Hu, Jicheng; Wu, Jing; Zha, Xiaoshuo; Yang, Chen; Hua, Ying; Wang, Ying; Jin, Jun
2017-04-01
A total of 35 surface soil samples around two secondary copper smelters and one secondary aluminum smelter were collected and analyzed for 16 USEPA priority polycyclic aromatic hydrocarbons (PAHs). The concentrations of PAHs were highest when the soil sample sites were closest to the secondary copper smelters. And, a level gradient of PAHs was observed in soil samples according to the distance from two secondary copper smelters, respectively. The results suggested that PAH concentrations in surrounding soils may be influenced by secondary copper smelters investigated, whereas no such gradient was observed in soils around the secondary aluminum smelter. Further analysis revealed that PAH patterns in soil samples also showed some difference between secondary copper and aluminum smelter, which may be attributed to the difference in their fuel and smelting process. PAH patterns and diagnostic ratios indicated that biomass burning may be also an important source of PAHs in the surrounding soil in addition to the emissions from the plants investigated.
Kim, Yong-Dae; Eom, Sang-Yong; Yim, Dong-Hyuk; Kim, In-Soo; Won, Hee-Kwan; Park, Choong-Hee; Kim, Guen-Bae; Yu, Seung-Do; Choi, Byung-Sun; Park, Jung-Duck; Kim, Heon
2016-04-01
Concentrations of heavy metals exceed safety thresholds in the soil near Janghang Copper Refinery, a smelter in Korea that operated from 1936 to 1989. This study was conducted to evaluate the level of exposure to toxic metals and the potential effect on health in people living near the smelter. The study included 572 adults living within 4 km of the smelter and compared them with 413 controls group of people living similar lifestyles in a rural area approximately 15 km from the smelter. Urinary arsenic (As) level did not decrease according to the distance from the smelter, regardless of gender and working history in smelters and mines. However, in subjects who had no occupational exposure to toxic metals, blood lead (Pb) and cadmium (Cd) and urinary Cd decreased according to the distance from the smelter, both in men and women. Additionally, the distance from the smelter was a determinant factor for a decrease of As, Pb, and Cd in multiple regression models, respectively. On the other hands, urinary Cd was a risk factor for renal tubular dysfunction in populations living near the smelter. These results suggest that Janghang copper smelter was a main contamination source of As, Pb, and Cd, and populations living near the smelter suffered some adverse health effects as a consequence. The local population should be advised to make efforts to reduce exposure to environmental contaminants, in order to minimize potential health effects, and to pay close attention to any health problems possibly related to toxic metal exposure.
Vakylabad, Ali Behrad; Schaffie, Mahin; Ranjbar, Mohammad; Manafi, Zahra; Darezereshki, Esmaeel
2012-11-30
To scrutinize the influence of the design and type of the bioreactors on the bioleaching efficiency, the bioleaching were evaluated in a batch airlift and a batch stirred tank bioreactors with mixed mesophilic and mixed moderately thermophilic bacteria. According to the results, maximum copper recoveries were achieved using the cultures in the stirred tank bioreactors. It is worth noting that the main phase of the flotation concentrate was chalcopyrite (as a primary sulphide), but the smelter dust mainly contained secondary copper sulphides such as Cu(2)S, CuS, and Cu(5)FeS(4).Under optimum conditions, copper dissolution from the combined flotation concentrate and smelter dust (as an environmental hazard) reached 94.50% in the STR, and 88.02% in the airlift reactor with moderately thermophilic, after 23 days. Also, copper extractions calculated for the bioleaching using mesophilic bacteria were 48.73% and 37.19% in the STR (stirred tank reactor) and the airlift bioreactor, respectively. In addition, the SEM/EDS, XRD, chemical, and mineralogical analyses and studies confirmed the above results. Copyright © 2012 Elsevier B.V. All rights reserved.
Dioxins reformation and destruction in secondary copper smelting fly ash under ball milling
Cagnetta, Giovanni; Hassan, Mohammed Mansour; Huang, Jun; Yu, Gang; Weber, Roland
2016-01-01
Secondary copper recovery is attracting increasing interest because of the growth of copper containing waste including e-waste. The pyrometallurgical treatment in smelters is widely utilized, but it is known to produce waste fluxes containing a number of toxic pollutants due to the large amount of copper involved, which catalyses the formation of polychlorinated dibenzo-p-dioxins and dibenzofurans (“dioxins”). Dioxins are generated in secondary copper smelters on fly ash as their major source, resulting in highly contaminated residues. In order to assess the toxicity of this waste, an analysis of dioxin-like compounds was carried out. High levels were detected (79,090 ng TEQ kg−1) in the ash, above the Basel Convention low POPs content (15,000 ng TEQ kg−1) highlighting the hazardousness of this waste. Experimental tests of high energy ball milling with calcium oxide and silica were executed to assess its effectiveness to detoxify such fly ash. Mechanochemical treatment obtained 76% dioxins reduction in 4 h, but longer milling time induced a partial de novo formation of dioxins catalysed by copper. Nevertheless, after 12 h treatment the dioxin content was substantially decreased (85% reduction) and the copper, thanks to the phenomena of incorporation and amorphization that occur during milling, was almost inactivated. PMID:26975802
Dioxins reformation and destruction in secondary copper smelting fly ash under ball milling
NASA Astrophysics Data System (ADS)
Cagnetta, Giovanni; Hassan, Mohammed Mansour; Huang, Jun; Yu, Gang; Weber, Roland
2016-03-01
Secondary copper recovery is attracting increasing interest because of the growth of copper containing waste including e-waste. The pyrometallurgical treatment in smelters is widely utilized, but it is known to produce waste fluxes containing a number of toxic pollutants due to the large amount of copper involved, which catalyses the formation of polychlorinated dibenzo-p-dioxins and dibenzofurans (“dioxins”). Dioxins are generated in secondary copper smelters on fly ash as their major source, resulting in highly contaminated residues. In order to assess the toxicity of this waste, an analysis of dioxin-like compounds was carried out. High levels were detected (79,090 ng TEQ kg-1) in the ash, above the Basel Convention low POPs content (15,000 ng TEQ kg-1) highlighting the hazardousness of this waste. Experimental tests of high energy ball milling with calcium oxide and silica were executed to assess its effectiveness to detoxify such fly ash. Mechanochemical treatment obtained 76% dioxins reduction in 4 h, but longer milling time induced a partial de novo formation of dioxins catalysed by copper. Nevertheless, after 12 h treatment the dioxin content was substantially decreased (85% reduction) and the copper, thanks to the phenomena of incorporation and amorphization that occur during milling, was almost inactivated.
Cancer risk among workers of a secondary aluminium smelter.
Maltseva, A; Serra, C; Kogevinas, M
2016-07-01
Cancer risk in secondary aluminium production is not well described. Workers in this industry are exposed to potentially carcinogenic agents from secondary smelters that reprocess aluminium scrap. To evaluate cancer risk in workers in a secondary aluminium plant in Spain. Retrospective cohort study of male workers employed at an aluminium secondary smelter (1960-92). Exposure histories and vital status through 2011 were obtained through personal interviews and hospital records, respectively. Standardized mortality (SMRs) and incidence ratios (SIRs) were calculated. The study group consisted of 98 workers. We found increased incidence and mortality from bladder cancer [SIR = 2.85, 95% confidence interval (CI) 1.23-5.62; SMR = 5.90, 95% CI 1.58-15.11]. Increased incidence was also observed for prostate cancer and all other cancers but neither were statistically significant. No increased risk was observed for lung cancer. Results of this study suggest that work at secondary aluminium smelters is associated with bladder cancer risk. Identification of occupational carcinogens in this industry is needed. © The Author 2016. Published by Oxford University Press on behalf of the Society of Occupational Medicine. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Hu, Jicheng; Zheng, Minghui; Nie, Zhiqiang; Liu, Wenbin; Liu, Guorui; Zhang, Bing; Xiao, Ke
2013-01-01
Secondary copper production has received much attention for its high emissions of polychlorinated dibenzo-p-dioxin and dibenzofuran (PCDD/F) reported in previous studies. These studies focused on the estimation of total PCDD/F and polychlorinated biphenyl (PCB) emissions from secondary copper smelters. However, large variations in PCDD/F and PCB emissions reported in these studies were not analyzed and discussed further. In this study, stack gas samples at different smelting stages (feeding-fusion, oxidation and deoxidization) were collected from four plants to investigate variations in PCDD/F and PCB emissions and characteristics during the secondary copper smelting process. The results indicate that PCDD/F emissions occur mainly at the feeding-fusion stage and these emissions contribute to 54-88% of the total emissions from the secondary copper smelting process. The variation in feed material and operating conditions at different smelting stages leads to the variation in PCDD/F emissions during the secondary copper smelting process. The total PCDD/F and PCB discharge (stack gas emission+fly ash discharge) is consistent with the copper scrap content in the raw material in the secondary copper smelters investigated. On a production basis of 1 ton copper, the total PCDD/F and dl-PCB discharge was 102, 24.8 and 5.88 μg TEQ t(-1) for the three plants that contained 100%, 30% and 0% copper scrap in their raw material feed, respectively. Copyright © 2012 Elsevier Ltd. All rights reserved.
Heavy metals in the atmosphere coming from a copper smelter in Chile
NASA Astrophysics Data System (ADS)
Romo-Kröger, C. M.; Morales, J. R.; Dinator, M. I.; Llona, F.; Eaton, L. C.
The Chilean mine El Teniente is the world's largest underground copper mine. It operates a giant smelter at Caletones (34° 7' S, 70° 27' W) and we have found it is the major source of air contamination in the region. In August 1991 a special circumstance occurred due to a labor strike, with total cessation of activities. A time series analysis of airborne particles collected at a site about 13 km from the smelter was performed in a period including the strike. The PIXE method and other techniques were used to analyse fine (<2.5 μm) and coarse (2.5-15 μm) particles on Nuclepore filters. S, Cu, Zn and As were quite enriched in normal working periods relative to the strike period. Elemental characterization of soil samples by radioactive source analysis demonstrated that this group of elements did not come from airborne soil dust. Cluster analyses of the interelement correlation matrices, resulting from PIXE data, showed one group (Si, K, Ca, Fe) with main origin in soil and another group (S, Cu, Zn, As) coming from the copper smelter.
This process involves incorporating lead-contaminated Superfund waste with the regular feed to a secondary lead smelter. Since secondary lead smelters already recover lead from recycled automobile batteries, it seems likely that this technology could be used to treat waste from ...
Sorooshian, Armin; Csavina, Janae; Shingler, Taylor; Dey, Stephen; Brechtel, Fred J.; Sáez, A. Eduardo; Betterton, Eric A.
2012-01-01
Particulate matter emissions near active copper smelters and mine tailings in the southwestern United States pose a potential threat to nearby environments owing to toxic species that can be inhaled and deposited in various regions of the body depending on the composition and size of the particles, which are linked by particle hygroscopic properties. This study reports the first simultaneous measurements of size-resolved chemical and hygroscopic properties of particles next to an active copper smelter and mine tailings by the towns of Hayden and Winkelman in southern Arizona. Size-resolved particulate matter samples collected near an active copper smelter were examined with inductively coupled plasma mass spectrometry, ion chromatography, and a humidified tandem differential mobility analyzer. Aerosol particles collected at the measurement site are enriched in metals and metalloids (e.g. arsenic, lead, and cadmium) and water-uptake measurements of aqueous extracts of collected samples indicate that the particle diameter range of particles most enriched with these species (0.18–0.55 µm) overlaps with the most hygroscopic mode at a relative humidity of 90% (0.10–0.32 µm). These measurements have implications for public health, microphysical effects of aerosols, and regional impacts owing to the transport and deposition of contaminated aerosol particles. PMID:22852879
Cadmium, copper, and lead in soils and garden produce near a metal smelter at Flin Flon, Manitoba
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pip, E.
1991-05-01
Towns in the vicinity of base metal smelters are subject to contamination from atmospheric fallout containing heavy metals. Many smelters have been in operation for decades, and have resulted in substantial accumulation of metals in the surrounding soils. Metal contamination of edible vegetation near mines and smelters has been the source of health concerns in a number of countries. One smelter that has operated for more than half a century is located at Flin Flon, Manitoba. Many Flin Flon residents utilize home vegetable gardens year after year. However little is known regarding heavy metal contamination of locally grown garden produce.more » Since food can contribute as much as 90% of total body uptake of metals it is important to identify any sources which may account for the disproportionate share. The objective of the present study was to examine concentrations of cadmium, copper and lead in soils and garden produce in the vicinity of the Flin Flon smelter.« less
EPA is taking final action to approve a revision to a portion of the Arizona State Implementation Plan (SIP) concerning emissions of lead-bearing fugitive dust associated with the primary copper smelter located in Hayden, Arizona.
Rapid Analysis of Copper Ore in Pre-Smelter Head Flow Slurry by Portable X-ray Fluorescence.
Burnett, Brandon J; Lawrence, Neil J; Abourahma, Jehad N; Walker, Edward B
2016-05-01
Copper laden ore is often concentrated using flotation. Before the head flow slurry can be smelted, it is important to know the concentration of copper and contaminants. The concentration of copper and other elements fluctuate significantly in the head flow, often requiring modification of the concentrations in the slurry prior to smelting. A rapid, real-time analytical method is needed to support on-site optimization of the smelter feedstock. A portable, handheld X-ray fluorescence spectrometer was utilized to determine the copper concentration in a head flow suspension at the slurry origin. The method requires only seconds and is reliable for copper concentrations of 2.0-25%, typically encountered in such slurries. © The Author(s) 2016.
RESIDUAL RISK ASSESSMENTS - FINAL RESIDUAL RISK ASSESSMENT FOR SECONDARY LEAD SMELTERS
This source category previously subjected to a technology-based standard will be examined to determine if health or ecological risks are significant enough to warrant further regulation for Secondary Lead Smelters. These assesments utilize existing models and data bases to examin...
Jarošíková, Alice; Ettler, Vojtěch; Mihaljevič, Martin; Penížek, Vít; Matoušek, Tomáš; Culka, Adam; Drahota, Petr
2018-06-01
Dust emissions from copper smelters processing arsenic-bearing ores represent a risk to soil environments due to the high levels of As and other inorganic contaminants. Using an in situ experiment in four different forest and grassland soils (pH 3.2-8.0) we studied the transformation of As-rich (>50 wt% As) copper smelter dust over 24 months. Double polyamide bags with 1 g of flue dust were buried at different depths in soil pits and in 6-month intervals; then those bags, surrounding soil columns, and soil pore waters were collected and analysed. Dust dissolution was relatively fast during the first 6 months (5-34%), and mass losses attained 52% after 24 months. The key driving forces affecting dust dissolution were not only pH, but also the water percolation/retention in individual soils. Primary arsenolite (As 2 O 3 ) dissolution was responsible for high As release from the dust (to 72%) and substantial increase of As in the soil (to a 56 × increase; to 1500 mg kg -1 ). Despite high arsenolite solubility, this phase persisted in the dust after 2 years of exposure. Mineralogical investigation indicated that mimetite [Pb 5 (AsO 4 ) 3 (Cl,OH)], unidentified complex Ca-Pb-Fe-Zn arsenates, and Fe oxyhydroxides partly controlled the mobility of As and other metal(loid)s. Compared to As, other less abundant contaminants (Bi, Cu, Pb, Sb, Zn) were released into the soil to a lesser extent (8-40% of total). The relatively high mobility of As in the soil can be seen from decreases of bulk As concentrations after spring snowmelt, high water-extractable fractions with up to ∼50% of As(III) in extracts, and high As concentrations in soil pore waters. Results indicate that efficient controls of emissions from copper smelters and flue dust disposal sites are needed to prevent extensive contamination of nearby soils by persistent As. Copyright © 2018 Elsevier Ltd. All rights reserved.
There are over 3,000 sites across the United States contaminated with lead. Techniques to remediate these sites include standard stabilization/disposal technologies, reclamation of lead using secondary lead smelters, soil washing, and biological removal technologies.
Throu...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bagatto, G.; Shorthouse, J.D.; Crowder, A.A.
1993-10-01
Ecosystems damaged by emissions from the copper-nickel smelters of Inco and Falconbridge Ltd. near Sudbury, Ontario, Canada have provided a unique opportunity to study the effects of metal particulates and sulphur dioxide fumigations on plant and animal communities. The most infamous terrain in the Sudbury region is nearest the smelters (two active and one closed), where nearly all vegetation has been destroyed and soils eroded and contaminated. However, over all the past twenty years, some species of plants have developed a tolerance to polluted soils and some denuded lands have been naturally and artificially revegetated. Furthermore, a series of uniquemore » anthropogenic forests have developed away from the smelters. Several studies on the accumulation of metals in plant tissues indicate the levels of metals are usually highest closest to the smelters. Consequently, several studies have reported high correlations between plant concentrations of certain metals with distance from the source of pollution. However, tissue metal burdens are not always correlated with distance from the emission source, suggesting that other biological and physico-chemical factors may influence tissue metal burdens in the Sudbury habitat. The present study provides information on the metal burdens in another plant, lowbush blueberry, growing both near and away from the smelters. This study assesses the apparent influence of the Sudbury smelting operations on plant tissue burdens of five additional elements, along with copper and nickel, by using a factor analytic approach. This approach will allow determination of underlying factors which govern tissue metal burdens in a polluted environment and helps to refine the future direction of research in the Sudbury ecosystem. 12 refs., 2 tabs.« less
Selecting an oxygen plant for a copper smelter modernization
NASA Astrophysics Data System (ADS)
Larson, Kenneth H.; Hutchison, Robert L.
1994-10-01
The selection of an oxygen plant for the Cyprus Miami smelter modernization project began with a good definition of the use requirements and the smelter process variables that can affect oxygen demand. To achieve a reliable supply of oxygen with a reasonable amount of capital, critical equipment items were reviewed and reliability was added through the use of installed spares, purchase of insurance spare parts or the installation of equipment design for 50 percent of the production design such that the plant could operate with one unit while the other unit is being maintained. The operating range of the plant was selected to cover variability in smelter oxygen demand, and it was recognized that the broader operating range sacrificed about two to three percent in plant power consumption. Careful consideration of the plant "design point" was important to both the capital and operating costs of the plant, and a design point was specified that allowed a broad range of operation for maximum flexibility.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1988-10-02
The 160-acre community of Mill Creek is located in Deerlodge County, Montana, immediately adjacent to the Anaconda Smelter NPL site. The community of Mill Creek has been contaminated for over 100 years with smelter emissions, fugitive emissions of flu dust at the smelter, and continued fugitive emissions emanating from adjacent highly contaminated soils. Settled flue emissions in the community of Mill Creek, from the now-defunct copper-smelting operation, contain arsenic, cadmium, and lead. Environmental siting of the community and biological testing of pre-school children, led EPA to conclude that contamination in the Mill Creek area poses an imminent and substantial endangermentmore » to the health of individuals residing there. The primary contaminant of concern at this site is arsenic. Cadmium and lead are secondary contaminants of concern. The selected remedial action for the site includes: permanent relocation of all residents (8 homes) with temporary erosional stabilization of disturbed areas by establishing and maintaining a vegetative cover; demolition, consolidation, and storage.« less
Lead contamination around secondary smelters: estimation of dispersal and accumulation by humans.
Roberts, T M; Hutchinson, T C; Paciga, J; Chattopadhyay, A; Jervis, R E; VanLoon, J; Parkinson, D K
1974-12-20
A high rate of lead fallout around two secondary lead smelters originated mainly from episodal large-particulate emissions from low-level fugitive sources rather than from stack fumes. The lead content of dustfall, and consequently of soil, vegetation, and outdoor dust, decreased exponentially with distance from the two smelters. Between 13 and 30 percent of the children living in the contaminated areas had absorbed excessive amounts of lead (more than 40 micrograms per 100 milliliters of blood and more than 100 micrograms per gram of hair) as compared with less than 1 percent in a control group. A relationship between blood and hair was established which indicated that the absorption was fairly constant for most children examined. It seemned that the ingestion of contaminated dirt and dusts rather than "paint pica" was the major route of lead intake. Metabolic changes were found in most of 21 children selected from those with excessive lead absorption; 10 to 15 percent of this group showed subtle neurological dysfunctions and minor psychomotor abnormalities.
Crystallization Behavior of Copper Smelter Slag During Molten Oxidation
NASA Astrophysics Data System (ADS)
Fan, Yong; Shibata, Etsuro; Iizuka, Atsushi; Nakamura, Takashi
2015-10-01
Copper slag is composed of iron silicate obtained by smelting copper concentrate and silica flux. One of the most important criteria for the utilization of this secondary resource is the recovery of iron from the slag matrix to decrease the volume of dumped slag. The molten oxidation process with crushing magnetic separation appears to be a more sustainable approach and is based on directly blowing oxidizing gas onto molten slag after the copper smelting process. In the current study, using an infrared furnace, the crystallization behavior of the slag during molten oxidation was studied to better understand the trade-off between magnetite and hematite precipitations, as assessed by X-ray diffraction (using an internal standard). Furthermore, the crystal morphology was examined using a laser microscope and Raman imaging system to understand the iron oxide transformation, and the distribution of impurities such as Cu, Zn, As, Cr, and Pb were complemented with scanning electron microscopy and energy dispersive spectroscopy. In addition, the reaction mechanism was investigated with a focus on the oxidation processes.
Cadmium in forest ecosystems around lead smelters in Missouri.
Gale, N L; Wixson, B G
1979-01-01
The development of Missouri's new lead belt within the past decase has provided an excellent opportunity to study the dissemination and effects of heavy metals in a deciduous forest ecosystem. Primary lead smelters within the new lead belt have been identified as potential sources of cadmium as well as lead, zinc, and copper. Sintering and blast furnace operations tend to produce significant quantities of small particulates highly enriched in cadmium and other heavy metals. At one smelter, samples of stack particulate emissions indicate that as ms accompanied by 0.44 lb zinc, 4.66 lb lead, and 0.01 lb copper/hr. These point-source emissions, as well as a number of other sources of fugitive (wind blown) and waterborne emissions contribute to a significant deposition of cadmium in the surrounding forest and stream beds. Mobilization of vagrant heavy metals may be significantly increased by contact of baghouse dusts or scrubber slurries with acidic effluents emanating from acid plants designed to produce H2SO4 as a smelter by-product. Two separate drainage forks within the Crooked Creek watershed permit some comparisons of the relative contributions of cadmium by air-borne versus water-borne contaminants. Cadmium and other heavy metals have been found to accumulate in the forest litter and partially decomposed litter along stream beds. Greater solubility, lower levels of complexation with organic ligands in the litter, and greater overall mobility of cadmium compared with lead, zinc, and copper result in appreciable contributions of dissolved cadmium to the watershed runoff. The present paper attempts to define the principle sources and current levels of heavy metal contamination and summarizes the efforts undertaken by the industry to curtail the problem. PMID:488037
40 CFR 421.60 - Applicability: Description of the secondary copper subcategory.
Code of Federal Regulations, 2011 CFR
2011-07-01
... secondary copper subcategory. 421.60 Section 421.60 Protection of Environment ENVIRONMENTAL PROTECTION... CATEGORY Secondary Copper Subcategory § 421.60 Applicability: Description of the secondary copper..., processing, and remelting of new and used copper scrap and residues to produce copper metal and copper alloys...
40 CFR 421.60 - Applicability: Description of the secondary copper subcategory.
Code of Federal Regulations, 2010 CFR
2010-07-01
... secondary copper subcategory. 421.60 Section 421.60 Protection of Environment ENVIRONMENTAL PROTECTION... CATEGORY Secondary Copper Subcategory § 421.60 Applicability: Description of the secondary copper..., processing, and remelting of new and used copper scrap and residues to produce copper metal and copper alloys...
Kozlov, Mikhail V
2005-05-01
Concentrations of nickel and copper, two principal metal pollutants of the 'Severonikel' smelter at Monchegorsk, NW Russia, were measured in unwashed leaves of mountain birch, Betula pubescens subsp. czerepanovii, collected in eight study sites along the pollution gradient during 1991-2003. In spite of significant decline in metal emissions, concentrations of foliar metals in most of the study sites did not decrease, indicating that soil contamination remains extremely high. Multiyear mean values peaked at 6.6 km S of the smelter, where they were 20-25 times higher than in the most distant study site. Concentrations of both metals demonstrated pronounced annual variation, which was explained by the meteorological conditions of early summer: higher precipitation in May increased foliar concentrations of both metals, whereas higher precipitation in June resulted in lower foliar concentrations of nickel. These data suggest that ecotoxicological situation in metal-contaminated areas can be modified by the expected climate change. In heavily polluted sites individual birch trees generally retained their ranks in terms of metal contamination during 1995-2003, demonstrating that the use of the same set of trees can significantly increase the accuracy of the monitoring data.
NASA Astrophysics Data System (ADS)
Kuo, Su-Ching; Hsieh, Li-Ying; Tsai, Cheng-Hsien; Tsai, Ying I.
Fugitive metal in PM 2.5 at the blast furnace ( S1), reverberatory furnace ( S2), and surrounding environment ( S0) of a secondary aluminum smelter (a secondary ALS) was studied. PM 2.5 mass concentration at the blast furnace exceeded that at the reverberatory furnace and this was especially apparent during operation, giving an early indication that the blast furnace is more important as a pollutant source. Further, PM 2.5 mass concentration levels and patterns at S0 indicated that emissions from the blast furnace and reverberatory furnace were the major source of the observed fine particle pollution in the surrounding environment. Si and K were the main components and hence pollutants by mass in the PM 2.5 at S1, S2 and S0 during both operation and non-operation. Hg was not detected in the PM 2.5 aerosol during smelter operation but was present at all three sampling locations during non-operation. This is due to the falling blast furnace and reverberatory furnace temperatures during non-operation which cause Hg vapor formed during operation to condense to form detectable Hg particles, and hence Hg contributes to the pollutant load during non-operation. Average S1/ S0 and S2/ S0 mass concentration ratios of 40.32 and 18.53, respectively, for all measured metals during operation and 7.83 and 5.73 for all measured metals during non-operation indicate that metal particulate pollution at the workplaces of secondary ALSs, particularly at the blast furnace during operation, is a serious issue. S1/ S0 mass concentration ratios were higher still for Pb (62.22), Ti (113.40) and Ba (248.64), while the S2/ S0 mass concentration ratio for Mo was 138.20. Principal component analyses produced a PC1 that explained 32.36-48.16% of the total variance during operation of the smelter and 47.86-69.Ten percent during non-operation. Their strong component loadings were mainly related to the fugitive PM 2.5 mass. Compared to atmospheric metal concentrations reported for other regions of
Ginocchio, Rosanna; Carvallo, Gastón; Toro, Ignacia; Bustamante, Elena; Silva, Yasna; Sepúlveda, Nancy
2004-01-01
Soil chemical changes produced by metal smelters have mainly been studied on a large scale. In terms of plant survival, determination of small scale variability may be more important because less toxic microhabitats may represent safe sites for successful recruitment and thus for plant survival. Three dominant microhabitats (open spaces and areas below the canopy of Sphaeralcea obtusiloba and Baccharis linearis shrubs) were defined in a heavily polluted area near a copper smelter and characterised in terms of microclimate, general soil chemistry, total and extractable metal concentrations in the soil profile (A0 horizon, 0-5 and 15-20 cm depth), and seedling densities. Results indicated a strong variability in microclimate and soil chemistry not only in the soil profile but also among microhabitats. Air/soil temperatures, radiation and wind speed were much lower under the canopy of shrubs, particularly during the plant growth season. Soil acidification was detected on top layers (0-5 cm depth) of all microhabitats while higher concentrations of N, Cu and Cd were detected on litter and top soil layers below shrubs when compared to open spaces; however, high organic matter content below shrubs decreased bioavailability of metals. Plant recruitment was concentrated under shrub canopies; this may be explained as a result of the nursery effect exerted by shrubs in terms of providing a more favourable microclimate, along with better soil conditions in terms of macronutrients and metal bioavailability.
Nikolić, Djordje; Milošević, Novica; Mihajlović, Ivan; Zivković, Zivan; Tasić, Viša; Kovačević, Renata; Petrović, Nevenka
2010-02-01
This work presents the results of 4 years long monitoring of concentrations of SO(2) gas and PM(10) in the urban area around the copper smelter in Bor. The contents of heavy metals Pb, Cd, Cu, Ni, and As in PM(10) were determined and obtained values were compared to the limit values provided in EU Directives. Manifold excess concentrations of all the components in the atmosphere of the urban area of the townsite Bor were registered. Through application of a multi-criteria analysis by using PROMETHEE/GAIA method, the zones were ranked according to the level of pollution.
The pH-dependent contaminant leaching from the copper smelter fly ash and slag
NASA Astrophysics Data System (ADS)
Jarosikova, Alice; Ettler, Vojtech; Mihaljevic, Martin; Penizek, Vit
2014-05-01
Metallurgical wastes produced during smelting processes represent a potential risk of environmental contamination, depending particularly on the content and mobility of the elements contained. Due to leaching, serious environmental impact especially in contaminated soil systems in the vicinity of the smelting plants may occur. In this respect two potentially hazardous metallurgical wastes from the copper smelter Tsumeb (Namibia, Africa) were investigated by laboratory leaching experiments. The leaching behaviours of (i) Ausmelt slag from Cu smelting (9500 ppm As, 24000 ppm Cu, 10200 ppm Pb, 24500 ppm Zn; mineralogy: glass, fayalite, spinel, metallic/sulphide droplets) and (ii) fly ash from Cu smelter bag house filters (43.7 wt% As, 13000 ppm Cu, 39700 ppm Pb, 20000 ppm Zn; mineralogy: arsenolite, galena, gypsum, litharge, anglesite) were studied using a 48-h pH-static leaching test (CEN/TS 14997). The release of metals/metalloids at a range of pH 3-12, investigation of changes in mineralogical composition and PHREEQC speciation-solubility modelling were used to understand processes governing the contaminant leaching from these waste materials. It was observed that the contaminant leaching was highly pH-dependent. The release of metals from slag corresponded to "L-type" leaching curve with Cu being the key contaminant leached (up to 1780 mg/kg). In contrast, As was highly leached also in alkaline conditions (31-173 mg/kg) and significantly exceeded the limit value for hazardous waste materials in all cases (25 mg/kg). Fly ash was found to be extremely reactive in terms of the As release with a "J-type" leaching curve indicating the highest leaching at pH of 11 and 12 (up to 314 g/kg). Arsenic was considered to be the most important contaminant for both waste materials and its release can represent a risk for the environment, especially in case, where the fly ash- or slag-derived particulates are deposited into the soil systems. This study was supported by the Czech
Protective effect of selenium on lung cancer in smelter workers.
Gerhardsson, L; Brune, D; Nordberg, I G; Wester, P O
1985-01-01
A possible protective effect of selenium against lung cancer has been indicated in recent studies. Workers in copper smelters are exposed to a combination of airborne selenium and carcinogens. In this study lung tissue concentrations of selenium, antimony, arsenic, cadmium, chromium, cobalt, lanthanum, and lead from 76 dead copper smelter workers were compared with those of 15 controls from a rural area and 10 controls from an urban area. The mean exposure time for the dead workers was 31.2 years, and the mean retirement time after the end of exposure 7.2 years. Lung cancer appeared in the workers with the lowest selenium lung tissue levels (selenium median value 71 micrograms/kg wet weight), as compared with both the controls (rural group, median value 110; urban group, median value 136) and other causes of death among the workers (median value 158). The quotient between the metals and selenium was used for comparison: a high quotient indicating a low protective effect of selenium and vice versa. The median values of the quotients between antimony, arsenic, cadmium, lanthanum, lead, chromium, and cobalt versus selenium were all numerically higher among the cases of lung cancer, the first five significantly higher (p less than 0.05) in 28 of the 35 comparisons between the lung cancer group and all other groups of smelter workers and controls. The different lung metal concentrations for each person were weighted according to their carcinogenic potency (Crx4 + Asx3 + Cdx2 + Sbx1 + Cox1 + Lax1 + Pbx1) against their corresponding selenium concentrations. From these calculations the protective effect of selenium was even more pronounced. PMID:4041390
Copper chloride cathode for a secondary battery
NASA Technical Reports Server (NTRS)
Bugga, Ratnakumar V. (Inventor); Distefano, Salvador (Inventor); Nagasubramanian, Ganesan (Inventor); Bankston, Clyde P. (Inventor)
1990-01-01
Higher energy and power densities are achieved in a secondary battery based on molten sodium and a solid, ceramic separator such as a beta alumina and a molten catholyte such as sodium tetrachloroaluminate and a copper chloride cathode. The higher cell voltage of copper chloride provides higher energy densities and the higher power density results from increased conductivity resulting from formation of copper as discharge proceeds.
Texturing Copper To Reduce Secondary Emission Of Electrons
NASA Technical Reports Server (NTRS)
Jensen, Kenneth A.; Curren, Arthur N.; Roman, Robert F.
1995-01-01
Ion-beam process produces clean, deeply textured surfaces on copper substrates with reduced secondary electron emission. In process, molybdenum ring target positioned above and around copper substrate. Target potential repeatedly switched on and off. Switching module described in "High-Voltage MOSFET Switching Circuit" (LEW-15986). Useful for making collector electrodes for traveling-wave-tube and klystron microwave amplifiers, in which secondary emission of electrons undesirable because of reducing efficiency.
Genaidy, A M; Sequeira, R; Tolaymat, T; Kohler, J; Rinder, M
2009-05-01
An evidence-based methodology was adopted in this research to establish strategies to increase lead recovery and recycling via a systematic review and critical appraisal of the published literature. In particular, the research examines pollution prevention and waste minimization practices and technologies that meet the following criteria: (a) reduce/recover/recycle the largest quantities of lead currently being disposed of as waste, (b) technically and economically viable, that is, ready to be diffused and easily transferable, and (c) strong industry interest (i.e., industry would consider implementing projects with higher payback periods). The following specific aims are designed to achieve the study objectives: Aim 1 - To describe the recycling process of recovering refined lead from scrap; Aim 2 - To document pollution prevention and waste management technologies and practices adopted by US stakeholders along the trajectory of LAB and lead product life cycle; Aim 3 - To explore improved practices and technologies which are employed by other organizations with an emphasis on the aforementioned criteria; Aim 4 - To demonstrate the economic and environmental costs and benefits of applying improved technologies and practices to existing US smelting operations; and Aim 5 - To evaluate improved environmental technologies and practices using an algorithm that integrates quantitative and qualitative criteria. The process of identifying relevant articles and reports was documented. The description of evidence was presented for current practices and technologies used by US smelters as well as improved practices and technologies. Options for integrated environmental solutions for secondary smelters were introduced and rank ordered on the basis of costs (i.e., capital investment) and benefits (i.e., production increases, energy and flux savings, and reduction of SO(2) and slag). An example was provided to demonstrate the utility of the algorithm by detailing the costs and
Sims, Ian; Crane, Mark; Johnson, Ian; Credland, Peter
2009-10-01
This paper examines the impact of an industrial point-source atmospheric emission on the feeding of early life stages of a terrestrial invertebrate. Larvae of a bagworm moth, Luffia ferchaultella [Stephens], were fed terrestrial epiphytic algae (Desmococcus viridis [Menegh]) collected from five sites located along a 16 km transect around the Avonmouth zinc smelter. After 10 days of exposure symptoms of lethal and sublethal toxicity (mortality and paralysis) were observed. Reductions in the amount of faecal material (frass) produced were also identified, and these correlated with distance downwind of the smelter. The elevated concentrations of lead, mercury, arsenic, antimony, copper, cadmium, lead and nickel present in the algae could account for these symptoms of toxicity. Similar symptoms were observed when larvae were fed algae spiked with inorganic mercury. These results are consistent with other studies of soil toxicity conducted around the Avonmouth smelter. However, the current study suggests that the impacted area exceeds this 16 km transect and demonstrates the value of bagmoth larvae as sensitive biomonitors of metallic atmospheric pollutants above the rhizosphere.
EPA Requires ASARCO to Cut Toxic Emissions at 103-Year-Old Arizona Copper Smelter
U.S. DOJ and EPA announce settlement with ASARCO requiring the company to spend $150 million to install new equipment and pollution control technology to reduce emissions of toxic heavy metals at a large smelter located in Hayden, Ariz.
NASA Astrophysics Data System (ADS)
Vorobeichik, E. L.; Kaigorodova, S. Yu.
2017-08-01
The 23-year-long dynamics of actual acidity (pHwater) and acid-soluble heavy metals (Cu, Pb, Cd, Zn) in the forest litter and humus horizon of soils in spruce-fir forests were studied in the area subjected to the long-term (since 1940) pollution with atmospheric emissions from the Middle Ural Copper Smelter (Revda, Sverdlovsk oblast). For this purpose, 25 permanent sample plots were established on lower slopes at different distances from the enterprise (30, 7, 4, 2, and 1 km; 5 plots at each distance) in 1989. The emissions from the smelter have decreased since the early 1990s. In 2012, the emissions of sulfur dioxide and dust decreased by 100 and 40 times, respectively, as compared with the emissions in 1980. Samples of litter and humus horizons were collected on permanent plots in 1989, 1999, and 2012. The results indicate that the pH of the litter and humus horizons restored to the background level 10 and 23 years after the beginning of the reduction in emissions, respectively. However, these characteristics in the impact zone still somewhat differ from those in the background area. In 2012, the content of Cu in the litter decreased compared to 1989 on all the plots; the content of Cu in the humus horizon decreased only in the close vicinity of the smelter. The contents of other metals in the litter and humus horizons remain constant or increased (probably because of the pH-dependent decrease in migration capacity). The absence of pronounced removal of metals from soils results in the retention of high contamination risk and the conservation of the suppressed state of biota within the impact zone.
Little, E.E.; Calfee, R.D.; Linder, G.
2014-01-01
The toxicity of five smelter slag-contaminated sediments from the upper Columbia River and metals associated with those slags (cadmium, copper, zinc) was evaluated in 96-h exposures of White Sturgeon (Acipenser transmontanus Richardson, 1836) at 8 and 30 days post-hatch. Leachates prepared from slag-contaminated sediments were evaluated for toxicity. Leachates yielded a maximum aqueous copper concentration of 11.8 μg L−1 observed in sediment collected at Dead Man's Eddy (DME), the sampling site nearest the smelter. All leachates were nonlethal to sturgeon that were 8 day post-hatch (dph), but leachates from three of the five sediments were toxic to fish that were 30 dph, suggesting that the latter life stage is highly vulnerable to metals exposure. Fish maintained consistent and prolonged contact with sediments and did not avoid contaminated sediments when provided a choice between contaminated and uncontaminated sediments. White Sturgeon also failed to avoid aqueous copper (1.5–20 μg L−1). In water-only 96-h exposures of 35 dph sturgeon with the three metals, similar toxicity was observed during exposure to water spiked with copper alone and in combination with cadmium and zinc. Cadmium ranging from 3.2 to 41 μg L−1 or zinc ranging from 21 to 275 μg L−1 was not lethal, but induced adverse behavioral changes including a loss of equilibrium. These results suggest that metals associated with smelter slags may pose an increased exposure risk to early life stage sturgeon if fish occupy areas contaminated by slags.
Characterization and recovery of copper values from discarded slag.
Das, Bisweswar; Mishra, Barada Kanta; Angadi, Shivakumar; Pradhan, Siddharth Kumar; Prakash, Sandur; Mohanty, Jayakrushna
2010-06-01
In any copper smelter large quantities of copper slag are discarded as waste material causing space and environmental problems. This discarded slag contains important amounts of metallic values such as copper and iron. The recovery of copper values from an Indian smelter slag that contains 1.53% Cu, 39.8% Fe and 34.65% SiO(2) was the focus of the present study. A complete investigation of the different phases present in the slag has been carried out by means of optical microscopy, Raman spectroscopy, scanning electron microscopy (SEM), and X-ray diffraction (XRD) techniques. It is observed that iron and silica are mostly associated with the fayalite phase whereas copper is present in both oxide and sulfide phases. These oxide and sulfide phases of copper are mostly present within the slag phase and to some extent the slag is also embedded inside the oxide and sulfide phases. The recovery of copper values from the discarded slag has been explored by applying a flotation technique using conventional sodium isopropyl xanthate (SIX) as the collector. The effects of flotation parameters such as pH and collector concentration are investigated. Under optimum flotation conditions, it is possible to achieve 21% Cu with more than 80% recovery.
Bizon, Anna; Antonowicz-Juchniewicz, Jolanta; Andrzejak, Ryszard; Milnerowicz, Halina
2013-03-01
The aim of this study was to investigate the effect of cigarette smoking and occupational exposure to heavy metals on the degree of pro-oxidant/antioxidant imbalance in smelters. The investigations were performed on the blood and urine of 400 subjects: 300 male copper smelters and 100 nonexposed male subjects. Biological material was divided into three groups: nonsmokers, those who smoked less than 20 cigarettes a day and those who smoked more than 20 cigarettes a day. The results showed a significant increase in the concentration of lead, cadmium and arsenic in the blood and urine of smelters, while smoking more than 20 cigarettes a day caused a further increase in the concentration of these metals. The level of malondialdehyde was approximately twofold higher in the plasma of the smelters compared to the control group. We have observed a disturbance in the level of antioxidants in erythrocyte lysate manifested by an increase in metallothionein and glutathione concentrations as well as superoxide dismutase and glutathione peroxidase activities and the decrease in glutathione S-transferase activity. Cigarette smoking, years of work in metallurgy and age of smelters were additional factors significantly affecting the pro-oxidant/antioxidant balance.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-03-13
... Chloride and Copolymer Production, Primary Copper Smelting, Secondary Copper Smelting, and Primary... www.regulations.gov . Title: NESHAP for Area Sources: Polyvinyl Chloride and Copolymer Production.... Respondents/Affected Entities: Owners or operators of polyvinyl chloride and copolymer, primary copper smelter...
Genaidy, A M; Sequeira, R; Tolaymat, T; Kohler, J; Wallace, S; Rinder, M
2010-09-01
Secondary lead smelters (SLS) represent an environmentally-challenging industry as they deal with toxic substances posing potential threats to both human and environmental health, consequently, they operate under strict government regulations. Such challenges have resulted in the significant reduction of SLS plants in the last three decades. In addition, the domestic recycling of lead has been on a steep decline in the past 10 years as the amount of lead recovered has remained virtually unchanged while consumption has increased. Therefore, one may wonder whether sustainable development can be achieved among SLS. The primary objective of this study was to determine whether a roadmap for sustainable development can be established for SLS. The following aims were established in support of the study objective: (1) to conduct a systematic review and an analysis of models of sustainable systems with a particular emphasis on SLS; (2) to document the challenges for the U.S. secondary lead smelting industry; and (3) to explore practices and concepts which act as vehicles for SLS on the road to sustainable development. An evidence-based methodology was adopted to achieve the study objective. A comprehensive electronic search was conducted to implement the aforementioned specific aims. Inclusion criteria were established to filter out irrelevant scientific papers and reports. The relevant articles were closely scrutinized and appraised to extract the required information and data for the possible development of a sustainable roadmap. The search process yielded a number of research articles which were utilized in the systematic review. Two types of models emerged: management/business and science/mathematical models. Although the management/business models explored actions to achieve sustainable growth in the industrial enterprise, science/mathematical models attempted to explain the sustainable behaviors and properties aiming at predominantly ecosystem management. As such
NASA Technical Reports Server (NTRS)
Curren, A. N.; Jensen, K. A.
1985-01-01
Experimentally determined values of true secondary electron emission and relative values of reflected primary electron yield for a range of primary electron beam energies and beam impingement angles are presented for a series of novel textured carbon surfaces on copper substrates. (All copper surfaces used in this study were oxygen-free, high-conductivity grade). The purpose of this investigation is to provide information necessary to develop high-efficiency multistage depressed collectors (MDC's) for microwave amplifier traveling-wave tubes (TWT's) for communications and aircraft applications. To attain the highest TWT signal quality and overall efficiency, the MDC electrode surface must have low secondary electron emission characteristics. While copper is the material most commonly used for MDC electrodes, it exhibits relatively high levels of secondary electron emission unless its surface is treated for emission control. The textured carbon surface on copper substrate described in this report is a particularly promising candidate for the MDC electrode application. Samples of textured carbon surfaces on copper substrates typical of three different levels of treatment are prepared and tested for this study. The materials are tested at primary electron beam energies of 200 to 2000 eV and at direct (0 deg) to near-grazing (85 deg) beam impingement angles. True secondary electron emission and relative reflected primary electron yield characteristics of the textured surfaces are compared with each other and with those of untreated copper. All the textured carbon surfaces on copper substrate tested exhibited sharply lower secondary electron emission characteristics than those of an untreated copper surface.
Material flows generated by pyromet copper smelting
Goonan, T.G.
2005-01-01
Copper production through smelting generates large volumes of material flows. As copper contained in ore becomes copper contained in concentrate to be fed into the smelting process, it leaves behind an altered landscape, sometimes mine waste, and always mill tailings. Copper concentrate, fluxing materials, fuels, oxygen, recyclables, scrap and water are inputs to the process. Dust (recycled), gases - containing carbon dioxide (CO2) (dissipated) and sulfur dioxide (SO2) (mostly collected, transformed and sold) and slag (discarded or sold) - are among the significant process outputs. This article reports estimates of the flows of these input/output materials for a particular set of smelters studied in some countries.
NASA Astrophysics Data System (ADS)
Sun, Qingshan; Song, Yingli; Liu, Shengnan; Wang, Fei; Zhang, Lin; Xi, Shuhua; Sun, Guifan
2015-10-01
The investigation was carried out to evaluate arsenic exposure and the urine metabolite profiles of workers with different working departments, including administration (Group1), copper ore mining (Group2), copper ore grinding (Group3), electrolytic procession (Group4) and copper smelting (Group5) in a Copper mining and processing plant in China. Information about characteristics of each subject was obtained by questionnaire and inorganic arsenic (iAs), monomethylarsonic acid (MMA), dimethylarsinic acid (DMA) in urine were determined. The highest urinary levels of iAs, MMA and DMA all were found in the Group 5. Group 4 workers had a higher iAs% and a lower PMI compared to Group 3. The urinary total As (TAs) levels of 54.7% subjects exceeded 50 μg/g Cr, and the highest percentage (93.3%) was found in Group 5, smelters. The results of the present study indicate that workers in copper production plant indeed exposed to As, especially for smelters and workers of electrolytic process.
Two-zone countercurrent smelter system and process
Cox, J.H.; Fruehan, R.J.; Elliott, J.F.
1995-01-03
A process for continuously smelting iron ore by use of coal to yield molten iron or semi-steel is disclosed. The process comprises the steps of establishing a melt covered by slag; inducing the slag and the molten iron to flow countercurrently to one another, toward opposite ends of the smelter; maintaining iron oxide-reducing conditions in that zone of the smelter towards which the slag flows; maintaining carbon-oxidizing conditions in that zone of the smelter towards which the molten iron flows; continuously or semicontinuously tapping the slag from the reducing zone end of the smelter; continuously or semicontinuously tapping the molten iron from the oxidizing zone end of the smelter; and adding to both zones iron ore, coal, oxygen, and flux at addition rates sufficient to keep the molten iron in the reducing zone substantially saturated with carbon, maintain in the slag being tapped an FeO content of about 5 weight percent or less, and maintain in the molten iron being tapped a carbon content of about 0.5 to 5 weight percent. A slag dam preferably is included in the smelter, to impede the backflow of the slag from the reducing zone to the oxidizing zone. A metal bath dam with one or more flow-through portals also is preferably used, submerged below the slag dam, to impede the backflow of the hot metal. 8 figures.
Two-zone countercurrent smelter system and process
Cox, James H.; Fruehan, Richard J.; Elliott, deceased, John F.
1995-01-01
A process for continuously smelting iron ore by use of coal to yield molten iron or semi-steel is disclosed. The process comprises the steps of establishing a melt covered by slag; inducing the slag and the molten iron to flow countercurrently to one another, toward opposite ends of the smelter; maintaining iron oxide-reducing conditions in that zone of the smelter towards which the slag flows; maintaining carbon-oxidizing conditions in that zone of the smelter towards which the molten iron flows; continuously or semicontinuously tapping the slag from the reducing zone end of the smelter; continuously or semicontinuously tapping the molten iron from the oxidizing zone end of the smelter; and adding to both zones iron ore, coal, oxygen, and flux at addition rates sufficient to keep the molten iron in the reducing zone substantially saturated with carbon, maintain in the slag being tapped an FeO content of about 5 weight percent or less, and maintain in the molten iron being tapped a carbon content of about 0.5 to 5 weight percent. A slag dam preferably is included in the smelter, to impede the backflow of the slag from the reducing zone to the oxidizing zone. A metal bath dam with one or more flow-through portals also is preferably used, submerged below the slag dam, to impede the backflow of the hot metal.
Cárcamo, Valeska; Bustamante, Elena; Trangolao, Elizabeth; de la Fuente, Luz María; Mench, Michel; Neaman, Alexander; Ginocchio, Rosanna
2012-05-01
Acidic and metal(oid)-rich topsoils resulted after 34 years of continuous operations of a copper smelter in the Puchuncaví valley, central Chile. Currently, large-scale remediation actions for simultaneous in situ immobilization of metals and As are needed to reduce environmental risks of polluted soils. Aided phytostabilization is a cost-effective alternative, but adequate local available soil amendments have to be identified and management options have to be defined. Efficacy of seashell grit (SG), biosolids (B), natural zeolite (Z), and iron-activated zeolite (AZ), either alone or in mixtures, was evaluated for reducing metal (Cu and Zn) and As solubilization in polluted soils under laboratory conditions. Perennial ryegrass was used to test phytotoxicity of experimental substrates. Soil neutralization to a pH of 6.5 with SG, with or without incorporation of AZ, significantly reduces metal (Cu and Zn) solubilization without affecting As solubilization in soil pore water; furthermore, it eliminates phytotoxicity and excessive metal(oid) accumulation in aerial plant tissues. Addition of B or Z to SG-amended soil does not further reduce metal solubilization into soil pore water, but increase As solubilization due to excessive soil neutralization (pH > 6.5); however, no significant As increase occurs in aerial plant tissues. Simultaneous in situ immobilization of metal(oid) in acidic topsoils is possible through aided phytostabilization.
An econometric model of the U.S. secondary copper industry: Recycling versus disposal
Slade, M.E.
1980-01-01
In this paper, a theoretical model of secondary recovery is developed that integrates microeconomic theories of production and cost with a dynamic model of scrap generation and accumulation. The model equations are estimated for the U.S. secondary copper industry and used to assess the impacts that various policies and future events have on copper recycling rates. The alternatives considered are: subsidies for secondary production, differing energy costs, and varying ore quality in primary production. ?? 1990.
Prevalence of beryllium sensitization among aluminium smelter workers
Slade, M. D.; Cantley, L. F.; Kirsche, S. R.; Wesdock, J. C.; Cullen, M. R.
2010-01-01
Background Beryllium exposure occurs in aluminium smelters from natural contamination of bauxite, the principal source of aluminium. Aims To characterize beryllium exposure in aluminium smelters and determine the prevalence rate of beryllium sensitization (BeS) among aluminium smelter workers. Methods A population of 3185 workers from nine aluminium smelters owned by four different aluminium-producing companies were determined to have significant beryllium exposure. Of these, 1932 workers participated in medical surveillance programmes that included the serum beryllium lymphocyte proliferation test (BeLPT), confirmation of sensitization by at least two abnormal BeLPT test results and further evaluation for chronic beryllium disease in workers with BeS. Results Personal beryllium samples obtained from the nine aluminium smelters showed a range of <0.01–13.00 μg/m3 time-weighted average with an arithmetic mean of 0.25 μg/m3 and geometric mean of 0.06 μg/m3. Nine workers were diagnosed with BeS (prevalence rate of 0.47%, 95% confidence interval = 0.21–0.88%). Conclusions BeS can occur in aluminium smelter workers through natural beryllium contamination of the bauxite and further concentration during the refining and smelting processes. Exposure levels to beryllium observed in aluminium smelters are similar to those seen in other industries that utilize beryllium. However, compared with beryllium-exposed workers in other industries, the rate of BeS among aluminium smelter workers appears lower. This lower observed rate may be related to a more soluble form of beryllium found in the aluminium smelting work environment as well as the consistent use of respiratory protection. PMID:20610489
40 CFR 51.117 - Additional provisions for lead.
Code of Federal Regulations, 2010 CFR
2010-07-01
... requirements apply to lead. To the extent they conflict, there requirements are controlling over those of the... the following point sources of lead: Primary lead smelters, Secondary lead smelters, Primary copper... or more batteries per day. Any other stationary source that actually emits 25 or more tons per year...
Characteristics of PCDD/F emissions from secondary copper smelting industry.
Hung, Pao Chen; Chang, Chia Chia; Chang, Shu Hao; Chang, Moo Been
2015-01-01
Characteristics and mechanisms of PCDD/F formation with different feed materials in secondary copper smelting industry are investigated. The results indicate that PCDD/Fs are significantly formed even with the reaction time less than 0.1s, especially when the material containing high residues (Cu3) is fed. High copper content (65±2%) in the feed material enhances PCDD/F formation rate. Memory effect and de novo synthesis are two important mechanisms leading to PCDD/F formation. PCDD/F concentrations at the cyclone's inlet are between 2.92 and 12.4ng-TEQNm(-3) and increase with increasing residue content in the feed material. Two regions are identified for high potential of PCDD/F formation including the brass melt surface of the induction furnace and piping before the induced draft fan of the inlet hood. PCDD/Fs in flue gas are effectively removed with a cyclone and bag filter at low operating temperatures (<60°C) to meet the emission limit of 1.0ng-TEQNm(-3). 1,2,3,4,6,7,8-HpCDF has the largest mass fraction of PCDD/Fs and can serve as a fingerprint for emissions from secondary copper smelting processes. The total emission factor of PCDD/Fs from flue gas, residual and fly ash in the secondary copper smelting process investigated is 22.01μg-TEQtonne(-1). Copyright © 2014 Elsevier Ltd. All rights reserved.
Jacobson, Amanda E; Kahwash, Samir B; Chawla, Anjulika
2017-11-01
Copper deficiency is a known cause of anemia and neutropenia that is easily remedied with copper supplementation. Copper is primarily absorbed in the stomach and proximal duodenum, so patients receiving enteral nutrition via methods that bypass this critical region may be at increased risk for copper deficiency. In pediatrics, postpyloric enteral feeding is increasingly utilized to overcome problems related to aspiration, severe reflux, poor gastric motility, and gastric outlet obstruction. However, little is known about the prevalence of copper deficiency in this population. We describe three pediatric patients receiving exclusive jejunal feeds who developed cytopenias secondary to copper deficiency. © 2017 Wiley Periodicals, Inc.
2. BUNKER HILL LEAD SMELTER. VIEW IS FROM CIA TO ...
2. BUNKER HILL LEAD SMELTER. VIEW IS FROM CIA TO THE SOUTH. IN FOREGROUND, PLANT DRY, SLAG FUMING PLANT, BLAST FURNACE, SMELTER OFFICE, LEAD AND SILVER REFINERIES ARE VISIBLE, L. TO R. HIGH VELOCITY FLUE LEADS FROM LOWER PLANT TO BAG HOUSE AND STACKS AT TOP OF SMELTING FACILITY. - Bunker Hill Lead Smelter, Bradley Rail Siding, Kellogg, Shoshone County, ID
NASA Astrophysics Data System (ADS)
Ettler, Vojtech; Kribek, Bohdan; Mihaljevic, Martin; Vanek, Ales; Penizek, Vit; Sracek, Ondra; Mapani, Ben; Kamona, Fred; Nyambe, Imasiku
2017-04-01
Soils in the vicinity of non-ferrous metal smelters are often highly polluted by inorganic contaminants released from particulate emissions, which undergo weathering processes and release contaminants when deposited in soils. We studied the heavy mineral fraction, separated from mining- and smelter-affected topsoils, from both a humid subtropical area in the Zambian Copperbelt and a hot semi-arid area in the northern Namibia. High concentrations of metal(loid)s were detected in the studied soils: up to 1450 ppm As, 8980 ppm Cu, 4640 ppm Pb, 2620 ppm Zn. A combination of X-ray diffraction analysis (XRD), scanning electron microscopy (SEM/EDS), and electron probe microanalysis (EPMA) helped to identify the phases forming individual metal(loid)-bearing particles. Whereas spherical particles originate from the smelting and flue gas cleaning processes, angular particles either have geogenic origins or they are windblown from the mining operations and mine waste disposal sites. Sulphides from ores and mine tailings often exhibit weathering rims in contrast to smelter-derived high-temperature sulphides (chalcocite [Cu2S], digenite [Cu9S5], covellite [CuS], non-stoichiometric quenched Cu-Fe-S phases). Soils from humid subtropical areas exhibit higher available concentrations of metal(loids), and higher frequencies of weathering features (especially for copper-bearing oxides such as delafossite [CuFeO2]) are observed. In contrast, metal(loid)s are efficiently retained in semi-arid soils, where a high proportion of non-weathered smelter slag particles and low-solubility Ca-Cu-Pb arsenates occur. Our results indicate that compared to semi-arid areas (where inorganic contaminants were rather immobile in soils despite their high concentrations) a higher potential risk exists for agriculture in mine- and smelter-affected humid subtropical areas (where metal(loid) contaminants can be highly available for the uptake by crops). This study was supported by the Czech Science
4. BUNKER HILL LEAD SMELTER. VIEW IS FROM RIDGE ABOVE ...
4. BUNKER HILL LEAD SMELTER. VIEW IS FROM RIDGE ABOVE GOVERNMENT GULCH LOOKING TO THE EAST. IN THE RIGHT MID GROUND, CARPENTER SHOP BUILDINGS AND FRAMING SHEDS ARE VISIBLE. THE BACKGROUND FACILITIES VISIBLE FROM L. TO R. ARE: SMELTER OFFICE, REFINERIES, SLAG FUMING STACKS, HIGH VELOCITY FLUE, BAG HOUSE, 200-FOOT STACK, AND 715-FOOT STACK. - Bunker Hill Lead Smelter, Bradley Rail Siding, Kellogg, Shoshone County, ID
NASA Technical Reports Server (NTRS)
Curren, A. N.; Jensen, K. A.
1984-01-01
Experimentally determined values of true secondary electron emission and relative values of reflected primary electron yield for untreated and ion textured oxygen free high conductivity copper and untreated and ion textured high purity isotropic graphite surfaces are presented for a range of primary electron beam energies and beam impingement angles. This investigation was conducted to provide information that would improve the efficiency of multistage depressed collectors (MDC's) for microwave amplifier traveling wave tubes in space communications and aircraft applications. For high efficiency, MDC electrode surfaces must have low secondary electron emission characteristics. Although copper is a commonly used material for MDC electrodes, it exhibits relatively high levels of secondary electron emission if its surface is not treated for emission control. Recent studies demonstrated that high purity isotropic graphite is a promising material for MDC electrodes, particularly with ion textured surfaces. The materials were tested at primary electron beam energies of 200 to 2000 eV and at direct (0 deg) to near grazing (85 deg) beam impingement angles. True secondary electron emission and relative reflected primary electron yield characteristics of the ion textured surfaces were compared with each other and with those of untreated surfaces of the same materials. Both the untreated and ion textured graphite surfaces and the ion treated copper surface exhibited sharply reduced secondary electron emission characteristics relative to those of untreated copper. The ion treated graphite surface yielded the lowest emission levels.
Impact of Site Elevation on Mg Smelter Design
NASA Astrophysics Data System (ADS)
Baker, Phillip W.
Site elevation has many surprising and significant impacts on the engineering design of metallurgical plant of all types. Electrolytic magnesium smelters maybe built at high elevation for a variety of reasons including availability of raw material, energy or electric power. Because of the unit processes they typically involve, Mg smelters can be extensively impacted by site elevation. In this paper, generic examples of the design changes required to adapt a smelter originally designed for sea level to operate at 2700 m are presented. While the examples are drawn from a magnesium plant design case, these changes are generically applicable to all industrial plants utilizing similar unit processes irrespective of product.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-09-19
..., Primary Copper Smelters, Primary Zinc Smelters, Primary Lead Smelters, Primary Aluminum Reduction Plants...), Primary Copper Smelters (40 CFR Part 60, Subpart P), Primary Zinc Smelters (40 CFR Part 60, Subpart Q... zinc smelters, primary lead smelters, primary aluminum reduction plants, and ferroalloy production...
Effects of soil copper and nickel on survival and growth of Scots pine.
Nieminen, Tiina Maileena
2004-11-01
The contribution of soil Cu and Ni pollution to the poor vitality and growth rate of Scots pine growing in the vicinity of a Cu-Ni smelter was investigated in two manipulation experiments. In the first manipulation, Cu-Ni smelter-polluted soil cores were transported from a smelter-pollution gradient to unpolluted greenhouse conditions. A 4-year-old pine seedling was planted in each core and cultivated for a 17-month period. In the second manipulation, pine seedlings from the same lot were cultivated for the same 17-month period in a quartz sand medium containing increasing doses of copper sulfate, nickel sulfate, and a combination of both. The variation in the biomass growth of the seedlings grown in the smelter-polluted soil cores was very similar to that of mature pine stands growing along the same smelter-pollution gradient in the field. In addition, the rate of Cu and Ni exposure explained a high proportion of the biomass growth variation, and had an effect on the Ca, K, and Mg status of the seedlings. According to the lethal threshold values determined on the basis of the metal sulfate exposure experiments, both the Cu and Ni content of the 0.5 km smelter-polluted soil cores were high enough to cause the death of most of the seedlings. The presence of Cu seemed to increase Ni toxicity.
Exposure to fluoride in smelter workers in a primary aluminum industry in India.
Susheela, A K; Mondal, N K; Singh, A
2013-04-01
Fluoride is used increasingly in a variety of industries in India. Emission of fluoride dust and fumes from the smelters of primary aluminum producing industries is dissipated in the work environment and poses occupational health hazards. To study the prevalence of health complaints and its association with fluoride level in body fluids of smelter workers in a primary aluminum producing industry. In an aluminum industry, health status of 462 smelter workers, 60 supervisors working in the smelter unit, 62 non-smelter workers (control group 1) and 30 administration staff (control group 2) were assessed between 2007 and 2009. Their health complaints were recorded and categorized into 4 groups: 1) gastro-intestinal complaints; 2) non-skeletal manifestations; 3) skeletal symptoms; and (4) respiratory problems. Fluoride level in body fluids, nails, and drinking water was tested by an ion selective electrode; hemoglobin level was tested using HemoCue. The total complaints reported by study groups were significantly higher than the control groups. Smelter workers had a significantly (p<0.001) higher urinary and serum fluoride level than non-smelter workers; the nail fluoride content was also higher in smelter workers than non-smelter workers (p<0.001). The smelter workers with higher hemoglobin level had a significantly (p<0.001) lower urinary fluoride concentration and complained less frequently of health problems. Only 1.4% of the smelter workers were consuming water with high fluoride concentrations. A high percentage of participants was using substances with high fluoride contents. Industrial emission of fluoride is not the only important sources of fluoride exposure--consumption of substance with high levels of fluoride is another important route of entry of fluoride into the body. Measurement of hemoglobin provides a reliable indicator for monitoring the health status of employees at risk of fluorosis.
Copper-Catalyzed γ-Selective and Stereospecific Allylic Cross-Coupling with Secondary Alkylboranes.
Yasuda, Yuto; Nagao, Kazunori; Shido, Yoshinori; Mori, Seiji; Ohmiya, Hirohisa; Sawamura, Masaya
2015-06-26
The scope of the copper-catalyzed coupling reactions between organoboron compounds and allylic phosphates is expanded significantly by employing triphenylphosphine as a ligand for copper, allowing the use of secondary alkylboron compounds. The reaction proceeds with complete γ-E-selectivity and preferential 1,3-syn stereoselectivity. The reaction of γ-silicon-substituted allylic phosphates affords enantioenriched α-stereogenic allylsilanes. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
3. BUNKER HILL LEAD SMELTER. VIEW IS FROM CIA TO ...
3. BUNKER HILL LEAD SMELTER. VIEW IS FROM CIA TO THE SOUTHWEST. BUILDINGS NOTED IN ID-29-2 APPEAR, IN ADDITION TO DRY ORE PLANT AND BONNOT COAL PULVERIZING EQUIPMENT BUILDING ON THE RIGHT. - Bunker Hill Lead Smelter, Bradley Rail Siding, Kellogg, Shoshone County, ID
1. BUNKER HILL LEAD SMELTER. VIEW IS FROM CENTRAL IMPOUNDMENT ...
1. BUNKER HILL LEAD SMELTER. VIEW IS FROM CENTRAL IMPOUNDMENT AREA LOOKING SOUTH. PLANT DRY IS IN CENTER FOREGROUND, SLAG FUMING PLANT IS IN RIGHT FOREGROUND, AND BAG HOUSE IS IN RIGHT BACKGROUND. VARIOUS PLANT STACKS ARE ALSO VISIBLE. - Bunker Hill Lead Smelter, Bradley Rail Siding, Kellogg, Shoshone County, ID
Immobilization of copper flotation waste using red mud and clinoptilolite.
Coruh, Semra
2008-10-01
The flash smelting process has been used in the copper industry for a number of years and has replaced most of the reverberatory applications, known as conventional copper smelting processes. Copper smelters produce large amounts of copper slag or copper flotation waste and the dumping of these quantities of copper slag causes economic, environmental and space problems. The aim of this study was to perform a laboratory investigation to assess the feasibility of immobilizing the heavy metals contained in copper flotation waste. For this purpose, samples of copper flotation waste were immobilized with relatively small proportions of red mud and large proportions of clinoptilolite. The results of laboratory leaching demonstrate that addition of red mud and clinoptilolite to the copper flotation waste drastically reduced the heavy metal content in the effluent and the red mud performed better than clinoptilolite. This study also compared the leaching behaviour of metals in copper flotation waste by short-time extraction tests such as the toxicity characteristic leaching procedure (TCLP), deionized water (DI) and field leach test (FLT). The results of leach tests showed that the results of the FLT and DI methods were close and generally lower than those of the TCLP methods.
Flue Dust Agglomeration in the Secondary Lead Industry
NASA Astrophysics Data System (ADS)
Schwitzgebel, Klaus
1981-01-01
A secondary lead smelter produces several tons of bag-house dust a day. Appropriate handling of this dust is mandatory to meet the proposed OSHA and EPA workroom and ambient standards. Dust agglomeration proved a successful approach. Dusts with a high concentration of PbCl2, or compounds containing PbCl2 can be agglomerated at much lower temperatures than samples with low PbCl2 concentrations. The chlorine sources are polyvinyl chloride (PVC) battery plate separators. Since PVC is used in Europe to a much greater extent than in the U.S., the composition of feedstock must be considered in equipment selection at U.S. secondary smelters. The vapor pressure characteristics of PbCl2 favor its evaporation at blast furnace temperatures. Condensation occurs in the gas cooling system. Recycling of baghouse dust leads to a buildup of PbCl2 in the smelter. Its removal from the system is eventually necessary through leaching, if charges with a high PVC content are processed.
The respiratory health and lung function of Anglo-American children in a smelter town
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dodge, R.
1983-02-01
Cooper smelters are large, usually isolated, sources of air pollution. Arizona has several such plants on the periphery of small communities. The smelters emit predominantly sulfur oxides and particulates, and the residents of these communities intermittently are exposed to high concentrations (24-h sulfur dioxide (SO2) . 250 to 500 micrograms/m3) of smelter smoke but little other pollution. This study compared the respiratory health of Anglo-American school children who lived in one smelter community with children living in another small community in Arizona that was free of smelter air pollution. The prevalence of cough, as determined by questionnaire, was 25.6% inmore » the smelter town children and 14.3% in the nonsmelter town children (p less than 0.05). Pulmonary function at the study onset was equal in the two groups. Over the course of the 4 yr of study, lung function growth (measured as actual forced expiratory volume in one second (FEV1) after 4 yr of study minus predicted FEV1) was also equal in the smelter town and nonsmelter town children. These results suggest that children in smelter communities have slightly more cough when compared with children living in other communities, but no differences in initial lung function or lung function at yearly testing over the period of the study.« less
Hansen, Martine D.; Nøst, Therese H.; Heimstad, Eldbjørg S.; Evenset, Anita; Dudarev, Alexey A.; Rautio, Arja; Myllynen, Päivi; Dushkina, Eugenia V.; Jagodic, Marta; Christensen, Guttorm N.; Anda, Erik E.; Brustad, Magritt; Sandanger, Torkjel M.
2017-01-01
Toxic elements emitted from the Pechenganickel complex on the Kola Peninsula have caused concern about potential effects on local wild food in the border regions between Norway, Finland and Russia. The aim of this study was to assess Ni, Cu, Co, As, Pb, Cd, and Hg concentrations in local wild foods from these border regions. During 2013–2014, we collected samples of different berry, mushroom, fish, and game species from sites at varying distances from the Ni-Cu smelter in all three border regions. Our results indicate that the Ni-Cu smelter is the main source of Ni, Co, and As in local wild foods, whereas the sources of Pb and Cd are more complex. We observed no consistent trends for Cu, one of the main toxic elements emitted by the Ni-Cu smelter; nor did we find any trend for Hg in wild food. Concentrations of all investigated toxic elements were highest in mushrooms, except for Hg, which was highest in fish. EU maximum levels of Pb, Cd, and Hg were exceeded in some samples, but most had levels considered safe for human consumption. No international thresholds exist for the other elements under study. PMID:28657608
Hansen, Martine D; Nøst, Therese H; Heimstad, Eldbjørg S; Evenset, Anita; Dudarev, Alexey A; Rautio, Arja; Myllynen, Päivi; Dushkina, Eugenia V; Jagodic, Marta; Christensen, Guttorm N; Anda, Erik E; Brustad, Magritt; Sandanger, Torkjel M
2017-06-28
Toxic elements emitted from the Pechenganickel complex on the Kola Peninsula have caused concern about potential effects on local wild food in the border regions between Norway, Finland and Russia. The aim of this study was to assess Ni, Cu, Co, As, Pb, Cd, and Hg concentrations in local wild foods from these border regions. During 2013-2014, we collected samples of different berry, mushroom, fish, and game species from sites at varying distances from the Ni-Cu smelter in all three border regions. Our results indicate that the Ni-Cu smelter is the main source of Ni, Co, and As in local wild foods, whereas the sources of Pb and Cd are more complex. We observed no consistent trends for Cu, one of the main toxic elements emitted by the Ni-Cu smelter; nor did we find any trend for Hg in wild food. Concentrations of all investigated toxic elements were highest in mushrooms, except for Hg, which was highest in fish. EU maximum levels of Pb, Cd, and Hg were exceeded in some samples, but most had levels considered safe for human consumption. No international thresholds exist for the other elements under study.
Childhood lead poisoning from the smelter in Torreon, Mexico
DOE Office of Scientific and Technical Information (OSTI.GOV)
Soto-Jimenez, Martin F., E-mail: martin@ola.icmyl.unam.mx; Flegal, Arthur R.
2011-05-15
Lead concentrations and isotopic compositions in blood samples of 34 children (ages 2-17 years) living within a 113 km{sup 2} area of a silver-zinc-lead smelter plant in Torreon, Mexico were compared to those of associated environmental samples (soil, aerosols, and outdoor and indoor dust) to identify the principal source(s) of environmental and human lead contamination in the area. Lead concentrations of soil and outdoor dust ranged 130-12,050 and 150-14,365 {mu}g g{sup -1}, respectively. Concentrations were greatest near the smelter, with the highest levels corresponding with the prevailing wind direction, and orders of magnitude above background concentrations of 7.3-33.3 {mu}g g{supmore » -1}. Atmospheric lead depositions in the city varied between 130 and 1350 {mu}g m{sup -2} d{sup -1}, again with highest rates <1 km from the smelter. Blood lead (PbB) concentrations (11.0{+-}5.3 {mu}g dl{sup -1}) levels in the children ranged 5.0-25.8 {mu}g dl{sup -1}, which is 3-14 times higher than the current average (1.9 {mu}g dl{sup -1}) of children (ages 1-5 years) in the US. Lead isotopic ratios ({sup 206}Pb/{sup 207}Pb, {sup 208}Pb/{sup 207}Pb) of the urban dust and soil (1.200{+-}0.009, 2.467{+-}0.003), aerosols (1.200{+-}0.002, 2.466{+-}0.002), and PbB (1.199{+-}0.001, 2.468{+-}0.002) were indistinguishable from each other, as well as those of the lead ores processed at the smelter (1.199{+-}0.007, 2.473{+-}0.007). Consequently, an elevated PbB concentrations of the children in Torreon, as well as in their environment, are still dominated by industrial emissions from the smelter located within the city, in spite of new controls on atmospheric releases from the facility. - Highlights: {yields} Pb contents in environmental samples evidenced chronic Pb pollution in Torreon. {yields} Pb stable isotopes evidenced contemporary emissions from the Ag-Cod-Pb-Zn smelter. {yields} Pb urban dust and soil account for most of the childhood lead poisoning in Torreon
Prosopis pubescens (Screw bean mesquite) seedlings are hyper accumulators of copper
Zappala, Marian N.; Ellzey, Joanne T.; Bader, Julia; Peralta-Videa, Jose R.; Gardea-Torresdey, Jorge
2013-01-01
Due to health reasons, toxic metals must be removed from soils contaminated by mine tailings and smelter activities. The phytoremediation potential of Prosopis pubescens (screw bean mesquite) was examined by use of inductively-coupled plasma spectroscopy (ICP-OES). Transmission electron microscopy (TEM) was used to observe ultrastructural changes of parenchymal cells of leaves in the presence of copper. Elemental analysis was utilized to localize copper within leaves. A 600 ppm copper sulfate exposure to seedlings for 24 days resulted in 31,000 ppm copper in roots, 17,000 ppm in stems, 11,000 in cotyledons and 20 ppm in the true leaves. In order for a plant to be considered a hyper accumulator, the plant must accumulate a leaf: root ratio of <1. Screw bean mesquite exposed to copper had a leaf: root ratios of 0.355 when cotyledons were included. We showed that Prosopis pubescens grown in soil is a hyper accumulator of copper. We recommend that this plant should be field tested. PMID:23612918
More evidence of unpublished industry studies of lead smelter/refinery workers.
Sullivan, Marianne
2015-01-01
Lead smelter/refinery workers in the US have had significant exposure to lead and are an important occupational group to study to understand the health effects of chronic lead exposure in adults. Recent research found evidence that studies of lead smelter/refinery workers have been conducted but not published. This paper presents further evidence for this contention. To present further evidence of industry conducted, unpublished epidemiologic studies of lead smelter/refinery workers and health outcomes. Historical research relying on primary sources such as internal industry documents and published studies. ASARCO smelter/refinery workers were studied in the early 1980s and found to have increased risk of lung cancer and stroke in one study, but not in another. Because occupational lead exposure is an on-going concern for US and overseas workers, all epidemiologic studies should be made available to evaluate and update occupational health and safety standards.
NASA Astrophysics Data System (ADS)
Lehmusto, Juho; Vainio, Emil; Laurén, Tor; Lindgren, Mari
2018-02-01
The aim of the work was to study the catalytic role of copper flash smelter deposit in the SO2-to-SO3 conversion. In addition, the effect of process gas temperature at 548 K to 1173 K (275 °C to 900 °C) on the amount of SO3 formed was addressed both in the absence and presence of genuine copper flash smelter deposit. The SO3 conversion rate changed as a function of process gas temperature, peaking at 1023 K (750 °C). A dramatic increase in the SO2-to-SO3 conversion was observed when process dust was present, clearly indicating that process dust catalyzes the SO2-to-SO3 conversion. Based on these results, the catalytic ability of the deposit may lead to sulfuric acid dew point corrosion.
More evidence of unpublished industry studies of lead smelter/refinery workers
2015-01-01
Background Lead smelter/refinery workers in the US have had significant exposure to lead and are an important occupational group to study to understand the health effects of chronic lead exposure in adults. Recent research found evidence that studies of lead smelter/refinery workers have been conducted but not published. This paper presents further evidence for this contention. Objectives To present further evidence of industry conducted, unpublished epidemiologic studies of lead smelter/refinery workers and health outcomes. Methods Historical research relying on primary sources such as internal industry documents and published studies. Results ASARCO smelter/refinery workers were studied in the early 1980s and found to have increased risk of lung cancer and stroke in one study, but not in another. Conclusions Because occupational lead exposure is an on-going concern for US and overseas workers, all epidemiologic studies should be made available to evaluate and update occupational health and safety standards. PMID:26070220
Federal Register 2010, 2011, 2012, 2013, 2014
2011-10-19
... Settlement; ACM Smelter and Refinery Site, Located in Cascade County, MT AGENCY: Environmental Protection... projected future response costs concerning the ACM Smelter and Refinery NPL Site (Site), Operable Unit 1..., Helena, MT 59626. Mr. Sturn can be reached at (406) 457-5027. Comments should reference the ACM Smelter...
Evolution of the Large Copper Smelter — 1800s to 2013
NASA Astrophysics Data System (ADS)
Mackey, P. J.
Over the course of Dr. Robertson's career, the ferrous and non-ferrous plants have seen enormous changes in technology and increases in plant capacity, essentially amounting to a "technological revolution". In iron and steel, the "mega" blast furnace of some 6,000 m3 working volume is now standard ( 10,000 tonnes (mt) of pig iron/day). Similar huge changes in process technology and plant size have occurred in the non-ferrous industry. As an example, the fuel-fired reverberatory furnace, once the mainstay of the copper industry, has disappeared — replaced by large capacity flash and bath smelting technologies. The energy consumption per unit mass of metal produced has also been reduced considerably. Our understanding of the thermodynamics and mechanisms of metallurgical reactions, a field to which Dr. Robertson has significantly contributed, has made great strides. This paper reviews these changes with particular reference to the copper smelting industry, providing also comments on expected future trends.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1991-09-23
The 6,000-acre Anaconda Smelter site is a former copper and ore processing facility in Deer Lodge County, Montana. Land use in the area is predominantly residential. The site is bounded on the north and east, respectively, by the Warm Springs Creek and Mill Creek, both of which are potential sources of drinking water. From 1884 until 1980 when activities ceased, the site was used for ore processing and smelting operations. In 1988, EPA conducted an investigation to determine the nature and extent of the flue dust contamination. A 1988 ROD addressed the Mill Creek Operable Unit (OU15) and documented themore » relocation of residents from the community surrounding the smelter site as the selected remedial action. The Record of Decision (ROD) addresses the Flue Dust Operable Unit (OU11). The primary contaminants of concern affecting this site from the flue dust materials are metals including arsenic, cadmium, and lead. The selected remedial action for the site is included.« less
Chen, Bing; Stein, Ariel F; Castell, Nuria; Gonzalez-Castanedo, Yolanda; Sanchez de la Campa, A M; de la Rosa, J D
2016-01-01
Metal smelting and processing are highly polluting activities that have a strong influence on the levels of heavy metals in air, soil, and crops. We employ an atmospheric transport and dispersion model to predict the pollution levels originated from the second largest Cu-smelter in Europe. The model predicts that the concentrations of copper (Cu), zinc (Zn), and arsenic (As) in an urban area close to the Cu-smelter can reach 170, 70, and 30 ng m−3, respectively. The model captures all the observed urban pollution events, but the magnitude of the elemental concentrations is predicted to be lower than that of the observed values; ~300, ~500, and ~100 ng m−3 for Cu, Zn, and As, respectively. The comparison between model and observations showed an average correlation coefficient of 0.62 ± 0.13. The simulation shows that the transport of heavy metals reaches a peak in the afternoon over the urban area. The under-prediction in the peak is explained by the simulated stronger winds compared with monitoring data. The stronger simulated winds enhance the transport and dispersion of heavy metals to the regional area, diminishing the impact of pollution events in the urban area. This model, driven by high resolution meteorology (2 km in horizontal), predicts the hourly-interval evolutions of atmospheric heavy metal pollutions in the close by urban area of industrial hotspot.
Potential for improved extraction of tellurium as a byproduct of current copper mining processes
NASA Astrophysics Data System (ADS)
Hayes, S. M.; Spaleta, K. J.; Skidmore, A. E.
2016-12-01
Tellurium (Te) is classified as a critical element due to its increasing use in high technology applications, low average crustal abundance (3 μg kg-1), and primary source as a byproduct of copper extraction. Although Te can be readily recovered from copper processing, previous studies have estimated a 4 percent extraction efficiency, and few studies have addressed Te behavior during the entire copper extraction process. The goals of the present study are to perform a mass balance examining Te behavior during copper extraction and to connect these observations with mineralogy of Te-bearing phases which are essential first steps in devising ways to optimize Te recovery. Our preliminary mass balance results indicate that less than 3 percent of Te present in copper ore is recovered, with particularly high losses during initial concentration of copper ore minerals by flotation. Tellurium is present in the ore in telluride minerals (e.g., Bi-Te-S phases, altaite, and Ag-S-Se-Te phases identified using electron microprobe) with limited substitution into sulfide minerals (possibly 10 mg kg-1 Te in bulk pyrite and chalcopyrite). This work has also identified Te accumulation in solid-phase intermediate extraction products that could be further processed to recover Te, including smelter dusts (158 mg kg-1) and pressed anode slimes (2.7 percent by mass). In both the smelter dusts and anode slimes, X-ray absorption spectroscopy indicates that about two thirds of the Te is present as reduced tellurides. In anode slimes, electron microscopy shows that the remaining Te is present in an oxidized form in a complex Te-bearing oxidate phase also containing Pb, Cu, Ag, As, Sb, and S. These results clearly indicate that more efficient, increased recovery of Te may be possible, likely at minimal expense from operating copper processing operations, thereby providing more Te for manufacturing of products such as inexpensive high-efficiency solar panels.
Distribution of copper, silver and gold during thermal treatment with brominated flame retardants
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oleszek, Sylwia, E-mail: sylwia_oleszek@yahoo.com; Institute of Environmental Engineering of the Polish Academy of Sciences, 34 M. Sklodowska-Curie St., 41-819 Zabrze; Grabda, Mariusz, E-mail: mariusz@mail.tagen.tohoku.ac.jp
2013-09-15
Highlights: • Copper, silver and gold during thermal treatment with brominated flame retardants. • Distribution of copper, silver and gold during thermal processing. • Thermodynamic considerations of the bromination reactions. - Abstract: The growing consumption of electric and electronic equipment results in creating an increasing amount of electronic waste. The most economically and environmentally advantageous methods for the treatment and recycling of waste electric and electronic equipment (WEEE) are the thermal techniques such as direct combustion, co-combustion with plastic wastes, pyrolysis and gasification. Nowadays, this kind of waste is mainly thermally treated in incinerators (e.g. rotary kilns) to decompose themore » plastics present, and to concentrate metals in bottom ash. The concentrated metals (e.g. copper, precious metals) can be supplied as a secondary raw material to metal smelters, while the pyrolysis of plastics allows the recovery of fuel gases, volatilising agents and, eventually, energy. Indeed, WEEE, such as a printed circuit boards (PCBs) usually contains brominated flame retardants (BFRs). From these materials, hydrobromic acid (HBr) is formed as a product of their thermal decomposition. In the present work, the bromination was studied of copper, silver and gold by HBr, originating from BFRs, such as Tetrabromobisphenol A (TBBPA) and Tetrabromobisphenol A-Tetrabromobisophenol A diglycidyl ether (TTDE) polymer; possible volatilization of the bromides formed was monitored using a thermo-gravimetric analyzer (TGA) and a laboratory-scale furnace for treating samples of metals and BFRs under an inert atmosphere and at a wide range of temperatures. The results obtained indicate that up to about 50% of copper and silver can evolve from sample residues in the form of volatile CuBr and AgBr above 600 and 1000 °C, respectively. The reactions occur in the molten resin phase simultaneously with the decomposition of the brominated resin
Speciation of Cr(VI) in environmental samples in the vicinity of the ferrochrome smelter.
Sedumedi, Hilda N; Mandiwana, Khakhathi L; Ngobeni, Prince; Panichev, Nikolay
2009-12-30
The impact of ferrochrome smelter on the contamination of its environment with toxic hexavalent chromium, Cr(VI), was assessed by analyzing smelter dusts, soil, grass and tree barks. For the separation of Cr(VI) from Cr(III), solid samples were treated with 0.1M Na(2)CO(3) and filtered through hydrophilic PDVF 0.45 microm filter prior to the determination of Cr(VI) by electrothermal atomic absorption spectrometry (ET-AAS). Ferrochrome smelter dust was found to contain significant levels of Cr(VI), viz. 43.5 microg g(-1) (cyclone dust), 2710 microg g(-1) (fine dust), and 7800 microg g(-1) (slimes dust) which exceeded the maximum acceptable risk concentration (20 microg g(-1)). The concentration of Cr(VI) in environmental samples of grass (3.4+/-0.2), soil (7.7+/-0.2), and tree bark (11.8+/-1.2) collected in the vicinity of the chrome smelter were higher as compared with the same kind of samples collected from uncontaminated area. The results of the investigation show that ferrochrome smelter is a source of environmental pollution with contamination factors of Cr(VI) ranging between 10 and 50.
Recovery of metal values from copper slag and reuse of residual secondary slag.
Sarfo, Prince; Das, Avimanyu; Wyss, Gary; Young, Courtney
2017-12-01
Resource and environmental factors have become major forces in mining and metallurgy sectors driving research for sustainability purposes. The concept of zero-waste processing has been gaining ground readily. The scant availability of high quality raw materials has forced the researchers to shift their focus to recycling while the exceedingly stringent environmental regulations have forced researchers to explore new frontiers of minimizing/eliminating waste generation. The present work is aimed at addressing both aspects by employing recycling to generate wealth from copper slag and producing utilizable materials at the same time thus restoring the ecosystem. Copper slag was characterized and processed. The pyro-metallurgical processing prospects to generate utilizable materials were arrived at through rigorous thermodynamic analysis. Carbothermal reduction at elevated temperature (near 1440°C) helped recover a majority of the metal values (e.g., Fe, Cu and Mo) into the iron-rich alloy product which can be a feed material for steel making. On the other hand, the non-metallic residue, the secondary slag, can be used in the glass and ceramic industries. Reduction time and temperature and carbon content were shown to be the most important process variables for the reaction which were optimized to identify the most favored operating regime that maximizes the metal recovery and simultaneously maximizes the hardness of the secondary slag and minimizes its density, the two major criteria for the secondary slag product to be utilizable. The flux addition level was shown to have relatively less impact on the process performance if these are maintained at an adequate level. The work established that the copper slag, a waste material, can be successfully processed to generate reusable products through pyrometallurgical processing. Copyright © 2017 Elsevier Ltd. All rights reserved.
Lead identification in soil surrounding a used lead acid battery smelter area in Banten, Indonesia
NASA Astrophysics Data System (ADS)
Adventini, N.; Santoso, M.; Lestiani, D. D.; Syahfitri, W. Y. N.; Rixson, L.
2017-06-01
A used lead acid battery smelter generates particulates containing lead that can contaminate the surrounding environment area. Lead is a heavy metal which is harmful to health if it enters the human body through soil, air, or water. An identification of lead in soil samples surrounding formal and informal used lead acid battery smelters area in Banten, Indonesia using EDXRF has been carried out. The EDXRF accuracy and precision evaluated from marine sediment IAEA 457 gave a good agreement to the certified value. A number of 16 soil samples from formal and informal areas and 2 soil samples from control area were taken from surface and subsurface soils. The highest lead concentrations from both lead smelter were approximately 9 folds and 11 folds higher than the reference and control samples. The assessment of lead contamination in soils described in Cf index was in category: moderately and strongly polluted by lead for formal and informal lead smelter. Daily lead intake of children in this study from all sites had exceeded the recommended dietary allowance. The HI values for adults and children living near both lead smelter areas were greater than the value of safety threshold 1. This study finding confirmed that there is a potential health risk for inhabitants surrounding the used lead acid battery smelter areas in Banten, Indonesia.
Bizonń, Anna; Witt, Katarzyna; Milnerowicz, Malgorzata; Milnerowicz, Halina
2014-01-01
The aim of present study was to estimate the nephrotoxicity of occupational exposure to heavy metals on albumin concentration and β-glucuronidase activity in the urine of smoking and non-smoking smelters. The study was performed in urine of 101 smoking and non-smoking smelters as well as 65 smoking and non-smoking male subjects unexposed to heavy metals. Section into smoking and non-smoking groups was made on basis on direct personal interview and by determination of serum cotinine concentration. The concentration of albumin in urine was measured with commercial test (Micro-Albumin ELISA Cat. No 5MA 74212, ORGENTEC Diagnostika Gmbh, Germany). The activity of β-glucuronidase in urine were determined in urine using 4-nitrophenyl β D-glucuronide (Cat. No 73677, Sigma Aldrich, Germany) as a substrate. We have observed higher albumin concentration and β-glucuronidase activity in urine of smoking and non-smoking smelters when compared to control groups. We have also found the influence of tobacco smoke as well as amount of cigarettes smoked on albumin concentration in urine of smoking smelters. A statistically significant difference was detected between activity of β-glucuronidase in urine of smoking and non-smoking smelters, which suggest as additional negative factor of exposure to tobacco smoke. Analyzing the impact of smoking intensity we have found higher albumin concentration and β-glucuronidase activity in urine of smelters smoking ≥20 cigarettes per day when compared to smelters smoking <20 cigarettes per day. The elevation of albumin concentration and β-glucuronidase activity in urine of workers occupational exposure to heavy metals and tobacco smoke indicated, that environmental exposure on these factors can disorders kidney functions.
Chrastný, Vladislav; Vaněk, Aleš; Komárek, Michael; Farkaš, Juraj; Drábek, Ondřej; Vokurková, Petra; Němcová, Jana
2012-03-30
The leachability of air-pollution-control (APC) residues from a secondary lead smelter in organic soil horizons (F and H) from a deciduous and a coniferous forest during incubation periods of 0, 3 and 6 months were compared in this work. While the concentration of Pb, Zn and Cd associated with the exchangeable/acid extractable fraction in the horizon F from the coniferous forest was higher compared to the deciduous, significantly lower concentrations in the humified horizon H was found. It is suggested that lower pH and a higher share of fulvic acids fraction (FAs) of solid phase soil organic matter (SOM) in the humified soil horizon H from the coniferous compared to the deciduous forest is responsible for a higher metal association with solid phase SOM and therefore a lower metal leaching in a soil system. From this point of view, the humified soil horizon H from the deciduous forest represents a soil system more vulnerable to Pb, Zn and Cd leaching from APC residues. Copyright © 2012 Elsevier B.V. All rights reserved.
Community Health Risk Assessment of Primary Aluminum Smelter Emissions
Larivière, Claude
2014-01-01
Objective: Primary aluminum production is an industrial process with high potential health risk for workers. We consider in this article how to assess community health risks associated with primary aluminum smelter emissions. Methods: We reviewed the literature on health effects, community exposure data, and dose–response relationships of the principal hazardous agents emitted. Results: On the basis of representative measured community exposure levels, we were able to make rough estimates on health risks associated with specific agents and categorize these as none, low, medium, or high. Conclusions: It is possible to undertake a rough-estimate community Health Risk Assessment for individual smelters on the basis of information available in the epidemiological literature and local community exposure data. PMID:24806724
The El Paso smelter 20 years later: residual impact on Mexican children.
Díaz-Barriga, F; Batres, L; Calderón, J; Lugo, A; Galvao, L; Lara, I; Rizo, P; Arroyave, M E; McConnell, R
1997-01-01
Although there has been considerable concern regarding cross-border industrial contamination between Mexico and the United States, there are remarkably few data. One notable case study is the smelter in El Paso, Texas. In 1974 blood lead levels higher than 40 micrograms/dl were detected in 52% of children studied near the smelter, in the adjacent Mexican community of Anapra in Ciudad Juarez, Chihuahua. Lead smelting at this plant was halted in 1985, and as a result, lead levels in air decreased sharply; consequently, children's exposure to lead and other metals should have diminished accordingly. In order to assess the effect of removal of lead emissions from the area, three geographical locations in Anapra, varying in distance from the smelter source, were evaluated for lead, arsenic, and cadmium levels in soil and for lead in blood of children. It was found that lead levels in soil were inversely correlated with distance from the smelter. Arsenic and cadmium levels in soil were constant among the three sectors. However, at residential sites closer to the smelter, a higher percentage of children was found with blood lead levels exceeding the Centers for Disease Control's action level of 10.0 micrograms/dl. In the sector closest to the border 43% of children had blood lead levels greater than 10.0 micrograms/dl. Although blood lead levels in children living in Anapra have dropped approximately fourfold in 20 years, our results indicate a moderate continued risk of lead exposure. This study demonstrates the persistent impact that may result from cross-border contamination and raises provocative questions regarding appropriate action and the responsibility for financing such action.
Impact of a smelter closedown on metal contents of wheat cultivated in the neighbourhood.
Douay, Francis; Roussel, Hélène; Pruvot, Christelle; Waterlot, Christophe
2008-03-01
The contamination of soils by heavy metals engenders important environmental and sanitary problems in Northern France where a smelter has been located for more than one hundred of years. It has been one of the most important Pb production sites in Europe until its closedown in March 2003. Ore smelting process generated considerable atmospheric emissions of dust. Despite an active environmental strategy, these emissions were still significant in 2002 with up to 17 tonnes of Pb, 32 tonnes of Zn and 1 tonne of Cd. Over the years, the generated deposits have led to an important contamination of the surrounding soils. Previous studies have shown pollutant transfers to plants, which can induce a risk for human and animal health. The objective of this study was to evaluate the consequences of the smelter closedown on the Cd and Pb contents of wheat (grain and straw) cultivated in the area. Paired topsoil and vegetable samples were taken at harvest time at various distances to the smelter. The sample sites were chosen in order to represent a large range of soil metal contamination. Sampling was realised on several wheat harvests between 1997 and 2003. 25 samples were collected before the smelter closedown and 15 after. All ears of about 1 m long of two rows were manually picked and threshed in the lab. Similarly, straw was harvested at the same time. Total metal contents in soil and wheat samples were quantified. A negative correlation between metal concentrations in soil and the distance to the smelter was shown. The wheat grain and straw showed significant Cd and Pb contents. The straw had higher metal contents than the grain. During the smelter activity, the grain contents were up to 0.8 mg kg(-1) DM of Cd and 8 mg kg(-1) DM of Pb. For the straw, maximum contents were 5 mg kg(-1) DM of Cd and 114 mg kg(-1) DM of Pb. After the smelter closedown, we observed a very large decrease of Pb in the grain (82%) and in the straw (91%). A smaller decrease was observed for Cd in
Ratani, Tanvi S; Bachman, Shoshana; Fu, Gregory C; Peters, Jonas C
2015-11-04
We have recently reported that, in the presence of light and a copper catalyst, nitrogen nucleophiles such as carbazoles and primary amides undergo C-N coupling with alkyl halides under mild conditions. In the present study, we establish that photoinduced, copper-catalyzed alkylation can also be applied to C-C bond formation, specifically, that the cyanation of unactivated secondary alkyl chlorides can be achieved at room temperature to afford nitriles, an important class of target molecules. Thus, in the presence of an inexpensive copper catalyst (CuI; no ligand coadditive) and a readily available light source (UVC compact fluorescent light bulb), a wide array of alkyl halides undergo cyanation in good yield. Our initial mechanistic studies are consistent with the hypothesis that an excited state of [Cu(CN)2](-) may play a role, via single electron transfer, in this process. This investigation provides a rare example of a transition metal-catalyzed cyanation of an alkyl halide, as well as the first illustrations of photoinduced, copper-catalyzed alkylation with either a carbon nucleophile or a secondary alkyl chloride.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-09-20
... Activities; Submission to OMB for Review and Approval; Comment Request; NESHAP for Primary Copper Smelters... information about the electronic docket, go to http://www.regulations.gov . Title: NESHAP for Primary Copper... Pollutants (NESHAP) for Primary Copper Smelters were proposed on April 20, 1998 (63 FR 19582), and on June 26...
NASA Astrophysics Data System (ADS)
Habo Abbas, Hasriwiani; Sakakibara, Masayuki; Hakim Arma, Lukmanul; Hardi Yanti, Iva
2017-06-01
The traditional gold smelting in Makassar, South Sulawesi, Indonesia, is an informal work with the manufacture of gold jewelry as the core activity. Stages of the gold processing include panning, smelting, and refining with mercury. In the current study, we used a social demography analysis to classify the traditional gold smelter workers in this region. Data (e.g. sex, age, education level, time working, and income) were obtained from a questionnaire survey of 58 smelter workers in the Wajo and Tallo Sub-districts of Makassar. Results showed that 84.5% of the workers were males aged from 21 to 50 years with on the average 15 year of work. The gold smelter were last educated in elementary school (31.0%), junior high school (36.2%), and senior high school (27.6%) levels whereas 5.1% have no education. We found that the monthly income of an un-skilled worker was ∼Rp. 2 million (USD 147.0) whereas that of a skilled worker was between Rp. 2.5 million (USD 183.76) and Rp. 5 million (USD 367.51). An owner could earn over Rp. 5 million (USD 367.51) per month. The result suggested that the traditional gold smelting used rudimentary technique and attracted young people with a low education level. This business continues to exist because the worker earn sufficient income and may higher through mastering gold smelter proficiency.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Holness, D.L.; Batten, B.; Broder, I.
1985-05-01
Thirty-six smelter workers examined in this pilot study were found to have a higher prevalence of cough and dyspnea and lower baseline lung function than did 31 controls. They also experienced decreases in forced vital capacity (FVC) and forced expiratory volume in 1s (FEV1) over the workweek while the controls did not. Baseline airflow rates and change in FVC and FEV1 over the workweek varied with levels of sulfur dioxide and particulates. Twenty-three smelter workers and 21 controls were seen on a second occasion, six months into an extended shutdown. The smelter workers continued to have a higher prevalence ofmore » cough and dyspnea and lower baseline lung function than the controls. There was, however, a slight increase in lung function in both the exposed workers and the controls during the shutdown. The results suggest that smelter workers may develop both acute and chronic work-related pulmonary effects and that the chronic effects may be nonreversible.« less
Effects of zinc smelter emissions on farms and gardens at Palmerton, PA
Chaney, R.L.; Beyer, W.N.; Gifford, C.H.; Sileo, L.
1988-01-01
In 1979, before the primary Zn smelter at Palmerton was closed due to excessive Zn and Cd emissions and change in the price of Zn, we were contacted by a local veterinarian regarding death of foals (young horses) on farms near the smelter. To examine whether Zn or Cd contamination of forage or soils could be providing potentially toxic levels of Zn or other elements in the diets of foals, we measured metals in forages, soils, and feces of grazing livestock on two farms near Palmerton. The farms were about 2.5 and about 10 km northeast of the East stack. Soils, forages, and feces were greatly increased in Zn and Cd. Soil, forage, and fecal Zn were near 1000 mg/kg and Cd, 10-20 mg/kg at farm A (2.5 km) compared to normal background levels of 43 mg Zn and 0.2 mg Cd/kg, respectively. Liver and kidney of cattle raised on Farm A were increased in Zn and Cd, indicating that at least part of the Zn and Cd in smelter contaminated forages was bioavailable. During the farm sampling, we obtained soil from one garden in Palmerton within 200 m of the primary (West) smelter. The Borough surrounds the smelter facility in a valley. Because soil Cd was near 100 mg/kg, we sampled garden soils and vegetables from over 40 gardens in 6 randomly selected blocks and in rural areas at different distances from the smelter during September, 1980. All homes were contacted on each sampled block. Nearly all homes had some garden, while at least 2 appeared to grow over 50% of their annual vegetable and potato consumption. Palmerton garden soils averaged 76 mg Cd/kg and 5830 mg Zn/kg. Gardeners had been taught to add limestone and organic fertilizers to counteract yield reduction and chlorosis due to the excessive soil Zn. Gardens with over 5000 mg Zn/kg were nearly allover pH 7, and many were calcareous. Because the smelter had not yet ceased operations in 1980, crops could have been polluted by aerosol Zn and Cd emitted by the smelter. Crop Zn and Cd were extremely high, about 100 times normal
The mineralogy of bauxite for producing smelter-grade alumina
NASA Astrophysics Data System (ADS)
Authier-Martin, M.; Forte, G.; Ostap, S.; See, J.
2001-12-01
Aluminum-producing companies rely on low-cost, high-purity, smelter-grade alumina (aluminum oxide), and alumina production utilizes the bulk of bauxites mined world-wide. The mineralogy of the bauxites has a significant impact on the operation of the Bayer process for alumina production. Typically, the Bayer process produces smelter-grade alumina of 99.5% Al2O3, starting from bauxite containing 30% to 60% Al2O3. The main objective of the Bayer process is to extract the maximum amount of aluminum from the bauxite at as high an aluminate concentration in solution as possible, while limiting any troublesome side reactions. Only with a better understanding of the chemistry of the mineral species and a strict control of the operating/processing conditions can the Bayer process produce efficiently, a low cost, high-quality alumina with minimum detrimental environmental impact.
Childhood lead poisoning from the smelter in Torreón, México.
Soto-Jiménez, Martin F; Flegal, Arthur R
2011-05-01
Lead concentrations and isotopic compositions in blood samples of 34 children (ages 2-17 years) living within a 113 km(2) area of a silver-zinc-lead smelter plant in Torreón, México were compared to those of associated environmental samples (soil, aerosols, and outdoor and indoor dust) to identify the principal source(s) of environmental and human lead contamination in the area. Lead concentrations of soil and outdoor dust ranged 130-12,050 and 150-14,365 μg g(-1), respectively. Concentrations were greatest near the smelter, with the highest levels corresponding with the prevailing wind direction, and orders of magnitude above background concentrations of 7.3-33.3 μg g(-1). Atmospheric lead depositions in the city varied between 130 and 1350 μg m(-2) d(-1), again with highest rates <1 km from the smelter. Blood lead (PbB) concentrations (11.0±5.3 μg dl(-1)) levels in the children ranged 5.0-25.8 μg dl(-1), which is 3-14 times higher than the current average (1.9 μg dl(-1)) of children (ages 1-5 years) in the US. Lead isotopic ratios ((206)Pb/(207)Pb, (208)Pb/(207)Pb) of the urban dust and soil (1.200±0.009, 2.467±0.003), aerosols (1.200±0.002, 2.466±0.002), and PbB (1.199±0.001, 2.468±0.002) were indistinguishable from each other, as well as those of the lead ores processed at the smelter (1.199±0.007, 2.473±0.007). Consequently, an elevated PbB concentrations of the children in Torreón, as well as in their environment, are still dominated by industrial emissions from the smelter located within the city, in spite of new controls on atmospheric releases from the facility. Copyright © 2011 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Shui, Lang; Cui, Zhixiang; Ma, Xiaodong; Jiang, Xu; Chen, Mao; Xiang, Yong; Zhao, Baojun
2018-05-01
The bottom-blown copper smelting furnace is a novel copper smelter developed in recent years. Many advantages of this furnace have been found, related to bath mixing behavior under its specific gas injection scheme. This study aims to use an oil-water double-phased laboratory-scale model to investigate the impact of industry-adjustable variables on bath mixing time, including lower layer thickness, gas flow rate, upper layer thickness and upper layer viscosity. Based on experimental results, an overall empirical relationship of mixing time in terms of these variables has been correlated, which provides the methodology for industry to optimize mass transfer in the furnace.
Lewin, Antoine; Buteau, Stéphane; Brand, Allan; Kosatsky, Tom; Smargiassi, Audrey
2013-01-01
Few studies have measured the effect of short-term exposure to industrial emissions on the respiratory health of children. Here we estimate the risk of hospitalization for asthma and bronchiolitis in young children associated with their recent exposure to emissions from an aluminum smelter. We used a case–crossover design to assess the risk of hospitalization, February 1999–December 2008, in relation to short-term variation in levels of exposure among children 0–4 years old living less than 7.5 km from the smelter. The percentage of hours per day that the residence of a hospitalized child was in the shadow of winds crossing the smelter was used to estimate the effect of wind-borne emissions on case and crossover days. Community-wide pollutant exposure was estimated through daily mean and daily maximum SO2 and PM2.5 concentrations measured at a fixed monitoring site near the smelter. Odds ratios (OR) were estimated using conditional logistic regressions. The risk of same-day hospitalization for asthma or bronchiolitis increased with the percentage of hours in a day that a child's residence was downwind of the smelter. For children aged 2–4 years, the OR was 1.27 (95% CI=1.03–1.56; n=103 hospitalizations), for an interquartile range (IQR) of 21% of hours being downwind. In this age group, the OR with PM2.5 daily mean levels was slightly smaller than with the hours downwind (OR: 1.22 for an IQR of 15.7 μg/m3, 95% CI=1.03–1.44; n=94 hospitalizations). Trends were observed between hospitalizations and levels of SO2 for children 2–4 years old. Increasing short-term exposure to emissions from a Quebec aluminum smelter was associated with an increased risk of hospitalization for asthma and bronchiolitis in young children who live nearby. Estimating exposure through records of wind direction allows for the integration of exposure to all pollutants carried from the smelter stack. PMID:23695491
Lewin, Antoine; Buteau, Stéphane; Brand, Allan; Kosatsky, Tom; Smargiassi, Audrey
2013-01-01
Few studies have measured the effect of short-term exposure to industrial emissions on the respiratory health of children. Here we estimate the risk of hospitalization for asthma and bronchiolitis in young children associated with their recent exposure to emissions from an aluminum smelter. We used a case-crossover design to assess the risk of hospitalization, February 1999-December 2008, in relation to short-term variation in levels of exposure among children 0-4 years old living less than 7.5 km from the smelter. The percentage of hours per day that the residence of a hospitalized child was in the shadow of winds crossing the smelter was used to estimate the effect of wind-borne emissions on case and crossover days. Community-wide pollutant exposure was estimated through daily mean and daily maximum SO2 and PM2.5 concentrations measured at a fixed monitoring site near the smelter. Odds ratios (OR) were estimated using conditional logistic regressions. The risk of same-day hospitalization for asthma or bronchiolitis increased with the percentage of hours in a day that a child's residence was downwind of the smelter. For children aged 2-4 years, the OR was 1.27 (95% CI=1.03-1.56; n=103 hospitalizations), for an interquartile range (IQR) of 21% of hours being downwind. In this age group, the OR with PM2.5 daily mean levels was slightly smaller than with the hours downwind (OR: 1.22 for an IQR of 15.7 μg/m(3), 95% CI=1.03-1.44; n=94 hospitalizations). Trends were observed between hospitalizations and levels of SO2 for children 2-4 years old. Increasing short-term exposure to emissions from a Quebec aluminum smelter was associated with an increased risk of hospitalization for asthma and bronchiolitis in young children who live nearby. Estimating exposure through records of wind direction allows for the integration of exposure to all pollutants carried from the smelter stack.
Johnson, Lyndal L; Ylitalo, Gina M; Myers, Mark S; Anulacion, Bernadita F; Buzitis, Jon; Collier, Tracy K
2015-04-15
From 2000-2004 a monitoring study was conducted to evaluate the impacts of aluminum smelter-derived polycyclic aromatic hydrocarbons (PAHs) on the health of fish in the marine waters of Kitimat, British Columbia, Canada. These waters are part of the historical fishing grounds of the Haisla First Nation, and since the 1950s the Alcan Primary Metal Company has operated an aluminum smelter at the head of the Kitimat Arm embayment. As a result, adjacent marine and estuarine sediments have been severely contaminated with a mixture of smelter-associated PAHs in the range of 10,000-100,000 ng/g dry wt. These concentrations are above those shown to cause adverse effects in fish exposed to PAHs in urban estuaries, but it was uncertain whether comparable effects would be seen at the Kitimat site due to limited bioavailability of smelter-derived PAHs. Over the 5-year study we conducted biennial collections of adult English sole (Parophrys vetulus) and sediment samples at the corresponding capture sites. Various tissue samples (e.g. liver, kidney, gonad, stomach contents) and bile were taken from each animal to determine levels of exposure and biological effects, and compare the uptake and toxicity of smelter-derived PAHs with urban mixtures of PAHs. Results showed significant intersite differences in concentrations of PAHs. Sole collected at sites nearest the smelter showed increased PAH exposure, as well as significantly higher prevalences of PAH-associated liver disease, compared to sites within Kitimat Arm that were more distant from the smelter. However, measures of PAH exposure (e.g., bile metabolites) were surprisingly high in sole from the reference sites outside of Kitimat Arm, though sediment and dietary PAHs at these sites were low, and fish from the areas showed no biological injury. PAH uptake, exposure, and biological effects in Kitimat English sole were relatively lower when compared to English sole collected from urban sites contaminated with PAH mixtures from
Child, A W; Moore, B C; Vervoort, J D; Beutel, M W
2018-07-01
The upper Columbia River and associated valley systems are highly contaminated with metal wastes from nearby smelting operations in Trail, British Columbia, Canada (Teck smelter), and to a lesser extent, Northport, Washington, USA (Le Roi smelter). Previous studies have investigated depositional patterns of airborne emissions from these smelters, and documented the Teck smelter as the primary metal contamination source. However, there is limited research directed at whether these contaminants are bioavailable to aquatic organisms. This study investigates whether smelter derived contaminants are bioavailable to freshwater zooplankton. Trace metal (Zn, Cd, As, Sb, Pb and Hg) concentrations and Pb isotope compositions of zooplankton and sediment were measured in lakes ranging from 17 to 144 km downwind of the Teck smelter. Pb isotopic compositions of historic ores used by both smelters are uniquely less radiogenic than local geologic formations, so when zooplankton assimilate substantial amounts of smelter derived metals their compositions deviate from local baseline compositions toward ore compositions. Sediment metal concentrations and Pb isotope compositions in sediment follow significant (p < 0.001) negative exponential and sigmoidal patterns, respectively, as distance from the Teck smelting operation increases. Zooplankton As, Cd, and Sb contents were related to distance from the Teck smelter (p < 0.05), and zooplankton Pb isotope compositions suggest As, Cd, Sb and Pb from historic and current smelter emissions are biologically available to zooplankton. Zooplankton from lakes within 86 km of the Teck facility display isotopic evidence that legacy ore pollution is biologically available for assimilation. However, without water column data our study is unable to determine if legacy contaminants are remobilized from lake sediments, or erosional pathways from the watershed. Copyright © 2018 Elsevier Ltd. All rights reserved.
Lead in the bone and soft tissues of box turtles caught near smelters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beresford, W.A.; Donovan, M.P.; Henninger, J.M.
1981-09-01
Three box turtles (Terrapene carolina) were caught by small streams in woodland south-east of Glover, MO and one, northeast of Bixby, MO: rural sites of primary lead smelters. Four other turtles were caught in a similar habitat, but distant from industry and main roads. Both groups shared the same food, water, and outside pen in Morgantown, WV. Lead content was assayed by atomic absorption spectrophotometry. Lead concentrations in the liver, kidney, skin, blood, and two long bone shafts were found to be significantly higher in the turtles captured near the smelters.
Sciskalska, Milena; Zalewska, Marta; Grzelak, Agnieszka; Milnerowicz, Halina
2014-06-01
The aim of the study was to verify if there is any association between exposure to Cu, Zn, Cd, Pb, As and the formation of malondialdehyde (MDA), 8-hydroxydeoxyguanosine (8-OHdG), advanced oxidation protein products (AOPP), and whether in this process cigarette smoking plays a role. The investigations were performed in the 352 smelters occupationally exposed to heavy metals and 73 persons of control group. Metals concentration was determined by atomic absorption spectrometry. MDA and AOPP concentrations were determined by spectrophotometric methods. The concentration of 8-OHdG was determined by ELISA method. It was demonstrated an increased Cu concentration in smoking smelters compared to non-smoking control group. It was noted no differences in Zn and Mg concentrations between the examined groups. Pb concentration was more than sixfold higher in the group of smoking smelters and about fivefold higher in the group of non-smoking smelters compared to the control groups (smokers and non-smokers). It was shown that Cd concentration in the blood was nearly fivefold higher in the smoking control group compared to the non-smoking control group and more than threefold higher in the group of smoking smelters compared to non-smoking. It was shown an increased As concentration (more than fourfold) and decreased Ca concentration in both groups of smelters compared to control groups. In groups of smelters (smokers and non-smokers), twofold higher MDA and AOPP concentrations, and AOPP/albumin index compared to control groups (smokers and non-smokers) were shown. Tobacco smoke is the major source of Cd in the blood of smelters. Occupational exposure causes accumulation of Pb in the blood. Occupational exposure to heavy metals causes raise of MDA concentration and causes greater increase in AOPP concentration than tobacco smoke.
Identification of sources of lead in children in a primary zinc-lead smelter environment.
Gulson, Brian L; Mizon, Karen J; Davis, Jeff D; Palmer, Jacqueline M; Vimpani, Graham
2004-01-01
We compared high-precision lead isotopic ratios in deciduous teeth and environmental samples to evaluate sources of lead in 10 children from six houses in a primary zinc-lead smelter community at North Lake Macquarie, New South Wales, Australia. Teeth were sectioned to allow identification of lead exposure in utero and in early childhood. Blood lead levels in the children ranged from 10 to 42 micro g/dL and remained elevated for a number of years. For most children, only a small contribution to tooth lead can be attributed to gasoline and paint sources. In one child with a blood lead concentration of 19.7 microg/dL, paint could account for about 45% of lead in her blood. Comparison of isotopic ratios of tooth lead levels with those from vacuum cleaner dust, dust-fall accumulation, surface wipes, ceiling (attic) dust, and an estimation of the smelter emissions indicates that from approximately 55 to 100% of lead could be derived from the smelter. For a blood sample from another child, > 90% of lead could be derived from the smelter. We found varying amounts of in utero-derived lead in the teeth. Despite the contaminated environment and high blood lead concentrations in the children, the levels of lead in the teeth are surprisingly low compared with those measured in children from other lead mining and smelting communities. PMID:14698931
Distribution of copper, silver and gold during thermal treatment with brominated flame retardants.
Oleszek, Sylwia; Grabda, Mariusz; Shibata, Etsuro; Nakamura, Takashi
2013-09-01
The growing consumption of electric and electronic equipment results in creating an increasing amount of electronic waste. The most economically and environmentally advantageous methods for the treatment and recycling of waste electric and electronic equipment (WEEE) are the thermal techniques such as direct combustion, co-combustion with plastic wastes, pyrolysis and gasification. Nowadays, this kind of waste is mainly thermally treated in incinerators (e.g. rotary kilns) to decompose the plastics present, and to concentrate metals in bottom ash. The concentrated metals (e.g. copper, precious metals) can be supplied as a secondary raw material to metal smelters, while the pyrolysis of plastics allows the recovery of fuel gases, volatilising agents and, eventually, energy. Indeed, WEEE, such as a printed circuit boards (PCBs) usually contains brominated flame retardants (BFRs). From these materials, hydrobromic acid (HBr) is formed as a product of their thermal decomposition. In the present work, the bromination was studied of copper, silver and gold by HBr, originating from BFRs, such as Tetrabromobisphenol A (TBBPA) and Tetrabromobisphenol A-Tetrabromobisophenol A diglycidyl ether (TTDE) polymer; possible volatilization of the bromides formed was monitored using a thermo-gravimetric analyzer (TGA) and a laboratory-scale furnace for treating samples of metals and BFRs under an inert atmosphere and at a wide range of temperatures. The results obtained indicate that up to about 50% of copper and silver can evolve from sample residues in the form of volatile CuBr and AgBr above 600 and 1000°C, respectively. The reactions occur in the molten resin phase simultaneously with the decomposition of the brominated resin. Gold is resistant to HBr and remains unchanged in the residue. Copyright © 2013 Elsevier Ltd. All rights reserved.
Reproductive Outcomes Among Male and Female Workers at an Aluminum Smelter
Sakr, Carine J.; Taiwo, Oyebode A.; Galusha, Deron H.; Slade, Martin D.; Fiellin, Martha G.; Bayer, Felicia; Savitz, David A.; Cullen, Mark R.
2010-01-01
Objectives Several adverse pregnancy outcomes were reported among female laboratory workers in a North American aluminum smelter. To determine whether these outcomes were associated with any occupational exposure at the plant, a cross sectional survey was undertaken. Methods Rates of miscarriage, premature singleton birth, and major congenital anomaly occurring during employment were compared to a reference group comprised of all pregnancies that occurred prior to employment. Results Among female workers, the excess of congenital anomalies among female laboratory workers that defined the initial cluster was observed, but no specific pattern was found. Conclusions Based on these analyses, the increase in congenital anomalies could not be attributed to occupational exposures at the smelter, nor could potential exposure likely explain the diverse anomalies described. PMID:20134342
Hammarstrom, J.M.; Seal, R.R.; Meier, A.L.; Jackson, J.C.
2003-01-01
Metal cycling via physical and chemical weathering of discrete sources (copper mines) and regional (non-point) sources (sulfide-rich shale) is evaluated by examining the mineralogy and chemistry of weathering products in Great Smoky Mountains National Park, Tennessee, and North Carolina, USA. The elements in copper mine waste, secondary minerals, stream sediments, and waters that are most likely to have negative impacts on aquatic ecosystems are aluminum, copper, zinc, and arsenic because these elements locally exceed toxicity guidelines for surface waters or for stream sediments. Acid-mine drainage has not developed in streams draining inactive copper mines. Acid-rock drainage and chemical weathering processes that accompany debris flows or human disturbances of sulfidic rocks are comparable to processes that develop acid-mine drainage elsewhere. Despite the high rainfall in the mountain range, sheltered areas and intermittent dry spells provide local venues for development of secondary weathering products that can impact aquatic ecosystems.
Sullivan, Marianne
2015-05-01
Childhood lead exposure and poisoning near primary lead smelters continues in developed and developing countries. In the United States, the problem of lead poisoning in children caused by smelter emissions was first documented in the early 1970s. In 1978, Environmental Protection Agency set National Ambient Air Quality Standards for lead. Attainment of this lead standard in areas near operating lead smelters took twenty to thirty years. Childhood lead exposure and poisoning continued to occur after the lead National Ambient Air Quality Standards were set and before compliance was achieved. This article analyzes and discusses the factors that led to the eventual achievement of the 1978 lead National Ambient Air Quality Standards near primary smelters and the reduction of children's blood lead levels in surrounding communities. Factors such as federal and state regulation, monitoring of emissions, public health activities such as blood lead surveillance and health education, relocation of children, environmental group and community advocacy, and litigation all played a role. © The Author(s) 2015 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.
Lead exposure in children living in a smelter community in region Lagunera, Mexico.
García Vargas, G G; Rubio Andrade, M; Del Razo, L M; Borja Aburto, V; Vera Aguilar, E; Cebrián, M E
2001-03-23
Industrial growth has created the potential for environmental problems in Mexico, since attention to environmental controls and urban planning has lagged behind the pace of industrialization. The aim of this cross-sectional study was to assess lead exposure in children aged 6-9 yr attending 3 primary schools and living in the vicinity of the largest smelter complex in Mexico. One of the schools is located 650 m distant from a smelter complex that includes a lead smelter (close school); the second is located 1750 m away from the complex and at the side of a heavy traffic road (intermediate school) in Torreon, Coahuila. The third school is located in Comez Palacio, Durango, 8100 m away from the smelter complex and distant from heavy vehicular traffic or industrial areas (remote school). Lead was measured in air, soil, dust, and well water. Lead in blood (PbB) was determined in 394 children attending the above mentioned schools. Determinations were performed by atomic absorption spectrometry. Diet, socioeconomic status, hygienic habits, and other variables were assessed by questionnaire. Median (range) PbB values were 7.8 microg/dl (3.54-29.61) in the remote school, 21.8 microg/dl (8.37-52.08) in the intermediate school and 27.6 microg/dl (7.37-58.53) in children attending the close school. The percentage of children with PbB > 15 microg/dl was 6.80%, 84.9%, and 92.1% respectively. In this order, the geometric means (range) of Pb concentrations in air were 2.5 microg/m3 (1.1-7.5), 5.8 microg/m3 (4.3-8.5), and 6.1 microg/m3 (1.6-14.9). The Pb concentrations in dust from playgrounds areas in the intermediate and close school settings ranged from 1,457 to 4,162.5 mg/kg. Pb concentrations in drinking water were less than 5 microg/L. Soil and dust ingestion and inhalation appear to be the main routes of exposure. Our results indicate that environmental contamination has resulted in an increased body burden of Pb, suggesting that children living in the vicinity of the
Li, Peizhong; Lin, Chunye; Cheng, Hongguang; Duan, Xiaoli; Lei, Kai
2015-03-01
Anthropogenic emissions of toxic metals from smelters are a global problem. The objective of this study was to investigate the distribution of toxic metals in soils around a 60 year-old Pb/Zn smelter in a town in Yunnan Province of China. Topsoil and soil core samples were collected and analyzed to determine the concentrations of various forms of toxic metals. The results indicated that approximately 60 years of Pb/Zn smelting has led to significant contamination of the local soil by Zn, Pb, Cd, As, Sb, and Hg, which exhibited maximum concentrations of 8078, 2485, 75.4, 71.7, 25.3, and 2.58mgkg(-1), dry wet, respectively. Other metals, including Co, Cr, Cu, Mn, Ni, Sc, and V, were found to originate from geogenic sources. The concentrations of smelter driven metals in topsoil decreased with increasing distance from the smelter. The main contamination by Pb, Zn, and Cd was found in the upper 40cm of soil around the Pb/Zn smelter, but traces of Pb, Zn, and Cd contamination were found below 100cm. Geogenic Ni in the topsoil was mostly bound in the residual fraction (RES), whereas anthropogenic Cd, Pb, and Zn were mostly associated with non-RES fractions. Therefore, the smelting emissions increased not only the concentrations of Cd, Pb, and Zn in the topsoil but also their mobility and bioavailability. The hazard quotient and hazard index showed that the topsoil may pose a health risk to children, primarily due to the high Pb and As contents of the soil. Copyright © 2014 Elsevier Inc. All rights reserved.
Carrizales, Leticia; Razo, Israel; Téllez-Hernández, Jesús I; Torres-Nerio, Rocío; Torres, Arturo; Batres, Lilia E; Cubillas, Ana-Cristina; Díaz-Barriga, Fernando
2006-05-01
The objective of this study was to assess the levels of soil contamination and child exposure in areas next to a primary smelter (arsenic-copper metallurgical) located in the community of Morales in San Luis Potosi, Mexico. In Morales, 90% of the soil samples studied in this work were above 400 mg/kg of lead, and above 100 mg/kg of arsenic, which are guidelines recommended by the United States Environmental Protection Agency (EPA). Bioaccessibility of these metals was studied in vitro in 10 soil samples; the median values of bioaccessibility obtained in these samples were 46.5% and 32.5% for arsenic and lead. Since the concentrations of arsenic and lead in soil were above normal values, and taking into account the bioaccessibility results, exposure to these metals was evaluated in children. Regarding lead, children aged 3-6 years had the highest mean blood lead levels; furthermore, 90% of them had concentrations above 10 microg/dl (CDC's action level). Total urinary arsenic was higher in children aged 8-9 yr; however, the percentage of children with concentrations above 50 microg/g creatinine (CDC's action level) or 100 microg/g creatinine (World Health Organization [WHO] action level) was similar among different age groups. Using the EPAs integrated exposure uptake biokinetic model for lead in children (IEUBK), we estimated that 87% of the total lead in blood is obtained from the soil/dust pathway. The exposure dose to arsenic, estimated for the children living in Morales using Monte Carlo analysis and the arsenic concentrations found in soil, was above the EPA's reference dose. With all these results, it is evident that studies are needed in order to identify adverse health effects in children living in Morales; nevertheless, it is more important to develop a risk reduction program as soon as possible.
Production Quality, Value and Revenue in Polish Copper Mines
NASA Astrophysics Data System (ADS)
Malewski, Jerzy
2016-10-01
Polish copper ore deposits, located in the Legnica-Głogów Copper District (LGOM) documented an area of over 200 km2, at a depth of 600-1400 meters. The estimated resources equal to 22.7 million tonnes of copper (proven and probable), or 44.4 million t (measured and indicated), or 8.7 million t (infered), at the criterion of profitability at a cost less than 50 cents per ton of ore. Organization of production takes place in the combine of mining and metallurgy (KGHM). Ore is extracted in three mines: Lubin, Polkowice-Sieroszowice and Rudna. The total production of these mines is about 31 million tonnes/year of ore, from which it receives a 576000 t/y of copper, 1152 t/y of silver, 1066 kg/y of gold, and certain amounts of Pb, Zn, Se, Re, Ni, SO4, H2SO4. The quality (grading) of the ore in exploited deposits is varied, affecting the quality and quantity of produced concentrates, what influence on its market value. The paper presents a brief description of ore deposit and estimates mines revenues and production profit. Calculations show that at today's (June 2016) metal prices each of the mine can expect the following net smelter revenue: Lubin ∼⃒41, P-S ∼⃒70, Rudna ∼⃒75 /t of ore. But estimated cost production differs less, i.e.: 45, 56 and 65/t of ore respectively, because of mining depth.
Friesen, Melissa C; Benke, Geza; Del Monaco, Anthony; Dennekamp, Martine; Fritschi, Lin; de Klerk, Nick; Hoving, Jan L; MacFarlane, Ewan; Sim, Malcolm R
2009-08-01
We examined the risk of mortality and cancer incidence with quantitative exposure to benzene-soluble fraction (BSF), benzo(a)pyrene (BaP), fluoride, and inhalable dust in two Australian prebake smelters. A total of 4,316 male smelter workers were linked to mortality and cancer incidence registries and followed from 1983 through 2002 (mean follow-up: 15.9 years, maximum: 20 years). Internal comparisons using Poisson regression were undertaken based on quantitative exposure levels. Smoking-adjusted, monotonic relationships were observed between respiratory cancer and cumulative inhalable dust exposure (trend p = 0.1), cumulative fluoride exposure (p = 0.1), and cumulative BaP exposure (p = 0.2). The exposure-response trends were stronger when examined across the exposed categories (BaP p = 0.1; inhalable dust p = 0.04). A monotonic, but not statistically significant trend was observed between cumulative BaP exposure and stomach cancer (n = 14). Bladder cancer was not associated with BaP or BSF exposure. No other cancer and no mortality outcomes were associated with these smelter exposures. The carcinogenicity of Söderberg smelter exposures is well established; in these prebake smelters we observed an association between smelter exposures and respiratory cancer, but not bladder cancer. The exploratory finding for stomach cancer needs confirmation. These results are preliminary due to the young cohort and short follow-up time.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Youngman, A.L.; Lydy, M.J.; Williams, T.L.
1998-12-31
The purpose of this study was to determine whether a duckweed bioassay could be used to evaluate the downward migration of heavy metals in smelter soils. The duckweed bioassay was initially used to evaluate elutriates prepared from samples of smelter soils. These initial tests verified that the elutriates would elicit toxic responses. Elutriate testing was followed with an evaluation of leachate from untreated soil cores or soil cores that had been amended with organic matter either unplanted or planted to a grass-forb seed mixture. There was an inverse linear relationship between heavy-metal concentrations in leachate and NOEC and IC{sub 50}more » values expressed as percentages among all soil cores. Based on these preliminary duckweed bioassays, there were no differences between soil types or organic amended or non-amended soil, but leachate from vegetated soil cores were less toxic than were leachates from non-vegetated soil cores. Overall, the duckweed bioassays were useful in detecting heavy metal availability in elutriate and leachate samples from smelter soils.« less
40 CFR 761.72 - Scrap metal recovery ovens and smelters.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Scrap metal recovery ovens and..., AND USE PROHIBITIONS Storage and Disposal § 761.72 Scrap metal recovery ovens and smelters. Any person... § 761.60(b), metal surfaces in PCB remediation waste regulated under § 761.61, or metal surfaces in PCB...
Shin, Woosik; Choung, Sungwook; Han, Weon Shik; Hwang, Jeonghwan; Kang, Gyeongmin
2018-06-12
Although soil contamination must be remediated by the polluters under current legal frameworks in numerous countries, the allocation of responsibilities for soil clean-up is still challenging in the case of multiple potentially responsible parties (PRPs). This study evaluated the individual contributions of two PRPs (Owners A & B) to heavy metal contamination in the soil environment near an abandoned smelter and compared the results with those from the conventional Gore Factor (GF) method. The soil in the study area was widely contaminated by various heavy metals. In particular, the arsenic concentration exceeded the local regulatory level of 25 mg kg -1 at all investigated sites. Arsenic components were frequently observed in the form of iron oxides, and they decreased with increasing distance from the smelter chimney. This distribution supported the premise that the arsenic mainly originated from the chimney through oxidation processes of iron-containing ores under high temperature. The GF results attributed greater responsibility to Owner A than Owner B, while the estimated arsenic masses (based on the field investigation) indicated the contrary. These results could be caused by insufficient information for the GF evaluation, because the change in smelter ownership and long history of contamination obscure important data, such as the amount of total refined ores and the efficiency of air pollution prevention facilities in the smelter. Therefore, more field-based approaches must be considered more importantly for the evaluation of multiple PRPs' remediation responsibilities, especially in areas with long-term contamination. Copyright © 2017 Elsevier B.V. All rights reserved.
Osmium isotopic tracing of atmospheric emissions from an aluminum smelter
NASA Astrophysics Data System (ADS)
Gogot, Julien; Poirier, André; Boullemant, Amiel
2015-09-01
We present for the first time the use of osmium isotopic composition as a tracer of atmospheric emissions from an aluminum smelter, where alumina (extracted from bauxite) is reduced through electrolysis into metallic aluminum using carbonaceous anodes. These anodes are consumed in the process; they are made of petroleum coke and pitch and have high Re/Os elementary ratio. Due to the relatively large geological age of their source material, their osmium shows a high content of radiogenic 187Os produced from in situ187Re radioactive decay. The radiogenic isotopic composition (187Os/188Os ∼ 2.5) of atmospheric particulate emissions from this smelter is different from that of other typical anthropogenic osmium sources (that come from ultramafic geological contexts with unradiogenic Os isotopes, e.g., 187Os/188Os < 0.2) and also different from average eroding continental crust 187Os/188Os ratios (ca. 1.2). This study demonstrates the capacity of osmium measurements to monitor particulate matter emissions from the Al-producing industry.
Do, Hien-Quang; Bachman, Shoshana; Bissember, Alex C; Peters, Jonas C; Fu, Gregory C
2014-02-05
The development of a mild and general method for the alkylation of amides with relatively unreactive alkyl halides (i.e., poor substrates for SN2 reactions) is an ongoing challenge in organic synthesis. We describe herein a versatile transition-metal-catalyzed approach: in particular, a photoinduced, copper-catalyzed monoalkylation of primary amides. A broad array of alkyl and aryl amides (as well as a lactam and a 2-oxazolidinone) couple with unactivated secondary (and hindered primary) alkyl bromides and iodides using a single set of comparatively simple and mild conditions: inexpensive CuI as the catalyst, no separate added ligand, and C-N bond formation at room temperature. The method is compatible with a variety of functional groups, such as an olefin, a carbamate, a thiophene, and a pyridine, and it has been applied to the synthesis of an opioid receptor antagonist. A range of mechanistic observations, including reactivity and stereochemical studies, are consistent with a coupling pathway that includes photoexcitation of a copper-amidate complex, followed by electron transfer to form an alkyl radical.
Secondary lead production in Malaysia
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lim, J.S.S.; Lim, C.L.
1988-04-01
In the absence of a lead producers' association in Malaysia and the continued presence of illegal operators whose activities are confined to remelting of cable scraps and/or smelting of battery scraps using a shaft furnace, this paper relies heavily on the information obtained from Metal Reclamation Industries, Sdn. Bhd. -the only modern integrated lead smelter in the country. Consequently, the authors can only present a semiquantitative and general paper on secondary lead production in Malaysia covering the following areas: history; secondary lead smelting; raw material; products; quality control; pollution controls; and future of secondary lead production in Malaysia. They concludemore » that if Malaysia is to become a major secondary lead producer in the Asian region, the industry must: (1) import raw materials in the form of scrapped batteries; (2) develop or acquire new technology; (3) cope with changing pollution regulations, and (4) develop technical skills and efficient quality controls to meet new challenges. 2 figures, 3 tables.« less
Thermodynamics of Palladium (Pd) and Tantalum (Ta) Relevant to Secondary Copper Smelting
NASA Astrophysics Data System (ADS)
Shuva, M. A. H.; Rhamdhani, M. A.; Brooks, G. A.; Masood, S. H.; Reuter, M. A.
2017-02-01
The slag-to-metal distribution ratios of palladium (Pd), L_{{Pd}}^{s/m} , in the range of oxygen partial pressure ( pO2) from 10-10 to 10-7 atm at 1473 K to 1623 K (1200 °C to 1350 °C); distribution ratios of tantalum (Ta), L_{{Ta}}^{s/m} , in the range of pO2 from 10-16 to 10-12 atm at 1673 K and 1873 K (1400 °C and 1600 °C), have been determined in this study. The L_{{Pd}}^{s/m} in FeO x -CaO-SiO2-MgO and copper at 1573 K (1300 °C) and pO2 = 10-8 atm is dependant strongly on basicity of slag, i.e. (CaO + MgO)/SiO2 or optical basicity. The current results suggest that Pd presents in the FeO x -CaO-SiO2-MgO slag predominantly as Pd2+. The activity coefficient of PdO in the slag at 1573 K (1300 °C) and pO2 = 10-8 atm was calculated to be in the range of 3.89 × 10-3 to 2.63 × 10-2. The L_{{Pd}}^{s/m} was also found to increase with increasing of pO2 and with decreasing of temperature. It was observed that Ta mostly partition to slag phase and very small amount of Ta was found in liquid copper at the high temperature and reduced condition studied. It can be suggested that to promote recovery of palladium from Pd-containing e-waste, a slag with lower silica content and basic flux based, high temperature with reducing atmosphere, is highly desired particularly in secondary copper smelting.
40 CFR 57.301 - General requirements.
Code of Federal Regulations, 2010 CFR
2010-07-01
..., electric furnaces and copper converters; (b) In lead smelters, off-gases from the front end of the sintering machine and any other sinter gases which are recirculated; (c) In zinc smelters, off-gases from...
New insight into atmospheric mercury emissions from zinc smelters using mass flow analysis.
Wu, Qingru; Wang, Shuxiao; Hui, Mulin; Wang, Fengyang; Zhang, Lei; Duan, Lei; Luo, Yao
2015-03-17
The mercury (Hg) flow paths from three zinc (Zn) smelters indicated that a large quantity of Hg, approximately 38.0-57.0% of the total Hg input, was stored as acid slag in the landfill sites. Approximately 15.0-27.1% of the Hg input was emitted into water or stored as open-dumped slags, and 3.3-14.5% of the Hg input ended in sulfuric acid. Atmospheric Hg emissions, accounting for 1.4-9.6% of the total Hg input, were from both the Zn production and waste disposal processes. Atmospheric Hg emissions from the waste disposal processes accounted for 40.6, 89.6, and 94.6% of the total atmospheric Hg emissions of the three studied smelters, respectively. The Zn production process mainly contributed to oxidized Hg (Hg2+) emissions, whereas the waste disposal process generated mostly elemental Hg (Hg0) emissions. When the emissions from these two processes are considered together, the emission proportion of the Hg2+ mass was 51, 46, and 29% in smelters A, B, and C, respectively. These results indicated that approximately 10.8±5.8 t of atmospheric Hg emissions from the waste disposal process were ignored in recent inventories. Therefore, the total atmospheric Hg emissions from the Zn industry of China should be approximately 50 t.
Shen, Feng; Liao, Renmei; Ali, Amjad; Mahar, Amanullah; Guo, Di; Li, Ronghua; Xining, Sun; Awasthi, Mukesh Kumar; Wang, Quan; Zhang, Zengqiang
2017-05-01
A large scale survey and a small scale continuous monitoring was conducted to evaluate the impact of Pb/Zn smelting on soil heavy metals (HMs) accumulation and potential ecological risk in Feng County, Shaanxi province of China. Soil parameters including pH, texture, CEC, spatial and temporal distribution of HMs (Cd, Cu, Ni, Pb and Zn), and BCR fractionation were monitored accordingly. The results showed the topsoil in the proximity of smelter, especially the smelter area and county seat, were highly polluted by HMs in contrast to the river basins. Fractionation of Cd and Zn in soil samples revealed higher proportion of mobile fractions than other HMs. The soil Cd and Zn contents decreased vertically, but still exceeded the second level limits of Environmental Quality Standard for Soils of China (EQSS) within 80cm. The dominated soil pollutant (Cd) had higher ecological risk than Cu, Ni, Zn and Pb. The potential ecological risk (PER) factor of Cd were 65.7% and 100% in surrounding county and smelter area, respectively. The long-term smelter dust emission mainly contributed to the HMs pollution and posed serious environment risk to living beings. Copyright © 2017 Elsevier Inc. All rights reserved.
40 CFR 761.72 - Scrap metal recovery ovens and smelters.
Code of Federal Regulations, 2010 CFR
2010-07-01
...) The operating temperature of the hearth must be at least 1,000 °C at the time it is charged with any... into molten metal or a hearth at ≥1,000 °C. (3) Successive charges may not be introduced into the hearth in less than 15-minute intervals. (4) The smelter must operate in compliance with any applicable...
Project #OPE-FY13-0023, June 6, 2013. The U.S. Environmental Protection Agency’s Office of Inspector General plans to begin preliminary research to evaluate the EPA’s response to contamination from historical lead smelters.
NASA Astrophysics Data System (ADS)
Chen, Bing; Stein, Ariel F.; Castell, Nuria; de la Rosa, Jesus D.; Sanchez de la Campa, Ana M.; Gonzalez-Castanedo, Yolanda; Draxler, Roland R.
2012-03-01
Arsenic is a toxic element for human health. Consequently, a mean annual target level for arsenic at 6 ng m-3 in PM10 was established by the European Directive 2004/107/CE to take effect January 2013. Cu-smelters can contribute to one-third of total emissions of arsenic in the atmosphere. Surface observations taken near a large Cu-smelter in the city of Huelva (Spain) show hourly arsenic concentrations in the range of 0-20 ng m-3. The arsenic peaks of 20 ng m-3 are higher than values normally observed in urban areas around Europe by a factor of 10. The Hybrid Single Particle Lagrangian Integrated Trajectory (HYSPLIT) model has been employed to predict arsenic emissions, transport, and dispersion from the Cu-smelter. The model utilized outputs from different meteorological models and variations in the model physics options to simulate the uncertainty in the dispersion of the arsenic plume. Modeling outputs from the physics ensemble for each meteorological model driving HYSPLIT show the same number of arsenic peaks. HYSPLIT coupled with the Weather Research and Forecasting (WRF-ARW) meteorological output predicted the right number of peaks for arsenic concentration at the observation site. The best results were obtained when the WRF simulation used both four-dimensional data assimilation and surface analysis nudging. The prediction was good in local sea breeze circulations or when the flow was dominated by the synoptic scale prevailing winds. However, the predicted peak was delayed when the transport and dispersion was under the influence of an Atlantic cyclone. The calculated concentration map suggests that the plume from the Cu-smelter can cause arsenic pollution events in the city of Huelva as well as other cities and tourist areas in southwestern Spain.
Contamination of woody habitat soils around a former lead smelter in the North of France.
Douay, F; Pruvot, C; Waterlot, C; Fritsch, C; Fourrier, H; Loriette, A; Bidar, G; Grand, C; de Vaufleury, A; Scheifler, R
2009-10-15
The contamination of the topsoil of 262 woody habitats around a former lead smelter in the North of France was assessed. In this urbanized and industrialized area, these kinds of habitats comprise of hedges, groves, small woods, anthropogenic creations and one large forest. Except for the latter, which is 3 km away, these woody habitat soils often present a high anthropization degree (a significant amount of pebbles and stones related to human activities) with a high metal contamination. In the studied woody habitat topsoils, Cd, Pb and Zn concentrations largely exceeded those of agricultural topsoils located in the same environmental context. Therefore, atmospheric emissions from the smelter are not the only cause of the high contamination of the woody habitat soils. This last one is related to the nature and the contamination level of deposit in relation with human activities (rubbles, slag, soils, etc). With regard to the results obtained with chemical extractions, the mobility of Cd, Pb and Zn in these soils is also greater than in agricultural soils. In the forest, pollutant solubility is increased by soil acidic pH. The variability of the physico-chemical parameters and the high metal contamination of the topsoils are the main characteristics of the woody habitats located around the former smelter. Although never taken into account during risk assessment, the disturbance of these environmental components could have important biogeochemical impacts (nutrients and metal cycles). Moreover, any modification of the soils' use could potentially cause mobilization and transfer of the pollutants to the biosphere. Six years after the closure of the smelter, and as social and economic pressures considerably increase in this area, the study of these peculiar ecosystems is necessary to understand and predict the bioavailability, transfer, bioaccumulation and effects of pollutants in food chains.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roels, H.A.; Buchet, J.P.; Lauwerys, R.R.
1980-06-01
A medical survey was carried out among 11-year-old children attending schools situated less than 1 and 2.5 km from a lead smelter. Age-matched control children from a rural and urban area were examined at the same time. The blood lead levels (PbB) of the children living in the smelter area (mainly those attending schools located less than 1 km from the smelter) were higher than those of rural and urban children. The mean PbB levels were usually lower in girls than in boys, especially in the smelter area. Despite a slightly decreasing trend in the annual mean airborne lead concentrationmore » at less than 1 km (mean PbA: from 3.8 ..mu..g/m/sup 3/ in 1974 to 2.3 ..mu..g/m/sup 3/ in 1978) the PbB levels there did not improve, whereas 2.5 km from the plant a significant tendency to normalization of PbB became apparent. Therefore, in the third survey, the medical examination was combined with an environmental study which demonstrated that lead in school-playground dust and in air strongly correlated. Lead on the children's hands (PbH) was also significantly related to lead in air or lead in dust. Less than 1 km from the factory boys and girls had on the average 436 and 244 ..mu..g Pb/hand, respectively, vs 17.0 and 11.4 ..mu..g Pb/hand for rural boys and girls, respectively. Partial correlations between PbB, PbA, and PbH indicated that in the smelter area the quantitative contribution of PbA to the children's PbB is negligible compared to that of PbH. Thus, the control of airborne lead around the lead smelter is not sufficient to prevent excessive exposure of children to environmental lead. In view of the importance of lead transfer from dust and dirt via hands to the gastrointestinal tract remedial actions should be directed simultaneously against the atmospheric emission of lead by the smelter and against the lead particulates deposited on soil, dust, and dirt.« less
NASA Astrophysics Data System (ADS)
Jiang, Xiaoxu; Liu, Guorui; Wang, Mei; Zheng, Minghui
2015-09-01
Emission of unintentionally formed polychlorinated biphenyls (PCBs) from industrial thermal processes is a global issue. Because the production and use of technical PCB mixtures has been banned, industrial thermal processes have become increasingly important sources of PCBs. Among these processes, secondary copper smelting is an important PCB source in China. In the present study, the potential for fly ash-mediated formation of PCBs in the secondary copper industry, and the mechanisms involved, were studied in laboratory thermochemical experiments. The total PCB concentrations were 37-70 times higher than the initial concentrations. Thermochemical reactions on the fly ash amplified the potential toxic equivalents of PCBs. The formation of PCBs over time and the effect of temperature were investigated. Based on analyses of PCB homologue profiles with different reaction conditions, a chlorination mechanism was proposed for forming PCBs in addition to a de novo synthesis mechanism. The chlorination pathway was supported by close correlations between each pair of adjacent homologue groups. Formation of PCBs and multiple persistent organic pollutants, including polychlorinated dibenzo-p-dioxins, polychlorinated dibenzofurans and polychlorinated naphthalenes, occurred during the tests, indicating that these compounds may share similar formation mechanisms.
Occupational hypersensitivity pneumonitis in a smelter exposed to zinc fumes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ameille, J.; Brechot, J.M.; Brochard, P.
1992-03-01
A smelter exposed to zinc fumes reported severe recurrent episodes of cough, dyspnea and fever. Bronchoalveolar lavage showed a marked increase in lymphocytes count with predominance of CD8 T-lymphocytes. Presence of zinc in alveolar macrophages was assessed by analytic transmission electron microscopy. This is the first case of recurrent bronchoalveolitis related to zinc exposure in which the clinical picture and BAL results indicate a probable hypersensitivity pneumonitis.
On the use of copper-based substrates for YBCO coated conductors
NASA Astrophysics Data System (ADS)
Vannozzi, A.; Fabbri, F.; Augieri, A.; Angrisani Armenio, A.; Galluzzi, V.; Mancini, A.; Rizzo, F.; Rufoloni, A.; Padilla, J. A.; Xuriguera, E.; De Felicis, D.; Bemporad, E.; Celentano, G.
2014-05-01
It is well known that the recrystallization texture of heavily cold-rolled pure copper is almost completely cubic. However, one of the main drawbacks concerning the use of pure copper cube-textured substrates for YBCO coated conductor is the reduced secondary recrystallization temperature. The onset of secondary recrystallization (i.e., the occurrence of abnormal grains with unpredictable orientation) in pure copper substrate was observed within the typical temperature range required for buffer layer and YBCO processing (600-850 °C). To avoid the formation of abnormal grains the effect of both grain size adjustment (GSA) and recrystallization annealing was analyzed. The combined use of a small initial grain size and a recrystallization two-step annealing (TSA) drastically reduced the presence of abnormal grains in pure copper tapes. Another way to overcome the limitation imposed by the formation of abnormal grains is to deposit a buffer layer at temperatures where secondary recrystallization does not occur. For example, La2Zr2O7 (LZO) film with a high degree of epitaxy was grown by metal-organic decomposition (MOD) at 1000 °C on pure copper substrate. In several samples the substrate underwent secondary recrystallization. Our experiments indicate that the motion of grain boundaries occurring during secondary recrystallization process does not affect the quality of LZO film.
NASA Astrophysics Data System (ADS)
Juillot, Farid; Maréchal, Chloe; Morin, Guillaume; Jouvin, Delphine; Cacaly, Sylvain; Telouk, Philipe; Benedetti, Marc F.; Ildefonse, Philippe; Sutton, Steve; Guyot, François; Brown, Gordon E., Jr.
2011-05-01
Zinc isotopes have been studied along two smelter-impacted soil profiles sampled near one of the largest Pb and Zn processing plants in Europe located in northern France, about 50 km south of Lille. Mean δ 66Zn values along these two soil profiles range from +0.22 ± 0.17‰ (2 σ) to +0.34 ± 0.17‰ (2 σ) at the lowest horizons and from +0.38 ± 0.45‰ (2 σ) to +0.76 ± 0.14‰ (2 σ) near the surface. The δ 66Zn values in the lowest horizons of the soils are interpreted as being representative of the local geochemical background (mean value +0.31 ± 0.38‰), whereas heavier δ 66Zn values near the surface of the two soils are related to anthropogenic Zn. This anthropogenic Zn occurs in the form of franklinite (ZnFe 2O 4)-bearing slag grains originating from processing wastes at the smelter site and exhibiting δ 66Zn values of +0.81 ± 0.20‰ (2 σ). The presence of franklinite is indicated by EXAFS analysis of the topsoil samples from both soil profiles as well as by micro-XANES analysis of the surface horizon of a third smelter-impacted soil from a distant site. These results indicate that naturally occurring Zn and smelter-derived Zn exhibit significantly different δ 66Zn values, which suggests that zinc isotopes can be used to distinguish between geogenic and anthropogenic sources of Zn in smelter-impacted soils. In addition to a possible influence of additional past sources of light Zn (likely Zn-sulfides and Zn-sulfates directly emitted by the smelter), the light δ 66Zn values in the surface horizons compared to smelter-derived slag materials are interpreted as resulting mainly from fractionation processes associated with biotic and/or abiotic pedological processes (Zn-bearing mineral precipitation, Zn complexation by organic matter, and plant uptake of Zn). This conclusion emphasizes the need for additional Zn isotopic studies before being able to use Zn isotopes to trace sources and pathways of this element in surface environments.
Chia, Taipau; Hsu, Ching Yi; Chen, Hsiu Ling
2008-04-01
In Taiwan, secondary copper smelters and zinc recovery plants primarily utilize recovering metal from scrap and dross, and handles mostly fly ash and slag with high temperature to produce ZnO from the iron and steel industry. The materials may contain organic impurities, such as plastic and organic chloride chemicals, and amounts of polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans (PCDD/Fs) are produced during the smelting process. Therefore, secondary metal recovery industries are major emission sources of PCDD/Fs, which may have been demonstrated to elicit oxidative stress and to involve the production of plasma malondialdehyde (MDA). Many studies have also indicated that the intake of antioxidants, smoking, age and exposure to environmental pollutants may be implicated to DNA damage or lipid peroxidation. This study therefore aims to elucidate the roles of occupational exposure like joining the smelting work, age, smoking and alcohol status, and antioxidant intake on oxidative damage in secondary metal recovery workers in Taiwan. 73 workers were recruited from 2 secondary metal recovery plants. The analysis of 8-hydroxydeoxyguanosine (8-OH-dG) in urine, DNA strand breakage (comet assay) and lipid peroxidation (MDA) in blood samples were completed for all of the workers. The results showed that the older subjects exhibited significantly lower levels of 8-OH-dG and MDA than younger subjects. Our investigation also showed that working departments were in related to plasma MDA and DNA strand breakage levels of nonsmokers, however, the observation become negligible in smokers. And it is implicated that cigarette type might affect 8-OH-dG levels in secondary metal recovery workers. Since, adding to results above, the MDA level in production workers was significantly higher than those in managerial departments, it is important for the employers to make efforts on improving occupational environments or serving protective equipments to protect workers
Röllin, H B; Theodorou, P; Cantrell, A C
1996-01-01
OBJECTIVES: The study attempts to define biological indicators of aluminium uptake and excretion in workers exposed to airborne aluminium compounds in a primary aluminium smelter. Also, this study defines the total and respirable aluminium dust fractions in two different potrooms, and correlates their concentrations with biological indicators in this group of workers. METHODS: Air was sampled at defined work sites. Non-destructive and conventional techniques were used to find total and respirable aluminium content of the dust. Blood and urine was collected from 84 volunteers employed at various work stations throughout the smelter and from two different cohorts of controls matched for sex, age, and socioeconomic status. Aluminium in serum samples and urine specimens was measured by flameless atomic absorption with a PE 4100 ZL spectrometer. RESULTS: The correlation of aluminium concentrations in serum and urine samples with the degree of exposure was assessed for three arbitrary exposure categories; low (0.036 mg Al/m3), medium (0.35 mg Al/m3) and high (1.47 mg Al/m3) as found in different areas of the smelter. At medium and high exposure, the ratio of respirable to total aluminium in the dust samples varied significantly. At high exposure, serum aluminium, although significantly raised, was still within the normal range of an unexposed population. The workers with low exposure excreted aluminium in urine at levels significantly higher than the controls, but still within the normal range of the population. However, potroom workers with medium and high exposure had significantly higher urinary aluminium than the normal range. CONCLUSIONS: It is concluded that only urinary aluminium constitutes a practical index of occupational exposure at or above 0.35 mg Al/m3, and that the respirable fraction of the dust may play a major role in the biological response to exposure to aluminium in a smelter environment. PMID:8758038
Microbial biomass and ATP in smelter-polluted forest humus
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baath, E.; Arnebrant, K.; Nordgren, A.
Many aspects of microbial activity in soil have been studied in connection with heavy metal pollution, but few investigations have included microbial biomass. To study how biomass-C and ATP were affected over a wide range of metal concentrations, these variables have been measured around the Gusum brass mill in south Sweden. Near the smelter more than 20,000 ppm Cu + Zn g{sup {minus}1} dry soil have been found. This area has been extensively studied form microbiological, zoological and botanical points of view.
Secondary lead production in Malaysia
NASA Astrophysics Data System (ADS)
Phillips, M. J.; Lim, S. S.
The increase in the number of vehicles and, subsequently, the volume of batteries made by manufacturers in Malaysia have seen a dramatic rise in lead demand over the last five years. Without any lead mines, the only source of lead in Malaysia has been from the recycling of lead/acid batteries. Metal Reclamation (Industries) has commenced the design of a new and advanced secondary lead plant at West Port, Malaysia to meet the increasing demand for lead and the increasingly stringent environmental regulations. The plant is designed to produce up to 75 000 t of lead and lead alloys per year. The plant will also produce, as by-products: polypropylene chips, wallboard-grade gypsum, non-leachable slag for use in construction. A discussion of the process and the products from the new secondary smelter is outlined.
Schmitt, Christopher J.; Caldwell, Colleen A.; Olsen, Bill; Serdar, Dave; Coffey, Mike
2002-01-01
We assessed the effects on fish of lead (Pb) released to streamsby smelters located in Trail, BC (Canada), E. Helena, MT, Herculaneum, MO, and Glover, MO. Fish were collected by electrofishing from sites located downstream of smelters and from reference sites. Blood from each fish was analyzed for δ-aminolevulinic acid dehydratase (ALAD) activity and hemoglobin (Hb), and samples of blood, liver, or carcass were analyzed for Pb, zinc (Zn), or both. Fish collected downstreamof all four smelters sites had elevated Pb concentrations, decreased ALAD activity, or both relative to their respectivereference sites. At E. Helena, fish from the downstream site also had lower Hb concentrations than fish from upstream. Differences among taxa were also apparent. Consistent with previous studies, ALAD activity in catostomids (Pisces: Catostomidae-northern hog sucker,Hypentelium nigricans;river carpsucker, Carpiodes carpio; largescale sucker, Catostomus macrocheilus; and mountain sucker, C. platyrhynchus) seemed more sensitive to Pb-induced ALADinhibition than the salmonids (Pisces: Salmonidae-rainbow trout,Oncorhynchus mykiss; brook trout,Salvelinus fontinalis) or common carp (Cyprinus carpio). Some of these differences may have resulted from differential accumulation of Zn, which was not measured at all sites. We detected noALAD activity in channel catfish (Ictaluruspunctatus) from either site on the Mississippi River at Herculaneum, MO. Our findings confirmed that Pb is releasedto aquatic ecosystems by smelters and accumulated by fish, andwe documented potentially adverse effects of Pb in fish. We recommend that Zn be measured along with Pb when ALAD activityis used as a biomarker and the collection of at least 10 fish ofa species at each site to facilitate statistical analysis.
Ahn, Jun Myun; Peters, Jonas C; Fu, Gregory C
2017-12-13
Despite the long history of S N 2 reactions between nitrogen nucleophiles and alkyl electrophiles, many such substitution reactions remain out of reach. In recent years, efforts to develop transition-metal catalysts to address this deficiency have begun to emerge. In this report, we address the challenge of coupling a carbamate nucleophile with an unactivated secondary alkyl electrophile to generate a substituted carbamate, a process that has not been achieved effectively in the absence of a catalyst; the product carbamates can serve as useful intermediates in organic synthesis as well as bioactive compounds in their own right. Through the design and synthesis of a new copper-based photoredox catalyst, bearing a tridentate carbazolide/bisphosphine ligand, that can be activated upon irradiation by blue-LED lamps, we can achieve the coupling of a range of primary carbamates with unactivated secondary alkyl bromides at room temperature. Our mechanistic observations are consistent with the new copper complex serving its intended role as a photoredox catalyst, working in conjunction with a second copper complex that mediates C-N bond formation in an out-of-cage process.
A secondary nursery area for the copper shark Carcharhinus brachyurus from the late Miocene of Peru
NASA Astrophysics Data System (ADS)
Landini, Walter; Collareta, Alberto; Pesci, Fabio; Di Celma, Claudio; Urbina, Mario; Bianucci, Giovanni
2017-10-01
The life history strategies of sharks often include the use of protected nursery areas by young-of-the-year and juveniles. Nursery areas can be primary (i.e., grounds where the sharks are born and spend the very first part of their lives) or secondary (i.e., grounds inhabited by slightly older but not yet mature individuals). Criteria utilized to recognize these strategic habitats include: high concentration of young sharks, high food availability, and low predation risk. Since the fossil record of sharks consists mainly of isolated teeth, identification of paleonurseries involves a series of problems due to difficult application of actualistic criteria. A rich shark tooth-bearing level (ST-low1) has recently been discovered in the upper Miocene deposits of the Pisco Formation exposed at Cerro Colorado (southern coast of Peru). Most of the teeth collected from this level belong to the extant copper shark Carcharhinus brachyurus. These teeth are small and compatible with those of extant juveniles. This observation, coupled with other paleoenvironmental considerations, indicates that the ST-low1 horizon could have represented a nursery ground for juvenile individuals of C. brachyurus. The absence of very small-sized teeth (i.e., referable to young-of-the-year) suggests a secondary nursery ground inhabited by immature copper sharks. Observations on the tooth size of other Lamniformes, Carcharhiniformes, and Myliobatiformes occurring along with C. brachyurus point to a significantly juvenile structure of this elasmobranch assemblage, thus supporting the hypothesis of a communal use of the Cerro Colorado paleonursery.
Mixing Phenomena in a Bottom Blown Copper Smelter: A Water Model Study
NASA Astrophysics Data System (ADS)
Shui, Lang; Cui, Zhixiang; Ma, Xiaodong; Akbar Rhamdhani, M.; Nguyen, Anh; Zhao, Baojun
2015-03-01
The first commercial bottom blown oxygen copper smelting furnace has been installed and operated at Dongying Fangyuan Nonferrous Metals since 2008. Significant advantages have been demonstrated in this technology mainly due to its bottom blown oxygen-enriched gas. In this study, a scaled-down 1:12 model was set up to simulate the flow behavior for understanding the mixing phenomena in the furnace. A single lance was used in the present study for gas blowing to establish a reliable research technique and quantitative characterisation of the mixing behavior. Operating parameters such as horizontal distance from the blowing lance, detector depth, bath height, and gas flow rate were adjusted to investigate the mixing time under different conditions. It was found that when the horizontal distance between the lance and detector is within an effective stirring range, the mixing time decreases slightly with increasing the horizontal distance. Outside this range, the mixing time was found to increase with increasing the horizontal distance and it is more significant on the surface. The mixing time always decreases with increasing gas flow rate and bath height. An empirical relationship of mixing time as functions of gas flow rate and bath height has been established first time for the horizontal bottom blowing furnace.
40 CFR Appendix A to Part 57 - Primary Nonferrous Smelter Order (NSO) Application
Code of Federal Regulations, 2014 CFR
2014-07-01
... the following two tests. (a) Profit Protection Test. The smelter will experience a reduction in pre... NSO Eligibility. An NSO applicant must pass one of the following two tests and complete the... Application 1.2 NSO Financial Tests 1.3 Confidentiality 2. NSO Financial Reporting Overview 2.1 Revenue and...
40 CFR Appendix A to Part 57 - Primary Nonferrous Smelter Order (NSO) Application
Code of Federal Regulations, 2013 CFR
2013-07-01
... the following two tests. (a) Profit Protection Test. The smelter will experience a reduction in pre... NSO Eligibility. An NSO applicant must pass one of the following two tests and complete the... Application 1.2 NSO Financial Tests 1.3 Confidentiality 2. NSO Financial Reporting Overview 2.1 Revenue and...
40 CFR Appendix A to Part 57 - Primary Nonferrous Smelter Order (NSO) Application
Code of Federal Regulations, 2012 CFR
2012-07-01
... the following two tests. (a) Profit Protection Test. The smelter will experience a reduction in pre... NSO Eligibility. An NSO applicant must pass one of the following two tests and complete the... Application 1.2 NSO Financial Tests 1.3 Confidentiality 2. NSO Financial Reporting Overview 2.1 Revenue and...
40 CFR Appendix A to Part 57 - Primary Nonferrous Smelter Order (NSO) Application
Code of Federal Regulations, 2010 CFR
2010-07-01
... the following two tests. (a) Profit Protection Test. The smelter will experience a reduction in pre... NSO Eligibility. An NSO applicant must pass one of the following two tests and complete the... Application 1.2 NSO Financial Tests 1.3 Confidentiality 2. NSO Financial Reporting Overview 2.1 Revenue and...
NASA Astrophysics Data System (ADS)
Stagnitti, F.; Salzman, S.; Thwaites, L.; Allinson, G.; Le Blanc, M.; Hill, J.; Doerr, S.; de Rooij, G.
2003-04-01
The Portland Aluminium smelter produces approximately 75 ML of process wastewater each year. This is combined with storm water runoff from the site to give an annual production of 715 ML. In common with many other smelters, this wastewater stream is currently discharged to the ocean. However, although the quality of the water Portland Aluminium discharges currently meets all Australian Environmental Protection Agency license requirements, this mode of release is unlikely to be acceptable in the near future, and alternative disposal options for the water are required. The Portland smelter has developed strategies which will enable it to achieve zero-discharge within 5 years. These strategies include separating process water from storm water, recycling storm water, construction of evaporation ponds to receive process water, irrigation of process water and storm water on lands within the site and maintenance of important wetland functions. The poster presents a summary of the management strategies currently being trialed and in particular focuses on modeling the spatial and temporal variations of fluoride found in the shallow groundwater and the implications of achieving zero-discharge. The poster also discusses the possible impacts on the distribution of fluoride and other solutes in the vadose zone by the irrigation of treated process water on blue-gum plantations. Computer simulations indicate that irrigation of process water (either treated or untreated) on the land poses no significant long-term threat to regional or surficial groundwater. However the impacts of increased solute transport through the vadose zone on changes in soil structure and nutrition require further investigation.
40 CFR 57.302 - Performance level of interim constant controls.
Code of Federal Regulations, 2011 CFR
2011-07-01
... exceed the following: (i) For sulfuric acid plants on copper smelters, 12-hour running average; (ii) For sulfuric acid plants on lead smelters, 6-hour running average; (iii) For sulfuric acid plants on zinc... limitation shall take into account unavoidable catalyst deterioration in sulfuric acid plants, but may...
Garcia-Vargas, Gonzalo G; Rothenberg, Stephen J; Silbergeld, Ellen K; Weaver, Virginia; Zamoiski, Rachel; Resnick, Carol; Rubio-Andrade, Marisela; Parsons, Patrick J; Steuerwald, Amy J; Navas-Acién, Ana; Guallar, Eliseo
2014-11-01
High blood lead (BPb) levels in children and elevated soil and dust arsenic, cadmium, and lead were previously found in Torreón, northern Mexico, host to the world's fourth largest lead-zinc metal smelter. The objectives of this study were to determine spatial distributions of adolescents with higher BPb and creatinine-corrected urine total arsenic, cadmium, molybdenum, thallium, and uranium around the smelter. Cross-sectional study of 512 male and female subjects 12-15 years of age was conducted. We measured BPb by graphite furnace atomic absorption spectrometry and urine trace elements by inductively coupled plasma-mass spectrometry, with dynamic reaction cell mode for arsenic. We constructed multiple regression models including sociodemographic variables and adjusted for subject residence spatial correlation with spatial lag or error terms. We applied local indicators of spatial association statistics to model residuals to identify hot spots of significant spatial clusters of subjects with higher trace elements. We found spatial clusters of subjects with elevated BPb (range 3.6-14.7 μg/dl) and urine cadmium (0.18-1.14 μg/g creatinine) adjacent to and downwind of the smelter and elevated urine thallium (0.28-0.93 μg/g creatinine) and uranium (0.07-0.13 μg/g creatinine) near ore transport routes, former waste, and industrial discharge sites. The conclusion derived from this study was that spatial clustering of adolescents with high BPb and urine cadmium adjacent to and downwind of the smelter and residual waste pile, areas identified over a decade ago with high lead and cadmium in soil and dust, suggests that past and/or present plant operations continue to present health risks to children in those neighborhoods.
Garcia-Vargas, Gonzalo G.; Rothenberg, Stephen J.; Silbergeld, Ellen K.; Weaver, Virginia; Zamoiski, Rachel; Resnick, Carol; Rubio-Andrade, Marisela; Parsons, Patrick J.; Steuerwald, Amy J.; Navas-Acién, Ana; Guallar, Eliseo
2016-01-01
High blood lead (BPb) levels in children and elevated soil and dust arsenic, cadmium, and lead were previously found in Torreón, northern Mexico, host to the world’s fourth largest lead–zinc metal smelter. The objectives of this study were to determine spatial distributions of adolescents with higher BPb and creatinine-corrected urine total arsenic, cadmium, molybdenum, thallium, and uranium around the smelter. Cross-sectional study of 512 male and female subjects 12–15 years of age was conducted. We measured BPb by graphite furnace atomic absorption spectrometry and urine trace elements by inductively coupled plasma-mass spectrometry, with dynamic reaction cell mode for arsenic. We constructed multiple regression models including sociodemographic variables and adjusted for subject residence spatial correlation with spatial lag or error terms. We applied local indicators of spatial association statistics to model residuals to identify hot spots of significant spatial clusters of subjects with higher trace elements. We found spatial clusters of subjects with elevated BPb (range 3.6–14.7 µg/dl) and urine cadmium (0.18–1.14 µg/g creatinine) adjacent to and downwind of the smelter and elevated urine thallium (0.28–0.93 µg/g creatinine) and uranium (0.07–0.13 µg/g creatinine) near ore transport routes, former waste, and industrial discharge sites. The conclusion derived from this study was that spatial clustering of adolescents with high BPb and urine cadmium adjacent to and downwind of the smelter and residual waste pile, areas identified over a decade ago with high lead and cadmium in soil and dust, suggests that past and/or present plant operations continue to present health risks to children in those neighborhoods. PMID:24549228
76 FR 11779 - Puckett Smelter Superfund Site; Mountainboro, Etowah County, AL; Notice of Settlement
Federal Register 2010, 2011, 2012, 2013, 2014
2011-03-03
... Superfund Site; Mountainboro, Etowah County, AL; Notice of Settlement AGENCY: Environmental Protection... Superfund Site located in Mountainboro, Etowah county, Alabama for publication. DATES: The Agency will... No. EPA-RO4- SFUND-2011-0149 or Site name Puckett Smelter Superfund Site by one of the following...
Petito Boyce, Catherine; Sax, Sonja N; Cohen, Joel M
2017-08-01
Inhalation plays an important role in exposures to lead in airborne particulate matter in occupational settings, and particle size determines where and how much of airborne lead is deposited in the respiratory tract and how much is subsequently absorbed into the body. Although some occupational airborne lead particle size data have been published, limited information is available reflecting current workplace conditions in the U.S. To address this data gap, the Battery Council International (BCI) conducted workplace monitoring studies at nine lead acid battery manufacturing facilities (BMFs) and five secondary smelter facilities (SSFs) across the U.S. This article presents the results of the BCI studies focusing on the particle size distributions calculated from Personal Marple Impactor sampling data and particle deposition estimates in each of the three major respiratory tract regions derived using the Multiple-Path Particle Dosimetry model. The BCI data showed the presence of predominantly larger-sized particles in the work environments evaluated, with average mass median aerodynamic diameters (MMADs) ranging from 21-32 µm for the three BMF job categories and from 15-25 µm for the five SSF job categories tested. The BCI data also indicated that the percentage of lead mass measured at the sampled facilities in the submicron range (i.e., <1 µm, a particle size range associated with enhanced absorption of associated lead) was generally small. The estimated average percentages of lead mass in the submicron range for the tested job categories ranged from 0.8-3.3% at the BMFs and from 0.44-6.1% at the SSFs. Variability was observed in the particle size distributions across job categories and facilities, and sensitivity analyses were conducted to explore this variability. The BCI results were compared with results reported in the scientific literature. Screening-level analyses were also conducted to explore the overall degree of lead absorption potentially
Cleaning of waste smelter slags and recovery of valuable metals by pressure oxidative leaching.
Li, Yunjiao; Perederiy, Ilya; Papangelakis, Vladimiros G
2008-04-01
Huge quantities of slag, a waste solid product of pyrometallurgical operations by the metals industry are dumped continuously around the world, posing a potential environmental threat due to entrained values of base metals and sulfur. High temperature pressure oxidative acid leaching of nickel smelter slags was investigated as a process to facilitate slag cleaning and selective dissolution of base metals for economic recovery. Five key parameters, namely temperature, acid addition, oxygen overpressure, solids loading and particle size, were examined on the process performance. Base metal recoveries, acid and oxygen consumptions were accurately measured, and ferrous/ferric iron concentrations were also determined. A highly selective leaching of valuable metals with extractions of >99% for nickel and cobalt, >97% for copper, >91% for zinc and <2.2% for iron was successfully achieved for 20 wt.% acid addition and 25% solids loading at 200-300 kPa O(2) overpressure at 250 degrees C in 2h. The acid consumption was measured to be 38.5 kg H(2)SO(4)/t slag and the oxygen consumption was determined as 84 kg O(2)/t slag which is consistent with the estimated theoretical oxygen consumption. The as-produced residue containing less than 0.01% of base metals, hematite and virtually zero sulfidic sulfur seems to be suitable for safe disposal. The process seems to be able to claim economic recovery of base metals from slags and is reliable and feasible.
High concentrations of heavy metals in neighborhoods near ore smelters in northern Mexico.
Benin, A L; Sargent, J D; Dalton, M; Roda, S
1999-01-01
In developing countries, rapid industrialization without environmental controls has resulted in heavy metal contamination of communities. We hypothesized that residential neighborhoods located near ore industries in three northern Mexican cities would be heavily polluted with multiple contaminants (arsenic, cadmium, and lead) and that these sites would be point sources for the heavy metals. To evaluate these hypotheses, we obtained samples of roadside surface dust from residential neighborhoods within 2 m of metal smelters [Torreón (n = 19)] and Chihuahua (n = 19)] and a metal refinery [Monterrey (n = 23)]. Heavy metal concentrations in dust were mapped with respect to distance from the industrial sites. Correlation between dust metal concentration and distance was estimated with least-squares regression using log-transformed data. Median dust arsenic, cadmium, and lead concentrations were 32, 10, and 277 microg/g, respectively, in Chihuahua; 42, 2, and 467 microg/g, respectively, in Monterrey, and 113, 112, and 2,448 microg/g, respectively, in Torreón. Dust concentrations of all heavy metals were significantly higher around the active smelter in Torreón, where more than 90% of samples exceeded Superfund cleanup goals. At all sites, dust concentrations were inversely related to distance from the industrial source, implicating these industries as the likely source of the contamination. We concluded that residential neighborhoods around metal smelting and refining sites in these three cities are contaminated by heavy metals at concentrations likely to pose a health threat to people living nearby. Evaluations of human exposure near these sites should be conducted. Because multiple heavy metal pollutants may exist near smelter sites, researchers should avoid attributing toxicity to one heavy metal unless others have been measured and shown not to coexist. Images Figure 1 Figure 2-3 Figure 4-5 Figure 6-7 Figure 8 PMID:10090706
Bowen, S E
1988-01-01
Spatial and temporal patterns in the fluoride content of native vegetation around two aluminium smelters in the Hunter Valley were studied between 1982 and 1985. Foliage samples were collected every month from dominant tree, shrub and herb species located up to 15 km from each smelter and, after washing, were analysed for their fluoride concentrations. At Kurri Kurri, an established smelter, fluoride emissions varied between 10 and 15 tonnes per month, or 1.8 and 2 kg [corrected] per tonne Al produced. At Tomago, they increased rapidly during start-up, peaked at 15.2 tonnes per month (0.7 kg per tonne Al), and then fell to around 10 tonnes per month. Fluoride isopleths for Angophora bakeri and a histogram for A. costata, revealed that the main areas of impact were to the immediate north and north-east of Kurri Kurri and immediate north and south-east of Tomago. Although foliar fluoride concentrations greater than background levels extended 3 km from Kurri Kurri and 1 km from Tomago, fluoride-induced, visible injury was more limited in extent. Close to the smelters tree species accumulated more foliar fluoride than shrub species, which in turn accumulated more foliar fluoride than herb species. Foliar fluoride concentrations in tree and herb species were lowest in summer; spring peaks were also apparent at Tomago.
Metal contamination in wildlife living near two zinc smelters
Beyer, W.N.; Pattee, O.H.; Sileo, L.; Hoffman, D.J.; Mulhern, B.M.
1985-01-01
Wildlife in an oak forest on Blue Mountain was studied 10 km upwind (Bake Oven Knob site) and 2 km downwind (Palmerton site) of two zinc smelters in eastern Pennsylvania, USA. Previous studies at sites near these smelters had shown changes in populations of soil microflora, lichens, green plants and litter-inhabiting arthropods. The 02 soil litter horizon at Palmerton was heavily contaminated with Pb (2700 mg kg-1), Zn (24000 mg kg-1), and Cd (710 mg kg-1), and to a lesser extent with Cu (440 mg kg-1). Various kinds of invertebrates (earthworms, slugs and millipedes) that feed on soil litter or soil organic matter were rare at, or absent from, the Palmerton site. Those collected at Bake Oven Knob tended to have much higher concentrations of metals than did other invertebrates. Frogs, toads and salamanders were very rare at, or absent from, the Palmerton site, but were present at Bake Oven Knob and at other sites on Blue Mountain farther from the smelters. Metal concentrations (dry wt) in different organisms from Palmerton were compared. Concentrations of Pb were highest in shrews (110 mg kg-1), followed by songbirds (56 mg kg-1), leaves (21 mg kg-1), mice (17 mg kg-1), carrion insects (14 mg kg-1), berries (4.0 mg kg-1), moths (4,3 mg kg-1) and fungi (3.7 mg kg-1). Concentrations of Cd, in contrast, were highest in carrion insects (25 mg kg-1 ),followed by fungi (9.8 mg kg-1), leaves (8.1 mg kg-1), shrews (7.3 mg kg-I), moths (4.9 mg kg-1), mice (2.6 mg kg -1), songbirds (2.5 mg kg -1) and berries (1.2 mg kg-1). Concentrations of Zn and Cu tended to be highest in the same organisms that had the highest concentrations of Cd. Only a small proportion of the metals in the soil became incorporated into plant foliage, and much of the metal contamination detected in the biota probably came from aerial deposition. The mice from both sites seemed to be healthy. Shrews had higher concentrations of metals than did mice, and one shrew showed evidence of Pb poisoning; its red
Accumulated body burden and endogenous release of lead in employees of a lead smelter.
Fleming, D E; Boulay, D; Richard, N S; Robin, J P; Gordon, C L; Webber, C E; Chettle, D R
1997-01-01
Bone lead levels for 367 active and 14 retired lead smelter workers were measured in vivo by X-ray fluorescence in May-June 1994. The bone sites of study were the tibia and calcaneus; magnitudes of concentration were used to gauge lead body burden. Whole blood lead readings from the workers generated a cumulative blood lead index (CBLI) that approximated the level of lead exposure over time. Blood lead values for 204 of the 381 workers were gathered from workers returning from a 10-month work interruption that ended in 1991; their blood level values were compared to their tibia and calcaneus lead levels. The resulting relations allowed constraints to be placed on the endogenous release of lead from bone in smelter works. Calcaneus lead levels were found to correlate strongly with those for tibia lead, and in a manner consistent with observations from other lead industry workers. Relations between bone lead concentration and CBLI demonstrated a distinctly nonlinear appearance. When the active population was divided by date of hire, a significant difference in the bone lead-CBLI slope emerged. After a correction to include the component of CBLI existing before the workers' employment at the smelter was made, this difference persisted. This implies that the transfer of lead from blood to bone in the workers has changed over time, possibly as a consequence of varying exposure conditions. Images Figure 1. A Figure 1. B Figure 2. A Figure 2. B Figure 3. A Figure 3. B Figure 4. A Figure 4. B Figure 5. Figure 6. A Figure 6. B Figure 7. Figure 8. Figure 9. A Figure 9. B PMID:9105798
Characterization of the lead smelter slag in Santo Amaro, Bahia, Brazil.
Lima, L R P de Andrade; Bernardez, L A
2011-05-30
For 33 years, a primary lead smelter operated in Santo Amaro (Brazil). Since the 1970s, large amounts of Pb and Cd have been widely documented in the blood and hair of people living near the smelter. The plant closed down in 1993, and several years later, the Pb levels in the blood of children under 4 years of age living near the smelter were high, where the disposed lead slag was suspected to be the main source of this contamination. The objective of this study is to elucidate the source of the Pb contamination and any other potentially toxic contamination, focusing on the characterization of the slag. The samples used for this characterization study were taken from the slag heaps. The results of the chemical analysis showed that the major constituents of the slag, in decreasing order of wt%, were the following: Fe(2)O(3) (28.10), CaO (23.11), SiO(2) (21.39), ZnO (9.47), MgO (5.44), PbO (4.06), Al(2)O(3) (3.56), C (2.26), MnO (1.44), Na(2)O (0.27), S (0.37), K(2)O (0.26), and TiO(2) (0.25). The Cd content of the slag was 57.3mg/kg, which is relatively low. The X-ray diffraction and the electron probe microanalyzer X-ray mapping indicated that the major phases in the slag were wüstite, olivine, kirschsteinite, and franklinite. Only spheroidal metallic Pb was found in the slag. The leaching study showed that the slag was stable at a pH greater than 2.8, and only in an extremely acidic environment was the solubilization of the Pb enhanced significantly. The solubilization of Zn was very limited in the acidic and alkaline environments. These results can be explained by the limited leachability of the metallic Pb and Zn-bearing compounds. The leaching study used TCLP, SPLP, and SWEP and indicated that the lead slag was stable in weak acidic environments for short contact times. Copyright © 2011 Elsevier B.V. All rights reserved.
Dyosi, Sindiswa
2007-10-01
In South Africa, new lead regulations released in February 2002 served as motivation for a cross-sectional study investigating the effectiveness of preventive and control measures implemented in a lead smelter that recycles lead-acid batteries. Twenty-two workers were observed and interviewed. Structured questionnaires were used to gather workers' personal information, perception about their work environment, health risks, and work practices. Retrospective data from air monitoring and medical surveillance programs were obtained from the plant's records. The smelter implemented a number of control measures for lead exposure, including engineering controls, administrative controls, and, as a last resort, personal protective equipment. Engineering controls were rated the best control measure and included local exhaust ventilation systems and wet methods. Positive pressure systems were used in the offices and laboratory. The local exhaust ventilation system was rated the best engineering control measure. Although control measures were used, areas such as smelting and refinery had average lead in air levels above 0.15 mg/m(3), the occupational exposure limit for lead. This was a concern especially with regard to the smelting area because those workers had the second highest mean blood lead levels; workers in the battery breaking area had the highest. Regular use of personal protective equipment by some workers in the "lead exposure zones" was not observed. Although the mean blood lead levels had been below 40 micro g/dL for more than 90% of the workers since 2001, more than 70% of workers reported concerns about their health while working in the smelter. Even though control measures were implemented, they were not adequate because in some areas lead in air exceeded the occupational exposure limit. Therefore, improvement of existing measures and regular monitoring of personal protective equipment use were included in the recommendations given to the smelter.
Lipid peroxidation and antioxidant status in workers exposed to PCDD/Fs of metal recovery plants.
Chen, Hsiu-Ling; Hsu, Ching-Yi; Hung, Dong-Zong; Hu, Miao-Lin
2006-12-15
Secondary copper smelters, which primarily utilize the waste materials that contain organic impurities, and the zinc recovery plant, which handles mostly fly ash and slag from the iron and steel industry, are major emission sources of polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans (PCDD/Fs) in Taiwan. In this study, we compared the levels of erythrocyte glutathione (GSH), erythrocyte superoxide dismutase (SOD) and plasma malondialdehyde (MDA) in workers at a secondary copper smelting plant and a zinc recovery plant who may have been exposed to PCDD/Fs. Though the PCDD/F levels were higher in workers of zinc recovery plant than those of secondary copper smelting plant, no significant difference was found for serum PCDD/F levels between the two kinds of plants. We observed a significant difference in plasma MDA levels between workers at the zinc recovery plant (2.54 microM) and those at the copper smelting plant (1.79 microM). There was and a significant positive correlation between plasma MDA levels and the PCDD/Fs levels. In addition, we observed that the MDA levels were not affected by smoking and exercise status. Therefore, the data suggest that the MDA levels of the metal recovery workers are influenced by their PCDD/F exposure. The erythrocyte SOD activity in workers from the zinc recovery plant was marginally higher than that from the secondary copper plant (196 vs. 146 units/ml, p<0.06). In both plants, large variations in the MDA and SOD levels were found, especially in the high-PCDD/Fs-exposure group, which may be attributed, at least partially, to the differences in smoking status and the number of cigarettes smoked. Overall, our results indicate a higher oxidative stress in workers of the zinc recovery plant than in workers of the secondary copper smelting plant in Taiwan.
Bhat, Nagesh; Jain, Sandeep; Asawa, Kailash; Tak, Mridula; Shinde, Kushal; Singh, Anukriti; Gandhi, Neha; Gupta, Vivek Vardhan
2015-10-01
As of late, natural contamination has stimulated as a reaction of mechanical and other human exercises. In India, with the expanding industrialization, numerous unsafe substances are utilized or are discharged amid generation as cleans, exhaust, vapours and gasses. These substances at last are blended in the earth and causes health hazards. To determine concentration of fluoride in soils and vegetables grown in the vicinity of Zinc Smelter, Debari, Udaipur, Rajasthan. Samples of vegetables and soil were collected from areas situated at 0, 1, 2, 5, and 10 km distance from the zinc smelter, Debari. Three samples of vegetables (i.e. Cabbage, Onion and Tomato) and 3 samples of soil {one sample from the upper layer of soil (i.e. 0 to 20 cm) and one from the deep layer (i.e. 20 - 40 cm)} at each distance were collected. The soil and vegetable samples were sealed in clean polythene bags and transported to the laboratory for analysis. One sample each of water and fertilizer from each distance were also collected. The mean fluoride concentration in the vegetables grown varied between 0.36 ± 0.69 to 0.71 ± 0.90 ppm. The fluoride concentration in fertilizer and water sample from various distances was found to be in the range of 1.4 - 1.5 ppm and 1.8 - 1.9 ppm respectively. The fluoride content of soil and vegetables was found to be higher in places near to the zinc smelter.
Yun, Sung-Wook; Baveye, Philippe C; Kim, Dong-Hyeon; Kang, Dong-Hyeon; Lee, Si-Young; Kong, Min-Jae; Park, Chan-Gi; Kim, Hae-Do; Son, Jinkwan; Yu, Chan
2018-07-01
Soil contamination due to atmospheric deposition of metals originating from smelters is a global environmental problem. A common problem associated with this contamination is the discrimination between anthropic and natural contributions to soil metal concentrations: In this context, we investigated the characteristics of soil contamination in the surrounding area of a world class smelter. We attempted to combine several approaches in order to identify sources of metals in soils and to examine contamination characteristics, such as pollution level, range, and spatial distribution. Soil samples were collected at 100 sites during a field survey and total concentrations of As, Cd, Cr, Cu, Fe, Hg, Ni, Pb, and Zn were analyzed. We conducted a multivariate statistical analysis, and also examined the spatial distribution by 1) identifying the horizontal variation of metals according to particular wind directions and distance from the smelter and 2) drawing a distribution map by means of a GIS tool. As, Cd, Cu, Hg, Pb, and Zn in the soil were found to originate from smelter emissions, and As also originated from other sources such as abandoned mines and waste landfill. Among anthropogenic metals, the horizontal distribution of Cd, Hg, Pb, and Zn according to the downwind direction and distance from the smelter showed a typical feature of atmospheric deposition (regression model: y = y 0 + αe -βx ). Lithogenic Fe was used as an indicator, and it revealed the continuous input and accumulation of these four elements in the surrounding soils. Our approach was effective in clearly identifying the sources of metals and analyzing their contamination characteristics. We believe this study will provide useful information to future studies on soil pollution by metals around smelters. Copyright © 2018 Elsevier Ltd. All rights reserved.
The future of copper in China--A perspective based on analysis of copper flows and stocks.
Zhang, Ling; Cai, Zhijian; Yang, Jiameng; Yuan, Zengwei; Chen, Yan
2015-12-01
This study attempts to speculate on the future of copper metabolism in China based on dynamic substance flow analysis. Based on tremendous growth of copper consumption over the past 63 years, China will depict a substantially increasing trend of copper in-use stocks for the next 30 years. The highest peak will be possibly achieved in 2050, with the maximum ranging between 163 Mt and 171 Mt. After that, total stocks are expected to slowly decline 147-154 Mt by the year 2080. Owing to the increasing demand of in-use stocks, China will continue to have a profound impact on global copper consumption with its high import dependence until around 2020, and the peak demand for imported copper are expected to approach 5.5 Mt/year. Thereafter, old scrap generated by domestic society will occupy an increasingly important role in copper supply. In around 2060, approximately 80% of copper resources could come from domestic recycling of old scrap, implying a major shift from primary production to secondary production. With regard to the effect of lifetime distribution uncertainties in different end-use sectors of copper stocks on the predict results, uncertainty evaluation was performed and found the model was relatively robust to these changes. Copyright © 2015 Elsevier B.V. All rights reserved.
Selective Sulfidation of Lead Smelter Slag with Pyrite and Flotation Behavior of Synthetic ZnS
NASA Astrophysics Data System (ADS)
Han, Junwei; Liu, Wei; Wang, Dawei; Jiao, Fen; Zhang, Tianfu; Qin, Wenqing
2016-08-01
The selective sulfidation of lead smelter slag with pyrite in the presence of carbon and Na salts, and the flotation behavior of synthetic ZnS were studied. The effects of temperature, time, pyrite dosage, Na salts, and carbon additions were investigated based on thermodynamic calculation, and correspondingly, the growth mechanism of ZnS particles was studied at high temperatures. The results indicated that the zinc in lead smelter slag was selectively converted into zinc sulfides by sulfidation roasting. The sulfidation degree of zinc was increased until the temperature, time, pyrite, and carbon dosages reached their optimum values, under which it was more than 95 pct. The growth of ZnS particles largely depended upon roasting temperature, and the ZnS grains were significantly increased above 1373 K (1100 °C) due to the formation of a liquid phase. After the roasting, the zinc sulfides generated had a good floatability, and 88.34 pct of zinc was recovered by conventional flotation.
Barrett, Sophie E; Watmough, Shaun A
2015-11-01
The objective of this research was to assess factors controlling peat and plant chemistry, and vegetation composition in 18 peatlands surrounding Sudbury after more than 30 years of large (>95%) pollution emission reductions. Sites closer to the main Copper Cliff smelter had more humified peat and the surface horizons were greatly enriched in copper (Cu) and nickel (Ni). Copper and Ni concentrations in peat were significantly correlated with that in the plant tissue of Chamaedaphne calyculata. The pH of peat was the strongest determining factor for species richness, diversity, and community composition, although percent vascular plant cover was strongly negatively correlated with surface Cu and Ni concentrations in peat. Sphagnum frequency was also negatively related to peat Cu and Ni concentrations indicating sites close to Copper Cliff smelter remain adversely impacted by industrial activities. Copyright © 2015 Elsevier Ltd. All rights reserved.
Johnson, Kenneth A.; Ve, Thomas; Larsen, Øivind; Pedersen, Rolf B.; Lillehaug, Johan R.; Jensen, Harald B.; Helland, Ronny; Karlsen, Odd A.
2014-01-01
CorA is a copper repressible protein previously identified in the methanotrophic bacterium Methylomicrobium album BG8. In this work, we demonstrate that CorA is located on the cell surface and binds one copper ion per protein molecule, which, based on X-ray Absorption Near Edge Structure analysis, is in the reduced state (Cu(I)). The structure of endogenously expressed CorA was solved using X-ray crystallography. The 1.6 Å three-dimensional structure confirmed the binding of copper and revealed that the copper atom was coordinated in a mononuclear binding site defined by two histidines, one water molecule, and the tryptophan metabolite, kynurenine. This arrangement of the copper-binding site is similar to that of its homologous protein MopE* from Metylococcus capsulatus Bath, confirming the importance of kynurenine for copper binding in these proteins. Our findings show that CorA has an overall fold similar to MopE, including the unique copper(I)-binding site and most of the secondary structure elements. We suggest that CorA plays a role in the M. album BG8 copper acquisition. PMID:24498370
Li, Zhu; Ma, Tingting; Yuan, Cheng; Hou, Jinyu; Wang, Qingling; Wu, Longhua; Christie, Peter; Luo, Yongming
2016-09-01
Four heavy metals (Cd, Cu, Pb and Zn), two metalloids (As and Sb) and two rare metals (In and Tl) were selected as target elements to ascertain their concentrations and accumulation in the soil-plant system and their effects on the structure of the soil microbial community in a typical area of rare metal smelting in south China. Twenty-seven soil samples 100, 500, 1000, 1500 and 3000 m from the smelter and 42 vegetable samples were collected to determine the concentrations of the target elements. Changes in soil micro-organisms were investigated using the Biolog test and 454 pyrosequencing. The concentrations of the eight target elements (especially As and Cd) were especially high in the topsoil 100 m from the smelter and decreased markedly with increasing distance from the smelter and with increasing soil depth. Cadmium bio-concentration factors in the vegetables were the highest followed by Tl, Cu, Zn, In, Sb, Pb, and then As. The concentrations of As, Cd and Pb in vegetables were 86.7, 100 and 80.0 %, respectively, over the permissible limits and possible contamination by Tl may also be of concern. Changes in soil microbial counts and average well colour development were also significantly different at different sampling distances from the smelter. The degree of tolerance to heavy metals appears to be fungi > bacteria > actinomycetes. The 454 pyrosequencing indicates that long-term metal contamination from the smelting activities has resulted in shifts in the composition of the soil bacterial community.
Bhat, Nagesh; Asawa, Kailash; Tak, Mridula; Shinde, Kushal; Singh, Anukriti; Gandhi, Neha; Gupta, Vivek Vardhan
2015-01-01
Background As of late, natural contamination has stimulated as a reaction of mechanical and other human exercises. In India, with the expanding industrialization, numerous unsafe substances are utilized or are discharged amid generation as cleans, exhaust, vapours and gasses. These substances at last are blended in the earth and causes health hazards. Objective To determine concentration of fluoride in soils and vegetables grown in the vicinity of Zinc Smelter, Debari, Udaipur, Rajasthan. Materials and Methods Samples of vegetables and soil were collected from areas situated at 0, 1, 2, 5, and 10 km distance from the zinc smelter, Debari. Three samples of vegetables (i.e. Cabbage, Onion and Tomato) and 3 samples of soil {one sample from the upper layer of soil (i.e. 0 to 20 cm) and one from the deep layer (i.e. 20 – 40 cm)} at each distance were collected. The soil and vegetable samples were sealed in clean polythene bags and transported to the laboratory for analysis. One sample each of water and fertilizer from each distance were also collected. Results The mean fluoride concentration in the vegetables grown varied between 0.36 ± 0.69 to 0.71 ± 0.90 ppm. The fluoride concentration in fertilizer and water sample from various distances was found to be in the range of 1.4 – 1.5 ppm and 1.8 – 1.9 ppm respectively. Conclusion The fluoride content of soil and vegetables was found to be higher in places near to the zinc smelter. PMID:26557620
Bladder cancer screening in aluminum smelter workers.
Taiwo, Oyebode A; Slade, Martin D; Cantley, Linda F; Tessier-Sherman, Baylah; Galusha, Deron; Kirsche, Sharon R; Donoghue, A Michael; Cullen, Mark R
2015-04-01
To present results of a bladder cancer screening program conducted in 18 aluminum smelters in the United States from January 2000 to December 2010. Data were collected on a cohort of workers with a history of working in coal tar pitch volatile exposed areas including urine analysis for conventional cytology and ImmunoCyt/uCyt+ assay. ImmunoCyt/uCyt+ and cytology in combination showed a sensitivity of 62.30%, a specificity of 92.60%, a negative predictive value of 99.90%, and a positive predictive value of 2.96%. Fourteen cases of bladder cancer were detected, and the standardized incidence ratio of bladder cancer was 1.18 (95% confidence interval, 0.65 to 1.99). Individuals who tested positive on either test who were later determined to be cancer free had undergone expensive and invasive tests. Evidence to support continued surveillance of this cohort has not been demonstrated.
Historical exposure to inorganic mercury at the smelter works of Abbadia San Salvatore, Italy.
Bellander, T; Merler, E; Ceccarelli, F; Boffetta, P
1998-02-01
Metallic mercury production from cinnabar ore may result in high exposures to inorganic mercury, that are difficult to assess separately from the exposures originating from underground extraction, and previously have only been scantily described. We retrieved and analysed the air and biological mercury determinations on workers involved in the smelting process of the Abbadia San Salvatore mine (Monte Amiata, Italy). Native mercury was not present in the ore, and the exposure in the underground extraction was low. The smelter operated from 1897 to 1983. Blood and urine (24/h urine collections and concentration samples) had been sampled in 1968 to 1982, and analysed for mercury by atomic absorption spectrophotometry, and relate to all subjects. Exposure to mercury in air had been determined in a small set of personal samples in 1982. The data relate to all jobs in the smelter process, and all jobs entailed substantial exposure to mercury. The overall distribution of breathing zone air, blood and urinary levels is right-skewed and similar to the log-normal distribution (air, median 48 micrograms/m3, n = 49; blood, arithmetic mean AM 49 micrograms/L; geometric mean GM 26 micrograms/L, n = 192; urinary excretion, AM 140 micrograms/24 h, GM 78 micrograms/24 h, n = 839; and urinary concentration, AM 160 micrograms/L, GM 83 micrograms/L, n = 632). Air, blood and urinary values show a high ratio of the between- and within-job variance, indicating differences in exposure by job. Cinnabar pigment production, of which the exposure has not been characterised previously, was the job with the highest air (AM 160 micrograms/m3) and urinary levels (excretion AM 690 micrograms/24 h; concentration AM 1100 micrograms/L). Other jobs with high urinary levels were soot purification, laboratory work, and bottling. Cleaning of condensers showed the highest blood level (AM 280 micrograms/L). There is a downwards time trend in mercury concentration in blood and in urine. The corresponding
Ibrahim, Mohd Hafiz; Chee Kong, Yap; Mohd Zain, Nurul Amalina
2017-10-12
A randomized complete block (RCBD) study was designed to investigate the effects of cadmium (Cd) and copper (Cu) on the growth, bioaccumulation of the two heavy metals, metabolite content and antibacterial activities in Gyanura procumbens (Lour.) Merr. Nine treatments including (1) control (no Cd and Cu); (2) Cd 2 = cadmium 2 mg/L; (3) Cd 4 = cadmium 4 mg/L; (4) Cu 70 = copper 70 mg/L; (5) Cu 140 = copper 140 mg/L); (6) Cd 2 + Cu 70 = cadmium 2 mg/L + copper 70 mg/L); (7) Cd 2 + Cu 140 = cadmium 2 mg/L + copper 70 mg/L); (8) Cd 4 + Cu 70 = cadmium 4 mg/L+ copper 70 mg/L and (9) Cd 4 + Cu 140 = cadmium 4 mg/L + copper 140 mg/L) were evaluated in this experiment. It was found that the growth parameters (plant dry weight, total leaf area and basal diameter) were reduced with the exposure to increased concentrations of Cd and Cu and further decreased under interaction between Cd and Cu. Production of total phenolics, flavonoids and saponin was observed to be reduced under combined Cd and Cu treatment. The reduction in the production of plant secondary metabolites might be due to lower phenyl alanine lyase (PAL) activity under these conditions. Due to that, the 1,1-diphenyl-2-picrylhydrazyl (DPPH), ferric reducing antioxidant potential (FRAP) and antibacterial activities was also found to be reduced by the combined treatments. The current experiments show that the medicinal properties of G. procumbens are reduced by cadmium and copper contamination. The accumulation of heavy metal also was found to be higher than the safety level recommended by the WHO in the single and combined treatments of Cd and Cu. These results indicate that exposure of G. procumbens to Cd and Cu contaminated soil may potentially harm consumers due to bioaccumulation of metals and reduced efficacy of the herbal product.
NASA Astrophysics Data System (ADS)
Hidayat, Taufiq; Shishin, Denis; Decterov, Sergei A.; Hayes, Peter C.; Jak, Evgueni
2017-01-01
Uncertainty in the metal price and competition between producers mean that the daily operation of a smelter needs to target high recovery of valuable elements at low operating cost. Options for the improvement of the plant operation can be examined and decision making can be informed based on accurate information from laboratory experimentation coupled with predictions using advanced thermodynamic models. Integrated high-temperature experimental and thermodynamic modelling research on phase equilibria and thermodynamics of copper-containing systems have been undertaken at the Pyrometallurgy Innovation Centre (PYROSEARCH). The experimental phase equilibria studies involve high-temperature equilibration, rapid quenching and direct measurement of phase compositions using electron probe X-ray microanalysis (EPMA). The thermodynamic modelling deals with the development of accurate thermodynamic database built through critical evaluation of experimental data, selection of solution models, and optimization of models parameters. The database covers the Al-Ca-Cu-Fe-Mg-O-S-Si chemical system. The gas, slag, matte, liquid and solid metal phases, spinel solid solution as well as numerous solid oxide and sulphide phases are included. The database works within the FactSage software environment. Examples of phase equilibria data and thermodynamic models of selected systems, as well as possible implementation of the research outcomes to selected copper making processes are presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1990-05-09
The ALCOA (also known as Vancouver Smelter) site, located on the northern bank of the Columbia River about 4 miles west of Interstate 5 in Vancouver, Clark County, Washington, has been proposed for the National Priorities List. The site consists of three waste piles containing about 66,000 tons of waste (spent potlinings and alumina insulation) that were deposited on the north bank of the Columbia River by ALCOA between 1973 and 1981. ALCOA has since sold the aluminum smelter to another company, VANALCO. The contaminants detected in the groundwater in the area surrounding the piles include cyanide, fluoride, and trichloroethenemore » (TCE). The ALCOA site is of potential public health concern because humans may be exposed to hazardous substances at concentrations that may result in adverse health effects.« less
Zhang, Haibo; Luo, Yongming; Makino, Tomoyuki; Wu, Longhua; Nanzyo, Masami
2013-03-15
The partitioning of pollutant in the size-fractions of fine particles is particularly important to its migration and bioavailability in soil environment. However, the impact of pollution sources on the partitioning was seldom addressed in the previous studies. In this study, the method of continuous flow ultra-centrifugation was developed to separate three size fractions (<1 μm, <0.6 μm and <0.2 μm) of the submicron particles from the soil polluted by wastewater and smelter dust respectively. The mineralogy and physicochemical properties of each size-fraction were characterized by X-ray diffraction, transmission electron microscope etc. Total content of the polluted metals and their chemical speciation were measured. A higher enrichment factor of the metals in the fractions of <1 μm or less were observed in the soil contaminated by wastewater than by smelter dust. The organic substance in the wastewater and calcite from lime application were assumed to play an important role in the metal accumulation in the fine particles of the wastewater polluted soil. While the metal accumulation in the fine particles of the smelter dust polluted soil is mainly associated with Mn oxides. Cadmium speciation in both soils is dominated by dilute acid soluble form and lead speciation in the smelter dust polluted soil is dominated by reducible form in all particles. This implied that the polluted soils might be a high risk to human health and ecosystem due to the high bioaccessibility of the metals as well as the mobility of the fine particles in soil. Copyright © 2013 Elsevier B.V. All rights reserved.
Bladder Cancer Screening in Aluminum Smelter Workers
Taiwo, Oyebode A.; Slade, Martin D.; Cantley, Linda F.; Tessier-Sherman, Baylah; Galusha, Deron; Kirsche, Sharon R.; Donoghue, A. Michael
2015-01-01
Objective: To present results of a bladder cancer screening program conducted in 18 aluminum smelters in the United States from January 2000 to December 2010. Methods: Data were collected on a cohort of workers with a history of working in coal tar pitch volatile exposed areas including urine analysis for conventional cytology and ImmunoCyt/uCyt+ assay. Results: ImmunoCyt/uCyt+ and cytology in combination showed a sensitivity of 62.30%, a specificity of 92.60%, a negative predictive value of 99.90%, and a positive predictive value of 2.96%. Fourteen cases of bladder cancer were detected, and the standardized incidence ratio of bladder cancer was 1.18 (95% confidence interval, 0.65 to 1.99). Individuals who tested positive on either test who were later determined to be cancer free had undergone expensive and invasive tests. Conclusions: Evidence to support continued surveillance of this cohort has not been demonstrated. PMID:25525927
Preliminary synchrotron analysis of lead in hair from a lead smelter worker
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martin, R.R.; Kempson, I.M.; Naftel, S.J.
2008-06-09
Synchrotron X-ray fluorescence has been used to study the distribution of lead in a hair sample collected from a lead smelter worker. A mathematical model was used to imitate the transverse scan signal based on the analysis volume and concentration profiles. The results suggest that the Pb originates both from ingestion and environmental exposure, however direct deposition from the environment is the more important source of hair lead. The model could apply equally to any other analysis involving a thin cylindrical sample.
Paquet, Chantal; Lacelle, Thomas; Liu, Xiangyang; Deore, Bhavana; Kell, Arnold J; Lafrenière, Sylvie; Malenfant, Patrick R L
2018-04-19
Copper formate complexes with various primary amines, secondary amines and pyridines were prepared, and their decomposition into conductive films was characterized. A comparison of the various complexes reveals that the temperature of thermolysis depends on the number of hydrogen bonds that can be formed between the amine and formate ligands. The particle size resulting from sintering of the copper complexes is shown to depend on the fraction of amine ligand released during the thermolysis reaction. The particle size in turn is shown to govern the electrical properties of the copper films. Correlations between the properties of the amines, such as boiling point and coordination strength, with the morphology and electrical performance of the copper films were established and provide a basis for the molecular design of copper formate molecular inks.
Yunker, Mark B; Lachmuth, Cara L; Cretney, Walter J; Fowler, Brian R; Dangerfield, Neil; White, Linda; Ross, Peter S
2011-09-01
The question of polycyclic aromatic hydrocarbon (PAH) bioavailability and its relationship to specific PAH sources with different PAH binding characteristics is an important one, because bioavailability drives PAH accumulation in biota and ultimately the biochemical responses to the PAH contaminants. The industrial harbour at Kitimat (British Columbia, Canada) provides an ideal location to study the bioavailability and bioaccumulation of sediment hydrocarbons to low trophic level biota. Samples of soft shell clams (Mya arenaria) and intertidal sediment collected from multiple sites over six years at various distances from an aluminium smelter and a pulp and paper mill were analysed for 106 PAHs, plant diterpenes and other aromatic fraction hydrocarbons. Interpretation using PAH source ratios and multivariate data analysis reveals six principal hydrocarbon sources: PAHs in coke, pitch and emissions from anode combustion from the aluminium smelter, vascular plant terpenes and aromatised terpenes from the pulp and paper mill, petroleum PAHs from shipping and other anthropogenic activities and PAHs from natural plant detritus. Harbour sediments predominantly contain either pitch or pyrogenic PAHs from the smelter, while clams predominantly contain plant derived PAHs and diterpenes from the adjacent pulp mill. PAHs from the smelter have low bioavailability to clams (Biota-Sediment Accumulation Factors; BSAFs <1 for pitch and coke; <10 for anode combustion, decreasing to ∼0.1 for the mass 300 and 302 PAHs), possibly due to binding to pitch or soot carbon matrices. Decreases in PAH isomer ratios between sediments and clams likely reflect a combination of variation in uptake kinetics of petroleum PAHs and compound specific metabolism, with the importance of petroleum PAHs decreasing with increasing molecular weight. Plant derived compounds exhibit little natural bioaccumulation at reference sites, but unsaturated and aromatised diterpenes released from resins by
NASA Astrophysics Data System (ADS)
Schwanck, Franciele; Simões, Jefferson C.; Handley, Michael; Mayewski, Paul A.; Bernardo, Ronaldo T.; Aquino, Francisco E.
2016-01-01
Arsenic variability records are preserved in snow and ice cores and can be utilized to reconstruct air pollution history. The Mount Johns ice core (79°55‧S; 94°23‧W and 91.2 m depth) was collected from the West Antarctic Ice Sheet in the 2008/09 austral summer. Here, we report the As concentration variability as determined by 2137 samples from the upper 45 m of this core using ICP-SFMS (CCI, University of Maine, USA). The record covers approximately 125 years (1883-2008) showing a mean concentration of 4.32 pg g-1. The arsenic concentration in the core follows global copper mining evolution, particularly in Chile (the largest producer of Cu). From 1940 to 1990, copper-mining production increased along with arsenic concentrations in the MJ core, from 1.92 pg g-1 (before 1900) to 7.94 pg g-1 (1950). In the last two decades, environmental regulations for As emissions have been implemented, forcing smelters to treat their gases to conform to national and international environmental standards. In Chile, decontamination plants required by the government started operating from 1993 to 2000. Thereafter, Chilean copper production more than doubled while As emission levels declined, and the same reduction was observed in the Mount Johns ice core. After 1999, arsenic concentrations in our samples decreased to levels comparable to the period before 1900.
40 CFR 61.176 - Recordkeeping requirements.
Code of Federal Regulations, 2011 CFR
2011-07-01
... Arsenic Emissions From Primary Copper Smelters § 61.176 Recordkeeping requirements. (a) Each owner or... each copper converter department, a monthly record of the weight percent of arsenic contained in the..., the monthly calculations of the average annual arsenic charging rate for the preceding 12-month period...
Process Produces Low-Secondary-Electron-Emission Surfaces
NASA Technical Reports Server (NTRS)
Curren, A. N.; Jensen, K. A.; Roman, R. F.
1986-01-01
Textured carbon layer applied to copper by sputtering. Carbon surface characterized by dense, random array of needle-like spires or peaks that extend perpendicularly from local copper surface. Spires approximately 7 micrometers in height and spaced approximately 3 micrometers apart, on average. Copper substrate essentially completely covered by carbon layer, is tenacious and not damaged by vibration loadings representative of multistage depressed collector (MDC) applications. Process developed primarily to provide extremely low-secondary-electron-emission surface for copper for use as highefficiency electrodes in MDC's for microwave amplifier traveling-wave tubes (TWT's). Tubes widely used in space communications, aircraft, and terrestrial applications.
Siebielec, Sylwia; Siebielec, Grzegorz; Stuczyński, Tomasz; Sugier, Piotr; Grzęda, Emilia; Grządziel, Jarosław
2018-09-15
Smelter wastelands containing high amounts of zinc, lead, cadmium, and arsenic constitute a major problem worldwide. Serious hazards for human health and ecosystem functioning are related to a lack of vegetative cover, causing fugitive dust fluxes, runoff and leaching of metals, affecting post-industrial ecosystems, often in heavily populated areas. Previous studies demonstrated the short term effectiveness of assisted phytostabilisation of zinc and lead smelter slags, using biosolids and liming. However, a long term persistence of plant communities introduced for remediation and risk reduction has not been adequately evaluated. The work was aimed at characterising trace element solubility, plant and microbial communities of the top layer of the reclaimed zinc and lead smelter waste heaps in Piekary Slaskie, Poland, 20 years after the treatment and revegetation. The surface layer of the waste heaps treated with various rates of biosolids and the by-product lime was sampled for measuring chemical and biochemical parameters, which are indicative for metals bioavailability as well as for microorganisms activity. Microbial processes were characterised by enzyme activities, abundance of specific groups of microorganisms and identification of N fixing bacteria. Plant communities of the area were characterised by a percent coverage of the surface and by a composition of plant species and plant diversity. The study provides a strong evidence that the implemented remediation approach enables a sustainable functioning of the ecosystem established on the toxic waste heaps. Enzyme activities and the count of various groups of microorganisms were the highest in areas treated with both biosolids and lime, regardless their rates. A high plant species diversity and microbial activities are sustainable after almost two decades from the treatment, which is indicative of a strong resistance of the established ecosystem to a metal stress and a poor physical quality of the
40 CFR 61.174 - Test methods and procedures.
Code of Federal Regulations, 2011 CFR
2011-07-01
... Arsenic Emissions From Primary Copper Smelters § 61.174 Test methods and procedures. (a) To determine... converter arsenic charging rate as follows: (1) Collect daily grab samples of copper matte and any lead... determine the weight percent of inorganic arsenic contained in each sample. (3) Calculate the converter...
Williamson, B J; Udachin, V; Purvis, O W; Spiro, B; Cressey, G; Jones, G C
2004-11-01
Airborne total suspended particulates (TSP), dusts from smelter blast furnace and converter stacks, and filtrates of snow melt waters have been characterised in the Cu smelter and former mining town of Karabash, Russia. TSP was collected at sites up- and downwind of the smelter and large waste and tailings dumps (Oct. 2000 and July 2001). Methods for particle size, mineralogical and elemental determinations have been tested and described, and a new PSD-MicroSOURCE XRD technique developed for the mineralogical analysis of microsamples on filter substrates. TSP in downwind samples has a mean equivalent spherical diameter of 0.5 microm (s.d. = 0.2) and was found to be 100% respirable. The main element of human health/environmental concern, above Russian maximum permitted levels (1 microg m(-3), average over any time period), was Pb which was measured at 16-30 microg m(-3) in downwind samples. Individual particulates mainly consisted of complex mixtures of anglesite (PbSO4), Zn2SnO4 and poorly ordered Zn sulphates. From experimental and theoretical considerations, a high proportion of contained Pb, Zn, Cd and As in this material is considered to be in a readily bioavailable form. Chemical and mineralogical differences between the TSP, stack dusts and snow samples are discussed, as well as the implications for human and regional environmental health.
40 CFR 98.180 - Definition of the source category.
Code of Federal Regulations, 2010 CFR
2010-07-01
... (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Lead Production § 98.180 Definition of the source category. The lead production source category consists of primary lead smelters and secondary lead smelters. A primary lead smelter is a facility engaged in the production of lead metal from lead sulfide ore...
Li, Yi-Jin; Li, Xue; Zhang, Shao-Xiao; Zhao, Yu-Long; Liu, Qun
2015-07-25
A novel copper-catalyzed [3+2] cycloaddition reaction of secondary amines with α-diazo compounds has been developed via a cross-dehydrogenative coupling process. The reaction involves a sequential aerobic oxidation/[3+2] cycloaddition/oxidative aromatization procedure and provides an efficient method for the construction of 1,2,3-triazoles in a single step in an atom-economic manner from readily available starting materials under very mild conditions.
Li, Zhonggen; Feng, Xinbin; Bi, Xiangyang; Li, Guanghui; Lin, Yan; Sun, Guangyi
2014-03-01
The horizontal and vertical distribution patterns and contamination status of ten trace metal/metalloids (Ag, Bi, Co, Cr, Ge, In, Ni, Sb, Sn, Tl) in soils around one of the largest Chinese Pb-Zn smelter in Zhuzhou City, Central China, were revealed. Different soil samples were collected from 11 areas, including ten agricultural areas and one city park area, with a total of 83 surface soil samples and six soil cores obtained. Trace metal/metalloids were determined by inductively coupled plasma-mass spectrometry after digestion by an acid mixture of HF and HNO3. The results showed that Ag, Bi, In, Sb, Sn, and Tl contents decreased both with the distance to the Pb-Zn smelter as well as the soil depth, hinting that these elements were mainly originated from the Pb-Zn smelting operations and were introduced into soils through atmospheric deposition. Soil Ge was influenced by the smelter at a less extent, while the distributions of Co, Cr, and Ni were roughly even among most sampling sites and soil depths, suggesting that they were primarily derived from natural sources. The contamination status, as revealed by the geo-accumulation index (I geo), indicated that In and Ag were the most enriched elements, followed by Sb, Bi, and Sn. In general, Cr, Tl, Co, Ni, and Ge were of an uncontaminated status.
Low Hepatic Tissue Copper in Pediatric Nonalcoholic Fatty Liver Disease.
Mendoza, Michael; Caltharp, Shelley; Song, Ming; Collin, Lindsay; Konomi, Juna V; McClain, Craig J; Vos, Miriam B
2017-07-01
Animal models and studies in adults have demonstrated that copper restriction increases severity of liver injury in nonalcoholic fatty liver disease (NAFLD). This has not been studied in children. We aimed to determine if lower tissue copper is associated with increased NAFLD severity in children. This was a retrospective study of pediatric patients who had a liver biopsy including a hepatic copper quantitation. The primary outcome compared hepatic copper concentration in NAFLD versus non-NAFLD. Secondary outcomes compared hepatic copper levels against steatosis, fibrosis, lobular inflammation, balloon degeneration, and NAFLD activity score (NAS). The study analysis included 150 pediatric subjects (102 with NAFLD and 48 non-NAFLD). After adjusting for age, body mass index z score, gamma glutamyl transferase, alanine aminotransferase, and total bilirubin, NAFLD subjects had lower levels of hepatic copper than non-NAFLD (P = 0.005). In addition, tissue copper concentration decreased as steatosis severity increased (P < 0.001). Copper levels were not associated with degree of fibrosis, lobular inflammation, portal inflammation, or balloon degeneration. In this cohort of pediatric subjects with NAFLD, we observed decreased tissue copper levels in subjects with NAFLD when compared with non-NAFLD subjects. In addition, tissue copper levels were lower in subjects with nonalcoholic steatohepatitis, a more severe form of the disease, when compared with steatosis alone. Further studies are needed to explore the relationship between copper levels and NAFLD progression.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dean, R.S.; Swain, R.E.
1944-01-01
The toxic effects of SO/sub 2/ emitted by a metals smelter at Trail, British Columbia, on vegetation in parts of Washington State during 1900 to 1938, compensation paid, the effectiveness of remedial measures, and studies on the influence of meteorological conditions on atmospheric diffusion processes in the region are reviewed. The findings of an Arbitral Tribunal set up by the USA and Canadian governments in 1935 are reported. (CH)
Zakrzewska, Marta; Klimek, Beata
2018-02-01
The aim of the study was to assess the metal pollution in the vicinity of the Bukowno smelter near Olkusz in southern Poland. Birch and oak leaves, pine needles and a lichen Hypogymnia physodes, overgrowing pine bark were collected at stands at different distances from the smelter and analysed for cadmium (Cd), copper (Cu), lead (Pb) and zinc (Zn) content. Concentrations of metals in the lichen were usually higher than in the tree leaves/needles and decreased with distance from the smelter, apart from the Cu content. The strongest correlation was noticed between Cd and Pb concentrations, which indicates a common pollution source (the smelter). Our results show that birch leaves can be potentially useful as a bioindicator of Zn air pollution since this species was shown to accumulate high amounts of zinc, related to environmental pollution with that metal, in their leaves.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kruckeberg, A.L.; Wu, L.
1992-06-01
Herbaceous plant species colonizing four copper mine waste sites in northern California were investigated for copper tolerance and copper accumulation. Copper tolerance was found in plant species colonizing soils with high concentrations of soil copper. Seven of the eight plant species tested were found at more than one copper mine. The mines are geographically isolated, which makes dispersal of seeds from one mine to another unlikely. Tolerance has probably evolved independently at each site. The nontolerant field control population of Vulpia microstachya displays significantly higher tolerance to copper at all copper concentration levels tested than the nontolerant Vulpia myrous population,more » and the degree of copper tolerance attained by V. microstachya at the two copper mines was much greater than that found in V. myrous. It suggests that even in these two closely related species, the innate tolerance in their nontolerant populations may reflect their potential for evolution of copper tolerance and their ability to initially colonize copper mine waste sites. The shoot tissue of the copper mine plants of Arenaria douglasii, Bromous mollis, and V. microstachya accumulated less copper than those plants of the same species from the field control sites when the two were grown in identical conditions in nutrient solution containing copper. The root tissue of these mine plants contain more copper than the roots of the nonmine plants. This result suggests that exclusion of copper from the shoots, in part by immobilization in the roots, may be a feature of copper tolerance. No difference in the tissue copper concentration was detected between tolerant and nontolerant plants of Lotus purshianus, Lupinus bicolor, and Trifolium pratense even though the root tissue had more copper than the leaves.« less
Human health risk assessment case study: an abandoned metal smelter site in Poland.
Wcisło, Eleonora; Ioven, Dawn; Kucharski, Rafal; Szdzuj, Jerzy
2002-05-01
United States Environmental Protection Agency methodologies for human health risk assessment (HRA) were applied in a Brownfields Demonstration Project on the Warynski smelter site (WSS), an abandoned industrial site at Piekary Slaskie town, Upper Silesia, Poland. The HRA included the baseline risk assessment (BRA) and the development of risk-based preliminary remedial goals (RBPRGs). The HRA focused on surface area covered with waste materials, which were evaluated with regard to the potential risks they may pose to humans. Cadmium, copper, iron, manganese, lead, and zinc were proposed as the contaminants of potential concern (COPCs) at WSS based on archive data on chemical composition of waste located on WSS. For the defined future land use patterns, the industrial (I) and recreational (II) exposure scenarios were assumed and evaluated. The combined hazard index for all COPCs was 3.1E+00 for Scenario I and 3.2E+00 for Scenario II. Regarding potential carcinogenic risks associated with the inhalation route, only cadmium was a contributor, with risks of 1.6E-06 and 2.6E-07 for Scenario I and Scenario II, respectively. The results of the BRA indicated that the potential health risks at WSS were mainly associated with waste material exposure to cadmium (industrial and recreational scenarios) and lead (industrial scenario). RBPRGs calculated under the industrial scenario were 1.17E+03 and 1.62E+03 mg/kg for cadmium and lead, respectively. The RBPRG for cadmium was 1.18E+03 mg/kg under the recreational scenario. The BRA results, as well as RBCs, are comparable for both scenarios, so it is impossible to prioritize land use patterns for WSS based on these results. For choosing a future land use pattern or an appropriate redevelopment option, different factors would be decisive in the decision-making process, e.g., social, market needs, technical feasibility and costs of redevelopment actions or acceptance of local community.
Selective Sulfidation of Lead Smelter Slag with Sulfur
NASA Astrophysics Data System (ADS)
Han, Junwei; Liu, Wei; Wang, Dawei; Jiao, Fen; Qin, Wenqing
2016-02-01
The selective sulfidation of lead smelter slag with sulfur was studied. The effects of temperature, sulfur dosage, carbon, and Na salts additions were investigated based on thermodynamic calculation. The results indicated that more than 96 pct of zinc in the slag could be converted into sulfides. Increasing temperature, sulfur dosage, or Na salts dosage was conducive to the sulfidation of the zinc oxides in the slag. High temperature and excess Na salts would result in the more consumption of carbon and sulfur. Carbon addition not only promoted the selective sulfidation but reduced the sulfur dosage and eliminated the generation of SO2. Iron oxides had a buffering role on the sulfur efficient utilization. The transformation of sphalerite to wurtzite was feasible under reducing condition at high temperature, especially above 1273 K (1000 °C). The growth of ZnS particles largely depended upon the roasting temperature. They were significantly increased when the temperature was above 1273 K (1000 °C), which was attributed to the formation of a liquid phase.
Recovery of Copper from Slow Cooled Ausmelt Furnace Slag by Floatation
NASA Astrophysics Data System (ADS)
Xue, Ping; Li, Guangqiang; Qin, Qingwei
Ausmelt furnace slag contains about 0.9% Cu (mass %). With increasing the amount of Ausmelt furnace slag, the recovery of copper from it will produce an enormous economic yield. The recovery of copper by floatation from slow cooled Ausmelt furnace slag was studied in this paper. The phases and composition of the slow cooled slag were analyzed. The factors which affected the copper recovery efficiency such as grinding fineness, pH value of flotation medium, different collectors and floating process were investigated. It was shown that the size distribution of the primary grinding and secondary grinding of middling were 75% for particles less than 0.074mm and 82% for particles less than 0.043mm respectively. The closed-circuit experimental results with butyl xanthate as collector in laboratory showed that the copper grade reached 16.11% and the recovery rate of copper reached 69.90% and the copper grade of tailings was only 0.2%.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Archer, V.E.; Fullmer, C.D.; Castle, C.H.
Although acute effects from exposure to SO/sub 2/ have frequently been observed at low levels in acute exposure experimental studies, it was not known whether or not such effects occur among workers chronically exposed at ranges of 0.3 to 4 ppM of SO/sub 2/. Measurements of FVC, FEV/sub 1/, FEF/sub 50/, FEF/sub 75/ and FEF/sub 50-75/, and closing volume were made before and after the workshift for copper smelter workers and controls. Sputum samples for cytological examination were collected. Mean FEV/sub 1/ and FVC were significantly decreased during a day's work in the smelter. Significantly more smelter workers had amore » decrease in FEV/sub 1/ and FEF/sub 50/ during the day than did controls. More of the smelter workers felt chest tightness. No change in closing volumes was seen. Smelter workers tended to have a higher percentage of sputum samples with moderate and marked atypia than did controls but the difference was not statistically significant.« less
T. C. Hutchinson
1976-01-01
Sulphur dioxide emissions have occurred on a gigantic scale at Sudbury from nickel-copper smelters. Soil erosion has followed the destruction of large areas of forest. Rainfall has been found highly acidic, frequently less than pH 3.0 in 1971. Metal accumulation in the soils (to distances of 50 km) have occurred for nickel and copper. The combination of heavy metal...
40 CFR 143.3 - Secondary maximum contaminant levels.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 22 2010-07-01 2010-07-01 false Secondary maximum contaminant levels... levels. The secondary maximum contaminant levels for public water systems are as follows: Contaminant Level Aluminum 0.05 to 0.2 mg/l. Chloride 250 mg/l. Color 15 color units. Copper 1.0 mg/l. Corrosivity...
Winter, P; Hochsteiner, W; Chizzola, R
2004-10-01
In a herd of German Improved Fawn breed of goat in the year 2000 neonatal kid losses due to congenital copper deficiencies were observed. To clarify the problems and to prevent losses in the next breeding season serum copper levels of 10 dams and four control Boer goats were investigated at four time points during one year. Additionally ten kids of the following year were sampled and the serum copper levels were studied. Immediatly after parturition and 8 weeks later the dams showed low serum copper levels (10.4 +/- 11.1 micromol/l, 5.7 +/- 2.9 micromol/l resp.). At the end of the pasture season an increase of serum copper could be measured (19.3 +/- 16.0 micromol/l). To prevent enzootic ataxia due to congenital copper deficiency, the dams were treated with copper oxide wire particles in the next late gestation. At this time point serum copper concentrations started to decrease (18.5 +/- 8.4 micromol/l). The re-examination 3 month later demonstrated an increase of the serum mean copper concentrations up to 23.4 micromol/l in the dams and to 16.2 micromol/l in the kids. The serum copper levels were significantly higher compared to the levels the year before. Big variation of the serum copper levels in the control Boer goats occurred during the year, but no clinical symptoms of copper deficiency could be observed. The copper levels in the grass and soil samples were 6.8 mg/kg and 0.2 mg/kg dry substance, respectively. A secondary copper deficiency based on cadmium could be excluded through the low levels of soil samples. The contents of sulphur and molybdenum were not determined. The results indicate that the German Improved Fawn breed of goats suffered from a primary copper deficiency due to the inefficient mineral supplementation. The administration of Copinox in the last third of the gestation leads to a continious raising of the copper concentrations in the serum and is suited to prevent ataxia due to congential copper deficiency in neonatal kids.
United States copper metal and scrap use and trade patterns, 1995‒2014
Goonan, Thomas G.
2016-06-17
This report considers changes to the copper and copper scrap industries of the United States. For the study period, 1995 through 2014, U.S. refined copper production from all sources (primary and secondary materials) decreased from 2.28 million metric tons (Mt) of copper to 1.05 Mt (a 54 percent decrease). During the same period, U.S. copper scrap net exports increased from 0.203 Mt to 0.737 Mt (a 263 percent increase and a compound annual growth rate of about 7.0 percent per year). Copper and copper scrap prices (in constant 2014 dollars) rose such that 2014 prices were about 48 percent greater than 1995 prices. From 1995 through 2014, Chinese imports of copper scrap from the United States grew from 0.061 Mt to 0.569 Mt (an increase of about 830 percent and a compound annual growth rate of about 12.5 percent per year). In 2011, Chinese imports of U.S. copper scrap peaked at 0.745 Mt of contained copper. In 1995, Chinese imports of U.S. copper scrap accounted for 17 percent of U.S. copper scrap exports. By 2014, Chinese imports accounted for 69 percent of U.S. copper scrap exports (by weight), and Chinese imports of U.S. copper scrap were valued at $1.45 billion.
NASA Astrophysics Data System (ADS)
Tyapkov, V. F.
2014-07-01
The secondary coolant circuit water chemistry with metering amines began to be put in use in Russia in 2005, and all nuclear power plant units equipped with VVER-1000 reactors have been shifted to operate with this water chemistry for the past seven years. Owing to the use of water chemistry with metering amines, the amount of products from corrosion of structural materials entering into the volume of steam generators has been reduced, and the flow-accelerated corrosion rate of pipelines and equipment has been slowed down. The article presents data on conducting water chemistry in nuclear power plant units with VVER-1000 reactors for the secondary coolant system equipment made without using copper-containing alloys. Statistical data are presented on conducting ammonia-morpholine and ammonia-ethanolamine water chemistries in new-generation operating power units with VVER-1000 reactors with an increased level of pH. The values of cooling water leaks in turbine condensers the tube system of which is made of stainless steel or titanium alloy are given.
Magiera, Tadeusz; Zawadzki, Jarosław; Szuszkiewicz, Marcin; Fabijańczyk, Piotr; Steinnes, Eiliv; Fabian, Karl; Miszczak, Ewa
2018-03-01
An important problem in soil magnetometry is unraveling the soil contamination signal in areas with multiple emitters. Here, geophysical and geochemical measurements were performed at four sites on a north - south transect along the Pasvik River in the Barents Region (northern Norway). These sites are influenced by depositions from the Bjørnevatn iron mine and a Ni-Cu smelter in Nikel, Russia. To relate the degree and type of pollution from these sources to the corresponding magnetic signal, the topsoil concentrations of 12 Potentially Toxic Elements (PTEs) (As, Cd, Co, Cr, Cu, Fe, Mo, Ni, Pb, Se, Ti, Zn), were determined, magnetic hysteresis parameters and thermomagnetic properties were measured. In situ magnetic low-field susceptibility decreases from north to south with increasing distance from the iron mine. Relatively large magnetic multidomain grains of magnetite and/or titanomagnetite are responsible for the strong magnetic signal from the topsoil close to Bjørnevatn. These particles are related to increased enrichment factors of As, Mo and Cu, yielding high positive correlation coefficients with susceptibility values. At a site furthest away from the iron mine and located 7 km from the Ni-Cu smelter magnetic susceptibility values are much lower but significant positive correlations on the level of p < .1 with 8 PTEs (Ni, Cu, Co, Se, As, Zn, Cd, Cr) have been observed. The magnetic signal in this area is due to fine-grained primary sulphides and secondary fine-grained magnetite and/or maghemite. Copyright © 2017 Elsevier Ltd. All rights reserved.
Goodarzi, Fariborz; Sanei, Hamed; Labonté, Marcel; Duncan, William F
2002-06-01
The spatial distribution and deposition of lead and zinc emitted from the Trail smelter, British Columbia, Canada, was studied by strategically locating moss bags in the area surrounding the smelter and monitoring the deposition of elements every three months. A combined diffusion/distribution model was applied to estimate the relative contribution of stack-emitted material and material emitted from the secondary sources (e.g., wind-blown dust from ore/slag storage piles, uncovered transportation/trucking of ore, and historical dust). The results indicate that secondary sources are the major contributor of lead and zinc deposited within a short distance from the smelter. Gradually, the stack emissions become the main source of Pb and Zn at greater distances from the smelter. Typical material originating from each source was characterized by SEM/EDX, which indicated a marked difference in their morphology and chemical composition.
Copper-catalyzed α-amination of aliphatic aldehydes.
Tian, Jie-Sheng; Loh, Teck-Peng
2011-05-21
A highly efficient copper-catalyzed α-amination of aliphatic aldehydes for the synthesis of α-amino acetals using secondary amines with readily removable protecting groups as a nitrogen source was developed. This reaction can be operated under very mild conditions, affording the desired products in moderate to good yields. © The Royal Society of Chemistry 2011
Copper and Copper Proteins in Parkinson's Disease
Rivera-Mancia, Susana; Diaz-Ruiz, Araceli; Tristan-Lopez, Luis; Rios, Camilo
2014-01-01
Copper is a transition metal that has been linked to pathological and beneficial effects in neurodegenerative diseases. In Parkinson's disease, free copper is related to increased oxidative stress, alpha-synuclein oligomerization, and Lewy body formation. Decreased copper along with increased iron has been found in substantia nigra and caudate nucleus of Parkinson's disease patients. Copper influences iron content in the brain through ferroxidase ceruloplasmin activity; therefore decreased protein-bound copper in brain may enhance iron accumulation and the associated oxidative stress. The function of other copper-binding proteins such as Cu/Zn-SOD and metallothioneins is also beneficial to prevent neurodegeneration. Copper may regulate neurotransmission since it is released after neuronal stimulus and the metal is able to modulate the function of NMDA and GABA A receptors. Some of the proteins involved in copper transport are the transporters CTR1, ATP7A, and ATP7B and the chaperone ATOX1. There is limited information about the role of those biomolecules in the pathophysiology of Parkinson's disease; for instance, it is known that CTR1 is decreased in substantia nigra pars compacta in Parkinson's disease and that a mutation in ATP7B could be associated with Parkinson's disease. Regarding copper-related therapies, copper supplementation can represent a plausible alternative, while copper chelation may even aggravate the pathology. PMID:24672633
Harwood, V J; Gordon, A S
1994-01-01
Extracellular proteins of wild-type Vibrio alginolyticus were compared with those of copper-resistant and copper-sensitive mutants. One copper-resistant mutant (Cu40B3) constitutively produced an extracellular protein with the same apparent molecular mass (21 kDa) and chromatographic behavior as copper-binding protein (CuBP), a copper-induced supernatant protein which has been implicated in copper detoxification in wild-type V. alginolyticus. Copper-sensitive V. alginolyticus mutants displayed a range of alterations in supernatant protein profiles. CuBP was not detected in supernatants of one copper-sensitive mutant after cultures had been stressed with 50 microM copper. Increased resistance to copper was not induced by preincubation with subinhibitory levels of copper in the wild type or in the copper-resistant mutant Cu40B3. Copper-resistant mutants maintained the ability to grow on copper-amended agar after 10 or more subcultures on nonselective agar, demonstrating the stability of the phenotype. A derivative of Cu40B3 with wild-type sensitivity to copper which no longer constitutively expressed CuBP was isolated. The simultaneous loss of both constitutive CuBP production and copper resistance in Cu40B3 indicates that constitutive CuBP production is necessary for copper resistance in this mutant. These data support the hypothesis that the extracellular, ca. 20-kDa protein(s) of V. alginolyticus is an important factor in survival and growth of the organism at elevated copper concentrations. The range of phenotypes observed in copper-resistant and copper-sensitive V. alginolyticus indicate that altered sensitivity to copper was mediated by a variety of physiological changes. Images PMID:8031076
Baker, Lucas R; Pierzynski, Gary M; Hettiarachchi, Ganga M; Scheckel, Kirk G; Newville, Matthew
2012-01-01
The use of P to immobilize Pb in contaminated soils has been well documented. However, the influence of P on Zn speciation in soils has not been extensively examined, and these two metals often occur as co-contaminants. We hypothesized that additions of P to a Pb/Zn-contaminated soil would induce Zn phosphate mineral formation and fluid P sources would be more effective than granular P amendments. A combination of different synchrotron-based techniques, namely, spatially resolved micro-X-ray fluorescence (μ-XRF), micro-extended X-ray absorption fine structure spectroscopy (μ-EXAFS), and micro-X-ray diffraction (μ-XRD), were used to speciate Zn at two incubation times in the proximity of application points (0 to 4 mm) for fluid and granular P amendments in a Pb/Zn smelter-contaminated soil. Phosphate rock (PR), triple super phosphate (TSP), monoammonium phosphate (MAP), and fluid ammonium polyphosphate induced Zn phosphate formation. Ammonium polyphosphate was more effective at greater distances (up to 3.7 mm) from the point of P application. Phosphoric acid increased the presence of soluble Zn species because of increased acidity. Soluble Zn has implications with respect to Zn bioavailability, which may negatively impact vegetation and other sensitive organisms. Although additions of P immobilize Pb, this practice needs close monitoring due to potential increases in Zn solubility in a Pb/Zn smelter-contaminated soil. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.
Miller, W.R.; Ficklin, W.H.; Learned, R.E.
1982-01-01
A hydrogeochemical survey utilizing waters from streams and springs was conducted in the area of two known porphyry copper deposits in the tropical-marine climate of westcentral Puerto Rico. The most important pathfinder for regional hydrogeochemical surveys is sulfate which reflects the associated pyrite mineralization. Because of increased mobility due to intense chemical weathering and the low pH environment, dissolved copper can also be used as a pathfinder for regional surveys and has the advantage of distinguishing barren pyrite from pyrite associated with copper mineralization. For follow-up surveys, the most important pathfinders are copper, sulfate, pH, zinc, and fluoride. High concentrations of dissolved copper and moderate concentrations of sulfate is a diagnostic indication of nearby sources of copper minerals. An understanding of the geochemical processes taking place in the streambeds and the weathering environment, such as the precipitation of secondary copper minerals, contributes to the interpretation of the geochemical data and the selection of the most favorable areas for further exploration. ?? 1982.
Economic and toxicological aspects of copper industry in Katanga, DR Congo.
Kalenga, John Ngoy
2013-02-01
The Katanga province is well known for its copper and cobalt reserves. During the early 2000s a boom of mining projects in Katanga brought again hope for better future to Congolese people. The paper aims to evaluate the impact of recent production recovery on economy and environment. We collected primary and secondary sources on copper industry for economic analysis. We use results of laboratory analysis conducted at the Congolese Office of Control by provincial division of environment for toxicological analysis. The comparison of heavy metal concentration to standards shows that mining industry is the main source of environmental pollution in Katanga. Copper industry generates income for economic growth of the region.
Columbia Smelting & Refining Works Red Hook, Brooklyn, New York
The site is the former location of a secondary lead smelter called Columbia Smelting and Refining Works (Columbia), and the extent of lead-contaminated soil from the smelter, in the mixed-use neighborhood of Red Hook in Brooklyn, New York. The footprint of
Displacement damage calculations in PHITS for copper irradiated with charged particles and neutrons
NASA Astrophysics Data System (ADS)
Iwamoto, Yosuke; Niita, Koji; Sawai, Tomotsugu; Ronningen, R. M.; Baumann, Thomas
2013-05-01
The radiation damage model in the Particle and Heavy Ion Transport code System (PHITS) uses screened Coulomb scattering to evaluate the energy of the target primary knock-on atom (PKA) created by the projectile and the “secondary particles,” which include all particles created from the sequential nuclear reactions. We investigated the effect of nuclear reactions on displacement per atom (DPA) values for the following cases using a copper target: (1) 14 and 200 MeV proton incidences, (2) 14 and 200 MeV/nucleon 48Ca incidences, and (3) 14 and 200 MeV and reactor neutrons incidences. For the proton incidences, the ratio of partial DPA created by protons to total decreased with incident proton energy and that by the secondary particles increased with proton energy. For 48Ca beams, DPA created by 48Ca is dominant over the 48Ca range. For the 14 and 200 MeV neutron incidences, the ratio of partial DPA created by the secondary particles increases with incident neutron energy. For the reactor neutrons, copper created by neutron-copper nuclear elastic scattering contributes to the total DPA. These results indicate that inclusion of nuclear reactions and Coulomb scattering are necessary for DPA estimation over a wide energy range from eV to GeV.
NASA Astrophysics Data System (ADS)
Ettler, Vojtech; Mihaljevic, Martin; Majer, Vladimir; Kribek, Bohdan; Sebek, Ondrej
2010-05-01
The copper smelting activities in the Copperbelt mining district (Zambia) left a huge pollution related to the disposal sites of smelting waste (slags) and to the continuous deposition of the smelter stack particulates in the soil systems. We sampled 196 surface and subsurface soils in the vicinity of the Nkana copper smelter at Kitwe and a 110 cm deep lateritic soil profile in order to assess the regional distribution of metallic contaminants and their vertical mobility. The content of contaminants in soil samples were measured by ICP techniques and the lead isotopic compositions (206Pb/207Pb and 208Pb/206Pb ratios) were determined by ICP-MS. The spatial distribution of the major contaminants (Cu, Co, Pb, Zn) indicated the highest contamination NW of the smelter stack corresponding to the direction of prevailing winds in the area. The highest metal concentrations in soils were: 27410 ppm Cu, 606 ppm Co, 480 ppm Pb, 450 ppm Zn. Lead isotopes helped to discriminate the extent of metallic pollution related to the smelter emissions having similar 206Pb/207Pb ratio of 1.17-1.20 in contrast to the regional background value of 1.32. The investigation of the lateritic soil profile sampled in the near vicinity of the Nkana smelter indicated that contamination is mostly located in the uppermost soil horizons enriched in organic matter (< 10 cm). The sequential extraction procedure indicated that up to 33% of Cu and <10% of Co, Pb and Zn was mobile in the profile, being bound in the exchangeable fraction. However, in the deeper parts of the soil profile, metals were mostly bound in reducible fraction, presumably to hydrous ferric oxides. The combination of sequential extraction and lead isotopic determination indicated that the "mobile" fractions of Pb in the soil profile corresponded to the signatures of smelter particulate emissions (206Pb/207Pb = 1.17-1.20), which means that the anthropogenic emissions are the important source of mobile (and potentially bioavailable
NASA Astrophysics Data System (ADS)
Kang, Young C.
The following work is the study to evaluate the impact of corrosion inhibitors on the copper metal in drinking water and to investigate the corrosion mechanism in the presence and absence of inhibitors. Electrochemical experiments were conducted to understand the effect of specific corrosion inhibitors in synthetic drinking water which was prepared with controlled specific water quality parameters. Water chemistry was studied by Inductively Coupled Plasma--Atomic Emission Spectroscopy (ICP--AES) to investigate the copper leaching rate with time. Surface morphology, crystallinity of corrosion products, copper oxidation status, and surface composition were characterized by various solid surface analysis methods, such as Scanning Electron Microscopy/Energy--Dispersive Spectrometry (SEM/EDS), Grazing-Incidence-angle X-ray Diffraction (GIXRD), X-ray Photoelectron Spectroscopy (XPS), and Time-of-Flight Secondary Ions Mass Spectrometry (ToF-SIMS). The purpose of the first set of experiments was to test various electrochemical techniques for copper corrosion for short term before studying a long term loop system. Surface analysis techniques were carried out to identify and study the corrosion products that form on the fresh copper metal surface when copper coupons were exposed to test solutions for 2 days of experiments time. The second phase of experiments was conducted with a copper pipe loop system in a synthetic tap water over an extended period of time, i.e., 4 months. Copper release and electrochemically measured corrosion activity profiles were monitored carefully with and without corrosion inhibitor, polyphosphate. A correlation between the copper released into the solution and the electrochemically measured corrosion activities was also attempted. To investigate corrosion products on the copper pipe samples, various surface analysis techniques were applied in this study. Especially, static mass spectra acquisition and element distribution mapping were carried out
Mining operations have worked the rich mineral resources of the Lake Superior Basin for over 150 years, leaving industrially impacted regions with tailing piles and smelters. In Lake Superior sediments, mercury and copper inventories increase towards shorelines and are highly cor...
NASA Astrophysics Data System (ADS)
Espejel-Garcia, D.; Wenglas-Lara, G.; Villalobos-Aragon, A.; Espejel-Garcia, V. V.
2013-05-01
Waste materials (such as, smelter slags, waste glass, tires, plastics, rubbish, ashes, etc.), have a large potential to substitute natural materials, reducing costs, especially for the construction industry. Smelter slags are resistant and have better compression strength values in comparison to natural aggregates, and generally are far beyond of what the standard ratios need to qualify a material as a good one for construction. But this material has a big problem within it: the existence of toxic elements and compounds in high concentrations, which means that water and soil contamination can be present after water infiltrates through this material; so we perform leaching experiments to characterize and measure the possible contamination under controlled conditions. To perform the slags-leaching experiments, we used an EA-NEN-7375-2004 tank test standard from Netherlands. This test was selected because to our knowledge it is the only one which allows the use of coarse material, as the one utilized in construction. The leaching experiments sampling was performed at different times: 6, 24, 168 and 360 hours, to compare the leachate concentration at the two different pH's values (5 and 8) selected to simulate real conditions. For the leaching experiments, the slags were mixed with natural road base material (gravel-sands from volcanic rocks) at different proportions of 30% and 50%. In order to understand the slags' leaching behavior, other experiments were carried out with the pure material, for both (slags and natural aggregates). After analyses by ICP-OES , the slags from this smelter in Chihuahua contain Pb (0.5 - 4 wt.%), Zn (15-35 wt.%) and As (0.6 wt.%), as well such as: bicarbonates, chlorides, nitrates, sulfates, Mg, K, Na, Ca and TDS. Based on the results of the leaching analyses, via atomic absorption technique, we conclude that Pb and As concentrations are provided by the slags, meanwhile, the bicarbonates, chlorides, Na and Ca are contributed by the road
Thiol-based copper handling by the copper chaperone Atox1.
Hatori, Yuta; Inouye, Sachiye; Akagi, Reiko
2017-04-01
Human antioxidant protein 1 (Atox1) plays a crucial role in cellular copper homeostasis. Atox1 captures cytosolic copper for subsequent transfer to copper pumps in trans Golgi network, thereby facilitating copper supply to various copper-dependent oxidereductases matured within the secretory vesicles. Atox1 and other copper chaperones handle cytosolic copper using Cys thiols which are ideal ligands for coordinating Cu(I). Recent studies demonstrated reversible oxidation of these Cys residues in copper chaperones, linking cellular redox state to copper homeostasis. Highlighted in this review are unique redox properties of Atox1 and other copper chaperones. Also, summarized are the redox nodes in the cytosol which potentially play dominant roles in the redox regulation of copper chaperones. © 2016 IUBMB Life, 69(4):246-254, 2017. © 2017 International Union of Biochemistry and Molecular Biology.
Eriksson, Mats; Moseley, Jeffrey L.; Tottey, Stephen; del Campo, Jose A.; Quinn, Jeanette; Kim, Youngbae; Merchant, Sabeeha
2004-01-01
A genetic screen for Chlamydomonas reinhardtii mutants with copper-dependent growth or nonphotosynthetic phenotypes revealed three loci, COPPER RESPONSE REGULATOR 1 (CRR1), COPPER RESPONSE DEFECT 1 (CRD1), and COPPER RESPONSE DEFECT 2 (CRD2), distinguished as regulatory or target genes on the basis of phenotype. CRR1 was shown previously to be required for transcriptional activation of target genes like CYC6, CPX1, and CRD1, encoding, respectively, cytochrome c6 (which is a heme-containing substitute for copper-containing plastocyanin), coproporphyrinogen III oxidase, and Mg-protoporphyrin IX monomethylester cyclase. We show here that CRR1 is required also for normal accumulation of copper proteins like plastocyanin and ferroxidase in copper-replete medium and for apoplastocyanin degradation in copper-deficient medium, indicating that a single pathway controls nutritional copper homeostasis at multiple levels. CRR1 is linked to the SUPPRESSOR OF PCY1-AC208 13 (SOP13) locus, which corresponds to a gain-of-function mutation resulting in copper-independent expression of CYC6. CRR1 is required also for hypoxic growth, pointing to a physiologically meaningful regulatory connection between copper deficiency and hypoxia. The growth phenotype of crr1 strains results primarily from secondary iron deficiency owing to reduced ferroxidase abundance, suggesting a role for CRR1 in copper distribution to a multicopper ferroxidase involved in iron assimilation. Mutations at the CRD2 locus also result in copper-conditional iron deficiency, which is consistent with a function for CRD2 in a pathway for copper delivery to the ferroxidase. Taken together, the observations argue for a specialized copper-deficiency adaptation for iron uptake in Chlamydomonas. PMID:15514054
Temporal trends in metal pollution: using bird excrement as indicator.
Berglund, Åsa M M; Rainio, Miia J; Eeva, Tapio
2015-01-01
Past mining and smelting activities have resulted in metal polluted environments all over the world, but long-term monitoring data is often scarce, especially in higher trophic levels. In this study we used bird (Parus major and Ficedula hypoleuca) excrement to monitor metal pollution in the terrestrial environment following 16 years of continuously reduced emissions from a copper/nickel smelter in Finland. In the early 1990s, lead and cadmium concentrations dropped significantly in excrement, but the reduction did not directly reflect the changes in atmospheric emission from the smelter. This is likely due to a continuous contribution of metals also from the soil pool. We conclude that bird excrement can be used to assess changes in the environment as a whole but not specifically changes in atmospheric emission. Inter-annual variation in excrement concentration of especially copper and nickel demonstrates the importance of long-term monitoring to discern significant trends.
Robinson, Nigel J.; Winge, Dennis R.
2014-01-01
The current state of knowledge on how copper metallochaperones support the maturation of cuproproteins is reviewed. Copper is needed within mitochondria to supply the CuA and intramembrane CuB sites of cytochrome oxidase, within the trans-Golgi network to supply secreted cuproproteins and within the cytosol to supply superoxide dismutase 1 (Sod1). Subpopulations of copper-zinc superoxide dismutase also localize to mitochondria, the secretory system, the nucleus and, in plants, the chloroplast, which also requires copper for plastocyanin. Prokaryotic cuproproteins are found in the cell membrane and in the periplasm of gram-negative bacteria. Cu(I) and Cu(II) form tight complexes with organic molecules and drive redox chemistry, which unrestrained would be destructive. Copper metallochaperones assist copper in reaching vital destinations without inflicting damage or becoming trapped in adventitious binding sites. Copper ions are specifically released from copper metallochaperones upon contact with their cognate cuproproteins and metal transfer is thought to proceed by ligand substitution. PMID:20205585
40 CFR 63.1541 - Applicability.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Hazardous Air Pollutants for Primary Lead Smelting § 63.1541 Applicability. (a) The provisions of this subpart apply to the following affected sources at primary lead smelters: sinter machine, blast furnace... not apply to secondary lead smelters, lead refiners, or lead remelters. (b) Table 1 of this subpart...
Curtis, Calvin J; Miedaner, Alexander; Van Hest, Maikel; Ginley, David S
2014-11-04
Liquid-based precursors for formation of Copper Selenide, Indium Selenide, Copper Indium Diselenide, and/or copper Indium Galium Diselenide include copper-organoselenides, particulate copper selenide suspensions, copper selenide ethylene diamine in liquid solvent, nanoparticulate indium selenide suspensions, and indium selenide ethylene diamine coordination compounds in solvent. These liquid-based precursors can be deposited in liquid form onto substrates and treated by rapid thermal processing to form crystalline copper selenide and indium selenide films.
Bioaccessibility and Solubility of Copper in Copper-Treated Lumber
Micronized copper (MC)-treated lumber is a recent replacement for Chromated Copper Arsenate (CCA) and Ammonium Copper (AC)-treated lumbers; though little is known about the potential risk of copper (Cu) exposure from incidental ingestion of MC-treated wood. The bioaccessibility o...
Advantages and challenges of increased antimicrobial copper use and copper mining.
Elguindi, Jutta; Hao, Xiuli; Lin, Yanbing; Alwathnani, Hend A; Wei, Gehong; Rensing, Christopher
2011-07-01
Copper is a highly utilized metal for electrical, automotive, household objects, and more recently as an effective antimicrobial surface. Copper-containing solutions applied to fruits and vegetables can prevent bacterial and fungal infections. Bacteria, such as Salmonellae and Cronobacter sakazakii, often found in food contamination, are rapidly killed on contact with copper alloys. The antimicrobial effectiveness of copper alloys in the healthcare environment against bacteria causing hospital-acquired infections such as methicillin-resistant Staphylococcus aureus (MRSA), Escherichia coli O157:H7, and Clostridium difficile has been described recently. The use of copper and copper-containing materials will continue to expand and may lead to an increase in copper mining and production. However, the copper mining and manufacturing industry and the consumer do not necessarily enjoy a favorable relationship. Open pit mining, copper mine tailings, leaching products, and deposits of toxic metals in the environment often raises concerns and sometimes public outrage. In addition, consumers may fear that copper alloys utilized as antimicrobial surfaces in food production will lead to copper toxicity in humans. Therefore, there is a need to mitigate some of the negative effects of increased copper use and copper mining. More thermo-tolerant, copper ion-resistant microorganisms could improve copper leaching and lessen copper groundwater contamination. Copper ion-resistant bacteria associated with plants might be useful in biostabilization and phytoremediation of copper-contaminated environments. In this review, recent progress in microbiological and biotechnological aspects of microorganisms in contact with copper will be presented and discussed, exploring their role in the improvement for the industries involved as well as providing better environmental outcomes.
Denoyer, Delphine; Pearson, Helen B; Clatworthy, Sharnel A S; Smith, Zoe M; Francis, Paul S; Llanos, Roxana M; Volitakis, Irene; Phillips, Wayne A; Meggyesy, Peter M; Masaldan, Shashank; Cater, Michael A
2016-06-14
Copper-ionophores that elevate intracellular bioavailable copper display significant therapeutic utility against prostate cancer cells in vitro and in TRAMP (Transgenic Adenocarcinoma of Mouse Prostate) mice. However, the pharmacological basis for their anticancer activity remains unclear, despite impending clinical trails. Herein we show that intracellular copper levels in prostate cancer, evaluated in vitro and across disease progression in TRAMP mice, were not correlative with copper-ionophore activity and mirrored the normal levels observed in patient prostatectomy tissues (Gleason Score 7 & 9). TRAMP adenocarcinoma cells harbored markedly elevated oxidative stress and diminished glutathione (GSH)-mediated antioxidant capacity, which together conferred selective sensitivity to prooxidant ionophoric copper. Copper-ionophore treatments [CuII(gtsm), disulfiram & clioquinol] generated toxic levels of reactive oxygen species (ROS) in TRAMP adenocarcinoma cells, but not in normal mouse prostate epithelial cells (PrECs). Our results provide a basis for the pharmacological activity of copper-ionophores and suggest they are amendable for treatment of patients with prostate cancer. Additionally, recent in vitro and mouse xenograft studies have suggested an increased copper requirement by prostate cancer cells. We demonstrated that prostate adenocarcinoma development in TRAMP mice requires a functional supply of copper and is significantly impeded by altered systemic copper distribution. The presence of a mutant copper-transporting Atp7b protein (tx mutation: A4066G/Met1356Val) in TRAMP mice changed copper-integration into serum and caused a remarkable reduction in prostate cancer burden (64% reduction) and disease severity (grade), abrogating adenocarcinoma development. Implications for current clinical trials are discussed.
Denoyer, Delphine; Pearson, Helen B.; Clatworthy, Sharnel A.S.; Smith, Zoe M.; Francis, Paul S.; Llanos, Roxana M.; Volitakis, Irene; Phillips, Wayne A.; Meggyesy, Peter M.; Masaldan, Shashank; Cater, Michael A.
2016-01-01
Copper-ionophores that elevate intracellular bioavailable copper display significant therapeutic utility against prostate cancer cells in vitro and in TRAMP (Transgenic Adenocarcinoma of Mouse Prostate) mice. However, the pharmacological basis for their anticancer activity remains unclear, despite impending clinical trails. Herein we show that intracellular copper levels in prostate cancer, evaluated in vitro and across disease progression in TRAMP mice, were not correlative with copper-ionophore activity and mirrored the normal levels observed in patient prostatectomy tissues (Gleason Score 7 & 9). TRAMP adenocarcinoma cells harbored markedly elevated oxidative stress and diminished glutathione (GSH)-mediated antioxidant capacity, which together conferred selective sensitivity to prooxidant ionophoric copper. Copper-ionophore treatments [CuII(gtsm), disulfiram & clioquinol] generated toxic levels of reactive oxygen species (ROS) in TRAMP adenocarcinoma cells, but not in normal mouse prostate epithelial cells (PrECs). Our results provide a basis for the pharmacological activity of copper-ionophores and suggest they are amendable for treatment of patients with prostate cancer. Additionally, recent in vitro and mouse xenograft studies have suggested an increased copper requirement by prostate cancer cells. We demonstrated that prostate adenocarcinoma development in TRAMP mice requires a functional supply of copper and is significantly impeded by altered systemic copper distribution. The presence of a mutant copper-transporting Atp7b protein (tx mutation: A4066G/Met1356Val) in TRAMP mice changed copper-integration into serum and caused a remarkable reduction in prostate cancer burden (64% reduction) and disease severity (grade), abrogating adenocarcinoma development. Implications for current clinical trials are discussed. PMID:27175597
Advanced Copper Composites Against Copper-Tolerant Xanthomonas perforans and Tomato Bacterial Spot.
Strayer-Scherer, A; Liao, Y Y; Young, M; Ritchie, L; Vallad, G E; Santra, S; Freeman, J H; Clark, D; Jones, J B; Paret, M L
2018-02-01
Bacterial spot, caused by Xanthomonas spp., is a widespread and damaging bacterial disease of tomato (Solanum lycopersicum). For disease management, growers rely on copper bactericides, which are often ineffective due to the presence of copper-tolerant Xanthomonas strains. This study evaluated the antibacterial activity of the new copper composites core-shell copper (CS-Cu), multivalent copper (MV-Cu), and fixed quaternary ammonium copper (FQ-Cu) as potential alternatives to commercially available micron-sized copper bactericides for controlling copper-tolerant Xanthomonas perforans. In vitro, metallic copper from CS-Cu and FQ-Cu at 100 μg/ml killed the copper-tolerant X. perforans strain within 1 h of exposure. In contrast, none of the micron-sized copper rates (100 to 1,000 μg/ml) from Kocide 3000 significantly reduced copper-tolerant X. perforans populations after 48 h of exposure compared with the water control (P < 0.05). All copper-based treatments killed the copper-sensitive X. perforans strain within 1 h. Greenhouse studies demonstrated that all copper composites significantly reduced bacterial spot disease severity when compared with copper-mancozeb and water controls (P < 0.05). Although there was no significant impact on yield, copper composites significantly reduced disease severity when compared with water controls, using 80% less metallic copper in comparison with copper-mancozeb in field studies (P < 0.05). This study highlights the discovery that copper composites have the potential to manage copper-tolerant X. perforans and tomato bacterial spot.
Industrial contributions of arsenic to the environment.
Nelson, K W
1977-01-01
Arsenic is present in all copper, lead, and zinc sulfide ores and is carried along with those metals in the mining, milling and concentrating process. Separation, final concentration and refining of by-product arsenic as the trioxide is achieved at smelters. Arsenic is the essential consistent element of many compounds important and widely used in agriculture and wood preservation. Lesser amounts are used in metal alloys, glass-making, and feed additives. There is no significant recycling. Current levels of arsenic emissions to the atmosphere from smelters and power plants and ambient air concentrations are given as data of greatest environmental interest. PMID:908308
Experimental study of copper-alkali ion exchange in glass
NASA Astrophysics Data System (ADS)
Gonella, F.; Caccavale, F.; Bogomolova, L. D.; D'Acapito, F.; Quaranta, A.
1998-02-01
Copper-alkali ion exchange was performed by immersing different silicate glasses (soda-lime and BK7) in different molten eutectic salt baths (CuSO4:Na2SO4 and CuSO4:K2SO4). The obtained optical waveguides were characterized by m-lines spectroscopy for the determination of refractive index profiles, and by secondary ion mass spectrometry for the concentration profiles of the ion species involved in the exchange process. The different oxidation states of copper inside the glass structure were studied by electron paramagnetic resonance and x-ray absorption techniques. Interdiffusion copper coefficients were also determined. The Cu-alkali exchange was observed to give rise to local structural rearrangement of the atoms in the glass matrix. The Cu+ ion was found to mainly govern the exchange process, while competition between Cu-Na and K-Na exchanges occurred when a potassium sulfate bath was used. In this case, significant waveguide modal birefringence was observed.
A Plasmodium falciparum copper-binding membrane protein with copper transport motifs
2012-01-01
Background Copper is an essential catalytic co-factor for metabolically important cellular enzymes, such as cytochrome-c oxidase. Eukaryotic cells acquire copper through a copper transport protein and distribute intracellular copper using molecular chaperones. The copper chelator, neocuproine, inhibits Plasmodium falciparum ring-to-trophozoite transition in vitro, indicating a copper requirement for malaria parasite development. How the malaria parasite acquires or secretes copper still remains to be fully elucidated. Methods PlasmoDB was searched for sequences corresponding to candidate P. falciparum copper-requiring proteins. The amino terminal domain of a putative P. falciparum copper transport protein was cloned and expressed as a maltose binding fusion protein. The copper binding ability of this protein was examined. Copper transport protein-specific anti-peptide antibodies were generated in chickens and used to establish native protein localization in P. falciparum parasites by immunofluorescence microscopy. Results Six P. falciparum copper-requiring protein orthologs and a candidate P. falciparum copper transport protein (PF14_0369), containing characteristic copper transport protein features, were identified in PlasmoDB. The recombinant amino terminal domain of the transport protein bound reduced copper in vitro and within Escherichia coli cells during recombinant expression. Immunolocalization studies tracked the copper binding protein translocating from the erythrocyte plasma membrane in early ring stage to a parasite membrane as the parasites developed to schizonts. The protein appears to be a PEXEL-negative membrane protein. Conclusion Plasmodium falciparum parasites express a native protein with copper transporter characteristics that binds copper in vitro. Localization of the protein to the erythrocyte and parasite plasma membranes could provide a mechanism for the delivery of novel anti-malarial compounds. PMID:23190769
Dispersion strengthened copper
Sheinberg, Haskell; Meek, Thomas T.; Blake, Rodger D.
1989-01-01
A composition of matter comprised of copper and particles which are dispersed throughout the copper, where the particles are comprised of copper oxide and copper having a coating of copper oxide, and a method for making this composition of matter.
Dispersion strengthened copper
Sheinberg, Haskell; Meek, Thomas T.; Blake, Rodger D.
1990-01-01
A composition of matter comprised of copper and particles which are dispersed throughout the copper, where the particles are comprised of copper oxide and copper having a coating of copper oxide, and a method for making this composition of matter.
Investigation of the possibility of copper recovery from the flotation tailings by acid leaching.
Antonijević, M M; Dimitrijević, M D; Stevanović, Z O; Serbula, S M; Bogdanovic, G D
2008-10-01
The flotation tailings pond of the Bor Copper Mine poses a great ecological problem not only for the town of Bor but also for the surrounding soils and watercourses. Since the old flotation tailings contain about 0.2% of copper on the average, we investigated their leaching with sulphuric acid in the absence and presence of an oxidant. The aim was to determine the leaching kinetics of copper and iron as affected by various factors such as: the pH value of the leach solution, stirring speed, pulp density, particle size, concentration of ferric ions, temperature and time for leaching. The average copper and iron recovery obtained was from 60% to 70% and from 2% to 3%, respectively. These results indicate that the old flotation tailings pond represents an important source of secondary raw material for the extraction of copper and that it should be valorized rather than land reclamation. At the end of the paper, a mechanism of dissolution of copper and iron minerals from the tailings was described.
The Effects of Secondary Oxides on Copper-Based Catalysts for Green Methanol Synthesis.
Hayward, James S; Smith, Paul J; Kondrat, Simon A; Bowker, Michael; Hutchings, Graham J
2017-05-10
Catalysts for methanol synthesis from CO 2 and H 2 have been produced by two main methods: co-precipitation and supercritical anti-solvent (SAS) precipitation. These two methods are compared, along with the behaviour of copper supported on Zn, Mg, Mn, and Ce oxides. Although the SAS method produces initially active material with high Cu specific surface area, they appear to be unstable during reaction losing significant amounts of surface area and hence activity. The CuZn catalysts prepared by co-precipitation, however, showed much greater thermal and reactive stability than the other materials. There appeared to be the usual near-linear dependence of activity upon Cu specific area, though the initial performance relationship was different from that post-reaction, after some loss of surface area. The formation of the malachite precursor, as reported before, is important for good activity and stability, whereas if copper oxides are formed during the synthesis and ageing process, then a detrimental effect on these properties is seen.
Curtis, Calvin J [Lakewood, CO; Miedaner, Alexander [Boulder, CO; Van Hest, Maikel [Lakewood, CO; Ginley, David S [Evergreen, CO; Nekuda, Jennifer A [Lakewood, CO
2011-11-15
Liquid-based indium selenide and copper selenide precursors, including copper-organoselenides, particulate copper selenide suspensions, copper selenide ethylene diamine in liquid solvent, nanoparticulate indium selenide suspensions, and indium selenide ethylene diamine coordination compounds in solvent, are used to form crystalline copper-indium-selenide, and/or copper indium gallium selenide films (66) on substrates (52).
Peptidomimetics via copper-catalyzed azide-alkyne cycloadditions.
Angell, Yu L; Burgess, Kevin
2007-10-01
This critical review concerns the impact of copper-mediated alkyne-azide cycloadditions on peptidomimetic studies. It discusses how this reaction has been used to insert triazoles into peptide chains, to link peptides to other functionalities (e.g. carbohydrates, polymers, and labels), and as a basis for evolution of less peptidic compounds as pharmaceutical leads. It will be of interest to those studying this click reaction, peptidomimetic secondary structure and function, and to medicinal chemists.
Copper speciation in variably toxic sediments at the Ely Copper Mine, Vermont, United States
Kimball, Bryn E.; Foster, Andrea L.; Seal, Robert R.; Piatak, Nadine M.; Webb, Samuel M.; Hammarstrom, Jane M.
2016-01-01
At the Ely Copper Mine Superfund site, Cu concentrations exceed background values in both streamwater (160–1200 times) and sediments (15–79 times). Previously, these sediment samples were incubated with laboratory test organisms, and they exhibited variable toxicity for different stream sites. In this study we combined bulk- and microscale techniques to determine Cu speciation and distribution in these contaminated sediments on the basis of evidence from previous work that Cu was the most important stressor in this environment and that variable observed toxicity could have resulted from differences in Cu speciation. Copper speciation results were similar at microscopic and bulk scales. The major Cu species in the more toxic samples were sorbed or coprecipitated with secondary Mn (birnessite) and Fe minerals (jarosite and goethite), which together accounted for nearly 80% of the total Cu. The major Cu species in the less toxic samples were Cu sulfides (chalcopyrite and a covellite-like phase), making up about 80–95% of the total Cu, with minor amounts of Cu associated with jarosite or goethite. These Cu speciation results are consistent with the toxicity results, considering that Cu sorbed or coprecipitated with secondary phases at near-neutral pH is relatively less stable than Cu bound to sulfide at lower pH. The more toxic stream sediment sites were those that contained fewer detrital sulfides and were upstream of the major mine waste pile, suggesting that removal and consolidation of sulfide-bearing waste piles on site may not eliminate all sources of bioaccessible Cu.
Subacute copper-deficiency myelopathy in a patient with occult celiac disease.
Cavallieri, Francesco; Fini, Nicola; Contardi, Sara; Fiorini, Massimo; Corradini, Elena; Valzania, Franco
2017-07-01
Acquired copper deficiency represents a rare cause of progressive myelopathy presenting with sensory ataxia and spastic gait. The time interval from neurological symptoms onset to diagnosis of myelopathy ranges from 2 months to several years in almost all cases, mimicking the clinical course of subacute combined degeneration due to vitamin B12 deficiency. A 60-year-old man, without any gastrointestinal symptoms, developed over the course of one week rapidly progressive gait imbalance, tingling and numbness in his feet and ascending lower limb weakness. Spine magnetic resonance imaging revealed hyperintensity involving cervical and dorsal posterior columns of spinal cord. Blood analysis revealed undetectable serum copper levels, low serum ceruloplasmin and positive serum Immunoglobulin A anti-tissue transglutaminase. Upper gastrointestinal endoscopy was performed revealing duodenal villous atrophy consistent with a malabsorption pattern. A gluten-free diet in association with intravenous then oral copper supplementation prompted sustained normalization of serum copper levels and progressive clinical improvement. We report a rare case of myelopathy induced by copper deficiency secondary to undiagnosed celiac disease, peculiarly presenting with a subacute onset. This case expands the neurological presentation and clinical course of myelopathy due to acquired copper deficiency. We suggest investigation of copper deficiency in patients presenting with subacute or even acute sensory ataxia and spastic gait. Detection of hypocupremia in patients without a previous history of gastric surgery should lead to diagnostic testing for celiac disease even in the absence of any obvious gastrointestinal symptoms.
Printz, Bruno; Guerriero, Gea; Sergeant, Kjell; Audinot, Jean-Nicolas; Guignard, Cédric; Renaut, Jenny; Lutts, Stanley; Hausman, Jean-Francois
2016-01-01
Copper can be found in the environment at concentrations ranging from a shortage up to the threshold of toxicity for plants, with optimal growth conditions situated in between. The plant stem plays a central role in transferring and distributing minerals, water and other solutes throughout the plant. In this study, alfalfa is exposed to different levels of copper availability, from deficiency to slight excess, and the impact on the metabolism of the stem is assessed by a non-targeted proteomics study and by the expression analysis of key genes controlling plant stem development. Under copper deficiency, the plant stem accumulates specific copper chaperones, the expression of genes involved in stem development is decreased and the concentrations of zinc and molybdenum are increased in comparison with the optimum copper level. At the optimal copper level, the expression of cell wall-related genes increases and proteins playing a role in cell wall deposition and in methionine metabolism accumulate, whereas copper excess imposes a reduction in the concentration of iron in the stem and a reduced abundance of ferritins. Secondary ion mass spectrometry (SIMS) analysis suggests a role for the apoplasm as a copper storage site in the case of copper toxicity. PMID:26865661
A TEMPO-free copper-catalyzed aerobic oxidation of alcohols.
Xu, Boran; Lumb, Jean-Philip; Arndtsen, Bruce A
2015-03-27
The copper-catalyzed aerobic oxidation of primary and secondary alcohols without an external N-oxide co-oxidant is described. The catalyst system is composed of a Cu/diamine complex inspired by the enzyme tyrosinase, along with dimethylaminopyridine (DMAP) or N-methylimidazole (NMI). The Cu catalyst system works without 2,2,6,6-tetramethyl-l-piperidinoxyl (TEMPO) at ambient pressure and temperature, and displays activity for un-activated secondary alcohols, which remain a challenging substrate for catalytic aerobic systems. Our work underscores the importance of finding alternative mechanistic pathways for alcohol oxidation, which complement Cu/TEMPO systems, and demonstrate, in this case, a preference for the oxidation of activated secondary over primary alcohols. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Temporal Trends in Metal Pollution: Using Bird Excrement as Indicator
Berglund, Åsa M. M.; Rainio, Miia J.; Eeva, Tapio
2015-01-01
Past mining and smelting activities have resulted in metal polluted environments all over the world, but long-term monitoring data is often scarce, especially in higher trophic levels. In this study we used bird (Parus major and Ficedula hypoleuca) excrement to monitor metal pollution in the terrestrial environment following 16 years of continuously reduced emissions from a copper/nickel smelter in Finland. In the early 1990s, lead and cadmium concentrations dropped significantly in excrement, but the reduction did not directly reflect the changes in atmospheric emission from the smelter. This is likely due to a continuous contribution of metals also from the soil pool. We conclude that bird excrement can be used to assess changes in the environment as a whole but not specifically changes in atmospheric emission. Inter-annual variation in excrement concentration of especially copper and nickel demonstrates the importance of long-term monitoring to discern significant trends. PMID:25680108
Guidance for Selecting Legitimate Recycling Products and Processes
1998-10-23
information you have provided on the GIL glassification process for electric arc furnace ( EAF ) dust or K061 when the EAF dust is a hazardous waste. Based on the...regarding the regulatory status of the GIL process and glass frit product has been whether EAF dust incorporated into GIL glass frit meets the definition...emission control dust from a primary copper smelter could be returned to any part of the process associated with copper production. The material also cannot
Shen, Feng; Li, Yanxia; Zhang, Min; Awasthi, Mukesh Kumar; Ali, Amjad; Li, Ronghua; Wang, Quan; Zhang, Zengqiang
2016-01-01
In this study, we investigated the influence of heavy metals (HM) on total soil bacterial population and its diversity pattern from 10 km distance of a Zinc smelter in Feng County, Qinling Mountain, China. We characterized and identified the bacterial community in a HM polluted soil using 16S rDNA technology. Out results indicated that the maximum soil HM concentration and the minimum bacterial population were observed in S2 soil, whereas bacterial diversity raised with the sampling distance increased. The bacterial communities were dominated by the phyla Proteobacteria, Acidobacteria and Actinobacteria in cornfield soils, except Fimicutes phylum which dominated in hilly area soil. The soil CEC, humic acid (HA)/fulvic acid (FA) and microbial OTUs increased with the sampling distance increased. Shewanella, Halomonas and Escherichia genera were highly tolerant to HM stress in both cultivated and non-cultivated soil. Finally, we found a consistent correlation of bacterial diversity with total HM and SOM along the sampling distance surrounding the zinc smelter, which could provide a new insight into the bacterial community-assisted and phytoremediation of HM contaminated soils. PMID:27958371
NASA Astrophysics Data System (ADS)
Shen, Feng; Li, Yanxia; Zhang, Min; Awasthi, Mukesh Kumar; Ali, Amjad; Li, Ronghua; Wang, Quan; Zhang, Zengqiang
2016-12-01
In this study, we investigated the influence of heavy metals (HM) on total soil bacterial population and its diversity pattern from 10 km distance of a Zinc smelter in Feng County, Qinling Mountain, China. We characterized and identified the bacterial community in a HM polluted soil using 16S rDNA technology. Out results indicated that the maximum soil HM concentration and the minimum bacterial population were observed in S2 soil, whereas bacterial diversity raised with the sampling distance increased. The bacterial communities were dominated by the phyla Proteobacteria, Acidobacteria and Actinobacteria in cornfield soils, except Fimicutes phylum which dominated in hilly area soil. The soil CEC, humic acid (HA)/fulvic acid (FA) and microbial OTUs increased with the sampling distance increased. Shewanella, Halomonas and Escherichia genera were highly tolerant to HM stress in both cultivated and non-cultivated soil. Finally, we found a consistent correlation of bacterial diversity with total HM and SOM along the sampling distance surrounding the zinc smelter, which could provide a new insight into the bacterial community-assisted and phytoremediation of HM contaminated soils.
Cocco, Pierluigi; Fadda, Domenica; Atzeri, Sergio; Avataneo, Giuseppe; Meloni, Michele; Flore, Costantino
2007-06-01
To assess, by updating a follow-up mortality study of a lead smelters cohort in Sardinia, Italy, the adverse health effects following occupational lead exposure in relation to the glucose-6-phosphate dehydrogenase (G6PD) polymorphism. The 1973-2003 mortality of 1017 male lead smelters were followed-up, divided into two subcohorts according to the G6PD phenotype: whether G6PD deficient (G6PD-) or wild-type (wtG6PD). Deaths observed in the overall cohort and the two subcohorts were compared with those expected, on the basis of the age-, sex- and calendar year-specific mortality in the general male population of the island. Directly standardised mortality rates (sr) in the two subcohorts were also compared. Cardiovascular mortality was strongly reduced among production and maintenance workers, which is most related to the healthy worker effect. However, the sr for cardiovascular diseases was substantially lower among the G6PD- subcohort (5.0x10(-4)) than among the wtG6PD subcohort (33.6x10(-4); chi2 = 1.10; p = NS). Neoplasms of the haemopoietic system exceeded the expectation in the G6PD- subcohort (SMR = 388; 95% CI 111 to 1108). No other cancer sites showed any excess in the overall cohort or in the two subcohorts. No death from haemolytic anaemia occurred in the G6PD- subcohort. With due consideration of the limited statistical power of our study, previous results suggesting that in workplaces where exposure is under careful control, expressing the G6PD- phenotype does not convey increased susceptibility to lead toxicity are confirmed. The observed excess risk of haematopoietic malignancies seems to have most likely resulted from chance.
Using microtherm microporous insulation in smelter applications
NASA Astrophysics Data System (ADS)
MacKenzie, Iain
2000-02-01
Microtherm is effective in reducing shell temperatures in confined spaces where compression is severe and much insulation is required. This material can prove beneficial for applications such as cement and lime rotary kiln transition and hot zones; copper converters and anode furnaces; steel and iron ladles, tundishes, RH vessels, and blast furnaces; and aluminum filter boxes, runners, and metal transporters.
Zheng, Zhan-Jiang; Ye, Fei; Zheng, Long-Sheng; Yang, Ke-Fang; Lai, Guo-Qiao; Xu, Li-Wen
2012-10-29
An interesting example of a divergent catalysis with a copper(I) and amine-functional macromolecular polysiloxanes system was successfully presented in click chemistry. In this manuscript, we demonstrate the remarkable ability of the secondary amine-functional polysiloxane to induce oxidative coupling in the copper-mediated Huisgen reactions of azides and alkynes, thereby achieving good yields and selectivities. The click reactions mediated by a polysiloxane-supported secondary amine allow the preparation of novel heterocyclic compounds, that is, bistriazoles. Comparably, it is also surprising that the use of a diamine-functional polysiloxane as ligand led to a classic Huisgen [3+2] cycloaddition in excellent yields. From the results of the present amine-functional polysiloxanes-controlled Huisgen reaction or oxidative Huisgen coupling reaction to divergent products and the proposed mechanism, we suggested that the mononuclear bistriazole-copper complex stabilized and dispersed by the secondary amine-functional polysiloxane was beneficial to prevalent the way to oxidative coupling. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Molybdenum-copper and tungsten-copper alloys and method of making
Schmidt, Frederick A.; Verhoeven, John D.; Gibson, Edwin D.
1989-05-23
Molybdenum-copper and tungsten-copper alloys are prepared by a consumable electrode method in which the electrode consists of a copper matrix with embedded strips of refractory molybdenum or tungsten. The electrode is progressively melted at its lower end with a superatmospheric inert gas pressure maintained around the liquifying electrode. The inert gas pressure is sufficiently above the vapor pressure of copper at the liquidus temperature of the alloy being formed to suppress boiling of liquid copper.
Molybdenum-copper and tungsten-copper alloys and method of making
Schmidt, F.A.; Verhoeven, J.D.; Gibson, E.D.
1989-05-23
Molybdenum-copper and tungsten-copper alloys are prepared by a consumable electrode method in which the electrode consists of a copper matrix with embedded strips of refractory molybdenum or tungsten. The electrode is progressively melted at its lower end with a superatmospheric inert gas pressure maintained around the liquefying electrode. The inert gas pressure is sufficiently above the vapor pressure of copper at the liquidus temperature of the alloy being formed to suppress boiling of liquid copper. 6 figs.
Cathcart, Sahara J; Sofronescu, Alina G
2017-08-01
While copper deficiency has long been known to cause cytopenias, copper deficiency myeloneuropathy is a more recently described entity. Here, we present the case of two clinically distinct presentations of acquired copper deficiency syndromes secondary to excessive use of zinc-containing denture adhesive over five years: myeloneuropathy and severe macrocytic anemia and neutropenia. Extensive laboratory testing and histologic evaluation of the liver and bone marrow, were necessary to rule out other disease processes and establish the diagnosis of copper deficiency. The initial presentation consisted of a myelopathy involving the posterior columns. Serum and urine copper were significantly decreased, and serum zinc was elevated. On second presentation (five years later), multiple hematological abnormalities were detected. Serum copper was again decreased, while serum zinc was elevated. Zinc overload is a preventable cause of copper deficiency syndromes. This rare entity presented herein highlights the importance of patient, as well as provider, education. Copyright © 2017 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.
Contamination of the O2 soil horizon by zinc smelting and its effect on woodlouse survival
Beyer, W.N.; Miller, G.W.; Cromartie, E.J.
1984-01-01
Samples of litter from the 02 horizon of Dekalb soil (loamyskeletal, mixed, mesic Typic Dystrochrept) were collected from 18 ridgetop sites on a transect that ran by two Zn smelters in Palmerton, Pa. Metal concentrations increased by regular gradations from a minimum at a site 105 km west of the smelters (67 mg/kg Zn, 0.85 mg/kg Cd, 150 mg/kg Pb, 11 mg/kg Cu) to a maximum 1.2 km east of the smelters (35,000 mg/kg Zn, 1300 mg/kg Cd, 3200 mg/kg Pb, 280 mg/kg Cu), and then decreased until they reached an eastern minimum at the easternmost site, 19 km from the smelters. An increase in the P concentrations near the smelters showed that the emissions were disrupting nutrient flow through the ecosystem. An increase in the pH near the smelters was attributed to the high concentrations of Zn. The log of the distance of the sites from the smelters was significantly correlated (r = - 0.80, p < 0.05) with the mortality of woodlice (Porcellio scaber Latreille} fed samples of the litter during an 8-week test. There was substantial mortality of woodlice observed even in the 02 litter collected 19 km east of the smelters. Zinc, cadmium, lead, copper, and sulfur were experimentally added, alone or in combination, to 02 litter collected far from any known source of metal emissions. The highest concentration of Zn added (20,000 mg/kg) was toxic enough to account for the mortality observed in the earlier test. A lower concentration of Zn (5000 mg/kg) as well as the concentration of Cd (500 mg/kg) tested also significantly (p < 0.05) increased the mortality of woodlice.
Dispersion strengthened copper
Sheinberg, H.; Meek, T.T.; Blake, R.D.
1990-01-09
A composition of matter is described which is comprised of copper and particles which are dispersed throughout the copper, where the particles are comprised of copper oxide and copper having a coating of copper oxide. A method for making this composition of matter is also described. This invention relates to the art of powder metallurgy and, more particularly, it relates to dispersion strengthened metals.
Copper Deposits in Sedimentary and Volcanogenic Rocks
Tourtelot, Elizabeth B.; Vine, James David
1976-01-01
Copper deposits occur in sedimentary and volcanogenic rocks within a wide variety of geologic environments where there may be little or no evidence of hydrothermal alteration. Some deposits may be hypogene and have a deep-seated source for the ore fluids, but because of rapid cooling and dilution during syngenetic deposition on the ocean floor, the resulting deposits are not associated with hydrothermal alteration. Many of these deposits are formed at or near major tectonic features on the Earth's crust, including plate boundaries, rift valleys, and island arcs. The resulting ore bodies may be stratabound and either massive or disseminated. Other deposits form in rocks deposited in shallow-marine, deltaic, and nonmarine environments by the movement and reaction of interstratal brines whose metal content is derived from buried sedimentary and volcanic rocks. Some of the world's largest copper deposits were probably formed in this manner. This process we regard as diagenetic, but some would regard it as syngenetic, if the ore metals are derived from disseminated metal in the host-rock sequence, and others would regard the process as epigenetic, if there is demonstrable evidence of ore cutting across bedding. Because the oxidation associated with diagenetic red beds releases copper to ground-water solutions, red rocks and copper deposits are commonly associated. However, the ultimate size, shape, and mineral zoning of a deposit result from local conditions at the site of deposition - a logjam in fluvial channel sandstone may result in an irregular tabular body of limited size; a petroleum-water interface in an oil pool may result in a copper deposit limited by the size and shape of the petroleum reservoir; a persistent thin bed of black shale may result in a copper deposit the size and shape of that single bed. The process of supergene enrichment has been largely overlooked in descriptions of copper deposits in sedimentary rocks. However, supergene processes may be
Printz, Bruno; Guerriero, Gea; Sergeant, Kjell; Audinot, Jean-Nicolas; Guignard, Cédric; Renaut, Jenny; Lutts, Stanley; Hausman, Jean-Francois
2016-02-01
Copper can be found in the environment at concentrations ranging from a shortage up to the threshold of toxicity for plants, with optimal growth conditions situated in between. The plant stem plays a central role in transferring and distributing minerals, water and other solutes throughout the plant. In this study, alfalfa is exposed to different levels of copper availability, from deficiency to slight excess, and the impact on the metabolism of the stem is assessed by a non-targeted proteomics study and by the expression analysis of key genes controlling plant stem development. Under copper deficiency, the plant stem accumulates specific copper chaperones, the expression of genes involved in stem development is decreased and the concentrations of zinc and molybdenum are increased in comparison with the optimum copper level. At the optimal copper level, the expression of cell wall-related genes increases and proteins playing a role in cell wall deposition and in methionine metabolism accumulate, whereas copper excess imposes a reduction in the concentration of iron in the stem and a reduced abundance of ferritins. Secondary ion mass spectrometry (SIMS) analysis suggests a role for the apoplasm as a copper storage site in the case of copper toxicity. © The Author 2016. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists.
Lead poisoning in cattle and horses in the vicinity of a smelter
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hammond, P.B.; Aronson, A.L.
1964-01-01
An outbreak of lead poisoning near a smelter is described. Fatalities in horses and cattle occurred. Data presented concern the pattern and degree of contamination in animals and vegetation. The daily intake of approximately 6-7 mg. Pb/kg appears to be close to the minimum which eventually gives rise to signs of poisoning in cattle. Horses appear to be somewhat more susceptible. Even under conditions of chronic lead intake, the syndrome in cattle generally is acute or peracute. The concentration of lead in milk is linearly related to the concentration in blood cells at a ratio Pb cells/Pb milk of approximatelymore » 23. Evidence is presented indicating that relief of the burden of lead in tissues with EDTA therapy following chronic intake of the metal is a hazardous procedure. Data gathered by the Minnesota State Health Department during the episode indicate that people in the area and their water supply were not affected. 31 references.« less
Monte Carlo simulations of secondary electron emission due to ion beam milling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mahady, Kyle; Tan, Shida; Greenzweig, Yuval
We present a Monte Carlo simulation study of secondary electron emission resulting from focused ion beam milling of a copper target. The basis of this study is a simulation code which simulates ion induced excitation and emission of secondary electrons, in addition to simulating focused ion beam sputtering and milling. This combination of features permits the simulation of the interaction between secondary electron emission, and the evolving target geometry as the ion beam sputters material. Previous ion induced SE Monte Carlo simulation methods have been restricted to predefined target geometries, while the dynamic target in the presented simulations makes thismore » study relevant to image formation in ion microscopy, and chemically assisted ion beam etching, where the relationship between sputtering, and its effects on secondary electron emission, is important. We focus on a copper target, and validate our simulation against experimental data for a range of: noble gas ions, ion energies, ion/substrate angles and the energy distribution of the secondary electrons. We then provide a detailed account of the emission of secondary electrons resulting from ion beam milling; we quantify both the evolution of the yield as high aspect ratio valleys are milled, as well as the emission of electrons within these valleys that do not escape the target, but which are important to the secondary electron contribution to chemically assisted ion induced etching.« less
21 CFR 73.2125 - Potassium sodium copper chlorophyllin (chlorophyllin-copper complex).
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 1 2014-04-01 2014-04-01 false Potassium sodium copper chlorophyllin... § 73.2125 Potassium sodium copper chlorophyllin (chlorophyllin-copper complex). (a) Identity and specifications. The color additive potassium sodium copper chlorophyllin shall conform in identity and...
21 CFR 73.2125 - Potassium sodium copper chlorophyllin (chlorophyllin-copper complex).
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 1 2012-04-01 2012-04-01 false Potassium sodium copper chlorophyllin... § 73.2125 Potassium sodium copper chlorophyllin (chlorophyllin-copper complex). (a) Identity and specifications. The color additive potassium sodium copper chlorophyllin shall conform in identity and...
21 CFR 73.2125 - Potassium sodium copper chlorophyllin (chlorophyllin-copper complex).
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 1 2013-04-01 2013-04-01 false Potassium sodium copper chlorophyllin... § 73.2125 Potassium sodium copper chlorophyllin (chlorophyllin-copper complex). (a) Identity and specifications. The color additive potassium sodium copper chlorophyllin shall conform in identity and...
21 CFR 73.1125 - Potassium sodium copper chloropyhllin (chlorophyllin-copper complex).
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 1 2011-04-01 2011-04-01 false Potassium sodium copper chloropyhllin....1125 Potassium sodium copper chloropyhllin (chlorophyllin-copper complex). (a) Identity. (1) The color additive potassium sodium copper chlorophyllin is a green to black powder obtained from chlorophyll by...
San, Kaungmyat; Long, Janet; Michels, Corinne A; Gadura, Nidhi
2015-10-01
This study explores the role of membrane phospholipid peroxidation in the copper alloy mediated contact killing of Bacillus subtilis, a spore-forming gram-positive bacterial species. We found that B. subtilis endospores exhibited significant resistance to copper alloy surface killing but vegetative cells were highly sensitive to copper surface exposure. Cell death and lipid peroxidation occurred in B. subtilis upon copper alloy surface exposure. In a sporulation-defective strain carrying a deletion of almost the entire SpoIIA operon, lipid peroxidation directly correlated with cell death. Moreover, killing and lipid peroxidation initiated immediately and at a constant rate upon exposure to the copper surface without the delay observed previously in E. coli. These findings support the hypothesis that membrane lipid peroxidation is the initiating event causing copper surface induced cell death of B. subtilis vegetative cells. The findings suggest that the observed differences in the kinetics of copper-induced killing compared to E. coli result from differences in cell envelop structure. As demonstrated in E. coli, DNA degradation was shown to be a secondary effect of copper exposure in a B. subtilis sporulation-defective strain. © 2015 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.
San, Kaungmyat; Long, Janet; Michels, Corinne A; Gadura, Nidhi
2015-01-01
This study explores the role of membrane phospholipid peroxidation in the copper alloy mediated contact killing of Bacillus subtilis, a spore-forming gram-positive bacterial species. We found that B. subtilis endospores exhibited significant resistance to copper alloy surface killing but vegetative cells were highly sensitive to copper surface exposure. Cell death and lipid peroxidation occurred in B. subtilis upon copper alloy surface exposure. In a sporulation-defective strain carrying a deletion of almost the entire SpoIIA operon, lipid peroxidation directly correlated with cell death. Moreover, killing and lipid peroxidation initiated immediately and at a constant rate upon exposure to the copper surface without the delay observed previously in E. coli. These findings support the hypothesis that membrane lipid peroxidation is the initiating event causing copper surface induced cell death of B. subtilis vegetative cells. The findings suggest that the observed differences in the kinetics of copper-induced killing compared to E. coli result from differences in cell envelop structure. As demonstrated in E. coli, DNA degradation was shown to be a secondary effect of copper exposure in a B. subtilis sporulation-defective strain. PMID:26185055
An Ancient Inca Tax and Metallurgy in Peru
ERIC Educational Resources Information Center
Journal of Chemical Education, 2007
2007-01-01
The discovery of ancient Inca tax rulers and other metallurgical objects in Peru show that the ancient civilizations of the country smelted metals. The analysis shows that the smelters in Peru switched from the production of copper to silver after a tax was imposed on them by the Inca rulers.
Migration of copper and some other metals from copper tableware
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ishiwata, H.; Inoue, T.; Yoshihira, K.
Intake of heavy metals is an important problem in human health. Certain heavy metals are avoided with regard to their use for utensils or tableware coming into contact with food, although copper is widely used in food processing factories or at home. The use of copper products for the processing, cooking or serving of foods and beverages is considered to be a cause of a copper contamination. Although copper is essential element, its excess ingestion is undesirable. In this study, the migration of copper from tin-plated or non-plated copperware under several experimental conditions was investigated using food-simulating solvents.
Félix, Omar I.; Csavina, Janae; Field, Jason; Rine, Kyle P.; Sáez, A. Eduardo; Betterton, Eric A.
2014-01-01
Mining operations are a potential source of metal and metalloid contamination by atmospheric particulate generated from smelting activities, as well as from erosion of mine tailings. In this work, we show how lead isotopes can be used for source apportionment of metal and metalloid contaminants from the site of an active copper mine. Analysis of atmospheric aerosol shows two distinct isotopic signatures: one prevalent in fine particles (< 1 μm aerodynamic diameter) while the other corresponds to coarse particles as well as particles in all size ranges from a nearby urban environment. The lead isotopic ratios found in the fine particles are equal to those of the mine that provides the ore to the smelter. Topsoil samples at the mining site show concentrations of Pb and As decreasing with distance from the smelter. Isotopic ratios for the sample closest to the smelter (650 m) and from topsoil at all sample locations, extending to more than 1 km from the smelter, were similar to those found in fine particles in atmospheric dust. The results validate the use of lead isotope signatures for source apportionment of metal and metalloid contaminants transported by atmospheric particulate. PMID:25496740
NASA Astrophysics Data System (ADS)
Surour, Adel A.
2015-01-01
In the Jabal Samran area (western Saudi Arabia), secondary copper mineralization in a NE-trending shear zone in which the arc metavolcanic host rocks (dacite-rhyodacite) show conjugate fractures and extensive hydrothermal alteration and bleaching. The zones contain frequent Fe-Mn(III) oxyhydroxides (FeOH-MnOH) that resulted from oxidation of pyrite and Mn-bearing silicates. In the bleached part, the groundmass is represented by Fe-bearing interstratified illite-smectite with up to 4.02 wt% FeOt. FeOH-MnOH are pre-weathering phases formed by hydrothermal alteration in a submarine environment prior to uplifting. Five varieties of FeOH are distinguished, four of them are exclusively hydrothermal with ∼20 wt% H2O whereas the fifth contains ∼31-33 wt% H2O and might represent reworking of earlier hydrothermal FeOH phases by weathering. FeOH fills thin fractures in the form of veinlets and crenulated laminae or as a pseudomorph for pyrite, goethite and finally ferrihydrite, and this oxyhydroxide is characterized by positive correlation of Fe2O3 with SiO2 and Al2O3. On the other hand, MOH shows positive correlation between MnO2 and Al2O3 whereas it is negative between Fe2O3 and SiO2. Paratacamite is the most common secondary copper mineral that fills fractures and post-dates FeOH and MnOH. It is believed that Cl- in the structure of paratacamite represents inherited marine storage rather than from surfacial evaporates or meteoric water. The mineralogy of slags suggests a complicated mineral assemblage that includes native Cu prills, synthetic spinifixed Mn-rich amphiboles with 16.73 wt% MnO, brown glass and Ca-Mn-Fe phase close to the olivine structure. EMPA indicate that the some Cu prills have either grey discontinuous boarder zone of S-rich Mn-Cu alloy (with up to 21.95 wt% S and 19.45 wt% Mn) or grey Cu-Mn-Fe alloy (with up to 15.9 wt% Cu, 39. 12 wt% Mn and 61.64 wt% Fe). Mn in the Cu prills is expelled inward as Cu-Mn-Fe alloy inclusions whereas S is expelled
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arumugam, M.; Ravindranath, M.H.
1987-10-01
In the decapod crustaceans copper is distributed in various tissues. In these animals the tissue copper generally exists in four forms; ionic, bound to proteins, lipids and membrane. In the estuarine crab Scylla serrata, the haemolymph copper exists only in association with proteins, whereas in the hepatopancreas it exists in all the four forms and in gills it exists in all the forms except in combination with lipids. Although food is the major source of copper in decapod crustaceans evidence indicate that copper may be directly obtained from the environment. It was postulated earlier that in Scylla serrata the haemolymphmore » and hepatopancreas may be involved in copper regulation. In the present work the authors have studied the nature and levels of copper in different tissues after exposing the crabs to copper-rich medium. The results indicate the relative importance of various tissues in accumulation an the possible mechanisms of regulation of the environmental copper. Besides, as a pre-requisite for studies of this kind, the toxic levels for different forms of copper were estimated since the form of toxicant is known to influence the toxicity to the decapod crustaceans.« less
Improved Electroformed Structural Copper and Copper Alloys
NASA Technical Reports Server (NTRS)
Malone, G. A.; Hudson, W.; Babcock, B.; Edwards, R.
1998-01-01
Electroforming offers a superior means for fabricating internally cooled heat exchangers and structures subjected to thermal environments. Copper is deposited from many such applications because of the good thermal conductivity. It suffers from mediocre yield strength as a structural material and loses mechanical strength at intermediate temperatures. Mechanical properties similar to those of electroformed nickel are desired. Phase 1 examined innovative means to improve deposited copper structural performance. Yield strengths as high as 483 MPa (70 ksi) were obtained with useful ductility while retaining a high level of purity essential to good thermal conductivity. Phase 2 represents a program to explore new additive combinations in copper electrolytes to produce a more fine, equiaxed grain which can be thermally stabilized by other techniques such as alloying in modest degrees and dispersion strengthening. Evaluation of new technology - such as the codeposition of fullerness (diamond-like) particles were made to enhance thermal conductivity in low alloys. A test fire quality tube-bundle engine was fabricated using these copper property improvement concepts to show the superiority of the new coppers and fabrications methods over competitive technologies such as brazing and plasma deposition.
Stanin, S. Anthony; Wahid, M.A.; Khan, Shamsher
1975-01-01
Showings of magnetite, copper, and possible nickel mineralization in the Hindubagh chromite mining district are near Wulgai and Tor Tangi. Several hundred samples of clastic material from dry streambeds in these areas were sieved for the minus-80-mesh fraction and analyzed for copper using 2, 2'-biquinoline and for nickel using alpha-furildioxime. The copper threshold is 75 ppm, and the nickel threshold is 400 ppm. A geochemical map has been prepared that shows nine areas of anomalously high copper and six areas of high nickel. The nickel anomalies may represent secondary dispersion patterns derived from the erosion of nickeliferous ultramafic rocks of the Hindubagh intrusive complex. Copper showings in and near four of the anomalous copper areas indicate that detailed geological investigation and detailed geochemical sampling of rocks, soil, and unconsolidated clastic material are required to determine the source of the anomalies.
Helium Ion Secondary Electron Mode Microscopy For Interconnect Material Imaging
NASA Astrophysics Data System (ADS)
Ogawa, Shinichi; Thompson, William; Stern, Lewis; Scipioni, Larry; Notte, John; Farkas, Lou; Barriss, Louise
2010-04-01
The recently developed helium ion microscope (HIM) is now capable of 0.35 nm secondary electron (SE) mode image resolution. When low-k dielectrics or copper interconnects in ultra large scale integrated circuits (ULSI) interconnect structures were imaged in this mode, it was found that unique pattern dimension and fidelity information at sub-nanometer resolution was available for the first time. This paper will discuss the helium ion microscope architecture and the SE imaging techniques that make the HIM observation method of particular value to the low-k dielectric and dual damascene copper interconnect technologies.
Cocco, Pierluigi; Fadda, Domenica; Atzeri, Sergio; Avataneo, Giuseppe; Meloni, Michele; Flore, Costantino
2007-01-01
Objective To assess, by updating a follow‐up mortality study of a lead smelters cohort in Sardinia, Italy, the adverse health effects following occupational lead exposure in relation to the glucose‐6‐phosphate dehydrogenase (G6PD) polymorphism. Method The 1973–2003 mortality of 1017 male lead smelters were followed‐up, divided into two subcohorts according to the G6PD phenotype: whether G6PD deficient (G6PD−) or wild‐type (wtG6PD). Deaths observed in the overall cohort and the two subcohorts were compared with those expected, on the basis of the age‐, sex‐ and calendar year‐specific mortality in the general male population of the island. Directly standardised mortality rates (sr) in the two subcohorts were also compared. Results Cardiovascular mortality was strongly reduced among production and maintenance workers, which is most related to the healthy worker effect. However, the sr for cardiovascular diseases was substantially lower among the G6PD− subcohort (5.0×10−4) than among the wtG6PD subcohort (33.6×10−4; χ2 = 1.10; p = NS). Neoplasms of the haemopoietic system exceeded the expectation in the G6PD− subcohort (SMR = 388; 95% CI 111 to 1108). No other cancer sites showed any excess in the overall cohort or in the two subcohorts. No death from haemolytic anaemia occurred in the G6PD− subcohort. Conclusion With due consideration of the limited statistical power of our study, previous results suggesting that in workplaces where exposure is under careful control, expressing the G6PD− phenotype does not convey increased susceptibility to lead toxicity are confirmed. The observed excess risk of haematopoietic malignancies seems to have most likely resulted from chance. PMID:17182638
Li, Xinyu; Li, Zhonggen; Lin, Che-Jen; Bi, Xiangyang; Liu, Jinling; Feng, Xinbin; Zhang, Hua; Chen, Ji; Wu, Tingting
2018-06-04
Smelting of nonferrous metals is an important source of heavy metals in surface soil. The crops/vegetables grown on contaminated soil potentially impose adverse effects on human health. In this study, the contamination level of five heavy metals (Hg, Pb, Zn, Cd and Cu) in ten types of vegetables grown nearby a large scale Pb/Zn smelter in Hunan Province, China and the health risk associated with their consumption are assessed. Based on the data obtained from 52 samples, we find that Pb and Cd contributed to the greatest health risk and leafy vegetables tend to be more contaminated than non-leafy vegetables. Within 4 km radius of the smelter, over 75% of vegetable samples exceeded the national food standard for Pb; over 47% exceeded the Cd standard; and 7% exceeded the Hg standard. Heavy metal concentrations in vegetables measured within the 4 km radius are on average three times more elevated compared to those found at the control area 15 km away. Heavy metals in vegetables have dual sources of root absorption from soil and leaf adsorption from atmosphere. Health risk in terms of the hazard index (HI) at contaminated areas are 3.66 and 3.14 for adults and children, respectively, suggesting adverse health effects would occur. HI for both groups are mainly contributed by Pb (48%) and Cd (40%). Fortunately, vegetable samples collected at the control area are considered safe to consume. Copyright © 2018 Elsevier Inc. All rights reserved.
Oxidation kinetics of molten copper sulfide
NASA Astrophysics Data System (ADS)
Alyaser, A. H.; Brimacombe, J. K.
1995-02-01
The oxidation kinetics of molten Cu2S baths, during top lancing with oxygen/nitrogen (argon) mixtures, have been investigated as a function of oxygen partial pressure (0.2 to 0.78), bath temperature (1200 °C to 1300 °C), gas flow rate (1 to 4 L/min), and bath mixing. Surface-tension-driven flows (the Marangoni effect) were observed both visually and photographically. Thus, the oxidation of molten Cu2S was found to progress in two distinct stages, the kinetics of which are limited by the mass transfer of oxygen in the gas phase to the melt surface. During the primary stage, the melt is partially desulfurized while oxygen dissolves in the liquid sulfide. Upon saturation of the melt with oxygen, the secondary stage commences in which surface and bath reactions proceed to generate copper and SO2 electrochemically. A mathematical model of the reaction kinetics has been formulated and tested against the measurements. The results of this study shed light on the process kinetics of the copper blow in a Peirce-Smith converter or Mitsubishi reactor.
[Electrical burns suffered by copper thieves].
Belmir, R; Fejjal, N; Achbouk, H; El Mazouz, S; Gharib, N; Abassi, A; Belmahi, A
2011-06-30
Thefts of copper appear to have been on the increase for some time owing to its high resale price. This has led to an increase in the number of high-voltage electrical accidents (HVEA). Such accidents are very serious because they cause deep burns along the neurovascular axis. A report is presented describing a series of nine patients presenting HVEA admitted to the Ibn Sina Hospital Plastic Surgery and Burns Division in Rabat, Morocco, with a study of the epidemiological, clinical, and therapeutic aspects. The patients all belonged to the young and active sector of the population. The burns were secondary to contact with high-voltage cables occurring during the attempted stealing of copper by stripping electric conductors in transformers (67% of the cases) and in attempts to cut overhead lines supplying electric trains on the railway network (33%). Electrothermal treatment of the lesions required repeated surgery with amputation and disarticulation of necrotic limb segments (67% of the cases), the consequences of which were marked by disabling functional sequelae. Preventing this type of HVEA remains fundamental.
NASA Astrophysics Data System (ADS)
Kříbek, B.; Majer, V.; Knésl, I.; Nyambe, I.; Mihaljevič, M.; Ettler, V.; Sracek, O.
2014-11-01
The concentrations of arsenic (As), copper (Cu), cobalt (Co), lead (Pb) and zinc (Zn) in washed leaves and washed and peeled tubers of cassava (Manihot esculenta Crantz, Euphorbiaceae) growing on uncontaminated and contaminated soils of the Zambian Copperbelt mining district have been analyzed. An enrichment index (EI) was used to distinguish between contaminated and uncontaminated areas. This index is based on the average ratio of the actual and median concentration of the given contaminants (As, Co, Cu, mercury (Hg), Pb and Zn) in topsoil. The concentrations of copper in cassava leaves growing on contaminated soils reach as much as 612 mg kg-1 Cu (total dry weight [dw]). Concentrations of copper in leaves of cassava growing on uncontaminated soils are much lower (up to 252 mg kg-1 Cu dw). The concentrations of Co (up to 78 mg kg-1 dw), As (up to 8 mg kg-1 dw) and Zn (up to 231 mg kg-1 dw) in leaves of cassava growing on contaminated soils are higher compared with uncontaminated areas, while the concentrations of lead do not differ significantly. The concentrations of analyzed chemical elements in the tubers of cassava are much lower than in its leaves with the exception of As. Even in strongly contaminated areas, the concentrations of copper in the leaves and tubers of cassava do not exceed the daily maximum tolerance limit of 0.5 mg kg-1/human body weight (HBW) established by the Joint FAO/WHO Expert Committee on Food Additives (JECFA). The highest tolerable weekly ingestion of 0.025 mg kg-1/HBW for lead and the highest tolerable weekly ingestion of 0.015 mg kg-1/HBW for arsenic are exceeded predominantly in the vicinity of smelters. Therefore, the preliminary assessment of dietary exposure to metals through the consumption of uncooked cassava leaves and tubers has been identified as a moderate hazard to human health. Nevertheless, as the surfaces of leaves are strongly contaminated by metalliferous dust in the polluted areas, there is still a potential hazard
Tear copper and its association with liver copper concentrations in six adult ewes.
Schoster, J V; Stuhr, C; Kiorpes, A
1995-01-01
Tear and liver copper concentrations from 6 clinically healthy adult mixed-breed ewes were measured by Atomic Absorption Electrothermal Atomization (graphite furnace) Spectrometry and Flame Absorption Spectrometry, respectively, 7 times over 227 d to determine if their tears contained copper and if so, whether tear copper concentrations could reliably predict liver copper concentrations. To produce changes in liver copper concentration, the diet was supplemented with copper at concentrations that increased from 23 mg to 45 mg Cu/kg feed/day/sheep during the study. This regimen raised liver copper for all sheep to potentially toxic hepatic tissue concentration of greater than 500 mg/kg dry (DM) matter (tissue). The results of the study showed that copper was present in the tears of all sheep. The mean tear copper concentration showed a positive correlation with liver copper concentration (P = 0.003), increasing from 0.07 mg/kg DM at the start to 0.44 mg/kg DM at the end of the study, but could not reliably predict liver copper concentration (R2 = 0.222). PMID:7648525
NASA Astrophysics Data System (ADS)
Ettler, Vojtech; Tomasova, Zdenka; Komarek, Michael; Mihaljevic, Martin; Sebek, Ondrej
2015-04-01
In soil systems, manganese (Mn) oxides are commonly found to be powerful sorbents of metals and metalloids and are thus potentially useful in soil remediation. A novel amorphous manganese oxide (AMO) and a Pb smelter-polluted agricultural soil amended with the AMO and incubated for 2 and 6 months were subjected to a pH-static leaching procedure (pH = 3 - 8) to verify the chemical stabilization effect on metals and metalloids. The AMO stability in pure water was pH-dependent with the highest Mn release at pH 3 (47% dissolved) and the lowest at pH 8 (0.14% dissolved). Secondary rhodochrosite (MnCO3) was formed at the AMO surfaces at pH > 5. The AMO dissolved significantly less after 6 months of incubation. Sequential extraction analysis indicated that "labile" fraction of As, Pb and Sb in soil significantly decreased after AMO amendment. The pH-static experiments indicated that no effect on leaching was observed for Cd and Zn after AMO treatments, whereas the leaching of As, Cu, Pb and Sb decreased down to 20%, 35%, 7% and 11% of the control, respectively. The remediation efficiency was more pronounced under acidic conditions and the time of incubation generally led to increased retention of the targeted contaminants. The AMO was found to be a promising agent for the chemical stabilization of polluted soils and other in situ applications need to be evaluated. This study was supported by the Czech Science Foundation (GAČR 15-07117S).
Copper-containing zeolite catalysts
Price, G.L.; Kanazirev, V.
1996-12-10
A catalyst useful in the conversion of nitrogen oxides or in the synthesis of nitriles or imines from amines, is formed by preparing an intimate mechanical mixture of a copper (II)-containing species, such as CuO or CuCl{sub 2}, or elemental copper, with a zeolite having a pore mouth comprising 10 oxygen atoms, such as ZSM-5, converting the elemental copper or copper (II) to copper (I), and driving the copper (I) into the zeolite.
Copper-containing zeolite catalysts
Price, Geoffrey L.; Kanazirev, Vladislav
1996-01-01
A catalyst useful in the conversion of nitrogen oxides or in the synthesis of nitriles or imines from amines, formed by preparing an intimate mechanical mixture of a copper (II)-containing species, such as CuO or CuCl.sub.2, or elemental copper, with a zeolite having a pore mouth comprising 10 oxygen atoms, such as ZSM-5, converting the elemental copper or copper (II) to copper (I), and driving the copper (I) into the zeolite.
The role of copper in the manufacture of Finnish Emmental cheese.
Mato Rodriguez, L; Ritvanen, T; Joutsjoki, V; Rekonen, J; Alatossava, T
2011-10-01
The effects of added copper in the manufacture of Finnish Emmental cheese were studied. Consequently, cheeses were produced with or without the copper supplement and a facultative heterofermentative strain, Lactobacillus rhamnosus Lc705, which is currently utilized as a protective culture in large-scale manufacture in Finland. Cheeses were examined at 1, 7, 30, 60, and 90 d from the microbiological, chemical, and sensory points of view. Organic acid production was affected by the presence of copper in the cheeses. The addition of copper to cheesemilk increased the level of primary proteolysis and slowed secondary proteolysis as measured by nitrogen content in different extracts after citrate fractionation of cheeses, in pH 4.4-soluble nitrogen and 5% phosphotungstic acid-soluble nitrogen, respectively. The presence of copper appears to positively regulate the sensory characteristics of the cheese produced in our conditions; in particular, consistency was affected significantly. The role of the Lb. rhamnosus Lc705 protective strain has not been shown to have important effects on most of the parameters that influence the final quality of the cheeses. Although the traditional plating systems for revealing bacterial populations during cheese manufacture did not reveal any drastic differences caused by the presence of copper, the results from chemical and sensory analyses suggest that its use plays a significant role in the regulation of bacterial physiological and biochemical activities, which in turn affect the sensory quality of Emmental cheese. Copyright © 2011 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Industrial Tests to Modify Molten Copper Slag for Improvement of Copper Recovery
NASA Astrophysics Data System (ADS)
Guo, Zhengqi; Zhu, Deqing; Pan, Jian; Zhang, Feng; Yang, Congcong
2018-04-01
In this article, to improve the recovery of copper from copper slag by flotation process, industrial tests of the modification process involving addition of a composite additive into molten copper slag were conducted, and the modified slag was subjected to the flotation process to confirm the modification effect. The phase evolution of the slag in the modification process was revealed by thermodynamic calculations, x-ray diffraction, optical microscopy and scanning electron microscopy. The results show that more copper was transformed and enriched in copper sulfide phases. The magnetite content in the modified slag decreased, and that of "FeO" increased correspondingly, leading to a better fluidity of the molten slag, which improved the aggregation and growth of fine particles of the copper sulfide minerals. Closed-circuit flotation tests of the original and modified slags were conducted, and the results show that the copper recovery increased obviously from 69.15% to 73.38%, and the copper grade of concentrates was elevated slightly from 20.24% to 21.69%, further confirming that the industrial tests of the modification process were successful. Hence, the modification process has a bright future in industrial applications for enhancing the recovery of copper from the copper slag.
40 CFR 421.296 - Pretreatment standards for new sources.
Code of Federal Regulations, 2010 CFR
2010-07-01
... GUIDELINES AND STANDARDS NONFERROUS METALS MANUFACTURING POINT SOURCE CATEGORY Secondary Tin Subcategory... wastewater pollutants in secondary tin process wastewater introduced into a POTW shall not exceed the following values: (a) Tin smelter SO2 scrubber. PSNS for the Secondary Tin Subcategory Pollutant or...
40 CFR 421.296 - Pretreatment standards for new sources.
Code of Federal Regulations, 2012 CFR
2012-07-01
... GUIDELINES AND STANDARDS NONFERROUS METALS MANUFACTURING POINT SOURCE CATEGORY Secondary Tin Subcategory... wastewater pollutants in secondary tin process wastewater introduced into a POTW shall not exceed the following values: (a) Tin smelter SO2 scrubber. PSNS for the Secondary Tin Subcategory Pollutant or...
40 CFR 421.296 - Pretreatment standards for new sources.
Code of Federal Regulations, 2011 CFR
2011-07-01
... GUIDELINES AND STANDARDS NONFERROUS METALS MANUFACTURING POINT SOURCE CATEGORY Secondary Tin Subcategory... wastewater pollutants in secondary tin process wastewater introduced into a POTW shall not exceed the following values: (a) Tin smelter SO2 scrubber. PSNS for the Secondary Tin Subcategory Pollutant or...
40 CFR 421.296 - Pretreatment standards for new sources.
Code of Federal Regulations, 2014 CFR
2014-07-01
... GUIDELINES AND STANDARDS NONFERROUS METALS MANUFACTURING POINT SOURCE CATEGORY Secondary Tin Subcategory... wastewater pollutants in secondary tin process wastewater introduced into a POTW shall not exceed the following values: (a) Tin smelter SO2 scrubber. PSNS for the Secondary Tin Subcategory Pollutant or...
40 CFR 421.296 - Pretreatment standards for new sources.
Code of Federal Regulations, 2013 CFR
2013-07-01
... GUIDELINES AND STANDARDS NONFERROUS METALS MANUFACTURING POINT SOURCE CATEGORY Secondary Tin Subcategory... wastewater pollutants in secondary tin process wastewater introduced into a POTW shall not exceed the following values: (a) Tin smelter SO2 scrubber. PSNS for the Secondary Tin Subcategory Pollutant or...
ATP7B mediates vesicular sequestration of copper: insight into biliary copper excretion.
Cater, Michael A; La Fontaine, Sharon; Shield, Kristy; Deal, Yolanda; Mercer, Julian F B
2006-02-01
The Wilson protein (ATP7B) regulates levels of systemic copper by excreting excess copper into bile. It is not clear whether ATP7B translocates excess intrahepatic copper directly across the canalicular membrane or sequesters this copper into exocytic vesicles, which subsequently fuse with canalicular membrane to expel their contents into bile. The aim of this study was to clarify the mechanism underlying ATP7B-mediated copper detoxification by investigating endogenous ATP7B localization in the HepG2 hepatoma cell line and its ability to mediate vesicular sequestration of excess intracellular copper. Immunofluorescence microscopy was used to investigate the effect of copper concentration on the localization of endogenous ATP7B in HepG2 cells. Copper accumulation studies to determine whether ATP7B can mediate vesicular sequestration of excess intracellular copper were performed using Chinese hamster ovary cells that exogenously expressed wild-type and mutant ATP7B proteins. In HepG2 cells, elevated copper levels stimulated trafficking of ATP7B to pericanalicular vesicles and not to the canalicular membrane as previously reported. Mutation of an endocytic retrieval signal in ATP7B caused the protein to constitutively localize to vesicles and not to the plasma membrane, suggesting that a vesicular compartment(s) is the final trafficking destination for ATP7B. Expression of wild-type and mutant ATP7B caused Chinese hamster ovary cells to accumulate copper in vesicles, which subsequently undergo exocytosis, releasing copper across the plasma membrane. This report provides compelling evidence that the primary mechanism of biliary copper excretion involves ATP7B-mediated vesicular sequestration of copper rather than direct copper translocation across the canalicular membrane.
NASA Astrophysics Data System (ADS)
Yamane, Luciana Harue; Espinosa, Denise Crocce Romano; Tenório, Jorge Alberto Soares
Printed circuit boards are found in all electric and electronic equipment and are particularly problematic to recycle because of the heterogeneous mix of organic material, metals, and fiberglass. Additionally, printed circuit boards can be considered a secondary source of copper and bacterial leaching can be applied to copper recovery. This study investigated the influence of initial concentration of ferrous iron on bacterial leaching to recover copper from printed circuit boards using Acidithiobacillus ferrooxidans-LR. Printed circuit boards from computers were comminuted using a hammer mill. The powder obtained was magnetically separated and the non magnetic material used in this study. A shake flask study was carried out on the non magnetic material using a rotary shaker at 30°C, 170 rpm and different initial concentrations of ferrous iron (gL-1): 6.75; 13.57 and 16.97. Abiotic controls were also run in parallel. The monitored parameters were pH, Eh, ferrous iron concentration and copper extraction (spectroscopy of atomic absorption). The results showed that using initial concentration of ferrous iron of 6.75gL-1 were extracted 99% of copper by bacterial leaching.
Ettler, Vojtěch; Tomášová, Zdeňka; Komárek, Michael; Mihaljevič, Martin; Šebek, Ondřej; Michálková, Zuzana
2015-04-09
An amorphous manganese oxide (AMO) and a Pb smelter-polluted agricultural soil amended with the AMO and incubated for 2 and 6 months were subjected to a pH-static leaching procedure (pH 3-8) to verify the chemical stabilization effect on metals and metalloids. The AMO stability in pure water was pH-dependent with the highest Mn release at pH 3 (47% dissolved) and the lowest at pH 8 (0.14% dissolved). Secondary rhodochrosite (MnCO3) was formed at the AMO surfaces at pH>5. The AMO dissolved significantly less after 6 months of incubation. Sequential extraction analysis indicated that "labile" fraction of As, Pb and Sb in soil significantly decreased after AMO amendment. The pH-static experiments indicated that no effect on leaching was observed for Cd and Zn after AMO treatments, whereas the leaching of As, Cu, Pb and Sb decreased down to 20%, 35%, 7% and 11% of the control, respectively. The remediation efficiency was more pronounced under acidic conditions and the time of incubation generally led to increased retention of the targeted contaminants. The AMO was found to be a promising agent for the chemical stabilization of polluted soils. Copyright © 2015 Elsevier B.V. All rights reserved.
Kropat, Janette; Gallaher, Sean D.; Urzica, Eugen I.; Nakamoto, Stacie S.; Strenkert, Daniela; Tottey, Stephen; Mason, Andrew Z.; Merchant, Sabeeha S.
2015-01-01
Inorganic elements, although required only in trace amounts, permit life and primary productivity because of their functions in catalysis. Every organism has a minimal requirement of each metal based on the intracellular abundance of proteins that use inorganic cofactors, but elemental sparing mechanisms can reduce this quota. A well-studied copper-sparing mechanism that operates in microalgae faced with copper deficiency is the replacement of the abundant copper protein plastocyanin with a heme-containing substitute, cytochrome (Cyt) c6. This switch, which is dependent on a copper-sensing transcription factor, copper response regulator 1 (CRR1), dramatically reduces the copper quota. We show here that in a situation of marginal copper availability, copper is preferentially allocated from plastocyanin, whose function is dispensable, to other more critical copper-dependent enzymes like Cyt oxidase and a ferroxidase. In the absence of an extracellular source, copper allocation to Cyt oxidase includes CRR1-dependent proteolysis of plastocyanin and quantitative recycling of the copper cofactor from plastocyanin to Cyt oxidase. Transcriptome profiling identifies a gene encoding a Zn-metalloprotease, as a candidate effecting copper recycling. One reason for the retention of genes encoding both plastocyanin and Cyt c6 in algal and cyanobacterial genomes might be because plastocyanin provides a competitive advantage in copper-depleted environments as a ready source of copper. PMID:25646490
Goecke, Paul; Ginocchio, Rosanna; Mench, Michel; Neaman, Alexander
2011-07-01
The Puchuncaví valley, central Chile, has been exposed to aerial emissions from a copper smelter. Nowadays, soils in the surroundings are sparsely-vegetated, acidic, and metal-contaminated, and their remediation is needed to reduce environmental risks. We assessed effectiveness of lime, fly ash, compost, and iron grit as amendments to immobilize Cu in soils and promote plant growth. Amended soils were cultivated with Lolium perenne for 60 days under controlled conditions. Total dissolved Cu and Cu2+ activity in the soil solution, ryegrass biomass, and Cu accumulation in plant tissues were measured. Addition of lime and fly ash decreased Cu concentrations and Cu2+ activity in the soil solution, increased plant biomass, and reduced shoot Cu concentration below 22 mg kg(-1) (the phytotoxicity threshold for the species). The most effective amendment with respect to the shoot biomass yield was a combination of lime and compost. Water content of the substrate and the K accumulation were positively correlated with the compost application rate. Compost combined with iron grit decreased dissolved Cu concentrations during the period of highest solubility, i.e., during the first 60 days after the compost application. However, iron grit incorporation into soils amended with lime and compost decreased the shoot biomass of ryegrass.
Yang, Lili; Liu, Guorui; Zheng, Minghui; Jin, Rong; Zhu, Qingqing; Zhao, Yuyang; Zhang, Xian; Xu, Yang
2017-02-15
Metallurgical plants are important sources of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs), polychlorinated biphenyls (PCBs) and polychlorinated naphthalenes (PCNs). It is significant to evaluate the air levels and human risks of PCDD/Fs, PCBs and PCNs in metallurgical plants considering their adverse effects on human health and thousands of metallurgical plants being in operation in China. The estimated inhalation intakes of PCDD/Fs, PCBs, and PCNs together in eight iron ore sintering plants, three secondary copper plants, four secondary aluminum plants, and one secondary lead plant were 4.9-213.4, 21.4-4026.4, 28.7-630, and 11.7fgTEQkg -1 day -1 , respectively, and the corresponding cancer risks were estimated to be 8.7×10 -7 to 3.8×10 -5 , 5.1×10 -6 to 1.1×10 -4 , 3.8×10 -6 to 7.1×10 -4 , and 2.1×10 -6 , respectively. The estimated cancer risk were higher than 100 per million people for three secondary aluminum and copper smelters among the sixteen metallurgical plants, indicating high cancer risks. Stack gas samples from metallurgical plants were also collected and analyzed for comparing their emission profiles with that of air samples. The comparison of PCDD/F, PCB and PCN profiles between air samples and stack gas samples by similarity calculation and principal component analysis suggested the influence of stack gas emissions from metallurgical plants on surrounding air. These results are helpful for understanding the exposure risk to PCDD/Fs, PCBs and PCNs in numerous metallurgical plants being operation in China. Copyright © 2016 Elsevier B.V. All rights reserved.
Putting copper into action: copper-impregnated products with potent biocidal activities.
Borkow, Gadi; Gabbay, Jeffrey
2004-11-01
Copper ions, either alone or in copper complexes, have been used for centuries to disinfect liquids, solids, and human tissue. Today copper is used as a water purifier, algaecide, fungicide, nematocide, molluscicide, and antibacterial and antifouling agent. Copper also displays potent antiviral activity. We hypothesized that introducing copper into clothing, bedding, and other articles would provide them with biocidal properties. A durable platform technology has been developed that introduces copper into cotton fibers, latex, and other polymeric materials. This study demonstrates the broad-spectrum antimicrobial (antibacterial, antiviral, antifungal) and antimite activities of copper-impregnated fibers and polyester products. This technology enabled the production of antiviral gloves and filters (which deactivate HIV-1 and other viruses), antibacterial self-sterilizing fabrics (which kill antibiotic-resistant bacteria, including methicillin-resistant Staphylococcus aureus and vancomycin-resistant Enterococci), antifungal socks (which alleviate symptoms of athlete's foot), and anti-dust mite mattress covers (which reduce mite-related allergies). These products did not have skin-sensitizing properties, as determined by guine pig maximization and rabbit skin irritation tests. Our study demonstrates the potential use of copper in new applications. These applications address medical issues of the greatest importance, such as viral transmissions; nosocomial, or healthcare-associated, infections; and the spread of antibiotic-resistant bacteria.
Chun, Haarin; Sharma, Anuj Kumar; Lee, Jaekwon; Chan, Jefferson; Jia, Shang; Kim, Byung-Eun
2017-01-06
Copper plays key catalytic and regulatory roles in biochemical processes essential for normal growth, development, and health. Defects in copper metabolism cause Menkes and Wilson's disease, myeloneuropathy, and cardiovascular disease and are associated with other pathophysiological states. Consequently, it is critical to understand the mechanisms by which organisms control the acquisition, distribution, and utilization of copper. The intestinal enterocyte is a key regulatory point for copper absorption into the body; however, the mechanisms by which intestinal cells transport copper to maintain organismal copper homeostasis are poorly understood. Here, we identify a mechanism by which organismal copper homeostasis is maintained by intestinal copper exporter trafficking that is coordinated with extraintestinal copper levels in Caenorhabditis elegans Specifically, we show that CUA-1, the C. elegans homolog of ATP7A/B, localizes to lysosome-like organelles (gut granules) in the intestine under copper overload conditions for copper detoxification, whereas copper deficiency results in a redistribution of CUA-1 to basolateral membranes for copper efflux to peripheral tissues. Worms defective in gut granule biogenesis exhibit defects in copper sequestration and increased susceptibility to toxic copper levels. Interestingly, however, a splice isoform CUA-1.2 that lacks a portion of the N-terminal domain is targeted constitutively to the basolateral membrane irrespective of dietary copper concentration. Our studies establish that CUA-1 is a key intestinal copper exporter and that its trafficking is regulated to maintain systemic copper homeostasis. C. elegans could therefore be exploited as a whole-animal model system to study regulation of intra- and intercellular copper trafficking pathways. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.
40 CFR 421.295 - Pretreatment standards for existing sources.
Code of Federal Regulations, 2013 CFR
2013-07-01
...) EFFLUENT GUIDELINES AND STANDARDS NONFERROUS METALS MANUFACTURING POINT SOURCE CATEGORY Secondary Tin... existing sources. The mass of wastewater pollutants in secondary tin process wastewater introduced into a POTW must not exceed the following values: (a) Tin smelter SO2 scrubber. PSES for the Secondary Tin...
40 CFR 421.295 - Pretreatment standards for existing sources.
Code of Federal Regulations, 2012 CFR
2012-07-01
...) EFFLUENT GUIDELINES AND STANDARDS NONFERROUS METALS MANUFACTURING POINT SOURCE CATEGORY Secondary Tin... existing sources. The mass of wastewater pollutants in secondary tin process wastewater introduced into a POTW must not exceed the following values: (a) Tin smelter SO2 scrubber. PSES for the Secondary Tin...
40 CFR 421.295 - Pretreatment standards for existing sources.
Code of Federal Regulations, 2014 CFR
2014-07-01
...) EFFLUENT GUIDELINES AND STANDARDS NONFERROUS METALS MANUFACTURING POINT SOURCE CATEGORY Secondary Tin... existing sources. The mass of wastewater pollutants in secondary tin process wastewater introduced into a POTW must not exceed the following values: (a) Tin smelter SO2 scrubber. PSES for the Secondary Tin...
40 CFR 421.295 - Pretreatment standards for existing sources.
Code of Federal Regulations, 2010 CFR
2010-07-01
...) EFFLUENT GUIDELINES AND STANDARDS NONFERROUS METALS MANUFACTURING POINT SOURCE CATEGORY Secondary Tin... existing sources. The mass of wastewater pollutants in secondary tin process wastewater introduced into a POTW must not exceed the following values: (a) Tin smelter SO2 scrubber. PSES for the Secondary Tin...
40 CFR 421.295 - Pretreatment standards for existing sources.
Code of Federal Regulations, 2011 CFR
2011-07-01
...) EFFLUENT GUIDELINES AND STANDARDS NONFERROUS METALS MANUFACTURING POINT SOURCE CATEGORY Secondary Tin... existing sources. The mass of wastewater pollutants in secondary tin process wastewater introduced into a POTW must not exceed the following values: (a) Tin smelter SO2 scrubber. PSES for the Secondary Tin...
COPPER CORROSION RESEARCH UPDATE
Copper release and corrosion related issues continue to be important to many water systems. The objective of this presentation is to discuss the current state of copper research at the USEPA. Specifically, the role of aging on copper release, use of phosphates for copper corrosio...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Van den Berg, G.J.; de Goeij, J.J.; Bock, I.
1991-08-01
Copper uptake and retention were studied in primary cultures of liver parenchymal cells isolated from copper-deficient rats. Male Sprague-Dawley rats were fed a copper-deficient diet (less than 1 mg Cu/kg) for 10 wk. Copper-deficient rats were characterized by low copper concentrations in plasma and liver, anemia, low plasma ceruloplasmin oxidase activity and increased 64Cu whole-body retention. Freshly isolated liver parenchymal cells from copper-deficient rats showed a higher 64Cu influx, which was associated with a higher apparent Vmax of 45 {plus minus} 4 pmol Cu.mg protein-1.min-1 as compared with 30 {plus minus} 3 pmol Cu.mg protein-1.min-1 for cells isolated from copper-sufficientmore » rats. No significant difference in the apparent Km (approximately 30 mumol/L) was observed. Relative 64Cu efflux from cells from copper-deficient rats was significantly smaller than the efflux from cells from copper-sufficient rats after prelabeling as determined by 2-h efflux experiments. Analysis of the medium after efflux from cells from copper-deficient rats showed elevated protein-associated 64Cu, suggesting a higher incorporation of radioactive copper during metalloprotein synthesis. Effects of copper deficiency persist in primary cultures of parenchymal cells derived from copper-deficient rats, and short-term cultures of these cells offer a prospect for the study of cell biological aspects of the metabolic adaptation of the liver to copper deficiency.« less
Essentiality of copper in humans.
Uauy, R; Olivares, M; Gonzalez, M
1998-05-01
The biochemical basis for the essentiality of copper, the adequacy of the dietary copper supply, factors that condition deficiency, and the special conditions of copper nutriture in early infancy are reviewed. New biochemical and crystallographic evidence define copper as being necessary for structural and catalytic properties of cuproenzymes. Mechanisms responsible for the control of cuproprotein gene expression are not known in mammals; however, studies using yeast as a eukaryote model support the existence of a copper-dependent gene regulatory element. Diets in Western countries provide copper below or in the low range of the estimated safe and adequate daily dietary intake. Copper deficiency is usually the consequence of decreased copper stores at birth, inadequate dietary copper intake, poor absorption, elevated requirements induced by rapid growth, or increased copper losses. The most frequent clinical manifestations of copper deficiency are anemia, neutropenia, and bone abnormalities. Recommendations for dietary copper intake and total copper exposure, including that from potable water, should consider that copper is an essential nutrient with potential toxicity if the load exceeds tolerance. A range of safe intakes should be defined for the general population, including a lower safe intake and an upper safe intake, to prevent deficiency as well as toxicity for most of the population.
Torres-Duarte, Cristina; Ramos-Torres, Karla M; Rahimoff, René; Cherr, Gary N
2017-08-01
The effects of exposure to either soluble copper (copper sulfate) or copper oxide nanoparticles (nano-CuO) during specific early developmental stages of sea urchin embryos were analyzed. Soluble copper caused significant malformations in embryos (skeletal malformations, delayed development or gut malformations) when present at any given stage, while cleavage stage was the most sensitive to nano-CuO exposure causing skeletal malformations and decreased total antioxidant capacity. The stage specificity was linked to higher endocytic activity during the first hours of development that leads to higher accumulation of copper in specific cells critical for development. Results indicate that nano-CuO results in higher accumulation of copper inside of embryos and this intracellular copper is more persistent as compared to soluble copper. The possible implications later in development are discussed. Copyright © 2017 Elsevier B.V. All rights reserved.
Lead in human blood and milk from nursing women living near a smelter in Mexico City.
Namihira, D; Saldivar, L; Pustilnik, N; Carreón, G J; Salinas, M E
1993-03-01
Lead levels in breast milk and blood were determined in women living within a 200-m radius of 3 smelters in Mexico City. All samples were analyzed on a Perkin Elmer 460 atomic absorption spectrometer equipped with HGA 2200. The mean blood lead level was 45.88 micrograms/dl (SD 19.88 microgram/dl), and the geometric mean of milk lead level was 2.47 micrograms/100 ml. The correlation coefficient of these two variables was 0.88. Using the mean value of lead found in breast milk, an infant of 5.5 kg would ingest 8.1 micrograms/kg/d in his diet. The daily permissible intake (DPI) established by the World Health Organization (WHO) in 1972 for an adult is 5.0 micrograms/kg/d.
Annual Copper Mountain Conferences on Multigrid and Iterative Methods, Copper Mountain, Colorado
DOE Office of Scientific and Technical Information (OSTI.GOV)
McCormick, Stephen F.
This project supported the Copper Mountain Conference on Multigrid and Iterative Methods, held from 2007 to 2015, at Copper Mountain, Colorado. The subject of the Copper Mountain Conference Series alternated between Multigrid Methods in odd-numbered years and Iterative Methods in even-numbered years. Begun in 1983, the Series represents an important forum for the exchange of ideas in these two closely related fields. This report describes the Copper Mountain Conference on Multigrid and Iterative Methods, 2007-2015. Information on the conference series is available at http://grandmaster.colorado.edu/~copper/.
NASA Astrophysics Data System (ADS)
Marselina, M.; Roosmini, D.; Salami, I. R. S.; Ayu A, M.; Cahyadi, W.
2016-03-01
Respirable particulate exposure strongly affects human health, especially for children who lived around industrial area. This study was conducted to evaluate the effect of respirable particulate exposure to lung capacity of children. Study location in this study was Parung Panjang District, area of lead smelter industry and also in Astana Anyar District, area of e-waste processing industry. Thirty children were involved in Astana Anyar District and also thirty children in Parung Panjang District. The control groups were also studied in both areas. Predicted average daily intake (ADD) of respirable particulate was estimated and lung or respiration condition of children was measured by using spirometer. The lung condition of respondents was estimated by FEV1.0 and FVC values. As the result, the predicted ADD of children in lead smelter area is 3 times higher than the predicted ADD of children in e-waste processing area. It was correlated positively with the higher PM2.5 concentration in Parung Panjang District than the PM2.5 concentration in Astana Anyar District. Metals concentration in Parung Panjang was also measured with X-Ray Fluorescence (XRF) in this study and it was clearly state that metals concentration in location study were higher than metals concentration in control area.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matte, T.D.; Burr, G.A.
1989-12-01
In response to a request from the Jamaican Ministry of Health, a study was made of possible health hazards existing due to the operation of a secondary lead smelter in Saint Catherine Parish, Jamaica. Emission controls at the site were upgraded in 1974. A cottage industry of clandestine backyard smelters was also in operation in the area. The survey investigated the health of residents in 58 households in the Red Pond Road community and 21 households in Ebony Vale. Soil lead levels in Red Pond exceeded 500 parts per million at 24% of the households tested. Ten paint samples takenmore » from Red Pond homes exceeded 1% lead by weight. The geometric mean blood lead level of those tested in Red Pond was more than twice the level found in those tested in Ebony Vale. Forty four percent of the children under 6 years of age in Red Pond had blood lead levels above 25 micrograms/deciliter. Soil lead contamination was the strongest predictor of blood lead levels among the Red Pond subjects under 12 years of age. Lead smelter work was an important predictor in the older subjects. The authors conclude that the backyard smelters in combination with the secondary smelter caused a high lead poisoning risk for area residents. The authors recommend that residents stop the backyard smelting operations, and that efforts be made to reduce exposure through hazard abatement, education, and establishment of clean play areas for children.« less
P. M. Stokes; T. C. Hutchinson
1976-01-01
The Sudbury basin, Ontario is the source of more than 60% of the free world's nickel and is also a major producer of copper, iron, cobalt and other metals. The sulfur dioxide and particulate discharge from the Sudbury smelters have been described and discussed in a number of publications and information will also be presented at the present conference.
Secondary pool boiling effects
NASA Astrophysics Data System (ADS)
Kruse, C.; Tsubaki, A.; Zuhlke, C.; Anderson, T.; Alexander, D.; Gogos, G.; Ndao, S.
2016-02-01
A pool boiling phenomenon referred to as secondary boiling effects is discussed. Based on the experimental trends, a mechanism is proposed that identifies the parameters that lead to this phenomenon. Secondary boiling effects refer to a distinct decrease in the wall superheat temperature near the critical heat flux due to a significant increase in the heat transfer coefficient. Recent pool boiling heat transfer experiments using femtosecond laser processed Inconel, stainless steel, and copper multiscale surfaces consistently displayed secondary boiling effects, which were found to be a result of both temperature drop along the microstructures and nucleation characteristic length scales. The temperature drop is a function of microstructure height and thermal conductivity. An increased microstructure height and a decreased thermal conductivity result in a significant temperature drop along the microstructures. This temperature drop becomes more pronounced at higher heat fluxes and along with the right nucleation characteristic length scales results in a change of the boiling dynamics. Nucleation spreads from the bottom of the microstructure valleys to the top of the microstructures, resulting in a decreased surface superheat with an increasing heat flux. This decrease in the wall superheat at higher heat fluxes is reflected by a "hook back" of the traditional boiling curve and is thus referred to as secondary boiling effects. In addition, a boiling hysteresis during increasing and decreasing heat flux develops due to the secondary boiling effects. This hysteresis further validates the existence of secondary boiling effects.
Masaldan, Shashank; Clatworthy, Sharnel A S; Gamell, Cristina; Smith, Zoe M; Francis, Paul S; Denoyer, Delphine; Meggyesy, Peter M; Fontaine, Sharon La; Cater, Michael A
2018-06-01
Cellular senescence is characterized by irreversible growth arrest incurred through either replicative exhaustion or by pro-oncogenic cellular stressors (radioactivity, oxidative stress, oncogenic activation). The enrichment of senescent cells in tissues with age has been associated with tissue dyshomeostasis and age-related pathologies including cancers, neurodegenerative disorders (e.g. Alzheimer's, Parkinson's, etc.) and metabolic disorders (e.g. diabetes). We identified copper accumulation as being a universal feature of senescent cells [mouse embryonic fibroblasts (MEF), human prostate epithelial cells and human diploid fibroblasts] in vitro. Elevated copper in senescent MEFs was accompanied by elevated levels of high-affinity copper uptake protein 1 (Ctr1), diminished levels of copper-transporting ATPase 1 (Atp7a) (copper export) and enhanced antioxidant defence reflected by elevated levels of glutathione (GSH), superoxide dismutase 1 (SOD1) and glutaredoxin 1 (Grx1). The levels of intracellular copper were further increased in senescent MEFs cultured in copper supplemented medium and in senescent Mottled Brindled (Mo br ) MEFs lacking functional Atp7a. Finally, we demonstrated that the restoration/preservation of autophagic-lysosomal degradation in senescent MEFs following rapamycin treatment correlated with attenuation of copper accumulation in these cells despite a further decrease in Atp7a levels. This study for the first time establishes a link between Atp7a and the autophagic-lysosomal pathway, and a requirement for both to effect efficient copper export. Such a connection between cellular autophagy and copper homeostasis is significant, as both have emerged as important facets of age-associated degenerative disease. Copyright © 2018. Published by Elsevier B.V.
Immunotoxicity of copper nanoparticle and copper sulfate in a common Indian earthworm.
Gautam, Arunodaya; Ray, Abhishek; Mukherjee, Soumalya; Das, Santanu; Pal, Kunal; Das, Subhadeep; Karmakar, Parimal; Ray, Mitali; Ray, Sajal
2018-02-01
Copper oxide nanoparticles and copper sulfate are established contaminants of water and soil. Metaphire posthuma is a common variety of earthworm distributed in moist soil of Indian subcontinent. Comparative toxicity of copper nanoparticles and copper sulfate were investigated with reference to selected immune associated parameters of earthworm. Total count, phagocytic response, generation of cytotoxic molecules (superoxide anion, nitric oxide), activities of enzymes like phenoloxidase, superoxide dismutase, catalase, acid phosphatase, alkaline phosphatase and total protein of coelomocytes were estimated under the exposures of 100, 500, 1000mg of copper oxide nanoparticles and copper sulfate per kg of soil for 7 and 14 d. A significant decrease in the total coelomocyte count were recorded with maximum depletion as 15.45 ± 2.2 and 12.5 ± 2 × 10 4 cells/ml under the treatment of 1000mg/kg of copper nanoparticles and copper sulfate for 14 d respectively. A significant decrease in generation of nitric oxide and activity of phenoloxidase were recorded upon exposure of both toxins for 7 and 14 d indicating possible decline in cytotoxic status of the organism. A maximum inhibition of superoxide dismutase activity was recorded as 0.083 ± 0.0039 and 0.055 ± 0.0057 unit/mg protein/minute against 1000mg/kg of copper nanoparticles and copper sulfate treatment for 14 d respectively. Activities of catalase and alkaline phosphatase were inhibited by all experimental concentrations of both toxins in the coelomocytes of earthworm. These toxins were recorded to be modifiers of the major immune associated parameters of M. posthuma. Unrestricted contamination of soil by sulfate and oxide nanoparticles of copper may lead to an undesirable shift in the innate immunological status of earthworm leading to a condition of immune compromisation and shrinkage in population density of this species in its natural habitat. This article is the first time report of immunological toxicity of
NASA Technical Reports Server (NTRS)
Moser, L.
1988-01-01
The action of hydrogen superoxide on copper salts in alcoholic solutions is studied. The action of hydrogen peroxide on copper hydroxide in alcoholic suspensions, and the action of ethereal hydrogen peroxide on copper hydroxide are discussed. It is concluded that using the procedure proposed excludes almost entirely the harmful effect of hydrolysis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gross, J.B. Jr.; Myers, B.M.; Kost, L.J.
1989-01-01
We investigated the hypothesis that lysosomes are the main source of biliary copper in conditions of hepatic copper overload. We used a rat model of oral copper loading and studied the relationship between the biliary output of copper and lysosomal hydrolases. Male Sprague-Dawley rats were given tap water with or without 0.125% copper acetate for up to 36 wk. Copper loading produced a 23-fold increase in the hepatic copper concentration and a 30-65% increase in hepatic lysosomal enzyme activity. Acid phosphatase histochemistry showed that copper-loaded livers contained an increased number of hepatocyte lysosomes; increased copper concentration of these organelles wasmore » confirmed directly by both x ray microanalysis and tissue fractionation. The copper-loaded rats showed a 16-fold increase in biliary copper output and a 50-300% increase in biliary lysosomal enzyme output. In the basal state, excretory profiles over time were similar for biliary outputs of lysosomal enzymes and copper in the copper-loaded animals but not in controls. After pharmacologic stimulation of lysosomal exocytosis, biliary outputs of copper and lysosomal hydrolases in the copper-loaded animals remained coupled: injection of colchicine or vinblastine produced an acute rise in the biliary output of both lysosomal enzymes and copper to 150-250% of baseline rates. After these same drugs, control animals showed only the expected increase in lysosomal enzyme output without a corresponding increase in copper output. We conclude that the hepatocyte responds to an increased copper load by sequestering excess copper in an increased number of lysosomes that then empty their contents directly into bile. The results provide direct evidence that exocytosis of lysosomal contents into biliary canaliculi is the major mechanism for biliary copper excretion in hepatic copper overload.« less
Chun, Haarin; Sharma, Anuj Kumar; Lee, Jaekwon; Chan, Jefferson; Jia, Shang; Kim, Byung-Eun
2017-01-01
Copper plays key catalytic and regulatory roles in biochemical processes essential for normal growth, development, and health. Defects in copper metabolism cause Menkes and Wilson's disease, myeloneuropathy, and cardiovascular disease and are associated with other pathophysiological states. Consequently, it is critical to understand the mechanisms by which organisms control the acquisition, distribution, and utilization of copper. The intestinal enterocyte is a key regulatory point for copper absorption into the body; however, the mechanisms by which intestinal cells transport copper to maintain organismal copper homeostasis are poorly understood. Here, we identify a mechanism by which organismal copper homeostasis is maintained by intestinal copper exporter trafficking that is coordinated with extraintestinal copper levels in Caenorhabditis elegans. Specifically, we show that CUA-1, the C. elegans homolog of ATP7A/B, localizes to lysosome-like organelles (gut granules) in the intestine under copper overload conditions for copper detoxification, whereas copper deficiency results in a redistribution of CUA-1 to basolateral membranes for copper efflux to peripheral tissues. Worms defective in gut granule biogenesis exhibit defects in copper sequestration and increased susceptibility to toxic copper levels. Interestingly, however, a splice isoform CUA-1.2 that lacks a portion of the N-terminal domain is targeted constitutively to the basolateral membrane irrespective of dietary copper concentration. Our studies establish that CUA-1 is a key intestinal copper exporter and that its trafficking is regulated to maintain systemic copper homeostasis. C. elegans could therefore be exploited as a whole-animal model system to study regulation of intra- and intercellular copper trafficking pathways. PMID:27881675
Underwater explosive compaction-sintering of tungsten-copper coating on a copper surface
NASA Astrophysics Data System (ADS)
Chen, Xiang; Li, Xiaojie; Yan, Honghao; Wang, Xiaohong; Chen, Saiwei
2018-01-01
This study investigated underwater explosive compaction-sintering for coating a high-density tungsten-copper composite on a copper surface. First, 50% W-50% Cu tungsten-copper composite powder was prepared by mechanical alloying. The composite powder was pre-compacted and sintered by hydrogen. Underwater explosive compaction was carried out. Finally, a high-density tungsten-copper coating was obtained by diffusion sintering of the specimen after explosive compaction. A simulation of the underwater explosive compaction process showed that the peak value of the pressure in the coating was between 3.0 and 4.8 GPa. The hardness values of the tungsten-copper layer and the copper substrate were in the range of 87-133 and 49 HV, respectively. The bonding strength between the coating and the substrate was approximately 100-105 MPa.
Cox, S.E.; Bell, P.R.; Lowther, J.S.; Van Metre, P.C.
2005-01-01
Sediment cores were collected from six locations in Lake Roosevelt to determine the vertical distributions of trace-element concentrations in the accumulated sediments of Lake Roosevelt. Elevated concentrations of arsenic, cadmium, copper, lead, mercury, and zinc occurred throughout much of the accumulated sediments. Concentrations varied greatly within the sediment core profiles, often covering a range of 5 to 10 fold. Trace-element concentrations typically were largest below the surficial sediments in the lower one-half of each profile, with generally decreasing concentrations from the 1964 horizon to the surface of the core. The trace-element profiles reflect changes in historical discharges of trace elements to the Columbia River by an upstream smelter. All samples analyzed exceeded clean-up guidelines adopted by the Confederated Tribes of the Colville Reservation for cadmium, lead, and zinc and more than 70 percent of the samples exceeded cleanup guidelines for mercury, arsenic, and copper. Although 100 percent of the samples exceeded sediment guidelines for cadmium, lead, and zinc, surficial concentrations of arsenic, copper, and mercury in some cores were less than the sediment-quality guidelines. With the exception of copper, the trace-element profiles of the five cores collected along the pre-reservoir Columbia River channel typically showed trends of decreasing concentrations in sediments deposited after the 1964 time horizon. The decreasing concentrations of trace elements in the upper half of cores from along the pre-reservoir Columbia River showed a pattern of decreasing concentrations similar to reductions in trace-element loading in liquid effluent from an upstream smelter. Except for arsenic, trace-element concentrations typically were smaller at downstream reservoir locations along the pre-reservoir Columbia River. Trace-element concentration in sediments from the Spokane Arm of the reservoir showed distinct differences compared to the similarities
Evaluation of copper resistant bacteria from vineyard soils and mining waste for copper biosorption
Andreazza, R.; Pieniz, S.; Okeke, B.C.; Camargo, F.A.O
2011-01-01
Vineyard soils are frequently polluted with high concentrations of copper due application of copper sulfate in order to control fungal diseases. Bioremediation is an efficient process for the treatment of contaminated sites. Efficient copper sorption bacteria can be used for bioremoval of copper from contaminated sites. In this study, a total of 106 copper resistant bacteria were examined for resistance to copper toxicity and biosorption of copper. Eighty isolates (45 from vineyard Mollisol, 35 from Inceptisol) were obtained from EMBRAPA (Empresa Brasileira de Pesquisa Agropecuária) experimental station, Bento Gonçalves, RS, Brazil (29°09′53.92″S and 51°31′39.40″W) and 26 were obtained from copper mining waste from Caçapava do Sul, RS, Brazil (30°29′43.48″S and 53′32′37.87W). Based on resistance to copper toxicity and biosorption, 15 isolates were identified by 16S rRNA gene sequencing. Maximal copper resistance and biosorption at high copper concentration were observed with isolate N2 which removed 80 mg L−1 in 24 h. Contrarily isolate N11 (Bacillus pumilus) displayed the highest specific copper biosorption (121.82 mg/L/OD unit in 24 h). GenBank MEGABLAST analysis revealed that isolate N2 is 99% similar to Staphylococcus pasteuri. Results indicate that several of our isolates have potential use for bioremediation treatment of vineyards soils and mining waste contaminated with high copper concentration. PMID:24031606
Sulfidation treatment of copper-containing plating sludge towards copper resource recovery.
Kuchar, D; Fukuta, T; Onyango, M S; Matsuda, H
2006-11-02
The present study is concerned with the sulfidation treatment of copper-containing plating sludge towards copper resource recovery by flotation of copper sulfide from treated sludge. The sulfidation treatment was carried out by contacting simulated or real copper plating sludge with Na(2)S solution for a period of 5 min to 24 h. The initial molar ratio of S(2-) to Cu(2+) (S(2-) to Me(2+) in the case of real sludge) was adjusted to 1.00, 1.25 or 1.50, while the solid to liquid ratio was set at 1:50. As a result, it was found that copper compounds were converted to various copper sulfides within the first 5 min. In the case of simulated copper sludge, CuS was identified as the main sulfidation product at the molar ratio of S(2-) to Cu(2+) of 1.00, while Cu(7)S(4) (Roxbyite) was mainly found at the molar ratios of S(2-) to Cu(2+) of 1.50 and 1.25. Based on the measurements of oxidation-reduction potential, the formation of either CuS or Cu(7)S(4) at different S(2-) to Cu(2+) molar ratios was attributed to the changes in the oxidation-reduction potential. By contrast, in the case of sulfidation treatment of real copper sludge, CuS was predominantly formed, irrespective of S(2-) to Me(2+) molar ratio.
Earth's copper resources estimated from tectonic diffusion of porphyry copper deposits
NASA Astrophysics Data System (ADS)
Kesler, Stephen E.; Wilkinson, Bruce H.
2008-03-01
Improved estimates of global mineral endowments are relevantto issues ranging from strategic planning to global geochemicalcycling. We have used a time-space model for the tectonic migrationof porphyry copper deposits vertically through the crust tocalculate Earth's endowment of copper in mineral deposits. Themodel relies only on knowledge of numbers and ages of porphyrycopper deposits, Earth's most widespread and important sourceof copper, in order to estimate numbers of eroded and preserveddeposits in the crust. Model results indicate that  125,895 porphyrycopper deposits were formed during Phanerozoic time, that only
125,895 porphyrycopper deposits were formed during Phanerozoic time, that only 47,789 of these remain at various crustal depths, and that thesecontain
47,789 of these remain at various crustal depths, and that thesecontain  1.7 x 1011 tonnes (t) of copper. Assuming that othertypes of copper deposits behave similarly in the crust and haveabundances proportional to their current global production yieldsan estimate of 3 x 1011 t for total global copper resourcesat all levels in Earth's crust. Thus,
1.7 x 1011 tonnes (t) of copper. Assuming that othertypes of copper deposits behave similarly in the crust and haveabundances proportional to their current global production yieldsan estimate of 3 x 1011 t for total global copper resourcesat all levels in Earth's crust. Thus,  0.25% of the copper inthe crust has been concentrated into deposits through Phanerozoictime, and about two-thirds of this has been recycled by upliftand erosion. The amount of copper in deposits above 3.3 km,a likely limit of future mining, could supply current worldmine production for 5500 yr, thus quantifying the highly unusualand nonrenewable nature of mineral deposits.
0.25% of the copper inthe crust has been concentrated into deposits through Phanerozoictime, and about two-thirds of this has been recycled by upliftand erosion. The amount of copper in deposits above 3.3 km,a likely limit of future mining, could supply current worldmine production for 5500 yr, thus quantifying the highly unusualand nonrenewable nature of mineral deposits.
Spiro, B; Weiss, D J; Purvis, O W; Mikhailova, I; Williamson, B J; Coles, B J; Udachin, V
2004-12-15
Transplants of the lichen Hypogymnia physodes, which is relatively tolerant to SO2 and heavy metals, were deployed for 3 months over a 60 km long SW-NE transect centered on a highly polluting Cu smelter and its adjoining town of Karabash, southern Urals, Russia. The abundance of 206Pb, 207Pb, 208Pb, and 204Pb were determined by MC-ICP-MS. The measurement of 204Pb revealed critical features, which would otherwise remain concealed: (i) The precise isotope ratios referenced to 204Pb allowed several different sources to be resolved even within the small area covered: (a) the obvious pollutant source of the Karabash Cu smelter; (b) two dispersed sources, likely to include soil with lower and different contributions of thorogenic and uranogenic lead; and (c) one anthropogenic source with higher contribution of 235U derived Pb. (ii) In part of the transect, the Pb isotope composition changed while the Pb concentrations remained the same. This indicates that the Pb content of the transplantation material from the background site was largely replaced and that the transplants provide a transient record reflecting a continuous accumulation and loss of environmental Pb, probably mainly in the form of extracellular particles. Overall, the method of lichen transplantation coupled with Pb isotope ratio determinations proved effective in assessing the usefulness of lichens in biomonitoring and in resolving different sources of atmospheric deposition.
Schmidt, Frederick A.; Verhoeven, John D.; Gibson, Edwin D.
1986-07-15
A tantalum-copper alloy can be made by preparing a consumable electrode consisting of an elongated copper billet containing at least two spaced apart tantalum rods extending longitudinally the length of the billet. The electrode is placed in a dc arc furnace and melted under conditions which co-melt the copper and tantalum to form the alloy.
Critical review: Copper runoff from outdoor copper surfaces at atmospheric conditions.
Hedberg, Yolanda S; Hedberg, Jonas F; Herting, Gunilla; Goidanich, Sara; Odnevall Wallinder, Inger
2014-01-01
This review on copper runoff dispersed from unsheltered naturally patinated copper used for roofing and facades summarizes and discusses influencing factors, available literature, and predictive models, and the importance of fate and speciation for environmental risk assessment. Copper runoff from outdoor surfaces is predominantly governed by electrochemical and chemical reactions and is highly dependent on given exposure conditions (size, inclination, geometry, degree of sheltering, and orientation), surface parameters (age, patina composition, and thickness), and site-specific environmental conditions (gaseous pollutants, chlorides, rainfall characteristics (amount, intensity, pH), wind direction, temperature, time of wetness, season). The corrosion rate cannot be used to assess the runoff rate. The extent of released copper varies largely between different rain events and is related to dry and wet periods, dry deposition prior to the rain event and prevailing rain and patina characteristics. Interpretation and use of copper runoff data for environmental risk assessment and management need therefore to consider site-specific factors and focus on average data of long-term studies (several years). Risk assessments require furthermore that changes in copper speciation, bioavailability aspects, and potential irreversible retention on solid surfaces are considered, factors that determine the environmental fate of copper runoff from outdoor surfaces.
Influence of gold content on copper oxidation from silver-gold-copper alloys
NASA Astrophysics Data System (ADS)
Swinbourne, D. R.; Barbante, G. G.; Strahan, A.
1996-10-01
In the final stages of the smelting of copper anode slimes, a silver alloy, known as “doré,” is produced. Oxidation refining is used to remove copper since this element interferes with subsequent electroparting of the small amounts of gold and platinum group metals in the doré. The gold content of doré can be greatly increased by gold scrap additions and this may affect the minimum achievable copper content of doré. In this work, silver-gold-copper alloys were oxidized by injecting pure oxygen at 1100 °C in the absence of any slag cover. For the gold contents expected in practice, the equilibrium copper content of the doré did not increase significantly as the gold content increased. However, at the other extreme of composition, the equilibrium copper content was a very strong function of the silver content of the gold bullion. The activity coefficient of copper in silver-gold alloys was calculated and compared to those predicted from a ternary subregular solution model of the system Ag-Au-Cu. Satisfactory agreement was found.
Fabricating Copper Nanotubes by Electrodeposition
NASA Technical Reports Server (NTRS)
Yang, E. H.; Ramsey, Christopher; Bae, Youngsam; Choi, Daniel
2009-01-01
Copper tubes having diameters between about 100 and about 200 nm have been fabricated by electrodeposition of copper into the pores of alumina nanopore membranes. Copper nanotubes are under consideration as alternatives to copper nanorods and nanowires for applications involving thermal and/or electrical contacts, wherein the greater specific areas of nanotubes could afford lower effective thermal and/or electrical resistivities. Heretofore, copper nanorods and nanowires have been fabricated by a combination of electrodeposition and a conventional expensive lithographic process. The present electrodeposition-based process for fabricating copper nanotubes costs less and enables production of copper nanotubes at greater rate.
Straw, Megan L; Chaplin, Amanda K; Hough, Michael A; Paps, Jordi; Bavro, Vassiliy N; Wilson, Michael T; Vijgenboom, Erik; Worrall, Jonathan A R
2018-01-24
Streptomyces lividans has a distinct dependence on the bioavailability of copper for its morphological development. A cytosolic copper resistance system is operative in S. lividans that serves to preclude deleterious copper levels. This system comprises of several CopZ-like copper chaperones and P 1 -type ATPases, predominantly under the transcriptional control of a metalloregulator from the copper sensitive operon repressor (CsoR) family. In the present study, we discover a new layer of cytosolic copper resistance in S. lividans that involves a protein belonging to the newly discovered family of copper storage proteins, which we have named Ccsp (cytosolic copper storage protein). From an evolutionary perspective, we find Ccsp homologues to be widespread in Bacteria and extend through into Archaea and Eukaryota. Under copper stress Ccsp is upregulated and consists of a homotetramer assembly capable of binding up to 80 cuprous ions (20 per protomer). X-ray crystallography reveals 18 cysteines, 3 histidines and 1 aspartate are involved in cuprous ion coordination. Loading of cuprous ions to Ccsp is a cooperative process with a Hill coefficient of 1.9 and a CopZ-like copper chaperone can transfer copper to Ccsp. A Δccsp mutant strain indicates that Ccsp is not required under initial copper stress in S. lividans, but as the CsoR/CopZ/ATPase efflux system becomes saturated, Ccsp facilitates a second level of copper tolerance.
Multiphase separation of copper nanowires
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qian, Fang; Lan, Pui Ching; Olson, Tammy
Here, this communication reports a new method to purify copper nanowires with nearly 100% yield from undesired copper nanoparticle side-products formed during batch processes of copper nanowire synthesis. Also, this simple separation method can yield large quantities of long, uniform, high-purity copper nanowires to meet the requirements of nanoelectronics applications as well as provide an avenue for purifying copper nanowires in the industrial scale synthesis of copper nanowires, a key step for commercialization and application of nanowires.
Multiphase separation of copper nanowires
Qian, Fang; Lan, Pui Ching; Olson, Tammy; ...
2016-09-01
Here, this communication reports a new method to purify copper nanowires with nearly 100% yield from undesired copper nanoparticle side-products formed during batch processes of copper nanowire synthesis. Also, this simple separation method can yield large quantities of long, uniform, high-purity copper nanowires to meet the requirements of nanoelectronics applications as well as provide an avenue for purifying copper nanowires in the industrial scale synthesis of copper nanowires, a key step for commercialization and application of nanowires.
A creative therapy in treating cavernous hemangioma of penis with copper wire.
Zhang, Dong; Zhang, Haiyang; Sun, Peng; Li, Peng; Xue, Aibing; Jin, Xunbo
2014-10-01
Cavernous hemangiomas of penis are rare benign lesions infrequently described in the literature. No completely satisfactory treatment has been found to correct the cosmetic deformities especially the extensive hemangiomas of corpus penis. In light of the promising application of copper wire/needle in vascular malformations, we began a clinical study to investigate the safety, feasibility, and cosmetic effect of copper wire therapy in treating cavernous hemangioma of penis. Seven patients ranging in age from 12 to 32 years with penile cavernous hemangiomas entered our study from 2005 to 2011. All patients received treatments with percutaneous copper wires. Perioperative data including mean operation time, estimated blood loss, length of copper wire retention, and length of hospital stay were analyzed. All possible complications were noted, and cosmetic result was evaluated. Patients were followed up after discharge from the hospital. All operations were successful, and no obvious complications were observed. The patients were satisfied with the aesthetic results. Follow-up time ranged from 1 to 5 years. Recurrence was discovered in a patient with the largest lesion of corpus penis 2 months after the treatment. Secondary procedure was carried out with the same technique, and no lesions were found later. The shortage of studies on this topic prevented us from defining a therapeutic reference standard. The results of our study confirmed that copper wire therapy was a simple, safe, and useful option for penile cavernous hemangioma. © 2013 International Society for Sexual Medicine.
Kachur, Anatoly N; Arzhanova, Valentina S; Yelpatyevsky, Pavel V; von Braun, Margrit C; von Lindern, Ian H
2003-02-15
The Rudnaya River valley in the Russian Far East contains a rich reserve of lead, zinc and boron and has been mined for nearly 100 years. Environmental contamination related to the area's mines and lead smelter was studied for over 30 years during the Soviet era, by members of the Pacific Geographic Institute (PGI). Due to government restrictions, much of the sampling focused on contamination of the river, the air, forests, vegetation, agricultural products and soil. Source-specific samples, such as stack emissions from the smelter, and blood lead levels from the residents and smelter workers could not be obtained or were classified as State secrets. However, the data do describe the extent and severity of the environmental contamination and related public health concerns. Water discharged from the smelter averages 2900 m(3)/day (containing 100 kg of lead (Pb) and 20 kg of arsenic (As)) and leachate from area mine dumps and other industrial processes contaminates the Rudnaya River. Annual air emissions include 85 tonnes of particulates (containing 50 tonnes of Pb and 0.5 tonnes of As) and 250000 m(3) of gases high in sulfur dioxide (SO(2)), carbon monoxide (CO) and carbon dioxide (CO(2)). Vegetative stress is severe and much of this area is denuded. Pb and other metals in agricultural products suggest local produce may be dangerous for human consumption, although it is a major food source for the community. Public and occupational health indicators of basophilic stippling, respiratory disease and hair lead levels further suggest the severity of the problem. Although, descriptions of complete methodologies and procedures are often lacking, these data describe how sampling was conducted during the Soviet era and document a site with severe heavy metals contamination, especially lead, and the likelihood of related public health problems. They are relevant today as investigators employ state-of-the-art-sampling techniques and explore cleanup options under a new
40 CFR 63.541 - Applicability.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Hazardous Air Pollutants from Secondary Lead Smelting § 63.541 Applicability. (a) The provisions of this subpart apply to the following affected sources at all secondary lead smelters: blast, reverberatory, rotary, and electric smelting furnaces; refining kettles; agglomerating furnaces; dryers; process...
40 CFR 63.541 - Applicability.
Code of Federal Regulations, 2011 CFR
2011-07-01
... Hazardous Air Pollutants from Secondary Lead Smelting § 63.541 Applicability. (a) The provisions of this subpart apply to the following affected sources at all secondary lead smelters: blast, reverberatory, rotary, and electric smelting furnaces; refining kettles; agglomerating furnaces; dryers; process...
Andreazza, Robson; Bortolon, Leandro; Pieniz, Simone; Giacometti, Marcelo; Roehrs, Dione D; Lambais, Mácio R; Camargo, Flávio A O
2011-12-01
This study sought to evaluate the potential of perennial peanut (Arachis pintoi) for copper phytoremediation in vineyard soils (Inceptisol and Mollisol) contaminated with copper and copper mining waste. Our results showed high phytomass production of perennial peanut in both vineyard soils. Macronutrient uptakes were not negatively affected by perennial peanut cultivated in all contaminated soils. Plants cultivated in Mollisol showed high copper concentrations in the roots and shoots of 475 and 52 mg kg(-1), respectively. Perennial peanut plants showed low translocation factor values for Cu, although these plants showed high bioaccumulation factor (BCF) for both vineyard soils, Inceptisol and Mollisol, with BCF values of 3.83 and 3.24, respectively, being characterized as a copper hyperaccumulator plant in these soils. Copper phytoextraction from Inceptisol soil was the highest for both roots and entire plant biomass, with more than 800 mg kg(-1) of copper in whole plant. The highest potential copper phytoextraction by perennial peanut was in Inceptisol soil with copper removal of 2,500 g ha(-1). Also, perennial peanut showed high potential for copper phytoremoval in copper mining waste and Mollisol with 1,700 and 1,500 g of copper per hectare, respectively. In addition, perennial peanuts characterized high potential for phytoextraction and phytostabilization of copper in vineyard soils and copper mining waste.
Gawel, James E; Asplund, Jessica A; Burdick, Sarah; Miller, Michelle; Peterson, Shawna M; Tollefson, Amanda; Ziegler, Kara
2014-02-15
The American Smelting and Refining Company (ASARCO) smelter in Ruston, Washington, contaminated the south-central Puget Sound region with heavy metals, including arsenic and lead. Arsenic and lead distribution in surface sediments of 26 lakes is significantly correlated with atmospheric model predictions of contaminant deposition spatially, with concentrations reaching 208 mg/kg As and 1,375 mg/kg Pb. The temporal distribution of these metals in sediment cores is consistent with the years of operation of the ASARCO smelter. In several lakes arsenic and lead levels are highest at the surface, suggesting ongoing inputs or redistribution of contaminants. Moreover, this study finds that arsenic is highly mobile in these urban lakes, with maximum dissolved arsenic concentrations proportional to surface sediment levels and reaching almost 90 μg/L As. With 83% of the lakes in the deposition zone having surface sediments exceeding published "probable effects concentrations" for arsenic and lead, this study provides evidence for possible ongoing environmental health concerns. Copyright © 2013 Elsevier B.V. All rights reserved.
Mineral resource of the month: germanium
Jorgenson, John D.
2003-01-01
Germanium is a hard, brittle semimetal that first came into use over a half-century ago as a semiconductor material in radar units and in the first transistor ever made. Most germanium is recovered as a byproduct of zinc smelting, but it has also been recovered at some copper smelters and from the fly ash of coal-burning industrial power plants.
Oxidation Mechanism of Copper Selenide
NASA Astrophysics Data System (ADS)
Taskinen, Pekka; Patana, Sonja; Kobylin, Petri; Latostenmaa, Petri
2014-09-01
The oxidation mechanism of copper selenide was investigated at deselenization temperatures of copper refining anode slimes. The isothermal roasting of synthetic, massive copper selenide in flowing oxygen and oxygen - 20% sulfur dioxide mixtures at 450-550 °C indicate that in both atmospheres the mass of Cu2Se increases as a function of time, due to formation of copper selenite as an intermediate product. Copper selenide oxidises to copper oxides without formation of thick copper selenite scales, and a significant fraction of selenium is vaporized as SeO2(g). The oxidation product scales on Cu2Se are porous which allows transport of atmospheric oxygen to the reaction zone and selenium dioxide vapor to the surrounding gas. Predominance area diagrams of the copper-selenium system, constructed for selenium roasting conditions, indicate that the stable phase of copper in a selenium roaster gas with SO2 is the sulfate CuSO4. The cuprous oxide formed in decomposition of Cu2Se is further sulfated to CuSO4.
The copper rush of the nineties.
Solioz, Marc
2016-09-01
The nineties witnessed the discovery of the copper ATPases, enzymes which transport copper across the cytoplasmic membranes of bacteria and eukaryotes. In the same decade, several other key components of copper homeostasis have also been discovered, like copper chaperones and plasma membrane copper transporters. This has finally led to a molecular understanding of two inherited human diseases related to copper: Menkes disease, manifested by systemic copper deficiency, and Wilson disease, caused by defective secretion of excess copper. A historic perspective and untold stories of the events leading up to these discoveries are presented here.
The copper metallome in eukaryotic cells.
Vest, Katherine E; Hashemi, Hayaa F; Cobine, Paul A
2013-01-01
Copper is an element that is both essential and toxic. It is a required micronutrient for energy production in aerobic eukaryotes, from unicellular yeast to plants and mammals. Copper is also required for the acquisition and systemic distribution of the essential metal iron, and so copper deficiency results in iron deficiency. Copper enzymes have been identified that explain the wide variety of symptoms suffered by copper deficient subjects. The cloning of the genes encoding transport proteins responsible for copper-related Menkes and Wilson diseases inspired and coincided with the discovery of copper chaperones that stimulated the copper homeostasis field. Copper continues to be implicated in new array of proteins, notably those involved in a variety of neurodegenerative diseases. Here we will describe the cadre of important historical copper proteins and survey the major metallochaperones and transporters responsible for mobilization and sequestration of copper in yeast, mammals and plants.
Assael, Marc J.; Chatzimichailidis, Arsenios; Antoniadis, Konstantinos D.; Wakeham, William A.; Huber, Marcia L.; Fukuyama, Hiroyuki
2017-01-01
The available experimental data for the thermal conductivity of liquid copper, gallium, indium, iron, lead, nickel, and tin has been critically examined with the intention of establishing thermal conductivity reference correlations. All experimental data have been categorized into primary and secondary data according to the quality of measurement specified by a series of criteria. The proposed standard reference correlations for the thermal conductivity of liquid copper, gallium, indium, iron, lead, nickel, and tin are respectively characterized by uncertainties of 9.8, 15.9, 9.7, 13.7, 16.9, 7.7, and 12.6% at the 95% confidence level. PMID:29353915
Demystifying Controlling Copper Corrosion
The LCR systematically misses the highest health and corrosion risk sites for copper. Additionally, there are growing concerns for WWTP copper in sludges and discharge levels. There are many corrosion control differences between copper and lead. This talk explains the sometimes c...
Elguindi, Jutta; Moffitt, Stuart; Hasman, Henrik; Andrade, Cassandra; Raghavan, Srini; Rensing, Christopher
2013-01-01
The rapid killing of various bacteria in contact with metallic copper is thought to be influenced by influx of copper ions into the cells but the exact mechanism is not fully understood. This study showed that the kinetics of contact-killing of copper surfaces depended greatly on the amount of moisture present, copper content of alloys, type of medium used, and type of bacteria. We examined antibiotic- and copper-ion resistant strains of Escherichia coli and Enterococcus faecium isolated from pig farms following the use of copper sulfate as feed supplement. The results showed rapid killing of both copper-ion resistant E. coli and E. faecium strains when samples in rich medium were spread in a thin, moist layer on copper alloys with 85% or greater copper content. E. coli strains were rapidly killed under dry conditions while E. faecium strains were less affected. Electroplated copper surface corrosion rates were determined from electro-chemical polarization tests using the Stern-Geary method and revealed decreased corrosion rates with benzotriazole and thermal oxide coating. Copper-ion resistant E. coli and E. faecium cells suspended in 0.8% NaCl showed prolonged survival rates on electroplated copper surfaces with benzotriazole coating and thermal oxide coating compared to surfaces without anti-corrosion treatment. Control of surface corrosion affected the level of copper ion influx into bacterial cells which contributed directly to bacterial killing. PMID:21085951
Distribution of uranium in the Bisbee district, Cochise County, Arizona
Wallace, Stewart R.
1956-01-01
The Bisbee district has been an important source of copper for many years, and substantial amounts of lead and zinc ore and minor amounts of manganese ore have been mined during certain periods. The copper deposits occur both as low-grade disseminated ore in the Sacramento Hill stock and as massive sulfide (and secondary oxide and carbonate) replacement bodies in Paleozoic limestones that are intruded by the stock and related igneous bodies. The lead-zinc production has come almost entirely from limestone replacement bodies. The disseminated ore exhibits no anomalous radioactivity, and samples from the Lavender pit contain from 0.002 to less than 0.001 percent equivalent uranium. The limestone replacement ores are distinctly radioactive and stoping areas can be readily distinguished from from unmineralized ground on the basis of radioactivity alone. The equivalent uranium content of the copper replacement ores ranges from 0.002 to 0.014 percent and averages about 0.005 percent; the lead-zinc replacement ores average more than 0.007 percent equivalent uranium. Most of the uranium in the copper ores of the district is retained in the smelter slag of a residual concentrate; the slag contains about 0.009 percent equivalent uranium. Uranium carried off each day by acid mine drainage is roughly equal to 1 percent of that being added to the slag dump. Although the total amount of uranium in the district is large, no minable concentrations of ore-grade material are known; samples of relatively high-grade material represent only small fractions of tons at any one locality.
Ignasiak, Zosia; Sławinska, Teresa; Rozek, Krystyna; Malina, Robert; Little, B B
2007-01-01
The present study was set in the context of two questions. First, does blood lead level exert a direct effect on measures of physical fitness? And second, might blood lead influence physical fitness indirectly through growth stunting? Blood lead level is negatively associated with performances on a variety of fine motor tasks. Corresponding information on associations with measures of physical fitness and gross motor coordination are limited. Schoolchildren 7-15 years of age (463 males, 436 females) living in the vicinity of copper smelters and refineries were tested for blood lead. In addition to body size and blood lead, physical fitness was measured: right and left grip strength, timed sit-ups, flexed arm hang, plate tapping, shuttle run, standing long jump and medicine ball throw. Simple reaction time was also measured. The effect of blood lead level on physical fitness was indirect and small, and operated through anthropometric dimensions that more directly influenced the measures of fitness. Direct effects of blood lead level on indicators of physical fitness in school age youth are not evident. Blood lead level adversely affects physical fitness indirectly through growth stunting.
Wang, Lin; Ge, Yan
2016-01-01
Copper chaperone for superoxide dismutase-1 (CCS-1), facilitating copper insertion into superoxide dismutase 1 (SOD-1), is present in the nucleus. However, it is unknown how CCS-1 is translocated to the nucleus. The present study was undertaken to determine the effect of copper on nuclear translocation of CCS-1. Human umbilical vein endothelial cells (HUVECs) were subjected to hypoxia, causing an increase in both copper and CCS-1 in the nucleus. Treatment with tetraethylenepentamine (TEPA) not only decreased the total cellular concentration and the nuclear translocation of copper, but also completely suppressed the entry of CCS-1 to the nucleus. On the other hand, siRNA targeting CCS-1 neither inhibited the increase in total concentrations nor blocked the nuclear translocation of copper. This study thus demonstrates that under hypoxia condition, both copper and CCS-1 are transported to the nucleus. The nuclear translocation of CCS-1 is copper dependent, but the nuclear translocation of copper could take place alternatively in a CCS-1-independent pathway. PMID:27190267
During the past 150 years, the mining indstry discharged more than a billion tons of tailings along Lake Superior shorelines and constructed numerous smelters in the watershed. Given the vast size of Lake Superior, were sediment profiles at locations far offshore impacted by near...
The copper-transporting ATPase pump and its potential role in copper-tolerance
Katie Ohno; C.A. Clausen; Frederick Green; G. Stanosz
2016-01-01
Copper-tolerant brown-rot decay fungi exploit intricate mechanisms to neutralize the efficacy of copper-containing preservative formulations. The production and accumulation oxalate is the most widely recognized theory regarding the mechanism of copper-tolerance in these fungi. The role of oxalate, however, may be only one part of a series of necessary components...
Advanced surface characterization techniques were used to systematically investigate the passivation of copper during corrosion in water as impacted by pH and orthophosphate. Atomic force microscopy, depth profiling with time-of-flight secondary ion mass spectrometry and X-ray d...
Martins, Viviana; Bassil, Elias; Hanana, Mohsen; Blumwald, Eduardo; Gerós, Hernâni
2014-07-01
The Vitis vinifera copper transporter 1 is capable of self-interaction and mediates intracellular copper transport. An understanding of copper homeostasis in grapevine (Vitis vinifera L.) is particularly relevant to viticulture in which copper-based fungicides are intensively used. In the present study, the Vitis vinifera copper transporter 1 (VvCTr1), belonging to the Ctr family of copper transporters, was cloned and functionally characterized. Amino acid sequence analysis showed that VvCTr1 monomers are small peptides composed of 148 amino acids with 3 transmembrane domains and several amino acid residues typical of Ctr transporters. Bimolecular fluorescence complementation (BiFC) demonstrated that Ctr monomers are self-interacting and subcellular localization studies revealed that VvCTr1 is mobilized via the trans-Golgi network, through the pre-vacuolar compartment and located to the vacuolar membrane. The heterologous expression of VvCTr1 in a yeast strain lacking all Ctr transporters fully rescued the phenotype, while a deficient complementation was observed in a strain lacking only plasma membrane-bound Ctrs. Given the common subcellular localization of VvCTr1 and AtCOPT5 and the highest amino acid sequence similarity in comparison to the remaining AtCOPT proteins, Arabidopsis copt5 plants were stably transformed with VvCTr1. The impairment in root growth observed in copt5 seedlings in copper-deficient conditions was fully rescued by VvCTr1, further supporting its involvement in intracellular copper transport. Expression studies in V. vinifera showed that VvCTr1 is mostly expressed in the root system, but transcripts were also present in leaves and stems. The functional characterization of VvCTr-mediated copper transport provides the first step towards understanding the physiological and molecular responses of grapevines to copper-based fungicides.
Removal of copper from ferrous scrap
Blander, M.; Sinha, S.N.
1987-07-30
A process for removing copper from ferrous or other metal scrap in which the scrap is contacted with a polyvalent metal sulfide slag in the presence of an excess of copper-sulfide forming additive to convert the copper to copper sulfide which is extracted into the slag to provide a ratio of copper in the slag to copper in the metal scrap of at least about 10.
Removal of copper from ferrous scrap
Blander, M.; Sinha, S.N.
1990-05-15
A process for removing copper from ferrous or other metal scrap in which the scrap is contacted with a polyvalent metal sulfide slag in the presence of an excess of copper-sulfide forming additive to convert the copper to copper sulfide which is extracted into the slag to provide a ratio of copper in the slag to copper in the metal scrap of at least about 10.
Removal of copper from ferrous scrap
Blander, Milton; Sinha, Shome N.
1990-01-01
A process for removing copper from ferrous or other metal scrap in which the scrap is contacted with a polyvalent metal sulfide slag in the presence of an excess of copper-sulfide forming additive to convert the copper to copper sulfide which is extracted into the slag to provide a ratio of copper in the slag to copper in the metal scrap of at least about 10.
Impact of copper ligand mutations on a cupredoxin with a green copper center.
Roger, Magali; Sciara, Giuliano; Biaso, Frédéric; Lojou, Elisabeth; Wang, Xie; Bauzan, Marielle; Giudici-Orticoni, Marie-Thérèse; Vila, Alejandro J; Ilbert, Marianne
2017-05-01
Mononuclear cupredoxins contain a type 1 copper center with a trigonal or tetragonal geometry usually maintained by four ligands, a cystein, two histidines and a methionine. The recent discovery of new members of this family with unusual properties demonstrates, however, the versatility of this class of proteins. Changes in their ligand set lead to drastic variation in their metal site geometry and in the resulting spectroscopic and redox features. In our work, we report the identification of the copper ligands in the recently discovered cupredoxin AcoP. We show that even though AcoP possesses a classical copper ligand set, it has a highly perturbed copper center. In depth studies of mutant's properties suggest a high degree of constraint existing in the copper center of the wild type protein and even the addition of exogenous ligands does not lead to the reconstitution of the initial copper center. Not only the chemical nature of the axial ligand but also constraints brought by its covalent binding to the protein backbone might be critical to maintain a green copper site with high redox potential. This work illustrates the importance of experimentally dissecting the molecular diversity of cupredoxins to determine the molecular determinants responsible for their copper center geometry and redox potential. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Bingham, J.; Dryden, C.; Gordon, A.
2002-12-01
Copper is both an important nutrient and a pollutant in the marine environment. By studying the interactions between microorganisms and copper in the Elizabeth River (VA), home to a major Naval Base, we field tested the hypothesis that picoplankton and/or bacterioplankton produce strong, copper-complexing ligands in response to elevated copper concentrations. A simple light/ dark test was used to distinguish between heterotrophic and phototrophic ligand production. Samples were bottled and moored, submerged one meter, for a week. Direct counts using DAPI stain and epiflourescence were conducted to find concentrations of picoplankton and bacterioplankton. Using cathodic stripping voltammetry, we found the total copper concentrations, and then from a titration of the ligands by copper, the ligand concentrations and conditional stability constants were obtained. The Elizabeth River naturally had between 10-20 nM total dissolved copper concentrations. However when copper complexation was considered we found that the levels of bio-available Cu(II) ions were much lower. In fact in the natural samples the levels were not high enough to affect the relative reproductive rates of several microorganisms. Naturally there was a 50 nM "buffer zone" of ligand to total dissolved copper concentration. Furthermore, when stressed with excess copper, healthy picoplankton produced enough ligand to alleviate toxicity, and rebuild the buffer zone. However bacterioplankton only produced enough ligand so that they were no longer affected. Therefore, intact estuarine communities regulate copper bioavailability and toxicity with ligand production.
Andreazza, Robson; Okeke, Benedict C; Pieniz, Simone; Bortolon, Leandro; Lambais, Márcio R; Camargo, Flávio A O
2012-04-01
Long-term copper application in vineyards and copper mining activities cause heavy metal pollution sites. Such sites need remediation to protect soil and water quality. Bioremediation of contaminated areas through bioleaching can help to remove copper ions from the contaminated soils. Thus, the aim of this work was to evaluate the effects of different treatments for copper bioleaching in two diverse copper-contaminated soils (a 40-year-old vineyard and a copper mining waste) and to evaluate the effect on microbial community by applying denaturing gradient gel electrophoresis (DGGE) of 16S ribosomal DNA amplicons and DNA sequence analysis. Several treatments with HCl, H(2)SO(4), and FeSO(4) were evaluated by stimulation of bioleaching of copper in the soils. Treatments and extractions using FeSO(4) and H(2)SO(4) mixture at 30°C displayed more copper leaching than extractions with deionized water at room temperature. Treatment with H(2)SO(4) supported bioleaching of as much as 120 mg kg(-1) of copper from vineyard soil after 115 days of incubation. DGGE analysis of the treatments revealed that some treatments caused greater diversity of microorganisms in the vineyard soil compared to the copper mining waste. Nucleotide Blast of PCR-amplified fragments of 16S rRNA gene bands from DGGE indicated the presence of Rhodobacter sp., Silicibacter sp., Bacillus sp., Paracoccus sp., Pediococcus sp., a Myxococcales, Clostridium sp., Thiomonas sp., a firmicute, Caulobacter vibrioides, Serratia sp., and an actinomycetales in vineyard soil. Contrarily, Sphingomonas was the predominant genus in copper mining waste in most treatments. Paracoccus sp. and Enterobacter sp. were also identified from DGGE bands of the copper mining waste. Paracoccus species is involved in the copper bioleaching by sulfur oxidation system, liberating the copper bounded in the soils and hence promoting copper bioremediation. Results indicate that stimulation of bioleaching with a combination of FeSO(4
NASA Astrophysics Data System (ADS)
Du, Ping; Xue, Nandong; Liu, Li; Li, Fasheng
2008-07-01
An exploratory study on soil contamination of heavy metals was carried out surrounding Huludao zinc smelter in Liaoning province, China. The distribution of total heavy metals and their chemical speciations were investigated. The correlations between heavy metal speciations and soil pH values in corresponding sites were also analyzed. In general, Cd, Zn, Pb, Cu and As presented a significant contamination in the area near the smelter, comparied with Environmental Quality Standards for Soils in China. The geoaccumulation index showed the degree of contamination: Cd > Zn > Pb > Cu > As. There was no obvious pollution of Cr and Ni in the studied area. The speciation analysis showed that the dominant fraction of Cd and Zn was the acid soluble fraction, and the second was the residual fraction. Pb was mostly associated with the residual fraction, which constituted more than 50% of total concentration in all samples. Cu in residual fraction accounted for a high percentage (40-80%) of total concentration, and the proportion of Cu in the oxidizable fraction is higher than that of other metals. The distribution pattern of Pb and Zn was obviously affected by soil pH. It seemed that Pb and Zn content in acid solution fraction increased with increasing soil pH values, while Cd content in acid soluble fraction accounted for more proportion in neutral and alkaline groups than acidic one. The fraction distribution patterns of Cu in three pH groups were very similar and independent of soil pH values. And the residual fraction of Cu took a predominant part (50%) of the total content.
Copper Oxide Precipitates in NBS Standard Reference Material 482
Windsor, Eric S.; Carlton, Robert A.; Gillen, Greg; Wight, Scott A.; Bright, David S.
2002-01-01
Copper oxide has been detected in the copper containing alloys of NBS Standard Reference Material (SRM) 482. This occurrence is significant because it represents heterogeneity within a standard reference material that was certified to be homogeneous on a micrometer scale. Oxide occurs as elliptically to spherically shaped precipitates whose size differs with alloy composition. The largest precipitates occur in the Au20-Cu80 alloy and range in size from submicrometer up to 2 μm in diameter. Precipitates are observed using light microscopy, electron microscopy, and secondary ion mass spectrometry (SIMS). SIMS has demonstrated that the precipitates are present within all the SRM 482 wires that contain copper. Only the pure gold wire is precipitate free. Initial results from the analysis of the Au20-Cu80 alloy indicate that the percentage of precipitates is less than 1 % by area. Electron probe microanalysis (EPMA) of large (2 μm) precipitates in this same alloy indicates that precipitates are detectable by EPMA and that their composition differs significantly from the certified alloy composition. The small size and low percentage of these oxide precipitates minimizes the impact that they have upon the intended use of this standard for electron probe microanalysis. Heterogeneity caused by these oxide precipitates may however preclude the use of this standard for automated EPMA analyses and other microanalysis techniques. PMID:27446759
Code of Federal Regulations, 2014 CFR
2014-07-01
... CATEGORY Secondary Tin Subcategory § 421.292 Effluent limitations guidelines representing the degree of... attainable by the application of the best practicable technology currently available: (a) Tin smelter SO2 scrubber. BPT Limitations for the Secondary Tin Subcategory Pollutant or pollutant property Maximum for any...
40 CFR 421.294 - Standards of performance for new sources.
Code of Federal Regulations, 2010 CFR
2010-07-01
...) EFFLUENT GUIDELINES AND STANDARDS NONFERROUS METALS MANUFACTURING POINT SOURCE CATEGORY Secondary Tin... achieve the following new source performance standards: (a) Tin smelter SO2 scrubber. NSPS for the Secondary Tin Subcategory Pollutant or pollutant property Maximum for any 1 day Maximum for monthly average...
Code of Federal Regulations, 2012 CFR
2012-07-01
... CATEGORY Secondary Tin Subcategory § 421.292 Effluent limitations guidelines representing the degree of... attainable by the application of the best practicable technology currently available: (a) Tin smelter SO2 scrubber. BPT Limitations for the Secondary Tin Subcategory Pollutant or pollutant property Maximum for any...
Code of Federal Regulations, 2011 CFR
2011-07-01
... CATEGORY Secondary Tin Subcategory § 421.292 Effluent limitations guidelines representing the degree of... attainable by the application of the best practicable technology currently available: (a) Tin smelter SO2 scrubber. BPT Limitations for the Secondary Tin Subcategory Pollutant or pollutant property Maximum for any...
Code of Federal Regulations, 2010 CFR
2010-07-01
... CATEGORY Secondary Tin Subcategory § 421.292 Effluent limitations guidelines representing the degree of... attainable by the application of the best practicable technology currently available: (a) Tin smelter SO2 scrubber. BPT Limitations for the Secondary Tin Subcategory Pollutant or pollutant property Maximum for any...
40 CFR 421.294 - Standards of performance for new sources.
Code of Federal Regulations, 2013 CFR
2013-07-01
...) EFFLUENT GUIDELINES AND STANDARDS NONFERROUS METALS MANUFACTURING POINT SOURCE CATEGORY Secondary Tin... achieve the following new source performance standards: (a) Tin smelter SO2 scrubber. NSPS for the Secondary Tin Subcategory Pollutant or pollutant property Maximum for any 1 day Maximum for monthly average...
40 CFR 421.294 - Standards of performance for new sources.
Code of Federal Regulations, 2012 CFR
2012-07-01
...) EFFLUENT GUIDELINES AND STANDARDS NONFERROUS METALS MANUFACTURING POINT SOURCE CATEGORY Secondary Tin... achieve the following new source performance standards: (a) Tin smelter SO2 scrubber. NSPS for the Secondary Tin Subcategory Pollutant or pollutant property Maximum for any 1 day Maximum for monthly average...
40 CFR 421.294 - Standards of performance for new sources.
Code of Federal Regulations, 2011 CFR
2011-07-01
...) EFFLUENT GUIDELINES AND STANDARDS NONFERROUS METALS MANUFACTURING POINT SOURCE CATEGORY Secondary Tin... achieve the following new source performance standards: (a) Tin smelter SO2 scrubber. NSPS for the Secondary Tin Subcategory Pollutant or pollutant property Maximum for any 1 day Maximum for monthly average...
40 CFR 421.294 - Standards of performance for new sources.
Code of Federal Regulations, 2014 CFR
2014-07-01
...) EFFLUENT GUIDELINES AND STANDARDS NONFERROUS METALS MANUFACTURING POINT SOURCE CATEGORY Secondary Tin... achieve the following new source performance standards: (a) Tin smelter SO2 scrubber. NSPS for the Secondary Tin Subcategory Pollutant or pollutant property Maximum for any 1 day Maximum for monthly average...
Code of Federal Regulations, 2013 CFR
2013-07-01
... CATEGORY Secondary Tin Subcategory § 421.292 Effluent limitations guidelines representing the degree of... attainable by the application of the best practicable technology currently available: (a) Tin smelter SO2 scrubber. BPT Limitations for the Secondary Tin Subcategory Pollutant or pollutant property Maximum for any...
Preparation of graphite dispersed copper composite on copper plate with CO2 laser
NASA Astrophysics Data System (ADS)
Yokoyama, S.; Ishikawa, Y.; Muizz, M. N. A.; Hisyamudin, M. N. N.; Nishiyama, K.; Sasano, J.; Izaki, M.
2018-01-01
It was tried in this work to prepare the graphite dispersed copper composite locally on a copper plate with a CO2 laser. The objectives of this study were to clear whether copper graphite composite was prepared on a copper plate and how the composite was prepared. The carbon content at the laser spot decreased with the laser irradiation time. This mainly resulted from the elimination by the laser trapping. The carbon content at the outside of the laser spot increased with time. Both the laser ablation and the laser trapping did not act on the graphite particles at the outside of the laser spot. Because the copper at the outside of the laser spot melted by the heat conduction from the laser spot, the particles were fixed by the wetting. However, the graphite particles were half-floated on the copper plate. The Vickers hardness decreased with an increase with laser irradiation time because of annealing.
Copper Recovery from Yulong Complex Copper Oxide Ore by Flotation and Magnetic Separation
NASA Astrophysics Data System (ADS)
Han, Junwei; Xiao, Jun; Qin, Wenqing; Chen, Daixiong; Liu, Wei
2017-09-01
A combined process of flotation and high-gradient magnetic separation was proposed to utilize Yulong complex copper oxide ore. The effects of particle size, activators, Na2S dosage, LA (a mixture of ammonium sulfate and ethylenediamine) dosage, activating time, collectors, COC (a combination collector of modified hydroxyl oxime acid and xanthate) dosage, and magnetic intensity on the copper recovery were investigated. The results showed that 74.08% Cu was recovered by flotation, while the average grade of the copper concentrates was 21.68%. Another 17.34% Cu was further recovered from the flotation tailing by magnetic separation at 0.8 T. The cumulative recovery of copper reached 91.42%. The modifier LA played a positive role in facilitating the sulfidation of copper oxide with Na2S, and the combined collector COC was better than other collectors for the copper flotation. This technology has been successfully applied to industrial production, and the results are consistent with the laboratory data.
Lee, Jacqueline A; Marsden, Islay D; Glover, Chris N
2010-08-01
Copper is an important ionoregulatory toxicant in freshwater, but its effects in marine and brackish water systems are less well characterised. The effect of salinity on short-term copper accumulation and sublethal toxicity in two estuarine animals was investigated. The osmoregulating crab Hemigrapsus crenulatus accumulated copper in a concentration-dependent, but salinity-independent manner. Branchial copper accumulation correlated positively with branchial sodium accumulation. Sublethal effects of copper were most prevalent in 125% seawater, with a significant increase in haemolymph chloride noted after 96h at exposure levels of 510 microg Cu(II) L(-1). The osmoconforming gastropod, Scutus breviculus, was highly sensitive to copper exposure, a characteristic recognised previously in related species. Toxicity, as determined by a behavioural index, was present at all salinities and was positively correlated with branchial copper accumulation. At 100% seawater, increased branchial sodium accumulation, decreased haemolymph chloride and decreased haemolymph osmolarity were observed after 48h exposure to 221 microg Cu(II) L(-1), suggesting a mechanism of toxicity related to ionoregulation. However, these effects were likely secondary to a general effect on gill barrier function, and possibly mediated by mucus secretion. Significant impacts of copper on haemocyanin were also noted in both animals, highlighting a potentially novel mechanism of copper toxicity to animals utilising this respiratory pigment. Overall these findings indicate that physiology, as opposed to water chemistry, exerts the greatest influence over copper toxicity. An understanding of the physiological limits of marine and estuarine organisms may be critical for calibration of predictive models of metal toxicity in waters of high and fluctuating salinities. Copyright 2010 Elsevier B.V. All rights reserved.
Spinazzi, Marco; Sghirlanzoni, Angelo; Salviati, Leonardo; Angelini, Corrado
2014-12-01
Severe copper deficiency leads in humans to a treatable multisystem disease characterized by anaemia and degeneration of spinal cord and nerves, but its mechanisms have not been investigated. We tested whether copper deficit leads to alterations in fundamental copper-dependent proteins and in iron metabolism in blood and muscles of patients affected by copper deficiency myeloneuropathy, and if these metabolic abnormalities are associated with compensatory mechanisms for copper maintenance. We evaluated the expression of critical copper enzymes, of iron-related proteins, and copper chaperones and transporters in blood and muscles from five copper-deficient patients presenting with subacute sensory ataxia, muscle paralysis, liver steatosis and variable anaemia. Severe copper deficiency was caused by chronic zinc intoxication in all of the patients, with an additional history of gastrectomy in two cases. The antioxidant enzyme SOD1 and subunit 2 of cytochrome c oxidase were significantly decreased in blood cells and in muscles of copper-deficient patients compared with controls. In muscle, the iron storage protein ferritin was dramatically reduced despite normal serum ferritin, and the expression of the haem-proteins cytochrome c and myoglobin was impaired. Muscle expression of the copper transporter CTR1 and of the copper chaperone CCS, was strikingly increased, while antioxidant protein 1 was diminished. copper-dependent enzymes with critical functions in antioxidant defences, in mitochondrial energy production, and in iron metabolism are affected in blood and muscles of patients with profound copper deficiency leading to myeloneuropathy. Homeostatic mechanisms are strongly activated to increase intracellular copper retention. © 2013 British Neuropathological Society.
DeAlba-Montero, I; Guajardo-Pacheco, Jesús; Morales-Sánchez, Elpidio; Araujo-Martínez, Rene; Loredo-Becerra, G M; Martínez-Castañón, Gabriel-Alejandro; Ruiz, Facundo; Compeán Jasso, M E
2017-01-01
This paper reports a comparison of the antibacterial properties of copper-amino acids chelates and copper nanoparticles against Escherichia coli , Staphylococcus aureus , and Enterococcus faecalis . These copper-amino acids chelates were synthesized by using a soybean aqueous extract and copper nanoparticles were produced using as a starting material the copper-amino acids chelates species. The antibacterial activity of the samples was evaluated by using the standard microdilution method (CLSI M100-S25 January 2015). In the antibacterial activity assays copper ions and copper-EDTA chelates were included as references, so that copper-amino acids chelates can be particularly suitable for acting as an antibacterial agent, so they are excellent candidates for specific applications. Additionally, to confirm the antimicrobial mechanism on bacterial cells, MTT assay (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide) was carried out. A significant enhanced antimicrobial activity and a specific strain were found for copper chelates over E. faecalis . Its results would eventually lead to better utilization of copper-amino acids chelate for specific application where copper nanoparticles can be not used.
DeAlba-Montero, I.; Morales-Sánchez, Elpidio; Araujo-Martínez, Rene
2017-01-01
This paper reports a comparison of the antibacterial properties of copper-amino acids chelates and copper nanoparticles against Escherichia coli, Staphylococcus aureus, and Enterococcus faecalis. These copper-amino acids chelates were synthesized by using a soybean aqueous extract and copper nanoparticles were produced using as a starting material the copper-amino acids chelates species. The antibacterial activity of the samples was evaluated by using the standard microdilution method (CLSI M100-S25 January 2015). In the antibacterial activity assays copper ions and copper-EDTA chelates were included as references, so that copper-amino acids chelates can be particularly suitable for acting as an antibacterial agent, so they are excellent candidates for specific applications. Additionally, to confirm the antimicrobial mechanism on bacterial cells, MTT assay (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide) was carried out. A significant enhanced antimicrobial activity and a specific strain were found for copper chelates over E. faecalis. Its results would eventually lead to better utilization of copper-amino acids chelate for specific application where copper nanoparticles can be not used. PMID:28286459
Jia, Yuqi; Lu, Liping; Yuan, Caixia; Feng, Sisi; Zhu, Miaoli
2017-05-01
Recent researches indicated that a copper complex-binding proteome that potently interacted with copper complexes and then influenced cellular metabolism might exist in organism. In order to explore the copper complex-binding proteome, a copper chelating ion-immobilized affinity chromatography (Cu-IMAC) column and mass spectrometry were used to separate and identify putative Cu-binding proteins in primary rat hepatocytes. A total of 97 putative Cu-binding proteins were isolated and identified. Five higher abundance proteins, aspartate aminotransferase (AST), malate dehydrogenase (MDH), catalase (CAT), calreticulin (CRT) and albumin (Alb) were further purified using a SP-, and (or) Q-Sepharose Fast Flow column. The interaction between the purified proteins and selected 11 copper complexes and CuCl 2 was investigated. The enzymes inhibition tests demonstrated that AST was potently inhibited by copper complexes while MDH and CAT were weakly inhibited. Schiff-based copper complexes 6 and 7 potently inhibited AST with the IC 50 value of 3.6 and 7.2μM, respectively and exhibited better selectivity over MDH and CAT. Fluorescence titration results showed the two complexes tightly bound to AST with binding constant of 3.89×10 6 and 3.73×10 6 M -1 , respectively and a stoichiometry ratio of 1:1. Copper complex 6 was able to enter into HepG2 cells and further inhibit intracellular AST activity. Copyright © 2017 Elsevier Inc. All rights reserved.
Diet - copper ... yeast are also sources of copper in the diet. ... day 9 to 13 years: 700 mcg/day Adolescents and adults Males and ... eat a balanced diet that contains a variety of foods from the ...
Aberrant expression of copper associated genes after copper accumulation in COMMD1-deficient dogs.
Favier, Robert P; Spee, Bart; Fieten, Hille; van den Ingh, Ted S G A M; Schotanus, Baukje A; Brinkhof, Bas; Rothuizen, Jan; Penning, Louis C
2015-01-01
COMMD1-deficient dogs progressively develop copper-induced chronic hepatitis. Since high copper leads to oxidative damage, we measured copper metabolism and oxidative stress related gene products during development of the disease. Five COMMD1-deficient dogs were studied from 6 months of age over a period of five years. Every 6 months blood was analysed and liver biopsies were taken for routine histological evaluation (grading of hepatitis), rubeanic acid copper staining and quantitative copper analysis. Expression of genes involved in copper metabolism (COX17, CCS, ATOX1, MT1A, CP, ATP7A, ATP7B, ) and oxidative stress (SOD1, catalase, GPX1 ) was measured by qPCR. Due to a sudden death of two animals, the remaining three dogs were treated with d-penicillamine from 43 months of age till the end of the study. Presented data for time points 48, 54, and 60 months was descriptive only. A progressive trend from slight to marked hepatitis was observed at histology, which was clearly preceded by an increase in semi-quantitative copper levels starting at 12 months until 42 months of age. During the progression of hepatitis most gene products measured were transiently increased. Most prominent was the rapid increase in the copper binding gene product MT1A mRNA levels. This was followed by a transient increase in ATP7A and ATP7B mRNA levels. In the sequence of events, copper accumulation induced progressive hepatitis followed by a transient increase in gene products associated with intracellular copper trafficking and temporal activation of anti-oxidative stress mechanisms. Copyright © 2014 Elsevier GmbH. All rights reserved.
NASA Astrophysics Data System (ADS)
Chumakov, Yu. M.; Tsapkov, V. I.; Jeanneau, E.; Bairac, N. N.; Bocelli, G.; Poirier, D.; Roy, J.; Gulea, A. P.
2008-09-01
The crystal structures of chloro-(2-formylpyridinethiosemicarbazono)copper dimethyl sulfoxide solvate ( I), bromo-(2-formylpyridinethiosemicarbazono)copper ( II), and (2-formylpyridinethiosemicarbazono)copper(II) nitrate dimethyl sulfoxide solvate ( III) are determined using X-ray diffraction. In the crystals, complexes I and II form centrosymmetric dimers in which the thiosemicarbazone sulfur atom serves as a bridge and occupies the fifth coordination site of the copper atom of the neighboring complex related to the initial complex through the center of symmetry. In both cases, the coordination polyhedron of the complexing ion is a distorted tetragonal bipyramid. Complex III in the crystal structure forms polymer chains in which the copper atom of one complex forms the coordination bond with the thicarbamide nitrogen atom of the neighboring complex. In this structure, the coordination polyhedron of the central atom is an elongated tetragonal bipyramid. It is established that complexes I III at a concentration of 10-5 mol/l selectively inhibit the growth of 60 to 90 percent of the cancer tumor cells of the human myeloid leukemia (HL-60).
Assessment of lead health hazards in a body shop of an automobile assembly plant.
Lilis, R; Valciukas, J A; Kon, S; Sarkosi, L; Campbell, C; Selikoff, I J
1982-01-01
This study of an occupationally lead-exposed group in the automobile assembly industry (body shop employees) has provided information with regard to current and recent lead-exposure levels characteristic for these operations. Comparison with findings in other, previously studied occupational groups (secondary smelter workers) indicated that current and recent lead exposure was significantly lower in the autobody shop employees. Prevalence of symptoms was found to be higher than in a control, non-lead-exposed group of maintenance workers in the same plant, but the differences reached the level of statistical significance only sporadically. Long-term effects on renal function, as reflected in blood urea nitrogen (BUN) and creatinine levels, were documented to be significant in this group of autobody shop employees. When compared with two secondary lead smelter populations previously studied, correlations between indicators of renal function, BUN and creatinine, and duration of lead exposure were consistently higher in the secondary lead smelter populations than in the group of autobody shop employees, although duration of lead exposure was greater in the latter. These findings are consistent with a dose-response relationship with regard to renal function impairment due to lead absorption. An increased prevalence of hypertension, especially diastolic, was also found, probably the consequence of renal effect.
Copper atomic-scale transistors.
Xie, Fangqing; Kavalenka, Maryna N; Röger, Moritz; Albrecht, Daniel; Hölscher, Hendrik; Leuthold, Jürgen; Schimmel, Thomas
2017-01-01
We investigated copper as a working material for metallic atomic-scale transistors and confirmed that copper atomic-scale transistors can be fabricated and operated electrochemically in a copper electrolyte (CuSO 4 + H 2 SO 4 ) in bi-distilled water under ambient conditions with three microelectrodes (source, drain and gate). The electrochemical switching-on potential of the atomic-scale transistor is below 350 mV, and the switching-off potential is between 0 and -170 mV. The switching-on current is above 1 μA, which is compatible with semiconductor transistor devices. Both sign and amplitude of the voltage applied across the source and drain electrodes ( U bias ) influence the switching rate of the transistor and the copper deposition on the electrodes, and correspondingly shift the electrochemical operation potential. The copper atomic-scale transistors can be switched using a function generator without a computer-controlled feedback switching mechanism. The copper atomic-scale transistors, with only one or two atoms at the narrowest constriction, were realized to switch between 0 and 1 G 0 ( G 0 = 2e 2 /h; with e being the electron charge, and h being Planck's constant) or 2 G 0 by the function generator. The switching rate can reach up to 10 Hz. The copper atomic-scale transistor demonstrates volatile/non-volatile dual functionalities. Such an optimal merging of the logic with memory may open a perspective for processor-in-memory and logic-in-memory architectures, using copper as an alternative working material besides silver for fully metallic atomic-scale transistors.
Copper atomic-scale transistors
Kavalenka, Maryna N; Röger, Moritz; Albrecht, Daniel; Hölscher, Hendrik; Leuthold, Jürgen
2017-01-01
We investigated copper as a working material for metallic atomic-scale transistors and confirmed that copper atomic-scale transistors can be fabricated and operated electrochemically in a copper electrolyte (CuSO4 + H2SO4) in bi-distilled water under ambient conditions with three microelectrodes (source, drain and gate). The electrochemical switching-on potential of the atomic-scale transistor is below 350 mV, and the switching-off potential is between 0 and −170 mV. The switching-on current is above 1 μA, which is compatible with semiconductor transistor devices. Both sign and amplitude of the voltage applied across the source and drain electrodes (U bias) influence the switching rate of the transistor and the copper deposition on the electrodes, and correspondingly shift the electrochemical operation potential. The copper atomic-scale transistors can be switched using a function generator without a computer-controlled feedback switching mechanism. The copper atomic-scale transistors, with only one or two atoms at the narrowest constriction, were realized to switch between 0 and 1G 0 (G 0 = 2e2/h; with e being the electron charge, and h being Planck’s constant) or 2G 0 by the function generator. The switching rate can reach up to 10 Hz. The copper atomic-scale transistor demonstrates volatile/non-volatile dual functionalities. Such an optimal merging of the logic with memory may open a perspective for processor-in-memory and logic-in-memory architectures, using copper as an alternative working material besides silver for fully metallic atomic-scale transistors. PMID:28382242
Carol A. Clausen; Frederick Green
2003-01-01
Accumulation of oxalic acid (OA) by brown-rot fungi and precipitation of copper oxalate crystals in wood decayed by copper-tolerant decay fungi has implicated OA in the mechanism of copper tolerance. Understanding the role of OA in copper tolerance is important due to an increasing reliance on copper-based wood preservatives. In this study, four copper-tolerant brown-...
Research on disposal of copper(II)-containing wastewater by secondary strontium residue
NASA Astrophysics Data System (ADS)
Qing, Duowen; Xu, Longjun; Cui, Caixi
2018-01-01
Secondary strontium residue (SSR) was used as absorbent to remove Cu2+ in solution and the effects of experimental conditions on absorption of Cu2+ were investigated. The results showed that the absorption process reached balance in around 40 min. The absorption capacity achieved the maximum when PH value reached 6, and the maximum adsorption of Cu2+-containing wastewater by secondary strontium residue was 5.46 mg/g. Removal ratio of Cu2+ was in relation to initial concentration of Cu2+ in solution. Adsorptive process tallied with Langmuir Isothermal adsorption model.
Hansen, Henrik K; Yianatos, Juan B; Ottosen, Lisbeth M
2005-09-01
Mine tailing from the El Teniente-Codelco copper mine situated in VI Region of Chile was analysed in order to evaluate the mobility and speciation of copper in the solid material. Mine tailing was sampled after the rougher flotation circuits, and the copper content was measured to 1150 mg kg (-1) dry matter. This tailing was segmented into fractions of different size intervals: 0-38, 38-45, 45-53, 53-75, 75-106, 106-150, 150-212, and >212 microm, respectively. Copper content determination, sequential chemical extraction, and desorption experiments were carried out for each size interval in order to evaluate the speciation of copper. It was found that the particles of smallest size contained 50-60% weak acid leachable copper, whereas only 32% of the copper found in largest particles could be leached in weak acid. Copper oxides and carbonates were the dominating species in the smaller particles, and the larger particles contained considerable amounts of sulphides.
... medlineplus.gov/ency/article/003604.htm 24-hour urine copper test To use the sharing features on this page, please enable JavaScript. The 24-hour urine copper test measures the amount of copper in ...
Radioactivity at the Copper Creek copper lode prospect, Eagle district, east-central Alaska
Wedow, Helmuth; Tolbert, Gene Edward
1952-01-01
Investigation of radioactivity anomalies at the Copper Creek copper lode prospect, Eagle district, east-central Alaska, during 1949 disclosed that the radioactivity is associated with copper mineralization in highly metamorphosed sedimentary rocks. These rocks are a roof pendant in the Mesozoic "Charley River" batholith. The radioactivity is probably all due to uranium associated with bornite and malachite.
NASA Astrophysics Data System (ADS)
Liu, Jian; Wang, Yu; Luo, Deqiang; Chen, Luzheng; Deng, Jiushuai
2018-05-01
The copper activation and potassium butyl xanthate (PBX) adsorption on sphalerite and marmatite surfaces were comparatively investigated using in situ local electrochemical impedance spectroscopy (LEIS), time-of-flight secondary ion mass spectrometry (ToF-SIMS) and surface adsorption tests. Comparing the LEIS and surface adsorption results, it was found that the activation time is a key factor influencing the copper activation and PBX adsorption on marmatite surface, but it has a negligible influence on sphalerite. For a short activation time within 10 min, the Fe impurity in marmatite shows an adverse influence on the speed of Cu adsorption and ion exchange as well as on the subsequent PBX adsorption. For a long activation time of 30 min, the LEIS, ToF-SIMS and surface adsorption results suggested that the Fe impurity in marmatite enhances the copper adsorption, whereas such enhanced copper adsorption of marmatite cannot result in corresponding enhancing of PBX adsorption. DFT result showed that the Fe impurity in marmatite has harmful influence on the PBX interaction with the Cu-activated surface by increasing the interaction energy. ToF-SIMS result further indicated that the Cu distribution in the outermost surface of marmatite is less than that of the sphalerite, which also results in the less PBX adsorption for the marmatite.
NASA Astrophysics Data System (ADS)
Wijayaratne, Hasini; McIntosh, Grant; Hyland, Margaret; Perander, Linus; Metson, James
2017-06-01
The mechanical strength of smelter grade alumina (SGA) is of considerable practical significance for the aluminum reduction process. Attrition of alumina during transportation and handling generates an increased level of fines. This results in generation of dust, poor flow properties, and silo segregation that interfere with alumina feeding systems. These lead to process instabilities which in turn result in current efficiency losses that are costly. Here we are concerned with developing a fundamental understanding of SGA strength in terms of its microstructure. Nanoindentation and ultrasound-mediated particle breakage tests have been conducted to study the strength. Strength of SGA samples both industry calcined and laboratory prepared, decrease with increasing α-alumina (corundum) content contrary to expectation. The reducing strength of alumina with increasing degree of calcination is attributed to the development of a macroporous and abrasion-prone microstructure resulting from the `pseudomorphic' transformation of precursor gibbsite during the calcination process.
Sahu, Kamala Kanta; Agrawal, Archana; Pandey, Banshi Dhar
2004-08-01
Almost all metallurgical processes are associated with the generation of wastes and residues that may be hazardous or non-hazardous in nature depending upon the criteria specified by institutions such as the US Environment Protection Agency, etc. Wastes containing heavy and toxic metals such as arsenic, cadmium, chromium, nickel, lead, copper, mercury, zinc, etc., that are present beyond permissible limits deemed to be treated or disposed of, and non-hazardous wastes can be utilized for metal recovery or safe disposal. Zinc is in growing demand all over the world. In India, a major amount of zinc is imported and therefore processing of zinc secondaries will assist in satisfying the gap between demand and supply to some extent. This report mainly focuses on the current practices and recent trends on the secondary processing of zinc. Attempts made by various laboratories to develop ecofriendly processes for the recovery of zinc from secondary raw materials are also described and discussed.
WHETSTONE ROADLESS AREA, ARIZONA.
Wrucke, Chester T.; McColly, Robert A.
1984-01-01
A mineral survey conducted has shown that areas in and adjacent to the Whetstone Roadless Area, Arizona have a substantiated resource potential for copper, lead, gold, silver, and quartz, and a probable mineral-resource potential for copper silver, lead, gold, molybdenum, tungsten, uranium, and gypsum. Copper and silver occur in a small vein deposit in the southwestern part of the roadless area. Copper, lead, silver, gold, and molybdenum are known in veins associated with a porphyry copper deposit in a reentrant near the southern border of the roadless area. Vein deposits of tungsten and uranium are possible in the northeast part of the roadless area near areas of known production of these commodities. Demonstrated resources of quartz for smelter flux extend into the roadless area from the Ricketts mine. Areas of probable potential for gypsum resources also occur within the roadless area. No potential for fossil fuel resources was identified in the study.
Porins Increase Copper Susceptibility of Mycobacterium tuberculosis
Speer, Alexander; Rowland, Jennifer L.; Haeili, Mehri; Niederweis, Michael
2013-01-01
Copper resistance mechanisms are crucial for many pathogenic bacteria, including Mycobacterium tuberculosis, during infection because the innate immune system utilizes copper ions to kill bacterial intruders. Despite several studies detailing responses of mycobacteria to copper, the pathways by which copper ions cross the mycobacterial cell envelope are unknown. Deletion of porin genes in Mycobacterium smegmatis leads to a severe growth defect on trace copper medium but simultaneously increases tolerance for copper at elevated concentrations, indicating that porins mediate copper uptake across the outer membrane. Heterologous expression of the mycobacterial porin gene mspA reduced growth of M. tuberculosis in the presence of 2.5 μM copper by 40% and completely suppressed growth at 15 μM copper, while wild-type M. tuberculosis reached its normal cell density at that copper concentration. Moreover, the polyamine spermine, a known inhibitor of porin activity in Gram-negative bacteria, enhanced tolerance of M. tuberculosis for copper, suggesting that copper ions utilize endogenous outer membrane channel proteins of M. tuberculosis to gain access to interior cellular compartments. In summary, these findings highlight the outer membrane as the first barrier against copper ions and the role of porins in mediating copper uptake in M. smegmatis and M. tuberculosis. PMID:24013632
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hepworth, J.C.; Foss, M.M.
The fifth Energy and Minerals Field Institute program for Washington, D.C. Congressional and Executive Aides was held during August 15-21, 1982. The five-and-one-half day program was conducted through Wyoming, Colorado and Utah and consisted of visits to: an R and D tertiary petroleum production facility; an historic oil field entering secondary production; a surface uranium mine; a petroleum exploration drilling rig; a surface coal mine; an air cooled, coal-fired power plant; an oil shale site; a geothermal-electrical generating facility; and open pit copper mine and associated smelter and refinery; a petroleum refinery and an oil shale semi-works retort. During themore » field program, participants had opportunities to view communities affected by these activities, such as Wright City and Gillette, Wyoming, Parachute, Colorado and Milford and Cedar City, Utah. Throughout the program, aides met with local, state and industry officials and citizen leaders during bus rides, meals and site visits.« less
Bacterial copper storage proteins.
Dennison, Christopher; David, Sholto; Lee, Jaeick
2018-03-30
Copper is essential for most organisms as a cofactor for key enzymes involved in fundamental processes such as respiration and photosynthesis. However, copper also has toxic effects in cells, which is why eukaryotes and prokaryotes have evolved mechanisms for safe copper handling. A new family of bacterial proteins uses a Cys-rich four-helix bundle to safely store large quantities of Cu(I). The work leading to the discovery of these proteins, their properties and physiological functions, and how their presence potentially impacts the current views of bacterial copper handling and use are discussed in this review. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.
Douay, F; Roussel, H; Pruvot, C; Loriette, A; Fourrier, H
2008-08-15
Vegetables cultivated in kitchen gardens that are strongly contaminated by heavy metals (Pb, Cd) may represent to consumers a means of exposure to these metals. This exposure is more problematic for those families that include a large quantity of home-grown vegetables in their diet. Researchers have shown that the majority of vegetables produced in kitchen gardens in the vicinity of the Metaleurop Nord smelter (Northern France) do not conform to European regulations. This study was carried out in three of these kitchen gardens. The concentrations of Cd and Pb in the topsoils were up to 24 and 3300 mg kg(-1) respectively. The method consisted of delineating a surface area of about 50 to 100 m(2) for each garden, then removing the contaminated soil and replacing it with a clean one. Seven species of vegetables were cultivated from 2003 to 2005 in the original contaminated soils and the remediated ones. The data showed a clear improvement of the quality of the vegetables cultivated in remediated soils, although 17% of them were still over the European legislative limits for foodstuffs. This suggested that there was a foliar contamination due to contaminated dust fallout coming from the closed smelter site and the adjacent polluted soils. In addition, the measurement of the Cd and Pb concentrations in the dust fallout showed that the substantial rise in metal concentrations in the remediated soil was not only due to atmospheric fallout. These results raise questions about possible technical, economic and sociological problems associated with this kind of remediation.
40 CFR 98.330 - Definition of the source category.
Code of Federal Regulations, 2010 CFR
2010-07-01
... (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Zinc Production § 98.330 Definition of the source category. The zinc production source category consists of zinc smelters and secondary zinc recycling facilities. ...
40 CFR 98.330 - Definition of the source category.
Code of Federal Regulations, 2011 CFR
2011-07-01
... (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Zinc Production § 98.330 Definition of the source category. The zinc production source category consists of zinc smelters and secondary zinc recycling facilities. ...
West, Elizabeth C; Prohaska, Joseph R
2004-09-01
Discovery of a sensitive blood biochemical marker of copper status would be valuable for assessing marginal copper intakes. Rodent models were used to investigate whether erythrocyte concentrations of copper,zinc-superoxide dismutase (SOD), and the copper metallochaperone for SOD (CCS) were sensitive to dietary copper changes. Several models of copper deficiency were studied in postweanling male Holtzman rats, male Swiss Webster mice offspring, and both rat and mouse dams. Treatment resulted in variable but significantly altered copper status as evaluated by the presence of anemia, and lower liver copper and higher liver iron concentrations in copper-deficient compared with copper-adequate animals. Associated with this copper deficiency were consistent reductions in immunoreactive SOD and robust enhancements in CCS. In most cases, the ratio of CCS:SOD was several-fold higher in red blood cell extracts from copper-deficient compared with copper-adequate rodents. Determination of red cell CCS:SOD may be useful for assessing copper status of humans.
Cu-catalyzed Suzuki-Miyaura reactions of primary and secondary benzyl halides with arylboronates.
Sun, Yan-Yan; Yi, Jun; Lu, Xi; Zhang, Zhen-Qi; Xiao, Bin; Fu, Yao
2014-09-28
A copper-catalyzed Suzuki-Miyaura coupling of benzyl halides with arylboronates is described. Varieties of primary benzyl halides as well as more challenging secondary benzyl halides with β hydrogens or steric hindrance could be successfully converted into the corresponding products. Thus it provides access to diarylmethanes, diarylethanes and triarylmethanes.
Copper tolerance and virulence in bacteria
Ladomersky, Erik; Petris, Michael J.
2015-01-01
Copper (Cu) is an essential trace element for all aerobic organisms. It functions as a cofactor in enzymes that catalyze a wide variety of redox reactions due to its ability to cycle between two oxidation states, Cu(I) and Cu(II). This same redox property of copper has the potential to cause toxicity if copper homeostasis is not maintained. Studies suggest that the toxic properties of copper are harnessed by the innate immune system of the host to kill bacteria. To counter such defenses, bacteria rely on copper tolerance genes for virulence within the host. These discoveries suggest bacterial copper intoxication is a component of host nutritional immunity, thus expanding our knowledge of the roles of copper in biology. This review summarizes our current understanding of copper tolerance in bacteria, and the extent to which these pathways contribute to bacterial virulence within the host. PMID:25652326
This presentation provides an update and overview of new research results and remaining research needs with respect to copper corrosion control issues. The topics to be covered include: occurrence of elevated copper release in systems that meet the Action Level; impact of water c...
High adherence copper plating process
Nignardot, Henry
1993-01-01
A process for applying copper to a substrate of aluminum or steel by electrodeposition and for preparing an aluminum or steel substrate for electrodeposition of copper. Practice of the invention provides good adhesion of the copper layer to the substrate.
40 CFR 63.544 - Standards for process fugitive sources.
Code of Federal Regulations, 2011 CFR
2011-07-01
... National Emission Standards for Hazardous Air Pollutants from Secondary Lead Smelting § 63.544 Standards for process fugitive sources. (a) Each owner or operator of a secondary lead smelter shall control the...) Smelting furnace and dryer charging hoppers, chutes, and skip hoists; (2) Smelting furnace lead taps, and...
Canine Models for Copper Homeostasis Disorders.
Wu, Xiaoyan; Leegwater, Peter A J; Fieten, Hille
2016-02-04
Copper is an essential trace nutrient metal involved in a multitude of cellular processes. Hereditary defects in copper metabolism result in disorders with a severe clinical course such as Wilson disease and Menkes disease. In Wilson disease, copper accumulation leads to liver cirrhosis and neurological impairments. A lack in genotype-phenotype correlation in Wilson disease points toward the influence of environmental factors or modifying genes. In a number of Non-Wilsonian forms of copper metabolism, the underlying genetic defects remain elusive. Several pure bred dog populations are affected with copper-associated hepatitis showing similarities to human copper metabolism disorders. Gene-mapping studies in these populations offer the opportunity to discover new genes involved in copper metabolism. Furthermore, due to the relatively large body size and long life-span of dogs they are excellent models for development of new treatment strategies. One example is the recent use of canine organoids for disease modeling and gene therapy of copper storage disease. This review addresses the opportunities offered by canine genetics for discovery of genes involved in copper metabolism disorders. Further, possibilities for the use of dogs in development of new treatment modalities for copper storage disorders, including gene repair in patient-derived hepatic organoids, are highlighted.
Canine Models for Copper Homeostasis Disorders
Wu, Xiaoyan; Leegwater, Peter A. J.; Fieten, Hille
2016-01-01
Copper is an essential trace nutrient metal involved in a multitude of cellular processes. Hereditary defects in copper metabolism result in disorders with a severe clinical course such as Wilson disease and Menkes disease. In Wilson disease, copper accumulation leads to liver cirrhosis and neurological impairments. A lack in genotype-phenotype correlation in Wilson disease points toward the influence of environmental factors or modifying genes. In a number of Non-Wilsonian forms of copper metabolism, the underlying genetic defects remain elusive. Several pure bred dog populations are affected with copper-associated hepatitis showing similarities to human copper metabolism disorders. Gene-mapping studies in these populations offer the opportunity to discover new genes involved in copper metabolism. Furthermore, due to the relatively large body size and long life-span of dogs they are excellent models for development of new treatment strategies. One example is the recent use of canine organoids for disease modeling and gene therapy of copper storage disease. This review addresses the opportunities offered by canine genetics for discovery of genes involved in copper metabolism disorders. Further, possibilities for the use of dogs in development of new treatment modalities for copper storage disorders, including gene repair in patient-derived hepatic organoids, are highlighted. PMID:26861285
Preparation of graphite dispersed copper composite with intruding graphite particles in copper plate
NASA Astrophysics Data System (ADS)
Noor, Abdul Muizz Mohd; Ishikawa, Yoshikazu; Yokoyama, Seiji
2017-01-01
In this study, it was attempted that copper-graphite composite was prepared locally on the surface of a copper plate with using a spot welding machine. Experiments were carried out with changing the compressive load, the repetition number of the compression and the electrical current in order to study the effect of them on carbon content and Vickers hardness on the copper plate surface. When the graphite was pushed into copper plate only with the compressive load, the composite was mainly hardened by the work hardening. The Vickers hardness increased linearly with an increase in the carbon content. When an electrical current was energized through the composite at the compression, the copper around the graphite particles were heated to the temperature above approximately 2100 K and melted. The graphite particles partially or entirely dissolved into the melt. The graphite particles were precipitated from the melt under solidification. In addition, this high temperature caused the improvement of wetting of copper to graphite. This high temperature caused the annealing, and reduced the Vickers hardness. Even in this case, the Vickers hardness increased with an increase in the carbon content. This resulted from the dispersion hardening.
2014-01-01
Background Heart disease is the leading cause of death in diabetic patients, and defective copper metabolism may play important roles in the pathogenesis of diabetic cardiomyopathy (DCM). The present study sought to determine how myocardial copper status and key copper-proteins might become impaired by diabetes, and how they respond to treatment with the Cu (II)-selective chelator triethylenetetramine (TETA) in DCM. Methods Experiments were performed in Wistar rats with streptozotocin (STZ)-induced diabetes with or without TETA treatment. Cardiac function was analyzed in isolated-perfused working hearts, and myocardial total copper content measured by particle-induced x-ray emission spectroscopy (PIXE) coupled with Rutherford backscattering spectrometry (RBS). Quantitative expression (mRNA and protein) and/or activity of key proteins that mediate LV-tissue-copper binding and transport, were analyzed by combined RT-qPCR, western blotting, immunofluorescence microscopy, and enzyme activity assays. Statistical analysis was performed using Student’s t-tests or ANOVA and p-values of < 0.05 have been considered significant. Results Left-ventricular (LV) copper levels and function were severely depressed in rats following 16-weeks’ diabetes, but both were unexpectedly normalized 8-weeks after treatment with TETA was instituted. Localized myocardial copper deficiency was accompanied by decreased expression and increased polymerization of the copper-responsive transition-metal-binding metallothionein proteins (MT1/MT2), consistent with impaired anti-oxidant defences and elevated susceptibility to pro-oxidant stress. Levels of the high-affinity copper transporter-1 (CTR1) were depressed in diabetes, consistent with impaired membrane copper uptake, and were not modified by TETA which, contrastingly, renormalized myocardial copper and increased levels and cell-membrane localization of the low-affinity copper transporter-2 (CTR2). Diabetes also lowered indexes of
Transpassive Dissolution of Copper and Rapid Formation of Brilliant Colored Copper Oxide Films
NASA Astrophysics Data System (ADS)
Fredj, Narjes; Burleigh, T. David; New Mexico Tech Team
2014-03-01
This investigation describes an electrochemical technique for growing adhesive copper oxide films on copper with attractive colors ranging from gold-brown to pearl with intermediate colors from red violet to gold green. The technique consists of anodically dissolving copper at transpassive potentials in hot sodium hydroxide, and then depositing brilliant color films of Cu2O onto the surface of copper after the anodic potential has been turned off. The color of the copper oxide film depends on the temperature, the anodic potential, the time t1 of polarization, and the time t2, which is the time of immersion after potential has been turned off. The brilliant colored films were characterized using glancing angle x-ray diffraction, and the film was found to be primarily Cu2O. Cyclic voltammetry, chronopotentiometry, scanning electron microscopy, and x-ray photoelectron spectroscopy were also used to characterize these films.
Joining of alumina via copper/niobium/copper interlayers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marks, Robert A.; Chapman, Daniel R.; Danielson, David T.
2000-03-15
Alumina has been joined at 1150 degrees C and 1400 degrees C using multilayer copper/niobium/copper interlayers. Four-point bend strengths are sensitive to processing temperature, bonding pressure, and furnace environment (ambient oxygen partial pressure). Under optimum conditions, joints with reproducibly high room temperature strengths (approximately equal 240 plus/minus 20 MPa) can be produced; most failures occur within the ceramic. Joints made with sapphire show that during bonding an initially continuous copper film undergoes a morphological instability, resulting in the formation of isolated copper-rich droplets/particles at the sapphire/interlayer interface, and extensive regions of direct bonding between sapphire and niobium. For optimized aluminamore » bonds, bend tests at 800 degrees C-1100 degrees C indicate significant strength is retained; even at the highest test temperature, ceramic failure is observed. Post-bonding anneals at 1000 degrees C in vacuum or in gettered argon were used to assess joint stability and to probe the effect of ambient oxygen partial pressure on joint characteristics. Annealing in vacuum for up to 200 h causes no significant decrease in room temperature bend strength or change in fracture path. With increasing anneal time in a lower oxygen partial pressure environment, the fracture strength decreases only slightly, but the fracture path shifts from the ceramic to the interface.« less
Code of Federal Regulations, 2011 CFR
2011-10-01
... 49 Transportation 3 2011-10-01 2011-10-01 false Copper pipe. 192.279 Section 192.279 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY... Copper pipe. Copper pipe may not be threaded except that copper pipe used for joining screw fittings or...
Molecular Mediators Governing Iron-Copper Interactions
Gulec, Sukru; Collins, James F.
2015-01-01
Given their similar physiochemical properties, it is a logical postulate that iron and copper metabolism are intertwined. Indeed, iron-copper interactions were first documented over a century ago, but the homeostatic effects of one on the other has not been elucidated at a molecular level to date. Recent experimental work has, however, begun to provide mechanistic insight into how copper influences iron metabolism. During iron deficiency, elevated copper levels are observed in the intestinal mucosa, liver, and blood. Copper accumulation and/or redistribution within enterocytes may influence iron transport, and high hepatic copper may enhance biosynthesis of a circulating ferroxidase, which potentiates iron release from stores. Moreover, emerging evidence has documented direct effects of copper on the expression and activity of the iron-regulatory hormone hepcidin. This review summarizes current experimental work in this field, with a focus on molecular aspects of iron-copper interplay and how these interactions relate to various disease states. PMID:24995690
Copper Regulates Cyclic AMP-Dependent Lipolysis
Krishnamoorthy, Lakshmi; Cotruvo, Joseph A.; Chan, Jefferson; Kaluarachchi, Harini; Muchenditsi, Abigael; Pendyala, Venkata S.; Jia, Shang; Aron, Allegra T.; Ackerman, Cheri M.; Vander Wal, Mark N.; Guan, Timothy; Smaga, Lukas P.; Farhi, Samouil L.; New, Elizabeth J.; Lutsenko, Svetlana; Chang, Christopher J.
2016-01-01
Cell signaling relies extensively on dynamic pools of redox-inactive metal ions such as sodium, potassium, calcium, and zinc, but their redox-active transition metal counterparts such as copper and iron have been studied primarily as static enzyme cofactors. Here we report that copper is an endogenous regulator of lipolysis, the breakdown of fat, which is an essential process in maintaining the body's weight and energy stores. Utilizing a murine model of genetic copper misregulation, in combination with pharmacological alterations in copper status and imaging studies in a 3T3-L1 white adipocyte model, we demonstrate that copper regulates lipolysis at the level of the second messenger, cyclic AMP (cAMP), by altering the activity of the cAMP-degrading phosphodiesterase PDE3B. Biochemical studies of the copper-PDE3B interaction establish copper-dependent inhibition of enzyme activity and identify a key conserved cysteine residue within a PDE3-specific loop that is essential for the observed copper-dependent lipolytic phenotype. PMID:27272565
Wang, Hong-Yan; Cui, Zhao-Jie; Yao, Ya-Wei
2010-12-01
A newly leaching method of copper from waste print circuit board was established by using hydrochloric acid-n-butylamine-copper sulfate mixed solution. The conditions of leaching were optimized by changing the hydrochloric acid, n-butylamine, copper sulfate,temperature and other conditions using copper as target mimics. The results indicated that copper could be leached completely after 8 h at 50 degrees C, hydrochloric acid concentration of 1.75 mol/L, n-butylamine concentration of 0.25 mol/L, and copper sulfate mass of 0.96 g. Under the conditions, copper leaching rates in waste print circuit board samples was up to 95.31% after 9 h. It has many advantages such as better effects, low cost, mild reaction conditions, leaching solution recycling.
Process Of Bonding Copper And Tungsten
Slattery, Kevin T.; Driemeyer, Daniel E.
1999-11-23
Process for bonding a copper substrate to a tungsten substrate by providing a thin metallic adhesion promoting film bonded to a tungsten substrate and a functionally graded material (FGM) interlayer bonding the thin metallic adhesion promoting film to the copper substrate. The FGM interlayer is formed by thermal plasma spraying mixtures of copper powder and tungsten powder in a varied blending ratio such that the blending ratio of the copper powder and the tungsten powder that is fed to a plasma torch is intermittently adjusted to provide progressively higher copper content/tungsten content, by volume, ratio values in the interlayer in a lineal direction extending from the tungsten substrate towards the copper substrate. The resulting copper to tungsten joint well accommodates the difference in the coefficient of thermal expansion of the materials.
Rheological study of copper and copper grapheme feedstock for powder injection molding
NASA Astrophysics Data System (ADS)
Azaman, N. Emira Binti; Rafi Raza, M.; Muhamad, N.; Niaz Akhtar, M.; Bakar Sulong, A.
2017-01-01
Heatsink is one of the solution to optimize the performance of smart electronic devices. Copper and its composites are helping the electronic industry to solve the heating problem. Copper-graphene heat sink material with enhanced thermal conductivity is the ultimate goal.Powder injection molding (PIM) has advantages of high precision and production rate, complex shape, low cost and suitabality for metal and cremics.PIM consists of four sub sequential steps; feedstock preparation, molding, debinding and sintering. Feedstock preparation is a critical step in PIM process. Any deficiency at this stage cannot be recovered at latter stages. Therefore, this research was carried out to investigate the injectability of copper and copper graphene composite using PIM. PEG based multicomponent binder system was used and the powder loading was upto 7vol.% less than the critical powder loading was used to provide the wettability of the copper powder and graphene nanoplatelets (GNps). Corpper-graphene feedstock contained 0.5vol.% of GNps . To ensure the homogeneity of GNps within feedstock a unique technique was addopted. The microscopic results showed that the feedstock is homogeneous and ready for injection. The viscosity-shear rate relationship was determined and results showed that the addition of 0.5vol.% of GNps in copper has increased the viscosity upto 64.9% at 140˚C than that of pure copper feedstock. This attribute may be due to the large surface area of GNps. On the other hand, by increasing the temperature, viscosity of the feedstock was decreased, which was recommended for PIM. The overall viscosity and share rate lies within the range recommended for PIM process. It is clear that both feedstocks showed pseudo plastic behaviour which is suitable for PIM process. In the pseudo plastic behaviour, the viscosity decreases with the shear rate. It may be due to change in the structure of the solid particles or the binder. The molding results showed that both copper
Process Of Bonding Copper And Tungsten
Slattery, Kevin T.; Driemeyer, Daniel E.; Davis, John W.
2000-07-18
Process for bonding a copper substrate to a tungsten substrate by providing a thin metallic adhesion promoting film bonded to a tungsten substrate and a functionally graded material (FGM) interlayer bonding the thin metallic adhesion promoting film to the copper substrate. The FGM interlayer is formed by sintering a stack of individual copper and tungsten powder blend layers having progressively higher copper content/tungsten content, by volume, ratio values in successive powder blend layers in a lineal direction extending from the tungsten substrate towards the copper substrate. The resulting copper to tungsten joint well accommodates the difference in the coefficient of thermal expansion of the materials.
Release of Micronized Copper Particles from Pressure ...
Micronized copper pressure treated lumber (PTL) has recently been introduced to the consumer market as a replacement for ionized copper PTL. The presence of particulate rather than aqueous copper raises concerns about the exposure of humans as well as the environment to the particles. Two common pathways of exposure, leaching during contact with water and transfer during physical contact, were investigated to gage potential human and environmental risk during intended use of the product. Characterization, leaching tests, and wipe tests were conducted on two representative formulations of micronized copper PTL (micronized copper azole or MCA) to quantify the levels of copper present in the treated material and the amount of copper released during use as well as to determine the form (particle or ion) of the copper after it was released. Additionally, an ionized copper pressure treated wood (alkaline copper azole or ACA) was tested for comparison. The characterization showed that copper carbonate is the primary particle form in the MCA treated wood, but other forms are also present, particularly in the MCA-1 formulation, which contained a large amount of organically complexed copper. Microscopy showed that MCA-1 contained particles roughly half the size of MCA-2. The leaching results indicate that mostly (> ~95%) ionic copper is released from the MCA wood and that the particulate copper that was released is attached to cellulose and not free in solution. A sma
Fetherolf, Morgan M; Boyd, Stefanie D; Taylor, Alexander B; Kim, Hee Jong; Wohlschlegel, James A; Blackburn, Ninian J; Hart, P John; Winge, Dennis R; Winkler, Duane D
2017-07-21
Metallochaperones are a diverse family of trafficking molecules that provide metal ions to protein targets for use as cofactors. The copper chaperone for superoxide dismutase (Ccs1) activates immature copper-zinc superoxide dismutase (Sod1) by delivering copper and facilitating the oxidation of the Sod1 intramolecular disulfide bond. Here, we present structural, spectroscopic, and cell-based data supporting a novel copper-induced mechanism for Sod1 activation. Ccs1 binding exposes an electropositive cavity and proposed "entry site" for copper ion delivery on immature Sod1. Copper-mediated sulfenylation leads to a sulfenic acid intermediate that eventually resolves to form the Sod1 disulfide bond with concomitant release of copper into the Sod1 active site. Sod1 is the predominant disulfide bond-requiring enzyme in the cytoplasm, and this copper-induced mechanism of disulfide bond formation obviates the need for a thiol/disulfide oxidoreductase in that compartment. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.
High adherence copper plating process
Nignardot, H.
1993-09-21
A process is described for applying copper to a substrate of aluminum or steel by electrodeposition and for preparing the surface of an aluminum or steel substrate for the electrodeposition of copper. Practice of the invention provides good adhesion of the copper layer to either substrate.
Colloidal and electrochemical aspects of copper-CMP
NASA Astrophysics Data System (ADS)
Sun, Yuxia
Copper based interconnects with low dielectric constant layers are currently used to increase interconnect densities and reduce interconnect time delays in integrated circuits. The technology used to develop copper interconnects involves Chemical Mechanical Planarization (CMP) of copper films deposited on low-k layers (silica or silica based films), which is carried out using slurries containing abrasive particles. One issue using such a structure is copper contamination over dielectric layers (SiO2 film), if not reduced, this contamination will cause current leakage. In this study, the conditions conducive to copper contamination onto SiO2 films during Cu-CMP process were studied, and a post-CMP cleaning technique was discussed based on experimental results. It was found that the adsorption of copper onto a silica surface is kinetically fast (<0.5 minute). The amount of copper absorbed is pH and concentration dependent and affected by presence of H2O2, complexing agents, and copper corrosion inhibitor Benzotrazole. Based on de-sorption results, DI water alone was unable to reduce adsorbed copper to an acceptable level, especially for adsorption that takes place at a higher pH condition. The addition of complex agent, citric acid, proved effective in suppressing copper adsorption onto oxide silica during polishing or post-CMP cleaning by forming stable copper-CA complexes. Surface Complexation Modeling was used to simulate copper adsorption isotherms and predict the copper contamination levels on SiO2 surfaces. Another issue with the application of copper CMP is its environmental impact. CMP is a costly process due to its huge consumption of pure water and slurry. Additionally, Cu-CMP processing generates a waste stream containing certain amounts of copper and abrasive slurry particles. In this study, the separation technique electrocoagulation was investigated to remove both copper and abrasive slurry particles simultaneously. For effluent containing ˜40 ppm
Capable Copper Electrodeposition Process for Integrated Circuit - substrate Packaging Manufacturing
NASA Astrophysics Data System (ADS)
Ghanbari, Nasrin
This work demonstrates a capable reverse pulse deposition methodology to influence gap fill behavior inside microvia along with a uniform deposit in the fine line patterned regions for substrate packaging applications. Interconnect circuitry in IC substrate packages comprises of stacked microvia that varies in depth from 20microm to 100microm with an aspect ratio of 0.5 to 1.5 and fine line patterns defined by photolithography. Photolithography defined pattern regions incorporate a wide variety of feature sizes including large circular pad structures with diameter of 20microm - 200microm, fine traces with varying widths of 3microm - 30microm and additional planar regions to define a IC substrate package. Electrodeposition of copper is performed to establish the desired circuit. Electrodeposition of copper in IC substrate applications holds certain unique challenges in that they require a low cost manufacturing process that enables a void-free gap fill inside the microvia along with uniform deposition of copper on exposed patterned regions. Deposition time scales to establish the desired metal thickness for such packages could range from several minutes to few hours. This work showcases a reverse pulse electrodeposition methodology that achieves void-free gap fill inside the microvia and uniform plating in FLS (Fine Lines and Spaces) regions with significantly higher deposition rates than traditional approaches. In order to achieve this capability, systematic experimental and simulation studies were performed. A strong correlation of independent parameters that govern the electrodeposition process such as bath temperature, reverse pulse plating parameters and the ratio of electrolyte concentrations is shown to the deposition kinetics and deposition uniformity in fine patterned regions and gap fill rate inside the microvia. Additionally, insight into the physics of via fill process is presented with secondary and tertiary current simulation efforts. Such efforts lead
21 CFR 73.2125 - Potassium sodium copper chlorophyllin (chlorophyllin-copper complex).
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Potassium sodium copper chlorophyllin (chlorophyllin-copper complex). 73.2125 Section 73.2125 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL LISTING OF COLOR ADDITIVES EXEMPT FROM CERTIFICATION Cosmetics...
21 CFR 73.2125 - Potassium sodium copper chlorophyllin (chlorophyllin-copper complex).
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 1 2011-04-01 2011-04-01 false Potassium sodium copper chlorophyllin (chlorophyllin-copper complex). 73.2125 Section 73.2125 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL LISTING OF COLOR ADDITIVES EXEMPT FROM CERTIFICATION Cosmetics...
Alvarez, Florencia; Schilardi, Patricia L; de Mele, Monica Fernández Lorenzo
2012-01-01
The copper intrauterine device is a contraceptive method that is based on the release of copper ions from a copper wire. Immediately after insertion, the dissolution of copper in the uterine fluid is markedly higher ("burst release") than that necessary for contraception action, leading to a variety of harmful effects. Pretreatments with organic compounds [thiourea (TU) and purine (PU), 10(-4)-10(-2) M concentration range, 1- and 3-h immersion times] were tested. The dissolution of copper with and without pretreatments in TU and PU solutions was analyzed by conventional electrochemical techniques and surface analysis. Pretreatments in PU solutions reduced the initial corrosion rate of copper in simulated uterine solutions, with inhibitory efficiencies that depend on the PU concentration and on the immersion time assayed. Inhibitory efficiency values higher than 98% for pretreatments with ≥10(-3) M PU were found. Conversely, after TU pretreatments, a high copper release was measured. It was concluded that 10(-3) M PU pretreatment is a promising strategy able to reduce the "burst release" of copper and to ensure contraceptive action. Copyright © 2012 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Sherman, David M.
2013-10-01
Copper exists as two isotopes: 65Cu (∼30.85%) and 63Cu (∼69.15%). The isotopic composition of copper in secondary minerals, surface waters and oxic groundwaters is 1-12‰ heavier than that of copper in primary sulfides. Changes in oxidation state and complexation should yield substantial isotopic fractionation between copper species but it is unclear to what extent the observed Cu isotopic variations reflect equilibrium fractionation. Here, I calculate the reduced partition function ratios for chalcopyrite (CuFeS2), cuprite (Cu2O), tenorite (CuO) and aqueous Cu+, Cu+2 complexes using periodic and molecular hybrid density functional theory to predict the equilibrium isotopic fractionation of Cu resulting from oxidation of Cu+ to Cu+2 and by complexation of dissolved Cu. Among the various copper(II) complexes in aqueous environments, there is a significant (1.3‰) range in the reduced partition function ratios. Oxidation and congruent dissolution of chalcopyrite (CuFeS2) to dissolved Cu+2 (as Cu(H2O)5+2) yields 65-63δ(Cu+2-CuFeS2) = 3.1‰ at 25 °C; however, chalcopyrite oxidation/dissolution is incongruent so that the observed isotopic fractionation will be less. Secondary precipitation of cuprite (Cu2O) would yield further enrichment of dissolved 65Cu since 65-63δ(Cu+2-Cu2O) is 1.2‰ at 25 °C. However, precipitation of tenorite (CuO) will favor the heavy isotope by +1.0‰ making dissolved Cu isotopically lighter. These are upper-limit estimates for equilibrium fractionation. Therefore, the extremely large (9‰) fractionations between dissolved Cu+2 (or Cu+2 minerals) and primary Cu+ sulfides observed in supergene environments must reflect Rayleigh (open-system) or kinetic fractionation. Finally the previously proposed (Asael et al., 2009) use of δ65Cu in chalcopyrite to estimate the oxidation state of fluids that transported Cu in stratiform sediment-hosted copper deposits is refined.
Waste minimization charges up recycling of spent lead-acid batteries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Queneau, P.B.; Troutman, A.L.
Substantial strides are being made to minimize waste generated form spent lead-acid battery recycling. The Center for Hazardous Materials Research (Pittsburgh) recently investigated the potential for secondary lead smelters to recover lead from battery cases and other materials found at hazardous waste sites. Primary and secondary lead smelters in the U.S. and Canada are processing substantial tons of lead wastes, and meeting regulatory safeguards. Typical lead wastes include contaminated soil, dross and dust by-products from industrial lead consumers, tetraethyl lead residues, chemical manufacturing by-products, leaded glass, china clay waste, munitions residues and pigments. The secondary lead industry also is developingmore » and installing systems to convert process inputs to products with minimum generation of liquid, solid and gaseous wastes. The industry recently has made substantial accomplishments that minimize waste generation during lead production from its bread and butter feedstock--spent lead-acid batteries.« less
Characteristics and antimicrobial activity of copper-based materials
NASA Astrophysics Data System (ADS)
Li, Bowen
In this study, copper vermiculite was synthesized, and the characteristics, antimicrobial effects, and chemical stability of copper vermiculite were investigated. Two types of copper vermiculite materials, micron-sized copper vermiculite (MCV) and exfoliated copper vermiculite (MECV), are selected for this research. Since most of the functional fillers used in industry products, such as plastics, paints, rubbers, papers, and textiles prefer micron-scaled particles, micron-sized copper vermiculite was prepared by jet-milling vermiculite. Meanwhile, since the exfoliated vermiculite has very unique properties, such as high porosity, specific surface area, high aspect ratio of laminates, and low density, and has been extensively utilized as a functional additives, exfoliated copper vermiculite also was synthesized and investigated. The antibacterial efficiency of copper vermiculite was qualitatively evaluated by the diffusion methods (both liquid diffusion and solid diffusion) against the most common pathogenic species: Escherichia coli (E. coli), Staphylococcus aureus (S. aureus), and Klebsiella pneumoniae (K. pneumoniae). The result showed that the release velocity of copper from copper vermiculite is very slow. However, copper vermiculite clearly has excellent antibacterial efficiency to S. aureus, K. pneumoniae and E. coli. The strongest antibacterial ability of copper vermiculite is its action on S. aureus. The antibacterial efficiency of copper vermiculite was also quantitatively evaluated by determining the reduction rate (death rate) of E. coli versus various levels of copper vermiculite. 10 ppm of copper vermiculite in solution is sufficient to reduce the cell population of E. coli, while the untreated vermiculite had no antibacterial activity. The slow release of copper revealed that the antimicrobial effect of copper vermiculite was due to the strong interactions between copper ions and bacteria cells. Exfoliated copper vermiculite has even stronger
Accumulation and hyperaccumulation of copper in plants
NASA Astrophysics Data System (ADS)
Adam, V.; Trnkova, L.; Huska, D.; Babula, P.; Kizek, R.
2009-04-01
Copper is natural component of our environment. Flow of copper(II) ions in the environment depends on solubility of compounds containing this metal. Mobile ion coming from soil and rocks due to volcanic activity, rains and others are then distributed to water. Bio-availability of copper is substantially lower than its concentration in the aquatic environment. Copper present in the water reacts with other compounds and creates a complex, not available for organisms. The availability of copper varies depending on the environment, but moving around within the range from 5 to 25 % of total copper. Thus copper is stored in the sediments and the rest is transported to the seas and oceans. It is common knowledge that copper is essential element for most living organisms. For this reason this element is actively accumulated in the tissues. The total quantity of copper in soil ranges from 2 to 250 mg / kg, the average concentration is 30 mg / kg. Certain activities related to agriculture (the use of fungicides), possibly with the metallurgical industry and mining, tend to increase the total quantity of copper in the soil. This amount of copper in the soil is a problem particularly for agricultural production of food. The lack of copper causes a decrease in revenue and reduction in quality of production. In Europe, shows the low level of copper in total 18 million hectares of farmland. To remedy this adverse situation is the increasing use of copper fertilizers in agricultural soils. It is known that copper compounds are used in plant protection against various illnesses and pests. Mining of minerals is for the development of human society a key economic activity. An important site where the copper is mined in the Slovakia is nearby Smolníka. Due to long time mining in his area (more than 700 years) there are places with extremely high concentrations of various metals including copper. Besides copper, there are also detected iron, zinc and arsenic. Various plant species
Copper diffusion in Ti Si N layers formed by inductively coupled plasma implantation
NASA Astrophysics Data System (ADS)
Ee, Y. C.; Chen, Z.; Law, S. B.; Xu, S.; Yakovlev, N. L.; Lai, M. Y.
2006-11-01
Ternary Ti-Si-N refractory barrier films of 15 nm thick was prepared by low frequency, high density, inductively coupled plasma implantation of N into TixSiy substrate. This leads to the formation of Ti-N and Si-N compounds in the ternary film. Diffusion of copper in the barrier layer after annealing treatment at various temperatures was investigated using time-of-flight secondary ion mass spectrometer (ToF-SIMS) depth profiling, X-ray diffractometer (XRD), field emission scanning electron microscopy (FESEM), energy dispersive X-ray (EDX) and sheet resistance measurement. The current study found that barrier failure did not occur until 650 °C annealing for 30 min. The failure occurs by the diffusion of copper into the Ti-Si-N film to form Cu-Ti and Cu-N compounds. FESEM surface morphology and EDX show that copper compounds were formed on the ridge areas of the Ti-Si-N film. The sheet resistance verifies the diffusion of Cu into the Ti-Si-N film; there is a sudden drop in the resistance with Cu compound formation. This finding provides a simple and effective method of monitoring Cu diffusion in TiN-based diffusion barriers.
Reactions of copper macrocycles with antioxidants and HOCl: potential for biological redox sensing.
Sowden, Rebecca J; Trotter, Katherine D; Dunbar, Lynsey; Craig, Gemma; Erdemli, Omer; Spickett, Corinne M; Reglinski, John
2013-02-01
A series of simple copper N(2)S(2) macrocycles were examined for their potential as biological redox sensors, following previous characterization of their redox potentials and crystal structures. The divalent species were reduced by glutathione or ascorbate at a biologically relevant pH in aqueous buffer. A less efficient reduction was also achieved by vitamin E in DMSO. Oxidation of the corresponding univalent copper species by sodium hypochlorite resulted in only partial (~65 %) recovery of the divalent form. This was concluded to be due to competition between metal oxidation and ligand oxidation, which is believed to contribute to macrocycle demetallation. Electrospray mass spectrometry confirmed that ligand oxidation had occurred. Moreover, the macrocyclic complexes could be demetallated by incubation with EDTA and bovine serum albumin, demonstrating that they would be inappropriate for use in biological systems. The susceptibility to oxidation and demetallation was hypothesized to be due to oxidation of the secondary amines. Consequently these were modified to incorporate additional oxygen donor atoms. This modification led to greater resistance to demetallation and ligand oxidation, providing a better platform for further development of copper macrocycles as redox sensors for use in biological systems.
21 CFR 73.1125 - Potassium sodium copper chloropyhllin (chlorophyllin-copper complex).
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 1 2012-04-01 2012-04-01 false Potassium sodium copper chloropyhllin (chlorophyllin-copper complex). 73.1125 Section 73.1125 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL LISTING OF COLOR ADDITIVES EXEMPT FROM CERTIFICATION Drugs § 73...
21 CFR 73.1125 - Potassium sodium copper chloropyhllin (chlorophyllin-copper complex).
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 1 2014-04-01 2014-04-01 false Potassium sodium copper chloropyhllin (chlorophyllin-copper complex). 73.1125 Section 73.1125 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL LISTING OF COLOR ADDITIVES EXEMPT FROM CERTIFICATION Drugs § 73...
21 CFR 73.1125 - Potassium sodium copper chloropyhllin (chlorophyllin-copper complex).
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Potassium sodium copper chloropyhllin (chlorophyllin-copper complex). 73.1125 Section 73.1125 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL LISTING OF COLOR ADDITIVES EXEMPT FROM CERTIFICATION Drugs § 73...
21 CFR 73.1125 - Potassium sodium copper chloropyhllin (chlorophyllin-copper complex).
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 1 2013-04-01 2013-04-01 false Potassium sodium copper chloropyhllin (chlorophyllin-copper complex). 73.1125 Section 73.1125 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL LISTING OF COLOR ADDITIVES EXEMPT FROM CERTIFICATION Drugs § 73...
Unraveling the Amycolatopsis tucumanensis copper-resistome.
Dávila Costa, José Sebastián; Kothe, Erika; Abate, Carlos Mauricio; Amoroso, María Julia
2012-10-01
Heavy metal pollution is widespread causing serious ecological problems in many parts of the world; especially in developing countries where a budget for remediation technology is not affordable. Therefore, screening for microbes with high accumulation capacities and studying their stable resistance characteristics is advisable to define cost-effective any remediation strategies. Herein, the copper-resistome of the novel copper-resistant strain Amycolatopsis tucumanensis was studied using several approaches. Two dimensional gel electrophoresis revealed that proteins of the central metabolism, energy production, transcriptional regulators, two-component system, antioxidants and protective metabolites increased their abundance upon copper-stress conditions. Transcriptome analysis revealed that in presence of copper, superoxide dismutase, alkyl hydroperoxide reductase and mycothiol reductase genes were markedly induced in expression. The oxidative damage of protein and lipid from A. tucumanensis was negligible compared with that observed in the copper-sensitive strain Amycolatopsis eurytherma. Thus, we provide evidence that A. tucumamensis shows a high adaptation towards copper, the sum of which is proposed as the copper-resistome. This adaptation allows the strain to accumulate copper and survive this stress; besides, it constitutes the first report in which the copper-resistome of a strain of the genus Amycolatopsis with bioremediation potential has been evaluated.
Copper toxicity in ruminant animals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oehme, F.W.
This discussion includes clinical and post mortem features, metabolism of both normal and toxic quantities of copper, effect of copper upon the tissues, and control treatment and prevention of copper toxicity. These effects are discussed in regard to ruminants. Specific emphasis is placed on metabolism and biochemistry. 33 references, 3 figures.
A Study of the Optimal Model of the Flotation Kinetics of Copper Slag from Copper Mine BOR
NASA Astrophysics Data System (ADS)
Stanojlović, Rodoljub D.; Sokolović, Jovica M.
2014-10-01
In this study the effect of mixtures of copper slag and flotation tailings from copper mine Bor, Serbia on the flotation results of copper recovery and flotation kinetics parameters in a batch flotation cell has been investigated. By simultaneous adding old flotation tailings in the ball mill at the rate of 9%, it is possible to increase copper recovery for about 20%. These results are compared with obtained copper recovery of pure copper slag. The results of batch flotation test were fitted by MatLab software for modeling the first-order flotation kinetics in order to determine kinetics parameters and define an optimal model of the flotation kinetics. Six kinetic models are tested on the batch flotation copper recovery against flotation time. All models showed good correlation, however the modified Kelsall model provided the best fit.
Metallic copper as an antimicrobial surface.
Grass, Gregor; Rensing, Christopher; Solioz, Marc
2011-03-01
Bacteria, yeasts, and viruses are rapidly killed on metallic copper surfaces, and the term "contact killing" has been coined for this process. While the phenomenon was already known in ancient times, it is currently receiving renewed attention. This is due to the potential use of copper as an antibacterial material in health care settings. Contact killing was observed to take place at a rate of at least 7 to 8 logs per hour, and no live microorganisms were generally recovered from copper surfaces after prolonged incubation. The antimicrobial activity of copper and copper alloys is now well established, and copper has recently been registered at the U.S. Environmental Protection Agency as the first solid antimicrobial material. In several clinical studies, copper has been evaluated for use on touch surfaces, such as door handles, bathroom fixtures, or bed rails, in attempts to curb nosocomial infections. In connection to these new applications of copper, it is important to understand the mechanism of contact killing since it may bear on central issues, such as the possibility of the emergence and spread of resistant organisms, cleaning procedures, and questions of material and object engineering. Recent work has shed light on mechanistic aspects of contact killing. These findings will be reviewed here and juxtaposed with the toxicity mechanisms of ionic copper. The merit of copper as a hygienic material in hospitals and related settings will also be discussed.
Brewer, George J
2015-12-02
It has become clear that copper toxicity is playing a major role in Alzheimer's disease; but why is the brain copper toxicity with cognition loss in Alzheimer's disease so much different clinically than brain copper toxicity in Wilson's disease, which results in a movement disorder? Furthermore, why is the inorganic copper of supplement pills and in drinking water so much more damaging to cognition than the organic copper in food? A recent paper, which shows that almost all food copper is copper-1, that is the copper-2 of foods reverts to the reduced copper-1 form at death or harvest, gives new insight into these questions. The body has an intestinal transport system for copper-1, Ctr1, which channels copper-1 through the liver and into safe channels. Ctr1 cannot absorb copper-2, and some copper-2 bypasses the liver, ends up in the blood quickly, and is toxic to cognition. Humans evolved to handle copper-1 safely, but not copper-2. Alzheimer's is at least in part, a copper-2 toxicity disease, while Wilson's is a general copper overload disease. In this review, we will show that the epidemiology of the Alzheimer's epidemic occurring in developed, but not undeveloped countries, fits with the epidemiology of exposure to copper-2 ingestion leached from copper plumbing and from copper supplement pill ingestion. Increased meat eating in developed countries is also a factor, because it increases copper absorption, and thus over all copper exposure.
Copper transport and regulation in Schizosaccharomyces pombe.
Beaudoin, Jude; Ekici, Seda; Daldal, Fevzi; Ait-Mohand, Samia; Guérin, Brigitte; Labbé, Simon
2013-12-01
The fission yeast Schizosaccharomyces pombe has been successfully used as a model to gain fundamental knowledge in understanding how eukaryotic cells acquire copper during vegetative growth. These studies have revealed the existence of a heteromeric Ctr4-Ctr5 plasma membrane complex that mediates uptake of copper within the cells. Furthermore, additional studies have led to the identification of one of the first vacuolar copper transporters, Ctr6, as well as the copper-responsive Cuf1 transcription factor. Recent investigations have extended the use of S. pombe to elucidate new roles for copper metabolism in meiotic differentiation. For example, these studies have led to the discovery of Mfc1, which turned out to be the first example of a meiosis-specific copper transporter. Whereas copper-dependent transcriptional regulation of the Ctr family members is under the control of Cuf1 during mitosis or meiosis, meiosis-specific copper transporter Mfc1 is regulated by the recently discovered transactivator Mca1. It is foreseeable that identification of novel meiotic copper-related proteins will serve as stepping stones to unravel fundamental aspects of copper homoeostasis.
Doebrich, Jeff
2009-01-01
Copper was one of the first metals ever extracted and used by humans, and it has made vital contributions to sustaining and improving society since the dawn of civilization. Copper was first used in coins and ornaments starting about 8000 B.C., and at about 5500 B.C., copper tools helped civilization emerge from the Stone Age. The discovery that copper alloyed with tin produces bronze marked the beginning of the Bronze Age at about 3000 B.C. Copper is easily stretched, molded, and shaped; is resistant to corrosion; and conducts heat and electricity efficiently. As a result, copper was important to early humans and continues to be a material of choice for a variety of domestic, industrial, and high-technology applications today.
Dutra, A J B; Rocha, G P; Pombo, F R
2008-04-01
Copper-cyanide bleed streams arise from contaminated baths from industrial electroplating processes due to the buildup of impurities during continuous operation. These streams present an elevated concentration of carbonate, cyanide and copper, constituting a heavy hazard, which has to be treated for cyanide destruction and heavy metals removal, according to the local environmental laws. In the Brazilian Mint, bleed streams are treated with sodium hypochlorite, to destroy cyanide and precipitate copper hydroxide, a solid hazardous waste that has to be disposed properly in a landfill or treated for metal recovery. In this paper, a laboratory-scale electrolytic cell was developed to remove the copper from the bleed stream of the electroplating unit of the Brazilian Mint, permitting its reutilization in the plant and decreasing the amount of sludge to waste. Under favorable conditions copper recoveries around 99.9% were achieved, with an energy consumption of about 11 kWh/kg, after a 5-h electrolysis of a bath containing copper and total cyanide concentrations of 26 and 27 g/L, respectively. Additionally, a substantial reduction of the cyanide concentration was also achieved, decreasing the pollution load and final treatment costs.
Aquatic Life Criteria - Copper
Documents pertain to Aquatic Life Ambient Water Quality criteria for Copper (2007 Freshwater, 2016 Estuarine/marine). These documents contain the safe levels of Copper in water that should protect to the majority of species.
Selective leaching process for the recovery of copper and zinc oxide from copper-containing dust.
Wu, Jun-Yi; Chang, Fang-Chih; Wang, H Paul; Tsai, Ming-Jer; Ko, Chun-Han; Chen, Chih-Cheng
2015-01-01
The purpose of this study was to develop a resource recovery procedure for recovering copper and zinc from dust produced by copper smelting furnaces during the manufacturing of copper-alloy wires. The concentrations of copper in copper-containing dust do not meet the regulation standards defined by the Taiwan Environmental Protection Administration; therefore, such waste is classified as hazardous. In this study, the percentages of zinc and copper in the dust samples were approximately 38.4% and 2.6%, respectively. To reduce environmental damage and recover metal resources for industrial reuse, acid leaching was used to recover metals from these inorganic wastes. In the first stage, 2 N of sulphuric acid was used to leach the dust, with pH values controlled at 2.0-3.0, and a solid-to-liquid ratio of 1:10. The results indicated that zinc extraction efficiency was higher than 95%. A selective acid leaching process was then used to recover the copper content of the residue after filtration. In the second stage, an additional 1 N of sulphuric acid was added to the suspension in the selective leaching process, and the pH value was controlled at 1.5-2.0. The reagent sodium hydroxide (2 N) was used as leachate at a pH greater than 7. A zinc hydroxide compound formed during the process and was recovered after drying. The yields for zinc and copper were 86.9-93.5% and 97.0-98.9%, respectively.
NASA Technical Reports Server (NTRS)
Mcmurtry, G. J.; Petersen, G. W. (Principal Investigator); Fritz, E. L.; Pennypacker, S. P.
1974-01-01
The author has identified the following significant results. Field observations and data collected by low flying aircraft were used to verify the accuracy of maps produced from the satellite data. Although areas of vegetation as small as six acres can accurately be detected, a white pine stand that was severely damaged by sulfur dioxide could not be differentiated from a healthy white pine stand because spectral differences were not large enough. When winter data were used to eliminate interference from herbaceous and deciduous vegetation, the damage was still undetectable. The analysis was able to produce a character map that accurately delineated areas of vegetative alteration due to high zinc levels accumulating in the soil. The map depicted a distinct gradient of less damage and alteration as the distance from the smelter increased. Although the satellite data will probably not be useful for detecting small acreages of damaged vegetation, it is concluded that the data may be very useful as an inventory tool to detect and delineate large vegetative areas possessing differing spectral signatures.
Tu, Chen; Liu, Ying; Wei, Jing; Li, Lianzhen; Scheckel, Kirk G; Luo, Yongming
2018-06-22
In this paper, a highly copper-resistant fungal strain NT-1 was characterized by morphological, physiological, biochemical, and molecular biological techniques. Physiological response to Cu(II) stress, effects of environmental factors on Cu(II) biosorption, as well as mechanisms of Cu(II) biosorption by strain NT-1 were also investigated in this study. The results showed that NT-1 belonged to the genus Gibberella, which exhibited high tolerance to both acidic conditions and Cu(II) contamination in the environment. High concentrations of copper stress inhibited the growth of NT-1 to various degrees, leading to the decreases in mycelial biomass and colony diameter, as well as changes in morphology. Under optimal conditions (initial copper concentration: 200 mg L -1 , temperature 28 °C, pH 5.0, and inoculum dose 10%), the maximum copper removal percentage from solution through culture of strain NT-1 within 5 days reached up to 45.5%. The biosorption of Cu(II) by NT-1 conformed to quasi-second-order kinetics and Langmuir isothermal adsorption model and was confirmed to be a monolayer adsorption process dominated by surface adsorption. The binding of NT-1 to Cu(II) was mainly achieved by forming polydentate complexes with carboxylate and amide group through covalent interactions and forming Cu-nitrogen-containing heterocyclic complexes via Cu(II)-π interaction. The results of this study provide a new fungal resource and key parameters influencing growth and copper removal capacity of the strain for developing an effective bioremediation strategy for copper-contaminated acidic orchard soils.
Copper transport and regulation in Schizosaccharomyces pombe
Beaudoin, Jude; Ekici, Seda; Daldal, Fevzi; Ait-Mohand, Samia; Guérin, Brigitte; Labbé, Simon
2016-01-01
The fission yeast Schizosaccharomyces pombe has been successfully used as a model to gain fundamental knowledge in understanding how eukaryotic cells acquire copper during vegetative growth. These studies have revealed the existence of a heteromeric Ctr4–Ctr5 plasma membrane complex that mediates uptake of copper within the cells. Furthermore, additional studies have led to the identification of one of the first vacuolar copper transporters, Ctr6, as well as the copper-responsive Cuf1 transcription factor. Recent investigations have extended the use of S. pombe to elucidate new roles for copper metabolism in meiotic differentiation. For example, these studies have led to the discovery of Mfc1, which turned out to be the first example of a meiosis-specific copper transporter. Whereas copper-dependent transcriptional regulation of the Ctr family members is under the control of Cuf1 during mitosis or meiosis, meiosis-specific copper transporter Mfc1 is regulated by the recently discovered transactivator Mca1. It is foreseeable that identification of novel meiotic copper-related proteins will serve as stepping stones to unravel fundamental aspects of copper homoeostasis. PMID:24256274
NASA Astrophysics Data System (ADS)
Piña, A. Aragón; Villaseñor, G. Torres; Jacinto, P. Santiago; Fernández, M. Monroy
In the city of San Luis Potosi exists an important metallurgical plant and is known that in the adjacent urban zone, there is a high concentration of lead in the air, it is also supposed that most of the particles with lead have an anthropogenic origin because these particles show morphological characteristics and chemical composition very different in comparison with common lead minerals. In this work it was proved that most of the airborne particles with lead present in this urban zone, effectively came from the copper smelter. The airborne particles with lead were compared with particles with lead obtained starting from samples of slag and lead calcine of the copper smelter. To perform the comparative study, these particles were studied with energy dispersive X-ray microanalysis (EDS) in conjunction with scanning electron microscope to obtain chemical composition and associated morphological characteristics. Results suggest that these particles, composed of only one phase, are chemically distinct from any crustal lead mineral. Because of the complexity of the chemical composition of these particles (Pb, S, Cu, As, Fe, Zn, Cd, Sb, O), some of the airborne particles were analyzed by transmission microscopy in order to associate crystalline structure with any particular chemical phase.
Crowe, Andrew; Jackaman, Connie; Beddoes, Katie M.; Ricciardo, Belinda; Nelson, Delia J.
2013-01-01
Copper, an essential trace element acquired through nutrition, is an important co-factor for pro-angiogenic factors including vascular endothelial growth factor (VEGF). Decreasing bioavailable copper has been used as an anti-angiogenic and anti-cancer strategy with promising results. However, the role of copper and its potential as a therapy in mesothelioma is not yet well understood. Therefore, we monitored copper levels in progressing murine mesothelioma tumors and analyzed the effects of lowering bioavailable copper. Copper levels in tumors and organs were assayed using atomic absorption spectrophotometry. Mesothelioma tumors rapidly sequestered copper at early stages of development, the copper was then dispersed throughout growing tumor tissues. These data imply that copper uptake may play an important role in early tumor development. Lowering bioavailable copper using the copper chelators, penicillamine, trientine or tetrathiomolybdate, slowed in vivo mesothelioma growth but did not provide any cures similar to using cisplatin chemotherapy or anti-VEGF receptor antibody therapy. The impact of copper lowering on tumor blood vessels and tumor infiltrating T cells was measured using flow cytometry and confocal microscopy. Copper lowering was associated with reduced tumor vessel diameter, reduced endothelial cell proliferation (reduced Ki67 expression) and lower surface ICAM/CD54 expression implying reduced endothelial cell activation, in a process similar to endothelial normalization. Copper lowering was also associated with a CD4+ T cell infiltrate. In conclusion, these data suggest copper lowering is a potentially useful anti-mesothelioma treatment strategy that slows tumor growth to provide a window of opportunity for inclusion of other treatment modalities to improve patient outcomes. PMID:24013775
Purvis, O.W.; Bennett, J.P.; Spratt, J.
2011-01-01
An unusual dark blue-green lichen, Lecanora sierrae, was discovered over 30 years ago by Czehura near copper mines in the Lights Creek District, Plumas County, Northern California. Using atomic absorption spectroscopy, Czehura found that dark green lichen samples from Warren Canyon contained 4% Cu in ash and suggested that its colour was due to copper accumulation in the cortex. The present study addressed the hypothesis that the green colour in similar material we sampled from Warren Canyon in 2008, is caused by copper localization in the thallus. Optical microscopy and electron microprobe analysis of specimens of L. sierrae confirmed that copper localization took place in the cortex. Elemental analyses of L. sierrae and three other species from the same localities showed high enrichments of copper and selenium, suggesting that copper selenates or selenites might occur in these lichens and be responsible for the unusual colour. Copyright ?? 2011 British Lichen Society.
Purvis, O.W.; Bennett, J.P.; Spratt, J.
2011-01-01
An unusual dark blue-green lichen, Lecanora sierrae, was discovered over 30 years ago by Czehura near copper mines in the Lights Creek District, Plumas County, Northern California. Using atomic absorption spectroscopy, Czehura found that dark green lichen samples from Warren Canyon contained 4% Cu in ash and suggested that its colour was due to copper accumulation in the cortex. The present study addressed the hypothesis that the green colour in similar material we sampled from Warren Canyon in 2008, is caused by copper localization in the thallus. Optical microscopy and electron microprobe analysis of specimens of L. sierrae confirmed that copper localization took place in the cortex. Elemental analyses of L. sierrae and three other species from the same localities showed high enrichments of copper and selenium, suggesting that copper selenates or selenites might occur in these lichens and be responsible for the unusual colour.
Learned, R.E.; Chao, T.T.; Sanzolone, R.F.
1985-01-01
To test the relative effectiveness of stream water and sediment as geochemical exploration media in the Rio Tanama porphyry copper district of Puerto Rico, we collected and subsequently analyzed samples of water and sediment from 29 sites in the rivers and tributaries of the district. Copper, Mo, Pb, Zn, SO42-, and pH were determined in the waters; Cu, Mo, Pb, and Zn were determined in the sediments. In addition, copper in five partial extractions from the sediments was determined. Geochemical contrast (anomaly-to-background quotient) was the principal criterion by which the effectiveness of the two media and the five extractions were judged. Among the distribution patterns of metals in stream water, that of copper most clearly delineates the known porphyry copper deposits and yields the longest discernable dispersion train. The distribution patterns of Mo, Pb, and Zn in water show little relationship to the known mineralization. The distribution of SO42- in water delineates the copper deposits and also the more extensive pyrite alteration in the district; its recognizable downstream dispersion train is substantially longer than those of the metals, either in water or sediment. Low pH values in small tributaries delineate areas of known sulfide mineralization. The distribution patterns of copper in sediments clearly delineate the known deposits, and the dispersion trains are longer than those of copper in water. The partial determinations of copper related to secondary iron and manganese oxides yield the strongest geochemical contrasts and longest recognizable dispersion trains. Significantly high concentrations of molybdenum in sediments were found at only three sites, all within one-half km downstream of the known copper deposits. The distribution patterns of lead and zinc in sediments are clearly related to the known primary lead-zinc haloes around the copper deposits. The recognizable downstream dispersion trains of lead and zinc are shorter than those of
Gray, Lawrence W.; Peng, Fangyu; Molloy, Shannon A.; Pendyala, Venkata S.; Muchenditsi, Abigael; Muzik, Otto; Lee, Jaekwon; Kaplan, Jack H.; Lutsenko, Svetlana
2012-01-01
Body copper homeostasis is regulated by the liver, which removes excess copper via bile. In Wilson's disease (WD), this function is disrupted due to inactivation of the copper transporter ATP7B resulting in hepatic copper overload. High urinary copper is a diagnostic feature of WD linked to liver malfunction; the mechanism behind urinary copper elevation is not fully understood. Using Positron Emission Tomography-Computed Tomography (PET-CT) imaging of live Atp7b−/− mice at different stages of disease, a longitudinal metal analysis, and characterization of copper-binding molecules, we show that urinary copper elevation is a specific regulatory process mediated by distinct molecules. PET-CT and atomic absorption spectroscopy directly demonstrate an age-dependent decrease in the capacity of Atp7b−/− livers to accumulate copper, concomitant with an increase in urinary copper. This reciprocal relationship is specific for copper, indicating that cell necrosis is not the primary cause for the initial phase of metal elevation in the urine. Instead, the urinary copper increase is associated with the down-regulation of the copper-transporter Ctr1 in the liver and appearance of a 2 kDa Small Copper Carrier, SCC, in the urine. SCC is also elevated in the urine of the liver-specific Ctr1 −/− knockouts, which have normal ATP7B function, suggesting that SCC is a normal metabolite carrying copper in the serum. In agreement with this hypothesis, partially purified SCC-Cu competes with free copper for uptake by Ctr1. Thus, hepatic down-regulation of Ctr1 allows switching to an SCC-mediated removal of copper via kidney when liver function is impaired. These results demonstrate that the body regulates copper export through more than one mechanism; better understanding of urinary copper excretion may contribute to an improved diagnosis and monitoring of WD. PMID:22802922
Copper Recycling in the United States in 2004
Goonan, Thomas G.
2009-01-01
As one of a series of reports that describe the recycling of metal commodities in the United States, this report discusses the flow of copper from production through distribution and use, with particular emphasis on the recycling of industrial scrap (new scrap1) and used products (old scrap) in the year 2004. This materials flow study includes a description of copper supply and demand for the United States to illustrate the extent of copper recycling and to identify recycling trends. Understanding how materials flow from a source through disposition can aid in improving the management of natural resource delivery systems. In 2004, the U.S. refined copper supply was 2.53 million metric tons (Mt) of refined unalloyed copper. With adjustment for refined copper exports of 127,000 metric tons (t) of copper, the net U.S. refined copper supply was 2.14 Mt of copper. With this net supply and a consumer inventory decrease of 9,000 t of refined copper, 2.42 Mt of refined copper was consumed by U.S. semifabricators (brass mills, wire rod mills, ingot makers, and foundries and others) in 2004. In addition to the 2.42 Mt of refined copper consumed in 2004, U.S. copper semifabricators consumed 853,000 t of copper contained in recycled scrap. Furthermore, 61,000 t of copper contained in scrap was consumed by noncopper alloy makers, for example, steelmakers and aluminum alloy makers. Old scrap recycling efficiency for copper was estimated to be 43 percent of theoretical old scrap supply, the recycling rate for copper was 30 percent of apparent supply, and the new-scrap-to-old-scrap ratio for U.S. copper product production was 3.2 (76:24).
Studies on copper alloys containing chromium on the copper side phase diagram
NASA Technical Reports Server (NTRS)
Doi, T.
1984-01-01
Specimens were prepared from vacuum melted alloys of high purity vacuum melted copper and electrolytic chromium. The liquidus and eutectic point were determined by thermal analysis. The eutectic temperature is 1974.8 F and its composition is 1.28 wt% of chromium. The determination of solid solubility of chromium in copper was made by microscopic observation and electrical resistivity measurement. The solubility of chromium in solid copper is 0.6 wt% at 1050 F, 0.4 wt% at 1000 F, 0.25 wt% at 950 F, 0.17 wt% at 900 F, and 0.30 wt% at 840 F.
Copper Resistance of the Emerging Pathogen Acinetobacter baumannii
Williams, Caitlin L.; Neu, Heather M.; Gilbreath, Jeremy J.; Michel, Sarah L. J.; Zurawski, Daniel V.
2016-01-01
ABSTRACT Acinetobacter baumannii is an important emerging pathogen that is capable of causing many types of severe infection, especially in immunocompromised hosts. Since A. baumannii can rapidly acquire antibiotic resistance genes, many infections are on the verge of being untreatable, and novel therapies are desperately needed. To investigate the potential utility of copper-based antibacterial strategies against Acinetobacter infections, we characterized copper resistance in a panel of recent clinical A. baumannii isolates. Exposure to increasing concentrations of copper in liquid culture and on solid surfaces resulted in dose-dependent and strain-dependent effects; levels of copper resistance varied broadly across isolates, possibly resulting from identified genotypic variation among strains. Examination of the growth-phase-dependent effect of copper on A. baumannii revealed that resistance to copper increased dramatically in stationary phase. Moreover, A. baumannii biofilms were more resistant to copper than planktonic cells but were still susceptible to copper toxicity. Exposure of bacteria to subinhibitory concentrations of copper allowed them to better adapt to and grow in high concentrations of copper; this copper tolerance response is likely achieved via increased expression of copper resistance mechanisms. Indeed, genomic analysis revealed numerous putative copper resistance proteins that share amino acid homology to known proteins in Escherichia coli and Pseudomonas aeruginosa. Transcriptional analysis revealed significant upregulation of these putative copper resistance genes following brief copper exposure. Future characterization of copper resistance mechanisms may aid in the search for novel antibiotics against Acinetobacter and other highly antibiotic-resistant pathogens. IMPORTANCE Acinetobacter baumannii causes many types of severe nosocomial infections; unfortunately, some isolates have acquired resistance to almost every available antibiotic
Katie M. Ohno; Grant T. Kirker; Amy B. Bishell; Carol A. Clausen
2017-01-01
Copper is widely used as the primary component in wood protectants because it demonstrates a broad range of biocidal properties. However, a key concern with using copper in wood preservative formulations is the possibility for brown-rot basidiomycetes to resist the toxic effect. Many brown-rot basidiomycetes have evolved mechanisms, like the production and accumulation...
González, Isabel; Cortes, Amparo; Neaman, Alexander; Rubio, Patricio
2011-07-01
Oenothera picensis plants (Fragrant Evening Primrose) grow in the acid soils contaminated by copper smelting in the coastal region of central Chile. We evaluated the effects of the biodegradable chelate MGDA (methylglycinediacetic acid) on copper extraction by O. picensis and on leaching of copper through the soil profile, using an ex situ experiment with soil columns of varying heights. MGDA was applied in four rates: 0 (control), 2, 6 and 10 mmol plant(-1). MGDA application significantly increased biomass production and foliar concentration, permitting an effective increase in copper extraction, from 0.09 mg plant(-1) in the control, to 1.3mg plant(-1) in the 6 and 10 mmol plant(-1) treatments. With 10 mmol plant(-1) rate of MGDA, the copper concentration in the leachate from the 30 cm columns was 20 times higher than in the control. For the 60 cm columns, copper concentration was 2 times higher than the control. It can be concluded that at increased soil depths, copper leaching would be minimal and that MGDA applications at the studied rates would not pose a high risk for leaching into groundwater. It can thus be stated that applications of MGDA are an effective and environmentally safe way to improve copper extraction by O. picensis in these soils. Copyright © 2011 Elsevier Ltd. All rights reserved.
Lead Isotopes and Temporal Records of Atmospheric Aerosol and Pollutants in Lichens
NASA Astrophysics Data System (ADS)
Getty, S. R.; Nash, T.; Asmerom, Y.
2001-05-01
Lichens are useful receptors of atmospheric particulate matter (PM) and pollutants due to their retention of body parts (unlike plants), slow growth rates, fairly uniform morphologies, lack of a vascular system, and sessile character over decades to centuries. Lichen biomonitoring has been used widely to map patterns of aerosol deposition, yet few studies have tested whether lichens can preserve a temporal record of airborne PM and pollutants. We show with U-Pb data that epilithic lichens (rock as host) can retain in their porous structure an integrated, decadal-scale history of changing aerosol inputs to desert ecosystems. Three lichens resided along an 80-km transect from a copper smelter (Douglas, AZ) closed in early 1987, to the ENE into adjacent New Mexico. For the radially growing lichen (Xanthoparmelia sp.), U-Pb data were obtained along cm-scale transects in the growth direction on a single thallus. Profiles from lichen rim to interior show increasing [Pb] and [U], or net accumulation with thallus age. Total lead contents are highest near the smelter. In contrast, each lead isotope profile (206Pb/207Pb) is flat during smelter operation, showing low ratios near the smelter (1.152) and high ratios (1.175) 80 km away. This suggests comparable mixtures of crust and smelter lead per locality over decades. Since smelter closure, lichens 80 km from the smelter show a sharp upturn in lead ratio in the recently grown lichen rim, indicating that smelter lead is either dispersed by aeolian recycling, or suppressed in desert soils. The amplitude and position of the isotope signal suggests a soil recovery "half-life" of about 13 yrs, a radial growth rate of 0.57+/-0.1 mm/yr, and a total lichen age of 105+/-18 yrs. Lichens near the smelter have no upturn in isotope ratio, indicating continued aeolian recylcing of lead from soils about 11 yrs after closure. Results at a far-removed desert site (c. New Mexico) also argue that isotope profiles reflect aerosol deposition
NASA Astrophysics Data System (ADS)
Ćirković, Milorad; Bugarin, Mile; Trujić, Vlastimir; Kamberović, Željko
Having in mind that the energy is more and more expensive and that the natural energy resources are smaller and smaller, this research presents a contribution to the use of renewable thermoenergetic resources in terms of improving the economy and ecology in the pyrometallurgical copper production.
Metallic sulfide additives for positive electrode material within a secondary electrochemical cell
Walsh, William J.; McPheeters, Charles C.; Yao, Neng-ping; Koura, Kobuyuki
1976-01-01
An improved active material for use within the positive electrode of a secondary electrochemical cell includes a mixture of iron disulfide and a sulfide of a polyvalent metal. Various metal sulfides, particularly sulfides of cobalt, nickel, copper, cerium and manganese, are added in minor weight proportion in respect to iron disulfide for improving the electrode performance and reducing current collector requirements.
NASA Astrophysics Data System (ADS)
Zhang, Yaozhong; Zhou, Jun; Zhang, Xiaoli; Hu, Jun; Gao, Han
2014-11-01
This article reports the effect of solvent polarity on the formation of n-octadecanethiol self-assembled monolayers (C18SH-SAMs) on pure copper surface and oxidized copper surface. The quality of SAMs prepared in different solvents (n-hexane, toluene, trichloroethylene, chloroform, acetone, acetonitrile, ethanol) was monitored by EIS, RAIRS and XPS. The results indicated that C18SH-SAMs formed in these solvents were in good barrier properties on pure copper surface and the structures of monolayers formed in high polarity solvents were more compact and orderly than that formed in low polarity solvents. For comparison, C18SH adsorbed on the surface of oxidized copper in these solvents were studied and the results indicated that C18SH could be adsorbed on oxidized copper surface after the reduction of copper oxide layer by thiols. Compared with high polarity solvents, a limited reduction process of oxidized copper by thiols led to the incompletely formation of monolayers in low polarity solvents. This can be interpreted that the generated water on solid-liquid interface and a smaller reaction force restrict the continuous reduction reaction in low polarity solvents
Estimating Dermal Transfer of Copper Particles from the ...
Lumber pressure-treated with micronized copper was examined for the release of copper and copper micro/nanoparticles using a surface wipe method to simulate dermal transfer. In 2003, the wood industry began replacing CCA treated lumber products for residential use with copper based formulations. Micronized copper (nano to micron sized particles) has become the preferred treatment formulation. There is a lack of information on the release of copper, the fate of the particles during dermal contact, and the copper exposure level to children from hand-to-mouth transfer. For the current study, three treated lumber products, two micronized copper and one ionic copper, were purchased from commercial retailers. The boards were left to weather outdoors for approximately 1 year. Over the year time period, hand wipe samples were collected periodically to determine copper transfer from the wood surfaces. The two micronized formulations and the ionic formulation released similar levels of total copper. The amount of copper released was high initially, but decreased to a constant level (~1.5 mg m-2) after the first month of outdoor exposure. Copper particles were identified on the sampling cloths during the first two months of the experiment, after which the levels of copper were insufficient to collect interpretable data. After 1 month, the particles exhibited minimal changes in shape and size. At the end of 2-months, significant deterioration of the particles was
Metabolic crossroads of iron and copper
Collins, James F; Prohaska, Joseph R; Knutson, Mitchell D
2013-01-01
Interactions between the essential dietary metals, iron and copper, have been known for many years. This review highlights recent advances in iron-copper interactions with a focus on tissues and cell types important for regulating whole-body iron and copper homeostasis. Cells that mediate dietary assimilation (enterocytes) and storage and distribution (hepatocytes) of iron and copper are considered, along with the principal users (erythroid cells) and recyclers of red cell iron (reticuloendothelial macrophages). Interactions between iron and copper in the brain are also discussed. Many unanswered questions regarding the role of these metals and their interactions in health and disease emerge from this synopsis, highlighting extensive future research opportunities. PMID:20384844
Chronic copper poisoning in Angora kids.
Belford, C J; Raven, C R; Black, H
1989-12-01
The investigation of five field cases of chronic copper poisoning in a group of 100 Angora kids is reported. Toxicity was confirmed by the demonstration of Heinz body anaemias, necrotizing liver disease, haemoglobinuric nephrosis and excessive levels of copper in blood, livers and kidneys. The dietary history of the kids is described. Tissue levels of copper and reported interactions between selenium, zinc and copper are discussed. Therapeutic and preventative measures are suggested.
Long-distance connections in the Copper Age: New evidence from the Alpine Iceman's copper axe.
Artioli, Gilberto; Angelini, Ivana; Kaufmann, Günther; Canovaro, Caterina; Dal Sasso, Gregorio; Villa, Igor Maria
2017-01-01
25 years after the discovery in the Ötztal Italian Alps, the 5,300-year-old mummy keeps providing key information on human biological and medical conditions, aspects of everyday life and societal organization in the Copper Age. The hand axe found with the body of the Alpine Iceman is one of the rare copper objects that is firmly dated to the early Copper Age because of the radiocarbon dating of the axe wooden shaft. Here we report the measurement of the lead isotope ratios of the copper blade. The results unambiguously indicate that the source of the metal is the ore-rich area of Southern Tuscany, despite ample evidence that Alpine copper ore sources were known and exploited at the time. The experimental results are discussed within the framework of all the available coeval archaeometallurgical data in Central-Southern Europe: they show that the Alps were a neat cultural barrier separating distinct metal circuits. The direct evidence of raw metal or object movement between Central Italy and the Alps is surprising and provides a new perspective on long-distance relocation of goods and relationships between the early Copper Age cultures in the area. The result is in line with the recent investigations re-evaluating the timing and extent of copper production in Central Italy in the 4th millennium BC.
Brewer, George J.
2015-01-01
It has become clear that copper toxicity is playing a major role in Alzheimer’s disease; but why is the brain copper toxicity with cognition loss in Alzheimer’s disease so much different clinically than brain copper toxicity in Wilson’s disease, which results in a movement disorder? Furthermore, why is the inorganic copper of supplement pills and in drinking water so much more damaging to cognition than the organic copper in food? A recent paper, which shows that almost all food copper is copper-1, that is the copper-2 of foods reverts to the reduced copper-1 form at death or harvest, gives new insight into these questions. The body has an intestinal transport system for copper-1, Ctr1, which channels copper-1 through the liver and into safe channels. Ctr1 cannot absorb copper-2, and some copper-2 bypasses the liver, ends up in the blood quickly, and is toxic to cognition. Humans evolved to handle copper-1 safely, but not copper-2. Alzheimer’s is at least in part, a copper-2 toxicity disease, while Wilson’s is a general copper overload disease. In this review, we will show that the epidemiology of the Alzheimer’s epidemic occurring in developed, but not undeveloped countries, fits with the epidemiology of exposure to copper-2 ingestion leached from copper plumbing and from copper supplement pill ingestion. Increased meat eating in developed countries is also a factor, because it increases copper absorption, and thus over all copper exposure. PMID:26633489
Polystyrene films as barrier layers for corrosion protection of copper and copper alloys.
Románszki, Loránd; Datsenko, Iaryna; May, Zoltán; Telegdi, Judit; Nyikos, Lajos; Sand, Wolfgang
2014-06-01
Dip-coated polystyrene layers of sub-micrometre thickness (85-500nm) have been applied on copper and copper alloys (aluminium brass, copper-nickel 70/30), as well as on stainless steel 304, and produced an effective barrier against corrosion and adhesion of corrosion-relevant microorganisms. According to the dynamic wettability measurements, the coatings exhibited high advancing (103°), receding (79°) and equilibrium (87°) contact angles, low contact angle hysteresis (6°) and surface free energy (31mJ/m(2)). The corrosion rate of copper-nickel 70/30 alloy samples in 3.5% NaCl was as low as 3.2μm/a (44% of that of the uncoated samples), and in artificial seawater was only 0.9μm/a (29% of that of the uncoated samples). Cell adhesion was studied by fluorescence microscopy, using monoculture of Desulfovibrio alaskensis. The coatings not only decreased the corrosion rate but also markedly reduced the number of bacterial cells adhered to the coated surfaces. The PS coating on copper gave the best result, 2×10(3)cells/cm(2) (1% of that of the uncoated control). © 2013 Elsevier B.V. All rights reserved.
Pathogenic adaptations to host-derived antibacterial copper
Chaturvedi, Kaveri S.; Henderson, Jeffrey P.
2014-01-01
Recent findings suggest that both host and pathogen manipulate copper content in infected host niches during infections. In this review, we summarize recent developments that implicate copper resistance as an important determinant of bacterial fitness at the host-pathogen interface. An essential mammalian nutrient, copper cycles between copper (I) (Cu+) in its reduced form and copper (II) (Cu2+) in its oxidized form under physiologic conditions. Cu+ is significantly more bactericidal than Cu2+ due to its ability to freely penetrate bacterial membranes and inactivate intracellular iron-sulfur clusters. Copper ions can also catalyze reactive oxygen species (ROS) generation, which may further contribute to their toxicity. Transporters, chaperones, redox proteins, receptors and transcription factors and even siderophores affect copper accumulation and distribution in both pathogenic microbes and their human hosts. This review will briefly cover evidence for copper as a mammalian antibacterial effector, the possible reasons for this toxicity, and pathogenic resistance mechanisms directed against it. PMID:24551598
Preliminary findings of chemistry and bioaccessibility in base metal smelter slags.
Morrison, Anthony L; Gulson, Brian L
2007-08-15
Leaching of toxic metals from slag waste produced during smelting of Pb-Zn ores is generally considered to be negligible. A 1.4 million tonne stockpile of slag containing up to 2.5% Pb and other contaminants has accumulated on a smelter site at North Lake Macquarie, New South Wales, Australia, and it has also been freely used within the community for landscaping and drainage projects. It had been suggested that Pb in fine particles derived from the slags may be a potential contributor to the blood Pb of some children in this community, although there is conflicting evidence in the literature for such a hypothesis. Bioaccessibility of lead and selected metals derived from nine slag samples collected from areas of public open space was examined using a relatively simple in vitro gastric dissolution technique. Size analyses of the slag samples demonstrate that finely-sized material was present in the slags which could be ingested, especially by children. The finer-sized particles contain high levels of Pb (6,490-41,400 ppm), along with Cd and As. Pb bioaccessibility of the slags was high, averaging 45% for -250 microm material and 75% for particles in the size range -53+32 microm. Increasing bioaccessibility and Pb concentration showed an inverse relationship to particle size. Almost 100% of Pb would be bioaccessible in the smallest slag particles (<20 microm), which also contained very high Pb levels ranging from 50,000 to 80,000 ppm and thus constitute a potential health hazard for children.
Roles of Copper-Binding Proteins in Breast Cancer.
Blockhuys, Stéphanie; Wittung-Stafshede, Pernilla
2017-04-20
Copper ions are needed in several steps of cancer progression. However, the underlying mechanisms, and involved copper-binding proteins, are mainly elusive. Since most copper ions in the body (in and outside cells) are protein-bound, it is important to investigate what copper-binding proteins participate and, for these, how they are loaded with copper by copper transport proteins. Mechanistic information for how some copper-binding proteins, such as extracellular lysyl oxidase (LOX), play roles in cancer have been elucidated but there is still much to learn from a biophysical molecular viewpoint. Here we provide a summary of copper-binding proteins and discuss ones reported to have roles in cancer. We specifically focus on how copper-binding proteins such as mediator of cell motility 1 (MEMO1), LOX, LOX-like proteins, and secreted protein acidic and rich in cysteine (SPARC) modulate breast cancer from molecular and clinical aspects. Because of the importance of copper for invasion/migration processes, which are key components of cancer metastasis, further insights into the actions of copper-binding proteins may provide new targets to combat cancer.
Piatak, Nadine M.; Seal, Robert R.; Hammarstrom, Jane M.; Meier, Allen L.; Briggs, Paul H.
2003-01-01
Waste-rock material produced at historic metal mines contains elevated concentrations of potentially toxic trace elements. Two types of mine waste were examined in this study: sintered waste rock and slag. The samples were collected from the Elizabeth and Ely mines in the Vermont copper belt (Besshi-type massive sulfide deposits), from the Copper Basin mining district near Ducktown, Tennessee (Besshi-type massive sulfide deposits), and from the Clayton silver mine in the Bayhorse mining district, Idaho (polymetallic vein and replacement deposits). The data in this report are presented as a compilation with minimal interpretation or discussion. A detailed discussion and interpretation of the slag data are presented in a companion paper. Data collected from sintered waste rock and slag include: (1) bulk rock chemistry, (2) mineralogy, (3) and the distribution of trace elements among phases for the slag samples. In addition, the reactivity of the waste material under surficial conditions was assessed by examining secondary minerals formed on slag and by laboratory leaching tests using deionized water and a synthetic solution approximating precipitation in the eastern United States.
Balakumaran, Palanisamy Athiyaman; Förster, Jan; Zimmermann, Martin; Charumathi, Jayachandran; Schmitz, Andreas; Czarnotta, Eik; Lehnen, Mathias; Sudarsan, Suresh; Ebert, Birgitta E; Blank, Lars Mathias; Meenakshisundaram, Sankaranarayanan
2016-02-20
Copper is an essential chemical element for life as it is a part of prosthetic groups of enzymes including super oxide dismutase and cytochrome c oxidase; however, it is also toxic at high concentrations. Here, we present the trade-off of copper availability and growth inhibition of a common host used for copper-dependent protein production, Pichia pastoris. At copper concentrations ranging from 0.1 mM (6.35 mg/L) to 2 mM (127 mg/L), growth rates of 0.25 h(-1) to 0.16 h(-1) were observed with copper uptake of as high as 20 mgcopper/gCDW. The intracellular copper content was estimated by subtracting the copper adsorbed on the cell wall from the total copper concentration in the biomass. Higher copper concentrations led to stronger cell growth retardation and, at 10 mM (635 mg/L) and above, to growth inhibition. To test the determined copper concentration range for optimal recombinant protein production, a laccase gene from Aspergillus clavatus [EMBL: EAW07265.1] was cloned under the control of the constitutive glyceraldehyde-3-phosphate (GAP) dehydrogenase promoter for expression in P. pastoris. Notably, in the presence of copper, laccase expression improved the specific growth rate of P. pastoris. Although copper concentrations of 0.1 mM and 0.2 mM augmented laccase expression 4 times up to 3 U/mL compared to the control (0.75 U/mL), while higher copper concentrations resulted in reduced laccase production. An intracellular copper content between 1 and 2 mgcopper/gCDW was sufficient for increased laccase activity. The physiology of the yeast could be excluded as a reason for the stop of laccase production at moderate copper concentrations as no flux redistribution could be observed by (13)C-metabolic flux analysis. Copper and its pivotal role to sustain cellular functions is noteworthy. However, knowledge on its cellular accumulation, availability and distribution for recombinant protein production is limited. This study attempts to address one such challenge
NASA Astrophysics Data System (ADS)
da Silva, Thiago H.; Nelson, Eric B.; Williamson, Izaak; Efaw, Corey M.; Sapper, Erik; Hurley, Michael F.; Li, Lan
2018-05-01
First-principles density functional theory-based calculations were performed to study θ-phase Al2Cu, S-phase Al2CuMg surface stability, as well as their interactions with water molecules and chloride (Cl-) ions. These secondary phases are commonly found in aluminum-based alloys and are initiation points for localized corrosion. Density functional theory (DFT)-based simulations provide insight into the origins of localized (pitting) corrosion processes of aluminum-based alloys. For both phases studied, Cl- ions cause atomic distortions on the surface layers. The nature of the distortions could be a factor to weaken the interlayer bonds in the Al2Cu and Al2CuMg secondary phases, facilitating the corrosion process. Electronic structure calculations revealed not only electron charge transfer from Cl- ions to alloy surface but also electron sharing, suggesting ionic and covalent bonding features, respectively. The S-phase Al2CuMg structure has a more active surface than the θ-phase Al2Cu. We also found a higher tendency of formation of new species, such as Al3+, Al(OH)2+, HCl, AlCl2+, Al(OH)Cl+, and Cl2 on the S-phase Al2CuMg surface. Surface chemical reactions and resultant species present contribute to establishment of local surface chemistry that influences the corrosion behavior of aluminum alloys.
Lead and Copper Rule Tier Schedule
The Lead and Copper Rule Tier Schedule may be used by public water systems in Wyoming and on EPA R8 Tribal Lands as a guide to properly identify their lead and copper tap sample sites to comply with the Lead and Copper Rule.
Calvo, Jenifer; Jung, Hunmin; Meloni, Gabriele
2017-04-01
Metallothioneins (MTs) are a class of low molecular weight and cysteine-rich metal binding proteins present in all the branches of the tree of life. MTs efficiently bind with high affinity several essential and toxic divalent and monovalent transition metals by forming characteristic polynuclear metal-thiolate clusters within their structure. MTs fulfil multiple biological functions related to their metal binding properties, with essential roles in both Zn(II) and Cu(I) homeostasis as well as metal detoxification. Depending on the organism considered, the primary sequence, and the specific physiological and metabolic status, Cu(I)-bound MT isoforms have been isolated, and their chemistry and biology characterized. Besides the recognized role in the biochemistry of divalent metals, it is becoming evident that unique biological functions in selectively controlling copper levels, its reactivity as well as copper-mediated biochemical processes have evolved in some members of the MT superfamily. Selected examples are reviewed to highlight the peculiar chemical properties and biological functions of copper MTs. © 2016 IUBMB Life, 69(4):236-245, 2017. © 2017 International Union of Biochemistry and Molecular Biology.
Oxidation-assisted graphene heteroepitaxy on copper foil.
Reckinger, Nicolas; Tang, Xiaohui; Joucken, Frédéric; Lajaunie, Luc; Arenal, Raul; Dubois, Emmanuel; Hackens, Benoît; Henrard, Luc; Colomer, Jean-François
2016-11-10
We propose an innovative, easy-to-implement approach to synthesize aligned large-area single-crystalline graphene flakes by chemical vapor deposition on copper foil. This method doubly takes advantage of residual oxygen present in the gas phase. First, by slightly oxidizing the copper surface, we induce grain boundary pinning in copper and, in consequence, the freezing of the thermal recrystallization process. Subsequent reduction of copper under hydrogen suddenly unlocks the delayed reconstruction, favoring the growth of centimeter-sized copper (111) grains through the mechanism of abnormal grain growth. Second, the oxidation of the copper surface also drastically reduces the nucleation density of graphene. This oxidation/reduction sequence leads to the synthesis of aligned millimeter-sized monolayer graphene domains in epitaxial registry with copper (111). The as-grown graphene flakes are demonstrated to be both single-crystalline and of high quality.
Carbohydrate metabolism in erythrocytes of copper deficient rats.
Brooks, S P J; Cockell, K A; Dawson, B A; Ratnayake, W M N; Lampi, B J; Belonje, B; Black, D B; Plouffe, L J
2003-11-01
Dietary copper deficiency is known to adversely affect the circulatory system of fructose-fed rats. Part of the problem may lie in the effect of copper deficiency on intermediary metabolism. To test this, weanling male Long-Evans rats were fed for 4 or 8 weeks on sucrose-based diets containing low or adequate copper content. Copper deficient rats had significantly lower plasma and tissue copper as well as lower plasma copper, zinc-superoxide dismutase activity. Copper deficient rats also had a significantly higher heart:body weight ratio when compared to pair-fed controls. Direct measurement of glycolysis and pentose phosphate pathway flux in erythrocytes using (13)C NMR showed no differences in carbon flux from glucose or fructose to pyruvate but a significantly higher flux through the lactate dehydrogenase locus in copper deficient rats (approximately 1.3 times, average of glucose and glucose + fructose measurements). Copper-deficient animals had significantly higher erythrocyte concentrations of glucose, fructose, glyceraldehyde 3-phosphate and NAD(+). Liver metabolite levels were also affected by copper deficiency being elevated in glycogen and fructose 1-phosphate content. The results show small changes in carbohydrate metabolism of copper deficient rats.
Zinc stress induces copper depletion in Acinetobacter baumannii.
Hassan, Karl A; Pederick, Victoria G; Elbourne, Liam D H; Paulsen, Ian T; Paton, James C; McDevitt, Christopher A; Eijkelkamp, Bart A
2017-03-11
The first row transition metal ions zinc and copper are essential to the survival of many organisms, although in excess these ions are associated with significant toxicity. Here, we examined the impact of zinc and copper stress on Acinetobacter baumannii, a common opportunistic pathogen. We show that extracellular zinc stress induces a copper-specific depletion phenotype in A. baumannii ATCC 17978. Supplementation with copper not only fails to rescue this phenotype, but further exacerbates the copper depletion. Extensive analysis of the A. baumannii ATCC 17978 genome identified 13 putative zinc/copper resistance efflux pumps. Transcriptional analyses show that four of these transporters are responsive to zinc stress, five to copper stress and seven to the combination of zinc and copper stress, thereby revealing a likely foundation for the zinc-induced copper starvation in A. baumannii. In addition, we show that zinc and copper play crucial roles in management of oxidative stress and the membrane composition of A. baumannii. Further, we reveal that zinc and copper play distinct roles in macrophage-mediated killing of this pathogen. Collectively, this study supports the targeting of metal ion homeostatic mechanisms as an effective antimicrobial strategy against multi-drug resistant bacterial pathogens.
Geomorphology of the lower Copper River, Alaska
Brabets, T.P.
1996-01-01
The Copper River, located in southcentral Alaska, drains an area of more than 24,000 square miles. About 30 miles above its mouth, this large river enters Miles Lake, a proglacial lake formed by the retreat of Miles Glacier. Downstream from the outlet of Miles Lake, the Copper River flows past the face of Childs Glacier before it enters a large, broad, alluvial flood plain. The Copper River Highway traverses this flood plain and in 1996, 11 bridges were located along this section of the highway. These bridges cross parts or all of the Copper River and in recent years, some of these bridges have sustained serious damage due to the changing course of the Copper River. Although the annual mean discharge of the lower Copper River is 57,400 cubic feet per second, most of the flow occurs during the summer months from snowmelt, rainfall, and glacial melt. Approximately every six years, an outburst flood from Van Cleve Lake, a glacier-dammed lake formed by Miles Glacier, releases approximately 1 million acre-feet of water into the Copper River. At the peak outflow rate from Van Cleve Lake, the flow of the Copper River will increase an additional 140,000 and 190,000 cubic feet per second. Bedload sampling and continuous seismic reflection were used to show that Miles Lake traps virtually all the bedload being transported by the Copper River as it enters the lake from the north. The reservoir-like effect of Miles Lake results in the armoring of the channel of the Copper River downstream from Miles Lakes, past Childs Glacier, until it reaches the alluvial flood plain. At this point, bedload transport begins again. The lower Copper River transports 69 million tons per year of suspended sediment, approximately the same quantity as the Yukon River, which drains an area of more than 300,000 square miles. By correlating concurrent flows from a long-term streamflow- gaging station on the Copper River with a short-term streamflow-gaging station at the outlet of Miles Lake, long
Geomorphology of the lower Copper River, Alaska
Brabets, Timothy P.
1997-01-01
The Copper River, located in southcentral Alaska, drains an area of more than 24,000 square miles. About 30 miles above its mouth, this large river enters Miles Lake, a proglacial lake formed by the retreat of Miles Glacier. Downstream from the outlet of Miles Lake, the Copper River flows past the face of Childs Glacier before it enters a large, broad, alluvial flood plain. The Copper River Highway traverses this flood plain and in 1995, 11 bridges were located along this section of the highway. These bridges cross parts of the Copper River and in recent years, some of these bridges have sustained serious damage due to the changing course of the Copper River. Although the annual mean discharge of the lower Copper River is 57,400 cubic feet per second, most of the flow occurs during the summer months from snowmelt, rainfall, and glacial melt. Approximately every six years, an outburst flood from Van Cleve Lake, a glacier-dammed lake formed by Miles Glacier, releases approximately 1 million acre-feet of water into the Copper River. When the outflow rate from Van Cleve Lake reaches it peak, the flow of the Copper River will increase between 150,000 to 190,000 cubic feet per second. Data collected by bedload sampling and continuous seismic reflection indicated that Miles Lake traps virtually all the bedload being transported by the Copper River as it enters the lake from the north. The reservoir-like effect of Miles Lake results in the armoring of the channel of the Copper River downstream from Miles Lake, past Childs Glacier, until it reaches the alluvial flood plain. At this point, bedload transport begins again. The lower Copper River transports 69 million tons per year of suspended sediment, approximately the same quantity as the Yukon River, which drains an area of more than 300,000 square miles. By correlating concurrent flows from a long-term streamflow-gaging station on the Copper River with a short-term streamflow-gaging station at the outlet of Miles Lake
NASA Technical Reports Server (NTRS)
Bill, R. C.; Wisander, D. W.
1973-01-01
High-purity copper specimens and a copper-aluminum (10%) alloy specimen were subjected to sliding against Type 440 C in cryogenic fuel environments. It was found that virtually all wear occurred by the plastic deformation of a recrystallized layer extending to about 10 micrometers below the wear scar surface of the copper or copper alloy. The wear debris was in the form of a layered structure adhering to the exit region of the wear scar. Measurements on the high purity copper specimens indicated that the wear rate was proportional to the applied load and to the sliding velocity squared. A physical model of the wear process is proposed to account for these observations.
Malinowska, Elżbieta
2016-10-01
The paper deals with effects of liming and different doses of municipal sewage sludge (5, 10, and 15 % of soil mass) on copper speciation in soil. In all samples, pH was determined together with total copper concentration, which was measured with the ICP-AES method. Concentration of copper chemical fractions was determined using the seven-step procedure of Zeien and Brümmer. In the soil treated with the highest dose of sludge (15 %), there was, compared to the control, a twofold increase in the concentration of copper and a threefold increase in the concentration of nitrogen. Copper speciation analysis showed that in the municipal sewage sludge the easily soluble and exchangeable fractions (F1 and F2) constituted only a small share of copper with the highest amount of this metal in the organic (F4) and residual (F7) fractions. In the soil, at the beginning of the experiment, the highest share was in the organic fraction (F4), the residual fraction (F7) but also in the fraction where copper is bound to amorphous iron oxides (F5). After 420 days, at the end of the experiment, the highest amount of copper was mainly in the organic fraction (F4) and in the fraction with amorphous iron oxides (F5). Due to mineralization of organic matter in the sewage sludge, copper was released into the soil with the share of the residual fraction (F7) decreasing. In this fraction, there was much more copper in limed soil than in non-limed soil.
Enrichment of copper and recycling of cyanide from copper-cyanide waste by solvent extraction
NASA Astrophysics Data System (ADS)
Gao, Teng-yue; Liu, Kui-ren; Han, Qing; Xu, Bin-shi
2016-11-01
The enrichment of copper from copper-cyanide wastewater by solvent extraction was investigated using a quaternary ammonium salt as an extractant. The influences of important parameters, e.g., organic-phase components, aqueous pH values, temperature, inorganic anion impurities, CN/Cu molar ratio, and stripping reagents, were examined systematically, and the optimal conditions were determined. The results indicated that copper was effectively concentrated from low-concentration solutions using Aliquat 336 and that the extraction efficiency increased linearly with increasing temperature. The aqueous pH value and concentrations of inorganic anion impurities only weakly affected the extraction process when varied in appropriate ranges. The CN/Cu molar ratio affected the extraction efficiency by changing the distribution of copper-cyanide complexes. The difference in gold leaching efficiency between using raffinate and fresh water was negligible.
Heuss-Aßbichler, Soraya; John, Melanie; Klapper, Daniel; Bläß, Ulrich W; Kochetov, Gennadii
2016-10-01
Recently the focus of interest changed from merely purification of the waste water to recover heavy metals. With the slightly modified ferritization process presented here it is possible to decrease initial Cu(2+) concentrations up to 10 g/l to values <0.3 mg/l. The recovery rates of copper of all experiments are in the rage of 99.98 to almost 100%. Copper can be precipitated as oxide or zero valent metal (almost) free of hydroxide. All precipitates are exclusively of nanoparticle size. The phase assemblage depends strongly on experimental conditions as e.g. reaction temperature, pH-value, initial concentration and ageing time and condition. Three different options were developed depending on the reaction conditions. Option 1.) copper incorporation into the ferrite structure ((Cu,Fe)Fe2O4) and/or precipitation as cuprite (Cu2O) and zero-valent copper, option 2.) copper incorporation into the ferrite structure and/or precipitation as cuprite and/or tenorite (CuO) and option 3.) copper precipitation as tenorite. Ferrite is formed by the oxidation of GR in alkaline solution without additional oxygen supply. The chemistry reaches from pure magnetite up to 45% copper ferrite component. First experiments with wastewater from electroplating industry confirm the results obtained from synthetic solutions. In all cases the volume of the precipitates is extremely low compared to typical wastewater treatment by hydroxide precipitation. Therefore, pollution and further dissipation of copper can be avoided using this simple and economic process. Copyright © 2016 Elsevier Ltd. All rights reserved.
Hydrothermal growth of cross-linked hyperbranched copper dendrites using copper oxalate complex
NASA Astrophysics Data System (ADS)
Truong, Quang Duc; Kakihana, Masato
2012-06-01
A facile and surfactant-free approach has been developed for the synthesis of cross-linked hyperbranched copper dendrites using copper oxalate complex as a precursor and oxalic acid as a reducing and structure-directing agent. The synthesized particles are composed of highly branched nanostructures with unusual cross-linked hierarchical networks. The formation of copper dendrites can be explained in view of both diffusion control and aggregation-based growth model accompanied by the chelation-assisted assembly. Oxalic acid was found to play dual roles as reducing and structure-directing agent based on the investigation results. The understanding on the crystal growth and the roles of oxalic acid provides clear insight into the formation mechanism of hyperbranched metal dendrites.
NASA Astrophysics Data System (ADS)
Lan, Xi; Gao, Jintao; Huang, Zili; Guo, Zhancheng
2018-03-01
A novel approach for quickly separating a metal copper phase and iron-rich phase from copper slag at low temperature is proposed based on a super-gravity method. The morphology and mineral evolution of the copper slag with increasing temperature were studied using in situ high-temperature confocal laser scanning microscopy and ex situ scanning electron microscopy and X-ray diffraction methods. Fe3O4 particles dispersed among the copper slag were transformed into FeO by adding an appropriate amount of carbon as a reducing agent, forming the slag melt with SiO2 at low temperature and assisting separation of the copper phase from the slag. Consequently, in a super-gravity field, the metallic copper and copper matte were concentrated as the copper phase along the super-gravity direction, whereas the iron-rich slag migrated in the opposite direction and was quickly separated from the copper phase. Increasing the gravity coefficient (G) significantly enhanced the separation efficiency. After super-gravity separation at G = 1000 and 1473 K (1200 °C) for 3 minutes, the mass fraction of Cu in the separated copper phase reached 86.11 wt pct, while that in the separated iron-rich phase was reduced to 0.105 wt pct. The recovery ratio of Cu in the copper phase was as high as up to 97.47 pct.
NASA Astrophysics Data System (ADS)
Lan, Xi; Gao, Jintao; Huang, Zili; Guo, Zhancheng
2018-06-01
A novel approach for quickly separating a metal copper phase and iron-rich phase from copper slag at low temperature is proposed based on a super-gravity method. The morphology and mineral evolution of the copper slag with increasing temperature were studied using in situ high-temperature confocal laser scanning microscopy and ex situ scanning electron microscopy and X-ray diffraction methods. Fe3O4 particles dispersed among the copper slag were transformed into FeO by adding an appropriate amount of carbon as a reducing agent, forming the slag melt with SiO2 at low temperature and assisting separation of the copper phase from the slag. Consequently, in a super-gravity field, the metallic copper and copper matte were concentrated as the copper phase along the super-gravity direction, whereas the iron-rich slag migrated in the opposite direction and was quickly separated from the copper phase. Increasing the gravity coefficient (G) significantly enhanced the separation efficiency. After super-gravity separation at G = 1000 and 1473 K (1200 °C) for 3 minutes, the mass fraction of Cu in the separated copper phase reached 86.11 wt pct, while that in the separated iron-rich phase was reduced to 0.105 wt pct. The recovery ratio of Cu in the copper phase was as high as up to 97.47 pct.
Surface structure influences contact killing of bacteria by copper
Zeiger, Marco; Solioz, Marc; Edongué, Hervais; Arzt, Eduard; Schneider, Andreas S
2014-01-01
Copper kills bacteria rapidly by a mechanism that is not yet fully resolved. The antibacterial property of copper has raised interest in its use in hospitals, in place of plastic or stainless steel. On the latter surfaces, bacteria can survive for days or even weeks. Copper surfaces could thus provide a powerful accessory measure to curb nosocomial infections. We here investigated the effect of the copper surface structure on the efficiency of contact killing of Escherichia coli, an aspect which so far has received very little attention. It was shown that electroplated copper surfaces killed bacteria more rapidly than either polished copper or native rolled copper. The release of ionic copper was also more rapid from electroplated copper compared to the other materials. Scanning electron microscopy revealed that the bacteria nudged into the grooves between the copper grains of deposited copper. The findings suggest that, in terms of contact killing, more efficient copper surfaces can be engineered. PMID:24740976
Lead in human blood and milk from nursing women living near a smelter in Mexico City
DOE Office of Scientific and Technical Information (OSTI.GOV)
Namihira, D.; Saldivar, L.; Pustilnik, N.
The lead content in gasoline in Mexico City is the highest in the world (1g/L). The use of gasoline containing lead as an antiknock agent has been considered the major anthropogenic lead source in the area. Lead levels in breast milk and blood were determined in women living within a 200-m radius of 3 smelters in Mexico City. All samples were analyzed on a Perkin Elmer 460 atomic absorption spectrometer equipped with HGA 2200. The mean blood lead level was 45.88 [mu]g/dl (SD 19.88 [mu]g/dl), and the geometric mean of milk lead level was 2.47 [mu]g/100 ml. The correlation coefficientmore » of these two variables was 0.88. Using the mean value of lead found in breast milk, an infant of 5.5 kg would ingest 8.1 [mu]g/kg/d in his diet. The daily permissible intake (DPI) established by the World Health Organization (WHO) in 1972 for an adult is 5.0 [mu]g/kg/d. 32 refs., 3 figs., 1 tab.« less
Body of Knowledge (BOK) for Copper Wire Bonds
NASA Technical Reports Server (NTRS)
Rutkowski, E.; Sampson, M. J.
2015-01-01
Copper wire bonds have replaced gold wire bonds in the majority of commercial semiconductor devices for the latest technology nodes. Although economics has been the driving mechanism to lower semiconductor packaging costs for a savings of about 20% by replacing gold wire bonds with copper, copper also has materials property advantages over gold. When compared to gold, copper has approximately: 25% lower electrical resistivity, 30% higher thermal conductivity, 75% higher tensile strength and 45% higher modulus of elasticity. Copper wire bonds on aluminum bond pads are also more mechanically robust over time and elevated temperature due to the slower intermetallic formation rate - approximately 1/100th that of the gold to aluminum intermetallic formation rate. However, there are significant tradeoffs with copper wire bonding - copper has twice the hardness of gold which results in a narrower bonding manufacturing process window and requires that the semiconductor companies design more mechanically rigid bonding pads to prevent cratering to both the bond pad and underlying chip structure. Furthermore, copper is significantly more prone to corrosion issues. The semiconductor packaging industry has responded to this corrosion concern by creating a palladium coated copper bonding wire, which is more corrosion resistant than pure copper bonding wire. Also, the selection of the device molding compound is critical because use of environmentally friendly green compounds can result in internal CTE (Coefficient of Thermal Expansion) mismatches with the copper wire bonds that can eventually lead to device failures during thermal cycling. Despite the difficult problems associated with the changeover to copper bonding wire, there are billions of copper wire bonded devices delivered annually to customers. It is noteworthy that Texas Instruments announced in October of 2014 that they are shipping microcircuits containing copper wire bonds for safety critical automotive applications
Wiemann, Philipp; Perevitsky, Adi; Lim, Fang Yun; Shadkchan, Yana; Knox, Benjamin P; Landero Figueora, Julio A; Choera, Tsokyi; Niu, Mengyao; Steinberger, Andrew J; Wüthrich, Marcel; Idol, Rachel A; Klein, Bruce S; Dinauer, Mary C; Huttenlocher, Anna; Osherov, Nir; Keller, Nancy P
2017-05-02
The Fenton-chemistry-generating properties of copper ions are considered a potent phagolysosome defense against pathogenic microbes, yet our understanding of underlying host/microbe dynamics remains unclear. We address this issue in invasive aspergillosis and demonstrate that host and fungal responses inextricably connect copper and reactive oxygen intermediate (ROI) mechanisms. Loss of the copper-binding transcription factor AceA yields an Aspergillus fumigatus strain displaying increased sensitivity to copper and ROI in vitro, increased intracellular copper concentrations, decreased survival in challenge with murine alveolar macrophages (AMΦs), and reduced virulence in a non-neutropenic murine model. ΔaceA survival is remediated by dampening of host ROI (chemically or genetically) or enhancement of copper-exporting activity (CrpA) in A. fumigatus. Our study exposes a complex host/microbe multifactorial interplay that highlights the importance of host immune status and reveals key targetable A. fumigatus counter-defenses. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
Rau, Julietta V; Wu, Victoria M; Graziani, Valerio; Fadeeva, Inna V; Fomin, Alexander S; Fosca, Marco; Uskoković, Vuk
2017-10-01
A blue calcium phosphate cement with optimal self-hardening properties was synthesized by doping whitlockite (β-TCP) with copper ions. The mechanism and the kinetics of the cement solidification process were studied using energy dispersive X-ray diffraction and it was found out that hardening was accompanied by the phase transition from TCP to brushite. Reduced lattice parameters in all crystallographic directions resulting from the rather low (1:180) substitution rate of copper for calcium was consistent with the higher ionic radius of the latter. The lower cationic hydration resulting from the partial Ca→Cu substitution facilitated the release of constitutive hydroxyls and lowered the energy of formation of TCP from the apatite precursor at elevated temperatures. Addition of copper thus effectively inhibited the formation of apatite as the secondary phase. The copper-doped cement exhibited an antibacterial effect, though exclusively against Gram-negative bacteria, including E. coli, P. aeruginosa and S. enteritidis. This antibacterial effect was due to copper ions, as demonstrated by an almost negligible antibacterial effect of the pure, copper-free cement. Also, the antibacterial activity of the copper-containing cement was significantly higher than that of its precursor powder. Since there was no significant difference between the kinetics of the release of copper from the precursor TCP powder and from the final, brushite phase of the hardened cement, this has suggested that the antibacterial effect was not solely due to copper ions, but due to the synergy between cationic copper and a particular phase and aggregation state of calcium phosphate. Though inhibitory to bacteria, the copper-doped cement increased the viability of human glial E297 cells, murine osteoblastic K7M2 cells and especially human primary lung fibroblasts. That this effect was also due to copper ions was evidenced by the null effect on viability increase exhibited by the copper
EPA is taking regulatory action to approve an extension of the Land Disposal Restrictions (LDR) effective date applicable to owners and operators of secondary lead smelters who are engaged in the reclamation of lead-bearing hazardous materials.
Long-distance connections in the Copper Age: New evidence from the Alpine Iceman’s copper axe
Angelini, Ivana; Kaufmann, Günther; Canovaro, Caterina; Dal Sasso, Gregorio; Villa, Igor Maria
2017-01-01
25 years after the discovery in the Ötztal Italian Alps, the 5,300-year-old mummy keeps providing key information on human biological and medical conditions, aspects of everyday life and societal organization in the Copper Age. The hand axe found with the body of the Alpine Iceman is one of the rare copper objects that is firmly dated to the early Copper Age because of the radiocarbon dating of the axe wooden shaft. Here we report the measurement of the lead isotope ratios of the copper blade. The results unambiguously indicate that the source of the metal is the ore-rich area of Southern Tuscany, despite ample evidence that Alpine copper ore sources were known and exploited at the time. The experimental results are discussed within the framework of all the available coeval archaeometallurgical data in Central-Southern Europe: they show that the Alps were a neat cultural barrier separating distinct metal circuits. The direct evidence of raw metal or object movement between Central Italy and the Alps is surprising and provides a new perspective on long-distance relocation of goods and relationships between the early Copper Age cultures in the area. The result is in line with the recent investigations re-evaluating the timing and extent of copper production in Central Italy in the 4th millennium BC. PMID:28678801
Modeling MIC copper release from drinking water pipes.
Pizarro, Gonzalo E; Vargas, Ignacio T; Pastén, Pablo A; Calle, Gustavo R
2014-06-01
Copper is used for household drinking water distribution systems given its physical and chemical properties that make it resistant to corrosion. However, there is evidence that, under certain conditions, it can corrode and release unsafe concentrations of copper to the water. Research on drinking water copper pipes has developed conceptual models that include several physical-chemical mechanisms. Nevertheless, there is still a necessity for the development of mathematical models of this phenomenon, which consider the interaction among physical-chemical processes at different spatial scales. We developed a conceptual and a mathematical model that reproduces the main processes in copper release from copper pipes subject to stagnation and flow cycles, and corrosion is associated with biofilm growth on the surface of the pipes. We discuss the influence of the reactive surface and the copper release curves observed. The modeling and experimental observations indicated that after 10h stagnation, the main concentration of copper is located close to the surface of the pipe. This copper is associated with the reactive surface, which acts as a reservoir of labile copper. Thus, for pipes with the presence of biofilm the complexation of copper with the biomass and the hydrodynamics are the main mechanisms for copper release. Copyright © 2013 Elsevier B.V. All rights reserved.
Wu, Min; Han, Feifei; Gong, Weisha; Feng, Lifang; Han, Jianzhong
2016-09-14
Copper is an essential element and also produces adverse health consequences when overloaded. Food and water are the main sources of copper intake, however few studies have been conducted to investigate the difference between the ways of its intake in water and food in animals. In this study, copper was fed to mice with food as well as water (two groups: water and diet) for three months at concentrations of 6, 15 and 30 ppm. The copper concentration in water was adjusted for keeping the same amount during its intake in food. The experimental studies show a slow growth rate, lower hepatic reduced glutathione (GSH)/superoxide dismutase (SOD) activity and higher serum 'free' copper in the water group. The brain's soluble amyloid-beta 1-42 (Aβ42) of the water group was significantly higher than that of the diet group at the levels of 6 and 15 ppm. In conclusion, copper in the water group significantly increased the soluble Aβ42 in the brain and the 'free' copper in the serum, decreased the growth rate and hepatic GSH/SOD activity. The research studies carried out suggest that the copper in water is more 'toxic' than copper in diet and may increase the risk of Alzheimer's disease (AD).
Rate and Regulation of Copper Transport by Human Copper Transporter 1 (hCTR1)*
Maryon, Edward B.; Molloy, Shannon A.; Ivy, Kristin; Yu, Huijun; Kaplan, Jack H.
2013-01-01
Human copper transporter 1 (hCTR1) is a homotrimer of a 190-amino acid monomer having three transmembrane domains believed to form a pore for copper permeation through the plasma membrane. The hCTR1-mediated copper transport mechanism is not well understood, nor has any measurement been made of the rate at which copper ions are transported by hCTR1. In this study, we estimated the rate of copper transport by the hCTR1 trimer in cultured cells using 64Cu uptake assays and quantification of plasma membrane hCTR1. For endogenous hCTR1, we estimated a turnover number of about 10 ions/trimer/s. When overexpressed in HEK293 cells, a second transmembrane domain mutant of hCTR1 (H139R) had a 3-fold higher Km value and a 4-fold higher turnover number than WT. Truncations of the intracellular C-terminal tail and an AAA substitution of the putative metal-binding HCH C-terminal tripeptide (thought to be required for transport) also exhibited elevated transport rates and Km values when compared with WT hCTR1. Unlike WT hCTR1, H139R and the C-terminal mutants did not undergo regulatory endocytosis in elevated copper. hCTR1 mutants combining methionine substitutions that block transport (M150L,M154L) on the extracellular side of the pore and the high transport H139R or AAA intracellular side mutations exhibited the blocked transport of M150L,M154L, confirming that Cu+ first interacts with the methionines during permeation. Our results show that hCTR1 elements on the intracellular side of the hCTR1 pore, including the carboxyl tail, are not essential for permeation, but serve to regulate the rate of copper entry. PMID:23658018
Redox control of copper homeostasis in cyanobacteria.
López-Maury, Luis; Giner-Lamia, Joaquín; Florencio, Francisco J
2012-12-01
Copper is essential for all living organisms but is toxic when present in excess. Therefore organisms have developed homeostatic mechanism to tightly regulate its cellular concentration. In a recent study we have shown that CopRS two-component system is essential for copper resistance in the cyanobacterium Synechocystis sp PCC 6803. This two-component regulates expression of a heavy-metal RND type copper efflux system (encoded by copBAC) as well as its own expression (in the copMRS operon) in response to an excess of copper in the media. We have also observed that both operons are induced under condition that reduces the photosynthetic electron flow and this induction depends on the presence of the copper-protein, plastocyanin. These findings, together with CopS localization to the thylakoid membrane and its periplasmic domain being able to bind copper directly, suggest that CopS could be involved in copper detection in both the periplasm and the thylakoid lumen.
Rossi, Steven A.; Shimkin, Kirk W.; Xu, Qun; Mori-Quiroz, Luis M.; Watson, Donald A.
2014-01-01
For the first time, a general catalytic procedure for the cross coupling of primary amides and alkylboronic acids is demonstrated. The key to the success of this reaction was the identification of a mild base (NaOSiMe3) and oxidant (di-tert-butyl peroxide) to promote the copper-catalyzed reaction in high yield. This transformation provides a facile, high-yielding method for the mono-alkylation of amides. PMID:23611591
Fieten, Hille; Gill, Yadvinder; Martin, Alan J.; Concilli, Mafalda; Dirksen, Karen; van Steenbeek, Frank G.; Spee, Bart; van den Ingh, Ted S. G. A. M.; Martens, Ellen C. C. P.; Festa, Paola; Chesi, Giancarlo; van de Sluis, Bart; Houwen, Roderick H. J. H.; Watson, Adrian L.; Aulchenko, Yurii S.; Hodgkinson, Victoria L.; Zhu, Sha; Petris, Michael J.; Polishchuk, Roman S.; Leegwater, Peter A. J.; Rothuizen, Jan
2016-01-01
ABSTRACT The deleterious effects of a disrupted copper metabolism are illustrated by hereditary diseases caused by mutations in the genes coding for the copper transporters ATP7A and ATP7B. Menkes disease, involving ATP7A, is a fatal neurodegenerative disorder of copper deficiency. Mutations in ATP7B lead to Wilson disease, which is characterized by a predominantly hepatic copper accumulation. The low incidence and the phenotypic variability of human copper toxicosis hamper identification of causal genes or modifier genes involved in the disease pathogenesis. The Labrador retriever was recently characterized as a new canine model for copper toxicosis. Purebred dogs have reduced genetic variability, which facilitates identification of genes involved in complex heritable traits that might influence phenotype in both humans and dogs. We performed a genome-wide association study in 235 Labrador retrievers and identified two chromosome regions containing ATP7A and ATP7B that were associated with variation in hepatic copper levels. DNA sequence analysis identified missense mutations in each gene. The amino acid substitution ATP7B:p.Arg1453Gln was associated with copper accumulation, whereas the amino acid substitution ATP7A:p.Thr327Ile partly protected against copper accumulation. Confocal microscopy indicated that aberrant copper metabolism upon expression of the ATP7B variant occurred because of mis-localization of the protein in the endoplasmic reticulum. Dermal fibroblasts derived from ATP7A:p.Thr327Ile dogs showed copper accumulation and delayed excretion. We identified the Labrador retriever as the first natural, non-rodent model for ATP7B-associated copper toxicosis. Attenuation of copper accumulation by the ATP7A mutation sheds an interesting light on the interplay of copper transporters in body copper homeostasis and warrants a thorough investigation of ATP7A as a modifier gene in copper-metabolism disorders. The identification of two new functional variants in
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, S.
1995-12-31
Time-dependent responses to sediment-associated copper were studies at hierarchical levels of biological organization along an extreme concentration gradient (40 to 40,000 mg/kg total Cu). Laboratory and in situ estimates of molecular to tissue-level responses (Na/K-ATPase activity, DNA content, histopathology) were monitored in Corbicula fluminea (Asiatic clam), and compared with laboratory and field based survival of Corbicula and Elimia teres (an indigenous Gastropoda). Mollusc survival was, in turn, compared with effects on macrobenthic community composition along the stream/[Cu] gradient. Relationships between selected sediment characteristics and the bioavailability and toxicity of sediment associated copper were also investigated. Sediment-associated copper depressed Na/K-ATPase activitymore » and led to histopathological damage of renal and gill epithelia (vacuolization, degeneration), indicating that impaired ion regulation was an important mechanism of toxicity. Concurrent reductions in DNA content were believed to be secondary effects due to cell death, not an indication of genotoxicity. Sublethal responses were significantly correlated with survival in both species; however, while survival in situ was indicative of differences in community structure, laboratory-based survival was not. Copper levels in tissues were indicative of exposure, but were not significantly correlated with adverse effects. Copper levels in sediments, interstitial water, and overlying water varied independently of sediment characteristics except pH. Cu/AVS ratios were predictive of Corbicula and Elimia survival, but were not significantly related to differences in community structure. Instead, macrobenthic community structure was influenced by other sediment factors (grain size, Eh, pH).« less
McCarthy, Samuel; Ai, Chenbing; Wheaton, Garrett; Tevatia, Rahul; Eckrich, Valerie; Kelly, Robert; Blum, Paul
2014-10-01
Thermoacidophilic archaea, such as Metallosphaera sedula, are lithoautotrophs that occupy metal-rich environments. In previous studies, an M. sedula mutant lacking the primary copper efflux transporter, CopA, became copper sensitive. In contrast, the basis for supranormal copper resistance remained unclear in the spontaneous M. sedula mutant, CuR1. Here, transcriptomic analysis of copper-shocked cultures indicated that CuR1 had a unique regulatory response to metal challenge corresponding to the upregulation of 55 genes. Genome resequencing identified 17 confirmed mutations unique to CuR1 that were likely to change gene function. Of these, 12 mapped to genes with annotated function associated with transcription, metabolism, or transport. These mutations included 7 nonsynonymous substitutions, 4 insertions, and 1 deletion. One of the insertion mutations mapped to pseudogene Msed_1517 and extended its reading frame an additional 209 amino acids. The extended mutant allele was identified as a homolog of Pho4, a family of phosphate symporters that includes the bacterial PitA proteins. Orthologs of this allele were apparent in related extremely thermoacidophilic species, suggesting M. sedula naturally lacked this gene. Phosphate transport studies combined with physiologic analysis demonstrated M. sedula PitA was a low-affinity, high-velocity secondary transporter implicated in copper resistance and arsenate sensitivity. Genetic analysis demonstrated that spontaneous arsenate-resistant mutants derived from CuR1 all underwent mutation in pitA and nonselectively became copper sensitive. Taken together, these results point to archaeal PitA as a key requirement for the increased metal resistance of strain CuR1 and its accelerated capacity for copper bioleaching. Copyright © 2014, American Society for Microbiology. All Rights Reserved.
McCarthy, Samuel; Ai, Chenbing; Wheaton, Garrett; Tevatia, Rahul; Eckrich, Valerie; Kelly, Robert
2014-01-01
Thermoacidophilic archaea, such as Metallosphaera sedula, are lithoautotrophs that occupy metal-rich environments. In previous studies, an M. sedula mutant lacking the primary copper efflux transporter, CopA, became copper sensitive. In contrast, the basis for supranormal copper resistance remained unclear in the spontaneous M. sedula mutant, CuR1. Here, transcriptomic analysis of copper-shocked cultures indicated that CuR1 had a unique regulatory response to metal challenge corresponding to the upregulation of 55 genes. Genome resequencing identified 17 confirmed mutations unique to CuR1 that were likely to change gene function. Of these, 12 mapped to genes with annotated function associated with transcription, metabolism, or transport. These mutations included 7 nonsynonymous substitutions, 4 insertions, and 1 deletion. One of the insertion mutations mapped to pseudogene Msed_1517 and extended its reading frame an additional 209 amino acids. The extended mutant allele was identified as a homolog of Pho4, a family of phosphate symporters that includes the bacterial PitA proteins. Orthologs of this allele were apparent in related extremely thermoacidophilic species, suggesting M. sedula naturally lacked this gene. Phosphate transport studies combined with physiologic analysis demonstrated M. sedula PitA was a low-affinity, high-velocity secondary transporter implicated in copper resistance and arsenate sensitivity. Genetic analysis demonstrated that spontaneous arsenate-resistant mutants derived from CuR1 all underwent mutation in pitA and nonselectively became copper sensitive. Taken together, these results point to archaeal PitA as a key requirement for the increased metal resistance of strain CuR1 and its accelerated capacity for copper bioleaching. PMID:25092032
Isolation of copper-binding proteins from activated sludge culture.
Fukushi, K; Kato, S; Antsuki, T; Omura, T
2001-01-01
Six copper-binding microbial proteins were isolated from activated sludge cultures grown on media containing copper at various concentrations. Molecular weights among isolated proteins were ranged from 1.3k to 1 74k dalton. Isolated proteins were compared for their copper binding capabilities. Proteins isolated from cultures grown in the presence of copper in the growth media exhibited higher copper binding capabilities than those isolated from the culture grown in the absence of copper. The highest metal uptake of 61.23 (mol copper/mol protein) was observed by a protein isolated from a culture grown with copper at a concentration of 0.25 mM. This isolated protein (CBP2) had a molecular weight of 24k dalton. Other protein exhibited copper binding capability of 4.8-32.5 (mol copper/mol protein).
CopM is a novel copper-binding protein involved in copper resistance in Synechocystis sp. PCC 6803.
Giner-Lamia, Joaquín; López-Maury, Luis; Florencio, Francisco J
2015-02-01
Copper resistance system in the cyanobacterium Synechocystis sp. PCC 6803 comprises two operons, copMRS and copBAC, which are expressed in response to copper in the media. copBAC codes for a heavy-metal efflux-resistance nodulation and division (HME-RND) system, while copMRS codes for a protein of unknown function, CopM, and a two-component system CopRS, which controls the expression of these two operons. Here, we report that CopM is a periplasmic protein able to bind Cu(I) with high affinity (KD ~3 × 10(-16) ). Mutants lacking copM showed a sensitive copper phenotype similar to mutants affected in copB, but lower than mutants of the two-component system CopRS, suggesting that CopBAC and CopM constitute two independent resistance mechanisms. Moreover, constitutive expression of copM is able to partially suppress the copper sensitivity of the copR mutant strain, pointing out that CopM per se is able to confer copper resistance. Furthermore, constitutive expression of copM was able to reduce total cellular copper content of the copR mutant to the levels determined in the wild-type (WT) strain. Finally, CopM was localized not only in the periplasm but also in the extracellular space, suggesting that CopM can also prevent copper accumulation probably by direct copper binding outside the cell. © 2014 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.
CopM is a novel copper-binding protein involved in copper resistance in Synechocystis sp. PCC 6803
Giner-Lamia, Joaquín; López-Maury, Luis; Florencio, Francisco J
2015-01-01
Copper resistance system in the cyanobacterium Synechocystis sp. PCC 6803 comprises two operons, copMRS and copBAC, which are expressed in response to copper in the media. copBAC codes for a heavy-metal efflux–resistance nodulation and division (HME-RND) system, while copMRS codes for a protein of unknown function, CopM, and a two-component system CopRS, which controls the expression of these two operons. Here, we report that CopM is a periplasmic protein able to bind Cu(I) with high affinity (KD ∼3 × 10−16). Mutants lacking copM showed a sensitive copper phenotype similar to mutants affected in copB, but lower than mutants of the two-component system CopRS, suggesting that CopBAC and CopM constitute two independent resistance mechanisms. Moreover, constitutive expression of copM is able to partially suppress the copper sensitivity of the copR mutant strain, pointing out that CopM per se is able to confer copper resistance. Furthermore, constitutive expression of copM was able to reduce total cellular copper content of the copR mutant to the levels determined in the wild-type (WT) strain. Finally, CopM was localized not only in the periplasm but also in the extracellular space, suggesting that CopM can also prevent copper accumulation probably by direct copper binding outside the cell. PMID:25545960
21 CFR 524.463 - Copper naphthenate.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Copper naphthenate. 524.463 Section 524.463 Food... DRUGS, FEEDS, AND RELATED PRODUCTS OPHTHALMIC AND TOPICAL DOSAGE FORM NEW ANIMAL DRUGS § 524.463 Copper naphthenate. (a) Amount. The drug is a 37.5 percent solution of copper naphthenate. (b) Sponsors. See Nos...
21 CFR 524.463 - Copper naphthenate.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Copper naphthenate. 524.463 Section 524.463 Food... DRUGS, FEEDS, AND RELATED PRODUCTS OPHTHALMIC AND TOPICAL DOSAGE FORM NEW ANIMAL DRUGS § 524.463 Copper naphthenate. (a) Amount. The drug is a 37.5 percent solution of copper naphthenate. (b) Sponsors. See Nos...
Occupational and environmental lead poisoning: case study of a battery recycling smelter in Taiwan.
Wang, J D; Soong, W T; Chao, K Y; Hwang, Y H; Jang, C S
1998-07-01
The rapid industrialization in Taiwan has caused both prosperity and environmental pollution. The purpose of this study is to demonstrate a case of both occupational and environmental lead poisoning. A patient of lead poisoning initiated a survey of the battery recycling factory, which revealed that 31 of 64 workers suffered from lead poisoning. Children who attended a nearby kindergarten showed a significant increase of blood lead up to 15-25 micrograms/dl and a mild but significant decrease of IQ (intelligent quotient, by Binet-Simon scale) if compared with children of a nonexposed but socioeconomically comparable kindergarten. Outdoor workers of the nearby forging factory also showed a significant increase of blood lead if compared with indoor workers or workers of another nonexposed forging factory 20 Km away. Air sampling showed an average of more than 10 micrograms/m3 in the kindergarten. Soil sampling and analysis also revealed 400 folds increase of lead content, which decreased if the sample was taken deep down to 15-30 cm or 350 meters away from the battery recycling smelter. Moreover, after children were moved away from the pollution source, follow-up examination performed 2.5 years later showed a significant decrease of blood lead and partial recovery of IQ among them.