Science.gov

Sample records for secondary host resistances

  1. Thalidomide enhances both primary and secondary host resistances to Listeria monocytogenes infection by a neutrophil-related mechanism in female B6C3F1 mice

    SciTech Connect

    Guo, Tai L. . E-mail: tlguo@hsc.vcu.edu; Chi, Rui P.; Karrow, Niel A.; Zhang, Ling X.; Pruett, Stephen B.; Germolec, Dori R.; White, Kimber L.

    2005-12-15

    Previously, we have reported that thalidomide can modulate the immune responses in female B6C3F1 mice. Furthermore, thalidomide immunomodulation increased primary host resistance to intravenously infected Listeria monocytogenes. The present study was intended to evaluate the mechanisms underlying the enhanced host resistance to L. monocytogenes by focusing on the neutrophils. Female B6C3F1 mice were treated intraperitoneally with thalidomide (100 mg/kg) for 15 days. Exposure to thalidomide increased the numbers of neutrophils in the spleens and livers of L. monocytogenes-infected mice when compared to the L. monocytogenes-infected control mice. Additionally, the percentage of neutrophils was also significantly increased after Thd treatment in L. monocytogenes-infected mice. Further studies using antibodies to deplete corresponding cells indicated that thalidomide-mediated increase in primary host resistance (both the moribundity and colony counts in the liver and spleen) to L. monocytogenes infection was due to its effect on neutrophils but not CD8{sup +} T cells or NK cells. Finally, Thd exposure also increased host resistance to secondary host resistance to L. monocytogenes infection, and depletion of neutrophils abolished the protective effect. In conclusion, thalidomide enhanced host resistance to both primary and secondary L. monocytogenes infections by a neutrophil-related mechanism in female B6C3F1 mice.

  2. Streptomyces-induced resistance against oak powdery mildew involves host plant responses in defense, photosynthesis, and secondary metabolism pathways.

    PubMed

    Kurth, Florence; Mailänder, Sarah; Bönn, Markus; Feldhahn, Lasse; Herrmann, Sylvie; Große, Ivo; Buscot, François; Schrey, Silvia D; Tarkka, Mika T

    2014-09-01

    Rhizobacteria are known to induce defense responses in plants without causing disease symptoms, resulting in increased resistance to plant pathogens. This study investigated how Streptomyces sp. strain AcH 505 suppressed oak powdery mildew infection in pedunculate oak, by analyzing RNA-Seq data from singly- and co-inoculated oaks. We found that this Streptomyces strain elicited a systemic defense response in oak that was, in part, enhanced upon pathogen challenge. In addition to induction of the jasmonic acid/ethylene-dependent pathway, the RNA-Seq data suggests the participation of the salicylic acid-dependent pathway. Transcripts related to tryptophan, phenylalanine, and phenylpropanoid biosynthesis were enriched and phenylalanine ammonia lyase activity increased, indicating that priming by Streptomyces spp. in pedunculate oak shares some determinants with the Pseudomonas-Arabidopsis system. Photosynthesis-related transcripts were depleted in response to powdery mildew infection, but AcH 505 alleviated this inhibition, which suggested there is a fitness benefit for primed plants upon pathogen challenge. This study offers novel insights into the mechanisms of priming by actinobacteria and highlights their capacity to activate plant defense responses in the absence of pathogen challenge.

  3. Approaches to assessing host resistance.

    PubMed Central

    Bradley, S G; Morahan, P S

    1982-01-01

    There is increasing evidence that chronic, subclinical exposure to certain environmental pollutants may upset immune responsiveness and alter susceptibility of animals to infectious agents. Environmental chemicals or drugs may affect diverse aspects of the immune system, leading to immunosuppression, immunopotentiation, hypersensitivity or perturbed innate host resistance. A variety of infectious models is available that involves relatively well defined target organs and host defense mechanisms; for example, infections with encephalomyocarditis virus, Herpesvirus simplex, Listeria monocytogenes, Streptococcus pneumoniae, Escherichia coli or Plasmodium berghei. Important variables in infectious models used to assess immunotoxicity include species and strain of animal used, their age and sex, the route of exposure, and dose of the chemical. No one infectious model has yet emerged as a routine screening tool to detect and assess the subtle effects that may occur in immune responses when animals are exposed to doses of environmental pollutants that cause no adverse effect at a gross level. The selection of useful test systems is complicated because it is difficult to measure the effects of chronic, subclinical exposure to chemicals and sublethal challenges of microorganisms. PMID:6277617

  4. Evolution of parasite virulence against qualitative or quantitative host resistance.

    PubMed Central

    Gandon, S; Michalakis, Y

    2000-01-01

    We analysed the effects of two different modes of host resistance on the evolution of parasite virulence. Hosts can either adopt an all-or-nothing qualitative response (i.e. resistant hosts cannot be infected) or a quantitative form of resistance (i.e. which reduces the within-host growth rate of the parasite). We show that the mode of host resistance greatly affects the evolutionary outcome. Specifically, a qualitative form of resistance reduces parasite virulence, while a quantitative form of resistance generally selects for higher virulence. PMID:10874747

  5. Host resistance factors in human milk.

    PubMed

    Goldman, A S; Smith, C W

    1973-06-01

    This paper discusses the nature of host resistance factors in human milk and epidemiologic studies regarding infections and mortality rates in breastfed and nonbreastfed babies. The defense factors and their proposed modes of action are: 1) a growth enhancer of lactobacilli, which interferes with intestinal colonization of enteric pathogens; 2) antistaphylococcal factors, which inhibit staphylococci; 3) secretory IgA and other immunoglobulins, which protect the gut and respiratory tract; 4) C4 and C3 (complement components; C3 fragments have opsonic, chemotactic, and anaphylatoxic activities); 5) lysozome, lysis of bacterial cell wall; 6) lactoperoxidase, killing of streptococci; 7) lactoferrin, kills microorganism by chelating iron, and 8) macrophages and lymphocytes, phagocytosis and cell-mediated immunity. Although it can be postulated that the breastfed infant's resistance to infection would be superior on account of the greater presence of these factors in human milk compared to cow's milk, little is known about the effects of these defense factors on the infant. Epidemiologic studies have reported on the lower morbidity and mortality rates of breastfed infants as compared to bottlefed infants. Other studies have focused on the protective effects of human milk upon the infant, but these have been inconclusive. In countries with poor sanitation and high infection rates, the incidence of bacterial infections is lowest in breastfed infants. The advantages of human milk however are difficult to demonstrate in societies with high standards of sanitation and low infection rates. Infection and mortality rates in infants have in fact declined in developed countries as the practice of breastfeeding declined. Until it is established that immunity to common pathogens is transmitted to the infant by human milk, it will not be known whether human milk does have protective effects.

  6. Dynamics of Mycobacteriophage-Mycobacterial Host Interaction: Evidence for Secondary Mechanisms for Host Lethality.

    PubMed

    Samaddar, Sourabh; Grewal, Rajdeep Kaur; Sinha, Saptarshi; Ghosh, Shrestha; Roy, Soumen; Das Gupta, Sujoy K

    2015-10-16

    Mycobacteriophages infect mycobacteria, resulting in their death. Therefore, the possibility of using them as therapeutic agents against the deadly mycobacterial disease tuberculosis (TB) is of great interest. To obtain better insight into the dynamics of mycobacterial inactivation by mycobacteriophages, this study was initiated using mycobacteriophage D29 and Mycobacterium smegmatis as the phage-host system. Here, we implemented a goal-oriented iterative cycle of experiments on one hand and mathematical modeling combined with Monte Carlo simulations on the other. This integrative approach lends valuable insight into the detailed kinetics of bacterium-phage interactions. We measured time-dependent changes in host viability during the growth of phage D29 in M. smegmatis at different multiplicities of infection (MOI). The predictions emerging out of theoretical analyses were further examined using biochemical and cell biological assays. In a phage-host interaction system where multiple rounds of infection are allowed to take place, cell counts drop more rapidly than expected if cell lysis is considered the only mechanism for cell death. The phenomenon could be explained by considering a secondary factor for cell death in addition to lysis. Further investigations reveal that phage infection leads to the increased production of superoxide radicals, which appears to be the secondary factor. Therefore, mycobacteriophage D29 can function as an effective antimycobacterial agent, the killing potential of which may be amplified through secondary mechanisms.

  7. Host tree resistance against the polyphagous

    Treesearch

    W. D. Morewood; K. Hoover; P. R. Neiner; J.R. McNeil; J. C. Sellmer

    2004-01-01

    Anoplophora glabripennis (Motschulsky) (Coleoptera: Cerambycidae: Lamiini) is an invasive wood-boring beetle with an unusually broad host range and a proven ability to increase its host range as it colonizes new areas and encounters new tree species. The beetle is native to eastern Asia and has become an invasive pest in North America and Europe,...

  8. Smog exposure and host resistance to respiratory pathogens ...

    EPA Pesticide Factsheets

    The US EPA is evaluating the health effects of photochemical smog on respiratory, cardiovascular and metabolic health (https://www.epa.gov/air-research/secondary-organic-aerosol-soas-research). Smog exposure has been associated with an increased risk of allergy and decreased resistance to respiratory infections; we therefore investigated the effects of smog on the host response to respiratory pathogens. Atmospheres were generated in a chamber fed with selected hydrocarbons (gasoline + -pinene-“smog A” or gasoline +isoprene-“smog B”), and subjected to ultraviolet light. Final chamber concentrations were 252 ppb NO2, 104 ppb O3, and 1070 ug/m3 secondary organic aerosol, SOA) (Smog A) or 617 ppb NO2, 376 ppb O3, and 53 ug/m3 SOA (Smog B). Balb/C female mice were exposed to filtered air or smog for 4 h/d X 5 d; subgroups of control and exposed mice were either immunized with heat-killed Streptococcus pneumoniae (HKSP; smog A) or infected with mouse-adapted influenza A/Puerto Rico/8/34 (H1N1) on the first or last day of exposure. Mice were necropsied 7 d after immunization or infection and markers of lung damage and resistance to infection were assessed. Exposure to smog A did not alter the concentration of antibody to HKSP in the serum or concentrations of protein, lactate dehydrogenase or leukocyte concentrations in the bronchoalveolar lavage fluid (BALF),although the % neutrophils was greater in the post-exposure air group. Virus burdens were similar i

  9. An organ-specific view on non-host resistance

    PubMed Central

    Strugala, Roxana; Delventhal, Rhoda; Schaffrath, Ulrich

    2015-01-01

    Non-host resistance (NHR) is the resistance of plants to a plethora of non-adapted pathogens and is considered as one of the most robust resistance mechanisms of plants. Studies have shown that the efficiency of resistance in general and NHR in particular could vary in different plant organs, thus pointing to tissue-specific determinants. This was exemplified by research on host and non-host interactions of the fungal plant pathogen Magnaporthe oryzae with rice and Arabidopsis, respectively. Thus, rice roots were shown to be impaired in resistance to M. oryzae isolates to which leaves of the same rice cultivar are highly resistant. Moreover, roots of Arabidopsis are also accessible to penetration by M. oryzae while leaves of this non-host plant cannot be infected. We addressed the question whether or not other plant tissues such as the reproductive system also differ in NHR compared to leaves. Inoculation experiments on wheat with different Magnaporthe species forming either a host or non-host type of interaction revealed that NHR was as effective on spikes as on leaves. This finding might pave the way for combatting M. oryzae disease on wheat spikes which has become a serious threat especially in South America. PMID:26257747

  10. Host lifespan and the evolution of resistance to multiple parasites.

    PubMed

    Donnelly, R; White, A; Boots, M

    2017-03-01

    Hosts are typically challenged by multiple parasites, but to date theory on the evolution of resistance has mainly focused on single infections. We develop a series of models that examine the impact of multiple parasites on the evolution of resistance under the assumption that parasites coexist at the host population scale as a consequence of superinfection. In this way, we are able to explicitly examine the impact of ecological dynamics on the evolutionary outcome. We use our models to address a key question of how host lifespan affects investment in resistance to multiple parasites. We show that investment in costly resistance depends on the specificity of the immune response and on whether or not the focal parasite leads to more acute infection than the co-circulating parasite. A key finding is that investment in resistance always increases as the immune response becomes more general independently of whether it is the focal or the co-circulating parasite that exploits the host most aggressively. Long-lived hosts always invest more than short-lived hosts in both general resistance and resistance that is specific to relatively acute focal parasites. However, for specific resistance to parasites that are less acute than co-circulating parasites it is the short-lived hosts that are predicted to invest most. We show that these results apply whatever the mode of defence, that is whether it is through avoidance or through increased recovery, with or without acquired immunity, or through acquired immunity itself. As a whole, our results emphasize the importance of considering multiple parasites in determining optimal immune investment in eco-evolutionary systems.

  11. Host plant resistance to parasitic weeds; recent progress and bottlenecks.

    PubMed

    Yoder, John I; Scholes, Julie D

    2010-08-01

    Parasitic witchweeds (Striga spp.) and broomrapes (Orobanche and Phelipanche spp.) directly invade the roots of crop plants connecting to the vascular system and abstracting nutrients and water. As a consequence they cause devastating losses in crop yield. Genetic resistance to parasitic weeds is a highly desirable component of any control strategy. Resistance to parasitic plants can occur at different stages of the parasite lifecycle: before attachment to the host, during penetration of the root or after establishment of vascular connections. New studies are beginning to shed light on the molecular mechanisms and signaling pathways involved in plant-plant resistance. The first resistance gene to Striga, encoding a CC-NBS-LRR Resistance protein (R) has been identified and cloned suggesting that host plants resist attack from parasitic plants using similar surveillance mechanisms as those used against fungal and bacterial pathogens. It is becoming clear that the salicylic acid (SA) signaling pathway plays an important role in resistance to parasitic plants and genes encoding pathogenesis-related (PR) proteins are upregulated in a number of the resistant interactions. New strategies for engineering resistance to parasitic plants are also being explored, including the expression of parasite-specific toxins in host roots and RNAi to silence parasite genes crucial for development.

  12. Specialization for resistance in wild host-pathogen interaction networks.

    PubMed

    Barrett, Luke G; Encinas-Viso, Francisco; Burdon, Jeremy J; Thrall, Peter H

    2015-01-01

    Properties encompassed by host-pathogen interaction networks have potential to give valuable insight into the evolution of specialization and coevolutionary dynamics in host-pathogen interactions. However, network approaches have been rarely utilized in previous studies of host and pathogen phenotypic variation. Here we applied quantitative analyses to eight networks derived from spatially and temporally segregated host (Linum marginale) and pathogen (Melampsora lini) populations. First, we found that resistance strategies are highly variable within and among networks, corresponding to a spectrum of specialist and generalist resistance types being maintained within all networks. At the individual level, specialization was strongly linked to partial resistance, such that partial resistance was effective against a greater number of pathogens compared to full resistance. Second, we found that all networks were significantly nested. There was little support for the hypothesis that temporal evolutionary dynamics may lead to the development of nestedness in host-pathogen infection networks. Rather, the common patterns observed in terms of nestedness suggests a universal driver (or multiple drivers) that may be independent of spatial and temporal structure. Third, we found that resistance networks were significantly modular in two spatial networks, clearly reflecting spatial and ecological structure within one of the networks. We conclude that (1) overall patterns of specialization in the networks we studied mirror evolutionary trade-offs with the strength of resistance; (2) that specific network architecture can emerge under different evolutionary scenarios; and (3) network approaches offer great utility as a tool for probing the evolutionary and ecological genetics of host-pathogen interactions.

  13. Host life history and host-parasite syntopy predict behavioural resistance and tolerance of parasites.

    PubMed

    Sears, Brittany F; Snyder, Paul W; Rohr, Jason R

    2015-05-01

    There is growing interest in the role that life-history traits of hosts, such as their 'pace-of-life', play in the evolution of resistance and tolerance to parasites. Theory suggests that, relative to host species that have high syntopy (local spatial and temporal overlap) with parasites, host species with low syntopy should have lower selection pressures for more constitutive (always present) and costly defences, such as tolerance, and greater reliance on more inducible and cheaper defences, such as behaviour. Consequently, we postulated that the degree of host-parasite syntopy, which is negatively correlated with host pace-of-life (an axis reflecting the developmental rate of tadpoles and the inverse of their size at metamorphosis) in our tadpole-parasitic cercarial (trematode) system, would be a negative and positive predictor of behavioural resistance and tolerance, respectively. To test these hypotheses, we exposed seven tadpole species to a range of parasite (cercarial) doses crossed with anaesthesia treatments that controlled for anti-parasite behaviour. We quantified host behaviour, successful and unsuccessful infections, and each species' reaction norm for behavioural resistance and tolerance, defined as the slope between cercarial exposure (or attempted infections) and anti-cercarial behaviours and mass change, respectively. Hence, tolerance is capturing any cost of parasite exposure. As hypothesized, tadpole pace-of-life was a significant positive predictor of behavioural resistance and negative predictor of tolerance, a result that is consistent with a trade-off between behavioural resistance and tolerance across species that warrants further investigation. Moreover, these results were robust to considerations of phylogeny, all possible re-orderings of the three fastest or slowest paced species, and various measurements of tolerance. These results suggest that host pace-of-life and host-parasite syntopy are powerful drivers of both the strength and type

  14. Interferon-Inducible GTPases in Host Resistance, Inflammation and Disease.

    PubMed

    Pilla-Moffett, Danielle; Barber, Matthew F; Taylor, Gregory A; Coers, Jörn

    2016-08-28

    Cell-autonomous immunity is essential for host organisms to defend themselves against invasive microbes. In vertebrates, both the adaptive and the innate branches of the immune system operate cell-autonomous defenses as key effector mechanisms that are induced by pro-inflammatory interferons (IFNs). IFNs can activate cell-intrinsic host defenses in virtually any cell type ranging from professional phagocytes to mucosal epithelial cells. Much of this IFN-induced host resistance program is dependent on four families of IFN-inducible GTPases: the myxovirus resistance proteins, the immunity-related GTPases, the guanylate-binding proteins (GBPs), and the very large IFN-inducible GTPases. These GTPase families provide host resistance to a variety of viral, bacterial, and protozoan pathogens through the sequestration of microbial proteins, manipulation of vesicle trafficking, regulation of antimicrobial autophagy (xenophagy), execution of intracellular membranolytic pathways, and the activation of inflammasomes. This review discusses our current knowledge of the molecular function of IFN-inducible GTPases in providing host resistance, as well as their role in the pathogenesis of autoinflammatory Crohn's disease. While substantial advances were made in the recent past, few of the known functions of IFN-inducible GTPases have been explored in any depth, and new functions await discovery. This review will therefore highlight key areas of future exploration that promise to advance our understanding of the role of IFN-inducible GTPases in human diseases.

  15. The molecular pathways underlying host resistance and tolerance to pathogens

    PubMed Central

    Glass, Elizabeth J.

    2012-01-01

    Breeding livestock that are better able to withstand the onslaught of endemic- and exotic pathogens is high on the wish list of breeders and farmers world-wide. However, the defense systems in both pathogens and their hosts are complex and the degree of genetic variation in resistance and tolerance will depend on the trade-offs that they impose on host fitness as well as their life-histories. The genes and pathways underpinning resistance and tolerance traits may be distinct or intertwined as the outcome of any infection is a result of a balance between collateral damage of host tissues and control of the invading pathogen. Genes and molecular pathways associated with resistance are mainly expressed in the mucosal tract and the innate immune system and control the very early events following pathogen invasion. Resistance genes encode receptors involved in uptake of pathogens, as well as pattern recognition receptors (PRR) such as the toll-like receptor family as well as molecules involved in strong and rapid inflammatory responses which lead to rapid pathogen clearance, yet do not lead to immunopathology. In contrast tolerance genes and pathways play a role in reducing immunopathology or enhancing the host's ability to protect against pathogen associated toxins. Candidate tolerance genes may include cytosolic PRRs and unidentified sensors of pathogen growth, perturbation of host metabolism and intrinsic danger or damage associated molecules. In addition, genes controlling regulatory pathways, tissue repair and resolution are also tolerance candidates. The identities of distinct genetic loci for resistance and tolerance to infectious pathogens in livestock species remain to be determined. A better understanding of the mechanisms involved and phenotypes associated with resistance and tolerance should ultimately help to improve livestock health and welfare. PMID:23403960

  16. Heritable variation in host tolerance and resistance inferred from a wild host-parasite system.

    PubMed

    Mazé-Guilmo, Elise; Loot, Géraldine; Páez, David J; Lefèvre, Thierry; Blanchet, Simon

    2014-03-22

    Hosts have evolved two distinct defence strategies against parasites: resistance (which prevents infection or limit parasite growth) and tolerance (which alleviates the fitness consequences of infection). However, heritable variation in resistance and tolerance and the genetic correlation between these two traits have rarely been characterized in wild host populations. Here, we estimate these parameters for both traits in Leuciscus burdigalensis, a freshwater fish parasitized by Tracheliastes polycolpus. We used a genetic database to construct a full-sib pedigree in a wild L. burdigalensis population. We then used univariate animal models to estimate inclusive heritability (i.e. all forms of genetic and non-genetic inheritance) in resistance and tolerance. Finally, we assessed the genetic correlation between these two traits using a bivariate animal model. We found significant heritability for resistance (H = 17.6%; 95% CI: 7.2-32.2%) and tolerance (H = 18.8%; 95% CI: 4.4-36.1%), whereas we found no evidence for the existence of a genetic correlation between these traits. Furthermore, we confirm that resistance and tolerance are strongly affected by environmental effects. Our results demonstrate that (i) heritable variation exists for parasite resistance and tolerance in wild host populations, and (ii) these traits can evolve independently in populations.

  17. A latitudinal cline in disease resistance of a host tree

    PubMed Central

    Hamilton, M G; Williams, D R; Tilyard, P A; Pinkard, E A; Wardlaw, T J; Glen, M; Vaillancourt, R E; Potts, B M

    2013-01-01

    The possible drivers and implications of an observed latitudinal cline in disease resistance of a host tree were examined. Mycosphaerella leaf disease (MLD) damage, caused by Teratosphaeria species, was assessed in five Eucalyptus globulus (Tasmanian blue gum) common garden trials containing open-pollinated progeny from 13 native-forest populations. Significant population and family within population variation in MLD resistance was detected, which was relatively stable across different combinations of trial sites, ages, seasons and epidemics. A distinct genetic-based latitudinal cline in MLD damage among host populations was evident. Two lines of evidence argue that the observed genetic-based latitudinal trend was the result of direct pathogen-imposed selection for MLD resistance. First, MLD damage was positively associated with temperature and negatively associated with a prediction of disease risk in the native environment of these populations; and, second, the quantitative inbreeding coefficient (QST) significantly exceeded neutral marker FST at the trial that exhibited the greatest MLD damage, suggesting that diversifying selection contributed to differentiation in MLD resistance among populations. This study highlights the potential for spatial variation in pathogen risk to drive adaptive differentiation across the geographic range of a foundation host tree species. PMID:23211794

  18. A latitudinal cline in disease resistance of a host tree.

    PubMed

    Hamilton, M G; Williams, D R; Tilyard, P A; Pinkard, E A; Wardlaw, T J; Glen, M; Vaillancourt, R E; Potts, B M

    2013-04-01

    The possible drivers and implications of an observed latitudinal cline in disease resistance of a host tree were examined. Mycosphaerella leaf disease (MLD) damage, caused by Teratosphaeria species, was assessed in five Eucalyptus globulus (Tasmanian blue gum) common garden trials containing open-pollinated progeny from 13 native-forest populations. Significant population and family within population variation in MLD resistance was detected, which was relatively stable across different combinations of trial sites, ages, seasons and epidemics. A distinct genetic-based latitudinal cline in MLD damage among host populations was evident. Two lines of evidence argue that the observed genetic-based latitudinal trend was the result of direct pathogen-imposed selection for MLD resistance. First, MLD damage was positively associated with temperature and negatively associated with a prediction of disease risk in the native environment of these populations; and, second, the quantitative inbreeding coefficient (QST) significantly exceeded neutral marker FST at the trial that exhibited the greatest MLD damage, suggesting that diversifying selection contributed to differentiation in MLD resistance among populations. This study highlights the potential for spatial variation in pathogen risk to drive adaptive differentiation across the geographic range of a foundation host tree species.

  19. Adaptation to toxic hosts as a factor in the evolution of insecticide resistance.

    PubMed

    Alyokhin, Andrei; Chen, Yolanda H

    2017-06-01

    Insecticide resistance is a serious economic problem that jeopardizes sustainability of chemical control of herbivorous insects and related arthropods. It can be viewed as a specific case of adaptation to toxic chemicals, which has been driven in large part, but not exclusively, by the necessity for insect pests to tolerate defensive compounds produced by their host plants. Synthetic insecticides may simply change expression of specific sets of detoxification genes that have evolved due to ancestral associations with host plants. Feeding on host plants with more abundant or novel secondary metabolites has even been shown to prime insect herbivores to tolerate pesticides. Clear understanding of basic evolutionary processes is important for achieving lasting success in managing herbivorous arthropods. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. The host model Galleria mellonella is resistant to taylorellae infection.

    PubMed

    Hébert, L; Rincé, I; Sanna, C; Laugier, C; Rincé, A; Petry, S

    2014-10-01

    The genus Taylorella is composed of two species: (i) Taylorella equigenitalis, the causative agent of CEM, a venereally transmitted infection of Equidae and (ii) Taylorella asinigenitalis, a closely related species considered to be nonpathogenic, although experimental infection of mares with this bacterium resulted in clinical signs of vaginitis, cervicitis or endometritis. Currently, there is a need for an alternative host model to further study the taylorellae species. In this context, we explored Galleria mellonella larvae as potential alternative model hosts for taylorellae. Our results showed that infection of G. mellonella larvae with a high concentration of taylorellae did not induce overt G. mellonella mortality and that taylorellae were not able to proliferate within G. mellonella. In conclusion, G. mellonella larvae are resistant to taylorellae infection and therefore do not constitute a relevant alternative system for studying the virulence of taylorellae species. Significance and impact of the study: To date, the pathogenicity and host colonization capacity of Taylorella equigenitalis, the causative agent of contagious equine metritis (CEM) and T. asinigenitalis, the second species within the Taylorella genus, remain largely unknown. In this study, we evaluated the relevance of Galleria mellonella as an infection model for taylorellae; we showed that G. mellonella are resistant to taylorellae infection and therefore do not constitute a suitable host model for taylorellae.

  1. Sugarcane aphid (Hemiptera: Aphididae): Host range and sorghum resistance including cross-resistance from greenbug sources

    USDA-ARS?s Scientific Manuscript database

    The graminous host range, and sources of sorghum plant resistance including cross resistance from greenbug, Schizaphis graminum (Rond.) sorghums, [Sorghum bicolor L.) Moench], were studied for the newly emerging sugarcane aphid Melanaphis sacchari, (Zehntner) in greenhouse no-choice experiments and ...

  2. Host and nonhost resistance in Medicago-Colletotrichum interactions.

    PubMed

    Jaulneau, Valérie; Cazaux, Marc; Wong Sak Hoi, Joanne; Fournier, Sylvie; Esquerré-Tugayé, Marie-Thérèse; Jacquet, Christophe; Dumas, Bernard

    2010-09-01

    Medicago truncatula lines resistant (A17) or susceptible (F83005.5) to the alfalfa pathogen Colletotrichum trifolii were used to compare defense reactions induced upon inoculation with C. trifolii or with the nonadapted pathogens C. lindemuthianum and C. higginsianum. Nonadapted Colletotrichum spp. induced a hypersensitive response (HR)-like reaction similar to the one induced during the host-incompatible interaction. Molecular analyses indicated an induction of PR10 and chalcone synthase genes in host and nonhost interactions but delayed responses were observed in the F83005.5 line. The clste12 penetration-deficient C. lindemuthianum mutant induced an HR and defense gene expression, showing that perception of nonadapted strains occurs before penetration of epidermal cells. Cytological and transcriptomic analyses performed upon inoculation of near-isogenic M. truncatula lines, differing only at the C. trifolii resistance locus, Ct1, with the nonadapted Colletotrichum strain, showed that nonhost responses are similar in the two lines. These included a localized oxidative burst, accumulation of fluorescent compounds, and transient expression of a small number of genes. Host interactions were characterized by a group of defense and signaling-related genes induced at 3 days postinoculation, associated with an accumulation of salicylic acid. Together, these results show that M. truncatula displays a rapid and transient response to nonadapted Colletotrichum strains and that this response is not linked to the C. trifolii resistance locus.

  3. Genetic architecture of resistance in Daphnia hosts against two species of host-specific parasites

    PubMed Central

    Routtu, J; Ebert, D

    2015-01-01

    Understanding the genetic architecture of host resistance is key for understanding the evolution of host–parasite interactions. Evolutionary models often assume simple genetics based on few loci and strong epistasis. It is unknown, however, whether these assumptions apply to natural populations. Using a quantitative trait loci (QTL) approach, we explore the genetic architecture of resistance in the crustacean Daphnia magna to two of its natural parasites: the horizontally transmitted bacterium Pasteuria ramosa and the horizontally and vertically transmitted microsporidium Hamiltosporidium tvaerminnensis. These two systems have become models for studies on the evolution of host–parasite interactions. In the QTL panel used here, Daphnia's resistance to P. ramosa is controlled by a single major QTL (which explains 50% of the observed variation). Resistance to H. tvaerminnensis horizontal infections shows a signature of a quantitative trait based in multiple loci with weak epistatic interactions (together explaining 38% variation). Resistance to H. tvaerminnensis vertical infections, however, shows only one QTL (explaining 13.5% variance) that colocalizes with one of the QTLs for horizontal infections. QTLs for resistance to Pasteuria and Hamiltosporidium do not colocalize. We conclude that the genetics of resistance in D. magna are drastically different for these two parasites. Furthermore, we infer that based on these and earlier results, the mechanisms of coevolution differ strongly for the two host–parasite systems. Only the Pasteuria–Daphnia system is expected to follow the negative frequency-dependent selection (Red Queen) model. How coevolution works in the Hamiltosporidium–Daphnia system remains unclear. PMID:25335558

  4. Enhancing Integrated Pest Management in GM Cotton Systems Using Host Plant Resistance.

    PubMed

    Trapero, Carlos; Wilson, Iain W; Stiller, Warwick N; Wilson, Lewis J

    2016-01-01

    Cotton has lost many ancestral defensive traits against key invertebrate pests. This is suggested by the levels of resistance to some pests found in wild cotton genotypes as well as in cultivated landraces and is a result of domestication and a long history of targeted breeding for yield and fiber quality, along with the capacity to control pests with pesticides. Genetic modification (GM) allowed integration of toxins from a bacteria into cotton to control key Lepidopteran pests. Since the mid-1990s, use of GM cotton cultivars has greatly reduced the amount of pesticides used in many cotton systems. However, pests not controlled by the GM traits have usually emerged as problems, especially the sucking bug complex. Control of this complex with pesticides often causes a reduction in beneficial invertebrate populations, allowing other secondary pests to increase rapidly and require control. Control of both sucking bug complex and secondary pests is problematic due to the cost of pesticides and/or high risk of selecting for pesticide resistance. Deployment of host plant resistance (HPR) provides an opportunity to manage these issues in GM cotton systems. Cotton cultivars resistant to the sucking bug complex and/or secondary pests would require fewer pesticide applications, reducing costs and risks to beneficial invertebrate populations and pesticide resistance. Incorporation of HPR traits into elite cotton cultivars with high yield and fiber quality offers the potential to further reduce pesticide use and increase the durability of pest management in GM cotton systems. We review the challenges that the identification and use of HPR against invertebrate pests brings to cotton breeding. We explore sources of resistance to the sucking bug complex and secondary pests, the mechanisms that control them and the approaches to incorporate these defense traits to commercial cultivars.

  5. Enhancing Integrated Pest Management in GM Cotton Systems Using Host Plant Resistance

    PubMed Central

    Trapero, Carlos; Wilson, Iain W.; Stiller, Warwick N.; Wilson, Lewis J.

    2016-01-01

    Cotton has lost many ancestral defensive traits against key invertebrate pests. This is suggested by the levels of resistance to some pests found in wild cotton genotypes as well as in cultivated landraces and is a result of domestication and a long history of targeted breeding for yield and fiber quality, along with the capacity to control pests with pesticides. Genetic modification (GM) allowed integration of toxins from a bacteria into cotton to control key Lepidopteran pests. Since the mid-1990s, use of GM cotton cultivars has greatly reduced the amount of pesticides used in many cotton systems. However, pests not controlled by the GM traits have usually emerged as problems, especially the sucking bug complex. Control of this complex with pesticides often causes a reduction in beneficial invertebrate populations, allowing other secondary pests to increase rapidly and require control. Control of both sucking bug complex and secondary pests is problematic due to the cost of pesticides and/or high risk of selecting for pesticide resistance. Deployment of host plant resistance (HPR) provides an opportunity to manage these issues in GM cotton systems. Cotton cultivars resistant to the sucking bug complex and/or secondary pests would require fewer pesticide applications, reducing costs and risks to beneficial invertebrate populations and pesticide resistance. Incorporation of HPR traits into elite cotton cultivars with high yield and fiber quality offers the potential to further reduce pesticide use and increase the durability of pest management in GM cotton systems. We review the challenges that the identification and use of HPR against invertebrate pests brings to cotton breeding. We explore sources of resistance to the sucking bug complex and secondary pests, the mechanisms that control them and the approaches to incorporate these defense traits to commercial cultivars. PMID:27148323

  6. Associations between host characteristics and antimicrobial resistance of Salmonella typhimurium.

    PubMed

    Ruddat, I; Tietze, E; Ziehm, D; Kreienbrock, L

    2014-10-01

    A collection of Salmonella Typhimurium isolates obtained from sporadic salmonellosis cases in humans from Lower Saxony, Germany between June 2008 and May 2010 was used to perform an exploratory risk-factor analysis on antimicrobial resistance (AMR) using comprehensive host information on sociodemographic attributes, medical history, food habits and animal contact. Multivariate resistance profiles of minimum inhibitory concentrations for 13 antimicrobial agents were analysed using a non-parametric approach with multifactorial models adjusted for phage types. Statistically significant associations were observed for consumption of antimicrobial agents, region type and three factors on egg-purchasing behaviour, indicating that besides antimicrobial use the proximity to other community members, health consciousness and other lifestyle-related attributes may play a role in the dissemination of resistances. Furthermore, a statistically significant increase in AMR from the first study year to the second year was observed.

  7. Severe steroid-resistant thrombocytopenia secondary to cytomegalovirus infection in an immunocompetent adult.

    PubMed

    Sugioka, Takashi; Kubota, Yasushi; Wakayama, Kazuo; Kimura, Shinya

    2012-01-01

    Severe thrombocytopenia secondary to cytomegalovirus (CMV) infection is rare in immunocompetent hosts. We describe a case of severe thrombocytopenia secondary to CMV infection in an immunocompetent 30-year-old man who presented with pyrexia and bleeding tendency. A diagnosis of immune thrombocytopenia (ITP) was made following hematological and serological testing, and bone marrow aspiration. Acute CMV infection was confirmed by serological testing, antigenemia, and detection of CMV-DNA. Corticosteroid therapy was ineffective and intravenous immunoglobulin (IVIG) was therefore administered. This resulted in immediate recovery of the platelet count and cessation of nasal bleeding. Early IVIG administration should be considered in steroid-resistant cases.

  8. Genomic Modifiers of Natural Killer Cells, Immune Responsiveness and Lymphoid Tissue Remodeling Together Increase Host Resistance to Viral Infection

    PubMed Central

    Lee, Heather; Prince, Jessica; Stadnisky, Michael D.; Anderson, Monique; Nash, William; Rival, Claudia; Wei, Hairong; Gamache, Awndre; Farber, Charles R.; Tung, Kenneth; Brown, Michael G.

    2016-01-01

    The MHC class I Dk molecule supplies vital host resistance during murine cytomegalovirus (MCMV) infection. Natural killer (NK) cells expressing the Ly49G2 inhibitory receptor, which specifically binds Dk, are required to control viral spread. The extent of Dk-dependent host resistance, however, differs significantly amongst related strains of mice, C57L and MA/My. As a result, we predicted that relatively small-effect modifier genetic loci might together shape immune cell features, NK cell reactivity, and the host immune response to MCMV. A robust Dk-dependent genetic effect, however, has so far hindered attempts to identify additional host resistance factors. Thus, we applied genomic mapping strategies and multicolor flow cytometric analysis of immune cells in naive and virus-infected hosts to identify genetic modifiers of the host immune response to MCMV. We discovered and validated many quantitative trait loci (QTL); these were mapped to at least 19 positions on 16 chromosomes. Intriguingly, one newly discovered non-MHC locus (Cmv5) controlled splenic NK cell accrual, secondary lymphoid organ structure, and lymphoid follicle development during MCMV infection. We infer that Cmv5 aids host resistance to MCMV infection by expanding NK cells needed to preserve and protect essential tissue structural elements, to enhance lymphoid remodeling and to increase viral clearance in spleen. PMID:26845690

  9. Ruling Out Possible Secondary Stars to Exoplanet Host Stars Using the CHARA Array

    DTIC Science & Technology

    2010-05-17

    ar X iv :1 00 5. 29 30 v1 [ as tr o- ph .S R ] 1 7 M ay 2 01 0 Ruling Out Possible Secondary Stars to Exoplanet Host Stars Using the CHARA...Observatory, National Optical Astronomy Observatory, P.O. Box 26732, Tucson, AZ 85726-6732 ridgway@noao.edu ABSTRACT Of the over 450 exoplanets known to date...TITLE AND SUBTITLE Ruling Out Possible Secondary Stars to Exoplanet Host Stars Using the CHARA Array 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM

  10. Colistin heteroresistance in Enterobacter cloacae is associated with cross-resistance to the host antimicrobial lysozyme.

    PubMed

    Napier, Brooke A; Band, Victor; Burd, Eileen M; Weiss, David S

    2014-09-01

    Here, we describe the first identification of colistin-heteroresistant Enterobacter cloacae in the United States. Treatment of this isolate with colistin increased the frequency of the resistant subpopulation and induced cross-resistance to the host antimicrobial lysozyme. This is the first description of heteroresistance conferring cross-resistance to a host antimicrobial and suggests that clinical treatment with colistin may inadvertently select for bacteria that are resistant to components of the host innate immune system.

  11. Colistin Heteroresistance in Enterobacter cloacae Is Associated with Cross-Resistance to the Host Antimicrobial Lysozyme

    PubMed Central

    Napier, Brooke A.; Band, Victor

    2014-01-01

    Here, we describe the first identification of colistin-heteroresistant Enterobacter cloacae in the United States. Treatment of this isolate with colistin increased the frequency of the resistant subpopulation and induced cross-resistance to the host antimicrobial lysozyme. This is the first description of heteroresistance conferring cross-resistance to a host antimicrobial and suggests that clinical treatment with colistin may inadvertently select for bacteria that are resistant to components of the host innate immune system. PMID:24982068

  12. The secondary resistome of multidrug-resistant Klebsiella pneumoniae

    PubMed Central

    Jana, Bimal; Cain, Amy K.; Doerrler, William T.; Boinett, Christine J.; Fookes, Maria C.; Parkhill, Julian; Guardabassi, Luca

    2017-01-01

    Klebsiella pneumoniae causes severe lung and bloodstream infections that are difficult to treat due to multidrug resistance. We hypothesized that antimicrobial resistance can be reversed by targeting chromosomal non-essential genes that are not responsible for acquired resistance but essential for resistant bacteria under therapeutic concentrations of antimicrobials. Conditional essentiality of individual genes to antimicrobial resistance was evaluated in an epidemic multidrug-resistant clone of K. pneumoniae (ST258). We constructed a high-density transposon mutant library of >430,000 unique Tn5 insertions and measured mutant depletion upon exposure to three clinically relevant antimicrobials (colistin, imipenem or ciprofloxacin) by Transposon Directed Insertion-site Sequencing (TraDIS). Using this high-throughput approach, we defined three sets of chromosomal non-essential genes essential for growth during exposure to colistin (n = 35), imipenem (n = 1) or ciprofloxacin (n = 1) in addition to known resistance determinants, collectively termed the “secondary resistome”. As proof of principle, we demonstrated that inactivation of a non-essential gene not previously found linked to colistin resistance (dedA) restored colistin susceptibility by reducing the minimum inhibitory concentration from 8 to 0.5 μg/ml, 4-fold below the susceptibility breakpoint (S ≤ 2 μg/ml). This finding suggests that the secondary resistome is a potential target for developing antimicrobial “helper” drugs that restore the efficacy of existing antimicrobials. PMID:28198411

  13. The secondary resistome of multidrug-resistant Klebsiella pneumoniae.

    PubMed

    Jana, Bimal; Cain, Amy K; Doerrler, William T; Boinett, Christine J; Fookes, Maria C; Parkhill, Julian; Guardabassi, Luca

    2017-02-15

    Klebsiella pneumoniae causes severe lung and bloodstream infections that are difficult to treat due to multidrug resistance. We hypothesized that antimicrobial resistance can be reversed by targeting chromosomal non-essential genes that are not responsible for acquired resistance but essential for resistant bacteria under therapeutic concentrations of antimicrobials. Conditional essentiality of individual genes to antimicrobial resistance was evaluated in an epidemic multidrug-resistant clone of K. pneumoniae (ST258). We constructed a high-density transposon mutant library of >430,000 unique Tn5 insertions and measured mutant depletion upon exposure to three clinically relevant antimicrobials (colistin, imipenem or ciprofloxacin) by Transposon Directed Insertion-site Sequencing (TraDIS). Using this high-throughput approach, we defined three sets of chromosomal non-essential genes essential for growth during exposure to colistin (n = 35), imipenem (n = 1) or ciprofloxacin (n = 1) in addition to known resistance determinants, collectively termed the "secondary resistome". As proof of principle, we demonstrated that inactivation of a non-essential gene not previously found linked to colistin resistance (dedA) restored colistin susceptibility by reducing the minimum inhibitory concentration from 8 to 0.5 μg/ml, 4-fold below the susceptibility breakpoint (S ≤ 2 μg/ml). This finding suggests that the secondary resistome is a potential target for developing antimicrobial "helper" drugs that restore the efficacy of existing antimicrobials.

  14. A combined within-host and between-hosts modelling framework for the evolution of resistance to antimalarial drugs.

    PubMed

    Legros, Mathieu; Bonhoeffer, Sebastian

    2016-04-01

    The spread of drug resistance represents a significant challenge to many disease control efforts. The evolution of resistance is a complex process influenced by transmission dynamics between hosts as well as infection dynamics within these hosts. This study aims to investigate how these two processes combine to impact the evolution of resistance in malaria parasites. We introduce a stochastic modelling framework combining an epidemiological model of Plasmodium transmission and an explicit within-human infection model for two competing strains. Immunity, treatment and resistance costs are included in the within-host model. We show that the spread of resistance is generally less likely in areas of intense transmission, and therefore of increased competition between strains, an effect exacerbated when costs of resistance are higher. We also illustrate how treatment influences the spread of resistance, with a trade-off between slowing resistance and curbing disease incidence. We show that treatment coverage has a stronger impact on disease prevalence, whereas treatment efficacy primarily affects resistance spread, suggesting that coverage should constitute the primary focus of control efforts. Finally, we illustrate the importance of feedbacks between modelling scales. Overall, our results underline the importance of concomitantly modelling the evolution of resistance within and between hosts.

  15. Differential temporal changes of primary and secondary bacterial symbionts and whitefly host fitness following antibiotic treatments

    PubMed Central

    Zhang, Chang-Rong; Shan, Hong-Wei; Xiao, Na; Zhang, Fan-Di; Wang, Xiao-Wei; Liu, Yin-Quan; Liu, Shu-Sheng

    2015-01-01

    Where multiple symbionts coexist in the same host, the selective elimination of a specific symbiont may enable the roles of a given symbiont to be investigated. We treated the Mediterranean species of the whitefly Bemisia tabaci complex by oral delivery of the antibiotic rifampicin, and then examined the temporal changes of its primary symbiont “Candidatus Portiera aleyrodidarum” and secondary symbiont “Ca. Hamiltonella defensa” as well as host fitness for three generations. In adults treated with rifampicin (F0), the secondary symbiont was rapidly reduced, approaching complete disappearance as adults aged. In contrast, the primary symbiont was little affected until later in the adult life. In the offspring of these adults (F1), both symbionts were significantly reduced and barely detectable when the hosts reached the adult stage. The F1 adults laid few eggs (F2), all of which failed to hatch. Mating experiments illustrated that the negative effects of rifampicin on host fitness were exerted via female hosts but not males. This study provides the first evidence of differential temporal reductions of primary and secondary symbionts in whiteflies following an antibiotic treatment. Studies that disrupt functions of bacterial symbionts must consider their temporal changes. PMID:26510682

  16. Size and shape selectivity of host networks built based on tunable secondary building units.

    PubMed

    Moon, Dohyun; Lah, Myoung Soo

    2005-03-21

    By modulating the secondary building units derived from the primary building units, N-acylsalicylhydrazides (H3 xshz), we have been able to construct isostructural but tunable host networks, [Mn6(xshz)6(dmf)2(bpea)2], with different cavity sizes and shapes where the secondary building units, [Mn6(xshz)6], were linked through exo-bidentate bridging ligand, 1,2-bis(pyridyl)ethane (bpea) to form 3-D networks. With a short length linear N-acyl side chain at the primary building unit, the host networks have a 3-D network with three-dimensional cavities. With an appropriate length linear N-acyl side chain at the primary building unit, the host network keeps the isostructural 3-D network but with two types of one-dimensional channels of reduced cavity volume. The tuned host networks showed not only size selectivity for the guest molecules but also shape selectivity. While the three-dimensional channeled host showed selectivity depending on the length of the podal guests, the one-dimensional channeled host showed selectivity depending on both the length and/or the podality of the guest molecules.

  17. The Host Response in Patients with Sepsis Developing Intensive Care Unit-acquired Secondary Infections.

    PubMed

    van Vught, Lonneke A; Wiewel, Maryse A; Hoogendijk, Arie J; Frencken, Jos F; Scicluna, Brendon P; Klouwenberg, Peter M C Klein; Zwinderman, Aeilko H; Lutter, Rene; Horn, Janneke; Schultz, Marcus J; Bonten, Marc M J; Cremer, Olaf L; van der Poll, Tom

    2017-08-15

    Sepsis can be complicated by secondary infections. We explored the possibility that patients with sepsis developing a secondary infection while in the intensive care unit (ICU) display sustained inflammatory, vascular, and procoagulant responses. To compare systemic proinflammatory host responses in patients with sepsis who acquire a new infection with those who do not. Consecutive patients with sepsis with a length of ICU stay greater than 48 hours were prospectively analyzed for the development of ICU-acquired infections. Twenty host response biomarkers reflective of key pathways implicated in sepsis pathogenesis were measured during the first 4 days after ICU admission and at the day of an ICU-acquired infection or noninfectious complication. Of 1,237 admissions for sepsis (1,089 patients), 178 (14.4%) admissions were complicated by ICU-acquired infections (at Day 10 [6-13], median with interquartile range). Patients who developed a secondary infection showed higher disease severity scores and higher mortality up to 1 year than those who did not. Analyses of biomarkers in patients who later went on to develop secondary infections revealed a more dysregulated host response during the first 4 days after admission, as reflected by enhanced inflammation, stronger endothelial cell activation, a more disturbed vascular integrity, and evidence for enhanced coagulation activation. Host response reactions were similar at the time of ICU-acquired infectious or noninfectious complications. Patients with sepsis who developed an ICU-acquired infection showed a more dysregulated proinflammatory and vascular host response during the first 4 days of ICU admission than those who did not develop a secondary infection.

  18. Identification of novel sources of host plant resistance to the soybean aphid biotypes

    USDA-ARS?s Scientific Manuscript database

    While soybean cultivars with resistance to the soybean aphid (Aphis glycines Matsumura) have been commercially released, the presence of virulent biotypes capable of overcoming plant resistance threatens the durability of host-plant resistance as a stable management tactic. Novel sources of host pla...

  19. Parenthood and host resistance to the common cold.

    PubMed

    Sneed, Rodlescia S; Cohen, Sheldon; Turner, Ronald B; Doyle, William J

    2012-01-01

    To determine whether parenthood predicts host resistance to the common cold among healthy volunteers experimentally exposed to a common cold virus. Participants were 795 healthy volunteers (age range = 18-55 years) enrolled in one of three viral-challenge studies conducted from 1993 to 2004. After reporting parenthood status, participants were quarantined, administered nasal drops containing one of four common cold viruses, and monitored for the development of a clinical cold (infection in the presence of objective signs of illness) on the day before and for 5 to 6 days after exposure. All analyses included controls for immunity to the experimental virus (prechallenge specific antibody titers), viral strain, season, age, sex, race/ethnicity, marital status, body mass, study, employment status, and education. Parents were less likely to develop colds than nonparents were (odds ratio [OR] = 0.48, 95% confidence interval [CI] = 0.31-0.73). This was true for both parents with one to two children (OR = 0.52, 95% CI = 0.33-0.83) and three or more children (OR = 0.39, 95% CI = 0.22-0.70). Parenthood was associated with a decreased risk of colds for both those with at least one child living at home (OR = 0.46, 95% CI = 0.24-0.87) and those whose children all lived away from home (OR = 0.27, 95% CI = 0.12-0.60). The relationship between parenthood and colds was not observed in parents aged 18 to 24 years but was pronounced among older parents. Parenthood was associated with greater host resistance to common cold viruses.

  20. Parenthood and Host Resistance to the Common Cold

    PubMed Central

    Cohen, Sheldon; Turner, Ronald B.; Doyle, William J.

    2013-01-01

    Objective To determine if parenthood predicts host resistance to the common cold among healthy volunteers experimentally exposed to a common cold virus. Methods Subjects were 795 healthy participants (age range 18–55) enrolled in one of 3 viral-challenge studies conducted from 1993–2004. After reporting parenthood status, participants were quarantined, administered nasal drops containing one of four common cold viruses, and monitored for the development of a clinical cold (infection in the presence of objective signs of illness) on the day before and for 5–6 days after exposure. All analyses included controls for immunity to the experimental virus (pre-challenge specific antibody titers), viral strain, season, age, sex, race/ethnicity, marital status, body mass, study, employment status and education. Results Parents were less likely to develop colds than non-parents (OR=0.48; 95% CI, 0.31–0.73). This was true for both parents with 1–2 children (OR=0.52; 95% CI, 0.33–0.83) and 3 or more children (OR=0.39; 95% CI, 0.22–0.70). Parenthood was associated with a decreased risk of colds for both those with at least one child living at home (OR=0.46; 95% CI, 0.24–0.87), and those whose children all lived away from home (OR=0.27; 95% CI, 0.12–0.60). The relationship between parenthood and colds was not observed in parents ages 18–24, but was pronounced among older parents. Conclusion Parenthood was associated with greater host resistance to common cold viruses. PMID:22773866

  1. Rate of resistance evolution and polymorphism in long- and short-lived hosts.

    PubMed

    Bruns, Emily; Hood, Michael E; Antonovics, Janis

    2015-02-01

    Recent theoretical work has shown that long-lived hosts are expected to evolve higher equilibrium levels of disease resistance than shorter-lived hosts, but questions of how longevity affects the rate of resistance evolution and the maintenance of polymorphism remain unanswered. Conventional wisdom suggests that adaptive evolution should occur more slowly in long-lived organisms than in short-lived organisms. However, the opposite may be true for the evolution of disease-resistance traits where exposure to disease, and therefore the strength of selection for resistance increases with longevity. In a single locus model of innate resistance to a frequency-dependent, sterilizing disease, longer lived hosts evolved resistance more rapidly than short-lived hosts. Moreover, resistance in long-lived hosts could only be polymorphic for more costly and more extreme resistance levels than short-lived hosts. The increased rate of evolution occurred in spite of longer generation times because longer-lived hosts had both a longer period of exposure to disease as well as higher disease prevalence. Qualitatively similar results were found when the model was extended to mortality-inducing diseases, or to density-dependent transmission modes. Our study shows that the evolutionary dynamics of host resistance is determined by more than just levels of resistance and cost, but is highly sensitive to the life-history traits of the host.

  2. Intra-arterial Methylprednisolone Infusion in Treatment-Resistant Graft-Versus-Host Disease

    SciTech Connect

    Weintraub, Joshua L. Belanger, Adam R.; Sung, Chris C.; Stangl, P. Anondo; Nowakowski, F. Scott; Lookstein, Robert L.

    2010-06-15

    Acute graft-versus-host disease (GVHD) is a potentially fatal complication following allogeneic hematopoietic stem cell transplant. Standard primary therapy for acute GVHD includes systemic steroids, often in combination with other agents. Unfortunately, primary treatment failure is common and carries a high mortality. There is no generally accepted secondary therapy for acute GVHD. Although few data on localized therapy for GVHD have been published, intra-arterial injection of high-dose corticosteroids may be a viable option. We treated 11 patients with steroid-resistant GVHD using a single administration of intra-arterial high-dose methylprednisolone. Three patients (27%) died periprocedurally. Four patients (36%) had a partial response to intra-arterial treatment and were discharged on total parenteral nutrition and oral medication. Four patients (36%) had a complete response and were discharged on oral diet and oral medication. No immediate treatment or procedure-related complications were noted. Twenty-seven percent of patients survived long-term. Our preliminary results suggest that regional intra-arterial treatment of steroid-resistant GVHD is a safe and potentially viable secondary therapy in primary treatment-resistant GVHD.

  3. Resistance and tolerance in a host plant-holoparasitic plant interaction: genetic variation and costs.

    PubMed

    Koskela, Tanja; Puustinen, Susanna; Salonen, Veikko; Mutikainen, Pia

    2002-05-01

    Host organisms are believed to evolve defense mechanisms (i.e., resistance and/or tolerance) under selective pressures exerted by natural enemies. A prerequisite for the evolution of resistance and tolerance is the existence of genetic variation in these traits for natural selection to act. However, selection for resistance and/or tolerance may be constrained by negative genetic correlations with other traits that affect host fitness. We studied genetic variation in resistance and tolerance against parasitic infection and the potential fitness costs associated with these traits using a novel study system, namely the interaction between a flowering plant and a parasitic plant. In this system, parasitic infection has significant negative effects on host growth and reproduction and may thus act as a selective agent. We conducted a greenhouse experiment in which we grew host plants, Urtica dioica, that originated from a single natural population and represented 20 maternal families either uninfected or infected with the holoparasitic dodder, Cuscuta europaea. that originated from the same site. We calculated correlations among resistance, tolerance, and host performance to test for costs of resistance and tolerance. We measured resistance as parasite performance (quantitative resistance) and tolerance as the slopes of regressions relating the vegetative and reproductive biomass of host plants to damage level (measured as parasite biomass). We observed significant differences among host families in parasite resistance and in parasite tolerance in terms of reproductive biomass, a result that suggests genetic variation in these traits. Furthermore, we found differences in resistance and tolerance between female and male host plants. In addition, the correlations indicate costs of resistance in terms of host growth and reproduction and costs of tolerance in terms of host reproduction. Our results thus indicate that host tolerance and resistance can evolve as a response to

  4. Mini Review: Potential Applications of Non-host Resistance for Crop Improvement

    PubMed Central

    Lee, Seonghee; Whitaker, Vance M.; Hutton, Samuel F.

    2016-01-01

    Plant breeding for disease resistance is crucial to sustain global crop production. For decades, plant breeders and researchers have extensively used host plant resistance genes (R-genes) to develop disease resistant cultivars. However, the general instability of R-genes in crop cultivars when challenged with diverse pathogen populations emphasizes the need for more stable means of resistance. Alternatively, non-host resistance is recognized as the most durable, broad-spectrum form of resistance against the majority of potential pathogens in plants and has gained great attention as an alternative target for managing resistance. While transgenic approaches have been utilized to transfer non-host resistance to host species, conventional breeding applications have been more elusive. Nevertheless, avenues for discovery and deployment of genetic loci for non-host resistance via hybridization are increasingly abundant, particularly when transferring genes among closely related species. In this mini review, we discuss current and developing applications of non-host resistance for crop improvement with a focus on the overlap between host and non-host mechanisms and the potential impacts of new technology. PMID:27462329

  5. 22 CFR Appendix F to Part 62 - Information To Be Collected on Secondary School Student Host Family Applications

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... Student Host Family Applications F Appendix F to Part 62 Foreign Relations DEPARTMENT OF STATE PUBLIC... Collected on Secondary School Student Host Family Applications Basic Family Information: a. Host Family... or who frequently stay at the home) b. Date of Birth (DOB) of all family members c. Street Address d...

  6. 22 CFR Appendix F to Part 62 - Information To Be Collected on Secondary School Student Host Family Applications

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... Student Host Family Applications F Appendix F to Part 62 Foreign Relations DEPARTMENT OF STATE PUBLIC... Collected on Secondary School Student Host Family Applications Basic Family Information: a. Host Family... or who frequently stay at the home) b. Date of Birth (DOB) of all family members c. Street Address d...

  7. Streptomyces and Saccharopolyspora hosts for heterologous expression of secondary metabolite gene clusters.

    PubMed

    Baltz, Richard H

    2010-08-01

    Natural products discovery from actinomycetes has been on the decline in recent years, and has suffered from a lack of innovative ways to discover new secondary metabolites within a background of the thousands of known compounds. Recent advances in whole genome sequencing have revealed that actinomycetes with large genomes encode multiple secondary metabolite pathways, most of which remain cryptic. One approach to address the expression of cryptic pathways is to first identify novel pathways by bioinformatics, then clone and express them in well-characterized hosts with known secondary metabolomes. This process should eliminate the tedious dereplication process that has hampered natural products discovery. Several laboratory and industrial production strains have been used for heterologous production of secondary metabolite pathways. This review discusses the results of these studies, and the pros and cons of using various Streptomyces and one Saccharopolyspora strain for heterologous expression. This information should provide an experimental basis to help researchers choose hosts for current application and future development to express heterologous secondary metabolite pathways in yields sufficient for rapid scale-up, biological testing, and commercial production.

  8. Molecular networks associated with host resistance to gastrointestional nematodes in cattle

    USDA-ARS?s Scientific Manuscript database

    Parasitism by gastrointestinal nematodes is a disease severely affecting productivity in ruminants. To unravel mechanisms of host resistance to parasitic infection, we characterized the jejunal transcriptome of the cattle populations displaying resistance phenotypes in response to experimental Coope...

  9. Modeling of secondary radiation damage in LIGA PMMA resist exposure

    NASA Astrophysics Data System (ADS)

    Ting, Aili

    2003-01-01

    Secondary radiation during LIGA PMMA resist exposure adversely affects feature definition, sidewall taper and overall sidewall offset. Additionally, it can degrade the resist adjacent to the substrate, leading to the loss of free-standing features through undercutting during resist development or through mechanical failure of the degraded material. The source of this radiation includes photoelectrons, Auger electrons, fluorescence photons, etc. Sandia"s Integrated Tiger Series (ITS), a coupled electron/photon Monte Carlo transport code, was used to compute dose profiles within 1 to 2 microns of the absorber edge and near the interface of the resist with a metallized substrate. The difficulty of sub-micron resolution requirement was overcome by solving a few local problems having carefully designed micron-scale geometries. The results indicate a 2-μm dose transition region near the absorber edge resulting from PMMA"s photoelectrons. This region leads to sidewall offset and to tapered sidewalls following resist development. The results also show a dose boundary layer of around 1 μm near the substrate interface due to electrons emitted from the substrate metallization layer. The maximum dose at the resist bottom under the absorber can be very high and can lead to feature loss during development. This model was also used to investigate those resist doses resulting from multi-layer substrate.

  10. Efficient transfer of two large secondary metabolite pathway gene clusters into heterologous hosts by transposition

    PubMed Central

    Fu, Jun; Wenzel, Silke C.; Perlova, Olena; Wang, Junping; Gross, Frank; Tang, Zhiru; Yin, Yulong; Stewart, A. Francis; Zhang, Youming

    2008-01-01

    Horizontal gene transfer by transposition has been widely used for transgenesis in prokaryotes. However, conjugation has been preferred for transfer of large transgenes, despite greater restrictions of host range. We examine the possibility that transposons can be used to deliver large transgenes to heterologous hosts. This possibility is particularly relevant to the expression of large secondary metabolite gene clusters in various heterologous hosts. Recently, we showed that the engineering of large gene clusters like type I polyketide/nonribosomal peptide pathways for heterologous expression is no longer a bottleneck. Here, we apply recombineering to engineer either the epothilone (epo) or myxochromide S (mchS) gene cluster for transpositional delivery and expression in heterologous hosts. The 58-kb epo gene cluster was fully reconstituted from two clones by stitching. Then, the epo promoter was exchanged for a promoter active in the heterologous host, followed by engineering into the MycoMar transposon. A similar process was applied to the mchS gene cluster. The engineered gene clusters were transferred and expressed in the heterologous hosts Myxococcus xanthus and Pseudomonas putida. We achieved the largest transposition yet reported for any system and suggest that delivery by transposon will become the method of choice for delivery of large transgenes, particularly not only for metabolic engineering but also for general transgenesis in prokaryotes and eukaryotes. PMID:18701643

  11. Secondary Effects of Glyphosate Action in Phelipanche aegyptiaca: Inhibition of Solute Transport from the Host Plant to the Parasite

    PubMed Central

    Shilo, Tal; Rubin, Baruch; Plakhine, Dina; Gal, Shira; Amir, Rachel; Hacham, Yael; Wolf, Shmuel; Eizenberg, Hanan

    2017-01-01

    It is currently held that glyphosate efficiently controls the obligate holoparasite Phelipanche aegyptiaca (Egyptian broomrape) by inhibiting its endogenous shikimate pathway, thereby causing a deficiency in aromatic amino acids (AAA). While there is no argument regarding the shikimate pathway being the primary site of the herbicide's action, the fact that the parasite receives a constant supply of nutrients, including proteins and amino acids, from the host does not fit with an AAA deficiency. This apparent contradiction implies that glyphosate mechanism of action in P. aegyptiaca is probably more complex and does not end with the inhibition of the AAA biosynthetic pathway alone. A possible explanation would lie in a limitation of the translocation of solutes from the host as a secondary effect. We examined the following hypotheses: (a) glyphosate does not affects P. aegyptiaca during its independent phase and (b) glyphosate has a secondary effect on the ability of P. aegyptiaca to attract nutrients, limiting the translocation to the parasite. By using a glyphosate-resistant host plant expressing the “phloem-mobile” green fluorescent protein (GFP), it was shown that glyphosate interacts specifically with P. aegyptiaca, initiating a deceleration of GFP translocation to the parasite within 24 h of treatment. Additionally, changes in the entire sugars profile (together with that of other metabolites) of P. aegyptiaca were induced by glyphosate. In addition, glyphosate did not impair germination or seedling development of P. aegyptiaca but begun to exert its action only after the parasite has established a connection to the host vascular system and became exposed to the herbicide. Our findings thus indicate that glyphosate does indeed have a secondary effect in P. aegyptiaca, probably as a consequence of its primary target inhibition—via inhibition of the translocation of phloem-mobile solutes to the parasite, as was simulated by the mobile GFP. The observed

  12. Secondary Effects of Glyphosate Action in Phelipanche aegyptiaca: Inhibition of Solute Transport from the Host Plant to the Parasite.

    PubMed

    Shilo, Tal; Rubin, Baruch; Plakhine, Dina; Gal, Shira; Amir, Rachel; Hacham, Yael; Wolf, Shmuel; Eizenberg, Hanan

    2017-01-01

    It is currently held that glyphosate efficiently controls the obligate holoparasite Phelipanche aegyptiaca (Egyptian broomrape) by inhibiting its endogenous shikimate pathway, thereby causing a deficiency in aromatic amino acids (AAA). While there is no argument regarding the shikimate pathway being the primary site of the herbicide's action, the fact that the parasite receives a constant supply of nutrients, including proteins and amino acids, from the host does not fit with an AAA deficiency. This apparent contradiction implies that glyphosate mechanism of action in P. aegyptiaca is probably more complex and does not end with the inhibition of the AAA biosynthetic pathway alone. A possible explanation would lie in a limitation of the translocation of solutes from the host as a secondary effect. We examined the following hypotheses: (a) glyphosate does not affects P. aegyptiaca during its independent phase and (b) glyphosate has a secondary effect on the ability of P. aegyptiaca to attract nutrients, limiting the translocation to the parasite. By using a glyphosate-resistant host plant expressing the "phloem-mobile" green fluorescent protein (GFP), it was shown that glyphosate interacts specifically with P. aegyptiaca, initiating a deceleration of GFP translocation to the parasite within 24 h of treatment. Additionally, changes in the entire sugars profile (together with that of other metabolites) of P. aegyptiaca were induced by glyphosate. In addition, glyphosate did not impair germination or seedling development of P. aegyptiaca but begun to exert its action only after the parasite has established a connection to the host vascular system and became exposed to the herbicide. Our findings thus indicate that glyphosate does indeed have a secondary effect in P. aegyptiaca, probably as a consequence of its primary target inhibition-via inhibition of the translocation of phloem-mobile solutes to the parasite, as was simulated by the mobile GFP. The observed

  13. Engineered Streptomyces avermitilis host for heterologous expression of biosynthetic gene cluster for secondary metabolites

    PubMed Central

    KOMATSU, MAMORU; KOMATSU, KYOKO; KOIWAI, HANAE; YAMADA, YUUKI; KOZONE, IKUKO; IZUMIKAWA, MIHO; HASHIMOTO, JUNKO; TAKAGI, MOTOKI; OMURA, SATOSHI; SHIN-YA, KAZUO; CANE, DAVID E.; IKEDA, HARUO

    2014-01-01

    An industrial microorganism Streptomyces avermitilis, which is a producer of anthelmintic macrocyclic lactones, avermectins, has been constructed as a versatile model host for heterologous expression of genes encoding secondary metabolite biosynthesis. Twenty of the entire biosynthetic gene clusters for secondary metabolites were successively cloned and introduced into a versatile model host S. avermitilis SUKA17 or 22. Almost all S. avermitilis transformants carrying the entire gene cluster produced metabolites as a result of the expression of biosynthetic gene clusters introduced. A few transformants were unable to produce metabolites but their production was restored by the expression of biosynthetic genes using an alternative promoter or the expression of a regulatory gene in the gene cluster that controls the expression of biosynthetic genes in the cluster using an alternative promoter. Production of metabolites in some transformants of the versatile host was higher than that of the original producers and cryptic biosynthetic gene clusters in the original producer were also expressed in a versatile host. PMID:23654282

  14. Interspecific variation in resistance of two host tree species to spruce budworm

    NASA Astrophysics Data System (ADS)

    Fuentealba, Alvaro; Bauce, Éric

    2016-01-01

    Woody plants regularly sustain biomass losses to herbivorous insects. Consequently, they have developed various resistance mechanisms to cope with insect attack. However, these mechanisms of defense and how they are affected by resource availability are not well understood. The present study aimed at evaluating and comparing the natural resistance (antibiosis and tolerance) of balsam fir (Abies balsamea [L.] Mill.) and white spruce (Picea glauca [Moench) Voss] to spruce budworm, Choristoneura fumiferana (Clem.), and how drainage site quality as a component of resource availability affects the expression of resistance over time (6 years). Our results showed that there are differences in natural resistance between the two tree species to spruce budworm, but it was not significantly affected by drainage quality. Balsam fir exhibited higher foliar toxic secondary compounds concentrations than white spruce in all drainage classes, resulting in lower male pupal mass, survival and longer male developmental time. This, however, did not prevent spruce budworm from consuming more foliage in balsam fir than in white spruce. This response suggests that either natural levels of measured secondary compounds do not provide sufficient toxicity to reduce defoliation, or spruce budworm has developed compensatory mechanisms, which allow it to utilize food resources more efficiently or minimize the toxic effects that are produced by its host's defensive compounds. Larvae exhibited lower pupal mass and higher mortality in rapidly drained and subhygric sites. Drainage class also affected the amount of foliage destroyed but its impact varied over the years and was probably influenced by climatic variables. These results demonstrate the complexity of predicting the effect of resource availability on tree defenses, especially when other confounding environmental factors can affect tree resource allocation and utilization.

  15. Determining larval host plant use by a polyphagous lepidopteran through analysis of adult moths for plant secondary metabolites.

    PubMed

    Orth, Robert G; Head, Graham; Mierkowski, Mary

    2007-06-01

    Many polyphagous insect species are important economic pests on one or more of their crop hosts. For most important insect pests, the common crop hosts are well-known, but knowledge of weedy and unmanaged hosts is limited. Furthermore, the relative contribution of different hosts to local and regional populations has rarely been ascertained because this requires having some way to determine which plant hosts are the source of the adult moths observed ovipositing in a crop field at a given place and time. One way of determining the larval host of polyphagous pest species is to analyze for several plant-derived chemicals that are each specific to a different small set of related plant species and are preserved in detectable amounts in adult moths. In this paper, we describe novel methods for analyzing adults of the polyphagous lepidopteran, the tobacco budworm (TBW) Heliothis virescens (F.), for plant secondary metabolites, specifically cotinine and gossypol, which are diagnostic for larval feeding on tobacco and cotton, respectively. Cotinine was extracted from individual TBW moths with acetic acid and methanol, then concentrated and analyzed directly by gas chromatography/mass spectrometry (GC/MS). The same moths then were analyzed for bound gossypol by creating a Schiff's base that used aniline, and the resulting dianilino-gossypol complex was quantified using high pressure chromatography coupled with a triple quadrupole mass spectrometer (MS) as the detector. Based on analysis of standards, the detection limit for the cotinine was less than 1.5 ppb by dry weight. Comparable standards were not available for the gossypol derivative so a quantitative limit of detection could not be calculated. When TBW moths reared on known hosts were analyzed for gossypol and/or cotinine, all of the moths reared on tobacco or cotton were correctly identified, although some false positives were recorded with the gossypol method. Analysis of TBW moths of various ages and at various

  16. Host resistance selects for traits unrelated to resistance-breaking that affect fitness in a plant virus.

    PubMed

    Fraile, Aurora; Hily, Jean-Michel; Pagán, Israel; Pacios, Luis F; García-Arenal, Fernando

    2014-04-01

    The acquisition by parasites of the capacity to infect resistant host genotypes, that is, resistance-breaking, is predicted to be hindered by across-host fitness trade-offs. All analyses of costs of resistance-breaking in plant viruses have focused on within-host multiplication without considering other fitness components, which may limit understanding of virus evolution. We have reported that host range expansion of tobamoviruses on L-gene resistant pepper genotypes was associated with severe within-host multiplication penalties. Here, we analyze whether resistance-breaking costs might affect virus survival in the environment by comparing tobamovirus pathotypes differing in infectivity on L-gene resistance alleles. We predicted particle stability from structural models, analyzed particle stability in vitro, and quantified virus accumulation in different plant organs and virus survival in the soil. Survival in the soil differed among tobamovirus pathotypes and depended on differential stability of virus particles. Structure model analyses showed that amino acid changes in the virus coat protein (CP) responsible for resistance-breaking affected the strength of the axial interactions among CP subunits in the rod-shaped particle, thus determining its stability and survival. Pathotypes ranked differently for particle stability/survival and for within-host accumulation. Resistance-breaking costs in survival add to, or subtract from, costs in multiplication according to pathotype. Hence, differential pathotype survival should be considered along with differential multiplication to understand the evolution of the virus populations. Results also show that plant resistance, in addition to selecting for resistance-breaking and for decreased multiplication, also selects for changes in survival, a trait unrelated to the host-pathogen interaction that may condition host range expansion.

  17. Resistance to Arrenurus spp. Parasitism in Odonates: Patterns Across Species and Comparisons Between a Resistant and Susceptible Host

    PubMed Central

    Worthen, Wade B.

    2016-01-01

    Some adult odonates resist parasitism by larval water mites (Arrenurus spp.) with melanotic encapsulation, in which the mite’s stylestome is clogged and the mite starves. In summer 2014, we counted the engorged and resisted mites on 2,729 adult odonates sampled by aerial net at 11 water bodies in Greenville Co. and Pickens Co., SC, and tested the hypothesis that the frequency and intensity of resistance correlates with parasite prevalence (the percentage of parasitized hosts). Resistance prevalence (the percentage of parasitized hosts that resisted at least one mite) varied significantly among host species, exceeding 60% for Argia fumipennis (Burmeister) and Celithemis fasciata Kirby but less than 20% for other species. However, neither resistance prevalence nor mean resistance intensity (mean percentage of resisted mites on resisting hosts) correlated with parasite prevalence. We described potential effects of parasitism on host development of A. fumipennis and Pachydiplax longipennis (Burmeister) by comparing the percent asymmetry of forewing lengths between parasitized and unparasitized individuals. There was no significant difference in asymmetry for either males or females of A. fumipennis, or males of Pa. longipennis (females were not sampled). We also evaluated differences in melanotic encapsulation between A. fumipennis, which readily encapsulates mites in nature, and Pa. longipennis. We inserted a 2.0-mm piece of sterile monofilament line into the thorax of captured individuals for 24 h and compared mean gray value scores of inserted and emergent ends using Image-J software. There was no difference in melanotic encapsulation between species. PMID:27067302

  18. Evolution of a polydnavirus gene in relation to parasitoid-host species immune resistance.

    PubMed

    Dupas, Stéphane; Gitau, Catherine Wanjiru; Branca, Antoine; Le Rü, Bruno Pierre; Silvain, Jean-François

    2008-01-01

    CrV1, a polydisperse DNA virus (polydnavirus or PDV) gene contributes to the suppression of host immunity in Cotesia genus parasitoids. Its molecular evolution was analyzed in relation to levels of resistance in the sympatric host species. Natural selection for nonsynonymous substitutions (positive Darwinian selection) was observed at specific amino acid sites among CrV1 variants; particularly, between parasitoid strains immune suppressive and nonimmune suppressive to the main resistant stem borer host, Busseola fusca. In Cotesia sesamiae, geographic distribution of CrV1 alleles in Kenya was correlated to the relative abundance of B. fusca. These results suggest that PDV genes evolve through natural selection and are genetically linked to factors of suppression of local host resistance. We discuss the forces driving the evolution of CrV1 and its use as a marker to understand parasitoid adaptation to host resistance in biological control.

  19. Role of Myzus persicae (Hemiptera: Aphididae) and its secondary hosts in plum pox virus propagation.

    PubMed

    Manachini, B; Casati, P; Cinanni, L; Bianco, P

    2007-08-01

    Plum pox virus (family Potyviridae, genus Potyvirus, PPV) is one of the most important viral pathogens of plants in the genus Prunus, particularly Prunus persica L. The role of the Myzus persicae (Sulzer) (Hemiptera: Aphididae) as a vector of PPV-M, and its role in spreading PPV-M, was investigated. PPV-M-infected peach trees were used as inoculum sources, and transmission to 15 herbaceous species commonly present in and around peach orchards was evaluated. The presence of PPV-M in secondary hosts after aphid transmission was verified by reverse transcription-polymerase chain reaction tests. The results indicate that Saponaria ocymoides L., Pisum sativum L., Trifolium repens L., Trifolium pratense L., Lepidium sativum L., Matricaria chamomilla L., Centaurea cyanus L., Bellis perennis L., Papaver rhoeas L., and Zinnia elegans L. became infected. Although Lupinus polyphyllus Lindley, Taraxacum officinale L., Achillea millefolium L., Amaranthus retroflexus L., and Linum rubrum L. did not become infected, they are hosts of M. persicae. Among the 10 positive species that were infected, the species most common in peach orchards, T. pratense, T. repens, B. perennis, and M. chamomilla, were used as source plants for the transmission studies to the peach tree. Our study reveals the ability of M. persicae to transmit PPV-M from herbaceous hosts to peach trees, describes PPV-M symptoms in herbaceous species, and discusses the role of M. persicae and its hosts as a source of PPV-M in peach orchards.

  20. Host-dependent Induction of Transient Antibiotic Resistance: A Prelude to Treatment Failure.

    PubMed

    Kubicek-Sutherland, Jessica Z; Heithoff, Douglas M; Ersoy, Selvi C; Shimp, William R; House, John K; Marth, Jamey D; Smith, Jeffrey W; Mahan, Michael J

    2015-09-01

    Current antibiotic testing does not include the potential influence of host cell environment on microbial susceptibility and antibiotic resistance, hindering appropriate therapeutic intervention. We devised a strategy to identify the presence of host-pathogen interactions that alter antibiotic efficacy in vivo. Our findings revealed a bacterial mechanism that promotes antibiotic resistance in vivo at concentrations of drug that far exceed dosages determined by standardized antimicrobial testing. This mechanism has escaped prior detection because it is reversible and operates within a subset of host tissues and cells. Bacterial pathogens are thereby protected while their survival promotes the emergence of permanent drug resistance. This host-dependent mechanism of transient antibiotic resistance is applicable to multiple pathogens and has implications for the development of more effective antimicrobial therapies.

  1. Genome-minimized Streptomyces host for the heterologous expression of secondary metabolism

    PubMed Central

    Komatsu, Mamoru; Uchiyama, Takuma; Ōmura, Satoshi; Cane, David E.; Ikeda, Haruo

    2010-01-01

    To construct a versatile model host for heterologous expression of genes encoding secondary metabolite biosynthesis, the genome of the industrial microorganism Streptomyces avermitilis was systematically deleted to remove nonessential genes. A region of more than 1.4 Mb was deleted stepwise from the 9.02-Mb S. avermitilis linear chromosome to generate a series of defined deletion mutants, corresponding to 83.12–81.46% of the wild-type chromosome, that did not produce any of the major endogenous secondary metabolites found in the parent strain. The suitability of the mutants as hosts for efficient production of foreign metabolites was shown by heterologous expression of three different exogenous biosynthetic gene clusters encoding the biosynthesis of streptomycin (from S. griseus Institute for Fermentation, Osaka [IFO] 13350), cephamycin C (from S. clavuligerus American type culture collection (ATCC) 27064), and pladienolide (from S. platensis Mer-11107). Both streptomycin and cephamycin C were efficiently produced by individual transformants at levels higher than those of the native-producing species. Although pladienolide was not produced by a deletion mutant transformed with the corresponding intact biosynthetic gene cluster, production of the macrolide was enabled by introduction of an extra copy of the regulatory gene pldR expressed under control of an alternative promoter. Another mutant optimized for terpenoid production efficiently produced the plant terpenoid intermediate, amorpha-4,11-diene, by introduction of a synthetic gene optimized for Streptomyces codon usage. These findings highlight the strength and flexibility of engineered S. avermitilis as a model host for heterologous gene expression, resulting in the production of exogenous natural and unnatural metabolites. PMID:20133795

  2. Integrating Antimicrobial Therapy with Host Immunity to Fight Drug-Resistant Infections: Classical vs. Adaptive Treatment.

    PubMed

    Gjini, Erida; Brito, Patricia H

    2016-04-01

    Antimicrobial resistance of infectious agents is a growing problem worldwide. To prevent the continuing selection and spread of drug resistance, rational design of antibiotic treatment is needed, and the question of aggressive vs. moderate therapies is currently heatedly debated. Host immunity is an important, but often-overlooked factor in the clearance of drug-resistant infections. In this work, we compare aggressive and moderate antibiotic treatment, accounting for host immunity effects. We use mathematical modelling of within-host infection dynamics to study the interplay between pathogen-dependent host immune responses and antibiotic treatment. We compare classical (fixed dose and duration) and adaptive (coupled to pathogen load) treatment regimes, exploring systematically infection outcomes such as time to clearance, immunopathology, host immunization, and selection of resistant bacteria. Our analysis and simulations uncover effective treatment strategies that promote synergy between the host immune system and the antimicrobial drug in clearing infection. Both in classical and adaptive treatment, we quantify how treatment timing and the strength of the immune response determine the success of moderate therapies. We explain key parameters and dimensions, where an adaptive regime differs from classical treatment, bringing new insight into the ongoing debate of resistance management. Emphasizing the sensitivity of treatment outcomes to the balance between external antibiotic intervention and endogenous natural defenses, our study calls for more empirical attention to host immunity processes.

  3. Integrating Antimicrobial Therapy with Host Immunity to Fight Drug-Resistant Infections: Classical vs. Adaptive Treatment

    PubMed Central

    Gjini, Erida; Brito, Patricia H.

    2016-01-01

    Antimicrobial resistance of infectious agents is a growing problem worldwide. To prevent the continuing selection and spread of drug resistance, rational design of antibiotic treatment is needed, and the question of aggressive vs. moderate therapies is currently heatedly debated. Host immunity is an important, but often-overlooked factor in the clearance of drug-resistant infections. In this work, we compare aggressive and moderate antibiotic treatment, accounting for host immunity effects. We use mathematical modelling of within-host infection dynamics to study the interplay between pathogen-dependent host immune responses and antibiotic treatment. We compare classical (fixed dose and duration) and adaptive (coupled to pathogen load) treatment regimes, exploring systematically infection outcomes such as time to clearance, immunopathology, host immunization, and selection of resistant bacteria. Our analysis and simulations uncover effective treatment strategies that promote synergy between the host immune system and the antimicrobial drug in clearing infection. Both in classical and adaptive treatment, we quantify how treatment timing and the strength of the immune response determine the success of moderate therapies. We explain key parameters and dimensions, where an adaptive regime differs from classical treatment, bringing new insight into the ongoing debate of resistance management. Emphasizing the sensitivity of treatment outcomes to the balance between external antibiotic intervention and endogenous natural defenses, our study calls for more empirical attention to host immunity processes. PMID:27078624

  4. Calcitriol resistance in hemodialysis patients with secondary hyperparathyroidism.

    PubMed

    Negri, Armando L; Brandenburg, Vincent M; Brandemburg, Vincent M

    2014-06-01

    Nonselective vitamin D receptor activators (VDRA), such as calcitriol and alfacalcidol, have been successfully used in the treatment of secondary hyperparathyroidism (SHPT) in hemodialysis. Despite their beneficial effects on the control of serum PTH levels, their use has been limited by intolerance (development of hypercalcemia and hyperphosphatemia with consecutive cardiovascular toxicity). Apart from becoming intolerant, in 20-30 % of patients who use nonselective VDRA, serum PTH levels do not decrease appropriately despite increasing doses of these agents. These patients are considered calcitriol-resistant patients. Thus, calcitriol resistance and intolerance are two sides of the same coin: active vitamin D failure. Despite the clinical relevance of active vitamin D failure, definitions of resistance and intolerance are imprecise and have varied over time. More selective VDRA claim to produce less hypercalcemia and hyperphosphatemia and could help clinicians to overcome intolerance. Also, some studies have also shown that paricalcitol can be even useful in resistant patients. Significant limitations of iPTH as a reliable and useful clinical biomarker have been increasingly appreciated. There is evidence that intact PTH concentration must differ by 72 % between any two measurements before it can be considered a significant change. VDR polymorphisms could be involved in the development of SHPT in CKD patients. Interestingly, a higher incidence of the b allele of the VDR BsmI gene variant has been shown to be present in SHPT. The BsmI genotype can also affect the response of hemodialysis to IV calcitriol. A challenge for the future will be to establish biomarkers such as laboratory determinations or ultrasound findings that can help us to early identify those patients who will not respond appropriately to calcitriol or exhibit intolerable side effects .

  5. Predicting the host range of Nystalea ebalea: secondary plant chemistry and host selection by a surrogate biological control agent of Schinus terebinthifolia

    USDA-ARS?s Scientific Manuscript database

    The safety of weed biological control depends upon the selection and utilization of the target weed by the agent while causing minimal harm to non-target species. Selection of weed species by biological control agents is determined by the presence of behavioral cues, generally host secondary plant c...

  6. A unified inter-host and in-host model of antibiotic resistance and infection spread in a hospital ward.

    PubMed

    Caudill, Lester; Lawson, Barry

    2017-03-30

    As the battle continues against hospital-acquired infections and the concurrent rise in antibiotic resistance among many of the major causative pathogens, there is a dire need to conduct controlled experiments, in order to compare proposed control strategies. However, cost, time, and ethical considerations make this evaluation strategy either impractical or impossible to implement with living patients. This paper presents a multi-scale model that offers promise as the basis for a tool to simulate these (and other) controlled experiments. This is a "unified" model in two important ways: (i) It combines inter-host and in-host dynamics into a single model, and (ii) it links two very different modeling approaches - agent-based modeling and differential equations - into a single model. The potential of this model as an instrument to combat antibiotic resistance in hospitals is demonstrated with numerical examples.

  7. Stagonospora nodorum: from pathology to genomics and host resistance.

    PubMed

    Oliver, Richard P; Friesen, Timothy L; Faris, Justin D; Solomon, Peter S

    2012-01-01

    Stagonospora nodorum is a major necrotrophic pathogen of wheat that causes the diseases S. nodorum leaf and glume blotch. A series of tools and resources, including functional genomics, a genome sequence, proteomics and metabolomics, host-mapping populations, and a worldwide collection of isolates, have enabled the dissection of pathogenicity mechanisms. Metabolic and signaling genes required for pathogenicity have been defined. Interaction with the host is dominated by interplay of fungal effectors that induce necrosis on wheat lines carrying specific sensitivity loci. As such, the pathogen has emerged as a model for the Pleosporales group of pathogens.

  8. Clinical Use of Colistin Induces Cross-Resistance to Host Antimicrobials in Acinetobacter baumannii

    PubMed Central

    Napier, Brooke A.; Burd, Eileen M.; Satola, Sarah W.; Cagle, Stephanie M.; Ray, Susan M.; McGann, Patrick; Pohl, Jan; Lesho, Emil P.; Weiss, David S.

    2013-01-01

    ABSTRACT The alarming rise in antibiotic resistance has led to an increase in patient mortality and health care costs. This problem is compounded by the absence of new antibiotics close to regulatory approval. Acinetobacter baumannii is a human pathogen that causes infections primarily in patients in intensive care units (ICUs) and is highly antibiotic resistant. Colistin is one of the last-line antibiotics for treating A. baumannii infections; however, colistin-resistant strains are becoming increasingly common. This cationic antibiotic attacks negatively charged bacterial membranes in a manner similar to that seen with cationic antimicrobials of the innate immune system. We therefore set out to determine if the increasing use of colistin, and emergence of colistin-resistant strains, is concomitant with the generation of cross-resistance to host cationic antimicrobials. We found that there is indeed a positive correlation between resistance to colistin and resistance to the host antimicrobials LL-37 and lysozyme among clinical isolates. Importantly, isolates obtained before and after treatment of individual patients demonstrated that colistin use correlated with increased resistance to cationic host antimicrobials. These data reveal the overlooked risk of inducing cross-resistance to host antimicrobials when treating patients with colistin as a last-line antibiotic. PMID:23695834

  9. Host resistance and tolerance of parasitic gut worms depend on resource availability.

    PubMed

    Knutie, Sarah A; Wilkinson, Christina L; Wu, Qiu Chang; Ortega, C Nicole; Rohr, Jason R

    2017-04-01

    Resource availability can significantly alter host-parasite dynamics. Abundant food can provide more resources for hosts to resist infections, but also increase host tolerance of infections by reducing competition between hosts and parasites for food. Whether abundant food favors host resistance or tolerance (or both) might depend on the type of resource that the parasite exploits (e.g., host tissue vs. food), which can vary based on the stage of infection. In our study, we evaluated how low and high resource diets affect Cuban tree frog (Osteopilus septentrionalis) resistance and tolerance of a skin-penetrating, gut nematode Aplectana sp. at each stage of the infection. Compared to a low resource diet, a high resource diet enhanced frog resistance to worm penetration and tolerance while worms traveled to the gut. In contrast, a low resource diet increased resistance to establishment of the infection. After the infection established and worms could access food resources in the gut, a high resource diet enhanced host tolerance of parasites. On a high resource diet, parasitized frogs consumed significantly more food than non-parasitized frogs; when food was then restricted, mass of non-parasitized frogs did not change, whereas mass of parasitized frogs decreased significantly. Thus, a high resource diet increased frog tolerance of established worms because frogs could fully compensate for energy lost to the parasites. Our study shows that host-parasite dynamics are influenced by the effect of resource availability on host resistance and tolerance, which depends on when parasites have access to food and the stage of infection.

  10. Active defence responses associated with non-host resistance of Arabidopsis thaliana to the oomycete pathogen Phytophthora infestans.

    PubMed

    Huitema, Edgar; Vleeshouwers, Vivianne G A A; Francis, David M; Kamoun, Sophien

    2003-11-01

    SUMMARY The molecular basis of non-host resistance, or species-specific resistance, remains one of the major unknowns in the study of plant-microbe interactions. In this paper, we describe the characterization of a non-host pathosystem involving the model plant Arabidopsis thaliana and the economically important and destructive oomycete pathogen Phytophthora infestans. Cytological investigations into the early stages of this interaction revealed the germination of P. infestans cysts on Arabidopsis leaves, direct penetration of epidermal cells, formation of infection vesicles and occasionally secondary hyphae, followed by a typical hypersensitive response. P. infestans biomass dynamics during infection of Arabidopsis was monitored using kinetic PCR, revealing an increase in biomass during the first 24 h after inoculation, followed by a decrease in the later stages. Transgenic reporter lines and RNA blot analyses were used to characterize the defence responses induced following P. infestans infection. Significant induction of PDF1.2 was observed at 48 h after inoculation, whereas elevated levels of PR gene expression were detected three days after inoculation. To further characterize this defence response, DNA microarray analyses were carried out to determine the expression profiles for c. 11 000 Arabidopsis cDNAs 16 h after infection. These analyses revealed a significant overlap between Arabidopsis non-host response and other defence-related treatments described in the literature. In particular, non-host response to P. infestans was clearly associated with activation of the jasmonate pathway. The described Arabidopsis-P. infestans pathosystem offers excellent prospects for improving our understanding of non-host resistance.

  11. Leaf rust of wheat: Pathogen biology, variation and host resistance

    USDA-ARS?s Scientific Manuscript database

    Rusts are important pathogens of angiosperms and gymnosperms. Rust fungi are among the most important pathogens of cereals. Cereal rusts are heteroecious and macrocyclic requiring two taxonomically unrelated hosts to complete a five spore stage life cycle. Cereal rust fungi are highly variable for v...

  12. Resistance to Arrenurus spp. Parasitism in Odonates: Patterns Across Species and Comparisons Between a Resistant and Susceptible Host.

    PubMed

    Worthen, Wade B; Hart, Thomas M

    2016-01-01

    Some adult odonates resist parasitism by larval water mites (Arrenurus spp.) with melanotic encapsulation, in which the mite's stylestome is clogged and the mite starves. In summer 2014, we counted the engorged and resisted mites on 2,729 adult odonates sampled by aerial net at 11 water bodies in Greenville Co. and Pickens Co., SC, and tested the hypothesis that the frequency and intensity of resistance correlates with parasite prevalence (the percentage of parasitized hosts). Resistance prevalence (the percentage of parasitized hosts that resisted at least one mite) varied significantly among host species, exceeding 60% for Argia fumipennis(Burmeister) and Celithemis fasciata Kirby but less than 20% for other species. However, neither resistance prevalence nor mean resistance intensity (mean percentage of resisted mites on resisting hosts) correlated with parasite prevalence. We described potential effects of parasitism on host development ofA. fumipennis and Pachydiplax longipennis(Burmeister) by comparing the percent asymmetry of forewing lengths between parasitized and unparasitized individuals. There was no significant difference in asymmetry for either males or females of A. fumipennis, or males of Pa. longipennis(females were not sampled). We also evaluated differences in melanotic encapsulation between A. fumipennis, which readily encapsulates mites in nature, and Pa. longipennis We inserted a 2.0-mm piece of sterile monofilament line into the thorax of captured individuals for 24 h and compared mean gray value scores of inserted and emergent ends using Image-J software. There was no difference in melanotic encapsulation between species. © The Author 2016. Published by Oxford University Press on behalf of the Entomological Society of America.

  13. Salmonella pathogenicity islands in host specificity, host pathogen-interactions and antibiotics resistance of Salmonella enterica.

    PubMed

    Gerlach, Roman G; Hensel, Michael

    2007-01-01

    Salmonella enterica is a pathogen highly successful in causing a variety of gastrointestinal and systemic diseases in animals and humans. While some serovars of S. enterica are able to infect a broad range of host organisms, other serovars are highly restricted to specific host species. The colonization of hosts by S. enterica depends on the function of a large number of virulence determinants. The molecular analyses of virulence genes demonstrated that most of these loci are clustered within Salmonella Pathogenicity Islands (SPI). SPI1 and SPI2 each encode type III secretion systems (T355) that confer main virulence traits of S. enterica, i.e. invasion, enteropathogenesis and intracellular survival and proliferation. Further SPI encode factors that contribute to intracellular survival, different types of adhesins, or effector proteins of the SPI1-T3SS or SPI2-T3SS. The availability of genome sequences of several serovars of S. enterica also revealed serovar-specific SPI. In this review, the main characteristics of the currently known SPI are summarized with focus on their roles in various animal hosts and putative functions in human infections.

  14. Towards Host Plant Resistance against Psyllid Feeding and Transmission of Ca. Liberibacter spp.

    USDA-ARS?s Scientific Manuscript database

    Development of host plant resistance against Ca. Liberibacter spp. will be vital for sustainable global production of citrus, potato, tomato, and other crops, because present control methods are very expensive and chemical-intensive. Resistance to the vector’s feeding and/or the bacterial transmiss...

  15. Update on Host Plant Resistance Studies of Banded Sunflower Moth and Sunflower Moth

    USDA-ARS?s Scientific Manuscript database

    Breeding pest-resistance crop cultivars to insects and diseases is one of the primary goals of integrated pest management programs worldwide. Host plant resistance is a tactic that uses the plant's own defenses to reduce injury from pest attack. Among the sunflower (Helianthus annuus L.) insect pest...

  16. [Repellent and antifeedant effect of secondary metabolites of non-host plants on Plutella xylostella].

    PubMed

    Wei, Hui; Hou, Youming; Yang, Guang; You, Minsheng

    2004-03-01

    Based on the theory of co-evolution between plants and phytophagous insects, the repellent and antifeedant effect of secondary metabolites of non-host plants on diamondback moth(DBM) Plutella xylostella was studied, aimed at finding out the oviposition repellents and antifeedants of insect pests. When the ethanol extracts(Etho Exts) of Bauhinia variegata, Eucalyptus tereticornis, Euphorbia hirta, Duranta repens, Zanthoxylum bungeanum, Magnolia grandiflora, and Nicotiana tabacum were applied respectively, the oviposition repellent rates were all over 80.00%; while after forty-eight hours treatment with the Etho Exts of Euphorbia pulcherrima, Broussonetia papyrifera, Artemisia argyi, Camellia oleifera, Salix babylonica, Euphorbia hirta, Bauhinia variegata, and Setaria viridisa, the antifeedant rates of DBM larvae were all more than 80.00%.

  17. Smog exposure and host resistance to respiratory pathogens

    EPA Science Inventory

    The US EPA is evaluating the health effects of photochemical smog on respiratory, cardiovascular and metabolic health (https://www.epa.gov/air-research/secondary-organic-aerosol-soas-research). Smog exposure has been associated with an increased risk of allergy and decreased res...

  18. Host Genes and Resistance/Sensitivity to Military Priority Pathogens

    DTIC Science & Technology

    2010-06-01

    susceptibility readouts in the parental strains, and then we will move into BXD stains to identify host genetic elements that correlate with strain...baumanii induced a pattern of cytokines characteristic of Gram -negative bacteria. In particular, induction of the chemokines RANTES and IP-10 suggests that...Mark A Miller* Abstract Background: Francisella tularensis (FT) is a gram -negative facultative intracellular coccobacillus and is the causal agent of

  19. Parasite diversity drives rapid host dynamics and evolution of resistance in a bacteria-phage system.

    PubMed

    Betts, Alex; Gifford, Danna R; MacLean, R Craig; King, Kayla C

    2016-05-01

    Host-parasite evolutionary interactions are typically considered in a pairwise species framework. However, natural infections frequently involve multiple parasites. Altering parasite diversity alters ecological and evolutionary dynamics as parasites compete and hosts resist multiple infection. We investigated the effects of parasite diversity on host-parasite population dynamics and evolution using the pathogen Pseudomonas aeruginosa and five lytic bacteriophage parasites. To manipulate parasite diversity, bacterial populations were exposed for 24 hours to either phage monocultures or diverse communities containing up to five phages. Phage communities suppressed host populations more rapidly but also showed reduced phage density, likely due to interphage competition. The evolution of resistance allowed rapid bacterial recovery that was greater in magnitude with increases in phage diversity. We observed no difference in the extent of resistance with increased parasite diversity, but there was a profound impact on the specificity of resistance; specialized resistance evolved to monocultures through mutations in a diverse set of genes. In summary, we demonstrate that parasite diversity has rapid effects on host-parasite population dynamics and evolution by selecting for different resistance mutations and affecting the magnitude of bacterial suppression and recovery. Finally, we discuss the implications of phage diversity for their use as biological control agents. © 2016 The Author(s). Evolution published by Wiley Periodicals, Inc. on behalf of The Society for the Study of Evolution.

  20. Host-dependent Induction of Transient Antibiotic Resistance: A Prelude to Treatment Failure

    PubMed Central

    Kubicek-Sutherland, Jessica Z.; Heithoff, Douglas M.; Ersoy, Selvi C.; Shimp, William R.; House, John K.; Marth, Jamey D.; Smith, Jeffrey W.; Mahan, Michael J.

    2015-01-01

    Current antibiotic testing does not include the potential influence of host cell environment on microbial susceptibility and antibiotic resistance, hindering appropriate therapeutic intervention. We devised a strategy to identify the presence of host–pathogen interactions that alter antibiotic efficacy in vivo. Our findings revealed a bacterial mechanism that promotes antibiotic resistance in vivo at concentrations of drug that far exceed dosages determined by standardized antimicrobial testing. This mechanism has escaped prior detection because it is reversible and operates within a subset of host tissues and cells. Bacterial pathogens are thereby protected while their survival promotes the emergence of permanent drug resistance. This host-dependent mechanism of transient antibiotic resistance is applicable to multiple pathogens and has implications for the development of more effective antimicrobial therapies. PMID:26501114

  1. Mycobacterium tuberculosis Requires Phosphate-Responsive Gene Regulation To Resist Host Immunity

    PubMed Central

    Leistikow, Rachel L.; Kirksey, Meghan A.; Voskuil, Martin I.; McKinney, John D.

    2013-01-01

    Mycobacterium tuberculosis persists in the tissues of mammalian hosts despite inducing a robust immune response dominated by the macrophage-activating cytokine gamma interferon (IFN-γ). We identified the M. tuberculosis phosphate-specific transport (Pst) system component PstA1 as a factor required to resist IFN-γ-dependent immunity. A ΔpstA1 mutant was fully virulent in IFN-γ−/− mice but attenuated in wild-type (WT) mice and mice lacking specific IFN-γ-inducible immune mechanisms: nitric oxide synthase (NOS2), phagosome-associated p47 GTPase (Irgm1), or phagocyte oxidase (phox). These phenotypes suggest that ΔpstA1 bacteria are sensitized to an IFN-γ-dependent immune mechanism(s) other than NOS2, Irgm1, or phox. In other species, the Pst system has a secondary role as a negative regulator of phosphate starvation-responsive gene expression through an interaction with a two-component signal transduction system. In M. tuberculosis, we found that ΔpstA1 bacteria exhibited dysregulated gene expression during growth in phosphate-rich medium that was mediated by the two-component sensor kinase/response regulator system SenX3-RegX3. Remarkably, deletion of the regX3 gene suppressed the replication and virulence defects of ΔpstA1 bacteria in NOS2−/− mice, suggesting that M. tuberculosis requires the Pst system to negatively regulate activity of RegX3 in response to available phosphate in vivo. We therefore speculate that inorganic phosphate is readily available during replication in the lung and is an important signal controlling M. tuberculosis gene expression via the Pst-SenX3-RegX3 signal transduction system. Inability to sense this environmental signal, due to Pst deficiency, results in dysregulation of gene expression and sensitization of the bacteria to the host immune response. PMID:23132496

  2. Effectors of biotrophic fungi and oomycetes: pathogenicity factors and triggers of host resistance.

    PubMed

    Dodds, Peter N; Rafiqi, Maryam; Gan, Pamela H P; Hardham, Adrienne R; Jones, David A; Ellis, Jeffrey G

    2009-01-01

    Many biotrophic fungal and oomycete pathogens share a common infection process involving the formation of haustoria, which penetrate host cell walls and form a close association with plant membranes. Recent studies have identified a class of pathogenicity effector proteins from these pathogens that is transferred into host cells from haustoria during infection. This insight stemmed from the identification of avirulence (Avr) proteins from these pathogens that are recognized by intracellular host resistance (R) proteins. Oomycete effectors contain a conserved translocation motif that directs their uptake into host cells independently of the pathogen, and is shared with the human malaria pathogen. Genome sequence information indicates that oomycetes may express several hundred such host-translocated effectors. Elucidating the transport mechanism of fungal and oomycete effectors and their roles in disease offers new opportunities to understand how these pathogens are able to manipulate host cells to establish a parasitic relationship and to develop new disease-control measures.

  3. The potential impact of antifungal drug resistance mechanisms on the host immune response to Candida

    PubMed Central

    Lewis, Russell E.; Viale, Pierluigi; Kontoyiannis, Dimitrios P.

    2012-01-01

    A large number of studies have been published over the last two decades examining molecular mechanisms of antifungal resistance in Candida species. However, few of these studies have explored how such mechanisms influence the host immune response to this opportunistic pathogen. With recent advances in our understanding of host immunity to Candida, a body of emerging literature has begun to explore how intrinsic and adaptive resistance mechanisms in Candida alter host immune system evasion and detection, which could have important implications for understanding (1) why certain resistance mechanisms and Candida species predominate in certain patient populations, (2) the biological context for understanding why high in vitro levels of resistance in may not necessarily correlate with risk of drug failure in vivo and (3) insight into effective immunotherapeutic strategies for combatting Candida resistance. Although this area of research is still in its infancy, two themes are emerging: First, the immunoevasion and intracellular persistence of C. glabrata may be a key factor in the capability of this species to persist in the course of multiple antifungal treatments and develop multidrug resistance. Second, changes in the cell wall associated with antifungal resistance often favor evasion for the host immune response. PMID:22722245

  4. Infection success of Echinoparyphium aconiatum (Trematoda) in its snail host under high temperature: role of host resistance

    PubMed Central

    2014-01-01

    Background Extreme weather events such as summer heat waves become more frequent owing to global climate change and are predicted to alter disease dynamics. This is because high temperatures can reduce host immune function. Predicting the impact of climate change on host-parasite interactions is, however, difficult as temperature may also affect parasite infective stages and other host characteristics determining the outcome of interaction. Methods Two experiments were conducted to investigate these phenomena in a Lymnaea stagnalis–Echinoparyphium aconiatum (Trematoda) interaction. In the first experiment, the effects of exposure of snails to experimental heat waves [maintenance at 25°C vs. 15°C (control)] with different durations (3 days, 7 days) on the infection success of parasite cercariae was examined. In the second experiment, the infection success was examined under similar conditions, while controlling for the possible temperature effects on cercariae and at least partly also for host physiological changes that take place rapidly compared to alterations in immune function (exposure to cercariae at intermediate 20°C). Results In the first experiment, increased infection success at 25°C was found independently of the duration of the heat wave. In the second experiment, increased infection success was found only in snails maintained at 25°C for 7 days, a treatment in which snail immune defence is known to be impaired. Conclusions These results suggest that the effects of host resistance in determining overall parasite infection success can be overridden by effects of temperature on parasite transmission stages and/or alterations in other host traits than immune defence. PMID:24754889

  5. Characterization of Arabidopsis Transcriptional Responses to Different Aphid Species Reveals Genes that Contribute to Host Susceptibility and Non-host Resistance

    PubMed Central

    Jaouannet, Maëlle; Morris, Jenny A.; Hedley, Peter E.; Bos, Jorunn I. B.

    2015-01-01

    Aphids are economically important pests that display exceptional variation in host range. The determinants of diverse aphid host ranges are not well understood, but it is likely that molecular interactions are involved. With significant progress being made towards understanding host responses upon aphid attack, the mechanisms underlying non-host resistance remain to be elucidated. Here, we investigated and compared Arabidopsis thaliana host and non-host responses to aphids at the transcriptional level using three different aphid species, Myzus persicae, Myzus cerasi and Rhopalosiphum pisum. Gene expression analyses revealed a high level of overlap in the overall gene expression changes during the host and non-host interactions with regards to the sets of genes differentially expressed and the direction of expression changes. Despite this overlap in transcriptional responses across interactions, there was a stronger repression of genes involved in metabolism and oxidative responses specifically during the host interaction with M. persicae. In addition, we identified a set of genes with opposite gene expression patterns during the host versus non-host interactions. Aphid performance assays on Arabidopsis mutants that were selected based on our transcriptome analyses identified novel genes contributing to host susceptibility, host defences during interactions with M. persicae as well to non-host resistance against R. padi. Understanding how plants respond to aphid species that differ in their ability to infest plant species, and identifying the genes and signaling pathways involved, is essential for the development of novel and durable aphid control in crop plants. PMID:25993686

  6. Evolutionary Paths That Expand Plasmid Host-Range: Implications for Spread of Antibiotic Resistance.

    PubMed

    Loftie-Eaton, Wesley; Yano, Hirokazu; Burleigh, Stephen; Simmons, Ryan S; Hughes, Julie M; Rogers, Linda M; Hunter, Samuel S; Settles, Matthew L; Forney, Larry J; Ponciano, José M; Top, Eva M

    2016-04-01

    The World Health Organization has declared the emergence of antibiotic resistance to be a global threat to human health. Broad-host-range plasmids have a key role in causing this health crisis because they transfer multiple resistance genes to a wide range of bacteria. To limit the spread of antibiotic resistance, we need to gain insight into the mechanisms by which the host range of plasmids evolves. Although initially unstable plasmids have been shown to improve their persistence through evolution of the plasmid, the host, or both, the means by which this occurs are poorly understood. Here, we sought to identify the underlying genetic basis of expanded plasmid host-range and increased persistence of an antibiotic resistance plasmid using a combined experimental-modeling approach that included whole-genome resequencing, molecular genetics and a plasmid population dynamics model. In nine of the ten previously evolved clones, changes in host and plasmid each slightly improved plasmid persistence, but their combination resulted in a much larger improvement, which indicated positive epistasis. The only genetic change in the plasmid was the acquisition of a transposable element from a plasmid native to the Pseudomonas host used in these studies. The analysis of genetic deletions showed that the critical genes on this transposon encode a putative toxin-antitoxin (TA) and a cointegrate resolution system. As evolved plasmids were able to persist longer in multiple naïve hosts, acquisition of this transposon also expanded the plasmid's host range, which has important implications for the spread of antibiotic resistance. © The Author(s) 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  7. NUTRITION OF THE HOST AND NATURAL RESISTANCE TO INFECTION

    PubMed Central

    Schneider, Howard A.; Webster, Leslie T.

    1945-01-01

    1. A diet of whole wheat and whole dried milk has been shown to promote a higher survival rate, among W-Swiss mice subjected to S. enteritidis infection, than that promoted by a "synthetic" diet. 2. The demonstration of this ability of diet to condition natural resistance has been found to depend upon the genetic constitution of the mice employed. The demonstration has been possible in W-Swiss mice, a strain only moderately inbred and retaining a degree of genetic variability. The demonstration has not been possible in three highly inbred strains of mice selected so that they differed predictably from one another in natural resistance. 3. The nutritional factors involved are present in whole wheat and are absent or negligible in dried whole milk. Their nature has not yet been determined. PMID:19871463

  8. Host genetic diversity enables Ebola hemorrhagic fever pathogenesis and resistance.

    PubMed

    Rasmussen, Angela L; Okumura, Atsushi; Ferris, Martin T; Green, Richard; Feldmann, Friederike; Kelly, Sara M; Scott, Dana P; Safronetz, David; Haddock, Elaine; LaCasse, Rachel; Thomas, Matthew J; Sova, Pavel; Carter, Victoria S; Weiss, Jeffrey M; Miller, Darla R; Shaw, Ginger D; Korth, Marcus J; Heise, Mark T; Baric, Ralph S; de Villena, Fernando Pardo-Manuel; Feldmann, Heinz; Katze, Michael G

    2014-11-21

    Existing mouse models of lethal Ebola virus infection do not reproduce hallmark symptoms of Ebola hemorrhagic fever, neither delayed blood coagulation and disseminated intravascular coagulation nor death from shock, thus restricting pathogenesis studies to nonhuman primates. Here we show that mice from the Collaborative Cross panel of recombinant inbred mice exhibit distinct disease phenotypes after mouse-adapted Ebola virus infection. Phenotypes range from complete resistance to lethal disease to severe hemorrhagic fever characterized by prolonged coagulation times and 100% mortality. Inflammatory signaling was associated with vascular permeability and endothelial activation, and resistance to lethal infection arose by induction of lymphocyte differentiation and cellular adhesion, probably mediated by the susceptibility allele Tek. These data indicate that genetic background determines susceptibility to Ebola hemorrhagic fever.

  9. Host mating system and the spread of a disease-resistant allele in a population

    USGS Publications Warehouse

    DeAngelis, D.L.; Koslow, Jennifer M.; Jiang, J.; Ruan, S.

    2008-01-01

    The model presented here modifies a susceptible-infected (SI) host-pathogen model to determine the influence of mating system on the outcome of a host-pathogen interaction. Both deterministic and stochastic (individual-based) versions of the model were used. This model considers the potential consequences of varying mating systems on the rate of spread of both the pathogen and resistance alleles within the population. We assumed that a single allele for disease resistance was sufficient to confer complete resistance in an individual, and that both homozygote and heterozygote resistant individuals had the same mean birth and death rates. When disease invaded a population with only an initial small fraction of resistant genes, inbreeding (selfing) tended to increase the probability that the disease would soon be eliminated from a small population rather than become endemic, while outcrossing greatly increased the probability that the population would become extinct due to the disease.

  10. Iron Regulatory Proteins Mediate Host Resistance to Salmonella Infection.

    PubMed

    Nairz, Manfred; Ferring-Appel, Dunja; Casarrubea, Daniela; Sonnweber, Thomas; Viatte, Lydie; Schroll, Andrea; Haschka, David; Fang, Ferric C; Hentze, Matthias W; Weiss, Guenter; Galy, Bruno

    2015-08-12

    Macrophages are essential for systemic iron recycling, and also control iron availability to pathogens. Iron metabolism in mammalian cells is orchestrated posttranscriptionally by iron-regulatory proteins (IRP)-1 and -2. Here, we generated mice with selective and combined ablation of both IRPs in macrophages to investigate the role of IRPs in controlling iron availability. These animals are hyperferritinemic but otherwise display normal clinical iron parameters. However, mutant mice rapidly succumb to systemic infection with Salmonella Typhimurium, a pathogenic bacterium that multiplies within macrophages, with increased bacterial burdens in liver and spleen. Ex vivo infection experiments indicate that IRP function restricts bacterial access to iron via the EntC and Feo bacterial iron-acquisition systems. Further, IRPs contain Salmonella by promoting the induction of lipocalin 2, a host antimicrobial factor that inhibits bacterial uptake of iron-laden siderophores, and by suppressing the ferritin iron pool. This work reveals the importance of the IRPs in innate immunity.

  11. Survival and Evolution of a Large Multidrug Resistance Plasmid in New Clinical Bacterial Hosts.

    PubMed

    Porse, Andreas; Schønning, Kristian; Munck, Christian; Sommer, Morten O A

    2016-11-01

    Large conjugative plasmids are important drivers of bacterial evolution and contribute significantly to the dissemination of antibiotic resistance. Although plasmid borne multidrug resistance is recognized as one of the main challenges in modern medicine, the adaptive forces shaping the evolution of these plasmids within pathogenic hosts are poorly understood. Here we study plasmid-host adaptations following transfer of a 73 kb conjugative multidrug resistance plasmid to naïve clinical isolates of Klebsiella pneumoniae and Escherichia coli. We use experimental evolution, mathematical modelling and population sequencing to show that the long-term persistence and molecular integrity of the plasmid is highly influenced by multiple factors within a 25 kb plasmid region constituting a host-dependent burden. In the E. coli hosts investigated here, improved plasmid stability readily evolves via IS26 mediated deletions of costly regions from the plasmid backbone, effectively expanding the host-range of the plasmid. Although these adaptations were also beneficial to plasmid persistence in a naïve K. pneumoniae host, they were never observed in this species, indicating that differential evolvability can limit opportunities of plasmid adaptation. While insertion sequences are well known to supply plasmids with adaptive traits, our findings suggest that they also play an important role in plasmid evolution by maintaining the plasticity necessary to alleviate plasmid-host constrains. Further, the observed evolutionary strategy consistently followed by all evolved E. coli lineages exposes a trade-off between horizontal and vertical transmission that may ultimately limit the dissemination potential of clinical multidrug resistance plasmids in these hosts. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  12. Bacterial Communities Differ among Drosophila melanogaster Populations and Affect Host Resistance against Parasitoids.

    PubMed

    Chaplinska, Mariia; Gerritsma, Sylvia; Dini-Andreote, Francisco; Falcao Salles, Joana; Wertheim, Bregje

    2016-01-01

    In Drosophila, diet is considered a prominent factor shaping the associated bacterial community. However, the host population background (e.g. genotype, geographical origin and founder effects) is a factor that may also exert a significant influence and is often overlooked. To test for population background effects, we characterized the bacterial communities in larvae of six genetically differentiated and geographically distant D. melanogaster lines collected from natural populations across Europe. The diet for these six lines had been identical for ca. 50 generations, thus any differences in the composition of the microbiome originates from the host populations. We also investigated whether induced shifts in the microbiome-in this case by controlled antibiotic administration-alters the hosts' resistance to parasitism. Our data revealed a clear signature of population background on the diversity and composition of D. melanogaster microbiome that differed across lines, even after hosts had been maintained at the same diet and laboratory conditions for over 4 years. In particular, the number of bacterial OTUs per line ranged from 8 to 39 OTUs. Each line harboured 2 to 28 unique OTUs, and OTUs that were highly abundant in some lines were entirely missing in others. Moreover, we found that the response to antibiotic treatment differed among the lines and significantly altered the host resistance to the parasitoid Asobara tabida in one of the six lines. Wolbachia, a widespread intracellular endosymbiont associated with parasitoid resistance, was lacking in this line, suggesting that other components of the Drosophila microbiome caused a change in host resistance. Collectively, our results revealed that lines that originate from different population backgrounds show significant differences in the established Drosophila microbiome, outpacing the long-term effect of diet. Perturbations on these naturally assembled microbiomes to some degree influenced the hosts' resistance

  13. Genetic engineering alveolar macrophages for host resistance to PRRSV.

    PubMed

    Prather, Randall S; Whitworth, Kristin M; Schommer, Susan K; Wells, Kevin D

    2017-02-10

    Standard strategies for control of porcine reproductive and respiratory syndrome virus (PRRSV) have not been effective, as vaccines have not reduced the prevalence of disease and many producers depopulate after an outbreak. Another method of control would be to prevent the virus from infecting the pig. The virus was thought to infect alveolar macrophages by interaction with a variety of cell surface molecules. One popular model had PRRSV first interacting with heparin sulfate followed by binding to sialoadhesin and then being internalized into an endosome. Within the endosome, PRRSV was thought to interact with CD163 to uncoat the virus so the viral genome could be released into the cytosol and infect the cell. Other candidate receptors have included vimentin, CD151 and CD209. By using genetic engineering, it is possible to test the importance of individual entry mediators by knocking them out. Pigs engineered by knockout of sialoadhesin were still susceptible to infection, while CD163 knockout resulted in pigs that were resistant to infection. Genetic engineering is not only a valuable tool to determine the role of specific proteins in infection by PRRSV (in this case), but also provides a means to create animals resistant to disease. Genetic engineering of alveolar macrophages can also illuminate the role of other proteins in response to infection. We suggest that strategies to prevent infection be pursued to reduce the reservoir of virus.

  14. Induced Bacterial Cross-Resistance toward Host Antimicrobial Peptides: A Worrying Phenomenon

    PubMed Central

    Fleitas, Osmel; Franco, Octávio L.

    2016-01-01

    Bacterial resistance to conventional antibiotics has reached alarming levels, threatening to return to the pre-antibiotic era. Therefore, the search for new antimicrobial compounds that overcome the resistance phenomenon has become a priority. Antimicrobial peptides (AMPs) appear as one of the most promising antibiotic medicines. However, in recent years several AMP-resistance mechanisms have been described. Moreover, the AMP-resistance phenomenon has become more complex due to its association with cross-resistance toward AMP effectors of the host innate immune system. In this context, the use of AMPs as a therapeutic option could be potentially hazardous, since bacteria could develop resistance toward our innate immune system. Here, we review the findings of major studies that deal with the AMP cross-resistance phenomenon. PMID:27047486

  15. Induced Bacterial Cross-Resistance toward Host Antimicrobial Peptides: A Worrying Phenomenon.

    PubMed

    Fleitas, Osmel; Franco, Octávio L

    2016-01-01

    Bacterial resistance to conventional antibiotics has reached alarming levels, threatening to return to the pre-antibiotic era. Therefore, the search for new antimicrobial compounds that overcome the resistance phenomenon has become a priority. Antimicrobial peptides (AMPs) appear as one of the most promising antibiotic medicines. However, in recent years several AMP-resistance mechanisms have been described. Moreover, the AMP-resistance phenomenon has become more complex due to its association with cross-resistance toward AMP effectors of the host innate immune system. In this context, the use of AMPs as a therapeutic option could be potentially hazardous, since bacteria could develop resistance toward our innate immune system. Here, we review the findings of major studies that deal with the AMP cross-resistance phenomenon.

  16. Unravelling the networks dictating host resistance versus tolerance during pulmonary infections.

    PubMed

    Meunier, Isabelle; Kaufmann, Eva; Downey, Jeffrey; Divangahi, Maziar

    2017-03-01

    The appearance of single cell microorganisms on earth dates back to more than 3.5 billion years ago, ultimately leading to the development of multicellular organisms approximately 3 billion years later. The evolutionary burst of species diversity and the "struggle for existence", as proposed by Darwin, generated a complex host defense system. Host survival during infection in vital organs, such as the lung, requires a delicate balance between host defense, which is essential for the detection and elimination of pathogens and host tolerance, which is critical for minimizing collateral tissue damage. Whereas the cellular and molecular mechanisms of host defense against many invading pathogens have been extensively studied, our understanding of host tolerance as a key mechanism in maintaining host fitness is extremely limited. This may also explain why current therapeutic and preventive approaches targeting only host defense mechanisms have failed to provide full protection against severe infectious diseases, including pulmonary influenza virus and Mycobacterium tuberculosis infections. In this review, we aim to outline various host strategies of resistance and tolerance for effective protection against acute or chronic pulmonary infections.

  17. Parasitic plants of the genus Cuscuta and their interaction with susceptible and resistant host plants.

    PubMed

    Kaiser, Bettina; Vogg, Gerd; Fürst, Ursula B; Albert, Markus

    2015-01-01

    By comparison with plant-microbe interaction, little is known about the interaction of parasitic plants with their hosts. Plants of the genus Cuscuta belong to the family of Cuscutaceae and comprise about 200 species, all of which live as stem holoparasites on other plants. Cuscuta spp. possess no roots nor fully expanded leaves and the vegetative portion appears to be a stem only. The parasite winds around plants and penetrates the host stems via haustoria, forming direct connections to the vascular bundles of their hosts to withdraw water, carbohydrates, and other solutes. Besides susceptible hosts, a few plants exist that exhibit an active resistance against infestation by Cuscuta spp. For example, cultivated tomato (Solanum lycopersicum) fends off Cuscuta reflexa by means of a hypersensitive-type response occurring in the early penetration phase. This report on the plant-plant dialog between Cuscuta spp. and its host plants focuses on the incompatible interaction of C. reflexa with tomato.

  18. Parasitic plants of the genus Cuscuta and their interaction with susceptible and resistant host plants

    PubMed Central

    Kaiser, Bettina; Vogg, Gerd; Fürst, Ursula B.; Albert, Markus

    2015-01-01

    By comparison with plant–microbe interaction, little is known about the interaction of parasitic plants with their hosts. Plants of the genus Cuscuta belong to the family of Cuscutaceae and comprise about 200 species, all of which live as stem holoparasites on other plants. Cuscuta spp. possess no roots nor fully expanded leaves and the vegetative portion appears to be a stem only. The parasite winds around plants and penetrates the host stems via haustoria, forming direct connections to the vascular bundles of their hosts to withdraw water, carbohydrates, and other solutes. Besides susceptible hosts, a few plants exist that exhibit an active resistance against infestation by Cuscuta spp. For example, cultivated tomato (Solanum lycopersicum) fends off Cuscuta reflexa by means of a hypersensitive-type response occurring in the early penetration phase. This report on the plant–plant dialog between Cuscuta spp. and its host plants focuses on the incompatible interaction of C. reflexa with tomato. PMID:25699071

  19. Within-host competition and drug resistance in the human malaria parasite Plasmodium falciparum.

    PubMed

    Bushman, Mary; Morton, Lindsay; Duah, Nancy; Quashie, Neils; Abuaku, Benjamin; Koram, Kwadwo A; Dimbu, Pedro Rafael; Plucinski, Mateusz; Gutman, Julie; Lyaruu, Peter; Kachur, S Patrick; de Roode, Jacobus C; Udhayakumar, Venkatachalam

    2016-03-16

    Infections with the malaria parasite Plasmodium falciparum typically comprise multiple strains, especially in high-transmission areas where infectious mosquito bites occur frequently. However, little is known about the dynamics of mixed-strain infections, particularly whether strains sharing a host compete or grow independently. Competition between drug-sensitive and drug-resistant strains, if it occurs, could be a crucial determinant of the spread of resistance. We analysed 1341 P. falciparum infections in children from Angola, Ghana and Tanzania and found compelling evidence for competition in mixed-strain infections: overall parasite density did not increase with additional strains, and densities of individual chloroquine-sensitive (CQS) and chloroquine-resistant (CQR) strains were reduced in the presence of competitors. We also found that CQR strains exhibited low densities compared with CQS strains (in the absence of chloroquine), which may underlie observed declines of chloroquine resistance in many countries following retirement of chloroquine as a first-line therapy. Our observations support a key role for within-host competition in the evolution of drug-resistant malaria. Malaria control and resistance-management efforts in high-transmission regions may be significantly aided or hindered by the effects of competition in mixed-strain infections. Consideration of within-host dynamics may spur development of novel strategies to minimize resistance while maximizing the benefits of control measures. © 2016 The Author(s).

  20. Inbreeding alters resistance to insect herbivory and host plant quality in Mimulus guttatus (Scrophulariaceae).

    PubMed

    Carr, David E; Eubanks, Micky D

    2002-01-01

    Previous studies have demonstrated genetic variation for resistance to insect herbivores and host plant quality. The effect of plant mating system, an important determinant of the distribution of genetic variation, on host plant characteristics has received almost no attention. This study used a controlled greenhouse experiment to examine the effect of self- and cross-pollination in Mimulus guttatus (Scrophulariaceae) on resistance to and host plant quality for the xylem-feeding spittlebug Philaenus spumarius (Homoptera: Cercopidae). Spittlebugs were found to have a negative effect on two important fitness components in M. guttatus, flower production and above ground biomass. One of two M. guttatus populations examined showed a significant interaction between the pollination and herbivore treatments. In this case, the detrimental effects of herbivores on biomass and flower production were much more pronounced in inbred (self) plants. The presence of spittlebug nymphs increased inbreeding depression by as much as three times. Pollination treatments also had significant effects on important components of herbivore fitness, but these effects were in opposite directions in our two host plant populations. Spittlebug nymphs maturing on self plants emerged as significantly larger adults in one of our host plant populations, indicating that inbreeding increased host plant quality. In our second host plant population, spittlebug nymphs took significantly longer to develop to adulthood on self plants, indicating that inbreeding decreased host plant quality. Taken together these results suggest that the degree of inbreeding in host plant populations can have important and perhaps complex effects on the dynamics of plant-herbivore interactions and on mating-system evolution in the host.

  1. Strong host resistance targeted against a viral suppressor of the plant gene silencing defence mechanism.

    PubMed Central

    Li, H W; Lucy, A P; Guo, H S; Li, W X; Ji, L H; Wong, S M; Ding, S W

    1999-01-01

    The 2b protein encoded by cucumber mosaic cucumovirus (Cmv2b) acts as an important virulence determinant by suppressing post-transcriptional gene silencing (PTGS), a natural plant defence mechanism against viruses. We report here that the tomato aspermy cucumovirus 2b protein (Tav2b), when expressed from the unrelated tobacco mosaic tobamovirus (TMV) RNA genome, activates strong host resistance responses to TMV in tobacco which are typical of the gene-for-gene disease resistance mechanism. Domain swapping between Cmv2b, which does not elicit these responses, and Tav2b, revealed functional domains in Tav2b critical for triggering virus resistance and hypersensitive cell death. Furthermore, substitution of two amino acids from Tav2b by those found at the same positions in Cmv2b, Lys21-->Val and Arg28-->Ser, abolished the ability to induce hypersensitive cell death and virus resistance. However, in Nicotiana benthamiana, a species related to tobacco, Tav2b functions as a virulence determinant and suppresses PTGS. Thus, a viral suppressor of the host gene silencing defence mechanism is the target of another independent host resistance mechanism. Our results provide new insights into the complex molecular strategies employed by viruses and their hosts for defence, counter-defence and counter counter-defence. PMID:10329615

  2. The relationship of host-mediated induced resistance to polymorphism in gene-for-gene relationships.

    PubMed

    Tellier, Aurélien; Brown, James K M

    2008-01-01

    Gene-for-gene relationships are a common feature of plant-parasite interactions. Polymorphism at host resistance and parasite avirulence loci is maintained if there is negative, direct frequency-dependent selection on alleles of either gene. More specifically, selection of this kind is generated when the disease is polycyclic with frequent auto-infection. When an incompatible interaction occurs between a resistant host and an avirulent parasite, systemic defenses are triggered, rendering the plant more resistant to a later attack by another parasite. However, induced resistance (IR) incurs a fitness cost to the plant. Here, the effect of IR on polymorphism in gene-for-gene interactions is investigated. First, in an infinite population model in which parasites have two generations per host generation, increasing the fitness cost of IR increases selection for susceptible plants at low disease severity, while increasing the effectiveness of IR against further parasite attacks enhances selection for resistant plants at high disease severity. This reduces the possibility of polymorphism being maintained in host and parasite populations. In finite population models, the number of plants varies over time as a function of the disease burden of the population. Polymorphism in gene-for-gene relationships is then more stable at high disease prevalence and severity if IR reactions are more costly when there is competition for resources between plants.

  3. Phenotypic mechanisms of host resistance against greenbug (Homoptera: Aphididae) revealed by near isogenic lines of wheat.

    PubMed

    Weng, Yiqun; Lazar, Mark D; Michels, Gerald J; Rudd, Jackie C

    2004-04-01

    Interactions between biotype E greenbug, Schizaphis graminum (Rondani), and wheat, Triticum aestivum L., were investigated using resistant and susceptible near isogenic lines of the greenbug resistance gene Gb3. In an antixenosis test, the greenbugs preferred susceptible plants to resistant ones when free choice of hosts was allowed. Aphid feeding resulted in quick and severe damage to susceptible plants, which seemed to follow a general pattern spatially and was affected by the position where the greenbugs were initially placed. Symptom of damage in resistant plants resembled senescence. Within-plant distribution of aphids after infestation was clearly different between the two genotypes. Significantly more greenbugs fed on the first (oldest) leaf than on the stem in resistant plants, but this preference was reversed in the susceptible one. After reaching its peak, aphid population on the susceptible plants dropped quickly. All susceptible plants were dead in 10-14 d after infestation due to greenbug feeding. Aphid population dynamics on resistant plants exhibited a multipeak curve. After the first peak, the greenbug population declined slowly. More than 70% of resistant plants were killed 47 d after infestation. Performance of both biotype E and I greenbugs on several Gb3-related wheat germplasm lines were also examined. It seems that the preference-on-stem that was characteristic of biotype E greenbugs on the susceptible plants was aphid biotype- and host genotype-dependent. Results from this study suggested that antixenosis, antibiosis, and tolerance in the resistant plants of wheat might all contribute to resistance against greenbug feeding.

  4. Antioxidant Secondary Metabolites in Cereals: Potential Involvement in Resistance to Fusarium and Mycotoxin Accumulation

    PubMed Central

    Atanasova-Penichon, Vessela; Barreau, Christian; Richard-Forget, Florence

    2016-01-01

    Gibberella and Fusarium Ear Rot and Fusarium Head Blight are major diseases affecting European cereals. These diseases are mainly caused by fungi of the Fusarium genus, primarily Fusarium graminearum and Fusarium verticillioides. These Fusarium species pose a serious threat to food safety because of their ability to produce a wide range of mycotoxins, including type B trichothecenes and fumonisins. Many factors such as environmental, agronomic or genetic ones may contribute to high levels of accumulation of mycotoxins in the grain and there is an urgent need to implement efficient and sustainable management strategies to reduce mycotoxin contamination. Actually, fungicides are not fully efficient to control the mycotoxin risk. In addition, because of harmful effects on human health and environment, their use should be seriously restricted in the near future. To durably solve the problem of mycotoxin accumulation, the breeding of tolerant genotypes is one of the most promising strategies for cereals. A deeper understanding of the molecular mechanisms of plant resistance to both Fusarium and mycotoxin contamination will shed light on plant-pathogen interactions and provide relevant information for improving breeding programs. Resistance to Fusarium depends on the plant ability in preventing initial infection and containing the development of the toxigenic fungi while resistance to mycotoxin contamination is also related to the capacity of plant tissues in reducing mycotoxin accumulation. This capacity can result from two mechanisms: metabolic transformation of the toxin into less toxic compounds and inhibition of toxin biosynthesis. This last mechanism involves host metabolites able to interfere with mycotoxin biosynthesis. This review aims at gathering the latest scientific advances that support the contribution of grain antioxidant secondary metabolites to the mechanisms of plant resistance to Fusarium and mycotoxin accumulation. PMID:27148243

  5. Heritable variation in host tolerance and resistance inferred from a wild host–parasite system

    PubMed Central

    Mazé-Guilmo, Elise; Loot, Géraldine; Páez, David J.; Lefèvre, Thierry; Blanchet, Simon

    2014-01-01

    Hosts have evolved two distinct defence strategies against parasites: resistance (which prevents infection or limit parasite growth) and tolerance (which alleviates the fitness consequences of infection). However, heritable variation in resistance and tolerance and the genetic correlation between these two traits have rarely been characterized in wild host populations. Here, we estimate these parameters for both traits in Leuciscus burdigalensis, a freshwater fish parasitized by Tracheliastes polycolpus. We used a genetic database to construct a full-sib pedigree in a wild L. burdigalensis population. We then used univariate animal models to estimate inclusive heritability (i.e. all forms of genetic and non-genetic inheritance) in resistance and tolerance. Finally, we assessed the genetic correlation between these two traits using a bivariate animal model. We found significant heritability for resistance (H = 17.6%; 95% CI: 7.2–32.2%) and tolerance (H = 18.8%; 95% CI: 4.4–36.1%), whereas we found no evidence for the existence of a genetic correlation between these traits. Furthermore, we confirm that resistance and tolerance are strongly affected by environmental effects. Our results demonstrate that (i) heritable variation exists for parasite resistance and tolerance in wild host populations, and (ii) these traits can evolve independently in populations. PMID:24478295

  6. Host resistance in cattle to infestation with the cattle tick Rhipicephalus microplus.

    PubMed

    Jonsson, N N; Piper, E K; Constantinoiu, C C

    2014-11-01

    Resistance to Rhipicephalus microplus infestation in cattle has many effector mechanisms, each of which is likely to be modulated by complex, interacting factors. Some of the mechanisms of host resistance and their modulating factors have been identified and quantified, although much remains to be explained. The variation in resistance to tick infestation is most marked between Bos taurus and Bos indicus cattle, taurine cattle given the same exposure carrying between five and 10 times as many ticks as indicine cattle. Tick resistance is mostly manifest against attaching larvae, which attempt to feed often and without success, death occurring mostly within 24 h of finding a host. There is evidence of innate and adaptive immune response to tick infestation, and it appears that the relative importance of each differs between indicine and taurine cattle. There is conflicting information regarding the role of humoral immunity in tick resistance, and recent studies indicate that strong IgG responses to tick antigens are not protective. A strong T-cell-mediated response directed against larval stages, as mounted by indicine cattle, seems to be protective. Variation in the extracellular matrix of skin (epidermal growth factors, collagens and other matrix components such as lumican) also contributes to variation in host resistance. © 2014 John Wiley & Sons Ltd.

  7. Heterogeneous Mechanisms of Secondary Resistance and Clonal Selection in Sarcoma during Treatment with Nutlin.

    PubMed

    Laroche, Audrey; Tran-Cong, Kevin; Chaire, Vanessa; Lagarde, Pauline; Hostein, Isabelle; Coindre, Jean-Michel; Chibon, Frederic; Neuville, Agnes; Lesluyes, Tom; Lucchesi, Carlo; Italiano, Antoine

    2015-01-01

    Nutlin inhibits TP53-MDM2 interaction and is under investigation in soft-tissue sarcomas (STS) and other malignancies. Molecular mechanisms of secondary resistance to nutlin in STS are unknown. We performed whole-transcriptome sequencing (RNA-seq) on three pretreatment and secondary resistant STS cell lines selected based on their high primary sensitivity to nutlin. Our data identified a subset of cancer gene mutations and ploidy variations that were positively selected following treatment, including TP53 mutations in 2 out of 3 resistant cell lines. Further, secondary resistance to nutlin was associated with deregulation of apoptosis-related genes and marked productive autophagy, the inhibition of which resulted in significant restoration of nutlin-induced cell death. Collectively, our findings argue that secondary resistance to nutlin in STS involved heterogeneous mechanisms resulting from clonal evolution and several biological pathways. Alternative dosing regimens and combination with other targeted agents are needed to achieve successful development of nutlin in the clinical setting.

  8. Chemotherapy, within-host ecology and the fitness of drug-resistant malaria parasites.

    PubMed

    Huijben, Silvie; Nelson, William A; Wargo, Andrew R; Sim, Derek G; Drew, Damien R; Read, Andrew F

    2010-10-01

    A major determinant of the rate at which drug-resistant malaria parasites spread through a population is the ecology of resistant and sensitive parasites sharing the same host. Drug treatment can significantly alter this ecology by removing the drug-sensitive parasites, leading to competitive release of resistant parasites. Here, we test the hypothesis that the spread of resistance can be slowed by reducing drug treatment and hence restricting competitive release. Using the rodent malaria model Plasmodium chabaudi, we found that low-dose chemotherapy did reduce competitive release. A higher drug dose regimen exerted stronger positive selection on resistant parasites for no detectable clinical gain. We estimated instantaneous selection coefficients throughout the course of replicate infections to analyze the temporal pattern of the strength and direction of within-host selection. The strength of selection on resistance varied through the course of infections, even in untreated infections, but increased immediately following drug treatment, particularly in the high-dose groups. Resistance remained under positive selection for much longer than expected from the half life of the drug. Although there are many differences between mice and people, our data do raise the question whether the aggressive treatment regimens aimed at complete parasite clearance are the best resistance-management strategies for humans.

  9. Host life history and host–parasite syntopy predict behavioural resistance and tolerance of parasites

    PubMed Central

    Sears, Brittany F.; Snyder, Paul W.; Rohr, Jason R.

    2016-01-01

    Summary There is growing interest in the role that life-history traits of hosts, such as their ‘pace-of-life’, play in the evolution of resistance and tolerance to parasites.Theory suggests that, relative to host species that have high syntopy (local spatial and temporal overlap) with parasites, host species with low syntopy should have lower selection pressures for more constitutive (always present) and costly defences, such as tolerance, and greater reliance on more inducible and cheaper defences, such as behaviour. Consequently, we postulated that the degree of host–parasite syntopy, which is negatively correlated with host pace-of-life (an axis reflecting the developmental rate of tadpoles and the inverse of their size at metamorphosis) in our tadpole–parasitic cercarial (trematode) system, would be a negative and positive predictor of behavioural resistance and tolerance, respectively.To test these hypotheses, we exposed seven tadpole species to a range of parasite (cercarial) doses crossed with anaesthesia treatments that controlled for anti-parasite behaviour. We quantified host behaviour, successful and unsuccessful infections, and each species’ reaction norm for behavioural resistance and tolerance, defined as the slope between cercarial exposure (or attempted infections) and anti-cercarial behaviours and mass change, respectively. Hence, tolerance is capturing any cost of parasite exposure.As hypothesized, tadpole pace-of-life was a significant positive predictor of behavioural resistance and negative predictor of tolerance, a result that is consistent with a trade-off between behavioural resistance and tolerance across species that warrants further investigation. Moreover, these results were robust to considerations of phylogeny, all possible re-orderings of the three fastest or slowest paced species, and various measurements of tolerance.These results suggest that host pace-of-life and host–parasite syntopy are powerful drivers of both the

  10. Host plant resistance in melon (Cucumis melo L.) to sweetpotato whitefly in California and Arizona

    USDA-ARS?s Scientific Manuscript database

    Sweetpotato whitefly (MEAM1 cryptic species of Bemisia tabaci; SPWF) feeding severely impacts fall season melon yield and quality in the lower deserts of California and Arizona. Melon accessions PI 313970 and TGR 1551 (PI 482420) have been reported to exhibit host plant resistance (HPR) to SPWF. Pot...

  11. Evaluations of melon germplasm reported to exhibit host plant resistance to sweetpotato whitefly

    USDA-ARS?s Scientific Manuscript database

    Sweetpotato whitefly (MEAM1 cryptic species of Bemisia tabaci; SPWF) displaced B. tabaci biotype A in 1991 in the lower desert area of southern California and the adjoining areas of Arizona and western Mexico. The search for high-level host plant resistance to this devastating insect has been ongoin...

  12. Pathogen development and host responses to Plasmopara viticola in resistant and susceptible grapevines: an ultrastructural study.

    PubMed

    Yin, Xiao; Liu, Rui-Qi; Su, Hang; Su, Li; Guo, Yu-Rui; Wang, Zi-Jia; Du, Wei; Li, Mei-Jie; Zhang, Xi; Wang, Yue-Jin; Liu, Guo-Tian; Xu, Yan

    2017-01-01

    The downy mildew disease in grapevines is caused by Plasmopara viticola. This disease poses a serious threat wherever viticulture is practiced. Wild Vitis species showing resistance to P. viticola offer a promising pathway to develop new grapevine cultivars resistant to P. viticola which will allow reduced use of environmentally unfriendly fungicides. Here, transmission and scanning microscopy was used to compare the resistance responses to downy mildew of three resistant genotypes of V. davidii var. cyanocarpa, V. piasesezkii and V. pseudoreticulata and the suceptible V. vinifera cultivar 'Pinot Noir'. Following inoculation with sporangia of P. viticola isolate 'YL' on V. vinifera cv. 'Pinot Noir', the infection was characterized by a rapid spread of intercellular hyphae, a high frequency of haustorium formation within the host's mesophyll cells, the production of sporangia and by the absence of host-cell necrosis. In contrast zoospores were collapsed in the resistant V. pseudoreticulata 'Baihe-35-1', or secretions appeared arround stomata at the beginning of the infection period in V. davidii var. cyanocarpa 'Langao-5' and V. piasezkii 'Liuba-8'. The main characteristics of the resistance responses were the rapid depositions of callose and the appearance of empty hyphae and the plasmolysis of penetrated tissue. Moreover, collapsed haustoria were observed in V. davidii var. cyanocarpa 'Langao-5' at 5 days post inoculation (dpi) and in V. piasezkii 'Liuba-8' at 7 dpi. Lastly, necrosis extended beyond the zone of restricted colonization in all three resistant genotypes. Sporangia were absent in V. piasezkii 'Liuba-8' and greatly decreased in V. davidii var. cyanocarpa 'Langao-5' and in V. pseudoreticulata 'Baihe-35-1' compared with in V. vinifera cv. 'Pinot Noir'. Overall, these results provide insights into the cellular biological basis of the incompatible interactions between the pathogen and the host. They indicate a number of several resistant Chinese wild

  13. A Reservoir of Drug-Resistant Pathogenic Bacteria in Asymptomatic Hosts

    PubMed Central

    Perron, Gabriel G.; Quessy, Sylvain; Bell, Graham

    2008-01-01

    The population genetics of pathogenic bacteria has been intensively studied in order to understand the spread of disease and the evolution of virulence and drug resistance. However, much less attention has been paid to bacterial carriage populations, which inhabit hosts without producing disease. Since new virulent strains that cause disease can be recruited from the carriage population of bacteria, our understanding of infectious disease is seriously incomplete without knowledge on the population structure of pathogenic bacteria living in an asymptomatic host. We report the first extensive survey of the abundance and diversity of a human pathogen in asymptomatic animal hosts. We have found that asymptomatic swine from livestock productions frequently carry populations of Salmonella enterica with a broad range of drug-resistant strains and genetic diversity greatly exceeding that previously described. This study shows how agricultural practice and human intervention may lead and influence the evolution of a hidden reservoir of pathogens, with important implications for human health. PMID:19015729

  14. Bacterial Communities Differ among Drosophila melanogaster Populations and Affect Host Resistance against Parasitoids

    PubMed Central

    Dini-Andreote, Francisco; Falcao Salles, Joana

    2016-01-01

    In Drosophila, diet is considered a prominent factor shaping the associated bacterial community. However, the host population background (e.g. genotype, geographical origin and founder effects) is a factor that may also exert a significant influence and is often overlooked. To test for population background effects, we characterized the bacterial communities in larvae of six genetically differentiated and geographically distant D. melanogaster lines collected from natural populations across Europe. The diet for these six lines had been identical for ca. 50 generations, thus any differences in the composition of the microbiome originates from the host populations. We also investigated whether induced shifts in the microbiome—in this case by controlled antibiotic administration—alters the hosts’ resistance to parasitism. Our data revealed a clear signature of population background on the diversity and composition of D. melanogaster microbiome that differed across lines, even after hosts had been maintained at the same diet and laboratory conditions for over 4 years. In particular, the number of bacterial OTUs per line ranged from 8 to 39 OTUs. Each line harboured 2 to 28 unique OTUs, and OTUs that were highly abundant in some lines were entirely missing in others. Moreover, we found that the response to antibiotic treatment differed among the lines and significantly altered the host resistance to the parasitoid Asobara tabida in one of the six lines. Wolbachia, a widespread intracellular endosymbiont associated with parasitoid resistance, was lacking in this line, suggesting that other components of the Drosophila microbiome caused a change in host resistance. Collectively, our results revealed that lines that originate from different population backgrounds show significant differences in the established Drosophila microbiome, outpacing the long-term effect of diet. Perturbations on these naturally assembled microbiomes to some degree influenced the hosts

  15. Health trajectories reveal the dynamic contributions of host genetic resistance and tolerance to infection outcome

    PubMed Central

    Lough, Graham; Kyriazakis, Ilias; Bergmann, Silke; Lengeling, Andreas; Doeschl-Wilson, Andrea B.

    2015-01-01

    Resistance and tolerance are two alternative strategies hosts can adopt to survive infections. Both strategies may be genetically controlled. To date, the relative contribution of resistance and tolerance to infection outcome is poorly understood. Here, we use a bioluminescent Listeria monocytogenes (Lm) infection challenge model to study the genetic determination and dynamic contributions of host resistance and tolerance to listeriosis in four genetically diverse mouse strains. Using conventional statistical analyses, we detect significant genetic variation in both resistance and tolerance, but cannot capture the time-dependent relative importance of either host strategy. We overcome these limitations through the development of novel statistical tools to analyse individual infection trajectories portraying simultaneous changes in infection severity and health. Based on these tools, early expression of resistance followed by expression of tolerance emerge as important hallmarks for surviving Lm infections. Our trajectory analysis further reveals that survivors and non-survivors follow distinct infection paths (which are also genetically determined) and provides new survival thresholds as objective endpoints in infection experiments. Future studies may use trajectories as novel traits for mapping and identifying genes that control infection dynamics and outcome. A Matlab script for user-friendly trajectory analysis is provided. PMID:26582028

  16. Increased survival of experimentally evolved antimicrobial peptide-resistant Staphylococcus aureus in an animal host

    PubMed Central

    Dobson, Adam J; Purves, Joanne; Rolff, Jens

    2014-01-01

    Antimicrobial peptides (AMPs) have been proposed as new class of antimicrobial drugs, following the increasing prevalence of bacteria resistant to antibiotics. Synthetic AMPs are functional analogues of highly evolutionarily conserved immune effectors in animals and plants, produced in response to microbial infection. Therefore, the proposed therapeutic use of AMPs bears the risk of ‘arming the enemy’: bacteria that evolve resistance to AMPs may be cross-resistant to immune effectors (AMPs) in their hosts. We used a panel of populations of Staphylococcus aureus that were experimentally selected for resistance to a suite of individual AMPs and antibiotics to investigate the ‘arming the enemy’ hypothesis. We tested whether the selected strains showed higher survival in an insect model (Tenebrio molitor) and cross-resistance against other antimicrobials in vitro. A population selected for resistance to the antimicrobial peptide iseganan showed increased in vivo survival, but was not more virulent. We suggest that increased survival of AMP-resistant bacteria almost certainly poses problems to immune-compromised hosts. PMID:25469169

  17. Use of a secondary host by non-outbreak populations of the gypsy moth. [Pinus rigida; Quercus spp; Lymantria dispar

    SciTech Connect

    Rossiter, M.

    1987-08-01

    Oaks are the favored host of gypsy moths in the northeastern US, although the herbivore expands its host range dramatically during an outbreak. Pitch pine, a secondary host because of its unacceptability for early development, was found to be frequently used for oviposition in oak-pitch pine forests with non-outbreak populations. This observation led to the study of ecological and behavioral factors that can contribute to the use of a secondary host under low-density conditions by an irruptive herbivore species. A series of manipulative field and laboratory experiments plus a study of natural history provided data on the pattern of pitch pine use during the life cycle of the gypsy moth, the effect of pitch pine on larval growth, and the differential impact of natural enemies depending on host use. It was found that: 1) egg masses occurred far more frequently on pitch pine than was expected based on the frequency of pitch pine in forests with low-density gypsy moth populations; 2) in the laboratory, early-instar larvae could not survive on pitch pine while late-instar larvae grew well; 3) in the field, larvae began to use pitch pine to feed and rest after the onset of the fourth instar. Compared to oak, 4) egg masses on pitch pine experienced less parasitism; 5) the microhabitat of pitch pine held less nuclear polyhedrosis virus (NPV), a major mortality agent of the gypsy moth; 6) individuals hatching from eggs laid on pitch pine were less infected with NPV; and 7) larvae dosed with a known amount of NPV survived longer when feeding on pitch pine foliage. The use of pitch pine by individuals in low-density gypsy moth populations appeared to be beneficial and may have an important effect on population dynamics. The mobility associated with host switching by late-instar larvae and with dispersal by first-instar larvae oviposited on unacceptable food may represent an important mechanism for host-range extension.

  18. Exploring the host transcriptome for mechanisms underlying protective immunity and resistance to nematode infections in ruminants.

    PubMed

    Li, Robert W; Choudhary, Ratan K; Capuco, Anthony V; Urban, Joseph F

    2012-11-23

    Nematode infections in ruminants are a major impediment to the profitable production of meat and dairy products, especially for small farms. Gastrointestinal parasitism not only negatively impacts weight gain and milk yield, but is also a major cause of mortality in small ruminants. The current parasite control strategy involves heavy use of anthelmintics that has resulted in the emergence of drug-resistant parasite strains. This, in addition to increasing consumer demand for animal products that are free of drug residues has stimulated development of alternative strategies, including selective breeding of parasite resistant ruminants. The development of protective immunity and manifestations of resistance to nematode infections relies upon the precise expression of the host genome that is often confounded by mechanisms simultaneously required to control multiple nematode species as well as ecto- and protozoan parasites, and microbial and viral pathogens. Understanding the molecular mechanisms underlying these processes represents a key step toward development of effective new parasite control strategies. Recent progress in characterizing the transcriptome of both hosts and parasites, utilizing high-throughput microarrays and RNA-seq technology, has led to the recognition of unique interactions and the identification of genes and biological pathways involved in the response to parasitism. Innovative use of the knowledge gained by these technologies should provide a basis for enhancing innate immunity while limiting the polarization of acquired immunity can negatively affect optimal responses to co-infection. Strategies for parasite control that use diet and vaccine/adjuvant combination could be evaluated by monitoring the host transcriptome for induction of appropriate mechanisms for imparting parasite resistance. Knowledge of different mechanisms of host immunity and the critical regulation of parasite development, physiology, and virulence can also selectively

  19. Harnessing Intra-Host Strain Competition to Limit Antibiotic Resistance: Mathematical Model Results.

    PubMed

    Beams, Alexander B; Toth, Damon J A; Khader, Karim; Adler, Frederick R

    2016-09-01

    Antibiotic overuse has promoted the spread of antibiotic resistance. To compound the issue, treating individuals dually infected with antibiotic-resistant and antibiotic-vulnerable strains can make their infections completely resistant through competitive release. We formulate mathematical models of transmission dynamics accounting for dual infections and extensions accounting for lag times between infection and treatment or between cure and ending treatment. Analysis using the Next-Generation Matrix reveals how competition within hosts and the costs of resistance determine whether vulnerable and resistant strains persist, coexist, or drive each other to extinction. Invasion analysis predicts that treatment of dually infected cases will promote resistance. By varying antibiotic strength, the models suggest that physicians have two ways to achieve a particular resistance target: prescribe relatively weak antibiotics to everyone infected with an antibiotic-vulnerable strain or give more potent prescriptions to only those patients singly infected with the vulnerable strain after ruling out the possibility of them being dually infected with resistance. Through selectivity and moderation in antibiotic prescription, resistance might be limited.

  20. A novel Capsicum gene inhibits host-specific disease resistance to Phytophthora capsici.

    PubMed

    Reeves, Gregory; Monroy-Barbosa, Ariadna; Bosland, Paul W

    2013-05-01

    A novel disease resistance inhibitor gene (inhibitor of P. capsici resistance [Ipcr]), found in the chile pepper (Capsicum annuum) variety 'New Mexico Capsicum Accession 10399' (NMCA10399), inhibits resistance to Phytophthora capsici but not to other species of Phytophthora. When a highly P. capsici-resistant variety was hybridized with NMCA10399, the resultant F1 populations, when screened, were completely susceptible to P. capsici for root rot and foliar blight disease syndromes, despite the dominance inheritance of P. capsici resistance in chile pepper. The F2 population displayed a 3:13 resistant-to-susceptible (R:S) ratio. The testcross population displayed a 1:1 R:S ratio, and a backcross population to NMCA10399 displayed complete susceptibility. These results demonstrate the presence of a single dominant inhibitor gene affecting P. capsici resistance in chile pepper. Moreover, when lines carrying the Ipcr gene were challenged against six Phytophthora spp., the nonhost resistance was not overcome. Therefore, the Ipcr gene is interfering with host-specific resistance but not the pathogen- or microbe-associated molecular pattern nonhost responses.

  1. Life-history trade-offs and the evolution of pathogen resistance: competition between host strains.

    PubMed

    Bowers, R G; Boots, M; Begon, M

    1994-09-22

    The dynamics of a 'resistant' and a 'susceptible' strain of a self-regulated host species, in the presence of a directly transmitted pathogen, is investigated. The two strains trade off differences in pathogen transmissibility (as an aspect of pathogen resistance) against differences in birth rate and/or resistance to crowding. Depending on parameter values, either strain may be eliminated, or the two may coexist (along with the pathogen). Coexistence (polymorphism), unsurprisingly, requires an appropriate balance between the different advantages possessed by the two strains. The probability of coexistence through such a balance, however, varies nonlinearly with the degree of difference between the strains: coexistence is least likely between two very similar strains. Resistance is most likely to evolve in hosts with the characteristics of many insect pests. Moreover, with highly pathogenic pathogens, a 'susceptible' strain may exclude a 'resistant' strain because its higher growth rate is more effective against the pathogen than reduced transmissibility. 'Resistance' can reside in parameters other than those directly associated with the pathogen. Although no cycles arise and no chaotic behaviour is found, an oscillatory approach to equilibrium is commonly observed, signalling the possibility of observable oscillations in strain frequency in the (more variable) real world.

  2. Parasite diversity drives rapid host dynamics and evolution of resistance in a bacteria‐phage system

    PubMed Central

    Betts, Alex; Gifford, Danna R.; MacLean, R. Craig; King, Kayla C.

    2016-01-01

    Host–parasite evolutionary interactions are typically considered in a pairwise species framework. However, natural infections frequently involve multiple parasites. Altering parasite diversity alters ecological and evolutionary dynamics as parasites compete and hosts resist multiple infection. We investigated the effects of parasite diversity on host–parasite population dynamics and evolution using the pathogen Pseudomonas aeruginosa and five lytic bacteriophage parasites. To manipulate parasite diversity, bacterial populations were exposed for 24 hours to either phage monocultures or diverse communities containing up to five phages. Phage communities suppressed host populations more rapidly but also showed reduced phage density, likely due to interphage competition. The evolution of resistance allowed rapid bacterial recovery that was greater in magnitude with increases in phage diversity. We observed no difference in the extent of resistance with increased parasite diversity, but there was a profound impact on the specificity of resistance; specialized resistance evolved to monocultures through mutations in a diverse set of genes. In summary, we demonstrate that parasite diversity has rapid effects on host–parasite population dynamics and evolution by selecting for different resistance mutations and affecting the magnitude of bacterial suppression and recovery. Finally, we discuss the implications of phage diversity for their use as biological control agents. PMID:27005577

  3. Host carbon sources modulate cell wall architecture, drug resistance and virulence in a fungal pathogen

    PubMed Central

    Ene, Iuliana V; Adya, Ashok K; Wehmeier, Silvia; Brand, Alexandra C; MacCallum, Donna M; Gow, Neil A R; Brown, Alistair J P

    2012-01-01

    The survival of all microbes depends upon their ability to respond to environmental challenges. To establish infection, pathogens such as Candida albicans must mount effective stress responses to counter host defences while adapting to dynamic changes in nutrient status within host niches. Studies of C. albicans stress adaptation have generally been performed on glucose-grown cells, leaving the effects of alternative carbon sources upon stress resistance largely unexplored. We have shown that growth on alternative carbon sources, such as lactate, strongly influence the resistance of C. albicans to antifungal drugs, osmotic and cell wall stresses. Similar trends were observed in clinical isolates and other pathogenic Candida species. The increased stress resistance of C. albicans was not dependent on key stress (Hog1) and cell integrity (Mkc1) signalling pathways. Instead, increased stress resistance was promoted by major changes in the architecture and biophysical properties of the cell wall. Glucose- and lactate-grown cells displayed significant differences in cell wall mass, ultrastructure, elasticity and adhesion. Changes in carbon source also altered the virulence of C. albicans in models of systemic candidiasis and vaginitis, confirming the importance of alternative carbon sources within host niches during C. albicans infections. PMID:22587014

  4. IsaB inhibits autophagic flux to promote host transmission of methicillin-resistant Staphylococcus aureus

    PubMed Central

    Liu, Pei-Feng; Cheng, Jin-Shiung; Sy, Cheng-Len; Huang, Wei-Chun; Yang, Hsiu-Chen; Gallo, Richard L.; Huang, Chun-Ming; Shu, Chih-Wen

    2015-01-01

    Methicillin-resistant Staphylococcus aureus (MRSA) has emerged as a major nosocomial pathogen that is widespread in both health care facilities and the community at large as a result of direct host-to-host transmission. Several virulence factors are associated with pathogen transmission to naive hosts. Immunodominant surface antigen B (IsaB) is a virulence factor that helps Staphylococcus aureus to evade the host defense system. However, the mechanism of IsaB on host transmissibility remains unclear. We found that IsaB expression was elevated in transmissible MRSA. Wild-type isaB strains inhibited autophagic flux to promote bacterial survival and elicit inflammation in THP-1 cells and mouse skin. MRSA isolates with increased IsaB expression showed decreased autophagic flux, and the MRSA isolate with the lowest IsaB expression showed increased autophagic flux. In addition, recombinant IsaB rescued the virulence of the isaB deletion strain and increased the Group A streptococcus (GAS) virulence in vivo. Together, these results reveal that IsaB diminishes autophagic flux, thereby allowing MRSA to evade host degradation. These findings suggest that IsaB is a suitable target for preventing or treating MRSA infection. PMID:26134948

  5. A Klebsiella pneumoniae antibiotic resistance mechanism that subdues host defences and promotes virulence.

    PubMed

    Kidd, Timothy J; Mills, Grant; Sá-Pessoa, Joana; Dumigan, Amy; Frank, Christian G; Insua, José L; Ingram, Rebecca; Hobley, Laura; Bengoechea, José A

    2017-04-01

    Klebsiella pneumoniae is an important cause of multidrug-resistant infections worldwide. Recent studies highlight the emergence of multidrug-resistant K. pneumoniae strains which show resistance to colistin, a last-line antibiotic, arising from mutational inactivation of the mgrB regulatory gene. However, the precise molecular resistance mechanisms of mgrB-associated colistin resistance and its impact on virulence remain unclear. Here, we constructed an mgrB gene K. pneumoniae mutant and performed characterisation of its lipid A structure, polymyxin and antimicrobial peptide resistance, virulence and inflammatory responses upon infection. Our data reveal that mgrB mutation induces PhoPQ-governed lipid A remodelling which confers not only resistance to polymyxins, but also enhances K. pneumoniae virulence by decreasing antimicrobial peptide susceptibility and attenuating early host defence response activation. Overall, our findings have important implications for patient management and antimicrobial stewardship, while also stressing antibiotic resistance development is not inexorably linked with subdued bacterial fitness and virulence.

  6. Impaired Fitness and Transmission of Macrolide-Resistant Campylobacter jejuni in Its Natural Host

    PubMed Central

    Luangtongkum, Taradon; Shen, Zhangqi; Seng, Virginia W.; Sahin, Orhan; Jeon, Byeonghwa; Liu, Peng

    2012-01-01

    Campylobacter jejuni is a major zoonotic pathogen transmitted to humans via the food chain and is prevalent in chickens, a natural reservoir for this pathogenic organism. Due to the importance of macrolide antibiotics in clinical therapy of human campylobacteriosis, development of macrolide resistance in Campylobacter has become a concern for public health. To facilitate the control of macrolide-resistant Campylobacter, it is necessary to understand if macrolide resistance affects the fitness and transmission of Campylobacter in its natural host. In this study we conducted pairwise competitions and comingling experiments in chickens using clonally related and isogenic C. jejuni strains, which are either susceptible or resistant to erythromycin (Ery). In every competition pair, Ery-resistant (Eryr) Campylobacter was consistently outcompeted by the Ery-susceptible (Erys) strain. In the comingling experiments, Eryr Campylobacter failed to transmit to chickens precolonized by Erys Campylobacter, while isogenic Erys Campylobacter was able to transmit to and establish dominance in chickens precolonized by Eryr Campylobacter. The fitness disadvantage was linked to the resistance-conferring mutations in the 23S rRNA. These findings clearly indicate that acquisition of macrolide resistance impairs the fitness and transmission of Campylobacter in chickens, suggesting that the prevalence of macrolide-resistant C. jejuni will likely decrease in the absence of antibiotic selection pressure. PMID:22183170

  7. Bacterial non-host resistance: interactions of Arabidopsis with non-adapted Pseudomonas syringae strains.

    PubMed

    Mishina, Tatiana E; Zeier, Jürgen

    2007-11-01

    Although interactions of plants with virulent and avirulent host pathogens are under intensive study, relatively little is known about plant interactions with non-adapted pathogens and the molecular events underlying non-host resistance. Here we show that two Pseudomonas syringae strains for which Arabidopsis is a non-host plant, P. syringae pathovar (pv.) glycinea (Psg) and P. syringae pv. phaseolicola (Psp),induce salicylic acid (SA) accumulation and pathogenesis-related gene expression at inoculation sites, and that induction of these defences is largely dependent on bacterial type III secretion. The defence signalling components activated by non-adapted bacteria resemble those initiated by host pathogens, including SA, non-expressor of PR-1, non-race specific disease resistance 1, phytoalexin-deficient 4 and enhanced disease susceptibility 1. However, some differences in individual defence pathways induced by Psg and Psp exist, suggesting that for each strain, distinct sets of type III effectors are recognized by the plant. Although induction of SA-related defences occurs, it does not directly contribute to bacterial non-host resistance, because Arabidopsis mutants compromised in SA signalling and other classical defence pathways do not permit enhanced survival of Psg or Psp in leaves. The finding that numbers of non-adapted bacteria in leaf extracellular spaces rapidly decline after inoculation suggests that they fail to overcome toxic or structural defence barriers preceding SA-related responses. Consistent with this hypothesis, rapid, type III secretion system-independent upregulation of the lignin biosynthesis genes, PAL1 and BCB, which might contribute to an early induced, cell wall-based defence mechanism, occurs in response to non-adapted bacteria. Moreover, knockout of PAL1 permits increased leaf survival of non-host bacteria. In addition, different survival rates of non-adapted bacteria in leaves from Arabidopsis accessions and mutants with distinct

  8. Tn5-mediated bleomycin resistance in Escherichia coli requires the expression of host genes.

    PubMed

    Blot, M; Heitman, J; Arber, W

    1993-06-01

    The transposon Tn5 expresses a gene, ble, whose product increases the viability of Escherichia coli and also confers resistance to the DNA-cleaving antibiotic bleomycin and the DNA-alkylating agent ethylmethanesulphonate. We find that the Ble protein induces expression of an alkylation inducible gene, aidC, and that both the AidC gene product and DNA polymerase I are required for Ble to confer bleomycin resistance. These findings support models in which Ble enhances DNA repair and suggest that Tn5 confers a fitness advantage to the host bacterium by increasing the repair of spontaneous DNA lesions. Such co-operation between a transposon and its host suggests that Tn5 is a symbiotic rather than a selfish DNA element.

  9. Making the best of a bad situation: host partial resistance and bypass of behavioral manipulation by parasites?

    PubMed

    Daoust, Simon P; King, Kayla C; Brodeur, Jacques; Roitberg, Bernard D; Roche, Benjamin; Thomas, Frédéric

    2015-09-01

    With few exceptions, parasitic manipulation dramatically reduces host fitness. That said, evidence of host resistance to behavior-manipulating parasites is scarce. Here, we suggest that the evolution of partial resistance, as well as bypass, to manipulation (PRM and BPM, respectively) represents new, seldom-explored options for parasitized hosts. Natural selection could favor hosts that partially resist certain manipulative dimensions to postpone their death and perform additional reproductive episodes (PRM). Alternatively, manipulated hosts may express novel traits that do not alter the manipulation per se but that alleviate its detrimental fitness consequences (BPM). If effective, PRM and BPM have many implications for the ecology and evolution of hosts and their parasites, especially the evolution of multidimensional manipulations.

  10. Allelic variation on murine chromosome 11 modifies host inflammatory responses and resistance to Bacillus anthracis.

    PubMed

    Terra, Jill K; France, Bryan; Cote, Christopher K; Jenkins, Amy; Bozue, Joel A; Welkos, Susan L; Bhargava, Ragini; Ho, Chi-Lee; Mehrabian, Margarete; Pan, Calvin; Lusis, Aldons J; Davis, Richard C; LeVine, Steven M; Bradley, Kenneth A

    2011-12-01

    Anthrax is a potentially fatal disease resulting from infection with Bacillus anthracis. The outcome of infection is influenced by pathogen-encoded virulence factors such as lethal toxin (LT), as well as by genetic variation within the host. To identify host genes controlling susceptibility to anthrax, a library of congenic mice consisting of strains with homozygous chromosomal segments from the LT-responsive CAST/Ei strain introgressed on a LT-resistant C57BL/6 (B6) background was screened for response to LT. Three congenic strains containing CAST/Ei regions of chromosome 11 were identified that displayed a rapid inflammatory response to LT similar to, but more severe than that driven by a LT-responsive allele of the inflammasome constituent NRLP1B. Importantly, increased response to LT in congenic mice correlated with greater resistance to infection by the Sterne strain of B. anthracis. The genomic region controlling the inflammatory response to LT was mapped to 66.36-74.67 Mb on chromosome 11, a region that encodes the LT-responsive CAST/Ei allele of Nlrp1b. However, known downstream effects of NLRP1B activation, including macrophage pyroptosis, cytokine release, and leukocyte infiltration could not fully explain the response to LT or the resistance to B. anthracis Sterne in congenic mice. Further, the exacerbated response in congenic mice is inherited in a recessive manner while the Nlrp1b-mediated response to LT is dominant. Finally, congenic mice displayed increased responsiveness in a model of sepsis compared with B6 mice. In total, these data suggest that allelic variation of one or more chromosome 11 genes in addition to Nlrp1b controls the severity of host response to multiple inflammatory stimuli and contributes to resistance to B. anthracis Sterne. Expression quantitative trait locus analysis revealed 25 genes within this region as high priority candidates for contributing to the host response to LT.

  11. Parasite evolution in response to sex-based host heterogeneity in resistance and tolerance.

    PubMed

    Cousineau, S V; Alizon, S

    2014-12-01

    Heterogenity between sexes in terms of both the level and the type of immune response to infection is documented in many species, but its role on parasite evolution is only beginning to be explored. We adopt an evolutionary epidemiology approach to study how the ability of a host to respond to infection through active immunity (resistance) or through minimizing deleterious effects of a given parasite load (tolerance) affects the evolution of parasite virulence. Consistently with earlier models, we find that increases in host resistance and tolerance both favour more virulent parasite strains. However, we show that qualitatively different results can be obtained if dimorphism between the sexes occurs through resistance or through tolerance depending on the contact pattern between the sexes. Finally, we find that variations in host sex ratio can amplify the consequences of heterogeneity for parasite evolution. These results are analysed in the light of several examples from the literature to illustrate the prevalence of sexually dimorphic immune responses and the potential for further study of the role of sexual dimorphism on parasite evolution. Such studies are likely to be highly relevant for improving treatment of chronic infections and control of infectious diseases, and understanding the role of sex in immune function.

  12. Geochemistry of spinel-hosted amphibole inclusions in abyssal peridotite: insight into secondary melt formation in melt-peridotite reaction

    NASA Astrophysics Data System (ADS)

    Tamura, Akihiro; Morishita, Tomoaki; Ishimaru, Satoko; Arai, Shoji

    2014-03-01

    Spinel-hosted hydrous silicate mineral inclusions are often observed in dunite and troctolite as well as chromitite. Their origin has been expected as products associated with melt-peridotite reaction, based on the host rock origin. However, the systematics in mineralogical and geochemical features are not yet investigated totally. In this study, we report geochemical variations of the spinel-hosted pargasite inclusions in reacted harzburgite and olivine-rich troctolite collected from Atlantis Massif, an oceanic core complex, in the Mid-Atlantic Ridge. The studied samples are a good example to examine geochemical variations in the inclusions because the origin and geological background of the host rocks have been well constrained, such as the reaction between MORB melt and depleted residual harzburgite beneath the mid-ocean ridge spreading center. The trace-element compositions of the pargasite inclusions are characterized by not only high abundance of incompatible elements but also the LREE and HFSE enrichments. Distinctive trace-element partitioning between the pargasite inclusion and the host-rock clinopyroxene supports that the secondary melt instantaneously formed by the reaction is trapped in spinel and produces inclusion minerals. While the pargasite geochemical features can be interpreted by modal change reaction of residual harzburgite, such as combination of orthopyroxene decomposition and olivine precipitation, degree of the LREE enrichment as well as variation of HREE abundance is controlled by melt/rock ratio in the reaction. The spinel-hosted hydrous inclusion could be embedded evidence indicating melt-peridotite reaction even if reaction signatures in the host rock were hidden by other consequent reactions.

  13. A link between host plant adaptation and pesticide resistance in the polyphagous spider mite Tetranychus urticae.

    PubMed

    Dermauw, Wannes; Wybouw, Nicky; Rombauts, Stephane; Menten, Björn; Vontas, John; Grbic, Miodrag; Clark, Richard M; Feyereisen, René; Van Leeuwen, Thomas

    2013-01-08

    Plants produce a wide range of allelochemicals to defend against herbivore attack, and generalist herbivores have evolved mechanisms to avoid, sequester, or detoxify a broad spectrum of natural defense compounds. Successful arthropod pests have also developed resistance to diverse classes of pesticides and this adaptation is of critical importance to agriculture. To test whether mechanisms to overcome plant defenses predispose the development of pesticide resistance, we examined adaptation of the generalist two-spotted spider mite, Tetranychus urticae, to host plant transfer and pesticides. T. urticae is an extreme polyphagous pest with more than 1,100 documented hosts and has an extraordinary ability to develop pesticide resistance. When mites from a pesticide-susceptible strain propagated on bean were adapted to a challenging host (tomato), transcriptional responses increased over time with ~7.5% of genes differentially expressed after five generations. Whereas many genes with altered expression belonged to known detoxification families (like P450 monooxygenases), new gene families not previously associated with detoxification in other herbivores showed a striking response, including ring-splitting dioxygenase genes acquired by horizontal gene transfer. Strikingly, transcriptional profiles of tomato-adapted mites resembled those of multipesticide-resistant strains, and adaptation to tomato decreased the susceptibility to unrelated pesticide classes. Our findings suggest key roles for both an expanded environmental response gene repertoire and transcriptional regulation in the life history of generalist herbivores. They also support a model whereby selection for the ability to mount a broad response to the diverse defense chemistry of plants predisposes the evolution of pesticide resistance in generalists.

  14. Broad-host-range IncP-1 plasmids and their resistance potential

    PubMed Central

    Popowska, Magdalena; Krawczyk-Balska, Agata

    2013-01-01

    The plasmids of the incompatibility (Inc) group IncP-1, also called IncP, as extrachromosomal genetic elements can transfer and replicate virtually in all Gram-negative bacteria. They are composed of backbone genes that encode a variety of essential functions and accessory genes that have implications for human health and environmental bioremediation. Broad-host-range IncP plasmids are known to spread genes between distinct phylogenetic groups of bacteria. These genes often code for resistances to a broad spectrum of antibiotics, heavy metals, and quaternary ammonium compounds used as disinfectants. The backbone of these plasmids carries modules that enable them to effectively replicate, move to a new host via conjugative transfer and to be stably maintained in bacterial cells. The adaptive, resistance, and virulence genes are mainly located on mobile genetic elements integrated between the functional plasmid backbone modules. Environmental studies have demonstrated the wide distribution of IncP-like replicons in manure, soils and wastewater treatment plants. They also are present in strains of pathogenic or opportunistic bacteria, which can be a cause for concern, because they may encode multiresistance. Their broad distribution suggests that IncP plasmids play a crucial role in bacterial adaptation by utilizing horizontal gene transfer. This review summarizes the variety of genetic information and physiological functions carried by IncP plasmids, which can contribute to the spread of antibiotic and heavy metal resistance while also mediating the process of bioremediation of pollutants. Due to the location of the resistance genes on plasmids with a broad-host-range and the presence of transposons carrying these genes it seems that the spread of these genes would be possible and quite hazardous in infection control. Future studies are required to determine the level of risk of the spread of resistance genes located on these plasmids. PMID:23471189

  15. Resistance against Echinostoma caproni (Trematoda) secondary infections in mice is not dependent on the ileal protein production.

    PubMed

    Cortés, Alba; Sotillo, Javier; Muñoz-Antolí, Carla; Martín-Grau, Carla; Esteban, J Guillermo; Toledo, Rafael

    2016-05-17

    Echinostoma caproni (Trematoda: Echinostomatidae) is an intestinal trematode, which has been widely employed to investigate the factors determining the rejection of intestinal helminths. Protein production patterns of intestinal epithelial cells are related to the infection-induced changes that determine the course of E. caproni infections. Herein, we compare the protein production profiles in the ileum of four experimental groups of mice: control; infected; dewormed and reinfected. Worm burdens were significantly lower in secondary infections, confirming the generation of partial resistance to homologous secondary infections in mice. However, quantitative comparison by 2D-DIGE showed that the protein production profile is similar in control and dewormed mice, and after primary and secondary E. caproni infections. These results showed that, unexpectedly, protein production changes in E. caproni infections are not responsible of resistance development. Fifty-one protein spots were differentially produced between control/treated and infected/reinfected mice and 37 of them were identified by mass spectrometry. The analysis of differentially abundant proteins indicate that cell metabolism and the regulation of proliferation and cell death are the most affected processes after primary and secondary E. caproni infections. These results provide new insights into the proteins involved in the regulation of tissue homeostasis after intestinal infection. Intestinal helminthiases are highly prevalent parasitic infections with about 1 billion people infected worldwide. In this scenario, better understanding of host-parasite relationships is needed to elucidate the factors that determine intestinal helminth rejection. The intestinal trematode Echinostoma caproni has been broadly employed in this field, with resistance against secondary homologous infections reported in mice. In this paper, new insights are provided in the regulation of tissue homeostasis after intestinal

  16. Reversing the resistance phenotype of the Biomphalaria glabrata snail host Schistosoma mansoni infection by temperature modulation.

    PubMed

    Ittiprasert, Wannaporn; Knight, Matty

    2012-01-01

    Biomphalaria glabrata snails that display either resistant or susceptible phenotypes to the parasitic trematode, Schistosoma mansoni provide an invaluable resource towards elucidating the molecular basis of the snail-host/schistosome relationship. Previously, we showed that induction of stress genes either after heat-shock or parasite infection was a major feature distinguishing juvenile susceptible snails from their resistant counterparts. In order to examine this apparent association between heat stress and snail susceptibility, we investigated the effect of temperature modulation in the resistant snail stock, BS-90. Here, we show that, incubated for up to 4 hrs at 32°C prior to infection, these resistant snails became susceptible to infection, i.e. shedding cercariae at 5 weeks post exposure (PE) while unstressed resistant snails, as expected, remained resistant. This suggests that susceptibility to infection by this resistant snail phenotype is temperature-sensitive (ts). Additionally, resistant snails treated with the Hsp 90 specific inhibitor, geldanamycin (GA) after heat stress, were no longer susceptible to infection, retaining their resistant phenotype. Consistently, susceptible snail phenotypes treated with 100 mM GA before parasite exposure also remained uninfected. These results provide direct evidence for the induction of stress genes (heat shock proteins; Hsp 70, Hsp 90 and the reverse transcriptase [RT] domain of the nimbus non-LTR retrotransposon) in B. glabrata susceptibility to S. mansoni infection and characterize the resistant BS-90 snails as a temperature-sensitive phenotype. This study of reversing snail susceptibility phenotypes to S. mansoni provides an opportunity to directly track molecular pathway(s) that underlie the B. glabrata snail's ability to either sustain or destroy the S. mansoni parasite.

  17. Novel expression hosts for complex secondary metabolite megasynthetases: Production of myxochromide in the thermopilic isolate Corallococcus macrosporus GT-2

    PubMed Central

    Perlova, Olena; Gerth, Klaus; Kuhlmann, Silvia; Zhang, Youming; Müller, Rolf

    2009-01-01

    Although many secondary metabolites with diverse biological activities have been isolated from myxobacteria, most strains of these biotechnologically important gliding prokaryotes remain difficult to handle genetically. In this study we describe the new fast growing myxobacterial thermophilic isolate GT-2 as a heterologous host for the expression of natural product biosynthetic pathways isolated from other myxobacteria. According to the results of sequence analysis of the 16S rDNA, this moderately thermophilic isolate is closely related to Corallococcus macrosporus and was therefore named C. macrosporus GT-2. Fast growth of moderately thermophilic strains results in shorter fermentation and generation times, aspects which are of significant interest for molecular biological work as well as production of secondary metabolites. Development of a genetic manipulation system allowed the introduction of the complete myxochromide biosynthetic gene cluster, located on a transposable fragment, into the chromosome of GT-2. Genetic engineering of the biosynthetic gene cluster by promoter exchange leads to much higher production of myxochromides in the heterologous host C. macrosporus GT-2 in comparison to the original producer Stigmatella aurantiaca and to the previously described heterologous host Pseudomonas putida (600 mg/L versus 8 mg/L and 40 mg/L, respectively). PMID:19126236

  18. Host-Induced Silencing of Pathogenicity Genes Enhances Resistance to Fusarium oxysporum Wilt in Tomato.

    PubMed

    Bharti, Poonam; Jyoti, Poonam; Kapoor, Priya; Sharma, Vandana; Shanmugam, V; Yadav, Sudesh Kumar

    2017-08-01

    This study presents a novel approach of controlling vascular wilt in tomato by RNAi expression directed to pathogenicity genes of Fusarium oxysporum f. sp. lycopersici. Vascular wilt of tomato caused by Fusarium oxysporum f. sp. lycopersici leads to qualitative and quantitative loss of the crop. Limitation in the existing control measures necessitates the development of alternative strategies to increase resistance in the plants against pathogens. Recent findings paved way to RNAi, as a promising method for silencing of pathogenicity genes in fungus and provided effective resistance against fungal pathogens. Here, two important pathogenicity genes FOW2, a Zn(II)2Cys6 family putative transcription regulator, and chsV, a putative myosin motor and a chitin synthase domain, were used for host-induced gene silencing through hairpinRNA cassettes of these genes against Fusarium oxysporum f. sp. lycopersici. HairpinRNAs were assembled in appropriate binary vectors and transformed into tomato plant targeting FOW2 and chsV genes, for two highly pathogenic strains of Fusarium oxysporum viz. TOFOL-IHBT and TOFOL-IVRI. Transgenic tomatoes were analyzed for possible attainment of resistance in transgenic lines against fungal infection. Eight transgenic lines expressing hairpinRNA cassettes showed trivial disease symptoms after 6-8 weeks of infection. Hence, the host-induced posttranscriptional gene silencing of pathogenicity genes in transgenic tomato plants has enhanced their resistance to vascular wilt disease caused by Fusarium oxysporum.

  19. New tricks for old dogs: countering antibiotic resistance in tuberculosis with host-directed therapeutics.

    PubMed

    Hawn, Thomas R; Shah, Javeed A; Kalman, Daniel

    2015-03-01

    Despite the availability of Mycobacterium tuberculosis (Mtb) drugs for over 50 years, tuberculosis (TB) remains at pandemic levels. New drugs are urgently needed for resistant strains, shortening duration of treatment, and targeting different stages of the disease, especially for treatment during human immunodeficiency virus co-infection. One solution to the conundrum that antibiotics kill the bacillus yet select for resistance is to target the host rather than the pathogen. Here, we discuss recent progress in so-called 'host-directed therapeutics' (HDTs), focusing on two general mechanistic strategies: (i) HDTs that disrupt Mtb pathogenesis in macrophages and (ii) immunomodulatory HDTs that facilitate protective immune responses that kill Mtb or reduce deleterious responses that exacerbate disease. HDTs hold significant promise as adjunctive therapies in that they are less likely to engender resistance, will likely have efficacy against antibiotic-resistant strains, and may have activity against non-replicating Mtb. However, TB is a complex and variegated disease, and human populations exhibit significant diversity in their immune responses to it, which presents a complicated landscape for HDTs to navigate. Nevertheless, we suggest that a detailed mechanistic understanding of drug action, together with careful selection of disease stage targets and dosing strategies may overcome such limitations and allow the development of HDTs as effective adjunctive treatment options for TB.

  20. Insecticide resistance and diminished secondary kill performance of bait formulations against German cockroaches (Dictyoptera: Blattellidae).

    PubMed

    Ko, Alexander E; Bieman, Donald N; Schal, Coby; Silverman, Jules

    2016-09-01

    Bait formulations are considered to be the most effective method for reducing German cockroach (Blattella germanica) infestations. An important property of some bait formulations is secondary kill, whereby active ingredient (AI) is translocated in insect-produced residues throughout the cockroach population, especially affecting relatively sedentary early-instar nymphs. B. germanica was collected from a location where baits containing hydramethylnon, fipronil or indoxacarb had become ineffective, and these AIs were topically applied to adult males. Results revealed the first evidence for hydramethylnon resistance, moderate resistance to fipronil and extremely high resistance to indoxacarb. Insecticide residues excreted by field-collected males that had ingested commercial baits effectively killed nymphs of an insecticide-susceptible laboratory strain of B. germanica but failed to kill most nymphs of the field-collected strain. We report three novel findings: (1) the first evidence for hydramethylnon resistance in any insect; (2) extremely high levels of indoxacarb resistance in a field population; (3) reduced secondary mortality in an insecticide-resistant field-collected strain of B. germanica. We suggest that, while secondary mortality is considered to be advantageous in cockroach interventions, the ingestion of sublethal doses of AI by nymphs may select for high insecticide resistance by increasing the frequency of AI resistance alleles within the population. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.

  1. Insecticide resistance and diminished secondary kill performance of bait formulations against German cockroaches (Dictyoptera: Blattellidae)

    PubMed Central

    Ko, Alexander E.; Bieman, Donald N.; Schal, Coby; Silverman, Jules

    2015-01-01

    BACKGROUND Bait formulations are considered the most effective method for reducing German cockroach infestations. An important property of some bait formulations is secondary kill, whereby active ingredient is translocated in insect-produced residues throughout the cockroach population, especially affecting relatively sedentary early instar nymphs. RESULTS Blattella germanica was collected from a location where baits containing hydramethylnon, fipronil, or indoxacarb became ineffective, and these AIs were topically applied to adult males. Results revealed the first evidence for hydramethylnon resistance, moderate resistance to fipronil and extremely high resistance to indoxacarb. Insecticide residues excreted by field-collected males that ingested commercial baits effectively killed nymphs of an insecticide-susceptible laboratory strain of B. germanica but failed to kill most nymphs of the field-collected strain. CONCLUSIONS We report three novel findings: 1) The first evidence for hydramethylnon resistance in any insect; 2) extremely high levels of indoxacarb resistance in a field population; and 3) reduced secondary mortality in an insecticide-resistant field-collected strain of B. germanica. We suggest that while secondary mortality is considered to be advantageous in cockroach interventions, the ingestion of sublethal doses of AI by nymphs may select for high insecticide resistance by increasing the frequency of AI resistance alleles within the population. PMID:26689433

  2. Extracellular matrix-associated proteome changes during non-host resistance in citrus-Xanthomonas interactions.

    PubMed

    Swaroopa Rani, Tirupaati; Podile, Appa Rao

    2014-04-01

    Non-host resistance (NHR) is a most durable broad-spectrum resistance employed by the plants to restrict majority of pathogens. Plant extracellular matrix (ECM) is a critical defense barrier. Understanding ECM responses during interaction with non-host pathogen will provide insights into molecular events of NHR. In this study, the ECM-associated proteome was compared during interaction of citrus with pathogen Xanthomonas axonopodis pv. citri (Xac) and non-host pathogen Xanthomonas oryzae pv. oryzae (Xoo) at 8, 16, 24 and 48 h post inoculation. Comprehensive analysis of ECM-associated proteins was performed by extracting wall-bound and soluble ECM components using both destructive and non-destructive procedures. A total of 53 proteins was differentially expressed in citrus-Xanthomonas host and non-host interaction, out of which 44 were identified by mass spectrometry. The differentially expressed proteins were related to (1) defense-response (5 pathogenesis-related proteins, 3 miraculin-like proteins (MIR, MIR1 and MIR2) and 2 proteases); (2) enzymes of reactive oxygen species (ROS) metabolism [Cu/Zn superoxide dismutase (SOD), Fe-SOD, ascorbate peroxidase and 2-cysteine-peroxiredoxin]; (3) signaling (lectin, curculin-like lectin and concanavalin A-like lectin kinase); and (4) cell-wall modification (α-xylosidase, glucan 1, 3 β-glucosidase, xyloglucan endotransglucosylase/hydrolase). The decrease in ascorbate peroxidase and cysteine-peroxiredoxin could be involved in maintenance of ROS levels. Increase in defense, cell-wall remodeling and signaling proteins in citrus-Xoo interaction suggests an active involvement of ECM in execution of NHR. Partially compromised NHR in citrus against Xoo, upon Brefeldin A pre-treatment supported the role of non-classical secretory proteins in this phenomenon. © 2013 Scandinavian Plant Physiology Society.

  3. Resistance of Candida albicans Biofilms to Drugs and the Host Immune System

    PubMed Central

    Sandai, Doblin; Tabana, Yasser M; Ouweini, Ahmad El; Ayodeji, Ishola Oluwaseun

    2016-01-01

    Background Candida albicans is a commensal fungus that resides on mucosal surfaces and in the gastrointestinal and genitourinary tracts in humans. However, it can cause an infection when the immune system of the host is impaired or if a niche becomes available. Many C. albicans infections are due to the organism’s ability to form a biofilm on implanted medical devices. A biofilm represents an optimal medium for the growth of C. albicans as it allows cells to be enclosed by a self-produced extracellular matrix (ECM). Objectives The present work investigated certain aspects of the resistance of C. albicans biofilms to drugs and the host immune system. Results An ECM was found to provide the infrastructure for biofilm formation, prevent disaggregation, and shield encapsulated C. albicans cells from antifungal drugs and the host’s immune system. By influencing FKS1 and upregulating multiple glucan modification genes, β-1, 3-glucan, an important component of ECM, was shown to be responsible for many of the biofilm’s drug-resistant properties. On being engulfed by ECM, the fungal cell was found to switch from glycolysis to gluconeogenesis. Resembling the cellular response to starvation, this was followed by the activation of the glyoxylate cycle that allowed the use of simple molecules as energy sources. Conclusion Mature biofilms were found to be much more resistant to antifungal agents and the host immune system than free cells. The factors responsible for high resistance included the complex architecture of biofilms, ECM, increased expression of drug efflux pumps, and metabolic plasticity. PMID:28138373

  4. Pyramids of QTLs enhance host-plant resistance and Bt-mediated resistance to leaf-chewing insects in soybean.

    PubMed

    Ortega, María A; All, John N; Boerma, H Roger; Parrott, Wayne A

    2016-04-01

    QTL-M and QTL-E enhance soybean resistance to insects. Pyramiding these QTLs with cry1Ac increases protection against Bt-tolerant pests, presenting an opportunity to effectively deploy Bt with host-plant resistance genes. Plant resistance to leaf-chewing insects minimizes the need for insecticide applications, reducing crop production costs and pesticide concerns. In soybean [Glycine max (L.) Merr.], resistance to a broad range of leaf-chewing insects is found in PI 229358 and PI 227687. PI 229358's resistance is conferred by three quantitative trait loci (QTLs): M, G, and H. PI 227687's resistance is conferred by QTL-E. The letters indicate the soybean Linkage groups (LGs) on which the QTLs are located. This study aimed to determine if pyramiding PI 229358 and PI 227687 QTLs would enhance soybean resistance to leaf-chewing insects, and if pyramiding these QTLs with Bt (cry1Ac) enhances resistance against Bt-tolerant pests. The near-isogenic lines (NILs): Benning(ME), Benning(MGHE), and Benning(ME+cry1Ac) were developed. Benning(ME) and Benning(MGHE) were evaluated in detached-leaf and greenhouse assays with soybean looper [SBL, Chrysodeixis includens (Walker)], corn earworm [CEW, Helicoverpa zea (Boddie)], fall armyworm [FAW, Spodoptera frugiperda (J.E. Smith)], and velvetbean caterpillar [VBC, Anticarsia gemmatalis (Hübner)]; and in field-cage assays with SBL. Benning(ME+cry1Ac) was tested in detached-leaf assays against SBL, VBC, and Southern armyworm [SAW, Spodoptera eridania (Cramer)]. In the detached-leaf assay, Benning(ME) showed the strongest antibiosis against CEW, FAW, and VBC. In field-cage conditions, Benning(ME) and Benning(MGHE) suffered 61 % less defoliation than Benning. Benning(ME+cry1Ac) was more resistant than Benning(ME) and Benning (cry1Ac) against SBL and SAW. Agriculturally relevant levels of resistance in soybean can be achieved with just two loci, QTL-M and QTL-E. ME+cry1Ac could present an opportunity to protect the durability of Bt

  5. Host adaptation to viruses relies on few genes with different cross-resistance properties

    PubMed Central

    Martins, Nelson E.; Faria, Vítor G.; Nolte, Viola; Schlötterer, Christian; Teixeira, Luis; Sucena, Élio; Magalhães, Sara

    2014-01-01

    Host adaptation to one parasite may affect its response to others. However, the genetics of these direct and correlated responses remains poorly studied. The overlap between these responses is instrumental for the understanding of host evolution in multiparasite environments. We determined the genetic and phenotypic changes underlying adaptation of Drosophila melanogaster to Drosophila C virus (DCV). Within 20 generations, flies selected with DCV showed increased survival after DCV infection, but also after cricket paralysis virus (CrPV) and flock house virus (FHV) infection. Whole-genome sequencing identified two regions of significant differentiation among treatments, from which candidate genes were functionally tested with RNAi. Three genes were validated—pastrel, a known DCV-response gene, and two other loci, Ubc-E2H and CG8492. Knockdown of Ubc-E2H and pastrel also led to increased sensitivity to CrPV, whereas knockdown of CG8492 increased susceptibility to FHV infection. Therefore, Drosophila adaptation to DCV relies on few major genes, each with different cross-resistance properties, conferring host resistance to several parasites. PMID:24711428

  6. Community dynamics, trade-offs, invasion criteria and the evolution of host resistance to microparasites.

    PubMed

    Bowers, R G; Hodgkinson, D E

    2001-10-07

    This article discusses the community dynamics of the evolution of host resistance to microparasites. We present exact results for a model with an arbitrary number of host strains. We show that these results are identical to those inferred on the basis of invadability criteria. The long-term behaviour of the model allows monomorphism or dimorphism (but no higher polymorphisms). We invoke trade-offs between pathogen transmissibility and either host intrinsic growth rate or resistance to crowding. In the first case, convexity leads to an ESS, concavity to branching points and repellers. In the second, these roles are interchanged. We present results for fixed strain distributions and establish parallels with results using an adaptive dynamics perspective. We also establish differences. For example, if an ESS is "deleted" from the strain distribution, then adjacent-strain dimorphism is possible. The invadability criteria which we obtain can be expressed in terms of geometrical properties of the trade-offs namely, the slopes of chords and tangent to the associated function. We speculate that this result may have wider applicability than provided by the context of the present work.

  7. Host plant resistance among tomato accessions to the spider mite Tetranychus evansi in Kenya.

    PubMed

    Onyambus, G K; Maranga, R O; Gitonga, L M; Knapp, M

    2011-08-01

    The spider mite Tetranychus evansi has a broad range of host plants. Control of T. evansi has been a big challenge to tomato farmers due to its fast rate of reproduction, development of resistance to chemical pesticides and its ability to use weeds as alternative hosts when the tomato plants are not available. The aim of the current study was to determine the host plant acceptance and the relative contributions of trichomes in the control of the red spider mite by comparing the survival, development and oviposition rates of the red spider mite on eight tomato accessions. Leaflets from eight tomato varieties were assayed with the spider mites to determine the egg laying capacity and developmental time of the spider mites on the tomato accessions as well as the trichome densities. Densities of trichome types I, IV, V and VI varied among the tomato accessions. Variation in types I, IV and VI accounted for most of the variation in mite responses. The varieties with high densities of types IV and VI had the highest fecundity and mite development did not go beyond the larval stage. The developmental time varied significantly among the tomato accessions. The results indicated that the higher the density of trichome type I the lower the adult survival. The findings indicated possible resistance of some of the tested tomato accessions against T. evansi which is partially associated with trichomes types and density.

  8. Butyrate Enhances Disease Resistance of Chickens by Inducing Antimicrobial Host Defense Peptide Gene Expression

    PubMed Central

    Sunkara, Lakshmi T.; Achanta, Mallika; Schreiber, Nicole B.; Bommineni, Yugendar R.; Dai, Gan; Jiang, Weiyu; Lamont, Susan; Lillehoj, Hyun S.; Beker, Ali; Teeter, Robert G.; Zhang, Guolong

    2011-01-01

    Host defense peptides (HDPs) constitute a large group of natural broad-spectrum antimicrobials and an important first line of immunity in virtually all forms of life. Specific augmentation of synthesis of endogenous HDPs may represent a promising antibiotic-alternative approach to disease control. In this study, we tested the hypothesis that exogenous administration of butyrate, a major type of short-chain fatty acids derived from bacterial fermentation of undigested dietary fiber, is capable of inducing HDPs and enhancing disease resistance in chickens. We have found that butyrate is a potent inducer of several, but not all, chicken HDPs in HD11 macrophages as well as in primary monocytes, bone marrow cells, and jejuna and cecal explants. In addition, butyrate treatment enhanced the antibacterial activity of chicken monocytes against Salmonella enteritidis, with a minimum impact on inflammatory cytokine production, phagocytosis, and oxidative burst capacities of the cells. Furthermore, feed supplementation with 0.1% butyrate led to a significant increase in HDP gene expression in the intestinal tract of chickens. More importantly, such a feeding strategy resulted in a nearly 10-fold reduction in the bacterial titer in the cecum following experimental infections with S. enteritidis. Collectively, the results indicated that butyrate-induced synthesis of endogenous HDPs is a phylogenetically conserved mechanism of innate host defense shared by mammals and aves, and that dietary supplementation of butyrate has potential for further development as a convenient antibiotic-alternative strategy to enhance host innate immunity and disease resistance. PMID:22073293

  9. Mode of resistance to viral lysis affects host growth across multiple environments in the marine picoeukaryote Ostreococcus tauri.

    PubMed

    Heath, Sarah E; Collins, Sinead

    2016-12-01

    Viruses play important roles in population dynamics and as drivers of evolution in single-celled marine phytoplankton. Viral infection of Ostreococcus tauri often causes cell lysis, but two spontaneously arising resistance mechanisms occur: resistant cells that cannot become infected and resistant producer cells that are infected but not lysed, and which may slowly release viruses. As of yet, little is known about how consistent the effects of viruses on their hosts are across different environments. To measure the effect of host resistance on host growth, and to determine whether this effect is environmentally dependent, we compared the growth and survival of susceptible, resistant and resistant producer O. tauri cells under five environmental conditions with and without exposure to O. tauri virus. While the effects of exposure to virus on growth rates did not show a consistent pattern in populations of resistant cells, there were several cases where exposure to virus affected growth in resistant hosts, sometimes positively. In the absence of virus, there was no detectable cost of resistance in any environment, as measured by growth rate. In fact, the opposite was the case, with populations of resistant producer cells having the highest growth rates across four of the five environments. © 2016 Society for Applied Microbiology and John Wiley & Sons Ltd.

  10. Accomplishments of a 10-year initiative to develop host plant resistance to root-knot and reniform nematodes in cotton

    USDA-ARS?s Scientific Manuscript database

    In 2003 Cotton Incorporated initiated a Beltwide research program to develop host plant resistance against root-knot (Meloidogyne incognita) and reniform (Rotylenchulus reniformis) nematodes. Objectives formulated at a coordinating meeting in 2003 that included participants from public institutions...

  11. Genetic variation and host-parasite specificity of Striga resistance and tolerance in rice: the need for predictive breeding.

    PubMed

    Rodenburg, Jonne; Cissoko, Mamadou; Kayongo, Nicholas; Dieng, Ibnou; Bisikwa, Jenipher; Irakiza, Runyambo; Masoka, Isaac; Midega, Charles A O; Scholes, Julie D

    2017-02-13

    The parasitic weeds Striga asiatica and Striga hermonthica cause devastating yield losses to upland rice in Africa. Little is known about genetic variation in host resistance and tolerance across rice genotypes, in relation to virulence differences across Striga species and ecotypes. Diverse rice genotypes were phenotyped for the above traits in S. asiatica- (Tanzania) and S. hermonthica-infested fields (Kenya and Uganda) and under controlled conditions. New rice genotypes with either ecotype-specific or broad-spectrum resistance were identified. Resistance identified in the field was confirmed under controlled conditions, providing evidence that resistance was largely genetically determined. Striga-resistant genotypes contributed to yield security under Striga-infested conditions, although grain yield was also determined by the genotype-specific yield potential and tolerance. Tolerance, the physiological mechanism mitigating Striga effects on host growth and physiology, was unrelated to resistance, implying that any combination of high, medium or low levels of these traits can be found across rice genotypes. Striga virulence varies across species and ecotypes. The extent of Striga-induced host damage results from the interaction between parasite virulence and genetically determined levels of host-plant resistance and tolerance. These novel findings support the need for predictive breeding strategies based on knowledge of host resistance and parasite virulence.

  12. Pathogen development and host responses to Plasmopara viticola in resistant and susceptible grapevines: an ultrastructural study

    PubMed Central

    Yin, Xiao; Liu, Rui-Qi; Su, Hang; Su, Li; Guo, Yu-Rui; Wang, Zi-Jia; Du, Wei; Li, Mei-Jie; Zhang, Xi; Wang, Yue-Jin; Liu, Guo-Tian; Xu, Yan

    2017-01-01

    The downy mildew disease in grapevines is caused by Plasmopara viticola. This disease poses a serious threat wherever viticulture is practiced. Wild Vitis species showing resistance to P. viticola offer a promising pathway to develop new grapevine cultivars resistant to P. viticola which will allow reduced use of environmentally unfriendly fungicides. Here, transmission and scanning microscopy was used to compare the resistance responses to downy mildew of three resistant genotypes of V. davidii var. cyanocarpa, V. piasesezkii and V. pseudoreticulata and the suceptible V. vinifera cultivar ‘Pinot Noir’. Following inoculation with sporangia of P. viticola isolate ‘YL’ on V. vinifera cv. ‘Pinot Noir’, the infection was characterized by a rapid spread of intercellular hyphae, a high frequency of haustorium formation within the host’s mesophyll cells, the production of sporangia and by the absence of host-cell necrosis. In contrast zoospores were collapsed in the resistant V. pseudoreticulata ‘Baihe-35-1’, or secretions appeared arround stomata at the beginning of the infection period in V. davidii var. cyanocarpa ‘Langao-5’ and V. piasezkii ‘Liuba-8’. The main characteristics of the resistance responses were the rapid depositions of callose and the appearance of empty hyphae and the plasmolysis of penetrated tissue. Moreover, collapsed haustoria were observed in V. davidii var. cyanocarpa ‘Langao-5’ at 5 days post inoculation (dpi) and in V. piasezkii ‘Liuba-8’ at 7 dpi. Lastly, necrosis extended beyond the zone of restricted colonization in all three resistant genotypes. Sporangia were absent in V. piasezkii ‘Liuba-8’ and greatly decreased in V. davidii var. cyanocarpa ‘Langao-5’ and in V. pseudoreticulata ‘Baihe-35-1’ compared with in V. vinifera cv. ‘Pinot Noir’. Overall, these results provide insights into the cellular biological basis of the incompatible interactions between the pathogen and the host. They

  13. The bacterial DNA repair protein Mfd confers resistance to the host nitrogen immune response

    PubMed Central

    Guillemet, Elisabeth; Leréec, Alain; Tran, Seav-Ly; Royer, Corinne; Barbosa, Isabelle; Sansonetti, Philippe; Lereclus, Didier; Ramarao, Nalini

    2016-01-01

    Production of reactive nitrogen species (NO) is a key step in the immune response following infections. NO induces lesions to bacterial DNA, thus limiting bacterial growth within hosts. Using two pathogenic bacteria, Bacillus cereus and Shigella flexneri, we show that the DNA-repair protein Mfd (Mutation-Frequency-Decline) is required for bacterial resistance to the host-NO-response. In both species, a mutant deficient for mfd does not survive to NO, produced in vitro or by phagocytic cells. In vivo, the ∆mfd mutant is avirulent and unable to survive the NO-stress. Moreover, NO induces DNA-double-strand-breaks and point mutations in the Δmfd mutant. In overall, these observations demonstrate that NO damages bacterial DNA and that Mfd is required to maintain bacterial genomic integrity. This unexpected discovery reveals that Mfd, a typical housekeeping gene, turns out to be a true virulence factor allowing survival and growth of the pathogen in its host, due to its capacity to protect the bacterium against NO, a key molecule of the innate immune defense. As Mfd is widely conserved in the bacterial kingdom, these data highlight a mechanism that may be used by a large spectrum of bacteria to overcome the host immune response and especially the mutagenic properties of NO. PMID:27435260

  14. Secondary mutations as mediators of resistance to targeted therapy in leukemia

    PubMed Central

    Cortes, Jorge; Ravandi, Farhad; Patel, Keyur P.; Burger, Jan A.; Konopleva, Marina; Kantarjian, Hagop

    2015-01-01

    The advent of small molecule-based targeted therapy has improved the treatment of both acute and chronic leukemias. Resistance to small molecule inhibitors has emerged as a common theme. The most frequent mode of acquired resistance is the acquisition of point mutations in the kinase domain. FLT3 inhibitors have improved response rates in FLT3-mutated acute myeloid leukemia (AML). The occurrence of the ATP-binding site and activation loop mutations confers varying degrees of resistance to the individual FLT3 inhibitors. Second-generation FLT3 inhibitors such as crenolanib may overcome the resistance of these mutations. Furthermore, nonmutational mechanisms of resistance such as prosurvival pathways and bone marrow signaling may be upregulated in FLT3 inhibitor-resistant AML with secondary kinase domain mutations. More recently, point mutations conferring resistance to the Bruton tyrosine kinase inhibitor ibrutinib in chronic lymphocytic leukemia, arsenic trioxide in acute promyelocytic leukemia, and the BH3-mimetic ABT199 in lymphoma have been identified. In chronic myeloid leukemia, the emergence of tyrosine kinase domain mutations has historically been the dominant mechanism of resistance. The early identification of secondary point mutations and their downstream effects along with the development of second- or third-generation inhibitors and rationally designed small molecule combinations are potential strategies to overcome mutation-mediated resistance. PMID:25795921

  15. The 12th I. E. Melhus Graduate Student Symposium: host plant resistance and disease management, current status and future outlook

    USDA-ARS?s Scientific Manuscript database

    The 12th I. E. Melhus Graduate Student Symposium was held on 6 August 2012 during the Annual meeting of the American Phytopathological Society (APS) in Providence, RI. The theme for this symposium was “Host Plant Resistance and Disease Management: Current Status and Future Outlook”. The APS Host R...

  16. Spread of butternut canker in North America, host range, evidence of resistance within butternut populations and conservation genetics

    Treesearch

    M. E. Ostry; K. Woeste

    2004-01-01

    Butternut canker is killing trees throughout the range of butternut in North America and is threatening the viability of many populations in several areas. Although butternut is the primary host, other Juglans species and some hardwood species also are potential hosts. Evidence is building that genetic resistance within butternut populations may be...

  17. Current status of the availability, development, and use of host plant resistance to nematodes.

    PubMed

    Roberts, P A

    1992-06-01

    Host plant resistance (HPR) to nematodes has been identified in many major crops and related wild germplasm. Most HPR is to the more specialized, sedentary endoparasitic genera and species, e.g., Globodera, Heterodera, Meloidogyne, Nacobbus, Rotylenchulus, and Tylenchulus. Some HPR has been developed or identified also to certain migratory endoparasites (Aphelenchoides, Ditylenchus, Pratylenchus, Radopholus) in a few hosts. Commercial use of HPR remains limited, despite its benefits to crop production when deployed appropriately. Restricted use and availability of HPR result from problems associated with transfer of resistance into acceptable cultivars. Difficulties occur in gene transfer to acceptable cultivars because of incompatibility barriers to hybridization or linkage to undesirable traits, for example in cucurbitaceous and solanaceous crops and sugarbeet. Specificity of HPR to only one species, or one or few pathotypes, as it relates to resistance durability and nematode virulence, and HPR response to abiotic factors such as high soil temperature, also limit availability and utility. A scheme for HPR development is presented to emphasize nematology research and information requirements for expanding HPR use in nematode control programs, for example in common bean, sugarbeet, and tomato. Nonbiological factors that influence HPR usage are discussed, including heavy reliance on nematicide programs, low priority of nematode HPR in many breeding programs, and insufficient breeder-nematologist collaboration.

  18. Resistance and host-response of selected plants to Meloidogyne megadora.

    PubMed

    de Almeida, A M S F; de A Santos, M S N

    2002-06-01

    Fourteen plant species, including 30 genotypes, were assessed for host suitability to Meloidogyne megadora in a growth room at 20 to 28 degrees C. Host suitability was based on the gall index (GI) and the reproduction factor (Rf):final population density (Pf)/initial population density (Pi). The presence of distinct galling was observed on roots of six plant species, and reproduction occurred on five of the 14 species tested. Three cultivars of cantaloupe (cvs. Branco do Ribatejo, Concerto, and Galia), three of cucumber (cvs. LM 809, Half Long Palmetto, and Market More), six of banana (cvs. Maçá, Ouro Branco, Ouro Roxo, Prata, Páo, and Valery), and one of broad bean (cv. Algarve) were considered susceptible (Pf/Pi > 1). Resistant cultivars (Pf/Pi = 0) included beet (cv, Crosby), pepper (cv. LM 204), watermelon (cvs. Black Magic and Crimson Sweet), tomato (cvs. Moneymaker and Rossol), radish (cv. Cherry Belle), and corn (cv. Dunia); sunn hemp and black velvetbean genotypes were also resistant. All Brassica cultivars were galled, although no egg masses were observed (Pf/Pi = 0), and classified as resistant/hypersensitive.

  19. Acquired immunity and stochasticity in epidemic intervals impede the evolution of host disease resistance.

    PubMed

    Harding, Karin C; Hansen, B Johan L; Goodman, Simon J

    2005-12-01

    Disease can generate intense selection pressure on host populations, but here we show that acquired immunity in a population subject to repeated disease outbreaks can impede the evolution of genetic disease resistance by maintaining susceptible genotypes in the population. Interference between the life-history schedule of a species and periodicity of the disease has unintuitive effects on selection intensity, and stochasticity in outbreak period further reduces the rate of spread of disease-resistance alleles. A general age-structured population genetic model was developed and parameterized using empirical data for phocine distemper virus (PDV) epizootics in harbor seals. Scenarios with acquired immunity had lower levels of epizootic mortality compared with scenarios without acquired immunity for the first PDV outbreaks, but this pattern was reversed after about five disease cycles. Without acquired immunity, evolution of disease resistance was more rapid, and long-term population size variation is efficiently dampened. Acquired immunity has the potential to significantly influence rapid evolutionary dynamics of a host population in response to age-structured disease selection and to alter predicted selection intensities compared with epidemiological models that do not consider such feedback. This may have important implications for evolutionary population dynamics in a range of human, agricultural, and wildlife disease settings.

  20. Host cell reactivation studies with epidermal cells of mice sensitive and resistant to carcinogenesis

    SciTech Connect

    Strickland, J.E.; Strickland, A.G.

    1984-03-01

    Primary epidermal cells from AKR, BALB/c, CD-1, and SENCAR mice, listed in order of least to most sensitive to epidermal carcinogenesis by initiation and promotion protocols, were found to be equally competent to ''reactivate'' herpes simplex virus type 1 irradiated by germicidal ultraviolet radiation. Nontumorigenic BALB/c epidermal cell lines selected in vitro for resistance to terminal differentiation after in vivo or in vitro treatment with initiating doses of carcinogens showed virus survival curves similar to those of primary cells. Similarly, primary cultures which were allowed to grow to confluency following a single treatment with the tumor promoter 12-O-tetradecanoylphorbol-13-acetate (100 ng/ml) retained normal host cell reactivation. Host cell reactivation studies with mouse dermal fibroblasts could not be done because of the failure of the herpes simplex virus to infect these cells and produce plaques. These results demonstrate that survival of ultraviolet light-damaged virus in primary epidermal cells in culture is unrelated to whether the cells are derived from mice sensitive or resistant to epidermal carcinogenesis. Furthermore, virus survival is not changed by tumor promoter treatment or by treatment with initiating doses of carcinogens which results in differentiation-resistant cells.

  1. Host plant resistance to insects: an eco-friendly approach for pest management and environment conservation.

    PubMed

    Sharma, H C; Ortiz, Rodomiro

    2002-04-01

    Host plant resistance (HPR) to insects is an effective, economical, and environment friendly method of pest control. The most attractive feature of HPR is that farmers virtually do not need any skill in application techniques, and there is no cash investment by the resource poor farmers. Considerable progress has been made in identification and development of crop cultivars with resistance to the major pests in different crops. There is a need to transfer resistance genes into high-yielding cultivars with adaptation to different agro-ecosystems. Resistance to insects should form one of the criteria to release varieties and hybrids for cultivation by the farmers. Genes from the wild relatives of crops, and novel genes, such as those from Bacillus thuringiensis can also be deployed in different crops to make HPR an effective weapon to minimize the losses due to insect pests. HPR will not only cause a major reduction in pesticide use and slowdown the rate of development of resistance to insecticides in insect populations, but also lead to increased activity of beneficial organisms and reduction in pesticide residues in food and food products.

  2. Host Double Strand Break Repair Generates HIV-1 Strains Resistant to CRISPR/Cas9

    PubMed Central

    Yoder, Kristine E.; Bundschuh, Ralf

    2016-01-01

    CRISPR/Cas9 genome editing has been proposed as a therapeutic treatment for HIV-1 infection. CRISPR/Cas9 induced double strand breaks (DSBs) targeted to the integrated viral genome have been shown to decrease production of progeny virus. Unfortunately HIV-1 evolves rapidly and may readily produce CRISPR/Cas9 resistant strains. Here we used next-generation sequencing to characterize HIV-1 strains that developed resistance to six different CRISPR/Cas9 guide RNAs (gRNAs). Reverse transcriptase (RT) derived base substitution mutations were commonly found at sites encoding unpaired bases of RNA stem-loop structures. In addition to RT mutations, insertion and/or deletion (indel) mutations were common. Indels localized to the CRISPR/Cas9 cleavage site were major contributors to CRISPR gRNA resistance. While most indels at non-coding regions were a single base pair, 3 base pair indels were observed when a coding region of HIV-1 was targeted. The DSB repair event may preserve the HIV-1 reading frame, while destroying CRISPR gRNA homology. HIV-1 may be successfully edited by CRISPR/Cas9, but the virus remains competent for replication and resistant to further CRISPR/Cas9 targeting at that site. These observations strongly suggest that host DSB repair at CRISPR/Cas9 cleavage sites is a novel and important pathway that may contribute to HIV-1 therapeutic resistance. PMID:27404981

  3. A fitness cost for Turnip mosaic virus to overcome host resistance.

    PubMed

    Jenner, Carol E; Wang, Xiaowu; Ponz, Fernando; Walsh, John A

    2002-06-01

    The relative fitness of the Turnip mosaic virus (TuMV) isolate UK 1 was compared with that of two other wildtype isolates CZE 1 and CDN 1. The isolates CZE 1 and CDN 1 are able to overcome the effect of the resistance gene TuRB01 and at least three other resistance sources that are effective against UK 1. Comparisons were also made between the fitness of UK 1 and a recombinant virus with a single nucleotide change (v35Tunos +5570 A>G) conferring the ability to overcome TuRB01 resistance. Co-inoculation experiments were carried out where pairs of isolates were serially passaged over 5 months in a plant line possessing no known resistance genes in order to examine the relative fitness of the isolates. In each case, UK 1 dominated the mixture in the susceptible host background. It out-competed CZE 1 and v35Tunos +5570 A>G within four passages, and CDN 1 after one passage. The greater fitness of UK 1 suggests that there may be a fitness cost to TuMV overcoming resistance genes of brassica crops. This may shed some light on the frequency of naturally occurring isolates, in that pathotype 1 isolates are found much more frequently than isolates of other pathotypes. Implications for the deployment of TuRB01 are discussed.

  4. Host Double Strand Break Repair Generates HIV-1 Strains Resistant to CRISPR/Cas9.

    PubMed

    Yoder, Kristine E; Bundschuh, Ralf

    2016-07-12

    CRISPR/Cas9 genome editing has been proposed as a therapeutic treatment for HIV-1 infection. CRISPR/Cas9 induced double strand breaks (DSBs) targeted to the integrated viral genome have been shown to decrease production of progeny virus. Unfortunately HIV-1 evolves rapidly and may readily produce CRISPR/Cas9 resistant strains. Here we used next-generation sequencing to characterize HIV-1 strains that developed resistance to six different CRISPR/Cas9 guide RNAs (gRNAs). Reverse transcriptase (RT) derived base substitution mutations were commonly found at sites encoding unpaired bases of RNA stem-loop structures. In addition to RT mutations, insertion and/or deletion (indel) mutations were common. Indels localized to the CRISPR/Cas9 cleavage site were major contributors to CRISPR gRNA resistance. While most indels at non-coding regions were a single base pair, 3 base pair indels were observed when a coding region of HIV-1 was targeted. The DSB repair event may preserve the HIV-1 reading frame, while destroying CRISPR gRNA homology. HIV-1 may be successfully edited by CRISPR/Cas9, but the virus remains competent for replication and resistant to further CRISPR/Cas9 targeting at that site. These observations strongly suggest that host DSB repair at CRISPR/Cas9 cleavage sites is a novel and important pathway that may contribute to HIV-1 therapeutic resistance.

  5. Heterogeneous Mechanisms of Secondary Resistance and Clonal Selection in Sarcoma during Treatment with Nutlin

    PubMed Central

    Laroche, Audrey; Tran-Cong, Kevin; Chaire, Vanessa; Lagarde, Pauline; Hostein, Isabelle; Coindre, Jean-Michel; Chibon, Frederic; Neuville, Agnes; Lesluyes, Tom; Lucchesi, Carlo; Italiano, Antoine

    2015-01-01

    Nutlin inhibits TP53-MDM2 interaction and is under investigation in soft-tissue sarcomas (STS) and other malignancies. Molecular mechanisms of secondary resistance to nutlin in STS are unknown. We performed whole-transcriptome sequencing (RNA-seq) on three pretreatment and secondary resistant STS cell lines selected based on their high primary sensitivity to nutlin. Our data identified a subset of cancer gene mutations and ploidy variations that were positively selected following treatment, including TP53 mutations in 2 out of 3 resistant cell lines. Further, secondary resistance to nutlin was associated with deregulation of apoptosis-related genes and marked productive autophagy, the inhibition of which resulted in significant restoration of nutlin-induced cell death. Collectively, our findings argue that secondary resistance to nutlin in STS involved heterogeneous mechanisms resulting from clonal evolution and several biological pathways. Alternative dosing regimens and combination with other targeted agents are needed to achieve successful development of nutlin in the clinical setting. PMID:26427052

  6. Host-Mediated Bioactivation of Pyrazinamide: Implications for Efficacy, Resistance, and Therapeutic Alternatives

    PubMed Central

    Via, Laura E.; Savic, Rada; Weiner, Danielle M.; Zimmerman, Matthew D.; Prideaux, Brendan; Irwin, Scott M.; Lyon, Eddie; O’Brien, Paul; Gopal, Pooja; Eum, Seokyong; Lee, Myungsun; Lanoix, Jean-Philippe; Dutta, Noton K.; Shim, TaeSun; Cho, Jeong Su; Kim, Wooshik; Karakousis, Petros C.; Lenaerts, Anne; Nuermberger, Eric; Barry, Clifton E.; Dartois, Véronique

    2015-01-01

    Pyrazinamide has played a critical role in shortening therapy against drug-sensitive, drug-resistant, active, and latent tuberculosis (TB). Despite widespread recognition of its therapeutic importance, the sterilizing properties of this 60-year-old drug remain an enigma given its rather poor activity in vitro. Here we revisit longstanding paradigms and offer pharmacokinetic explanations for the apparent disconnect between in vitro activity and clinical impact. We show substantial host-mediated conversion of prodrug pyrazinamide (PZA) to the active form, pyrazinoic acid (POA), in TB patients and in animal models. We demonstrate favorable penetration of this pool of circulating POA from plasma into lung tissue and granulomas, where the pathogen resides. In standardized growth inhibition experiments, we show that POA exhibits superior in vitro potency compared to PZA, indicating that the vascular supply of host-derived POA may contribute to the in vivo efficacy of PZA, thereby reducing the apparent discrepancy between in vitro and in vivo activity. However, the results also raise the possibility that subinhibitory concentrations of POA generated by the host could fuel the emergence of resistance to both PZA and POA. In contrast to widespread expectations, we demonstrate good oral bioavailability and exposure in preclinical species in pharmacokinetic studies of oral POA. Baseline exposure of oral POA can be further increased by the xanthine oxidase inhibitor and approved gout drug allopurinol. These promising results pave the way for clinical investigations of oral POA as a therapeutic alternative or an add-on to overcome PZA resistance and salvage this essential TB drug. PMID:26086040

  7. Warriors at the gate that never sleep: non-host resistance in plants.

    PubMed

    Uma, Battepati; Rani, T Swaroopa; Podile, Appa Rao

    2011-12-15

    The native resistance of most plant species against a wide variety of pathogens is known as non-host resistance (NHR), which confers durable protection to plant species. Only a few pathogens or parasites can successfully cause diseases. NHR is polygenic and appears to be linked with basal plant resistance, a form of elicited protection. Sensing of pathogens by plants is brought about through the recognition of invariant pathogen-associated molecular patterns (PAMPs) that trigger downstream defense signaling pathways. Race-specific resistance, (R)-gene mediated resistance, has been extensively studied and reviewed, while our knowledge of NHR has advanced only recently due to the improved access to excellent model systems. The continuum of the cell wall (CW) and the CW-plasma membrane (PM)-cytoskeleton plays a crucial role in perceiving external cues and activating defense signaling cascades during NHR. Based on the type of hypersensitive reaction (HR) triggered, NHR was classified into two types, namely type-I and type-II. Genetic analysis of Arabidopsis mutants has revealed important roles for a number of specific molecules in NHR, including the role of SNARE-complex mediated exocytosis, lipid rafts and vesicle trafficking. As might be expected, R-gene mediated resistance is found to overlap with NHR, but the extent to which the genes/pathways are common between these two forms of disease resistance is unknown. The present review focuses on the various components involved in the known mechanisms of NHR in plants with special reference to the role of CW-PM components.

  8. Temporal and anatomical host resistance to chronic Salmonella infection is quantitatively dictated by Nramp1 and influenced by host genetic background.

    PubMed

    Loomis, Wendy P; Johnson, Matthew L; Brasfield, Alicia; Blanc, Marie-Pierre; Yi, Jaehun; Miller, Samuel I; Cookson, Brad T; Hajjar, Adeline M

    2014-01-01

    The lysosomal membrane transporter, Nramp1, plays a key role in innate immunity and resistance to infection with intracellular pathogens such as non-typhoidal Salmonella (NTS). NTS-susceptible C57BL/6 (B6) mice, which express the mutant Nramp1D169 allele, are unable to control acute infection with Salmonella enterica serovar Typhimurium following intraperitoneal or oral inoculation. Introducing functional Nramp1G169 into the B6 host background, either by constructing a congenic strain carrying Nramp1G169 from resistant A/J mice (Nramp-Cg) or overexpressing Nramp1G169 from a transgene (Nramp-Tg), conferred equivalent protection against acute Salmonella infection. In contrast, the contributions of Nramp1 for controlling chronic infection are more complex, involving temporal and anatomical differences in Nramp1-dependent host responses. Nramp-Cg, Nramp-Tg and NTS-resistant 129×1/SvJ mice survived oral Salmonella infection equally well for the first 2-3 weeks, providing evidence that Nramp1 contributes to the initial control of NTS bacteremia preceding establishment of chronic Salmonella infection. By day 30, increased host Nramp1 expression (Tg>Cg) provided greater protection as indicated by decreased splenic bacterial colonization (Tghost resistance is conferred by Nramp1 expression in NTS-susceptible mice, 2) restriction of systemic bacterial growth in the spleens of NTS-susceptible mice is enhanced by Nramp1 expression and dose-dependent, and 3) host genes other than Nramp1 also contribute to the ability of NTS-resistant 129×1/SvJ mice to control bacterial replication during chronic infection.

  9. Inoculation of Transgenic Resistant Potato by Phytophthora infestans Affects Host Plant Choice of a Generalist Moth.

    PubMed

    Abreha, Kibrom B; Alexandersson, Erik; Vossen, Jack H; Anderson, Peter; Andreasson, Erik

    2015-01-01

    Pathogen attack and the plant's response to this attack affect herbivore oviposition preference and larval performance. Introduction of major resistance genes against Phytophthora infestans (Rpi-genes), the cause of the devastating late blight disease, from wild Solanum species into potato changes the plant-pathogen interaction dynamics completely, but little is known about the effects on non-target organisms. Thus, we examined the effect of P. infestans itself and introduction of an Rpi-gene into the crop on host plant preference of the generalist insect herbivore, Spodoptera littoralis (Lepidoptera: Noctuidae). In two choice bioassays, S. littoralis preferred to oviposit on P. infestans-inoculated plants of both the susceptible potato (cv. Desiree) and an isogenic resistant clone (A01-22: cv. Desiree transformed with Rpi-blb1), when compared to uninoculated plants of the same genotype. Both cv. Desiree and clone A01-22 were equally preferred for oviposition by S. littoralis when uninoculated plants were used, while cv. Desiree received more eggs compared to the resistant clone when both were inoculated with the pathogen. No significant difference in larval and pupal weight was found between S. littoralis larvae reared on leaves of the susceptible potato plants inoculated or uninoculated with P. infestans. Thus, the herbivore's host plant preference in this system was not directly associated with larval performance. The results indicate that the Rpi-blb1 based resistance in itself does not influence insect behavior, but that herbivore oviposition preference is affected by a change in the plant-microbe interaction.

  10. Host response. Inflammation-induced disruption of SCS macrophages impairs B cell responses to secondary infection.

    PubMed

    Gaya, Mauro; Castello, Angelo; Montaner, Beatriz; Rogers, Neil; Reis e Sousa, Caetano; Bruckbauer, Andreas; Batista, Facundo D

    2015-02-06

    The layer of macrophages at the subcapsular sinus (SCS) captures pathogens entering the lymph node, preventing their global dissemination and triggering an immune response. However, how infection affects SCS macrophages remains largely unexplored. Here we show that infection and inflammation disrupt the organization of SCS macrophages in a manner that involves the migration of mature dendritic cells to the lymph node. This disrupted organization reduces the capacity of SCS macrophages to retain and present antigen in a subsequent secondary infection, resulting in diminished B cell responses. Thus, the SCS macrophage layer may act as a sensor or valve during infection to temporarily shut down the lymph node to further antigenic challenge. This shutdown may increase an organism's susceptibility to secondary infections.

  11. Nitrogen fertilization of the host plant influences production and pathogenicity of Botrytis cinerea secondary inoculum.

    PubMed

    Abro, Manzoor Ali; Lecompte, François; Bryone, Florian; Nicot, Philippe C

    2013-03-01

    The influence of nitrogen (N) nutrition on a plant's susceptibility to Botrytis spp. and other pathogens is well documented. However, little is known of possible effects on sporulation of the pathogen on diseased tissue and on the pathogenicity of resulting secondary inoculum. To address this question, sporulation by two strains of Botrytis cinerea was quantified on tomato plants produced under different N irrigation regimes with inputs of NO(3)- at 0.5 to 45 mmol liter(-1) (mM). Sporulation decreased significantly (P < 0.05) with increasing N fertilization up to NO(3)- at 15 to 30 mM. The secondary inoculum was collected and used to inoculate pruning wounds on tomato plants produced under a standard fertilization regime. Pathogenicity of the spores was significantly influenced by the nutritional status of their production substrate. Disease severity was highest with spores produced on plants with very low or very high N fertilization (NO(3)- at 0.5 or 30 mM). It was lowest for inoculum from plants with moderate levels of N fertilization. These results suggest that it may be possible to find an optimum level of N fertilization to reduce the production of secondary inoculum and its pathogenicity to tomato.

  12. Splice variants and regulatory networks associated with host resistance to the intestinal worm Cooperia oncophora in cattle

    USDA-ARS?s Scientific Manuscript database

    To elucidate the molecular mechanisms of host resistance, we characterized the jejunal transcriptome of Angus cattle selected for parasite resistance for over 20 years in response to infection caused by the intestinal worm Cooperia oncophora. The transcript abundance of 56 genes, such as that of muc...

  13. A Piece of Resistance: Exploring Behaviour Assessment and Political Subjectification in a Swedish Upper Secondary School

    ERIC Educational Resources Information Center

    Larsson, Joakim

    2014-01-01

    In 2007, students at a Swedish Upper Secondary School engaged in a series of protests and demonstrations against the implementation of a written assessment of student conduct. This article explores the motivations and manifestations of this resistance, mainly by analysing debate articles and web material from the student union that organized the…

  14. Rise or Resist: Exploring Senior Secondary Students' Reactions to Challenging Mathematics Tasks Incorporating Multiple Strategies

    ERIC Educational Resources Information Center

    Wilkie, Karina J.

    2016-01-01

    Learning to solve more challenging mathematics problems using multiple strategies has been promoted by research and is a feature of numerous curricula. Yet teachers have been found to be reluctant to incorporate these tasks into their lessons predicting resistance from students. This study examined 87 senior secondary students' reactions to a…

  15. The Secondary School Pipeline: Longitudinal Indicators of Resilience and Resistance in Urban Schools Under Reform

    ERIC Educational Resources Information Center

    Samel, Arthur N.; Sondergeld, Toni A.; Fischer, John M.; Patterson, Nancy C.

    2011-01-01

    Students in the secondary education pipeline, the 6-year period between 7th and 12th grades, deal with external and internal conditions that facilitate or hinder progress to graduation and beyond--these conditions offer resilience or resistance and influence student movement through public schools. This study follows an urban middle school cohort…

  16. Overcoming Resistance to Achievement-based Unit Grading in Secondary Physical Education

    ERIC Educational Resources Information Center

    Johnson, Randall

    2008-01-01

    Achievement-based unit grading in secondary physical education is not commonly practiced due to resistance to grading students based on learning, performance, or achievement. Traditional grading practices based on managerial factors, such as attendance and good behavior, and on "pseudo-accountability" do little to make students accountable for…

  17. A Piece of Resistance: Exploring Behaviour Assessment and Political Subjectification in a Swedish Upper Secondary School

    ERIC Educational Resources Information Center

    Larsson, Joakim

    2014-01-01

    In 2007, students at a Swedish Upper Secondary School engaged in a series of protests and demonstrations against the implementation of a written assessment of student conduct. This article explores the motivations and manifestations of this resistance, mainly by analysing debate articles and web material from the student union that organized the…

  18. The Secondary School Pipeline: Longitudinal Indicators of Resilience and Resistance in Urban Schools Under Reform

    ERIC Educational Resources Information Center

    Samel, Arthur N.; Sondergeld, Toni A.; Fischer, John M.; Patterson, Nancy C.

    2011-01-01

    Students in the secondary education pipeline, the 6-year period between 7th and 12th grades, deal with external and internal conditions that facilitate or hinder progress to graduation and beyond--these conditions offer resilience or resistance and influence student movement through public schools. This study follows an urban middle school cohort…

  19. Exposure to Corticosterone Affects Host Resistance, but Not Tolerance, to an Emerging Fungal Pathogen

    PubMed Central

    Murone, Julie; DeMarchi, Joseph A.; Venesky, Matthew D.

    2016-01-01

    Host responses to pathogens include defenses that reduce infection burden (i.e., resistance) and traits that reduce the fitness consequences of an infection (i.e., tolerance). Resistance and tolerance are affected by an organism's physiological status. Corticosterone (“CORT”) is a hormone that is associated with the regulation of many physiological processes, including metabolism and reproduction. Because of its role in the stress response, CORT is also considered the primary vertebrate stress hormone. When secreted at high levels, CORT is generally thought to be immunosuppressive. Despite the known association between stress and disease resistance in domesticated organisms, it is unclear whether these associations are ecologically and evolutionary relevant in wildlife species. We conducted a 3x3 fully crossed experiment in which we exposed American toads (Anaxyrus [Bufo] americanus) to one of three levels of exogenous CORT (no CORT, low CORT, or high CORT) and then to either low or high doses of the pathogenic chytrid fungus Batrachochytrium dendrobatidis (“Bd”) or a sham exposure treatment. We assessed Bd infection levels and tested how CORT and Bd affected toad resistance, tolerance, and mortality. Exposure to the high CORT treatment significantly elevated CORT release in toads; however, there was no difference between toads given no CORT or low CORT. Exposure to CORT and Bd each increased toad mortality, but they did not interact to affect mortality. Toads that were exposed to CORT had higher Bd resistance than toads exposed to ethanol controls/low CORT, a pattern opposite that of most studies on domesticated animals. Exposure to CORT did not affect toad tolerance to Bd. Collectively, these results show that physiological stressors can alter a host’s response to a pathogen, but that the outcome might not be straightforward. Future studies that inhibit CORT secretion are needed to better our understanding of the relationship between stress physiology

  20. The inflammasomes: molecular effectors of host resistance against bacterial, viral, parasitic, and fungal infections.

    PubMed

    Skeldon, Alexander; Saleh, Maya

    2011-01-01

    The inflammasomes are large multi-protein complexes scaffolded by cytosolic pattern recognition receptors (PRRs) that form an important part of the innate immune system. They are activated following the recognition of microbial-associated molecular patterns or host-derived danger signals (danger-associated molecular patterns) by PRRs. This recognition results in the recruitment and activation of the pro-inflammatory protease caspase-1, which cleaves its preferred substrates pro-interleukin-1β (IL-1β) and pro-IL-18 into their mature biologically active cytokine forms. Through processing of a number of other cellular substrates, caspase-1 is also required for the release of "alarmins" and the induction and execution of an inflammatory form of cell death termed pyroptosis. A growing spectrum of inflammasomes have been identified in the host defense against a variety of pathogens. Reciprocally, pathogens have evolved effector strategies to antagonize the inflammasome pathway. In this review we discuss recent developments in the understanding of inflammasome-mediated recognition of bacterial, viral, parasitic, and fungal infections and the beneficial or detrimental effects of inflammasome signaling in host resistance.

  1. IL-37 impairs host resistance to Listeria infection by suppressing macrophage function.

    PubMed

    Zhao, Mengmeng; Hu, Yongguang; Shou, Juanjuan; Su, Shao Bo; Yang, Jianhua; Yang, Tianshu

    2017-04-01

    Listeria monocytogenes is a Gram-positive intracellular bacterium that was transmitted through contaminated food and causes sepsis and even death. IL-37 has been described as an important anti-inflammatory factor, but little is known about the function of IL-37 in host defense against Liseria monocytogenes (Lm) infection. In mice model of systemic infection, we found that mice treated with IL-37 were more sensitive to Lm infection compared with PBS-treated mice. This reduced resistance to Lm in IL-37-treated mice is accompanied with increased bacterial burden and liver damage. Serum levels of colony-stimulating factors were decreased in IL-37-treated mice. IL-37 treatment reduced bactericidal ability of bone marrow derived macrophages (BMDMs) in vitro, which contribute to the inability of IL-37-treated mice to combat Lm infection. Furthermore, increased apoptosis was observed in Lm-infected macrophages treated with IL-37. Increased macrophage apoptosis reduced percentage in liver macrophages was observed in IL-37-treated mice following Lm infection. These results indicate the negative regulatory effect of IL-37 on host resistance during immune defense against Lm.

  2. IL-21 signaling is essential for optimal host resistance against Mycobacterium tuberculosis infection

    PubMed Central

    Booty, Matthew G.; Barreira-Silva, Palmira; Carpenter, Stephen M.; Nunes-Alves, Cláudio; Jacques, Miye K.; Stowell, Britni L.; Jayaraman, Pushpa; Beamer, Gillian; Behar, Samuel M.

    2016-01-01

    IL-21 is produced predominantly by activated CD4+ T cells and has pleiotropic effects on immunity via the IL-21 receptor (IL-21R), a member of the common gamma chain (γc) cytokine receptor family. We show that IL-21 signaling plays a crucial role in T cell responses during Mycobacterium tuberculosis infection by augmenting CD8+ T cell priming, promoting T cell accumulation in the lungs, and enhancing T cell cytokine production. In the absence of IL-21 signaling, more CD4+ and CD8+ T cells in chronically infected mice express the T cell inhibitory molecules PD-1 and TIM-3. We correlate these immune alterations with increased susceptibility of IL-21R−/− mice, which have increased lung bacterial burden and earlier mortality compared to WT mice. Finally, to causally link the immune defects with host susceptibility, we use an adoptive transfer model to show that IL-21R−/− T cells transfer less protection than WT T cells. These results prove that IL-21 signaling has an intrinsic role in promoting the protective capacity of T cells. Thus, the net effect of IL-21 signaling is to enhance host resistance to M. tuberculosis. These data position IL-21 as a candidate biomarker of resistance to tuberculosis. PMID:27819295

  3. Dominant mechanisms of primary resistance differ from dominant mechanisms of secondary resistance to targeted therapies.

    PubMed

    Asić, Ksenija

    2016-01-01

    The effectiveness of targeted therapies is currently limited, as almost all patients eventually acquire resistance within year/year and a half from therapy initiation and a small subset of a patients fail to respond at all, demonstrating intrinsic resistance. The aim of this review was to determine the potential common features and differences between the mechanisms of intrinsic and acquired resistance to targeted therapies by analyzing established resistance-generating alterations for ten FDA-approved targeted drugs. The frequency of alterations underlying intrinsic and acquired resistance shows distinctive pattern, where dominant mechanisms of intrinsic resistance include aberrations of signals downstream or upstream of the targeted protein and dominant mechanisms of acquired resistance refer to lesions in the target itself or alterations of signals at target-level that can mimic or compensate for target function. It appears that during the evolution of acquired resistance, the tumor cell is inclined to preserve the same oncogene addiction on a targeted protein it had prior to drug administration. On the other hand, intrinsic resistance develops early in tumorogenesis and is based on randomly selected mutated signals between targeted and non-targeted signaling pathways, leading to the acquisition of cancer hallmarks. In general, there is an overlap between the mechanisms of intrinsic and acquired resistance, but the occurrence frequency and distribution of alterations underlying intrinsic and acquired resistance to targeted therapies are significantly different. Focus should be placed on different group of genes in pursuing predictive markers for intrinsic and acquired resistance to targeted therapies. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  4. Human host defense peptide LL-37 stimulates virulence factor production and adaptive resistance in Pseudomonas aeruginosa.

    PubMed

    Strempel, Nikola; Neidig, Anke; Nusser, Michael; Geffers, Robert; Vieillard, Julien; Lesouhaitier, Olivier; Brenner-Weiss, Gerald; Overhage, Joerg

    2013-01-01

    A multitude of different virulence factors as well as the ability to rapidly adapt to adverse environmental conditions are important features for the high pathogenicity of Pseudomonas aeruginosa. Both virulence and adaptive resistance are tightly controlled by a complex regulatory network and respond to external stimuli, such as host signals or antibiotic stress, in a highly specific manner. Here, we demonstrate that physiological concentrations of the human host defense peptide LL-37 promote virulence factor production as well as an adaptive resistance against fluoroquinolone and aminoglycoside antibiotics in P. aeruginosa PAO1. Microarray analyses of P. aeruginosa cells exposed to LL-37 revealed an upregulation of gene clusters involved in the production of quorum sensing molecules and secreted virulence factors (PQS, phenazine, hydrogen cyanide (HCN), elastase and rhamnolipids) and in lipopolysaccharide (LPS) modification as well as an induction of genes encoding multidrug efflux pumps MexCD-OprJ and MexGHI-OpmD. Accordingly, we detected significantly elevated levels of toxic metabolites and proteases in bacterial supernatants after LL-37 treatment. Pre-incubation of bacteria with LL-37 for 2 h led to a decreased susceptibility towards gentamicin and ciprofloxacin. Quantitative Realtime PCR results using a PAO1-pqsE mutant strain present evidence that the quinolone response protein and virulence regulator PqsE may be implicated in the regulation of the observed phenotype in response to LL-37. Further experiments with synthetic cationic antimicrobial peptides IDR-1018, 1037 and HHC-36 showed no induction of pqsE expression, suggesting a new role of PqsE as highly specific host stress sensor.

  5. Human Host Defense Peptide LL-37 Stimulates Virulence Factor Production and Adaptive Resistance in Pseudomonas aeruginosa

    PubMed Central

    Strempel, Nikola; Neidig, Anke; Nusser, Michael; Geffers, Robert; Vieillard, Julien; Lesouhaitier, Olivier; Brenner-Weiss, Gerald; Overhage, Joerg

    2013-01-01

    A multitude of different virulence factors as well as the ability to rapidly adapt to adverse environmental conditions are important features for the high pathogenicity of Pseudomonas aeruginosa. Both virulence and adaptive resistance are tightly controlled by a complex regulatory network and respond to external stimuli, such as host signals or antibiotic stress, in a highly specific manner. Here, we demonstrate that physiological concentrations of the human host defense peptide LL-37 promote virulence factor production as well as an adaptive resistance against fluoroquinolone and aminoglycoside antibiotics in P. aeruginosa PAO1. Microarray analyses of P. aeruginosa cells exposed to LL-37 revealed an upregulation of gene clusters involved in the production of quorum sensing molecules and secreted virulence factors (PQS, phenazine, hydrogen cyanide (HCN), elastase and rhamnolipids) and in lipopolysaccharide (LPS) modification as well as an induction of genes encoding multidrug efflux pumps MexCD-OprJ and MexGHI-OpmD. Accordingly, we detected significantly elevated levels of toxic metabolites and proteases in bacterial supernatants after LL-37 treatment. Pre-incubation of bacteria with LL-37 for 2 h led to a decreased susceptibility towards gentamicin and ciprofloxacin. Quantitative Realtime PCR results using a PAO1-pqsE mutant strain present evidence that the quinolone response protein and virulence regulator PqsE may be implicated in the regulation of the observed phenotype in response to LL-37. Further experiments with synthetic cationic antimicrobial peptides IDR-1018, 1037 and HHC-36 showed no induction of pqsE expression, suggesting a new role of PqsE as highly specific host stress sensor. PMID:24349231

  6. RNAseq expression analysis of resistant and susceptible mice after influenza A virus infection identifies novel genes associated with virus replication and important for host resistance to infection.

    PubMed

    Wilk, Esther; Pandey, Ashutosh K; Leist, Sarah Rebecca; Hatesuer, Bastian; Preusse, Matthias; Pommerenke, Claudia; Wang, Junxi; Schughart, Klaus

    2015-09-02

    The host response to influenza A infections is strongly influenced by host genetic factors. Animal models of genetically diverse mouse strains are well suited to identify host genes involved in severe pathology, viral replication and immune responses. Here, we have utilized a dual RNAseq approach that allowed us to investigate both viral and host gene expression in the same individual mouse after H1N1 infection. We performed a detailed expression analysis to identify (i) correlations between changes in expression of host and virus genes, (ii) host genes involved in viral replication, and (iii) genes showing differential expression between two mouse strains that strongly differ in resistance to influenza infections. These genes may be key players involved in regulating the differences in pathogenesis and host defense mechanisms after influenza A infections. Expression levels of influenza segments correlated well with the viral load and may thus be used as surrogates for conventional viral load measurements. Furthermore, we investigated the functional role of two genes, Reg3g and Irf7, in knock-out mice and found that deletion of the Irf7 gene renders the host highly susceptible to H1N1 infection. Using RNAseq analysis we identified novel genes important for viral replication or the host defense. This study adds further important knowledge to host-pathogen-interactions and suggests additional candidates that are crucial for host susceptibility or survival during influenza A infections.

  7. Impairment of Cellulose Synthases Required for Arabidopsis Secondary Cell Wall Formation Enhances Disease Resistance[W

    PubMed Central

    Hernández-Blanco, Camilo; Feng, Dong Xin; Hu, Jian; Sánchez-Vallet, Andrea; Deslandes, Laurent; Llorente, Francisco; Berrocal-Lobo, Marta; Keller, Harald; Barlet, Xavier; Sánchez-Rodríguez, Clara; Anderson, Lisa K.; Somerville, Shauna; Marco, Yves; Molina, Antonio

    2007-01-01

    Cellulose is synthesized by cellulose synthases (CESAs) contained in plasma membrane–localized complexes. In Arabidopsis thaliana, three types of CESA subunits (CESA4/IRREGULAR XYLEM5 [IRX5], CESA7/IRX3, and CESA8/IRX1) are required for secondary cell wall formation. We report that mutations in these proteins conferred enhanced resistance to the soil-borne bacterium Ralstonia solanacearum and the necrotrophic fungus Plectosphaerella cucumerina. By contrast, susceptibility to these pathogens was not altered in cell wall mutants of primary wall CESA subunits (CESA1, CESA3/ISOXABEN RESISTANT1 [IXR1], and CESA6/IXR2) or POWDERY MILDEW–RESISTANT5 (PMR5) and PMR6 genes. Double mutants indicated that irx-mediated resistance was independent of salicylic acid, ethylene, and jasmonate signaling. Comparative transcriptomic analyses identified a set of common irx upregulated genes, including a number of abscisic acid (ABA)–responsive, defense-related genes encoding antibiotic peptides and enzymes involved in the synthesis and activation of antimicrobial secondary metabolites. These data as well as the increased susceptibility of ABA mutants (abi1-1, abi2-1, and aba1-6) to R. solanacearum support a direct role of ABA in resistance to this pathogen. Our results also indicate that alteration of secondary cell wall integrity by inhibiting cellulose synthesis leads to specific activation of novel defense pathways that contribute to the generation of an antimicrobial-enriched environment hostile to pathogens. PMID:17351116

  8. Acinetobacter baumannii Coordinates Urea Metabolism with Metal Import To Resist Host-Mediated Metal Limitation.

    PubMed

    Juttukonda, Lillian J; Chazin, Walter J; Skaar, Eric P

    2016-09-27

    During infection, bacterial pathogens must adapt to a nutrient metal-limited environment that is imposed by the host. The innate immune protein calprotectin inhibits bacterial growth in vitro by chelating the divalent metal ions zinc (Zn(2+), Zn) and manganese (Mn(2+), Mn), but pathogenic bacteria are able to cause disease in the presence of this antimicrobial protein in vivo. One such pathogen is Acinetobacter baumannii, a Gram-negative bacterium that causes pneumonia and bloodstream infections that can be complicated by resistance to multiple antibiotics. A. baumannii inhibition by calprotectin is dependent on calprotectin Mn binding, but the mechanisms employed by A. baumannii to overcome Mn limitation have not been identified. This work demonstrates that A. baumannii coordinates transcription of an NRAMP family Mn transporter and a urea carboxylase to resist the antimicrobial activities of calprotectin. This NRAMP family transporter facilitates Mn accumulation and growth of A. baumannii in the presence of calprotectin. A. baumannii is found to utilize urea as a sole nitrogen source, and urea utilization requires the urea carboxylase encoded in an operon with the NRAMP family transporter. Moreover, urea carboxylase activity is essential for calprotectin resistance in A. baumannii Finally, evidence is provided that this system combats calprotectin in vivo, as deletion of the transporter impairs A. baumannii fitness in a mouse model of pneumonia, and this fitness defect is modulated by the presence of calprotectin. These findings reveal that A. baumannii has evolved mechanisms to subvert host-mediated metal sequestration and they uncover a connection between metal starvation and metabolic stress.

  9. Acinetobacter baumannii Coordinates Urea Metabolism with Metal Import To Resist Host-Mediated Metal Limitation

    PubMed Central

    Juttukonda, Lillian J.; Chazin, Walter J.

    2016-01-01

    ABSTRACT During infection, bacterial pathogens must adapt to a nutrient metal-limited environment that is imposed by the host. The innate immune protein calprotectin inhibits bacterial growth in vitro by chelating the divalent metal ions zinc (Zn2+, Zn) and manganese (Mn2+, Mn), but pathogenic bacteria are able to cause disease in the presence of this antimicrobial protein in vivo. One such pathogen is Acinetobacter baumannii, a Gram-negative bacterium that causes pneumonia and bloodstream infections that can be complicated by resistance to multiple antibiotics. A. baumannii inhibition by calprotectin is dependent on calprotectin Mn binding, but the mechanisms employed by A. baumannii to overcome Mn limitation have not been identified. This work demonstrates that A. baumannii coordinates transcription of an NRAMP family Mn transporter and a urea carboxylase to resist the antimicrobial activities of calprotectin. This NRAMP family transporter facilitates Mn accumulation and growth of A. baumannii in the presence of calprotectin. A. baumannii is found to utilize urea as a sole nitrogen source, and urea utilization requires the urea carboxylase encoded in an operon with the NRAMP family transporter. Moreover, urea carboxylase activity is essential for calprotectin resistance in A. baumannii. Finally, evidence is provided that this system combats calprotectin in vivo, as deletion of the transporter impairs A. baumannii fitness in a mouse model of pneumonia, and this fitness defect is modulated by the presence of calprotectin. These findings reveal that A. baumannii has evolved mechanisms to subvert host-mediated metal sequestration and they uncover a connection between metal starvation and metabolic stress. PMID:27677795

  10. Host immunity to Plasmodium falciparum and the assessment of emerging artemisinin resistance in a multinational cohort.

    PubMed

    Ataide, Ricardo; Ashley, Elizabeth A; Powell, Rosanna; Chan, Jo-Anne; Malloy, Michael J; O'Flaherty, Katherine; Takashima, Eizo; Langer, Christine; Tsuboi, Takafumi; Dondorp, Arjen M; Day, Nicholas P; Dhorda, Mehul; Fairhurst, Rick M; Lim, Pharath; Amaratunga, Chanaki; Pukrittayakamee, Sasithon; Hien, Tran Tinh; Htut, Ye; Mayxay, Mayfong; Faiz, M Abul; Beeson, James G; Nosten, Francois; Simpson, Julie A; White, Nicholas J; Fowkes, Freya J I

    2017-03-28

    Artemisinin-resistant falciparum malaria, defined by a slow-clearance phenotype and the presence of kelch13 mutants, has emerged in the Greater Mekong Subregion. Naturally acquired immunity to malaria clears parasites independent of antimalarial drugs. We hypothesized that between- and within-population variations in host immunity influence parasite clearance after artemisinin treatment and the interpretation of emerging artemisinin resistance. Antibodies specific to 12 Plasmodium falciparum sporozoite and blood-stage antigens were determined in 959 patients (from 11 sites in Southeast Asia) participating in a multinational cohort study assessing parasite clearance half-life (PCt1/2) after artesunate treatment and kelch13 mutations. Linear mixed-effects modeling of pooled individual patient data assessed the association between antibody responses and PCt1/2.P. falciparum antibodies were lowest in areas where the prevalence of kelch13 mutations and slow PCt1/2 were highest [Spearman ρ = -0.90 (95% confidence interval, -0.97, -0.65), and Spearman ρ = -0.94 (95% confidence interval, -0.98, -0.77), respectively]. P. falciparum antibodies were associated with faster PCt1/2 (mean difference in PCt1/2 according to seropositivity, -0.16 to -0.65 h, depending on antigen); antibodies have a greater effect on the clearance of kelch13 mutant compared with wild-type parasites (mean difference in PCt1/2 according to seropositivity, -0.22 to -0.61 h faster in kelch13 mutants compared with wild-type parasites). Naturally acquired immunity accelerates the clearance of artemisinin-resistant parasites in patients with falciparum malaria and may confound the current working definition of artemisinin resistance. Immunity may also play an important role in the emergence and transmission potential of artemisinin-resistant parasites.

  11. Host immunity to Plasmodium falciparum and the assessment of emerging artemisinin resistance in a multinational cohort

    PubMed Central

    Ashley, Elizabeth A.; Powell, Rosanna; Chan, Jo-Anne; Malloy, Michael J.; O’Flaherty, Katherine; Takashima, Eizo; Langer, Christine; Tsuboi, Takafumi; Dondorp, Arjen M.; Day, Nicholas P.; Dhorda, Mehul; Fairhurst, Rick M.; Lim, Pharath; Amaratunga, Chanaki; Pukrittayakamee, Sasithon; Hien, Tran Tinh; Htut, Ye; Mayxay, Mayfong; Faiz, M. Abul; Beeson, James G.; Simpson, Julie A.; White, Nicholas J.; Fowkes, Freya J. I.

    2017-01-01

    Artemisinin-resistant falciparum malaria, defined by a slow-clearance phenotype and the presence of kelch13 mutants, has emerged in the Greater Mekong Subregion. Naturally acquired immunity to malaria clears parasites independent of antimalarial drugs. We hypothesized that between- and within-population variations in host immunity influence parasite clearance after artemisinin treatment and the interpretation of emerging artemisinin resistance. Antibodies specific to 12 Plasmodium falciparum sporozoite and blood-stage antigens were determined in 959 patients (from 11 sites in Southeast Asia) participating in a multinational cohort study assessing parasite clearance half-life (PCt1/2) after artesunate treatment and kelch13 mutations. Linear mixed-effects modeling of pooled individual patient data assessed the association between antibody responses and PCt1/2. P. falciparum antibodies were lowest in areas where the prevalence of kelch13 mutations and slow PCt1/2 were highest [Spearman ρ = −0.90 (95% confidence interval, −0.97, −0.65), and Spearman ρ = −0.94 (95% confidence interval, −0.98, −0.77), respectively]. P. falciparum antibodies were associated with faster PCt1/2 (mean difference in PCt1/2 according to seropositivity, −0.16 to −0.65 h, depending on antigen); antibodies have a greater effect on the clearance of kelch13 mutant compared with wild-type parasites (mean difference in PCt1/2 according to seropositivity, −0.22 to −0.61 h faster in kelch13 mutants compared with wild-type parasites). Naturally acquired immunity accelerates the clearance of artemisinin-resistant parasites in patients with falciparum malaria and may confound the current working definition of artemisinin resistance. Immunity may also play an important role in the emergence and transmission potential of artemisinin-resistant parasites. PMID:28289193

  12. Bacterial Endosymbiosis in a Chordate Host: Long-Term Co-Evolution and Conservation of Secondary Metabolism

    PubMed Central

    Kwan, Jason C.; Schmidt, Eric W.

    2013-01-01

    Intracellular symbiosis is known to be widespread in insects, but there are few described examples in other types of host. These symbionts carry out useful activities such as synthesizing nutrients and conferring resistance against adverse events such as parasitism. Such symbionts persist through host speciation events, being passed down through vertical transmission. Due to various evolutionary forces, symbionts go through a process of genome reduction, eventually resulting in tiny genomes where only those genes essential to immediate survival and those beneficial to the host remain. In the marine environment, invertebrates such as tunicates are known to harbor complex microbiomes implicated in the production of natural products that are toxic and probably serve a defensive function. Here, we show that the intracellular symbiont Candidatus Endolissoclinum faulkneri is a long-standing symbiont of the tunicate Lissoclinum patella, that has persisted through cryptic speciation of the host. In contrast to the known examples of insect symbionts, which tend to be either relatively recent or ancient relationships, the genome of Ca. E. faulkneri has a very low coding density but very few recognizable pseudogenes. The almost complete degradation of intergenic regions and stable gene inventory of extant strains of Ca. E. faulkneri show that further degradation and deletion is happening very slowly. This is a novel stage of genome reduction and provides insight into how tiny genomes are formed. The ptz pathway, which produces the defensive patellazoles, is shown to date to before the divergence of Ca. E. faulkneri strains, reinforcing its importance in this symbiotic relationship. Lastly, as in insects we show that stable symbionts can be lost, as we describe an L. patella animal where Ca. E. faulkneri is displaced by a likely intracellular pathogen. Our results suggest that intracellular symbionts may be an important source of ecologically significant natural products in

  13. Bacterial endosymbiosis in a chordate host: long-term co-evolution and conservation of secondary metabolism.

    PubMed

    Kwan, Jason C; Schmidt, Eric W

    2013-01-01

    Intracellular symbiosis is known to be widespread in insects, but there are few described examples in other types of host. These symbionts carry out useful activities such as synthesizing nutrients and conferring resistance against adverse events such as parasitism. Such symbionts persist through host speciation events, being passed down through vertical transmission. Due to various evolutionary forces, symbionts go through a process of genome reduction, eventually resulting in tiny genomes where only those genes essential to immediate survival and those beneficial to the host remain. In the marine environment, invertebrates such as tunicates are known to harbor complex microbiomes implicated in the production of natural products that are toxic and probably serve a defensive function. Here, we show that the intracellular symbiont Candidatus Endolissoclinum faulkneri is a long-standing symbiont of the tunicate Lissoclinum patella, that has persisted through cryptic speciation of the host. In contrast to the known examples of insect symbionts, which tend to be either relatively recent or ancient relationships, the genome of Ca. E. faulkneri has a very low coding density but very few recognizable pseudogenes. The almost complete degradation of intergenic regions and stable gene inventory of extant strains of Ca. E. faulkneri show that further degradation and deletion is happening very slowly. This is a novel stage of genome reduction and provides insight into how tiny genomes are formed. The ptz pathway, which produces the defensive patellazoles, is shown to date to before the divergence of Ca. E. faulkneri strains, reinforcing its importance in this symbiotic relationship. Lastly, as in insects we show that stable symbionts can be lost, as we describe an L. patella animal where Ca. E. faulkneri is displaced by a likely intracellular pathogen. Our results suggest that intracellular symbionts may be an important source of ecologically significant natural products in

  14. Hyperdiverse Gene Cluster in Snail Host Conveys Resistance to Human Schistosome Parasites

    PubMed Central

    Tennessen, Jacob A.; Théron, André; Marine, Melanie; Yeh, Jan-Ying; Rognon, Anne; Blouin, Michael S.

    2015-01-01

    Schistosomiasis, a neglected global pandemic, may be curtailed by blocking transmission of the parasite via its intermediate hosts, aquatic snails. Elucidating the genetic basis of snail-schistosome interaction is a key to this strategy. Here we map a natural parasite-resistance polymorphism from a Caribbean population of the snail Biomphalaria glabrata. In independent experimental evolution lines, RAD genotyping shows that the same genomic region responds to selection for resistance to the parasite Schistosoma mansoni. A dominant allele in this region conveys an 8-fold decrease in the odds of infection. Fine-mapping and RNA-Seq characterization reveal a <1Mb region, the Guadeloupe Resistance Complex (GRC), with 15 coding genes. Seven genes are single-pass transmembrane proteins with putative immunological roles, most of which show strikingly high nonsynonymous divergence (5-10%) among alleles. High linkage disequilibrium among three intermediate-frequency (>25%) haplotypes across the GRC, a significantly non-neutral pattern, suggests that balancing selection maintains diversity at the GRC. Thus, the GRC resembles immune gene complexes seen in other taxa and is likely involved in parasite recognition. The GRC is a potential target for controlling transmission of schistosomiasis, including via genetic manipulation of snails. PMID:25775214

  15. Apparent Acquired Resistance by a Weevil to Its Parasitoid Is Influenced by Host Plant

    PubMed Central

    Goldson, Stephen L.; Tomasetto, Federico

    2016-01-01

    Field parasitism rates of the Argentine stem weevil Listronotus bonariensis (Kuschel; Coleoptera: Curculionidae) by Microctonus hyperodae Loan (Hymenoptera: Braconidae) are known to vary according to different host Lolium species that also differ in ploidy. To further investigate this, a laboratory study was conducted to examine parasitism rates on tetraploid Italian Lolium multiflorum, diploid Lolium perenne and diploid hybrid L. perenne ×L. multiflorum; none of which were infected by Epichloë endophyte. At the same time, the opportunity was taken to compare the results of this study with observations made during extensive laboratory-based research and parasitoid-rearing in the 1990s using the same host plant species. This made it possible to determine whether there has been any change in weevil susceptibility to the parasitoid over a 20 year period when in the presence of the tetraploid Italian, diploid perennial and hybrid host grasses that were commonly in use in the 1990’s. The incidence of parasitism in cages, in the presence of these three grasses mirrored what has recently been observed in the field. When caged, weevil parasitism rates in the presence of a tetraploid Italian ryegrass host were significantly higher (75%) than rates that occurred in the presence of either the diploid perennial (46%) or the diploid hybrid (52%) grass, which were not significantly different from each other. This is very different to laboratory parasitism rates in the 1990s when in the presence of both of the latter grasses high rates of parasitism (c. 75%) were recorded. These high rates are typical of those still found in weevils in the presence of both field and caged tetraploid Italian grasses. In contrast, the abrupt decline in weevil parasitism rates points to the possibility of evolved resistance by the weevil to the parasitoid in the diploid and hybrid grasses, but not so in the tetraploid. The orientation of plants in the laboratory cages had no significant effect

  16. Bug on the back: vertebral osteomyelitis secondary to fluoroquinolone resistant Salmonella typhi in an immunocompetent patient.

    PubMed

    Shrestha, Pragya; Mohan, Sachin; Roy, Satyajeet

    2015-11-27

    Although Salmonella osteomyelitis is commonly seen in immunocompromised patients, it may occasionally affect an immunocompetent host. Symptoms are usually non-specific, such as fever, abdominal or back pain; hence it should be considered in the differential diagnosis of patients with a history of travel to endemic regions. Fluoroquinolone resistance is rising and non-responsive patients should be treated with ampicillin, trimethoprim-sulfamethoxazole and ceftriaxone. We present a case of acute T8-T11 osteomyelitis with cord compression caused by a fluoroquinolone resistant strain of Salmonella typhi.

  17. Identification of maize genes associated with host plant resistance or susceptibility to Aspergillus flavus infection and aflatoxin accumulation.

    PubMed

    Kelley, Rowena Y; Williams, W Paul; Mylroie, J Erik; Boykin, Deborah L; Harper, Jonathan W; Windham, Gary L; Ankala, Arunkanth; Shan, Xueyan

    2012-01-01

    Aspergillus flavus infection and aflatoxin contamination of maize pose negative impacts in agriculture and health. Commercial maize hybrids are generally susceptible to this fungus. Significant levels of host plant resistance have been observed in certain maize inbred lines. This study was conducted to identify maize genes associated with host plant resistance or susceptibility to A. flavus infection and aflatoxin accumulation. Genome wide gene expression levels with or without A. flavus inoculation were compared in two resistant maize inbred lines (Mp313E and Mp04:86) in contrast to two susceptible maize inbred lines (Va35 and B73) by microarray analysis. Principal component analysis (PCA) was used to find genes contributing to the larger variances associated with the resistant or susceptible maize inbred lines. The significance levels of gene expression were determined by using SAS and LIMMA programs. Fifty candidate genes were selected and further investigated by quantitative RT-PCR (qRT-PCR) in a time-course study on Mp313E and Va35. Sixteen of the candidate genes were found to be highly expressed in Mp313E and fifteen in Va35. Out of the 31 highly expressed genes, eight were mapped to seven previously identified quantitative trait locus (QTL) regions. A gene encoding glycine-rich RNA binding protein 2 was found to be associated with the host hypersensitivity and susceptibility in Va35. A nuclear pore complex protein YUP85-like gene was found to be involved in the host resistance in Mp313E. Maize genes associated with host plant resistance or susceptibility were identified by a combination of microarray analysis, qRT-PCR analysis, and QTL mapping methods. Our findings suggest that multiple mechanisms are involved in maize host plant defense systems in response to Aspergillus flavus infection and aflatoxin accumulation. These findings will be important in identification of DNA markers for breeding maize lines resistant to aflatoxin accumulation.

  18. [Relationship between EGFR Promoter Region Methylation and Secondary Resistance Which may be Induced by Gefitinib].

    PubMed

    Wang, Qilong; Li, Min; Hu, Chengping

    2015-04-01

    Nowadays the secondary resistance of gefitinib in the treatment of lung adenocarcinoma is an outstanding problem. This research is to explore whether the gefitinib secondary resistance can be induced by gefitinib, to explore whether epidermal growth factor receptor (EGFR) promotor methylation correlate with the gefitinib-resistance in PC9/GR cell lines and to find a new therapeutic target to overcome the gefitinib secondary resistance in lung adenocarcinoma. In vitro cultivation of lung adenocarcinoma PC9 cell lines, apply gefitinib on lung adenocarcinoma PC9 cell lines, and improve drug concentration. MTT for test of gefitinib resistance index in PC9 cell and PC9/GR cell. Bisulfite sequencing polymerase chain reaction (BSP) and Reverse transcription-polymerase chain reaction (RT-PCR) for detection of EGFR promoter methylation status and mRNA expression. In vitro cultivation of lung adenocarcinoma PC9 cell lines, apply 1 μmol/L 5-Aza-dc on lung adenocarcinoma PC9/GR cell lines for 72 h. MTT method for test of gefitinib resistance index in PC9/GR cell. After improving the gefitinib concentration, MTT results showed that half maximal inhibitory concentration (IC50) of PC9 cell lines increase from (0.01 ± 0.002) μmol/L to (3.95 ± 0.23) μmol/L (P<0.05). BSP results showed that abnormal methylation sites compared the degree of methylation change: PC9: 59%; PC9/GR: 74% (P<0.05). RT-PCR results showed in PC9/GR cell lines, EGFR mRNA expression quantity increased (P<0.05). After applying 5-Aza-dc on PC9 cell lines, IC50 of PC9/GR decrease from (3.87 ± 0.034) μmol/L to (2.55 ± 0.14) μmol/L. The PC9 cell line which is induced by improving gefitinib concentration will be resistant to gefitinib, and the gefitinib-resistant cell line PC9/GR could be built. EGFR gene promoter methylation may be one of the mechanisms for the secondary resistance to gefitinib.

  19. Radiation of the Red Algal Parasite Congracilaria babae onto a Secondary Host Species, Hydropuntia sp. (Gracilariaceae, Rhodophyta)

    PubMed Central

    Ng, Poh-Kheng; Lim, Phaik-Eem; Phang, Siew-Moi

    2014-01-01

    Congracilaria babae was first reported as a red alga parasitic on the thallus of Gracilaria salicornia based on Japanese materials. It was circumscribed to have deep spermatangial cavities, coloration similar to its host and the absence of rhizoids. We observed a parasitic red alga with morphological and anatomical features suggestive of C. babae on a Hydropuntia species collected from Sabah, East Malaysia. We addressed the taxonomic affinities of the parasite growing on Hydropuntia sp. based on the DNA sequence of molecular markers from the nuclear, mitochondrial and plastid genomes (nuclear ITS region, mitochondrial cox1 gene and plastid rbcL gene). Phylogenetic analyses based on all genetic markers also implied the monophyly of the parasite from Hydropuntia sp. and C. babae, suggesting their conspecificity. The parasite from Hydropuntia sp. has a DNA signature characteristic to C. babae in having plastid rbcL gene sequence identical to G. salicornia. C. babae is likely to have evolved directly from G. salicornia and subsequently radiated onto a secondary host Hydropuntia sp. We also recommend the transfer of C. babae to the genus Gracilaria and propose a new combination, G. babae, based on the anatomical observations and molecular data. PMID:24820330

  20. Sr isotope variations in olivine-hosted melt inclusions from continetal basalts: evaluating primary vs secondary signatures of melt inclusions

    NASA Astrophysics Data System (ADS)

    Ramos, F. C.; Wolff, J. A.; Reid, M. R.

    2003-04-01

    Melt inclusions have become the focus of intense study in constraining the sources involved in magma production in MORB and OIB. Such inclusions retain a wide variety of major and trace element signatures that have been typically attributed to various mantle sources without significant inputs from secondary magmatic processes such as crustal contamination. Sr isotopes of melt inclusions from continental basalts affected by crustal contamination suggest that highly variable major and trace element signatures in melt inclusions result from crustal contamination, not heterogeneous mantle sources. This may result from the inherent ability of melt inclusions to capture melt from regions in which rapid cooling and rapid olivine growth can occur. More specifically, rapid olivine growth, and subsequent melt capture, may be more likely to occur along wallrock/magma interfaces where a wide variety of crustally modified liquids may be present. Accordingly, melt inclusions captured in olivine phenocrysts from crustally contaminated basalts which retain elevated MgO contents (6 to 8 weight percent) reflect the widest range of Sr isotope signatures found in all phenocrysts and groundmass samples. In effect, the largest overall range of Sr isotopes is observed in olivine-hosted melt inclusions suggesting that melt inclusions are more likely to record the effects of secondary processes, rather than primary magmatic signatures. As such, caution should be exercised when using melt inclusions to identify mantle signatures, and Sr isotopes offer an excellent opportunity in which to evaluate the modifying effects of open-system processes affecting basalts.

  1. Extracellular matrix metalloproteinase inducer enhances host resistance against pseudomonas aeruginosa infection through MAPK signaling pathway

    PubMed Central

    Li, Yongwei; Chen, Lu; Wang, Chunxia; Chen, Jianshe; Zhang, Xiaoqian; Hu, Yue; Niu, Xiaobin; Pei, Dongxu; He, Zhiqiang; Bi, Yongyi

    2016-01-01

    This study aims to explore the role of extra-cellular matrix metalloproteinase inducer (EMMPRIN) in the drug resistance of the pseudomonas aeruginosa (PA). The BALB/c mice were transfected with PA, then the mice were infected with the siRNA of EMMPRIN to silence the EMMPRIN gene. The EMMPRIN mRNA and protein were detected by using RT-PCR and western blot, respectively. In order to examine the function of EMMPRIN in drug resistance of PA, the BALB/c and C57BL/6 mice were treated with EMMPRIN siRNA. The cytokines, EMMPRIN and MMP9 were examined by the RP-PCR and ELISA, respectively, undergoing the silence of EMMPRIN siRNA. Moreover, the western blot assay was also used to test the phosphorylated MAPK in the murine macrophages after silenced by the EMMPRIN siRNA. The EMMPRIN was activated, with lipopolysaccharide stimulation and treated with the MAPK inhibitor, to evaluate whether the MAPK participates in the EMMPRIN-triggered drug resistance. The results indicated that the EMMPRIN expression was elevated in the infected BALB/c at 3 or 5 days post-infection. Silence of EMMPRIN Enhanced the Production of pro-inflammatory cytokines in PA keratitis. Silence of EMMPRIN significantly up-regulated Th1-type cytokines IFN-γ, IL-12, and IL-18, but down-regulated Th2-type cytokines IL-4, IL-5, and IL-10. MMP9 was increased in the cells with rEMMPRIN treatment. EMMPRIN inhibits pro-inflammatory cytokine production via a MAPK signaling pathway. In conclusion, EMMPRIN promotes host resistance against pseudomonas aeruginosa infection via MAPK signaling pathway. PMID:28078032

  2. On the trail of a cereal killer: recent advances in Fusarium graminearum pathogenomics and host resistance.

    PubMed

    Kazan, Kemal; Gardiner, Donald M; Manners, John M

    2012-05-01

    The ascomycete fungal pathogen Fusarium graminearum (sexual stage: Gibberella zeae) causes the devastating head blight or scab disease on wheat and barley, and cob or ear rot disease on maize. Fusarium graminearum infection causes significant crop and quality losses. In addition to roles as virulence factors during pathogenesis, trichothecene mycotoxins (e.g. deoxynivalenol) produced by this pathogen constitute a significant threat to human and animal health if consumed in respective food or feed products. In the last few years, significant progress has been made towards a better understanding of the processes involved in F. graminearum pathogenesis, toxin biosynthesis and host resistance mechanisms through the use of high-throughput genomic and phenomic technologies. In this article, we briefly review these new advances and also discuss how future research can contribute to the development of sustainable plant protection strategies against this important plant pathogen. © 2011 CSIRO. MOLECULAR PLANT PATHOLOGY © 2011 BSPP AND BLACKWELL PUBLISHING LTD.

  3. Heme Catabolism by Heme Oxygenase-1 Confers Host Resistance to Mycobacterium Infection

    PubMed Central

    Silva-Gomes, Sandro; Appelberg, Rui; Larsen, Rasmus; Soares, Miguel Parreira

    2013-01-01

    Heme oxygenases (HO) catalyze the rate-limiting step of heme degradation. The cytoprotective action of the inducible HO-1 isoform, encoded by the Hmox1 gene, is required for host protection against systemic infections. Here we report that upregulation of HO-1 expression in macrophages (Mϕ) is strictly required for protection against mycobacterial infection in mice. HO-1-deficient (Hmox1−/−) mice are more susceptible to intravenous Mycobacterium avium infection, failing to mount a protective granulomatous response and developing higher pathogen loads, than infected wild-type (Hmox1+/+) controls. Furthermore, Hmox1−/− mice also develop higher pathogen loads and ultimately succumb when challenged with a low-dose aerosol infection with Mycobacterium tuberculosis. The protective effect of HO-1 acts independently of adaptive immunity, as revealed in M. avium-infected Hmox1−/− versus Hmox1+/+ SCID mice lacking mature B and T cells. In the absence of HO-1, heme accumulation acts as a cytotoxic pro-oxidant in infected Mϕ, an effect mimicked by exogenous heme administration to M. avium-infected wild-type Mϕ in vitro or to mice in vivo. In conclusion, HO-1 prevents the cytotoxic effect of heme in Mϕ, contributing critically to host resistance to Mycobacterium infection. PMID:23630967

  4. Heme catabolism by heme oxygenase-1 confers host resistance to Mycobacterium infection.

    PubMed

    Silva-Gomes, Sandro; Appelberg, Rui; Larsen, Rasmus; Soares, Miguel Parreira; Gomes, Maria Salomé

    2013-07-01

    Heme oxygenases (HO) catalyze the rate-limiting step of heme degradation. The cytoprotective action of the inducible HO-1 isoform, encoded by the Hmox1 gene, is required for host protection against systemic infections. Here we report that upregulation of HO-1 expression in macrophages (M) is strictly required for protection against mycobacterial infection in mice. HO-1-deficient (Hmox1(-/-)) mice are more susceptible to intravenous Mycobacterium avium infection, failing to mount a protective granulomatous response and developing higher pathogen loads, than infected wild-type (Hmox1(+/+)) controls. Furthermore, Hmox1(-/-) mice also develop higher pathogen loads and ultimately succumb when challenged with a low-dose aerosol infection with Mycobacterium tuberculosis. The protective effect of HO-1 acts independently of adaptive immunity, as revealed in M. avium-infected Hmox1(-/-) versus Hmox1(+/+) SCID mice lacking mature B and T cells. In the absence of HO-1, heme accumulation acts as a cytotoxic pro-oxidant in infected M, an effect mimicked by exogenous heme administration to M. avium-infected wild-type M in vitro or to mice in vivo. In conclusion, HO-1 prevents the cytotoxic effect of heme in M, contributing critically to host resistance to Mycobacterium infection.

  5. Splice variants and regulatory networks associated with host resistance to the intestinal worm Cooperia oncophora in cattle.

    PubMed

    Li, Robert W; Wu, Sitao; Li, Cong-Jun; Li, Weizhong; Schroeder, Steven G

    2015-07-30

    To elucidate the molecular mechanism of host resistance, we characterized the jejunal transcriptome of Angus cattle selected for parasite resistance for over 20 years in response to infection caused by the intestinal worm Cooperia oncophora. The transcript abundance of 56 genes, such as that of mucin 12 (MUC12) and intestinal alkaline phosphatase (ALPI), was significantly higher in resistant cattle. Novel splicing variants, exon skipping events, and gene fusion events, were also detected. An algorithm for the reconstruction of accurate cellular networks (ARACNE) was used to infer de novo regulatory molecular networks in the interactome between the parasite and host. Under a combined cutoff of an error tolerance (ϵ = 0.10) and a stringent P-value threshold of mutual information (1.0 × 10(-5)), a total of 229,100 direct interactions controlled by 20,288 hub genes were identified. Among these hub genes, 7651 genes had ≥ 100 direct neighbors while the top 9778 hub genes controlled more than 50% of total direct interactions. Three lysozyme genes (LYZ1, LYZ2, and LYZ3), which are co-located in bovine chromosome 5 in tandem and are strongly upregulated in resistant cattle, shared a common regulatory network of 55 genes. These ancient antimicrobials were likely involved in regulating host-parasite interactions by affecting host gut microbiome. Notably, ALPI, known as a gut mucosal defense factor, controlled a molecular network consisting 410 genes, including 14 transcription factors (TF) and 10 genes that were significantly regulated in resistant cattle. Several large regulatory networks were controlled by TF, such as STAT6, SREBF1, and ELF4. Gene ontology (GO) processes significantly enriched in the regulatory network controlled by STAT6 included lipid metabolism. Our findings provide insights into the immune regulation of host-parasite interactions and the molecular mechanisms of host resistance in cattle.

  6. Obstructive sleep apnea: the most common secondary cause of hypertension associated with resistant hypertension.

    PubMed

    Pedrosa, Rodrigo P; Drager, Luciano F; Gonzaga, Carolina C; Sousa, Marcio G; de Paula, Lílian K G; Amaro, Aline C S; Amodeo, Celso; Bortolotto, Luiz A; Krieger, Eduardo M; Bradley, T Douglas; Lorenzi-Filho, Geraldo

    2011-11-01

    Recognition and treatment of secondary causes of hypertension among patients with resistant hypertension may help to control blood pressure and reduce cardiovascular risk. However, there are no studies systematically evaluating secondary causes of hypertension according to the Seventh Joint National Committee. Consecutive patients with resistant hypertension were investigated for known causes of hypertension irrespective of symptoms and signs, including aortic coarctation, Cushing syndrome, obstructive sleep apnea, drugs, pheochromocytoma, primary aldosteronism, renal parenchymal disease, renovascular hypertension, and thyroid disorders. Among 125 patients (age: 52±1 years, 43% males, systolic and diastolic blood pressure: 176±31 and 107±19 mm Hg, respectively), obstructive sleep apnea (apnea-hypopnea index: >15 events per hour) was the most common condition associated with resistant hypertension (64.0%), followed by primary aldosteronism (5.6%), renal artery stenosis (2.4%), renal parenchymal disease (1.6%), oral contraceptives (1.6%), and thyroid disorders (0.8%). In 34.4%, no secondary cause of hypertension was identified (primary hypertension). Two concomitant secondary causes of hypertension were found in 6.4% of patients. Age >50 years (odds ratio: 5.2 [95% CI: 1.9-14.2]; P<0.01), neck circumference ≥41 cm for women and ≥43 cm for men (odds ratio: 4.7 [95% CI: 1.3-16.9]; P=0.02), and presence of snoring (odds ratio: 3.7 [95% CI: 1.3-11]; P=0.02) were predictors of obstructive sleep apnea. In conclusion, obstructive sleep apnea appears to be the most common condition associated with resistant hypertension. Age >50 years, large neck circumference measurement, and snoring are good predictors of obstructive sleep apnea in this population.

  7. Identification of Mycobacterium avium genes associated with resistance to host antimicrobial peptides

    PubMed Central

    Motamedi, Nima; Danelishvili, Lia

    2014-01-01

    Antimicrobial peptides are an important component of the innate immune defence. Mycobacterium avium subsp. hominissuis (M. avium) is an organism that establishes contact with the respiratory and gastrointestinal mucosa as a necessary step for infection. M. avium is resistant to high concentrations of polymyxin B, a surrogate for antimicrobial peptides. To determine gene-encoding proteins that are associated with this resistance, we screened a transposon library of M. avium strain 104 for susceptibility to polymyxin B. Ten susceptible mutants were identified and the inactivated genes sequenced. The great majority of the genes were related to cell wall synthesis and permeability. The mutants were then examined for their ability to enter macrophages and to survive macrophage killing. Three clones among the mutants had impaired uptake by macrophages compared with the WT strain, and all ten clones were attenuated in macrophages. The mutants were also shown to be susceptible to cathelicidin (LL-37), in contrast to the WT bacterium. All but one of the mutants were significantly attenuated in mice. In conclusion, this study indicated that the M. avium envelope is the primary defence against host antimicrobial peptides. PMID:24836414

  8. Assessment of safety of lactobacillus strains based on resistance to host innate defense mechanisms.

    PubMed

    Asahara, Takashi; Takahashi, Masatoshi; Nomoto, Koji; Takayama, Hiroo; Onoue, Masaharu; Morotomi, Masami; Tanaka, Ryuichiro; Yokokura, Teruo; Yamashita, Naoya

    2003-01-01

    Seven Lactobacillus strains belonging to four species were evaluated for pathogenicity as well as for in vitro sensitivity to the bactericidal mechanisms of macrophages in a rabbit infective endocarditis (IE) model. Two bacteremia-associated strains, L. rhamnosus PHLS A103/70 and L. casei PHLS A357/84, as well as the L. rhamnosus type strain and the probiotic L. rhamnosus strain ATCC 53103, showed moderate infectivity, and the virulence of the probiotic L. casei strain Shirota and type strains such as L. acidophilus ATCC 4356(T) and L. gasseri DSM 20243(T) in the model was negligible. The strains that showed pathogenic potential in the rabbit IE model (PHLS A357/84, PHLS A103/70, and ATCC 53103) were more resistant than strain Shirota to intracellular killing activity by mouse macrophages in vitro and also to bactericidal nitrogen intermediates, such as nitric oxide and NO(2)(-) ions. These results suggest that resistance to host innate defense systems, which would function at inflammatory lesions, should be considered in the safety assessment of Lactobacillus strains.

  9. Impaired host resistance to endotoxin and malaria in polychlorinated biphenyl- and hexachlorobenzene-treated mice.

    PubMed Central

    Loose, L D; Silkworth, J B; Pittman, K A; Benitz, K F; Mueller, W

    1978-01-01

    The in vivo effect of polychlorinated biphenyl (PCB) and hexachlorobenzene (HCB) on murine endotoxin sensitivity and resistance to malaria (Plasmodium berghei NYU-2) infection was studied. The dietary administration of 167 ppm (167 microgram/g) of PCB 1242 or HCB for 3 weeks resulted in an enhanced sensitivity to gram-negative endotoxin (Salmonella typhosa), which was further increased in animals maintained on the diets for 6 weeks. By 6 weeks, a 5.2- or 32-fold increase in endotoxin sensitivity was seen in mice fed PCB or HCB, respectively. A 20% decrease in mean survival time of mice fed PCB 1242 for 3 or 6 weeks and inoculated with malaria was demonstrated. Infected mice that received HCB for 3 or 6 weeks manifested a reduction in mean survival time of 24 or 31%, respectively. Histopathological examination revealed a normal thymus, spleen, mesenteric lymph nodes, and lungs. Centrilobular and pericentral hepatocyte hypertrophy, common to organochlorine exposure, was observed. Electron capture gas chromatographic analysis for PCB 1242 or HCB in the tissues examined histologically revealed a significant deposit of the xenobiotics. HCB concentration was approximately 16 to 25 times greater than that of PCB. The data indicate that environmental chemicals impair host resistance and that the alteration may be related to the presence of the chemicals in the lymphoreticular organs. PMID:97225

  10. Microevolutionary Events Involving Narrow Host Plasmids Influences Local Fixation of Vancomycin-Resistance in Enterococcus Populations

    PubMed Central

    Freitas, Ana R.; Novais, Carla; Tedim, Ana P.; Francia, María Victoria; Baquero, Fernando; Peixe, Luísa; Coque, Teresa M.

    2013-01-01

    Vancomycin-resistance in enterococci (VRE) is associated with isolates within ST18, ST17, ST78 Enterococcus faecium (Efm) and ST6 Enterococcus faecalis (Efs) human adapted lineages. Despite of its global spread, vancomycin resistance rates in enterococcal populations greatly vary temporally and geographically. Portugal is one of the European countries where Tn1546 (vanA) is consistently found in a variety of environments. A comprehensive multi-hierarchical analysis of VRE isolates (75 Efm and 29 Efs) from Portuguese hospitals and aquatic surroundings (1996–2008) was performed to clarify the local dynamics of VRE. Clonal relatedness was established by PFGE and MLST while plasmid characterization comprised the analysis of known relaxases, rep initiator proteins and toxin-antitoxin systems (TA) by PCR-based typing schemes, RFLP comparison, hybridization and sequencing. Tn1546 variants were characterized by PCR overlapping/sequencing. Intra- and inter-hospital dissemination of Efm ST18, ST132 and ST280 and Efs ST6 clones, carrying rolling-circle (pEFNP1/pRI1) and theta-replicating (pCIZ2-like, Inc18, pHTβ-like, two pRUM-variants, pLG1-like, and pheromone-responsive) plasmids was documented. Tn1546 variants, mostly containing ISEf1 or IS1216, were located on plasmids (30–150 kb) with a high degree of mosaicism and heterogeneous RFLP patterns that seem to have resulted from the interplay between broad host Inc18 plasmids (pIP501, pRE25, pEF1), and narrow host RepA_N plasmids (pRUM, pAD1-like). TAs of Inc18 (ω-ε-ζ) and pRUM (Axe-Txe) plasmids were infrequently detected. Some plasmid chimeras were persistently recovered over years from different clonal lineages. This work represents the first multi-hierarchical analysis of VRE, revealing a frequent recombinatorial diversification of a limited number of interacting clonal backgrounds, plasmids and transposons at local scale. These interactions provide a continuous process of parapatric clonalization driving a full

  11. Immune and biochemical responses in skin differ between bovine hosts genetically susceptible and resistant to the cattle tick Rhipicephalus microplus.

    PubMed

    Franzin, Alessandra Mara; Maruyama, Sandra Regina; Garcia, Gustavo Rocha; Oliveira, Rosane Pereira; Ribeiro, José Marcos Chaves; Bishop, Richard; Maia, Antônio Augusto Mendes; Moré, Daniela Dantas; Ferreira, Beatriz Rossetti; Santos, Isabel Kinney Ferreira de Miranda

    2017-01-31

    Ticks attach to and penetrate their hosts' skin and inactivate multiple components of host responses in order to acquire a blood meal. Infestation loads with the cattle tick, Rhipicephalus microplus, are heritable: some breeds carry high loads of reproductively successful ticks, whereas in others, few ticks feed and reproduce efficiently. In order to elucidate the mechanisms that result in the different outcomes of infestations with cattle ticks, we examined global gene expression and inflammation induced by tick bites in skins from one resistant and one susceptible breed of cattle that underwent primary infestations with larvae and nymphs of R. microplus. We also examined the expression profiles of genes encoding secreted tick proteins that mediate parasitism in larvae and nymphs feeding on these breeds. Functional analyses of differentially expressed genes in the skin suggest that allergic contact-like dermatitis develops with ensuing production of IL-6, CXCL-8 and CCL-2 and is sustained by HMGB1, ISG15 and PKR, leading to expression of pro-inflammatory chemokines and cytokines that recruit granulocytes and T lymphocytes. Importantly, this response is delayed in susceptible hosts. Histopathological analyses of infested skins showed inflammatory reactions surrounding tick cement cones that enable attachment in both breeds, but in genetically tick-resistant bovines they destabilized the cone. The transcription data provided insights into tick-mediated activation of basophils, which have previously been shown to be a key to host resistance in model systems. Skin from tick-susceptible bovines expressed more transcripts encoding enzymes that detoxify tissues. Interestingly, these enzymes also produce volatile odoriferous compounds and, accordingly, skin rubbings from tick-susceptible bovines attracted significantly more tick larvae than rubbings from resistant hosts. Moreover, transcripts encoding secreted modulatory molecules by the tick were significantly more

  12. Resistance exercise and secondary lymphedema in breast cancer survivors-a systematic review.

    PubMed

    Keilani, M; Hasenoehrl, T; Neubauer, M; Crevenna, R

    2016-04-01

    The aim of the present review was to determine effects of strength exercise on secondary lymphedema in breast cancer patients. Research was conducted by using the databases PubMed/Medline and Embase. Randomized controlled trials published from January 1966 to May 2015 investigating the effects of resistance exercise on breast cancer patients with or at risk of secondary lymphedema in accordance with the American College of Sports Medicine exercise guidelines for cancer survivors were included in the present study. Nine original articles with a total of 957 patients met the inclusion criteria. None of the included articles showed adverse effects of a resistance exercise intervention on lymphedema status. In all included studies, resistance exercise intensity was described as moderate to high. Strength exercise seems not to have negative effects on lymphedema status or might not increase risk of development of lymphedema in breast cancer patients. Further research is needed in order to investigate the effects of resistance exercise for patients suffering from lymphedema.

  13. High prevalence of secondary resistance mutations in Venezuelan HIV-1 isolates.

    PubMed

    Dieudonne, Mariacarolina; Garzaro, Domingo; Torres, Jaime; Naranjo, Laura; Suárez, José Antonio; Castro, Julio; Martínez, Nahir; Castro, Erika; Berrueta, Lisbeth; Salmen, Siham; Devesa, Marisol; Rangel, Héctor R; Pujol, Flor Helene

    2006-03-01

    The genetic variability was studied in HIV-1 from Venezuelan patients with and without treatment, in order to evaluate the presence of polymorphisms and drug resistance mutations. Proviral DNA from peripheral blood mononuclear cells or viral RNA from plasma was extracted from the blood of 30 patients. Two regions from the polymerase gene, protease (Pr) and reverse transcriptase (RT) and one genomic fragment from the envelope (Env) gene were amplified and sequenced. All HIV-1 samples analyzed were classified as subtype B, without evidence of recombination. Although no primary protease mutations were detected, a high frequency of secondary mutations (86%, 19/22), associated to restoration of viral replicative fitness, was observed in strains circulating both in treated and non-treated patients. Resistance mutations to nucleoside RT inhibitors (NRTI) and non-nucleoside RT inhibitors (NNRTI) were detected in 35% (6/17) and 12% (2/17) of the viruses circulating in treated patients, respectively. Resistance mutations were also present in the virus infecting one antiretroviral naive individual (7.7%), suggesting that local screening for resistant mutation in naive patient might be important to minimize therapy failure. Future studies are warranted to assess the role of secondary mutation in the success of viral infection.

  14. The effect of spring pads in the secondary suspension of railway vehicles on bogie yaw resistance

    NASA Astrophysics Data System (ADS)

    Michálek, Tomáš; Zelenka, Jaromír

    2015-12-01

    This paper deals with properties of bogie yaw resistance of an electric locomotive with secondary suspension consisting of flexi-coil springs supplemented with tilting spring pads. Transversal stiffness of a sample of a spring/pad assembly was measured on a dynamic test stand of the University of Pardubice (Czech Republic) and the results were applied into a multi-body model of the locomotive created in the simulation tool 'SJKV'. On the basis of the simulation results, a detailed analysis of the bogie yaw resistance was performed in order to explain the effect in dynamic behaviour of the locomotive when the moment against bogie rotation (and therefore the distribution of guiding forces on individual wheels, as well) is influenced with the vehicle speed in a certain curve. Results of this analysis show that the application of suspension elements with strongly directionally dependent transversal stiffness into the secondary suspension can just lead to a dependency of the bogie yaw resistance on cant deficiency, i.e. on the vehicle speed in curve. This fact has wide consequences on the vehicle dynamics (especially on the guiding behaviour of the vehicle in curves) and it also points out that the current method of evaluation of the bogie yaw resistance according to relevant standards, which is related with assessment of the quasistatic safety of a railway vehicle against derailment, is not objective enough.

  15. Molecular mapping of a non-host resistance gene YrpstY1 in barley (Hordeum vulgare L.) for resistance to wheat stripe rust.

    PubMed

    Sui, Xinxia; He, Zhonghu; Lu, Yaming; Wang, Zhenlin; Xia, Xianchun

    2010-10-01

    Cultivated barley (Hordeum vulgare L.) is considered as a non-host or inappropriate host species for wheat stripe rust caused by Puccinia striiformis f. sp. tritici. Most barley cultivars show a broad-spectrum resistance to wheat stripe rust. To determine the genes for resistance to wheat stripe rust in barley, a cross was made between a resistant barley line Y12 and a susceptible line Y16. The two parents, F(1) and 147 BC(1) plants were tested at seedling stage with Chinese prevalent race CYR32 of Puccinia striiformis f. sp. tritici by artificial inoculation in greenhouse. The results indicated that Y12 possessed one dominant resistance gene to wheat stripe rust, designated YrpstY1 provisionally. A total of 388 simple sequence repeat (SSR) markers were used to map the resistance gene in Y12 using bulked segregant analysis. A linkage map, including nine SSR loci on chromosome 7H and YrpstY1, was constructed using the BC(1) population, indicating that the resistance gene YrpstY1 is located on chromosome 7H. It is potential to transfer the resistance gene into common wheat for stripe rust resistance.

  16. Secondary bacterial infections and antibiotic resistance among tungiasis patients in Western, Kenya.

    PubMed

    Nyangacha, Ruth Monyenye; Odongo, David; Oyieke, Florence; Ochwoto, Missiani; Korir, Richard; Ngetich, Ronald Kiprotich; Nginya, Gladys; Makwaga, Olipher; Bii, Christine; Mwitari, Peter; Tolo, Festus

    2017-09-01

    Tungiasis or jigger infestation is a parasitic disease caused by the female sand flea Tunga penetrans. Secondary infection of the lesions caused by this flea is common in endemic communities. This study sought to shed light on the bacterial pathogens causing secondary infections in tungiasis lesions and their susceptibility profiles to commonly prescribed antibiotics. Participants were recruited with the help of Community Health Workers. Swabs were taken from lesions which showed signs of secondary infection. Identification of suspected bacteria colonies was done by colony morphology, Gram staining, and biochemical tests. The Kirby Bauer disc diffusion test was used to determine the drug susceptibility profiles. Out of 37 participants, from whom swabs were collected, specimen were positive in 29 and 8 had no growth. From these, 10 different strains of bacteria were isolated. Two were Gram positive bacteria and they were, Staphylococcus epidermidis (38.3%) and Staphylococcus aureus (21.3%). Eight were Gram negative namely Enterobacter cloacae (8.5%), Proteus species (8.5%), Klebsiellla species (6.4%), Aeromonas sobria (4.3%), Citrobacter species (4.3%), Proteus mirabillis(4.3%), Enterobacter amnigenus (2.1%) and Klebsiella pneumoniae (2.1%). The methicillin resistant S. aureus (MRSA) isolated were also resistant to clindamycin, kanamycin, erythromycin, nalidixic acid, trimethorprim sulfamethoxazole and tetracycline. All the Gram negative and Gram positive bacteria isolates were sensitive to gentamicin and norfloxacin drugs. Results from this study confirms the presence of resistant bacteria in tungiasis lesions hence highlighting the significance of secondary infection of the lesions in endemic communties. This therefore suggests that antimicrobial susceptibility testing may be considered to guide in identification of appropriate antibiotics and treatment therapy among tungiasis patients.

  17. Convergently Evolved Toxic Secondary Metabolites in Plants Drive the Parallel Molecular Evolution of Insect Resistance.

    PubMed

    Petschenka, Georg; Wagschal, Vera; von Tschirnhaus, Michael; Donath, Alexander; Dobler, Susanne

    2017-08-01

    Natural selection imposed by natural toxins has led to striking levels of convergent evolution at the molecular level. Cardiac glycosides represent a group of plant toxins that block the Na,K-ATPase, a vital membrane protein in animals. Several herbivorous insects have convergently evolved resistant Na,K-ATPases, and in some species, convergent gene duplications have also arisen, likely to cope with pleiotropic costs of resistance. To understand the genetic basis and predictability of these adaptations, we studied five independent lineages of leaf-mining flies (Diptera: Agromyzidae). These flies have colonized host plants in four botanical families that convergently evolved cardiac glycosides of two structural types: cardenolides and bufadienolides. We compared each of six fly species feeding on such plants to a phylogenetically related but nonadapted species. Irrespective of the type of cardiac glycoside in the host plant, five out of six exposed species displayed substitutions in the cardiac glycoside-binding site of the Na,K-ATPase that were previously described in other insect orders; in only one species was the gene duplicated. In vitro assays of nervous tissue extractions confirmed that the substitutions lead to increased resistance of the Na,K-ATPase. Our results demonstrate that target site insensitivity of Na,K-ATPase is a common response to dietary cardiac glycosides leading to highly predictable amino acid changes; nonetheless, convergent evolution of gene duplication for this multifunctional enzyme appears more constrained.

  18. Plant resistance to aphid feeding: behavioral, physiological, genetic and molecular cues regulate aphid host selection and feeding.

    PubMed

    Smith, C Michael; Chuang, Wen-Po

    2014-04-01

    Aphids damage major world food and fiber crops through direct feeding and transmission of plant viruses. Fortunately, the development of many aphid-resistant crop plants has provided both ecological and economic benefits to food production. Plant characters governing aphid host selection often dictate eventual plant resistance or susceptibility to aphid herbivory, and these phenotypic characters have been successfully used to map aphid resistance genes. Aphid resistance is often inherited as a dominant trait, but is also polygenic and inherited as recessive or incompletely dominant traits. Most aphid-resistant cultivars exhibit constitutively expressed defenses, but some cultivars exhibit dramatic aphid-induced responses, resulting in the overexpression of large ensembles of putative aphid resistance genes. Two aphid resistance genes have been cloned. Mi-1.2, an NBS-LRR gene from wild tomato, confers resistance to potato aphid and three Meloidogyne root-knot nematode species, and Vat, an NBS-LRR gene from melon, controls resistance to the cotton/melon aphid and to some viruses. Virulence to aphid resistance genes of plants occurs in 17 aphid species--more than half of all arthropod biotypes demonstrating virulence. The continual appearance of aphid virulence underscores the need to identify new sources of resistance of diverse sequence and function in order to delay or prevent biotype development.

  19. Identification of maize genes associated with host plant resistance and susceptibility to Aspergillus flavus infection and aflatoxin accumulation

    USDA-ARS?s Scientific Manuscript database

    Aspergillus flavus infection and aflatoxin contamination of maize pose negative impacts in agriculture and health. Commercial maize hybrids are generally susceptible to this fungus. Significant levels of host plant resistance have been observed in certain maize inbred lines. This study was conducted...

  20. Host plant resistance to megacopta cribraria (Hemiptera: Plataspidae) in diverse soybean germplasm maturity groups V through VIII

    USDA-ARS?s Scientific Manuscript database

    Initially discovered in Georgia in 2009, the exotic invasive plataspid, Megacopta cribraria Fabricius has become a serious pest of soybean. Managing M. cribraria in soybean typically involves the application of broad-spectrum insecticides. Soybean host plant resistance is an attractive alternative...

  1. Scaling up from greenhouse resistance to fitness in the field for a host of an emerging forest disease

    Treesearch

    Katherine J. Hayden; Matteo Garbelotto; Richard Dodd; Jessica W. Wright

    2013-01-01

    Forest systems are increasingly threatened by emergent, exotic diseases, yet management strategies for forest trees may be hindered by long generation times and scant background knowledge. We tested whether nursery disease resistance and growth traits have predictive value for the conservation of Notholithocarpus densiflorus, the host most...

  2. The Native Wolbachia Endosymbionts of Drosophila melanogaster and Culex quinquefasciatus Increase Host Resistance to West Nile Virus Infection

    PubMed Central

    Glaser, Robert L.; Meola, Mark A.

    2010-01-01

    Background The bacterial endosymbiont Wolbachia pipientis has been shown to increase host resistance to viral infection in native Drosophila hosts and in the normally Wolbachia-free heterologous host Aedes aegypti when infected by Wolbachia from Drosophila melanogaster or Aedes albopictus. Wolbachia infection has not yet been demonstrated to increase viral resistance in a native Wolbachia-mosquito host system. Methodology/Principal Findings In this study, we investigated Wolbachia-induced resistance to West Nile virus (WNV; Flaviviridae) by measuring infection susceptibility in Wolbachia-infected and Wolbachia-free D. melanogaster and Culex quinquefasciatus, a natural mosquito vector of WNV. Wolbachia infection of D. melanogaster induces strong resistance to WNV infection. Wolbachia-infected flies had a 500-fold higher ID50 for WNV and produced 100,000-fold lower virus titers compared to flies lacking Wolbachia. The resistance phenotype was transmitted as a maternal, cytoplasmic factor and was fully reverted in flies cured of Wolbachia. Wolbachia infection had much less effect on the susceptibility of D. melanogaster to Chikungunya (Togaviridae) and La Crosse (Bunyaviridae) viruses. Wolbachia also induces resistance to WNV infection in Cx. quinquefasciatus. While Wolbachia had no effect on the overall rate of peroral infection by WNV, Wolbachia-infected mosquitoes produced lower virus titers and had 2 to 3-fold lower rates of virus transmission compared to mosquitoes lacking Wolbachia. Conclusions/Significance This is the first demonstration that Wolbachia can increase resistance to arbovirus infection resulting in decreased virus transmission in a native Wolbachia-mosquito system. The results suggest that Wolbachia reduces vector competence in Cx. quinquefasciatus, and potentially in other Wolbachia-infected mosquito vectors. PMID:20700535

  3. Does acquired resistance of rodent hosts affect metabolic rate of fleas?

    PubMed

    Khokhlova, Irina S; Ghazaryan, Lusine; Krasnov, Boris R; Degen, A Allan

    2009-07-01

    We studied whether (a) previous infestation of a rodent host with fleas and (b) the reproductive effort of fleas affect the rate of CO(2) emission in two flea species, host-specific Parapulex chephrenis and host-opportunistic Xenopsylla ramesis when feeding on their typical and atypical rodent hosts. We measured the rate of CO(2) emission in preovipositing and ovipositing female fleas fed on either pristine or previously infested Acomys cahirinus (typical host of P. chephrenis) and Dipodillus dasyurus (typical host of X. ramesis). When P. chephrenis fed on a typical host, its mass-specific rate of CO(2) emission was not affected by previous infestation of a host, whereas when this flea fed on the atypical host, its rate of CO(2) emission was higher when a host was previously infested. This was manifested, however, mainly during the oviposition period. The rate of CO(2) emission by X. ramesis feeding on pristine hosts was significantly lower than in conspecifics feeding on previously infested hosts, independent of host species. Both flea species feeding on their typical hosts emitted CO(2) at similar mass-specific rates during preoviposition and oviposition, except for P. chephrenis feeding on D. dasyurus, which increased its rate during oviposition. There was no effect of the number of eggs produced per female on the rate of CO(2) emission during oviposition.

  4. Secondary antibiotic resistance of Helicobacter pylori isolates in Israeli children and adults.

    PubMed

    Khoury, Johad; Geffen, Yuval; Shaul, Ron; Sholy, Hisham; Chowers, Yehuda; Saadi, Tarek

    2017-09-01

    Failure of standard therapy for Helicobacter pylori infections results primarily from increasing antibiotic resistance. Patients in Israel are referred for H. pylori culture after failure of at least two therapeutic regimens. To estimate the prevalence of secondary antimicrobial resistance of H. pylori in Israel. We retrospectively collected results of H. pylori cultures performed by gastric biopsies at Rambam Health Care Campus, Haifa, Israel, between the years 2012-2015. Antimicrobial susceptibility to five drugs was tested by gradient-diffusion. 107 patients, 46 adults and 61 children, were referred for performance of H. pylori cultures. Cultures were positive in 64 samples (63.7%). In adults, 23 (50%) patients had positive H. pylori cultures; 8.69% showed resistance to amoxicillin (AM), 39.1% to clarithromycin (CH), 61.9% to metronidazole (MZ), 8.69% to tetracycline (TC), and 21.7% to levofloxacin (LEV). In children, 41 (67%) patients had positive H. pylori cultures; 5.1% showed resistance to AM, 42.5% to CH, 46.66% to MZ, 2.5% to TC and 0% to LEV. In children, 94.9% of H. pylori strains were susceptible to both AM and LEV. In adults, 82.6% of the strains were susceptible to both AM and TC. 28.6% of adults and 24.1% children were resistant to both MZ and CH. The sensitivity of H. pylori culture was low. Resistance of H. pylori to MZ and CH was very high after failure of two therapeutic regimens in both adults and children. No LEV resistance was detected in children. AM resistance was higher in adults than in children. Copyright © 2017. Published by Elsevier Ltd.

  5. Enhancement of host resistance against Listeria infection by Lactobacillus casei: Role of macrophages

    SciTech Connect

    Sato, K.

    1984-05-01

    Among the 10 species of the genus Lactobacillus, L. casei showed the strongest protective action against Listeria monocytogenes infection in mice. The activity of L. casei differed with regard to the dose of administration. The anti-L. monocytogenes resistance in mice intravenously administered 5.5 X 10(7), 2.8 X 10(8), or 1.1 X 10(9) L. casei cells was most manifest at ca. 2, 2 and 13, and 3 to 21 days after its administration, respectively. The growth of L. monocytogenes in the liver of mice injected with L. casei (10(7), 10(8), or 10(9) cells) 48 h after infection was suppressed, particularly when 10(8) or 10(9) L. casei cells were given 2 or 13 days before the induced infection, respectively. This suppression of L. monocytogenes growth was overcome by carrageenan treatment or X-ray irradiation. (/sup 3/H)thymidine incorporation into the liver DNA increased 13 days after administration of L. casei, and augmentation of (/sup 3/H)thymidine incorporation during 6 to 48 h after infection was dependent on the dose of L. casei. Peritoneal macrophage accumulation observed 1 to 5 days after intraperitoneal injection of UV-killed L. monocytogenes was markedly enhanced when the mice were treated with L. casei cells 13 days before macrophage elicitation. Therefore, the enhanced host resistance by L. casei to L. monocytogenes infection may be mediated by macrophages migrating from the blood stream to the reticuloendothelial system in response to L. casei injection before or after L. monocytogenes infection.

  6. Understanding Host-Pathogen Interactions with Expression Profiling of NILs Carrying Rice-Blast Resistance Pi9 Gene

    PubMed Central

    Jain, Priyanka; Singh, Pankaj K.; Kapoor, Ritu; Khanna, Apurva; Solanke, Amolkumar U.; Krishnan, S. Gopala; Singh, Ashok K.; Sharma, Vinay; Sharma, Tilak R.

    2017-01-01

    Magnaporthe oryzae infection causes rice blast, a destructive disease that is responsible for considerable decrease in rice yield. Development of resistant varieties via introgressing resistance genes with marker-assisted breeding can eliminate pesticide use and minimize crop losses. Here, resistant near-isogenic line (NIL) of Pusa Basmati-1(PB1) carrying broad spectrum rice blast resistance gene Pi9 was used to investigate Pi9-mediated resistance response. Infected and uninfected resistant NIL and susceptible control line were subjected to RNA-Seq. With the exception of one gene (Pi9), transcriptional signatures between the two lines were alike, reflecting basal similarities in their profiles. Resistant and susceptible lines possessed 1043 (727 up-regulated and 316 down-regulated) and 568 (341 up-regulated and 227 down-regulated) unique and significant differentially expressed loci (SDEL), respectively. Pathway analysis revealed higher transcriptional activation of kinases, WRKY, MYB, and ERF transcription factors, JA-ET hormones, chitinases, glycosyl hydrolases, lipid biosynthesis, pathogenesis and secondary metabolism related genes in resistant NIL than susceptible line. Singular enrichment analysis demonstrated that blast resistant NIL is significantly enriched with genes for primary and secondary metabolism, response to biotic stimulus and transcriptional regulation. The co-expression network showed proteins of genes in response to biotic stimulus interacted in a manner unique to resistant NIL upon M. oryzae infection. These data suggest that Pi9 modulates genome-wide transcriptional regulation in resistant NIL but not in susceptible PB1. We successfully used transcriptome profiling to understand the molecular basis of Pi9-mediated resistance mechanisms, identified potential candidate genes involved in early pathogen response and revealed the sophisticated transcriptional reprogramming during rice-M. oryzae interactions. PMID:28280498

  7. Understanding Host-Pathogen Interactions with Expression Profiling of NILs Carrying Rice-Blast Resistance Pi9 Gene.

    PubMed

    Jain, Priyanka; Singh, Pankaj K; Kapoor, Ritu; Khanna, Apurva; Solanke, Amolkumar U; Krishnan, S Gopala; Singh, Ashok K; Sharma, Vinay; Sharma, Tilak R

    2017-01-01

    Magnaporthe oryzae infection causes rice blast, a destructive disease that is responsible for considerable decrease in rice yield. Development of resistant varieties via introgressing resistance genes with marker-assisted breeding can eliminate pesticide use and minimize crop losses. Here, resistant near-isogenic line (NIL) of Pusa Basmati-1(PB1) carrying broad spectrum rice blast resistance gene Pi9 was used to investigate Pi9-mediated resistance response. Infected and uninfected resistant NIL and susceptible control line were subjected to RNA-Seq. With the exception of one gene (Pi9), transcriptional signatures between the two lines were alike, reflecting basal similarities in their profiles. Resistant and susceptible lines possessed 1043 (727 up-regulated and 316 down-regulated) and 568 (341 up-regulated and 227 down-regulated) unique and significant differentially expressed loci (SDEL), respectively. Pathway analysis revealed higher transcriptional activation of kinases, WRKY, MYB, and ERF transcription factors, JA-ET hormones, chitinases, glycosyl hydrolases, lipid biosynthesis, pathogenesis and secondary metabolism related genes in resistant NIL than susceptible line. Singular enrichment analysis demonstrated that blast resistant NIL is significantly enriched with genes for primary and secondary metabolism, response to biotic stimulus and transcriptional regulation. The co-expression network showed proteins of genes in response to biotic stimulus interacted in a manner unique to resistant NIL upon M. oryzae infection. These data suggest that Pi9 modulates genome-wide transcriptional regulation in resistant NIL but not in susceptible PB1. We successfully used transcriptome profiling to understand the molecular basis of Pi9-mediated resistance mechanisms, identified potential candidate genes involved in early pathogen response and revealed the sophisticated transcriptional reprogramming during rice-M. oryzae interactions.

  8. Experimental infection dynamics: using immunosuppression and in vivo parasite tracking to understand host resistance in an amphibian-trematode system.

    PubMed

    LaFonte, Bryan E; Johnson, Pieter T J

    2013-10-01

    Although naturally occurring hosts often exhibit pronounced differences in infection and pathology, the relative importance of factors associated with host life history and immunity in explaining such patterns often remains speculative. Research in eco-immunology highlights the trade-offs between host physiology and immunity, for which natural variations in disease susceptibility offer a valuable platform to test predictions within this framework. Here, we combined use of a novel, in vivo assay for tracking parasite fate and an experimental manipulation of host immune function (via chronic corticosterone exposure) to assess the role of host immunity in regulating susceptibility of amphibian hosts to three larval trematodes: Ribeiroia ondatrae, Echinostoma trivolvis and Alaria sp. 2. Results from the in vivo parasite-tracking assay revealed marked differences in initial parasite penetration and subsequent host clearance. Relative to infections in a highly susceptible species (Pseudacris regilla), the virulent trematode R. ondatrae was -25% less successful at penetrating larvae of three hylid frog species and was cleared > 45(×) faster, such that all parasites were rapidly cleared from hylid hosts over 72 h following a Weibull distribution. Immune suppression of Hyla versicolor sharply reduced this resistance and increased infection of all three trematodes by 67 to 190%, with particularly strong increases for R. ondatrae. Diminished resistance correlated with a 62% decrease in circulating eosinophils. Correspondingly, 10 days after corticosterone exposures ended, infections declined dramatically while eosinophil levels returned to normal. In light of ongoing declines and deformities in amphibian populations, these findings have application potential for mitigating disease-driven effects.

  9. The role of the secondary cell wall in plant resistance to pathogens.

    PubMed

    Miedes, Eva; Vanholme, Ruben; Boerjan, Wout; Molina, Antonio

    2014-01-01

    Plant resistance to pathogens relies on a complex network of constitutive and inducible defensive barriers. The plant cell wall is one of the barriers that pathogens need to overcome to successfully colonize plant tissues. The traditional view of the plant cell wall as a passive barrier has evolved to a concept that considers the wall as a dynamic structure that regulates both constitutive and inducible defense mechanisms, and as a source of signaling molecules that trigger immune responses. The secondary cell walls of plants also represent a carbon-neutral feedstock (lignocellulosic biomass) for the production of biofuels and biomaterials. Therefore, engineering plants with improved secondary cell wall characteristics is an interesting strategy to ease the processing of lignocellulosic biomass in the biorefinery. However, modification of the integrity of the cell wall by impairment of proteins required for its biosynthesis or remodeling may impact the plants resistance to pathogens. This review summarizes our understanding of the role of the plant cell wall in pathogen resistance with a focus on the contribution of lignin to this biological process.

  10. The role of the secondary cell wall in plant resistance to pathogens

    PubMed Central

    Miedes, Eva; Vanholme, Ruben; Boerjan, Wout; Molina, Antonio

    2014-01-01

    Plant resistance to pathogens relies on a complex network of constitutive and inducible defensive barriers. The plant cell wall is one of the barriers that pathogens need to overcome to successfully colonize plant tissues. The traditional view of the plant cell wall as a passive barrier has evolved to a concept that considers the wall as a dynamic structure that regulates both constitutive and inducible defense mechanisms, and as a source of signaling molecules that trigger immune responses. The secondary cell walls of plants also represent a carbon-neutral feedstock (lignocellulosic biomass) for the production of biofuels and biomaterials. Therefore, engineering plants with improved secondary cell wall characteristics is an interesting strategy to ease the processing of lignocellulosic biomass in the biorefinery. However, modification of the integrity of the cell wall by impairment of proteins required for its biosynthesis or remodeling may impact the plants resistance to pathogens. This review summarizes our understanding of the role of the plant cell wall in pathogen resistance with a focus on the contribution of lignin to this biological process. PMID:25161657

  11. Metagenomic Assembly Reveals Hosts of Antibiotic Resistance Genes and the Shared Resistome in Pig, Chicken, and Human Feces.

    PubMed

    Ma, Liping; Xia, Yu; Li, Bing; Yang, Ying; Li, Li-Guan; Tiedje, James M; Zhang, Tong

    2016-01-05

    The risk associated with antibiotic resistance disseminating from animal and human feces is an urgent public issue. In the present study, we sought to establish a pipeline for annotating antibiotic resistance genes (ARGs) based on metagenomic assembly to investigate ARGs and their co-occurrence with associated genetic elements. Genetic elements found on the assembled genomic fragments include mobile genetic elements (MGEs) and metal resistance genes (MRGs). We then explored the hosts of these resistance genes and the shared resistome of pig, chicken and human fecal samples. High levels of tetracycline, multidrug, erythromycin, and aminoglycoside resistance genes were discovered in these fecal samples. In particular, significantly high level of ARGs (7762 ×/Gb) was detected in adult chicken feces, indicating higher ARG contamination level than other fecal samples. Many ARGs arrangements (e.g., macA-macB and tetA-tetR) were discovered shared by chicken, pig and human feces. In addition, MGEs such as the aadA5-dfrA17-carrying class 1 integron were identified on an assembled scaffold of chicken feces, and are carried by human pathogens. Differential coverage binning analysis revealed significant ARG enrichment in adult chicken feces. A draft genome, annotated as multidrug resistant Escherichia coli, was retrieved from chicken feces metagenomes and was determined to carry diverse ARGs (multidrug, acriflavine, and macrolide). The present study demonstrates the determination of ARG hosts and the shared resistome from metagenomic data sets and successfully establishes the relationship between ARGs, hosts, and environments. This ARG annotation pipeline based on metagenomic assembly will help to bridge the knowledge gaps regarding ARG-associated genes and ARG hosts with metagenomic data sets. Moreover, this pipeline will facilitate the evaluation of environmental risks in the genetic context of ARGs.

  12. Invited Commentary: Cassel's "The Contribution of the Social Environment to Host Resistance"-A Modern Classic.

    PubMed

    James, Sherman A

    2017-06-01

    John Cassel's 1976 paper "The Contribution of the Social Environment to Host Resistance" (Am J Epidemiol. 1976;104(2):107-123) is widely regarded as a classic in epidemiology. He makes the compelling argument that the quality of a person's social relationships, that is, the degree to which her relationships are more stressful than supportive (or vice versa) influences her susceptibility to disease independent of genetic endowment, diet, physical activity, etc. Cassel's provocative thesis was anchored in a cogent synthesis of findings from animal experiments and observational studies on diverse human populations. Beginning in the late 1970s, the paper stimulated an explosion of epidemiologic research on social support and human health. Beyond advancing epidemiologic theory, Cassel showed how findings from various epidemiologic study designs could be marshalled to build a persuasive causal argument that impaired social bonds increase the risk of premature disease and death. The paper also foreshadowed core ideas of later theoretical constructs, such as weathering and allostatic load, regarding the power of chronic environmental stressors to accelerate biological aging across multiple organ systems. Cassel's assessment of the research and practice implications of his conclusions has remarkable contemporary resonance for the field of epidemiology. © The Author 2017. Published by Oxford University Press on behalf of the Johns Hopkins Bloomberg School of Public Health. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  13. Butyrate upregulates endogenous host defense peptides to enhance disease resistance in piglets via histone deacetylase inhibition

    PubMed Central

    Xiong, Haitao; Guo, Bingxiu; Gan, Zhenshun; Song, Deguang; Lu, Zeqing; Yi, Hongbo; Wu, Yueming; Wang, Yizhen; Du, Huahua

    2016-01-01

    Butyrate has been used to treat different inflammatory disease with positive outcomes, the mechanisms by which butyrate exerts its anti-inflammatory effects remain largely undefined. Here we proposed a new mechanism that butyrate manipulate endogenous host defense peptides (HDPs) which contributes to the elimination of Escherichia coli O157:H7, and thus affects the alleviation of inflammation. An experiment in piglets treated with butyrate (0.2% of diets) 2 days before E. coli O157:H7 challenge was designed to investigate porcine HDP expression, inflammation and E. coli O157:H7 load in feces. The mechanisms underlying butyrate-induced HDP gene expression and the antibacterial activity and bacterial clearance of macrophage 3D4/2 cells in vitro were examined. Butyrate treatment (i) alleviated the clinical symptoms of E. coli O157:H7-induced hemolytic uremic syndrome (HUS) and the severity of intestinal inflammation; (ii) reduced the E. coli O157:H7 load in feces; (iii) significantly upregulated multiple, but not all, HDPs in vitro and in vivo via histone deacetylase (HDAC) inhibition; and (iv) enhanced the antibacterial activity and bacterial clearance of 3D4/2 cells. Our findings indicate that butyrate enhances disease resistance, promotes the clearance of E. coli O157:H7, and alleviates the clinical symptoms of HUS and inflammation, partially, by affecting HDP expression via HDAC inhibition. PMID:27230284

  14. How religion influences morbidity and health: reflections on natural history, salutogenesis and host resistance.

    PubMed

    Levin, J S

    1996-09-01

    This paper surveys the field that has come to be known as the epidemiology of religion. Epidemiologic study of the impact of religious involvement, broadly defined, has become increasingly popular in recent years, although the existence, meaning and implications of an apparently salutary religious effect on health have not yet been interpreted in an epidemiologic context. This paper attempts to remedy this situation by putting the "epidemiology" into the epidemiology of religion through discussion of existing empirical findings in terms of several substantive epidemiologic concepts. After first providing an overview of key research findings and prior reviews of this field, the summary finding of a protective religious effect on morbidity is examined in terms of three important epidemiologic concepts: the natural history of disease, salutogenesis and host resistance. In addition to describing a theoretical basis for interpreting a religion-health association, this paper provides an enumeration of common misinterpretations of epidemiologic findings for religious involvement, as well as an outline of hypothesized pathways, mediating factors, and salutogenic mechanisms for respective religious dimensions. It is hoped that these reflections will serve both to elevate the status of religion as a construct worthy of social-epidemiologic research and to reinvigorate the field of social epidemiology.

  15. The Effect of Temperature and Host Plant Resistance on Population Growth of the Soybean Aphid Biotype 1 (Hemiptera: Aphididae).

    PubMed

    Hough, Ashley R; Nechols, James R; McCornack, Brian P; Margolies, David C; Sandercock, Brett K; Yan, Donglin; Murray, Leigh

    2017-02-01

    A laboratory experiment was conducted to evaluate direct and indirect effects of temperature on demographic traits and population growth of biotype 1 of the soybean aphid, Aphis glycines Matsumura. Our objectives were to better understand how temperature influences the expression of host plant resistance, quantify the individual and interactive effects of plant resistance and temperature on soybean aphid population growth, and generate thermal constants for predicting temperature-dependent development on both susceptible and resistant soybeans. To assess indirect (plant-mediated) effects, soybean aphids were reared under a range of temperatures (15-30 °C) on soybean seedlings from a line expressing a Rag1 gene for resistance, and life history traits were quantified and compared to those obtained for soybean aphids on a susceptible soybean line. Direct effects of temperature were obtained by comparing relative differences in the magnitude of life-history traits among temperatures on susceptible soybeans. We predicted that temperature and host plant resistance would have a combined, but asymmetrical, effect on soybean aphid fitness and population growth. Results showed that temperature and plant resistance influenced preimaginal development and survival, progeny produced, and adult longevity. There also appeared to be a complex interaction between temperature and plant resistance for survival and developmental rate. Evidence suggested that the level of plant resistance increased at higher, but not lower, temperature. Soybean aphids required about the same number of degree-days to develop on resistant and susceptible plants. Our results will be useful for making predictions of soybean aphid population growth on resistant plants under different seasonal temperatures. © The Authors 2016. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  16. Drought resistance in early and late secondary successional species from a tropical dry forest: the interplay between xylem resistance to embolism, sapwood water storage and leaf shedding

    Treesearch

    Fernando Pineda-Garcia; Horacio Paz; Frederick C. Meinzer

    2013-01-01

    The mechanisms of drought resistance that allow plants to successfully establish at different stages of secondary succession in tropical dry forests are not well understood. We characterized mechanisms of drought resistance in early and late-successional species and tested whether risk of drought differs across sites at different successional stages, and whether early...

  17. Corrosion resistant positive electrode for high-temperature, secondary electrochemical cell

    DOEpatents

    Otto, Neil C.; Warner, Barry T.; Smaga, John A.; Battles, James E.

    1983-01-01

    The corrosion rate of low carbon steel within a positive electrode of a high-temperature, secondary electrochemical cell that includes FeS as active material is substantially reduced by incorporating therein finely divided iron powder in stoichiometric excess to the amount required to form FeS in the fully charged electrode. The cell typically includes an alkali metal or alkaline earth metal as negative electrode active material and a molten metal halide salt as electrolyte. The excess iron permits use of inexpensive carbon steel alloys that are substantially free of the costly corrosion resistant elements chromium, nickel and molybdenum while avoiding shorten cell life resulting from high corrosion rates.

  18. Corrosion resistant positive electrode for high-temperature, secondary electrochemical cell

    DOEpatents

    Otto, N.C.; Warner, B.T.; Smaga, J.A.; Battles, J.E.

    1982-07-07

    The corrosion rate of low carbon steel within a positive electrode of a high-temperature, secondary electrochemical cell that includes FeS as active material is substantially reduced by incorporating therein finely divided iron powder in stoichiometric excess to the amount required to form FeS in the fully charged electrode. The cell typically includes an alkali metal or alkaline earth metal as negative electrode active material and a molten metal halide salt as electrolyte. The excess iron permits use of inexpensive carbon steel alloys that are substantially free of the costly corrosion resistant elements chromium, nickel and molybdenum while avoiding shorten cell life resulting from high corrosion rates.

  19. Cotton Square Morphology Offers New Insights into Host Plant Resistance to Cotton Fleahopper (Hemiptera: Miridae) in Upland Cotton.

    PubMed

    McLoud, Laura Ann; Hague, Steven; Knutson, Allen; Wayne Smith, C; Brewer, Michael

    2016-02-01

    Cotton fleahopper, Pseudatomoscelis seriatus (Reuter) (Hemiptera: Miridae), is a piercing-sucking pest of cotton (Gossypium hirsutum L.) that feeds preferentially on developing flower buds, called squares. Heavy infestations cause yield reductions that result from abscission of squares damaged by the cotton fleahopper feeding. Antixenosis, or nonpreference, has been reported as a mechanism of host plant resistance in cotton to cotton fleahopper. Square structure, particularly the placement of the reproductive tissues, and stylet penetration were investigated as factors that influence resistance to cotton fleahopper in cotton lines derived from crosses with Pilose, a cultigen of upland cotton resistant to cotton fleahopper, and backcrossed with high-yielding, susceptible lines. Ovary depth varied among the lines tested and was found to be a heritable trait that affected the ability of a fleahopper's feeding stylets to penetrate the reproductive tissues in the square and might influence preference. Behavioral assays suggested antixenosis as a mechanism of host plant resistance, and the trait conferring antixenosis was found to be heritable. Results suggest ovary depth plays a role in conferring resistance to cotton fleahopper and is an exploitable trait in resistance breeding. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  20. Graft-versus-host resistance induced by class II major histocompatibility complex-specific T cell clones

    PubMed Central

    1991-01-01

    Possible mechanisms of graft-vs.-host (GVH) resistance have been studied using a panel of seven class II major histocompatibility complex-specific T cell clones for elicitation and challenge. One clone recognized I-Ak,d,f, and expressed V beta 8.3 together with J beta 1.5. The remaining six clones were I-Ek specific and expressed V beta 15 rearranged to J beta 1.1 or J beta 1.3. The I-Ek-specific clones were also homologous to each other and different from the I-A-reactive one in the D and N regions. Four of the seven clones exhibited I-Ek- specific cytolytic activity. Each clone, when injected in sublethal numbers into appropriate recipients, could induce resistance to a subsequent lethal dose of any other clone in the panel. The resistance did not require sharing of either T cell receptor beta chains or antigen specificity, or MHC molecules by the eliciting and challenging clone. Cytolytic and noncytolytic clones were equally efficient in inducing GVH resistance. A prerequisite of resistance induction was the activation of eliciting clone subsequent to recognition of class II molecules in the host. Clones preactivated with high concentrations of recombinant interleukin 2, in vitro, could induce GVH resistance also in syngeneic hosts, suggesting that resistance induction was associated with the activated state of clone, rather than antigen recognition per se. In all instances of resistance, the challenging clones failed to induce vascular leakage, which was the cause of death in susceptible recipients (Lehmann, P. V., G. Schumm, D. Moon, U. Hurtenbach, F. Falcioni, S. Muller, and Z. A. Nagy. 1990. J. Exp. Med. 171:1485). Lipopolysaccharide (LPS) induced resistance to vascular leakage did not provide crossresistance to GVH and vice versa, suggesting that interleukin 1 alpha and tumor necrosis factor alpha implicated in LPS resistance are not involved in GVH resistance. Although the mechanism remains unclear, the most likely explanation for GVH resistance in this

  1. Non-host Plant Resistance against Phytophthora capsici Is Mediated in Part by Members of the I2 R Gene Family in Nicotiana spp.

    PubMed Central

    Vega-Arreguín, Julio C.; Shimada-Beltrán, Harumi; Sevillano-Serrano, Jacobo; Moffett, Peter

    2017-01-01

    The identification of host genes associated with resistance to Phytophthora capsici is crucial to developing strategies of control against this oomycete pathogen. Since there are few sources of resistance to P. capsici in crop plants, non-host plants represent a promising source of resistance genes as well as excellent models to study P. capsici – plant interactions. We have previously shown that non-host resistance to P. capsici in Nicotiana spp. is mediated by the recognition of a specific P. capsici effector protein, PcAvr3a1 in a manner that suggests the involvement of a cognate disease resistance (R) genes. Here, we have used virus-induced gene silencing (VIGS) and transgenic tobacco plants expressing dsRNA in Nicotiana spp. to identify candidate R genes that mediate non-host resistance to P. capsici. Silencing of members of the I2 multigene family in the partially resistant plant N. edwardsonii and in the resistant N. tabacum resulted in compromised resistance to P. capsici. VIGS of two other components required for R gene-mediated resistance, EDS1 and SGT1, also enhanced susceptibility to P. capsici in N. edwardsonii, as well as in the susceptible plants N. benthamiana and N. clevelandii. The silencing of I2 family members in N. tabacum also compromised the recognition of PcAvr3a1. These results indicate that in this case, non-host resistance is mediated by the same components normally associated with race-specific resistance. PMID:28261255

  2. Non-host Plant Resistance against Phytophthora capsici Is Mediated in Part by Members of the I2 R Gene Family in Nicotiana spp.

    PubMed

    Vega-Arreguín, Julio C; Shimada-Beltrán, Harumi; Sevillano-Serrano, Jacobo; Moffett, Peter

    2017-01-01

    The identification of host genes associated with resistance to Phytophthora capsici is crucial to developing strategies of control against this oomycete pathogen. Since there are few sources of resistance to P. capsici in crop plants, non-host plants represent a promising source of resistance genes as well as excellent models to study P. capsici - plant interactions. We have previously shown that non-host resistance to P. capsici in Nicotiana spp. is mediated by the recognition of a specific P. capsici effector protein, PcAvr3a1 in a manner that suggests the involvement of a cognate disease resistance (R) genes. Here, we have used virus-induced gene silencing (VIGS) and transgenic tobacco plants expressing dsRNA in Nicotiana spp. to identify candidate R genes that mediate non-host resistance to P. capsici. Silencing of members of the I2 multigene family in the partially resistant plant N. edwardsonii and in the resistant N. tabacum resulted in compromised resistance to P. capsici. VIGS of two other components required for R gene-mediated resistance, EDS1 and SGT1, also enhanced susceptibility to P. capsici in N. edwardsonii, as well as in the susceptible plants N. benthamiana and N. clevelandii. The silencing of I2 family members in N. tabacum also compromised the recognition of PcAvr3a1. These results indicate that in this case, non-host resistance is mediated by the same components normally associated with race-specific resistance.

  3. Learned parasite avoidance is driven by host personality and resistance to infection in a fish-trematode interaction.

    PubMed

    Klemme, Ines; Karvonen, Anssi

    2016-09-14

    Cognitive abilities related to the assessment of risk improve survival. While earlier studies have examined the ability of animals to learn to avoid predators, learned parasite avoidance has received little interest. In a series of behavioural trials with the trematode parasite Diplostomum pseudospathaceum, we asked whether sea trout (Salmo trutta trutta) hosts show associative learning in the context of parasitism and if so, whether learning capacity is related to the likelihood of infection mediated through host personality and resistance. We show that animals are capable of learning to avoid visual cues associated with the presence of parasites. However, avoidance behaviour ceased after the likely activation of host resistance following consecutive exposures during learning, suggesting that resistance to infection outweighs avoidance. Further, we found a positive relationship between learning ability and boldness, suggesting a compensation of risky lifestyles through increased investment in cognitive abilities. By contrast, an increased risk of infection due to low resistance was not balanced by learning ability. Instead, these traits were positively related, which may be explained by inherent physiological qualities controlling both traits. Overall, the results demonstrate that parasitism, in addition to other biological interactions such as predation, is an important selective factor in the evolution of animal cognition. © 2016 The Author(s).

  4. Effect of a secondary metallurgy technology on the types of forming nonmetallic inclusions and the corrosion resistance of steel

    NASA Astrophysics Data System (ADS)

    Dub, V. S.; Safronov, A. A.; Movchan, M. A.; Ioffe, A. V.; Tazetdinov, V. I.; Zhivykh, G. A.

    2016-12-01

    The effect of a secondary metallurgy technology on the metal quality during the production of lowcarbon corrosion-resistant steels is estimated. The content of a modifier introduced is found to principally influence the types of inclusions and, via them, the corrosion resistance of parts from the metal subjected to deep refining from sulfur and nonmetallic inclusions.

  5. Evaluation of tetraploid switchgrass (Poales: Poaceae) populations for host suitability and differential resistance to four cereal aphids.

    PubMed

    Koch, Kyle G; Fithian, Rachael; Heng-Moss, Tiffany M; Bradshaw, Jeff D; Sarath, Gautam; Spilker, Courtney

    2014-02-01

    Switchgrass, Panicum virgatum L., is being developed as a bioenergy feedstock. The potential for large-scale production has encouraged its evaluation as a host for important grass pests. Eight no-choice studies were performed for two developmental stages of two switchgrass cultivars ('Kanlow' and'Summer') and two experimental strains, K x S, and S x K produced by reciprocal mating of these cultivars followed by selection for high yield. Plants were evaluated for host suitability and damage differences to herbivory by four important cereal aphids, Sipha flava (Forbes), Schizaphis graminum (Rondani) (biotype I), Rhopalosiphum padi (L.), and Diuraphis noxia (Mordvilko). All switchgrasses were found to be unsuitable feeding and reproductive hosts to R. padi and D. noxia, which were unable to establish on the plants. However, both S. flava and S. graminum were able to establish on all switchgrasses tested. Differential levels of resistance to S. flava and S. graminum were detected among the switchgrasses by both cumulative aphid days (CAD) and plant damage ratings. Kanlow was consistently rated as highly resistant based on CAD and damage ratings for both aphid species, while Summer was consistently among the most susceptible to both aphids at both developmental stages, with relatively high damage ratings. The resistance of the K x S and S x K populations in relationship to their Summer and Kanlow parents indicted that they inherited some resistance to S. graminum and S. flava from their Kanlow parent. These studies provide valuable baseline information concerning the host suitability of switchgrass to four cereal aphids and the plant-insect interactions within a system that has been largely overlooked and indicate that there are genetic differences among switchgrass populations for resistance to some insects.

  6. Host Plant Resistance to Megacopta cribraria (Hemiptera: Plataspidae) in Diverse Soybean Germplasm Maturity Groups V Through VIII.

    PubMed

    Fritz, B J; Reisig, D D; Sorenson, C E; Del Pozo-Valdivia, A I; Carter, T E

    2016-03-27

    Initially discovered in Georgia in 2009, the exotic invasive plataspid,Megacopta cribraria(F.), has become a serious pest of soybean (Glycine max(L.) Merrill). ManagingM. cribrariain soybean typically involves the application of broad-spectrum insecticides. Soybean host plant resistance is an attractive alternative approach; however, no commercial soybean cultivars have been identified as resistant. During 2013 and 2014, we compared 40 and 44 soybean genotypes, respectively, for resistance toM. cribrariain a split-plot design under natural insect infestation in small-plot experiments. Soybean genotypes were selected to maximize diversity with respect to maturity group, pubescence type, leaf shape, seed size, nitrogen fixation, drought tolerance, seed protein content, and pest resistance.Megacopta cribrariaegg masses, nymphs, and adults were counted during the growing season to identify potentially resistant soybean genotypes. Soybean seed yield was measured in insecticide-protected and unprotected conditions to determine tolerance toM. cribraria feeding. In both years, a range of host plant resistance was observed. The fewestM. cribrariaadults and nymphs were found on narrow-leaf, small-seeded cultivars 'N7103' and 'Vance,' as well as the nonnodulating cultivar 'Nitrasoy.' Additionally, N7103 and Vance were among the least susceptible genotypes toM. cribraria oviposition in the field. Most 'Benning' cultivar insect-resistant near-isogenic breeding lines also displayed moderate levels of resistance toM. cribraria Seed yields of Vance and N7103 were less affected byM. cribrariain 2013 than most other soybean genotypes. These results may be useful to soybean breeders to develop cultivars with resistance toM. cribraria. © The Authors 2016. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  7. Antimicrobial drug resistance affects broad changes in metabolomic phenotype in addition to secondary metabolism

    PubMed Central

    Derewacz, Dagmara K.; Goodwin, Cody R.; McNees, C. Ruth; McLean, John A.; Bachmann, Brian O.

    2013-01-01

    Bacteria develop resistance to many classes of antibiotics vertically, by engendering mutations in genes encoding transcriptional and translational apparatus. These severe adaptations affect global transcription, translation, and the correspondingly affected metabolism. Here, we characterize metabolome scale changes in transcriptional and translational mutants in a genomically characterized Nocardiopsis, a soil-derived actinomycete, in stationary phase. Analysis of ultra-performance liquid chromatography–ion mobility–mass spectrometry metabolomic features from a cohort of streptomycin- and rifampicin-resistant mutants grown in the absence of antibiotics exhibits clear metabolomic speciation, and loadings analysis catalogs a marked change in metabolic phenotype. Consistent with derepression, up to 311 features are observed in antibiotic-resistant mutants that are not detected in their progenitors. Mutants demonstrate changes in primary metabolism, such as modulation of fatty acid composition and the increased production of the osmoprotectant ectoine, in addition to the presence of abundant emergent potential secondary metabolites. Isolation of three of these metabolites followed by structure elucidation demonstrates them to be an unusual polyketide family with a previously uncharacterized xanthene framework resulting from sequential oxidative carbon skeletal rearrangements. Designated as “mutaxanthenes,” this family can be correlated to a type II polyketide gene cluster in the producing organism. Taken together, these data suggest that biosynthetic pathway derepression is a general consequence of some antibiotic resistance mutations. PMID:23341601

  8. Abrogation of hybrid resistance to bone marrow engraftment by graft versus host induced immune deficiency

    SciTech Connect

    Hakim, F.T.; Shearer, G.M.

    1986-03-01

    Lethally irradiated F/sub 1/ mice, heterozygous at the hematopoietic histocompatibility (Hh) locus at H-2D/sup b/, reject bone marrow grafts from homozygous H-2/sup b/ parents. This hybrid resistance (HR) is reduced by prior injection of H-2/sup b/ parental spleen cells. Since injection of parental spleen cells produces a profound suppression of F/sub 1/ immune functions, the authors investigated whether parental-induced abrogation of HR was due to graft-vs-host induced immune deficiency (GVHID). HR was assessed by quantifying engraftment in irradiated mice using /sup 125/I-IUdR spleen uptake; GVHID by measuring generation of cytotoxic T lymphocytes (CTL) from unirradiated mice. They observed correlation in time course, spleen dose dependence and T cell dependence between GVHID and loss of HR. The injection of B10 recombinant congenic spleens into (B10 x B10.A) F/sub 1/ mice, prior to grafting with B10 marrow, demonstrated that only those disparities in major histocompatibility antigens which generated GVHID would result in loss of HR. Spleens from (B10 x B10.A(2R))F/sub 1/ mice (Class I disparity only) did not induce GVHID or affect HR, while (B10 x B10.A(5R)F/sub 1/ spleens (Class I and II disparity) abrogated CTL generation and HR completely. GVHID produced by a Class II only disparity, as in (B10 x B10.A(5R))F/sub 1/ spleens injected into (B6/sup bm12 x B10.A(5R))F/sub 1/ mice, was also sufficient to markedly reduce HR to B10 bone marrow. Modulation of hematopoietic graft rejection by GVHID may affect marrow engraftment in man.

  9. Enhancing host resistance to pressure ulcers: a new approach to prevention.

    PubMed

    Mawson, A R; Siddiqui, F H; Biundo, J J

    1993-05-01

    Pressure ulcers are notoriously common in spinal-cord-injured patients, in patients with other neurological deficits, in malnourished and severely debilitated patients, and in the frail elderly. Prolonged localized external pressure, coupled with insensitivity to ischemia resulting from neurologic injury, has long been considered the major causal factor. Preventive efforts have focused on the relief of pressure via frequent repositioning and the use of pressure-relieving devices. However, consensus is growing that host factors also play a role in the development of pressure ulcers, the most important in spinal-cord-injured patients being the injury-induced loss of vasomotor control below the level of the lesion, resulting in hypoxemia. Accordingly, pressure ulcers may be prevented not only by reducing external pressure but also by increasing the patient's resistance to pressure, that is, by directly influencing tissue oxygenation. Review of the literature suggests that electrical stimulation increases cutaneous blood flow and promotes the healing of pressure ulcers. Moreover, high-voltage pulsed galvanic stimulation (75 V, 10 Hz) applied to the back at spinal level T6 in spinal-cord-injured persons lying supine on egg-crate mattresses can raise sacral transcutaneous oxygen tension levels into the normal ranges (A. R. Mawson, F. H. Siddiqui, B. J. Connolly, C. J. Sharp, W. R. Summer, and J. J. Biundo, Jr., Paraplegia in press). Randomized controlled trials are needed to determine the efficacy of high-voltage pulsed galvanic stimulation for preventing pressure ulcers in spinal-cord-injured persons and other groups at high risk.

  10. Improved secondary caries resistance via augmented pressure displacement of antibacterial adhesive

    PubMed Central

    Zhou, Wei; Niu, Li-na; Huang, Li; Fang, Ming; Chang, Gang; Shen, Li-juan; Tay, Franklin R.; Chen, Ji-hua

    2016-01-01

    The present in vitro study evaluated the secondary caries resistance potential of acid-etched human coronal dentin bonded using augmented pressure adhesive displacement in conjunction with an experimental antibacterial adhesive. One hundred and twenty class I cavities were restored with a commercial non-antibacterial etch-and-rinse adhesive (N) or an experimental antibacterial adhesive (A) which was displaced by gentle air-blow (G) or augmented pressure air-blow (H). After bonding and restoration with resin composite, the resulted 4 groups (N-G, N-H, A-G and A-H) were exposed to Streptococcus mutans biofilm for 4, 8, 15, 20 or 25 days. The development of secondary caries in the bonding interface was then examined by confocal laser scanning microscopy (CLSM) and scanning electron microscopy (SEM). Data acquired from 15, 20 and 25 days of artificial caries induction were analyzed with three-way ANOVA at α = 0.05. The depth of the artificial carious lesions was significantly affected by “adhesive type” (Single Bond 2 vs experimental antibacterial adhesive p = 0.003), “intensity of adhesive displacement” (gentle vs augmented-pressure adhesive displacement; p < 0.001), as well as “artificial caries induction time” (p < 0.001). The combined use of augmented pressure adhesive displacement and experimental antibacterial adhesive reduces the progression of secondary caries. PMID:26928742

  11. Benefits of host genetic diversity for resistance to infection depend on parasite diversity.

    PubMed

    Ganz, Holly H; Ebert, Dieter

    2010-05-01

    Host populations with high genetic diversity are predicted to have lower levels of infection prevalence. This theory assumes that host genetic diversity results in variation in susceptibility and that parasites exhibit variation in infectivity. Empirical studies on the effects of host heterogeneity typically neglect the role of parasite diversity. We conducted three laboratory experiments designed to test if genetic variation in Daphnia magna populations and genetic variation in its parasites together influence the course of parasite spread after introduction. We found that a natural D. magna population exhibited variation in susceptibility to infection by three parasite species and had strong host clone-parasite species interactions. There was no effect of host heterogeneity in experimental host populations (polycultures and monocultures) separately exposed to single strains of three parasite species. When we manipulated the genetic diversity of a single parasite species and exposed them to host monocultures and polycultures, we found that parasite prevalence increased with the number of parasite strains. Host monocultures exposed to several parasite strains had higher mean parasite prevalence and higher variance than polycultures. These results indicate that effect of host genetic diversity on the spread of infection depends on the level of genetic diversity in the parasite population.

  12. Scaling up from greenhouse resistance to fitness in the field for a host of an emerging forest disease.

    PubMed

    Hayden, Katherine J; Garbelotto, Matteo; Dodd, Richard; Wright, Jessica W

    2013-09-01

    Forest systems are increasingly threatened by emergent, exotic diseases, yet management strategies for forest trees may be hindered by long generation times and scant background knowledge. We tested whether nursery disease resistance and growth traits have predictive value for the conservation of Notholithocarpus densiflorus, the host most susceptible to sudden oak death. We established three experimental populations to assess nursery growth and resistance to Phytophthora ramorum, and correlations between nursery-derived breeding values with seedling survival in a field disease trial. Estimates of nursery traits' heritability were low to moderate, with lowest estimates for resistance traits. Within the field trial, survival likelihood was increased in larger seedlings and decreased with the development of disease symptoms. The seed-parent family wide likelihood of survival was likewise correlated with family predictors for size and resistance to disease in 2nd year laboratory assays, though not resistance in 1st year leaf assays. We identified traits and seedling families with increased survivorship in planted tanoaks, and a framework to further identify seed parents favored for restoration. The additive genetic variation and seedling disease dynamics we describe hold promise to refine current disease models and expand the understanding of evolutionary dynamics of emergent infectious diseases in highly susceptible hosts.

  13. Resistance to liver fluke infection in the natural sheep host is correlated with a type-1 cytokine response.

    PubMed

    Pleasance, J; Wiedosari, E; Raadsma, H W; Meeusen, E; Piedrafita, D

    2011-09-01

    Indonesian thin-tail (ITT) sheep can resist infection with Fasciola gigantica but not F. hepatica and presents an ideal model to investigate the mechanisms of liver fluke resistance in a natural host. This study examines the local and systemic immune responses of sheep during Fasciola infection and demonstrates that different anatomical tissues display distinct cytokine profiles consistent with liver fluke migration. The study also reveals a significant difference in the cytokine and antibody profiles of ITT sheep infected with F. gigantica compared with F. hepatica, with a higher ratio of IL-4/IFN-γ mRNA expression and specific IgG1/IgG2 antibodies strongly correlating with pathology. Interestingly, the significant type-1 cytokine profile occurred in the lymph node closest to the site of infection at a time when the effective immune response against F. gigantica liver flukes is thought to occur. When the same F. gigantica infection in the resistant ITT sheep was compared with the susceptible Merino breed, the resistant type-1 phenotype against liver fluke infection was only observed in the ITT sheep. These studies provide the first evidence to suggest that the induction of an early type-1 immune response in this natural sheep host may be responsible for the ability to resist liver fluke infection. © 2011 Blackwell Publishing Ltd.

  14. EDTA a novel inducer of pisatin, a phytoalexin indicator of the non-host resistance in peas.

    PubMed

    Hadwiger, Lee A; Tanaka, Kiwamu

    2014-12-23

    Pea pod endocarp suppresses the growth of an inappropriate fungus or non-pathogen by generating a "non-host resistance response" that completely suppresses growth of the challenging fungus within 6 h. Most of the components of this resistance response including pisatin production can be elicited by an extensive number of both biotic and abiotic inducers. Thus this phytoalexin serves as an indicator to be used in evaluating the chemical properties of inducers that can initiate the resistance response. Many of the pisatin inducers are reported to interact with DNA and potentially cause DNA damage. Here we propose that EDTA (ethylenediaminetetraacetic acid) is an elicitor to evoke non-host resistance in plants. EDTA is manufactured as a chelating agent, however at low concentration it is a strong elicitor, inducing the phytoalexin pisatin, cellular DNA damage and defense-responsive genes. It is capable of activating complete resistance in peas against a pea pathogen. Since there is also an accompanying fragmentation of pea DNA and alteration in the size of pea nuclei, the potential biochemical insult as a metal chelator may not be its primary action. The potential effects of EDTA on the structure of DNA within pea chromatin may assist the transcription of plant defense genes.

  15. Possible mechanisms of host resistance to Haemonchus contortus infection in sheep breeds native to the Canary Islands

    PubMed Central

    Guo, Zhengyu; González, Jorge Francisco; Hernandez, Julia N.; McNeilly, Tom N.; Corripio-Miyar, Yolanda; Frew, David; Morrison, Tyler; Yu, Peng; Li, Robert W.

    2016-01-01

    Haemonchus contortus appears to be the most economically important helminth parasite for small ruminant production in many regions of the world. The two sheep breeds native to the Canary Islands display distinctly different resistant phenotypes under both natural and experimental infections. Canaria Hair Breed (CHB) tends to have significantly lower worm burden and delayed and reduced egg production than the susceptible Canaria Sheep (CS). To understand molecular mechanisms underlying host resistance, we compared the abomasal mucosal transcriptome of the two breeds in response to Haemonchus infection using RNAseq technology. The transcript abundance of 711 and 50 genes were significantly impacted by infection in CHB and CS, respectively (false discovery rate <0.05) while 27 of these genes were significantly affected in both breeds. Likewise, 477 and 16 Gene Ontology (GO) terms were significantly enriched in CHB and CS, respectively (P < 1.0 × 10−4). A broad range of mechanisms have evolved in resistant CHB to provide protection against the parasite. Our findings suggest that readily inducible acute inflammatory responses, complement activation, accelerated cell proliferation and subsequent tissue repair, and immunity directed against parasite fecundity all contributed to the development of host resistance to parasitic infection in the resistant breed. PMID:27197554

  16. Pharmacological Targeting of the Host-Pathogen Interaction: Alternatives to Classical Antibiotics to Combat Drug-Resistant Superbugs.

    PubMed

    Munguia, Jason; Nizet, Victor

    2017-03-07

    The rise of multidrug-resistant pathogens and the dearth of new antibiotic development place an existential strain on successful infectious disease therapy. Breakthrough strategies that go beyond classical antibiotic mechanisms are needed to combat this looming public health catastrophe. Reconceptualizing antibiotic therapy in the richer context of the host-pathogen interaction is required for innovative solutions. By defining specific virulence factors, the essence of a pathogen, and pharmacologically neutralizing their activities, one can block disease progression and sensitize microbes to immune clearance. Likewise, host-directed strategies to boost phagocyte bactericidal activity, enhance leukocyte recruitment, or reverse pathogen-induced immunosuppression seek to replicate the success of cancer immunotherapy in the field of infectious diseases. The answer to the threat of multidrug-resistant pathogens lies 'outside the box' of current antibiotic paradigms.

  17. Transcriptome analysis of root-knot nematode (Meloidogyne incognita)-infected tomato (Solanum lycopersicum) roots reveals complex gene expression profiles and metabolic networks of both host and nematode during susceptible and resistance responses.

    PubMed

    Shukla, Neha; Yadav, Rachita; Kaur, Pritam; Rasmussen, Simon; Goel, Shailendra; Agarwal, Manu; Jagannath, Arun; Gupta, Ramneek; Kumar, Amar

    2017-02-21

    Root knot nematodes (RKNs, Meloidogyne incognita) are economically important endoparasites having a wide-host range. We have taken a comprehensive transcriptomic approach to investigate the expression of both tomato and RKN genes in tomato roots at five infection time intervals from susceptible plants and two infection time intervals from resistant plants, grown under soil conditions. Differentially expressed genes during susceptible (1827-tomato, 462-RKN) and resistance (25-tomato, 160-RKN) interactions were identified. In susceptible responses, tomato genes involved in cell wall structure, development, primary and secondary metabolites and defense signalling pathways along with RKN genes involved in host parasitism, development and defense are discussed. In resistance responses, tomato genes involved in secondary metabolite and hormone-mediated defense responses along with RKN genes involved in starvation stress-induced apoptosis are discussed. Also, forty novel differentially expressed RKN genes encoding secretory proteins were identified. Our findings, for the first time, provide novel insights into temporal regulation of genes involved in various biological processes from tomato and RKN simultaneously during susceptible and resistance responses, and reveals involvement of a complex network of biosynthetic pathways during disease development. This article is protected by copyright. All rights reserved.

  18. Insect Resistance Management in Bt Maize: Wild Host Plants of Stem Borers Do Not Serve as Refuges in Africa.

    PubMed

    Van den Berg, J

    2017-02-01

    Resistance evolution by target pests threatens the sustainability of Bt maize in Africa where insect resistance management (IRM) strategies are faced by unique challenges. The assumptions, on which current IRM strategies for stem borers are based, are not all valid for African maize stem borer species. The high dose-refuge strategy which is used to delay resistance evolution relies heavily on the presence of appropriate refuges (non-Bt plants) where pests are not under selection pressure and where sufficient numbers of Bt-susceptible individuals are produced to mate with possible survivors on the Bt maize crop. Misidentification of stem borer species and inaccurate reporting on wild host plant diversity over the past six decades created the perception that grasses will contribute to IRM strategies for these pests in Africa. Desired characteristics of refuge plants are that they should be good pest hosts, implying that larval survival is high and that it produces sufficient numbers of high-quality moths. Refuge plants should also have large cover abundance in areas where Bt maize is planted. While wild host plants may suffice in IRM strategies for polyphagous pests, this is not the case with stenophagous pests. This review discusses data of ecological studies and stem borer surveys conducted over the past decade and shows that wild host plants are unsuitable for development and survival of sufficient numbers of stem borer individuals. These grasses rather act as dead-end-trap plants and do not comply with refuge requirements of producing 500 susceptible individuals for every one resistant individual that survives on Bt maize.

  19. Non-Thermal Plasma Treatment Diminishes Fungal Viability and Up-Regulates Resistance Genes in a Plant Host

    PubMed Central

    Panngom, Kamonporn; Lee, Sang Hark; Park, Dae Hoon; Sim, Geon Bo; Kim, Yong Hee; Uhm, Han Sup; Park, Gyungsoon; Choi, Eun Ha

    2014-01-01

    Reactive oxygen and nitrogen species can have either harmful or beneficial effects on biological systems depending on the dose administered and the species of organism exposed, suggesting that application of reactive species can possibly produce contradictory effects in disease control, pathogen inactivation and activation of host resistance. A novel technology known as atmospheric-pressure non-thermal plasma represents a means of generating various reactive species that adversely affect pathogens (inactivation) while simultaneously up-regulating host defense genes. The anti-microbial efficacy of this technology was tested on the plant fungal pathogen Fusarium oxysporum f.sp. lycopersici and its susceptible host plant species Solanum lycopercicum. Germination of fungal spores suspended in saline was decreased over time after exposed to argon (Ar) plasma for 10 min. Although the majority of treated spores exhibited necrotic death, apoptosis was also observed along with the up-regulation of apoptosis related genes. Increases in the levels of peroxynitrite and nitrite in saline following plasma treatment may have been responsible for the observed spore death. In addition, increased transcription of pathogenesis related (PR) genes was observed in the roots of the susceptible tomato cultivar (S. lycopercicum) after exposure to the same Ar plasma dose used in fungal inactivation. These data suggest that atmospheric-pressure non-thermal plasma can be efficiently used to control plant fungal diseases by inactivating fungal pathogens and up-regulating mechanisms of host resistance. PMID:24911947

  20. Pseudomonas sax genes overcome aliphatic isothiocyanate-mediated non-host resistance in Arabidopsis

    Treesearch

    Jun Fan; Casey Crooks; Gary Creissen; Lionel Hill; Shirley Fairhurst; Peter Doerner; Chris Lamb

    2011-01-01

    Most plant-microbe interactions do not result in disease; natural products restrict non-host pathogens. We found that sulforaphane (4-methylsulfinylbutyl isothiocyanate), a natural product derived from aliphatic glucosinolates, inhibits growth in Arabidopsis of non-host Pseudomonas bacteria in planta. Multiple sax genes (saxCAB/F/D/G) were identified in Pseudomonas...

  1. Secondary Cytoreduction in Platinum-Resistant Recurrent Ovarian Cancer: A Single-Institution Experience.

    PubMed

    Musella, A; Marchetti, C; Palaia, I; Perniola, G; Giorgini, M; Lecce, F; Vertechy, L; Iadarola, R; De Felice, F; Monti, M; Muzii, L; Angioli, R; Panici, P Benedetti

    2015-12-01

    The purpose of this study was to observe the role of secondary cytoreductive surgery in platinum-resistant recurrent ovarian cancer (OC) patients. We collected data of patients affected by recurrent OC treated between 1995 and 2013. Inclusion criteria were: invasive epithelial OC histologically documented, cytoreductive surgery and platinum-based chemotherapy at first-line treatment with evidence of complete response to treatment, disease-free interval <6 months, and no concomitant neoplasia. Patients considered susceptible of cytoreductive surgery (group A) were compared with a historical series of patients with similar characteristics but not eligible for surgery (group B). Of 122 platinum-resistant patients, 18 met the inclusion criteria for the study and were enrolled. They were compared with a historical series of 18 patients not surgically treated with analogous clinical and pathological features. The most frequent sites of relapse included pelvic and aortic lymph nodes (39 %), peritoneum (33 %), bowel (28 %), and pelvis (22 %). A low rate of intraoperative and postoperative complications was reported. No deaths were recorded. Overall survival was significantly longer in cytoreductive group when compared with the control group (P = 0.035). Median overall survival was 44 months. Estimated 5-year overall survival rates were 57 versus 23.5 % for groups A and B, respectively. Surgery could represent a useful adjunct to chemotherapy in the management of platinum-resistant recurrent OC patients, carefully selected, in highly selected centers. Larger prospective trials are needed to further confirm our experience.

  2. The predominant circular form of avocado sunblotch viroid accumulates in planta as a free RNA adopting a rod-shaped secondary structure unprotected by tightly bound host proteins.

    PubMed

    López-Carrasco, Amparo; Flores, Ricardo

    2017-07-01

    Avocado sunblotch viroid (ASBVd), the type member of the family Avsunviroidae, replicates and accumulates in chloroplasts. Whether this minimal non-protein-coding circular RNA of 246-250 nt exists in vivo as a free nucleic acid or closely associated with host proteins remains unknown. To tackle this issue, the secondary structures of the monomeric circular (mc) (+) and (-) strands of ASBVd have been examined in silico by searching those of minimal free energy, and in vitro at single-nucleotide resolution by selective 2'-hydroxyl acylation analysed by primer extension (SHAPE). Both approaches resulted in predominant rod-like secondary structures without tertiary interactions, with the mc (+) RNA being more compact than its (-) counterpart as revealed by non-denaturing polyacryamide gel electrophoresis. Moreover, in vivo SHAPE showed that the mc ASBVd (+) form accumulates in avocado leaves as a free RNA adopting a similar rod-shaped conformation unprotected by tightly bound host proteins. Hence, the mc ASBVd (+) RNA behaves in planta like the previously studied mc (+) RNA of potato spindle tuber viroid, the type member of nuclear viroids (family Pospiviroidae), indicating that two different viroids replicating and accumulating in distinct subcellular compartments, have converged into a common structural solution. Circularity and compact secondary structures confer to these RNAs, and probably to all viroids, the intrinsic stability needed to survive in their natural habitats. However, in vivo SHAPE has not revealed the (possibly transient or loose) interactions of the mc ASBVd (+) RNA with two host proteins observed previously by UV irradiation of infected avocado leaves.

  3. Interplay between parasitism and host ontogenic resistance in the epidemiology of the soil-borne plant pathogen Rhizoctonia solani.

    PubMed

    Simon, Thomas E; Le Cointe, Ronan; Delarue, Patrick; Morlière, Stéphanie; Montfort, Françoise; Hervé, Maxime R; Poggi, Sylvain

    2014-01-01

    Spread of soil-borne fungal plant pathogens is mainly driven by the amount of resources the pathogen is able to capture and exploit should it behave either as a saprotroph or a parasite. Despite their importance in understanding the fungal spread in agricultural ecosystems, experimental data related to exploitation of infected host plants by the pathogen remain scarce. Using Rhizoctonia solani / Raphanus sativus as a model pathosystem, we have obtained evidence on the link between ontogenic resistance of a tuberizing host and (i) its susceptibility to the pathogen and (ii) after infection, the ability of the fungus to spread in soil. Based on a highly replicable experimental system, we first show that infection success strongly depends on the host phenological stage. The nature of the disease symptoms abruptly changes depending on whether infection occurred before or after host tuberization, switching from damping-off to necrosis respectively. Our investigations also demonstrate that fungal spread in soil still depends on the host phenological stage at the moment of infection. High, medium, or low spread occurred when infection was respectively before, during, or after the tuberization process. Implications for crop protection are discussed.

  4. Interplay between Parasitism and Host Ontogenic Resistance in the Epidemiology of the Soil-Borne Plant Pathogen Rhizoctonia solani

    PubMed Central

    Delarue, Patrick; Morlière, Stéphanie; Montfort, Françoise; Hervé, Maxime R.; Poggi, Sylvain

    2014-01-01

    Spread of soil-borne fungal plant pathogens is mainly driven by the amount of resources the pathogen is able to capture and exploit should it behave either as a saprotroph or a parasite. Despite their importance in understanding the fungal spread in agricultural ecosystems, experimental data related to exploitation of infected host plants by the pathogen remain scarce. Using Rhizoctonia solani / Raphanus sativus as a model pathosystem, we have obtained evidence on the link between ontogenic resistance of a tuberizing host and (i) its susceptibility to the pathogen and (ii) after infection, the ability of the fungus to spread in soil. Based on a highly replicable experimental system, we first show that infection success strongly depends on the host phenological stage. The nature of the disease symptoms abruptly changes depending on whether infection occurred before or after host tuberization, switching from damping-off to necrosis respectively. Our investigations also demonstrate that fungal spread in soil still depends on the host phenological stage at the moment of infection. High, medium, or low spread occurred when infection was respectively before, during, or after the tuberization process. Implications for crop protection are discussed. PMID:25127238

  5. Increased plant growth and copper uptake of host and non-host plants by metal-resistant and plant growth-promoting endophytic bacteria.

    PubMed

    Sun, Leni; Wang, Xiaohan; Li, Ya

    2016-01-01

    The effects of inoculation with two metal-resistant and plant growth-promoting endophytic bacteria (Burkholderia sp. GL12 and Bacillus megaterium JL35) were evaluated on the plant growth and Cu uptake in their host Elsholtzia splendens and non-host Brassica napus plants grown in natural Cu-contaminated soil. The two strains showed a high level of ACC deaminase activities. In pot experiments, inoculation with strain GL12 significantly increased root and above-ground tissue dry weights of both plants, consequently increasing the total Cu uptake of E. splendens and Brassica napus by 132% and 48.2% respectively. Inoculation with strain JL35 was found to significantly increase not only the biomass of B. napus, consequently increasing the total Cu uptake of B. napus by 31.3%, but Cu concentration of E. splendens for above-ground tissues by 318% and roots by 69.7%, consequently increasing the total Cu uptake of E. splendens by 223%. The two strains could colonize the rhizosphere soils and root interiors of both plants. Notably, strain JL35 could colonize the shoot tissues and significantly increase the translocation factors and bioaccumulation factors of E. splendens. These results suggested that Burkholderia sp. GL12 and B. megaterium JL35 were valuable bacterial resource which had the potential in improving the efficiency of Cu phytoextraction by E. splendens and B. napus in a natural Cu-contaminated soil.

  6. Microbial selectivity of UV treatment on antibiotic-resistant heterotrophic bacteria in secondary effluents of a municipal wastewater treatment plant.

    PubMed

    Guo, Mei-Ting; Yuan, Qing-Bin; Yang, Jian

    2013-10-15

    Little is known about the microbial selectivity of UV treatment for antibiotic resistant bacteria, and the results of limited studies are conflicting. To understand the effect of UV disinfection on antibiotic resistant bacteria, both total heterotrophic bacteria and antibiotic resistant bacteria (including cephalexin-, ciprofloxacin-, erythromycin-, gentamicin-, vancomycin-, sulfadiazine-, rifampicin-, tetracycline- and chloramphenicol-resistant bacteria) were examined in secondary effluent samples from a municipal wastewater treatment plant. Bacteria resistant to both erythromycin and tetracycline were chosen as the representative of multiple-antibiotic-resistant bacteria and their characteristics after UV treatment were also investigated. UV disinfection results in effective inactivation for total heterotrophic bacteria, as well as all antibiotic resistant bacteria. After UV treatment at a fluence of 5 mJ/cm(2), the log reductions of nine types of antibiotic resistant bacteria varied from 1.0 ± 0.1 to 2.4 ± 0.1. Bacteria resistant to both erythromycin and tetracycline had a similar fluence response as did total heterotrophic bacteria. The findings suggest that UV disinfection could eliminate antibiotic resistance in wastewater treatment effluents and thus ensure public health security. Our experimental results indicated that UV disinfection led to enrichment of bacteria with resistance to sulfadiazine, vancomycin, rifampicin, tetracycline and chloramphenicol, while the proportions of cephalexin-, erythromycin-, gentamicin- and ciprofloxacin-resistant bacteria in the wastewater decreased. This reveals the microbial selectivity of UV disinfection for antibiotic resistant bacteria. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Within-host whole genome analysis of an antibiotic resistant Pseudomonas aeruginosa strain sub-type in cystic fibrosis

    PubMed Central

    Wee, Bryan A.; Ramsay, Kay A.; Kidd, Timothy J.; Ben Zakour, Nouri L.; Whiley, David M.; Beatson, Scott A.; Bell, Scott C.

    2017-01-01

    A Pseudomonas aeruginosa AUST-02 strain sub-type (M3L7) has been identified in Australia, infects the lungs of some people with cystic fibrosis and is associated with antibiotic resistance. Multiple clonal lineages may emerge during treatment with mutations in chromosomally encoded antibiotic resistance genes commonly observed. Here we describe the within-host diversity and antibiotic resistance of M3L7 during and after antibiotic treatment of an acute pulmonary exacerbation using whole genome sequencing and show both variation and shared mutations in important genes. Eleven isolates from an M3L7 population (n = 134) isolated over 3 months from an individual with cystic fibrosis underwent whole genome sequencing. A phylogeny based on core genome SNPs identified three distinct phylogenetic groups comprising two groups with higher rates of mutation (hypermutators) and one non-hypermutator group. Genomes were screened for acquired antibiotic resistance genes with the result suggesting that M3L7 resistance is principally driven by chromosomal mutations as no acquired mechanisms were detected. Small genetic variations, shared by all 11 isolates, were found in 49 genes associated with antibiotic resistance including frame-shift mutations (mexA, mexT), premature stop codons (oprD, mexB) and mutations in quinolone-resistance determining regions (gyrA, parE). However, whole genome sequencing also revealed mutations in 21 genes that were acquired following divergence of groups, which may also impact the activity of antibiotics and multi-drug efflux pumps. Comparison of mutations with minimum inhibitory concentrations of anti-pseudomonal antibiotics could not easily explain all resistance profiles observed. These data further demonstrate the complexity of chronic and antibiotic resistant P. aeruginosa infection where a multitude of co-existing genotypically diverse sub-lineages might co-exist during and after intravenous antibiotic treatment. PMID:28273168

  8. Within-host whole genome analysis of an antibiotic resistant Pseudomonas aeruginosa strain sub-type in cystic fibrosis.

    PubMed

    Sherrard, Laura J; Tai, Anna S; Wee, Bryan A; Ramsay, Kay A; Kidd, Timothy J; Ben Zakour, Nouri L; Whiley, David M; Beatson, Scott A; Bell, Scott C

    2017-01-01

    A Pseudomonas aeruginosa AUST-02 strain sub-type (M3L7) has been identified in Australia, infects the lungs of some people with cystic fibrosis and is associated with antibiotic resistance. Multiple clonal lineages may emerge during treatment with mutations in chromosomally encoded antibiotic resistance genes commonly observed. Here we describe the within-host diversity and antibiotic resistance of M3L7 during and after antibiotic treatment of an acute pulmonary exacerbation using whole genome sequencing and show both variation and shared mutations in important genes. Eleven isolates from an M3L7 population (n = 134) isolated over 3 months from an individual with cystic fibrosis underwent whole genome sequencing. A phylogeny based on core genome SNPs identified three distinct phylogenetic groups comprising two groups with higher rates of mutation (hypermutators) and one non-hypermutator group. Genomes were screened for acquired antibiotic resistance genes with the result suggesting that M3L7 resistance is principally driven by chromosomal mutations as no acquired mechanisms were detected. Small genetic variations, shared by all 11 isolates, were found in 49 genes associated with antibiotic resistance including frame-shift mutations (mexA, mexT), premature stop codons (oprD, mexB) and mutations in quinolone-resistance determining regions (gyrA, parE). However, whole genome sequencing also revealed mutations in 21 genes that were acquired following divergence of groups, which may also impact the activity of antibiotics and multi-drug efflux pumps. Comparison of mutations with minimum inhibitory concentrations of anti-pseudomonal antibiotics could not easily explain all resistance profiles observed. These data further demonstrate the complexity of chronic and antibiotic resistant P. aeruginosa infection where a multitude of co-existing genotypically diverse sub-lineages might co-exist during and after intravenous antibiotic treatment.

  9. Impacts of thiamethoxam seed treatment and host plant resistance on the soybean aphid fungal pathogen, Pandora neoaphidis.

    PubMed

    Koch, Karrie A; Ragsdale, David W

    2011-12-01

    Since the introduction of soybean aphid, Aphis glycines Matsumura, from Asia, insecticide use in soybean has increased substantially in the north central United States. Insecticide seed treatments and aphid resistant soybean varieties are management tactics that may reduce reliance on foliar applications of broad-spectrum insecticides. Exploring potential nontarget impacts of these technologies will be an important step in incorporating them into aphid management programs. We investigated impacts of thiamethoxam seed treatment and Rag1 aphid resistant soybean on a fungal pathogen of soybean aphid, Pandora neoaphidis (Remaudière & Hennebert) Humber, via open plot and cage studies. We found that although thiamethoxam seed treatment did significantly lower aphid pressure in open plots compared with an untreated control, this reduction in aphid density translated into nonsignificant decreases in fungal disease prevalence in aphids. Furthermore, when aphid densities were approximately equal in seed treated and untreated soybean, no impact on aphid fungal disease was observed. In open plots, Rag1 resistant soybean experienced lower aphid pressure and aphid disease prevalence compared with a nonresistant isoline. However, in cages when aphid densities were equivalent in both resistant and susceptible soybean, resistance had no impact on aphid disease prevalence. The addition of thiamethoxam seed treatment to resistant soybean yielded aphid densities and aphid disease prevalence similar to untreated, resistant soybean. These studies provide evidence that thiamethoxam seed treatments and Rag1 resistance can impact P. neoaphidis via decreased aphid densities; however, this impact is minimal, implying use of seed treatments and host plant resistance are compatible with P. neoaphidis.

  10. Cell Wall Biomolecular Composition Plays a Potential Role in the Host Type II Resistance to Fusarium Head Blight in Wheat

    PubMed Central

    Lahlali, Rachid; Kumar, Saroj; Wang, Lipu; Forseille, Li; Sylvain, Nicole; Korbas, Malgorzata; Muir, David; Swerhone, George; Lawrence, John R.; Fobert, Pierre R.; Peng, Gary; Karunakaran, Chithra

    2016-01-01

    Fusarium head blight (FHB) is a serious disease of wheat worldwide. Cultivar resistance to FHB depends on biochemical factors that confine the pathogen spread in spikes. Breeding for cultivar resistance is considered the most practical way to manage this disease. In this study, different spectroscopy and microscopy techniques were applied to discriminate resistance in wheat genotypes against FHB. Synchrotron-based spectroscopy and imaging techniques, including focal plane array infrared and X-ray fluorescence (XRF) spectroscopy were used to understand changes in biochemical and nutrients in rachis following FHB infection. Sumai3 and Muchmore were used to represent resistant and susceptible cultivars to FHB, respectively, in this study. The histological comparison of rachis showed substantial differences in the cell wall thickness between the cultivars after infection. Synchrotron-based infrared imaging emphasized substantial difference in biochemical composition of rachis samples between the two cultivars prior to visible symptoms; in the resistant Sumai3, infrared bands representing lignin and hemicellulose were stronger and more persistent compared to the susceptible cultivar. These bands may be the candidates of biochemical markers for FHB resistance. Focal plane array infrared imaging (FPA) spectra from the rachis epidermis and vascular bundles revealed a new band (1710 cm−1) related to the oxidative stress on the susceptible cultivar only. XRF spectroscopy data revealed differences in nutrients composition between cultivars, and between controls and inoculated samples, with substantial increases observed for Ca, K, Mn, Fe, Zn, and Si in the resistant cultivar. These nutrients are related to cell wall stability, metabolic process, and plant defense mechanisms such as lignification pathway and callose deposition. The combination of cell wall composition and lignification plays a role in the mechanism of type II host resistance to FHB. Biochemical profiling

  11. Selective chemical inhibition of agr quorum sensing in Staphylococcus aureus promotes host defense with minimal impact on resistance.

    PubMed

    Sully, Erin K; Malachowa, Natalia; Elmore, Bradley O; Alexander, Susan M; Femling, Jon K; Gray, Brian M; DeLeo, Frank R; Otto, Michael; Cheung, Ambrose L; Edwards, Bruce S; Sklar, Larry A; Horswill, Alexander R; Hall, Pamela R; Gresham, Hattie D

    2014-06-01

    Bacterial signaling systems are prime drug targets for combating the global health threat of antibiotic resistant bacterial infections including those caused by Staphylococcus aureus. S. aureus is the primary cause of acute bacterial skin and soft tissue infections (SSTIs) and the quorum sensing operon agr is causally associated with these. Whether efficacious chemical inhibitors of agr signaling can be developed that promote host defense against SSTIs while sparing the normal microbiota of the skin is unknown. In a high throughput screen, we identified a small molecule inhibitor (SMI), savirin (S. aureus virulence inhibitor) that disrupted agr-mediated quorum sensing in this pathogen but not in the important skin commensal Staphylococcus epidermidis. Mechanistic studies employing electrophoretic mobility shift assays and a novel AgrA activation reporter strain revealed the transcriptional regulator AgrA as the target of inhibition within the pathogen, preventing virulence gene upregulation. Consistent with its minimal impact on exponential phase growth, including skin microbiota members, savirin did not provoke stress responses or membrane dysfunction induced by conventional antibiotics as determined by transcriptional profiling and membrane potential and integrity studies. Importantly, savirin was efficacious in two murine skin infection models, abating tissue injury and selectively promoting clearance of agr+ but not Δagr bacteria when administered at the time of infection or delayed until maximal abscess development. The mechanism of enhanced host defense involved in part enhanced intracellular killing of agr+ but not Δagr in macrophages and by low pH. Notably, resistance or tolerance to savirin inhibition of agr was not observed after multiple passages either in vivo or in vitro where under the same conditions resistance to growth inhibition was induced after passage with conventional antibiotics. Therefore, chemical inhibitors can selectively target AgrA in

  12. Selective Chemical Inhibition of agr Quorum Sensing in Staphylococcus aureus Promotes Host Defense with Minimal Impact on Resistance

    PubMed Central

    Sully, Erin K.; Malachowa, Natalia; Elmore, Bradley O.; Alexander, Susan M.; Femling, Jon K.; Gray, Brian M.; DeLeo, Frank R.; Otto, Michael; Cheung, Ambrose L.; Edwards, Bruce S.; Sklar, Larry A.; Horswill, Alexander R.; Hall, Pamela R.; Gresham, Hattie D.

    2014-01-01

    Bacterial signaling systems are prime drug targets for combating the global health threat of antibiotic resistant bacterial infections including those caused by Staphylococcus aureus. S. aureus is the primary cause of acute bacterial skin and soft tissue infections (SSTIs) and the quorum sensing operon agr is causally associated with these. Whether efficacious chemical inhibitors of agr signaling can be developed that promote host defense against SSTIs while sparing the normal microbiota of the skin is unknown. In a high throughput screen, we identified a small molecule inhibitor (SMI), savirin (S. aureus virulence inhibitor) that disrupted agr-mediated quorum sensing in this pathogen but not in the important skin commensal Staphylococcus epidermidis. Mechanistic studies employing electrophoretic mobility shift assays and a novel AgrA activation reporter strain revealed the transcriptional regulator AgrA as the target of inhibition within the pathogen, preventing virulence gene upregulation. Consistent with its minimal impact on exponential phase growth, including skin microbiota members, savirin did not provoke stress responses or membrane dysfunction induced by conventional antibiotics as determined by transcriptional profiling and membrane potential and integrity studies. Importantly, savirin was efficacious in two murine skin infection models, abating tissue injury and selectively promoting clearance of agr+ but not Δagr bacteria when administered at the time of infection or delayed until maximal abscess development. The mechanism of enhanced host defense involved in part enhanced intracellular killing of agr+ but not Δagr in macrophages and by low pH. Notably, resistance or tolerance to savirin inhibition of agr was not observed after multiple passages either in vivo or in vitro where under the same conditions resistance to growth inhibition was induced after passage with conventional antibiotics. Therefore, chemical inhibitors can selectively target AgrA in

  13. The necrotroph Botrytis cinerea induces a non-host type II resistance mechanism in Pinus pinaster suspension-cultured cells.

    PubMed

    Azevedo, Herlânder; Lino-Neto, Teresa; Tavares, Rui Manuel

    2008-03-01

    Models of non-host resistance have failed to account for the pathogenicity of necrotrophic agents. During the interaction of Pinus pinaster (maritime pine) with the non-host necrotrophic pathogen Botrytis cinerea, the generation and scavenging of reactive oxygen species (ROS) and the induction of the hypersensitive response (HR) were analyzed. Elicitation of maritime pine suspended cells with B. cinerea spores resulted in the biphasic induction of ROS. The phase I oxidative burst was dependent on calcium influx, while the phase II oxidative burst also depended on NADPH oxidase, protein kinase activity, and de novo transcription and protein synthesis. A decline was observed in catalase (CAT) and superoxide dismutase (SOD) activity, together with the down-regulation of Fe-Sod1, chlCu, Zn-Sod1 and csApx1, suggesting a coordinated response towards a decrease in the ROS-scavenging capacity of maritime pine cells during challenge. Following the second oxidative burst, programmed cell death events characteristic of the HR were observed. The results suggest the ROS-mediated and cell-breach-independent activation of Type II non-host resistance during the P. pinaster-B. cinerea interaction.

  14. Inactivation and reactivation of antibiotic-resistant bacteria by chlorination in secondary effluents of a municipal wastewater treatment plant.

    PubMed

    Huang, Jing-Jing; Hu, Hong-Ying; Tang, Fang; Li, Yi; Lu, Sun-Qin; Lu, Yun

    2011-04-01

    Reports state that chlorination of drinking water and wastewater affects the proportions of antibiotic-resistant bacteria by potentially assisting in microbial selection. Studies on the effect of chlorination on like species of antibiotic-resistant bacteria, however, have shown to be conflicting; furthermore, few studies have inspected the regrowth or reactivation of antibiotic-resistant bacteria after chlorination in wastewater. To understand the risks of chlorination resulting from potentially selecting for antibiotic-resistant bacteria, inactivation and reactivation rates of both total heterotrophic bacteria and antibiotic-resistant bacteria (including penicillin-, ampicillin-, tetracycline-, chloramphenicol-, and rifampicin-resistant bacteria) were examined after chlorinating secondary effluent samples from a municipal wastewater treatment plant in this study. Our experimental results indicated similar inactivation rates of both total heterotrophic bacteria and antibiotic-resistant bacteria. Microbial community composition, however, was affected by chlorination: treating samples with 10 mg Cl(2)/L for 10 min resulted in chloramphenicol-resistant bacteria accounting for nearly 100% of the microbial population in contrast to 78% before chlorination. This trend shows that chlorination contributes to selection of some antibiotic-resistant strains. Reactivation of antibiotic-resistant bacteria occurred at 2.0 mg Cl(2)/L for 10 min; specifically, chloramphenicol-, ampicillin-, and penicillin-resistant bacteria were the three prevalent groups present, and the reactivation of chloramphenicol-resistant bacteria exceeded 50%. Regrowth and reactivation of antibiotic-resistant bacteria in secondary effluents after chlorination with a long retention time could threaten public health security during wastewater reuse. Copyright © 2011 Elsevier Ltd. All rights reserved.

  15. Proceedings of the fourth international workshop on the genetics of host-parasite interactions in forestry: Disease and insect resistance in forest trees

    Treesearch

    Richard A. Sniezko; Alvin D. Yanchuk; John T. Kliejunas; Katharine M. Palmieri; Janice M. Alexander; Susan J. Frankel

    2012-01-01

    Individual papers are available at http://www.fs.fed.us/psw/publications/documents/psw_gtr240/The Fourth International Workshop on the Genetics of Host-Parasite Interactions in Forestry: Disease and Insect Resistance in Forest Trees...

  16. Severe insulin resistance secondary to insulin antibodies: successful treatment with the immunosuppressant MMF.

    PubMed

    Segal, T; Webb, Ea; Viner, R; Pusey, C; Wild, G; Allgrove, J

    2008-06-01

    We have evaluated the use of the immunosuppressant mycophenolate mofetil (MMF) in the treatment of severe insulin resistance caused by neutralising anti-insulin antibodies in type 1 diabetes mellitus (T1DM). A 12-yr-old boy with a 5-month history of T1DM developed severe immunological insulin resistance secondary to human insulin antibodies. Various different treatment modalities, including lispro insulin, intravenous insulin, prednisolone and immunoabsorption, were tried, all without a sustained response to treatment. Although the introduction of the immunosuppressant MMF only resulted in a small reduction in haemoglobin A1c (from 10.9 to 9.8%), it did result in a significant reduction in insulin requirements from 6000 to 250 U/d (75 to 3.1 U/kg/d), disappearance of the severe nocturnal hypoglycaemia associated with high titres of insulin antibodies and a reduction in the level of these antibodies from 34.6 to 2.7 mg/dL. MMF may be considered as a means of immunosuppression in patients with markedly raised insulin antibodies whose diabetes cannot be controlled with insulin alone.

  17. Heritable variation in the foliar secondary metabolite sideroxylonal in Eucalyptus confers cross-resistance to herbivores.

    PubMed

    Andrew, Rose L; Wallis, Ian R; Harwood, Chris E; Henson, Michael; Foley, William J

    2007-10-01

    Plants encounter a broad range of natural enemies and defend themselves in diverse ways. The cost of defense can be reduced if a plant secondary metabolite confers resistance to multiple herbivores. However, there are few examples of positively correlated defenses in plants against herbivores of different types. We present evidence that a genetically variable chemical trait that acts as a strong antifeedant to mammalian herbivores of Eucalyptus also deters insect herbivores, suggesting a possible mechanism for cross-resistance. We provide field confirmation that sideroxylonal, an important antifeedant for mammalian herbivores, also determines patterns of damage by Christmas beetles, a specialist insect herbivore of Eucalyptus. In a genetic progeny trial of Eucalyptus tricarpa, we found significant heritabilities of sideroxylonal concentration (0.60), overall insect damage (0.34), and growth traits (0.30-0.53). Population of origin also had a strong effect on each trait. Negative phenotypic correlations were observed between sideroxylonal and damage, and between damage and growth. No relationship was observed between sideroxylonal concentration and any growth trait. Our results suggest that potential for evolution by natural selection of sideroxylonal concentrations is not strongly constrained by growth costs and that both growth and defense traits can be successfully incorporated into breeding programs for plantation trees.

  18. Interplay between seven secondary metal uptake systems is required for full metal resistance of Cupriavidus metallidurans.

    PubMed

    Herzberg, M; Bauer, L; Kirsten, A; Nies, D H

    2016-03-01

    The beta-proteobacterium Cupriavidus metallidurans is able to grow in metal-contaminated environments due to having sophisticated metal efflux systems. Here, the contribution of all seven known secondary metal uptake systems (ZupT, PitA, CorA1, CorA2, CorA3, ZntB, HoxN) to metal resistance is characterized. In a strategic deletion approach, all ten double deletion mutants, a variety of triple and quadruple mutants, and from the Δ4 mutant (ΔzupT ΔcorA1 ΔcorA2 ΔcorA3) the mutants Δ5 (=Δ4 ΔpitA), Δ6 (=Δ4 ΔpitA ΔzntB), and finally Δ7 (ΔzupT ΔcorA1 ΔcorA2 ΔcorA3 ΔpitA ΔzntB ΔhoxN) were constructed. Metal resistance, metal content, and regulation of expression of these genes were characterized in these mutants. The ΔzupT single deletion strain exhibited an extended lag phase in Tris-buffered liquid mineral salts medium (TMM) compared to its parent strain AE104, indicating a decreased fitness level. Further deletions up to Δ6 did not influence growth in TMM without added metals but fitness of the Δ7 strain dropped to a lower level compared to Δ6, Δ5 and ΔzupT. The cells of the Δ7 multiple deletion strain still contained all essential metals, demonstrating that additional metal import systems must exist in C. metallidurans. PitA was an important contributor of metal:phosphate complexes to C. metallidurans. Up to Δ5 no evidence was found for increased expression of the transporter genes to recruit substitutes for the deleted importers. Only the hoxN-lacZ reporter gene fusion displayed a changed expression pattern in the Δ6 strain, indicating recruitment of HoxN. Metal resistance of the deletion strains decreased along the deletion series although all strains still contained metal efflux systems: up to the Δ6 mutant the overall fitness was kept at the ΔzupT mutant strain level at the cost of a diminished competence to handle μM concentrations of transition metals. Together, these data demonstrated an important contribution of the seven

  19. Secondary cytoreductive surgery in patients with isolated platinum-resistant recurrent ovarian cancer: a retrospective analysis.

    PubMed

    Petrillo, M; Pedone Anchora, L; Tortorella, L; Fanfani, F; Gallotta, V; Pacciani, M; Scambia, G; Fagotti, A

    2014-08-01

    To analyze the impact of secondary cytoreductive surgery (SCS) on survival outcome in a retrospective series of isolated platinum-resistant recurrent ovarian cancer. We evaluate a consecutive series of 268 ovarian cancer patients with platinum-resistant relapse. Isolated recurrence was defined as the presence of a single nodule, in a single anatomic site, and was observed in 27 cases (10.1%). In all women the presence of isolated relapse was assessed at radiological evaluation, and surgically confirmed in the SCS group. Among the 27 patients with isolated recurrence, 16 (59.3%) received chemotherapy alone, and 11 (40.7%) complete SCS followed by non-platinum based chemotherapy. No significant differences were observed in the distribution of baseline clinico-pathological characteristics, pattern of recurrent disease, duration of PFI, and type of salvage chemotherapy between the two groups. In the SCS group, 6 patients (54.5%) showed isolated peritoneal relapse and 5 women (45.4%) showed isolated lymph nodal recurrence, and were treated with peritonectomy and lymphadenectomy, according with site of relapse. Two post-operative complications (18.2%) occurred: asymptomatic lymphocele and groin wound dehiscence. SCS significantly prolonged median time to first progression (12 months vs 3 months; p-value=0.016), median time to second progression (8 months vs 3 months; p-value=0.037), and post-relapse survival (PRS) (32 months vs 8 months; p-value=0.002). Residual tumor at 1st surgery (X(2)=5.690; p-value=0.017), duration of PFI (X(2)=5.401; p-value=0.020), and complete SCS (X(2)=4.250; p-value=0.039) retains independent prognostic role for PRS in multivariate analysis. SCS prolongs PRS compared to chemotherapy alone in isolated platinum-resistant recurrent ovarian cancer. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. Amoebas as mimivirus bunkers: increased resistance to UV light, heat and chemical biocides when viruses are carried by amoeba hosts.

    PubMed

    Boratto, Paulo V M; Dornas, Fábio P; Andrade, Kétyllen R; Rodrigues, Rodrigo; Peixoto, Felipe; Silva, Lorena C F; La Scola, Bernard; Costa, Adriana Oliveira; de Almeida, Gabriel Magno Freitas; Kroon, Erna G; Abrahão, Jônatas S

    2014-05-01

    Amoebas of the genus Acanthamoeba are protists that are associated with human disease and represent a public health concern. They can harbor pathogenic microorganisms, acting as a platform for pathogen replication. Acanthamoeba polyphaga mimivirus (APMV), the type species of the genus Mimivirus, family Mimiviridae, represents the largest group of amoeba-associated viruses that has been described to date. Recent studies have demonstrated that APMV and other giant viruses may cause pneumonia. Amoebas can survive in most environments and tolerate various adverse conditions, including UV light irradiation, high concentrations of disinfectants, and a broad range of temperatures. However, it is unknown how the amoebal intracellular environment influences APMV stability and resistance to adverse conditions. Therefore, in this work, we evaluated the stability of APMV, either purified or carried by the amoeba host, under extreme conditions, including UV irradiation, heat and exposure to six different chemical biocides. After each treatment, the virus was titrated in amoebas using the TCID50 method. APMV was more stable in all resistance tests performed when located inside its host. Our results demonstrate that Acanthamoeba acts as a natural bunker for APMV, increasing viral resistance to extreme physical and chemical conditions. The data raise new questions regarding the survival of APMV in nature and in hospital environments.

  1. Recessive Resistance in Pisum sativum and Potyvirus Pathotype Resolved in a Gene-for-Cistron Correspondence between Host and Virus

    PubMed Central

    Johansen, I. Elisabeth; Lund, Ole Søgaard; Hjulsager, Charlotte K.; Laursen, Jesper

    2001-01-01

    Pea seed-borne mosaic potyvirus (PSbMV) isolates are divided into pathotypes P-1, P-2, and P-4 according to their infection profile on a panel of Pisum sativum lines. P. sativum PI 269818 is resistant to P-1 and P-2 isolates and is susceptible to P-4 isolates. Resistance to P-1 is inherited as a single recessive gene, denoted sbm-1, and the pathogenicity determinant has previously been mapped to the virus-coded protein VPg. In the cultivar Bonneville, a second recessive gene, sbm-2, confers specific resistance to P-2. By exchanging cistrons between a P-2 and a P-4 isolate, the P3-6k1 cistron was identified as the PSbMV host-specific pathogenicity determinant on Bonneville. Exchange of P3-6k1 did not affect infection on PI 269818, and infection of Bonneville was not altered by substitution of the VPg cistron, indicating that P3-6k1 and VPg are independent determinants of pathotype-specific infectivity. On PI 269818 the pathogenicity determinant of both P-1 and P-2 mapped to the N terminus of VPg. This suggests that VPg from the P-1 and P-2 isolates are functionally similar on this host and that resistance to P-1 and P-2 in PI 269818 may operate by the same mechanism. Identification of VPg–sbm-1 and P3-6k1–sbm-2 as independent pairs of genetic interactors between PSbMV and P. sativum provides a simple explanation of the three known pathotypes of PSbMV. Furthermore, analysis of β-glucuronidase-tagged P-2 virus indicated that sbm-2 resistance affected an early step in infection, implying that the P3-6k1 region plays a critical role in potyvirus replication or cell-to-cell movement. PMID:11413328

  2. Role of volatile and non-volatile plant secondary metabolites in host tree selection by Christmas beetles.

    PubMed

    Matsuki, Mamoru; Foley, William J; Floyd, Robert B

    2011-03-01

    Individual Eucalyptus trees in south-eastern Australia vary considerably in susceptibility to herbivores. On the one hand, studies with insect herbivores have suggested that variation in the concentrations of foliar monoterpenes is related to variation in susceptibility. On the other, studies with marsupial folivores have suggested that variation in the concentrations of sideroxylonals (a group of formylated phloroglucinol compounds) is responsible for variation in susceptibility. We examined relative importance of sideroxylonals and 1,8-cineole (a dominant monoterpene) in host tree selection by Christmas beetles (Anoplognathus species: Coleoptera: Scarabaeidae) by using no-choice experiments, choice/no-choice experiments, and manipulative experiments in which concentrations of sideroxylonals or 1,8-cineole were altered. We used two species of host Eucalyptus, one species of non-host Eucalyptus, and three species of non-host non-Eucalyptus trees. Leaf consumption by Christmas beetles was negatively correlated with the concentrations of sideroxylonals and 1,8-cineole. Artificial increases in the concentration of sideroxylonals or 1,8-cineole reduced leaf consumption by Christmas beetles. An artificial reduction in foliar monoterpenes had no effect on leaf consumption by the beetles when leaves contained high or very low concentrations of sideroxylonals. However, when the concentration of sideroxylonals was moderate, a reduction in the foliar monoterpenes increased leaf consumption by the beetles. Therefore, monoterpenes such as 1,8-cineole may be used as a negative cue by Christmas beetles. The pattern of food consumption on non-host Eucalyptus species and non-host non-Eucalyptus species suggest that both positive and negative cues may be used by Christmas beetles to select host trees.

  3. Clinical Determinants of HIV-1B Between-Host Evolution and their Association with Drug Resistance in Pediatric Patients.

    PubMed

    Pagán, Israel; Rojas, Patricia; Ramos, José Tomás; Holguín, África

    2016-01-01

    Understanding the factors that modulate the evolution of virus populations is essential to design efficient control strategies. Mathematical models predict that factors affecting viral within-host evolution may also determine that at the between-host level. Although HIV-1 within-host evolution has been associated with clinical factors used to monitor AIDS progression, such as patient age, CD4 cells count, viral load, and antiretroviral experience, little is known about the role of these clinical factors in determining between-host HIV-1 evolution. Moreover, whether the relative importance of such factors in HIV-1 evolution vary in adult and children patients, in which the course of infection is different, has seldom been analysed. To address these questions, HIV-1 subtype B (HIV-1B) pol sequences of 163 infected children and 450 adults of Madrid, Spain, were used to estimate genetic diversity, rates of synonymous and non-synonymous mutations, selection pressures and frequency of drug-resistance mutations (DRMs). The role and relative importance of patient age, %CD4, CD4/mm3, viral load, and antiretroviral experience in HIV-1B evolution was analysed. In the pediatric HIV-1B population, three clinical factors were primary predictors of virus evolution: Higher HIV-1B genetic diversity was observed with increasing children age, decreasing CD4/mm3 and upon antiretroviral experience. This was mostly due to higher rates of non-synonymous mutations, which were associated with higher frequency of DRMs. Using this data, we have also constructed a simple multivariate model explaining between 55% and 66% of the variance in HIV-1B evolutionary parameters in pediatric populations. On the other hand, the analysed clinical factors had little effect in adult-infecting HIV-1B evolution. These findings highlight the different evolutionary dynamics of HIV-1B in children and adults, and contribute to understand the factors shaping HIV-1B evolution and the appearance of drug-resistance

  4. Clinical Determinants of HIV-1B Between-Host Evolution and their Association with Drug Resistance in Pediatric Patients

    PubMed Central

    Rojas, Patricia; Ramos, José Tomás; Holguín, África

    2016-01-01

    Understanding the factors that modulate the evolution of virus populations is essential to design efficient control strategies. Mathematical models predict that factors affecting viral within-host evolution may also determine that at the between-host level. Although HIV-1 within-host evolution has been associated with clinical factors used to monitor AIDS progression, such as patient age, CD4 cells count, viral load, and antiretroviral experience, little is known about the role of these clinical factors in determining between-host HIV-1 evolution. Moreover, whether the relative importance of such factors in HIV-1 evolution vary in adult and children patients, in which the course of infection is different, has seldom been analysed. To address these questions, HIV-1 subtype B (HIV-1B) pol sequences of 163 infected children and 450 adults of Madrid, Spain, were used to estimate genetic diversity, rates of synonymous and non-synonymous mutations, selection pressures and frequency of drug-resistance mutations (DRMs). The role and relative importance of patient age, %CD4, CD4/mm3, viral load, and antiretroviral experience in HIV-1B evolution was analysed. In the pediatric HIV-1B population, three clinical factors were primary predictors of virus evolution: Higher HIV-1B genetic diversity was observed with increasing children age, decreasing CD4/mm3 and upon antiretroviral experience. This was mostly due to higher rates of non-synonymous mutations, which were associated with higher frequency of DRMs. Using this data, we have also constructed a simple multivariate model explaining between 55% and 66% of the variance in HIV-1B evolutionary parameters in pediatric populations. On the other hand, the analysed clinical factors had little effect in adult-infecting HIV-1B evolution. These findings highlight the different evolutionary dynamics of HIV-1B in children and adults, and contribute to understand the factors shaping HIV-1B evolution and the appearance of drug-resistance

  5. Drug Resistant Clinical Isolates of Mycobacterium tuberculosis from Different Genotypes Exhibit Differential Host Responses in THP-1 Cells

    PubMed Central

    Chakraborty, Pampi; Kulkarni, Savita; Rajan, Ramakrishna; Sainis, Krishna

    2013-01-01

    Mycobacterium tuberculosis (MTB) persistently infects and survives within the host macrophages. Substantial genotypic variation exists among MTB strains which correlate with their interactions with the host. The present study was designed to establish a correlation, if any, between infection and induction of innate immune response by genetically diverse drug resistant MTB isolates from India. For this purpose, three clinical isolates from ancient and modern lineages, along with H37Ra and H37Rv were evaluated for intracellular growth, phagocytic index, induction of proinflammatory cytokines and apoptosis following infection in THP-1 cell line. A wide variation in the induction of cytokines was revealed subsequent to infection with different strains. EAI-5 strain from ancient lineage 1, induced higher proinflammatory responses, higher apoptosis and moderate intracellular growth compared to other strains, in contrast, for Beijing strain of modern lineage 2, all three parameters were lowest among the clinical isolates. Further, the responses induced by LAM-6 from modern lineage 4 were at a moderate level, similar to the laboratory strain H37Rv which also belongs to lineage 4. Thus, these profiles were specific to their respective lineages and/or genotypes and independent of their drug resistance status. Further, a positive correlation, among TNF-α, IL-1β, IL-6 and IL-12 induced in infected THP-1 cells was demonstrated. In addition, induction of all pro-inflammatory cytokines correlated well with the host cell apoptosis. A positive correlation was observed between phagocytic index in the category of ‘>10 bacilli/cell’ and induction of apoptosis, only for virulent strains, indicating that initial accumulation of MTB strains inside the host cell may be an important determining factor for different innate responses. PMID:23667550

  6. Vibrational spectroscopy-based chemometrics to map host resistance to sudden oak death

    Treesearch

    Pierluigi (Enrico) Bonello; Anna O. Conrad; Luis Rodriguez Saona; Brice A. McPherson; David L. Wood

    2017-01-01

    A strong focus on tree germplasm that can resist threats such as non-native insects and pathogens, or a changing climate, is fundamental for successful conservation efforts. This project is predicated on the fact that genetic resistance is the cornerstone for protecting plants against pathogens and insects in environments conducive to the attacking organisms, a...

  7. Host resistance to emerald ash borer: development of novel ash hybrids

    Treesearch

    Jennifer L. Koch; David W. Carey; Richard Larson

    2007-01-01

    In contrast to the rapid destruction of ash trees in the United States by emerald ash borer (EAB, Agrilus planipennis Fairmaire), outbreaks of EAB in Asia appear to be isolated responses to stress, such as drought, and do not devastate the ash population. This indicates that in Asia, ash trees may have a level of inherent resistance. This resistance...

  8. Potential of host-plant resistance as an alternative control measure for sugarbeet root maggot

    USDA-ARS?s Scientific Manuscript database

    Sugarbeet (Beta vulgaris L.) Germplasm lines with sugarbeet root maggot (Tetanops myopaeformis von Röder) (SBRM) resistance have been available since 1996. Two resistant germplasm lines, F1015 and F1016, and a susceptible germplasm line, F1010, crossed with three susceptible CMS lines (L53cms, FC50...

  9. Interaction between the intestinal microbiota and host in Clostridium difficile colonization resistance

    PubMed Central

    Britton, Robert A.; Young, Vincent B.

    2012-01-01

    Clostridium difficile infection (CDI) has become one of the most prevalent and costly nosocomial infections. In spite of the importance of CDI, our knowledge of the pathogenesis of this infection is still rudimentary. Although previous use of antibiotics is generally considered to be the sine qua non of CDI, the mechanisms by which antibiotics render the host susceptible to C. difficile are not well defined. In this review we will explore what is known about how the indigenous microbiota acts in concert with the host to prevent colonization and virulence of C. difficile and how antibiotic administration disturbs host–microbiota homeostasis, leading to CDI. PMID:22595318

  10. NRSA-1: a resistance gene homolog expressed in roots of non-host plants following parasitism by Striga asiatica (witchweed).

    PubMed

    Gowda, B S; Riopel, J L; Timko, M P

    1999-10-01

    Studies of the initial interactions of Striga asiatica with the non-host plant species Tagetes erecta (marigold) established that parasite penetration through the root is arrested most frequently in the cortex. The arrest of parasite ingress is associated with browning and necrosis of root cortical cells flanking the invading endophyte and with increased intracellular wall appositions on the root cell walls directly adjacent to the plant-parasite interface. Using a polymerase chain reaction-based differential cDNA amplification strategy followed by 5'-RACE, we have identified several gene products whose expression is induced in marigold roots during attempted parasitism by Striga. Among these was a 917 bp cDNA encoding a 221 amino acid protein with significant homology to proteins encoded by disease resistance genes from other plant species, including N, RPP5, L6 and M. This cDNA was subsequently used to isolate a nuclear gene, designated NRSA-1, for non-host resistance to Striga asiatica. NRSA-1 is a member of a small gene family in marigold consisting of two to four members. RNA gel blot analysis showed that NRSA-1 transcripts accumulate to high levels in roots near the site of Striga invasion within 120 h after parasite attachment, and appear at lower levels throughout the rest of the plant under Striga parasitism. NRSA-1 expression is rapidly induced by treatment with jasmonic acid (JA), but not by mechanical wounding, treatment with salicylic acid, paraquat or ABA. A possible role for NRSA-1 in the non-host resistance mechanism is discussed.

  11. Vertical Transmission Selects for Reduced Virulence in a Plant Virus and for Increased Resistance in the Host

    PubMed Central

    Pagán, Israel; Montes, Nuria; Milgroom, Michael G.; García-Arenal, Fernando

    2014-01-01

    For the last three decades, evolutionary biologists have sought to understand which factors modulate the evolution of parasite virulence. Although theory has identified several of these modulators, their effect has seldom been analysed experimentally. We investigated the role of two such major factors—the mode of transmission, and host adaptation in response to parasite evolution—in the evolution of virulence of the plant virus Cucumber mosaic virus (CMV) in its natural host Arabidopsis thaliana. To do so, we serially passaged three CMV strains under strict vertical and strict horizontal transmission, alternating both modes of transmission. We quantified seed (vertical) transmission rate, virus accumulation, effect on plant growth and virulence of evolved and non-evolved viruses in the original plants and in plants derived after five passages of vertical transmission. Our results indicated that vertical passaging led to adaptation of the virus to greater vertical transmission, which was associated with reductions of virus accumulation and virulence. On the other hand, horizontal serial passages did not significantly modify virus accumulation and virulence. The observed increases in CMV seed transmission, and reductions in virus accumulation and virulence in vertically passaged viruses were due also to reciprocal host adaptation during vertical passages, which additionally reduced virulence and multiplication of vertically passaged viruses. This result is consistent with plant-virus co-evolution. Host adaptation to vertically passaged viruses was traded-off against reduced resistance to the non-evolved viruses. Thus, we provide evidence of the key role that the interplay between mode of transmission and host-parasite co-evolution has in determining the evolution of virulence. PMID:25077948

  12. Effects of Alcohol Intoxication and Victimization History on Women's Sexual Assault Resistance Intentions: The Role of Secondary Cognitive Appraisals

    ERIC Educational Resources Information Center

    Stoner, Susan A.; Norris, Jeanette; George, William H.; Davis, Kelly Cue; Masters, N. Tatiana; Hessler, Danielle M.

    2007-01-01

    This study used an experimental paradigm to investigate the role of secondary cognitive appraisals in women's sexual assault resistance and whether these appraisals mediated influences of alcohol and prior victimization. After consuming a beverage (control, placebo, moderate, or high dose), 351 women projected themselves into a simulated…

  13. Effects of Alcohol Intoxication and Victimization History on Women's Sexual Assault Resistance Intentions: The Role of Secondary Cognitive Appraisals

    ERIC Educational Resources Information Center

    Stoner, Susan A.; Norris, Jeanette; George, William H.; Davis, Kelly Cue; Masters, N. Tatiana; Hessler, Danielle M.

    2007-01-01

    This study used an experimental paradigm to investigate the role of secondary cognitive appraisals in women's sexual assault resistance and whether these appraisals mediated influences of alcohol and prior victimization. After consuming a beverage (control, placebo, moderate, or high dose), 351 women projected themselves into a simulated…

  14. Butyrate enhances disease resistance of chickens by inducing antimicrobial host defense peptide gene expression

    USDA-ARS?s Scientific Manuscript database

    Host defense peptides (HDPs) constitute a large group of natural broad-spectrum antimicrobials and an important first line of immunity in virtually all forms of life. Specific augmentation of synthesis of endogenous HDPs may represent a promising antibiotic-alternative approach to disease control. I...

  15. Host plant resistance in melon to sweetpotato whitefly in California and Arizona

    USDA-ARS?s Scientific Manuscript database

    Sweetpotato whitefly biotype B (MEAM1 cryptic species of Bemisia tabaci; SPWF) feeding severely impacts fall season melon (Cucumis melo L.) yield and quality in the lower deserts of California and Arizona. Melon accessions PI 313970 and TGR 1551 (PI 482420) have been reported to exhibit host plant r...

  16. Host resistance to phytophthora fruit rot in U.S. watermelon plant introductions

    USDA-ARS?s Scientific Manuscript database

    Phytophthora capsici, distributed worldwide, is an aggressive pathogen with a broad host range, infecting solanaceous, leguminaceous, and cucurbitaceous crops. Phytophthora fruit rot of watermelon (Citrullus lanatus) caused by P. capsici was first reported in the U.S. in 1940. Since then, the dise...

  17. Mountain pine beetle host selection behavior confirms high resistance in Great Basin bristlecone pine

    Treesearch

    Erika L. Eidson; Karen E. Mock; Barbara J. Bentz

    2017-01-01

    Over the last two decades, mountain pine beetle (Dendroctonus ponderosae) populations reached epidemic levels across much of western North America, including high elevations where cool temperatures previously limited mountain pine beetle persistence. Many high-elevation pine species are susceptible hosts and experienced high levels of mortality in recent outbreaks, but...

  18. Understanding mechanisms of host resistance against greenbug in cereal crops - an interdisciplinary, collaborative approach

    USDA-ARS?s Scientific Manuscript database

    At Texas AgriLife Research - Amarillo, we have an ongoing research program focusing on elucidating the mechanisms of interactions between the phloem-feeding aphid pests and cereal crop hosts using the wheat-greenbug as a model system. During this workshop, recent results from our research on the fo...

  19. Genetically engineered resistance to Plum pox virus infection in herbaceous and stone fruit hosts.

    PubMed

    Ilardi, Vincenza; Nicola-Negri, Elisa Di

    2011-01-01

    Plum pox virus (PPV), a Potyvirus, is the causal agent of sharka, the most detrimental viral disease affecting stone fruit trees. This review focuses on research carried out to obtain PPV- resistant transgenic plants and on how biotechnological strategies evolved in light of the scientific advances made during the last several years. Successful RNA silencing strategies that confer high level of resistance to strains of PPV have been developed and tested under laboratory and greenhouse conditions. Moreover, field tests showed that transgene-mediated RNA silencing was effective in protecting plum plants against aphid-mediated PPV infection. The new emerging biotechnological approaches for conferring PPV resistance are discussed.

  20. Water relations of host trees and resistance to the phloem-boring beetle Phoracantha semipunctata F. (Coleoptera: Cerambycidae).

    PubMed

    Hanks, Lawrence M; Paine, Timothy D; Millar, Jocelyn G; Campbell, Christopher D; Schuch, Ursula K

    1999-05-01

    Environmental stresses, particularly water deficit, predispose eucalypt trees to attack by the eucalyptus longhorned borer, Phoracantha semipunctata F. (Coleoptera: Cerambycidae). Our experiments with potted eucalypts revealed that reduced tree water potential was associated with lower resistance to colonization by neonate P. semipunctata, but the linear relationship between water potential and colonization success was reversed at higher larval densities. There was no indication that the bark exudate "kino" served to defend trees from borer attack. Larvae were not able to colonize the cambium of eucalypt logs with high bark moisture, and survival was low under high moisture conditions in artificial hosts composed of pure cellulose. In trees and cut logs with moist bark, larvae failed to reach the cambium, feeding instead in poorer-quality tissues just beneath the bark surface. Our findings suggest that variation in resistance of eucalypts to attack by the borer is associated with moisture content of the bark.

  1. 22 CFR Appendix F to Part 62 - Information To Be Collected on Secondary School Student Host Family Applications

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    .... Contact information (telephone; e-mail address) of host parents e. Employment—employer name, job title... functioning business? (e.g., daycare, farm) g. Description of each household member (e.g., level of education... school) b. Name, address, e-mail and telephone number of school official c. Approximate size of...

  2. Comparison of gene expression changes in susceptible, tolerant, and resistant hosts in response to infection with citrus tristeza virus and huanglongbing

    USDA-ARS?s Scientific Manuscript database

    The pathogens Candidatus Liberibacter asiaticus (Las) and Citrus tristeza virus (CTV) are both phloem limited and have significant economic impact on citrus production wherever they are found. Studies of host resistance have indicated that Poncirus trifoliata has tolerance or resistance to both path...

  3. DNA repair in cells sensitive and resistant to cis-diamminedichloroplatinum(II): Host cell reactivation of damaged plasmid DNA

    SciTech Connect

    Sheibani, N.; Jennerwein, M.M.; Eastman, A. )

    1989-04-04

    cis-Diamminedichloroplatinum(II) (cis-DDP) has a broad clinical application as an effective anticancer drug. However, development of resistance to the cytotoxic effects is a limiting factor. In an attempt to understand the mechanism of resistance, the authors have employed a host cell reactivation assay of DNA repair using a cis-DDP-damaged plasmid vector. The efficiency of DNA repair was assayed by measuring the activity of an enzyme coded for by the plasmid vector. The plasmid expression vector pRSV cat contains the bacterial gene coding for chloramphenicol acetyltransferase (CAT) in a configuration which permits expression in mammalian cells. The plasmid was transfected into repair-proficient and -deficient Chinese hamster ovary cells, and CAT activity was subsequently measured in cell lysates. In the repair-deficient cells, one cis-DDP adduct per cat gene was sufficient to eliminate expression. An equivalent inhibition of CAT expression in the repair-proficient cells did not occur until about 8 times the amount of damage was introduced into the plasmid. These results implicate DNA intrastrand cross-links as the lesions responsible for the inhibition of CAT expression. This assay was used to investigate the potential role of DNA repair in mediating cis-DDP resistance in murine leukemia L1210 cells. The assay readily detects the presence or absence of repair and confirms that these resistant L1210 cells have an enhanced capacity for repair of cis-DDP-induced intrastrand cross-links.

  4. Introgression of an imidazolinone-resistance gene from winter wheat (Triticum aestivum L.) into jointed goatgrass (Aegilops cylindrica Host).

    PubMed

    Perez-Jones, Alejandro; Mallory-Smith, Carol A; Hansen, Jennifer L; Zemetra, Robert S

    2006-12-01

    Imidazolinone-resistant winter wheat (Triticum aestivum L.) is being commercialized in the USA. This technology allows wheat growers to selectively control jointed goatgrass (Aegilops cylindrica Host), a weed that is especially problematic because of its close genetic relationship with wheat. However, the potential movement of the imidazolinone-resistance gene from winter wheat to jointed goatgrass is a concern. Winter wheat and jointed goatgrass have the D genome in common and can hybridize and backcross under natural field conditions. Since the imidazolinone-resistance gene (Imi1) is located on the D genome, it is possible for resistance to be transferred to jointed goatgrass via hybridization and backcrossing. To study the potential for gene movement, BC(2)S(2) plants were produced artificially using imidazolinone-resistant winter wheat (cv. FS-4) as the female parent and a native jointed goatgrass collection as the male recurrent parent. FS-4, the jointed goatgrass collection, and 18 randomly selected BC(2)S(2) populations were treated with imazamox. The percentage of survival was 100% for the FS-4, 0% for the jointed goatgrass collection and 6 BC(2)S(2) populations, 40% or less for 2 BC(2)S(2) populations, and 50% or greater for the remaining 10 BC(2)S(2) populations. Chromosome counts in BC(2)S(3) plants showed a restoration of the chromosome number of jointed goatgrass, with four out of four plants examined having 28 chromosomes. Sequencing of AHASL1D in BC(2)S(3) plants derived from BC(2)S(2)-6 revealed the sexual transmission of Imi1 from FS-4 to jointed goatgrass. Imi1 conferred resistance to the imidazolinone herbicide imazamox, as shown by the in vitro assay for acetohydroxyacid synthase (AHAS) activity.

  5. Bacillus thuringiensis-toxin resistance management: stable isotope assessment of alternate host use by Helicoverpazea.

    PubMed

    Gould, F; Blair, N; Reid, M; Rennie, T L; Lopez, J; Micinski, S

    2002-12-24

    Data have been lacking on the proportion of Helicovera zea larvae that develop on noncotton host plants that can serve as a refuge from selection pressure for adaptation to transgenic cotton varieties that produce a toxin from the bacterium Bacillus thuringiensis. We found that individual H. zea moths that develop as larvae on cotton and other plants with C3 physiology have a different ratio of 13C to 12C than moths that develop on plants with C4 physiology, such as corn. We used this finding in determining the minimum percentage of moths that developed on noncotton hosts in two cotton-growing areas. Our results indicate that local corn can serve as a refuge for H. zea in midsummer. Our results contrast dramatically with the prevailing hypothesis that the large majority of late-season moths are produced from larvae feeding on cotton, soybean, and other C3 plants. Typically, <50% of moths captured in August through October have isotope ratios indicative of larval feeding on C3 plants. In one October sample, 100% of the moths originated from C4 hosts even though C4 crops were harvested at least 1 mo earlier, and no common wild C4 hosts were available. These findings support other research indicating that many late-season H. zea moths captured in Louisiana and Texas are migrants whose larvae developed on corn in more northern locations. Our isotope data on moths collected in Texas early in the season indicate that the majority of overwintering H. zea do not originate from cotton-feeding larvae and may be migrants from Mexico. Non-Bt corn in Mexico and the U.S. corn belt appears to serve as an important refuge for H. zea.

  6. Host resistance elicited by methyl jasmonate reduces emission of aggregation pheromones by the spruce bark beetle, Ips typographus.

    PubMed

    Zhao, Tao; Borg-Karlson, Anna-Karin; Erbilgin, Nadir; Krokene, Paal

    2011-11-01

    We treated Norway spruce (Picea abies) stems with methyl jasmonate (MeJA) to determine possible quantitative and qualitative effects of induced tree defenses on pheromone emission by the spruce bark beetle Ips typographus. We measured the amounts of 2-methyl-3-buten-2-ol and (S)-cis-verbenol, the two main components of the beetle's aggregation pheromone, released from beetle entrance holes, along with phloem terpene content and beetle performance in MeJA-treated and untreated Norway spruce logs. As expected, phloem terpene levels were higher and beetle tunnel length was shorter (an indication of poor performance) in MeJA-treated logs relative to untreated logs. Parallel to the higher phloem terpene content and poorer beetle performance, beetles in MeJA-treated logs released significantly less 2-methyl-3-buten-2-ol and (S)-cis-verbenol, and the ratio between the two pheromone components was significantly altered. These results suggest that host resistance elicited by MeJA application reduces pheromone emission by I. typographus and alters the critical ratio between the two main pheromone components needed to elicit aggregation. The results also provide a mechanistic explanation for the reduced performance and attractivity observed in earlier studies when bark beetles colonize trees with elicited host defenses, and extend our understanding of the ecological functions of conifer resistance against bark beetles.

  7. The Vibrio cholerae Mrp system: cation/proton antiport properties and enhancement of bile salt resistance in a heterologous host.

    PubMed

    Dzioba-Winogrodzki, Judith; Winogrodzki, Olga; Krulwich, Terry A; Boin, Markus A; Häse, Claudia C; Dibrov, Pavel

    2009-01-01

    The mrp operon from Vibrio cholerae encoding a putative multisubunit Na(+)/H(+) antiporter was cloned and functionally expressed in the antiporter-deficient strain of Escherichia coli EP432. Cells of EP432 expressing Vc-Mrp exhibited resistance to Na(+) and Li(+) as well as to natural bile salts such as sodium cholate and taurocholate. When assayed in everted membrane vesicles of the E. coli EP432 host, Vc-Mrp had sufficiently high antiport activity to facilitate the first extensive analysis of Mrp system from a Gram-negative bacterium encoded by a group 2 mrp operon. Vc-Mrp was found to exchange protons for Li(+), Na(+), and K(+) ions in pH-dependent manner with maximal activity at pH 9.0-9.5. Exchange was electrogenic (more than one H(+) translocated per cation moved in opposite direction). The apparent K(m) at pH 9.0 was 1.08, 1.30, and 68.5 mM for Li(+), Na(+), and K(+), respectively. Kinetic analyses suggested that Vc-Mrp operates in a binding exchange mode with all cations and protons competing for binding to the antiporter. The robust ion antiport activity of Vc-Mrp in sub-bacterial vesicles and its effect on bile resistance of the heterologous host make Vc-Mrp an attractive experimental model for the further studies of biochemistry and physiology of Mrp systems.

  8. Differences in the number of hemocytes in the snail host Biomphalaria tenagophila, resistant and susceptible to Schistosoma mansoni infection.

    PubMed

    Oliveira, A L D; Levada, P M; Zanotti-Magalhaes, E M; Magalhães, L A; Ribeiro-Paes, J T

    2010-12-21

    The relationships between schistosomiasis and its intermediate host, mollusks of the genus Biomphalaria, have been a concern for decades. It is known that the vector mollusk shows different susceptibility against parasite infection, whose occurrence depends on the interaction between the forms of trematode larvae and the host defense cells. These cells are called amebocytes or hemocytes and are responsible for the recognition of foreign bodies and for phagocytosis and cytotoxic reactions. The defense cells mediate the modulation of the resistant and susceptible phenotypes of the mollusk. Two main types of hemocytes are found in the Biomphalaria hemolymph: the granulocytes and the hyalinocytes. We studied the variation in the number (kinetics) of hemocytes for 24 h after exposing the parasite to genetically selected and non-selected strains of Biomphalaria tenagophila, susceptible or not to infection by Schistosoma mansoni. The differences were analyzed referred to the variations in the number of hemocytes in mollusks susceptible or not to infection by S. mansoni. The hemolymph of the selected and non-selected snails was collected, and hemocytes were counted using a Neubauer chamber at six designated periods: 0 h (control, non-exposed individuals), 2 h, 6 h, 12 h, 18 h and, 24 h after parasite exposure. Samples of hemolymph of five selected mollusks and five non-selected mollusks were separately used at each counting time. There was a significant variation in the number of hemocytes between the strains, which indicates that defense cells have different behaviors in resistant and susceptible mollusks.

  9. Temporal Effects of a Begomovirus Infection and Host Plant Resistance on the Preference and Development of an Insect Vector, Bemisia tabaci, and Implications for Epidemics

    PubMed Central

    Legarrea, Saioa; Barman, Apurba; Marchant, Wendy; Diffie, Stan; Srinivasan, Rajagopalbabu

    2015-01-01

    Persistent plant viruses, by altering phenotypic and physiological traits of their hosts, could modulate the host preference and fitness of hemipteran vectors. A majority of such modulations increase vector preference for virus-infected plants and improve vector fitness, ultimately favouring virus spread. Nevertheless, it remains unclear how these virus-induced modulations on vectors vary temporally, and whether host resistance to the pathogen influences such effects. This study addressed the two questions using a Begomovirus-whitefly-tomato model pathosystem. Tomato yellow leaf curl virus (TYLCV) -susceptible and TYLCV-resistant tomato genotypes were evaluated by whitefly-mediated transmission assays. Quantitative PCR revealed that virus accumulation decreased after an initial spike in all genotypes. TYLCV accumulation was less in resistant than in susceptible genotypes at 3, 6, and 12 weeks post inoculation (WPI). TYLCV acquisition by whiteflies over time from resistant and susceptible genotypes was also consistent with virus accumulation in the host plant. Furthermore, preference assays indicated that non-viruliferous whiteflies preferred virus-infected plants, whereas viruliferous whiteflies preferred non-infected plants. However, this effect was prominent only with the susceptible genotype at 6 WPI. The development of whiteflies on non-infected susceptible and resistant genotypes was not significantly different. However, developmental time was reduced when a susceptible genotype was infected with TYLCV. Together, these results suggest that vector preference and development could be affected by the timing of infection and by host resistance. These effects could play a crucial role in TYLCV epidemics. PMID:26529402

  10. Resistance and Susceptibility to Malarial Infection: A Host Defense Strategy against Malaria

    PubMed Central

    BAKIR, Hanaa; YONES, Doaa; GALAL, Lamia; HUSEEIN, Enas

    2015-01-01

    Background: In an effort to understand what limits the virulence of malaria parasites in relation to the host genetic and immunogenic background, we investigated the possibility that the parasite and host genotype crossover interactions constrain virulence. Methods: Two groups of mice from different genotypes were used (C57BL/6 (B6) and DBA/2 mice). The mice were infected with a virulent parasite line Plasmodium yoelii 17XL (P. yoelii 17XL). Parasitemia, hematocrit value and lymphocytes yielded by livers and spleens were evaluated. Fluorescence Activated Cell Sorting (FACS) analysis illustrated phenotypic characterization of lymphocytes. Results: Infection with P. yoelii 17XL did not result in the death of DBA/2 mice. In contrast, B6 mice developed significantly high parasitemia and succumbed to death. Using (FACS) analysis, DBA/2 mice were found to experience a marked expansion of interleukin (IL)-2Rβ+ CD3int cells and γδ T cells in the liver, especially in the recovery phase. The expansion of unconventional T cells (i.e. B220+ T cells) was also marked in DBA/2 mice. Conclusion: The outcome of murine malaria infections depends on the dynamic interplay between the immune-mediator and the genotype of the host. PMID:26811732

  11. Experimental elimination of parasites in nature leads to the evolution of increased resistance in hosts

    PubMed Central

    Dargent, Felipe; Scott, Marilyn E.; Hendry, Andrew P.; Fussmann, Gregor F.

    2013-01-01

    A reduction in the strength of selection is expected to cause the evolution of reduced trait expression. Elimination of a parasite should thus cause the evolution of reduced resistance to that parasite. To test this prediction in nature, we studied the fourth- and eighth-generation descendants of guppies (Poecilia reticulata) introduced into four natural streams following experimental elimination of a common and deleterious parasite (Gyrodactylus spp.). After two generations of laboratory rearing to control for plasticity and maternal effects, we infected individual fish to assess their resistance to the parasite. Contrary to theoretical expectations, the introduced guppy populations had rapidly and repeatably evolved increased resistance to the now-absent parasite. This evolution was not owing to a resistance-tolerance trade-off, nor to differences in productivity among the sites. Instead, a leading candidate hypothesis is that the rapid life-history evolution typical in such introductions pleiotropically increases parasite resistance. Our study adds a new dimension to the growing evidence for contemporary evolution in the wild, and also points to the need for a re-consideration of simple expectations from host–parasite theory. In particular, our results highlight the need for increased consideration of multiple sources of selection and pleiotropy when studying evolution in natural contexts. PMID:24197417

  12. Adenylyl Cyclase Plays a Regulatory Role in Development, Stress Resistance and Secondary Metabolism in Fusarium fujikuroi

    PubMed Central

    García-Martínez, Jorge; Ádám, Attila L.; Avalos, Javier

    2012-01-01

    The ascomycete fungus Fusarium fujikuroi (Gibberella fujikuroi MP-C) produces secondary metabolites of biotechnological interest, such as gibberellins, bikaverin, and carotenoids. Production of these metabolites is regulated by nitrogen availability and, in a specific manner, by other environmental signals, such as light in the case of the carotenoid pathway. A complex regulatory network controlling these processes is recently emerging from the alterations of metabolite production found through the mutation of different regulatory genes. Here we show the effect of the targeted mutation of the acyA gene of F. fujikuroi, coding for adenylyl cyclase. Mutants lacking the catalytic domain of the AcyA protein showed different phenotypic alterations, including reduced growth, enhanced production of unidentified red pigments, reduced production of gibberellins and partially derepressed carotenoid biosynthesis in the dark. The phenotype differs in some aspects from that of similar mutants of the close relatives F. proliferatum and F. verticillioides: contrary to what was observed in these species, ΔacyA mutants of F. fujikuroi showed enhanced sensitivity to oxidative stress (H2O2), but no change in heavy metal resistance or in the ability to colonize tomato tissue, indicating a high versatility in the regulatory roles played by cAMP in this fungal group. PMID:22291883

  13. A Multiple Decrement Life Table Reveals That Host Plant Resistance and Parasitism Are Major Causes of Mortality for the Wheat Stem Sawfly.

    PubMed

    Buteler, Micaela; Peterson, Robert K D; Hofland, Megan L; Weaver, David K

    2015-12-01

    This study investigated the dynamics of parasitism, host plant resistance, pathogens, and predation on the demography of wheat stem sawfly, Cephus cinctus Norton (Hymenoptera: Cephidae), developing in susceptible (hollow stem) and resistant (solid stem) wheat hosts. This study is also the first to investigate the prevalence and impact of cannibalism on wheat stem sawfly mortality. Wheat stem sawflies were sampled in two commercial wheat fields over 4 yr from the egg stage through adult emergence, and multiple decrement life tables were constructed and analyzed. Cannibalism, host plant resistance, or unknown factors were the most prevalent factors causing egg mortality. Summer mortality of prediapause larvae ranged from 28 to 84%, mainly due to parasitism by Bracon cephi (Gahan) and Bracon lissogaster Muesebeck, cannibalism, and host plant resistance. Winter mortality ranged from 6 to 54% of the overwintering larvae, mainly due to unknown factors or pathogens. Cannibalism is a major cause of irreplaceable mortality because it is absolute, with only a single survivor in every multiple infested stem. Subsequent to obligate cannibalism, mortality of feeding larvae due to host plant resistance was lower in hollow stem wheat than in solid stem wheat. Mortality from host plant resistance was largely irreplaceable. Irreplaceable mortality due to parasitoids was greater in hollow stem wheat than in solid stem wheat. Host plant resistance due to stem solidness and parasitism in hollow stems cause substantial mortality in populations of actively feeding larvae responsible for all crop losses. Therefore, enhancing these mortality factors is vital to effective integrated pest management of wheat stem sawfly. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  14. Rapid death of duck cells infected with influenza: a potential mechanism for host resistance to H5N1.

    PubMed

    Kuchipudi, Suresh V; Dunham, Stephen P; Nelli, Rahul; White, Gavin A; Coward, Vivien J; Slomka, Marek J; Brown, Ian H; Chang, Kin Chow

    2012-01-01

    Aquatic birds are the natural reservoir for most subtypes of influenza A, and a source of novel viruses with the potential to cause human pandemics, fatal zoonotic disease or devastating epizootics in poultry. It is well recognised that waterfowl typically show few clinical signs following influenza A infection, in contrast, terrestrial poultry such as chickens may develop severe disease with rapid death following infection with highly pathogenic avian influenza. This study examined the cellular response to influenza infection in primary cells derived from resistant (duck) and susceptible (chicken) avian hosts. Paradoxically, we observed that duck cells underwent rapid cell death following infection with low pathogenic avian H2N3, classical swine H1N1 and 'classical' highly pathogenic H5N1 viruses. Dying cells showed morphological features of apoptosis, increased DNA fragmentation and activation of caspase 3/7. Following infection of chicken cells, cell death occurred less rapidly, accompanied by reduced DNA fragmentation and caspase activation. Duck cells produced similar levels of viral RNA but less infectious virus, in comparison with chicken cells. Such rapid cell death was not observed in duck cells infected with a contemporary Eurasian lineage H5N1 fatal to ducks. The induction of rapid death in duck cells may be part of a mechanism of host resistance to influenza A, with the loss of this response leading to increased susceptibility to emergent strains of H5N1. These studies provide novel insights that should help resolve the long-standing enigma of host-pathogen relationships for highly pathogenic and zoonotic avian influenza.

  15. Pursuing Post-Secondary Education in the Host Country and the Occupational Attainment of Highly Educated Immigrants to Canada

    ERIC Educational Resources Information Center

    Adamuti-Trache, Maria

    2016-01-01

    This paper examines the occupational attainment of highly educated adult immigrants by employing a secondary analysis of three waves of the Longitudinal Survey of Immigrants to Canada that provide data on immigrant arrivals in 2000-2001. Occupational attainment is described in terms of matching immigrants' pre-migration occupation with the main…

  16. Pursuing Post-Secondary Education in the Host Country and the Occupational Attainment of Highly Educated Immigrants to Canada

    ERIC Educational Resources Information Center

    Adamuti-Trache, Maria

    2016-01-01

    This paper examines the occupational attainment of highly educated adult immigrants by employing a secondary analysis of three waves of the Longitudinal Survey of Immigrants to Canada that provide data on immigrant arrivals in 2000-2001. Occupational attainment is described in terms of matching immigrants' pre-migration occupation with the main…

  17. Conversion of M serotype 24 of Streptococcus pyogenes to M serotypes 5 and 18: effect on resistance to phagocytosis and adhesion to host cells.

    PubMed Central

    Courtney, H S; Liu, S; Dale, J B; Hasty, D L

    1997-01-01

    In this study, we utilized recombinant strains expressing the M5 and M18 proteins and M- mutants of group A streptococci to compare the abilities of these M proteins to confer resistance to phagocytosis and to mediate adhesion to host cells. The data indicate that the M5 and M18 proteins can confer resistance to phagocytosis, that fibrinogen is required for this resistance, and that these M proteins can mediate adhesion to HEp-2 cells. PMID:9169794

  18. Drought resistance in early and late secondary successional species from a tropical dry forest: the interplay between xylem resistance to embolism, sapwood water storage and leaf shedding.

    PubMed

    Pineda-García, Fernando; Paz, Horacio; Meinzer, Frederick C

    2013-02-01

    The mechanisms of drought resistance that allow plants to successfully establish at different stages of secondary succession in tropical dry forests are not well understood. We characterized mechanisms of drought resistance in early and late-successional species and tested whether risk of drought differs across sites at different successional stages, and whether early and late-successional species differ in resistance to experimentally imposed soil drought. The microenvironment in early successional sites was warmer and drier than in mature forest. Nevertheless, successional groups did not differ in resistance to soil drought. Late-successional species resisted drought through two independent mechanisms: high resistance of xylem to embolism, or reliance on high stem water storage capacity. High sapwood water reserves delayed the effects of soil drying by transiently decoupling plant and soil water status. Resistance to soil drought resulted from the interplay between variations in xylem vulnerability to embolism, reliance on sapwood water reserves and leaf area reduction, leading to a tradeoff of avoidance against tolerance of soil drought, along which successional groups were not differentiated. Overall, our data suggest that ranking species' performance under soil drought based solely on xylem resistance to embolism may be misleading, especially for species with high sapwood water storage capacity. © 2012 Blackwell Publishing Ltd.

  19. UV light tolerance and reactivation potential of tetracycline-resistant bacteria from secondary effluents of a wastewater treatment plant.

    PubMed

    Huang, Jing-Jing; Xi, Jinying; Hu, Hong-Ying; Li, Yi; Lu, Sun-Qin; Tang, Fang; Pang, Yu-Chen

    2016-03-01

    Tetracycline-resistant bacteria (TRB) are of concern as emerging microbial contaminants in reclaimed water. To understand the effects of UV disinfection on TRB, both inactivation and reactivation profiles of TRB, as well as 16 tetracycline-resistant isolates from secondary effluent, were characterized in this study. The inactivation ratio of TRB was significantly lower (3.0-log) than that of heterotrophic bacteria (>4.0-log) in the secondary effluent. Additionally, the proportion of TRB significantly increased from 1.65% to 15.51% under 20mJ/cm(2) ultraviolet (UV) exposure. The inactivation rates of tetracycline-resistant isolates ranged from 0.57/s to 1.04/s, of which tetracycline-resistant Enterobacter-1 was the most tolerant to UV light. The reactivation of TRB, tetracycline-resistant isolated strains, as well as heterotrophic bacteria commonly occurred in the secondary effluent even after 20mJ/cm(2) UV exposure. The colony forming ability of TRB and heterotrophic bacteria reached 3.2-log and 3.0-log under 20mJ/cm(2) UV exposure after 22hr incubation. The final inactivation ratio of tetracycline-resistant Enterobacter-1 was 1.18-log under 20mJ/cm(2) UV exposure after 22hr incubation, which is similar to those of TRB (1.18-log) and heterotrophic bacteria (1.19-log). The increased proportion of TRB and the reactivation of tetracycline-resistant enterobacteria in reclaimed water could induce a microbial health risk during wastewater reuse. Copyright © 2015. Published by Elsevier B.V.

  20. Specific interactions between host and parasite genotypes do not act as a constraint on the evolution of antiviral resistance in Drosophila.

    PubMed

    Carpenter, Jennifer A; Hadfield, Jarrod D; Bangham, Jenny; Jiggins, Francis M

    2012-04-01

    Genetic correlations between parasite resistance and other traits can act as an evolutionary constraint and prevent a population from evolving increased resistance. For example, previous studies have found negative genetic correlations between host resistance and life-history traits. In invertebrates, the level of resistance often depends on the combination of the host and parasite genotypes, and in this study, we have investigated whether such specific resistance also acts as an evolutionary constraint. We measured the resistance of different genotypes of the fruit fly Drosophila melanogaster to different genotypes of a naturally occurring pathogen, the sigma virus. Using a multitrait analysis, we examine whether genetic covariances alter the potential to select for general resistance against all of the different viral genotypes. We found large amounts of heritable variation in resistance, and evidence for specific interactions between host and parasite, but these interactions resulted in little constraint on Drosophila evolving greater resistance. © 2011 The Author(s). Evolution© 2011 The Society for the Study of Evolution.

  1. Host-derived probiotics Enterococcus casseliflavus improves resistance against Streptococcus iniae infection in rainbow trout (Oncorhynchus mykiss) via immunomodulation.

    PubMed

    Safari, Reza; Adel, Milad; Lazado, Carlo C; Caipang, Christopher Marlowe A; Dadar, Maryam

    2016-05-01

    The present study evaluated the benefits of dietary administration of host-derived candidate probiotics Enterococcus casseliflavus in juvenile rainbow trout Oncorhynchus mykiss. Experimental diets were prepared by incorporating the microorganisms in the basal feed at 3 inclusion levels (i.e. 10(7) CFU g(-1) of feed [T1], 10(8) CFU g(-1) of feed [T2], 10(9) CFU g(-1) of feed [T3]). The probiotic feeds were administered for 8 weeks, with a group fed with the basal diet serving as control. The effects on growth performance, gut health, innate immunity and disease resistance were evaluated. Results showed that growth performance parameters were significantly improved in T2 and T3 groups. Activities of digestive enzymes such as trypsin and lipase were significantly higher in these two groups as well. Gut micro-ecology was influenced by probiotic feeding as shown by the significant increase in intestinal lactic acid bacteria and total viable aerobic counts in T2 and T3. Humoral immunity was impacted by dietary probiotics as total serum protein and albumin were significantly elevated in T3. The levels of serum IgM significantly increased in all probiotic fed groups at week 8; with the T3 group registering the highest increment. Respiratory burst activity of blood leukocytes were significantly improved in T2 and T3. Hematological profiling further revealed that neutrophil counts significantly increased in all probiotic fed groups. Challenge test showed that probiotic feeding significantly improved host resistance to Streptococcus iniae infection, specifically in T2 and T3 where a considerable modulation of immune responses was observed. Taken together, this study demonstrated E. casseliflavus as a potential probiotics for rainbow trout with the capability of improving growth performance and enhancing disease resistance by immunomodulation.

  2. The microbiota regulates neutrophil homeostasis and host resistance to Escherichia coli K1 sepsis in neonatal mice.

    PubMed

    Deshmukh, Hitesh S; Liu, Yuhong; Menkiti, Ogechukwu R; Mei, Junjie; Dai, Ning; O'Leary, Claire E; Oliver, Paula M; Kolls, Jay K; Weiser, Jeffrey N; Worthen, G Scott

    2014-05-01

    Neonatal colonization by microbes, which begins immediately after birth, is influenced by gestational age and the mother's microbiota and is modified by exposure to antibiotics. In neonates, prolonged duration of antibiotic therapy is associated with increased risk of late-onset sepsis (LOS), a disorder controlled by neutrophils. A role for the microbiota in regulating neutrophil development and susceptibility to sepsis in the neonate remains unclear. We exposed pregnant mouse dams to antibiotics in drinking water to limit transfer of maternal microbes to the neonates. Antibiotic exposure of dams decreased the total number and composition of microbes in the intestine of the neonates. This was associated with decreased numbers of circulating and bone marrow neutrophils and granulocyte/macrophage-restricted progenitor cells in the bone marrow of antibiotic-treated and germ-free neonates. Antibiotic exposure of dams reduced the number of interleukin-17 (IL-17)-producing cells in the intestine and production of granulocyte colony-stimulating factor (G-CSF). Granulocytopenia was associated with impaired host defense and increased susceptibility to Escherichia coli K1 and Klebsiella pneumoniae sepsis in antibiotic-treated neonates, which could be partially reversed by administration of G-CSF. Transfer of a normal microbiota into antibiotic-treated neonates induced IL-17 production by group 3 innate lymphoid cells (ILCs) in the intestine, increasing plasma G-CSF levels and neutrophil numbers in a Toll-like receptor 4 (TLR4)- and myeloid differentiation factor 88 (MyD88)-dependent manner and restored IL-17-dependent resistance to sepsis. Specific depletion of ILCs prevented IL-17- and G-CSF-dependent granulocytosis and resistance to sepsis. These data support a role for the intestinal microbiota in regulation of granulocytosis, neutrophil homeostasis and host resistance to sepsis in neonates.

  3. Endogenous growth factor stimulation of hemocyte proliferation induces resistance to Schistosoma mansoni challenge in the snail host.

    PubMed

    Pila, Emmanuel A; Gordy, Michelle A; Phillips, Valerie K; Kabore, Alethe L; Rudko, Sydney P; Hanington, Patrick C

    2016-05-10

    Digenean trematodes are a large, complex group of parasitic flatworms that infect an incredible diversity of organisms, including humans. Larval development of most digeneans takes place within a snail (Gastropoda). Compatibility between snails and digeneans is often very specific, such that suitable snail hosts define the geographical ranges of diseases caused by these worms. The immune cells (hemocytes) of a snail are sentinels that act as a crucial barrier to infection by larval digeneans. Hemocytes coordinate a robust and specific immunological response, participating directly in parasite killing by encapsulating and clearing the infection. Hemocyte proliferation and differentiation are influenced by unknown digenean-specific exogenous factors. However, we know nothing about the endogenous control of hemocyte development in any gastropod model. Here, we identify and functionally characterize a progranulin [Biomphalaria glabrata granulin (BgGRN)] from the snail B. glabrata, a natural host for the human blood fluke Schistosoma mansoni Granulins are growth factors that drive proliferation of immune cells in organisms, spanning the animal kingdom. We demonstrate that BgGRN induces proliferation of B. glabrata hemocytes, and specifically drives the production of an adherent hemocyte subset that participates centrally in the anti-digenean defense response. Additionally, we demonstrate that susceptible B. glabrata snails can be made resistant to infection with S. mansoni by first inducing hemocyte proliferation with BgGRN. This marks the functional characterization of an endogenous growth factor of a gastropod mollusc, and provides direct evidence of gain of resistance in a snail-digenean infection model using a defined factor to induce snail resistance to infection.

  4. Endogenous growth factor stimulation of hemocyte proliferation induces resistance to Schistosoma mansoni challenge in the snail host

    PubMed Central

    Pila, Emmanuel A.; Gordy, Michelle A.; Phillips, Valerie K.; Kabore, Alethe L.; Rudko, Sydney P.; Hanington, Patrick C.

    2016-01-01

    Digenean trematodes are a large, complex group of parasitic flatworms that infect an incredible diversity of organisms, including humans. Larval development of most digeneans takes place within a snail (Gastropoda). Compatibility between snails and digeneans is often very specific, such that suitable snail hosts define the geographical ranges of diseases caused by these worms. The immune cells (hemocytes) of a snail are sentinels that act as a crucial barrier to infection by larval digeneans. Hemocytes coordinate a robust and specific immunological response, participating directly in parasite killing by encapsulating and clearing the infection. Hemocyte proliferation and differentiation are influenced by unknown digenean-specific exogenous factors. However, we know nothing about the endogenous control of hemocyte development in any gastropod model. Here, we identify and functionally characterize a progranulin [Biomphalaria glabrata granulin (BgGRN)] from the snail B. glabrata, a natural host for the human blood fluke Schistosoma mansoni. Granulins are growth factors that drive proliferation of immune cells in organisms, spanning the animal kingdom. We demonstrate that BgGRN induces proliferation of B. glabrata hemocytes, and specifically drives the production of an adherent hemocyte subset that participates centrally in the anti-digenean defense response. Additionally, we demonstrate that susceptible B. glabrata snails can be made resistant to infection with S. mansoni by first inducing hemocyte proliferation with BgGRN. This marks the functional characterization of an endogenous growth factor of a gastropod mollusc, and provides direct evidence of gain of resistance in a snail-digenean infection model using a defined factor to induce snail resistance to infection. PMID:27114544

  5. Potential of host plant resistance to the sugarbeet root maggot in an integrated pest management system

    USDA-ARS?s Scientific Manuscript database

    The performance of a hybrid with a sugarbeet root maggot (Tetanops myopaeformis von Röder) resistant pollinator was compared to the performance of an adapted susceptible hybrid at a location with root maggots present (St. Thomas, ND) and a location with no root maggots (Fargo, ND) in 2015 and 2016. ...

  6. Insect-plant interactions: host selection, herbivory, and plant resistance – an introduction

    USDA-ARS?s Scientific Manuscript database

    In nature, most plants are fed upon by insects. Some herbivorous insects are very particular in their choice of food plants, whereas others are more generalist feeders. Plants are not passive bystanders, they have evolved resistance to most potential insect attackers. The world is mostly green. Dome...

  7. Suppression of bacterial blight on mustard greens with host plant resistance and Acibenzolar-S-Methyl

    USDA-ARS?s Scientific Manuscript database

    Bacterial blight, caused by Pseudomonas cannabina pv. alisalensis, attacks the leaves of most brassica vegetables, including mustard greens (Brassica juncea). ‘Carolina Broadleaf,’ a new mustard cultivar, is resistant to bacterial blight. Acibenzolar-S-methyl (trade name Actigard) has been used to m...

  8. Bacterial viruses enable their host to acquire antibiotic resistance genes from neighbouring cells

    PubMed Central

    Haaber, Jakob; Leisner, Jørgen J.; Cohn, Marianne T.; Catalan-Moreno, Arancha; Nielsen, Jesper B.; Westh, Henrik; Penadés, José R.; Ingmer, Hanne

    2016-01-01

    Prophages are quiescent viruses located in the chromosomes of bacteria. In the human pathogen, Staphylococcus aureus, prophages are omnipresent and are believed to be responsible for the spread of some antibiotic resistance genes. Here we demonstrate that release of phages from a subpopulation of S. aureus cells enables the intact, prophage-containing population to acquire beneficial genes from competing, phage-susceptible strains present in the same environment. Phage infection kills competitor cells and bits of their DNA are occasionally captured in viral transducing particles. Return of such particles to the prophage-containing population can drive the transfer of genes encoding potentially useful traits such as antibiotic resistance. This process, which can be viewed as ‘auto-transduction', allows S. aureus to efficiently acquire antibiotic resistance both in vitro and in an in vivo virulence model (wax moth larvae) and enables it to proliferate under strong antibiotic selection pressure. Our results may help to explain the rapid exchange of antibiotic resistance genes observed in S. aureus. PMID:27819286

  9. Evaluation of potential new sources of melon host plant resistance to the whitefly, Bemisia tabaci

    USDA-ARS?s Scientific Manuscript database

    Melon (Cucumis melo L.) genotypes that support fewer numbers of whitefly could reduce the frequency or the amount of insecticide applications required to keep the insects in check, as was the case with cotton where measurable resistance to whitefly in some genotypes reduced the number of sprays, thu...

  10. Intestinal Decontamination of Multidrug-resistant Klebsiella pneumoniae After Recurrent Infections in an Immunocompromised Host

    PubMed Central

    Kronman, Matthew P.; Zerr, Danielle M.; Qin, Xuan; Englund, Janet; Cornell, Cathy; Sanders, Jean E.; Myers, Jeffrey; Rayar, Jaipreet; Berry, Jessica E.; Adler, Amanda L.; Weissman, Scott J.

    2014-01-01

    Multidrug-resistant (MDR) Enterobacteriaceae infections are associated with increased morbidity. We describe a 20-year-old hematopoietic cell transplantation recipient with recurrent MDR Klebsiella pneumoniae infection, prolonged intestinal colonization, and subsequent intestinal decontamination. Further study should evaluate stool surveillance, molecular typing, and fecal microbiota transplantation for patients with intestinal MDR Enterobacteriaceae carriage. PMID:25041704

  11. Role of macrophages in early host resistance to respiratory Acinetobacter baumannii infection.

    PubMed

    Qiu, Hongyu; KuoLee, Rhonda; Harris, Greg; Van Rooijen, Nico; Patel, Girishchandra B; Chen, Wangxue

    2012-01-01

    Acinetobacter baumannii is an emerging bacterial pathogen that causes nosocomial pneumonia and other infections. Although it is recognized as an increasing threat to immunocompromised patients, the mechanism of host defense against A. baumannii infection remains poorly understood. In this study, we examined the potential role of macrophages in host defense against A. baumannii infection using in vitro macrophage culture and the mouse model of intranasal (i.n.) infection. Large numbers of A. baumannii were taken up by alveolar macrophages in vivo as early as 4 h after i.n. inoculation. By 24 h, the infection induced significant recruitment and activation (enhanced expression of CD80, CD86 and MHC-II) of macrophages into bronchoalveolar spaces. In vitro cell culture studies showed that A. baumannii were phagocytosed by J774A.1 (J774) macrophage-like cells within 10 minutes of co-incubation, and this uptake was microfilament- and microtubule-dependent. Moreover, the viability of phagocytosed bacteria dropped significantly between 24 and 48 h after co-incubation. Infection of J774 cells by A. baumannii resulted in the production of large amounts of proinflammatory cytokines and chemokines, and moderate amounts of nitric oxide (NO). Prior treatment of J774 cells with NO inhibitors significantly suppressed their bactericidal efficacy (P<0.05). Most importantly, in vivo depletion of alveolar macrophages significantly enhanced the susceptibility of mice to i.n. A. baumannii challenge (P<0.01). These results indicate that macrophages may play an important role in early host defense against A. baumannii infection through the efficient phagocytosis and killing of A. baumannii to limit initial pathogen replication and the secretion of proinflammatory cytokines and chemokines for the rapid recruitment of other innate immune cells such as neutrophils.

  12. Development of host resistance to Fasciola hepatica after the elimination of primary infection with diamphenethide.

    PubMed

    Corba, J; Spaldonová, R

    1975-01-01

    We studied the specificity of the individual developmental stages of Fasciola hepatica for evoking immune response of the host to reinfection with this parasite, whereby the primary infection was eliminated by a dose of 150 mg/kg diamphenethide administered in various intervals. In rats we observed a state of hypersensitivity demonstrated by retarded migration and growth of the flukes and the reduction in the number of sexually developed parasites. The changes were most marked, if the elimination of the immunizing infection followed 8-10 weeks after primary infection.

  13. Partial dysfunction of STAT1 profoundly reduces host resistance to flaviviral infection.

    PubMed

    Larena, Maximilian; Lobigs, Mario

    2017-03-07

    The genetic basis for a dramatically increased virus susceptibility phenotype of MHC-II knockout mice acquired during routine maintenance of the mouse strain was determined. Segregation of the susceptibility allele from the defective MHC-II locus combined with sequence capture and sequencing showed that a Y37L substitution in STAT1 accounted for high flavivirus susceptibility of a newly derived mouse strain, designated Tuara. Interestingly, the mutation in STAT1 gene gave only partial inactivation of the type I interferon antiviral pathway. Accordingly, merely a relatively small impairment of interferon α/β signalling is sufficient to overcome the ability of the host to control the infection.

  14. Complicated secondary textures in zircon record evolution of the host granitic rocks: Studies from Western Tauern Window and Ötztal-Stubai Crystalline Complex (Eastern Alps, Western Austria)

    NASA Astrophysics Data System (ADS)

    Kovaleva, Elizaveta; Harlov, Daniel; Klötzli, Urs

    2017-07-01

    Samples of metamorphosed and deformed granitic rocks were collected from two Alpine complexes with well-constrained metamorphic history: Western Tauern Window and Ötztal-Stubai Crystalline Complex. Zircon grains from these samples were investigated in situ by a combination of scanning electron microscope techniques, cathodoluminescence (CL) imaging and Raman spectroscopy. The aims were: to describe and interpret complicated secondary textures and microstructures in zircon; based on cross-cutting relationships between secondary microstructures, reconstruct the sequence of processes, affecting zircon crystals; link the evolution of zircon with the history of the host rocks. The results indicate that zircon in the sampled granitic rocks forms growth twins and multi-grain aggregates, which are unusual for this mineral. Moreover, various secondary textures have been found in the sampled zircon, often cross-cutting each other in a single crystal. These include: distorted oscillatory CL zoning with inner zones forming inward-penetrating, CL-bright embayments, which are the evidence of dry recrystallization via annealing/lattice recovery; CL mosaicism with no preservation of growth zoning, but abundant nano- and micro-scale pores and mineral inclusions, which are the evidence of recrystallization by coupled dissolution-reprecipitation and/or leaching; embayed zircon boundaries filled with apatite, monazite, epidote and mylonitic matrix, indicating mineral-fluid reactions resulting in zircon dissolution and fragmentation; overgrowth CL-dark rims, which contain nano-pores and point to transport and precipitation of dissolved zircon matter. We conclude that zircon in our meta-granites is sensitive to metamorphism/deformation events, and was reactive with metamorphic fluids. Additionally, we have found evidence of crystal-plastic deformation in the form of low angle boundaries and bent grain tips, which is a result of shearing and ductile deformation of the host rock. We

  15. Geography and genealogy of the human host harbouring a distinctive drug-resistant strain of tuberculosis.

    PubMed

    Brassard, Paul; Henry, Kevin A; Schwartzman, Kevin; Jomphe, Michèle; Olson, Sherry H

    2008-05-01

    For a strain of Mycobacterium tuberculosis mono-resistant to pyrazinamide (PZA), we report the geographic distribution within Quebec of the 77 cases diagnosed during 1990-2000. Known as the Quebec mutation (or the pncA deletion), the strain is rare in urban areas and showed an unexpected concentration in Mauricie, one of the 16 health districts of the province, with a cluster of 10 cases situated in a rural area of 35-km radius. The cases occurred among people >50 (98%), of French Canadian origins (90%), and are understood to have arisen by reactivation. The rarity in Montreal and smaller cities is explained by the youthfulness of massive postwar migrations. To reach back into the history of settlement, we examined genealogies: 92,429 ancestral marriages for 32 of the 77 PZA-resistant isolates and 226,535 for a set of 85 controls with isolates of more diverse mycobacterial strains. Genealogical analysis showed no salient common ancestor for the cases, and kinship among them was no greater than observed in control samples from the same regions. But it identified an unsuspected geographical region as the site of ancestral concentrations prior to 1840, for both resistant strains and controls. The following scenario is proposed for the resistant strain: endemic in a specific geographical region by 1800, it dispersed with families moving into regions opened to settlement in the 1840s and 1850s, among them Mauricie, where dispersion was intensified by seasonal mobility of labour in logging, milling and marketing timber. In high-incidence areas, it is difficult to distinguish cases of reactivation from recent infections, but the low-incidence context allows us to observe a 200-year trajectory of a distinctive drug-resistant strain of M. tuberculosis.

  16. Host Defense Peptide Resistance Contributes to Colonization and Maximal Intestinal Pathology by Crohn's Disease-Associated Adherent-Invasive Escherichia coli

    PubMed Central

    McPhee, Joseph B.; Small, Cherrie L.; Reid-Yu, Sarah A.; Brannon, John R.; Le Moual, Hervé

    2014-01-01

    Host defense peptides secreted by colonocytes and Paneth cells play a key role in innate host defenses in the gut. In Crohn's disease, the burden of tissue-associated Escherichia coli commonly increases at epithelial surfaces where host defense peptides concentrate, suggesting that this bacterial population might actively resist this mechanism of bacterial killing. Adherent-invasive E. coli (AIEC) is associated with Crohn's disease; however, the colonization determinants of AIEC in the inflamed gut are undefined. Here, we establish that host defense peptide resistance contributes to host colonization by Crohn's-associated AIEC. We identified a plasmid-encoded genomic island (called PI-6) in AIEC strain NRG857c that confers high-level resistance to α-helical cationic peptides and α- and β-defensins. Deletion of PI-6 sensitized strain NRG857c to these host defense molecules, reduced its competitive fitness in a mouse model of infection, and attenuated its ability to induce cecal pathology. This phenotype is due to two genes in PI-6, arlA, which encodes a Mig-14 family protein implicated in defensin resistance, and arlC, an OmpT family outer membrane protease. Implicit in these findings are new bacterial targets whose inhibition might limit AIEC burden and disease in the gut. PMID:24866805

  17. Primary and secondary anti-tuberculosis drug resistance in Hitossa District of Arsi Zone, Oromia Regional State, Central Ethiopia.

    PubMed

    Hamusse, Shallo Daba; Teshome, Dejene; Hussen, Mohammed Suaudi; Demissie, Meaza; Lindtjørn, Bernt

    2016-07-18

    Multidrug-resistant tuberculosis (MDR-TB) drugs which is resistant to the major first-line anti-TB drugs, Isoniazid and Rifampicin, has become a major global challenge in tuberculosis (TB) control programme. However, its burden at community level is not well known. Thus, the aim of study was to assess the prevalence of primary and secondary resistance to any first line anti-TB drugs and MDR TB in Hitossa District of Oromia Regional State, Central Ethiopia. Population based cross- sectional study was conducted on individuals aged ≥15 years. Those with symptoms suggestive of TB were interviewed and two sputum specimens were collected from each and examined using Lowenstein-Jensen (LJ) culture medium. Further, the isolates were confirmed by the Ziehl-Neelsen microscopic examination method. Drug susceptibility test (DST) was also conducted on LJ medium using a simplified indirect proportion method. The resistance strains were then determined by percentage of colonies that grew on the critical concentration of Isoniazid, Streptomycin, Rifampicin and Ethambutol. The overall resistance of all forms of TB to any first-line anti-TB drug was 21.7 %. Of the total new and previously treated culture positive TB cases, 15.3 and 48.8 % respectively were found to be a resistant to any of the first-line anti-TB drugs. Further, of all forms of TB, the overall resistance of MDR-TB was 4.7 %. However, of the total new TB cases, 2.4 % had primary while 14.3 % had secondary MDR-TB. Resistance to any of the first-line anti-TB drugs (adjusted odd ratio (AOR), 8.1; 95 % CI: 2.26-29.30) and MDR-TB (AOR), 7.1; 95 % CI: 2.6-43.8) was found to be linked with previous history of anti-TB treatment. The study has identified a high rate of primary and secondary resistance to any of the first-line anti-TB drugs and MDR-TB in the study area. The resistance may have resulted from sub-optimal performance of directly observed treatment short-course (DOTS) programme in the detecting infectious

  18. New hypotheses derived from the structure of a flaviviral Xrn1-resistant RNA: Conservation, folding, and host adaptation

    PubMed Central

    Kieft, Jeffrey S; Rabe, Jennifer L; Chapman, Erich G

    2015-01-01

    Arthropod-borne flaviviruses (FVs) are a growing world-wide health threat whose incidence and range are increasing. The pathogenicity and cytopathicity of these single-stranded RNA viruses are influenced by viral subgenomic non-protein-coding RNAs (sfRNAs) that the viruses produce to high levels during infection. To generate sfRNAs the virus co-opts the action of the abundant cellular exonuclease Xrn1, which is part of the cell's normal RNA turnover machinery. This exploitation of the cellular machinery is enabled by discrete, highly structured, Xrn1-resistant RNA elements (xrRNAs) in the 3′UTR that interact with Xrn1 to halt processive 5′ to 3′ decay of the viral genomic RNA. We recently solved the crystal structure of a functional xrRNA, revealing a novel fold that provides a mechanistic model for Xrn1 resistance. Continued analysis and interpretation of the structure reveals that the tertiary contacts that knit the xrRNA fold together are shared by a wide variety of arthropod-borne FVs, conferring robust Xrn1 resistance in all tested. However, there is some variability in the structures that correlates with unexplained patterns in the viral 3′ UTRs. Finally, examination of these structures and their behavior in the context of viral infection leads to a new hypothesis linking RNA tertiary structure, overall 3′ UTR architecture, sfRNA production, and host adaptation. PMID:26399159

  19. Down-regulation of Fusarium oxysporum endogenous genes by Host-Delivered RNA interference enhances disease resistance

    NASA Astrophysics Data System (ADS)

    Hu, Zongli; Parekh, Urvi; Maruta, Natsumi; Trusov, Yuri; Botella, Jimmy

    2015-01-01

    Fusarium oxysporum is a devastating pathogen causing extensive yield losses in a variety of crops and development of sustainable, environmentally friendly methods to improve crop resistance is crucial. We have used Host-Derived RNA interference (HD-RNAi) technology to partially silence three different genes (FOW2, FRP1 and OPR) in the hemi-biotrophic fungus Fusarium oxysporum f. sp. conglutinans. Expression of double stranded RNA molecules targeting fungal pathogen genes was achieved in a number of transgenic Arabidopsis lines. F. oxysporum infecting the transgenic lines displayed substantially reduced mRNA levels on all three targeted genes, with an average of 75%, 83% and 72% reduction for FOW2, FRP1 and OPR respectively. The silencing of pathogen genes had a clear positive effect on the ability of the transgenic lines to fight infection. All transgenic lines displayed enhanced resistance to F. oxysporum with delayed disease symptom development, especially FRP1 and OPR lines. Survival rates after fungal infection were higher in the transgenic lines compared to control wild type plants which consistently showed survival rates of 10%, with FOW2 lines showing 25% survival; FRP1 lines 30-50% survival and FOW2 between 45-70% survival. The down-regulation effect was specific for the targeted genes without unintended effects in related genes. In addition to producing resistant crops, HD-RNAi can provide a useful tool to rapidly screen candidate fungal pathogenicity genes without the need to produce fungal knockout mutants.

  20. Impact of host genetics on susceptibility and resistance to Mycobacterium avium subspecies Paratuberculosis infection in domestic ruminants.

    PubMed

    Vir Singh, Shoor; Dhama, Kuldeep; Chaubey, Kundan Kumar; Kumar, Naveen; Singh, Pravin Kumar; Sohal, Jagdip Singh; Gupta, Saurabh; Vir Singh, Ajay; Verma, Amit Kumar; Tiwari, Ruchi; Mahima; Chakraborty, S; Deb, Rajib

    2013-03-15

    Johne's disease or Paratuberculosis has emerged as major infectious disease of animals in general and domestic livestock in particular on global basis. There have been major initiatives in developed countries for the control of this incurable malady of animals and human beings alike (inflammatory bowel disease or Crohn's disease). Disease has not received similar attention due to inherent complexities of disease, diagnosis and control, in resource poor counties around the world. However, the rich genetic diverstiy of the otherwise low productive animal population offers opportunity for the control of Johne's disease and improve per animal productivity. Present review aims to gather and compile information available on genetics or resistance to Johne's disease and its future exploitation by resource poor countries rich in animal diversity. This review will also help to create awareness and share knowledge and experience on prevalence and opportunities for control of Johne's disease in the livestock population to boost per animal productivity among developing and poor countries of the world. Breeding of animals for disease resistance provides good, safe, effective and cheaper way of controlling Johne's disease in animals, with especial reference to domestic livestock of developing and poor countries. Study will help to establish better understanding of the correlation between host cell factors and resistance to MAP infection which may have ultimately help in the control of Johne's disease in future.

  1. Down-regulation of Fusarium oxysporum endogenous genes by Host-Delivered RNA interference enhances disease resistance

    PubMed Central

    Hu, Zongli; Parekh, Urvi; Maruta, Natsumi; Trusov, Yuri; Botella, Jose R.

    2015-01-01

    Fusarium oxysporum is a devastating pathogen causing extensive yield losses in a variety of crops and development of sustainable, environmentally friendly methods to improve crop resistance is crucial. We have used Host-Delivered RNA interference (HD-RNAi) technology to partially silence three different genes (FOW2, FRP1, and OPR) in the hemi-biotrophic fungus F. oxysporum f. sp. conglutinans. Expression of double stranded RNA (dsRNA) molecules targeting fungal pathogen genes was achieved in a number of transgenic Arabidopsis lines. F. oxysporum infecting the transgenic lines displayed substantially reduced mRNA levels on all three targeted genes, with an average of 75, 83, and 72% reduction for FOW2, FRP1, and OPR, respectively. The silencing of pathogen genes had a clear positive effect on the ability of the transgenic lines to fight infection. All transgenic lines displayed enhanced resistance to F. oxysporum with delayed disease symptom development, especially FRP1 and OPR lines. Survival rates after fungal infection were higher in the transgenic lines compared to control wild type plants which consistently showed survival rates of 10%, with FOW2 lines showing 25% survival; FRP1 lines 30–50% survival and OPR between 45 and 70% survival. The down-regulation effect was specific for the targeted genes without unintended effects in related genes. In addition to producing resistant crops, HD-RNAi can provide a useful tool to rapidly screen candidate fungal pathogenicity genes without the need to produce fungal knockout mutants. PMID:25654075

  2. In-host adaptation and acquired triazole resistance in Aspergillus fumigatus: a dilemma for clinical management.

    PubMed

    Verweij, Paul E; Zhang, Jianhua; Debets, Alfons J M; Meis, Jacques F; van de Veerdonk, Frank L; Schoustra, Sijmen E; Zwaan, Bas J; Melchers, Willem J G

    2016-11-01

    Aspergillus fumigatus causes a range of diseases in human beings, some of which are characterised by fungal persistence. A fumigatus can persist by adapting to the human lung environment through physiological and genomic changes. The physiological changes are based on the large biochemical versatility of the fungus, and the genomic changes are based on the capacity of the fungus to generate genetic diversity by spontaneous mutations or recombination and subsequent selection of the genotypes that are most adapted to the new environment. In this Review, we explore the adaptation strategies of A fumigatus in relation to azole resistance selection and the clinical implications thereof for management of diseases caused by Aspergillus spp. We hypothesise that the current diagnostic tools and treatment strategies do not take into account the biology of the fungus and might result in an increased likelihood of fungal persistence in patients. Stress factors, such as triazole exposure, cause mutations that render resistance. The process of reproduction-ie, sexual, parasexual, or asexual-is probably crucial for the adaptive potential of Aspergillus spp. As any change in the environment can provoke adaptation, switching between triazoles in patients with chronic pulmonary aspergillosis might result in a high-level pan-triazole-resistant phenotype through the accumulation of resistance mutations. Alternatively, when triazole therapy is stopped, an azole-free environment is created that could prompt selection for compensatory mutations that overcome any fitness costs that are expected to accompany resistance development. As a consequence, starting, switching, and stopping azole therapy has the risk of selecting for highly resistant strains with wildtype fitness. A similar adaptation is expected to occur in response to other stress factors, such as endogenous antimicrobial peptides; over time the fungus will become increasingly adapted to the lung environment, thereby limiting

  3. Patterns of host-parasite adaptation in three populations of monarch butterflies infected with a naturally occurring protozoan disease: virulence, resistance, and tolerance.

    PubMed

    Sternberg, Eleanore D; Li, Hui; Wang, Rebecca; Gowler, Camden; de Roode, Jacobus C

    2013-12-01

    Many studies have used host-parasite systems to study local adaptation, but few of these studies have found unequivocal evidence for adaptation. One potential reason is that most studies have focused on limited measures of host and parasite fitness that are generally assumed to be under negative frequency-dependent selection. We have used reciprocal cross-infection experiments to test for local adaptation in Hawaiian, south Floridian, and eastern North American populations of monarch butterflies and their protozoan parasites. Sympatric host-parasite combinations did not result in greater host or parasite fitness, as would be expected under coevolutionary dynamics driven by negative frequency-dependent selection. Instead, we found that Hawaiian hosts were more resistant and carried more infective and virulent parasites, which is consistent with theoretical predictions for virulence evolution and coevolutionary arms race dynamics. We also found that Hawaiian hosts were more tolerant, particularly of Hawaiian parasites, indicating that increased resistance does not preclude increased tolerance within a population and that hosts may be more tolerant of local parasites. We did not find a similar pattern in the south Floridian or eastern populations, possibly because host-parasite adaptation occurs within the context of a greater ecological community.

  4. Deciphering host resistance and pathogen virulence: the Arabidopsis/Pseudomonas interaction as a model.

    PubMed

    Quirino, Betania F; Bent, Andrew F

    2003-11-01

    SUMMARY The last decade has witnessed steady progress in deciphering the molecular basis of plant disease resistance and pathogen virulence. Although contributions have been made using many different plant and pathogen species, studies of the interactions between Arabidopsis thaliana and Pseudomonas syringae have yielded a particularly significant body of information. The present review focuses on recent findings regarding R gene products and the guard hypothesis, RAR1/SGT1 and other examples where protein processing activity is implicated in disease resistance or susceptibility, the use of microarray expression profiling to generate information and experimental leads, and important molecular- and genome-level discoveries regarding P. syringae effectors that mediate bacterial virulence. The development of the Arabidopsis-Pseudomonas model system is also reviewed briefly, and we close with a discussion of characteristics to consider when selecting other pathosystems as experimentally tractable models for future research.

  5. Effects of Host Resistance and Temperature on Development of Globodera tabacum solanacearum

    PubMed Central

    Wang, J.; Johnson, C. S.; Eisenback, J. D.

    2001-01-01

    Penetration and development of juveniles of tobacco cyst nematode (Globodera tabacum solanacearum) on a resistant (NC567) and a susceptible (K326) cultivar of flue-cured tobacco (Nicotiana tabacum L.) were determined in root zone chamber experiments. More vermiform juveniles developed into a swollen shape at 22, 27, and 31 °C than at 17 °C. Development of flask-shaped nematodes appeared to be similar across tested temperatures (17, 22, 27, and 31 °C). General patterns of penetration and development of juveniles in both resistant and susceptible cultivars were similar under all temperatures tested. More vermiform, swollen, and flask-shaped nematodes were found in roots of K326 than in those of NC567. Development from swollen to flaskshaped nematodes appeared to be similar between the two cultivars, although more vermiform juveniles developed into swollen nematodes on K326 than on NC567. Differences in resistance between the two cultivars remained stable across tested temperatures. PMID:19266009

  6. Resistance to niclosamide in Oncomelania hupensis, the intermediate host of Schistosoma japonicum: should we be worried?

    PubMed

    Dai, Jian-Rong; Li, You-Zi; Wang, Wei; Xing, Yun-Tian; Qu, Guo-Li; Liang, You-Sheng

    2015-02-01

    As the currently only available molluscicide, niclosamide has been widely used for snail control for over 2 decades in China. There is therefore a concern about the emergence of niclosamide-resistant snail populations following repeated, extensive use of the chemical. The purpose of this study was to investigate the likelihood of niclosamide resistance in Oncomelania hupensis in China. Active adult O. hupensis snails derived from 20 counties of 10 schistosomiasis-endemic provinces of China, of 10 snails in each drug concentration, were immersed in solutions of 1, 0.5, 0.25, 0.125, 0.063, 0.032, 0.016 and 0.008 mg L-1 of a 50% wettable powder of niclosamide ethanolamine salt (WPN) for 24 and 48 h at 25 °C, and the median lethal concentration (LC50) was estimated. Then, the 24- and 48-h WPN LC50 values were compared with those determined in the same sampling sites in 2002. The results indicated that the 24- and 48-h WPN LC50 values for O. hupensis were not significantly different from those determined in 2002 (P = 0.202 and 0.796, respectively). It is concluded that the current sensitivity of O. hupensis to niclosamide has not changed after more than 2 decades of repeated, extensive application in the main endemic foci of China, and there is no evidence of resistance to niclosamide detected in O. hupensis.

  7. Identification and utilization of a sow thistle powdery mildew as a poorly adapted pathogen to dissect post-invasion non-host resistance mechanisms in Arabidopsis.

    PubMed

    Wen, Yingqiang; Wang, Wenming; Feng, Jiayue; Luo, Ming-Cheng; Tsuda, Kenichi; Katagiri, Fumiaki; Bauchan, Gary; Xiao, Shunyuan

    2011-03-01

    To better dissect non-host resistance against haustorium-forming powdery mildew pathogens, a sow thistle powdery mildew isolate designated Golovinomyces cichoracearum UMSG1 that has largely overcome penetration resistance but is invariably stopped by post-invasion non-host resistance of Arabidopsis thaliana was identified. The post-invasion non-host resistance is mainly manifested as the formation of a callosic encasement of the haustorial complex (EHC) and hypersensitive response (HR), which appears to be controlled by both salicylic acid (SA)-dependent and SA-independent defence pathways, as supported by the susceptibility of the pad4/sid2 double mutant to the pathogen. While the broad-spectrum resistance protein RPW8.2 enhances post-penetration resistance against G. cichoracearum UCSC1, a well-adapted powdery mildew pathogen, RPW8.2, is dispensable for post-penetration resistance against G. cichoracearum UMSG1, and its specific targeting to the extrahaustorial membrane is physically blocked by the EHC, resulting in HR cell death. Taken together, the present work suggests an evolutionary scenario for the Arabidopsis-powdery mildew interaction: EHC formation is a conserved subcellular defence evolved in plants against haustorial invasion; well-adapted powdery mildew has evolved the ability to suppress EHC formation for parasitic growth and reproduction; RPW8.2 has evolved to enhance EHC formation, thereby conferring haustorium-targeted, broad-spectrum resistance at the post-invasion stage.

  8. Staphylococcus aureus CC398: host adaptation and emergence of methicillin resistance in livestock.

    PubMed

    Price, Lance B; Stegger, Marc; Hasman, Henrik; Aziz, Maliha; Larsen, Jesper; Andersen, Paal Skytt; Pearson, Talima; Waters, Andrew E; Foster, Jeffrey T; Schupp, James; Gillece, John; Driebe, Elizabeth; Liu, Cindy M; Springer, Burkhard; Zdovc, Irena; Battisti, Antonio; Franco, Alessia; Zmudzki, Jacek; Schwarz, Stefan; Butaye, Patrick; Jouy, Eric; Pomba, Constanca; Porrero, M Concepción; Ruimy, Raymond; Smith, Tara C; Robinson, D Ashley; Weese, J Scott; Arriola, Carmen Sofia; Yu, Fangyou; Laurent, Frederic; Keim, Paul; Skov, Robert; Aarestrup, Frank M

    2012-01-01

    Since its discovery in the early 2000s, methicillin-resistant Staphylococcus aureus (MRSA) clonal complex 398 (CC398) has become a rapidly emerging cause of human infections, most often associated with livestock exposure. We applied whole-genome sequence typing to characterize a diverse collection of CC398 isolates (n = 89), including MRSA and methicillin-susceptible S. aureus (MSSA) from animals and humans spanning 19 countries and four continents. We identified 4,238 single nucleotide polymorphisms (SNPs) among the 89 core genomes. Minimal homoplasy (consistency index = 0.9591) was detected among parsimony-informative SNPs, allowing for the generation of a highly accurate phylogenetic reconstruction of the CC398 clonal lineage. Phylogenetic analyses revealed that MSSA from humans formed the most ancestral clades. The most derived lineages were composed predominantly of livestock-associated MRSA possessing three different staphylococcal cassette chromosome mec element (SCCmec) types (IV, V, and VII-like) including nine subtypes. The human-associated isolates from the basal clades carried phages encoding human innate immune modulators that were largely missing among the livestock-associated isolates. Our results strongly suggest that livestock-associated MRSA CC398 originated in humans as MSSA. The lineage appears to have undergone a rapid radiation in conjunction with the jump from humans to livestock, where it subsequently acquired tetracycline and methicillin resistance. Further analyses are required to estimate the number of independent genetic events leading to the methicillin-resistant sublineages, but the diversity of SCCmec subtypes is suggestive of strong and diverse antimicrobial selection associated with food animal production. Modern food animal production is characterized by densely concentrated animals and routine antibiotic use, which may facilitate the emergence of novel antibiotic-resistant zoonotic pathogens. Our findings strongly support the idea

  9. Steroidal Surfactants: Detection of Premicellar Aggregation, Secondary Aggregation Changes in Micelles, and Hosting of a Highly Charged Negative Substance.

    PubMed

    Barnadas-Rodríguez, Ramon; Cladera, Josep

    2015-08-25

    CHAPSO and CHAPS are zwitterionic surfactants derived from bile salts which are usually employed in protein purification and for the preparation of liposomes and bicelles. Despite their spread use, there are significant discrepancies on the critical concentrations that determine their aggregation behavior. In this work, we study the interaction between these surfactants with the negative fluorescent dye pyranine (HPTS) by absorbance, fluorescence, and infrared spectrometry to establish their concentration-dependent aggregation. For the studied surfactants, we detect three critical concentrations showing their concentration-dependent presence as a monomeric form, premicellar aggregates, micelles, and a second type of micelle in aqueous medium. The nature of the interaction of HPTS with the surfactants was studied using analogues of their tails and the negative bile salt taurocholate (TC) as reference for the sterol ring. The results indicate that the chemical groups involved are the hydroxyl groups of the polar face of the sterol ring and the sulfonate groups of the dye. This interaction causes not only the incorporation of the negative dye in CHAPSO and CHAPS micelles but also its association with their premicellar aggregates. Surprisingly, this hosting behavior for a negative charged molecule was also detected for the negative bile salt TC, bypassing, in this way, the electrostatic repulsion between the guest and the host.

  10. Host resistance of CD18 knockout mice against systemic infection with Listeria monocytogenes

    NASA Technical Reports Server (NTRS)

    Wu, Huaizhu; Prince, Joseph E.; Brayton, Cory F.; Shah, Chirayu; Zeve, Daniel; Gregory, Stephen H.; Smith, C. Wayne; Ballantyne, Christie M.

    2003-01-01

    Mice with targeted mutations of CD18, the common beta2 subunit of CD11/CD18 integrins, have leukocytosis, impaired transendothelial neutrophil emigration, and reduced host defense to Streptococcus pneumoniae, a gram-positive extracellular bacterium. Previous studies using blocking monoclonal antibodies suggested roles for CD18 and CD11b in hepatic neutrophil recruitment and host innate response to Listeria monocytogenes, a gram-positive intracellular bacterium. We induced systemic listeriosis in CD18 knockout (CD18-ko) and wild-type (WT) mice by tail vein injection with Listeria. By 14 days postinjection (dpi), 8 of 10 WT mice died, compared with 2 of 10 CD18-ko mice (P < 0.01). Quantitative organ culture showed that numbers of Listeria organisms in livers and spleens were similar in both groups at 20 min postinfection. By 3, 5, and 7 dpi, however, numbers of Listeria organisms were significantly lower in livers and spleens of CD18-ko mice than in WT mice. Histopathology showed that following Listeria infection, CD18-ko mice had milder inflammatory and necrotizing lesions in both spleens and livers than did WT mice. Cytokine assays indicated that baseline interleukin-1beta and granulocyte colony-stimulating factor (G-CSF) levels were higher in CD18-ko mice than in WT mice and that CD18-ko splenocytes produced higher levels of interleukin-1beta and G-CSF than WT splenocytes under the same amount of Listeria stimulation. These findings show that CD18 is not an absolute requirement for antilisterial innate immunity or hepatic neutrophil recruitment. We propose that the absence of CD18 in the mice results in the priming of innate immunity, as evidenced by elevated cytokine expression, and neutrophilic leukocytosis, which augments antilisterial defense.

  11. Host resistance of CD18 knockout mice against systemic infection with Listeria monocytogenes

    NASA Technical Reports Server (NTRS)

    Wu, Huaizhu; Prince, Joseph E.; Brayton, Cory F.; Shah, Chirayu; Zeve, Daniel; Gregory, Stephen H.; Smith, C. Wayne; Ballantyne, Christie M.

    2003-01-01

    Mice with targeted mutations of CD18, the common beta2 subunit of CD11/CD18 integrins, have leukocytosis, impaired transendothelial neutrophil emigration, and reduced host defense to Streptococcus pneumoniae, a gram-positive extracellular bacterium. Previous studies using blocking monoclonal antibodies suggested roles for CD18 and CD11b in hepatic neutrophil recruitment and host innate response to Listeria monocytogenes, a gram-positive intracellular bacterium. We induced systemic listeriosis in CD18 knockout (CD18-ko) and wild-type (WT) mice by tail vein injection with Listeria. By 14 days postinjection (dpi), 8 of 10 WT mice died, compared with 2 of 10 CD18-ko mice (P < 0.01). Quantitative organ culture showed that numbers of Listeria organisms in livers and spleens were similar in both groups at 20 min postinfection. By 3, 5, and 7 dpi, however, numbers of Listeria organisms were significantly lower in livers and spleens of CD18-ko mice than in WT mice. Histopathology showed that following Listeria infection, CD18-ko mice had milder inflammatory and necrotizing lesions in both spleens and livers than did WT mice. Cytokine assays indicated that baseline interleukin-1beta and granulocyte colony-stimulating factor (G-CSF) levels were higher in CD18-ko mice than in WT mice and that CD18-ko splenocytes produced higher levels of interleukin-1beta and G-CSF than WT splenocytes under the same amount of Listeria stimulation. These findings show that CD18 is not an absolute requirement for antilisterial innate immunity or hepatic neutrophil recruitment. We propose that the absence of CD18 in the mice results in the priming of innate immunity, as evidenced by elevated cytokine expression, and neutrophilic leukocytosis, which augments antilisterial defense.

  12. Sequence diversification in recessive alleles of two host factor genes suggests adaptive selection for bymovirus resistance in cultivated barley from East Asia.

    PubMed

    Yang, Ping; Habekuß, Antje; Hofinger, Bernhard J; Kanyuka, Kostya; Kilian, Benjamin; Graner, Andreas; Ordon, Frank; Stein, Nils

    2017-02-01

    Two distinct patterns of sequence diversity for the recessive alleles of two host factors HvPDIL5 - 1 and HvEIF4E indicated the adaptive selection for bymovirus resistance in cultivated barley from East Asia. Plant pathogens are constantly challenging plant fitness and driving resistance gene evolution in host species. Little is known about the evolution of sequence diversity in host recessive resistance genes that interact with plant viruses. Here, by combining previously published and newly generated targeted re-sequencing information, we systematically analyzed natural variation in a broad collection of wild (Hordeum spontaneum; Hs) and domesticated barleys (Hordeum vulgare; Hv) using the full-length coding sequence of the two host factor genes, HvPDIL5-1 and HvEIF4E, conferring recessive resistance to the agriculturally important Barley yellow mosaic virus (BaYMV) and Barley mild mosaic virus (BaMMV). Interestingly, two types of gene evolution conferred by sequence variation in domesticated barley, but not in wild barley were observed. Whereas resistance-conferring alleles of HvEIF4E exclusively contained non-synonymous amino acid substitutions (including in-frame sequence deletions and insertions), loss-of-function alleles were predominantly responsible for the HvPDIL5-1 conferred bymovirus resistance. A strong correlation between the geographic origin and the frequency of barley accessions carrying resistance-conferring alleles was evident for each of the two host factor genes, indicating adaptive selection for bymovirus resistance in cultivated barley from East Asia.

  13. ST2 as a Marker for Risk of Therapy-Resistant Graft-versus-Host Disease and Death

    PubMed Central

    Vander Lugt, Mark T.; Braun, Thomas M.; Hanash, Samir; Ritz, Jerome; Ho, Vincent T.; Antin, Joseph H.; Zhang, Qing; Wong, Chee-Hong; Wang, Hong; Chin, Alice; Gomez, Aurélie; Harris, Andrew C.; Levine, John E.; Choi, Sung W.; Couriel, Daniel; Reddy, Pavan; Ferrara, James L. M.; Paczesny, Sophie

    2013-01-01

    Background No plasma biomarkers are associated with the response of acute graft-versus-host disease (GVHD) to therapy after allogeneic hematopoietic stem-cell transplantation. Methods We compared 12 biomarkers in plasma obtained a median of 16 days after therapy initiation from 10 patients with a complete response by day 28 after therapy initiation and in plasma obtained from 10 patients with progressive GVHD during therapy. The lead biomarker, suppression of tumorigenicity 2 (ST2), was measured at the beginning of treatment for GVHD in plasma from 381 patients and during the first month after transplantation in three independent sets totaling 673 patients to determine the association of this biomarker with treatment-resistant GVHD and 6-month mortality after treatment or transplantation. Results Of the 12 markers, ST2 had the most significant association with resistance to GVHD therapy and subsequent death without relapse. As compared with patients with low ST2 values at therapy initiation, patients with high ST2 values were 2.3 times as likely to have treatment-resistant GVHD (95% confidence interval [CI], 1.5 to 3.6) and 3.7 times as likely to die within 6 months after therapy (95% CI, 2.3 to 5.9). Patients with low ST2 values had lower mortality without relapse than patients with high ST2 values, regardless of the GVHD grade (11% vs. 31% among patients with grade I or II GVHD and 14% vs. 67% among patients with grade III or IV GVHD, P<0.001 for both comparisons). Plasma ST2 values at day 14 after transplantation were associated with 6-month mortality without relapse, regardless of the intensity of the conditioning regimen. Conclusions ST2 levels measured at the initiation of therapy for GVHD and during the first month after transplantation improved risk stratification for treatment-resistant GVHD and death without relapse after transplantation. (Funded by the National Institutes of Health.) PMID:23924003

  14. Aminoglycoside resistance 16S rRNA methyltransferases block endogenous methylation, affect translation efficiency and fitness of the host

    PubMed Central

    Lioy, Virginia S.; Goussard, Sylvie; Guerineau, Vincent; Yoon, Eun-Jeong; Courvalin, Patrice; Galimand, Marc; Grillot-Courvalin, Catherine

    2014-01-01

    In Gram-negative bacteria, acquired 16S rRNA methyltransferases ArmA and NpmA confer high-level resistance to all clinically useful aminoglycosides by modifying, respectively, G1405 and A1408 in the A-site. These enzymes must coexist with several endogenous methyltransferases that are essential for fine-tuning of the decoding center, such as RsmH and RsmI in Escherichia coli, which methylate C1402 and RsmF C1407. The resistance methyltransferases have a contrasting distribution—ArmA has spread worldwide, whereas a single clinical isolate producing NpmA has been reported. The rate of dissemination of resistance depends on the fitness cost associated with its expression. We have compared ArmA and NpmA in isogenic Escherichia coli harboring the corresponding structural genes and their inactive point mutants cloned under the control of their native constitutive promoter in the stable plasmid pGB2. Growth rate determination and competition experiments showed that ArmA had a fitness cost due to methylation of G1405, whereas NpmA conferred only a slight disadvantage to the host due to production of the enzyme. MALDI MS indicated that ArmA impeded one of the methylations at C1402 by RsmI, and not at C1407 as previously proposed, whereas NpmA blocked the activity of RsmF at C1407. A dual luciferase assay showed that methylation at G1405 and A1408 and lack of methylation at C1407 affect translation accuracy. These results indicate that resistance methyltransferases impair endogenous methylation with different consequences on cell fitness. PMID:24398977

  15. Diversity in Betasatellites Associated with Cotton Leaf Curl Disease During Source-To-Sink Movement Through a Resistant Host

    PubMed Central

    Khan, Iftikhar Ali; Akhtar, Khalid Pervaiz; Akbar, Fazal; Hassan, Ishtiaq; Amin, Imran; Saeed, Muhammad; Mansoor, Shahid

    2016-01-01

    Cotton leaf curl is devastating disease of cotton characterized by leaf curling, vein darkening and enations. The disease symptoms are induced by DNA satellite known as Cotton leaf curl Multan betasatellite (CLCuMuB), dominant betasatellite in cotton but another betasatellite known as Chili leaf curl betasatellite (ChLCB) is also found associated with the disease. Grafting experiment was performed to determine if host plant resistance is determinant of dominant population of betasatellite in cotton (several distinct strains of CLCuMuB are associated with the disease). Infected scion of Gossypium hirsutum collected from field (the source) was grafted on G. arboreum, a diploid cotton species, resistant to the disease. A healthy scion of G. hirsutum (sink) was grafted at the top of G. arboreum to determine the movement of virus/betasatellite to upper susceptible scion of G. hirsutum. Symptoms of disease appeared in the upper scion and presence of virus/betasatellite in the upper scion was confirmed via molecular techniques, showing that virus/betasatellite was able to move to upper scion through resistant G. arboreum. However, no symptoms appeared on G. arboreum. Betasatelites were cloned and sequenced from lower scion, upper scion and G. arboreum which show that the lower scion contained both CLCuMuB and ChLCB, however only ChLCB was found in G. arboreum. The upper scion contained CLCuMuB with a deletion of 78 nucleotides (nt) in the non-coding region between A-rich sequence and βC1 gene and insertion of 27 nt in the middle of βC1 ORF. This study may help in investigating molecular basis of resistance in G. arboreum. PMID:26889114

  16. Diversity in Betasatellites Associated with Cotton Leaf Curl Disease During Source-To-Sink Movement Through a Resistant Host.

    PubMed

    Khan, Iftikhar Ali; Akhtar, Khalid Pervaiz; Akbar, Fazal; Hassan, Ishtiaq; Amin, Imran; Saeed, Muhammad; Mansoor, Shahid

    2016-02-01

    Cotton leaf curl is devastating disease of cotton characterized by leaf curling, vein darkening and enations. The disease symptoms are induced by DNA satellite known as Cotton leaf curl Multan betasatellite (CLCuMuB), dominant betasatellite in cotton but another betasatellite known as Chili leaf curl betasatellite (ChLCB) is also found associated with the disease. Grafting experiment was performed to determine if host plant resistance is determinant of dominant population of betasatellite in cotton (several distinct strains of CLCuMuB are associated with the disease). Infected scion of Gossypium hirsutum collected from field (the source) was grafted on G. arboreum, a diploid cotton species, resistant to the disease. A healthy scion of G. hirsutum (sink) was grafted at the top of G. arboreum to determine the movement of virus/betasatellite to upper susceptible scion of G. hirsutum. Symptoms of disease appeared in the upper scion and presence of virus/betasatellite in the upper scion was confirmed via molecular techniques, showing that virus/betasatellite was able to move to upper scion through resistant G. arboreum. However, no symptoms appeared on G. arboreum. Betasatelites were cloned and sequenced from lower scion, upper scion and G. arboreum which show that the lower scion contained both CLCuMuB and ChLCB, however only ChLCB was found in G. arboreum. The upper scion contained CLCuMuB with a deletion of 78 nucleotides (nt) in the non-coding region between A-rich sequence and βC1 gene and insertion of 27 nt in the middle of βC1 ORF. This study may help in investigating molecular basis of resistance in G. arboreum.

  17. Resistance of Echovirus 11 to ClO2 Is Associated with Enhanced Host Receptor Use, Altered Entry Routes, and High Fitness.

    PubMed

    Zhong, Qingxia; Carratalà, Anna; Shim, Hyunjin; Bachmann, Virginie; Jensen, Jeffrey D; Kohn, Tamar

    2017-09-19

    Waterborne viruses can exhibit resistance to common water disinfectants, yet the mechanisms that allow them to tolerate disinfection are poorly understood. Here, we generated echovirus 11 (E11) with resistance to chlorine dioxide (ClO2) by experimental evolution, and we assessed the associated genotypic and phenotypic traits. ClO2 resistance emerged after E11 populations were repeatedly reduced (either by ClO2-exposure or by dilution) and then regrown in cell culture. The resistance was linked to an improved capacity of E11 to bind to its host cells, which was further attributed to two potential causes: first, the resistant E11 populations possessed mutations that caused amino acid substitutions from ClO2-labile to ClO2-stable residues in the viral proteins, which likely increased the chemical stability of the capsid toward ClO2. Second, resistant E11 mutants exhibited the capacity to utilize alternative cell receptors for host binding. Interestingly, the emergence of ClO2 resistance resulted in an enhanced replicative fitness compared to the less resistant starting population. Overall this study contributes to a better understanding of the mechanism underlying disinfection resistance in waterborne viruses, and processes that drive resistance development.

  18. Antimicrobial and host defense peptides for therapeutic use against multidrug-resistant pathogens: new hope on the horizon.

    PubMed

    Bommarius, Bettina; Kalman, Daniel

    2009-06-01

    The concept of using antimicrobial peptides (AMPs) and host defense peptides (HDPs) as therapeutics was first introduced in the late 1990s. However, an AMP drug has yet to reach the market. AMPs and HDPs have intriguing potential as therapeutics: the peptides are evolutionary conserved, and are critical components of the innate immune system of all eukaryotes; their evolution pre-dates the appearance of the adaptive immune system; and they do not readily engender bacterial resistance. Nevertheless, there are significant obstacles to the use of AMPs and HDPs in humans, including the need to conduct clinical trials to demonstrate efficacy, and the capacity to manufacture AMPs and HDPs in a cost-effective manner. Progress in both of these areas would support the exciting possibility that AMPs and HDPs could be developed as therapeutics that kill pathogens and facilitate the immune response.

  19. Staphylococcus aureus CC398: Host Adaptation and Emergence of Methicillin Resistance in Livestock

    PubMed Central

    Price, Lance B.; Stegger, Marc; Hasman, Henrik; Aziz, Maliha; Larsen, Jesper; Andersen, Paal Skytt; Pearson, Talima; Waters, Andrew E.; Foster, Jeffrey T.; Schupp, James; Gillece, John; Driebe, Elizabeth; Liu, Cindy M.; Springer, Burkhard; Zdovc, Irena; Battisti, Antonio; Franco, Alessia; Żmudzki, Jacek; Schwarz, Stefan; Butaye, Patrick; Jouy, Eric; Pomba, Constanca; Porrero, M. Concepción; Ruimy, Raymond; Smith, Tara C.; Robinson, D. Ashley; Weese, J. Scott; Arriola, Carmen Sofia; Yu, Fangyou; Laurent, Frederic; Keim, Paul; Skov, Robert; Aarestrup, Frank M.

    2012-01-01

    ABSTRACT Since its discovery in the early 2000s, methicillin-resistant Staphylococcus aureus (MRSA) clonal complex 398 (CC398) has become a rapidly emerging cause of human infections, most often associated with livestock exposure. We applied whole-genome sequence typing to characterize a diverse collection of CC398 isolates (n = 89), including MRSA and methicillin-susceptible S. aureus (MSSA) from animals and humans spanning 19 countries and four continents. We identified 4,238 single nucleotide polymorphisms (SNPs) among the 89 core genomes. Minimal homoplasy (consistency index = 0.9591) was detected among parsimony-informative SNPs, allowing for the generation of a highly accurate phylogenetic reconstruction of the CC398 clonal lineage. Phylogenetic analyses revealed that MSSA from humans formed the most ancestral clades. The most derived lineages were composed predominantly of livestock-associated MRSA possessing three different staphylococcal cassette chromosome mec element (SCCmec) types (IV, V, and VII-like) including nine subtypes. The human-associated isolates from the basal clades carried phages encoding human innate immune modulators that were largely missing among the livestock-associated isolates. Our results strongly suggest that livestock-associated MRSA CC398 originated in humans as MSSA. The lineage appears to have undergone a rapid radiation in conjunction with the jump from humans to livestock, where it subsequently acquired tetracycline and methicillin resistance. Further analyses are required to estimate the number of independent genetic events leading to the methicillin-resistant sublineages, but the diversity of SCCmec subtypes is suggestive of strong and diverse antimicrobial selection associated with food animal production. PMID:22354957

  20. Diversification of broad host range plasmids correlates with the presence of antibiotic resistance genes

    PubMed Central

    Li, Xiaobin; Wang, Yafei; Brown, Celeste J.; Yao, Fei; Jiang, Yong; Top, Eva M.; Li, Hui

    2015-01-01

    The IncP-1ε subgroup is a recently identified phylogenetic clade within IncP-1 plasmids, which plays an important role in the spread of antibiotic resistance and degradation of xenobiotic pollutants. Here, four IncP-1ε plasmids were exogenously captured from a petroleum-contaminated habitat in China and compared phylogenetically and genomically with previously reported IncP-1ε and other IncP-1 plasmids. The IncP-1ε plasmids can be clearly subdivided into two subclades, designated as ε-I and ε-II, based on phylogenetic analysis of backbone proteins TraI and TrfA. This was further supported by comparison of concatenated backbone genes. Moreover, the two subclades differed in the transposon types, phenotypes and insertion locations of the accessory elements. The accessory genes on ε-I plasmids were inserted between parA and traC, and harbored ISPa17 and Tn402-like transposon modules, typically carrying antibiotic resistance genes. In contrast, the accessory elements on ε-II plasmids were typically located between trfA and oriV, and contained IS1071, which was commonly inserted within the Tn501-like transposon, typically harboring a cluster of genes encoding mercury resistance and/or catabolic pathways. Our study is one of the first to compare IncP-1 plasmid genomes from China, expands the available collection of IncP-1ε plasmids and enhances our understanding of their diversity, biogeography and evolutionary history. PMID:26635412

  1. Rapid death of duck cells infected with influenza: a potential mechanism for host resistance to H5N1

    PubMed Central

    Kuchipudi, Suresh V; Dunham, Stephen P; Nelli, Rahul; White, Gavin A; Coward, Vivien J; Slomka, Marek J; Brown, Ian H; Chang, Kin Chow

    2012-01-01

    Aquatic birds are the natural reservoir for most subtypes of influenza A, and a source of novel viruses with the potential to cause human pandemics, fatal zoonotic disease or devastating epizootics in poultry. It is well recognised that waterfowl typically show few clinical signs following influenza A infection, in contrast, terrestrial poultry such as chickens may develop severe disease with rapid death following infection with highly pathogenic avian influenza. This study examined the cellular response to influenza infection in primary cells derived from resistant (duck) and susceptible (chicken) avian hosts. Paradoxically, we observed that duck cells underwent rapid cell death following infection with low pathogenic avian H2N3, classical swine H1N1 and ‘classical' highly pathogenic H5N1 viruses. Dying cells showed morphological features of apoptosis, increased DNA fragmentation and activation of caspase 3/7. Following infection of chicken cells, cell death occurred less rapidly, accompanied by reduced DNA fragmentation and caspase activation. Duck cells produced similar levels of viral RNA but less infectious virus, in comparison with chicken cells. Such rapid cell death was not observed in duck cells infected with a contemporary Eurasian lineage H5N1 fatal to ducks. The induction of rapid death in duck cells may be part of a mechanism of host resistance to influenza A, with the loss of this response leading to increased susceptibility to emergent strains of H5N1. These studies provide novel insights that should help resolve the long-standing enigma of host–pathogen relationships for highly pathogenic and zoonotic avian influenza. PMID:21423263

  2. Targeting chitinase gene of Helicoverpa armigera by host-induced RNA interference confers insect resistance in tobacco and tomato.

    PubMed

    Mamta; Reddy, K R K; Rajam, M V

    2016-02-01

    Helicoverpa armigera Hübner (Lepidoptera: Noctuidae) is a devastating agricultural insect pest with broad spectrum of host range, causing million dollars crop loss annually. Limitations in the present conventional and transgenic approaches have made it crucial to develop sustainable and environmental friendly methods for crop improvement. In the present study, host-induced RNA interference (HI-RNAi) approach was used to develop H. armigera resistant tobacco and tomato plants. Chitinase (HaCHI) gene, critically required for insect molting and metamorphosis was selected as a potential target. Hair-pin RNAi construct was prepared from the conserved off-target free partial HaCHI gene sequence and was used to generate several HaCHI-RNAi tobacco and tomato plants. Northern hybridization confirmed the production of HaCHI gene-specific siRNAs in HaCHI-RNAi tobacco and tomato lines. Continuous feeding on leaves of RNAi lines drastically reduced the target gene transcripts and consequently, affected the overall growth and survival of H. armigera. Various developmental deformities were also manifested in H. armigera larvae after feeding on the leaves of RNAi lines. These results demonstrated the role of chitinase in insect development and potential of HI-RNAi for effective management of H. armigera.

  3. Host-Directed Therapies for Tackling Multi-Drug Resistant Tuberculosis: Learning From the Pasteur-Bechamp Debates.

    PubMed

    Zumla, Alimuddin; Maeurer, Markus

    2015-11-01

    Tuberculosis remains a global emergency causing an estimated 1.5 million deaths annually. For several decades the major focus of tuberculosis treatment has been on antibiotic development targeting Mycobacterium tuberculosis. The lengthy tuberculosis treatment duration and poor treatment outcomes associated with multi-drug resistant tuberculosis (MDR-TB) are of major concern. The sparse new tuberculosis drug pipeline and widespread emergence of MDR-TB signal an urgent need for more innovative interventions to improve treatment outcomes. Building on the historical Pasteur-Bechamp debates on the role of the "microbe" vs the "host internal milieu" in disease causation, we make the case for parallel investments into host-directed therapies (HDTs). A range of potential HDTs are now available which require evaluation in randomized controlled clinical trials as adjunct therapies for shortening the duration of tuberculosis therapy and improving treatment outcomes for drug-susceptible tuberculosis and MDR-TB. Funder initiatives that may enable further research into HDTs are described.

  4. An alternative host model of a mixed fungal infection by azole susceptible and resistant Aspergillus spp strains

    PubMed Central

    Alcazar-Fuoli, L; Buitrago, Mj; Gomez-Lopez, A; Mellado, E

    2015-01-01

    Aspergillus fumigatus is the most common mold involved in human infections. However, the number of non-fumigatus species able to cause disease is continuously increasing. Among them, Aspergillus lentulus is reported in hematological and cystic fibrosis patients and in those treated with corticosteroids. A. lentulus differs from A. fumigatus in some clinically relevant aspects such as virulence and antifungal susceptibility, showing high MICs to most antifungals. Previous studies proved that A. lentulus was pathogenic in immunocompromised mice, although the course of the infection was delayed compared to A. fumigatus. These differences could explain why A. lentulus is mostly found in mixed infections with A. fumigatus challenging the diagnosis and treatment. We used the alternative model host Galleria mellonella to compare virulence, host interaction, fungal burden and antifungal response when larvae were infected with A. fumigatus or A. lentulus alone, and with a mixture of both species. A. lentulus was pathogenic in G. mellonella but infected larvae did not respond to therapeutic doses of voriconazole. We were able to simultaneously detect A. fumigatus and A. lentulus by a multiplex Nested Real Time PCR (MN-PCR). Comparative analysis of larvae histological sections showed melanization of both species but presented a different pattern of immune response by haemocytes. Analysis of fungal burden and histology showed that A. lentulus survived in the G. mellonella despite the antifungal treatment in single and mixed infections. We conclude that the simultaneous presence of antifungal susceptible and resistant Aspergillus species would likely complicate the management of these infections. PMID:26065322

  5. Antibiotic Resistance and Regulation of the Gram-Negative Bacterial Outer Membrane Barrier by Host Innate Immune Molecules

    PubMed Central

    2016-01-01

    ABSTRACT The Gram-negative outer membrane is an important barrier that provides protection against toxic compounds, which include antibiotics and host innate immune molecules such as cationic antimicrobial peptides. Recently, significant research progress has been made in understanding the biogenesis, regulation, and functioning of the outer membrane, including a recent paper from the laboratory of Dr. Brett Finlay at the University of British Columbia (J. van der Heijden et al., mBio 7:e01238-16, 2016, http://dx.doi.org/10.1128/mBio.01541-16). These investigators demonstrate that toxic oxygen radicals, such as those found in host tissues, regulate outer membrane permeability by altering the outer membrane porin protein channels to regulate the influx of oxygen radicals as well as β-lactam antibiotics. This commentary provides context about this interesting paper and discusses the prospects of utilizing increased knowledge of outer membrane biology to develop new antibiotics for antibiotic-resistant Gram-negative bacteria. PMID:27677793

  6. Reciprocal cross infection of sticklebacks with the diphyllobothriidean cestode Schistocephalus solidus reveals consistent population differences in parasite growth and host resistance.

    PubMed

    Kalbe, Martin; Eizaguirre, Christophe; Scharsack, Jörn P; Jakobsen, Per J

    2016-03-08

    In host-parasite evolutionary arms races, parasites are generally expected to adapt more rapidly, due to their large population sizes and short generation times. There exist systems, though, where parasites cannot outpace their hosts because of similar generation times in both antagonists. In those cases concomitant adaptation is expected. We tested this hypothesis in the three-spined stickleback-Schistocephalus solidus tapeworm system, where generation times are comparable in both organisms. We chose two populations of sticklebacks which differ prominently in the prevalence of S. solidus and consequently in its level of selective pressure. We performed a full factorial common garden experiment. Particularly, Norwegian (NO) and German (DE) sticklebacks, as well as hybrids between both stickleback populations and in both parental combinations, were exposed each to a single S. solidus originating from the same two host populations. We found the infection phenotype to depend on the host population, the parasite population, but not their interaction. NO-parasites showed higher infectivity than DE-parasites, with NO-sticklebacks also being more resistant to DE-parasites than to the sympatric NO-parasite. Reciprocally, DE-hosts were more susceptible to the allopatric NO-parasite while DE-parasites grew less than NO-parasites in all stickleback groups. Despite this asymmetry, the ratio of worm to host weight, an indicator of parasite virulence, was identical in both sympatric combinations, suggesting an optimal virulence as a common outcome of parallel coevolved systems. In hybrid sticklebacks, intermediate infection rates and growth of S. solidus from either origin suggests a simple genetic basis of resistance. However, comparison of infection phenotypes in NO-maternal and DE-maternal hybrid sticklebacks indicates local adaptation to the sympatric counterpart in both the host and the parasite. Host-parasite systems with similar generation time show evidence for

  7. The genetic basis of resistance and matching-allele interactions of a host-parasite system: The Daphnia magna-Pasteuria ramosa model.

    PubMed

    Bento, Gilberto; Routtu, Jarkko; Fields, Peter D; Bourgeois, Yann; Du Pasquier, Louis; Ebert, Dieter

    2017-02-21

    Negative frequency-dependent selection (NFDS) is an evolutionary mechanism suggested to govern host-parasite coevolution and the maintenance of genetic diversity at host resistance loci, such as the vertebrate MHC and R-genes in plants. Matching-allele interactions of hosts and parasites that prevent the emergence of host and parasite genotypes that are universally resistant and infective are a genetic mechanism predicted to underpin NFDS. The underlying genetics of matching-allele interactions are unknown even in host-parasite systems with empirical support for coevolution by NFDS, as is the case for the planktonic crustacean Daphnia magna and the bacterial pathogen Pasteuria ramosa. We fine-map one locus associated with D. magna resistance to P. ramosa and genetically characterize two haplotypes of the Pasteuria resistance (PR-) locus using de novo genome and transcriptome sequencing. Sequence comparison of PR-locus haplotypes finds dramatic structural polymorphisms between PR-locus haplotypes including a large portion of each haplotype being composed of non-homologous sequences resulting in haplotypes differing in size by 66 kb. The high divergence of PR-locus haplotypes suggest a history of multiple, diverse and repeated instances of structural mutation events and restricted recombination. Annotation of the haplotypes reveals striking differences in gene content. In particular, a group of glycosyltransferase genes that is present in the susceptible but absent in the resistant haplotype. Moreover, in natural populations, we find that the PR-locus polymorphism is associated with variation in resistance to different P. ramosa genotypes, pointing to the PR-locus polymorphism as being responsible for the matching-allele interactions that have been previously described for this system. Our results conclusively identify a genetic basis for the matching-allele interaction observed in a coevolving host-parasite system and provide a first insight into its molecular basis.

  8. The genetic basis of resistance and matching-allele interactions of a host-parasite system: The Daphnia magna-Pasteuria ramosa model

    PubMed Central

    Fields, Peter D.; Bourgeois, Yann; Du Pasquier, Louis; Ebert, Dieter

    2017-01-01

    Negative frequency-dependent selection (NFDS) is an evolutionary mechanism suggested to govern host-parasite coevolution and the maintenance of genetic diversity at host resistance loci, such as the vertebrate MHC and R-genes in plants. Matching-allele interactions of hosts and parasites that prevent the emergence of host and parasite genotypes that are universally resistant and infective are a genetic mechanism predicted to underpin NFDS. The underlying genetics of matching-allele interactions are unknown even in host-parasite systems with empirical support for coevolution by NFDS, as is the case for the planktonic crustacean Daphnia magna and the bacterial pathogen Pasteuria ramosa. We fine-map one locus associated with D. magna resistance to P. ramosa and genetically characterize two haplotypes of the Pasteuria resistance (PR-) locus using de novo genome and transcriptome sequencing. Sequence comparison of PR-locus haplotypes finds dramatic structural polymorphisms between PR-locus haplotypes including a large portion of each haplotype being composed of non-homologous sequences resulting in haplotypes differing in size by 66 kb. The high divergence of PR-locus haplotypes suggest a history of multiple, diverse and repeated instances of structural mutation events and restricted recombination. Annotation of the haplotypes reveals striking differences in gene content. In particular, a group of glycosyltransferase genes that is present in the susceptible but absent in the resistant haplotype. Moreover, in natural populations, we find that the PR-locus polymorphism is associated with variation in resistance to different P. ramosa genotypes, pointing to the PR-locus polymorphism as being responsible for the matching-allele interactions that have been previously described for this system. Our results conclusively identify a genetic basis for the matching-allele interaction observed in a coevolving host-parasite system and provide a first insight into its molecular basis

  9. Myosins XI modulate host cellular responses and penetration resistance to fungal pathogens.

    PubMed

    Yang, Long; Qin, Li; Liu, Guosheng; Peremyslov, Valera V; Dolja, Valerian V; Wei, Yangdou

    2014-09-23

    The rapid reorganization and polarization of actin filaments (AFs) toward the pathogen penetration site is one of the earliest cellular responses, yet the regulatory mechanism of AF dynamics is poorly understood. Using live-cell imaging in Arabidopsis, we show that polarization coupled with AF bundling involves precise spatiotemporal control at the site of attempted penetration by the nonadapted barley powdery mildew fungus, Blumeria graminis f. sp. hordei (Bgh). We further show that the Bgh-triggered AF mobility and organelle aggregation are predominately driven by the myosin motor proteins. Inactivation of myosins by pharmacological inhibitors prevents bulk aggregation of organelles and blocks recruitment of lignin-like compounds to the penetration site and deposition of callose and defensive protein, PENETRATION 1 (PEN1) into the apoplastic papillae, resulting in attenuation of penetration resistance. Using gene knockout analysis, we demonstrate that highly expressed myosins XI, especially myosin XI-K, are the primary contributors to cell wall-mediated penetration resistance. Moreover, the quadruple myosin knockout mutant xi-1 xi-2 xi-i xi-k displays impaired trafficking pathway responsible for the accumulation of PEN1 at the cell periphery. Strikingly, this mutant shows not only increased penetration rate but also enhanced overall disease susceptibility to both adapted and nonadapted fungal pathogens. Our findings establish myosins XI as key regulators of plant antifungal immunity.

  10. Ineffective Frankia and host resistance in natural populations of Alnus glutinosa (L.) gaertn

    NASA Astrophysics Data System (ADS)

    Wolters, Diederick J.; van Dijk, Cornelis; Akkermans, Antoon D. L.; Woldendorp, Jan W.

    1999-04-01

    Alnus glutinosa (black alder) populations are known to exhibit a variable degree of incompatibility to root nodule formation by ineffective Frankia. The relationship between the occurrence of ineffective Frankia in wet stands of black alder and the degree of resistance to nodulation by ineffective Frankia of seed-lots and clones of alder trees from these particular locations was studied through soil inoculation experiments. The average percentage of resistant plants (R-frequency) among the seed-lots from locations with an ineffective Frankia soil population was equal to, or higher than, the R-frequencies of locations without ineffective Frankia. The mean R-frequency was highest for the seed-lots from the location from which the soil inoculant was taken. These results strongly suggest that ineffective Frankia are not strictly dependent on susceptible A. glutinosa for the maintenance of their population size. The fungus Penicillium nodositatum also nodulated A. glutinosa seedlings. Whereas a negative interaction with the ineffective Frankia nodulation was found, this did not have a significant effect on the R-frequencies of the seed-lots that were tested, suggesting that the ineffective Frankia nodulation adversely affected the myco-nodulation, and not vice versa.

  11. The Order Bacillales Hosts Functional Homologs of the Worrisome cfr Antibiotic Resistance Gene

    PubMed Central

    Hansen, Lykke H.; Planellas, Mercè H.; Long, Katherine S.

    2012-01-01

    The cfr gene encodes the Cfr methyltransferase that methylates a single adenine in the peptidyl transferase region of bacterial ribosomes. The methylation provides resistance to several classes of antibiotics that include drugs of clinical and veterinary importance. This paper describes a first step toward elucidating natural residences of the worrisome cfr gene and functionally similar genes. Three cfr-like genes from the order Bacillales were identified from BLAST searches and cloned into plasmids under the control of an inducible promoter. Expression of the genes was induced in Escherichia coli, and MICs for selected antibiotics indicate that the cfr-like genes confer resistance to PhLOPSa (phenicol, lincosamide, oxazolidinone, pleuromutilin, and streptogramin A) antibiotics in the same way as the cfr gene. In addition, modification at A2503 on 23S rRNA was confirmed by primer extension. Finally, expression of the Cfr-like proteins was verified by SDS gel electrophoresis of whole-cell extracts. The work shows that cfr-like genes exist in the environment and that Bacillales are natural residences of cfr-like genes. PMID:22547628

  12. The order Bacillales hosts functional homologs of the worrisome cfr antibiotic resistance gene.

    PubMed

    Hansen, Lykke H; Planellas, Mercè H; Long, Katherine S; Vester, Birte

    2012-07-01

    The cfr gene encodes the Cfr methyltransferase that methylates a single adenine in the peptidyl transferase region of bacterial ribosomes. The methylation provides resistance to several classes of antibiotics that include drugs of clinical and veterinary importance. This paper describes a first step toward elucidating natural residences of the worrisome cfr gene and functionally similar genes. Three cfr-like genes from the order Bacillales were identified from BLAST searches and cloned into plasmids under the control of an inducible promoter. Expression of the genes was induced in Escherichia coli, and MICs for selected antibiotics indicate that the cfr-like genes confer resistance to PhLOPSa (phenicol, lincosamide, oxazolidinone, pleuromutilin, and streptogramin A) antibiotics in the same way as the cfr gene. In addition, modification at A2503 on 23S rRNA was confirmed by primer extension. Finally, expression of the Cfr-like proteins was verified by SDS gel electrophoresis of whole-cell extracts. The work shows that cfr-like genes exist in the environment and that Bacillales are natural residences of cfr-like genes.

  13. Galleria mellonella as a host model to study Aspergillus terreus virulence and amphotericin B resistance.

    PubMed

    Maurer, Elisabeth; Browne, Niall; Surlis, Carla; Jukic, Emina; Moser, Patrizia; Kavanagh, Kevin; Lass-Flörl, Cornelia; Binder, Ulrike

    2015-01-01

    The aim of this study was to investigate if the alternative in vivo model Galleria mellonella can be used (i) to determine differences in pathogenicity of amphotericin B (AMB) resistant and susceptible A. terreus isolates, (ii) to evaluate AMB efficacy in vivo (iii) and to correlate outcome to in vitro susceptibility data. Larvae were infected with 2 A. terreus AMB resistant (ATR) and 3 AMB susceptible (ATS) isolates and survival rates were correlated to physiological attributes and killing ability of larval haemocytes. Additionally, infected larvae were treated with different concentrations of L-AMB. Haemocyte density were ascertained to evaluate the influence of L-AMB on the larval immune cells. Larvae were sensitive to A. terreus infection in an inoculum-size and temperature dependent manner. In vitro susceptibility to L-AMB correlated with in vivo outcome of antifungal treatment, defining an AMB susceptible strain cluster of A. terreus. Susceptibility to L-AMB increased virulence potential in the larval model, but this increase was also in accordance with faster growth and less damage caused by larval haemocytes. L-AMB treatment primed the larval immune response by increasing haemocyte density. G. mellonella provides a convenient model for the in vivo screening of A. terreus virulence and treatment options, contributing to the generation of a hypothesis that can be further tested in refined experiments in mammalian models.

  14. Alteration of pathogenicity-linked life-history traits by resistance of its host Solanum tuberosum impacts sexual reproduction of the plant pathogenic oomycete Phytophthora infestans.

    PubMed

    Clément, J A J; Magalon, H; Pellé, R; Marquer, B; Andrivon, D

    2010-12-01

    Although sexual reproduction implies a cost, it represents an evolutionary advantage for the adaptation and survival of facultative sexual pathogens. Understanding the maintenance of sex in pathogens requires to analyse how host resistance will impact their sexual reproduction through the alteration of their life-history traits. We explored this experimentally using potato (Solanum tuberosum) and one of its pathogens, the heterothallic oomycete Phytophthora infestans. Sexual reproduction was highest on hosts favouring asexual multiplication of the pathogen, suggesting similar nutritional requirements for both sexual and asexual sporulation. Sexual reproduction was also highest on hosts decreasing the latent period, probably because of a trade-off between growth and reproduction. Distinguishing host effects on each pathogenic trait remains however uneasy, as most life-history traits linked to pathogenicity were not independent of each other. We argue that sexual reproduction of P. infestans is an adaptation to survive when the host is susceptible and rapidly destroyed.

  15. Integrated management of fusarium wilt of chickpea with sowing date, host resistance, and biological control.

    PubMed

    Landa, Blanca B; Navas-Cortés, Juan A; Jiménez-Díaz, Rafael M

    2004-09-01

    ABSTRACT A 3-year experiment was conducted in field microplots infested with Fusarium oxysporum f. sp. ciceris race 5 at Córdoba, Spain, in order to assess efficacy of an integrated management strategy for Fusarium wilt of chickpea that combined the choice of sowing date, use of partially resistant chickpea genotypes, and seed and soil treatments with biocontrol agents Bacillus megaterium RGAF 51, B. subtilis GB03, nonpathogenic F. oxysporum Fo 90105, and Pseudomonas fluorescens RG 26. Advancing the sowing date from early spring to winter significantly delayed disease onset, reduced the final disease intensity (amount of disease in a microplot that combines disease incidence and severity, expressed as a percentage of the maximum possible amount of disease in that microplot), and increased chickpea seed yield. A significant linear relationship was found between disease development over time and weather variables at the experimental site, with epidemics developing earlier and faster as mean temperature increased and accumulated rainfall decreased. Under conditions highly conducive for Fusarium wilt development, the degree of disease control depended primarily on choice of sowing date, and to a lesser extent on level of resistance of chickpea genotypes to F. oxysporum f. sp. ciceris race 5, and the biocontrol treatments. The main effects of sowing date, partially resistant genotypes, and biocontrol agents were a reduction in the rate of epidemic development over time, a reduction of disease intensity, and an increase in chickpea seedling emergence, respectively. Chickpea seed yield was influenced by all three factors in the study. The increase in chickpea seed yield was the most consistent effect of the biocontrol agents. However, that effect was primarily influenced by sowing date, which also determined disease development. Effectiveness of biocontrol treatments in disease management was lowest in January sowings, which were least favorable for Fusarium wilt. Sowing

  16. Host-plant-mediated competition via induced resistance: interactions between pest herbivores on potatoes.

    PubMed

    Lynch, Margaret E; Kaplan, Ian; Dively, Galen P; Denno, Robert F

    2006-06-01

    Plant-mediated competition among insect herbivores occurs when one species induces changes in plant chemistry, nutrition, or morphology that render plants resistant to attack by others. We explored plant-mediated interspecific interactions between the potato leafhopper (Empoasca fabae) and the Colorado potato beetle (Leptinotarsa decemlineata), two important pests on potatoes. Leafhoppers colonize fields in advance of beetles, and thus the possibility exists that previous feeding by leafhoppers induces changes in potato plants that have adverse consequences for beetles. The consequences of leafhopper-induced resistance for beetle performance were studied in the greenhouse, field cages, and in large open-field plots. Potato plants were exposed to four densities of leafhoppers (none, low, moderate, and high), and visible feeding symptoms were measured as percentage leaf curling, chlorosis, and necrosis. The oviposition preference, performance, and survivorship of Colorado potato beetles were then measured on the four categories of induced plants in field-cage and greenhouse settings. In open field plots, survival on the four categories of induced plants was determined by placing cohorts of beetle adults onto plants and measuring the densities of resulting eggs, larvae, and emerging Fl adults. Leafhopper-induced symptoms on potato plants were density dependent, with the percentage of curled, chlorotic, and necrotic leaves increasing with leafhopper density. Previous feeding by leafhoppers adversely affected oviposition and larval performance of beetles. Fewer egg masses were deposited on plants that incurred high levels of leafhopper feeding. Similarly, larval development was delayed and emerging adult beetles weighed less when fed induced foliage from the high leafhopper-density treatment. Beetles survived less well in the field on plants experiencing moderate and high levels of leafhopper feeding as evidenced by lower densities of eggs, larvae, and emerging F1

  17. Tobamovirus-resistant tobacco generated by RNA interference directed against host genes.

    PubMed

    Asano, Momoko; Satoh, Rena; Mochizuki, Atsuko; Tsuda, Shinya; Yamanaka, Takuya; Nishiguchi, Masamichi; Hirai, Katsuyuki; Meshi, Tetsuo; Naito, Satoshi; Ishikawa, Masayuki

    2005-08-15

    Two homologous Nicotiana tabacum genes NtTOM1 and NtTOM3 have been identified. These genes encode polypeptides with amino acid sequence similarity to Arabidopsis thaliana TOM1 and TOM3, which function in parallel to support tobamovirus multiplication. Simultaneous RNA interference against NtTOM1 and NtTOM3 in N. tabacum resulted in nearly complete inhibition of the multiplication of Tomato mosaic virus and other tobamoviruses, but did not affect plant growth or the ability of Cucumber mosaic virus to multiply. As TOM1 and TOM3 homologues are present in a variety of plant species, their inhibition via RNA interference should constitute a useful method for generating tobamovirus-resistant plants.

  18. Prevalence of methicillin-resistant staphylococci species isolated from computer keyboards located in secondary and postsecondary schools.

    PubMed

    Boa, Tyler T; Rahube, Teddie O; Fremaux, Bastien; Levett, Paul N; Yost, Christopher K

    2013-01-01

    Methicillin-resistant Staphylococcus aureus (MRSA) is a public health threat within the general community, thereby warranting identification of MRSA reservoirs within the community. Computer terminals in schools were sampled for S. aureus and methicillin-resistant staphylococci. The overall prevalence of MRSA on computer keyboards was low: 0.68% for a postsecondary institution and 2% and 0% for two secondary institutes. The MRSA isolate from the postsecondary institution did not correspond to the Canadian epidemic clusters, but is related to the USA 700 cluster, which contains strains implicated in outbreaks within the U.S. The isolate from the secondary institute's keyboard was typed as CMRSA7 (USA 400), a strain that has been implicated in both Canadian and U.S. epidemics. Methicillin-resistant S. haemolyticus and S. epidermidis were also isolated from keyboards, indicating that a mixed community of methicillin-resistant staphylococci can be present on keyboards. Although the prevalence was low, the presence of MRSA combined with the high volume of traffic on these student computer terminals demonstrates the potential for public-access computer terminals and computer rooms at educational institutes to act as reservoirs.

  19. The protective role of endogenous cytokines in host resistance against an intragastric infection with Listeria monocytogenes in mice.

    PubMed

    Nishikawa, S; Miura, T; Sasaki, S; Nakane, A

    1996-12-31

    It has been demonstrated that endogenous cytokines including gamma-interferon (IFN-gamma), tumour necrosis factor-alpha (TNF-alpha), and interleukin-6 (IL-6) play a protective role but that IL-4 plays a detrimental role in systemic Listeria monocytogenes infection in mice. The diverse roles of IL-10 have been reported in antilisterial resistance. In this paper, we studied the role of endogenous cytokines in host resistance against an intragastric infection with L. monocytogenes in mice. The expression of cytokine mRNAs including IFN-gamma, TNF-alpha, IL-4, IL-6, or IL-10, which were amplified by reverse transcription-PCR, was observed in intestinal intraepithelial lymphocytes irrespective of L. monocytogenes infection. Increased numbers of L. monocytogenes were detected in the ileal contents of infected mice which received monoclonal antibodies (mAbs) against IFN-gamma, TNF-alpha, IL-4, IL-6, or IL-10. By contrast, mAbs against IL-4 or IL-6 showed little effect on the growth of L. monocytogenes in the mesenteric lymph nodes (MLNs), spleen, and liver, but anti-IFN-gamma mAb and anti-TNF-alpha mAb suppressed the defense in these organs. Anti-IL-10 mAb enhanced bacterial elimination from the MLNs but not from the spleen or liver. These results suggest that the role of endogenous cytokines may differ between systemic and intestinal defenses.

  20. Non-host disease resistance response in pea (Pisum sativum) pods: Biochemical function of DRR206 and phytoalexin pathway localization.

    PubMed

    Seneviratne, Herana Kamal; Dalisay, Doralyn S; Kim, Kye-Won; Moinuddin, Syed G A; Yang, Hong; Hartshorn, Christopher M; Davin, Laurence B; Lewis, Norman G

    2015-05-01

    Continually exposed to potential pathogens, vascular plants have evolved intricate defense mechanisms to recognize encroaching threats and defend themselves. They do so by inducing a set of defense responses that can help defeat and/or limit effects of invading pathogens, of which the non-host disease resistance response is the most common. In this regard, pea (Pisum sativum) pod tissue, when exposed to Fusarium solani f. sp. phaseoli spores, undergoes an inducible transcriptional activation of pathogenesis-related genes, and also produces (+)-pisatin, its major phytoalexin. One of the inducible pathogenesis-related genes is Disease Resistance Response-206 (DRR206), whose role in vivo was unknown. DRR206 is, however, related to the dirigent protein (DP) family. In this study, its biochemical function was investigated in planta, with the metabolite associated with its gene induction being pinoresinol monoglucoside. Interestingly, both pinoresinol monoglucoside and (+)-pisatin were co-localized in pea pod endocarp epidermal cells, as demonstrated using matrix-assisted laser desorption/ionization (MALDI) mass spectrometry imaging. In addition, endocarp epidermal cells are also the site for both chalcone synthase and DRR206 gene expression. Taken together, these data indicate that both (+)-pisatin and pinoresinol monoglucoside function in the overall phytoalexin responses. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Thiamine induced resistance to Plasmopara viticola in grapevine and elicited host-defense responses, including HR like-cell death.

    PubMed

    Boubakri, Hatem; Wahab, Mohamed Ali; Chong, Julie; Bertsch, Christophe; Mliki, Ahmed; Soustre-Gacougnolle, Isabelle

    2012-08-01

    Recently, thiamine (VitaminB1) has been shown to induce resistance against Pseudomonas syringae in Arabidopsis plants through priming of defense responses. In this paper, we have demonstrated the efficiency of thiamine to induce resistance against downy mildew caused by the oomycete Plasmopara viticola in a susceptible Vitis vinifera cultivar "Chardonnay" under glasshouse controlled conditions by providing a dual mode of action involving direct antifungal activity and elicitation of host-defense responses. Thiamine-induced defense responses included the generation of hydrogen peroxide (H(2)O(2)) in both grapevine suspension cultured cells (SCC) and plant leaves, upregulation of an array of defense-related genes and the induction of other defense responses at subcellular level such as callose deposition in stomata cells, phenolic compounds accumulation and hypersensitive response (HR) like-cell death. Epifluorescence microscopy studies revealed dramatic changes in P. viticola individual developmental stages during its colonization of the intercellular space of the leaf mesophyll in thiamine-treated plants. Collectively, our report evidenced the efficiency of thiamine in the control of downy mildew in grapevine by direct and indirect effects, suggesting that thiamine could be an attractive alternative to chemical fungicides in disease management in vineyards. Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  2. Host-Derived Artificial MicroRNA as an Alternative Method to Improve Soybean Resistance to Soybean Cyst Nematode

    PubMed Central

    Tian, Bin; Li, Jiarui; Oakley, Thomas R.; Todd, Timothy C.; Trick, Harold N.

    2016-01-01

    The soybean cyst nematode (SCN), Heterodera glycines, is one of the most important pests limiting soybean production worldwide. Novel approaches to managing this pest have focused on gene silencing of target nematode sequences using RNA interference (RNAi). With the discovery of endogenous microRNAs as a mode of gene regulation in plants, artificial microRNA (amiRNA) methods have become an alternative method for gene silencing, with the advantage that they can lead to more specific silencing of target genes than traditional RNAi vectors. To explore the application of amiRNAs for improving soybean resistance to SCN, three nematode genes (designated as J15, J20, and J23) were targeted using amiRNA vectors. The transgenic soybean hairy roots, transformed independently with these three amiRNA vectors, showed significant reductions in SCN population densities in bioassays. Expression of the targeted genes within SCN eggs were downregulated in populations feeding on transgenic hairy roots. Our results provide evidence that host-derived amiRNA methods have great potential to improve soybean resistance to SCN. This approach should also limit undesirable phenotypes associated with off-target effects, which is an important consideration for commercialization of transgenic crops. PMID:27941644

  3. Cheating as Subversive and Strategic Resistance: Vocational Students' Resistance and Conformity towards Academic Subjects in a Swedish Upper Secondary School

    ERIC Educational Resources Information Center

    Hogberg, Ronny

    2011-01-01

    This article is based on a field study in two boy-dominated classes in a vocational programme in a Swedish upper secondary school. The focus of the article is the boys' perspective on their cheating activities during lessons and tests within academic subjects. Since the boys often regarded these subjects as boring and useless in relation to their…

  4. Cheating as Subversive and Strategic Resistance: Vocational Students' Resistance and Conformity towards Academic Subjects in a Swedish Upper Secondary School

    ERIC Educational Resources Information Center

    Hogberg, Ronny

    2011-01-01

    This article is based on a field study in two boy-dominated classes in a vocational programme in a Swedish upper secondary school. The focus of the article is the boys' perspective on their cheating activities during lessons and tests within academic subjects. Since the boys often regarded these subjects as boring and useless in relation to their…

  5. Host antitumor resistance improved by the macrophage polarization in a chimera model of patients with HCC.

    PubMed

    Asai, Akira; Tsuchimoto, Yusuke; Ohama, Hideko; Fukunishi, Shinya; Tsuda, Yasuhiro; Kobayashi, Makiko; Higuchi, Kazuhide; Suzuki, Fujio

    2017-01-01

    Despite major advances in curative and palliative approaches, hepatocellular carcinoma (HCC) is still the third leading cause of cancer-related death worldwide. M1 macrophages (Mϕ) play a key role in host antitumor defenses in HCC. In our study, CD14(+) cells were isolated from the peripheral blood of four groups of HCC patients (group-1, patients with stage 0 HCC; group-2, patients with stage A HCC; group-3, patients with stage B HCC; and group-4, patients with stage C HCC) and characterized phenotypically. Then, CD14(+) cells from group-2 and group-3 HCC patients were induced to polarize and tested for their antitumor abilities in a chimera model of HCC patients. Human HCCs (HepG2 solid tumors) grew in a chimera model of group-3 patients (group-3 HCC chimeras) but not in a chimera model of group-2 patients (group-2 HCC chimeras). In response to HCC antigens, the majority of CD14(+) cells from group-2 patients (group-2 CD14(+) cells) switched to the M1 phenotype (IL-12(+)IL-10(-)iNOS(+)cells), whereas the majority of CD14(+) cells from group-3 patients (group-3 CD14(+) cells) did not switch to the M1 phenotype and continued to express M2b phenotypic properties (IL-12(-)IL-10(+)CCL1(+)iNOS(-)cells). Group-3 CD14(+) cells showed M1Mϕ polarization after treatment with CCL1 antisense oligodeoxynucleotide (ODN). Therefore, our study indicates that anti-HCC defenses of group-3 HCC chimeras are improved after CCL1 antisense ODN treatment.

  6. Innate immune responses to systemic Acinetobacter baumannii infection in mice: neutrophils, but not interleukin-17, mediate host resistance.

    PubMed

    Breslow, Jessica M; Meissler, Joseph J; Hartzell, Rebecca R; Spence, Phillip B; Truant, Allan; Gaughan, John; Eisenstein, Toby K

    2011-08-01

    Acinetobacter baumannii is a nosocomial pathogen with a high prevalence of multiple-drug-resistant strains, causing pneumonia and sepsis. The current studies further develop a systemic mouse model of this infection and characterize selected innate immune responses to the organism. Five clinical isolates, with various degrees of antibiotic resistance, were assessed for virulence in two mouse strains, and between male and female mice, using intraperitoneal infection. A nearly 1,000-fold difference in virulence was found between bacterial strains, but no significant differences between sexes or mouse strains were observed. It was found that microbes disseminated rapidly from the peritoneal cavity to the lung and spleen, where they replicated. A persistent septic state was observed. The infection progressed rapidly, with mortality between 36 and 48 h. Depletion of neutrophils with antibody to Ly-6G decreased mean time to death and increased mortality. Interleukin-17 (IL-17) promotes the response of neutrophils by inducing production of the chemokine keratinocyte-derived chemoattractant (KC/CXCL1), the mouse homolog of human IL-8. Acinetobacter infection resulted in biphasic increases in both IL-17 and KC/CXCL1. Depletion of neither IL-17 nor KC/CXCL1, using specific antibodies, resulted in a difference in bacterial burdens in organs of infected mice at 10 h postinfection. Comparison of bacterial burdens between IL-17a(-/-) and wild-type mice confirmed that the absence of this cytokine did not sensitize mice to Acinetobacter infection. These studies definitely demonstrate the importance of neutrophils in resistance to systemic Acinetobacter infection. However, neither IL-17 nor KC/CXCL1 alone is required for effective host defense to systemic infection with this organism.

  7. The microbiota regulates neutrophil homeostasis and host resistance to Escherichia coli K1 sepsis in neonatal mice

    PubMed Central

    Deshmukh, Hitesh S.; Liu, Yuhong; Menkiti, Ogechukwu R.; Mei, Junjie; Dai, Ning; O’Leary, Claire E.; Oliver, Paula M.; Kolls, Jay K.; Weiser, Jeffrey N.; Worthen, G. Scott

    2014-01-01

    Acquisition of microbes by the neonate, which begins immediately during birth, is influenced by gestational age and mother’s microbiota and modified by exposure to antibiotics1. In neonates, prolonged duration of antibiotic therapy is associated with increased risk of sepsis after 4 days of life, known as late-onset sepsis (LOS)2, a disorder critically controlled by neutrophils3, but a role for the microbiota in regulating neutrophil behavior in the neonate has not been described. We exposed pregnant mouse dams to antibiotics in drinking water to limit transfer of maternal microbes to the neonates. Antibiotic exposure of dams decreased the total number of microbes in the intestine, altered the structure of intestinal microbiota and changed the pattern of microbial colonization. These changes were associated with decreased numbers of circulating and bone marrow neutrophils and granulocyte/macrophage restricted progenitor cells in the bone marrow. Antibiotic-exposure of dams attenuated the postnatal granulocytosis by reducing the number of interleukin (IL) 17-producing cells in intestine and consequent production of granulocyte colony stimulating factor (G-CSF). Relative granulocytopenia contributed to increased susceptibility of antibiotic-exposed neonatal mice to Escherichia coli K1 and Klebsiella pneumoniae sepsis, which could be partially reversed by administration of G-CSF. Restoration of normal microbiota, through TLR4- and MYD88-dependent mechanism, induced accumulation of IL17-producing type 3 innate lymphoid cells (ILC) in the intestine, promoted granulocytosis, and restored the IL17-dependent resistance to sepsis. Specific depletion of ILCs prevented the IL17- and G-CSF-dependent granulocytosis and resistance to sepsis. These data support a role for the intestinal microbiota in regulation of granulocytosis and host resistance to sepsis in the neonates. PMID:24747744

  8. In vitro reduction of antibacterial activity of tigecycline against multidrug-resistant Acinetobacter baumannii with host stress hormone norepinephrine.

    PubMed

    Inaba, Masato; Matsuda, Naoyuki; Banno, Hirotsugu; Jin, Wanchun; Wachino, Jun-Ichi; Yamada, Keiko; Kimura, Kouji; Arakawa, Yoshichika

    2016-12-01

    The host stress hormone norepinephrine (NE), also called noradrenaline, is reported to augment bacterial growth and pathogenicity, but few studies have focused on the effect of NE on the activity of antimicrobials. The aim of this study was to clarify whether NE affects antimicrobial activity against multidrug-resistant Acinetobacter baumannii (MDR-AB). Time-kill studies of tigecycline (TIG) and colistin (COL) against MDR-AB as well as assays for factors contributing to antibiotic resistance were performed using MDR-AB clinical strains both in the presence and absence of 10 µM NE. In addition, expression of three efflux pump genes (adeB, adeJ and adeG) in the presence and absence of NE was analysed by quantitative reverse transcription PCR. Viable bacterial cell counts in TIG-supplemented medium containing NE were significantly increased compared with those in medium without NE. In contrast, NE had little influence on viable bacterial cell counts in the presence of COL. NE-supplemented medium resulted in an ca. 2 log increase in growth and in bacterial cell numbers adhering on polyurethane, silicone and polyvinylchloride surfaces. Amounts of biofilm in the presence of NE were ca. 3-fold higher than without NE. Expression of the adeG gene was upregulated 4-6-fold in the presence of NE. In conclusion, NE augmented factors contributing to antibiotic resistance and markedly reduced the in vitro antibacterial activity of TIG against MDR-AB. These findings suggest that NE treatment may contribute to the failure of TIG therapy in patients with MDR-AB infections.

  9. Comparative infectivity of Fasciola hepatica metacercariae from isolates of the main and secondary reservoir animal host species in the Bolivian Altiplano high human endemic region.

    PubMed

    Valero, M A; Mas-Coma, S

    2000-01-01

    Fascioliasis due to Fasciola hepatica (Linnaeus, 1758) is an endemic disease on the Northern Bolivian Altiplano, where human prevalences and intensities are the highest known, sheep and cattle are the main reservoir hosts, and pigs and donkeys the secondary ones. Investigations were carried out to study the viability of metacercariae experimentally obtained from eggs shed by naturally infected Altiplanic sheep, cattle, pigs and donkeys. A total of 157 Wistar rats were infected with doses of 5, 10, 20 and 150 metacercariae. Metacercariae aged for different number of weeks were used to analyse the influence of age on their viability. The number of worms successfully developed in each rat was established by dissection. Results obtained show that metacercarial infectivity is dependent upon storage time, being lower when metacercariae are older. The maximum longevity is 31 weeks using doses of 20 metacercariae per rat and 48 weeks with 150 metacercariae per rat, although in the latter case only a very low percentage of worms is recovered. Age-related infectivity of metacercariae from Altiplanic F. hepatica does not significantly differ from that of the liver fluke in lowlands of other countries. Concerning the influence of the isolate according to host species, results indicate that metacercarial viabilities of pig and donkey isolates are similar to the viabilities of metacercariae of sheep and cattle isolates. Thus, pig and donkey have a high transmission potential capacity concerning this aspect. This fact is of great importance for the control of human and animal fascioliasis in this highly endemic zone.

  10. Identification of host factors potentially involved in RTM-mediated resistance during potyvirus long distance movement.

    PubMed

    Sofer, Luc; Cabanillas, Daniel Garcia; Gayral, Mathieu; Téplier, Rachèle; Pouzoulet, Jérôme; Ducousso, Marie; Dufin, Laurène; Bréhélin, Claire; Ziegler-Graff, Véronique; Brault, Véronique; Revers, Frédéric

    2017-07-01

    The long distance movement of potyviruses is a poorly understood step of the viral cycle. Only factors inhibiting this process, referred to as "Restricted TEV Movement" (RTM), have been identified in Arabidopsis thaliana. On the virus side, the potyvirus coat protein (CP) displays determinants required for long-distance movement and for RTM-based resistance breaking. However, the potyvirus CP was previously shown not to interact with the RTM proteins. We undertook the identification of Arabidopsis factors which directly interact with either the RTM proteins or the CP of lettuce mosaic virus (LMV). An Arabidopsis cDNA library generated from companion cells was screened with LMV CP and RTM proteins using the yeast two-hybrid system. Fourteen interacting proteins were identified. Two of them were shown to interact with CP and the RTM proteins suggesting that a multiprotein complex could be formed between the RTM proteins and virions or viral ribonucleoprotein complexes. Co-localization experiments in Nicotiana benthamiana showed that most of the viral and cellular protein pairs co-localized at the periphery of chloroplasts which suggests a putative role for plastids in this process.

  11. High-resolution linkage map in the proximity of the host resistance locus Cmv1

    SciTech Connect

    Depatie, C.; Muise, E.; Gros, P.

    1997-01-15

    The mouse chromosome 6 locus Cmv1 controls replication of mouse Cytomegalovirus (MCMV) in the spleen of the infected host. In our effort to clone Cmv1, we have constructed a high-resolution genetic linkage map in the proximity of the gene. For this, a total of 45 DNA markers corresponding to either cloned genes or microsatellites were mapped within a 7.9-cM interval overlapping the Cmv1 region. We have followed the cosegregation of these markers with respect to Cmv1 in a total of 2248 backcross mice from a preexisting interspecific backcross panel of 281 (Mus spretus X C57BL/6J)F1 X C57BL/6J and 2 novel panels of 989 (A/J X C57BL6)F1 X A/J and 978 (BALB/c X C57BL/6J)F1 X BALB/c segregating Cmv1. Combined pedigree analysis allowed us to determine the following gene order and intergene distances (in cM) on the distal region of mouse chromosome 6: D6Mit216-(1.9)-D6Mit336-(2.2)-D6Mit218-(1.0)-D6Mit52-(0.5)-D6Mit194-(0.2)-Nkrp1/D6Mit61/135/257/289/338-(0.4)-Cmv1/Ly49A/D6Mit370-(0.3)-Prp/Kap/D6Mit13/111/219-(0.3)-Tel/D6Mit374/290/220/196/195/110-(1.1)-D6Mit25. Therefore, the minimal genetic interval for Cmv1 of 0.7 cM is defined by 13 tightly linked markers including 2 markers, Ly49A and D6Mit370, that did not show recombination with Cmv1 in 1967 meioses analyzed; the proximal limit of the Cmv1 domain was defined by 8 crossovers between Nkrp1/D6Mit61/135/257/289/338 and Cmv1/Ly49A/D6Mit370, and the distal limit was defined by 5 crossovers between Cmv1/Ly49A/D6Mit370 and Prp/Kap/D6Mit13/111/219. This work demonstrates tight linkage between Cmv1 and genes from the natural killer complex (NKC), such as Nkrp1 and Ly49A suggesting that Cmv1 may represent an NK cell recognition structure encoded in the NKC region. 54 refs., 4 figs., 2 tabs.

  12. The Mouthparts Enriched Odorant Binding Protein 11 of the Alfalfa Plant Bug Adelphocoris lineolatus Displays a Preferential Binding Behavior to Host Plant Secondary Metabolites

    PubMed Central

    Sun, Liang; Wei, Yu; Zhang, Dan-Dan; Ma, Xiao-Yu; Xiao, Yong; Zhang, Ya-Nan; Yang, Xian-Ming; Xiao, Qiang; Guo, Yu-Yuan; Zhang, Yong-Jun

    2016-01-01

    Odorant binding proteins (OBPs) are proposed to be directly required for odorant discrimination and represent potential interesting targets for pest control. In the notoriously agricultural pest Adelphocoris lineolatus, our previous functional investigation of highly expressed antennal OBPs clearly supported this viewpoint, whereas the findings of the current study by characterizing of AlinOBP11 rather indicated that OBP in hemipterous plant bugs might fulfill a different and tantalizing physiological role. The phylogenetic analysis uncovered that AlinOBP11 together with several homologous bug OBP proteins are potential orthologs, implying they could exhibit a conserved function. Next, the results of expression profiles solidly showed that AlinOBP11 was predominantly expressed at adult mouthparts, the most important gustatory organ of Hemiptera mirid bug. Finally, a rigorously selective binding profile was observed in the fluorescence competitive binding assay, in which recombinant AlinOBP11 displayed much stronger binding abilities to non-volatile secondary metabolite compounds than the volatile odorants. These results reflect that AlinOBP11, even its orthologous proteins across bug species, could be associated with a distinctively conserved physiological role such as a crucial carrier for non-volatiles host secondary metabolites in gustatory system. PMID:27313540

  13. The Mouthparts Enriched Odorant Binding Protein 11 of the Alfalfa Plant Bug Adelphocoris lineolatus Displays a Preferential Binding Behavior to Host Plant Secondary Metabolites.

    PubMed

    Sun, Liang; Wei, Yu; Zhang, Dan-Dan; Ma, Xiao-Yu; Xiao, Yong; Zhang, Ya-Nan; Yang, Xian-Ming; Xiao, Qiang; Guo, Yu-Yuan; Zhang, Yong-Jun

    2016-01-01

    Odorant binding proteins (OBPs) are proposed to be directly required for odorant discrimination and represent potential interesting targets for pest control. In the notoriously agricultural pest Adelphocoris lineolatus, our previous functional investigation of highly expressed antennal OBPs clearly supported this viewpoint, whereas the findings of the current study by characterizing of AlinOBP11 rather indicated that OBP in hemipterous plant bugs might fulfill a different and tantalizing physiological role. The phylogenetic analysis uncovered that AlinOBP11 together with several homologous bug OBP proteins are potential orthologs, implying they could exhibit a conserved function. Next, the results of expression profiles solidly showed that AlinOBP11 was predominantly expressed at adult mouthparts, the most important gustatory organ of Hemiptera mirid bug. Finally, a rigorously selective binding profile was observed in the fluorescence competitive binding assay, in which recombinant AlinOBP11 displayed much stronger binding abilities to non-volatile secondary metabolite compounds than the volatile odorants. These results reflect that AlinOBP11, even its orthologous proteins across bug species, could be associated with a distinctively conserved physiological role such as a crucial carrier for non-volatiles host secondary metabolites in gustatory system.

  14. [Resistance and vulnerability to trauma: the moderator effect of personality variables on secondary traumatic stress].

    PubMed

    Moreno Jiménez, Bernardo; Morante Benadero, María Eugenia; Rodríguez Carvajal, Raquel; Rodríguez Muñoz, Alfredo

    2008-02-01

    The purpose of this study was to examine the role of several personality variables (empathy, comprehensibility, challenge and sense of humour) as moderators of the relationship of job demands (traumatic task and overload) with secondary traumatic stress. 175 emergency professionals of the Community of Madrid completed the Secondary Traumatic Stress Measure (STSM). The results of the hierarchical multiple regression analysis provide evidence for the moderator role of personality variables in the secondary traumatic stress process. Lastly, the discussion emphasises the need to focus on the interaction between personality and job demand variables in order to advance our understanding of the process of trauma in emergency professionals.

  15. Five-year sequential changes in secondary antibiotic resistance of Helicobacter pylori in Taiwan.

    PubMed

    Wu, I-Ting; Chuah, Seng-Kee; Lee, Chen-Hsiang; Liang, Chih-Ming; Lu, Lung-Sheng; Kuo, Yuan-Hung; Yen, Yi-Hao; Hu, Ming-Luen; Chou, Yeh-Pin; Yang, Shih-Cheng; Kuo, Chung-Mou; Kuo, Chung-Huang; Chien, Chun-Chih; Chiang, Yu-Shao; Chiou, Shue-Shian; Hu, Tsung-Hui; Tai, Wei-Chen

    2015-10-07

    To determine changes in the antibiotic resistance of Helicobacter pylori (H. pylori) in southern Taiwan after failure of first-line standard triple therapy. We analyzed 137 H. pylori-infected isolates from patients who experienced eradication failure after standard first-line triple therapy from January 2010 to December 2014. The H. pylori strains were tested for susceptibility to amoxicillin, clarithromycin, levofloxacin, metronidazole and tetracycline using the E-test method. The minimal inhibitory concentration (MIC) was determined by the agar dilution test. MIC values of ≥ 0.5, ≥ 1, ≥ 1, ≥ 4 and ≥ 8 mg/L were considered to be the resistance breakpoints for amoxicillin, clarithromycin, levofloxacin, tetracycline and metronidazole, respectively. A high resistance rate was found for clarithromycin (65%-75%) and metronidazole (30%-40%) among patients who failed first-line standard therapy. The resistance levels to amoxicillin and tetracycline remained very low; however, levofloxacin resistance was as high as 37.5% in 2010 but did not increase any further during the past 5 years. The rates of resistance to these antibiotics did not show a statistically significant upward or downward trend. Antibiotic resistance of H. pylori remains a problem for the effective eradication of this pathogen and its associated diseases in Taiwan. High clarithromycin resistance indicated that this antibiotic should not be prescribed as a second-line H. pylori eradication therapy. Moreover, levofloxacin-based second-line therapy should be used cautiously, and the local resistance rates should be carefully monitored.

  16. Mutations That Determine Resistance Breaking in a Plant RNA Virus Have Pleiotropic Effects on Its Fitness That Depend on the Host Environment and on the Type, Single or Mixed, of Infection

    PubMed Central

    Moreno-Pérez, Manuel G.; García-Luque, Isabel; Fraile, Aurora

    2016-01-01

    ABSTRACT Overcoming host resistance in gene-for-gene host-virus interactions is an important instance of host range expansion, which can be hindered by across-host fitness trade-offs. Trade-offs are generated by negative effects of host range mutations on the virus fitness in the original host, i.e., by antagonistic pleiotropy. It has been reported that different mutations in Pepper mild mottle virus (PMMoV) coat protein result in overcoming L-gene resistance in pepper. To analyze if resistance-breaking mutations in PMMoV result in antagonistic pleiotropy, all reported mutations determining the overcoming of L3 and L4 alleles were introduced in biologically active cDNA clones. Then, the parental and mutant virus genotypes were assayed in susceptible pepper genotypes with an L+, L1, or L2 allele, in single and in mixed infections. Resistance-breaking mutations had pleiotropic effects on the virus fitness that, according to the specific mutation, the host genotype, and the type of infection, single or mixed with other virus genotypes, were antagonistic or positive. Thus, resistance-breaking mutations can generate fitness trade-offs both across hosts and across types of infection, and the frequency of host range mutants will depend on the genetic structure of the host population and on the frequency of mixed infections by different virus genotypes. Also, resistance-breaking mutations variously affected virulence, which may further influence the evolution of host range expansion. IMPORTANCE A major cause of virus emergence is host range expansion, which may be hindered by across-host fitness trade-offs caused by negative pleiotropy of host range mutations. An important instance of host range expansion is overcoming host resistance in gene-for-gene plant-virus interactions. We analyze here if mutations in the coat protein of Pepper mild mottle virus determining L-gene resistance-breaking in pepper have associated fitness penalties in susceptible host genotypes. Results

  17. Effects of field plot size on variation in white flower anther injury by tarnished plant bug for host plant resistance evaluations in Arkansas cotton

    USDA-ARS?s Scientific Manuscript database

    Field trials conducted in 2008 and 2009 investigated whether field plot size affects incidence of white flower anther injury by tarnished plant bug (TPB) ((Lygus lineolaris (Palisot de Beauvois)) in host plant resistance (HPR) evaluations. The three cotton lines evaluated in the trial included a su...

  18. The draft genome of whitefly Bemisia tabaci MEAM1, a global crop pest, provides novel insights into virus transmission, host adaptation, and insecticide resistance

    USDA-ARS?s Scientific Manuscript database

    Whiteflies are among the most important agricultural pests. They have a broad range of host plants and exceptional ability to transmit a large number of plant viruses, and can rapidly evolve insecticide resistance. Here we present a high-quality draft genome of the whitefly, Bemisia tabaci. Comparat...

  19. Rph22: mapping of a novel leaf rust resistance gene introgressed from the non-host Hordeum bulbosum L. into cultivated barley (Hordeum vulgare L.).

    PubMed

    Johnston, Paul A; Niks, Rients E; Meiyalaghan, Vijitha; Blanchet, Elise; Pickering, Richard

    2013-06-01

    A resistance gene (Rph22) to barley leaf rust caused by Puccinia hordei was introgressed from the non-host species Hordeum bulbosum into cultivated barley. The H. bulbosum introgression in line '182Q20' was located to chromosome 2HL using genomic in situ hybridisation (GISH). Using molecular markers it was shown to cover approximately 20 % of the genetic length of the chromosome. The introgression confers a very high level of resistance to P. hordei at the seedling stage that is not based on a hypersensitive reaction. The presence of the resistance gene increased the latency period of the leaf rust fungus and strongly reduced the infection frequency relative to the genetic background cultivar 'Golden Promise'. An F2 population of 550 individuals was developed and used to create a genetic map of the introgressed region and to determine the map position of the underlying resistance gene(s). The resistance locus, designated Rph22, was located to the distal portion of the introgression, co-segregating with markers H35_26334 and H35_45139. Flanking markers will be used to reduce the linkage drag, including gene(s) responsible for a yield penalty, around the resistance locus and to transfer the gene into elite barley germplasm. This genetic location is also known to harbour a QTL (Rphq2) for non-hypersensitive leaf rust resistance in the barley cultivar 'Vada'. Comparison of the 'Vada' and H. bulbosum resistances at this locus may lead to a better understanding of the possible association between host and non-host resistance mechanisms.

  20. The GraS Sensor in Staphylococcus aureus Mediates Resistance to Host Defense Peptides Differing in Mechanisms of Action

    PubMed Central

    Chaili, Siyang; Cheung, Ambrose L.; Bayer, Arnold S.; Xiong, Yan Q.; Waring, Alan J.; Memmi, Guido; Donegan, Niles; Yang, Soo-Jin

    2015-01-01

    Staphylococcus aureus uses the two-component regulatory system GraRS to sense and respond to host defense peptides (HDPs). However, the mechanistic impact of GraS or its extracellular sensing loop (EL) on HDP resistance is essentially unexplored. Strains with null mutations in the GraS holoprotein (ΔgraS) or its EL (ΔEL) were compared for mechanisms of resistance to HDPs of relevant immune sources: neutrophil α-defensin (human neutrophil peptide 1 [hNP-1]), cutaneous β-defensin (human β-defensin 2 [hBD-2]), or the platelet kinocidin congener RP-1. Actions studied by flow cytometry included energetics (ENR); membrane permeabilization (PRM); annexin V binding (ANX), and cell death protease activation (CDP). Assay conditions simulated bloodstream (pH 7.5) or phagolysosomal (pH 5.5) pH contexts. S. aureus strains were more susceptible to HDPs at pH 7.5 than at pH 5.5, and each HDP exerted a distinct effect signature. The impacts of ΔgraS and ΔΕL on HDP resistance were peptide and pH dependent. Both mutants exhibited defects in ANX response to hNP-1 or hBD-2 at pH 7.5, but only hNP-1 did so at pH 5.5. Both mutants exhibited hyper-PRM, -ANX, and -CDP responses to RP-1 at both pHs and hypo-ENR at pH 5.5. The actions correlated with ΔgraS or ΔΕL hypersusceptibility to hNP-1 or RP-1 (but not hBD-2) at pH 7.5 and to all study HDPs at pH 5.5. An exogenous EL mimic protected mutant strains from hNP-1 and hBD-2 but not RP-1, indicating that GraS and its EL play nonredundant roles in S. aureus survival responses to specific HDPs. These findings suggest that GraS mediates specific resistance countermeasures to HDPs in immune contexts that are highly relevant to S. aureus pathogenesis in humans. PMID:26597988

  1. Drug resistance and secondary treatment of ischaemic stroke: The genetic component of the response to acetylsalicylic acid and clopidogrel.

    PubMed

    Gallego-Fabrega, C; Krupinski, J; Fernandez-Cadenas, I

    2015-01-01

    Cerebrovascular diseases are among the leading causes of death and disability in developed countries. Acetylsalicylic acid (ASA) and clopidogrel are the most widely-used antiplatelet drugs for secondary prevention of recurrent thromboembolic events. However, there have been cases in which antiplatelet drugs did not inhibit platelet activity; this phenomenon is called resistance, and it may be modulated at the genetic level. Following a literature search, we reviewed the current state of antiplatelet therapy and covered the different types of resistance to antiplatelet therapy, how it is measured, current problems and limitations, and any genetic factors that have been associated with resistance. We mainly used the Genome Wide Association Studies in the field of ASA and clopidogrel resistance. We observed an association between different genetic factors and antiplatelet drug resistance as measured by platelet activity. However, there is no evident association between these genetic factors and risk of new thromboembolic events. Copyright © 2013 Sociedad Española de Neurología. Published by Elsevier España, S.L.U. All rights reserved.

  2. Do-or-die life cycles and diverse post-infection resistance mechanisms limit the evolution of parasite host ranges.

    PubMed

    Sieber, Michael; Gudelj, Ivana

    2014-04-01

    In light of the dynamic nature of parasite host ranges and documented potential for rapid host shifts, the observed high host specificity of most parasites remains an ecological paradox. Different variants of host-use trade-offs have become a mainstay of theoretical explanations of the prevalence of host specialism, but empirical evidence for such trade-offs is rare. We propose an alternative theory based on basic features of the parasite life cycle: host selection and subsequent intrahost replication. We introduce a new concept of effective burst size that accounts for the fact that successful host selection does not guarantee intrahost replication. Our theory makes a general prediction that a parasite will expand its host range if its effective burst size is positive. An in silico model of bacteria-phage coevolution verifies our predictions and demonstrates that the tendency for relatively narrow host ranges in parasites can be explained even in the absence of trade-offs.

  3. Genetic parameters for indicators of host resistance to parasites from weaning to hogget age in Merino sheep.

    PubMed

    Pollott, G E; Karlsson, L J E; Eady, S; Greeff, J C

    2004-10-01

    Fecal egg count (FEC) has been widely used as an indicator of host resistance to gastrointestinal parasites in sheep and has been shown to be a heritable trait. Two other possible indicators of parasites, dag score (DS; accumulated fecal material) and fecal consistency score (FCS), were investigated in this study, along with BW. All four traits were studied to see how heritability and genetic correlations varied with age from weaning (4 mo) to hogget age (approximately 400 d). More than 1,100 lambs, the offspring of 37 rams, were recorded eight times between weaning (3 to 5 mo of age) and hogget age (13 to 18 mo of age) on two farms. Sire models were fitted to the data from each trait at each recording and in a repeatability model involving the whole data set. Overall, the heritabilities were 0.28+/-0.072 (FEC), 0.11+/-0.036 (DS), 0.12+/-0.036 (FCS), and 0.23+/-0.070 (BW). By fitting random regression models to the time-series data, it was possible to see how these heritability values varied as the lambs aged, from weaning to hogget age. The heritability of FEC rose from 0.2 at weaning to 0.65 at 400 d. Dag score had a higher heritability (0.25) in the middle of the age range and a low value at weaning (<0.1) and hogget age (0.16). The heritability of FCS was low, with a value of 0.2 at weaning reducing to 0.05 as the animals aged. Body weight had zero heritability at weaning, which rose to greater than 0.6 at hogget age. Most traits had low genetic correlations between them, the only exception being that between FCS and DS (0.63). Most genetic correlations varied little over the age range with the exception of FEC and BW, which fell from 0 at weaning to -0.63 at hogget age. Whereas FCS and DS may be good indicators of scouring, they are very different from FEC as an indicator of host resistance to gastrointestinal parasites.

  4. Ampicillin Enhances Daptomycin- and Cationic Host Defense Peptide-Mediated Killing of Ampicillin- and Vancomycin-Resistant Enterococcus faecium

    PubMed Central

    Bayer, Arnold S.; Pogliano, Joseph; Tsuji, Brian T.; Yang, Soo-Jin; Mishra, Nagendra N.; Nizet, Victor; Yeaman, Michael R.; Moise, Pamela A.

    2012-01-01

    We studied an ampicillin- and vancomycin-resistant Enterococcus faecium (VRE) isolate from a patient with endocarditis and bacteremia refractory to treatment with daptomycin (6 mg/kg of body weight) plus linezolid. Blood cultures cleared within 24 h of changing therapy to daptomycin (12 mg/kg) plus ampicillin. We examined the effects of ampicillin on daptomycin-induced growth inhibition and killing, surface charge, and susceptibility to several prototypical host defense cationic antimicrobial peptides. MICs and time-kill curves with daptomycin were assessed in the presence and absence of ampicillin. The impact of ampicillin on surface charge was assessed by flow cytometry and a poly-l-lysine binding assay. The effects of ampicillin preexposures upon VRE killing by five distinct cationic peptides of different structure, charge, origin, and mechanism of action were analyzed using the epidermal cathelicidin LL-37, thrombin-induced platelet microbicidal proteins (tPMPs), and a synthetic congener modeled after tPMP microbicidal domains (RP-1), human neutrophil peptide-1 (hNP-1), and polymyxin B (bacteria derived). Fluoroscein-Bodipy-labeled daptomycin was used to evaluate daptomycin binding to VRE membranes in the presence or absence of ampicillin. In media containing ampicillin (25 to 100 mg/liter), daptomycin MICs decreased from 1.0 to 0.38 mg/liter. Based on time-kill analysis and an in vitro pharmacodynamic model, ampicillin enhanced daptomycin activity against the study VRE from a bacteriostatic to a bactericidal profile. VRE grown in ampicillin (25 to 150 mg/liter) demonstrated an incremental reduction in its relative net positive surface charge. When grown in the presence (versus absence) of ampicillin (25 and 100 mg/liter), the VRE strain (i) was more susceptible to killing by LL-37, tPMPs, hNP-1, and RP-1 but not to polymyxin B and (ii) exhibited greater binding to Bodipy-labeled daptomycin. We conclude that ampicillin induces reductions in net positive

  5. Ampicillin enhances daptomycin- and cationic host defense peptide-mediated killing of ampicillin- and vancomycin-resistant Enterococcus faecium.

    PubMed

    Sakoulas, George; Bayer, Arnold S; Pogliano, Joseph; Tsuji, Brian T; Yang, Soo-Jin; Mishra, Nagendra N; Nizet, Victor; Yeaman, Michael R; Moise, Pamela A

    2012-02-01

    We studied an ampicillin- and vancomycin-resistant Enterococcus faecium (VRE) isolate from a patient with endocarditis and bacteremia refractory to treatment with daptomycin (6 mg/kg of body weight) plus linezolid. Blood cultures cleared within 24 h of changing therapy to daptomycin (12 mg/kg) plus ampicillin. We examined the effects of ampicillin on daptomycin-induced growth inhibition and killing, surface charge, and susceptibility to several prototypical host defense cationic antimicrobial peptides. MICs and time-kill curves with daptomycin were assessed in the presence and absence of ampicillin. The impact of ampicillin on surface charge was assessed by flow cytometry and a poly-l-lysine binding assay. The effects of ampicillin preexposures upon VRE killing by five distinct cationic peptides of different structure, charge, origin, and mechanism of action were analyzed using the epidermal cathelicidin LL-37, thrombin-induced platelet microbicidal proteins (tPMPs), and a synthetic congener modeled after tPMP microbicidal domains (RP-1), human neutrophil peptide-1 (hNP-1), and polymyxin B (bacteria derived). Fluoroscein-Bodipy-labeled daptomycin was used to evaluate daptomycin binding to VRE membranes in the presence or absence of ampicillin. In media containing ampicillin (25 to 100 mg/liter), daptomycin MICs decreased from 1.0 to 0.38 mg/liter. Based on time-kill analysis and an in vitro pharmacodynamic model, ampicillin enhanced daptomycin activity against the study VRE from a bacteriostatic to a bactericidal profile. VRE grown in ampicillin (25 to 150 mg/liter) demonstrated an incremental reduction in its relative net positive surface charge. When grown in the presence (versus absence) of ampicillin (25 and 100 mg/liter), the VRE strain (i) was more susceptible to killing by LL-37, tPMPs, hNP-1, and RP-1 but not to polymyxin B and (ii) exhibited greater binding to Bodipy-labeled daptomycin. We conclude that ampicillin induces reductions in net positive

  6. Impact of microbial derived secondary bile acids on colonization resistance against Clostridium difficile in the gastrointestinal tract.

    PubMed

    Winston, Jenessa A; Theriot, Casey M

    2016-10-01

    Clostridium difficile is an anaerobic, Gram positive, spore-forming bacillus that is the leading cause of nosocomial gastroenteritis. Clostridium difficile infection (CDI) is associated with increasing morbidity and mortality, consequently posing an urgent threat to public health. Recurrence of CDI after successful treatment with antibiotics is high, thus necessitating discovery of novel therapeutics against this pathogen. Susceptibility to CDI is associated with alterations in the gut microbiota composition and bile acid metabolome, specifically a loss of microbial derived secondary bile acids. This review aims to summarize in vitro, ex vivo, and in vivo studies done by our group and others that demonstrate how secondary bile acids affect the different stages of the C. difficile life cycle. Understanding the dynamic interplay of C. difficile and microbial derived secondary bile acids within the gastrointestinal tract will shed light on how bile acids play a role in colonization resistance against C. difficile. Rational manipulation of secondary bile acids may prove beneficial as a treatment for patients with CDI. Published by Elsevier Ltd.

  7. Secondary Metabolites from Plants Inhibiting ABC Transporters and Reversing Resistance of Cancer Cells and Microbes to Cytotoxic and Antimicrobial Agents

    PubMed Central

    Wink, Michael; Ashour, Mohamed L.; El-Readi, Mahmoud Zaki

    2012-01-01

    Fungal, bacterial, and cancer cells can develop resistance against antifungal, antibacterial, or anticancer agents. Mechanisms of resistance are complex and often multifactorial. Mechanisms include: (1) Activation of ATP-binding cassette (ABC) transporters, such as P-gp, which pump out lipophilic compounds that have entered a cell, (2) Activation of cytochrome p450 oxidases which can oxidize lipophilic agents to make them more hydrophilic and accessible for conjugation reaction with glucuronic acid, sulfate, or amino acids, and (3) Activation of glutathione transferase, which can conjugate xenobiotics. This review summarizes the evidence that secondary metabolites (SM) of plants, such as alkaloids, phenolics, and terpenoids can interfere with ABC transporters in cancer cells, parasites, bacteria, and fungi. Among the active natural products several lipophilic terpenoids [monoterpenes, diterpenes, triterpenes (including saponins), steroids (including cardiac glycosides), and tetraterpenes] but also some alkaloids (isoquinoline, protoberberine, quinoline, indole, monoterpene indole, and steroidal alkaloids) function probably as competitive inhibitors of P-gp, multiple resistance-associated protein 1, and Breast cancer resistance protein in cancer cells, or efflux pumps in bacteria (NorA) and fungi. More polar phenolics (phenolic acids, flavonoids, catechins, chalcones, xanthones, stilbenes, anthocyanins, tannins, anthraquinones, and naphthoquinones) directly inhibit proteins forming several hydrogen and ionic bonds and thus disturbing the 3D structure of the transporters. The natural products may be interesting in medicine or agriculture as they can enhance the activity of active chemotherapeutics or pesticides or even reverse multidrug resistance, at least partially, of adapted and resistant cells. If these SM are applied in combination with a cytotoxic or antimicrobial agent, they may reverse resistance in a synergistic fashion. PMID:22536197

  8. Lactuca saligna, a non-host for lettuce downy mildew ( Bremia lactucae), harbors a new race-specific Dm gene and three QTLs for resistance.

    PubMed

    Jeuken, M.; Lindhout, P.

    2002-08-01

    Lactuca sativa (lettuce) is susceptible to Bremia lactucae (downy mildew). In cultivated and wild Lactuca species, Dm genes have been identified that confer race-specific resistance. However, these genes were soon rendered ineffective by adaptation of the pathogen. Lactuca saligna (wild lettuce) is resistant to all downy mildew races and can be considered as a non-host. Therefore, L. saligna might be an alternative source for a more-durable resistance to downy mildew in lettuce. In order to analyze this resistance, we have developed an F(2) population based on a resistant L. saligna x susceptible L. sativa cross. This F(2) population was fingerprinted with AFLP markers and tested for resistance to two Bremia races NL14 and NL16. The F(2) population showed a wide and continuous range of resistance levels from completely resistant to completely susceptible. By comparison of disease tests, we observed a quantitative resistance against both Bremia races as well as a race-specific resistance to Bremia race NL16 and not to NL14. QTL mapping revealed a qualitative gene ( R39) involved in the race-specific resistance and three QTLs ( RBQ1, RBQ2 and RBQ3) involved in the quantitative resistance. The qualitative gene R39 is a dominant gene that gives nearly complete resistance to race NL16 in L. saligna CGN 5271 and therefore it showed features similar to Dm genes. The three QTLs explained 51% of the quantitative resistance against NL14, which indicated that probably only the major QTLs have been detected in this F(2) population. The perspectives for breeding for durable resistance are discussed.

  9. Host ABC transporter proteins may influence the efficacy of ivermectin and possibly have broader implications for the development of resistance in parasitic nematodes.

    PubMed

    Dooley, L A; Froese, E A; Chung, Y T; Burkman, E J; Moorhead, A R; Ardelli, B F

    2015-10-01

    ABC transporter proteins function to extrude compounds from the cell. These proteins present an obstacle for treatment and for overcoming drug resistance as they are expressed by both host and parasite, and function similarly. The contribution of host ABC proteins to drug efficacy was examined using ivermectin and a Brugia malayi model system. Parallel in vitro and in vivo experiments were conducted using equal concentrations of ivermectin. The motilities and fecundity of B. malayi exposed to ivermectin in vitro were significantly lower than those treated in vivo. The higher motilities were correlated with low concentrations of ivermectin in worms extracted from treated hosts. The expression of ABC proteins was significantly higher in worms treated in vitro compared to those treated in vivo as well as in gerbils treated with ivermectin than in non-treated controls. The results suggest that host ABC transporters may influence the efficacy of ivermectin. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Differential ability to resist to complement lysis and invade host cells mediated by MBL in R4 and 860 strains of Trypanosoma cruzi.

    PubMed

    Evans-Osses, Ingrid; Mojoli, Andres; Beltrame, Marcia Holsbach; da Costa, Denise Endo; DaRocha, Wanderson Duarte; Velavan, Thirumalaisamy P; de Messias-Reason, Iara; Ramirez, Marcel Ivan

    2014-03-18

    To produce an infection Trypanosoma cruzi must evade lysis by the complement system. During early stages of infection, the lectin pathway plays an important role in host defense and can be activated by binding of mannan-binding lectin (MBL) to carbohydrates on the surface of pathogens. We hypothesized that MBL has a dual role during parasite-host cell interaction as lectin complement pathway activator and as binding molecule to invade the host cell. We used two polarized strains of T. cruzi, R4 (susceptible) and 860 (resistant) strains, to investigate the role of MBL in complement-mediated lysis. Interestingly R4, but not 860 metacyclic strain, markedly increases the invasion of host cells, suggesting that MBL drives the invasion process while the parasite deactivates the Lectin complement pathway. Copyright © 2014 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  11. Antimicrobial and antibiofilm activity of secondary metabolites of lichens against methicillin-resistant Staphylococcus aureus strains from cystic fibrosis patients.

    PubMed

    Pompilio, Arianna; Pomponio, Stefano; Di Vincenzo, Valentina; Crocetta, Valentina; Nicoletti, Marcello; Piovano, Marisa; Garbarino, Juan A; Di Bonaventura, Giovanni

    2013-02-01

    Three secondary metabolites of lichens - usnic acid, atranorin and fumarprotocetraric acid - were evaluated for their in vitro antibacterial and antibiofilm activities against three strains each of methicillin-susceptible and methicillin-resistant Staphylococcus aureus (MRSA) from cystic fibrosis patients. Antibacterial activity was assessed by broth microdilution, while antibiofilm activity was evaluated by spectrophotometry or viable count. Usnic acid was significantly more active than atranorin against planktonic cells, while fumarprotocetraric acid exhibited no activity. Atranorin was the most effective in counteracting adhesion to polystyrene, although usnic acid was more active against MRSA. Usnic acid and atranorin showed comparable activity against biofilm formation, although atranorin was more active against MRSA. Usnic acid was significantly more active than atranorin against preformed biofilms. Secondary metabolites of lichens may be considered to be 'lead compounds' for the development of novel molecules for the treatment of S. aureus infections in cystic fibrosis patients.

  12. The influence of the autochthonous wastewater microbiota and gene host on the fate of invasive antibiotic resistance genes.

    PubMed

    Narciso-da-Rocha, Carlos; Manaia, Célia M

    2017-01-01

    The aim of this study was to assess the fate of invasive antibiotic resistance genes (ARG) discharged in wastewater. With this objective, antibiotic resistant bacteria (ARB) known to harbor specific ARG were inoculated in wastewater (hospital effluent, or municipal raw and treated wastewater) and in ultra-pure sterile water microcosms. Two sets of wastewater ARB isolates were used - set 1, Enterococcus faecalis, Acinetobacter johnsonii, Klebsiella pneumoniae and set 2, Enterococcus faecium, Acinetobacter johnsonii, Escherichia coli. Non-inoculated controls were run in parallel. Samples were collected at the beginning and at the end (15days) of the incubation period and the abundance of the genes 16S rRNA, intI1, blaTEM and vanA and the bacterial community composition were analyzed. In general, the genes blaTEM and vanA had lower persistence in wastewater and in ultra-pure water than the genes 16S rRNA or the class 1 integron integrase intI1. This effect was more pronounced in wastewater than in ultra-pure water, evidencing the importance of the autochthonous microbiota on the elimination of invasive ARG. Wastewater autochthonous bacterial groups most correlated with variations of the genes intI1, blaTEM and vanA were members of the classes Gammaproteobacteria, Bacilli or Bacteroidia. For blaTEM, but not for vanA, the species of the ARB host was important to determine its fate. These are novel findings on the ecology of ARB in wastewater environments.

  13. Chlamydia trachomatis Is Resistant to Inclusion Ubiquitination and Associated Host Defense in Gamma Interferon-Primed Human Epithelial Cells

    PubMed Central

    Haldar, Arun K.; Piro, Anthony S.; Finethy, Ryan; Espenschied, Scott T.; Brown, Hannah E.; Giebel, Amanda M.; Frickel, Eva-Maria; Nelson, David E.

    2016-01-01

    ABSTRACT The cytokine gamma interferon (IFN-γ) induces cell-autonomous immunity to combat infections with intracellular pathogens, such as the bacterium Chlamydia trachomatis. The present study demonstrates that IFN-γ-primed human cells ubiquitinate and eliminate intracellular Chlamydia-containing vacuoles, so-called inclusions. We previously described how IFN-γ-inducible immunity-related GTPases (IRGs) employ ubiquitin systems to mark inclusions for destruction in mouse cells and, furthermore, showed that the rodent pathogen Chlamydia muridarum blocks ubiquitination of its inclusions by interfering with mouse IRG function. Here, we report that ubiquitination of inclusions in human cells is independent of IRG and thus distinct from the murine pathway. We show that C. muridarum is susceptible to inclusion ubiquitination in human cells, while the closely related human pathogen C. trachomatis is resistant. C. muridarum, but not C. trachomatis, inclusions attract several markers of cell-autonomous immunity, including the ubiquitin-binding protein p62, the ubiquitin-like protein LC3, and guanylate-binding protein 1. Consequently, we find that IFN-γ priming of human epithelial cells triggers the elimination of C. muridarum, but not C. trachomatis, inclusions. This newly described defense pathway is independent of indole-2,3-dioxygenase, a known IFN-γ-inducible anti-Chlamydia resistance factor. Collectively, our observations indicate that C. trachomatis evolved mechanisms to avoid a human-specific, ubiquitin-mediated response as part of its unique adaptation to its human host. PMID:27965446

  14. High-resolution linkage map of mouse chromosome 13 in the vicinity of the host resistance locus Lgn1

    SciTech Connect

    Beckers, M.C.; Ernst, E.; Diez, E.

    1997-02-01

    Natural resistance of inbred mouse strains to infection with Legionella pneumophila is controlled by the expression of a single dominant gene on chromosome 13, designated Lgn1. The genetic difference at Lgn1 is phenotypically expressed as the presence or absence of intracellular replication of L. pneumophila in host macrophages. In our effort to identify the Lgn1 gene by positional cloning, we have generated a high-resolution linkage map of the Lgn1 chromosomal region. For this, we have carried out extensive segregation analysis in a total of 1270 (A/J x C57BL/6J) X A/J informative backcross mice segregating the resistance allele of C57BL/6J and the susceptibility allele of A/J. Additional segregation analyses were carried out in three preexisting panels of C57BL/6J X Mus spretus interspecific backcross mice. A total of 39 DNA markers were mapped within an interval of approximately 30 cM overlapping the Lgn1 region. Combined pedigree analyses for the 5.4-cM segment overlapping Lgn1 indicated the locus order and the interlocus distances (in cM): D13Mit128-(1.4)-D13Mit194-(0.1)-D13Mit147-(0.9)-Dl3Mit36-(0.9)-D13Mit146-(0.2)-Lgn1/D 13Mit37-(1.0)-D13Mit70. Additional genetic linkage studies of markers not informative in the A/J X C57BL/6J cross positioned D13Mit30, -72, -195, and -203, D13Gor4, D13Hun35, and Mtap5 in the immediate vicinity of the Lgn1 locus. The marker density and resolution of this genetic linkage map should allow the construction of a physical map of the region and the isolation of YAC clones overlapping the gene. 60 refs., 2 figs., 2 tabs.

  15. Chlamydia trachomatis Is Resistant to Inclusion Ubiquitination and Associated Host Defense in Gamma Interferon-Primed Human Epithelial Cells.

    PubMed

    Haldar, Arun K; Piro, Anthony S; Finethy, Ryan; Espenschied, Scott T; Brown, Hannah E; Giebel, Amanda M; Frickel, Eva-Maria; Nelson, David E; Coers, Jörn

    2016-12-13

    The cytokine gamma interferon (IFN-γ) induces cell-autonomous immunity to combat infections with intracellular pathogens, such as the bacterium Chlamydia trachomatis The present study demonstrates that IFN-γ-primed human cells ubiquitinate and eliminate intracellular Chlamydia-containing vacuoles, so-called inclusions. We previously described how IFN-γ-inducible immunity-related GTPases (IRGs) employ ubiquitin systems to mark inclusions for destruction in mouse cells and, furthermore, showed that the rodent pathogen Chlamydia muridarum blocks ubiquitination of its inclusions by interfering with mouse IRG function. Here, we report that ubiquitination of inclusions in human cells is independent of IRG and thus distinct from the murine pathway. We show that C. muridarum is susceptible to inclusion ubiquitination in human cells, while the closely related human pathogen C. trachomatis is resistant. C. muridarum, but not C. trachomatis, inclusions attract several markers of cell-autonomous immunity, including the ubiquitin-binding protein p62, the ubiquitin-like protein LC3, and guanylate-binding protein 1. Consequently, we find that IFN-γ priming of human epithelial cells triggers the elimination of C. muridarum, but not C. trachomatis, inclusions. This newly described defense pathway is independent of indole-2,3-dioxygenase, a known IFN-γ-inducible anti-Chlamydia resistance factor. Collectively, our observations indicate that C. trachomatis evolved mechanisms to avoid a human-specific, ubiquitin-mediated response as part of its unique adaptation to its human host.

  16. Preservation of Dendritic Cell Function during Vesicular Stomatitis Virus Infection Reflects both Intrinsic and Acquired Mechanisms of Resistance to Suppression of Host Gene Expression by Viral M Protein

    PubMed Central

    Ahmed, Maryam; Smedberg, Jason R.; Rajani, Karishma R.; Hiltbold, Elizabeth M.; Lyles, Douglas S.

    2013-01-01

    Inhibition of host-directed gene expression by the matrix (M) protein of vesicular stomatitis virus (VSV) effectively blocks host antiviral responses, promotes virus replication, and disables the host cell. However, dendritic cells (DC) have the capacity to resist these effects and remain functional during VSV infection. Here, the mechanisms of DC resistance to M protein and their subsequent maturation were addressed. Flt3L-derived murine bone marrow dendritic cells (FDC), which phenotypically resemble resident splenic DC, continued to synthesize cellular proteins and matured during single-cycle (high-multiplicity) and multicycle (low-multiplicity) infection with VSV. Granulocyte-macrophage colony-stimulating factor (GM-CSF)-derived myeloid DC (GDC), which are susceptible to M protein effects, were nevertheless capable of maturing, but the response was delayed and occurred only during multicycle infection. FDC resistance was manifested early and was type I interferon (IFN) receptor (IFNAR) and MyD88 independent, but sustained resistance required IFNAR. MyD88-dependent signaling contributed to FDC maturation during single-cycle infection but was dispensable during multicycle infection. Similar to FDC, splenic DC were capable of maturing in vivo during the first 24 h of infection with VSV, and neither Toll-like receptor 7 (TLR7) nor MyD88 was required. We conclude that FDC resistance to M protein is controlled by an intrinsic, MyD88-independent mechanism that operates early in infection and is augmented later in infection by type I IFN. In contrast, while GDC are not intrinsically resistant, they can acquire resistance during multicycle infection. In vivo, splenic DC resist the inhibitory effects of VSV, and as in multicycle FDC infection, MyD88-independent signaling events control their maturation. PMID:23986580

  17. Preservation of dendritic cell function during vesicular stomatitis virus infection reflects both intrinsic and acquired mechanisms of resistance to suppression of host gene expression by viral M protein.

    PubMed

    Westcott, Marlena M; Ahmed, Maryam; Smedberg, Jason R; Rajani, Karishma R; Hiltbold, Elizabeth M; Lyles, Douglas S

    2013-11-01

    Inhibition of host-directed gene expression by the matrix (M) protein of vesicular stomatitis virus (VSV) effectively blocks host antiviral responses, promotes virus replication, and disables the host cell. However, dendritic cells (DC) have the capacity to resist these effects and remain functional during VSV infection. Here, the mechanisms of DC resistance to M protein and their subsequent maturation were addressed. Flt3L-derived murine bone marrow dendritic cells (FDC), which phenotypically resemble resident splenic DC, continued to synthesize cellular proteins and matured during single-cycle (high-multiplicity) and multicycle (low-multiplicity) infection with VSV. Granulocyte-macrophage colony-stimulating factor (GM-CSF)-derived myeloid DC (GDC), which are susceptible to M protein effects, were nevertheless capable of maturing, but the response was delayed and occurred only during multicycle infection. FDC resistance was manifested early and was type I interferon (IFN) receptor (IFNAR) and MyD88 independent, but sustained resistance required IFNAR. MyD88-dependent signaling contributed to FDC maturation during single-cycle infection but was dispensable during multicycle infection. Similar to FDC, splenic DC were capable of maturing in vivo during the first 24 h of infection with VSV, and neither Toll-like receptor 7 (TLR7) nor MyD88 was required. We conclude that FDC resistance to M protein is controlled by an intrinsic, MyD88-independent mechanism that operates early in infection and is augmented later in infection by type I IFN. In contrast, while GDC are not intrinsically resistant, they can acquire resistance during multicycle infection. In vivo, splenic DC resist the inhibitory effects of VSV, and as in multicycle FDC infection, MyD88-independent signaling events control their maturation.

  18. BcGs1, a glycoprotein from Botrytis cinerea, elicits defence response and improves disease resistance in host plants.

    PubMed

    Zhang, Yi; Zhang, Yunhua; Qiu, Dewen; Zeng, Hongmei; Guo, Lihua; Yang, Xiufen

    2015-02-20

    In this study, a necrosis-inducing protein was purified from the culture filtrate of the necrotrophic fungus Botrytis cinerea BC-98 strain. Secreted proteins were collected and fractionated by liquid chromatography. The fraction with the highest necrosis-inducing activity was further purified. A glycoprotein named BcGs1 was identified by 2D electrophoresis and mass spectrometry. The BcGs1 protein consisted of 672 amino acids with a theoretical molecular weight of 70.487 kDa. Functional domain analysis indicated that BcGs1 was a glucan 1,4-alpha-glucosidase, a cell wall-degrading enzyme, with a Glyco_hydro_15 domain and a CBM20_glucoamylase domain. The BcGs1 protein caused necrotic lesions that mimicked a typical hypersensitive response and H2O2 production in tomato and tobacco leaves. BcGs1-treated plants exhibited resistance to B. cinerea, Pseudomonas syringae pv. tomato DC3000 and tobacco mosaic virus in systemic leaves. In addition, BcGs1 triggered elevation of the transcript levels of the defence-related genes PR-1a, TPK1b and Prosystemin. This is the first report of a Botrytis glucan 1,4-alpha-glucosidase triggering host plant immunity as an elicitor. These results lay a foundation for further study of the comprehensive interaction between plants and necrotrophic fungi.

  19. Fecal microbiota transplantation for patients with steroid-resistant acute graft-versus-host disease of the gut

    PubMed Central

    Fujioka, Yuki; Suda, Wataru; Najima, Yuho; Kuwata, Go; Sasajima, Satoshi; Mimura, Iyo; Morita, Hidetoshi; Sugiyama, Daisuke; Nishikawa, Hiroyoshi; Hattori, Masahira; Hino, Yutaro; Ikegawa, Shuntaro; Yamamoto, Keita; Toya, Takashi; Doki, Noriko; Koizumi, Koichi; Honda, Kenya; Ohashi, Kazuteru

    2016-01-01

    Increasing evidence indicates that the gut microbiota is closely associated with acute graft-versus-host disease (aGVHD) in stem cell transplantation (SCT). Fecal microbiota transplantation (FMT) could represent an alternative treatment option for aGVHD. However, FMT for SCT patients carries a potential risk of infection by infused microbiota because of the severely immunosuppressed status. We therefore conducted a pilot study to evaluate the safety of FMT in SCT. A total of 4 patients with steroid-resistant (n = 3) or steroid-dependent gut aGVHD (n = 1) received FMT. No severe adverse events attributed to FMT were observed. All patients responded to FMT, with 3 complete responses and 1 partial response. Temporal dynamics of microbiota seemed to be linked to the gut condition of patients and peripheral effector regulatory T cells also increased during response to FMT. FMT was safely performed in our patients and might offer a novel therapeutic option for aGVHD. This trial was registered at the University Hospital Medical Information Network (https://upload.umin.ac.jp/cgi-open-bin/icdr_e/ctr_view.cgi?recptno=R000017575) as #UMIN000015115. PMID:27461930

  20. Activation and products of the cryptic secondary metabolite biosynthetic gene clusters by rifampin resistance (rpoB) mutations in actinomycetes.

    PubMed

    Tanaka, Yukinori; Kasahara, Ken; Hirose, Yutaka; Murakami, Kiriko; Kugimiya, Rie; Ochi, Kozo

    2013-07-01

    A subset of rifampin resistance (rpoB) mutations result in the overproduction of antibiotics in various actinomycetes, including Streptomyces, Saccharopolyspora, and Amycolatopsis, with H437Y and H437R rpoB mutations effective most frequently. Moreover, the rpoB mutations markedly activate (up to 70-fold at the transcriptional level) the cryptic/silent secondary metabolite biosynthetic gene clusters of these actinomycetes, which are not activated under general stressful conditions, with the exception of treatment with rare earth elements. Analysis of the metabolite profile demonstrated that the rpoB mutants produced many metabolites, which were not detected in the wild-type strains. This approach utilizing rifampin resistance mutations is characterized by its feasibility and potential scalability to high-throughput studies and would be useful to activate and to enhance the yields of metabolites for discovery and biochemical characterization.

  1. Influenza A Virus Infection Predisposes Hosts to Secondary Infection with Different Streptococcus pneumoniae Serotypes with Similar Outcome but Serotype-Specific Manifestation

    PubMed Central

    Sharma-Chawla, Niharika; Sender, Vicky; Kershaw, Olivia; Gruber, Achim D.; Volckmar, Julia; Henriques-Normark, Birgitta

    2016-01-01

    Influenza A virus (IAV) and Streptococcus pneumoniae are major causes of respiratory tract infections, particularly during coinfection. The synergism between these two pathogens is characterized by a complex network of dysregulated immune responses, some of which last until recovery following IAV infection. Despite the high serotype diversity of S. pneumoniae and the serotype replacement observed since the introduction of conjugate vaccines, little is known about pneumococcal strain dependency in the enhanced susceptibility to severe secondary S. pneumoniae infection following IAV infection. Thus, we studied how preinfection with IAV alters host susceptibility to different S. pneumoniae strains with various degrees of invasiveness using a highly invasive serotype 4 strain, an invasive serotype 7F strain, and a carrier serotype 19F strain. A murine model of pneumococcal coinfection during the acute phase of IAV infection showed a significantly increased degree of pneumonia and mortality for all tested pneumococcal strains at otherwise sublethal doses. The incidence and kinetics of systemic dissemination, however, remained bacterial strain dependent. Furthermore, we observed strain-specific alterations in the pulmonary levels of alveolar macrophages, neutrophils, and inflammatory mediators ultimately affecting immunopathology. During the recovery phase following IAV infection, bacterial growth in the lungs and systemic dissemination were enhanced in a strain-dependent manner. Altogether, this study shows that acute IAV infection predisposes the host to lethal S. pneumoniae infection irrespective of the pneumococcal serotype, while the long-lasting synergism between IAV and S. pneumoniae is bacterial strain dependent. These results hold implications for developing tailored therapeutic treatment regimens for dual infections during future IAV outbreaks. PMID:27647871

  2. Influence of leaf color in a dry bean mapping population on Empoasca sp. populations and host plant resistance.

    USDA-ARS?s Scientific Manuscript database

    Visual cues may be the first line of host plant recognition and an important determining factor when selecting host plants for feeding and oviposition, especially for highly polyphagous insects, such as leafhoppers, which have a broad range of potential host plants. Temperate Empoasca fabae and trop...

  3. Polyclonal secondary FGFR2 mutations drive acquired resistance to FGFR inhibition in patients with FGFR2 fusion-positive cholangiocarcinoma

    PubMed Central

    Goyal, Lipika; Saha, Supriya K.; Liu, Leah Y.; Siravegna, Giulia; Leshchiner, Ignaty; Ahronian, Leanne G.; Lennerz, Jochen K.; Vu, Phuong; Deshpande, Vikram; Kambadakone, Avinash; Mussolin, Benedetta; Reyes, Stephanie; Henderson, Laura; Sun, Jiaoyuan Elisabeth; Van Seventer, Emily E.; Gurski, Joseph M.; Baltschukat, Sabrina; Schacher-Engstler, Barbara; Barys, Louise; Stamm, Christelle; Furet, Pascal; Ryan, David P.; Stone, James R.; Iafrate, A. John; Getz, Gad; Porta, Diana Graus; Tiedt, Ralph; Bardelli, Alberto; Juric, Dejan; Corcoran, Ryan B.; Bardeesy, Nabeel; Zhu, Andrew X.

    2017-01-01

    Genetic alterations in the fibroblast growth factor receptor (FGFR) pathway are promising therapeutic targets in many cancers, including intrahepatic cholangiocarcinoma (ICC). The FGFR inhibitor BGJ398 displayed encouraging efficacy in patients with FGFR2 fusion-positive ICC in a phase II trial, but the durability of response was limited in some patients. Here, we report the molecular basis for acquired resistance to BGJ398 in three patients via integrative genomic characterization of cell-free circulating tumor DNA (cfDNA), primary tumors, and metastases. Serial analysis of cfDNA demonstrated multiple recurrent point mutations in the FGFR2 kinase domain at progression. Accordingly, biopsy of post-progression lesions and rapid autopsy revealed marked inter- and intra-lesional heterogeneity, with different FGFR2 mutations in individual resistant clones. Molecular modeling and in vitro studies indicated that each mutation lead to BGJ398 resistance and was surmountable by structurally distinct FGFR inhibitors. Thus, polyclonal secondary FGFR2 mutations represent an important clinical resistance mechanism that may guide development of future therapeutic strategies. PMID:28034880

  4. Polyclonal Secondary FGFR2 Mutations Drive Acquired Resistance to FGFR Inhibition in Patients with FGFR2 Fusion-Positive Cholangiocarcinoma.

    PubMed

    Goyal, Lipika; Saha, Supriya K; Liu, Leah Y; Siravegna, Giulia; Leshchiner, Ignaty; Ahronian, Leanne G; Lennerz, Jochen K; Vu, Phuong; Deshpande, Vikram; Kambadakone, Avinash; Mussolin, Benedetta; Reyes, Stephanie; Henderson, Laura; Sun, Jiaoyuan Elisabeth; Van Seventer, Emily E; Gurski, Joseph M; Baltschukat, Sabrina; Schacher-Engstler, Barbara; Barys, Louise; Stamm, Christelle; Furet, Pascal; Ryan, David P; Stone, James R; Iafrate, A John; Getz, Gad; Porta, Diana Graus; Tiedt, Ralph; Bardelli, Alberto; Juric, Dejan; Corcoran, Ryan B; Bardeesy, Nabeel; Zhu, Andrew X

    2017-03-01

    Genetic alterations in the fibroblast growth factor receptor (FGFR) pathway are promising therapeutic targets in many cancers, including intrahepatic cholangiocarcinoma (ICC). The FGFR inhibitor BGJ398 displayed encouraging efficacy in patients with FGFR2 fusion-positive ICC in a phase II trial, but the durability of response was limited in some patients. Here, we report the molecular basis for acquired resistance to BGJ398 in three patients via integrative genomic characterization of cell-free circulating tumor DNA (cfDNA), primary tumors, and metastases. Serial analysis of cfDNA demonstrated multiple recurrent point mutations in the FGFR2 kinase domain at progression. Accordingly, biopsy of post-progression lesions and rapid autopsy revealed marked inter- and intralesional heterogeneity, with different FGFR2 mutations in individual resistant clones. Molecular modeling and in vitro studies indicated that each mutation led to BGJ398 resistance and was surmountable by structurally distinct FGFR inhibitors. Thus, polyclonal secondary FGFR2 mutations represent an important clinical resistance mechanism that may guide the development of future therapeutic strategies.Significance: We report the first genetic mechanisms of clinical acquired resistance to FGFR inhibition in patients with FGFR2 fusion-positive ICC. Our findings can inform future strategies for detecting resistance mechanisms and inducing more durable remissions in ICC and in the wide variety of cancers where the FGFR pathway is being explored as a therapeutic target. Cancer Discov; 7(3); 252-63. ©2016 AACR.See related commentary by Smyth et al., p. 248This article is highlighted in the In This Issue feature, p. 235.

  5. The Presence of Conjugative Plasmid pLS20 Affects Global Transcription of Its Bacillus subtilis Host and Confers Beneficial Stress Resistance to Cells

    PubMed Central

    Rösch, Thomas C.; Golman, Wladislaw; Hucklesby, Laura; Gonzalez-Pastor, Jose E.

    2014-01-01

    Conjugation activity of plasmid pLS20 from Bacillus subtilis subsp. natto is induced when cells are diluted into fresh medium and diminishes as cells enter into stationary-phase growth. Transcriptional profiling shows that during mid-exponential growth, more than 5% of the host genes are affected in the presence of the plasmid, in contrast to the minor changes seen in freshly diluted and stationary-phase cells. Changes occurred in many metabolic pathways, although pLS20 does not confer any detectable burden on its host cell, as well as in membrane and cell wall-associated processes, in the large motility operon, and in several other cellular processes. In agreement with these changes, we found considerable alterations in motility and enzyme activity and increased resistance against several different forms of stress in cells containing the plasmid, revealing that the presence of pLS20 has a broad impact on the physiology of its host cell and increases its stress resistance in multiple aspects. Additionally, we found that the lack of chromosomal gene yueB, known to encode a phage receptor protein, which is upregulated in cells containing pLS20, strongly reduced conjugation efficiency, revealing that pLS20 not only increases fitness of its host but also employs host proteins for efficient transfer into a new cell. PMID:24334659

  6. Chytridiomycosis of Marine Diatoms-The Role of Stress Physiology and Resistance in Parasite-Host Recognition and Accumulation of Defense Molecules.

    PubMed

    Scholz, Bettina; Küpper, Frithjof C; Vyverman, Wim; Ólafsson, Halldór G; Karsten, Ulf

    2017-01-25

    Little is known about the role of chemotaxis in the location and attachment of chytrid zoospores to potential diatom hosts. Hypothesizing that environmental stress parameters affect parasite-host recognition, four chytrid-diatom tandem cultures (Chytridium sp./Navicula sp., Rhizophydium type I/Nitzschia sp., Rhizophydium type IIa/Rhizosolenia sp., Rhizophydium type IIb/Chaetoceros sp.) were used to test the chemotaxis of chytrid zoospores and the presence of potential defense molecules in a non-contact-co-culturing approach. As potential triggers in the chemotaxis experiments, standards of eight carbohydrates, six amino acids, five fatty acids, and three compounds known as compatible solutes were used in individual and mixed solutions, respectively. In all tested cases, the whole-cell extracts of the light-stressed (continuous light exposure combined with 6 h UV radiation) hosts attracted the highest numbers of zoospores (86%), followed by the combined carbohydrate standard solution (76%), while all other compounds acted as weak triggers only. The results of the phytochemical screening, using biomass and supernatant extracts of susceptible and resistant host-diatom cultures, indicated in most of the tested extracts the presence of polyunsaturated fatty acids, phenols, and aldehydes, whereas the bioactivity screenings showed that the zoospores of the chytrid parasites were only significantly affected by the ethanolic supernatant extract of the resistant hosts.

  7. Chytridiomycosis of Marine Diatoms—The Role of Stress Physiology and Resistance in Parasite-Host Recognition and Accumulation of Defense Molecules

    PubMed Central

    Scholz, Bettina; Küpper, Frithjof C.; Vyverman, Wim; Ólafsson, Halldór G.; Karsten, Ulf

    2017-01-01

    Little is known about the role of chemotaxis in the location and attachment of chytrid zoospores to potential diatom hosts. Hypothesizing that environmental stress parameters affect parasite-host recognition, four chytrid-diatom tandem cultures (Chytridium sp./Navicula sp., Rhizophydium type I/Nitzschia sp., Rhizophydium type IIa/Rhizosolenia sp., Rhizophydium type IIb/Chaetoceros sp.) were used to test the chemotaxis of chytrid zoospores and the presence of potential defense molecules in a non-contact-co-culturing approach. As potential triggers in the chemotaxis experiments, standards of eight carbohydrates, six amino acids, five fatty acids, and three compounds known as compatible solutes were used in individual and mixed solutions, respectively. In all tested cases, the whole-cell extracts of the light-stressed (continuous light exposure combined with 6 h UV radiation) hosts attracted the highest numbers of zoospores (86%), followed by the combined carbohydrate standard solution (76%), while all other compounds acted as weak triggers only. The results of the phytochemical screening, using biomass and supernatant extracts of susceptible and resistant host-diatom cultures, indicated in most of the tested extracts the presence of polyunsaturated fatty acids, phenols, and aldehydes, whereas the bioactivity screenings showed that the zoospores of the chytrid parasites were only significantly affected by the ethanolic supernatant extract of the resistant hosts. PMID:28125065

  8. Secondary Somatic Mutations Restoring RAD51C and RAD51D Associated with Acquired Resistance to the PARP Inhibitor Rucaparib in High-Grade Ovarian Carcinoma

    PubMed Central

    Kondrashova, Olga; Nguyen, Minh; Shield-Artin, Kristy; Tinker, Anna V.; Teng, Nelson N.H.; Harrell, Maria I.; Kuiper, Michael J.; Ho, Gwo-Yaw; Barker, Holly; Jasin, Maria; Prakash, Rohit; Kass, Elizabeth M.; Sullivan, Meghan R.; Brunette, Gregory J.; Bernstein, Kara A.; Coleman, Robert L.; Floquet, Anne; Friedlander, Michael; Kichenadasse, Ganessan; O'Malley, David M.; Oza, Amit; Sun, James; Robillard, Liliane; Maloney, Lara; Giordano, Heidi; Wakefield, Matthew J.; Kaufmann, Scott H.; Simmons, Andrew D.; Harding, Thomas C.; Raponi, Mitch; McNeish, Iain A.; Swisher, Elizabeth M.; Lin, Kevin K.; Scott, Clare L.

    2017-01-01

    High-grade epithelial ovarian carcinomas containing mutated BRCA1 or BRCA2 (BRCA1/2) homologous recombination (HR) genes are sensitive to platinum-based chemotherapy and PARP inhibitors (PARPi), while restoration of HR function due to secondary mutations in BRCA1/2 has been recognized as an important resistance mechanism. We sequenced core HR pathway genes in 12 pairs of pretreatment and postprogression tumor biopsy samples collected from patients in ARIEL2 Part 1, a phase II study of the PARPi rucaparib as treatment for platinum-sensitive, relapsed ovarian carcinoma. In 6 of 12 pretreatment biopsies, a truncation mutation in BRCA1, RAD51C, or RAD51D was identified. In five of six paired postprogression biopsies, one or more secondary mutations restored the open reading frame. Four distinct secondary mutations and spatial heterogeneity were observed for RAD51C. In vitro complementation assays and a patient-derived xenograft, as well as predictive molecular modeling, confirmed that resistance to rucaparib was associated with secondary mutations. Significance Analyses of primary and secondary mutations in RAD51C and RAD51D provide evidence for these primary mutations in conferring PARPi sensitivity and secondary mutations as a mechanism of acquired PARPi resistance. PARPi resistance due to secondary mutations underpins the need for early delivery of PARPi therapy and for combination strategies. PMID:28588062

  9. Toxoplasma gondii Rhoptry 16 Kinase Promotes Host Resistance to Oral Infection and Intestinal Inflammation Only in the Context of the Dense Granule Protein GRA15

    PubMed Central

    Jensen, Kirk D. C.; Hu, Kenneth; Whitmarsh, Ryan J.; Hassan, Musa A.; Julien, Lindsay; Lu, Diana; Chen, Lieping; Hunter, Christopher A.

    2013-01-01

    Toxoplasma gondii transmission between intermediate hosts is dependent on the ingestion of walled cysts formed during the chronic phase of infection. Immediately following consumption, the parasite must ensure survival of the host by preventing adverse inflammatory responses and/or by limiting its own replication. Since the Toxoplasma secreted effectors rhoptry 16 kinase (ROP16) and dense granule 15 (GRA15) activate the JAK-STAT3/6 and NF-κB signaling pathways, respectively, we explored whether a particular combination of these effectors impacted intestinal inflammation and parasite survival in vivo. Here we report that expression of the STAT-activating version of ROP16 in the type II strain (strain II+ROP16I) promotes host resistance to oral infection only in the context of endogenous GRA15 expression. Protection was characterized by a lower intestinal parasite burden and dampened inflammation. Host resistance to the II+ROP16I strain occurred independently of STAT6 and the T cell coinhibitory receptors B7-DC and B7-H1, two receptors that are upregulated by ROP16. In addition, coexpression of ROP16 and GRA15 enhanced parasite susceptibility within tumor necrosis factor alpha/gamma interferon-stimulated macrophages in a STAT3/6-independent manner. Transcriptional profiling of infected STAT3- and STAT6-deficient macrophages and parasitized Peyer's patches from mice orally challenged with strain II+ROP16I suggested that ROP16 activated STAT5 to modulate host gene expression. Consistent with this supposition, the ROP16 kinase induced the sustained phosphorylation and nuclear localization of STAT5 in Toxoplasma-infected cells. In summary, only the combined expression of both GRA15 and ROP16 promoted host resistance to acute oral infection, and Toxoplasma may possibly target the STAT5 signaling pathway to generate protective immunity in the gut. PMID:23545295

  10. The leucine-rich repeat domain can determine effective interaction between RPS2 and other host factors in arabidopsis RPS2-mediated disease resistance.

    PubMed Central

    Banerjee, D; Zhang, X; Bent, A F

    2001-01-01

    Like many other plant disease resistance genes, Arabidopsis thaliana RPS2 encodes a product with nucleotide-binding site (NBS) and leucine-rich repeat (LRR) domains. This study explored the hypothesized interaction of RPS2 with other host factors that may be required for perception of Pseudomonas syringae pathogens that express avrRpt2 and/or for the subsequent induction of plant defense responses. Crosses between Arabidopsis ecotypes Col-0 (resistant) and Po-1 (susceptible) revealed segregation of more than one gene that controls resistance to P. syringae that express avrRpt2. Many F(2) and F(3) progeny exhibited intermediate resistance phenotypes. In addition to RPS2, at least one additional genetic interval associated with this defense response was identified and mapped using quantitative genetic methods. Further genetic and molecular genetic complementation experiments with cloned RPS2 alleles revealed that the Po-1 allele of RPS2 can function in a Col-0 genetic background, but not in a Po-1 background. The other resistance-determining genes of Po-1 can function, however, as they successfully conferred resistance in combination with the Col-0 allele of RPS2. Domain-swap experiments revealed that in RPS2, a polymorphism at six amino acids in the LRR region is responsible for this allele-specific ability to function with other host factors. PMID:11333251

  11. Mechanisms of Insulin Resistance in Primary and Secondary Nonalcoholic Fatty Liver.

    PubMed

    Jelenik, Tomas; Kaul, Kirti; Séquaris, Gilles; Flögel, Ulrich; Phielix, Esther; Kotzka, Jörg; Knebel, Birgit; Fahlbusch, Pia; Hörbelt, Tina; Lehr, Stefan; Reinbeck, Anna Lena; Müller-Wieland, Dirk; Esposito, Irene; Shulman, Gerald I; Szendroedi, Julia; Roden, Michael

    2017-08-01

    Nonalcoholic fatty liver disease is associated with hepatic insulin resistance and may result primarily from increased hepatic de novo lipogenesis (PRIM) or secondarily from adipose tissue lipolysis (SEC). We studied mice with hepatocyte- or adipocyte-specific SREBP-1c overexpression as models of PRIM and SEC. PRIM mice featured increased lipogenic gene expression in the liver and adipose tissue. Their selective, liver-specific insulin resistance was associated with increased C18:1-diacylglycerol content and protein kinase Cε translocation. SEC mice had decreased lipogenesis mediated by hepatic cholesterol responsive element-binding protein and featured portal/lobular inflammation along with total, whole-body insulin resistance. Hepatic mitochondrial respiration transiently increased and declined with aging along with higher muscle reactive oxygen species production. In conclusion, hepatic insulin resistance originates from lipotoxicity but not from lower mitochondrial capacity, which can even transiently adapt to increased peripheral lipolysis. Peripheral insulin resistance is prevented during increased hepatic lipogenesis only if adipose tissue lipid storage capacity is preserved. © 2017 by the American Diabetes Association.

  12. Extremotolerance and Resistance of Lichens: Comparative Studies on Five Species Used in Astrobiological Research II. Secondary Lichen Compounds

    NASA Astrophysics Data System (ADS)

    Meeßen, J.; Sánchez, F. J.; Sadowsky, A.; de la Torre, R.; Ott, S.; de Vera, J.-P.

    2013-12-01

    Lichens, which are symbioses of a fungus and one or two photoautotrophs, frequently tolerate extreme environmental conditions. This makes them valuable model systems in astrobiological research to fathom the limits and limitations of eukaryotic symbioses. Various studies demonstrated the high resistance of selected extremotolerant lichens towards extreme, non-terrestrial abiotic factors including space exposure, hypervelocity impact simulations as well as space and Martian parameter simulations. This study focusses on the diverse set of secondary lichen compounds (SLCs) that act as photo- and UVR-protective substances. Five lichen species used in present-day astrobiological research were compared: Buellia frigida, Circinaria gyrosa, Rhizocarpon geographicum, Xanthoria elegans, and Pleopsidium chlorophanum. Detailed investigation of secondary substances including photosynthetic pigments was performed for whole lichen thalli but also for axenically cultivated mycobionts and photobionts by methods of UV/VIS-spectrophotometry and two types of high performance liquid chromatography (HPLC). Additionally, a set of chemical tests is presented to confirm the formation of melanic compounds in lichen and mycobiont samples. All investigated lichens reveal various sets of SLCs, except C. gyrosa where only melanin was putatively identified. Such studies will help to assess the contribution of SLCs on lichen extremotolerance, to understand the adaptation of lichens to prevalent abiotic stressors of the respective habitat, and to form a basis for interpreting recent and future astrobiological experiments. As most of the identified SLCs demonstrated a high capacity in absorbing UVR, they may also explain the high resistance of lichens towards non-terrestrial UVR.

  13. Extremotolerance and resistance of lichens: comparative studies on five species used in astrobiological research II. Secondary lichen compounds.

    PubMed

    Meessen, J; Sánchez, F J; Sadowsky, A; de la Torre, R; Ott, S; de Vera, J-P

    2013-12-01

    Lichens, which are symbioses of a fungus and one or two photoautotrophs, frequently tolerate extreme environmental conditions. This makes them valuable model systems in astrobiological research to fathom the limits and limitations of eukaryotic symbioses. Various studies demonstrated the high resistance of selected extremotolerant lichens towards extreme, non-terrestrial abiotic factors including space exposure, hypervelocity impact simulations as well as space and Martian parameter simulations. This study focusses on the diverse set of secondary lichen compounds (SLCs) that act as photo- and UVR-protective substances. Five lichen species used in present-day astrobiological research were compared: Buellia frigida, Circinaria gyrosa, Rhizocarpon geographicum, Xanthoria elegans, and Pleopsidium chlorophanum. Detailed investigation of secondary substances including photosynthetic pigments was performed for whole lichen thalli but also for axenically cultivated mycobionts and photobionts by methods of UV/VIS-spectrophotometry and two types of high performance liquid chromatography (HPLC). Additionally, a set of chemical tests is presented to confirm the formation of melanic compounds in lichen and mycobiont samples. All investigated lichens reveal various sets of SLCs, except C. gyrosa where only melanin was putatively identified. Such studies will help to assess the contribution of SLCs on lichen extremotolerance, to understand the adaptation of lichens to prevalent abiotic stressors of the respective habitat, and to form a basis for interpreting recent and future astrobiological experiments. As most of the identified SLCs demonstrated a high capacity in absorbing UVR, they may also explain the high resistance of lichens towards non-terrestrial UVR.

  14. Activation of Dormant Secondary Metabolite Production by Introducing Neomycin Resistance into the Deep-Sea Fungus, Aspergillus versicolor ZBY-3

    PubMed Central

    Dong, Yuan; Cui, Cheng-Bin; Li, Chang-Wei; Hua, Wei; Wu, Chang-Jing; Zhu, Tian-Jiao; Gu, Qian-Qun

    2014-01-01

    A new ultrasound-mediated approach has been developed to introduce neomycin-resistance to activate silent pathways for secondary metabolite production in a bio-inactive, deep-sea fungus, Aspergillus versicolor ZBY-3. Upon treatment of the ZBY-3 spores with a high concentration of neomycin by proper ultrasound irradiation, a total of 30 mutants were obtained by single colony isolation. The acquired resistance of the mutants to neomycin was confirmed by a resistance test. In contrast to the ZBY-3 strain, the EtOAc extracts of 22 of the 30 mutants inhibited the human cancer K562 cells, indicating that these mutants acquired a capability to produce antitumor metabolites. HPLC-photodiode array detector (PDAD)-UV and HPLC-electron spray ionization (ESI)-MS analyses of the EtOAc extracts of seven bioactive mutants and the ZBY-3 strain indicated that diverse secondary metabolites have been newly produced in the mutant extracts in contrast to the ZBY-3 extract. The followed isolation and characterization demonstrated that six metabolites, cyclo(d-Pro-d-Phe) (1), cyclo(d-Tyr-d-Pro) (2), phenethyl 5-oxo-l-prolinate (3), cyclo(l-Ile-l-Pro) (4), cyclo(l-Leu-l-Pro) (5) and 3β,5α,9α-trihydroxy-(22E,24R)-ergosta-7,22-dien-6-one (6), were newly produced by the mutant u2n2h3-3 compared to the parent ZBY-3 strain. Compound 3 was a new compound; 2 was isolated from a natural source for the first time, and all of these compounds were also not yet found in the metabolites of other A. versicolor strains. Compounds 1–6 inhibited the K562 cells, with inhibition rates of 54.6% (1), 72.9% (2), 23.5% (3), 29.6% (4), 30.9% (5) and 51.1% (6) at 100 μg/mL, and inhibited also other human cancer HL-60, BGC-823 and HeLa cells, to some extent. The present study demonstrated the effectiveness of the ultrasound-mediated approach to activate silent metabolite production in fungi by introducing acquired resistance to aminoglycosides and its potential for discovering new compounds from silent

  15. Activation of dormant secondary metabolite production by introducing neomycin resistance into the deep-sea fungus, Aspergillus versicolor ZBY-3.

    PubMed

    Dong, Yuan; Cui, Cheng-Bin; Li, Chang-Wei; Hua, Wei; Wu, Chang-Jing; Zhu, Tian-Jiao; Gu, Qian-Qun

    2014-07-29

    A new ultrasound-mediated approach has been developed to introduce neomycin-resistance to activate silent pathways for secondary metabolite production in a bio-inactive, deep-sea fungus, Aspergillus versicolor ZBY-3. Upon treatment of the ZBY-3 spores with a high concentration of neomycin by proper ultrasound irradiation, a total of 30 mutants were obtained by single colony isolation. The acquired resistance of the mutants to neomycin was confirmed by a resistance test. In contrast to the ZBY-3 strain, the EtOAc extracts of 22 of the 30 mutants inhibited the human cancer K562 cells, indicating that these mutants acquired a capability to produce antitumor metabolites. HPLC-photodiode array detector (PDAD)-UV and HPLC-electron spray ionization (ESI)-MS analyses of the EtOAc extracts of seven bioactive mutants and the ZBY-3 strain indicated that diverse secondary metabolites have been newly produced in the mutant extracts in contrast to the ZBY-3 extract. The followed isolation and characterization demonstrated that six metabolites, cyclo(D-Pro-D-Phe) (1), cyclo(D-Tyr-D-Pro) (2), phenethyl 5-oxo-L-prolinate (3), cyclo(L-Ile-L-Pro) (4), cyclo(L-Leu-L-Pro) (5) and 3β,5α,9α-trihydroxy-(22E,24R)-ergosta-7,22-dien-6-one (6), were newly produced by the mutant u2n2h3-3 compared to the parent ZBY-3 strain. Compound 3 was a new compound; 2 was isolated from a natural source for the first time, and all of these compounds were also not yet found in the metabolites of other A. versicolor strains. Compounds 1-6 inhibited the K562 cells, with inhibition rates of 54.6% (1), 72.9% (2), 23.5% (3), 29.6% (4), 30.9% (5) and 51.1% (6) at 100 μg/mL, and inhibited also other human cancer HL-60, BGC-823 and HeLa cells, to some extent. The present study demonstrated the effectiveness of the ultrasound-mediated approach to activate silent metabolite production in fungi by introducing acquired resistance to aminoglycosides and its potential for discovering new compounds from silent fungal

  16. Drug Resistance and Substance Use Among Male and Female Adolescents in Alternative Secondary Schools in Guanajuato, Mexico

    PubMed Central

    Kulis, Stephen; Marsiglia, Flavio F.; Ayers, Stephanie L.; Booth, Jaime; Nuño-Gutiérrez, Bertha L.

    2012-01-01

    Objective: Research is limited on the strategies that Mexican adolescents use to resist use of alcohol, cigarettes, and other drugs. Cultural norms and gender socialization patterns concerning the acceptability of use of various substances by women and men influence Mexican youths in their responses to offers of substances. This study explored the drug-resistance strategies used by youth in the central Mexican state of Guanajuato, how their use predicted patterns of substance use, and how these associations differed by gender. Method: The analysis used cross-sectional survey data from 702 (60% male) students enrolled in eight alternative secondary education school sites in 2007. Participants reported the drug-resistance behaviors they used to deal with offers of alcohol, cigarettes, and marijuana. Past-12-month use of the four drug-resistance strategies employed most often by U.S. youth—refuse, explain, avoid, and leave (R.E.A.L.)—and any other strategies were measured. Composite measures of lifetime and recent use of alcohol, cigarettes, and marijuana were predicted in multivariate ordinary least squares regression analyses. Models were tested with and without controls for the frequency that respondents were offered substances and introduced gender interaction effects. Results: Controlling for substance use offers, more frequent use of a wide repertoire of R.E.A.L. strategies predicted less consumption of alcohol and cigarettes, and using non-R.E.A.L. strategies predicted less marijuana consumption. All of these relationships were either stronger for males than for females or significant for males only. Conclusions: Gender differences exist in the impact of R.E.A.L. strategies on substance use among youth in Mexico. Despite a narrowing gender gap in substance use in Mexico, large exposure to and susceptibility of substance use remains. Developing effective prevention programs in Mexico based on teaching appropriate drug-resistance strategies and enhancing

  17. Steroid-resistant nephrotic syndrome secondary to primary focal segmental glomerulosclerosis and smoldering multiple myeloma

    PubMed Central

    Shah, Rupin; Shah, Nishi; Shah, Arun

    2014-01-01

    We present a patient with steroid-resistant nephrotic syndrome due to focal segmental glomerulosclerosis along with smoldering multiple myeloma. While investigating the cause of proteinuria, a monoclonal gammopathy with a negative kidney biopsy for myeloma-related pathology was discovered. PMID:24381395

  18. Integrated palmer amaranth management in glufosinate-resistant cotton: II. primary, secondary, and conservation tillage

    USDA-ARS?s Scientific Manuscript database

    A three-year field experiment was conducted to evaluate the role of inversion tillage, cover crops and spring tillage methods for Palmer amaranth between-row (BR) and within-row (WR) management in glufosinate-resistant cotton. Main plots were two inversion tillage systems: fall inversion tillage (IT...

  19. Nitrogen fertilizer application affects lodging resistance by altering secondary cell wall synthesis in japonica rice (Oryza sativa).

    PubMed

    Zhang, Wujun; Wu, Longmei; Ding, Yanfeng; Yao, Xiong; Wu, Xiaoran; Weng, Fei; Li, Ganghua; Liu, Zhenghui; Tang, She; Ding, Chengqiang; Wang, Shaohua

    2017-09-01

    Stem mechanical strength is an important agricultural quantitative trait that is closely related to lodging resistance in rice, which is known to be reduced by fertilizer with higher levels of nitrogen. To understand the mechanism that regulates stem mechanical strength in response to nitrogen, we analysed stem morphology, anatomy, mechanical properties, cell wall components, and expression of cell wall-related genes, in two varieties of japonica rice, namely, Wuyunjing23 (lodging-resistant variety) and W3668 (lodging-susceptible variety). The results showed that higher nitrogen fertilizer increased the lodging index in both varieties due to a reduction in breaking strength and bending stress, and these changes were larger in W3668. Cellulose content decreased slightly under higher nitrogen fertilizer, whereas lignin content reduced remarkably. Histochemical staining revealed that high nitrogen application decreased lignin deposition in the secondary cell wall of the sclerenchyma cells and vascular bundle cells compared with the low nitrogen treatments, while it did not alter the pattern of cellulose deposition in these cells in both Wuyunjing23 and W3668. In addition, the expression of the genes involved in lignin biosynthesis, OsPAL, OsCoMT, Os4CL3, OsCCR, OsCAD2, OsCAD7, OsCesA4, and OsCesA7, were also down-regulated under higher nitrogen conditions at the early stage of culm growth. These results suggest that the genes involved in lignin biosynthesis are down-regulated by higher nitrogen fertilizer, which causes lignin deficiency in the secondary cell walls and the weakening of mechanical tissue structure. Subsequently, this results in these internodes with reduced mechanical strength and poor lodging resistance.

  20. Escherichia coli Sequence Type 131 Is a Dominant, Antimicrobial-Resistant Clonal Group Associated with Healthcare and Elderly Hosts

    PubMed Central

    Banerjee, Ritu; Johnston, Brian; Lohse, Christine; Porter, Stephen B.; Clabots, Connie; Johnson, James R.

    2014-01-01

    globally predominant ST131 pulsotypes accounted for 45% of ST131 isolates. CONCLUSIONS ST131 is a dominant, antimicrobial-resistant clonal group associated with healthcare settings, elderly hosts, and persistent or recurrent symptoms. PMID:23466908

  1. A new mouse model reveals a critical role for host innate immunity in resistance to Rift Valley fever.

    PubMed

    do Valle, Tânia Zaverucha; Billecocq, Agnès; Guillemot, Laurent; Alberts, Rudi; Gommet, Céline; Geffers, Robert; Calabrese, Kátia; Schughart, Klaus; Bouloy, Michèle; Montagutelli, Xavier; Panthier, Jean-Jacques

    2010-11-15

    Rift Valley fever (RVF) is an arthropod-borne viral disease repeatedly reported in many African countries and, more recently, in Saudi Arabia and Yemen. RVF virus (RVFV) primarily infects domesticated ruminants, resulting in miscarriage in pregnant females and death for newborns and young animals. It also has the ability to infect humans, causing a feverish syndrome, meningoencephalitis, or hemorrhagic fever. The various outcomes of RVFV infection in animals and humans argue for the existence of host genetic determinants controlling the disease. We investigated the susceptibility of inbred mouse strains to infection with the virulent RVFV ZH548 strain. Compared with classical BALB/cByJ mice, wild-derived Mus m. musculus MBT/Pas mice exhibited earlier and greater viremia and died sooner, a result in sharp contrast with their resistance to infection with West Nile virus and influenza A. Infection of mouse embryonic fibroblasts (MEFs) from MBT/Pas mice with RVFV also resulted in higher viral production. Microarray and quantitative RT-PCR experiments showed that BALB/cByJ MEFs displayed a significant activation of the type I IFN pathway. In contrast, MBT/Pas MEFs elicited a delayed and partial type I IFN response to RVFV infection. RNA interference-mediated inhibition of genes that were not induced by RVFV in MBT/Pas MEFs increased viral production in BALB/cByJ MEFs, thus demonstrating their functional importance in limiting viral replication. We conclude that the failure of MBT/Pas murine strain to induce, in due course, a complete innate immune response is instrumental in the selective susceptibility to RVF.

  2. Decreasing Efficacy of Antimalarial Combination Therapy in Uganda Explained by Decreasing Host Immunity Rather than Increasing Drug Resistance