Distorted-wave methods for electron capture are discussed with emphasis on the surface term in the T matrix and on the properties of the associated integral equations. The surface term is generally nonvanishing if the distorted waves are sufficiently accurate to include parts of the considered physical process. Two examples are considered in detail. If distorted waves of the strong-potential Born-approximation (SPB) type are employed the surface term supplies the first-Born-approximation part of the T matrix. The surface term is shown to vanish in the continuum-distorted-wave (CDW) method. The integral kernel is in either case free of the dangerous disconnected termsmore » discussed by Greider and Dodd but the CDW theory is peculiar in the sense that its first-order approximation (CDW1) excludes a specific on-shell portion of the double-scattering term that is closely connected with the classical Thomas process. The latter is described by the second-order term in the CDW series. The distorted-wave Born approximation with SPB waves is shown to be free of divergences. In the limit of asymmetric collisions the DWB suggests a modification of the SPB approximation to avoid the divergence problem recently identified by Dewangan and Eichler.« less

  17. Indirect (source-free) integration method. I. Wave-forms from geodesic generic orbits of EMRIs

    NASA Astrophysics Data System (ADS)

    Ritter, Patxi; Aoudia, Sofiane; Spallicci, Alessandro D. A. M.; Cordier, Stéphane

    2016-12-01

    The Regge-Wheeler-Zerilli (RWZ) wave-equation describes Schwarzschild-Droste black hole perturbations. The source term contains a Dirac distribution and its derivative. We have previously designed a method of integration in time domain. It consists of a finite difference scheme where analytic expressions, dealing with the wave-function discontinuity through the jump conditions, replace the direct integration of the source and the potential. Herein, we successfully apply the same method to the geodesic generic orbits of EMRI (Extreme Mass Ratio Inspiral) sources, at second order. An EMRI is a Compact Star (CS) captured by a Super-Massive Black Hole (SMBH). These are considered the best probes for testing gravitation in strong regime. The gravitational wave-forms, the radiated energy and angular momentum at infinity are computed and extensively compared with other methods, for different orbits (circular, elliptic, parabolic, including zoom-whirl).

  18. Second-order discrete Kalman filtering equations for control-structure interaction simulations

    NASA Technical Reports Server (NTRS)

    Park, K. C.; Belvin, W. Keith; Alvin, Kenneth F.

    1991-01-01

    A general form for the first-order representation of the continuous, second-order linear structural dynamics equations is introduced in order to derive a corresponding form of first-order Kalman filtering equations (KFE). Time integration of the resulting first-order KFE is carried out via a set of linear multistep integration formulas. It is shown that a judicious combined selection of computational paths and the undetermined matrices introduced in the general form of the first-order linear structural systems leads to a class of second-order discrete KFE involving only symmetric, N x N solution matrix.

  19. 'Second' Ehrenfest equation for second order phase transition under hydrostatic pressure

    NASA Astrophysics Data System (ADS)

    Moin, Ph. B.

    2018-02-01

    It is shown that the fundamental conditions for the second-order phase transitions ? and ?, from which the two Ehrenfest equations follow (the 'usual' and the 'second' ones), are realised only at zero hydrostatic pressure (?). At ? the volume jump ΔV at the transition is proportional to the pressure and to the jump of the compressibility ΔζV, whereas the entropy jump ΔS is proportional to the pressure and to the jump of the thermal expansion coefficient ΔαV. This means that at non-zero hydrostatic pressure the phase transition is of the first order and is described by the Clausius-Clapeyron equation. At small pressure this equation coincides with the 'second' Ehrenfest equation ?. At high P, the Clausius-Clapeyron equation describes qualitatively the caused by the crystal compression positive curvature of the ? dependence.

  20. Three-dimensional lattice Boltzmann model for compressible flows.

    PubMed

    Sun, Chenghai; Hsu, Andrew T

    2003-07-01

    A three-dimensional compressible lattice Boltzmann model is formulated on a cubic lattice. A very large particle-velocity set is incorporated in order to enable a greater variation in the mean velocity. Meanwhile, the support set of the equilibrium distribution has only six directions. Therefore, this model can efficiently handle flows over a wide range of Mach numbers and capture shock waves. Due to the simple form of the equilibrium distribution, the fourth-order velocity tensors are not involved in the formulation. Unlike the standard lattice Boltzmann model, no special treatment is required for the homogeneity of fourth-order velocity tensors on square lattices. The Navier-Stokes equations were recovered, using the Chapman-Enskog method from the Bhatnagar-Gross-Krook (BGK) lattice Boltzmann equation. The second-order discretization error of the fluctuation velocity in the macroscopic conservation equation was eliminated by means of a modified collision invariant. The model is suitable for both viscous and inviscid compressible flows with or without shocks. Since the present scheme deals only with the equilibrium distribution that depends only on fluid density, velocity, and internal energy, boundary conditions on curved wall are easily implemented by an extrapolation of macroscopic variables. To verify the scheme for inviscid flows, we have successfully simulated a three-dimensional shock-wave propagation in a box and a normal shock of Mach number 10 over a wedge. As an application to viscous flows, we have simulated a flat plate boundary layer flow, flow over a cylinder, and a transonic flow over a NACA0012 airfoil cascade.

  1. High-order space-time finite element schemes for acoustic and viscodynamic wave equations with temporal decoupling.

    PubMed

    Banks, H T; Birch, Malcolm J; Brewin, Mark P; Greenwald, Stephen E; Hu, Shuhua; Kenz, Zackary R; Kruse, Carola; Maischak, Matthias; Shaw, Simon; Whiteman, John R

    2014-04-13

    We revisit a method originally introduced by Werder et al. (in Comput. Methods Appl. Mech. Engrg., 190:6685-6708, 2001) for temporally discontinuous Galerkin FEMs applied to a parabolic partial differential equation. In that approach, block systems arise because of the coupling of the spatial systems through inner products of the temporal basis functions. If the spatial finite element space is of dimension D and polynomials of degree r are used in time, the block system has dimension ( r + 1) D and is usually regarded as being too large when r > 1. Werder et al. found that the space-time coupling matrices are diagonalizable over [Formula: see text] for r ⩽ 100, and this means that the time-coupled computations within a time step can actually be decoupled. By using either continuous Galerkin or spectral element methods in space, we apply this DG-in-time methodology, for the first time, to second-order wave equations including elastodynamics with and without Kelvin-Voigt and Maxwell-Zener viscoelasticity. An example set of numerical results is given to demonstrate the favourable effect on error and computational work of the moderately high-order (up to degree 7) temporal and spatio-temporal approximations, and we also touch on an application of this method to an ambitious problem related to the diagnosis of coronary artery disease. Copyright © 2014 The Authors. International Journal for Numerical Methods in Engineering published by John Wiley & Sons Ltd.

  2. High-order space-time finite element schemes for acoustic and viscodynamic wave equations with temporal decoupling

    PubMed Central

    Banks, H T; Birch, Malcolm J; Brewin, Mark P; Greenwald, Stephen E; Hu, Shuhua; Kenz, Zackary R; Kruse, Carola; Maischak, Matthias; Shaw, Simon; Whiteman, John R

    2014-01-01

    We revisit a method originally introduced by Werder et al. (in Comput. Methods Appl. Mech. Engrg., 190:6685–6708, 2001) for temporally discontinuous Galerkin FEMs applied to a parabolic partial differential equation. In that approach, block systems arise because of the coupling of the spatial systems through inner products of the temporal basis functions. If the spatial finite element space is of dimension D and polynomials of degree r are used in time, the block system has dimension (r + 1)D and is usually regarded as being too large when r > 1. Werder et al. found that the space-time coupling matrices are diagonalizable over for r ⩽100, and this means that the time-coupled computations within a time step can actually be decoupled. By using either continuous Galerkin or spectral element methods in space, we apply this DG-in-time methodology, for the first time, to second-order wave equations including elastodynamics with and without Kelvin–Voigt and Maxwell–Zener viscoelasticity. An example set of numerical results is given to demonstrate the favourable effect on error and computational work of the moderately high-order (up to degree 7) temporal and spatio-temporal approximations, and we also touch on an application of this method to an ambitious problem related to the diagnosis of coronary artery disease. Copyright © 2014 The Authors. International Journal for Numerical Methods in Engineering published by John Wiley & Sons Ltd. PMID:25834284

  3. Two-dimensional coupled mathematical modeling of fluvial processes with intense sediment transport and rapid bed evolution

    NASA Astrophysics Data System (ADS)

    Yue, Zhiyuan; Cao, Zhixian; Li, Xin; Che, Tao

    2008-09-01

    Alluvial rivers may experience intense sediment transport and rapid bed evolution under a high flow regime, for which traditional decoupled mathematical river models based on simplified conservation equations are not applicable. A two-dimensional coupled mathematical model is presented, which is generally applicable to the fluvial processes with either intense or weak sediment transport. The governing equations of the model comprise the complete shallow water hydrodynamic equations closed with Manning roughness for boundary resistance and empirical relationships for sediment exchange with the erodible bed. The second-order Total-Variation-Diminishing version of the Weighted-Average-Flux method, along with the HLLC approximate Riemann Solver, is adapted to solve the governing equations, which can properly resolve shock waves and contact discontinuities. The model is applied to the pilot study of the flooding due to a sudden outburst of a real glacial-lake.

  4. A Numerical Solution of the Second-Order-Nonlinear Acoustic Wave Equation in One and in Three Dimensions.

    DTIC Science & Technology

    1981-01-08

    95 Limits of Applicability of Weak-Finite- Amplitude Theory ... ............ 100 Near- Field Calibration of Parametric Sources...concerning the amount of energy that may be trans- mitted to the far field by various types of signals. CPOIi eslu er 06]i C) 3O d SIM aC NOI.LjZI’IS...ducers at finite amplitudes, conclusions are presented concerning the amount of energy that may be transmitted to the far field by various types of

  5. Estimation on nonlinear damping in second order distributed parameter systems

    NASA Technical Reports Server (NTRS)

    Banks, H. T.; Reich, Simeon; Rosen, I. G.

    1989-01-01

    An approximation and convergence theory for the identification of nonlinear damping in abstract wave equations is developed. It is assumed that the unknown dissipation mechanism to be identified can be described by a maximal monotone operator acting on the generalized velocity. The stiffness is assumed to be linear and symmetric. Functional analytic techniques are used to establish that solutions to a sequence of finite dimensional (Galerkin) approximating identification problems in some sense approximate a solution to the original infinite dimensional inverse problem.

  6. Nonlinear ion acoustic waves scattered by vortexes

    NASA Astrophysics Data System (ADS)

    Ohno, Yuji; Yoshida, Zensho

    2016-09-01

    The Kadomtsev-Petviashvili (KP) hierarchy is the archetype of infinite-dimensional integrable systems, which describes nonlinear ion acoustic waves in two-dimensional space. This remarkably ordered system resides on a singular submanifold (leaf) embedded in a larger phase space of more general ion acoustic waves (low-frequency electrostatic perturbations). The KP hierarchy is characterized not only by small amplitudes but also by irrotational (zero-vorticity) velocity fields. In fact, the KP equation is derived by eliminating vorticity at every order of the reductive perturbation. Here, we modify the scaling of the velocity field so as to introduce a vortex term. The newly derived system of equations consists of a generalized three-dimensional KP equation and a two-dimensional vortex equation. The former describes 'scattering' of vortex-free waves by ambient vortexes that are determined by the latter. We say that the vortexes are 'ambient' because they do not receive reciprocal reactions from the waves (i.e., the vortex equation is independent of the wave fields). This model describes a minimal departure from the integrable KP system. By the Painlevé test, we delineate how the vorticity term violates integrability, bringing about an essential three-dimensionality to the solutions. By numerical simulation, we show how the solitons are scattered by vortexes and become chaotic.

  7. Khater method for nonlinear Sharma Tasso-Olever (STO) equation of fractional order

    NASA Astrophysics Data System (ADS)

    Bibi, Sadaf; Mohyud-Din, Syed Tauseef; Khan, Umar; Ahmed, Naveed

    In this work, we have implemented a direct method, known as Khater method to establish exact solutions of nonlinear partial differential equations of fractional order. Number of solutions provided by this method is greater than other traditional methods. Exact solutions of nonlinear fractional order Sharma Tasso-Olever (STO) equation are expressed in terms of kink, travelling wave, periodic and solitary wave solutions. Modified Riemann-Liouville derivative and Fractional complex transform have been used for compatibility with fractional order sense. Solutions have been graphically simulated for understanding the physical aspects and importance of the method. A comparative discussion between our established results and the results obtained by existing ones is also presented. Our results clearly reveal that the proposed method is an effective, powerful and straightforward technique to work out new solutions of various types of differential equations of non-integer order in the fields of applied sciences and engineering.

  8. ADM For Solving Linear Second-Order Fredholm Integro-Differential Equations

    NASA Astrophysics Data System (ADS)

    Karim, Mohd F.; Mohamad, Mahathir; Saifullah Rusiman, Mohd; Che-Him, Norziha; Roslan, Rozaini; Khalid, Kamil

    2018-04-01

    In this paper, we apply Adomian Decomposition Method (ADM) as numerically analyse linear second-order Fredholm Integro-differential Equations. The approximate solutions of the problems are calculated by Maple package. Some numerical examples have been considered to illustrate the ADM for solving this equation. The results are compared with the existing exact solution. Thus, the Adomian decomposition method can be the best alternative method for solving linear second-order Fredholm Integro-Differential equation. It converges to the exact solution quickly and in the same time reduces computational work for solving the equation. The result obtained by ADM shows the ability and efficiency for solving these equations.

  9. Pure quasi-P-wave calculation in transversely isotropic media using a hybrid method

    NASA Astrophysics Data System (ADS)

    Wu, Zedong; Liu, Hongwei; Alkhalifah, Tariq

    2018-07-01

    The acoustic approximation for anisotropic media is widely used in current industry imaging and inversion algorithms mainly because Pwaves constitute the majority of the energy recorded in seismic exploration. The resulting acoustic formulae tend to be simpler, resulting in more efficient implementations, and depend on fewer medium parameters. However, conventional solutions of the acoustic wave equation with higher-order derivatives suffer from shear wave artefacts. Thus, we derive a new acoustic wave equation for wave propagation in transversely isotropic (TI) media, which is based on a partially separable approximation of the dispersion relation for TI media and free of shear wave artefacts. Even though our resulting equation is not a partial differential equation, it is still a linear equation. Thus, we propose to implement this equation efficiently by combining the finite difference approximation with spectral evaluation of the space-independent parts. The resulting algorithm provides solutions without the constraint ɛ ≥ δ. Numerical tests demonstrate the effectiveness of the approach.

  10. Stratified wakes, the high Froude number approximation, and potential flow

    NASA Astrophysics Data System (ADS)

    Vasholz, David P.

    2011-12-01

    Properties of a steady wake generated by a body moving uniformly at constant depth through a stratified fluid are studied as a function of two parameters inserted into the linearized equations of motion. The first parameter, μ, multiplies the along-track gradient term in the source equation. When formal solutions for an arbitrary buoyancy frequency profile are written as eigenfunction expansions, one finds that the limit μ → 0 corresponds to a high Froude number approximation accompanied by a substantial reduction in the complexity of the calculation. For μ = 1, upstream effects are present and the eigenvalues correspond to critical speeds above which transverse waves disappear for any given mode. For sufficiently high modes, the high Froude number approximation is valid. The second tracer multiplies the square of the buoyancy frequency term in the linearized conservation of mass equation and enables direct comparisons with the limit of potential flow. Detailed results are given for the simplest possible profile, in which the buoyancy frequency is independent of depth; emphasis is placed upon quantities that can, in principle, be experimentally measured in a laboratory experiment. The vertical displacement field is written in terms of a stratified wake form factor {{H}} , which is the sum of a wavelike contribution that is non-zero downstream and an evanescent contribution that appears symmetrically upstream and downstream. First- and second-order cross-track moments of {{H}} are analyzed. First-order results predict enhanced upstream vertical displacements. Second-order results expand upon previous predictions of wavelike resonances and also predict evanescent resonance effects.

  11. The intrinsic B-mode polarisation of the Cosmic Microwave Background

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fidler, Christian; Pettinari, Guido W.; Crittenden, Robert

    2014-07-01

    We estimate the B-polarisation induced in the Cosmic Microwave Background by the non-linear evolution of density perturbations. Using the second-order Boltzmann code SONG, our analysis incorporates, for the first time, all physical effects at recombination. We also include novel contributions from the redshift part of the Boltzmann equation and from the bolometric definition of the temperature in the presence of polarisation. The remaining line-of-sight terms (lensing and time-delay) have previously been studied and must be calculated non-perturbatively. The intrinsic B-mode polarisation is present independent of the initial conditions and might contaminate the signal from primordial gravitational waves. We find thismore » contamination to be comparable to a primordial tensor-to-scalar ratio of r ≅ 10{sup −7} at the angular scale ℓ ≅ 100, where the primordial signal peaks, and r ≅ 5 × 10{sup −5} at ℓ ≅ 700, where the intrinsic signal peaks. Therefore, we conclude that the intrinsic B-polarisation from second-order effects is not likely to contaminate future searches of primordial gravitational waves.« less

  12. Rogue waves in the Davey-Stewartson I equation.

    PubMed

    Ohta, Yasuhiro; Yang, Jianke

    2012-09-01

    General rogue waves in the Davey-Stewartson-I equation are derived by the bilinear method. It is shown that the simplest (fundamental) rogue waves are line rogue waves which arise from the constant background with a line profile and then disappear into the constant background again. It is also shown that multirogue waves describe the interaction of several fundamental rogue waves. These multirogue waves also arise from the constant background and then decay back to it, but in the intermediate times, interesting curvy wave patterns appear. However, higher-order rogue waves exhibit different dynamics. Specifically, only part of the wave structure in the higher-order rogue waves rises from the constant background and then retreats back to it, and this transient wave possesses patterns such as parabolas. But the other part of the wave structure comes from the far distance as a localized lump, which decelerates to the near field and interacts with the transient rogue wave, and is then reflected back and accelerates to the large distance again.

  13. Symmetry Reductions, Integrability and Solitary Wave Solutions to High-Order Modified Boussinesq Equations with Damping Term

    NASA Astrophysics Data System (ADS)

    Yan, Zhen-Ya; Xie, Fu-Ding; Zhang, Hong-Qing

    2001-07-01

    Both the direct method due to Clarkson and Kruskal and the improved direct method due to Lou are extended to reduce the high-order modified Boussinesq equation with the damping term (HMBEDT) arising in the general Fermi-Pasta-Ulam model. As a result, several types of similarity reductions are obtained. It is easy to show that the nonlinear wave equation is not integrable under the sense of Ablowitz's conjecture from the reduction results obtained. In addition, kink-shaped solitary wave solutions, which are of important physical significance, are found for HMBEDT based on the obtained reduction equation. The project supported by National Natural Science Foundation of China under Grant No. 19572022, the National Key Basic Research Development Project Program of China under Grant No. G1998030600 and Doctoral Foundation of China under Grant No. 98014119

  14. A second order radiative transfer equation and its solution by meshless method with application to strongly inhomogeneous media

    NASA Astrophysics Data System (ADS)

    Zhao, J. M.; Tan, J. Y.; Liu, L. H.

    2013-01-01

    A new second order form of radiative transfer equation (named MSORTE) is proposed, which overcomes the singularity problem of a previously proposed second order radiative transfer equation [J.E. Morel, B.T. Adams, T. Noh, J.M. McGhee, T.M. Evans, T.J. Urbatsch, Spatial discretizations for self-adjoint forms of the radiative transfer equations, J. Comput. Phys. 214 (1) (2006) 12-40 (where it was termed SAAI), J.M. Zhao, L.H. Liu, Second order radiative transfer equation and its properties of numerical solution using finite element method, Numer. Heat Transfer B 51 (2007) 391-409] in dealing with inhomogeneous media where some locations have very small/zero extinction coefficient. The MSORTE contains a naturally introduced diffusion (or second order) term which provides better numerical property than the classic first order radiative transfer equation (RTE). The stability and convergence characteristics of the MSORTE discretized by central difference scheme is analyzed theoretically, and the better numerical stability of the second order form radiative transfer equations than the RTE when discretized by the central difference type method is proved. A collocation meshless method is developed based on the MSORTE to solve radiative transfer in inhomogeneous media. Several critical test cases are taken to verify the performance of the presented method. The collocation meshless method based on the MSORTE is demonstrated to be capable of stably and accurately solve radiative transfer in strongly inhomogeneous media, media with void region and even with discontinuous extinction coefficient.

  15. A boundary integral approach to the scattering of nonplanar acoustic waves by rigid bodies

    NASA Technical Reports Server (NTRS)

    Gallman, Judith M.; Myers, M. K.; Farassat, F.

    1990-01-01

    The acoustic scattering of an incident wave by a rigid body can be described by a singular Fredholm integral equation of the second kind. This equation is derived by solving the wave equation using generalized function theory, Green's function for the wave equation in unbounded space, and the acoustic boundary condition for a perfectly rigid body. This paper will discuss the derivation of the wave equation, its reformulation as a boundary integral equation, and the solution of the integral equation by the Galerkin method. The accuracy of the Galerkin method can be assessed by applying the technique outlined in the paper to reproduce the known pressure fields that are due to various point sources. From the analysis of these simpler cases, the accuracy of the Galerkin solution can be inferred for the scattered pressure field caused by the incidence of a dipole field on a rigid sphere. The solution by the Galerkin technique can then be applied to such problems as a dipole model of a propeller whose pressure field is incident on a rigid cylinder. This is the groundwork for modeling the scattering of rotating blade noise by airplane fuselages.

  16. Focusing of Shear Shock Waves

    NASA Astrophysics Data System (ADS)

    Giammarinaro, Bruno; Espíndola, David; Coulouvrat, François; Pinton, Gianmarco

    2018-01-01

    Focusing is a ubiquitous way to transform waves. Recently, a new type of shock wave has been observed experimentally with high-frame-rate ultrasound: shear shock waves in soft solids. These strongly nonlinear waves are characterized by a high Mach number, because the shear wave velocity is much slower, by 3 orders of magnitude, than the longitudinal wave velocity. Furthermore, these waves have a unique cubic nonlinearity which generates only odd harmonics. Unlike longitudinal waves for which only compressional shocks are possible, shear waves exhibit cubic nonlinearities which can generate positive and negative shocks. Here we present the experimental observation of shear shock wave focusing, generated by the vertical motion of a solid cylinder section embedded in a soft gelatin-graphite phantom to induce linearly vertically polarized motion. Raw ultrasound data from high-frame-rate (7692 images per second) acquisitions in combination with algorithms that are tuned to detect small displacements (approximately 1 μ m ) are used to generate quantitative movies of gel motion. The features of shear shock wave focusing are analyzed by comparing experimental observations with numerical simulations of a retarded-time elastodynamic equation with cubic nonlinearities and empirical attenuation laws for soft solids.

  17. A simple finite-difference scheme for handling topography with the first-order wave equation

    NASA Astrophysics Data System (ADS)

    Mulder, W. A.; Huiskes, M. J.

    2017-07-01

    One approach to incorporate topography in seismic finite-difference codes is a local modification of the difference operators near the free surface. An earlier paper described an approach for modelling irregular boundaries in a constant-density acoustic finite-difference code, based on the second-order formulation of the wave equation that only involves the pressure. Here, a similar method is considered for the first-order formulation in terms of pressure and particle velocity, using a staggered finite-difference discretization both in space and in time. In one space dimension, the boundary conditions consist in imposing antisymmetry for the pressure and symmetry for particle velocity components. For the pressure, this means that the solution values as well as all even derivatives up to a certain order are zero on the boundary. For the particle velocity, all odd derivatives are zero. In 2D, the 1-D assumption is used along each coordinate direction, with antisymmetry for the pressure along the coordinate and symmetry for the particle velocity component parallel to that coordinate direction. Since the symmetry or antisymmetry should hold along the direction normal to the boundary rather than along the coordinate directions, this generates an additional numerical error on top of the time stepping errors and the errors due to the interior spatial discretization. Numerical experiments in 2D and 3D nevertheless produce acceptable results.

  18. Generation of higher-order rogue waves from multibreathers by double degeneracy in an optical fiber.

    PubMed

    Wang, Lihong; He, Jingsong; Xu, Hui; Wang, Ji; Porsezian, Kuppuswamy

    2017-04-01

    In this paper, we construct a special kind of breather solution of the nonlinear Schrödinger (NLS) equation, the so-called breather-positon (b-positon for short), which can be obtained by taking the limit λ_{j}→λ_{1} of the Lax pair eigenvalues in the order-n periodic solution, which is generated by the n-fold Darboux transformation from a special "seed" solution-plane wave. Further, an order-n b-positon gives an order-n rogue wave under a limit λ_{1}→λ_{0}. Here, λ_{0} is a special eigenvalue in a breather of the NLS equation such that its period goes to infinity. Several analytical plots of order-2 breather confirm visually this double degeneration. The last limit in this double degeneration can be realized approximately in an optical fiber governed by the NLS equation, in which an injected initial ideal pulse is created by a frequency comb system and a programable optical filter (wave shaper) according to the profile of an analytical form of the b-positon at a certain position z_{0}. We also suggest a new way to observe higher-order rogue waves generation in an optical fiber, namely, measure the patterns at the central region of the higher-order b-positon generated by above ideal initial pulses when λ_{1} is very close to the λ_{0}. The excellent agreement between the numerical solutions generated from initial ideal inputs with a low signal-to-noise ratio and analytical solutions of order-2 b-positon supports strongly this way in a realistic optical fiber system. Our results also show the validity of the generating mechanism of a higher-order rogue waves from a multibreathers through the double degeneration.

  19. Nonlinear viscous higher harmonics generation due to incident and reflecting internal wave beam collision

    NASA Astrophysics Data System (ADS)

    Aksu, Anil A.

    2017-09-01

    In this paper, we have considered the non-linear effects arising due to the collision of incident and reflected internal wave beams. It has already been shown analytically [Tabaei et al., "Nonlinear effects in reflecting and colliding internal wave beams," J. Fluid Mech. 526, 217-243 (2005)] and numerically [Rodenborn et al., "Harmonic generation by reflecting internal waves," Phys. Fluids 23, 026601 (2011)] that the internal wave beam collision generates the higher harmonics and mean flow in a linear stratification. In this paper, similar to previous analytical work, small amplitude wave theory is employed; however, it is formulated from energetics perspective which allows considering internal wave beams as the product of slowly varying amplitude and fast complex exponential. As a result, the mean energy propagation equation for the second harmonic wave is obtained. Finally, a similar dependence on the angle of incidence is obtained for the non-linear energy transfer to the second harmonic with previous analyses. A possible physical mechanism for this angle dependence on the second harmonic generation is also discussed here. In addition to previous studies, the viscous effects are also included in the mean energy propagation equation for the incident, the reflecting, and the second harmonic waves. Moreover, even though the mean flow obtained here is only confined to the interaction region, it is also affected by viscosity via the decay in the incident and the reflecting internal wave beams. Furthermore, a framework for the non-linear harmonic generation in non-linear stratification is also proposed here.

  20. Second-order variational equations for N-body simulations

    NASA Astrophysics Data System (ADS)

    Rein, Hanno; Tamayo, Daniel

    2016-07-01

    First-order variational equations are widely used in N-body simulations to study how nearby trajectories diverge from one another. These allow for efficient and reliable determinations of chaos indicators such as the Maximal Lyapunov characteristic Exponent (MLE) and the Mean Exponential Growth factor of Nearby Orbits (MEGNO). In this paper we lay out the theoretical framework to extend the idea of variational equations to higher order. We explicitly derive the differential equations that govern the evolution of second-order variations in the N-body problem. Going to second order opens the door to new applications, including optimization algorithms that require the first and second derivatives of the solution, like the classical Newton's method. Typically, these methods have faster convergence rates than derivative-free methods. Derivatives are also required for Riemann manifold Langevin and Hamiltonian Monte Carlo methods which provide significantly shorter correlation times than standard methods. Such improved optimization methods can be applied to anything from radial-velocity/transit-timing-variation fitting to spacecraft trajectory optimization to asteroid deflection. We provide an implementation of first- and second-order variational equations for the publicly available REBOUND integrator package. Our implementation allows the simultaneous integration of any number of first- and second-order variational equations with the high-accuracy IAS15 integrator. We also provide routines to generate consistent and accurate initial conditions without the need for finite differencing.

  1. Seismic waves in heterogeneous material: subcell resolution of the discontinuous Galerkin method

    NASA Astrophysics Data System (ADS)

    Castro, Cristóbal E.; Käser, Martin; Brietzke, Gilbert B.

    2010-07-01

    We present an important extension of the arbitrary high-order discontinuous Galerkin (DG) finite-element method to model 2-D elastic wave propagation in highly heterogeneous material. In this new approach we include space-variable coefficients to describe smooth or discontinuous material variations inside each element using the same numerical approximation strategy as for the velocity-stress variables in the formulation of the elastic wave equation. The combination of the DG method with a time integration scheme based on the solution of arbitrary accuracy derivatives Riemann problems still provides an explicit, one-step scheme which achieves arbitrary high-order accuracy in space and time. Compared to previous formulations the new scheme contains two additional terms in the form of volume integrals. We show that the increasing computational cost per element can be overcompensated due to the improved material representation inside each element as coarser meshes can be used which reduces the total number of elements and therefore computational time to reach a desired error level. We confirm the accuracy of the proposed scheme performing convergence tests and several numerical experiments considering smooth and highly heterogeneous material. As the approximation of the velocity and stress variables in the wave equation and of the material properties in the model can be chosen independently, we investigate the influence of the polynomial material representation on the accuracy of the synthetic seismograms with respect to computational cost. Moreover, we study the behaviour of the new method on strong material discontinuities, in the case where the mesh is not aligned with such a material interface. In this case second-order linear material approximation seems to be the best choice, with higher-order intra-cell approximation leading to potential instable behaviour. For all test cases we validate our solution against the well-established standard fourth-order finite difference and spectral element method.

  2. Lithosphere-Atmosphere coupling: Spectral element modeling of the evolution of acoustic waves in the atmosphere from an underground source.

    NASA Astrophysics Data System (ADS)

    Averbuch, Gil; Price, Colin

    2015-04-01

    Lithosphere-Atmosphere coupling: Spectral element modeling of the evolution of acoustic waves in the atmosphere from an underground source. G. Averbuch, C. Price Department of Geosciences, Tel Aviv University, Israel Infrasound is one of the four Comprehensive Nuclear-Test Ban Treaty technologies for monitoring nuclear explosions. This technology measures the acoustic waves generated by the explosions followed by their propagation through the atmosphere. There are also natural phenomena that can act as an infrasound sources like sprites, volcanic eruptions and earthquakes. The infrasound waves generated from theses phenomena can also be detected by the infrasound arrays. In order to study the behavior of these waves, i.e. the physics of wave propagation in the atmosphere, their evolution and their trajectories, numerical methods are required. This presentation will deal with the evolution of acoustic waves generated by underground sources (earthquakes and underground explosions). A 2D Spectral elements formulation for lithosphere-atmosphere coupling will be presented. The formulation includes the elastic wave equation for the seismic waves and the momentum, mass and state equations for the acoustic waves in a moving stratified atmosphere. The coupling of the two media is made by boundary conditions that ensures the continuity of traction and velocity (displacement) in the normal component to the interface. This work has several objectives. The first is to study the evolution of acoustic waves in the atmosphere from an underground source. The second is to derive transmission coefficients for the energy flux with respect to the seismic magnitude and earth density. The third will be the generation of seismic waves from acoustic waves in the atmosphere. Is it possible?

  3. Fast and local non-linear evolution of steep wave-groups on deep water: A comparison of approximate models to fully non-linear simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adcock, T. A. A.; Taylor, P. H.

    2016-01-15

    The non-linear Schrödinger equation and its higher order extensions are routinely used for analysis of extreme ocean waves. This paper compares the evolution of individual wave-packets modelled using non-linear Schrödinger type equations with packets modelled using fully non-linear potential flow models. The modified non-linear Schrödinger Equation accurately models the relatively large scale non-linear changes to the shape of wave-groups, with a dramatic contraction of the group along the mean propagation direction and a corresponding extension of the width of the wave-crests. In addition, as extreme wave form, there is a local non-linear contraction of the wave-group around the crest whichmore » leads to a localised broadening of the wave spectrum which the bandwidth limited non-linear Schrödinger Equations struggle to capture. This limitation occurs for waves of moderate steepness and a narrow underlying spectrum.« less

  4. On Richardson extrapolation for low-dissipation low-dispersion diagonally implicit Runge-Kutta schemes

    NASA Astrophysics Data System (ADS)

    Havasi, Ágnes; Kazemi, Ehsan

    2018-04-01

    In the modeling of wave propagation phenomena it is necessary to use time integration methods which are not only sufficiently accurate, but also properly describe the amplitude and phase of the propagating waves. It is not clear if amending the developed schemes by extrapolation methods to obtain a high order of accuracy preserves the qualitative properties of these schemes in the perspective of dissipation, dispersion and stability analysis. It is illustrated that the combination of various optimized schemes with Richardson extrapolation is not optimal for minimal dissipation and dispersion errors. Optimized third-order and fourth-order methods are obtained, and it is shown that the proposed methods combined with Richardson extrapolation result in fourth and fifth orders of accuracy correspondingly, while preserving optimality and stability. The numerical applications include the linear wave equation, a stiff system of reaction-diffusion equations and the nonlinear Euler equations with oscillatory initial conditions. It is demonstrated that the extrapolated third-order scheme outperforms the recently developed fourth-order diagonally implicit Runge-Kutta scheme in terms of accuracy and stability.

  5. Physical uniqueness of higher-order Korteweg-de Vries theory for continuously stratified fluids without background shear

    NASA Astrophysics Data System (ADS)

    Shimizu, Kenji

    2017-10-01

    The 2nd-order Korteweg-de Vries (KdV) equation and the Gardner (or extended KdV) equation are often used to investigate internal solitary waves, commonly observed in oceans and lakes. However, application of these KdV-type equations for continuously stratified fluids to geophysical problems is hindered by nonuniqueness of the higher-order coefficients and the associated correction functions to the wave fields. This study proposes to reduce arbitrariness of the higher-order KdV theory by considering its uniqueness in the following three physical senses: (i) consistency of the nonlinear higher-order coefficients and correction functions with the corresponding phase speeds, (ii) wavenumber-independence of the vertically integrated available potential energy, and (iii) its positive definiteness. The spectral (or generalized Fourier) approach based on vertical modes in the isopycnal coordinate is shown to enable an alternative derivation of the 2nd-order KdV equation, without encountering nonuniqueness. Comparison with previous theories shows that Parseval's theorem naturally yields a unique set of special conditions for (ii) and (iii). Hydrostatic fully nonlinear solutions, derived by combining the spectral approach and simple-wave analysis, reveal that both proposed and previous 2nd-order theories satisfy (i), provided that consistent definitions are used for the wave amplitude and the nonlinear correction. This condition reduces the arbitrariness when higher-order KdV-type theories are compared with observations or numerical simulations. The coefficients and correction functions that satisfy (i)-(iii) are given by explicit formulae to 2nd order and by algebraic recurrence relationships to arbitrary order for hydrostatic fully nonlinear and linear fully nonhydrostatic effects.

  6. Freak waves in random oceanic sea states.

    PubMed

    Onorato, M; Osborne, A R; Serio, M; Bertone, S

    2001-06-18

    Freak waves are very large, rare events in a random ocean wave train. Here we study their generation in a random sea state characterized by the Joint North Sea Wave Project spectrum. We assume, to cubic order in nonlinearity, that the wave dynamics are governed by the nonlinear Schrödinger (NLS) equation. We show from extensive numerical simulations of the NLS equation how freak waves in a random sea state are more likely to occur for large values of the Phillips parameter alpha and the enhancement coefficient gamma. Comparison with linear simulations is also reported.

  7. Traveling waves in Hall-magnetohydrodynamics and the ion-acoustic shock structure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hagstrom, George I.; Hameiri, Eliezer

    Hall-magnetohydrodynamics (HMHD) is a mixed hyperbolic-parabolic partial differential equation that describes the dynamics of an ideal two fluid plasma with massless electrons. We study the only shock wave family that exists in this system (the other discontinuities being contact discontinuities and not shocks). We study planar traveling wave solutions and we find solutions with discontinuities in the hydrodynamic variables, which arise due to the presence of real characteristics in Hall-MHD. We introduce a small viscosity into the equations and use the method of matched asymptotic expansions to show that solutions with a discontinuity satisfying the Rankine-Hugoniot conditions and also anmore » entropy condition have continuous shock structures. The lowest order inner equations reduce to the compressible Navier-Stokes equations, plus an equation which implies the constancy of the magnetic field inside the shock structure. We are able to show that the current is discontinuous across the shock, even as the magnetic field is continuous, and that the lowest order outer equations, which are the equations for traveling waves in inviscid Hall-MHD, are exactly integrable. We show that the inner and outer solutions match, which allows us to construct a family of uniformly valid continuous composite solutions that become discontinuous when the diffusivity vanishes.« less

  8. Simple equations guide high-frequency surface-wave investigation techniques

    USGS Publications Warehouse

    Xia, J.; Xu, Y.; Chen, C.; Kaufmann, R.D.; Luo, Y.

    2006-01-01

    We discuss five useful equations related to high-frequency surface-wave techniques and their implications in practice. These equations are theoretical results from published literature regarding source selection, data-acquisition parameters, resolution of a dispersion curve image in the frequency-velocity domain, and the cut-off frequency of high modes. The first equation suggests Rayleigh waves appear in the shortest offset when a source is located on the ground surface, which supports our observations that surface impact sources are the best source for surface-wave techniques. The second and third equations, based on the layered earth model, reveal a relationship between the optimal nearest offset in Rayleigh-wave data acquisition and seismic setting - the observed maximum and minimum phase velocities, and the maximum wavelength. Comparison among data acquired with different offsets at one test site confirms the better data were acquired with the suggested optimal nearest offset. The fourth equation illustrates that resolution of a dispersion curve image at a given frequency is directly proportional to the product of a length of a geophone array and the frequency. We used real-world data to verify the fourth equation. The last equation shows that the cut-off frequency of high modes of Love waves for a two-layer model is determined by shear-wave velocities and the thickness of the top layer. We applied this equation to Rayleigh waves and multi-layer models with the average velocity and obtained encouraging results. This equation not only endows with a criterion to distinguish high modes from numerical artifacts but also provides a straightforward means to resolve the depth to the half space of a layered earth model. ?? 2005 Elsevier Ltd. All rights reserved.

  9. Acoustic plane wave diffraction from a truncated semi-infinite cone in axial irradiation

    NASA Astrophysics Data System (ADS)

    Kuryliak, Dozyslav; Lysechko, Victor

    2017-11-01

    The diffraction problem of the plane acoustic wave on the semi-infinite truncated soft and rigid cones in the case of axial incidence is solved. The problem is formulated as a boundary-value problem in terms of Helmholtz equation, with Dirichlet and Neumann boundary conditions, for scattered velocity potential. The incident field is taken to be the total field of semi-infinite cone, the expression of which is obtained by solving the auxiliary diffraction problem by the use of Kontorovich-Lebedev integral transformation. The diffracted field is sought via the expansion in series of the eigenfunctions for subdomains of the Helmholtz equation taking into account the edge condition. The corresponding diffraction problem is reduced to infinite system of linear algebraic equations (ISLAE) making use of mode matching technique and orthogonality properties of the Legendre functions. The method of analytical regularization is applied in order to extract the singular part in ISLAE, invert it exactly and reduce the problem to ISLAE of the second kind, which is readily amenable to calculation. The numerical solution of this system relies on the reduction method; and its accuracy depends on the truncation order. The case of degeneration of the truncated semi-infinite cone into an aperture in infinite plane is considered. Characteristic features of diffracted field in near and far fields as functions of cone's parameters are examined.

  10. Multiple and exact soliton solutions of the perturbed Korteweg-de Vries equation of long surface waves in a convective fluid via Painlevé analysis, factorization, and simplest equation methods.

    PubMed

    Selima, Ehab S; Yao, Xiaohua; Wazwaz, Abdul-Majid

    2017-06-01

    In this research, the surface waves of a horizontal fluid layer open to air under gravity field and vertical temperature gradient effects are studied. The governing equations of this model are reformulated and converted to a nonlinear evolution equation, the perturbed Korteweg-de Vries (pKdV) equation. We investigate the latter equation, which includes dispersion, diffusion, and instability effects, in order to examine the evolution of long surface waves in a convective fluid. Dispersion relation of the pKdV equation and its properties are discussed. The Painlevé analysis is applied not only to check the integrability of the pKdV equation but also to establish the Bäcklund transformation form. In addition, traveling wave solutions and a general form of the multiple-soliton solutions of the pKdV equation are obtained via Bäcklund transformation, the simplest equation method using Bernoulli, Riccati, and Burgers' equations as simplest equations, and the factorization method.

  11. Matter rogue waves in an F=1 spinor Bose-Einstein condensate.

    PubMed

    Qin, Zhenyun; Mu, Gui

    2012-09-01

    We report new types of matter rogue waves of a spinor (three-component) model of the Bose-Einstein condensate governed by a system of three nonlinearly coupled Gross-Pitaevskii equations. The exact first-order rational solutions containing one free parameter are obtained by means of a Darboux transformation for the integrable system where the mean-field interaction is attractive and the spin-exchange interaction is ferromagnetic. For different choices of the parameter, there exists a variety of different shaped solutions including two peaks in bright rogue waves and four dips in dark rogue waves. Furthermore, by utilizing the relation between the three-component and the one-component versions of the nonlinear Schrödinger equation, we can devise higher-order rational solutions, in which three components have different shapes. In addition, it is noteworthy that dark rogue wave features disappear in the third-order rational solution.

  12. Existence and Stability of Traveling Waves for Degenerate Reaction-Diffusion Equation with Time Delay

    NASA Astrophysics Data System (ADS)

    Huang, Rui; Jin, Chunhua; Mei, Ming; Yin, Jingxue

    2018-01-01

    This paper deals with the existence and stability of traveling wave solutions for a degenerate reaction-diffusion equation with time delay. The degeneracy of spatial diffusion together with the effect of time delay causes us the essential difficulty for the existence of the traveling waves and their stabilities. In order to treat this case, we first show the existence of smooth- and sharp-type traveling wave solutions in the case of c≥c^* for the degenerate reaction-diffusion equation without delay, where c^*>0 is the critical wave speed of smooth traveling waves. Then, as a small perturbation, we obtain the existence of the smooth non-critical traveling waves for the degenerate diffusion equation with small time delay τ >0 . Furthermore, we prove the global existence and uniqueness of C^{α ,β } -solution to the time-delayed degenerate reaction-diffusion equation via compactness analysis. Finally, by the weighted energy method, we prove that the smooth non-critical traveling wave is globally stable in the weighted L^1 -space. The exponential convergence rate is also derived.

  13. Existence and Stability of Traveling Waves for Degenerate Reaction-Diffusion Equation with Time Delay

    NASA Astrophysics Data System (ADS)

    Huang, Rui; Jin, Chunhua; Mei, Ming; Yin, Jingxue

    2018-06-01

    This paper deals with the existence and stability of traveling wave solutions for a degenerate reaction-diffusion equation with time delay. The degeneracy of spatial diffusion together with the effect of time delay causes us the essential difficulty for the existence of the traveling waves and their stabilities. In order to treat this case, we first show the existence of smooth- and sharp-type traveling wave solutions in the case of c≥c^* for the degenerate reaction-diffusion equation without delay, where c^*>0 is the critical wave speed of smooth traveling waves. Then, as a small perturbation, we obtain the existence of the smooth non-critical traveling waves for the degenerate diffusion equation with small time delay τ >0. Furthermore, we prove the global existence and uniqueness of C^{α ,β }-solution to the time-delayed degenerate reaction-diffusion equation via compactness analysis. Finally, by the weighted energy method, we prove that the smooth non-critical traveling wave is globally stable in the weighted L^1-space. The exponential convergence rate is also derived.

  14. Discretizing singular point sources in hyperbolic wave propagation problems

    DOE PAGES

    Petersson, N. Anders; O'Reilly, Ossian; Sjogreen, Bjorn; ...

    2016-06-01

    Here, we develop high order accurate source discretizations for hyperbolic wave propagation problems in first order formulation that are discretized by finite difference schemes. By studying the Fourier series expansions of the source discretization and the finite difference operator, we derive sufficient conditions for achieving design accuracy in the numerical solution. Only half of the conditions in Fourier space can be satisfied through moment conditions on the source discretization, and we develop smoothness conditions for satisfying the remaining accuracy conditions. The resulting source discretization has compact support in physical space, and is spread over as many grid points as themore » number of moment and smoothness conditions. In numerical experiments we demonstrate high order of accuracy in the numerical solution of the 1-D advection equation (both in the interior and near a boundary), the 3-D elastic wave equation, and the 3-D linearized Euler equations.« less

  15. Computational Study of Near-limit Propagation of Detonation in Hydrogen-air Mixtures

    NASA Technical Reports Server (NTRS)

    Yungster, S.; Radhakrishnan, K.

    2002-01-01

    A computational investigation of the near-limit propagation of detonation in lean and rich hydrogen-air mixtures is presented. The calculations were carried out over an equivalence ratio range of 0.4 to 5.0, pressures ranging from 0.2 bar to 1.0 bar and ambient initial temperature. The computations involved solution of the one-dimensional Euler equations with detailed finite-rate chemistry. The numerical method is based on a second-order spatially accurate total-variation-diminishing (TVD) scheme, and a point implicit, first-order-accurate, time marching algorithm. The hydrogen-air combustion was modeled with a 9-species, 19-step reaction mechanism. A multi-level, dynamically adaptive grid was utilized in order to resolve the structure of the detonation. The results of the computations indicate that when hydrogen concentrations are reduced below certain levels, the detonation wave switches from a high-frequency, low amplitude oscillation mode to a low frequency mode exhibiting large fluctuations in the detonation wave speed; that is, a 'galloping' propagation mode is established.

  16. Second harmonic generation by self-focusing of intense hollow Gaussian laser beam in collisionless plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Purohit, Gunjan, E-mail: gunjan75@gmail.com; Rawat, Priyanka; Gauniyal, Rakhi

    2016-01-15

    The effect of self focused hollow Gaussian laser beam (HGLB) (carrying null intensity in center) on the excitation of electron plasma wave (EPW) and second harmonic generation (SHG) has been investigated in collisionless plasma, where relativistic-ponderomotive and only relativistic nonlinearities are operative. The relativistic change of electron mass and the modification of the background electron density due to ponderomotive nonlinearity lead to self-focusing of HGLB in plasma. Paraxial ray theory has been used to derive coupled equations for the self focusing of HGLB in plasma, generation of EPW, and second harmonic. These coupled equations are solved analytically and numerically tomore » study the laser intensity in the plasma, electric field associated with the excited EPW, and the power of SHG. Second harmonic emission is generated due to nonlinear coupling between incident HGLB and EPW satisfying the proper phase matching conditions. The results show that the effect of including the ponderomotive nonlinearity is significant on the generation of EPW and second harmonic. The electric field associated with EPW and the power of SHG are found to be highly sensitive to the order of the hollow Gaussian beam.« less

  17. Quasilinear diffusion coefficients in a finite Larmor radius expansion for ion cyclotron heated plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Jungpyo; Wright, John; Bertelli, Nicola

    In this study, a reduced model of quasilinear velocity diffusion by a small Larmor radius approximation is derived to couple the Maxwell’s equations and the Fokker Planck equation self-consistently for the ion cyclotron range of frequency waves in a tokamak. The reduced model ensures the important properties of the full model by Kennel-Engelmann diffusion, such as diffusion directions, wave polarizations, and H-theorem. The kinetic energy change (Wdot ) is used to derive the reduced model diffusion coefficients for the fundamental damping (n = 1) and the second harmonic damping (n = 2) to the lowest order of the finite Larmormore » radius expansion. The quasilinear diffusion coefficients are implemented in a coupled code (TORIC-CQL3D) with the equivalent reduced model of the dielectric tensor. We also present the simulations of the ITER minority heating scenario, in which the reduced model is verified within the allowable errors from the full model results.« less

  18. Quasilinear diffusion coefficients in a finite Larmor radius expansion for ion cyclotron heated plasmas

    DOE PAGES

    Lee, Jungpyo; Wright, John; Bertelli, Nicola; ...

    2017-04-24

    In this study, a reduced model of quasilinear velocity diffusion by a small Larmor radius approximation is derived to couple the Maxwell’s equations and the Fokker Planck equation self-consistently for the ion cyclotron range of frequency waves in a tokamak. The reduced model ensures the important properties of the full model by Kennel-Engelmann diffusion, such as diffusion directions, wave polarizations, and H-theorem. The kinetic energy change (Wdot ) is used to derive the reduced model diffusion coefficients for the fundamental damping (n = 1) and the second harmonic damping (n = 2) to the lowest order of the finite Larmormore » radius expansion. The quasilinear diffusion coefficients are implemented in a coupled code (TORIC-CQL3D) with the equivalent reduced model of the dielectric tensor. We also present the simulations of the ITER minority heating scenario, in which the reduced model is verified within the allowable errors from the full model results.« less

  19. Consistent nonlinear deterministic and stochastic evolution equations for deep to shallow water wave shoaling

    NASA Astrophysics Data System (ADS)

    Vrecica, Teodor; Toledo, Yaron

    2015-04-01

    One-dimensional deterministic and stochastic evolution equations are derived for the dispersive nonlinear waves while taking dissipation of energy into account. The deterministic nonlinear evolution equations are formulated using operational calculus by following the approach of Bredmose et al. (2005). Their formulation is extended to include the linear and nonlinear effects of wave dissipation due to friction and breaking. The resulting equation set describes the linear evolution of the velocity potential for each wave harmonic coupled by quadratic nonlinear terms. These terms describe the nonlinear interactions between triads of waves, which represent the leading-order nonlinear effects in the near-shore region. The equations are translated to the amplitudes of the surface elevation by using the approach of Agnon and Sheremet (1997) with the correction of Eldeberky and Madsen (1999). The only current possibility for calculating the surface gravity wave field over large domains is by using stochastic wave evolution models. Hence, the above deterministic model is formulated as a stochastic one using the method of Agnon and Sheremet (1997) with two types of stochastic closure relations (Benney and Saffman's, 1966, and Hollway's, 1980). These formulations cannot be applied to the common wave forecasting models without further manipulation, as they include a non-local wave shoaling coefficients (i.e., ones that require integration along the wave rays). Therefore, a localization method was applied (see Stiassnie and Drimer, 2006, and Toledo and Agnon, 2012). This process essentially extracts the local terms that constitute the mean nonlinear energy transfer while discarding the remaining oscillatory terms, which transfer energy back and forth. One of the main findings of this work is the understanding that the approximated non-local coefficients behave in two essentially different manners. In intermediate water depths these coefficients indeed consist of rapidly oscillating terms, but as the water depth becomes shallow they change to an exponential growth (or decay) behavior. Hence, the formerly used localization technique cannot be justified for the shallow water region. A new formulation is devised for the localization in shallow water, it approximates the nonlinear non-local shoaling coefficient in shallow water and matches it to the one fitting to the intermediate water region. This allows the model behavior to be consistent from deep water to intermediate depths and up to the shallow water regime. Various simulations of the model were performed for the cases of intermediate, and shallow water, overall the model was found to give good results in both shallow and intermediate water depths. The essential difference between the shallow and intermediate nonlinear shoaling physics is explained via the dominating class III Bragg resonances phenomenon. By inspecting the resonance conditions and the nature of the dispersion relation, it is shown that unlike in the intermediate water regime, in shallow water depths the formation of resonant interactions is possible without taking into account bottom components. References Agnon, Y. & Sheremet, A. 1997 Stochastic nonlinear shoaling of directional spectra. J. Fluid Mech. 345, 79-99. Benney, D. J. & Saffman, P. G. 1966 Nonlinear interactions of random waves. Proc. R. Soc. Lond. A 289, 301-321. Bredmose, H., Agnon, Y., Madsen, P.A. & Schaffer, H.A. 2005 Wave transformation models with exact second-order transfer. European J. of Mech. - B/Fluids 24 (6), 659-682. Eldeberky, Y. & Madsen, P. A. 1999 Deterministic and stochastic evolution equations for fully dispersive and weakly nonlinear waves. Coastal Engineering 38, 1-24. Kaihatu, J. M. & Kirby, J. T. 1995 Nonlinear transformation of waves in infinite water depth. Phys. Fluids 8, 175-188. Holloway, G. 1980 Oceanic internal waves are not weak waves. J. Phys. Oceanogr. 10, 906-914. Stiassnie, M. & Drimer, N. 2006 Prediction of long forcing waves for harbor agitation studies. J. of waterways, port, coastal and ocean engineering 132(3), 166-171. Toledo, Y. & Agnon, Y. 2012 Stochastic evolution equations with localized nonlinear shoaling coefficients. European J. of Mech. - B/Fluids 34, 13-18.

  20. Nonlinear Waves and Inverse Scattering

    DTIC Science & Technology

    1989-01-01

    transform provides a linearization.’ Well known systems include the Kadomtsev - Petviashvili , Davey-Stewartson and Self-Dual Yang-Mills equations . The d...which employs inverse scattering theory in order to linearize the given nonlinear equation . I.S.T. has led to new developments in both fields: inverse...scattering and nonlinear wave equations . Listed below are some of the problems studied and a short description of results. - Multidimensional

  1. Uncertainty in Damage Detection, Dynamic Propagation and Just-in-Time Networks

    DTIC Science & Technology

    2015-08-03

    estimated parameter uncertainty in dynamic data sets; high order compact finite difference schemes for Helmholtz equations with discontinuous wave numbers...delay differential equations with a Gamma distributed delay. We found that with the same population size the histogram plots for the solution to the...schemes for Helmholtz equations with discontinuous wave numbers across interfaces. • We carried out numerical sensitivity analysis with respect to

  2. Simple determinant representation for rogue waves of the nonlinear Schrödinger equation.

    PubMed

    Ling, Liming; Zhao, Li-Chen

    2013-10-01

    We present a simple representation for arbitrary-order rogue wave solution and a study on the trajectories of them explicitly. We find that the trajectories of two valleys on whole temporal-spatial distribution all look "X" -shaped for rogue waves. Additionally, we present different types of high-order rogue wave structures, which could be helpful towards realizing the complex dynamics of rogue waves.

  3. Nonlocal Reformulations of Water and Internal Waves and Asymptotic Reductions

    NASA Astrophysics Data System (ADS)

    Ablowitz, Mark J.

    2009-09-01

    Nonlocal reformulations of the classical equations of water waves and two ideal fluids separated by a free interface, bounded above by either a rigid lid or a free surface, are obtained. The kinematic equations may be written in terms of integral equations with a free parameter. By expressing the pressure, or Bernoulli, equation in terms of the surface/interface variables, a closed system is obtained. An advantage of this formulation, referred to as the nonlocal spectral (NSP) formulation, is that the vertical component is eliminated, thus reducing the dimensionality and fixing the domain in which the equations are posed. The NSP equations and the Dirichlet-Neumann operators associated with the water wave or two-fluid equations can be related to each other and the Dirichlet-Neumann series can be obtained from the NSP equations. Important asymptotic reductions obtained from the two-fluid nonlocal system include the generalizations of the Benney-Luke and Kadomtsev-Petviashvili (KP) equations, referred to as intermediate-long wave (ILW) generalizations. These 2+1 dimensional equations possess lump type solutions. In the water wave problem high-order asymptotic series are obtained for two and three dimensional gravity-capillary solitary waves. In two dimensions, the first term in the asymptotic series is the well-known hyperbolic secant squared solution of the KdV equation; in three dimensions, the first term is the rational lump solution of the KP equation.

  4. An Examination of Higher-Order Treatments of Boundary Conditions in Split-Step Fourier Parabolic Equation Models

    DTIC Science & Technology

    2015-06-01

    method provides improved agreement with a benchmark solution at longer ranges. 14. SUBJECT TERMS parabolic equation , Monterey Miami...elliptic Helmholtz wave equation dates back to mid-1940s, when Leontovich and Fock introduced the PE method to the problem of radio-wave propagation in...improvements in the solutions . B. PROBLEM STATEMENT The Monterey-Miami Parabolic Equation (MMPE) model was developed in the mid-1990s and since then has

  5. On the evolution of perturbations to solutions of the Kadomtsev-Petviashvilli equation using the Benney-Luke equation

    NASA Astrophysics Data System (ADS)

    Ablowitz, Mark J.; Curtis, Christopher W.

    2011-05-01

    The Benney-Luke equation, which arises as a long wave asymptotic approximation of water waves, contains the Kadomtsev-Petviashvilli (KP) equation as a leading-order maximal balanced approximation. The question analyzed is how the Benney-Luke equation modifies the so-called web solutions of the KP equation. It is found that the Benney-Luke equation introduces dispersive radiation which breaks each of the symmetric soliton-like humps well away from the interaction region of the KP web solution into a tail of multi-peaked oscillating profiles behind the main solitary hump. Computation indicates that the wave structure is modified near the center of the interaction region. Both analytical and numerical techniques are employed for working with non-periodic, non-decaying solutions on unbounded domains.

  6. Nonlinear Waves In A Stenosed Elastic Tube Filled With Viscous Fluid: Forced Perturbed Korteweg-De Vries Equation

    NASA Astrophysics Data System (ADS)

    Gaik*, Tay Kim; Demiray, Hilmi; Tiong, Ong Chee

    In the present work, treating the artery as a prestressed thin-walled and long circularly cylindrical elastic tube with a mild symmetrical stenosis and the blood as an incompressible Newtonian fluid, we have studied the pro pagation of weakly nonlinear waves in such a composite medium, in the long wave approximation, by use of the reductive perturbation method. By intro ducing a set of stretched coordinates suitable for the boundary value type of problems and expanding the field variables into asymptotic series of the small-ness parameter of nonlinearity and dispersion, we obtained a set of nonlinear differential equations governing the terms at various order. By solving these nonlinear differential equations, we obtained the forced perturbed Korteweg-de Vries equation with variable coefficient as the nonlinear evolution equation. By use of the coordinate transformation, it is shown that this type of nonlinear evolution equation admits a progressive wave solution with variable wave speed.

  7. Higher-order vector discrete rogue-wave states in the coupled Ablowitz-Ladik equations: Exact solutions and stability.

    PubMed

    Wen, Xiao-Yong; Yan, Zhenya; Malomed, Boris A

    2016-12-01

    An integrable system of two-component nonlinear Ablowitz-Ladik equations is used to construct complex rogue-wave (RW) solutions in an explicit form. First, the modulational instability of continuous waves is studied in the system. Then, new higher-order discrete two-component RW solutions of the system are found by means of a newly derived discrete version of a generalized Darboux transformation. Finally, the perturbed evolution of these RW states is explored in terms of systematic simulations, which demonstrates that tightly and loosely bound RWs are, respectively, nearly stable and strongly unstable solutions.

  8. A higher-order conservation element solution element method for solving hyperbolic differential equations on unstructured meshes

    NASA Astrophysics Data System (ADS)

    Bilyeu, David

    This dissertation presents an extension of the Conservation Element Solution Element (CESE) method from second- to higher-order accuracy. The new method retains the favorable characteristics of the original second-order CESE scheme, including (i) the use of the space-time integral equation for conservation laws, (ii) a compact mesh stencil, (iii) the scheme will remain stable up to a CFL number of unity, (iv) a fully explicit, time-marching integration scheme, (v) true multidimensionality without using directional splitting, and (vi) the ability to handle two- and three-dimensional geometries by using unstructured meshes. This algorithm has been thoroughly tested in one, two and three spatial dimensions and has been shown to obtain the desired order of accuracy for solving both linear and non-linear hyperbolic partial differential equations. The scheme has also shown its ability to accurately resolve discontinuities in the solutions. Higher order unstructured methods such as the Discontinuous Galerkin (DG) method and the Spectral Volume (SV) methods have been developed for one-, two- and three-dimensional application. Although these schemes have seen extensive development and use, certain drawbacks of these methods have been well documented. For example, the explicit versions of these two methods have very stringent stability criteria. This stability criteria requires that the time step be reduced as the order of the solver increases, for a given simulation on a given mesh. The research presented in this dissertation builds upon the work of Chang, who developed a fourth-order CESE scheme to solve a scalar one-dimensional hyperbolic partial differential equation. The completed research has resulted in two key deliverables. The first is a detailed derivation of a high-order CESE methods on unstructured meshes for solving the conservation laws in two- and three-dimensional spaces. The second is the code implementation of these numerical methods in a computer code. For code development, a one-dimensional solver for the Euler equations was developed. This work is an extension of Chang's work on the fourth-order CESE method for solving a one-dimensional scalar convection equation. A generic formulation for the nth-order CESE method, where n ≥ 4, was derived. Indeed, numerical implementation of the scheme confirmed that the order of convergence was consistent with the order of the scheme. For the two- and three-dimensional solvers, SOLVCON was used as the basic framework for code implementation. A new solver kernel for the fourth-order CESE method has been developed and integrated into the framework provided by SOLVCON. The main part of SOLVCON, which deals with unstructured meshes and parallel computing, remains intact. The SOLVCON code for data transmission between computer nodes for High Performance Computing (HPC). To validate and verify the newly developed high-order CESE algorithms, several one-, two- and three-dimensional simulations where conducted. For the arbitrary order, one-dimensional, CESE solver, three sets of governing equations were selected for simulation: (i) the linear convection equation, (ii) the linear acoustic equations, (iii) the nonlinear Euler equations. All three systems of equations were used to verify the order of convergence through mesh refinement. In addition the Euler equations were used to solve the Shu-Osher and Blastwave problems. These two simulations demonstrated that the new high-order CESE methods can accurately resolve discontinuities in the flow field.For the two-dimensional, fourth-order CESE solver, the Euler equation was employed in four different test cases. The first case was used to verify the order of convergence through mesh refinement. The next three cases demonstrated the ability of the new solver to accurately resolve discontinuities in the flows. This was demonstrated through: (i) the interaction between acoustic waves and an entropy pulse, (ii) supersonic flow over a circular blunt body, (iii) supersonic flow over a guttered wedge. To validate and verify the three-dimensional, fourth-order CESE solver, two different simulations where selected. The first used the linear convection equations to demonstrate fourth-order convergence. The second used the Euler equations to simulate supersonic flow over a spherical body to demonstrate the scheme's ability to accurately resolve shocks. All test cases used are well known benchmark problems and as such, there are multiple sources available to validate the numerical results. Furthermore, the simulations showed that the high-order CESE solver was stable at a CFL number near unity.

  9. Exact traveling-wave and spatiotemporal soliton solutions to the generalized (3+1)-dimensional Schrödinger equation with polynomial nonlinearity of arbitrary order.

    PubMed

    Petrović, Nikola Z; Belić, Milivoj; Zhong, Wei-Ping

    2011-02-01

    We obtain exact traveling wave and spatiotemporal soliton solutions to the generalized (3+1)-dimensional nonlinear Schrödinger equation with variable coefficients and polynomial Kerr nonlinearity of an arbitrarily high order. Exact solutions, given in terms of Jacobi elliptic functions, are presented for the special cases of cubic-quintic and septic models. We demonstrate that the widely used method for finding exact solutions in terms of Jacobi elliptic functions is not applicable to the nonlinear Schrödinger equation with saturable nonlinearity. ©2011 American Physical Society

  10. Corrigendum to ;Rational solutions to the KPI equation and multi rogue waves; [Ann. Physics V 367 (2016) 1-5

    NASA Astrophysics Data System (ADS)

    Gaillard, P.

    2017-12-01

    The author regrets the error of bracket in the expression (2) of the KPI equation in the page 2 at the beginning of the second section. The correct expression of the KPI equation is the following one:

  11. Oscillation criteria for half-linear dynamic equations on time scales

    NASA Astrophysics Data System (ADS)

    Hassan, Taher S.

    2008-09-01

    This paper is concerned with oscillation of the second-order half-linear dynamic equation(r(t)(x[Delta])[gamma])[Delta]+p(t)x[gamma](t)=0, on a time scale where [gamma] is the quotient of odd positive integers, r(t) and p(t) are positive rd-continuous functions on . Our results solve a problem posed by [R.P. Agarwal, D. O'Regan, S.H. Saker, Philos-type oscillation criteria for second-order half linear dynamic equations, Rocky Mountain J. Math. 37 (2007) 1085-1104; S.H. Saker, Oscillation criteria of second order half-linear dynamic equations on time scales, J. Comput. Appl. Math. 177 (2005) 375-387] and our results in the special cases when and involve and improve some oscillation results for second-order differential and difference equations; and when , and , etc., our oscillation results are essentially newE Some examples illustrating the importance of our results are also included.

  12. Development of ultrasound transducer diffractive field theory for nonlinear propagation-based imaging

    NASA Astrophysics Data System (ADS)

    Kharin, Nikolay A.

    2000-04-01

    In nonlinear ultrasound imaging the images are formed using the second harmonic energy generated due to the nonlinear nature of finite amplitude propagation. This propagation can be modeled using the KZK wave equation. This paper presents further development of nonlinear diffractive field theory based on the KZK equation and its solution by means of the slowly changing profile method for moderate nonlinearity. The analytical expression for amplitudes and phases of sum frequency wave are obtained in addition to the second harmonic wave. Also, the analytical expression for the relative curvature of the wave fronts of fundamental and second harmonic signals are derived. The media with different nonlinear properties and absorption coefficients were investigated to characterize the diffractive field of the transducer at medical frequencies. All expressions demonstrate good agreement with experimental results. The expressions are novel and provide an easy way for prediction of amplitude and phase structure of nonlinearly distorted field of a transducer. The sum frequency signal technique could be implemented as well as second harmonic technique to improve the quality of biomedical images. The results obtained are of importance for medical diagnostic ultrasound equipment design.

  13. Vorticity Transport and Wave Emission in the Protoplanetary Nebula

    NASA Technical Reports Server (NTRS)

    Davis, S. S.; DeVincenzi, Donald (Technical Monitor)

    2001-01-01

    Higher order numerical algorithms (4th order in time, 3rd order in space) are applied to the Euler/Energy equations and are used to examine vorticity transport and wave motion in a non-self gravitating, initially isentropic Keplerian disk. In this talk we will examine the response of the nebula to an isolated vortex with a circulation about equal to the rotation rate of Jupiter. The vortex is located on the 4 AU circle and the nebula is simulated from 1 to 24 AU. We show that the vortex emits pressure-supported density and Rossby-type wave packets before it decays within a few orbits. The acoustic density waves evolve into weak (non entropy preserving) shock waves that propagate over the entire disk. The Rossby waves remain in the vicinity of the initial vortex disturbance, but are rapidly damped. Temporal frequencies and spatial wavenumbers are derived using the simulation data and compared with analytical dispersion relations from the linearized Euler/Energy equations.

  14. Vorticity Transport and Wave Emission In A Protoplanetary Disk

    NASA Technical Reports Server (NTRS)

    Davis, S. S.; Davis, Sanford (Technical Monitor)

    2002-01-01

    Higher order numerical algorithms (4th order in time, 3rd order in space) are applied to the Euler equations and are used to examine vorticity transport and wave motion in a non-self gravitating, initially isentropic Keplerian disk. In this talk we will examine the response of the disk to an isolated vortex with a circulation about equal to the rotation rate of Jupiter. The vortex is located on the 4 AU circle and the nebula is simulated from 1 to 24 AU. We show that the vortex emits pressure-supported density and Rossby-type wave packets before it decays within a few orbits. The acoustic density waves evolve into weak (non entropy preserving) shock waves that propagate over the entire disk. The Rossby waves remain in the vicinity of the initial vortex disturbance, but are rapidly damped. Temporal frequencies and spatial wavenumbers are derived from the nonlinear simulation data and correlated with analytical dispersion relations from the linearized Euler and energy equations.

  15. A New Factorisation of a General Second Order Differential Equation

    ERIC Educational Resources Information Center

    Clegg, Janet

    2006-01-01

    A factorisation of a general second order ordinary differential equation is introduced from which the full solution to the equation can be obtained by performing two integrations. The method is compared with traditional methods for solving these type of equations. It is shown how the Green's function can be derived directly from the factorisation…

  16. On homogeneous second order linear general quantum difference equations.

    PubMed

    Faried, Nashat; Shehata, Enas M; El Zafarani, Rasha M

    2017-01-01

    In this paper, we prove the existence and uniqueness of solutions of the β -Cauchy problem of second order β -difference equations [Formula: see text] [Formula: see text], in a neighborhood of the unique fixed point [Formula: see text] of the strictly increasing continuous function β , defined on an interval [Formula: see text]. These equations are based on the general quantum difference operator [Formula: see text], which is defined by [Formula: see text], [Formula: see text]. We also construct a fundamental set of solutions for the second order linear homogeneous β -difference equations when the coefficients are constants and study the different cases of the roots of their characteristic equations. Finally, we drive the Euler-Cauchy β -difference equation.

  17. Abel's Theorem Simplifies Reduction of Order

    ERIC Educational Resources Information Center

    Green, William R.

    2011-01-01

    We give an alternative to the standard method of reduction or order, in which one uses one solution of a homogeneous, linear, second order differential equation to find a second, linearly independent solution. Our method, based on Abel's Theorem, is shorter, less complex and extends to higher order equations.

  18. Investigation of instabilities affecting detonations: Improving the resolution using block-structured adaptive mesh refinement

    NASA Astrophysics Data System (ADS)

    Ravindran, Prashaanth

    The unstable nature of detonation waves is a result of the critical relationship between the hydrodynamic shock and the chemical reactions sustaining the shock. A perturbative analysis of the critical point is quite challenging due to the multiple spatio-temporal scales involved along with the non-linear nature of the shock-reaction mechanism. The author's research attempts to provide detailed resolution of the instabilities at the shock front. Another key aspect of the present research is to develop an understanding of the causality between the non-linear dynamics of the front and the eventual breakdown of the sub-structures. An accurate numerical simulation of detonation waves requires a very efficient solution of the Euler equations in conservation form with detailed, non-equilibrium chemistry. The difference in the flow and reaction length scales results in very stiff source terms, requiring the problem to be solved with adaptive mesh refinement. For this purpose, Berger-Colella's block-structured adaptive mesh refinement (AMR) strategy has been developed and applied to time-explicit finite volume methods. The block-structured technique uses a hierarchy of parent-child sub-grids, integrated recursively over time. One novel approach to partition the problem within a large supercomputer was the use of modified Peano-Hilbert space filling curves. The AMR framework was merged with CLAWPACK, a package providing finite volume numerical methods tailored for wave-propagation problems. The stiffness problem is bypassed by using a 1st order Godunov or a 2nd order Strang splitting technique, where the flow variables and source terms are integrated independently. A linearly explicit fourth-order Runge-Kutta integrator is used for the flow, and an ODE solver was used to overcome the numerical stiffness. Second-order spatial resolution is obtained by using a second-order Roe-HLL scheme with the inclusion of numerical viscosity to stabilize the solution near the discontinuity. The scheme is made monotonic by coupling the van Albada limiter with the higher order MUSCL-Hancock extrapolation to the primitive variables of the Euler equations. Simulations using simplified single-step and detailed chemical kinetics have been provided. In detonations with simplified chemistry, the one-dimensional longitudinal instabilities have been simulated, and a mechanism forcing the collapse of the period-doubling modes was identified. The transverse instabilities were simulated for a 2D detonation, and the corresponding transverse wave was shown to be unstable with a periodic normal mode. Also, a Floquet analysis was carried out with the three-dimensional inviscid Euler equations for a longitudinally stable case. Using domain decomposition to identify the global eigenfunctions corresponding to the two least stable eigenvalues, it was found that the bifurcation of limit cycles in three dimensions follows a period doubling process similar to that proven to occur in one dimension and it is because of transverse instabilities. For detonations with detailed chemistry, the one dimensional simulations for two cases were presented and validated with experimental results. The 2D simulation shows the re-initiation of the triple point leading to the formation of cellular structure of the detonation wave. Some of the important features in the front were identified and explained.

  19. ADER discontinuous Galerkin schemes for general-relativistic ideal magnetohydrodynamics

    NASA Astrophysics Data System (ADS)

    Fambri, F.; Dumbser, M.; Köppel, S.; Rezzolla, L.; Zanotti, O.

    2018-07-01

    We present a new class of high-order accurate numerical algorithms for solving the equations of general-relativistic ideal magnetohydrodynamics in curved space-times. In this paper, we assume the background space-time to be given and static, i.e. we make use of the Cowling approximation. The governing partial differential equations are solved via a new family of fully discrete and arbitrary high-order accurate path-conservative discontinuous Galerkin (DG) finite-element methods combined with adaptive mesh refinement and time accurate local time-stepping. In order to deal with shock waves and other discontinuities, the high-order DG schemes are supplemented with a novel a posteriori subcell finite-volume limiter, which makes the new algorithms as robust as classical second-order total-variation diminishing finite-volume methods at shocks and discontinuities, but also as accurate as unlimited high-order DG schemes in smooth regions of the flow. We show the advantages of this new approach by means of various classical two- and three-dimensional benchmark problems on fixed space-times. Finally, we present a performance and accuracy comparisons between Runge-Kutta DG schemes and ADER high-order finite-volume schemes, showing the higher efficiency of DG schemes.

  20. ADER discontinuous Galerkin schemes for general-relativistic ideal magnetohydrodynamics

    NASA Astrophysics Data System (ADS)

    Fambri, F.; Dumbser, M.; Köppel, S.; Rezzolla, L.; Zanotti, O.

    2018-03-01

    We present a new class of high-order accurate numerical algorithms for solving the equations of general-relativistic ideal magnetohydrodynamics in curved spacetimes. In this paper we assume the background spacetime to be given and static, i.e. we make use of the Cowling approximation. The governing partial differential equations are solved via a new family of fully-discrete and arbitrary high-order accurate path-conservative discontinuous Galerkin (DG) finite-element methods combined with adaptive mesh refinement and time accurate local timestepping. In order to deal with shock waves and other discontinuities, the high-order DG schemes are supplemented with a novel a-posteriori subcell finite-volume limiter, which makes the new algorithms as robust as classical second-order total-variation diminishing finite-volume methods at shocks and discontinuities, but also as accurate as unlimited high-order DG schemes in smooth regions of the flow. We show the advantages of this new approach by means of various classical two- and three-dimensional benchmark problems on fixed spacetimes. Finally, we present a performance and accuracy comparisons between Runge-Kutta DG schemes and ADER high-order finite-volume schemes, showing the higher efficiency of DG schemes.

  1. Chosen interval methods for solving linear interval systems with special type of matrix

    NASA Astrophysics Data System (ADS)

    Szyszka, Barbara

    2013-10-01

    The paper is devoted to chosen direct interval methods for solving linear interval systems with special type of matrix. This kind of matrix: band matrix with a parameter, from finite difference problem is obtained. Such linear systems occur while solving one dimensional wave equation (Partial Differential Equations of hyperbolic type) by using the central difference interval method of the second order. Interval methods are constructed so as the errors of method are enclosed in obtained results, therefore presented linear interval systems contain elements that determining the errors of difference method. The chosen direct algorithms have been applied for solving linear systems because they have no errors of method. All calculations were performed in floating-point interval arithmetic.

  2. Possible high sonic velocity due to the inclusion of gas bubbles in water

    NASA Astrophysics Data System (ADS)

    Banno, T.; Mikada, H.; Goto, T.; Takekawa, J.

    2010-12-01

    If formation water becomes multi-phase by inclusion of gas bubbles, sonic velocities would be strongly influenced. In general, sonic velocities are knocked down due to low bulk moduli of the gas bubbles. However, sonic velocities may increase depending on the size of gas bubbles, when the bubbles in water or other media oscillate due to incoming sonic waves. Sonic waves are scattered by the bubbles and the superposition of the incoming and the scattered waves result in resonant-frequency-dependent behavior. The phase velocity of sonic waves propagating in fluids containing bubbles, therefore, probably depends on their frequencies. This is a typical phenomenon called “wave dispersion.” So far we have studied about the bubble impact on sonic velocity in bubbly media, such as the formation that contains gas bubbles. As a result, it is shown that the bubble resonance effect is a key to analyze the sonic phase velocity increase. Therefore to evaluate the resonance frequency of bubbles is important to solve the frequency response of sonic velocity in formations having bubbly fluids. There are several analytical solutions of the resonance frequency of bubbles in water. Takahira et al. (1994) derived a equation that gives us the resonance frequency considering bubble - bubble interactions. We have used this theory to calculate resonance frequency of bubbles at the previous work. However, the analytical solution of the Takahira’s equation is based on several assumptions. Therefore we used a numerical approach to calculate the bubble resonance effect more precisely in the present study. We used the boundary element method (BEM) to reproduce a bubble oscillation in incompressible liquid. There are several reasons to apply the BEM. Firstly, it arrows us to model arbitrarily sets and shapes of bubbles. Secondly, it is easy to use the BEM to reproduce a boundary-surface between liquid and gas. The velocity potential of liquid surrounding a bubble satisfies the Laplace equation when the liquid is supposed to be incompressible. We got the boundary integral equation from the Laplace equation and solved the boundary integral equation by the BEM. Then, we got the gradient of the velocity potential from the BEM. We used this gradient to get time derivative of the velocity potential from the Bernouii’s equation. And we used the second order Adams-Bashforth method to execute time integration of the velocity potential. We conducted this scheme iteratively to calculate a bubble oscillation. At each time step, we input a pressure change as a sinusoidal wave. As a result, we observed a bubble oscillation following the pressure frequency. We also evaluated the resonance frequency of a bubble by changing the pressure frequency. It showed a good agreement with the analytical solution described above. Our future work is to extend the calculation into plural bubbles condition. We expect that interaction between bubbles becomes strong and resonance frequency of bubbles becomes small when distance between bubbles becomes small.

  3. Microscopic Lagrangian description of warm plasmas. I - Linear wave propagation. II - Nonlinear wave interactions

    NASA Technical Reports Server (NTRS)

    Kim, H.; Crawford, F. W.

    1977-01-01

    It is pointed out that the conventional iterative analysis of nonlinear plasma wave phenomena, which involves a direct use of Maxwell's equations and the equations describing the particle dynamics, leads to formidable theoretical and algebraic complexities, especially for warm plasmas. As an effective alternative, the Lagrangian method may be applied. It is shown how this method may be used in the microscopic description of small-signal wave propagation and in the study of nonlinear wave interactions. The linear theory is developed for an infinite, homogeneous, collisionless, warm magnetoplasma. A summary is presented of a perturbation expansion scheme described by Galloway and Kim (1971), and Lagrangians to third order in perturbation are considered. Attention is given to the averaged-Lagrangian density, the action-transfer and coupled-mode equations, and the general solution of the coupled-mode equations.

  4. Pitching effect on transonic wing stall of a blended flying wing with low aspect ratio

    NASA Astrophysics Data System (ADS)

    Tao, Yang; Zhao, Zhongliang; Wu, Junqiang; Fan, Zhaolin; Zhang, Yi

    2018-05-01

    Numerical simulation of the pitching effect on transonic wing stall of a blended flying wing with low aspect ratio was performed using improved delayed detached eddy simulation (IDDES). To capture the discontinuity caused by shock wave, a second-order upwind scheme with Roe’s flux-difference splitting is introduced into the inviscid flux. The artificial dissipation is also turned off in the region where the upwind scheme is applied. To reveal the pitching effect, the implicit approximate-factorization method with sub-iterations and second-order temporal accuracy is employed to avoid the time integration of the unsteady Navier-Stokes equations solved by finite volume method at Arbitrary Lagrange-Euler (ALE) form. The leading edge vortex (LEV) development and LEV circulation of pitch-up wings at a free-stream Mach number M = 0.9 and a Reynolds number Re = 9.6 × 106 is studied. The Q-criterion is used to capture the LEV structure from shear layer. The result shows that a shock wave/vortex interaction is responsible for the vortex breakdown which eventually causes the wing stall. The balance of the vortex strength and axial flow, and the shock strength, is examined to provide an explanation of the sensitivity of the breakdown location. Pitching motion has great influence on shock wave and shock wave/vortex interactions, which can significantly affect the vortex breakdown behavior and wing stall onset of low aspect ratio blended flying wing.

  5. A Multilevel Algorithm for the Solution of Second Order Elliptic Differential Equations on Sparse Grids

    NASA Technical Reports Server (NTRS)

    Pflaum, Christoph

    1996-01-01

    A multilevel algorithm is presented that solves general second order elliptic partial differential equations on adaptive sparse grids. The multilevel algorithm consists of several V-cycles. Suitable discretizations provide that the discrete equation system can be solved in an efficient way. Numerical experiments show a convergence rate of order Omicron(1) for the multilevel algorithm.

  6. Evaluating the role of higher order nonlinearity in water of finite and shallow depth with a direct numerical simulation method of Euler equations

    NASA Astrophysics Data System (ADS)

    Fernandez, L.; Toffoli, A.; Monbaliu, J.

    2012-04-01

    In deep water, the dynamics of surface gravity waves is dominated by the instability of wave packets to side band perturbations. This mechanism, which is a nonlinear third order in wave steepness effect, can lead to a particularly strong focusing of wave energy, which in turn results in the formation of waves of very large amplitude also known as freak or rogue waves [1]. In finite water depth, however, the interaction between waves and the ocean floor induces a mean current. This subtracts energy from wave instability and causes it to cease for relative water depth , where k is the wavenumber and h the water depth [2]. Yet, this contradicts field observations of extreme waves such as the infamous 26-m "New Year" wave that have mainly been recorded in regions of relatively shallow water . In this respect, recent studies [3] seem to suggest that higher order nonlinearity in water of finite depth may sustain instability. In order to assess the role of higher order nonlinearity in water of finite and shallow depth, here we use a Higher Order Spectral Method [4] to simulate the evolution of surface gravity waves according to the Euler equations of motion. This method is based on an expansion of the vertical velocity about the surface elevation under the assumption of weak nonlinearity and has a great advantage of allowing the activation or deactivation of different orders of nonlinearity. The model is constructed to deal with an arbitrary order of nonlinearity and water depths so that finite and shallow water regimes can be analyzed. Several wave configurations are considered with oblique and collinear with the primary waves disturbances and different water depths. The analysis confirms that nonlinearity higher than third order play a substantial role in the destabilization of a primary wave train and subsequent growth of side band perturbations.

  7. Models for short-wave instability in inviscid shear flows

    NASA Astrophysics Data System (ADS)

    Grimshaw, Roger

    1999-11-01

    The generation of instability in an invsicid fluid occurs by a resonance between two wave modes, where here the resonance occurs by a coincidence of phase speeds for a finite, non-zero wavenumber. We show that in the weakly nonlinear limit, the appropriate model consists of two coupled equations for the envelopes of the wave modes, in which the nonlinear terms are balanced with low-order cross-coupling linear dispersive terms rather than the more familiar high-order terms which arise in the nonlinear Schrodinger equation, for instance. We will show that this system may either contain gap solitons as solutions in the linearly stable case, or wave breakdown in the linearly unstable case. In this latter circumstance, the system either exhibits wave collapse in finite time, or disintegration into fine-scale structures.

  8. Generalized heat-transport equations: parabolic and hyperbolic models

    NASA Astrophysics Data System (ADS)

    Rogolino, Patrizia; Kovács, Robert; Ván, Peter; Cimmelli, Vito Antonio

    2018-03-01

    We derive two different generalized heat-transport equations: the most general one, of the first order in time and second order in space, encompasses some well-known heat equations and describes the hyperbolic regime in the absence of nonlocal effects. Another, less general, of the second order in time and fourth order in space, is able to describe hyperbolic heat conduction also in the presence of nonlocal effects. We investigate the thermodynamic compatibility of both models by applying some generalizations of the classical Liu and Coleman-Noll procedures. In both cases, constitutive equations for the entropy and for the entropy flux are obtained. For the second model, we consider a heat-transport equation which includes nonlocal terms and study the resulting set of balance laws, proving that the corresponding thermal perturbations propagate with finite speed.

  9. Implicit and Multigrid Method for Ideal Multigrid Convergence: Direct Numerical Simulation of Separated Flow Around NACA 0012 Airfoil

    NASA Technical Reports Server (NTRS)

    Liu, Chao-Qun; Shan, H.; Jiang, L.

    1999-01-01

    Numerical investigation of flow separation over a NACA 0012 airfoil at large angles of attack has been carried out. The numerical calculation is performed by solving the full Navier-Stokes equations in generalized curvilinear coordinates. The second-order LU-SGS implicit scheme is applied for time integration. This scheme requires no tridiagonal inversion and is capable of being completely vectorized, provided the corresponding Jacobian matrices are properly selected. A fourth-order centered compact scheme is used for spatial derivatives. In order to reduce numerical oscillation, a sixth-order implicit filter is employed. Non-reflecting boundary conditions are imposed at the far-field and outlet boundaries to avoid possible non-physical wave reflection. Complex flow separation and vortex shedding phenomenon have been observed and discussed.

  10. Controllable optical rogue waves via nonlinearity management.

    PubMed

    Yang, Zhengping; Zhong, Wei-Ping; Belić, Milivoj; Zhang, Yiqi

    2018-03-19

    Using a similarity transformation, we obtain analytical solutions to a class of nonlinear Schrödinger (NLS) equations with variable coefficients in inhomogeneous Kerr media, which are related to the optical rogue waves of the standard NLS equation. We discuss the dynamics of such optical rogue waves via nonlinearity management, i.e., by selecting the appropriate nonlinearity coefficients and integration constants, and presenting the solutions. In addition, we investigate higher-order rogue waves by suitably adjusting the nonlinearity coefficient and the rogue wave parameters, which could help in realizing complex but controllable optical rogue waves in properly engineered fibers and other photonic materials.

  11. Extremely Fast Numerical Integration of Ocean Surface Wave Dynamics

    DTIC Science & Technology

    2007-09-30

    sub-processor must be added as shown in the blue box of Fig. 1. We first consider the Kadomtsev - Petviashvili (KP) equation ηt + coηx +αηηx + βη ...analytic integration of the so-called “soliton equations ,” I have discovered how the GFT can be used to solved higher order equations for which study...analytical study and extremely fast numerical integration of the extended nonlinear Schroedinger equation for fully three dimensional wave motion

  12. Whitham modulation theory for the two-dimensional Benjamin-Ono equation.

    PubMed

    Ablowitz, Mark; Biondini, Gino; Wang, Qiao

    2017-09-01

    Whitham modulation theory for the two-dimensional Benjamin-Ono (2DBO) equation is presented. A system of five quasilinear first-order partial differential equations is derived. The system describes modulations of the traveling wave solutions of the 2DBO equation. These equations are transformed to a singularity-free hydrodynamic-like system referred to here as the 2DBO-Whitham system. Exact reductions of this system are discussed, the formulation of initial value problems is considered, and the system is used to study the transverse stability of traveling wave solutions of the 2DBO equation.

  13. Molecular wave function and effective adiabatic potentials calculated by extended multi-configuration time-dependent Hartree-Fock method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kato, Tsuyoshi; Ide, Yoshihiro; Yamanouchi, Kaoru

    We first calculate the ground-state molecular wave function of 1D model H{sub 2} molecule by solving the coupled equations of motion formulated in the extended multi-configuration time-dependent Hartree-Fock (MCTDHF) method by the imaginary time propagation. From the comparisons with the results obtained by the Born-Huang (BH) expansion method as well as with the exact wave function, we observe that the memory size required in the extended MCTDHF method is about two orders of magnitude smaller than in the BH expansion method to achieve the same accuracy for the total energy. Second, in order to provide a theoretical means to understandmore » dynamical behavior of the wave function, we propose to define effective adiabatic potential functions and compare them with the conventional adiabatic electronic potentials, although the notion of the adiabatic potentials is not used in the extended MCTDHF approach. From the comparison, we conclude that by calculating the effective potentials we may be able to predict the energy differences among electronic states even for a time-dependent system, e.g., time-dependent excitation energies, which would be difficult to be estimated within the BH expansion approach.« less

  14. A structure-preserving split finite element discretization of the split 1D linear shallow-water equations

    NASA Astrophysics Data System (ADS)

    Bauer, Werner; Behrens, Jörn

    2017-04-01

    We present a locally conservative, low-order finite element (FE) discretization of the covariant 1D linear shallow-water equations written in split form (cf. tet{[1]}). The introduction of additional differential forms (DF) that build pairs with the original ones permits a splitting of these equations into topological momentum and continuity equations and metric-dependent closure equations that apply the Hodge-star. Our novel discretization framework conserves this geometrical structure, in particular it provides for all DFs proper FE spaces such that the differential operators (here gradient and divergence) hold in strong form. The discrete topological equations simply follow by trivial projections onto piecewise constant FE spaces without need to partially integrate. The discrete Hodge-stars operators, representing the discretized metric equations, are realized by nontrivial Galerkin projections (GP). Here they follow by projections onto either a piecewise constant (GP0) or a piecewise linear (GP1) space. Our framework thus provides essentially three different schemes with significantly different behavior. The split scheme using twice GP1 is unstable and shares the same discrete dispersion relation and similar second-order convergence rates as the conventional P1-P1 FE scheme that approximates both velocity and height variables by piecewise linear spaces. The split scheme that applies both GP1 and GP0 is stable and shares the dispersion relation of the conventional P1-P0 FE scheme that approximates the velocity by a piecewise linear and the height by a piecewise constant space with corresponding second- and first-order convergence rates. Exhibiting for both velocity and height fields second-order convergence rates, we might consider the split GP1-GP0 scheme though as stable versions of the conventional P1-P1 FE scheme. For the split scheme applying twice GP0, we are not aware of a corresponding conventional formulation to compare with. Though exhibiting larger absolute error values, it shows similar convergence rates as the other split schemes, but does not provide a satisfactory approximation of the dispersion relation as short waves are propagated much to fast. Despite this, the finding of this new scheme illustrates the potential of our discretization framework as a toolbox to find and to study new FE schemes based on new combinations of FE spaces. [1] Bauer, W. [2016], A new hierarchically-structured n-dimensional covariant form of rotating equations of geophysical fluid dynamics, GEM - International Journal on Geomathematics, 7(1), 31-101.

  15. CMB spectral distortions as solutions to the Boltzmann equations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ota, Atsuhisa, E-mail: a.ota@th.phys.titech.ac.jp

    2017-01-01

    We propose to re-interpret the cosmic microwave background spectral distortions as solutions to the Boltzmann equation. This approach makes it possible to solve the second order Boltzmann equation explicitly, with the spectral y distortion and the momentum independent second order temperature perturbation, while generation of μ distortion cannot be explained even at second order in this framework. We also extend our method to higher order Boltzmann equations systematically and find new type spectral distortions, assuming that the collision term is linear in the photon distribution functions, namely, in the Thomson scattering limit. As an example, we concretely construct solutions tomore » the cubic order Boltzmann equation and show that the equations are closed with additional three parameters composed of a cubic order temperature perturbation and two cubic order spectral distortions. The linear Sunyaev-Zel'dovich effect whose momentum dependence is different from the usual y distortion is also discussed in the presence of the next leading order Kompaneets terms, and we show that higher order spectral distortions are also generated as a result of the diffusion process in a framework of higher order Boltzmann equations. The method may be applicable to a wider class of problems and has potential to give a general prescription to non-equilibrium physics.« less

  16. Vector semirational rogue waves and modulation instability for the coupled higher-order nonlinear Schrödinger equations in the birefringent optical fibers.

    PubMed

    Sun, Wen-Rong; Liu, De-Yin; Xie, Xi-Yang

    2017-04-01

    We report the existence and properties of vector breather and semirational rogue-wave solutions for the coupled higher-order nonlinear Schrödinger equations, which describe the propagation of ultrashort optical pulses in birefringent optical fibers. Analytic vector breather and semirational rogue-wave solutions are obtained with Darboux dressing transformation. We observe that the superposition of the dark and bright contributions in each of the two wave components can give rise to complicated breather and semirational rogue-wave dynamics. We show that the bright-dark type vector solitons (or breather-like vector solitons) with nonconstant speed interplay with Akhmediev breathers, Kuznetsov-Ma solitons, and rogue waves. By adjusting parameters, we note that the rogue wave and bright-dark soliton merge, generating the boomeron-type bright-dark solitons. We prove that the rogue wave can be excited in the baseband modulation instability regime. These results may provide evidence of the collision between the mixed ultrashort soliton and rogue wave.

  17. A convergent 2D finite-difference scheme for the Dirac–Poisson system and the simulation of graphene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brinkman, D., E-mail: Daniel.Brinkman@asu.edu; School of Mathematical and Statistical Sciences, Arizona State University, Tempe, AZ 85287; Heitzinger, C., E-mail: Clemens.Heitzinger@asu.edu

    2014-01-15

    We present a convergent finite-difference scheme of second order in both space and time for the 2D electromagnetic Dirac equation. We apply this method in the self-consistent Dirac–Poisson system to the simulation of graphene. The model is justified for low energies, where the particles have wave vectors sufficiently close to the Dirac points. In particular, we demonstrate that our method can be used to calculate solutions of the Dirac–Poisson system where potentials act as beam splitters or Veselago lenses.

  18. Foundations of radiation hydrodynamics

    NASA Astrophysics Data System (ADS)

    Mihalas, D.; Mihalas, B. W.

    This book is the result of an attempt, over the past few years, to gather the basic tools required to do research on radiating flows in astrophysics. The microphysics of gases is discussed, taking into account the equation of state of a perfect gas, the first and second law of thermodynamics, the thermal properties of a perfect gas, the distribution function and Boltzmann's equation, the collision integral, the Maxwellian velocity distribution, Boltzmann's H-theorem, the time of relaxation, and aspects of classical statistical mechanics. Other subjects explored are related to the dynamics of ideal fluids, the dynamics of viscous and heat-conducting fluids, relativistic fluid flow, waves, shocks, winds, radiation and radiative transfer, the equations of radiation hydrodynamics, and radiating flows. Attention is given to small-amplitude disturbances, nonlinear flows, the interaction of radiation and matter, the solution of the transfer equation, acoustic waves, acoustic-gravity waves, basic concepts of special relativity, and equations of motion and energy.

  19. Verification of a non-hydrostatic dynamical core using the horizontal spectral element method and vertical finite difference method: 2-D aspects

    NASA Astrophysics Data System (ADS)

    Choi, S.-J.; Giraldo, F. X.; Kim, J.; Shin, S.

    2014-11-01

    The non-hydrostatic (NH) compressible Euler equations for dry atmosphere were solved in a simplified two-dimensional (2-D) slice framework employing a spectral element method (SEM) for the horizontal discretization and a finite difference method (FDM) for the vertical discretization. By using horizontal SEM, which decomposes the physical domain into smaller pieces with a small communication stencil, a high level of scalability can be achieved. By using vertical FDM, an easy method for coupling the dynamics and existing physics packages can be provided. The SEM uses high-order nodal basis functions associated with Lagrange polynomials based on Gauss-Lobatto-Legendre (GLL) quadrature points. The FDM employs a third-order upwind-biased scheme for the vertical flux terms and a centered finite difference scheme for the vertical derivative and integral terms. For temporal integration, a time-split, third-order Runge-Kutta (RK3) integration technique was applied. The Euler equations that were used here are in flux form based on the hydrostatic pressure vertical coordinate. The equations are the same as those used in the Weather Research and Forecasting (WRF) model, but a hybrid sigma-pressure vertical coordinate was implemented in this model. We validated the model by conducting the widely used standard tests: linear hydrostatic mountain wave, tracer advection, and gravity wave over the Schär-type mountain, as well as density current, inertia-gravity wave, and rising thermal bubble. The results from these tests demonstrated that the model using the horizontal SEM and the vertical FDM is accurate and robust provided sufficient diffusion is applied. The results with various horizontal resolutions also showed convergence of second-order accuracy due to the accuracy of the time integration scheme and that of the vertical direction, although high-order basis functions were used in the horizontal. By using the 2-D slice model, we effectively showed that the combined spatial discretization method of the spectral element and finite difference methods in the horizontal and vertical directions, respectively, offers a viable method for development of an NH dynamical core.

  20. Solving ay'' + by' + cy = 0 with a Simple Product Rule Approach

    ERIC Educational Resources Information Center

    Tolle, John

    2011-01-01

    When elementary ordinary differential equations (ODEs) of first and second order are included in the calculus curriculum, second-order linear constant coefficient ODEs are typically solved by a method more appropriate to differential equations courses. This method involves the characteristic equation and its roots, complex-valued solutions, and…

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, K.; Petersson, N. A.; Rodgers, A.

    Acoustic waveform modeling is a computationally intensive task and full three-dimensional simulations are often impractical for some geophysical applications such as long-range wave propagation and high-frequency sound simulation. In this study, we develop a two-dimensional high-order accurate finite-difference code for acoustic wave modeling. We solve the linearized Euler equations by discretizing them with the sixth order accurate finite difference stencils away from the boundary and the third order summation-by-parts (SBP) closure near the boundary. Non-planar topographic boundary is resolved by formulating the governing equation in curvilinear coordinates following the interface. We verify the implementation of the algorithm by numerical examplesmore » and demonstrate the capability of the proposed method for practical acoustic wave propagation problems in the atmosphere.« less

  2. [Series: Utilization of Differential Equations and Methods for Solving Them in Medical Physics (1)].

    PubMed

    Murase, Kenya

    2014-01-01

    Utilization of differential equations and methods for solving them in medical physics are presented. First, the basic concept and the kinds of differential equations were overviewed. Second, separable differential equations and well-known first-order and second-order differential equations were introduced, and the methods for solving them were described together with several examples. In the next issue, the symbolic and series expansion methods for solving differential equations will be mainly introduced.

  3. Strongly coupled stress waves in heterogeneous plates.

    NASA Technical Reports Server (NTRS)

    Wang, A. S. D.; Chou, P. C.; Rose, J. L.

    1972-01-01

    Consideration of coupled stress waves generated by an impulsive load applied at one end of a semiinfinite plate. For the field equations governing the one-dimensional coupled waves a hyperbolic system of equations is obtained in which a strong coupling in the second derivatives exists. The method of characteristics described by Chou and Mortimer (1967) is extended to cover the case of strong coupling, and a study is made of the transient stress waves in a semiinfinite plate subjected to an initial step input. Coupled discontinuity fronts are found to propagate at different velocities. The normal plate stress and the bending moment at different time regimes are illustrated by graphs.

  4. Given a one-step numerical scheme, on which ordinary differential equations is it exact?

    NASA Astrophysics Data System (ADS)

    Villatoro, Francisco R.

    2009-01-01

    A necessary condition for a (non-autonomous) ordinary differential equation to be exactly solved by a one-step, finite difference method is that the principal term of its local truncation error be null. A procedure to determine some ordinary differential equations exactly solved by a given numerical scheme is developed. Examples of differential equations exactly solved by the explicit Euler, implicit Euler, trapezoidal rule, second-order Taylor, third-order Taylor, van Niekerk's second-order rational, and van Niekerk's third-order rational methods are presented.

  5. Layer contributions to the nonlinear acoustic radiation from stratified media.

    PubMed

    Vander Meulen, François; Haumesser, Lionel

    2016-12-01

    This study presents the thorough investigation of the second harmonic generation scenario in a three fluid layer system. An emphasis is on the evaluation of the nonlinear parameter B/A in each layer from remote measurements. A theoretical approach of the propagation of a finite amplitude acoustic wave in a multilayered medium is developed. In the frame of the KZK equation, the weak nonlinearity of the media, attenuation and diffraction effects are computed for the fundamental and second harmonic waves propagating back and forth in each of the layers of the system. The model uses a gaussian expansion to describe the beam propagation in order to quantitatively evaluate the contribution of each part of the system (layers and interfaces) to its nonlinearity. The model is validated through measurements on a water/aluminum/water system. Transmission as well as reflection configurations are studied. Good agreement is found between the theoretical results and the experimental data. The analysis of the second harmonic field sources measured by the transducers from outside the stratified medium highlights the factors that favor the cumulative effects. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Spacetime encodings. III. Second order Killing tensors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brink, Jeandrew

    2010-01-15

    This paper explores the Petrov type D, stationary axisymmetric vacuum (SAV) spacetimes that were found by Carter to have separable Hamilton-Jacobi equations, and thus admit a second-order Killing tensor. The derivation of the spacetimes presented in this paper borrows from ideas about dynamical systems, and illustrates concepts that can be generalized to higher-order Killing tensors. The relationship between the components of the Killing equations and metric functions are given explicitly. The origin of the four separable coordinate systems found by Carter is explained and classified in terms of the analytic structure associated with the Killing equations. A geometric picture ofmore » what the orbital invariants may represent is built. Requiring that a SAV spacetime admits a second-order Killing tensor is very restrictive, selecting very few candidates from the group of all possible SAV spacetimes. This restriction arises due to the fact that the consistency conditions associated with the Killing equations require that the field variables obey a second-order differential equation, as opposed to a fourth-order differential equation that imposes the weaker condition that the spacetime be SAV. This paper introduces ideas that could lead to the explicit computation of more general orbital invariants in the form of higher-order Killing tensors.« less

  7. Grating formation by a high power radio wave in near-equator ionosphere

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, Rohtash; Sharma, A. K.; Tripathi, V. K.

    2011-11-15

    The formation of a volume grating in the near-equator regions of ionosphere due to a high power radio wave is investigated. The radio wave, launched from a ground based transmitter, forms a standing wave pattern below the critical layer, heating the electrons in a space periodic manner. The thermal conduction along the magnetic lines of force inhibits the rise in electron temperature, limiting the efficacy of heating to within a latitude of few degrees around the equator. The space periodic electron partial pressure leads to ambipolar diffusion creating a space periodic density ripple with wave vector along the vertical. Suchmore » a volume grating is effective to cause strong reflection of radio waves at a frequency one order of magnitude higher than the maximum plasma frequency in the ionosphere. Linearly mode converted plasma wave could scatter even higher frequency radio waves.« less

  8. Oscillation theorems for second order nonlinear forced differential equations.

    PubMed

    Salhin, Ambarka A; Din, Ummul Khair Salma; Ahmad, Rokiah Rozita; Noorani, Mohd Salmi Md

    2014-01-01

    In this paper, a class of second order forced nonlinear differential equation is considered and several new oscillation theorems are obtained. Our results generalize and improve those known ones in the literature.

  9. Wave propagation through an inhomogeneous slab sandwiched by the piezoelectric and the piezomagnetic half spaces.

    PubMed

    Jiao, Fengyu; Wei, Peijun; Li, Li

    2017-01-01

    Wave propagation through a gradient slab sandwiched by the piezoelectric and the piezomagnetic half spaces are studied in this paper. First, the secular equations in the transverse isotropic piezoelectric/piezomagnetic half spaces are derived from the general dynamic equation. Then, the state vectors at piezoelectric and piezomagnetic half spaces are related to the amplitudes of various possible waves. The state transfer equation of the functionally graded slab is derived from the equations of motion by the reduction of order, and the transfer matrix of the functionally gradient slab is obtained by solving the state transfer equation with the spatial-varying coefficient. Finally, the continuous interface conditions are used to lead to the resultant algebraic equations. The algebraic equations are solved to obtain the amplitude ratios of various waves which are further used to obtain the energy reflection and transmission coefficients of various waves. The numerical results are shown graphically and are validated by the energy conservation law. Based on the numerical results on the fives of gradient profiles, the influences of the graded slab on the wave propagation are discussed. It is found that the reflection and transmission coefficients are obviously dependent upon the gradient profile. The various surface waves are more sensitive to the gradient profile than the bulk waves. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Applications of the ETEM for obtaining optical soliton solutions for the Lakshmanan-Porsezian-Daniel model

    NASA Astrophysics Data System (ADS)

    Manafian, Jalil; Foroutan, Mohammadreza; Guzali, Aref

    2017-11-01

    This paper examines the effectiveness of an integration scheme which is called the extended trial equation method (ETEM) for solving a well-known nonlinear equation of partial differential equations (PDEs). In this respect, the Lakshmanan-Porsezian-Daniel (LPD) equation with Kerr and power laws of nonlinearity which describes higher-order dispersion, full nonlinearity and spatiotemporal dispersion is considered, and as an achievement, a series of exact travelling-wave solutions for the aforementioned equation is formally extracted. Explicit new exact solutions are derived in different form such as dark solitons, bright solitons, solitary wave, periodic solitary wave, rational function, and elliptic function solutions of LPD equation. The movement of obtained solutions is shown graphically, which helps to understand the physical phenomena of this optical soliton equation. Many other such types of nonlinear equations arising in basic fabric of communications network technology and nonlinear optics can also be solved by this method.

  11. Lagrangian averages, averaged Lagrangians, and the mean effects of fluctuations in fluid dynamics.

    PubMed

    Holm, Darryl D.

    2002-06-01

    We begin by placing the generalized Lagrangian mean (GLM) equations for a compressible adiabatic fluid into the Euler-Poincare (EP) variational framework of fluid dynamics, for an averaged Lagrangian. This is the Lagrangian averaged Euler-Poincare (LAEP) theorem. Next, we derive a set of approximate small amplitude GLM equations (glm equations) at second order in the fluctuating displacement of a Lagrangian trajectory from its mean position. These equations express the linear and nonlinear back-reaction effects on the Eulerian mean fluid quantities by the fluctuating displacements of the Lagrangian trajectories in terms of their Eulerian second moments. The derivation of the glm equations uses the linearized relations between Eulerian and Lagrangian fluctuations, in the tradition of Lagrangian stability analysis for fluids. The glm derivation also uses the method of averaged Lagrangians, in the tradition of wave, mean flow interaction. Next, the new glm EP motion equations for incompressible ideal fluids are compared with the Euler-alpha turbulence closure equations. An alpha model is a GLM (or glm) fluid theory with a Taylor hypothesis closure. Such closures are based on the linearized fluctuation relations that determine the dynamics of the Lagrangian statistical quantities in the Euler-alpha equations. Thus, by using the LAEP theorem, we bridge between the GLM equations and the Euler-alpha closure equations, through the small-amplitude glm approximation in the EP variational framework. We conclude by highlighting a new application of the GLM, glm, and alpha-model results for Lagrangian averaged ideal magnetohydrodynamics. (c) 2002 American Institute of Physics.

  12. Modulational stability of periodic solutions of the Kuramoto-Sivaskinsky equation

    NASA Technical Reports Server (NTRS)

    Papageorgiou, Demetrios T.; Papanicolaou, George C.; Smyrlis, Yiorgos S.

    1993-01-01

    We study the long-wave, modulational, stability of steady periodic solutions of the Kuramoto-Sivashinsky equation. The analysis is fully nonlinear at first, and can in principle be carried out to all orders in the small parameter, which is the ratio of the spatial period to a characteristic length of the envelope perturbations. In the linearized regime, we recover a high-order version of the results of Frisch, She, and Thual, which shows that the periodic waves are much more stable than previously expected.

  13. Single-cone finite-difference schemes for the (2+1)-dimensional Dirac equation in general electromagnetic textures

    NASA Astrophysics Data System (ADS)

    Pötz, Walter

    2017-11-01

    A single-cone finite-difference lattice scheme is developed for the (2+1)-dimensional Dirac equation in presence of general electromagnetic textures. The latter is represented on a (2+1)-dimensional staggered grid using a second-order-accurate finite difference scheme. A Peierls-Schwinger substitution to the wave function is used to introduce the electromagnetic (vector) potential into the Dirac equation. Thereby, the single-cone energy dispersion and gauge invariance are carried over from the continuum to the lattice formulation. Conservation laws and stability properties of the formal scheme are identified by comparison with the scheme for zero vector potential. The placement of magnetization terms is inferred from consistency with the one for the vector potential. Based on this formal scheme, several numerical schemes are proposed and tested. Elementary examples for single-fermion transport in the presence of in-plane magnetization are given, using material parameters typical for topological insulator surfaces.

  14. Resonant frequency function of thickness-shear vibrations of rectangular crystal plates.

    PubMed

    Wang, Ji; Yang, Lijun; Pan, Qiaoqiao; Chao, Min-Chiang; Du, Jianke

    2011-05-01

    The resonant frequencies of thickness-shear vibrations of quartz crystal plates in rectangular and circular shapes are always required in the design and manufacturing of quartz crystal resonators. As the size of quartz crystal resonators shrinks, for rectangular plates we must consider effects of both length and width for the precise calculation of resonant frequency. Starting from the three-dimensional equations of wave propagation in finite crystal plates and the general expression of vibration modes, we obtained the relations between frequency and wavenumbers. By satisfying the major boundary conditions of the dominant thickness-shear mode, three wavenumber solutions are obtained and the frequency equation is constructed. It is shown the resonant frequency of thickness-shear mode is a second-order polynomial of aspect ratios. This conforms to known results in the simplest form and is applicable to further analytical and experimental studies of the frequency equation of quartz crystal resonators.

  15. Synchronism of nonlinear internal waves in a three-layer fluid

    NASA Astrophysics Data System (ADS)

    Talipova, Tatiana; Kurkina, Oxana; Terletska, Katerina; Rouvinskaya, Ekaterina

    2017-04-01

    In a three layer fluid with arbitrary layer widths and densities the existence of long internal solitons and breathers is proven theoretically and numerically, see for example (Pelinovsky et al., 2007; Lamb et al., 2007). The existence of breather-like waves of the intermediate length is also shown in numerical simulations (Terletska et al., 2016). For such waves conditions of synchronism are valid when a breather of the first mode and a soliton of the second mode move together with the same speed and form an asymmetric solitary wave of the second mode. The process of strong interaction of long nonlinear internal waves in the framework of three-layer Camassa-Choi model demonstrates the same effect (Jo&Choi, 2014; Barros, 2016). We analyze possible synchronism conditions for steady-state internal waves in a three-layer fluid analytically the framework of the Gardner equation, which is valid for long weakly nonlinear internal waves. The equations for synchronism conditions are derived and considered in terms of wave amplitudes, layer widths and density jumps. The configurations of three-layer fluid are found for which such a synchronism is possible. References: Barros R. Large amplitude internal waves in three-layer flows. The forth international conference "Nonlinear Waves - Theory and Applications", MS7, Beijing, China, June 25 - 28, 2016 Pelinovsky E., Polukhina O., Slunyaev A., Talipova T. Internal solitary waves // Chapter 4 in the book "Solitary Waves in Fluids". WIT Press. Southampton, Boston. 2007. P. 85 - 110. K. Terletska., K. T. Jung, T. Talipova, V. Maderich, I. Brovchenko and R. Grimshaw Internal breather-like wave generation by the second mode solitary wave interaction with a step// Physics of Fluids, 2016, accepted

  16. Similarity solutions of some two-space-dimensional nonlinear wave evolution equations

    NASA Technical Reports Server (NTRS)

    Redekopp, L. G.

    1980-01-01

    Similarity reductions of the two-space-dimensional versions of the Korteweg-de Vries, modified Korteweg-de Vries, Benjamin-Davis-Ono, and nonlinear Schroedinger equations are presented, and some solutions of the reduced equations are discussed. Exact dispersive solutions of the two-dimensional Korteweg-de Vries equation are obtained, and the similarity solution of this equation is shown to be reducible to the second Painleve transcendent.

  17. Near-resonant excitation and propagation of eccentric density waves by external forcing. [in accretion disks

    NASA Technical Reports Server (NTRS)

    Ostriker, Eve C.; Shu, Frank H.; Adams, Fred C.

    1992-01-01

    An overview is presented of the astronomical evidence that relatively massive, distended, gaseous disks form as a natural by-product of the process of star formation, and also the numerical evidence that SLING-amplified eccentric modes in the outer parts of such disks can drive one-armed spiral density waves in the inner parts by near-resonant excitation and propagation. An ordinary differential equation (ODE) of the second order that approximately governs the nonlocalized forcing of waves in a disk satisfying Lindblad resonance almost everywhere is derived. When transformed and appended with an extra model term, this ODE implies, for free waves, the usual asymptotic results of the WKBJ dispersion relationship and the propagation Goldreich-Tremaine (1978) formula for the resonant torque exerted on a localized Lindblad resonance. An analytical solution is given for the rate of energy and angular momentum transfer by nonlocalized near-resonant forcing in the case when the disk has power-law dependences on the radius of the surface density and temperature.

  18. A numerical and experimental study on the nonlinear evolution of long-crested irregular waves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goullet, Arnaud; Choi, Wooyoung; Division of Ocean Systems Engineering, Korea Advanced Institute of Science and Technology, Daejeon 305-701

    2011-01-15

    The spatial evolution of nonlinear long-crested irregular waves characterized by the JONSWAP spectrum is studied numerically using a nonlinear wave model based on a pseudospectral (PS) method and the modified nonlinear Schroedinger (MNLS) equation. In addition, new laboratory experiments with two different spectral bandwidths are carried out and a number of wave probe measurements are made to validate these two wave models. Strongly nonlinear wave groups are observed experimentally and their propagation and interaction are studied in detail. For the comparison with experimental measurements, the two models need to be initialized with care and the initialization procedures are described. Themore » MNLS equation is found to approximate reasonably well for the wave fields with a relatively smaller Benjamin-Feir index, but the phase error increases as the propagation distance increases. The PS model with different orders of nonlinear approximation is solved numerically, and it is shown that the fifth-order model agrees well with our measurements prior to wave breaking for both spectral bandwidths.« less

  19. Cookbook asymptotics for spiral and scroll waves in excitable media.

    PubMed

    Margerit, Daniel; Barkley, Dwight

    2002-09-01

    Algebraic formulas predicting the frequencies and shapes of waves in a reaction-diffusion model of excitable media are presented in the form of four recipes. The formulas themselves are based on a detailed asymptotic analysis (published elsewhere) of the model equations at leading order and first order in the asymptotic parameter. The importance of the first order contribution is stressed throughout, beginning with a discussion of the Fife limit, Fife scaling, and Fife regime. Recipes are given for spiral waves and detailed comparisons are presented between the asymptotic predictions and the solutions of the full reaction-diffusion equations. Recipes for twisted scroll waves with straight filaments are given and again comparisons are shown. The connection between the asymptotic results and filament dynamics is discussed, and one of the previously unknown coefficients in the theory of filament dynamics is evaluated in terms of its asymptotic expansion. (c) 2002 American Institute of Physics.

  20. Cookbook asymptotics for spiral and scroll waves in excitable media

    NASA Astrophysics Data System (ADS)

    Margerit, Daniel; Barkley, Dwight

    2002-09-01

    Algebraic formulas predicting the frequencies and shapes of waves in a reaction-diffusion model of excitable media are presented in the form of four recipes. The formulas themselves are based on a detailed asymptotic analysis (published elsewhere) of the model equations at leading order and first order in the asymptotic parameter. The importance of the first order contribution is stressed throughout, beginning with a discussion of the Fife limit, Fife scaling, and Fife regime. Recipes are given for spiral waves and detailed comparisons are presented between the asymptotic predictions and the solutions of the full reaction-diffusion equations. Recipes for twisted scroll waves with straight filaments are given and again comparisons are shown. The connection between the asymptotic results and filament dynamics is discussed, and one of the previously unknown coefficients in the theory of filament dynamics is evaluated in terms of its asymptotic expansion.

  1. Explicit evaluation of discontinuities in 2-D unsteady flows solved by the method of characteristics

    NASA Astrophysics Data System (ADS)

    Osnaghi, C.

    When shock waves appear in the numerical solution of flows, a choice is necessary between shock capturing techniques, possible when equations are written in conservative form, and shock fitting techniques. If the second one is preferred, e.g. in order to obtain better definition and more physical description of the shock evolution in time, the method of characteristics is advantageous in the vicinity of the shock and it seems natural to use this method everywhere. This choice requires to improve the efficiency of the numerical scheme in order to produce competitive codes, preserving accuracy and flexibility, which are intrinsic features of the method: this is the goal of the present work.

  2. Tidal Love Numbers of Neutron Stars

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hinderer, Tanja

    For a variety of fully relativistic polytropic neutron star models we calculate the star's tidal Love number k{sub 2}. Most realistic equations of state for neutron stars can be approximated as a polytrope with an effective index n {approx} 0.5-1.0. The equilibrium stellar model is obtained by numerical integration of the Tolman-Oppenheimer-Volkhov equations. We calculate the linear l = 2 static perturbations to the Schwarzschild spacetime following the method of Thorne and Campolattaro. Combining the perturbed Einstein equations into a single second-order differential equation for the perturbation to the metric coefficient g{sub tt} and matching the exterior solution to themore » asymptotic expansion of the metric in the star's local asymptotic rest frame gives the Love number. Our results agree well with the Newtonian results in the weak field limit. The fully relativistic values differ from the Newtonian values by up to {approx}24%. The Love number is potentially measurable in gravitational wave signals from inspiralling binary neutron stars.« less

  3. Sound waves and flexural mode dynamics in two-dimensional crystals

    NASA Astrophysics Data System (ADS)

    Michel, K. H.; Scuracchio, P.; Peeters, F. M.

    2017-09-01

    Starting from a Hamiltonian with anharmonic coupling between in-plane acoustic displacements and out-of-plane (flexural) modes, we derived coupled equations of motion for in-plane displacements correlations and flexural mode density fluctuations. Linear response theory and time-dependent thermal Green's functions techniques are applied in order to obtain different response functions. As external perturbations we allow for stresses and thermal heat sources. The displacement correlations are described by a Dyson equation where the flexural density distribution enters as an additional perturbation. The flexural density distribution satisfies a kinetic equation where the in-plane lattice displacements act as a perturbation. In the hydrodynamic limit this system of coupled equations is at the basis of a unified description of elastic and thermal phenomena, such as isothermal versus adiabatic sound motion and thermal conductivity versus second sound. The general theory is formulated in view of application to graphene, two-dimensional h-BN, and 2H-transition metal dichalcogenides and oxides.

  4. High-frequency homogenization for travelling waves in periodic media.

    PubMed

    Harutyunyan, Davit; Milton, Graeme W; Craster, Richard V

    2016-07-01

    We consider high-frequency homogenization in periodic media for travelling waves of several different equations: the wave equation for scalar-valued waves such as acoustics; the wave equation for vector-valued waves such as electromagnetism and elasticity; and a system that encompasses the Schrödinger equation. This homogenization applies when the wavelength is of the order of the size of the medium periodicity cell. The travelling wave is assumed to be the sum of two waves: a modulated Bloch carrier wave having crystal wavevector [Formula: see text] and frequency ω 1 plus a modulated Bloch carrier wave having crystal wavevector [Formula: see text] and frequency ω 2 . We derive effective equations for the modulating functions, and then prove that there is no coupling in the effective equations between the two different waves both in the scalar and the system cases. To be precise, we prove that there is no coupling unless ω 1 = ω 2 and [Formula: see text] where Λ =(λ 1 λ 2 …λ d ) is the periodicity cell of the medium and for any two vectors [Formula: see text] the product a ⊙ b is defined to be the vector ( a 1 b 1 , a 2 b 2 ,…, a d b d ). This last condition forces the carrier waves to be equivalent Bloch waves meaning that the coupling constants in the system of effective equations vanish. We use two-scale analysis and some new weak-convergence type lemmas. The analysis is not at the same level of rigour as that of Allaire and co-workers who use two-scale convergence theory to treat the problem, but has the advantage of simplicity which will allow it to be easily extended to the case where there is degeneracy of the Bloch eigenvalue.

  5. Ginzburg-Landau equation as a heuristic model for generating rogue waves

    NASA Astrophysics Data System (ADS)

    Lechuga, Antonio

    2016-04-01

    Envelope equations have many applications in the study of physical systems. Particularly interesting is the case 0f surface water waves. In steady conditions, laboratory experiments are carried out for multiple purposes either for researches or for practical problems. In both cases envelope equations are useful for understanding qualitative and quantitative results. The Ginzburg-Landau equation provides an excellent model for systems of that kind with remarkable patterns. Taking into account the above paragraph the main aim of our work is to generate waves in a water tank with almost a symmetric spectrum according to Akhmediev (2011) and thus, to produce a succession of rogue waves. The envelope of these waves gives us some patterns whose model is a type of Ginzburg-Landau equation, Danilov et al (1988). From a heuristic point of view the link between the experiment and the model is achieved. Further, the next step consists of changing generating parameters on the water tank and also the coefficients of the Ginzburg-Landau equation, Lechuga (2013) in order to reach a sufficient good approach.

  6. NUMERICAL METHODS FOR SOLVING THE MULTI-TERM TIME-FRACTIONAL WAVE-DIFFUSION EQUATION.

    PubMed

    Liu, F; Meerschaert, M M; McGough, R J; Zhuang, P; Liu, Q

    2013-03-01

    In this paper, the multi-term time-fractional wave-diffusion equations are considered. The multi-term time fractional derivatives are defined in the Caputo sense, whose orders belong to the intervals [0,1], [1,2), [0,2), [0,3), [2,3) and [2,4), respectively. Some computationally effective numerical methods are proposed for simulating the multi-term time-fractional wave-diffusion equations. The numerical results demonstrate the effectiveness of theoretical analysis. These methods and techniques can also be extended to other kinds of the multi-term fractional time-space models with fractional Laplacian.

  7. NUMERICAL METHODS FOR SOLVING THE MULTI-TERM TIME-FRACTIONAL WAVE-DIFFUSION EQUATION

    PubMed Central

    Liu, F.; Meerschaert, M.M.; McGough, R.J.; Zhuang, P.; Liu, Q.

    2013-01-01

    In this paper, the multi-term time-fractional wave-diffusion equations are considered. The multi-term time fractional derivatives are defined in the Caputo sense, whose orders belong to the intervals [0,1], [1,2), [0,2), [0,3), [2,3) and [2,4), respectively. Some computationally effective numerical methods are proposed for simulating the multi-term time-fractional wave-diffusion equations. The numerical results demonstrate the effectiveness of theoretical analysis. These methods and techniques can also be extended to other kinds of the multi-term fractional time-space models with fractional Laplacian. PMID:23772179

  8. A new analysis of the Fornberg-Whitham equation pertaining to a fractional derivative with Mittag-Leffler-type kernel

    NASA Astrophysics Data System (ADS)

    Kumar, Devendra; Singh, Jagdev; Baleanu, Dumitru

    2018-02-01

    The mathematical model of breaking of non-linear dispersive water waves with memory effect is very important in mathematical physics. In the present article, we examine a novel fractional extension of the non-linear Fornberg-Whitham equation occurring in wave breaking. We consider the most recent theory of differentiation involving the non-singular kernel based on the extended Mittag-Leffler-type function to modify the Fornberg-Whitham equation. We examine the existence of the solution of the non-linear Fornberg-Whitham equation of fractional order. Further, we show the uniqueness of the solution. We obtain the numerical solution of the new arbitrary order model of the non-linear Fornberg-Whitham equation with the aid of the Laplace decomposition technique. The numerical outcomes are displayed in the form of graphs and tables. The results indicate that the Laplace decomposition algorithm is a very user-friendly and reliable scheme for handling such type of non-linear problems of fractional order.

  9. Solitonlike pulses along a modified Noguchi nonlinear electrical network with second-neighbor interactions: Analytical studies

    NASA Astrophysics Data System (ADS)

    Kengne, E.; Liu, W. M.

    2018-05-01

    A modified lossless nonlinear Noguchi transmission network with second-neighbor interactions is considered. In the semidiscrete limit, we apply the reductive perturbation method and show that the dynamics of modulated waves propagating through the network are governed by an NLS equation with linear external potential. Classes of exact solitonic solutions of this network equation are derived, proving possible transmission of both bright and dark solitonlike pulses through the network. The effects of both the coupling second-neighbor parameter L3 and the strength λ of the linear potential on the dynamics of modulated waves through the network are investigated. One of the main results of our work is that with the introduction of the second neighbors in the network, two solitary signals, either two bright solitary signals or one bright and one dark solitary signal, may simultaneously propagate at the same frequency through the network.

  10. Wave equation datuming applied to marine OBS data and to land high resolution seismic profiling

    NASA Astrophysics Data System (ADS)

    Barison, Erika; Brancatelli, Giuseppe; Nicolich, Rinaldo; Accaino, Flavio; Giustiniani, Michela; Tinivella, Umberta

    2011-03-01

    One key step in seismic data processing flows is the computation of static corrections, which relocate shots and receivers at the same datum plane and remove near surface weathering effects. We applied a standard static correction and a wave equation datuming and compared the obtained results in two case studies: 1) a sparse ocean bottom seismometers dataset for deep crustal prospecting; 2) a high resolution land reflection dataset for hydrogeological investigation. In both cases, a detailed velocity field, obtained by tomographic inversion of the first breaks, was adopted to relocate shots and receivers to the datum plane. The results emphasize the importance of wave equation datuming to properly handle complex near surface conditions. In the first dataset, the deployed ocean bottom seismometers were relocated to the sea level (shot positions) and a standard processing sequence was subsequently applied to the output. In the second dataset, the application of wave equation datuming allowed us to remove the coherent noise, such as ground roll, and to improve the image quality with respect to the application of static correction. The comparison of the two approaches evidences that the main reflecting markers are better resolved when the wave equation datuming procedure is adopted.

  11. Wave-current interactions in three dimensions: why 3D radiation stresses are not practical

    NASA Astrophysics Data System (ADS)

    Ardhuin, Fabrice

    2017-04-01

    The coupling of ocean circulation and wave models is based on a wave-averaged mass and momentum conservation equations. Whereas several equivalent equations for the evolution of the current momentum have been proposed, implemented, and used, the possibility to formulate practical equations for the total momentum, which is the sum of the current and wave momenta, has been obscured by a series of publications. In a recent update on previous derivations, Mellor (J. Phys. Oceanogr. 2015) proposed a new set of wave-forced total momentum equations. Here we show that this derivation misses a term that integrates to zero over the vertical. This is because he went from his depth-integrated eq. (28) to the 3D equation (30) by simply removing the integral, but any extra zero-integrating term can be added. Corrected for this omission, the equations of motion are equivalent to the earlier equations by Mellor (2003) which are correct when expressed in terms of wave-induced pressure, horizontal velocity and vertical displacement. Namely the total momentum evolution is driven by the horizontal divergence of a horizontal momentum flux, ----- --- ∂^s- Sαβ = ^uα^uβ + δαβ ∂ς (^p- g^s) (1) and the vertical divergence of a vertical flux, Sαz = (p^-g^s)∂^s/∂xα, (2) where p is the wave-induced non-hydrostatic pressure, s is the wave-induced vertical displacement, and u^ α is the horizontal wave-induced velocity in direction α. So far, so good. Problems arise when p and s are evaluated. Indeend, Ardhuin et al. (J. Phys. Oceanogr. 2008) showed that, over a sloping bottom ∂Sαβ/∂xβ is of order of the slope, hence a consistent wave forcing requires an estimation of Sαz that must be estimated to first order in the bottom slope. For this, Airy wave theory, i.e. cosh(kz-+-kh) p ≃ ga cosh (kD ) cosψ, (3) is not enough. Ardhuin et al. (2008) has shown that using an exact solution of the Laplace equations the vertical flux can indeed be computed. The alternative of neglecting completely Sαz, as suggested by Mellor (2011) for small slopes, will always generate spurious currents because of the unbalanced forcing ∂Sαβ/∂xβ. Fortunately, there are many explicit versions of the wave-averaged equations without the wave momentum in them (Suzuki and Fox-Kemper 2016), with or without vortex force which are all consistent with the exact 3D equations of Andrews and McIntyre (1978). There is thus no need to stumble again and again on this fundamental problem of vertical momentum flux, which is a flux of wave momentum. The problem simply goes away by writing the equations for the current momentum only, without the problematic wave momentum. The current and wave momentum are coupled by forcing terms, and the wave momentum can be solved in 2D, the vertical distribution of momentum being maintained by the complex flux Sαz.

  12. Exact Solutions of Atmospheric (2+1)-Dimensional Nonlinear Incompressible Non-hydrostatic Boussinesq Equations

    NASA Astrophysics Data System (ADS)

    Liu, Ping; Wang, Ya-Xiong; Ren, Bo; Li, Jin-Hua

    2016-12-01

    Exact solutions of the atmospheric (2+1)-dimensional nonlinear incompressible non-hydrostatic Boussinesq (INHB) equations are researched by Combining function expansion and symmetry method. By function expansion, several expansion coefficient equations are derived. Symmetries and similarity solutions are researched in order to obtain exact solutions of the INHB equations. Three types of symmetry reduction equations and similarity solutions for the expansion coefficient equations are proposed. Non-traveling wave solutions for the INHB equations are obtained by symmetries of the expansion coefficient equations. Making traveling wave transformations on expansion coefficient equations, we demonstrate some traveling wave solutions of the INHB equations. The evolutions on the wind velocities, temperature perturbation and pressure perturbation are demonstrated by figures, which demonstrate the periodic evolutions with time and space. Supported by the National Natural Science Foundation of China under Grant Nos. 11305031 and 11305106, and Training Programme Foundation for Outstanding Young Teachers in Higher Education Institutions of Guangdong Province under Grant No. Yq2013205

  13. A second order discontinuous Galerkin fast sweeping method for Eikonal equations

    NASA Astrophysics Data System (ADS)

    Li, Fengyan; Shu, Chi-Wang; Zhang, Yong-Tao; Zhao, Hongkai

    2008-09-01

    In this paper, we construct a second order fast sweeping method with a discontinuous Galerkin (DG) local solver for computing viscosity solutions of a class of static Hamilton-Jacobi equations, namely the Eikonal equations. Our piecewise linear DG local solver is built on a DG method developed recently [Y. Cheng, C.-W. Shu, A discontinuous Galerkin finite element method for directly solving the Hamilton-Jacobi equations, Journal of Computational Physics 223 (2007) 398-415] for the time-dependent Hamilton-Jacobi equations. The causality property of Eikonal equations is incorporated into the design of this solver. The resulting local nonlinear system in the Gauss-Seidel iterations is a simple quadratic system and can be solved explicitly. The compactness of the DG method and the fast sweeping strategy lead to fast convergence of the new scheme for Eikonal equations. Extensive numerical examples verify efficiency, convergence and second order accuracy of the proposed method.

  14. Fully pseudospectral solution of the conformally invariant wave equation near the cylinder at spacelike infinity. III: nonspherical Schwarzschild waves and singularities at null infinity

    NASA Astrophysics Data System (ADS)

    Frauendiener, Jörg; Hennig, Jörg

    2018-03-01

    We extend earlier numerical and analytical considerations of the conformally invariant wave equation on a Schwarzschild background from the case of spherically symmetric solutions, discussed in Frauendiener and Hennig (2017 Class. Quantum Grav. 34 045005), to the case of general, nonsymmetric solutions. A key element of our approach is the modern standard representation of spacelike infinity as a cylinder. With a decomposition into spherical harmonics, we reduce the four-dimensional wave equation to a family of two-dimensional equations. These equations can be used to study the behaviour at the cylinder, where the solutions turn out to have, in general, logarithmic singularities at infinitely many orders. We derive regularity conditions that may be imposed on the initial data, in order to avoid the first singular terms. We then demonstrate that the fully pseudospectral time evolution scheme can be applied to this problem leading to a highly accurate numerical reconstruction of the nonsymmetric solutions. We are particularly interested in the behaviour of the solutions at future null infinity, and we numerically show that the singularities spread to null infinity from the critical set, where the cylinder approaches null infinity. The observed numerical behaviour is consistent with similar logarithmic singularities found analytically on the critical set. Finally, we demonstrate that even solutions with singularities at low orders can be obtained with high accuracy by virtue of a coordinate transformation that converts solutions with logarithmic singularities into smooth solutions.

  15. Parametric instabilities of finite-amplitude, circularly polarized Alfven waves in an anisotropic plasma

    NASA Technical Reports Server (NTRS)

    Hamabata, Hiromitsu

    1993-01-01

    A class of parametric instabilities of finite-amplitude, circularly polarized Alfven waves in a plasma with pressure anisotropy is studied by application of the CGL equations. A linear perturbation analysis is used to find the dispersion relation governing the instabilities, which is a fifth-order polynomial and is solved numerically. A large-amplitude, circularly polarized wave is unstable with respect to decay into three waves: one sound-like wave and two side-band Alfven-like waves. It is found that, in addition to the decay instability, two new instabilities that are absent in the framework of the MHD equations can occur, depending on the plasma parameters.

  16. Lagrangian geometrical optics of nonadiabatic vector waves and spin particles

    DOE PAGES

    Ruiz, D. E.; Dodin, I. Y.

    2015-07-29

    Linear vector waves, both quantum and classical, experience polarization-driven bending of ray trajectories and polarization dynamics that can be interpreted as the precession of the "wave spin". Here, both phenomena are governed by an effective gauge Hamiltonian vanishing in leading-order geometrical optics. This gauge Hamiltonian can be recognized as a generalization of the Stern-Gerlach Hamiltonian that is commonly known for spin-1/2 quantum particles. The corresponding reduced Lagrangians for continuous nondissipative waves and their geometrical-optics rays are derived from the fundamental wave Lagrangian. The resulting Euler-Lagrange equations can describe simultaneous interactions of N resonant modes, where N is arbitrary, and leadmore » to equations for the wave spin, which happens to be an (N 2 - 1)-dimensional spin vector. As a special case, classical equations for a Dirac particle (N = 2) are deduced formally, without introducing additional postulates or interpretations, from the Dirac quantum Lagrangian with the Pauli term. The model reproduces the Bargmann-Michel-Telegdi equations with added Stern-Gerlach force.« less

  17. 4-wave dynamics in kinetic wave turbulence

    NASA Astrophysics Data System (ADS)

    Chibbaro, Sergio; Dematteis, Giovanni; Rondoni, Lamberto

    2018-01-01

    A general Hamiltonian wave system with quartic resonances is considered, in the standard kinetic limit of a continuum of weakly interacting dispersive waves with random phases. The evolution equation for the multimode characteristic function Z is obtained within an ;interaction representation; and a perturbation expansion in the small nonlinearity parameter. A frequency renormalization is performed to remove linear terms that do not appear in the 3-wave case. Feynman-Wyld diagrams are used to average over phases, leading to a first order differential evolution equation for Z. A hierarchy of equations, analogous to the Boltzmann hierarchy for low density gases is derived, which preserves in time the property of random phases and amplitudes. This amounts to a general formalism for both the N-mode and the 1-mode PDF equations for 4-wave turbulent systems, suitable for numerical simulations and for investigating intermittency. Some of the main results which are developed here in detail have been tested numerically in a recent work.

  18. Wave equation datuming applied to S-wave reflection seismic data

    NASA Astrophysics Data System (ADS)

    Tinivella, U.; Giustiniani, M.; Nicolich, R.

    2018-05-01

    S-wave high-resolution reflection seismic data was processed using Wave Equation Datuming technique in order to improve signal/noise ratio, attenuating coherent noise, and seismic resolution and to solve static corrections problems. The application of this algorithm allowed obtaining a good image of the shallow subsurface geological features. Wave Equation Datuming moves shots and receivers from a surface to another datum (the datum plane), removing time shifts originated by elevation variation and/or velocity changes in the shallow subsoil. This algorithm has been developed and currently applied to P wave, but it reveals the capacity to highlight S-waves images when used to resolve thin layers in high-resolution prospecting. A good S-wave image facilitates correlation with well stratigraphies, optimizing cost/benefit ratio of any drilling. The application of Wave Equation Datuming requires a reliable velocity field, so refraction tomography was adopted. The new seismic image highlights the details of the subsoil reflectors and allows an easier integration with borehole information and geological surveys than the seismic section obtained by conventional CMP reflection processing. In conclusion, the analysis of S-wave let to characterize the shallow subsurface recognizing levels with limited thickness once we have clearly attenuated ground roll, wind and environmental noise.

  19. The modified alternative (G'/G)-expansion method to nonlinear evolution equation: application to the (1+1)-dimensional Drinfel'd-Sokolov-Wilson equation.

    PubMed

    Akbar, M Ali; Mohd Ali, Norhashidah Hj; Mohyud-Din, Syed Tauseef

    2013-01-01

    Over the years, (G'/G)-expansion method is employed to generate traveling wave solutions to various wave equations in mathematical physics. In the present paper, the alternative (G'/G)-expansion method has been further modified by introducing the generalized Riccati equation to construct new exact solutions. In order to illustrate the novelty and advantages of this approach, the (1+1)-dimensional Drinfel'd-Sokolov-Wilson (DSW) equation is considered and abundant new exact traveling wave solutions are obtained in a uniform way. These solutions may be imperative and significant for the explanation of some practical physical phenomena. It is shown that the modified alternative (G'/G)-expansion method an efficient and advance mathematical tool for solving nonlinear partial differential equations in mathematical physics.

  20. New extended (G'/G)-expansion method to solve nonlinear evolution equation: the (3 + 1)-dimensional potential-YTSF equation.

    PubMed

    Roshid, Harun-Or-; Akbar, M Ali; Alam, Md Nur; Hoque, Md Fazlul; Rahman, Nizhum

    2014-01-01

    In this article, a new extended (G'/G) -expansion method has been proposed for constructing more general exact traveling wave solutions of nonlinear evolution equations with the aid of symbolic computation. In order to illustrate the validity and effectiveness of the method, we pick the (3 + 1)-dimensional potential-YTSF equation. As a result, abundant new and more general exact solutions have been achieved of this equation. It has been shown that the proposed method provides a powerful mathematical tool for solving nonlinear wave equations in applied mathematics, engineering and mathematical physics.

  1. Experimentally validated multiphysics computational model of focusing and shock wave formation in an electromagnetic lithotripter.

    PubMed

    Fovargue, Daniel E; Mitran, Sorin; Smith, Nathan B; Sankin, Georgy N; Simmons, Walter N; Zhong, Pei

    2013-08-01

    A multiphysics computational model of the focusing of an acoustic pulse and subsequent shock wave formation that occurs during extracorporeal shock wave lithotripsy is presented. In the electromagnetic lithotripter modeled in this work the focusing is achieved via a polystyrene acoustic lens. The transition of the acoustic pulse through the solid lens is modeled by the linear elasticity equations and the subsequent shock wave formation in water is modeled by the Euler equations with a Tait equation of state. Both sets of equations are solved simultaneously in subsets of a single computational domain within the BEARCLAW framework which uses a finite-volume Riemann solver approach. This model is first validated against experimental measurements with a standard (or original) lens design. The model is then used to successfully predict the effects of a lens modification in the form of an annular ring cut. A second model which includes a kidney stone simulant in the domain is also presented. Within the stone the linear elasticity equations incorporate a simple damage model.

  2. Experimentally validated multiphysics computational model of focusing and shock wave formation in an electromagnetic lithotripter

    PubMed Central

    Fovargue, Daniel E.; Mitran, Sorin; Smith, Nathan B.; Sankin, Georgy N.; Simmons, Walter N.; Zhong, Pei

    2013-01-01

    A multiphysics computational model of the focusing of an acoustic pulse and subsequent shock wave formation that occurs during extracorporeal shock wave lithotripsy is presented. In the electromagnetic lithotripter modeled in this work the focusing is achieved via a polystyrene acoustic lens. The transition of the acoustic pulse through the solid lens is modeled by the linear elasticity equations and the subsequent shock wave formation in water is modeled by the Euler equations with a Tait equation of state. Both sets of equations are solved simultaneously in subsets of a single computational domain within the BEARCLAW framework which uses a finite-volume Riemann solver approach. This model is first validated against experimental measurements with a standard (or original) lens design. The model is then used to successfully predict the effects of a lens modification in the form of an annular ring cut. A second model which includes a kidney stone simulant in the domain is also presented. Within the stone the linear elasticity equations incorporate a simple damage model. PMID:23927200

  3. Transformation matrices between non-linear and linear differential equations

    NASA Technical Reports Server (NTRS)

    Sartain, R. L.

    1983-01-01

    In the linearization of systems of non-linear differential equations, those systems which can be exactly transformed into the second order linear differential equation Y"-AY'-BY=0 where Y, Y', and Y" are n x 1 vectors and A and B are constant n x n matrices of real numbers were considered. The 2n x 2n matrix was used to transform the above matrix equation into the first order matrix equation X' = MX. Specially the matrix M and the conditions which will diagonalize or triangularize M were studied. Transformation matrices P and P sub -1 were used to accomplish this diagonalization or triangularization to return to the solution of the second order matrix differential equation system from the first order system.

  4. Reheating signature in the gravitational wave spectrum from self-ordering scalar fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuroyanagi, Sachiko; Hiramatsu, Takashi; Yokoyama, Jun'ichi, E-mail: skuro@nagoya-u.jp, E-mail: hiramatz@yukawa.kyoto-u.ac.jp, E-mail: yokoyama@resceu.s.u-tokyo.ac.jp

    2016-02-01

    We investigate the imprint of reheating on the gravitational wave spectrum produced by self-ordering of multi-component scalar fields after a global phase transition. The equation of state of the Universe during reheating, which usually has different behaviour from that of a radiation-dominated Universe, affects the evolution of gravitational waves through the Hubble expansion term in the equations of motion. This gives rise to a different power-law behavior of frequency in the gravitational wave spectrum. The reheating history is therefore imprinted in the shape of the spectrum. We perform 512{sup 3} lattice simulations to investigate how the ordering scalar field reactsmore » to the change of the Hubble expansion and how the reheating effect arises in the spectrum. We also compare the result with inflation-produced gravitational waves, which has a similar spectral shape, and discuss whether it is possible to distinguish the origin between inflation and global phase transition by detecting the shape with future direct detection gravitational wave experiments such as DECIGO.« less

  5. A high-order time-parallel scheme for solving wave propagation problems via the direct construction of an approximate time-evolution operator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haut, T. S.; Babb, T.; Martinsson, P. G.

    2015-06-16

    Our manuscript demonstrates a technique for efficiently solving the classical wave equation, the shallow water equations, and, more generally, equations of the form ∂u/∂t=Lu∂u/∂t=Lu, where LL is a skew-Hermitian differential operator. The idea is to explicitly construct an approximation to the time-evolution operator exp(τL)exp(τL) for a relatively large time-step ττ. Recently developed techniques for approximating oscillatory scalar functions by rational functions, and accelerated algorithms for computing functions of discretized differential operators are exploited. Principal advantages of the proposed method include: stability even for large time-steps, the possibility to parallelize in time over many characteristic wavelengths and large speed-ups over existingmore » methods in situations where simulation over long times are required. Numerical examples involving the 2D rotating shallow water equations and the 2D wave equation in an inhomogenous medium are presented, and the method is compared to the 4th order Runge–Kutta (RK4) method and to the use of Chebyshev polynomials. The new method achieved high accuracy over long-time intervals, and with speeds that are orders of magnitude faster than both RK4 and the use of Chebyshev polynomials.« less

  6. Localized light waves: Paraxial and exact solutions of the wave equation (a review)

    NASA Astrophysics Data System (ADS)

    Kiselev, A. P.

    2007-04-01

    Simple explicit localized solutions are systematized over the whole space of a linear wave equation, which models the propagation of optical radiation in a linear approximation. Much attention has been paid to exact solutions (which date back to the Bateman findings) that describe wave beams (including Bessel-Gauss beams) and wave packets with a Gaussian localization with respect to the spatial variables and time. Their asymptotics with respect to free parameters and at large distances are presented. A similarity between these exact solutions and harmonic in time fields obtained in the paraxial approximation based on the Leontovich-Fock parabolic equation has been studied. Higher-order modes are considered systematically using the separation of variables method. The application of the Bateman solutions of the wave equation to the construction of solutions to equations with dispersion and nonlinearity and their use in wavelet analysis, as well as the summation of Gaussian beams, are discussed. In addition, solutions localized at infinity known as the Moses-Prosser “acoustic bullets”, as well as their harmonic in time counterparts, “ X waves”, waves from complex sources, etc., have been considered. Everywhere possible, the most elementary mathematical formalism is used.

  7. On the nonintegrability of equations for long- and short-wave interactions

    NASA Astrophysics Data System (ADS)

    Deconinck, Bernard; Upsal, Jeremy

    2018-07-01

    We examine the integrability of two models used for the interaction of long and short waves in dispersive media. One is more classical but arguably cannot be derived from the underlying water wave equations, while the other one was recently derived. We use the method of Zakharov and Schulman to attempt to construct conserved quantities for these systems at different orders in the magnitude of the solutions. The coupled KdV-NLS model is shown to be nonintegrable, due to the presence of fourth-order resonances. A coupled real KdV-complex KdV system is shown to suffer the same fate, except for three special choices of the coefficients, where higher-order calculations or a different approach are necessary to conclude integrability or the absence thereof.

  8. Reformulating the Schrödinger equation as a Shabat-Zakharov system

    NASA Astrophysics Data System (ADS)

    Boonserm, Petarpa; Visser, Matt

    2010-02-01

    We reformulate the second-order Schrödinger equation as a set of two coupled first-order differential equations, a so-called "Shabat-Zakharov system" (sometimes called a "Zakharov-Shabat" system). There is considerable flexibility in this approach, and we emphasize the utility of introducing an "auxiliary condition" or "gauge condition" that is used to cut down the degrees of freedom. Using this formalism, we derive the explicit (but formal) general solution to the Schrödinger equation. The general solution depends on three arbitrarily chosen functions, and a path-ordered exponential matrix. If one considers path ordering to be an "elementary" process, then this represents complete quadrature, albeit formal, of the second-order linear ordinary differential equation.

  9. Galerkin Spectral Method for the 2D Solitary Waves of Boussinesq Paradigm Equation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Christou, M. A.; Christov, C. I.

    2009-10-29

    We consider the 2D stationary propagating solitary waves of the so-called Boussinesq Paradigm equation. The fourth- order elliptic boundary value problem on infinite interval is solved by a Galerkin spectral method. An iterative procedure based on artificial time ('false transients') and operator splitting is used. Results are obtained for the shapes of the solitary waves for different values of the dispersion parameters for both subcritical and supercritical phase speeds.

  10. Nonlinear Schrödinger equations for Bose-Einstein condensates

    NASA Astrophysics Data System (ADS)

    Galati, Luigi; Zheng, Shijun

    2013-10-01

    The Gross-Pitaevskii equation, or more generally the nonlinear Schrödinger equation, models the Bose-Einstein condensates in a macroscopic gaseous superfluid wave-matter state in ultra-cold temperature. We provide analytical study of the NLS with L2 initial data in order to understand propagation of the defocusing and focusing waves for the BEC mechanism in the presence of electromagnetic fields. Numerical simulations are performed for the two-dimensional GPE with anisotropic quadratic potentials.

  11. Pseudo almost periodic solutions to some systems of nonlinear hyperbolic second-order partial differential equations

    NASA Astrophysics Data System (ADS)

    Al-Islam, Najja Shakir

    In this Dissertation, the existence of pseudo almost periodic solutions to some systems of nonlinear hyperbolic second-order partial differential equations is established. For that, (Al-Islam [4]) is first studied and then obtained under some suitable assumptions. That is, the existence of pseudo almost periodic solutions to a hyperbolic second-order partial differential equation with delay. The second-order partial differential equation (1) represents a mathematical model for the dynamics of gas absorption, given by uxt+a x,tux=Cx,t,u x,t , u0,t=4 t, 1 where a : [0, L] x RR , C : [0, L] x R x RR , and ϕ : RR are (jointly) continuous functions ( t being the greatest integer function) and L > 0. The results in this Dissertation generalize those of Poorkarimi and Wiener [22]. Secondly, a generalization of the above-mentioned system consisting of the non-linear hyperbolic second-order partial differential equation uxt+a x,tux+bx,t ut+cx,tu=f x,t,u, x∈ 0,L,t∈ R, 2 equipped with the boundary conditions ux,0 =40x, u0,t=u 0t, uxx,0=y 0x, x∈0,L, t∈R, 3 where a, b, c : [0, L ] x RR and f : [0, L] x R x RR are (jointly) continuous functions is studied. Under some suitable assumptions, the existence and uniqueness of pseudo almost periodic solutions to particular cases, as well as the general case of the second-order hyperbolic partial differential equation (2) are studied. The results of all studies contained within this text extend those obtained by Aziz and Meyers [6] in the periodic setting.

  12. Evaluation of a wave-vector-frequency-domain method for nonlinear wave propagation

    PubMed Central

    Jing, Yun; Tao, Molei; Clement, Greg T.

    2011-01-01

    A wave-vector-frequency-domain method is presented to describe one-directional forward or backward acoustic wave propagation in a nonlinear homogeneous medium. Starting from a frequency-domain representation of the second-order nonlinear acoustic wave equation, an implicit solution for the nonlinear term is proposed by employing the Green’s function. Its approximation, which is more suitable for numerical implementation, is used. An error study is carried out to test the efficiency of the model by comparing the results with the Fubini solution. It is shown that the error grows as the propagation distance and step-size increase. However, for the specific case tested, even at a step size as large as one wavelength, sufficient accuracy for plane-wave propagation is observed. A two-dimensional steered transducer problem is explored to verify the nonlinear acoustic field directional independence of the model. A three-dimensional single-element transducer problem is solved to verify the forward model by comparing it with an existing nonlinear wave propagation code. Finally, backward-projection behavior is examined. The sound field over a plane in an absorptive medium is backward projected to the source and compared with the initial field, where good agreement is observed. PMID:21302985

  13. Gravitational-Wave and Neutrino Signals from Core-Collapse Supernovae with QCD Phase Transition

    NASA Astrophysics Data System (ADS)

    Zha, Shuai; Leung, Shing Chi; Lin, Lap Ming; Chu, Ming-Chung

    Core-collapse supernovae (CCSNe) mark the catastrophic death of massive stars. We simulate CCSNe with a hybrid equations of state (EOS) containing a QCD (quantum chromodynamics) phase transition. The hybrid EOS incorporates the pure hadronic HShen EOS and the MIT Bag Model, with a Gibbs construction. Our two-dimensional hydrodynamics code includes a fifth-order shock capturing scheme WENO and models neutrino transport with the isotropic diffusion source approximation (IDSA). As the proto-neutron-star accretes matter and the core enters the mixed phase, a second collapse takes place due to softening of the EOS. We calculate the gravitational-wave (GW) and neutrino signals for this kind of CCSNe model. Future detection of these signals from CCSNe may help to constrain this scenario and the hybrid EOS.

  14. Neutrino and Gravitational-Wave Signatures of Quark Stars

    NASA Astrophysics Data System (ADS)

    Chu, Ming-chung; Leung, Shing Chi; Lin, Lap Ming; Zha, Shuai

    We study two types of supernovae — Type IA (SNIa) and Core-collapse supernovae (CCSNe), particularly how they may help to probe new physics. First, using a two-dimensional hydrodynamics code with a fifth-order shock capturing scheme, we simulate the explosions of dark matter admixed SNIa and find that the explosion energy and abundance of 56Ni produced are sensitive to the mass of admixed dark matter. A small admixture of dark matter may account for some sub-luminous SNIa observed. Second, by incorporating a hybrid equation of state (EOS) that includes a hadron-to-quark phase transition, we study possible formation of quark stars in CCSNe. We calculate the gravitational-wave and neutrino emissions from such a system, and we study the effects of the parameters in the EOS on such signals.

  15. Receptivity of Hypersonic Boundary Layers to Acoustic and Vortical Disturbances

    NASA Technical Reports Server (NTRS)

    Balakamar, P.; Kegerise, Michael A.

    2011-01-01

    Boundary layer receptivity to two-dimensional acoustic disturbances at different incidence angles and to vortical disturbances is investigated by solving the Navier-Stokes equations for Mach 6 flow over a 7deg half-angle sharp-tipped wedge and a cone. Higher order spatial and temporal schemes are employed to obtain the solution. The results show that the instability waves are generated in the leading edge region and that the boundary layer is much more receptive to slow acoustic waves as compared to the fast waves. It is found that the receptivity of the boundary layer on the windward side (with respect to the acoustic forcing) decreases when the incidence angle is increased from 0 to 30 degrees. However, the receptivity coefficient for the leeward side is found to vary relatively weakly with the incidence angle. The maximum receptivity is obtained when the wave incident angle is about 20 degrees. Vortical disturbances also generate unstable second modes, however the receptivity coefficients are smaller than that for the acoustic waves. Vortical disturbances first generate the fast acoustic modes and they switch to the slow mode near the continuous spectrum.

  16. Extended phase matching of second-harmonic generation in periodically poled KTiOPO4 with zero group-velocity mismatch

    NASA Astrophysics Data System (ADS)

    König, Friedrich; Wong, Franco N. C.

    2004-03-01

    Under extended phase-matching conditions, the first frequency derivative of the wave-vector mismatch is zero and the phase-matching bandwidth is greatly increased. We present extensive three-wave mixing measurements of the wave-vector mismatch and obtain improved Sellmeier equations for KTiOPO4. We observed a type-II extended phase-matching bandwidth of 100 nm for second-harmonic generation in periodically poled KTiOPO4, centered at the fundamental wavelength of 1584 nm. Applications in quantum entanglement and frequency metrology are discussed.

  17. Gravitational Wave in Linear General Relativity

    NASA Astrophysics Data System (ADS)

    Cubillos, D. J.

    2017-07-01

    General relativity is the best theory currently available to describe the interaction due to gravity. Within Albert Einstein's field equations this interaction is described by means of the spatiotemporal curvature generated by the matter-energy content in the universe. Weyl worked on the existence of perturbations of the curvature of space-time that propagate at the speed of light, which are known as Gravitational Waves, obtained to a first approximation through the linearization of the field equations of Einstein. Weyl's solution consists of taking the field equations in a vacuum and disturbing the metric, using the Minkowski metric slightly perturbed by a factor ɛ greater than zero but much smaller than one. If the feedback effect of the field is neglected, it can be considered as a weak field solution. After introducing the disturbed metric and ignoring ɛ terms of order greater than one, we can find the linearized field equations in terms of the perturbation, which can then be expressed in terms of the Dalambertian operator of the perturbation equalized to zero. This is analogous to the linear wave equation in classical mechanics, which can be interpreted by saying that gravitational effects propagate as waves at the speed of light. In addition to this, by studying the motion of a particle affected by this perturbation through the geodesic equation can show the transversal character of the gravitational wave and its two possible states of polarization. It can be shown that the energy carried by the wave is of the order of 1/c5 where c is the speed of light, which explains that its effects on matter are very small and very difficult to detect.

  18. Constraining modified theories of gravity with the galaxy bispectrum

    NASA Astrophysics Data System (ADS)

    Yamauchi, Daisuke; Yokoyama, Shuichiro; Tashiro, Hiroyuki

    2017-12-01

    We explore the use of the galaxy bispectrum induced by the nonlinear gravitational evolution as a possible probe to test general scalar-tensor theories with second-order equations of motion. We find that time dependence of the leading second-order kernel is approximately characterized by one parameter, the second-order index, which is expected to trace the higher-order growth history of the Universe. We show that our new parameter can significantly carry new information about the nonlinear growth of structure. We forecast future constraints on the second-order index as well as the equation-of-state parameter and the growth index.

  19. Symmetry and singularity properties of second-order ordinary differential equations of Lie's type III

    NASA Astrophysics Data System (ADS)

    Andriopoulos, K.; Leach, P. G. L.

    2007-04-01

    We extend the work of Abraham-Shrauner [B. Abraham-Shrauner, Hidden symmetries and linearization of the modified Painleve-Ince equation, J. Math. Phys. 34 (1993) 4809-4816] on the linearization of the modified Painleve-Ince equation to a wider class of nonlinear second-order ordinary differential equations invariant under the symmetries of time translation and self-similarity. In the process we demonstrate a remarkable connection with the parameters obtained in the singularity analysis of this class of equations.

  20. The externally corrected coupled cluster approach with four- and five-body clusters from the CASSCF wave function.

    PubMed

    Xu, Enhua; Li, Shuhua

    2015-03-07

    An externally corrected CCSDt (coupled cluster with singles, doubles, and active triples) approach employing four- and five-body clusters from the complete active space self-consistent field (CASSCF) wave function (denoted as ecCCSDt-CASSCF) is presented. The quadruple and quintuple excitation amplitudes within the active space are extracted from the CASSCF wave function and then fed into the CCSDt-like equations, which can be solved in an iterative way as the standard CCSDt equations. With a size-extensive CASSCF reference function, the ecCCSDt-CASSCF method is size-extensive. When the CASSCF wave function is readily available, the computational cost of the ecCCSDt-CASSCF method scales as the popular CCSD method (if the number of active orbitals is small compared to the total number of orbitals). The ecCCSDt-CASSCF approach has been applied to investigate the potential energy surface for the simultaneous dissociation of two O-H bonds in H2O, the equilibrium distances and spectroscopic constants of 4 diatomic molecules (F2(+), O2(+), Be2, and NiC), and the reaction barriers for the automerization reaction of cyclobutadiene and the Cl + O3 → ClO + O2 reaction. In most cases, the ecCCSDt-CASSCF approach can provide better results than the CASPT2 (second order perturbation theory with a CASSCF reference function) and CCSDT methods.

  1. Discontinuous Galerkin finite element method for the nonlinear hyperbolic problems with entropy-based artificial viscosity stabilization

    NASA Astrophysics Data System (ADS)

    Zingan, Valentin Nikolaevich

    This work develops a discontinuous Galerkin finite element discretization of non- linear hyperbolic conservation equations with efficient and robust high order stabilization built on an entropy-based artificial viscosity approximation. The solutions of equations are represented by elementwise polynomials of an arbitrary degree p > 0 which are continuous within each element but discontinuous on the boundaries. The discretization of equations in time is done by means of high order explicit Runge-Kutta methods identified with respective Butcher tableaux. To stabilize a numerical solution in the vicinity of shock waves and simultaneously preserve the smooth parts from smearing, we add some reasonable amount of artificial viscosity in accordance with the physical principle of entropy production in the interior of shock waves. The viscosity coefficient is proportional to the local size of the residual of an entropy equation and is bounded from above by the first-order artificial viscosity defined by a local wave speed. Since the residual of an entropy equation is supposed to be vanishingly small in smooth regions (of the order of the Local Truncation Error) and arbitrarily large in shocks, the entropy viscosity is almost zero everywhere except the shocks, where it reaches the first-order upper bound. One- and two-dimensional benchmark test cases are presented for nonlinear hyperbolic scalar conservation laws and the system of compressible Euler equations. These tests demonstrate the satisfactory stability properties of the method and optimal convergence rates as well. All numerical solutions to the test problems agree well with the reference solutions found in the literature. We conclude that the new method developed in the present work is a valuable alternative to currently existing techniques of viscous stabilization.

  2. Integrability of systems of two second-order ordinary differential equations admitting four-dimensional Lie algebras

    PubMed Central

    Gazizov, R. K.

    2017-01-01

    We suggest an algorithm for integrating systems of two second-order ordinary differential equations with four symmetries. In particular, if the admitted transformation group has two second-order differential invariants, the corresponding system can be integrated by quadratures using invariant representation and the operator of invariant differentiation. Otherwise, the systems reduce to partially uncoupled forms and can also be integrated by quadratures. PMID:28265184

  3. Integrability of systems of two second-order ordinary differential equations admitting four-dimensional Lie algebras.

    PubMed

    Gainetdinova, A A; Gazizov, R K

    2017-01-01

    We suggest an algorithm for integrating systems of two second-order ordinary differential equations with four symmetries. In particular, if the admitted transformation group has two second-order differential invariants, the corresponding system can be integrated by quadratures using invariant representation and the operator of invariant differentiation. Otherwise, the systems reduce to partially uncoupled forms and can also be integrated by quadratures.

  4. Surfatron acceleration of protons by an electromagnetic wave at the heliosphere periphery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Loznikov, V. M., E-mail: loznikov@yandex.ru; Erokhin, N. S.; Zol’nikova, N. N.

    2013-10-15

    The trapping and subsequent efficient surfatron acceleration of weakly relativistic protons by an electromagnetic wave propagating across an external magnetic field in plasma at the heliosphere periphery is considered. The problem is reduced to analysis of a second-order time-dependent nonlinear equation for the wave phase on the particle trajectory. The conditions of proton trapping by the wave, the dynamics of the components of the particle momentum and velocity, the structure of the phase plane, the particle trajectories, and the dependence of the acceleration rate on initial parameters of the problem are analyzed. The asymptotic behavior of the characteristics of acceleratedmore » particles for the heliosphere parameters is investigated. The optimum conditions for surfatron acceleration of protons by an electromagnetic wave are discussed. It is demonstrated that the experimentally observed deviation of the spectra of cosmic-ray protons from standard power-law dependences can be caused by the surfatron mechanism. It is shown that protons with initial energies of several GeV can be additionally accelerated in the heliosphere (the region located between the shock front of the solar wind and the heliopause at distances of about 100 astronomical units (a.u.) from the Sun) up to energies on the order of several thousands of GeV. In order to explain the proton spectra in the energy range of ∼20–500 GeV, a two-component phenomenological model is proposed. The first component corresponds to the constant (in this energy range) galactic contribution, while the second (variable) component corresponds to the heliospheric contribution, which appears due to the additional acceleration of soft cosmic-ray protons at the heliosphere periphery. Variations in the proton spectra measured on different time scales between 1992 and 2008 in the energy range from several tens to several hundred GeV, as well as the dependence of these spectra on the heliospheric weather, can be explained by surfatron acceleration of protons in the heliosphere.« less

  5. Application of fractional derivative with exponential law to bi-fractional-order wave equation with frictional memory kernel

    NASA Astrophysics Data System (ADS)

    Cuahutenango-Barro, B.; Taneco-Hernández, M. A.; Gómez-Aguilar, J. F.

    2017-12-01

    Analytical solutions of the wave equation with bi-fractional-order and frictional memory kernel of Mittag-Leffler type are obtained via Caputo-Fabrizio fractional derivative in the Liouville-Caputo sense. Through the method of separation of variables and Laplace transform method we derive closed-form solutions and establish fundamental solutions. Special cases with homogeneous Dirichlet boundary conditions and nonhomogeneous initial conditions, as well as for the external force are considered. Numerical simulations of the special solutions were done and novel behaviors are obtained.

  6. Global solutions and finite time blow-up for fourth order nonlinear damped wave equation

    NASA Astrophysics Data System (ADS)

    Xu, Runzhang; Wang, Xingchang; Yang, Yanbing; Chen, Shaohua

    2018-06-01

    In this paper, we study the initial boundary value problem and global well-posedness for a class of fourth order wave equations with a nonlinear damping term and a nonlinear source term, which was introduced to describe the dynamics of a suspension bridge. The global existence, decay estimate, and blow-up of solution at both subcritical (E(0) < d) and critical (E(0) = d) initial energy levels are obtained. Moreover, we prove the blow-up in finite time of solution at the supercritical initial energy level (E(0) > 0).

  7. V.A.Robsman: Nonlinear Testing and Building Industry

    NASA Astrophysics Data System (ADS)

    Rudenko, Oleg V.

    2006-05-01

    This talk is devoted to the memory of outstanding scientist and engineer Vadim A. Robsman who died in January 2005. Dr.Robsman was the Honored Builder of Russia. He developed and applied new methods of nondestructive testing of buildings, bridges, power plants and other building units. At the same time, he published works on fundamental problems of acoustics and nonlinear dynamics. In particular, he suggested a new equation of the 4-th order continuing the series of basic equations of nonlinear wave theory (Burgers Eq.: 2-nd order, Korteveg - de Vries Eq.: 3-rd order) and found exact solutions for high-intensity waves in scattering media.

  8. Order Reduction, Projectability and Constraints of Second-Order Field Theories and Higher-Order Mechanics

    NASA Astrophysics Data System (ADS)

    Gaset, Jordi; Román-Roy, Narciso

    2016-12-01

    The projectability of Poincaré-Cartan forms in a third-order jet bundle J3π onto a lower-order jet bundle is a consequence of the degenerate character of the corresponding Lagrangian. This fact is analyzed using the constraint algorithm for the associated Euler-Lagrange equations in J3π. The results are applied to study the Hilbert Lagrangian for the Einstein equations (in vacuum) from a multisymplectic point of view. Thus we show how these equations are a consequence of the application of the constraint algorithm to the geometric field equations, meanwhile the other constraints are related with the fact that this second-order theory is equivalent to a first-order theory. Furthermore, the case of higher-order mechanics is also studied as a particular situation.

  9. Traveling wave solutions to a reaction-diffusion equation

    NASA Astrophysics Data System (ADS)

    Feng, Zhaosheng; Zheng, Shenzhou; Gao, David Y.

    2009-07-01

    In this paper, we restrict our attention to traveling wave solutions of a reaction-diffusion equation. Firstly we apply the Divisor Theorem for two variables in the complex domain, which is based on the ring theory of commutative algebra, to find a quasi-polynomial first integral of an explicit form to an equivalent autonomous system. Then through this first integral, we reduce the reaction-diffusion equation to a first-order integrable ordinary differential equation, and a class of traveling wave solutions is obtained accordingly. Comparisons with the existing results in the literature are also provided, which indicates that some analytical results in the literature contain errors. We clarify the errors and instead give a refined result in a simple and straightforward manner.

  10. Overcoming Challenges in Kinetic Modeling of Magnetized Plasmas and Vacuum Electronic Devices

    NASA Astrophysics Data System (ADS)

    Omelchenko, Yuri; Na, Dong-Yeop; Teixeira, Fernando

    2017-10-01

    We transform the state-of-the art of plasma modeling by taking advantage of novel computational techniques for fast and robust integration of multiscale hybrid (full particle ions, fluid electrons, no displacement current) and full-PIC models. These models are implemented in 3D HYPERS and axisymmetric full-PIC CONPIC codes. HYPERS is a massively parallel, asynchronous code. The HYPERS solver does not step fields and particles synchronously in time but instead executes local variable updates (events) at their self-adaptive rates while preserving fundamental conservation laws. The charge-conserving CONPIC code has a matrix-free explicit finite-element (FE) solver based on a sparse-approximate inverse (SPAI) algorithm. This explicit solver approximates the inverse FE system matrix (``mass'' matrix) using successive sparsity pattern orders of the original matrix. It does not reduce the set of Maxwell's equations to a vector-wave (curl-curl) equation of second order but instead utilizes the standard coupled first-order Maxwell's system. We discuss the ability of our codes to accurately and efficiently account for multiscale physical phenomena in 3D magnetized space and laboratory plasmas and axisymmetric vacuum electronic devices.

  11. Zonal-flow dynamics from a phase-space perspective

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ruiz, D. E.; Parker, J. B.; Shi, E. L.

    The wave kinetic equation (WKE) describing drift-wave (DW) turbulence is widely used in the studies of zonal flows (ZFs) emerging from DW turbulence. But, this formulation neglects the exchange of enstrophy between DWs and ZFs and also ignores effects beyond the geometrical-optics limit. Furthermore, we derive a modified theory that takes both of these effects into account, while still treating DW quanta (“driftons”) as particles in phase space. The drifton dynamics is described by an equation of the Wigner–Moyal type, which is commonly known in the phase-space formulation of quantum mechanics. In the geometrical-optics limit, this formulation features additional termsmore » missing in the traditional WKE that ensure exact conservation of the total enstrophy of the system, in addition to the total energy, which is the only conserved invariant in previous theories based on the WKE. We present numerical simulations to illustrate the importance of these additional terms. The proposed formulation can be considered as a phase-space representation of the second-order cumulant expansion, or CE2.« less

  12. Zonal-flow dynamics from a phase-space perspective

    DOE PAGES

    Ruiz, D. E.; Parker, J. B.; Shi, E. L.; ...

    2016-12-16

    The wave kinetic equation (WKE) describing drift-wave (DW) turbulence is widely used in the studies of zonal flows (ZFs) emerging from DW turbulence. But, this formulation neglects the exchange of enstrophy between DWs and ZFs and also ignores effects beyond the geometrical-optics limit. Furthermore, we derive a modified theory that takes both of these effects into account, while still treating DW quanta (“driftons”) as particles in phase space. The drifton dynamics is described by an equation of the Wigner–Moyal type, which is commonly known in the phase-space formulation of quantum mechanics. In the geometrical-optics limit, this formulation features additional termsmore » missing in the traditional WKE that ensure exact conservation of the total enstrophy of the system, in addition to the total energy, which is the only conserved invariant in previous theories based on the WKE. We present numerical simulations to illustrate the importance of these additional terms. The proposed formulation can be considered as a phase-space representation of the second-order cumulant expansion, or CE2.« less

  13. Update on the Comparison of Second-Order Loads on a Tension Leg Platform for Wind Turbines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gueydon, Sebastien; Jonkman, Jason

    2016-07-01

    In comparison to other kinds of floaters (like a spar or a semisubmersible), the tension leg platform has several notable advantages: its vertical motions are negligible, its weight is lighter, and its mooring system's footprint is smaller. Although a tension leg platform has a negligible response to first-order vertical wave loads, the second-order wave loads need to be addressed. This paper follows up on a verification study of second-order wave loads on a tension leg platform for wind turbines done by the Maritime Research Institute of The Netherlands and National Renewable Energy Laboratory and it brings some corrections to itsmore » conclusions.« less

  14. S-matrix method for the numerical determination of bound states.

    NASA Technical Reports Server (NTRS)

    Bhatia, A. K.; Madan, R. N.

    1973-01-01

    A rapid numerical technique for the determination of bound states of a partial-wave-projected Schroedinger equation is presented. First, one needs to integrate the equation only outwards as in the scattering case, and second, the number of trials necessary to determine the eigenenergy and the corresponding eigenfunction is considerably less than in the usual method. As a nontrivial example of the technique, bound states are calculated in the exchange approximation for the e-/He+ system and l equals 1 partial wave.

  15. Quantitative Reappraisal of the Helmholtz-Guyton Resonance Theory of Frequency Tuning in the Cochlea

    PubMed Central

    Babbs, Charles F.

    2011-01-01

    To explore the fundamental biomechanics of sound frequency transduction in the cochlea, a two-dimensional analytical model of the basilar membrane was constructed from first principles. Quantitative analysis showed that axial forces along the membrane are negligible, condensing the problem to a set of ordered one-dimensional models in the radial dimension, for which all parameters can be specified from experimental data. Solutions of the radial models for asymmetrical boundary conditions produce realistic deformation patterns. The resulting second-order differential equations, based on the original concepts of Helmholtz and Guyton, and including viscoelastic restoring forces, predict a frequency map and amplitudes of deflections that are consistent with classical observations. They also predict the effects of an observation hole drilled in the surrounding bone, the effects of curvature of the cochlear spiral, as well as apparent traveling waves under a variety of experimental conditions. A quantitative rendition of the classical Helmholtz-Guyton model captures the essence of cochlear mechanics and unifies the competing resonance and traveling wave theories. PMID:22028708

  16. Second-Order Perturbation Theory for Generalized Active Space Self-Consistent-Field Wave Functions.

    PubMed

    Ma, Dongxia; Li Manni, Giovanni; Olsen, Jeppe; Gagliardi, Laura

    2016-07-12

    A multireference second-order perturbation theory approach based on the generalized active space self-consistent-field (GASSCF) wave function is presented. Compared with the complete active space (CAS) and restricted active space (RAS) wave functions, GAS wave functions are more flexible and can employ larger active spaces and/or different truncations of the configuration interaction expansion. With GASSCF, one can explore chemical systems that are not affordable with either CASSCF or RASSCF. Perturbation theory to second order on top of GAS wave functions (GASPT2) has been implemented to recover the remaining electron correlation. The method has been benchmarked by computing the chromium dimer ground-state potential energy curve. These calculations show that GASPT2 gives results similar to CASPT2 even with a configuration interaction expansion much smaller than the corresponding CAS expansion.

  17. Rethinking Pedagogy for Second-Order Differential Equations: A Simplified Approach to Understanding Well-Posed Problems

    ERIC Educational Resources Information Center

    Tisdell, Christopher C.

    2017-01-01

    Knowing an equation has a unique solution is important from both a modelling and theoretical point of view. For over 70 years, the approach to learning and teaching "well posedness" of initial value problems (IVPs) for second- and higher-order ordinary differential equations has involved transforming the problem and its analysis to a…

  18. An efficient model for coupling structural vibrations with acoustic radiation

    NASA Technical Reports Server (NTRS)

    Frendi, Abdelkader; Maestrello, Lucio; Ting, LU

    1993-01-01

    The scattering of an incident wave by a flexible panel is studied. The panel vibration is governed by the nonlinear plate equations while the loading on the panel, which is the pressure difference across the panel, depends on the reflected and transmitted waves. Two models are used to calculate this structural-acoustic interaction problem. One solves the three dimensional nonlinear Euler equations for the flow-field coupled with the plate equations (the fully coupled model). The second uses the linear wave equation for the acoustic field and expresses the load as a double integral involving the panel oscillation (the decoupled model). The panel oscillation governed by a system of integro-differential equations is solved numerically and the acoustic field is then defined by an explicit formula. Numerical results are obtained using the two models for linear and nonlinear panel vibrations. The predictions given by these two models are in good agreement but the computational time needed for the 'fully coupled model' is 60 times longer than that for 'the decoupled model'.

  19. Nonlinear Eddy-Eddy Interactions in Dry Atmospheres Macroturbulence

    NASA Astrophysics Data System (ADS)

    Ait Chaalal, F.; Schneider, T.

    2012-12-01

    The statistical moment equations derived from the atmospheric equation of motions are not closed. However neglecting the large-scale eddy-eddy nonlinear interactions in an idealized dry general circulation model (GCM), which is equivalent to truncating the moment equations at the second order, can reproduce some of the features of the general circulation ([1]), highlighting the significance of eddy-mean flow interactions and the weakness of eddy-eddy interactions in atmospheric macroturbulence ([2]). The goal of the present study is to provide new insight into the rôle of these eddy-eddy interactions and discuss the relevance of a simple stochastic parametrization to represent them. We investigate in detail the general circulation in an idealized dry GCM, comparing full simulations with simulations where the eddy-eddy interactions are removed. The radiative processes are parametrized through Newtonian relaxation toward a radiative-equilibrium state with a prescribed equator to pole temperature contrast. A convection scheme relaxing toward a prescribed convective vertical lapse rate mimics some aspects of moist convection. The study is performed over a wide range of parameters covering the planetary rotation rate, the equator to pole temperature contrast and the vertical lapse rate. Particular attention is given to the wave-mean flow interactions and to the spectral budget. It is found that the no eddy-eddy simulations perform well when the baroclinic activity is weaker, for example for lower equator to pole temperature contrasts or higher rotation rates: the mean meridional circulation is well reproduced, with realistic eddy-driven jets and energy-containing eddy length scales of the order of the Rossby deformation radius. For a stronger baroclinic activity the no eddy-eddy model does not achieve a realistic isotropization of the eddies, the meridional circulation is compressed in the meridional direction and secondary eddy-driven jets emerge. In addition, the baroclinic wave activity does not reach the upper troposphere in association with a very weak or absent Rossby wave absorption in the upper subtropical troposphere. Understanding these deficiencies and the rôle of the eddy-eddy nonlinear interactions in determining the mean meridional circulation paves the way to the development of stochastic third order moments parametrizations, to eventually build GCMs that directly solve for the flow statistics and that could provide a deeper understanding of anthropogenic and natural climate changes. [1] O'Gorman, P. A., & Schneider, T. 2007, Geophysical Research Letters, 34, 22801 [2] Schneider, T., and C. C. Walker, 2006, Journal of the Atmospheric Sciences, 63, 1569-1586.

  20. On the physics of waves in the solar atmosphere: Wave heating and wind acceleration

    NASA Technical Reports Server (NTRS)

    Musielak, Z. E.

    1994-01-01

    This paper presents work performed on the generation and physics of acoustic waves in the solar atmosphere. The investigators have incorporated spatial and temporal turbulent energy spectra in a newly corrected version of the Lighthill-Stein theory of acoustic wave generation in order to calculate the acoustic wave energy fluxes generated in the solar convective zone. The investigators have also revised and improved the treatment of the generation of magnetic flux tube waves, which can carry energy along the tubes far away from the region of their origin, and have calculated the tube wave energy fluxes for the sun. They also examine the transfer of the wave energy originated in the solar convective zone to the outer atmospheric layers through computation of wave propagation and dissipation in highly nonhomogeneous solar atmosphere. These waves may efficiently heat the solar atmosphere and the heating will be especially significant in the chromospheric network. It is also shown that the role played by Alfven waves in solar wind acceleration and coronal hole heating is dominant. The second part of the project concerned investigation of wave propagation in highly inhomogeneous stellar atmospheres using an approach based on an analytic tool developed by Musielak, Fontenla, and Moore. In addition, a new technique based on Dirac equations has been developed to investigate coupling between different MHD waves propagating in stratified stellar atmospheres.

  1. Numerical study of chemically reacting viscous flow relevant to pulsed detonation engines

    NASA Astrophysics Data System (ADS)

    Yi, Tae-Hyeong

    2005-11-01

    A computational fluid dynamics code for two-dimensional, multi-species, laminar Navier-Stokes equations is developed to simulate a recently proposed engine concept for a pulsed detonation based propulsion system and to investigate the feasibility of the engine of the concept. The governing equations that include transport phenomena such as viscosity, thermal conduction and diffusion are coupled with chemical reactions. The gas is assumed to be thermally perfect and in chemically non-equilibrium. The stiffness due to coupling the fluid dynamics and the chemical kinetics is properly taken care of by using a time-operator splitting method and a variable coefficient ordinary differential equation solver. A second-order Roe scheme with a minmod limiter is explicitly used for space descretization, while a second-order, two-step Runge-Kutta method is used for time descretization. In space integration, a finite volume method and a cell-centered scheme are employed. The first-order derivatives in the equations of transport properties are discretized by a central differencing with Green's theorem. Detailed chemistry is involved in this study. Two chemical reaction mechanisms are extracted from GRI-Mech, which are forty elementary reactions with thirteen species for a hydrogen-air mixture and twenty-seven reactions with eight species for a hydrogen-oxygen mixture. The code is ported to a high-performance parallel machine with Message-Passing Interface. Code validation is performed with chemical kinetic modeling for a stoichiometric hydrogen-air mixture, an one-dimensional detonation tube, a two-dimensional, inviscid flow over a wedge and a viscous flow over a flat plate. Detonation is initiated using a numerically simulated arc-ignition or shock-induced ignition system. Various freestream conditions are utilized to study the propagation of the detonation in the proposed concept of the engine. Investigation of the detonation propagation is performed for a pulsed detonation rocket and a supersonic combustion chamber. For a pulsed detonation rocket case, the detonation tube is embedded in a mixing chamber where an initiator is added to the main detonation chamber. Propagating detonation waves in a supersonic combustion chamber is investigated for one- and two-dimensional cases. The detonation initiated by an arc and a shock wave is studied in the inviscid and viscous flow, respectively. Various features including a detonation-shock interaction, a detonation diffraction, a base flow and a vortex are observed.

  2. The second-order interference of two independent single-mode He-Ne lasers

    NASA Astrophysics Data System (ADS)

    Liu, Jianbin; Le, Mingnan; Bai, Bin; Wang, Wentao; Chen, Hui; Zhou, Yu; Li, Fu-li; Xu, Zhuo

    2015-09-01

    The second-order spatial and temporal interference patterns with two independent single-mode continuous-wave He-Ne lasers are observed when these two lasers are incident to two adjacent input ports of a 1:1 non-polarizing beam splitter, respectively. Two-photon interference based on the superposition principle in Feynman's path integral theory is employed to interpret the experimental results. The conditions to observe the second-order interference pattern with two independent single-mode continuous-wave lasers are discussed. It is concluded that frequency stability is important to observe the second-order interference pattern with two independent light beams.

  3. Investigation of shock waves in the relativistic Riemann problem: A comparison of viscous fluid dynamics to kinetic theory

    NASA Astrophysics Data System (ADS)

    Bouras, I.; Molnár, E.; Niemi, H.; Xu, Z.; El, A.; Fochler, O.; Greiner, C.; Rischke, D. H.

    2010-08-01

    We solve the relativistic Riemann problem in viscous matter using the relativistic Boltzmann equation and the relativistic causal dissipative fluid-dynamical approach of Israel and Stewart. Comparisons between these two approaches clarify and point out the regime of validity of second-order fluid dynamics in relativistic shock phenomena. The transition from ideal to viscous shocks is demonstrated by varying the shear viscosity to entropy density ratio η/s. We also find that a good agreement between these two approaches requires a Knudsen number Kn<1/2.

  4. Astigmatism transfer phenomena in the optical parametric amplification process

    NASA Astrophysics Data System (ADS)

    Li, Wenkai; Chen, Yun; Li, Yanyan; Xu, Yi; Guo, Xiaoyang; Lu, Jun; Leng, Yuxin

    2017-01-01

    We numerically and experimentally investigate the astigmatism transfer phenomena in femtosecond optical parametric amplification (OPA). We model the OPA process based on the coupled second-order three-wave nonlinear propagation equations. The numerical and experimental results support that the input pump pulse astigmatism can be transferred into the idler pulse but not the signal pulse, and the idler pulse astigmatism originating from spatial walk-off is less than the idler pulse astigmatism received from the pump. Thus, we can provide a clear understanding of astigmatism transfer mechanisms in the OPA process, and make better use of broadband tunable OPA sources.

  5. Investigation of shock waves in the relativistic Riemann problem: A comparison of viscous fluid dynamics to kinetic theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bouras, I.; El, A.; Fochler, O.

    2010-08-15

    We solve the relativistic Riemann problem in viscous matter using the relativistic Boltzmann equation and the relativistic causal dissipative fluid-dynamical approach of Israel and Stewart. Comparisons between these two approaches clarify and point out the regime of validity of second-order fluid dynamics in relativistic shock phenomena. The transition from ideal to viscous shocks is demonstrated by varying the shear viscosity to entropy density ratio {eta}/s. We also find that a good agreement between these two approaches requires a Knudsen number Kn<1/2.

  6. General relaxation schemes in multigrid algorithms for higher order singularity methods

    NASA Technical Reports Server (NTRS)

    Oskam, B.; Fray, J. M. J.

    1981-01-01

    Relaxation schemes based on approximate and incomplete factorization technique (AF) are described. The AF schemes allow construction of a fast multigrid method for solving integral equations of the second and first kind. The smoothing factors for integral equations of the first kind, and comparison with similar results from the second kind of equations are a novel item. Application of the MD algorithm shows convergence to the level of truncation error of a second order accurate panel method.

  7. Wave propagation through a flexoelectric piezoelectric slab sandwiched by two piezoelectric half-spaces.

    PubMed

    Jiao, Fengyu; Wei, Peijun; Li, Yueqiu

    2018-01-01

    Reflection and transmission of plane waves through a flexoelectric piezoelectric slab sandwiched by two piezoelectric half-spaces are studied in this paper. The secular equations in the flexoelectric piezoelectric material are first derived from the general governing equation. Different from the classical piezoelectric medium, there are five kinds of coupled elastic waves in the piezoelectric material with the microstructure effects taken into consideration. The state vectors are obtained by the summation of contributions from all possible partial waves. The state transfer equation of flexoelectric piezoelectric slab is derived from the motion equation by the reduction of order, and the transfer matrix of flexoelectric piezoelectric slab is obtained by solving the state transfer equation. By using the continuous conditions at the interface and the approach of partition matrix, we get the resultant algebraic equations in term of the transfer matrix from which the reflection and transmission coefficients can be calculated. The amplitude ratios and further the energy flux ratios of various waves are evaluated numerically. The numerical results are shown graphically and are validated by the energy conservation law. Based on these numerical results, the influences of two characteristic lengths of microstructure and the flexoelectric coefficients on the wave propagation are discussed. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Robust and Accurate Shock Capturing Method for High-Order Discontinuous Galerkin Methods

    NASA Technical Reports Server (NTRS)

    Atkins, Harold L.; Pampell, Alyssa

    2011-01-01

    A simple yet robust and accurate approach for capturing shock waves using a high-order discontinuous Galerkin (DG) method is presented. The method uses the physical viscous terms of the Navier-Stokes equations as suggested by others; however, the proposed formulation of the numerical viscosity is continuous and compact by construction, and does not require the solution of an auxiliary diffusion equation. This work also presents two analyses that guided the formulation of the numerical viscosity and certain aspects of the DG implementation. A local eigenvalue analysis of the DG discretization applied to a shock containing element is used to evaluate the robustness of several Riemann flux functions, and to evaluate algorithm choices that exist within the underlying DG discretization. A second analysis examines exact solutions to the DG discretization in a shock containing element, and identifies a "model" instability that will inevitably arise when solving the Euler equations using the DG method. This analysis identifies the minimum viscosity required for stability. The shock capturing method is demonstrated for high-speed flow over an inviscid cylinder and for an unsteady disturbance in a hypersonic boundary layer. Numerical tests are presented that evaluate several aspects of the shock detection terms. The sensitivity of the results to model parameters is examined with grid and order refinement studies.

  9. Existence and stability of dispersive solutions to the Kadomtsev-Petviashvili equation in the presence of dispersion effect

    NASA Astrophysics Data System (ADS)

    Das, Amiya; Ganguly, Asish

    2017-07-01

    The paper deals with Kadomtsev-Petviashvili (KP) equation in presence of a small dispersion effect. The nature of solutions are examined under the dispersion effect by using Lyapunov function and dynamical system theory. We prove that when dispersion is added to the KP equation, in certain regions, yet there exist bounded traveling wave solutions in the form of solitary waves, periodic and elliptic functions. The general solution of the equation with or without the dispersion effect are obtained in terms of Weirstrass ℘ functions and Jacobi elliptic functions. New form of kink-type solutions are established by exploring a new technique based on factorization method, use of functional transformation and the Abel's first order nonlinear equation. Furthermore, the stability analysis of the dispersive solutions are examined which shows that the traveling wave velocity is a bifurcation parameter which governs between different classes of waves. We use the phase plane analysis and show that at a critical velocity, the solution has a transcritical bifurcation.

  10. Development of a second order closure model for computation of turbulent diffusion flames

    NASA Technical Reports Server (NTRS)

    Varma, A. K.; Donaldson, C. D.

    1974-01-01

    A typical eddy box model for the second-order closure of turbulent, multispecies, reacting flows developed. The model structure was quite general and was valid for an arbitrary number of species. For the case of a reaction involving three species, the nine model parameters were determined from equations for nine independent first- and second-order correlations. The model enabled calculation of any higher-order correlation involving mass fractions, temperatures, and reaction rates in terms of first- and second-order correlations. Model predictions for the reaction rate were in very good agreement with exact solutions of the reaction rate equations for a number of assumed flow distributions.

  11. Contribution of non-resonant wave-wave interactions in the dynamics of long-crested sea wave fields

    NASA Astrophysics Data System (ADS)

    Benoit, Michel

    2017-04-01

    Gravity waves fields at the surface of the oceans evolve under the combined effects of several physical mechanisms, of which nonlinear wave-wave interactions play a dominant role. These interactions transfer energy between components within the energy spectrum and allow in particular to explain the shape of the distribution of wave energy according to the frequencies and directions of propagation. In the oceanic domain (deep water conditions), dominant interactions are third-order resonant interactions, between quadruplets (or quartets) of wave components, and the evolution of the wave spectrum is governed by a kinetic equation, established by Hasselmann (1962) and Zakharov (1968). The kinetic equation has a number of interesting properties, including the existence of self-similar solutions and cascades to small and large wavelengths of waves, which can be studied in the framework of the wave (or weak) turbulence theory (e.g. Badulin et al., 2005). With the aim to obtain more complete and precise modelling of sea states dynamics, we investigate here the possibility and consequences of taking into account the non-resonant interactions -quasi-resonant in practice- among 4 waves. A mathematical formalism has recently been proposed to account for these non-resonant interactions in a statistical framework by Annenkov & Shrira (2006) (Generalized Kinetic Equation, GKE) and Gramstad & Stiassnie (2013) (Phase Averaged Equation, PAE). In order to isolate the non-resonant contributions, we limit ourselves here to monodirectional (i.e. long-crested) wave trains, since in this case the 4-wave resonant interactions vanish. The (stochastic) modelling approaches proposed by Annenkov & Shrira (2006) and Gramstad & Stiassnie (2013) are compared to phase-resolving (deterministic) simulations based on a fully nonlinear potential approach (using a high-order spectral method, HOS). We study and compare the evolution dynamics of the wave spectrum at different time scales (i.e. over durations ranging from a few wave periods to 1000 periods), with the aim of highlighting the capabilities and limitations of the GKE-PAE models. Different situations are considered by varying the relative water depth, the initial steepness of the wave field, and the shape of the initial wave spectrum, including arbitrary forms. References: Annenkov S.Y., Shrira V.I. (2006) Role of non-resonant interactions in the evolution of nonlinear random water wave fields. J. Fluid Mech., 561, 181-207. Badulin S.I., Pushkarev A.N., Resio D., Zakharov V.E. (2005) Self-similarity of wind-driven seas. Nonlin. Proc. Geophys., 12, 891-946. Gramstad O., Stiassnie M. (2013) Phase-averaged equation for water waves. J. Fluid Mech., 718, 280- 303. Hasselmann K. (1962) On the non-linear energy transfer in a gravity-wave spectrum. Part 1. General theory. J. Fluid Mech., 12, 481-500. Zakharov V.E. (1968) Stability of periodic waves of finite amplitude on the surface of a deep fluid. J. App. Mech. Tech. Phys., 9(2), 190-194.

  12. On the physics of waves in the solar atmosphere: Wave heating and wind acceleration

    NASA Technical Reports Server (NTRS)

    Musielak, Z. E.

    1993-01-01

    This paper presents work performed on the generation and physics of acoustic waves in the solar atmosphere. The investigators have incorporated spatial and temporal turbulent energy spectra in a newly corrected version of the Lighthill-Stein theory of acoustic wave generation in order to calculate the acoustic wave energy fluxes generated in the solar convective zone. The investigators have also revised and improved the treatment of the generation of magnetic flux tube waves, which can carry energy along the tubes far away from the region of their origin, and have calculated the tube energy fluxes for the sun. They also examine the transfer of the wave energy originated in the solar convective zone to the outer atmospheric layers through computation of wave propagation and dissipation in highly nonhomogeneous solar atmosphere. These waves may efficiently heat the solar atmosphere and the heating will be especially significant in the chromospheric network. It is also shown that the role played by Alfven waves in solar wind acceleration and coronal hole heating is dominant. The second part of the project concerned investigation of wave propagation in highly inhomogeneous stellar atmospheres using an approach based on an analytic tool developed by Musielak, Fontenla, and Moore. In addition, a new technique based on Dirac equations has been developed to investigate coupling between different MHD waves propagating in stratified stellar atmospheres.

  13. Designing scattering-free isotropic index profiles using phase-amplitude equations

    NASA Astrophysics Data System (ADS)

    King, C. G.; Horsley, S. A. R.; Philbin, T. G.

    2018-05-01

    The Helmholtz equation can be written as coupled equations for the amplitude and phase. By considering spatial phase distributions corresponding to reflectionless wave propagation in the plane and solving for the amplitude in terms of this phase, we designed two-dimensional graded-index media which do not scatter light. We give two illustrative examples, the first of which is a periodic grating for which diffraction is completely suppressed at a single frequency at normal incidence to the periodicity. The second example is a medium which behaves as a "beam shifter" at a single frequency; acting to laterally shift a plane wave, or sufficiently wide beam, without reflection.

  14. Numerical investigation of sixth order Boussinesq equation

    NASA Astrophysics Data System (ADS)

    Kolkovska, N.; Vucheva, V.

    2017-10-01

    We propose a family of conservative finite difference schemes for the Boussinesq equation with sixth order dispersion terms. The schemes are of second order of approximation. The method is conditionally stable with a mild restriction τ = O(h) on the step sizes. Numerical tests are performed for quadratic and cubic nonlinearities. The numerical experiments show second order of convergence of the discrete solution to the exact one.

  15. Influence of prestress and periodic corrugated boundary surfaces on Rayleigh waves in an orthotropic medium over a transversely isotropic dissipative semi-infinite substrate

    NASA Astrophysics Data System (ADS)

    Gupta, Shishir; Ahmed, Mostaid

    2017-01-01

    The paper environs the study of Rayleigh-type surface waves in an orthotropic crustal layer over a transversely isotropic dissipative semi-infinite medium under the effect of prestress and corrugated boundary surfaces. Separate displacement components for both media have been derived in order to characterize the dynamics of individual materials. Suitable boundary conditions have been employed upon the surface wave solutions of the elasto-dynamical equations that are taken into consideration in the light of corrugated boundary surfaces. From the real part of the sixth-order complex determinantal expression, we obtain the frequency equation for Rayleigh waves concerning the proposed earth model. Possible special cases have been envisaged and they fairly comply with the corresponding results for classical cases. Numerical computations have been performed in order to graphically demonstrate the role of the thickness of layer, prestress, corrugation parameters and dissipation on Rayleigh wave velocity. The study may be regarded as important due to its possible applications in delay line services and investigating deformation characteristics of solids as well as typical rock formations.

  16. Modulation stability and optical soliton solutions of nonlinear Schrödinger equation with higher order dispersion and nonlinear terms and its applications

    NASA Astrophysics Data System (ADS)

    Arshad, Muhammad; Seadawy, Aly R.; Lu, Dianchen

    2017-12-01

    In optical fibers, the higher order non-linear Schrödinger equation (NLSE) with cubic quintic nonlinearity describes the propagation of extremely short pulses. We constructed bright and dark solitons, solitary wave and periodic solitary wave solutions of generalized higher order NLSE in cubic quintic non Kerr medium by applying proposed modified extended mapping method. These obtained solutions have key applications in physics and mathematics. Moreover, we have also presented the formation conditions on solitary wave parameters in which dark and bright solitons can exist for this media. We also gave graphically the movement of constructed solitary wave and soliton solutions, that helps to realize the physical phenomena's of this model. The stability of the model in normal dispersion and anomalous regime is discussed by using the modulation instability analysis, which confirms that all constructed solutions are exact and stable. Many other such types of models arising in applied sciences can also be solved by this reliable, powerful and effective method.

  17. Breather-to-soliton transformation rules in the hierarchy of nonlinear Schrödinger equations.

    PubMed

    Chowdury, Amdad; Krolikowski, Wieslaw

    2017-06-01

    We study the exact first-order soliton and breather solutions of the integrable nonlinear Schrödinger equations hierarchy up to fifth order. We reveal the underlying physical mechanism which transforms a breather into a soliton. Furthermore, we show how the dynamics of the Akhmediev breathers which exist on a constant background as a result of modulation instability, is connected with solitons on a zero background. We also demonstrate that, while a first-order rogue wave can be directly transformed into a soliton, higher-order rogue wave solutions become rational two-soliton solutions with complex collisional structure on a background. Our results will have practical implications in supercontinuum generation, turbulence, and similar other complex nonlinear scenarios.

  18. A numerical scheme for nonlinear Helmholtz equations with strong nonlinear optical effects.

    PubMed

    Xu, Zhengfu; Bao, Gang

    2010-11-01

    A numerical scheme is presented to solve the nonlinear Helmholtz (NLH) equation modeling second-harmonic generation (SHG) in photonic bandgap material doped with a nonlinear χ((2)) effect and the NLH equation modeling wave propagation in Kerr type gratings with a nonlinear χ((3)) effect in the one-dimensional case. Both of these nonlinear phenomena arise as a result of the combination of high electromagnetic mode density and nonlinear reaction from the medium. When the mode intensity of the incident wave is significantly strong, which makes the nonlinear effect non-negligible, numerical methods based on the linearization of the essentially nonlinear problem will become inadequate. In this work, a robust, stable numerical scheme is designed to simulate the NLH equations with strong nonlinearity.

  19. Nonlinear Interaction of Detuned Instability Waves in Boundary-Layer Transition: Resonant-Triad Interaction

    NASA Technical Reports Server (NTRS)

    Lee, Sang Soo

    1998-01-01

    The non-equilibrium critical-layer analysis of a system of frequency-detuned resonant-triads is presented using the generalized scaling of Lee. It is shown that resonant-triads can interact nonlinearly within the common critical layer when their (fundamental) Strouhal numbers are different by a factor whose magnitude is of the order of the growth rate multiplied by the wavenumber of the instability wave. Since the growth rates of the instability modes become larger and the critical layers become thicker as the instability waves propagate downstream, the frequency-detuned resonant-triads that grow independently of each other in the upstream region can interact nonlinearly in the later downstream stage. In the final stage of the non-equilibrium critical-layer evolution, a wide range of instability waves with the scaled frequencies differing by almost an Order of (l) can nonlinearly interact. Low-frequency modes are also generated by the nonlinear interaction between oblique waves in the critical layer. The system of partial differential critical-layer equations along with the jump equations are presented here. The amplitude equations with their numerical solutions are given in Part 2. The nonlinearly generated low-frequency components are also investigated in Part 2.

  20. Achieving accuracy in first-principles calculations at extreme temperature and pressure

    NASA Astrophysics Data System (ADS)

    Mattsson, Ann; Wills, John

    2013-06-01

    First-principles calculations are increasingly used to provide EOS data at pressures and temperatures where experimental data is difficult or impossible to obtain. The lack of experimental data, however, also precludes validation of the calculations in those regimes. Factors influencing the accuracy of first-principles data include theoretical approximations, and computational approximations used in implementing and solving the underlying equations. The first category includes approximate exchange-correlation functionals and wave equations simplifying the Dirac equation. In the second category are, e.g., basis completeness and pseudo-potentials. While the first category is extremely hard to assess without experimental data, inaccuracies of the second type should be well controlled. We are using two rather different electronic structure methods (VASP and RSPt) to make explicit the requirements for accuracy of the second type. We will discuss the VASP Projector Augmented Wave potentials, with examples for Li and Mo. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  1. Quantum transport and the Wigner distribution function for Bloch electrons in spatially homogeneous electric and magnetic fields

    NASA Astrophysics Data System (ADS)

    Iafrate, G. J.; Sokolov, V. N.; Krieger, J. B.

    2017-10-01

    The theory of Bloch electron dynamics for carriers in homogeneous electric and magnetic fields of arbitrary time dependence is developed in the framework of the Liouville equation. The Wigner distribution function (WDF) is determined from the single-particle density matrix in the ballistic regime, i.e., collision effects are excluded. In the theory, the single-particle transport equation is established with the electric field described in the vector potential gauge, and the magnetic field is treated in the symmetric gauge. No specific assumptions are made concerning the form of the initial distribution in momentum or configuration space. The general approach is to employ the accelerated Bloch state representation (ABR) as a basis so that the dependence upon the electric field, including multiband Zener tunneling, is treated exactly. Further, in the formulation of the WDF, we transform to a new set of variables so that the final WDF is gauge invariant and is expressed explicitly in terms of the position, kinetic momentum, and time. The methodology for developing the WDF is illustrated by deriving the exact WDF equation for free electrons in homogeneous electric and magnetic fields resulting in the same form as given by the collisionless Boltzmann transport equation (BTE). The methodology is then extended to the case of electrons described by an effective Hamiltonian corresponding to an arbitrary energy band function; the exact WDF equation results for the effective Hamiltonian case are shown to approximate the free electron results when taken to second order in the magnetic field. As a corollary, in these cases, it is shown that if the WDF is a wave packet, then the time rate of change of the electron quasimomentum is given by the Lorentz force. In treating the problem of Bloch electrons in a periodic potential in the presence of homogeneous electric and magnetic fields, the methodology for deriving the WDF reveals a multiband character due to the inherent nature of the Bloch states. The K0 representation of the Bloch envelope functions is employed to express the multiband WDF in a useful form. In examining the single-band WDF, it is found that the collisionless WDF equation matches the equivalent BTE to first order in the magnetic field. These results are necessarily extended to second order in the magnetic field by employing a unitary transformation that diagonalizes the Hamiltonian using the ABR to second order. The unitary transformation process includes a discussion of the multiband WDF transport analysis and the identification of the combined Zener-magnetic-field induced tunneling.

  2. Stability analysis of a liquid fuel annular combustion chamber. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Mcdonald, G. H.

    1978-01-01

    High frequency combustion instability problems in a liquid fuel annular combustion chamber are examined. A modified Galerkin method was used to produce a set of modal amplitude equations from the general nonlinear partial differential acoustic wave equation in order to analyze the problem of instability. From these modal amplitude equations, the two variable perturbation method was used to develop a set of approximate equations of a given order of magnitude. These equations were modeled to show the effects of velocity sensitive combustion instabilities by evaluating the effects of certain parameters in the given set of equations.

  3. Giant frequency down-conversion of the dancing acoustic bubble

    PubMed Central

    Deymier, P. A.; Keswani, M.; Jenkins, N.; Tang, C.; Runge, K.

    2016-01-01

    We have demonstrated experimentally the existence of a giant frequency down-conversion of the translational oscillatory motion of individual submillimeter acoustic bubbles in water in the presence of a high frequency (500 kHz) ultrasonic standing wave. The frequency of the translational oscillations (~170 Hz) is more than three orders of magnitude smaller than that of the driving acoustic wave. We elucidate the mechanism of this very slow oscillation with an analytical model leading to an equation of translational motion of a bubble taking the form of Mathieu’s equation. This equation illuminates the origin of the giant down conversion in frequency as arising from an unstable equilibrium. We also show that bubbles that form chains along the direction of the acoustic standing wave due to radiation interaction forces exhibit also translation oscillations that form a spectral band. This band extends approximately from 130 Hz up to nearly 370 Hz, a frequency range that is still at least three orders of magnitude lower than the frequency of the driving acoustic wave. PMID:27857217

  4. Two-and-one-half-dimensional magnetohydrodynamic simulations of the plasma sheet in the presence of oxygen ions: The plasma sheet oscillation and compressional Pc 5 waves

    NASA Astrophysics Data System (ADS)

    Lu, Li; Liu, Zhen-Xing; Cao, Jin-Bin

    2002-02-01

    Two-and-one-half-dimensional magnetohydrodynamic simulations of the multicomponent plasma sheet with the velocity curl term in the magnetic equation are represented. The simulation results can be summarized as follows: (1) There is an oscillation of the plasma sheet with the period on the order of 400 s (Pc 5 range); (2) the magnetic equator is a node of the magnetic field disturbance; (3) the magnetic energy integral varies antiphase with the internal energy integral; (4) disturbed waves have a propagating speed on the order of 10 km/s earthward; (5) the abundance of oxygen ions influences amplitude, period, and dissipation of the plasma sheet oscillation. It is suggested that the compressional Pc 5 waves, which are observed in the plasma sheet close to the magnetic equator, may be caused by the plasma sheet oscillation, or may be generated from the resonance of the plasma sheet oscillation with some Pc 5 perturbation waves coming from the outer magnetosphere.

  5. Giant frequency down-conversion of the dancing acoustic bubble

    NASA Astrophysics Data System (ADS)

    Deymier, P. A.; Keswani, M.; Jenkins, N.; Tang, C.; Runge, K.

    2016-11-01

    We have demonstrated experimentally the existence of a giant frequency down-conversion of the translational oscillatory motion of individual submillimeter acoustic bubbles in water in the presence of a high frequency (500 kHz) ultrasonic standing wave. The frequency of the translational oscillations (~170 Hz) is more than three orders of magnitude smaller than that of the driving acoustic wave. We elucidate the mechanism of this very slow oscillation with an analytical model leading to an equation of translational motion of a bubble taking the form of Mathieu’s equation. This equation illuminates the origin of the giant down conversion in frequency as arising from an unstable equilibrium. We also show that bubbles that form chains along the direction of the acoustic standing wave due to radiation interaction forces exhibit also translation oscillations that form a spectral band. This band extends approximately from 130 Hz up to nearly 370 Hz, a frequency range that is still at least three orders of magnitude lower than the frequency of the driving acoustic wave.

  6. A lattice Boltzmann model for the Burgers-Fisher equation.

    PubMed

    Zhang, Jianying; Yan, Guangwu

    2010-06-01

    A lattice Boltzmann model is developed for the one- and two-dimensional Burgers-Fisher equation based on the method of the higher-order moment of equilibrium distribution functions and a series of partial differential equations in different time scales. In order to obtain the two-dimensional Burgers-Fisher equation, vector sigma(j) has been used. And in order to overcome the drawbacks of "error rebound," a new assumption of additional distribution is presented, where two additional terms, in first order and second order separately, are used. Comparisons with the results obtained by other methods reveal that the numerical solutions obtained by the proposed method converge to exact solutions. The model under new assumption gives better results than that with second order assumption. (c) 2010 American Institute of Physics.

  7. Oscillation and asymptotic properties of a class of second-order Emden-Fowler neutral differential equations.

    PubMed

    Wang, Rui; Li, Qiqiang

    2016-01-01

    We consider a class of second-order Emden-Fowler equations with positive and nonpositve neutral coefficients. By using the Riccati transformation and inequalities, several oscillation and asymptotic results are established. Some examples are given to illustrate the main results.

  8. Closed form solutions of two time fractional nonlinear wave equations

    NASA Astrophysics Data System (ADS)

    Akbar, M. Ali; Ali, Norhashidah Hj. Mohd.; Roy, Ripan

    2018-06-01

    In this article, we investigate the exact traveling wave solutions of two nonlinear time fractional wave equations. The fractional derivatives are described in the sense of conformable fractional derivatives. In addition, the traveling wave solutions are accomplished in the form of hyperbolic, trigonometric, and rational functions involving free parameters. To investigate such types of solutions, we implement the new generalized (G‧ / G) -expansion method. The extracted solutions are reliable, useful and suitable to comprehend the optimal control problems, chaotic vibrations, global and local bifurcations and resonances, furthermore, fission and fusion phenomena occur in solitons, the relativistic energy-momentum relation, scalar electrodynamics, quantum relativistic one-particle theory, electromagnetic interactions etc. The results reveal that the method is very fruitful and convenient for exploring nonlinear differential equations of fractional order treated in theoretical physics.

  9. A second-order closure analysis of turbulent diffusion flames. [combustion physics

    NASA Technical Reports Server (NTRS)

    Varma, A. K.; Fishburne, E. S.; Beddini, R. A.

    1977-01-01

    A complete second-order closure computer program for the investigation of compressible, turbulent, reacting shear layers was developed. The equations for the means and the second order correlations were derived from the time-averaged Navier-Stokes equations and contain third order and higher order correlations, which have to be modeled in terms of the lower-order correlations to close the system of equations. In addition to fluid mechanical turbulence models and parameters used in previous studies of a variety of incompressible and compressible shear flows, a number of additional scalar correlations were modeled for chemically reacting flows, and a typical eddy model developed for the joint probability density function for all the scalars. The program which is capable of handling multi-species, multistep chemical reactions, was used to calculate nonreacting and reacting flows in a hydrogen-air diffusion flame.

  10. Quantitative phase measurement for wafer-level optics

    NASA Astrophysics Data System (ADS)

    Qu, Weijuan; Wen, Yongfu; Wang, Zhaomin; Yang, Fang; Huang, Lei; Zuo, Chao

    2015-07-01

    Wafer-level-optics now is widely used in smart phone camera, mobile video conferencing or in medical equipment that require tiny cameras. Extracting quantitative phase information has received increased interest in order to quantify the quality of manufactured wafer-level-optics, detect defective devices before packaging, and provide feedback for manufacturing process control, all at the wafer-level for high-throughput microfabrication. We demonstrate two phase imaging methods, digital holographic microscopy (DHM) and Transport-of-Intensity Equation (TIE) to measure the phase of the wafer-level lenses. DHM is a laser-based interferometric method based on interference of two wavefronts. It can perform a phase measurement in a single shot. While a minimum of two measurements of the spatial intensity of the optical wave in closely spaced planes perpendicular to the direction of propagation are needed to do the direct phase retrieval by solving a second-order differential equation, i.e., with a non-iterative deterministic algorithm from intensity measurements using the Transport-of-Intensity Equation (TIE). But TIE is a non-interferometric method, thus can be applied to partial-coherence light. We demonstrated the capability and disability for the two phase measurement methods for wafer-level optics inspection.

  11. Interval oscillation criteria for second-order forced impulsive delay differential equations with damping term.

    PubMed

    Thandapani, Ethiraju; Kannan, Manju; Pinelas, Sandra

    2016-01-01

    In this paper, we present some sufficient conditions for the oscillation of all solutions of a second order forced impulsive delay differential equation with damping term. Three factors-impulse, delay and damping that affect the interval qualitative properties of solutions of equations are taken into account together. The results obtained in this paper extend and generalize some of the the known results for forced impulsive differential equations. An example is provided to illustrate the main result.

  12. 3D Orthorhombic Elastic Wave Propagation Pre-Test Simulation of SPE DAG-1 Test

    NASA Astrophysics Data System (ADS)

    Jensen, R. P.; Preston, L. A.

    2017-12-01

    A more realistic representation of many geologic media can be characterized as a dense system of vertically-aligned microfractures superimposed on a finely-layered horizontal geology found in shallow crustal rocks. This seismic anisotropy representation lends itself to being modeled as an orthorhombic elastic medium comprising three mutually orthogonal symmetry planes containing nine independent moduli. These moduli can be determined by observing (or prescribing) nine independent P-wave and S-wave phase speeds along different propagation directions. We have developed an explicit time-domain finite-difference (FD) algorithm for simulating 3D elastic wave propagation in a heterogeneous orthorhombic medium. The components of the particle velocity vector and the stress tensor are governed by a set of nine, coupled, first-order, linear, partial differential equations (PDEs) called the velocity-stress system. All time and space derivatives are discretized with centered and staggered FD operators possessing second- and fourth-order numerical accuracy, respectively. Additionally, we have implemented novel perfectly matched layer (PML) absorbing boundary conditions, specifically designed for orthorhombic media, to effectively suppress grid boundary reflections. In support of the Source Physics Experiment (SPE) Phase II, a series of underground chemical explosions at the Nevada National Security Site, the code has been used to perform pre-test estimates of the Dry Alluvium Geology - Experiment 1 (DAG-1). Based on literature searches, realistic geologic structure and values for orthorhombic P-wave and S-wave speeds have been estimated. Results and predictions from the simulations are presented.

  13. Self-Consistent Model of Magnetospheric Ring Current and Electromagnetic Ion Cyclotron Waves: The 2-7 May 1998 Storm

    NASA Technical Reports Server (NTRS)

    Khazanov, G. V.; Gamayunov, K. V.; Jordanova, V. K.

    2003-01-01

    A complete description of a self-consistent model of magnetospheric ring current interacting with electromagnetic ion cyclotron waves is presented. The model is based on the system of two kinetic equations; one equation describes the ring current ion dynamics, and another equation describes the wave evolution. The effects on ring current ions interacting with electromagnetic ion cyclotron waves and back on waves are considered self-consistently by solving both equations on a global magnetospheric scale under nonsteady state conditions. The developed model is employed to simulate the entire 2-7 May 1998 storm period. First, the trapped number fluxes of the ring current protons are calculated and presented along with comparison with the data measured by the three- dimensional hot plasma instrument Polar/HYDRA. Incorporating in the model the wave-particle interaction leads to much better agreement between the experimental data and the model results. Second, examining of the wave (MLT, L shell) distributions produced by the model during the storm progress reveals an essential intensification of the wave emission about 2 days after the main phase of the storm. This result is well consistent with the earlier ground-based observations. Finally, the theoretical shapes and the occurrence rates of the wave power spectral densities are studied. It is found that about 2 days after the storm s main phase on 4 May, mainly non-Gaussian shapes of power spectral densities are produced.

  14. Improving the accuracy of central difference schemes

    NASA Technical Reports Server (NTRS)

    Turkel, Eli

    1988-01-01

    General difference approximations to the fluid dynamic equations require an artificial viscosity in order to converge to a steady state. This artificial viscosity serves two purposes. One is to suppress high frequency noise which is not damped by the central differences. The second purpose is to introduce an entropy-like condition so that shocks can be captured. These viscosities need a coefficient to measure the amount of viscosity to be added. In the standard scheme, a scalar coefficient is used based on the spectral radius of the Jacobian of the convective flux. However, this can add too much viscosity to the slower waves. Hence, it is suggested that a matrix viscosity be used. This gives an appropriate viscosity for each wave component. With this matrix valued coefficient, the central difference scheme becomes closer to upwind biased methods.

  15. Preheating study by reflectivity measurements in laser-driven shocks

    NASA Astrophysics Data System (ADS)

    Benuzzi, A.; Koenig, M.; Faral, B.; Krishnan, J.; Pisani, F.; Batani, D.; Bossi, S.; Beretta, D.; Hall, T.; Ellwi, S.; Hüller, S.; Honrubia, J.; Grandjouan, N.

    1998-06-01

    A study on preheating effects in laser-driven shock waves is presented. Two different diagnostics were used: the color temperature measurement deduced by recording the target rear side emissivity in two spectral bands, and the rear surface reflectivity measurement by using a probe beam. In order to test the response of the two diagnostics to the preheating, three types of targets characterized by different radiative properties were used. The greater sensitivity of the second diagnostic compared with the first was demonstrated. A model which calculates the reflectivity using a one-dimensional hydrodynamic code data was developed. In this model, the wave propagation equations in the expanding plasma using an appropriate model for the electron-ion collision frequency applicable to the cold solid-hot plasma transition were solved. The comparison between the calculated and measured reflectivities allows us to estimate the preheating process.

  16. Simulation of non-linear acoustic field and thermal pattern of phased-array high-intensity focused ultrasound (HIFU).

    PubMed

    Wang, Mingjun; Zhou, Yufeng

    2016-08-01

    HIFU becomes an effective and non-invasive modality of solid tumour/cancer ablation. Simulation of the non-linear acoustic wave propagation using a phased-array transducer in multiple layered media using different focusing strategies and the consequent lesion formation are essential in HIFU planning in order to enhance the efficacy and efficiency of treatment. An angular spectrum approach with marching fractional steps was applied in the wave propagation from phased-array HIFU transducer, and diffraction, attenuation, and non-linearity effects were accounted for by a second-order operator splitting scheme. The simulated distributions of the first three harmonics along and transverse to the transducer axis were compared to the hydrophone measurements. The bioheat equation was used to simulate the subsequent temperature elevation using the deposited acoustic energy, and lesion formation was determined by the thermal dose. Better agreement was found between the measured harmonics distribution and simulation using the proposed algorithm than the Khokhlov-Zabozotskaya-Kuznetsov equation. Variable focusing of the phased-array transducer (geometric focusing, transverse shifting and the generation of multiple foci) can be simulated successfully. The shifting and splitting of focus was found to result in significantly less temperature elevation at the focus and the subsequently, the smaller lesion size, but the larger grating lobe grating lobe in the pre-focal region. The proposed algorithm could simulate the non-linear wave propagation from the source with arbitrary shape and distribution of excitation through multiple tissue layers in high computation accuracy. The performance of phased-array HIFU can be optimised in the treatment planning.

  17. Dirac-Kähler particle in Riemann spherical space: boson interpretation

    NASA Astrophysics Data System (ADS)

    Ishkhanyan, A. M.; Florea, O.; Ovsiyuk, E. M.; Red'kov, V. M.

    2015-11-01

    In the context of the composite boson interpretation, we construct the exact general solution of the Dirac--K\\"ahler equation for the case of the spherical Riemann space of constant positive curvature, for which due to the geometry itself one may expect to have a discrete energy spectrum. In the case of the minimal value of the total angular momentum, $j=0$, the radial equations are reduced to second-order ordinary differential equations, which are straightforwardly solved in terms of the hypergeometric functions. For non-zero values of the total angular momentum, however, the radial equations are reduced to a pair of complicated fourth-order differential equations. Employing the factorization approach, we derive the general solution of these equations involving four independent fundamental solutions written in terms of combinations of the hypergeometric functions. The corresponding discrete energy spectrum is then determined via termination of the involved hypergeometric series, resulting in quasi-polynomial wave-functions. The constructed solutions lead to notable observations when compared with those for the ordinary Dirac particle. The energy spectrum for the Dirac-K\\"ahler particle in spherical space is much more complicated. Its structure substantially differs from that for the Dirac particle since it consists of two paralleled energy level series each of which is twofold degenerate. Besides, none of the two separate series coincides with the series for the Dirac particle. Thus, the Dirac--K\\"ahler field cannot be interpreted as a system of four Dirac fermions. Additional arguments supporting this conclusion are discussed.

  18. Surf Zone Currents. Volume I. State of Knowledge.

    DTIC Science & Technology

    1982-09-01

    elevation above an arbitrary datum a angle between wave crest and bottom contour a angle between wave crest and the shoreline . ab angle between breaking...b- Note that neglecting wave setup, refraction and for small ab , equation (74) reduces to that employed by Longuet-Higgins (eq. 48). These researchers...28. As ab o (Note that ab = o means theory reduces to original order (zero order) solution given by Longuet-Higgins, 1970, the triangular solution is

  19. Traveling wave and exact solutions for the perturbed nonlinear Schrödinger equation with Kerr law nonlinearity

    NASA Astrophysics Data System (ADS)

    Akram, Ghazala; Mahak, Nadia

    2018-06-01

    The nonlinear Schrödinger equation (NLSE) with the aid of three order dispersion terms is investigated to find the exact solutions via the extended (G'/G2)-expansion method and the first integral method. Many exact traveling wave solutions, such as trigonometric, hyperbolic, rational, soliton and complex function solutions, are characterized with some free parameters of the problem studied. It is corroborated that the proposed techniques are manageable, straightforward and powerful tools to find the exact solutions of nonlinear partial differential equations (PDEs). Some figures are plotted to describe the propagation of traveling wave solutions expressed by the hyperbolic functions, trigonometric functions and rational functions.

  20. Vorticity equation for MHD fast waves in geospace environment

    NASA Technical Reports Server (NTRS)

    Yamauchi, M.; Lundin, R.; Lui, A. T. Y.

    1993-01-01

    The MHD vorticity equation is modified in order to apply it to nonlinear MHD fast waves or shocks when their extent along the magnetic field is limited. Field-aligned current (FAC) generation is also discussed on the basis of this modified vorticity equation. When the wave normal is not aligned to the finite velocity convection and the source region is spatially limited, a longitudinal polarization causes a pair of plus and minus charges inside the compressional plane waves or shocks, generating a pair of FACs. This polarization is not related to the separation between the electrons and ions caused by their difference in mass, a separation which is inherent to compressional waves. The resultant double field-aligned current structure exists both with and without the contributions from curvature drift, which is questionable in terms of its contribution to vorticity change from the viewpoint of single-particle motion.

Top