Sample records for secondary structures based

  1. Rtools: a web server for various secondary structural analyses on single RNA sequences.

    PubMed

    Hamada, Michiaki; Ono, Yukiteru; Kiryu, Hisanori; Sato, Kengo; Kato, Yuki; Fukunaga, Tsukasa; Mori, Ryota; Asai, Kiyoshi

    2016-07-08

    The secondary structures, as well as the nucleotide sequences, are the important features of RNA molecules to characterize their functions. According to the thermodynamic model, however, the probability of any secondary structure is very small. As a consequence, any tool to predict the secondary structures of RNAs has limited accuracy. On the other hand, there are a few tools to compensate the imperfect predictions by calculating and visualizing the secondary structural information from RNA sequences. It is desirable to obtain the rich information from those tools through a friendly interface. We implemented a web server of the tools to predict secondary structures and to calculate various structural features based on the energy models of secondary structures. By just giving an RNA sequence to the web server, the user can get the different types of solutions of the secondary structures, the marginal probabilities such as base-paring probabilities, loop probabilities and accessibilities of the local bases, the energy changes by arbitrary base mutations as well as the measures for validations of the predicted secondary structures. The web server is available at http://rtools.cbrc.jp, which integrates software tools, CentroidFold, CentroidHomfold, IPKnot, CapR, Raccess, Rchange and RintD. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  2. K-Partite RNA Secondary Structures

    NASA Astrophysics Data System (ADS)

    Jiang, Minghui; Tejada, Pedro J.; Lasisi, Ramoni O.; Cheng, Shanhong; Fechser, D. Scott

    RNA secondary structure prediction is a fundamental problem in structural bioinformatics. The prediction problem is difficult because RNA secondary structures may contain pseudoknots formed by crossing base pairs. We introduce k-partite secondary structures as a simple classification of RNA secondary structures with pseudoknots. An RNA secondary structure is k-partite if it is the union of k pseudoknot-free sub-structures. Most known RNA secondary structures are either bipartite or tripartite. We show that there exists a constant number k such that any secondary structure can be modified into a k-partite secondary structure with approximately the same free energy. This offers a partial explanation of the prevalence of k-partite secondary structures with small k. We give a complete characterization of the computational complexities of recognizing k-partite secondary structures for all k ≥ 2, and show that this recognition problem is essentially the same as the k-colorability problem on circle graphs. We present two simple heuristics, iterated peeling and first-fit packing, for finding k-partite RNA secondary structures. For maximizing the number of base pair stackings, our iterated peeling heuristic achieves a constant approximation ratio of at most k for 2 ≤ k ≤ 5, and at most frac6{1-(1-6/k)^k} le frac6{1-e^{-6}} < 6.01491 for k ≥ 6. Experiment on sequences from PseudoBase shows that our first-fit packing heuristic outperforms the leading method HotKnots in predicting RNA secondary structures with pseudoknots. Source code, data set, and experimental results are available at http://www.cs.usu.edu/ mjiang/rna/kpartite/.

  3. A statistical learning approach to the modeling of chromatographic retention of oligonucleotides incorporating sequence and secondary structure data

    PubMed Central

    Sturm, Marc; Quinten, Sascha; Huber, Christian G.; Kohlbacher, Oliver

    2007-01-01

    We propose a new model for predicting the retention time of oligonucleotides. The model is based on ν support vector regression using features derived from base sequence and predicted secondary structure of oligonucleotides. Because of the secondary structure information, the model is applicable even at relatively low temperatures where the secondary structure is not suppressed by thermal denaturing. This makes the prediction of oligonucleotide retention time for arbitrary temperatures possible, provided that the target temperature lies within the temperature range of the training data. We describe different possibilities of feature calculation from base sequence and secondary structure, present the results and compare our model to existing models. PMID:17567619

  4. Building a knowledge-based statistical potential by capturing high-order inter-residue interactions and its applications in protein secondary structure assessment.

    PubMed

    Li, Yaohang; Liu, Hui; Rata, Ionel; Jakobsson, Eric

    2013-02-25

    The rapidly increasing number of protein crystal structures available in the Protein Data Bank (PDB) has naturally made statistical analyses feasible in studying complex high-order inter-residue correlations. In this paper, we report a context-based secondary structure potential (CSSP) for assessing the quality of predicted protein secondary structures generated by various prediction servers. CSSP is a sequence-position-specific knowledge-based potential generated based on the potentials of mean force approach, where high-order inter-residue interactions are taken into consideration. The CSSP potential is effective in identifying secondary structure predictions with good quality. In 56% of the targets in the CB513 benchmark, the optimal CSSP potential is able to recognize the native secondary structure or a prediction with Q3 accuracy higher than 90% as best scored in the predicted secondary structures generated by 10 popularly used secondary structure prediction servers. In more than 80% of the CB513 targets, the predicted secondary structures with the lowest CSSP potential values yield higher than 80% Q3 accuracy. Similar performance of CSSP is found on the CASP9 targets as well. Moreover, our computational results also show that the CSSP potential using triplets outperforms the CSSP potential using doublets and is currently better than the CSSP potential using quartets.

  5. Fourier-based classification of protein secondary structures.

    PubMed

    Shu, Jian-Jun; Yong, Kian Yan

    2017-04-15

    The correct prediction of protein secondary structures is one of the key issues in predicting the correct protein folded shape, which is used for determining gene function. Existing methods make use of amino acids properties as indices to classify protein secondary structures, but are faced with a significant number of misclassifications. The paper presents a technique for the classification of protein secondary structures based on protein "signal-plotting" and the use of the Fourier technique for digital signal processing. New indices are proposed to classify protein secondary structures by analyzing hydrophobicity profiles. The approach is simple and straightforward. Results show that the more types of protein secondary structures can be classified by means of these newly-proposed indices. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Ensemble-based prediction of RNA secondary structures.

    PubMed

    Aghaeepour, Nima; Hoos, Holger H

    2013-04-24

    Accurate structure prediction methods play an important role for the understanding of RNA function. Energy-based, pseudoknot-free secondary structure prediction is one of the most widely used and versatile approaches, and improved methods for this task have received much attention over the past five years. Despite the impressive progress that as been achieved in this area, existing evaluations of the prediction accuracy achieved by various algorithms do not provide a comprehensive, statistically sound assessment. Furthermore, while there is increasing evidence that no prediction algorithm consistently outperforms all others, no work has been done to exploit the complementary strengths of multiple approaches. In this work, we present two contributions to the area of RNA secondary structure prediction. Firstly, we use state-of-the-art, resampling-based statistical methods together with a previously published and increasingly widely used dataset of high-quality RNA structures to conduct a comprehensive evaluation of existing RNA secondary structure prediction procedures. The results from this evaluation clarify the performance relationship between ten well-known existing energy-based pseudoknot-free RNA secondary structure prediction methods and clearly demonstrate the progress that has been achieved in recent years. Secondly, we introduce AveRNA, a generic and powerful method for combining a set of existing secondary structure prediction procedures into an ensemble-based method that achieves significantly higher prediction accuracies than obtained from any of its component procedures. Our new, ensemble-based method, AveRNA, improves the state of the art for energy-based, pseudoknot-free RNA secondary structure prediction by exploiting the complementary strengths of multiple existing prediction procedures, as demonstrated using a state-of-the-art statistical resampling approach. In addition, AveRNA allows an intuitive and effective control of the trade-off between false negative and false positive base pair predictions. Finally, AveRNA can make use of arbitrary sets of secondary structure prediction procedures and can therefore be used to leverage improvements in prediction accuracy offered by algorithms and energy models developed in the future. Our data, MATLAB software and a web-based version of AveRNA are publicly available at http://www.cs.ubc.ca/labs/beta/Software/AveRNA.

  7. RNA-TVcurve: a Web server for RNA secondary structure comparison based on a multi-scale similarity of its triple vector curve representation.

    PubMed

    Li, Ying; Shi, Xiaohu; Liang, Yanchun; Xie, Juan; Zhang, Yu; Ma, Qin

    2017-01-21

    RNAs have been found to carry diverse functionalities in nature. Inferring the similarity between two given RNAs is a fundamental step to understand and interpret their functional relationship. The majority of functional RNAs show conserved secondary structures, rather than sequence conservation. Those algorithms relying on sequence-based features usually have limitations in their prediction performance. Hence, integrating RNA structure features is very critical for RNA analysis. Existing algorithms mainly fall into two categories: alignment-based and alignment-free. The alignment-free algorithms of RNA comparison usually have lower time complexity than alignment-based algorithms. An alignment-free RNA comparison algorithm was proposed, in which novel numerical representations RNA-TVcurve (triple vector curve representation) of RNA sequence and corresponding secondary structure features are provided. Then a multi-scale similarity score of two given RNAs was designed based on wavelet decomposition of their numerical representation. In support of RNA mutation and phylogenetic analysis, a web server (RNA-TVcurve) was designed based on this alignment-free RNA comparison algorithm. It provides three functional modules: 1) visualization of numerical representation of RNA secondary structure; 2) detection of single-point mutation based on secondary structure; and 3) comparison of pairwise and multiple RNA secondary structures. The inputs of the web server require RNA primary sequences, while corresponding secondary structures are optional. For the primary sequences alone, the web server can compute the secondary structures using free energy minimization algorithm in terms of RNAfold tool from Vienna RNA package. RNA-TVcurve is the first integrated web server, based on an alignment-free method, to deliver a suite of RNA analysis functions, including visualization, mutation analysis and multiple RNAs structure comparison. The comparison results with two popular RNA comparison tools, RNApdist and RNAdistance, showcased that RNA-TVcurve can efficiently capture subtle relationships among RNAs for mutation detection and non-coding RNA classification. All the relevant results were shown in an intuitive graphical manner, and can be freely downloaded from this server. RNA-TVcurve, along with test examples and detailed documents, are available at: http://ml.jlu.edu.cn/tvcurve/ .

  8. A semi-supervised learning approach for RNA secondary structure prediction.

    PubMed

    Yonemoto, Haruka; Asai, Kiyoshi; Hamada, Michiaki

    2015-08-01

    RNA secondary structure prediction is a key technology in RNA bioinformatics. Most algorithms for RNA secondary structure prediction use probabilistic models, in which the model parameters are trained with reliable RNA secondary structures. Because of the difficulty of determining RNA secondary structures by experimental procedures, such as NMR or X-ray crystal structural analyses, there are still many RNA sequences that could be useful for training whose secondary structures have not been experimentally determined. In this paper, we introduce a novel semi-supervised learning approach for training parameters in a probabilistic model of RNA secondary structures in which we employ not only RNA sequences with annotated secondary structures but also ones with unknown secondary structures. Our model is based on a hybrid of generative (stochastic context-free grammars) and discriminative models (conditional random fields) that has been successfully applied to natural language processing. Computational experiments indicate that the accuracy of secondary structure prediction is improved by incorporating RNA sequences with unknown secondary structures into training. To our knowledge, this is the first study of a semi-supervised learning approach for RNA secondary structure prediction. This technique will be useful when the number of reliable structures is limited. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. RNA-SSPT: RNA Secondary Structure Prediction Tools.

    PubMed

    Ahmad, Freed; Mahboob, Shahid; Gulzar, Tahsin; Din, Salah U; Hanif, Tanzeela; Ahmad, Hifza; Afzal, Muhammad

    2013-01-01

    The prediction of RNA structure is useful for understanding evolution for both in silico and in vitro studies. Physical methods like NMR studies to predict RNA secondary structure are expensive and difficult. Computational RNA secondary structure prediction is easier. Comparative sequence analysis provides the best solution. But secondary structure prediction of a single RNA sequence is challenging. RNA-SSPT is a tool that computationally predicts secondary structure of a single RNA sequence. Most of the RNA secondary structure prediction tools do not allow pseudoknots in the structure or are unable to locate them. Nussinov dynamic programming algorithm has been implemented in RNA-SSPT. The current studies shows only energetically most favorable secondary structure is required and the algorithm modification is also available that produces base pairs to lower the total free energy of the secondary structure. For visualization of RNA secondary structure, NAVIEW in C language is used and modified in C# for tool requirement. RNA-SSPT is built in C# using Dot Net 2.0 in Microsoft Visual Studio 2005 Professional edition. The accuracy of RNA-SSPT is tested in terms of Sensitivity and Positive Predicted Value. It is a tool which serves both secondary structure prediction and secondary structure visualization purposes.

  10. RNA-SSPT: RNA Secondary Structure Prediction Tools

    PubMed Central

    Ahmad, Freed; Mahboob, Shahid; Gulzar, Tahsin; din, Salah U; Hanif, Tanzeela; Ahmad, Hifza; Afzal, Muhammad

    2013-01-01

    The prediction of RNA structure is useful for understanding evolution for both in silico and in vitro studies. Physical methods like NMR studies to predict RNA secondary structure are expensive and difficult. Computational RNA secondary structure prediction is easier. Comparative sequence analysis provides the best solution. But secondary structure prediction of a single RNA sequence is challenging. RNA-SSPT is a tool that computationally predicts secondary structure of a single RNA sequence. Most of the RNA secondary structure prediction tools do not allow pseudoknots in the structure or are unable to locate them. Nussinov dynamic programming algorithm has been implemented in RNA-SSPT. The current studies shows only energetically most favorable secondary structure is required and the algorithm modification is also available that produces base pairs to lower the total free energy of the secondary structure. For visualization of RNA secondary structure, NAVIEW in C language is used and modified in C# for tool requirement. RNA-SSPT is built in C# using Dot Net 2.0 in Microsoft Visual Studio 2005 Professional edition. The accuracy of RNA-SSPT is tested in terms of Sensitivity and Positive Predicted Value. It is a tool which serves both secondary structure prediction and secondary structure visualization purposes. PMID:24250115

  11. New insights from cluster analysis methods for RNA secondary structure prediction

    PubMed Central

    Rogers, Emily; Heitsch, Christine

    2016-01-01

    A widening gap exists between the best practices for RNA secondary structure prediction developed by computational researchers and the methods used in practice by experimentalists. Minimum free energy (MFE) predictions, although broadly used, are outperformed by methods which sample from the Boltzmann distribution and data mine the results. In particular, moving beyond the single structure prediction paradigm yields substantial gains in accuracy. Furthermore, the largest improvements in accuracy and precision come from viewing secondary structures not at the base pair level but at lower granularity/higher abstraction. This suggests that random errors affecting precision and systematic ones affecting accuracy are both reduced by this “fuzzier” view of secondary structures. Thus experimentalists who are willing to adopt a more rigorous, multilayered approach to secondary structure prediction by iterating through these levels of granularity will be much better able to capture fundamental aspects of RNA base pairing. PMID:26971529

  12. PARTS: Probabilistic Alignment for RNA joinT Secondary structure prediction

    PubMed Central

    Harmanci, Arif Ozgun; Sharma, Gaurav; Mathews, David H.

    2008-01-01

    A novel method is presented for joint prediction of alignment and common secondary structures of two RNA sequences. The joint consideration of common secondary structures and alignment is accomplished by structural alignment over a search space defined by the newly introduced motif called matched helical regions. The matched helical region formulation generalizes previously employed constraints for structural alignment and thereby better accommodates the structural variability within RNA families. A probabilistic model based on pseudo free energies obtained from precomputed base pairing and alignment probabilities is utilized for scoring structural alignments. Maximum a posteriori (MAP) common secondary structures, sequence alignment and joint posterior probabilities of base pairing are obtained from the model via a dynamic programming algorithm called PARTS. The advantage of the more general structural alignment of PARTS is seen in secondary structure predictions for the RNase P family. For this family, the PARTS MAP predictions of secondary structures and alignment perform significantly better than prior methods that utilize a more restrictive structural alignment model. For the tRNA and 5S rRNA families, the richer structural alignment model of PARTS does not offer a benefit and the method therefore performs comparably with existing alternatives. For all RNA families studied, the posterior probability estimates obtained from PARTS offer an improvement over posterior probability estimates from a single sequence prediction. When considering the base pairings predicted over a threshold value of confidence, the combination of sensitivity and positive predictive value is superior for PARTS than for the single sequence prediction. PARTS source code is available for download under the GNU public license at http://rna.urmc.rochester.edu. PMID:18304945

  13. MicroRNAfold: pre-microRNA secondary structure prediction based on modified NCM model with thermodynamics-based scoring strategy.

    PubMed

    Han, Dianwei; Zhang, Jun; Tang, Guiliang

    2012-01-01

    An accurate prediction of the pre-microRNA secondary structure is important in miRNA informatics. Based on a recently proposed model, nucleotide cyclic motifs (NCM), to predict RNA secondary structure, we propose and implement a Modified NCM (MNCM) model with a physics-based scoring strategy to tackle the problem of pre-microRNA folding. Our microRNAfold is implemented using a global optimal algorithm based on the bottom-up local optimal solutions. Our experimental results show that microRNAfold outperforms the current leading prediction tools in terms of True Negative rate, False Negative rate, Specificity, and Matthews coefficient ratio.

  14. Halide salts and their structural properties in presence of secondary amine based molecule: A combined experimental and theoretical analysis

    NASA Astrophysics Data System (ADS)

    Ghosh, Pritam; Hazra, Abhijit; Ghosh, Meenakshi; Chandra Murmu, Naresh; Banerjee, Priyabrata

    2018-04-01

    Biologically relevant halide salts and its solution state structural properties are always been significant. In general, exposure of halide salts into polar solution medium results in solvation which in turn separates the cationic and anionic part of the salt. However, the conventional behaviour of salts might alter in presence of any secondary amine based compound, i.e.; moderately strong Lewis acid. In its consequence, to investigate the effect of secondary amine based compound in the salt solution, novel (E)-2-(4-bromobenzylidene)-1-(perfluorophenyl) hydrazine has been synthesized and used as secondary amine source. The secondary amine compound interestingly shows a drastic color change upon exposure to fluoride salts owing to hydrogen bonding interaction. Several experimental methods, e.g.; SCXRD, UV-Vis, FT-IR, ESI-MS and DLS together with modern DFT (i.e.; DFT-D3) have been performed to explore the structural properties of the halide salts upon exposure to secondary amine based compound. The effect of counter cation of the fluoride salt in binding with secondary amine source has also been investigated.

  15. Functional formation of domain V of the poliovirus noncoding region: significance of unpaired bases.

    PubMed

    Rowe, A; Burlison, J; Macadam, A J; Minor, P D

    2001-10-10

    Previously we have shown that polioviruses with mutations that disrupt the predicted secondary structure of the 5' noncoding region of domain V are temperature sensitive for growth. Non-temperature-sensitive revertant viruses had mutations that re-formed secondary structure by a direct back mutation of changes in the opposite strand. We mutated unpaired regions and selected revertants of viruses with single base deletions, where no obvious back mutation was available in order to gain information on secondary structure. Results indicated that conservation of length of a three base loop between two double-stranded stems was essential for a functional domain V to form. The requirement for the unpaired "hinge" base at 484 which is implicated in the attenuation of Sabin 2 was also confirmed. Results also underline the necessity for functional folding over local secondary structure stability. Copyright 2001 Academic Press.

  16. The conservation and function of RNA secondary structure in plants

    PubMed Central

    Vandivier, Lee E.; Anderson, Stephen J.; Foley, Shawn W.; Gregory, Brian D.

    2016-01-01

    RNA transcripts fold into secondary structures via intricate patterns of base pairing. These secondary structures impart catalytic, ligand binding, and scaffolding functions to a wide array of RNAs, forming a critical node of biological regulation. Among their many functions, RNA structural elements modulate epigenetic marks, alter mRNA stability and translation, regulate alternative splicing, transduce signals, and scaffold large macromolecular complexes. Thus, the study of RNA secondary structure is critical to understanding the function and regulation of RNA transcripts. Here, we review the origins, form, and function of RNA secondary structure, focusing on plants. We then provide an overview of methods for probing secondary structure, from physical methods such as X-ray crystallography and nuclear magnetic resonance imaging (NMR) to chemical and nuclease probing methods. Marriage with high-throughput sequencing has enabled these latter methods to scale across whole transcriptomes, yielding tremendous new insights into the form and function of RNA secondary structure. PMID:26865341

  17. Robust prediction of consensus secondary structures using averaged base pairing probability matrices.

    PubMed

    Kiryu, Hisanori; Kin, Taishin; Asai, Kiyoshi

    2007-02-15

    Recent transcriptomic studies have revealed the existence of a considerable number of non-protein-coding RNA transcripts in higher eukaryotic cells. To investigate the functional roles of these transcripts, it is of great interest to find conserved secondary structures from multiple alignments on a genomic scale. Since multiple alignments are often created using alignment programs that neglect the special conservation patterns of RNA secondary structures for computational efficiency, alignment failures can cause potential risks of overlooking conserved stem structures. We investigated the dependence of the accuracy of secondary structure prediction on the quality of alignments. We compared three algorithms that maximize the expected accuracy of secondary structures as well as other frequently used algorithms. We found that one of our algorithms, called McCaskill-MEA, was more robust against alignment failures than others. The McCaskill-MEA method first computes the base pairing probability matrices for all the sequences in the alignment and then obtains the base pairing probability matrix of the alignment by averaging over these matrices. The consensus secondary structure is predicted from this matrix such that the expected accuracy of the prediction is maximized. We show that the McCaskill-MEA method performs better than other methods, particularly when the alignment quality is low and when the alignment consists of many sequences. Our model has a parameter that controls the sensitivity and specificity of predictions. We discussed the uses of that parameter for multi-step screening procedures to search for conserved secondary structures and for assigning confidence values to the predicted base pairs. The C++ source code that implements the McCaskill-MEA algorithm and the test dataset used in this paper are available at http://www.ncrna.org/papers/McCaskillMEA/. Supplementary data are available at Bioinformatics online.

  18. RNACompress: Grammar-based compression and informational complexity measurement of RNA secondary structure.

    PubMed

    Liu, Qi; Yang, Yu; Chen, Chun; Bu, Jiajun; Zhang, Yin; Ye, Xiuzi

    2008-03-31

    With the rapid emergence of RNA databases and newly identified non-coding RNAs, an efficient compression algorithm for RNA sequence and structural information is needed for the storage and analysis of such data. Although several algorithms for compressing DNA sequences have been proposed, none of them are suitable for the compression of RNA sequences with their secondary structures simultaneously. This kind of compression not only facilitates the maintenance of RNA data, but also supplies a novel way to measure the informational complexity of RNA structural data, raising the possibility of studying the relationship between the functional activities of RNA structures and their complexities, as well as various structural properties of RNA based on compression. RNACompress employs an efficient grammar-based model to compress RNA sequences and their secondary structures. The main goals of this algorithm are two fold: (1) present a robust and effective way for RNA structural data compression; (2) design a suitable model to represent RNA secondary structure as well as derive the informational complexity of the structural data based on compression. Our extensive tests have shown that RNACompress achieves a universally better compression ratio compared with other sequence-specific or common text-specific compression algorithms, such as Gencompress, winrar and gzip. Moreover, a test of the activities of distinct GTP-binding RNAs (aptamers) compared with their structural complexity shows that our defined informational complexity can be used to describe how complexity varies with activity. These results lead to an objective means of comparing the functional properties of heteropolymers from the information perspective. A universal algorithm for the compression of RNA secondary structure as well as the evaluation of its informational complexity is discussed in this paper. We have developed RNACompress, as a useful tool for academic users. Extensive tests have shown that RNACompress is a universally efficient algorithm for the compression of RNA sequences with their secondary structures. RNACompress also serves as a good measurement of the informational complexity of RNA secondary structure, which can be used to study the functional activities of RNA molecules.

  19. RNACompress: Grammar-based compression and informational complexity measurement of RNA secondary structure

    PubMed Central

    Liu, Qi; Yang, Yu; Chen, Chun; Bu, Jiajun; Zhang, Yin; Ye, Xiuzi

    2008-01-01

    Background With the rapid emergence of RNA databases and newly identified non-coding RNAs, an efficient compression algorithm for RNA sequence and structural information is needed for the storage and analysis of such data. Although several algorithms for compressing DNA sequences have been proposed, none of them are suitable for the compression of RNA sequences with their secondary structures simultaneously. This kind of compression not only facilitates the maintenance of RNA data, but also supplies a novel way to measure the informational complexity of RNA structural data, raising the possibility of studying the relationship between the functional activities of RNA structures and their complexities, as well as various structural properties of RNA based on compression. Results RNACompress employs an efficient grammar-based model to compress RNA sequences and their secondary structures. The main goals of this algorithm are two fold: (1) present a robust and effective way for RNA structural data compression; (2) design a suitable model to represent RNA secondary structure as well as derive the informational complexity of the structural data based on compression. Our extensive tests have shown that RNACompress achieves a universally better compression ratio compared with other sequence-specific or common text-specific compression algorithms, such as Gencompress, winrar and gzip. Moreover, a test of the activities of distinct GTP-binding RNAs (aptamers) compared with their structural complexity shows that our defined informational complexity can be used to describe how complexity varies with activity. These results lead to an objective means of comparing the functional properties of heteropolymers from the information perspective. Conclusion A universal algorithm for the compression of RNA secondary structure as well as the evaluation of its informational complexity is discussed in this paper. We have developed RNACompress, as a useful tool for academic users. Extensive tests have shown that RNACompress is a universally efficient algorithm for the compression of RNA sequences with their secondary structures. RNACompress also serves as a good measurement of the informational complexity of RNA secondary structure, which can be used to study the functional activities of RNA molecules. PMID:18373878

  20. Influence of thermodynamically unfavorable secondary structures on DNA hybridization kinetics

    PubMed Central

    Hata, Hiroaki; Kitajima, Tetsuro

    2018-01-01

    Abstract Nucleic acid secondary structure plays an important role in nucleic acid–nucleic acid recognition/hybridization processes, and is also a vital consideration in DNA nanotechnology. Although the influence of stable secondary structures on hybridization kinetics has been characterized, unstable secondary structures, which show positive ΔG° with self-folding, can also form, and their effects have not been systematically investigated. Such thermodynamically unfavorable secondary structures should not be ignored in DNA hybridization kinetics, especially under isothermal conditions. Here, we report that positive ΔG° secondary structures can change the hybridization rate by two-orders of magnitude, despite the fact that their hybridization obeyed second-order reaction kinetics. The temperature dependence of hybridization rates showed non-Arrhenius behavior; thus, their hybridization is considered to be nucleation limited. We derived a model describing how ΔG° positive secondary structures affect hybridization kinetics in stopped-flow experiments with 47 pairs of oligonucleotides. The calculated hybridization rates, which were based on the model, quantitatively agreed with the experimental rate constant. PMID:29220504

  1. JNSViewer—A JavaScript-based Nucleotide Sequence Viewer for DNA/RNA secondary structures

    PubMed Central

    Dong, Min; Graham, Mitchell; Yadav, Nehul

    2017-01-01

    Many tools are available for visualizing RNA or DNA secondary structures, but there is scarce implementation in JavaScript that provides seamless integration with the increasingly popular web computational platforms. We have developed JNSViewer, a highly interactive web service, which is bundled with several popular tools for DNA/RNA secondary structure prediction and can provide precise and interactive correspondence among nucleotides, dot-bracket data, secondary structure graphs, and genic annotations. In JNSViewer, users can perform RNA secondary structure predictions with different programs and settings, add customized genic annotations in GFF format to structure graphs, search for specific linear motifs, and extract relevant structure graphs of sub-sequences. JNSViewer also allows users to choose a transcript or specific segment of Arabidopsis thaliana genome sequences and predict the corresponding secondary structure. Popular genome browsers (i.e., JBrowse and BrowserGenome) were integrated into JNSViewer to provide powerful visualizations of chromosomal locations, genic annotations, and secondary structures. In addition, we used StructureFold with default settings to predict some RNA structures for Arabidopsis by incorporating in vivo high-throughput RNA structure profiling data and stored the results in our web server, which might be a useful resource for RNA secondary structure studies in plants. JNSViewer is available at http://bioinfolab.miamioh.edu/jnsviewer/index.html. PMID:28582416

  2. Prediction of protein secondary structure content for the twilight zone sequences.

    PubMed

    Homaeian, Leila; Kurgan, Lukasz A; Ruan, Jishou; Cios, Krzysztof J; Chen, Ke

    2007-11-15

    Secondary protein structure carries information about local structural arrangements, which include three major conformations: alpha-helices, beta-strands, and coils. Significant majority of successful methods for prediction of the secondary structure is based on multiple sequence alignment. However, multiple alignment fails to provide accurate results when a sequence comes from the twilight zone, that is, it is characterized by low (<30%) homology. To this end, we propose a novel method for prediction of secondary structure content through comprehensive sequence representation, called PSSC-core. The method uses a multiple linear regression model and introduces a comprehensive feature-based sequence representation to predict amount of helices and strands for sequences from the twilight zone. The PSSC-core method was tested and compared with two other state-of-the-art prediction methods on a set of 2187 twilight zone sequences. The results indicate that our method provides better predictions for both helix and strand content. The PSSC-core is shown to provide statistically significantly better results when compared with the competing methods, reducing the prediction error by 5-7% for helix and 7-9% for strand content predictions. The proposed feature-based sequence representation uses a comprehensive set of physicochemical properties that are custom-designed for each of the helix and strand content predictions. It includes composition and composition moment vectors, frequency of tetra-peptides associated with helical and strand conformations, various property-based groups like exchange groups, chemical groups of the side chains and hydrophobic group, auto-correlations based on hydrophobicity, side-chain masses, hydropathy, and conformational patterns for beta-sheets. The PSSC-core method provides an alternative for predicting the secondary structure content that can be used to validate and constrain results of other structure prediction methods. At the same time, it also provides useful insight into design of successful protein sequence representations that can be used in developing new methods related to prediction of different aspects of the secondary protein structure. (c) 2007 Wiley-Liss, Inc.

  3. The turn of the screw: an exercise in protein secondary structure.

    PubMed

    Pikaart, Michael

    2011-01-01

    An exercise using simple paper strips to illustrate protein helical and sheet secondary structures is presented. Drawing on the rich historical context of the use of physical models in protein biochemistry by early practitioners, in particular Linus Pauling, the purpose of this activity is to cultivate in students a hands-on, intuitive sense of protein secondary structure and to complement the common computer-based structural portrayals often used in teaching biochemistry. As students fold these paper strips into model secondary structures, they will better grasp how intramolecular hydrogen bonds form in the folding of a polypeptide into secondary structure, and how these hydrogen bonds direct the overall shape of helical and sheet structures, including the handedness of the α-helix and the difference between right- and the left-handed twist. Copyright © 2010 Wiley Periodicals, Inc.

  4. Correlation of RNA secondary structure statistics with thermodynamic stability and applications to folding.

    PubMed

    Wu, Johnny C; Gardner, David P; Ozer, Stuart; Gutell, Robin R; Ren, Pengyu

    2009-08-28

    The accurate prediction of the secondary and tertiary structure of an RNA with different folding algorithms is dependent on several factors, including the energy functions. However, an RNA higher-order structure cannot be predicted accurately from its sequence based on a limited set of energy parameters. The inter- and intramolecular forces between this RNA and other small molecules and macromolecules, in addition to other factors in the cell such as pH, ionic strength, and temperature, influence the complex dynamics associated with transition of a single stranded RNA to its secondary and tertiary structure. Since all of the factors that affect the formation of an RNAs 3D structure cannot be determined experimentally, statistically derived potential energy has been used in the prediction of protein structure. In the current work, we evaluate the statistical free energy of various secondary structure motifs, including base-pair stacks, hairpin loops, and internal loops, using their statistical frequency obtained from the comparative analysis of more than 50,000 RNA sequences stored in the RNA Comparative Analysis Database (rCAD) at the Comparative RNA Web (CRW) Site. Statistical energy was computed from the structural statistics for several datasets. While the statistical energy for a base-pair stack correlates with experimentally derived free energy values, suggesting a Boltzmann-like distribution, variation is observed between different molecules and their location on the phylogenetic tree of life. Our statistical energy values calculated for several structural elements were utilized in the Mfold RNA-folding algorithm. The combined statistical energy values for base-pair stacks, hairpins and internal loop flanks result in a significant improvement in the accuracy of secondary structure prediction; the hairpin flanks contribute the most.

  5. Correlation of RNA secondary structure and attenuation of Sabin vaccine strains of poliovirus in tissue culture.

    PubMed

    Macadam, A J; Ferguson, G; Burlison, J; Stone, D; Skuce, R; Almond, J W; Minor, P D

    1992-08-01

    Part of the 5' noncoding regions of all three Sabin vaccine strains of poliovirus contains determinants of attenuation that are shown here to influence the ability of these strains to grow at elevated temperatures in BGM cells. The predicted RNA secondary structure of this region (nt 464-542 in P3/Sabin) suggests that both phenotypes are due to perturbation of base-paired stems. Ts phenotypes of site-directed mutants with defined changes in this region correlated well with predicted secondary structure stabilities. Reversal of base-pair orientation had little effect whereas stem disruption led to marked increases in temperature sensitivity. Phenotypic revertants of such viruses displayed mutations on either side of the stem. Mutations destabilizing stems led to intermediate phenotypes. These results provided evidence for the biological significance of the predicted RNA secondary structure.

  6. Secondary Structure Predictions for Long RNA Sequences Based on Inversion Excursions and MapReduce.

    PubMed

    Yehdego, Daniel T; Zhang, Boyu; Kodimala, Vikram K R; Johnson, Kyle L; Taufer, Michela; Leung, Ming-Ying

    2013-05-01

    Secondary structures of ribonucleic acid (RNA) molecules play important roles in many biological processes including gene expression and regulation. Experimental observations and computing limitations suggest that we can approach the secondary structure prediction problem for long RNA sequences by segmenting them into shorter chunks, predicting the secondary structures of each chunk individually using existing prediction programs, and then assembling the results to give the structure of the original sequence. The selection of cutting points is a crucial component of the segmenting step. Noting that stem-loops and pseudoknots always contain an inversion, i.e., a stretch of nucleotides followed closely by its inverse complementary sequence, we developed two cutting methods for segmenting long RNA sequences based on inversion excursions: the centered and optimized method. Each step of searching for inversions, chunking, and predictions can be performed in parallel. In this paper we use a MapReduce framework, i.e., Hadoop, to extensively explore meaningful inversion stem lengths and gap sizes for the segmentation and identify correlations between chunking methods and prediction accuracy. We show that for a set of long RNA sequences in the RFAM database, whose secondary structures are known to contain pseudoknots, our approach predicts secondary structures more accurately than methods that do not segment the sequence, when the latter predictions are possible computationally. We also show that, as sequences exceed certain lengths, some programs cannot computationally predict pseudoknots while our chunking methods can. Overall, our predicted structures still retain the accuracy level of the original prediction programs when compared with known experimental secondary structure.

  7. Analysis of protein circular dichroism spectra for secondary structure using a simple matrix multiplication.

    PubMed

    Compton, L A; Johnson, W C

    1986-05-15

    Inverse circular dichroism (CD) spectra are presented for each of the five major secondary structures of proteins: alpha-helix, antiparallel and parallel beta-sheet, beta-turn, and other (random) structures. The fraction of the each secondary structure in a protein is predicted by forming the dot product of the corresponding inverse CD spectrum, expressed as a vector, with the CD spectrum of the protein digitized in the same way. We show how this method is based on the construction of the generalized inverse from the singular value decomposition of a set of CD spectra corresponding to proteins whose secondary structures are known from X-ray crystallography. These inverse spectra compute secondary structure directly from protein CD spectra without resorting to least-squares fitting and standard matrix inversion techniques. In addition, spectra corresponding to the individual secondary structures, analogous to the CD spectra of synthetic polypeptides, are generated from the five most significant CD eigenvectors.

  8. RNA secondary structure prediction with pseudoknots: Contribution of algorithm versus energy model.

    PubMed

    Jabbari, Hosna; Wark, Ian; Montemagno, Carlo

    2018-01-01

    RNA is a biopolymer with various applications inside the cell and in biotechnology. Structure of an RNA molecule mainly determines its function and is essential to guide nanostructure design. Since experimental structure determination is time-consuming and expensive, accurate computational prediction of RNA structure is of great importance. Prediction of RNA secondary structure is relatively simpler than its tertiary structure and provides information about its tertiary structure, therefore, RNA secondary structure prediction has received attention in the past decades. Numerous methods with different folding approaches have been developed for RNA secondary structure prediction. While methods for prediction of RNA pseudoknot-free structure (structures with no crossing base pairs) have greatly improved in terms of their accuracy, methods for prediction of RNA pseudoknotted secondary structure (structures with crossing base pairs) still have room for improvement. A long-standing question for improving the prediction accuracy of RNA pseudoknotted secondary structure is whether to focus on the prediction algorithm or the underlying energy model, as there is a trade-off on computational cost of the prediction algorithm versus the generality of the method. The aim of this work is to argue when comparing different methods for RNA pseudoknotted structure prediction, the combination of algorithm and energy model should be considered and a method should not be considered superior or inferior to others if they do not use the same scoring model. We demonstrate that while the folding approach is important in structure prediction, it is not the only important factor in prediction accuracy of a given method as the underlying energy model is also as of great value. Therefore we encourage researchers to pay particular attention in comparing methods with different energy models.

  9. Computing the Partition Function for Kinetically Trapped RNA Secondary Structures

    PubMed Central

    Lorenz, William A.; Clote, Peter

    2011-01-01

    An RNA secondary structure is locally optimal if there is no lower energy structure that can be obtained by the addition or removal of a single base pair, where energy is defined according to the widely accepted Turner nearest neighbor model. Locally optimal structures form kinetic traps, since any evolution away from a locally optimal structure must involve energetically unfavorable folding steps. Here, we present a novel, efficient algorithm to compute the partition function over all locally optimal secondary structures of a given RNA sequence. Our software, RNAlocopt runs in time and space. Additionally, RNAlocopt samples a user-specified number of structures from the Boltzmann subensemble of all locally optimal structures. We apply RNAlocopt to show that (1) the number of locally optimal structures is far fewer than the total number of structures – indeed, the number of locally optimal structures approximately equal to the square root of the number of all structures, (2) the structural diversity of this subensemble may be either similar to or quite different from the structural diversity of the entire Boltzmann ensemble, a situation that depends on the type of input RNA, (3) the (modified) maximum expected accuracy structure, computed by taking into account base pairing frequencies of locally optimal structures, is a more accurate prediction of the native structure than other current thermodynamics-based methods. The software RNAlocopt constitutes a technical breakthrough in our study of the folding landscape for RNA secondary structures. For the first time, locally optimal structures (kinetic traps in the Turner energy model) can be rapidly generated for long RNA sequences, previously impossible with methods that involved exhaustive enumeration. Use of locally optimal structure leads to state-of-the-art secondary structure prediction, as benchmarked against methods involving the computation of minimum free energy and of maximum expected accuracy. Web server and source code available at http://bioinformatics.bc.edu/clotelab/RNAlocopt/. PMID:21297972

  10. Impacts of structuring the electronic health record: Results of a systematic literature review from the perspective of secondary use of patient data.

    PubMed

    Vuokko, Riikka; Mäkelä-Bengs, Päivi; Hyppönen, Hannele; Lindqvist, Minna; Doupi, Persephone

    2017-01-01

    To explore the impacts that structuring of electronic health records (EHRs) has had from the perspective of secondary use of patient data as reflected in currently published literature. This paper presents the results of a systematic literature review aimed at answering the following questions; (1) what are the common methods of structuring patient data to serve secondary use purposes; (2) what are the common methods of evaluating patient data structuring in the secondary use context, and (3) what impacts or outcomes of EHR structuring have been reported from the secondary use perspective. The reported study forms part of a wider systematic literature review on the impacts of EHR structuring methods and evaluations of their impact. The review was based on a 12-step systematic review protocol adapted from the Cochrane methodology. Original articles included in the study were divided into three groups for analysis and reporting based on their use focus: nursing documentation, medical use and secondary use (presented in this paper). The analysis from the perspective of secondary use of data includes 85 original articles from 1975 to 2010 retrieved from 15 bibliographic databases. The implementation of structured EHRs can be roughly divided into applications for documenting patient data at the point of care and application for retrieval of patient data (post hoc structuring). Two thirds of the secondary use articles concern EHR structuring methods which were still under development or in the testing phase. of structuring patient data such as codes, terminologies, reference information models, forms or templates and documentation standards were usually applied in combination. Most of the identified benefits of utilizing structured EHR data for secondary use purposes concentrated on information content and quality or on technical quality and reliability, particularly in the case of Natural Language Processing (NLP) studies. A few individual articles evaluated impacts on care processes, productivity and costs, patient safety, care quality or other health impacts. In most articles these endpoints were usually discussed as goals of secondary use and less as evidence-supported impacts, resulting from the use of structured EHR data for secondary purposes. Further studies and more sound evaluation methods are needed for evidence on how EHRs are utilized for secondary purposes, and how structured documentation methods can serve different users' needs, e.g. administration, statistics and research and development, in parallel to medical use purposes. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  11. Protein secondary structure prediction using modular reciprocal bidirectional recurrent neural networks.

    PubMed

    Babaei, Sepideh; Geranmayeh, Amir; Seyyedsalehi, Seyyed Ali

    2010-12-01

    The supervised learning of recurrent neural networks well-suited for prediction of protein secondary structures from the underlying amino acids sequence is studied. Modular reciprocal recurrent neural networks (MRR-NN) are proposed to model the strong correlations between adjacent secondary structure elements. Besides, a multilayer bidirectional recurrent neural network (MBR-NN) is introduced to capture the long-range intramolecular interactions between amino acids in formation of the secondary structure. The final modular prediction system is devised based on the interactive integration of the MRR-NN and the MBR-NN structures to arbitrarily engage the neighboring effects of the secondary structure types concurrent with memorizing the sequential dependencies of amino acids along the protein chain. The advanced combined network augments the percentage accuracy (Q₃) to 79.36% and boosts the segment overlap (SOV) up to 70.09% when tested on the PSIPRED dataset in three-fold cross-validation. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  12. Deciphering the shape and deformation of secondary structures through local conformation analysis

    PubMed Central

    2011-01-01

    Background Protein deformation has been extensively analysed through global methods based on RMSD, torsion angles and Principal Components Analysis calculations. Here we use a local approach, able to distinguish among the different backbone conformations within loops, α-helices and β-strands, to address the question of secondary structures' shape variation within proteins and deformation at interface upon complexation. Results Using a structural alphabet, we translated the 3 D structures of large sets of protein-protein complexes into sequences of structural letters. The shape of the secondary structures can be assessed by the structural letters that modeled them in the structural sequences. The distribution analysis of the structural letters in the three protein compartments (surface, core and interface) reveals that secondary structures tend to adopt preferential conformations that differ among the compartments. The local description of secondary structures highlights that curved conformations are preferred on the surface while straight ones are preferred in the core. Interfaces display a mixture of local conformations either preferred in core or surface. The analysis of the structural letters transition occurring between protein-bound and unbound conformations shows that the deformation of secondary structure is tightly linked to the compartment preference of the local conformations. Conclusion The conformation of secondary structures can be further analysed and detailed thanks to a structural alphabet which allows a better description of protein surface, core and interface in terms of secondary structures' shape and deformation. Induced-fit modification tendencies described here should be valuable information to identify and characterize regions under strong structural constraints for functional reasons. PMID:21284872

  13. Deciphering the shape and deformation of secondary structures through local conformation analysis.

    PubMed

    Baussand, Julie; Camproux, Anne-Claude

    2011-02-01

    Protein deformation has been extensively analysed through global methods based on RMSD, torsion angles and Principal Components Analysis calculations. Here we use a local approach, able to distinguish among the different backbone conformations within loops, α-helices and β-strands, to address the question of secondary structures' shape variation within proteins and deformation at interface upon complexation. Using a structural alphabet, we translated the 3 D structures of large sets of protein-protein complexes into sequences of structural letters. The shape of the secondary structures can be assessed by the structural letters that modeled them in the structural sequences. The distribution analysis of the structural letters in the three protein compartments (surface, core and interface) reveals that secondary structures tend to adopt preferential conformations that differ among the compartments. The local description of secondary structures highlights that curved conformations are preferred on the surface while straight ones are preferred in the core. Interfaces display a mixture of local conformations either preferred in core or surface. The analysis of the structural letters transition occurring between protein-bound and unbound conformations shows that the deformation of secondary structure is tightly linked to the compartment preference of the local conformations. The conformation of secondary structures can be further analysed and detailed thanks to a structural alphabet which allows a better description of protein surface, core and interface in terms of secondary structures' shape and deformation. Induced-fit modification tendencies described here should be valuable information to identify and characterize regions under strong structural constraints for functional reasons.

  14. Secondary structure of the 3'-noncoding region of flavivirus genomes: comparative analysis of base pairing probabilities.

    PubMed

    Rauscher, S; Flamm, C; Mandl, C W; Heinz, F X; Stadler, P F

    1997-07-01

    The prediction of the complete matrix of base pairing probabilities was applied to the 3' noncoding region (NCR) of flavivirus genomes. This approach identifies not only well-defined secondary structure elements, but also regions of high structural flexibility. Flaviviruses, many of which are important human pathogens, have a common genomic organization, but exhibit a significant degree of RNA sequence diversity in the functionally important 3'-NCR. We demonstrate the presence of secondary structures shared by all flaviviruses, as well as structural features that are characteristic for groups of viruses within the genus reflecting the established classification scheme. The significance of most of the predicted structures is corroborated by compensatory mutations. The availability of infectious clones for several flaviviruses will allow the assessment of these structural elements in processes of the viral life cycle, such as replication and assembly.

  15. Leading and Managing the Competence-Based Curriculum: Conscripts, Volunteers and Champions at Work within the Departmentalised Environment of the Secondary School

    ERIC Educational Resources Information Center

    Downey, Christopher; Byrne, Jenny; Souza, Ana

    2013-01-01

    This article presents a sub-set of findings from a research project describing the experience of four case study schools which have implemented a competence-based curriculum (CBC) for students in their first year of secondary education. Secondary schools are highly departmentalised environments with organisational structures based primarily around…

  16. Accelerating calculations of RNA secondary structure partition functions using GPUs

    PubMed Central

    2013-01-01

    Background RNA performs many diverse functions in the cell in addition to its role as a messenger of genetic information. These functions depend on its ability to fold to a unique three-dimensional structure determined by the sequence. The conformation of RNA is in part determined by its secondary structure, or the particular set of contacts between pairs of complementary bases. Prediction of the secondary structure of RNA from its sequence is therefore of great interest, but can be computationally expensive. In this work we accelerate computations of base-pair probababilities using parallel graphics processing units (GPUs). Results Calculation of the probabilities of base pairs in RNA secondary structures using nearest-neighbor standard free energy change parameters has been implemented using CUDA to run on hardware with multiprocessor GPUs. A modified set of recursions was introduced, which reduces memory usage by about 25%. GPUs are fastest in single precision, and for some hardware, restricted to single precision. This may introduce significant roundoff error. However, deviations in base-pair probabilities calculated using single precision were found to be negligible compared to those resulting from shifting the nearest-neighbor parameters by a random amount of magnitude similar to their experimental uncertainties. For large sequences running on our particular hardware, the GPU implementation reduces execution time by a factor of close to 60 compared with an optimized serial implementation, and by a factor of 116 compared with the original code. Conclusions Using GPUs can greatly accelerate computation of RNA secondary structure partition functions, allowing calculation of base-pair probabilities for large sequences in a reasonable amount of time, with a negligible compromise in accuracy due to working in single precision. The source code is integrated into the RNAstructure software package and available for download at http://rna.urmc.rochester.edu. PMID:24180434

  17. R-chie: a web server and R package for visualizing RNA secondary structures

    PubMed Central

    Lai, Daniel; Proctor, Jeff R.; Zhu, Jing Yun A.; Meyer, Irmtraud M.

    2012-01-01

    Visually examining RNA structures can greatly aid in understanding their potential functional roles and in evaluating the performance of structure prediction algorithms. As many functional roles of RNA structures can already be studied given the secondary structure of the RNA, various methods have been devised for visualizing RNA secondary structures. Most of these methods depict a given RNA secondary structure as a planar graph consisting of base-paired stems interconnected by roundish loops. In this article, we present an alternative method of depicting RNA secondary structure as arc diagrams. This is well suited for structures that are difficult or impossible to represent as planar stem-loop diagrams. Arc diagrams can intuitively display pseudo-knotted structures, as well as transient and alternative structural features. In addition, they facilitate the comparison of known and predicted RNA secondary structures. An added benefit is that structure information can be displayed in conjunction with a corresponding multiple sequence alignments, thereby highlighting structure and primary sequence conservation and variation. We have implemented the visualization algorithm as a web server R-chie as well as a corresponding R package called R4RNA, which allows users to run the software locally and across a range of common operating systems. PMID:22434875

  18. Differential Targeting of Unpaired Bases within Duplex DNA by the Natural Compound Clerocidin: A Valuable Tool to Dissect DNA Secondary Structure

    PubMed Central

    Nadai, Matteo; Palù, Giorgio; Palumbo, Manlio; Richter, Sara N.

    2012-01-01

    Non-canonical DNA structures have been postulated to mediate protein-nucleic acid interactions and to function as intermediates in the generation of frame-shift mutations when errors in DNA replication occur, which result in a variety of diseases and cancers. Compounds capable of binding to non-canonical DNA conformations may thus have significant diagnostic and therapeutic potential. Clerocidin is a natural diterpenoid which has been shown to selectively react with single-stranded bases without targeting the double helix. Here we performed a comprehensive analysis on several non-canonical DNA secondary structures, namely mismatches, nicks, bulges, hairpins, with sequence variations in both the single-stranded region and the double-stranded flanking segment. By analysis of clerocidin reactivity, we were able to identify the exposed reactive residues which provided information on both the secondary structure and the accessibility of the non-paired sites. Mismatches longer than 1 base were necessary to be reached by clerocidin reactive groups, while 1-base nicks were promptly targeted by clerocidin; in hairpins, clerocidin reactivity increased with the length of the hairpin loop, while, interestingly, reactivity towards bulges reached a maximum in 3-base-long bulges and declined in longer bulges. Electrophoretic mobility shift analysis demonstrated that bulges longer than 3 bases (i.e. 5- and 7-bases) folded or stacked on the duplex region therefore being less accessible by the compound. Clerocidin thus represents a new valuable diagnostic tool to dissect DNA secondary structures. PMID:23285245

  19. Differential targeting of unpaired bases within duplex DNA by the natural compound clerocidin: a valuable tool to dissect DNA secondary structure.

    PubMed

    Nadai, Matteo; Palù, Giorgio; Palumbo, Manlio; Richter, Sara N

    2012-01-01

    Non-canonical DNA structures have been postulated to mediate protein-nucleic acid interactions and to function as intermediates in the generation of frame-shift mutations when errors in DNA replication occur, which result in a variety of diseases and cancers. Compounds capable of binding to non-canonical DNA conformations may thus have significant diagnostic and therapeutic potential. Clerocidin is a natural diterpenoid which has been shown to selectively react with single-stranded bases without targeting the double helix. Here we performed a comprehensive analysis on several non-canonical DNA secondary structures, namely mismatches, nicks, bulges, hairpins, with sequence variations in both the single-stranded region and the double-stranded flanking segment. By analysis of clerocidin reactivity, we were able to identify the exposed reactive residues which provided information on both the secondary structure and the accessibility of the non-paired sites. Mismatches longer than 1 base were necessary to be reached by clerocidin reactive groups, while 1-base nicks were promptly targeted by clerocidin; in hairpins, clerocidin reactivity increased with the length of the hairpin loop, while, interestingly, reactivity towards bulges reached a maximum in 3-base-long bulges and declined in longer bulges. Electrophoretic mobility shift analysis demonstrated that bulges longer than 3 bases (i.e. 5- and 7-bases) folded or stacked on the duplex region therefore being less accessible by the compound. Clerocidin thus represents a new valuable diagnostic tool to dissect DNA secondary structures.

  20. On the combinatorics of sparsification.

    PubMed

    Huang, Fenix Wd; Reidys, Christian M

    2012-10-22

    We study the sparsification of dynamic programming based on folding algorithms of RNA structures. Sparsification is a method that improves significantly the computation of minimum free energy (mfe) RNA structures. We provide a quantitative analysis of the sparsification of a particular decomposition rule, Λ∗. This rule splits an interval of RNA secondary and pseudoknot structures of fixed topological genus. Key for quantifying sparsifications is the size of the so called candidate sets. Here we assume mfe-structures to be specifically distributed (see Assumption 1) within arbitrary and irreducible RNA secondary and pseudoknot structures of fixed topological genus. We then present a combinatorial framework which allows by means of probabilities of irreducible sub-structures to obtain the expectation of the Λ∗-candidate set w.r.t. a uniformly random input sequence. We compute these expectations for arc-based energy models via energy-filtered generating functions (GF) in case of RNA secondary structures as well as RNA pseudoknot structures. Furthermore, for RNA secondary structures we also analyze a simplified loop-based energy model. Our combinatorial analysis is then compared to the expected number of Λ∗-candidates obtained from the folding mfe-structures. In case of the mfe-folding of RNA secondary structures with a simplified loop-based energy model our results imply that sparsification provides a significant, constant improvement of 91% (theory) to be compared to an 96% (experimental, simplified arc-based model) reduction. However, we do not observe a linear factor improvement. Finally, in case of the "full" loop-energy model we can report a reduction of 98% (experiment). Sparsification was initially attributed a linear factor improvement. This conclusion was based on the so called polymer-zeta property, which stems from interpreting polymer chains as self-avoiding walks. Subsequent findings however reveal that the O(n) improvement is not correct. The combinatorial analysis presented here shows that, assuming a specific distribution (see Assumption 1), of mfe-structures within irreducible and arbitrary structures, the expected number of Λ∗-candidates is Θ(n2). However, the constant reduction is quite significant, being in the range of 96%. We furthermore show an analogous result for the sparsification of the Λ∗-decomposition rule for RNA pseudoknotted structures of genus one. Finally we observe that the effect of sparsification is sensitive to the employed energy model.

  1. A parallel strategy for predicting the secondary structure of polycistronic microRNAs.

    PubMed

    Han, Dianwei; Tang, Guiliang; Zhang, Jun

    2013-01-01

    The biogenesis of a functional microRNA is largely dependent on the secondary structure of the microRNA precursor (pre-miRNA). Recently, it has been shown that microRNAs are present in the genome as the form of polycistronic transcriptional units in plants and animals. It will be important to design efficient computational methods to predict such structures for microRNA discovery and its applications in gene silencing. In this paper, we propose a parallel algorithm based on the master-slave architecture to predict the secondary structure from an input sequence. We conducted some experiments to verify the effectiveness of our parallel algorithm. The experimental results show that our algorithm is able to produce the optimal secondary structure of polycistronic microRNAs.

  2. Protein Secondary Structures (alpha-helix and beta-sheet) at a Cellular Levle and Protein Fractions in Relation to Rumen Degradation Behaviours of Protein: A New Approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu,P.

    2007-01-01

    Studying the secondary structure of proteins leads to an understanding of the components that make up a whole protein, and such an understanding of the structure of the whole protein is often vital to understanding its digestive behaviour and nutritive value in animals. The main protein secondary structures are the {alpha}-helix and {beta}-sheet. The percentage of these two structures in protein secondary structures influences protein nutritive value, quality and digestive behaviour. A high percentage of {beta}-sheet structure may partly cause a low access to gastrointestinal digestive enzymes, which results in a low protein value. The objectives of the present studymore » were to use advanced synchrotron-based Fourier transform IR (S-FTIR) microspectroscopy as a new approach to reveal the molecular chemistry of the protein secondary structures of feed tissues affected by heat-processing within intact tissue at a cellular level, and to quantify protein secondary structures using multicomponent peak modelling Gaussian and Lorentzian methods, in relation to protein digestive behaviours and nutritive value in the rumen, which was determined using the Cornell Net Carbohydrate Protein System. The synchrotron-based molecular chemistry research experiment was performed at the National Synchrotron Light Source at Brookhaven National Laboratory, US Department of Energy. The results showed that, with S-FTIR microspectroscopy, the molecular chemistry, ultrastructural chemical make-up and nutritive characteristics could be revealed at a high ultraspatial resolution ({approx}10 {mu}m). S-FTIR microspectroscopy revealed that the secondary structure of protein differed between raw and roasted golden flaxseeds in terms of the percentages and ratio of {alpha}-helixes and {beta}-sheets in the mid-IR range at the cellular level. By using multicomponent peak modelling, the results show that the roasting reduced (P <0.05) the percentage of {alpha}-helixes (from 47.1% to 36.1%: S-FTIR absorption intensity), increased the percentage of {beta}-sheets (from 37.2% to 49.8%: S-FTIR absorption intensity) and reduced the {alpha}-helix to {beta}-sheet ratio (from 0.3 to 0.7) in the golden flaxseeds, which indicated a negative effect of the roasting on protein values, utilisation and bioavailability. These results were proved by the Cornell Net Carbohydrate Protein System in situ animal trial, which also revealed that roasting increased the amount of protein bound to lignin, and well as of the Maillard reaction protein (both of which are poorly used by ruminants), and increased the level of indigestible and undegradable protein in ruminants. The present results demonstrate the potential of highly spatially resolved synchrotron-based infrared microspectroscopy to locate 'pure' protein in feed tissues, and reveal protein secondary structures and digestive behaviour, making a significant step forward in and an important contribution to protein nutritional research. Further study is needed to determine the sensitivities of protein secondary structures to various heat-processing conditions, and to quantify the relationship between protein secondary structures and the nutrient availability and digestive behaviour of various protein sources. Information from the present study arising from the synchrotron-based IR probing of the protein secondary structures of protein sources at the cellular level will be valuable as a guide to maintaining protein quality and predicting digestive behaviours.« less

  3. Density functional study of molecular interactions in secondary structures of proteins.

    PubMed

    Takano, Yu; Kusaka, Ayumi; Nakamura, Haruki

    2016-01-01

    Proteins play diverse and vital roles in biology, which are dominated by their three-dimensional structures. The three-dimensional structure of a protein determines its functions and chemical properties. Protein secondary structures, including α-helices and β-sheets, are key components of the protein architecture. Molecular interactions, in particular hydrogen bonds, play significant roles in the formation of protein secondary structures. Precise and quantitative estimations of these interactions are required to understand the principles underlying the formation of three-dimensional protein structures. In the present study, we have investigated the molecular interactions in α-helices and β-sheets, using ab initio wave function-based methods, the Hartree-Fock method (HF) and the second-order Møller-Plesset perturbation theory (MP2), density functional theory, and molecular mechanics. The characteristic interactions essential for forming the secondary structures are discussed quantitatively.

  4. A New Secondary Structure Assignment Algorithm Using Cα Backbone Fragments

    PubMed Central

    Cao, Chen; Wang, Guishen; Liu, An; Xu, Shutan; Wang, Lincong; Zou, Shuxue

    2016-01-01

    The assignment of secondary structure elements in proteins is a key step in the analysis of their structures and functions. We have developed an algorithm, SACF (secondary structure assignment based on Cα fragments), for secondary structure element (SSE) assignment based on the alignment of Cα backbone fragments with central poses derived by clustering known SSE fragments. The assignment algorithm consists of three steps: First, the outlier fragments on known SSEs are detected. Next, the remaining fragments are clustered to obtain the central fragments for each cluster. Finally, the central fragments are used as a template to make assignments. Following a large-scale comparison of 11 secondary structure assignment methods, SACF, KAKSI and PROSS are found to have similar agreement with DSSP, while PCASSO agrees with DSSP best. SACF and PCASSO show preference to reducing residues in N and C cap regions, whereas KAKSI, P-SEA and SEGNO tend to add residues to the terminals when DSSP assignment is taken as standard. Moreover, our algorithm is able to assign subtle helices (310-helix, π-helix and left-handed helix) and make uniform assignments, as well as to detect rare SSEs in β-sheets or long helices as outlier fragments from other programs. The structural uniformity should be useful for protein structure classification and prediction, while outlier fragments underlie the structure–function relationship. PMID:26978354

  5. RNAstructure: software for RNA secondary structure prediction and analysis.

    PubMed

    Reuter, Jessica S; Mathews, David H

    2010-03-15

    To understand an RNA sequence's mechanism of action, the structure must be known. Furthermore, target RNA structure is an important consideration in the design of small interfering RNAs and antisense DNA oligonucleotides. RNA secondary structure prediction, using thermodynamics, can be used to develop hypotheses about the structure of an RNA sequence. RNAstructure is a software package for RNA secondary structure prediction and analysis. It uses thermodynamics and utilizes the most recent set of nearest neighbor parameters from the Turner group. It includes methods for secondary structure prediction (using several algorithms), prediction of base pair probabilities, bimolecular structure prediction, and prediction of a structure common to two sequences. This contribution describes new extensions to the package, including a library of C++ classes for incorporation into other programs, a user-friendly graphical user interface written in JAVA, and new Unix-style text interfaces. The original graphical user interface for Microsoft Windows is still maintained. The extensions to RNAstructure serve to make RNA secondary structure prediction user-friendly. The package is available for download from the Mathews lab homepage at http://rna.urmc.rochester.edu/RNAstructure.html.

  6. BeStSel: a web server for accurate protein secondary structure prediction and fold recognition from the circular dichroism spectra.

    PubMed

    Micsonai, András; Wien, Frank; Bulyáki, Éva; Kun, Judit; Moussong, Éva; Lee, Young-Ho; Goto, Yuji; Réfrégiers, Matthieu; Kardos, József

    2018-06-11

    Circular dichroism (CD) spectroscopy is a widely used method to study the protein secondary structure. However, for decades, the general opinion was that the correct estimation of β-sheet content is challenging because of the large spectral and structural diversity of β-sheets. Recently, we showed that the orientation and twisting of β-sheets account for the observed spectral diversity, and developed a new method to estimate accurately the secondary structure (PNAS, 112, E3095). BeStSel web server provides the Beta Structure Selection method to analyze the CD spectra recorded by conventional or synchrotron radiation CD equipment. Both normalized and measured data can be uploaded to the server either as a single spectrum or series of spectra. The originality of BeStSel is that it carries out a detailed secondary structure analysis providing information on eight secondary structure components including parallel-β structure and antiparallel β-sheets with three different groups of twist. Based on these, it predicts the protein fold down to the topology/homology level of the CATH protein fold classification. The server also provides a module to analyze the structures deposited in the PDB for BeStSel secondary structure contents in relation to Dictionary of Secondary Structure of Proteins data. The BeStSel server is freely accessible at http://bestsel.elte.hu.

  7. Correlations of nucleotide substitution rates and base composition of mammalian coding sequences with protein structure.

    PubMed

    Chiusano, M L; D'Onofrio, G; Alvarez-Valin, F; Jabbari, K; Colonna, G; Bernardi, G

    1999-09-30

    We investigated the relationships between the nucleotide substitution rates and the predicted secondary structures in the three states representation (alpha-helix, beta-sheet, and coil). The analysis was carried out on 34 alignments, each of which comprised sequences belonging to at least four different mammalian orders. The rates of synonymous substitution were found to be significantly different in regions predicted to be alpha-helix, beta-sheet, or coil. Likewise, the nonsynonymous rates also differ, although expectedly at a lower extent, in the three types of secondary structure, suggesting that different selective constraints associated with the different structures are affecting in a similar way the synonymous and nonsynonymous rates. Moreover, the base composition of the third codon positions is different in coding sequence regions corresponding to different secondary structures of proteins.

  8. Thermodynamic heuristics with case-based reasoning: combined insights for RNA pseudoknot secondary structure.

    PubMed

    Al-Khatib, Ra'ed M; Rashid, Nur'Aini Abdul; Abdullah, Rosni

    2011-08-01

    The secondary structure of RNA pseudoknots has been extensively inferred and scrutinized by computational approaches. Experimental methods for determining RNA structure are time consuming and tedious; therefore, predictive computational approaches are required. Predicting the most accurate and energy-stable pseudoknot RNA secondary structure has been proven to be an NP-hard problem. In this paper, a new RNA folding approach, termed MSeeker, is presented; it includes KnotSeeker (a heuristic method) and Mfold (a thermodynamic algorithm). The global optimization of this thermodynamic heuristic approach was further enhanced by using a case-based reasoning technique as a local optimization method. MSeeker is a proposed algorithm for predicting RNA pseudoknot structure from individual sequences, especially long ones. This research demonstrates that MSeeker improves the sensitivity and specificity of existing RNA pseudoknot structure predictions. The performance and structural results from this proposed method were evaluated against seven other state-of-the-art pseudoknot prediction methods. The MSeeker method had better sensitivity than the DotKnot, FlexStem, HotKnots, pknotsRG, ILM, NUPACK and pknotsRE methods, with 79% of the predicted pseudoknot base-pairs being correct.

  9. bpRNA: large-scale automated annotation and analysis of RNA secondary structure.

    PubMed

    Danaee, Padideh; Rouches, Mason; Wiley, Michelle; Deng, Dezhong; Huang, Liang; Hendrix, David

    2018-05-09

    While RNA secondary structure prediction from sequence data has made remarkable progress, there is a need for improved strategies for annotating the features of RNA secondary structures. Here, we present bpRNA, a novel annotation tool capable of parsing RNA structures, including complex pseudoknot-containing RNAs, to yield an objective, precise, compact, unambiguous, easily-interpretable description of all loops, stems, and pseudoknots, along with the positions, sequence, and flanking base pairs of each such structural feature. We also introduce several new informative representations of RNA structure types to improve structure visualization and interpretation. We have further used bpRNA to generate a web-accessible meta-database, 'bpRNA-1m', of over 100 000 single-molecule, known secondary structures; this is both more fully and accurately annotated and over 20-times larger than existing databases. We use a subset of the database with highly similar (≥90% identical) sequences filtered out to report on statistical trends in sequence, flanking base pairs, and length. Both the bpRNA method and the bpRNA-1m database will be valuable resources both for specific analysis of individual RNA molecules and large-scale analyses such as are useful for updating RNA energy parameters for computational thermodynamic predictions, improving machine learning models for structure prediction, and for benchmarking structure-prediction algorithms.

  10. RDNAnalyzer: A tool for DNA secondary structure prediction and sequence analysis.

    PubMed

    Afzal, Muhammad; Shahid, Ahmad Ali; Shehzadi, Abida; Nadeem, Shahid; Husnain, Tayyab

    2012-01-01

    RDNAnalyzer is an innovative computer based tool designed for DNA secondary structure prediction and sequence analysis. It can randomly generate the DNA sequence or user can upload the sequences of their own interest in RAW format. It uses and extends the Nussinov dynamic programming algorithm and has various application for the sequence analysis. It predicts the DNA secondary structure and base pairings. It also provides the tools for routinely performed sequence analysis by the biological scientists such as DNA replication, reverse compliment generation, transcription, translation, sequence specific information as total number of nucleotide bases, ATGC base contents along with their respective percentages and sequence cleaner. RDNAnalyzer is a unique tool developed in Microsoft Visual Studio 2008 using Microsoft Visual C# and Windows Presentation Foundation and provides user friendly environment for sequence analysis. It is freely available. http://www.cemb.edu.pk/sw.html RDNAnalyzer - Random DNA Analyser, GUI - Graphical user interface, XAML - Extensible Application Markup Language.

  11. RNApdbee 2.0: multifunctional tool for RNA structure annotation.

    PubMed

    Zok, Tomasz; Antczak, Maciej; Zurkowski, Michal; Popenda, Mariusz; Blazewicz, Jacek; Adamiak, Ryszard W; Szachniuk, Marta

    2018-04-30

    In the field of RNA structural biology and bioinformatics, an access to correctly annotated RNA structure is of crucial importance, especially in the secondary and 3D structure predictions. RNApdbee webserver, introduced in 2014, primarily aimed to address the problem of RNA secondary structure extraction from the PDB files. Its new version, RNApdbee 2.0, is a highly advanced multifunctional tool for RNA structure annotation, revealing the relationship between RNA secondary and 3D structure given in the PDB or PDBx/mmCIF format. The upgraded version incorporates new algorithms for recognition and classification of high-ordered pseudoknots in large RNA structures. It allows analysis of isolated base pairs impact on RNA structure. It can visualize RNA secondary structures-including that of quadruplexes-with depiction of non-canonical interactions. It also annotates motifs to ease identification of stems, loops and single-stranded fragments in the input RNA structure. RNApdbee 2.0 is implemented as a publicly available webserver with an intuitive interface and can be freely accessed at http://rnapdbee.cs.put.poznan.pl/.

  12. Mechanical and thermal disturbances of the PSR Moderate Focus-Mission Structure

    NASA Technical Reports Server (NTRS)

    Shih, Choon-Foo; Lou, Michael C.

    1991-01-01

    The primary objective of this paper is to evaluate the optical pointing performance of the PSR Moderate Focus-Mission Structure when subjected to both mechanical and thermal disturbances. The mechanical disturbances are based on secondary mirror chopping. Results indicate that dynamic responses of the primary reflector and the secondary reflector subjected to chopping disturbances of the secondary reflector about its center of mass are within the figure maintenance control capabilities. The effects of modal damping, truss-type secondary support, interface boundary constraints, and alternate configurations, are also evaluated in the analysis. Thermal distortions of the structure were also evaluated based on the on-orbit temperature profiles derived from the submillimeter telescope missions. Results from thermal deformation analysis indicate that figure initialization control is needed for the PSR Moderate Focus-Mission. However, a figure maintenance system may not be required if adequate thermal isolation is incorporated into the support truss design for the PSR Moderate Focus-Mission Structure.

  13. Effect of drying methods of microencapsulated Lactobacillus acidophilus and Lactococcus lactis ssp. cremoris on secondary protein structure and glass transition temperature as studied by Fourier transform infrared and differential scanning calorimetry.

    PubMed

    Dianawati, Dianawati; Mishra, Vijay; Shah, Nagendra P

    2013-03-01

    Protective mechanisms of casein-based microcapsules containing mannitol on Lactobacillus acidophilus and Lactococcus lactis ssp. cremoris, changes in their secondary protein structures, and glass transition of the microcapsules were studied after spray- or freeze-drying and after 10 wk of storage in aluminum foil pouches containing different desiccants (NaOH, LiCl, or silica gel) at 25°C. An in situ Fourier transform infrared analysis was carried out to recognize any changes in fatty acids (FA) of bacterial cell envelopes, interaction between polar site of cell envelopes and microcapsules, and alteration of their secondary protein structures. Differential scanning calorimetry was used to determine glass transition of microcapsules based on glass transition temperature (T(g)) values. Hierarchical cluster analysis based on functional groups of cell envelopes and secondary protein structures was also carried out to classify the microencapsulated bacteria due to the effects of spray- or freeze-drying and storage for 10 wk. The results showed that drying process did not affect FA and secondary protein structures of bacteria; however, those structures were affected during storage depending upon the type of desiccant used. Interaction between exterior of bacterial cell envelopes and microencapsulant occurred after spray- or freeze-drying; however, these structures were maintained after storage in foil pouch containing sodium hydroxide. Method of drying and type of desiccants influenced the level of similarities of microencapsulated bacteria. Desiccants and method of drying affected glass transition, yet no T(g) ≤25°C was detected. This study demonstrated that the changes in FA and secondary structures of the microencapsulated bacteria still occurred during storage at T(g) above room temperature, indicating that the glassy state did not completely prevent chemical activities. Copyright © 2013 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  14. IIR filtering based adaptive active vibration control methodology with online secondary path modeling using PZT actuators

    NASA Astrophysics Data System (ADS)

    Boz, Utku; Basdogan, Ipek

    2015-12-01

    Structural vibrations is a major cause for noise problems, discomfort and mechanical failures in aerospace, automotive and marine systems, which are mainly composed of plate-like structures. In order to reduce structural vibrations on these structures, active vibration control (AVC) is an effective approach. Adaptive filtering methodologies are preferred in AVC due to their ability to adjust themselves for varying dynamics of the structure during the operation. The filtered-X LMS (FXLMS) algorithm is a simple adaptive filtering algorithm widely implemented in active control applications. Proper implementation of FXLMS requires availability of a reference signal to mimic the disturbance and model of the dynamics between the control actuator and the error sensor, namely the secondary path. However, the controller output could interfere with the reference signal and the secondary path dynamics may change during the operation. This interference problem can be resolved by using an infinite impulse response (IIR) filter which considers feedback of the one or more previous control signals to the controller output and the changing secondary path dynamics can be updated using an online modeling technique. In this paper, IIR filtering based filtered-U LMS (FULMS) controller is combined with online secondary path modeling algorithm to suppress the vibrations of a plate-like structure. The results are validated through numerical and experimental studies. The results show that the FULMS with online secondary path modeling approach has more vibration rejection capabilities with higher convergence rate than the FXLMS counterpart.

  15. RNAfbinv: an interactive Java application for fragment-based design of RNA sequences.

    PubMed

    Weinbrand, Lina; Avihoo, Assaf; Barash, Danny

    2013-11-15

    In RNA design problems, it is plausible to assume that the user would be interested in preserving a particular RNA secondary structure motif, or fragment, for biological reasons. The preservation could be in structure or sequence, or both. Thus, the inverse RNA folding problem could benefit from considering fragment constraints. We have developed a new interactive Java application called RNA fragment-based inverse that allows users to insert an RNA secondary structure in dot-bracket notation. It then performs sequence design that conforms to the shape of the input secondary structure, the specified thermodynamic stability, the specified mutational robustness and the user-selected fragment after shape decomposition. In this shape-based design approach, specific RNA structural motifs with known biological functions are strictly enforced, while others can possess more flexibility in their structure in favor of preserving physical attributes and additional constraints. RNAfbinv is freely available for download on the web at http://www.cs.bgu.ac.il/~RNAexinv/RNAfbinv. The site contains a help file with an explanation regarding the exact use.

  16. PreSSAPro: a software for the prediction of secondary structure by amino acid properties.

    PubMed

    Costantini, Susan; Colonna, Giovanni; Facchiano, Angelo M

    2007-10-01

    PreSSAPro is a software, available to the scientific community as a free web service designed to provide predictions of secondary structures starting from the amino acid sequence of a given protein. Predictions are based on our recently published work on the amino acid propensities for secondary structures in either large but not homogeneous protein data sets, as well as in smaller but homogeneous data sets corresponding to protein structural classes, i.e. all-alpha, all-beta, or alpha-beta proteins. Predictions result improved by the use of propensities evaluated for the right protein class. PreSSAPro predicts the secondary structure according to the right protein class, if known, or gives a multiple prediction with reference to the different structural classes. The comparison of these predictions represents a novel tool to evaluate what sequence regions can assume different secondary structures depending on the structural class assignment, in the perspective of identifying proteins able to fold in different conformations. The service is available at the URL http://bioinformatica.isa.cnr.it/PRESSAPRO/.

  17. Prediction of beta-turns at over 80% accuracy based on an ensemble of predicted secondary structures and multiple alignments.

    PubMed

    Zheng, Ce; Kurgan, Lukasz

    2008-10-10

    beta-turn is a secondary protein structure type that plays significant role in protein folding, stability, and molecular recognition. To date, several methods for prediction of beta-turns from protein sequences were developed, but they are characterized by relatively poor prediction quality. The novelty of the proposed sequence-based beta-turn predictor stems from the usage of a window based information extracted from four predicted three-state secondary structures, which together with a selected set of position specific scoring matrix (PSSM) values serve as an input to the support vector machine (SVM) predictor. We show that (1) all four predicted secondary structures are useful; (2) the most useful information extracted from the predicted secondary structure includes the structure of the predicted residue, secondary structure content in a window around the predicted residue, and features that indicate whether the predicted residue is inside a secondary structure segment; (3) the PSSM values of Asn, Asp, Gly, Ile, Leu, Met, Pro, and Val were among the top ranked features, which corroborates with recent studies. The Asn, Asp, Gly, and Pro indicate potential beta-turns, while the remaining four amino acids are useful to predict non-beta-turns. Empirical evaluation using three nonredundant datasets shows favorable Q total, Q predicted and MCC values when compared with over a dozen of modern competing methods. Our method is the first to break the 80% Q total barrier and achieves Q total = 80.9%, MCC = 0.47, and Q predicted higher by over 6% when compared with the second best method. We use feature selection to reduce the dimensionality of the feature vector used as the input for the proposed prediction method. The applied feature set is smaller by 86, 62 and 37% when compared with the second and two third-best (with respect to MCC) competing methods, respectively. Experiments show that the proposed method constitutes an improvement over the competing prediction methods. The proposed prediction model can better discriminate between beta-turns and non-beta-turns due to obtaining lower numbers of false positive predictions. The prediction model and datasets are freely available at http://biomine.ece.ualberta.ca/BTNpred/BTNpred.html.

  18. Prediction of beta-turns at over 80% accuracy based on an ensemble of predicted secondary structures and multiple alignments

    PubMed Central

    Zheng, Ce; Kurgan, Lukasz

    2008-01-01

    Background β-turn is a secondary protein structure type that plays significant role in protein folding, stability, and molecular recognition. To date, several methods for prediction of β-turns from protein sequences were developed, but they are characterized by relatively poor prediction quality. The novelty of the proposed sequence-based β-turn predictor stems from the usage of a window based information extracted from four predicted three-state secondary structures, which together with a selected set of position specific scoring matrix (PSSM) values serve as an input to the support vector machine (SVM) predictor. Results We show that (1) all four predicted secondary structures are useful; (2) the most useful information extracted from the predicted secondary structure includes the structure of the predicted residue, secondary structure content in a window around the predicted residue, and features that indicate whether the predicted residue is inside a secondary structure segment; (3) the PSSM values of Asn, Asp, Gly, Ile, Leu, Met, Pro, and Val were among the top ranked features, which corroborates with recent studies. The Asn, Asp, Gly, and Pro indicate potential β-turns, while the remaining four amino acids are useful to predict non-β-turns. Empirical evaluation using three nonredundant datasets shows favorable Qtotal, Qpredicted and MCC values when compared with over a dozen of modern competing methods. Our method is the first to break the 80% Qtotal barrier and achieves Qtotal = 80.9%, MCC = 0.47, and Qpredicted higher by over 6% when compared with the second best method. We use feature selection to reduce the dimensionality of the feature vector used as the input for the proposed prediction method. The applied feature set is smaller by 86, 62 and 37% when compared with the second and two third-best (with respect to MCC) competing methods, respectively. Conclusion Experiments show that the proposed method constitutes an improvement over the competing prediction methods. The proposed prediction model can better discriminate between β-turns and non-β-turns due to obtaining lower numbers of false positive predictions. The prediction model and datasets are freely available at . PMID:18847492

  19. [Establishment of industry promotion technology system in Chinese medicine secondary exploitation based on "component structure theory"].

    PubMed

    Cheng, Xu-Dong; Feng, Liang; Zhang, Ming-Hua; Gu, Jun-Fei; Jia, Xiao-Bin

    2014-10-01

    The purpose of the secondary exploitation of Chinese medicine is to improve the quality of Chinese medicine products, enhance core competitiveness, for better use in clinical practice, and more effectively solve the patient suffering. Herbs, extraction, separation, refreshing, preparation and quality control are all involved in the industry promotion of Chinese medicine secondary exploitation of industrial production. The Chinese medicine quality improvement and industry promotion could be realized with the whole process of process optimization, quality control, overall processes improvement. Based on the "component structure theory", "multi-dimensional structure & process dynamic quality control system" and systematic and holistic character of Chinese medicine, impacts of whole process were discussed. Technology systems of Chinese medicine industry promotion was built to provide theoretical basis for improving the quality and efficacy of the secondary development of traditional Chinese medicine products.

  20. Free energy minimization to predict RNA secondary structures and computational RNA design.

    PubMed

    Churkin, Alexander; Weinbrand, Lina; Barash, Danny

    2015-01-01

    Determining the RNA secondary structure from sequence data by computational predictions is a long-standing problem. Its solution has been approached in two distinctive ways. If a multiple sequence alignment of a collection of homologous sequences is available, the comparative method uses phylogeny to determine conserved base pairs that are more likely to form as a result of billions of years of evolution than by chance. In the case of single sequences, recursive algorithms that compute free energy structures by using empirically derived energy parameters have been developed. This latter approach of RNA folding prediction by energy minimization is widely used to predict RNA secondary structure from sequence. For a significant number of RNA molecules, the secondary structure of the RNA molecule is indicative of its function and its computational prediction by minimizing its free energy is important for its functional analysis. A general method for free energy minimization to predict RNA secondary structures is dynamic programming, although other optimization methods have been developed as well along with empirically derived energy parameters. In this chapter, we introduce and illustrate by examples the approach of free energy minimization to predict RNA secondary structures.

  1. [A review on fundamental studies of secondary forest management].

    PubMed

    Zhu, Jiaojun

    2002-12-01

    Secondary forest is also called as natural secondary forest, which regenerates on native forest that has been disturbed by severe natural or anthropogenic disturbances. The structural and dynamic organizations, growth, productivity and stand environment of secondary forests are significantly different from those of natural and artificial forests. Such significant differences make secondary forests have their own special characteristics in forestry. Secondary forests are the main body of forests in China. Therefore, their management plays a very important role in the projects of natural forest conservation and the construction of ecological environment in China or in the world. Based on a wide range of literature collection on secondary forest research, the fundamental studies of secondary forest management were discussed. The major topics are as follows: 1) basic characteristics of secondary forest, 2) principles of secondary forest management, 3) types of secondary forest, 4) community structure and succession dynamics of secondary forest, including niches, biodiversity, succession and so on, 5) main ecological processes of secondary forest, including regeneration, forest soil and forest environment. Additionally, the research needs and tendency related to secondary forest in the future were also given, based on the analyses of the main results and the problems in current management of secondary forest. The review may be helpful to the research of secondary forest management, and to the projects of natural forest conservation in China.

  2. Personal goals as predictors of intended classroom goals: comparing elementary and secondary school pre-service teachers.

    PubMed

    Daniels, Lia M; Frenzel, Anne C; Stupnisky, Robert H; Stewart, Tara L; Perry, Raymond P

    2013-09-01

    The literature documents fewer classroom mastery goal structures in secondary school compared to elementary. However, little is known about how personal achievement goals may influence classroom goal structures. This is especially true at the level of pre-service teachers. Our objective was to investigate if pre-service teachers' personal goals predicted their intended classroom goal structures. Participants were 125 elementary and 175 secondary school pre-service teachers from two Western Canadian universities. Structural equation modelling was used to examine if the structural relationships and latent means of personal and intended classroom goal structures differed for elementary and secondary school pre-service teachers. The results revealed that personal goals predicted the goal structures that pre-service teachers intended to establish; however, the relationships and means differed between elementary and secondary school pre-service teachers. Specifically, personal mastery-approach goals positively predicted classroom mastery goals much more strongly at the elementary than the secondary level. Furthermore, elementary pre-service teachers had significantly higher latent mean scores on personal mastery-approach goals than their secondary counterparts. It seems possible that the currently documented differences between classroom goal structures noted for elementary compared to secondary school may be based on the personal goals endorsed as pre-service teachers. The results are further discussed in terms of alignment with research on practising teachers' personal and classroom goals and implications for teacher education. © 2012 The British Psychological Society.

  3. RNA secondary structure prediction using soft computing.

    PubMed

    Ray, Shubhra Sankar; Pal, Sankar K

    2013-01-01

    Prediction of RNA structure is invaluable in creating new drugs and understanding genetic diseases. Several deterministic algorithms and soft computing-based techniques have been developed for more than a decade to determine the structure from a known RNA sequence. Soft computing gained importance with the need to get approximate solutions for RNA sequences by considering the issues related with kinetic effects, cotranscriptional folding, and estimation of certain energy parameters. A brief description of some of the soft computing-based techniques, developed for RNA secondary structure prediction, is presented along with their relevance. The basic concepts of RNA and its different structural elements like helix, bulge, hairpin loop, internal loop, and multiloop are described. These are followed by different methodologies, employing genetic algorithms, artificial neural networks, and fuzzy logic. The role of various metaheuristics, like simulated annealing, particle swarm optimization, ant colony optimization, and tabu search is also discussed. A relative comparison among different techniques, in predicting 12 known RNA secondary structures, is presented, as an example. Future challenging issues are then mentioned.

  4. Sixty-five years of the long march in protein secondary structure prediction: the final stretch?

    PubMed Central

    Yang, Yuedong; Gao, Jianzhao; Wang, Jihua; Heffernan, Rhys; Hanson, Jack; Paliwal, Kuldip; Zhou, Yaoqi

    2018-01-01

    Abstract Protein secondary structure prediction began in 1951 when Pauling and Corey predicted helical and sheet conformations for protein polypeptide backbone even before the first protein structure was determined. Sixty-five years later, powerful new methods breathe new life into this field. The highest three-state accuracy without relying on structure templates is now at 82–84%, a number unthinkable just a few years ago. These improvements came from increasingly larger databases of protein sequences and structures for training, the use of template secondary structure information and more powerful deep learning techniques. As we are approaching to the theoretical limit of three-state prediction (88–90%), alternative to secondary structure prediction (prediction of backbone torsion angles and Cα-atom-based angles and torsion angles) not only has more room for further improvement but also allows direct prediction of three-dimensional fragment structures with constantly improved accuracy. About 20% of all 40-residue fragments in a database of 1199 non-redundant proteins have <6 Å root-mean-squared distance from the native conformations by SPIDER2. More powerful deep learning methods with improved capability of capturing long-range interactions begin to emerge as the next generation of techniques for secondary structure prediction. The time has come to finish off the final stretch of the long march towards protein secondary structure prediction. PMID:28040746

  5. ITS2 data corroborate a monophyletic chlorophycean DO-group (Sphaeropleales)

    PubMed Central

    2008-01-01

    Background Within Chlorophyceae the ITS2 secondary structure shows an unbranched helix I, except for the 'Hydrodictyon' and the 'Scenedesmus' clade having a ramified first helix. The latter two are classified within the Sphaeropleales, characterised by directly opposed basal bodies in their flagellar apparatuses (DO-group). Previous studies could not resolve the taxonomic position of the 'Sphaeroplea' clade within the Chlorophyceae without ambiguity and two pivotal questions remain open: (1) Is the DO-group monophyletic and (2) is a branched helix I an apomorphic feature of the DO-group? In the present study we analysed the secondary structure of three newly obtained ITS2 sequences classified within the 'Sphaeroplea' clade and resolved sphaeroplealean relationships by applying different phylogenetic approaches based on a combined sequence-structure alignment. Results The newly obtained ITS2 sequences of Ankyra judayi, Atractomorpha porcata and Sphaeroplea annulina of the 'Sphaeroplea' clade do not show any branching in the secondary structure of their helix I. All applied phylogenetic methods highly support the 'Sphaeroplea' clade as a sister group to the 'core Sphaeropleales'. Thus, the DO-group is monophyletic. Furthermore, based on characteristics in the sequence-structure alignment one is able to distinguish distinct lineages within the green algae. Conclusion In green algae, a branched helix I in the secondary structure of the ITS2 evolves past the 'Sphaeroplea' clade. A branched helix I is an apomorph characteristic within the monophyletic DO-group. Our results corroborate the fundamental relevance of including the secondary structure in sequence analysis and phylogenetics. PMID:18655698

  6. RNApdbee--a webserver to derive secondary structures from pdb files of knotted and unknotted RNAs.

    PubMed

    Antczak, Maciej; Zok, Tomasz; Popenda, Mariusz; Lukasiak, Piotr; Adamiak, Ryszard W; Blazewicz, Jacek; Szachniuk, Marta

    2014-07-01

    In RNA structural biology and bioinformatics an access to correct RNA secondary structure and its proper representation is of crucial importance. This is true especially in the field of secondary and 3D RNA structure prediction. Here, we introduce RNApdbee-a new tool that allows to extract RNA secondary structure from the pdb file, and presents it in both textual and graphical form. RNApdbee supports processing of knotted and unknotted structures of large RNAs, also within protein complexes. The method works not only for first but also for high order pseudoknots, and gives an information about canonical and non-canonical base pairs. A combination of these features is unique among existing applications for RNA structure analysis. Additionally, a function of converting between the text notations, i.e. BPSEQ, CT and extended dot-bracket, is provided. In order to facilitate a more comprehensive study, the webserver integrates the functionality of RNAView, MC-Annotate and 3DNA/DSSR, being the most common tools used for automated identification and classification of RNA base pairs. RNApdbee is implemented as a publicly available webserver with an intuitive interface and can be freely accessed at http://rnapdbee.cs.put.poznan.pl/. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  7. Social Presence in the Web-Based Synchronous Secondary Classroom

    ERIC Educational Resources Information Center

    Nippard, Eric; Murphy, Elizabeth

    2007-01-01

    The purpose of the study reported on in this paper was to explore how teachers and students manifest social presence in the web-based synchronous secondary classroom (WBSSC). Data were collected using structured and unstructured observations of twelve online recordings of web-based synchronous classes in the province of Newfoundland and Labrador,…

  8. The influence of ignoring secondary structure on divergence time estimates from ribosomal RNA genes.

    PubMed

    Dohrmann, Martin

    2014-02-01

    Genes coding for ribosomal RNA molecules (rDNA) are among the most popular markers in molecular phylogenetics and evolution. However, coevolution of sites that code for pairing regions (stems) in the RNA secondary structure can make it challenging to obtain accurate results from such loci. While the influence of ignoring secondary structure on multiple sequence alignment and tree topology has been investigated in numerous studies, its effect on molecular divergence time estimates is still poorly known. Here, I investigate this issue in Bayesian Markov Chain Monte Carlo (BMCMC) and penalized likelihood (PL) frameworks, using empirical datasets from dragonflies (Odonata: Anisoptera) and glass sponges (Porifera: Hexactinellida). My results indicate that highly biased inferences under substitution models that ignore secondary structure only occur if maximum-likelihood estimates of branch lengths are used as input to PL dating, whereas in a BMCMC framework and in PL dating based on Bayesian consensus branch lengths, the effect is far less severe. I conclude that accounting for coevolution of paired sites in molecular dating studies is not as important as previously suggested, as long as the estimates are based on Bayesian consensus branch lengths instead of ML point estimates. This finding is especially relevant for studies where computational limitations do not allow the use of secondary-structure specific substitution models, or where accurate consensus structures cannot be predicted. I also found that the magnitude and direction (over- vs. underestimating node ages) of bias in age estimates when secondary structure is ignored was not distributed randomly across the nodes of the phylogenies, a phenomenon that requires further investigation. Copyright © 2013 Elsevier Inc. All rights reserved.

  9. RDNAnalyzer: A tool for DNA secondary structure prediction and sequence analysis

    PubMed Central

    Afzal, Muhammad; Shahid, Ahmad Ali; Shehzadi, Abida; Nadeem, Shahid; Husnain, Tayyab

    2012-01-01

    RDNAnalyzer is an innovative computer based tool designed for DNA secondary structure prediction and sequence analysis. It can randomly generate the DNA sequence or user can upload the sequences of their own interest in RAW format. It uses and extends the Nussinov dynamic programming algorithm and has various application for the sequence analysis. It predicts the DNA secondary structure and base pairings. It also provides the tools for routinely performed sequence analysis by the biological scientists such as DNA replication, reverse compliment generation, transcription, translation, sequence specific information as total number of nucleotide bases, ATGC base contents along with their respective percentages and sequence cleaner. RDNAnalyzer is a unique tool developed in Microsoft Visual Studio 2008 using Microsoft Visual C# and Windows Presentation Foundation and provides user friendly environment for sequence analysis. It is freely available. Availability http://www.cemb.edu.pk/sw.html Abbreviations RDNAnalyzer - Random DNA Analyser, GUI - Graphical user interface, XAML - Extensible Application Markup Language. PMID:23055611

  10. Bi-objective integer programming for RNA secondary structure prediction with pseudoknots.

    PubMed

    Legendre, Audrey; Angel, Eric; Tahi, Fariza

    2018-01-15

    RNA structure prediction is an important field in bioinformatics, and numerous methods and tools have been proposed. Pseudoknots are specific motifs of RNA secondary structures that are difficult to predict. Almost all existing methods are based on a single model and return one solution, often missing the real structure. An alternative approach would be to combine different models and return a (small) set of solutions, maximizing its quality and diversity in order to increase the probability that it contains the real structure. We propose here an original method for predicting RNA secondary structures with pseudoknots, based on integer programming. We developed a generic bi-objective integer programming algorithm allowing to return optimal and sub-optimal solutions optimizing simultaneously two models. This algorithm was then applied to the combination of two known models of RNA secondary structure prediction, namely MEA and MFE. The resulting tool, called BiokoP, is compared with the other methods in the literature. The results show that the best solution (structure with the highest F 1 -score) is, in most cases, given by BiokoP. Moreover, the results of BiokoP are homogeneous, regardless of the pseudoknot type or the presence or not of pseudoknots. Indeed, the F 1 -scores are always higher than 70% for any number of solutions returned. The results obtained by BiokoP show that combining the MEA and the MFE models, as well as returning several optimal and several sub-optimal solutions, allow to improve the prediction of secondary structures. One perspective of our work is to combine better mono-criterion models, in particular to combine a model based on the comparative approach with the MEA and the MFE models. This leads to develop in the future a new multi-objective algorithm to combine more than two models. BiokoP is available on the EvryRNA platform: https://EvryRNA.ibisc.univ-evry.fr .

  11. Understanding of Relation Structures of Graphical Models by Lower Secondary Students

    ERIC Educational Resources Information Center

    van Buuren, Onne; Heck, André; Ellermeijer, Ton

    2016-01-01

    A learning path has been developed on system dynamical graphical modelling, integrated into the Dutch lower secondary physics curriculum. As part of the developmental research for this learning path, students' understanding of the relation structures shown in the diagrams of graphical system dynamics based models has been investigated. One of our…

  12. The Move to Faculty Middle Management Structures in Scottish Secondary Schools: A Case Study

    ERIC Educational Resources Information Center

    Anderson, Cherie; Nixon, Graeme

    2010-01-01

    This article looks at the move from a management structure based on discrete subject departments managed by subject specialist principal teachers within Scottish secondary schools towards groupings of subjects (faculties) with a single manager. This article examines the impact of this change upon the experiences of students and probationer…

  13. Protein Secondary Structure Prediction Using AutoEncoder Network and Bayes Classifier

    NASA Astrophysics Data System (ADS)

    Wang, Leilei; Cheng, Jinyong

    2018-03-01

    Protein secondary structure prediction is belong to bioinformatics,and it's important in research area. In this paper, we propose a new prediction way of protein using bayes classifier and autoEncoder network. Our experiments show some algorithms including the construction of the model, the classification of parameters and so on. The data set is a typical CB513 data set for protein. In terms of accuracy, the method is the cross validation based on the 3-fold. Then we can get the Q3 accuracy. Paper results illustrate that the autoencoder network improved the prediction accuracy of protein secondary structure.

  14. ITS2 sequence-structure phylogeny reveals diverse endophytic Pseudocercospora fungi on poplars.

    PubMed

    Yan, Dong-Hui; Gao, Qian; Sun, Xiaoming; Song, Xiaoyu; Li, Hongchang

    2018-04-01

    For matching the new fungal nomenclature to abolish pleomorphic names for a fungus, a genus Pseudocercospora s. str. was suggested to host holomorphic Pseudocercosproa fungi. But the Pseudocercosproa fungi need extra phylogenetic loci to clarify their taxonomy and diversity for their existing and coming species. Internal transcribed spacer 2 (ITS2) secondary structures have been promising in charactering species phylogeny in plants, animals and fungi. In present study, a conserved model of ITS2 secondary structures was confirmed on fungi in Pseudocercospora s. str. genus using RNAshape program. The model has a typical eukaryotic four-helix ITS2 secondary structure. But a single U base occurred in conserved motif of U-U mismatch in Helix 2, and a UG emerged in UGGU motif in Helix 3 to Pseudocercospora fungi. The phylogeny analyses based on the ITS2 sequence-secondary structures with compensatory base change characterizations are able to delimit more species for Pseudocercospora s. str. than phylogenic inferences of traditional multi-loci alignments do. The model was employed to explore the diversity of endophytic Pseudocercospora fungi in poplar trees. The analysis results also showed that endophytic Pseudocercospora fungi were diverse in species and evolved a specific lineage in poplar trees. This work suggested that ITS2 sequence-structures could become as additionally significant loci for species phylogenetic and taxonomic studies on Pseudocerospora fungi, and that Pseudocercospora endophytes could be important roles to Pseudocercospora fungi's evolution and function in ecology.

  15. Principles for Predicting RNA Secondary Structure Design Difficulty.

    PubMed

    Anderson-Lee, Jeff; Fisker, Eli; Kosaraju, Vineet; Wu, Michelle; Kong, Justin; Lee, Jeehyung; Lee, Minjae; Zada, Mathew; Treuille, Adrien; Das, Rhiju

    2016-02-27

    Designing RNAs that form specific secondary structures is enabling better understanding and control of living systems through RNA-guided silencing, genome editing and protein organization. Little is known, however, about which RNA secondary structures might be tractable for downstream sequence design, increasing the time and expense of design efforts due to inefficient secondary structure choices. Here, we present insights into specific structural features that increase the difficulty of finding sequences that fold into a target RNA secondary structure, summarizing the design efforts of tens of thousands of human participants and three automated algorithms (RNAInverse, INFO-RNA and RNA-SSD) in the Eterna massive open laboratory. Subsequent tests through three independent RNA design algorithms (NUPACK, DSS-Opt and MODENA) confirmed the hypothesized importance of several features in determining design difficulty, including sequence length, mean stem length, symmetry and specific difficult-to-design motifs such as zigzags. Based on these results, we have compiled an Eterna100 benchmark of 100 secondary structure design challenges that span a large range in design difficulty to help test future efforts. Our in silico results suggest new routes for improving computational RNA design methods and for extending these insights to assess "designability" of single RNA structures, as well as of switches for in vitro and in vivo applications. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  16. NIAS-Server: Neighbors Influence of Amino acids and Secondary Structures in Proteins.

    PubMed

    Borguesan, Bruno; Inostroza-Ponta, Mario; Dorn, Márcio

    2017-03-01

    The exponential growth in the number of experimentally determined three-dimensional protein structures provide a new and relevant knowledge about the conformation of amino acids in proteins. Only a few of probability densities of amino acids are publicly available for use in structure validation and prediction methods. NIAS (Neighbors Influence of Amino acids and Secondary structures) is a web-based tool used to extract information about conformational preferences of amino acid residues and secondary structures in experimental-determined protein templates. This information is useful, for example, to characterize folds and local motifs in proteins, molecular folding, and can help the solution of complex problems such as protein structure prediction, protein design, among others. The NIAS-Server and supplementary data are available at http://sbcb.inf.ufrgs.br/nias .

  17. Quantitation of base substitutions in eukaryotic 5S rRNA: selection for the maintenance of RNA secondary structure.

    PubMed

    Curtiss, W C; Vournakis, J N

    1984-01-01

    Eukaryotic 5S rRNA sequences from 34 diverse species were compared by the following method: (1) The sequences were aligned; (2) the positions of substitutions were located by comparison of all possible pairs of sequences; (3) the substitution sites were mapped to an assumed general base pairing model; and (4) the R-Y model of base stacking was used to study stacking pattern relationships in the structure. An analysis of the sequence and structure variability in each region of the molecule is presented. It was found that the degree of base substitution varies over a wide range, from absolute conservation to occurrence of over 90% of the possible observable substitutions. The substitutions are located primarily in stem regions of the 5S rRNA secondary structure. More than 88% of the substitutions in helical regions maintain base pairing. The disruptive substitutions are primarily located at the edges of helical regions, resulting in shortening of the helical regions and lengthening of the adjacent nonpaired regions. Base stacking patterns determined by the R-Y model are mapped onto the general secondary structure. Intrastrand and interstrand stacking could stabilize alternative coaxial structures and limit the conformational flexibility of nonpaired regions. Two short contiguous regions are 100% conserved in all species. This may reflect evolutionary constraints imposed at the DNA level by the requirement for binding of a 5S gene transcription initiation factor during gene expression.

  18. Structural protein descriptors in 1-dimension and their sequence-based predictions.

    PubMed

    Kurgan, Lukasz; Disfani, Fatemeh Miri

    2011-09-01

    The last few decades observed an increasing interest in development and application of 1-dimensional (1D) descriptors of protein structure. These descriptors project 3D structural features onto 1D strings of residue-wise structural assignments. They cover a wide-range of structural aspects including conformation of the backbone, burying depth/solvent exposure and flexibility of residues, and inter-chain residue-residue contacts. We perform first-of-its-kind comprehensive comparative review of the existing 1D structural descriptors. We define, review and categorize ten structural descriptors and we also describe, summarize and contrast over eighty computational models that are used to predict these descriptors from the protein sequences. We show that the majority of the recent sequence-based predictors utilize machine learning models, with the most popular being neural networks, support vector machines, hidden Markov models, and support vector and linear regressions. These methods provide high-throughput predictions and most of them are accessible to a non-expert user via web servers and/or stand-alone software packages. We empirically evaluate several recent sequence-based predictors of secondary structure, disorder, and solvent accessibility descriptors using a benchmark set based on CASP8 targets. Our analysis shows that the secondary structure can be predicted with over 80% accuracy and segment overlap (SOV), disorder with over 0.9 AUC, 0.6 Matthews Correlation Coefficient (MCC), and 75% SOV, and relative solvent accessibility with PCC of 0.7 and MCC of 0.6 (0.86 when homology is used). We demonstrate that the secondary structure predicted from sequence without the use of homology modeling is as good as the structure extracted from the 3D folds predicted by top-performing template-based methods.

  19. Effect of Secondary Cooling Conditions on Solidification Structure and Central Macrosegregation in Continuously Cast High-Carbon Rectangular Billet

    NASA Astrophysics Data System (ADS)

    Zeng, Jie; Chen, Weiqing

    2015-10-01

    Solidification structures of high carbon rectangular billet with a size of 180 mm × 240 mm in different secondary cooling conditions were simulated using cellular automaton-finite element (CAFE) coupling model. The adequacy of the model was compared with the simulated and the actual macrostructures of 82B steel. Effects of the secondary cooling water intensity on solidification structures including the equiaxed grain ratio and the equiaxed grain compactness were discussed. It was shown that the equiaxed grain ratio and the equiaxed grain compactness changed in the opposite direction at different secondary cooling water intensities. Increasing the secondary cooling water intensity from 0.9 or 1.1 to 1.3 L/kg could improve the equiaxed grain compactness and decrease the equiaxed grain ratio. Besides, the industrial test was conducted to investigate the effect of different secondary cooling water intensities on the center carbon macrosegregation of 82B steel. The optimum secondary cooling water intensity was 0.9 L/kg, while the center carbon segregation degree was 1.10. The relationship between solidification structure and center carbon segregation was discussed based on the simulation results and the industrial test.

  20. Knowledge-based computational intelligence development for predicting protein secondary structures from sequences.

    PubMed

    Shen, Hong-Bin; Yi, Dong-Liang; Yao, Li-Xiu; Yang, Jie; Chou, Kuo-Chen

    2008-10-01

    In the postgenomic age, with the avalanche of protein sequences generated and relatively slow progress in determining their structures by experiments, it is important to develop automated methods to predict the structure of a protein from its sequence. The membrane proteins are a special group in the protein family that accounts for approximately 30% of all proteins; however, solved membrane protein structures only represent less than 1% of known protein structures to date. Although a great success has been achieved for developing computational intelligence techniques to predict secondary structures in both globular and membrane proteins, there is still much challenging work in this regard. In this review article, we firstly summarize the recent progress of automation methodology development in predicting protein secondary structures, especially in membrane proteins; we will then give some future directions in this research field.

  1. Modular prediction of protein structural classes from sequences of twilight-zone identity with predicting sequences.

    PubMed

    Mizianty, Marcin J; Kurgan, Lukasz

    2009-12-13

    Knowledge of structural class is used by numerous methods for identification of structural/functional characteristics of proteins and could be used for the detection of remote homologues, particularly for chains that share twilight-zone similarity. In contrast to existing sequence-based structural class predictors, which target four major classes and which are designed for high identity sequences, we predict seven classes from sequences that share twilight-zone identity with the training sequences. The proposed MODular Approach to Structural class prediction (MODAS) method is unique as it allows for selection of any subset of the classes. MODAS is also the first to utilize a novel, custom-built feature-based sequence representation that combines evolutionary profiles and predicted secondary structure. The features quantify information relevant to the definition of the classes including conservation of residues and arrangement and number of helix/strand segments. Our comprehensive design considers 8 feature selection methods and 4 classifiers to develop Support Vector Machine-based classifiers that are tailored for each of the seven classes. Tests on 5 twilight-zone and 1 high-similarity benchmark datasets and comparison with over two dozens of modern competing predictors show that MODAS provides the best overall accuracy that ranges between 80% and 96.7% (83.5% for the twilight-zone datasets), depending on the dataset. This translates into 19% and 8% error rate reduction when compared against the best performing competing method on two largest datasets. The proposed predictor provides accurate predictions at 58% accuracy for membrane proteins class, which is not considered by majority of existing methods, in spite that this class accounts for only 2% of the data. Our predictive model is analyzed to demonstrate how and why the input features are associated with the corresponding classes. The improved predictions stem from the novel features that express collocation of the secondary structure segments in the protein sequence and that combine evolutionary and secondary structure information. Our work demonstrates that conservation and arrangement of the secondary structure segments predicted along the protein chain can successfully predict structural classes which are defined based on the spatial arrangement of the secondary structures. A web server is available at http://biomine.ece.ualberta.ca/MODAS/.

  2. Modular prediction of protein structural classes from sequences of twilight-zone identity with predicting sequences

    PubMed Central

    2009-01-01

    Background Knowledge of structural class is used by numerous methods for identification of structural/functional characteristics of proteins and could be used for the detection of remote homologues, particularly for chains that share twilight-zone similarity. In contrast to existing sequence-based structural class predictors, which target four major classes and which are designed for high identity sequences, we predict seven classes from sequences that share twilight-zone identity with the training sequences. Results The proposed MODular Approach to Structural class prediction (MODAS) method is unique as it allows for selection of any subset of the classes. MODAS is also the first to utilize a novel, custom-built feature-based sequence representation that combines evolutionary profiles and predicted secondary structure. The features quantify information relevant to the definition of the classes including conservation of residues and arrangement and number of helix/strand segments. Our comprehensive design considers 8 feature selection methods and 4 classifiers to develop Support Vector Machine-based classifiers that are tailored for each of the seven classes. Tests on 5 twilight-zone and 1 high-similarity benchmark datasets and comparison with over two dozens of modern competing predictors show that MODAS provides the best overall accuracy that ranges between 80% and 96.7% (83.5% for the twilight-zone datasets), depending on the dataset. This translates into 19% and 8% error rate reduction when compared against the best performing competing method on two largest datasets. The proposed predictor provides accurate predictions at 58% accuracy for membrane proteins class, which is not considered by majority of existing methods, in spite that this class accounts for only 2% of the data. Our predictive model is analyzed to demonstrate how and why the input features are associated with the corresponding classes. Conclusions The improved predictions stem from the novel features that express collocation of the secondary structure segments in the protein sequence and that combine evolutionary and secondary structure information. Our work demonstrates that conservation and arrangement of the secondary structure segments predicted along the protein chain can successfully predict structural classes which are defined based on the spatial arrangement of the secondary structures. A web server is available at http://biomine.ece.ualberta.ca/MODAS/. PMID:20003388

  3. Using a Structural Equation Modelling Approach (SEM) to Examine Leadership of Heads of Subject Departments (HODs) as Perceived by Principals and Vice-Principals, Heads of Subject Departments and Teachers within "School Based Management" (SBM) Secondary Schools: Some Evidence from Hong Kong

    ERIC Educational Resources Information Center

    Au, Loretta; Wright, Nigel; Botton, Christopher

    2003-01-01

    This article reports the use of a Structural Equation Modelling (SEM) technique as a means of exploring our understanding of the leadership of Heads of Subject Departments within School Based Management (SBM) secondary schools in Hong Kong. Arguments made by Gronn (1999, 2000), Spillane et al. (2001) suggest that studies of leadership need to…

  4. Influence of Secondary Cooling Mode on Solidification Structure and Macro-segregation Behavior for High-carbon Continuous Casting Bloom

    NASA Astrophysics Data System (ADS)

    Dou, Kun; Yang, Zhenguo; Liu, Qing; Huang, Yunhua; Dong, Hongbiao

    2017-07-01

    A cellular automaton-finite element coupling model for high-carbon continuously cast bloom of GCr15 steel is established to simulate the solidification structure and to investigate the influence of different secondary cooling modes on characteristic parameters such as equiaxed crystal ratio, grain size and secondary dendrite arm spacing, in which the effect of phase transformation and electromagnetic stirring is taken into consideration. On this basis, evolution of carbon macro-segregation for GCr15 steel bloom is researched correspondingly via industrial tests. Based on above analysis, the relationship among secondary cooling modes, characteristic parameters for solidification structure as well as carbon macro-segregation is illustrated to obtain optimum secondary cooling strategy and alleviate carbon macro-segregation degree for GCr15 steel bloom in continuous casting process. The evaluating method for element macro-segregation is applicable in various steel types.

  5. Classification of the Pospiviroidae based on their structural hallmarks.

    PubMed

    Giguère, Tamara; Perreault, Jean-Pierre

    2017-01-01

    The simplest known plant pathogens are the viroids. Because of their non-coding single-stranded circular RNA genome, they depend on both their sequence and their structure for both a successful infection and their replication. In the recent years, important progress in the elucidation of their structures was achieved using an adaptation of the selective 2'-hydroxyl acylation analyzed by primer extension (SHAPE) protocol in order to probe viroid structures in solution. Previously, SHAPE has been adapted to elucidate the structures of all of the members of the family Avsunviroidae, as well as those of a few members of the family Pospiviroidae. In this study, with the goal of providing an entire compendium of the secondary structures of the various viroid species, a total of thirteen new Pospiviroidae members were probed in solution using the SHAPE protocol. More specifically, the secondary structures of eleven species for which the genus was previously known were initially elucidated. At this point, considering all of the SHAPE elucidated secondary structures, a classification system for viroids in their respective genera was proposed. On the basis of the structural classification reported here, the probings of both the Grapevine latent viroid and the Dahlia latent viroid provide sound arguments for the determination of their respective genera, which appear to be Apscaviroid and Hostuviroid, respectively. More importantly, this study provides the complete repertoire of the secondary structures, mapped in solution, of all of the accepted viroid species reported thus far. In addition, a classification scheme based on structural hallmarks, an important tool for many biological studies, is proposed.

  6. Classification of the Pospiviroidae based on their structural hallmarks

    PubMed Central

    Giguère, Tamara

    2017-01-01

    The simplest known plant pathogens are the viroids. Because of their non-coding single-stranded circular RNA genome, they depend on both their sequence and their structure for both a successful infection and their replication. In the recent years, important progress in the elucidation of their structures was achieved using an adaptation of the selective 2’-hydroxyl acylation analyzed by primer extension (SHAPE) protocol in order to probe viroid structures in solution. Previously, SHAPE has been adapted to elucidate the structures of all of the members of the family Avsunviroidae, as well as those of a few members of the family Pospiviroidae. In this study, with the goal of providing an entire compendium of the secondary structures of the various viroid species, a total of thirteen new Pospiviroidae members were probed in solution using the SHAPE protocol. More specifically, the secondary structures of eleven species for which the genus was previously known were initially elucidated. At this point, considering all of the SHAPE elucidated secondary structures, a classification system for viroids in their respective genera was proposed. On the basis of the structural classification reported here, the probings of both the Grapevine latent viroid and the Dahlia latent viroid provide sound arguments for the determination of their respective genera, which appear to be Apscaviroid and Hostuviroid, respectively. More importantly, this study provides the complete repertoire of the secondary structures, mapped in solution, of all of the accepted viroid species reported thus far. In addition, a classification scheme based on structural hallmarks, an important tool for many biological studies, is proposed. PMID:28783761

  7. Protein Interaction Profile Sequencing (PIP-seq).

    PubMed

    Foley, Shawn W; Gregory, Brian D

    2016-10-10

    Every eukaryotic RNA transcript undergoes extensive post-transcriptional processing from the moment of transcription up through degradation. This regulation is performed by a distinct cohort of RNA-binding proteins which recognize their target transcript by both its primary sequence and secondary structure. Here, we describe protein interaction profile sequencing (PIP-seq), a technique that uses ribonuclease-based footprinting followed by high-throughput sequencing to globally assess both protein-bound RNA sequences and RNA secondary structure. PIP-seq utilizes single- and double-stranded RNA-specific nucleases in the absence of proteins to infer RNA secondary structure. These libraries are also compared to samples that undergo nuclease digestion in the presence of proteins in order to find enriched protein-bound sequences. Combined, these four libraries provide a comprehensive, transcriptome-wide view of RNA secondary structure and RNA protein interaction sites from a single experimental technique. © 2016 by John Wiley & Sons, Inc. Copyright © 2016 John Wiley & Sons, Inc.

  8. Making Sense of Abstract Algebra: Exploring Secondary Teachers' Understandings of Inverse Functions in Relation to Its Group Structure

    ERIC Educational Resources Information Center

    Wasserman, Nicholas H.

    2017-01-01

    This article draws on semi-structured, task-based interviews to explore secondary teachers' (N = 7) understandings of inverse functions in relation to abstract algebra. In particular, a concept map task is used to understand the degree to which participants, having recently taken an abstract algebra course, situated inverse functions within its…

  9. Aggregation and folding phase transitions of RNA molecules

    NASA Astrophysics Data System (ADS)

    Bundschuh, Ralf

    2007-03-01

    RNA is a biomolecule that is involved in nearly all aspects of cellular functions. In order to perform many of these functions, RNA molecules have to fold into specific secondary structures. This folding is driven by the tendency of the bases to form Watson-Crick base pairs. Beyond the biological importance of RNA, the relatively simple rules for structure formation of RNA make it a very interesting system from the statistical physics point of view. We will present examples of phase transitions in RNA secondary structure formation that are amenable to analytical descriptions. A special focus will be on aggregation between several RNA molecules which is important for some regulatory circuits based on RNA structure, triplet repeat diseases like Huntington's, and as a model for prion diseases. We show that depending on the relative strength of the intramolecular and the intermolecular base pairing, RNA molecules undergo a transition into an aggregated phase and quantitatively characterize this transition.

  10. Approximate matching of structured motifs in DNA sequences.

    PubMed

    El-Mabrouk, Nadia; Raffinot, Mathieu; Duchesne, Jean-Eudes; Lajoie, Mathieu; Luc, Nicolas

    2005-04-01

    Several methods have been developed for identifying more or less complex RNA structures in a genome. All these methods are based on the search for conserved primary and secondary sub-structures. In this paper, we present a simple formal representation of a helix, which is a combination of sequence and folding constraints, as a constrained regular expression. This representation allows us to develop a well-founded algorithm that searches for all approximate matches of a helix in a genome. The algorithm is based on an alignment graph constructed from several copies of a pushdown automaton, arranged one on top of another. This is a first attempt to take advantage of the possibilities of pushdown automata in the context of approximate matching. The worst time complexity is O(krpn), where k is the error threshold, n the size of the genome, p the size of the secondary expression, and r its number of union symbols. We then extend the algorithm to search for pseudo-knots and secondary structures containing an arbitrary number of helices.

  11. Secondary structure prediction and structure-specific sequence analysis of single-stranded DNA.

    PubMed

    Dong, F; Allawi, H T; Anderson, T; Neri, B P; Lyamichev, V I

    2001-08-01

    DNA sequence analysis by oligonucleotide binding is often affected by interference with the secondary structure of the target DNA. Here we describe an approach that improves DNA secondary structure prediction by combining enzymatic probing of DNA by structure-specific 5'-nucleases with an energy minimization algorithm that utilizes the 5'-nuclease cleavage sites as constraints. The method can identify structural differences between two DNA molecules caused by minor sequence variations such as a single nucleotide mutation. It also demonstrates the existence of long-range interactions between DNA regions separated by >300 nt and the formation of multiple alternative structures by a 244 nt DNA molecule. The differences in the secondary structure of DNA molecules revealed by 5'-nuclease probing were used to design structure-specific probes for mutation discrimination that target the regions of structural, rather than sequence, differences. We also demonstrate the performance of structure-specific 'bridge' probes complementary to non-contiguous regions of the target molecule. The structure-specific probes do not require the high stringency binding conditions necessary for methods based on mismatch formation and permit mutation detection at temperatures from 4 to 37 degrees C. Structure-specific sequence analysis is applied for mutation detection in the Mycobacterium tuberculosis katG gene and for genotyping of the hepatitis C virus.

  12. Clustering of 3D-Structure Similarity Based Network of Secondary Metabolites Reveals Their Relationships with Biological Activities.

    PubMed

    Ohtana, Yuki; Abdullah, Azian Azamimi; Altaf-Ul-Amin, Md; Huang, Ming; Ono, Naoaki; Sato, Tetsuo; Sugiura, Tadao; Horai, Hisayuki; Nakamura, Yukiko; Morita Hirai, Aki; Lange, Klaus W; Kibinge, Nelson K; Katsuragi, Tetsuo; Shirai, Tsuyoshi; Kanaya, Shigehiko

    2014-12-01

    Developing database systems connecting diverse species based on omics is the most important theme in big data biology. To attain this purpose, we have developed KNApSAcK Family Databases, which are utilized in a number of researches in metabolomics. In the present study, we have developed a network-based approach to analyze relationships between 3D structure and biological activity of metabolites consisting of four steps as follows: construction of a network of metabolites based on structural similarity (Step 1), classification of metabolites into structure groups (Step 2), assessment of statistically significant relations between structure groups and biological activities (Step 3), and 2-dimensional clustering of the constructed data matrix based on statistically significant relations between structure groups and biological activities (Step 4). Applying this method to a data set consisting of 2072 secondary metabolites and 140 biological activities reported in KNApSAcK Metabolite Activity DB, we obtained 983 statistically significant structure group-biological activity pairs. As a whole, we systematically analyzed the relationship between 3D-chemical structures of metabolites and biological activities. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. A 'periodic table' for protein structures.

    PubMed

    Taylor, William R

    2002-04-11

    Current structural genomics programs aim systematically to determine the structures of all proteins coded in both human and other genomes, providing a complete picture of the number and variety of protein structures that exist. In the past, estimates have been made on the basis of the incomplete sample of structures currently known. These estimates have varied greatly (between 1,000 and 10,000; see for example refs 1 and 2), partly because of limited sample size but also owing to the difficulties of distinguishing one structure from another. This distinction is usually topological, based on the fold of the protein; however, in strict topological terms (neglecting to consider intra-chain cross-links), protein chains are open strings and hence are all identical. To avoid this trivial result, topologies are determined by considering secondary links in the form of intra-chain hydrogen bonds (secondary structure) and tertiary links formed by the packing of secondary structures. However, small additions to or loss of structure can make large changes to these perceived topologies and such subjective solutions are neither robust nor amenable to automation. Here I formalize both secondary and tertiary links to allow the rigorous and automatic definition of protein topology.

  14. Tertiary structure-based analysis of microRNA–target interactions

    PubMed Central

    Gan, Hin Hark; Gunsalus, Kristin C.

    2013-01-01

    Current computational analysis of microRNA interactions is based largely on primary and secondary structure analysis. Computationally efficient tertiary structure-based methods are needed to enable more realistic modeling of the molecular interactions underlying miRNA-mediated translational repression. We incorporate algorithms for predicting duplex RNA structures, ionic strength effects, duplex entropy and free energy, and docking of duplex–Argonaute protein complexes into a pipeline to model and predict miRNA–target duplex binding energies. To ensure modeling accuracy and computational efficiency, we use an all-atom description of RNA and a continuum description of ionic interactions using the Poisson–Boltzmann equation. Our method predicts the conformations of two constructs of Caenorhabditis elegans let-7 miRNA–target duplexes to an accuracy of ∼3.8 Å root mean square distance of their NMR structures. We also show that the computed duplex formation enthalpies, entropies, and free energies for eight miRNA–target duplexes agree with titration calorimetry data. Analysis of duplex–Argonaute docking shows that structural distortions arising from single-base-pair mismatches in the seed region influence the activity of the complex by destabilizing both duplex hybridization and its association with Argonaute. Collectively, these results demonstrate that tertiary structure-based modeling of miRNA interactions can reveal structural mechanisms not accessible with current secondary structure-based methods. PMID:23417009

  15. RNA Secondary Structure Prediction by Using Discrete Mathematics: An Interdisciplinary Research Experience for Undergraduate Students

    PubMed Central

    Ellington, Roni; Wachira, James

    2010-01-01

    The focus of this Research Experience for Undergraduates (REU) project was on RNA secondary structure prediction by using a lattice walk approach. The lattice walk approach is a combinatorial and computational biology method used to enumerate possible secondary structures and predict RNA secondary structure from RNA sequences. The method uses discrete mathematical techniques and identifies specified base pairs as parameters. The goal of the REU was to introduce upper-level undergraduate students to the principles and challenges of interdisciplinary research in molecular biology and discrete mathematics. At the beginning of the project, students from the biology and mathematics departments of a mid-sized university received instruction on the role of secondary structure in the function of eukaryotic RNAs and RNA viruses, RNA related to combinatorics, and the National Center for Biotechnology Information resources. The student research projects focused on RNA secondary structure prediction on a regulatory region of the yellow fever virus RNA genome and on an untranslated region of an mRNA of a gene associated with the neurological disorder epilepsy. At the end of the project, the REU students gave poster and oral presentations, and they submitted written final project reports to the program director. The outcome of the REU was that the students gained transferable knowledge and skills in bioinformatics and an awareness of the applications of discrete mathematics to biological research problems. PMID:20810968

  16. RNA secondary structure prediction by using discrete mathematics: an interdisciplinary research experience for undergraduate students.

    PubMed

    Ellington, Roni; Wachira, James; Nkwanta, Asamoah

    2010-01-01

    The focus of this Research Experience for Undergraduates (REU) project was on RNA secondary structure prediction by using a lattice walk approach. The lattice walk approach is a combinatorial and computational biology method used to enumerate possible secondary structures and predict RNA secondary structure from RNA sequences. The method uses discrete mathematical techniques and identifies specified base pairs as parameters. The goal of the REU was to introduce upper-level undergraduate students to the principles and challenges of interdisciplinary research in molecular biology and discrete mathematics. At the beginning of the project, students from the biology and mathematics departments of a mid-sized university received instruction on the role of secondary structure in the function of eukaryotic RNAs and RNA viruses, RNA related to combinatorics, and the National Center for Biotechnology Information resources. The student research projects focused on RNA secondary structure prediction on a regulatory region of the yellow fever virus RNA genome and on an untranslated region of an mRNA of a gene associated with the neurological disorder epilepsy. At the end of the project, the REU students gave poster and oral presentations, and they submitted written final project reports to the program director. The outcome of the REU was that the students gained transferable knowledge and skills in bioinformatics and an awareness of the applications of discrete mathematics to biological research problems.

  17. Evolutionary conservation of sequence and secondary structures inCRISPR repeats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kunin, Victor; Sorek, Rotem; Hugenholtz, Philip

    Clustered Regularly Interspaced Palindromic Repeats (CRISPRs) are a novel class of direct repeats, separated by unique spacer sequences of similar length, that are present in {approx}40% of bacterial and all archaeal genomes analyzed to date. More than 40 gene families, called CRISPR-associated sequences (CAS), appear in conjunction with these repeats and are thought to be involved in the propagation and functioning of CRISPRs. It has been proposed that the CRISPR/CAS system samples, maintains a record of, and inactivates invasive DNA that the cell has encountered, and therefore constitutes a prokaryotic analog of an immune system. Here we analyze CRISPR repeatsmore » identified in 195 microbial genomes and show that they can be organized into multiple clusters based on sequence similarity. All individual repeats in any given cluster were inferred to form characteristic RNA secondary structure, ranging from non-existent to pronounced. Stable secondary structures included G:U base pairs and exhibited multiple compensatory base changes in the stem region, indicating evolutionary conservation and functional importance. We also show that the repeat-based classification corresponds to, and expands upon, a previously reported CAS gene-based classification including specific relationships between CRISPR and CAS subtypes.« less

  18. Deployable telescope having a thin-film mirror and metering structure

    DOEpatents

    Krumel, Leslie J [Cedar Crest, NM; Martin, Jeffrey W [Albuquerque, NM

    2010-08-24

    A deployable thin-film mirror telescope comprises a base structure and a metering structure. The base structure houses a thin-film mirror, which can be rolled for stowage and unrolled for deployment. The metering structure is coupled to the base structure and can be folded for stowage and unfolded for deployment. In the deployed state, the unrolled thin-film mirror forms a primary minor for the telescope and the unfolded metering structure positions a secondary minor for the telescope.

  19. Exact calculation of loop formation probability identifies folding motifs in RNA secondary structures

    PubMed Central

    Sloma, Michael F.; Mathews, David H.

    2016-01-01

    RNA secondary structure prediction is widely used to analyze RNA sequences. In an RNA partition function calculation, free energy nearest neighbor parameters are used in a dynamic programming algorithm to estimate statistical properties of the secondary structure ensemble. Previously, partition functions have largely been used to estimate the probability that a given pair of nucleotides form a base pair, the conditional stacking probability, the accessibility to binding of a continuous stretch of nucleotides, or a representative sample of RNA structures. Here it is demonstrated that an RNA partition function can also be used to calculate the exact probability of formation of hairpin loops, internal loops, bulge loops, or multibranch loops at a given position. This calculation can also be used to estimate the probability of formation of specific helices. Benchmarking on a set of RNA sequences with known secondary structures indicated that loops that were calculated to be more probable were more likely to be present in the known structure than less probable loops. Furthermore, highly probable loops are more likely to be in the known structure than the set of loops predicted in the lowest free energy structures. PMID:27852924

  20. [Developmental anatomy of anomalous structure and investigation of medicinal parts Sophora flavescens].

    PubMed

    Wang, Jun; Xie, Xiaomei; Peng, Huasheng

    2012-06-01

    To elucidate the composition structure of "annual rings" and the formation process of anomalous structures in Sophora flavescens, and further discuss the medicinal parts of S. flavescens. Based on investigation on S. flavescens in its producing areas, the morphology of root systems was observed, and the developmental anatomy of roots was researched. Creeping underground rhizomes of S. flavescen existed in some parts of the north place, there were many differences in appearance characters and microscopic features between these roots and rhizomes. Parenchyma cells in secondary xylem regained meristematic ability, became into anomalous cambia, and then developed into anomalous structures. "Annual rings" in transverse section of S. flavescens were not actually growth rings, they were made up of anomalous parenchyma girdle in secondary xylem and normal secondary structure. Roots are the medicinal parts of S. flavescens. This paper suggests that "annual rings" in the decoction pieces of S. flavescens should be called "annular structure".

  1. RaptorX server: a resource for template-based protein structure modeling.

    PubMed

    Källberg, Morten; Margaryan, Gohar; Wang, Sheng; Ma, Jianzhu; Xu, Jinbo

    2014-01-01

    Assigning functional properties to a newly discovered protein is a key challenge in modern biology. To this end, computational modeling of the three-dimensional atomic arrangement of the amino acid chain is often crucial in determining the role of the protein in biological processes. We present a community-wide web-based protocol, RaptorX server ( http://raptorx.uchicago.edu ), for automated protein secondary structure prediction, template-based tertiary structure modeling, and probabilistic alignment sampling.Given a target sequence, RaptorX server is able to detect even remotely related template sequences by means of a novel nonlinear context-specific alignment potential and probabilistic consistency algorithm. Using the protocol presented here it is thus possible to obtain high-quality structural models for many target protein sequences when only distantly related protein domains have experimentally solved structures. At present, RaptorX server can perform secondary and tertiary structure prediction of a 200 amino acid target sequence in approximately 30 min.

  2. Distributed cooperative control of AC microgrids

    NASA Astrophysics Data System (ADS)

    Bidram, Ali

    In this dissertation, the comprehensive secondary control of electric power microgrids is of concern. Microgrid technical challenges are mainly realized through the hierarchical control structure, including primary, secondary, and tertiary control levels. Primary control level is locally implemented at each distributed generator (DG), while the secondary and tertiary control levels are conventionally implemented through a centralized control structure. The centralized structure requires a central controller which increases the reliability concerns by posing the single point of failure. In this dissertation, the distributed control structure using the distributed cooperative control of multi-agent systems is exploited to increase the secondary control reliability. The secondary control objectives are microgrid voltage and frequency, and distributed generators (DGs) active and reactive powers. Fully distributed control protocols are implemented through distributed communication networks. In the distributed control structure, each DG only requires its own information and the information of its neighbors on the communication network. The distributed structure obviates the requirements for a central controller and complex communication network which, in turn, improves the system reliability. Since the DG dynamics are nonlinear and non-identical, input-output feedback linearization is used to transform the nonlinear dynamics of DGs to linear dynamics. Proposed control frameworks cover the control of microgrids containing inverter-based DGs. Typical microgrid test systems are used to verify the effectiveness of the proposed control protocols.

  3. Conformational analysis of α-helical polypeptide included L-proline residue by high-resolution solid-state NMR measurement and quantum chemical calculation

    NASA Astrophysics Data System (ADS)

    Souma, Hiroyuki; Shoji, Akira; Kurosu, Hiromichi

    2008-10-01

    We challenged the problem about the stabilization mechanism of an α-helix formation for polypeptides containing L-proline (Pro) residue. We computed the optimized structure of α-helical poly( L-alanine) molecules including a Pro residue, H-(Ala) 8-Pro-(Ala) 9-OH, based on the molecular orbital calculation with density functional theory, B3LYP/6-31G(d) and the 13C and 15N chemical shift values based on the GIAO-CHF method with B3LYP/6-311G(d,p), respectively. It was found that two kinds of optimized structures, 'Bent structure' and 'Included α-helix structure', were preferred structures in H-(Ala) 8-Pro-(Ala) 9-OH. In addition, based on the precise 13C and 15N chemical shift data of the simple model, we successfully analyzed the secondary structure of well-defined synthetic polypeptide H-(Phe-Leu-Ala) 3-Phe C-Pro-Ala N-(Phe-Leu-Ala) 2-OH (FLA-11P), the secondary structure of which was proven to the 'Included α-helix structure'.

  4. Evidence of pervasive biologically functional secondary structures within the genomes of eukaryotic single-stranded DNA viruses.

    PubMed

    Muhire, Brejnev Muhizi; Golden, Michael; Murrell, Ben; Lefeuvre, Pierre; Lett, Jean-Michel; Gray, Alistair; Poon, Art Y F; Ngandu, Nobubelo Kwanele; Semegni, Yves; Tanov, Emil Pavlov; Monjane, Adérito Luis; Harkins, Gordon William; Varsani, Arvind; Shepherd, Dionne Natalie; Martin, Darren Patrick

    2014-02-01

    Single-stranded DNA (ssDNA) viruses have genomes that are potentially capable of forming complex secondary structures through Watson-Crick base pairing between their constituent nucleotides. A few of the structural elements formed by such base pairings are, in fact, known to have important functions during the replication of many ssDNA viruses. Unknown, however, are (i) whether numerous additional ssDNA virus genomic structural elements predicted to exist by computational DNA folding methods actually exist and (ii) whether those structures that do exist have any biological relevance. We therefore computationally inferred lists of the most evolutionarily conserved structures within a diverse selection of animal- and plant-infecting ssDNA viruses drawn from the families Circoviridae, Anelloviridae, Parvoviridae, Nanoviridae, and Geminiviridae and analyzed these for evidence of natural selection favoring the maintenance of these structures. While we find evidence that is consistent with purifying selection being stronger at nucleotide sites that are predicted to be base paired than at sites predicted to be unpaired, we also find strong associations between sites that are predicted to pair with one another and site pairs that are apparently coevolving in a complementary fashion. Collectively, these results indicate that natural selection actively preserves much of the pervasive secondary structure that is evident within eukaryote-infecting ssDNA virus genomes and, therefore, that much of this structure is biologically functional. Lastly, we provide examples of various highly conserved but completely uncharacterized structural elements that likely have important functions within some of the ssDNA virus genomes analyzed here.

  5. Evidence of Pervasive Biologically Functional Secondary Structures within the Genomes of Eukaryotic Single-Stranded DNA Viruses

    PubMed Central

    Muhire, Brejnev Muhizi; Golden, Michael; Murrell, Ben; Lefeuvre, Pierre; Lett, Jean-Michel; Gray, Alistair; Poon, Art Y. F.; Ngandu, Nobubelo Kwanele; Semegni, Yves; Tanov, Emil Pavlov; Monjane, Adérito Luis; Harkins, Gordon William; Varsani, Arvind; Shepherd, Dionne Natalie

    2014-01-01

    Single-stranded DNA (ssDNA) viruses have genomes that are potentially capable of forming complex secondary structures through Watson-Crick base pairing between their constituent nucleotides. A few of the structural elements formed by such base pairings are, in fact, known to have important functions during the replication of many ssDNA viruses. Unknown, however, are (i) whether numerous additional ssDNA virus genomic structural elements predicted to exist by computational DNA folding methods actually exist and (ii) whether those structures that do exist have any biological relevance. We therefore computationally inferred lists of the most evolutionarily conserved structures within a diverse selection of animal- and plant-infecting ssDNA viruses drawn from the families Circoviridae, Anelloviridae, Parvoviridae, Nanoviridae, and Geminiviridae and analyzed these for evidence of natural selection favoring the maintenance of these structures. While we find evidence that is consistent with purifying selection being stronger at nucleotide sites that are predicted to be base paired than at sites predicted to be unpaired, we also find strong associations between sites that are predicted to pair with one another and site pairs that are apparently coevolving in a complementary fashion. Collectively, these results indicate that natural selection actively preserves much of the pervasive secondary structure that is evident within eukaryote-infecting ssDNA virus genomes and, therefore, that much of this structure is biologically functional. Lastly, we provide examples of various highly conserved but completely uncharacterized structural elements that likely have important functions within some of the ssDNA virus genomes analyzed here. PMID:24284329

  6. Fast, clash-free RNA conformational morphing using molecular junctions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heliou, Amelie; Budday, Dominik; Fonseca, Rasmus

    Non-coding ribonucleic acids (ncRNA) are functional RNA molecules that are not translated into protein. They are extremely dynamic, adopting diverse conformational substates, which enables them to modulate their interaction with a large number of other molecules. The flexibility of ncRNA provides a challenge for probing their complex 3D conformational landscape, both experimentally and computationally. As a result, despite their conformational diversity, ncRNAs mostly preserve their secondary structure throughout the dynamic ensemble. Here we present a kinematics-based procedure to morph an RNA molecule between conformational substates, while avoiding inter-atomic clashes. We represent an RNA as a kinematic linkage, with fixed groupsmore » of atoms as rigid bodies and rotatable bonds as degrees of freedom. Our procedure maintains RNA secondary structure by treating hydrogen bonds between base pairs as constraints. The constraints define a lower-dimensional, secondary-structure constraint manifold in conformation space, where motions are largely governed by molecular junctions of unpaired nucleotides. On a large benchmark set, we show that our morphing procedure compares favorably to peer algorithms, and can approach goal conformations to within a low all-atom RMSD by directing fewer than 1% of its atoms. Furthermore, our results suggest that molecular junctions can modulate 3D structural rearrangements, while secondary structure elements guide large parts of the molecule along the transition to the correct final conformation.« less

  7. Fast, clash-free RNA conformational morphing using molecular junctions

    DOE PAGES

    Heliou, Amelie; Budday, Dominik; Fonseca, Rasmus; ...

    2017-03-13

    Non-coding ribonucleic acids (ncRNA) are functional RNA molecules that are not translated into protein. They are extremely dynamic, adopting diverse conformational substates, which enables them to modulate their interaction with a large number of other molecules. The flexibility of ncRNA provides a challenge for probing their complex 3D conformational landscape, both experimentally and computationally. As a result, despite their conformational diversity, ncRNAs mostly preserve their secondary structure throughout the dynamic ensemble. Here we present a kinematics-based procedure to morph an RNA molecule between conformational substates, while avoiding inter-atomic clashes. We represent an RNA as a kinematic linkage, with fixed groupsmore » of atoms as rigid bodies and rotatable bonds as degrees of freedom. Our procedure maintains RNA secondary structure by treating hydrogen bonds between base pairs as constraints. The constraints define a lower-dimensional, secondary-structure constraint manifold in conformation space, where motions are largely governed by molecular junctions of unpaired nucleotides. On a large benchmark set, we show that our morphing procedure compares favorably to peer algorithms, and can approach goal conformations to within a low all-atom RMSD by directing fewer than 1% of its atoms. Furthermore, our results suggest that molecular junctions can modulate 3D structural rearrangements, while secondary structure elements guide large parts of the molecule along the transition to the correct final conformation.« less

  8. Application of the maximum entropy principle to determine ensembles of intrinsically disordered proteins from residual dipolar couplings.

    PubMed

    Sanchez-Martinez, M; Crehuet, R

    2014-12-21

    We present a method based on the maximum entropy principle that can re-weight an ensemble of protein structures based on data from residual dipolar couplings (RDCs). The RDCs of intrinsically disordered proteins (IDPs) provide information on the secondary structure elements present in an ensemble; however even two sets of RDCs are not enough to fully determine the distribution of conformations, and the force field used to generate the structures has a pervasive influence on the refined ensemble. Two physics-based coarse-grained force fields, Profasi and Campari, are able to predict the secondary structure elements present in an IDP, but even after including the RDC data, the re-weighted ensembles differ between both force fields. Thus the spread of IDP ensembles highlights the need for better force fields. We distribute our algorithm in an open-source Python code.

  9. Flight service environmental effects on composite materials and structures

    NASA Technical Reports Server (NTRS)

    Dexter, H. Benson; Baker, Donald J.

    1992-01-01

    NASA Langley and the U.S. Army have jointly sponsored programs to assess the effects of realistic flight environments and ground-based exposure on advanced composite materials and structures. Composite secondary structural components were initially installed on commercial transport aircraft in 1973; secondary and primary structural components were installed on commercial helicopters in 1979; and primary structural components were installed on commercial aircraft in the mid-to-late 1980's. Service performance, maintenance characteristics, and residual strength of numerous components are reported. In addition to data on flight components, 10 year ground exposure test results on material coupons are reported. Comparison between ground and flight environmental effects for several composite material systems are also presented. Test results indicate excellent in-service performance with the composite components during the 15 year period. Good correlation between ground-based material performance and operational structural performance has been achieved.

  10. A fast and robust iterative algorithm for prediction of RNA pseudoknotted secondary structures

    PubMed Central

    2014-01-01

    Background Improving accuracy and efficiency of computational methods that predict pseudoknotted RNA secondary structures is an ongoing challenge. Existing methods based on free energy minimization tend to be very slow and are limited in the types of pseudoknots that they can predict. Incorporating known structural information can improve prediction accuracy; however, there are not many methods for prediction of pseudoknotted structures that can incorporate structural information as input. There is even less understanding of the relative robustness of these methods with respect to partial information. Results We present a new method, Iterative HFold, for pseudoknotted RNA secondary structure prediction. Iterative HFold takes as input a pseudoknot-free structure, and produces a possibly pseudoknotted structure whose energy is at least as low as that of any (density-2) pseudoknotted structure containing the input structure. Iterative HFold leverages strengths of earlier methods, namely the fast running time of HFold, a method that is based on the hierarchical folding hypothesis, and the energy parameters of HotKnots V2.0. Our experimental evaluation on a large data set shows that Iterative HFold is robust with respect to partial information, with average accuracy on pseudoknotted structures steadily increasing from roughly 54% to 79% as the user provides up to 40% of the input structure. Iterative HFold is much faster than HotKnots V2.0, while having comparable accuracy. Iterative HFold also has significantly better accuracy than IPknot on our HK-PK and IP-pk168 data sets. Conclusions Iterative HFold is a robust method for prediction of pseudoknotted RNA secondary structures, whose accuracy with more than 5% information about true pseudoknot-free structures is better than that of IPknot, and with about 35% information about true pseudoknot-free structures compares well with that of HotKnots V2.0 while being significantly faster. Iterative HFold and all data used in this work are freely available at http://www.cs.ubc.ca/~hjabbari/software.php. PMID:24884954

  11. Secondary standards laboratories for ionizing radiation calibrations: The national laboratory interests

    NASA Astrophysics Data System (ADS)

    Roberson, P. I.; Campbell, G. W.

    1984-11-01

    The national laboratories are probable candidates to serve as secondary standards laboratories for the federal sector. Representatives of the major Department of Energy laboratories were polled concerning attitudes toward a secondary laboratory structure. Generally, the need for secondary laboratories was recognized and the development of such a program was encouraged. The secondary laboratories should be reviewed and inspected by the National Bureau of Standards. They should offer all of the essential, and preferably additional, calibration services in the field of radiological health protection. The selection of secondary laboratories should be based on economic and geographic criteria and/or be voluntary.

  12. SeMPI: a genome-based secondary metabolite prediction and identification web server.

    PubMed

    Zierep, Paul F; Padilla, Natàlia; Yonchev, Dimitar G; Telukunta, Kiran K; Klementz, Dennis; Günther, Stefan

    2017-07-03

    The secondary metabolism of bacteria, fungi and plants yields a vast number of bioactive substances. The constantly increasing amount of published genomic data provides the opportunity for an efficient identification of gene clusters by genome mining. Conversely, for many natural products with resolved structures, the encoding gene clusters have not been identified yet. Even though genome mining tools have become significantly more efficient in the identification of biosynthetic gene clusters, structural elucidation of the actual secondary metabolite is still challenging, especially due to as yet unpredictable post-modifications. Here, we introduce SeMPI, a web server providing a prediction and identification pipeline for natural products synthesized by polyketide synthases of type I modular. In order to limit the possible structures of PKS products and to include putative tailoring reactions, a structural comparison with annotated natural products was introduced. Furthermore, a benchmark was designed based on 40 gene clusters with annotated PKS products. The web server of the pipeline (SeMPI) is freely available at: http://www.pharmaceutical-bioinformatics.de/sempi. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  13. An object programming based environment for protein secondary structure prediction.

    PubMed

    Giacomini, M; Ruggiero, C; Sacile, R

    1996-01-01

    The most frequently used methods for protein secondary structure prediction are empirical statistical methods and rule based methods. A consensus system based on object-oriented programming is presented, which integrates the two approaches with the aim of improving the prediction quality. This system uses an object-oriented knowledge representation based on the concepts of conformation, residue and protein, where the conformation class is the basis, the residue class derives from it and the protein class derives from the residue class. The system has been tested with satisfactory results on several proteins of the Brookhaven Protein Data Bank. Its results have been compared with the results of the most widely used prediction methods, and they show a higher prediction capability and greater stability. Moreover, the system itself provides an index of the reliability of its current prediction. This system can also be regarded as a basis structure for programs of this kind.

  14. Improved measurements of RNA structure conservation with generalized centroid estimators.

    PubMed

    Okada, Yohei; Saito, Yutaka; Sato, Kengo; Sakakibara, Yasubumi

    2011-01-01

    Identification of non-protein-coding RNAs (ncRNAs) in genomes is a crucial task for not only molecular cell biology but also bioinformatics. Secondary structures of ncRNAs are employed as a key feature of ncRNA analysis since biological functions of ncRNAs are deeply related to their secondary structures. Although the minimum free energy (MFE) structure of an RNA sequence is regarded as the most stable structure, MFE alone could not be an appropriate measure for identifying ncRNAs since the free energy is heavily biased by the nucleotide composition. Therefore, instead of MFE itself, several alternative measures for identifying ncRNAs have been proposed such as the structure conservation index (SCI) and the base pair distance (BPD), both of which employ MFE structures. However, these measurements are unfortunately not suitable for identifying ncRNAs in some cases including the genome-wide search and incur high false discovery rate. In this study, we propose improved measurements based on SCI and BPD, applying generalized centroid estimators to incorporate the robustness against low quality multiple alignments. Our experiments show that our proposed methods achieve higher accuracy than the original SCI and BPD for not only human-curated structural alignments but also low quality alignments produced by CLUSTAL W. Furthermore, the centroid-based SCI on CLUSTAL W alignments is more accurate than or comparable with that of the original SCI on structural alignments generated with RAF, a high quality structural aligner, for which twofold expensive computational time is required on average. We conclude that our methods are more suitable for genome-wide alignments which are of low quality from the point of view on secondary structures than the original SCI and BPD.

  15. Exact calculation of loop formation probability identifies folding motifs in RNA secondary structures.

    PubMed

    Sloma, Michael F; Mathews, David H

    2016-12-01

    RNA secondary structure prediction is widely used to analyze RNA sequences. In an RNA partition function calculation, free energy nearest neighbor parameters are used in a dynamic programming algorithm to estimate statistical properties of the secondary structure ensemble. Previously, partition functions have largely been used to estimate the probability that a given pair of nucleotides form a base pair, the conditional stacking probability, the accessibility to binding of a continuous stretch of nucleotides, or a representative sample of RNA structures. Here it is demonstrated that an RNA partition function can also be used to calculate the exact probability of formation of hairpin loops, internal loops, bulge loops, or multibranch loops at a given position. This calculation can also be used to estimate the probability of formation of specific helices. Benchmarking on a set of RNA sequences with known secondary structures indicated that loops that were calculated to be more probable were more likely to be present in the known structure than less probable loops. Furthermore, highly probable loops are more likely to be in the known structure than the set of loops predicted in the lowest free energy structures. © 2016 Sloma and Mathews; Published by Cold Spring Harbor Laboratory Press for the RNA Society.

  16. Super-secondary structure peptidomimetics: design and synthesis of an α-α hairpin analogue

    PubMed Central

    Nevola, Laura; Rodriguez, Johanna M.; Thompson, Sam; Hamilton, Andrew D.

    2015-01-01

    The α-α helix motif presents key recognition domains in protein-protein and protein-oligonucleotide binding, and is one of the most common super-secondary structures. Herein we describe the design, synthesis and structural characterization of an α-α hairpin analogue based on a tetra-coordinated Pd(II) bis-(iminoisoquinoline) complex as a template for the display of two α-helix mimics. This approach is exemplified by the attachment of two biphenyl peptidomimetics to reproduce the side-chains of the i and i+4 residues of two helices. PMID:26052191

  17. RAG-3D: A search tool for RNA 3D substructures

    DOE PAGES

    Zahran, Mai; Sevim Bayrak, Cigdem; Elmetwaly, Shereef; ...

    2015-08-24

    In this study, to address many challenges in RNA structure/function prediction, the characterization of RNA's modular architectural units is required. Using the RNA-As-Graphs (RAG) database, we have previously explored the existence of secondary structure (2D) submotifs within larger RNA structures. Here we present RAG-3D—a dataset of RNA tertiary (3D) structures and substructures plus a web-based search tool—designed to exploit graph representations of RNAs for the goal of searching for similar 3D structural fragments. The objects in RAG-3D consist of 3D structures translated into 3D graphs, cataloged based on the connectivity between their secondary structure elements. Each graph is additionally describedmore » in terms of its subgraph building blocks. The RAG-3D search tool then compares a query RNA 3D structure to those in the database to obtain structurally similar structures and substructures. This comparison reveals conserved 3D RNA features and thus may suggest functional connections. Though RNA search programs based on similarity in sequence, 2D, and/or 3D structural elements are available, our graph-based search tool may be advantageous for illuminating similarities that are not obvious; using motifs rather than sequence space also reduces search times considerably. Ultimately, such substructuring could be useful for RNA 3D structure prediction, structure/function inference and inverse folding.« less

  18. RAG-3D: a search tool for RNA 3D substructures

    PubMed Central

    Zahran, Mai; Sevim Bayrak, Cigdem; Elmetwaly, Shereef; Schlick, Tamar

    2015-01-01

    To address many challenges in RNA structure/function prediction, the characterization of RNA's modular architectural units is required. Using the RNA-As-Graphs (RAG) database, we have previously explored the existence of secondary structure (2D) submotifs within larger RNA structures. Here we present RAG-3D—a dataset of RNA tertiary (3D) structures and substructures plus a web-based search tool—designed to exploit graph representations of RNAs for the goal of searching for similar 3D structural fragments. The objects in RAG-3D consist of 3D structures translated into 3D graphs, cataloged based on the connectivity between their secondary structure elements. Each graph is additionally described in terms of its subgraph building blocks. The RAG-3D search tool then compares a query RNA 3D structure to those in the database to obtain structurally similar structures and substructures. This comparison reveals conserved 3D RNA features and thus may suggest functional connections. Though RNA search programs based on similarity in sequence, 2D, and/or 3D structural elements are available, our graph-based search tool may be advantageous for illuminating similarities that are not obvious; using motifs rather than sequence space also reduces search times considerably. Ultimately, such substructuring could be useful for RNA 3D structure prediction, structure/function inference and inverse folding. PMID:26304547

  19. RAG-3D: A search tool for RNA 3D substructures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zahran, Mai; Sevim Bayrak, Cigdem; Elmetwaly, Shereef

    In this study, to address many challenges in RNA structure/function prediction, the characterization of RNA's modular architectural units is required. Using the RNA-As-Graphs (RAG) database, we have previously explored the existence of secondary structure (2D) submotifs within larger RNA structures. Here we present RAG-3D—a dataset of RNA tertiary (3D) structures and substructures plus a web-based search tool—designed to exploit graph representations of RNAs for the goal of searching for similar 3D structural fragments. The objects in RAG-3D consist of 3D structures translated into 3D graphs, cataloged based on the connectivity between their secondary structure elements. Each graph is additionally describedmore » in terms of its subgraph building blocks. The RAG-3D search tool then compares a query RNA 3D structure to those in the database to obtain structurally similar structures and substructures. This comparison reveals conserved 3D RNA features and thus may suggest functional connections. Though RNA search programs based on similarity in sequence, 2D, and/or 3D structural elements are available, our graph-based search tool may be advantageous for illuminating similarities that are not obvious; using motifs rather than sequence space also reduces search times considerably. Ultimately, such substructuring could be useful for RNA 3D structure prediction, structure/function inference and inverse folding.« less

  20. A new model for approximating RNA folding trajectories and population kinetics

    NASA Astrophysics Data System (ADS)

    Kirkpatrick, Bonnie; Hajiaghayi, Monir; Condon, Anne

    2013-01-01

    RNA participates both in functional aspects of the cell and in gene regulation. The interactions of these molecules are mediated by their secondary structure which can be viewed as a planar circle graph with arcs for all the chemical bonds between pairs of bases in the RNA sequence. The problem of predicting RNA secondary structure, specifically the chemically most probable structure, has many useful and efficient algorithms. This leaves RNA folding, the problem of predicting the dynamic behavior of RNA structure over time, as the main open problem. RNA folding is important for functional understanding because some RNA molecules change secondary structure in response to interactions with the environment. The full RNA folding model on at most O(3n) secondary structures is the gold standard. We present a new subset approximation model for the full model, give methods to analyze its accuracy and discuss the relative merits of our model as compared with a pre-existing subset approximation. The main advantage of our model is that it generates Monte Carlo folding pathways with the same probabilities with which they are generated under the full model. The pre-existing subset approximation does not have this property.

  1. FlexStem: improving predictions of RNA secondary structures with pseudoknots by reducing the search space.

    PubMed

    Chen, Xiang; He, Si-Min; Bu, Dongbo; Zhang, Fa; Wang, Zhiyong; Chen, Runsheng; Gao, Wen

    2008-09-15

    RNA secondary structures with pseudoknots are often predicted by minimizing free energy, which is proved to be NP-hard. Due to kinetic reasons the real RNA secondary structure often has local instead of global minimum free energy. This implies that we may improve the performance of RNA secondary structure prediction by taking kinetics into account and minimize free energy in a local area. we propose a novel algorithm named FlexStem to predict RNA secondary structures with pseudoknots. Still based on MFE criterion, FlexStem adopts comprehensive energy models that allow complex pseudoknots. Unlike classical thermodynamic methods, our approach aims to simulate the RNA folding process by successive addition of maximal stems, reducing the search space while maintaining or even improving the prediction accuracy. This reduced space is constructed by our maximal stem strategy and stem-adding rule induced from elaborate statistical experiments on real RNA secondary structures. The strategy and the rule also reflect the folding characteristic of RNA from a new angle and help compensate for the deficiency of merely relying on MFE in RNA structure prediction. We validate FlexStem by applying it to tRNAs, 5SrRNAs and a large number of pseudoknotted structures and compare it with the well-known algorithms such as RNAfold, PKNOTS, PknotsRG, HotKnots and ILM according to their overall sensitivities and specificities, as well as positive and negative controls on pseudoknots. The results show that FlexStem significantly increases the prediction accuracy through its local search strategy. Software is available at http://pfind.ict.ac.cn/FlexStem/. Supplementary data are available at Bioinformatics online.

  2. Realization and testing of a deployable space telescope based on tape springs

    NASA Astrophysics Data System (ADS)

    Lei, Wang; Li, Chuang; Zhong, Peifeng; Chong, Yaqin; Jing, Nan

    2017-08-01

    For its compact size and light weight, space telescope with deployable support structure for its secondary mirror is very suitable as an optical payload for a nanosatellite or a cubesat. Firstly the realization of a prototype deployable space telescope based on tape springs is introduced in this paper. The deployable telescope is composed of primary mirror assembly, secondary mirror assembly, 6 foldable tape springs to support the secondary mirror assembly, deployable baffle, aft optic components, and a set of lock-released devices based on shape memory alloy, etc. Then the deployment errors of the secondary mirror are measured with three-coordinate measuring machine to examine the alignment accuracy between the primary mirror and the deployed secondary mirror. Finally modal identification is completed for the telescope in deployment state to investigate its dynamic behavior with impact hammer testing. The results of the experimental modal identification agree with those from finite element analysis well.

  3. Structator: fast index-based search for RNA sequence-structure patterns

    PubMed Central

    2011-01-01

    Background The secondary structure of RNA molecules is intimately related to their function and often more conserved than the sequence. Hence, the important task of searching databases for RNAs requires to match sequence-structure patterns. Unfortunately, current tools for this task have, in the best case, a running time that is only linear in the size of sequence databases. Furthermore, established index data structures for fast sequence matching, like suffix trees or arrays, cannot benefit from the complementarity constraints introduced by the secondary structure of RNAs. Results We present a novel method and readily applicable software for time efficient matching of RNA sequence-structure patterns in sequence databases. Our approach is based on affix arrays, a recently introduced index data structure, preprocessed from the target database. Affix arrays support bidirectional pattern search, which is required for efficiently handling the structural constraints of the pattern. Structural patterns like stem-loops can be matched inside out, such that the loop region is matched first and then the pairing bases on the boundaries are matched consecutively. This allows to exploit base pairing information for search space reduction and leads to an expected running time that is sublinear in the size of the sequence database. The incorporation of a new chaining approach in the search of RNA sequence-structure patterns enables the description of molecules folding into complex secondary structures with multiple ordered patterns. The chaining approach removes spurious matches from the set of intermediate results, in particular of patterns with little specificity. In benchmark experiments on the Rfam database, our method runs up to two orders of magnitude faster than previous methods. Conclusions The presented method's sublinear expected running time makes it well suited for RNA sequence-structure pattern matching in large sequence databases. RNA molecules containing several stem-loop substructures can be described by multiple sequence-structure patterns and their matches are efficiently handled by a novel chaining method. Beyond our algorithmic contributions, we provide with Structator a complete and robust open-source software solution for index-based search of RNA sequence-structure patterns. The Structator software is available at http://www.zbh.uni-hamburg.de/Structator. PMID:21619640

  4. Vibration suppression and slewing control of a flexible structure

    NASA Technical Reports Server (NTRS)

    Inman, Daniel J.; Garcia, Ephrahim; Pokines, Brett

    1991-01-01

    Examined here are the effects of motor dynamics and secondary piezoceramic actuators on vibration suppression during the slewing of flexible structures. The approach focuses on the interaction between the structure, the actuators, and the choice of control law. The results presented here are all simulated, but are based on experimentally determined parameters for the motor, structure, piezoceramic actuators, and piezofilm sensors. The simulation results clearly illustrate that the choice of motor inertia relative to beam inertia makes a critical difference in the performance of the system. In addition, the use of secondary piezoelectric actuators reduces the load requirements on the motor and also reduces the overshoot of the tip deflection. The structures considered here are a beam and a frame. The majority of results are based on a Euler Bernoulli beam model. The slewing frame introduces substantial torsional modes and a more realistic model. The slewing frame results are incomplete and represent work in progress.

  5. NNvPDB: Neural Network based Protein Secondary Structure Prediction with PDB Validation.

    PubMed

    Sakthivel, Seethalakshmi; S K M, Habeeb

    2015-01-01

    The predicted secondary structural states are not cross validated by any of the existing servers. Hence, information on the level of accuracy for every sequence is not reported by the existing servers. This was overcome by NNvPDB, which not only reported greater Q3 but also validates every prediction with the homologous PDB entries. NNvPDB is based on the concept of Neural Network, with a new and different approach of training the network every time with five PDB structures that are similar to query sequence. The average accuracy for helix is 76%, beta sheet is 71% and overall (helix, sheet and coil) is 66%. http://bit.srmuniv.ac.in/cgi-bin/bit/cfpdb/nnsecstruct.pl.

  6. On the secondary eyewall formation of Hurricane Edouard (2014)

    PubMed Central

    Abarca, Sergio F.; Montgomery, Michael T.; Braun, Scott A.; Dunion, Jason

    2018-01-01

    A first observationally-based estimation of departures from gradient wind balance during secondary eyewall formation is presented. The study is based on the Atlantic Hurricane Edouard (2014). This storm was observed during the National Aeronautics and Space Administration’s (NASA) Hurricane and Severe Storm Sentinel (HS3) experiment, a field campaign conducted in collaboration with the National Oceanic and Atmospheric Administration (NOAA). A total of 135 dropsondes are analyzed in two separate time periods: one named the secondary eyewall formation period and the other one referred to as the decaying-double eyewalled storm period. During the secondary eyewall formation period, a time when the storm was observed to have only one eyewall, the diagnosed agradient force has a secondary maxima that coincides with the radial location of the secondary eyewall observed in the second period of study. The maximum spin up tendency of the radial influx of absolute vertical vorticity is within the boundary layer in the region of the eyewall of the storm and the spin up tendency structure elongates radially outward into the secondary region of supergradient wind, where the secondary wind maxima is observed in the second period of study. An analysis of the boundary-layer averaged vertical structure of equivalent potential temperature reveals a conditionally unstable environment in the secondary eyewall formation region. These findings support the hypothesis that deep convective activity in this region contributed to spin up of the boundary layer tangential winds and the formation of a secondary eyewall that is observed during the decaying-double eyewalled storm period. PMID:29651170

  7. On the Secondary Eyewall Formation of Hurricane Edouard (2014)

    NASA Technical Reports Server (NTRS)

    Abarca, Sergio F.; Montgomery, Michael T.; Braun, Scott A.; Dunion, Jason

    2016-01-01

    A first observationally-based estimation of departures from gradient wind balance during secondary eyewall formation is presented. The study is based on the Atlantic Hurricane Edouard (2014). This storm was observed during the National Aeronautics and Space Administrations (NASA) Hurricane and Severe Storm Sentinel (HS3) experiment, a field campaign conducted in collaboration with the National Oceanic and Atmospheric Administration (NOAA). A total of 135 dropsondes are analyzed in two separate time periods: one named the secondary eyewall formation period and the other one referred to as the decaying-double eyewalled storm period. During the secondary eyewall formation period, a time when the storm was observed to have only one eyewall, the diagnosed agradient force has a secondary maxima that coincides with the radial location of the secondary eyewall observed in the second period of study. The maximum spin up tendency of the radial influx of absolute vertical vorticity is within the boundary layer in the region of the eyewall of the storm and the spin up tendency structure elongates radially outward into the secondary region of supergradient wind, where the secondary wind maxima is observed in the second period of study. An analysis of the boundary layer averaged vertical structure of equivalent potential temperature reveals a conditionally unstable environment in the secondary eyewall formation region. These findings support the hypothesis that deep convective activity in this region contributed to spin up of the boundary layer tangential winds and the formation of a secondary eyewall that is observed during the decaying-double eyewalled storm period.

  8. On the secondary eyewall formation of Hurricane Edouard (2014).

    PubMed

    Abarca, Sergio F; Montgomery, Michael T; Braun, Scott A; Dunion, Jason

    2016-09-01

    A first observationally-based estimation of departures from gradient wind balance during secondary eyewall formation is presented. The study is based on the Atlantic Hurricane Edouard (2014). This storm was observed during the National Aeronautics and Space Administration's (NASA) Hurricane and Severe Storm Sentinel (HS3) experiment, a field campaign conducted in collaboration with the National Oceanic and Atmospheric Administration (NOAA). A total of 135 dropsondes are analyzed in two separate time periods: one named the secondary eyewall formation period and the other one referred to as the decaying-double eyewalled storm period. During the secondary eyewall formation period, a time when the storm was observed to have only one eyewall, the diagnosed agradient force has a secondary maxima that coincides with the radial location of the secondary eyewall observed in the second period of study. The maximum spin up tendency of the radial influx of absolute vertical vorticity is within the boundary layer in the region of the eyewall of the storm and the spin up tendency structure elongates radially outward into the secondary region of supergradient wind, where the secondary wind maxima is observed in the second period of study. An analysis of the boundary-layer averaged vertical structure of equivalent potential temperature reveals a conditionally unstable environment in the secondary eyewall formation region. These findings support the hypothesis that deep convective activity in this region contributed to spin up of the boundary layer tangential winds and the formation of a secondary eyewall that is observed during the decaying-double eyewalled storm period.

  9. An Ideal Remedial Reading Program.

    ERIC Educational Resources Information Center

    Boettcher, Judith A.

    An ideal secondary level remedial reading program would be based on the philosophy that both freedom and structure are required, that learning demands involvement and feedback, and that success breeds success. Such programs should be structured (i.e., based on clearly defined content and a clearly designated mode of presentation). There are many…

  10. Designing Digital Problem Based Learning Tasks that Motivate Students

    ERIC Educational Resources Information Center

    van Loon, Anne-Marieke; Ros, Anje; Martens, Rob

    2013-01-01

    This study examines whether teachers are able to apply the principles of autonomy support and structure support in designing digital problem based learning (PBL) tasks. We examine whether these tasks are more autonomy- and structure-supportive and whether primary and secondary school students experience greater autonomy, competence, and motivation…

  11. Controlling silk fibroin particle features for drug delivery

    PubMed Central

    Lammel, Andreas; Hu, Xiao; Park, Sang-Hyug; Kaplan, David L.; Scheibel, Thomas

    2010-01-01

    Silk proteins are a promising material for drug delivery due to their aqueous processability, biocompatibility, and biodegradability. A simple aqueous preparation method for silk fibroin particles with controllable size, secondary structure and zeta potential is reported. The particles were produced by salting out a silk fibroin solution with potassium phosphate. The effect of ionic strength and pH of potassium phosphate solution on the yield and morphology of the particles was determined. Secondary structure and zeta potential of the silk particles could be controlled by pH. Particles produced by salting out with 1.25 M potassium phosphate pH 6 showed a dominating silk II (crystalline) structure whereas particles produced at pH 9 were mainly composed of silk I (less crystalline). The results show that silk I rich particles possess chemical and physical stability and secondary structure which remained unchanged during post treatments even upon exposure to 100% ethanol or methanol. A model is presented to explain the process of particle formation based on intra- and intermolecular interactions of the silk domains, influenced by pH and kosmotrope salts. The reported silk fibroin particles can be loaded with small molecule model drugs, such as alcian blue, rhodamine B, and crystal violet, by simple absorption based on electrostatic interactions. In vitro release of these compounds from the silk particles depends on charge – charge interactions between the compounds and the silk. With crystal violet we demonstrated that the release kinetics are dependent on the secondary structure of the particles. PMID:20219241

  12. Secbase: database module to retrieve secondary structure elements with ligand binding motifs.

    PubMed

    Koch, Oliver; Cole, Jason; Block, Peter; Klebe, Gerhard

    2009-10-01

    Secbase is presented as a novel extension module of Relibase. It integrates the information about secondary structure elements into the retrieval facilities of Relibase. The data are accessible via the extended Relibase user interface, and integrated retrieval queries can be addressed using an extended version of Reliscript. The primary information about alpha-helices and beta-sheets is used as provided by the PDB. Furthermore, a uniform classification of all turn families, based on recent clustering methods, and a new helix assignment that is based on this turn classification has been included. Algorithms to analyze the geometric features of helices and beta-strands were also implemented. To demonstrate the performance of the Secbase implementation, some application examples are given. They provide new insights into the involvement of secondary structure elements in ligand binding. A survey of water molecules detected next to the N-terminus of helices is analyzed to show their involvement in ligand binding. Additionally, the parallel oriented NH groups at the alpha-helix N-termini provide special binding motifs to bind particular ligand functional groups with two adjacent oxygen atoms, e.g., as found in negatively charged carboxylate or phosphate groups, respectively. The present study also shows that the specific structure of the first turn of alpha-helices provides a suitable explanation for stabilizing charged structures. The magnitude of the overall helix macrodipole seems to have no or only a minor influence on binding. Furthermore, an overview of the involvement of secondary structure elements with the recognition of some important endogenous ligands such as cofactors shows some distinct preference for particular binding motifs and amino acids.

  13. Finnish Primary and Secondary School Students' Interest in Music and Mathematics Relating to Enjoyment of the Subject and Perception of the Importance and Usefulness of the Subject

    ERIC Educational Resources Information Center

    Tossavainen, Timo; Juvonen, Antti

    2015-01-01

    Based on an expectancy-value theoretical framework and data (n = 1654) collected in 29 Finnish municipalities using a structured questionnaire, this study examines primary (grades 5-6), lower secondary (grades 7-9) and upper secondary (grades 10-12) students' motivation in music and mathematics. It explores in detail the students' interest in…

  14. Exploring codon context bias for synthetic gene design of a thermostable invertase in Escherichia coli.

    PubMed

    Pek, Han Bin; Klement, Maximilian; Ang, Kok Siong; Chung, Bevan Kai-Sheng; Ow, Dave Siak-Wei; Lee, Dong-Yup

    2015-01-01

    Various isoforms of invertases from prokaryotes, fungi, and higher plants has been expressed in Escherichia coli, and codon optimisation is a widely-adopted strategy for improvement of heterologous enzyme expression. Successful synthetic gene design for recombinant protein expression can be done by matching its translational elongation rate against heterologous host organisms via codon optimization. Amongst the various design parameters considered for the gene synthesis, codon context bias has been relatively overlooked compared to individual codon usage which is commonly adopted in most of codon optimization tools. In addition, matching the rates of transcription and translation based on secondary structure may lead to enhanced protein folding. In this study, we evaluated codon context fitness as design criterion for improving the expression of thermostable invertase from Thermotoga maritima in Escherichia coli and explored the relevance of secondary structure regions for folding and expression. We designed three coding sequences by using (1) a commercial vendor optimized gene algorithm, (2) codon context for the whole gene, and (3) codon context based on the secondary structure regions. Then, the codon optimized sequences were transformed and expressed in E. coli. From the resultant enzyme activities and protein yield data, codon context fitness proved to have the highest activity as compared to the wild-type control and other criteria while secondary structure-based strategy is comparable to the control. Codon context bias was shown to be a relevant parameter for enhancing enzyme production in Escherichia coli by codon optimization. Thus, we can effectively design synthetic genes within heterologous host organisms using this criterion. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. [Distribution laws of 5 compounds in rhizome and root of Polygonum cuspidate].

    PubMed

    Liu, Yao-wut; Wang, Jun; Chu, Shan-shan; Cheng, Ming-en; Fang, Cheng-wu

    2015-12-01

    To understand the distribution and accumulation rules of polydatin, resveratrol, anthraglycoside B, emodin and physicion in different tissue structure of rhizome and root of Polygonum cospidatum, the content of 5 active compounds were analyzed simultaneously by HPLC, based on plant anatomy and histochemistry. The rhizome and root consist of different tissues, with an increased diameter, the proportions of the secondary xylem and phloem have increased. Resveratrol and polydatin mainly distributed in the pith, the secondary phloem and periderm of rhizome, and the secondary phloem and periderm of the root, while emodin and anthraglycoside B concentrated in the secondary structure and pith of rhizome mostly. In different thickness of the measured samples, the total contents of 5 compounds were correspondingly higher in thinner rhizome and root than those in the coarse ones.

  16. Dynamics of Secondary Large-Scale Structures in ETG Turbulence Simulations

    NASA Astrophysics Data System (ADS)

    Li, Jiquan; Y, Kishimoto; Dong, Jiaqi; N, Miyato; T, Matsumoto

    2006-01-01

    The dynamics of secondary large-scale structures in electron-temperature-gradient (ETG) turbulence is investigated based on gyrofluid simulations in sheared slab geometry. It is found that structural bifurcation to zonal flow dominated or streamer-like states depends on the spectral anisotropy of turbulent ETG fluctuation, which is governed by the magnetic shear. The turbulent electron transport is suppressed by enhanced zonal flows. However, it is still low even if the streamer is formed in ETG turbulence with strong shears. It is shown that the low transport may be related to the secondary excitation of poloidal long-wavelength mode due to the beat wave of the most unstable components or a modulation instability. This large-scale structure with a low frequency and a long wavelength may saturate, or at least contribute to the saturation of ETG fluctuations through a poloidal mode coupling. The result suggests a low fluctuation level in ETG turbulence.

  17. Novel Approach to Analyzing MFE of Noncoding RNA Sequences

    PubMed Central

    George, Tina P.; Thomas, Tessamma

    2016-01-01

    Genomic studies have become noncoding RNA (ncRNA) centric after the study of different genomes provided enormous information on ncRNA over the past decades. The function of ncRNA is decided by its secondary structure, and across organisms, the secondary structure is more conserved than the sequence itself. In this study, the optimal secondary structure or the minimum free energy (MFE) structure of ncRNA was found based on the thermodynamic nearest neighbor model. MFE of over 2600 ncRNA sequences was analyzed in view of its signal properties. Mathematical models linking MFE to the signal properties were found for each of the four classes of ncRNA analyzed. MFE values computed with the proposed models were in concordance with those obtained with the standard web servers. A total of 95% of the sequences analyzed had deviation of MFE values within ±15% relative to those obtained from standard web servers. PMID:27695341

  18. Novel Approach to Analyzing MFE of Noncoding RNA Sequences.

    PubMed

    George, Tina P; Thomas, Tessamma

    2016-01-01

    Genomic studies have become noncoding RNA (ncRNA) centric after the study of different genomes provided enormous information on ncRNA over the past decades. The function of ncRNA is decided by its secondary structure, and across organisms, the secondary structure is more conserved than the sequence itself. In this study, the optimal secondary structure or the minimum free energy (MFE) structure of ncRNA was found based on the thermodynamic nearest neighbor model. MFE of over 2600 ncRNA sequences was analyzed in view of its signal properties. Mathematical models linking MFE to the signal properties were found for each of the four classes of ncRNA analyzed. MFE values computed with the proposed models were in concordance with those obtained with the standard web servers. A total of 95% of the sequences analyzed had deviation of MFE values within ±15% relative to those obtained from standard web servers.

  19. Schools as Open Social Systems: A Study of Site Specific Restructuring.

    ERIC Educational Resources Information Center

    Dellar, Graham B.

    This paper revisits the literature on the nature of school organizations and presents a view of secondary schools as complex social systems, as opposed to bureaucratic-rational structures. Research was conducted into three Western Australia secondary schools planning to implement school-based decision making and planning procedures. The…

  20. Predicting turns in proteins with a unified model.

    PubMed

    Song, Qi; Li, Tonghua; Cong, Peisheng; Sun, Jiangming; Li, Dapeng; Tang, Shengnan

    2012-01-01

    Turns are a critical element of the structure of a protein; turns play a crucial role in loops, folds, and interactions. Current prediction methods are well developed for the prediction of individual turn types, including α-turn, β-turn, and γ-turn, etc. However, for further protein structure and function prediction it is necessary to develop a uniform model that can accurately predict all types of turns simultaneously. In this study, we present a novel approach, TurnP, which offers the ability to investigate all the turns in a protein based on a unified model. The main characteristics of TurnP are: (i) using newly exploited features of structural evolution information (secondary structure and shape string of protein) based on structure homologies, (ii) considering all types of turns in a unified model, and (iii) practical capability of accurate prediction of all turns simultaneously for a query. TurnP utilizes predicted secondary structures and predicted shape strings, both of which have greater accuracy, based on innovative technologies which were both developed by our group. Then, sequence and structural evolution features, which are profile of sequence, profile of secondary structures and profile of shape strings are generated by sequence and structure alignment. When TurnP was validated on a non-redundant dataset (4,107 entries) by five-fold cross-validation, we achieved an accuracy of 88.8% and a sensitivity of 71.8%, which exceeded the most state-of-the-art predictors of certain type of turn. Newly determined sequences, the EVA and CASP9 datasets were used as independent tests and the results we achieved were outstanding for turn predictions and confirmed the good performance of TurnP for practical applications.

  1. Predicting Turns in Proteins with a Unified Model

    PubMed Central

    Song, Qi; Li, Tonghua; Cong, Peisheng; Sun, Jiangming; Li, Dapeng; Tang, Shengnan

    2012-01-01

    Motivation Turns are a critical element of the structure of a protein; turns play a crucial role in loops, folds, and interactions. Current prediction methods are well developed for the prediction of individual turn types, including α-turn, β-turn, and γ-turn, etc. However, for further protein structure and function prediction it is necessary to develop a uniform model that can accurately predict all types of turns simultaneously. Results In this study, we present a novel approach, TurnP, which offers the ability to investigate all the turns in a protein based on a unified model. The main characteristics of TurnP are: (i) using newly exploited features of structural evolution information (secondary structure and shape string of protein) based on structure homologies, (ii) considering all types of turns in a unified model, and (iii) practical capability of accurate prediction of all turns simultaneously for a query. TurnP utilizes predicted secondary structures and predicted shape strings, both of which have greater accuracy, based on innovative technologies which were both developed by our group. Then, sequence and structural evolution features, which are profile of sequence, profile of secondary structures and profile of shape strings are generated by sequence and structure alignment. When TurnP was validated on a non-redundant dataset (4,107 entries) by five-fold cross-validation, we achieved an accuracy of 88.8% and a sensitivity of 71.8%, which exceeded the most state-of-the-art predictors of certain type of turn. Newly determined sequences, the EVA and CASP9 datasets were used as independent tests and the results we achieved were outstanding for turn predictions and confirmed the good performance of TurnP for practical applications. PMID:23144872

  2. Prediction of RNA secondary structures: from theory to models and real molecules

    NASA Astrophysics Data System (ADS)

    Schuster, Peter

    2006-05-01

    RNA secondary structures are derived from RNA sequences, which are strings built form the natural four letter nucleotide alphabet, {AUGC}. These coarse-grained structures, in turn, are tantamount to constrained strings over a three letter alphabet. Hence, the secondary structures are discrete objects and the number of sequences always exceeds the number of structures. The sequences built from two letter alphabets form perfect structures when the nucleotides can form a base pair, as is the case with {GC} or {AU}, but the relation between the sequences and structures differs strongly from the four letter alphabet. A comprehensive theory of RNA structure is presented, which is based on the concepts of sequence space and shape space, being a space of structures. It sets the stage for modelling processes in ensembles of RNA molecules like evolutionary optimization or kinetic folding as dynamical phenomena guided by mappings between the two spaces. The number of minimum free energy (mfe) structures is always smaller than the number of sequences, even for two letter alphabets. Folding of RNA molecules into mfe energy structures constitutes a non-invertible mapping from sequence space onto shape space. The preimage of a structure in sequence space is defined as its neutral network. Similarly the set of suboptimal structures is the preimage of a sequence in shape space. This set represents the conformation space of a given sequence. The evolutionary optimization of structures in populations is a process taking place in sequence space, whereas kinetic folding occurs in molecular ensembles that optimize free energy in conformation space. Efficient folding algorithms based on dynamic programming are available for the prediction of secondary structures for given sequences. The inverse problem, the computation of sequences for predefined structures, is an important tool for the design of RNA molecules with tailored properties. Simultaneous folding or cofolding of two or more RNA molecules can be modelled readily at the secondary structure level and allows prediction of the most stable (mfe) conformations of complexes together with suboptimal states. Cofolding algorithms are important tools for efficient and highly specific primer design in the polymerase chain reaction (PCR) and help to explain the mechanisms of small interference RNA (si-RNA) molecules in gene regulation. The evolutionary optimization of RNA structures is illustrated by the search for a target structure and mimics aptamer selection in evolutionary biotechnology. It occurs typically in steps consisting of short adaptive phases interrupted by long epochs of little or no obvious progress in optimization. During these quasi-stationary epochs the populations are essentially confined to neutral networks where they search for sequences that allow a continuation of the adaptive process. Modelling RNA evolution as a simultaneous process in sequence and shape space provides answers to questions of the optimal population size and mutation rates. Kinetic folding is a stochastic process in conformation space. Exact solutions are derived by direct simulation in the form of trajectory sampling or by solving the master equation. The exact solutions can be approximated straightforwardly by Arrhenius kinetics on barrier trees, which represent simplified versions of conformational energy landscapes. The existence of at least one sequence forming any arbitrarily chosen pair of structures is granted by the intersection theorem. Folding kinetics is the key to understanding and designing multistable RNA molecules or RNA switches. These RNAs form two or more long lived conformations, and conformational changes occur either spontaneously or are induced through binding of small molecules or other biopolymers. RNA switches are found in nature where they act as elements in genetic and metabolic regulation. The reliability of RNA secondary structure prediction is limited by the accuracy with which the empirical parameters can be determined and by principal deficiencies, for example by the lack of energy contributions resulting from tertiary interactions. In addition, native structures may be determined by folding kinetics rather than by thermodynamics. We address the first problem by considering base pair probabilities or base pairing entropies, which are derived from the partition function of conformations. A high base pair probability corresponding to a low pairing entropy is taken as an indicator of a high reliability of prediction. Pseudoknots are discussed as an example of a tertiary interaction that is highly important for RNA function. Moreover, pseudoknot formation is readily incorporated into structure prediction algorithms. Some examples of experimental data on RNA secondary structures that are readily explained using the landscape concept are presented. They deal with (i) properties of RNA molecules with random sequences, (ii) RNA molecules from restricted alphabets, (iii) existence of neutral networks, (iv) shape space covering, (v) riboswitches and (vi) evolution of non-coding RNAs as an example of evolution restricted to neutral networks.

  3. Unraveling the meaning of chemical shifts in protein NMR.

    PubMed

    Berjanskii, Mark V; Wishart, David S

    2017-11-01

    Chemical shifts are among the most informative parameters in protein NMR. They provide wealth of information about protein secondary and tertiary structure, protein flexibility, and protein-ligand binding. In this report, we review the progress in interpreting and utilizing protein chemical shifts that has occurred over the past 25years, with a particular focus on the large body of work arising from our group and other Canadian NMR laboratories. More specifically, this review focuses on describing, assessing, and providing some historical context for various chemical shift-based methods to: (1) determine protein secondary and super-secondary structure; (2) derive protein torsion angles; (3) assess protein flexibility; (4) predict residue accessible surface area; (5) refine 3D protein structures; (6) determine 3D protein structures and (7) characterize intrinsically disordered proteins. This review also briefly covers some of the methods that we previously developed to predict chemical shifts from 3D protein structures and/or protein sequence data. It is hoped that this review will help to increase awareness of the considerable utility of NMR chemical shifts in structural biology and facilitate more widespread adoption of chemical-shift based methods by the NMR spectroscopists, structural biologists, protein biophysicists, and biochemists worldwide. This article is part of a Special Issue entitled: Biophysics in Canada, edited by Lewis Kay, John Baenziger, Albert Berghuis and Peter Tieleman. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. External cavity-quantum cascade laser infrared spectroscopy for secondary structure analysis of proteins at low concentrations

    PubMed Central

    Schwaighofer, Andreas; Alcaráz, Mirta R.; Araman, Can; Goicoechea, Héctor; Lendl, Bernhard

    2016-01-01

    Fourier transform infrared (FTIR) and circular dichroism (CD) spectroscopy are analytical techniques employed for the analysis of protein secondary structure. The use of CD spectroscopy is limited to low protein concentrations (<2 mg ml−1), while FTIR spectroscopy is commonly used in a higher concentration range (>5 mg ml−1). Here we introduce a quantum cascade laser (QCL)-based IR transmission setup for analysis of protein and polypeptide secondary structure at concentrations as low as 0.25 mg ml−1 in deuterated buffer solution. We present dynamic QCL-IR spectra of the temperature-induced α-helix to β-sheet transition of poly-L-lysine. The concentration dependence of the α-β transition temperature between 0.25 and 10 mg ml−1 was investigated by QCL-IR, FTIR and CD spectroscopy. By using QCL-IR spectroscopy it is possible to perform IR spectroscopic analysis in the same concentration range as CD spectroscopy, thus enabling a combined analysis of biomolecules secondary structure by CD and IR spectroscopy. PMID:27633337

  5. 5-Fluoro pyrimidines: labels to probe DNA and RNA secondary structures by 1D 19F NMR spectroscopy

    PubMed Central

    Puffer, Barbara; Kreutz, Christoph; Rieder, Ulrike; Ebert, Marc-Olivier; Konrat, Robert; Micura, Ronald

    2009-01-01

    19F NMR spectroscopy has proved to be a valuable tool to monitor functionally important conformational transitions of nucleic acids. Here, we present a systematic investigation on the application of 5-fluoro pyrimidines to probe DNA and RNA secondary structures. Oligonucleotides with the propensity to adapt secondary structure equilibria were chosen as model systems and analyzed by 1D 19F and 1H NMR spectroscopy. A comparison with the unmodified analogs revealed that the equilibrium characteristics of the bistable DNA and RNA oligonucleotides were hardly affected upon fluorine substitution at C5 of pyrimidines. This observation was in accordance with UV spectroscopic melting experiments which demonstrated that single 5-fluoro substitutions in double helices lead to comparable thermodynamic stabilities. Thus, 5-fluoro pyrimidine labeling of DNA and RNA can be reliably applied for NMR based nucleic acid secondary structure evaluation. Furthermore, we developed a facile synthetic route towards 5-fluoro cytidine phosphoramidites that enables their convenient site-specific incorporation into oligonucleotides by solid-phase synthesis. PMID:19843610

  6. 5-Fluoro pyrimidines: labels to probe DNA and RNA secondary structures by 1D 19F NMR spectroscopy.

    PubMed

    Puffer, Barbara; Kreutz, Christoph; Rieder, Ulrike; Ebert, Marc-Olivier; Konrat, Robert; Micura, Ronald

    2009-12-01

    (19)F NMR spectroscopy has proved to be a valuable tool to monitor functionally important conformational transitions of nucleic acids. Here, we present a systematic investigation on the application of 5-fluoro pyrimidines to probe DNA and RNA secondary structures. Oligonucleotides with the propensity to adapt secondary structure equilibria were chosen as model systems and analyzed by 1D (19)F and (1)H NMR spectroscopy. A comparison with the unmodified analogs revealed that the equilibrium characteristics of the bistable DNA and RNA oligonucleotides were hardly affected upon fluorine substitution at C5 of pyrimidines. This observation was in accordance with UV spectroscopic melting experiments which demonstrated that single 5-fluoro substitutions in double helices lead to comparable thermodynamic stabilities. Thus, 5-fluoro pyrimidine labeling of DNA and RNA can be reliably applied for NMR based nucleic acid secondary structure evaluation. Furthermore, we developed a facile synthetic route towards 5-fluoro cytidine phosphoramidites that enables their convenient site-specific incorporation into oligonucleotides by solid-phase synthesis.

  7. External cavity-quantum cascade laser infrared spectroscopy for secondary structure analysis of proteins at low concentrations.

    PubMed

    Schwaighofer, Andreas; Alcaráz, Mirta R; Araman, Can; Goicoechea, Héctor; Lendl, Bernhard

    2016-09-16

    Fourier transform infrared (FTIR) and circular dichroism (CD) spectroscopy are analytical techniques employed for the analysis of protein secondary structure. The use of CD spectroscopy is limited to low protein concentrations (<2 mg ml(-1)), while FTIR spectroscopy is commonly used in a higher concentration range (>5 mg ml(-1)). Here we introduce a quantum cascade laser (QCL)-based IR transmission setup for analysis of protein and polypeptide secondary structure at concentrations as low as 0.25 mg ml(-1) in deuterated buffer solution. We present dynamic QCL-IR spectra of the temperature-induced α-helix to β-sheet transition of poly-L-lysine. The concentration dependence of the α-β transition temperature between 0.25 and 10 mg ml(-1) was investigated by QCL-IR, FTIR and CD spectroscopy. By using QCL-IR spectroscopy it is possible to perform IR spectroscopic analysis in the same concentration range as CD spectroscopy, thus enabling a combined analysis of biomolecules secondary structure by CD and IR spectroscopy.

  8. An Amino Acid Code for Irregular and Mixed Protein Packing

    PubMed Central

    Joo, Hyun; Chavan, Archana; Fraga, Keith; Tsai, Jerry

    2015-01-01

    To advance our understanding of protein tertiary structure, the development of the knob-socket model is completed in an analysis of the packing in irregular coil and turn secondary structure packing as well as between mixed secondary structure. The knob-socket model simplifies packing based on repeated patterns of 2 motifs: a 3 residue socket for packing within 2° structure and a 4 residue knob-socket for 3° packing. For coil and turn secondary structure, knob-sockets allow identification of a correlation between amino acid composition and tertiary arrangements in space. Coil contributes almost as much as α-helices to tertiary packing. Irregular secondary structure involves 3 residue cliques of consecutive contacting residues or XYZ sockets. In irregular sockets, Gly, Pro, Asp and Ser are favored, while Cys, His, Met and Trp are not. For irregular knobs, the preference order is Arg, Asp, Pro, Asn, Thr, Leu, and Gly, while Cys, His, Met and Trp are not. In mixed packing, the knob amino acid preferences are a function of the socket that they are packing into, whereas the amino acid composition of the sockets does not depend on the secondary structure of the knob. A unique motif of a coil knob with an XYZ β-sheet socket may potentially function to inhibit β-sheet extension. In addition, analysis of the preferred crossing angles for strands within a β-sheet and mixed α-helices/β-sheets identifies canonical packing patterns useful in protein design. Lastly, the knob-socket model abstracts the complexity of protein tertiary structure into an intuitive packing surface topology map. PMID:26370334

  9. The Role of the Local Conformation of a Cyclically Constrained β-AMINO Acid in the Secondary Structures of a Mixed α/β Diastereomer Pair

    NASA Astrophysics Data System (ADS)

    Blodgett, Karl N.; Zwier, Timothy S.

    2017-06-01

    Synthetic foldamers are non-natural polymers designed to fold into unique secondary structures that either mimic nature's preferred secondary structures, or expand their possibilities. Among the most studied synthetic foldamers are β-peptides, which lengthen the distance between amide groups from the single substituted carbon spacer in α-peptides by one (β) additional carbon. Cyclically constrained β-amino acids can impart rigidity to the secondary structure of oligomers by locking in a particular conformation. The β-residue cis-2-aminocyclohexanecarboxylic acid (cis-ACHC) is one such amino acid which has been shown to drive vastly different secondary structures as a function of the local conformation of the cyclohexane ring. We present data on two diastereomers of the mixed α/β tri-peptide Ac-Ala-β_{ACHC}-Ala-NHBn which differ from one another by the chirality along the ACHC residue (SRSS vs. SSRS). The first oligomer is known to crystallize to a 9/11 mixed helix while the second forms no intramolecular hydrogen bonds in the crystal state. This talk will describe the conformation-specific IR and UV spectroscopy of the above two diastereomers under jet cooled conditions in the gas phase. Assignments based on comparison with calculations show the presence of incipient 9/11 mixed helices and competing structures containing more tightly folded hydrogen-bonded networks. The calculated global minimum structures are observed in each case, and in each case these folded structures are reminiscent of a β-turn.

  10. Evolutionary Relationships Based on Cellular Structure.

    ERIC Educational Resources Information Center

    Van Winkle, Lon J.

    1979-01-01

    This laboratory exercise integrates the topics of cell structure, classification of living organisms, and evolution. It is suitable for secondary or college biology courses and was used in an interdisciplinary science course for nonscience majors. (BB)

  11. A general method for the purification of synthetic oligodeoxyribonucleotides containing strong secondary structure by reversed-phase high-performance liquid chromatography on PRP-1 resin.

    PubMed

    Germann, M W; Pon, R T; van de Sande, J H

    1987-09-01

    Synthetic 5'-dimethoxytritylated oligodeoxyribonucleotides, which contained strong secondary structure, were satisfactorily denatured and purified by reversed-phase HPLC on PRP-1 columns when strongly alkaline conditions (0.05 M NaOH) were employed. This procedure was suitable for the purification of hairpin structures, e.g., d(CG)nT4(CG)n (n = 4, 5, 6), and oligo(dG) sequences, e.g., d(G)24, as well as oligodeoxyribonucleotide probes which contained degenerate base sites. Oligodeoxyribonucleotides as long as 50 bases in length were purified. Recovery of injected oligonucleotides was typically 90% or better. The high capacity of the PRP-1 resin also allowed purification to be performed on a preparative scale (2-8 mg per injection). Enzymatic degradation and HPLC analysis indicated that no modification of the heterocyclic bases occurred under the alkaline conditions described.

  12. Structural and Functional Analyses of the Six1 Transcriptional Complex for Anti-Breast Cancer Drug Design

    DTIC Science & Technology

    2011-04-01

    of structurally highly related initial hits. 
 Fig. 8. A malachite green based secondary assay confirmed the top two initial hits do inhibit ED’s...Crystals (left) and diffraction pattern (right) of ED. using a malachite -green based phosphatase assay (Fig. 8). We further demonstrated that these

  13. Single-fluorophore monitoring of DNA hybridization for investigating the effect of secondary structure on the nucleation step.

    PubMed

    Jo, Joon-Jung; Kim, Min-Ji; Son, Jung-Tae; Kim, Jandi; Shin, Jong-Shik

    2009-07-17

    Nucleic acid hybridization is one of the essential biological processes involved in storage and transmission of genetic information. Here we quantitatively determined the effect of secondary structure on the hybridization activation energy using structurally defined oligonucleotides. It turned out that activation energy is linearly proportional to the length of a single-stranded region flanking a nucleation site, generating a 0.18 kcal/mol energy barrier per nucleotide. Based on this result, we propose that the presence of single-stranded segments available for non-productive base pairing with a nucleation counterpart extends the searching process for nucleation sites to find a perfect match. This result may provide insights into rational selection of a target mRNA site for siRNA and antisense gene silencing.

  14. Velocimetry modalities for secondary flows in a curved artery test section

    NASA Astrophysics Data System (ADS)

    Bulusu, Kartik V.; Elkins, Christopher J.; Banko, Andrew J.; Plesniak, Michael W.; Eaton, John K.

    2014-11-01

    Secondary flow structures arise due to curvature-related centrifugal forces and pressure imbalances. These flow structures influence wall shear stress and alter blood particle residence times. Magnetic resonance velocimetry (MRV) and particle image velocimetry (PIV) techniques were implemented independently, under the same physiological inflow conditions (Womersley number = 4.2). A 180-degree curved artery test section with curvature ratio (1/7) was used as an idealized geometry for curved arteries. Newtonian blood analog fluids were used for both MRV and PIV experiments. The MRV-technique offers the advantage of three-dimensional velocity field acquisition without requiring optical access or flow markers. Phase-averaged, two-dimensional, PIV-data at certain cross-sectional planes and inflow phases were compared to phase-averaged MRV-data to facilitate the characterization of large-scale, Dean-type vortices. Coherent structures detection methods that included a novel wavelet decomposition-based approach to characterize these flow structures was applied to both PIV- and MRV-data. The overarching goal of this study is the detection of motific, three-dimensional shapes of secondary flow structures using MRV techniques with guidance obtained from high fidelity, 2D-PIV measurements. This material is based in part upon work supported by the National Science Foundation under Grant Number CBET-0828903, and GW Center for Biomimetics and Bioinspired Engineering (COBRE).

  15. PDB2CD: a web-based application for the generation of circular dichroism spectra from protein atomic coordinates.

    PubMed

    Mavridis, Lazaros; Janes, Robert W

    2017-01-01

    Circular dichroism (CD) spectroscopy is extensively utilized for determining the percentages of secondary structure content present in proteins. However, although a large contributor, secondary structure is not the only factor that influences the shape and magnitude of the CD spectrum produced. Other structural features can make contributions so an entire protein structural conformation can give rise to a CD spectrum. There is a need for an application capable of generating protein CD spectra from atomic coordinates. However, no empirically derived method to do this currently exists. PDB2CD has been created as an empirical-based approach to the generation of protein CD spectra from atomic coordinates. The method utilizes a combination of structural features within the conformation of a protein; not only its percentage secondary structure content, but also the juxtaposition of these structural components relative to one another, and the overall structure similarity of the query protein to proteins in our dataset, the SP175 dataset, the 'gold standard' set obtained from the Protein Circular Dichroism Data Bank (PCDDB). A significant number of the CD spectra associated with the 71 proteins in this dataset have been produced with excellent accuracy using a leave-one-out cross-validation process. The method also creates spectra in good agreement with those of a test set of 14 proteins from the PCDDB. The PDB2CD package provides a web-based, user friendly approach to enable researchers to produce CD spectra from protein atomic coordinates. http://pdb2cd.cryst.bbk.ac.uk CONTACT: r.w.janes@qmul.ac.ukSupplementary information: Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press.

  16. From SHAPE Signatures to 3-D Structures | Center for Cancer Research

    Cancer.gov

    RNAs undergo extensive folding to form sophisticated based-paired secondary structures that are, in part, indicators of more complex three-dimensional structures.  These 3-D shapes are an integral part of the cellular gene-expression machinery. Deconstructing these structures is no small matter, yet it is critical to understanding their function.

  17. Synthesis, spectroscopic, DFT studies and biological activity of some ruthenium carbonyl derivatives of bis-(salicylaldehyde)phenylenediimine Schiff base ligand

    NASA Astrophysics Data System (ADS)

    Ramadan, Ramadan M.; Abu Al-Nasr, Ahmad K.; Ali, Omayma A. M.

    2018-06-01

    Bis-(salicylaldehyde)phenylenediimine Schiff base (H2salphen) reacted oxidatively with the triruthenium dodecacarbonyl complex, [Ru3(CO)12] to give the dicarbonyl derivative [Ru(CO)2(salphen)], 1. In presence of a secondary ligand L (L = pyridine, triphenyl phosphine, 2-aminobenzimidazole or thiourea), the monocarbonyl derivatives [Ru(CO)(salphen)L], 2-5, were isolated. When the bipyridine (bpy) ligand was used as a secondary ligand, the dicarbonyl complex [Ru(CO)2(Hsalphen)(bpy)], 6, was obtained. In complexes 1-5, the Schiff base ligand acted as a tetradentate, while it coordinated as a bidentate in complex 6. The structure and stoichiometry of the complexes were investigated by the conventional analytical and spectroscopic techniques, which revealed that they have several structural arrangements. The structures of ligand and complexes were verified by theoretical calculations based on accurate DFT approximations. The relative reactivities were estimated using chemical descriptors analysis. Biological activities of the complexes against the Escherchia coli and Staphylococcus aureus bacteria were screened.

  18. Stabilised DNA secondary structures with increasing transcription localise hypermutable bases for somatic hypermutation in IGHV3-23.

    PubMed

    Duvvuri, Bhargavi; Duvvuri, Venkata R; Wu, Jianhong; Wu, Gillian E

    2012-07-01

    Somatic hypermutation (SHM) mediated by activation-induced cytidine deaminase (AID) is a transcription-coupled mechanism most responsible for generating high affinity antibodies. An issue remaining enigmatic in SHM is how AID is preferentially targeted during transcription to hypermutable bases in its substrates (WRC motifs) on both DNA strands. AID targets only single stranded DNA. By modelling the dynamical behaviour of IGHV3-23 DNA, a commonly used human variable gene segment, we observed that hypermutable bases on the non-transcribed strand are paired whereas those on transcribed strand are mostly unpaired. Hypermutable bases (both paired and unpaired) are made accessible to AID in stabilised secondary structures formed with increasing transcription levels. This observation provides a rationale for the hypermutable bases on both the strands of DNA being targeted to a similar extent despite having differences in unpairedness. We propose that increasing transcription and RNAP II stalling resulting in the formation and stabilisation of stem-loop structures with AID hotspots in negatively supercoiled region can localise the hypermutable bases of both strands of DNA, to AID-mediated SHM.

  19. "Everyone Has Their Own Qualities": Tracking and Academic Self-Appraisal in Flemish Secondary Education

    ERIC Educational Resources Information Center

    Van Praag, Lore; Demanet, Jannick; Stevens, Peter A. J.; Van Houtte, Mieke

    2017-01-01

    Track position has an impact on students' perceptions of educational success. These perceptions matter as they relate to educational and professional aspirations and choices. In this ethnographic study, based on ethnographic observations and semi-structured interviews in three secondary schools in Flanders (northern part of Belgium), we want to…

  20. Managing Information and Communication Technology in Sudanese Secondary School

    ERIC Educational Resources Information Center

    Ahmed, Abdelrahman

    2015-01-01

    This research article is based on a larger study whose purpose was to investigate the current status and implementation of ICT in Khartoum State secondary schools. The study, adopted a descriptive survey design. Two instruments questionnaires and a structured interview schedule were used to collect data. The target population comprised of 320…

  1. Teacher Argumentation in the Secondary Science Classroom: Images of Two Modes of Scientific Inquiry

    ERIC Educational Resources Information Center

    Gray, Ron E.

    2009-01-01

    The purpose of this exploratory study was to examine scientific arguments constructed by secondary science teachers during instruction. The analysis focused on how arguments constructed by teachers differed based on the mode of inquiry underlying the topic. Specifically, how did the structure and content of arguments differ between experimentally…

  2. Circular dichroism and DNA secondary structure.

    PubMed Central

    Baase, W A; Johnson, W C

    1979-01-01

    The change in average rotation of the DNA helix has been determined for the transfer from 0.05 M NaCl to 3.0 M CsCl, 6.2 M LiCl and 5.4 M NH4Cl. This work, combined with data at lower salt from other laboratories, allows us to relate the intensity of the CD of DNA at 275 nm directly to the change in the number of base pairs per turn. The change in secondary structure for the transfer of DNA from 0.05 M NaCl (where it is presumably in the B-form) to high salt (where the characteristic CD has been interpreted as corresponding to C-form geometry) is found to be -0.22 (+/- 0.02) base pairs per turn. In the case of mononucleosomes, where the CD indicates the "C-form", the change in secondary structure (including temperature effects) would add -0.31 (+/- 0.03) turns about the histone core to the -1.25 turns estimated from work on SV40 chromatin. Accurate winding angles and molar extinction coefficients were determined for ethidium. PMID:424316

  3. Heavy ion track-structure calculations for radial dose in arbitrary materials

    NASA Technical Reports Server (NTRS)

    Cucinotta, Francis A.; Katz, Robert; Wilson, John W.; Dubey, Rajendra R.

    1995-01-01

    The delta-ray theory of track structure is compared with experimental data for the radial dose from heavy ion irradiation. The effects of electron transmission and the angular dependence of secondary electron ejection are included in the calculations. Several empirical formulas for electron range and energy are compared in a wide variety of materials in order to extend the application of the track-structure theory. The model of Rudd for the secondary electron-spectrum in proton collisions, which is based on a modified classical kinematics binary encounter model at high energies and a molecular promotion model at low energies, is employed. For heavier projectiles, the secondary electron spectrum is found by scaling the effective charge. Radial dose calculations for carbon, water, silicon, and gold are discussed. The theoretical data agreed well with the experimental data.

  4. Extracting physicochemical features to predict protein secondary structure.

    PubMed

    Huang, Yin-Fu; Chen, Shu-Ying

    2013-01-01

    We propose a protein secondary structure prediction method based on position-specific scoring matrix (PSSM) profiles and four physicochemical features including conformation parameters, net charges, hydrophobic, and side chain mass. First, the SVM with the optimal window size and the optimal parameters of the kernel function is found. Then, we train the SVM using the PSSM profiles generated from PSI-BLAST and the physicochemical features extracted from the CB513 data set. Finally, we use the filter to refine the predicted results from the trained SVM. For all the performance measures of our method, Q 3 reaches 79.52, SOV94 reaches 86.10, and SOV99 reaches 74.60; all the measures are higher than those of the SVMpsi method and the SVMfreq method. This validates that considering these physicochemical features in predicting protein secondary structure would exhibit better performances.

  5. Extracting Physicochemical Features to Predict Protein Secondary Structure

    PubMed Central

    Chen, Shu-Ying

    2013-01-01

    We propose a protein secondary structure prediction method based on position-specific scoring matrix (PSSM) profiles and four physicochemical features including conformation parameters, net charges, hydrophobic, and side chain mass. First, the SVM with the optimal window size and the optimal parameters of the kernel function is found. Then, we train the SVM using the PSSM profiles generated from PSI-BLAST and the physicochemical features extracted from the CB513 data set. Finally, we use the filter to refine the predicted results from the trained SVM. For all the performance measures of our method, Q 3 reaches 79.52, SOV94 reaches 86.10, and SOV99 reaches 74.60; all the measures are higher than those of the SVMpsi method and the SVMfreq method. This validates that considering these physicochemical features in predicting protein secondary structure would exhibit better performances. PMID:23766688

  6. Inquiry practice and identity of beginning secondary science teachers in the online and offline learning community: A longitudinal mixed methods study

    NASA Astrophysics Data System (ADS)

    Bang, Eunjin

    This two-year study explored changes in practices and the emerging identities of beginning secondary science teachers who participated in an online science specific mentoring program. Fourteen beginning secondary science teachers and six experienced secondary science teachers were selected for the study. As a mixed methods study, data were gathered quantitatively and qualitatively. A hierarchical linear modeling was used in order to depict the changes in inquiry-based science practices as a result of content-focused online mentoring program. Qualitative data were collected via monthly semi-structured interviews, pre, post, and follow-up yearly semi-structured interviews, and finally online written dialogues of beginning secondary science teachers and their e-mentors. A mixed method was used that utilized the results of quantitative data, Items for Inquiry-Based Practice (IBP) scores, helped for selecting cases for qualitative analysis. Results indicated that there were no significant differences in IBP scores among the fourteen beginning secondary science teachers; however, three groups were detected: increasing use, no change, and decreasing use in inquiry-based practices. Porsha, who made increasing use, showed four emerging identities throughout two years: watchful-imitator, seeker, collaborator, and junior-leader. Nora, who made no change, showed only two emerging identities: imitator and seeker. Netty, who made decreasing use, showed also two emerging identities: lonely-follower and feeder. Different identities detected in online dialogue, namely Porsha as a whistleblower, Nora as a watchful-imitator, and Netty as a watchful-feeder. The corresponding responses of three beginning secondary science teachers' e-mentors were defender, provider, listener, pusher and umpire. This study provides not only an in-depth picture of the contemporary science education community of practice but also suggest a roadmap to design an effective induction program.

  7. Three-Dimensional Molecular Modeling of a Diverse Range of SC Clan Serine Proteases

    PubMed Central

    Laskar, Aparna; Chatterjee, Aniruddha; Chatterjee, Somnath; Rodger, Euan J.

    2012-01-01

    Serine proteases are involved in a variety of biological processes and are classified into clans sharing structural homology. Although various three-dimensional structures of SC clan proteases have been experimentally determined, they are mostly bacterial and animal proteases, with some from archaea, plants, and fungi, and as yet no structures have been determined for protozoa. To bridge this gap, we have used molecular modeling techniques to investigate the structural properties of different SC clan serine proteases from a diverse range of taxa. Either SWISS-MODEL was used for homology-based structure prediction or the LOOPP server was used for threading-based structure prediction. The predicted models were refined using Insight II and SCRWL and validated against experimental structures. Investigation of secondary structures and electrostatic surface potential was performed using MOLMOL. The structural geometry of the catalytic core shows clear deviations between taxa, but the relative positions of the catalytic triad residues were conserved. Evolutionary divergence was also exhibited by large variation in secondary structure features outside the core, differences in overall amino acid distribution, and unique surface electrostatic potential patterns between species. Encompassing a wide range of taxa, our structural analysis provides an evolutionary perspective on SC clan serine proteases. PMID:23213528

  8. Secondary flow structure in a model curved artery: 3D morphology and circulation budget analysis

    NASA Astrophysics Data System (ADS)

    Bulusu, Kartik V.; Plesniak, Michael W.

    2015-11-01

    In this study, we examined the rate of change of circulation within control regions encompassing the large-scale vortical structures associated with secondary flows, i.e. deformed Dean-, Lyne- and Wall-type (D-L-W) vortices at planar cross-sections in a 180° curved artery model (curvature ratio, 1/7). Magnetic resonance velocimetry (MRV) and particle image velocimetry (PIV) experiments were performed independently, under the same physiological inflow conditions (Womersley number, 4.2) and using Newtonian blood-analog fluids. The MRV-technique performed at Stanford University produced phase-averaged, three-dimensional velocity fields. Secondary flow field comparisons of MRV-data to PIV-data at various cross-sectional planes and inflow phases were made. A wavelet-decomposition-based approach was implemented to characterize various secondary flow morphologies. We hypothesize that the persistence and decay of arterial secondary flow vortices is intrinsically related to the influence of the out-of-plane flow, tilting, in-plane convection and diffusion-related factors within the control regions. Evaluation of these factors will elucidate secondary flow structures in arterial hemodynamics. Supported by the National Science Foundation under Grant Number CBET-0828903, and GW Center for Biomimetics and Bioinspired Engineering (COBRE). The MRV data were acquired at Stanford University in collaboration with Christopher Elkins and John Eaton.

  9. VITAL NMR: Using Chemical Shift Derived Secondary Structure Information for a Limited Set of Amino Acids to Assess Homology Model Accuracy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brothers, Michael C; Nesbitt, Anna E; Hallock, Michael J

    2011-01-01

    Homology modeling is a powerful tool for predicting protein structures, whose success depends on obtaining a reasonable alignment between a given structural template and the protein sequence being analyzed. In order to leverage greater predictive power for proteins with few structural templates, we have developed a method to rank homology models based upon their compliance to secondary structure derived from experimental solid-state NMR (SSNMR) data. Such data is obtainable in a rapid manner by simple SSNMR experiments (e.g., (13)C-(13)C 2D correlation spectra). To test our homology model scoring procedure for various amino acid labeling schemes, we generated a library ofmore » 7,474 homology models for 22 protein targets culled from the TALOS+/SPARTA+ training set of protein structures. Using subsets of amino acids that are plausibly assigned by SSNMR, we discovered that pairs of the residues Val, Ile, Thr, Ala and Leu (VITAL) emulate an ideal dataset where all residues are site specifically assigned. Scoring the models with a predicted VITAL site-specific dataset and calculating secondary structure with the Chemical Shift Index resulted in a Pearson correlation coefficient (-0.75) commensurate to the control (-0.77), where secondary structure was scored site specifically for all amino acids (ALL 20) using STRIDE. This method promises to accelerate structure procurement by SSNMR for proteins with unknown folds through guiding the selection of remotely homologous protein templates and assessing model quality.« less

  10. Structural changes and fluctuations of proteins. I. A statistical thermodynamic model.

    PubMed

    Ikegami, A

    1977-01-01

    A general theory of the structural changes and fluctuations of proteins has been proposed based on statistical thermodynamic considerations at the chain level. The "structure" of protein was assumed to be characterized by the state of secondary bonds between unique pairs of specific sites on peptide chains. Every secondary bond changes between the bonded and unbonded states by thermal agitation and the "structure" is continuously fluctuating. The free energy of the "structural state" that is defined by the fraction of secondary bonds in the bonded state has been expressed by the bond energy, the cooperative interaction between bonds, the mixing entropy of bonds, and the entropy of polypeptide chains. The most probable "structural state" can be simply determined by graphical analysis and the effect of temperature or solvent composition on it is discussed. The temperature dependence of the free energy, the probability distribution of structural states and the specific heat have been calculted for two examples of structural change. The theory predicts two different types of structural changes from the ordered to disorderd state, a "structured transition" and a "gradual structural change" with rising temperature. In the "structural transition", the probability distribution has two maxima in the temperature range of transition. In the "gradual structural change", the probabilty distribution has only one maximum during the change. A considerable fraction of secondary bonds is in the unbounded state and is always fluctuating even in the ordered state at room temperature. Such structural flucutations in a single protein molecule have been discussed quantitatively. The theory is extended to include small molecules which bind to the protein molecule and affect the structural state. The changes of structural state caused by specific and non-specific binding and allosteric effects are explained in a unified manner.

  11. Prediction of Spontaneous Protein Deamidation from Sequence-Derived Secondary Structure and Intrinsic Disorder.

    PubMed

    Lorenzo, J Ramiro; Alonso, Leonardo G; Sánchez, Ignacio E

    2015-01-01

    Asparagine residues in proteins undergo spontaneous deamidation, a post-translational modification that may act as a molecular clock for the regulation of protein function and turnover. Asparagine deamidation is modulated by protein local sequence, secondary structure and hydrogen bonding. We present NGOME, an algorithm able to predict non-enzymatic deamidation of internal asparagine residues in proteins in the absence of structural data, using sequence-based predictions of secondary structure and intrinsic disorder. Compared to previous algorithms, NGOME does not require three-dimensional structures yet yields better predictions than available sequence-only methods. Four case studies of specific proteins show how NGOME may help the user identify deamidation-prone asparagine residues, often related to protein gain of function, protein degradation or protein misfolding in pathological processes. A fifth case study applies NGOME at a proteomic scale and unveils a correlation between asparagine deamidation and protein degradation in yeast. NGOME is freely available as a webserver at the National EMBnet node Argentina, URL: http://www.embnet.qb.fcen.uba.ar/ in the subpage "Protein and nucleic acid structure and sequence analysis".

  12. High-throughput determination of RNA structure by proximity ligation.

    PubMed

    Ramani, Vijay; Qiu, Ruolan; Shendure, Jay

    2015-09-01

    We present an unbiased method to globally resolve RNA structures through pairwise contact measurements between interacting regions. RNA proximity ligation (RPL) uses proximity ligation of native RNA followed by deep sequencing to yield chimeric reads with ligation junctions in the vicinity of structurally proximate bases. We apply RPL in both baker's yeast (Saccharomyces cerevisiae) and human cells and generate contact probability maps for ribosomal and other abundant RNAs, including yeast snoRNAs, the RNA subunit of the signal recognition particle and the yeast U2 spliceosomal RNA homolog. RPL measurements correlate with established secondary structures for these RNA molecules, including stem-loop structures and long-range pseudoknots. We anticipate that RPL will complement the current repertoire of computational and experimental approaches in enabling the high-throughput determination of secondary and tertiary RNA structures.

  13. Framework for Structural Online Health Monitoring of Aging and Degradation of Secondary Systems due to some Aspects of Erosion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gribok, Andrei; Patnaik, Sobhan; Williams, Christian

    This report describes the current state of research related to critical aspects of erosion and selected aspects of degradation of secondary components in nuclear power plants. The report also proposes a framework for online health monitoring of aging and degradation of secondary components. The framework consists of an integrated multi-sensor modality system which can be used to monitor different piping configurations under different degradation conditions. The report analyses the currently known degradation mechanisms and available predictive models. Based on this analysis, the structural health monitoring framework is proposed. The Light Water Reactor Sustainability Program began to evaluate technologies that couldmore » be used to perform online monitoring of piping and other secondary system structural components in commercial NPPs. These online monitoring systems have the potential to identify when a more detailed inspection is needed using real-time measurements, rather than at a pre-determined inspection interval. This transition to condition-based, risk informed automated maintenance will contribute to a significant reduction of operations and maintenance costs that account for the majority of nuclear power generation costs. There is unanimous agreement between industry experts and academic researchers that identifying and prioritizing inspection locations in secondary piping systems (for example, in raw water piping or diesel piping) would eliminate many excessive in-service inspections. The proposed structural health monitoring framework takes aim at answering this challenge by combining long-range guided wave technologies with other monitoring techniques, which can significantly increase the inspection length and pinpoint the locations that degraded the most. More widely, the report suggests research efforts aimed at developing, validating, and deploying online corrosion monitoring techniques for complex geometries, which are pervasive in NPPs.« less

  14. Predicting residue-wise contact orders in proteins by support vector regression.

    PubMed

    Song, Jiangning; Burrage, Kevin

    2006-10-03

    The residue-wise contact order (RWCO) describes the sequence separations between the residues of interest and its contacting residues in a protein sequence. It is a new kind of one-dimensional protein structure that represents the extent of long-range contacts and is considered as a generalization of contact order. Together with secondary structure, accessible surface area, the B factor, and contact number, RWCO provides comprehensive and indispensable important information to reconstructing the protein three-dimensional structure from a set of one-dimensional structural properties. Accurately predicting RWCO values could have many important applications in protein three-dimensional structure prediction and protein folding rate prediction, and give deep insights into protein sequence-structure relationships. We developed a novel approach to predict residue-wise contact order values in proteins based on support vector regression (SVR), starting from primary amino acid sequences. We explored seven different sequence encoding schemes to examine their effects on the prediction performance, including local sequence in the form of PSI-BLAST profiles, local sequence plus amino acid composition, local sequence plus molecular weight, local sequence plus secondary structure predicted by PSIPRED, local sequence plus molecular weight and amino acid composition, local sequence plus molecular weight and predicted secondary structure, and local sequence plus molecular weight, amino acid composition and predicted secondary structure. When using local sequences with multiple sequence alignments in the form of PSI-BLAST profiles, we could predict the RWCO distribution with a Pearson correlation coefficient (CC) between the predicted and observed RWCO values of 0.55, and root mean square error (RMSE) of 0.82, based on a well-defined dataset with 680 protein sequences. Moreover, by incorporating global features such as molecular weight and amino acid composition we could further improve the prediction performance with the CC to 0.57 and an RMSE of 0.79. In addition, combining the predicted secondary structure by PSIPRED was found to significantly improve the prediction performance and could yield the best prediction accuracy with a CC of 0.60 and RMSE of 0.78, which provided at least comparable performance compared with the other existing methods. The SVR method shows a prediction performance competitive with or at least comparable to the previously developed linear regression-based methods for predicting RWCO values. In contrast to support vector classification (SVC), SVR is very good at estimating the raw value profiles of the samples. The successful application of the SVR approach in this study reinforces the fact that support vector regression is a powerful tool in extracting the protein sequence-structure relationship and in estimating the protein structural profiles from amino acid sequences.

  15. Side-locked headaches: an algorithm-based approach.

    PubMed

    Prakash, Sanjay; Rathore, Chaturbhuj

    2016-12-01

    The differential diagnosis of strictly unilateral hemicranial pain includes a large number of primary and secondary headaches and cranial neuropathies. It may arise from both intracranial and extracranial structures such as cranium, neck, vessels, eyes, ears, nose, sinuses, teeth, mouth, and the other facial or cervical structure. Available data suggest that about two-third patients with side-locked headache visiting neurology or headache clinics have primary headaches. Other one-third will have either secondary headaches or neuralgias. Many of these hemicranial pain syndromes have overlapping presentations. Primary headache disorders may spread to involve the face and / or neck. Even various intracranial and extracranial pathologies may have similar overlapping presentations. Patients may present to a variety of clinicians, including headache experts, dentists, otolaryngologists, ophthalmologist, psychiatrists, and physiotherapists. Unfortunately, there is not uniform approach for such patients and diagnostic ambiguity is frequently encountered in clinical practice.Herein, we review the differential diagnoses of side-locked headaches and provide an algorithm based approach for patients presenting with side-locked headaches. Side-locked headache is itself a red flag. So, the first priority should be to rule out secondary headaches. A comprehensive history and thorough examinations will help one to formulate an algorithm to rule out or confirm secondary side-locked headaches. The diagnoses of most secondary side-locked headaches are largely investigations dependent. Therefore, each suspected secondary headache should be subjected for appropriate investigations or referral. The diagnostic approach of primary side-locked headache starts once one rule out all the possible secondary headaches. We have discussed an algorithmic approach for both secondary and primary side-locked headaches.

  16. SVM-PB-Pred: SVM based protein block prediction method using sequence profiles and secondary structures.

    PubMed

    Suresh, V; Parthasarathy, S

    2014-01-01

    We developed a support vector machine based web server called SVM-PB-Pred, to predict the Protein Block for any given amino acid sequence. The input features of SVM-PB-Pred include i) sequence profiles (PSSM) and ii) actual secondary structures (SS) from DSSP method or predicted secondary structures from NPS@ and GOR4 methods. There were three combined input features PSSM+SS(DSSP), PSSM+SS(NPS@) and PSSM+SS(GOR4) used to test and train the SVM models. Similarly, four datasets RS90, DB433, LI1264 and SP1577 were used to develop the SVM models. These four SVM models developed were tested using three different benchmarking tests namely; (i) self consistency, (ii) seven fold cross validation test and (iii) independent case test. The maximum possible prediction accuracy of ~70% was observed in self consistency test for the SVM models of both LI1264 and SP1577 datasets, where PSSM+SS(DSSP) input features was used to test. The prediction accuracies were reduced to ~53% for PSSM+SS(NPS@) and ~43% for PSSM+SS(GOR4) in independent case test, for the SVM models of above two same datasets. Using our method, it is possible to predict the protein block letters for any query protein sequence with ~53% accuracy, when the SP1577 dataset and predicted secondary structure from NPS@ server were used. The SVM-PB-Pred server can be freely accessed through http://bioinfo.bdu.ac.in/~svmpbpred.

  17. Accurate SHAPE-directed RNA secondary structure modeling, including pseudoknots.

    PubMed

    Hajdin, Christine E; Bellaousov, Stanislav; Huggins, Wayne; Leonard, Christopher W; Mathews, David H; Weeks, Kevin M

    2013-04-02

    A pseudoknot forms in an RNA when nucleotides in a loop pair with a region outside the helices that close the loop. Pseudoknots occur relatively rarely in RNA but are highly overrepresented in functionally critical motifs in large catalytic RNAs, in riboswitches, and in regulatory elements of viruses. Pseudoknots are usually excluded from RNA structure prediction algorithms. When included, these pairings are difficult to model accurately, especially in large RNAs, because allowing this structure dramatically increases the number of possible incorrect folds and because it is difficult to search the fold space for an optimal structure. We have developed a concise secondary structure modeling approach that combines SHAPE (selective 2'-hydroxyl acylation analyzed by primer extension) experimental chemical probing information and a simple, but robust, energy model for the entropic cost of single pseudoknot formation. Structures are predicted with iterative refinement, using a dynamic programming algorithm. This melded experimental and thermodynamic energy function predicted the secondary structures and the pseudoknots for a set of 21 challenging RNAs of known structure ranging in size from 34 to 530 nt. On average, 93% of known base pairs were predicted, and all pseudoknots in well-folded RNAs were identified.

  18. A Circular Dichroism Reference Database for Membrane Proteins

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wallace,B.; Wien, F.; Stone, T.

    2006-01-01

    Membrane proteins are a major product of most genomes and the target of a large number of current pharmaceuticals, yet little information exists on their structures because of the difficulty of crystallising them; hence for the most part they have been excluded from structural genomics programme targets. Furthermore, even methods such as circular dichroism (CD) spectroscopy which seek to define secondary structure have not been fully exploited because of technical limitations to their interpretation for membrane embedded proteins. Empirical analyses of circular dichroism (CD) spectra are valuable for providing information on secondary structures of proteins. However, the accuracy of themore » results depends on the appropriateness of the reference databases used in the analyses. Membrane proteins have different spectral characteristics than do soluble proteins as a result of the low dielectric constants of membrane bilayers relative to those of aqueous solutions (Chen & Wallace (1997) Biophys. Chem. 65:65-74). To date, no CD reference database exists exclusively for the analysis of membrane proteins, and hence empirical analyses based on current reference databases derived from soluble proteins are not adequate for accurate analyses of membrane protein secondary structures (Wallace et al (2003) Prot. Sci. 12:875-884). We have therefore created a new reference database of CD spectra of integral membrane proteins whose crystal structures have been determined. To date it contains more than 20 proteins, and spans the range of secondary structures from mostly helical to mostly sheet proteins. This reference database should enable more accurate secondary structure determinations of membrane embedded proteins and will become one of the reference database options in the CD calculation server DICHROWEB (Whitmore & Wallace (2004) NAR 32:W668-673).« less

  19. Structural Interplay - Tuning Mechanics in Peptide-Polyurea Hybrids

    NASA Astrophysics Data System (ADS)

    Korley, Lashanda

    Utilizing cues from natural materials, we have been inspired to explore the hierarchical arrangement critical to energy absorption and mechanical enhancement in synthetic systems. Of particular interest is the soft domain ordering proposed as a contributing element to the observed toughness in spider silk. Multiblock copolymers, are ideal and dynamic systems in which to explore this approach via variations in secondary structure of nature's building blocks - peptides. We have designed a new class of polyurea hybrids that incorporate peptidic copolymers as the soft segment. The impact of hierarchical ordering on the thermal, mechanical, and morphological behavior of these bio-inspired polyurethanes with a siloxane-based, peptide soft segment was investigated. These peptide-polyurethane/urea hybrids were microphase segregated, and the beta-sheet secondary structure of the soft segment was preserved during polymerization and film casting. Toughness enhancement at low strains was achieved, but the overall extensibility of the peptide-incorporated systems was reduced due to the unique hard domain organization. To decouple the secondary structure influence in the siloxane-peptide soft segment from mechanics dominated by the hard domain, we also developed non-chain extended peptide-polyurea hybrids in which the secondary structure (beta sheet vs. alpha helix) was tuned via choice of peptide and peptide length. It was shown that this structural approach allowed tailoring of extensibility, toughness, and modulus. The sheet-dominant hybrid materials were typically tougher and more elastic due to intermolecular H-bonding facilitating load distribution, while the helical-prevalent systems generally exhibited higher stiffness. Recently, we have explored the impact of a molecular design strategy that overlays a covalent and physically crosslinked architecture in these peptide-polyurea hybrids, demonstrating that physical constraints in the network hybrids influences peptide hydrogen bonding and morphology. These structural features correlated well with systematic changes in modulus, extensibility, and hysteresis. Complementary to this effort is the design of PEG-based peptide-polyurea hybrids with tunable and responsive as structural and injectable hydrogels. The authors acknowledge funding support from the National Science Foundation (CAREER DMR-0953236).

  20. Opportunities and Challenges: Integration of ICT in Teaching and Learning Mathematics in Secondary Schools, Nairobi, Kenya

    ERIC Educational Resources Information Center

    Amuko, Sheila; Miheso, Marguerite; Ndeuthi, Sophie

    2015-01-01

    This presentation is based on a larger study whose purpose was to explore the various opportunities and challenges influencing integration of ICT in teaching and learning Mathematics in secondary schools in Nairobi County. The study, adopted a descriptive survey design. Three instruments questionnaires', a structured interview schedule and an…

  1. CSI 3.0: a web server for identifying secondary and super-secondary structure in proteins using NMR chemical shifts

    PubMed Central

    Hafsa, Noor E.; Arndt, David; Wishart, David S.

    2015-01-01

    The Chemical Shift Index or CSI 3.0 (http://csi3.wishartlab.com) is a web server designed to accurately identify the location of secondary and super-secondary structures in protein chains using only nuclear magnetic resonance (NMR) backbone chemical shifts and their corresponding protein sequence data. Unlike earlier versions of CSI, which only identified three types of secondary structure (helix, β-strand and coil), CSI 3.0 now identifies total of 11 types of secondary and super-secondary structures, including helices, β-strands, coil regions, five common β-turns (type I, II, I′, II′ and VIII), β hairpins as well as interior and edge β-strands. CSI 3.0 accepts experimental NMR chemical shift data in multiple formats (NMR Star 2.1, NMR Star 3.1 and SHIFTY) and generates colorful CSI plots (bar graphs) and secondary/super-secondary structure assignments. The output can be readily used as constraints for structure determination and refinement or the images may be used for presentations and publications. CSI 3.0 uses a pipeline of several well-tested, previously published programs to identify the secondary and super-secondary structures in protein chains. Comparisons with secondary and super-secondary structure assignments made via standard coordinate analysis programs such as DSSP, STRIDE and VADAR on high-resolution protein structures solved by X-ray and NMR show >90% agreement between those made with CSI 3.0. PMID:25979265

  2. Integration of QUARK and I-TASSER for ab initio protein structure prediction in CASP11

    PubMed Central

    Zhang, Wenxuan; Yang, Jianyi; He, Baoji; Walker, Sara Elizabeth; Zhang, Hongjiu; Govindarajoo, Brandon; Virtanen, Jouko; Xue, Zhidong; Shen, Hong-Bin; Zhang, Yang

    2015-01-01

    We tested two pipelines developed for template-free protein structure prediction in the CASP11 experiment. First, the QUARK pipeline constructs structure models by reassembling fragments of continuously distributed lengths excised from unrelated proteins. Five free-modeling (FM) targets have the model successfully constructed by QUARK with a TM-score above 0.4, including the first model of T0837-D1, which has a TM-score=0.736 and RMSD=2.9 Å to the native. Detailed analysis showed that the success is partly attributed to the high-resolution contact map prediction derived from fragment-based distance-profiles, which are mainly located between regular secondary structure elements and loops/turns and help guide the orientation of secondary structure assembly. In the Zhang-Server pipeline, weakly scoring threading templates are re-ordered by the structural similarity to the ab initio folding models, which are then reassembled by I-TASSER based structure assembly simulations; 60% more domains with length up to 204 residues, compared to the QUARK pipeline, were successfully modeled by the I-TASSER pipeline with a TM-score above 0.4. The robustness of the I-TASSER pipeline can stem from the composite fragment-assembly simulations that combine structures from both ab initio folding and threading template refinements. Despite the promising cases, challenges still exist in long-range beta-strand folding, domain parsing, and the uncertainty of secondary structure prediction; the latter of which was found to affect nearly all aspects of FM structure predictions, from fragment identification, target classification, structure assembly, to final model selection. Significant efforts are needed to solve these problems before real progress on FM could be made. PMID:26370505

  3. Integration of QUARK and I-TASSER for Ab Initio Protein Structure Prediction in CASP11.

    PubMed

    Zhang, Wenxuan; Yang, Jianyi; He, Baoji; Walker, Sara Elizabeth; Zhang, Hongjiu; Govindarajoo, Brandon; Virtanen, Jouko; Xue, Zhidong; Shen, Hong-Bin; Zhang, Yang

    2016-09-01

    We tested two pipelines developed for template-free protein structure prediction in the CASP11 experiment. First, the QUARK pipeline constructs structure models by reassembling fragments of continuously distributed lengths excised from unrelated proteins. Five free-modeling (FM) targets have the model successfully constructed by QUARK with a TM-score above 0.4, including the first model of T0837-D1, which has a TM-score = 0.736 and RMSD = 2.9 Å to the native. Detailed analysis showed that the success is partly attributed to the high-resolution contact map prediction derived from fragment-based distance-profiles, which are mainly located between regular secondary structure elements and loops/turns and help guide the orientation of secondary structure assembly. In the Zhang-Server pipeline, weakly scoring threading templates are re-ordered by the structural similarity to the ab initio folding models, which are then reassembled by I-TASSER based structure assembly simulations; 60% more domains with length up to 204 residues, compared to the QUARK pipeline, were successfully modeled by the I-TASSER pipeline with a TM-score above 0.4. The robustness of the I-TASSER pipeline can stem from the composite fragment-assembly simulations that combine structures from both ab initio folding and threading template refinements. Despite the promising cases, challenges still exist in long-range beta-strand folding, domain parsing, and the uncertainty of secondary structure prediction; the latter of which was found to affect nearly all aspects of FM structure predictions, from fragment identification, target classification, structure assembly, to final model selection. Significant efforts are needed to solve these problems before real progress on FM could be made. Proteins 2016; 84(Suppl 1):76-86. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.

  4. Molecular phylogeny of 21 tropical bamboo species reconstructed by integrating non-coding internal transcribed spacer (ITS1 and 2) sequences and their consensus secondary structure.

    PubMed

    Ghosh, Jayadri Sekhar; Bhattacharya, Samik; Pal, Amita

    2017-06-01

    The unavailability of the reproductive structure and unpredictability of vegetative characters for the identification and phylogenetic study of bamboo prompted the application of molecular techniques for greater resolution and consensus. We first employed internal transcribed spacer (ITS1, 5.8S rRNA and ITS2) sequences to construct the phylogenetic tree of 21 tropical bamboo species. While the sequence alone could grossly reconstruct the traditional phylogeny amongst the 21-tropical species studied, some anomalies were encountered that prompted a further refinement of the phylogenetic analyses. Therefore, we integrated the secondary structure of the ITS sequences to derive individual sequence-structure matrix to gain more resolution on the phylogenetic reconstruction. The results showed that ITS sequence-structure is the reliable alternative to the conventional phenotypic method for the identification of bamboo species. The best-fit topology obtained by the sequence-structure based phylogeny over the sole sequence based one underscores closer clustering of all the studied Bambusa species (Sub-tribe Bambusinae), while Melocanna baccifera, which belongs to Sub-Tribe Melocanneae, disjointedly clustered as an out-group within the consensus phylogenetic tree. In this study, we demonstrated the dependability of the combined (ITS sequence+structure-based) approach over the only sequence-based analysis for phylogenetic relationship assessment of bamboo.

  5. Efficient algorithms for probing the RNA mutation landscape.

    PubMed

    Waldispühl, Jérôme; Devadas, Srinivas; Berger, Bonnie; Clote, Peter

    2008-08-08

    The diversity and importance of the role played by RNAs in the regulation and development of the cell are now well-known and well-documented. This broad range of functions is achieved through specific structures that have been (presumably) optimized through evolution. State-of-the-art methods, such as McCaskill's algorithm, use a statistical mechanics framework based on the computation of the partition function over the canonical ensemble of all possible secondary structures on a given sequence. Although secondary structure predictions from thermodynamics-based algorithms are not as accurate as methods employing comparative genomics, the former methods are the only available tools to investigate novel RNAs, such as the many RNAs of unknown function recently reported by the ENCODE consortium. In this paper, we generalize the McCaskill partition function algorithm to sum over the grand canonical ensemble of all secondary structures of all mutants of the given sequence. Specifically, our new program, RNAmutants, simultaneously computes for each integer k the minimum free energy structure MFE(k) and the partition function Z(k) over all secondary structures of all k-point mutants, even allowing the user to specify certain positions required not to mutate and certain positions required to base-pair or remain unpaired. This technically important extension allows us to study the resilience of an RNA molecule to pointwise mutations. By computing the mutation profile of a sequence, a novel graphical representation of the mutational tendency of nucleotide positions, we analyze the deleterious nature of mutating specific nucleotide positions or groups of positions. We have successfully applied RNAmutants to investigate deleterious mutations (mutations that radically modify the secondary structure) in the Hepatitis C virus cis-acting replication element and to evaluate the evolutionary pressure applied on different regions of the HIV trans-activation response element. In particular, we show qualitative agreement between published Hepatitis C and HIV experimental mutagenesis studies and our analysis of deleterious mutations using RNAmutants. Our work also predicts other deleterious mutations, which could be verified experimentally. Finally, we provide evidence that the 3' UTR of the GB RNA virus C has been optimized to preserve evolutionarily conserved stem regions from a deleterious effect of pointwise mutations. We hope that there will be long-term potential applications of RNAmutants in de novo RNA design and drug design against RNA viruses. This work also suggests potential applications for large-scale exploration of the RNA sequence-structure network. Binary distributions are available at http://RNAmutants.csail.mit.edu/.

  6. Cascaded bidirectional recurrent neural networks for protein secondary structure prediction.

    PubMed

    Chen, Jinmiao; Chaudhari, Narendra

    2007-01-01

    Protein secondary structure (PSS) prediction is an important topic in bioinformatics. Our study on a large set of non-homologous proteins shows that long-range interactions commonly exist and negatively affect PSS prediction. Besides, we also reveal strong correlations between secondary structure (SS) elements. In order to take into account the long-range interactions and SS-SS correlations, we propose a novel prediction system based on cascaded bidirectional recurrent neural network (BRNN). We compare the cascaded BRNN against another two BRNN architectures, namely the original BRNN architecture used for speech recognition as well as Pollastri's BRNN that was proposed for PSS prediction. Our cascaded BRNN achieves an overall three state accuracy Q3 of 74.38\\%, and reaches a high Segment OVerlap (SOV) of 66.0455. It outperforms the original BRNN and Pollastri's BRNN in both Q3 and SOV. Specifically, it improves the SOV score by 4-6%.

  7. Methods for isolation of marine-derived endophytic fungi and their bioactive secondary products.

    PubMed

    Kjer, Julia; Debbab, Abdessamad; Aly, Amal H; Proksch, Peter

    2010-03-01

    Marine-derived fungi have been shown in recent years to produce a plethora of new bioactive secondary metabolites, some of them featuring new carbon frameworks hitherto unprecedented in nature. These compounds are of interest as new lead structures for medicine as well as for plant protection. The aim of this protocol is to give a detailed description of methods useful for the isolation and cultivation of fungi associated with various marine organisms (sponges, algae and mangrove plants) for the extraction, characterization and structure elucidation of biologically active secondary metabolites produced by these marine-derived endophytic fungi, and for the preliminary evaluation of their pharmacological properties based on rapid 'in house' screening systems. Some results exemplifying the positive outcomes of the protocol are given at the end. From sampling in marine environment to completion of the structure elucidation and bioactivity screening, a period of at least 3 months has to be scheduled.

  8. Contribution of Long-Range Interactions to the Secondary Structure of an Unfolded Globin

    PubMed Central

    Fedyukina, Daria V.; Rajagopalan, Senapathy; Sekhar, Ashok; Fulmer, Eric C.; Eun, Ye-Jin; Cavagnero, Silvia

    2010-01-01

    This work explores the effect of long-range tertiary contacts on the distribution of residual secondary structure in the unfolded state of an α-helical protein. N-terminal fragments of increasing length, in conjunction with multidimensional nuclear magnetic resonance, were employed. A protein representative of the ubiquitous globin fold was chosen as the model system. We found that, while most of the detectable α-helical population in the unfolded ensemble does not depend on the presence of the C-terminal region (corresponding to the native G and H helices), specific N-to-C long-range contacts between the H and A-B-C regions enhance the helical secondary structure content of the N terminus (A-B-C regions). The simple approach introduced here, based on the evaluation of N-terminal polypeptide fragments of increasing length, is of general applicability to identify the influence of long-range interactions in unfolded proteins. PMID:20816043

  9. Quantifying the benefits to the national economy from secondary applications of NASA technology, executive summary

    NASA Technical Reports Server (NTRS)

    1976-01-01

    The feasibility of systematically quantifying the economic benefits of secondary applications of NASA related R and D was investigated. Based upon the tools of economic theory and econometric analysis, a set of empirical methods was developed and selected applications were made to demonstrate their workability. Analyses of the technological developments related to integrated circuits, cryogenic insulation, gas turbines, and computer programs for structural analysis indicated substantial secondary benefits accruing from NASA's R and D in these areas.

  10. Quantifying the benefits to the national economy from secondary applications of NASA technology

    NASA Technical Reports Server (NTRS)

    1976-01-01

    The feasibility of systematically quantifying the economic benefits of secondary applications of NASA related R and D is investigated. Based upon the tools of economic theory and econometric analysis, it develops a set of empirical methods and makes selected applications to demonstrate their workability. Analyses of the technological developments related to integrated circuits, cryogenic insulation, gas turbines, and computer programs for structural analysis indicated substantial secondary benefits accruing from NASA's R and D in these areas.

  11. 33 CFR 155.1045 - Response plan requirements for vessels carrying oil as a secondary cargo.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... actions. (4) The organizational structure that will be used to manage the response actions. This structure... management team member within the organizational structure identified in paragraph (d)(4) of this section. (e...-based personnel and the information required for those notifications. Notifications must include those...

  12. Pyrvinium pamoate changes alternative splicing of the serotonin receptor 2C by influencing its RNA structure

    PubMed Central

    Shen, Manli; Bellaousov, Stanislav; Hiller, Michael; de La Grange, Pierre; Creamer, Trevor P.; Malina, Orit; Sperling, Ruth; Mathews, David H.; Stoilov, Peter; Stamm, Stefan

    2013-01-01

    The serotonin receptor 2C plays a central role in mood and appetite control. It undergoes pre-mRNA editing as well as alternative splicing. The RNA editing suggests that the pre-mRNA forms a stable secondary structure in vivo. To identify substances that promote alternative exons inclusion, we set up a high-throughput screen and identified pyrvinium pamoate as a drug-promoting exon inclusion without editing. Circular dichroism spectroscopy indicates that pyrvinium pamoate binds directly to the pre-mRNA and changes its structure. SHAPE (selective 2′-hydroxyl acylation analysed by primer extension) assays show that part of the regulated 5′-splice site forms intramolecular base pairs that are removed by this structural change, which likely allows splice site recognition and exon inclusion. Genome-wide analyses show that pyrvinium pamoate regulates >300 alternative exons that form secondary structures enriched in A–U base pairs. Our data demonstrate that alternative splicing of structured pre-mRNAs can be regulated by small molecules that directly bind to the RNA, which is reminiscent to an RNA riboswitch. PMID:23393189

  13. Simultaneous Drug Targeting of the Promoter MYC G-Quadruplex and BCL2 i-Motif in Diffuse Large B-Cell Lymphoma Delays Tumor Growth.

    PubMed

    Kendrick, Samantha; Muranyi, Andrea; Gokhale, Vijay; Hurley, Laurence H; Rimsza, Lisa M

    2017-08-10

    Secondary DNA structures are uniquely poised as therapeutic targets due to their molecular switch function in turning gene expression on or off and scaffold-like properties for protein and small molecule interaction. Strategies to alter gene transcription through these structures thus far involve targeting single DNA conformations. Here we investigate the feasibility of simultaneously targeting different secondary DNA structures to modulate two key oncogenes, cellular-myelocytomatosis (MYC) and B-cell lymphoma gene-2 (BCL2), in diffuse large B-cell lymphoma (DLBCL). Cotreatment with previously identified ellipticine and pregnanol derivatives that recognize the MYC G-quadruplex and BCL2 i-motif promoter DNA structures lowered mRNA levels and subsequently enhanced sensitivity to a standard chemotherapy drug, cyclophosphamide, in DLBCL cell lines. In vivo repression of MYC and BCL2 in combination with cyclophosphamide also significantly slowed tumor growth in DLBCL xenograft mice. Our findings demonstrate concurrent targeting of different DNA secondary structures offers an effective, precise, medicine-based approach to directly impede transcription and overcome aberrant pathways in aggressive malignancies.

  14. CSI 3.0: a web server for identifying secondary and super-secondary structure in proteins using NMR chemical shifts.

    PubMed

    Hafsa, Noor E; Arndt, David; Wishart, David S

    2015-07-01

    The Chemical Shift Index or CSI 3.0 (http://csi3.wishartlab.com) is a web server designed to accurately identify the location of secondary and super-secondary structures in protein chains using only nuclear magnetic resonance (NMR) backbone chemical shifts and their corresponding protein sequence data. Unlike earlier versions of CSI, which only identified three types of secondary structure (helix, β-strand and coil), CSI 3.0 now identifies total of 11 types of secondary and super-secondary structures, including helices, β-strands, coil regions, five common β-turns (type I, II, I', II' and VIII), β hairpins as well as interior and edge β-strands. CSI 3.0 accepts experimental NMR chemical shift data in multiple formats (NMR Star 2.1, NMR Star 3.1 and SHIFTY) and generates colorful CSI plots (bar graphs) and secondary/super-secondary structure assignments. The output can be readily used as constraints for structure determination and refinement or the images may be used for presentations and publications. CSI 3.0 uses a pipeline of several well-tested, previously published programs to identify the secondary and super-secondary structures in protein chains. Comparisons with secondary and super-secondary structure assignments made via standard coordinate analysis programs such as DSSP, STRIDE and VADAR on high-resolution protein structures solved by X-ray and NMR show >90% agreement between those made with CSI 3.0. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  15. 18 Years of Recovery: Spatial Variation and Structure of a Secondary Forest Analyzed with Airborne Lidar Data in the Brazilian Atlantic Forest

    NASA Astrophysics Data System (ADS)

    dos-Santos, M. N.; Keller, M. M.; Scaranello, M. A., Sr.; Longo, M.; Daniel, P.

    2016-12-01

    Ongoing forest fragmentation in the tropics severely reduces the ability of remaining forests to store carbon and provide ecosystem services, however, secondary regeneration could offset the impacts of forest degradation. Previous plot-based forest inventory studies have shown that secondary regeneration is promoted at remnant forest edges. However, this process has not been studied at landscape scale. We used over 450 ha of lidar data to study the forest structure and spatial variation of secondary growth forest 18 years after swidden cultivation abandonment in Serra do Conduro State Park. Lidar data was acquired in December 2015 with a density of 93 points per square meter using an airborne scanning laser system (Optech Orion M-300). Serra do Conduru, a 10 000 ha State Park in Bahia was created in 1997 as part of a network of forest reserves with both old-growth forest and secondary forest aiming at establishing a central corridor of the Atlantic forest. The Brazilian Atlantic forest is a highly human modified and fragmented forest landscape reduced to 12.5% of its original extent. Prior to the establishment of the State Park, the area was a mosaic of forest and agricultural area. We created 10m wide buffers from the edge of the remnant forest into the secondary forest and generated lidar metrics for each strip in order to ask: does the distance from the remnant forest create a gradient effect on the secondary forest structure? We cross-compared the lidar metrics of the samples. Results demonstrate that distance from old-growth forest promotes spatial variation in forest recovery and forest structure.

  16. Using secondary structure to identify ribosomal numts: cautionary examples from the human genome.

    PubMed

    Olson, Link E; Yoder, Anne D

    2002-01-01

    The identification of inadvertently sequenced mitochondrial pseudogenes (numts) is critical to any study employing mitochondrial DNA sequence data. Failure to discriminate numts correctly can confound phylogenetic reconstruction and studies of molecular evolution. This is especially problematic for ribosomal mtDNA genes. Unlike protein-coding loci, whose pseudogenes tend to accumulate diagnostic frameshift or premature stop mutations, functional ribosomal genes are not constrained to maintain a reading frame and can accumulate insertion-deletion events of varying length, particularly in nonpairing regions. Several authors have advocated using structural features of the transcribed rRNA molecule to differentiate functional mitochondrial rRNA genes from their nuclear paralogs. We explored this approach using the mitochondrial 12S rRNA gene and three known 12S numts from the human genome in the context of anthropoid phylogeny and the inferred secondary structure of primate 12S rRNA. Contrary to expectation, each of the three human numts exhibits striking concordance with secondary structure models, with little, if any, indication of their pseudogene status, and would likely escape detection based on structural criteria alone. Furthermore, we show that the unwitting inclusion of a particularly ancient (18-25 Myr old) and surprisingly cryptic human numt in a phylogenetic analysis would yield a well-supported but dramatically incorrect conclusion regarding anthropoid relationships. Though we endorse the use of secondary structure models for inferring positional homology wholeheartedly, we caution against reliance on structural criteria for the discrimination of rRNA numts, given the potential fallibility of this approach.

  17. Highly charged ion based time of flight emission microscope

    DOEpatents

    Barnes, Alan V.; Schenkel, Thomas; Hamza, Alex V.; Schneider, Dieter H.; Doyle, Barney

    2001-01-01

    A highly charged ion based time-of-flight emission microscope has been designed, which improves the surface sensitivity of static SIMS measurements because of the higher ionization probability of highly charged ions. Slow, highly charged ions are produced in an electron beam ion trap and are directed to the sample surface. The sputtered secondary ions and electrons pass through a specially designed objective lens to a microchannel plate detector. This new instrument permits high surface sensitivity (10.sup.10 atoms/cm.sup.2), high spatial resolution (100 nm), and chemical structural information due to the high molecular ion yields. The high secondary ion yield permits coincidence counting, which can be used to enhance determination of chemical and topological structure and to correlate specific molecular species.

  18. Antioxidant activities of phenolic compounds isolated from the leaves of Macaranga allorobinsonii Whitmore

    NASA Astrophysics Data System (ADS)

    Darmawan, Akhmad; Fajriah, Sofa; Megawati, Dewijanti, Indah D.; Banjarnahor, Sofna; Yuliani, Tri; Hartati, Sri; Mozef, Tjandrawati; Effendi, Ruslan; Swandiny, Greesty F.

    2017-01-01

    Two secondary metabolites compounds, gallic acid (1) and methyl gallate (2) have been isolated from the ethyl acetate fraction of the methanol extract of the leaves of Macaranga allorobinsonii Whitmore. Isolation and purification of the secondary metabolite compounds conducted using chromatography methods, and structure elucidation determined based on NMR, mass spectroscopic data and compared with appropriate references.

  19. Representin' and Disrespectin': African-American Wind Band Students' Meanings of a Composition-Based Secondary Music Curriculum and Classroom Power Structures

    ERIC Educational Resources Information Center

    Hoffman, Adria Rachel; Carter, Bruce Allen

    2013-01-01

    Although cultural diversity is important to the social context of classrooms, few researchers have explored school music experiences from the perspective of students of colour. Possibly of greater concern is the absence of research examining African-American students' educational experiences in early secondary education, during which time the…

  20. Ambivalence and Fluidity in the Teenage Smoking and Quitting Experience: Lessons from a Qualitative Study at an English Secondary School

    ERIC Educational Resources Information Center

    Buswell, Marina; Duncan, Peter

    2013-01-01

    Objective: To evaluate a school-based stop smoking pilot project and to understand the teenage experience of smoking and quitting within that context. Design: Flexible design methods. Setting: A Kent (United Kingdom [UK]) secondary school. Methods: Semi-structured interviews analyzed following a grounded theory approach. Results: The main themes…

  1. Sequence of the chloroplast 16S rRNA gene and its surrounding regions of Chlamydomonas reinhardii.

    PubMed Central

    Dron, M; Rahire, M; Rochaix, J D

    1982-01-01

    The sequence of a 2 kb DNA fragment containing the chloroplast 16S ribosomal RNA gene from Chlamydomonas reinhardii and its flanking regions has been determined. The algal 16S rRNA sequence (1475 nucleotides) and secondary structure are highly related to those found in bacteria and in the chloroplasts of higher plants. In contrast, the flanking regions are very different. In C. reinhardii the 16S rRNA gene is surrounded by AT rich segments of about 180 bases, which are followed by a long stretch of complementary bases separated from each other by 1833 nucleotides. It is likely that these structures play an important role in the folding and processing of the precursor of 16S rRNA. The primary and secondary structures of the binding sites of two ribosomal proteins in the 16SrRNAs of E. coli and C. reinhardii are considerably related. Images PMID:6296784

  2. Support Vector Machine-based classification of protein folds using the structural properties of amino acid residues and amino acid residue pairs.

    PubMed

    Shamim, Mohammad Tabrez Anwar; Anwaruddin, Mohammad; Nagarajaram, H A

    2007-12-15

    Fold recognition is a key step in the protein structure discovery process, especially when traditional sequence comparison methods fail to yield convincing structural homologies. Although many methods have been developed for protein fold recognition, their accuracies remain low. This can be attributed to insufficient exploitation of fold discriminatory features. We have developed a new method for protein fold recognition using structural information of amino acid residues and amino acid residue pairs. Since protein fold recognition can be treated as a protein fold classification problem, we have developed a Support Vector Machine (SVM) based classifier approach that uses secondary structural state and solvent accessibility state frequencies of amino acids and amino acid pairs as feature vectors. Among the individual properties examined secondary structural state frequencies of amino acids gave an overall accuracy of 65.2% for fold discrimination, which is better than the accuracy by any method reported so far in the literature. Combination of secondary structural state frequencies with solvent accessibility state frequencies of amino acids and amino acid pairs further improved the fold discrimination accuracy to more than 70%, which is approximately 8% higher than the best available method. In this study we have also tested, for the first time, an all-together multi-class method known as Crammer and Singer method for protein fold classification. Our studies reveal that the three multi-class classification methods, namely one versus all, one versus one and Crammer and Singer method, yield similar predictions. Dataset and stand-alone program are available upon request.

  3. Thermodynamics of RNA structures by Wang–Landau sampling

    PubMed Central

    Lou, Feng; Clote, Peter

    2010-01-01

    Motivation: Thermodynamics-based dynamic programming RNA secondary structure algorithms have been of immense importance in molecular biology, where applications range from the detection of novel selenoproteins using expressed sequence tag (EST) data, to the determination of microRNA genes and their targets. Dynamic programming algorithms have been developed to compute the minimum free energy secondary structure and partition function of a given RNA sequence, the minimum free-energy and partition function for the hybridization of two RNA molecules, etc. However, the applicability of dynamic programming methods depends on disallowing certain types of interactions (pseudoknots, zig-zags, etc.), as their inclusion renders structure prediction an nondeterministic polynomial time (NP)-complete problem. Nevertheless, such interactions have been observed in X-ray structures. Results: A non-Boltzmannian Monte Carlo algorithm was designed by Wang and Landau to estimate the density of states for complex systems, such as the Ising model, that exhibit a phase transition. In this article, we apply the Wang-Landau (WL) method to compute the density of states for secondary structures of a given RNA sequence, and for hybridizations of two RNA sequences. Our method is shown to be much faster than existent software, such as RNAsubopt. From density of states, we compute the partition function over all secondary structures and over all pseudoknot-free hybridizations. The advantage of the WL method is that by adding a function to evaluate the free energy of arbitary pseudoknotted structures and of arbitrary hybridizations, we can estimate thermodynamic parameters for situations known to be NP-complete. This extension to pseudoknots will be made in the sequel to this article; in contrast, the current article describes the WL algorithm applied to pseudoknot-free secondary structures and hybridizations. Availability: The WL RNA hybridization web server is under construction at http://bioinformatics.bc.edu/clotelab/. Contact: clote@bc.edu PMID:20529917

  4. Characterizing the Secondary Protein Structure of Black Widow Dragline Silk Using Solid-State NMR & X-ray Diffraction

    PubMed Central

    Jenkins, Janelle E.; Sampath, Sujatha; Butler, Emily; Kim, Jihyun; Henning, Robert W.; Holland, Gregory P.; Yarger, Jeffery L.

    2013-01-01

    This study provides a detailed secondary structural characterization of major ampullate dragline silk from Latrodectus hesperus (black widow) spiders. X-ray diffraction results show that the structure of black widow major ampullate silk fibers is comprised of stacked β-sheet nanocrystallites oriented parallel to the fiber axis and an amorphous region with oriented (anisotropic) and isotropic components. The combination of two-dimensional (2D) 13C-13C through-space and through-bond solid-state NMR experiments provide chemical shifts that are used to determine detailed information about amino acid motif secondary structure in black widow spider dragline silk. Individual amino acids are incorporated into different repetitive motifs that make up the majority of this protein-based biopolymer. From the solid-state NMR measurements, we assign distinct secondary conformations to each repetitive amino acid motif and hence to the amino acids that make up the motifs. Specifically, alanine is incorporated in β-sheet (poly(Alan) and poly(Gly-Ala)), 31-helix (poly(Gly-Gly-Xaa), and α-helix (poly(Gln-Gln-Ala-Tyr)) components. Glycine is determined to be in β-sheet (poly(Gly-Ala)) and 31-helical (poly(Gly-Gly-Xaa)) regions, while serine is present in β-sheet (poly(Gly-Ala-Ser)), 31-helix (poly(Gly-Gly-Ser)), and β-turn (poly(Gly-Pro-Ser)) structures. These various motif-specific secondary structural elements are quantitatively correlated to the primary amino acid sequence of major ampullate spidroin 1 and 2 (MaSp1 and MaSp2) and are shown to form a self-consistent model for black widow dragline silk. PMID:24024617

  5. Identification of protein secondary structures by laser induced autofluorescence: A study of urea and GnHCl induced protein denaturation

    NASA Astrophysics Data System (ADS)

    Siddaramaiah, Manjunath; Satyamoorthy, Kapaettu; Rao, Bola Sadashiva Satish; Roy, Suparna; Chandra, Subhash; Mahato, Krishna Kishore

    2017-03-01

    In the present study an attempt has been made to interrogate the bulk secondary structures of some selected proteins (BSA, HSA, lysozyme, trypsin and ribonuclease A) under urea and GnHCl denaturation using laser induced autofluorescence. The proteins were treated with different concentrations of urea (3 M, 6 M, 9 M) and GnHCl (2 M, 4 M, 6 M) and the corresponding steady state autofluorescence spectra were recorded at 281 nm pulsed laser excitations. The recorded fluorescence spectra of proteins were then interpreted based on the existing PDB structures of the proteins and the Trp solvent accessibility (calculated using "Scratch protein predictor" at 30% threshold). Further, the influence of rigidity and conformation of the indole ring (caused by protein secondary structures) on the intrinsic fluorescence properties of proteins were also evaluated using fluorescence of ANS-HSA complexes, CD spectroscopy as well as with trypsin digestion experiments. The outcomes obtained clearly demonstrated GnHCl preferably disrupt helix as compared to the beta β-sheets whereas, urea found was more effective in disrupting β-sheets as compared to the helices. The other way round the proteins which have shown detectable change in the intrinsic fluorescence at lower concentrations of GnHCl were rich in helices whereas, the proteins which showed detectable change in the intrinsic fluorescence at lower concentrations of urea were rich in β-sheets. Since high salt concentrations like GnHCl and urea interfere in the secondary structure analysis by circular dichroism Spectrometry, the present method of analyzing secondary structures using laser induced autofluorescence will be highly advantageous over existing tools for the same.

  6. Secondary structure prediction for complete rDNA sequences (18S, 5.8S, and 28S rDNA) of Demodex folliculorum, and comparison of divergent domains structures across Acari.

    PubMed

    Zhao, Ya-E; Wang, Zheng-Hang; Xu, Yang; Wu, Li-Ping; Hu, Li

    2013-10-01

    According to base pairing, the rRNA folds into corresponding secondary structures, which contain additional phylogenetic information. On the basis of sequencing for complete rDNA sequences (18S, ITS1, 5.8S, ITS2 and 28S rDNA) of Demodex, we predicted the secondary structure of the complete rDNA sequence (18S, 5.8S, and 28S rDNA) of Demodex folliculorum, which was in concordance with that of the main arthropod lineages in past studies. And together with the sequence data from GenBank, we also predicted the secondary structures of divergent domains in SSU rRNA of 51 species and in LSU rRNA of 43 species from four superfamilies in Acari (Cheyletoidea, Tetranychoidea, Analgoidea and Ixodoidea). The multiple alignment among the four superfamilies in Acari showed that, insertions from Tetranychoidea SSU rRNA formed two newly proposed helixes, and helix c3-2b of LSU rRNA was absent in Demodex (Cheyletoidea) taxa. Generally speaking, LSU rRNA presented more remarkable differences than SSU rRNA did, mainly in D2, D3, D5, D7a, D7b, D8 and D10. Copyright © 2013 Elsevier Inc. All rights reserved.

  7. Internal and External Scripts in Computer-Supported Collaborative Inquiry Learning

    ERIC Educational Resources Information Center

    Kollar, Ingo; Fischer, Frank; Slotta, James D.

    2007-01-01

    We investigated how differently structured external scripts interact with learners' internal scripts with respect to individual knowledge acquisition in a Web-based collaborative inquiry learning environment. Ninety students from two secondary schools participated. Two versions of an external collaboration script (high vs. low structured)…

  8. Experimental Investigation of Secondary Flow Structures Downstream of a Model Type IV Stent Failure in a 180° Curved Artery Test Section.

    PubMed

    Bulusu, Kartik V; Plesniak, Michael W

    2016-07-19

    The arterial network in the human vasculature comprises of ubiquitously present blood vessels with complex geometries (branches, curvatures and tortuosity). Secondary flow structures are vortical flow patterns that occur in curved arteries due to the combined action of centrifugal forces, adverse pressure gradients and inflow characteristics. Such flow morphologies are greatly affected by pulsatility and multiple harmonics of physiological inflow conditions and vary greatly in size-strength-shape characteristics compared to non-physiological (steady and oscillatory) flows (1 - 7). Secondary flow structures may ultimately influence the wall shear stress and exposure time of blood-borne particles toward progression of atherosclerosis, restenosis, sensitization of platelets and thrombosis (4 - 6, 8 - 13). Therefore, the ability to detect and characterize these structures under laboratory-controlled conditions is precursor to further clinical investigations. A common surgical treatment to atherosclerosis is stent implantation, to open up stenosed arteries for unobstructed blood flow. But the concomitant flow perturbations due to stent installations result in multi-scale secondary flow morphologies (4 - 6). Progressively higher order complexities such as asymmetry and loss in coherence can be induced by ensuing stent failures vis-à-vis those under unperturbed flows (5). These stent failures have been classified as "Types I-to-IV" based on failure considerations and clinical severity (14). This study presents a protocol for the experimental investigation of the complex secondary flow structures due to complete transverse stent fracture and linear displacement of fractured parts ("Type IV") in a curved artery model. The experimental method involves the implementation of particle image velocimetry (2C-2D PIV) techniques with an archetypal carotid artery inflow waveform, a refractive index matched blood-analog working fluid for phase-averaged measurements (15 - 18). Quantitative identification of secondary flow structures was achieved using concepts of flow physics, critical point theory and a novel wavelet transform algorithm applied to experimental PIV data (5, 6, 19 - 26).

  9. Geochemically structural characteristics of municipal solid waste incineration fly ash particles and mineralogical surface conversions by chelate treatment.

    PubMed

    Kitamura, Hiroki; Sawada, Takaya; Shimaoka, Takayuki; Takahashi, Fumitake

    2016-01-01

    Leaching behaviors of heavy metals contained in municipal solid waste incineration (MSWI) fly ash have been studied well. However, micro-characteristics of MSWI fly ash particles are still uncertain and might be non-negligible to describe their leaching behaviors. Therefore, this study investigated micro-characteristics of MSWI fly ash particles, especially their structural properties and impacts of chelate treatment on surface characteristics. According to SEM observations, raw fly ash particles could be categorized into four types based on their shapes. Because chelate treatment changed the surface of fly ash particles dramatically owing to secondary mineral formations like ettringite, two more types could be categorized for chelate-treated fly ash particles. Acid extraction experiments suggest that fly ash particles, tested in this study, consist of Si-base insoluble core structure, Al/Ca/Si-base semi-soluble matrices inside the body, and KCl/NaCl-base soluble aggregates on the surface. Scanning electron microscope (SEM) observations of the same fly ash particles during twice moistening treatments showed that KCl/NaCl moved under wet condition and concentrated at different places on the particle surface. However, element mobility depended on secondary mineral formations. When insoluble mineral like gypsum was generated and covered the particle surface, it inhibited element transfer under wet condition. Surface characteristics including secondary mineral formation of MSWI fly ash particles are likely non-negligible to describe trace element leaching behaviors.

  10. Secondary structure encodes a cooperative tertiary folding funnel in the Azoarcus ribozyme

    PubMed Central

    Mustoe, Anthony M.; Al-Hashimi, Hashim M.; Brooks, Charles L.

    2016-01-01

    A requirement for specific RNA folding is that the free-energy landscape discriminate against non-native folds. While tertiary interactions are critical for stabilizing the native fold, they are relatively non-specific, suggesting additional mechanisms contribute to tertiary folding specificity. In this study, we use coarse-grained molecular dynamics simulations to explore how secondary structure shapes the tertiary free-energy landscape of the Azoarcus ribozyme. We show that steric and connectivity constraints posed by secondary structure strongly limit the accessible conformational space of the ribozyme, and that these so-called topological constraints in turn pose strong free-energy penalties on forming different tertiary contacts. Notably, native A-minor and base-triple interactions form with low conformational free energy, while non-native tetraloop/tetraloop–receptor interactions are penalized by high conformational free energies. Topological constraints also give rise to strong cooperativity between distal tertiary interactions, quantitatively matching prior experimental measurements. The specificity of the folding landscape is further enhanced as tertiary contacts place additional constraints on the conformational space, progressively funneling the molecule to the native state. These results indicate that secondary structure assists the ribozyme in navigating the otherwise rugged tertiary folding landscape, and further emphasize topological constraints as a key force in RNA folding. PMID:26481360

  11. RNA Secondary Structure Prediction by Using Discrete Mathematics: An Interdisciplinary Research Experience for Undergraduate Students

    ERIC Educational Resources Information Center

    Ellington, Roni; Wachira, James; Nkwanta, Asamoah

    2010-01-01

    The focus of this Research Experience for Undergraduates (REU) project was on RNA secondary structure prediction by using a lattice walk approach. The lattice walk approach is a combinatorial and computational biology method used to enumerate possible secondary structures and predict RNA secondary structure from RNA sequences. The method uses…

  12. Analysis of sequencing data for probing RNA secondary structures and protein-RNA binding in studying posttranscriptional regulations.

    PubMed

    Hu, Xihao; Wu, Yang; Lu, Zhi John; Yip, Kevin Y

    2016-11-01

    High-throughput sequencing has been used to study posttranscriptional regulations, where the identification of protein-RNA binding is a major and fast-developing sub-area, which is in turn benefited by the sequencing methods for whole-transcriptome probing of RNA secondary structures. In the study of RNA secondary structures using high-throughput sequencing, bases are modified or cleaved according to their structural features, which alter the resulting composition of sequencing reads. In the study of protein-RNA binding, methods have been proposed to immuno-precipitate (IP) protein-bound RNA transcripts in vitro or in vivo By sequencing these transcripts, the protein-RNA interactions and the binding locations can be identified. For both types of data, read counts are affected by a combination of confounding factors, including expression levels of transcripts, sequence biases, mapping errors and the probing or IP efficiency of the experimental protocols. Careful processing of the sequencing data and proper extraction of important features are fundamentally important to a successful analysis. Here we review and compare different experimental methods for probing RNA secondary structures and binding sites of RNA-binding proteins (RBPs), and the computational methods proposed for analyzing the corresponding sequencing data. We suggest how these two types of data should be integrated to study the structural properties of RBP binding sites as a systematic way to better understand posttranscriptional regulations. © The Author 2015. Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  13. An Evolution-Based Approach to De Novo Protein Design and Case Study on Mycobacterium tuberculosis

    PubMed Central

    Brender, Jeffrey R.; Czajka, Jeff; Marsh, David; Gray, Felicia; Cierpicki, Tomasz; Zhang, Yang

    2013-01-01

    Computational protein design is a reverse procedure of protein folding and structure prediction, where constructing structures from evolutionarily related proteins has been demonstrated to be the most reliable method for protein 3-dimensional structure prediction. Following this spirit, we developed a novel method to design new protein sequences based on evolutionarily related protein families. For a given target structure, a set of proteins having similar fold are identified from the PDB library by structural alignments. A structural profile is then constructed from the protein templates and used to guide the conformational search of amino acid sequence space, where physicochemical packing is accommodated by single-sequence based solvation, torsion angle, and secondary structure predictions. The method was tested on a computational folding experiment based on a large set of 87 protein structures covering different fold classes, which showed that the evolution-based design significantly enhances the foldability and biological functionality of the designed sequences compared to the traditional physics-based force field methods. Without using homologous proteins, the designed sequences can be folded with an average root-mean-square-deviation of 2.1 Å to the target. As a case study, the method is extended to redesign all 243 structurally resolved proteins in the pathogenic bacteria Mycobacterium tuberculosis, which is the second leading cause of death from infectious disease. On a smaller scale, five sequences were randomly selected from the design pool and subjected to experimental validation. The results showed that all the designed proteins are soluble with distinct secondary structure and three have well ordered tertiary structure, as demonstrated by circular dichroism and NMR spectroscopy. Together, these results demonstrate a new avenue in computational protein design that uses knowledge of evolutionary conservation from protein structural families to engineer new protein molecules of improved fold stability and biological functionality. PMID:24204234

  14. Validation of Molecular Dynamics Simulations for Prediction of Three-Dimensional Structures of Small Proteins.

    PubMed

    Kato, Koichi; Nakayoshi, Tomoki; Fukuyoshi, Shuichi; Kurimoto, Eiji; Oda, Akifumi

    2017-10-12

    Although various higher-order protein structure prediction methods have been developed, almost all of them were developed based on the three-dimensional (3D) structure information of known proteins. Here we predicted the short protein structures by molecular dynamics (MD) simulations in which only Newton's equations of motion were used and 3D structural information of known proteins was not required. To evaluate the ability of MD simulationto predict protein structures, we calculated seven short test protein (10-46 residues) in the denatured state and compared their predicted and experimental structures. The predicted structure for Trp-cage (20 residues) was close to the experimental structure by 200-ns MD simulation. For proteins shorter or longer than Trp-cage, root-mean square deviation values were larger than those for Trp-cage. However, secondary structures could be reproduced by MD simulations for proteins with 10-34 residues. Simulations by replica exchange MD were performed, but the results were similar to those from normal MD simulations. These results suggest that normal MD simulations can roughly predict short protein structures and 200-ns simulations are frequently sufficient for estimating the secondary structures of protein (approximately 20 residues). Structural prediction method using only fundamental physical laws are useful for investigating non-natural proteins, such as primitive proteins and artificial proteins for peptide-based drug delivery systems.

  15. Master Curriculum Guide in Economics for the Nation's Schools. Part II, Strategies for Teaching Economics: United States History (Secondary).

    ERIC Educational Resources Information Center

    O'Neill, James B.

    This guide contains 13 concept-based lessons in economics for use in secondary U.S. history courses. One component of a two part publication, the guide demonstrates how the conceptual structure of the economics discipline presented in the first publication (ED 148 648) can be used to help students develop basic economic concepts. Each lesson is…

  16. The Way Forward for the Development of Liberal Studies: How Teachers Perceive Its Introduction and Implementation in Hong Kong Secondary Schools

    ERIC Educational Resources Information Center

    Fung, Dennis; Lui, Wai-Mei; Liang, Tim; Su, Angie

    2017-01-01

    This study reveals the perceptions of over one hundred Hong Kong teachers who were asked to reflect upon the implementation of Liberal Studies in secondary schools in response to the latest government review of the subject's curriculum. Questionnaire-based surveys and semi-structured interviews were conducted to probe the participating teachers'…

  17. Free Energy and Structure of Helix-forming Peptides: A Theoretical Investigation

    NASA Astrophysics Data System (ADS)

    Karpusenka, Vadzim

    This thesis focuses on the structure and free energy of helical secondary structures of short peptides in a variety of experimental settings. Specifically, the formation of alpha-, pi- and 310-helices was investigated using large-scale classical molecular dynamics simulations with state-of-the-art force fields. In addition, the recently developed Adaptively Biased Molecular Dynamics (ABMD) and Steered Molecular Dynamics (SMD) methods were used to calculate the corresponding free energies. The most important results are as follows. For the examined peptide homopolymers, the observed minima on the free energy landscapes (based on suitable collective variables such as the radius of gyration, number of hydrogen bonds, and handedness) were associated with alpha-helices and "globular" or "knot-like" configurations only. No evidence was found to indicate that 310- or pi-helices represent equilibrium structures for these systems. In addition, the free energy landscape of short peptide chains formed by mixing two different amino acids were also examined. These results too indicate that the alpha-helix is only equilibrium helical secondary structure, and that the mixing of different amino acids does not result in the introduction of any significant new minima into the free energy landscapes. These results are in agreement with experimental observations insofar as these indicate that helical structural motifs are primary based on alpha-helices, with 310- and pi-helices being observed only rarely. Although pi- and 310-helices represent nonequilibrium structures, we were still able to estimate their free energies by means of SMD simulations. The helical secondary structure of the examined polypeptide chains is due to the formation of hydrogen bonds. However, there are other mechanisms that may allow for the additional stabilization of these structures. Specifically, in the so-called AK-(4,7) protein, the possible presence of disulfide bonds connecting cysteine residues may significantly alter the free energy landscapes and therefore the stability of different helical structures. We therefore examined this issue with ABMD simulations. However, our results show that while the free energy landscapes are indeed significantly altered only the formation of alpha-helices is favored as a secondary structural motif. Since all the results indicate that alpha-helix formation dominates, it is natural to think in terms of an alpha-helix forming propensity for different amino acids. To address this question, we carried out an extensive residue-by-residue population analysis of different amino acid guests in an alanine-based host setting. Such an analysis allows us to rank the different amino acid guests based on whether they increased or decreased the population in the alpha-helix region of the corresponding Ramachandran plots. Our ranking of the different guest amino acids is in reasonable correspondence with the experimental results, although some differences are observed. Finally, using a four-beads coarse-grained model were have investigated the stability of GA88 and GB88 proteins, which are quite similar in terms of their amino acid sequence, by means of 10mus simulations. The results indicate that while the three alpha-helix bundle of the GA88 protein remains stable, the 2beta--alpha--2beta configuration of the GB88 protein does not: the latter rapidly converts to a structure consisting mostly of helices similar to the GA88 protein design. These results indicate that this particular four-bead coarse-grained model is not able to properly grasp the dynamics of the beta-sheet secondary structure and overstabilizes the corresponding helical content.

  18. Denaturation of RNA secondary and tertiary structure by urea: simple unfolded state models and free energy parameters account for measured m-values

    PubMed Central

    Lambert, Dominic; Draper, David E.

    2012-01-01

    To investigate the mechanism by which urea destabilizes RNA structure, urea-induced unfolding of four different RNA secondary and tertiary structures was quantified in terms of an m-value, the rate at which the free energy of unfolding changes with urea molality. From literature data and our osmometric study of a backbone analog, we derived average interaction potentials (per Å2 of solvent accessible surface) between urea and three kinds of RNA surfaces: phosphate, ribose, and base. Estimates of the increases in solvent accessible surface areas upon RNA denaturation were based on a simple model of unfolded RNA as a combination of helical and single strand segments. These estimates, combined with the three interaction potentials and a term to account for urea interactions with released ions, yield calculated m-values in good agreement with experimental values (200 mm monovalent salt). Agreement was obtained only if single-stranded RNAs were modeled in a highly stacked, A form conformation. The primary driving force for urea induced denaturation is the strong interaction of urea with the large surface areas of bases that become exposed upon denaturation of either RNA secondary or tertiary structure, though urea interactions with backbone and released ions may account for up to a third of the m-value. Urea m-values for all four RNA are salt-dependent, which we attribute to an increased extension (or decreased charge density) of unfolded RNAs with increased urea concentration. The sensitivity of the urea m-value to base surface exposure makes it a potentially useful probe of the conformations of RNA unfolded states. PMID:23088364

  19. Independent Gene Discovery and Testing

    ERIC Educational Resources Information Center

    Palsule, Vrushalee; Coric, Dijana; Delancy, Russell; Dunham, Heather; Melancon, Caleb; Thompson, Dennis; Toms, Jamie; White, Ashley; Shultz, Jeffry

    2010-01-01

    A clear understanding of basic gene structure is critical when teaching molecular genetics, the central dogma and the biological sciences. We sought to create a gene-based teaching project to improve students' understanding of gene structure and to integrate this into a research project that can be implemented by instructors at the secondary level…

  20. Protein secondary structure and stability determined by combining exoproteolysis and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry.

    PubMed

    Villanueva, Josep; Villegas, Virtudes; Querol, Enrique; Avilés, Francesc X; Serrano, Luis

    2002-09-01

    In the post-genomic era, several projects focused on the massive experimental resolution of the three-dimensional structures of all the proteins of different organisms have been initiated. Simultaneously, significant progress has been made in the ab initio prediction of protein three-dimensional structure. One of the keys to the success of such a prediction is the use of local information (i.e. secondary structure). Here we describe a new limited proteolysis methodology, based on the use of unspecific exoproteases coupled with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS), to map quickly secondary structure elements of a protein from both ends, the N- and C-termini. We show that the proteolytic patterns (mass spectra series) obtained can be interpreted in the light of the conformation and local stability of the analyzed proteins, a direct correlation being observed between the predicted and the experimentally derived protein secondary structure. Further, this methodology can be easily applied to check rapidly the folding state of a protein and characterize mutational effects on protein conformation and stability. Moreover, given global stability information, this methodology allows one to locate the protein regions of increased or decreased conformational stability. All of this can be done with a small fraction of the amount of protein required by most of the other methods for conformational analysis. Thus limited exoproteolysis, together with MALDI-TOF MS, can be a useful tool to achieve quickly the elucidation of protein structure and stability. Copyright 2002 John Wiley & Sons, Ltd.

  1. Modularity in protein structures: study on all-alpha proteins.

    PubMed

    Khan, Taushif; Ghosh, Indira

    2015-01-01

    Modularity is known as one of the most important features of protein's robust and efficient design. The architecture and topology of proteins play a vital role by providing necessary robust scaffolds to support organism's growth and survival in constant evolutionary pressure. These complex biomolecules can be represented by several layers of modular architecture, but it is pivotal to understand and explore the smallest biologically relevant structural component. In the present study, we have developed a component-based method, using protein's secondary structures and their arrangements (i.e. patterns) in order to investigate its structural space. Our result on all-alpha protein shows that the known structural space is highly populated with limited set of structural patterns. We have also noticed that these frequently observed structural patterns are present as modules or "building blocks" in large proteins (i.e. higher secondary structure content). From structural descriptor analysis, observed patterns are found to be within similar deviation; however, frequent patterns are found to be distinctly occurring in diverse functions e.g. in enzymatic classes and reactions. In this study, we are introducing a simple approach to explore protein structural space using combinatorial- and graph-based geometry methods, which can be used to describe modularity in protein structures. Moreover, analysis indicates that protein function seems to be the driving force that shapes the known structure space.

  2. A True Delphi Approach: Developing a Tailored Curriculum in Response to Local Agriscience Need

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rubenstein, Eric; Thoron, Andrew; Burleson, Sarah

    2012-02-07

    The Delphi approach is a structured communication technique, developed as a systematic, interactive forecasting method which relies on a panel of experts. In this specific case experts from Industry, Education and Extension fields addressed needs for educational programs in a traditional agriculturally-based community, environmentally conscious practices in order to restore environmental integrity and multi-disciplinary approach to solve sustainability problems facing the agricultural industry. The experts were divided into two main groups, (A) Secondary and (B) Post-secondary, and answered questionnaires in three rounds: • 1st Round – Participants generated a list of knowledge, skills, and competencies followed • 2nd Round –more » Panelists rated each item • 3rd Round – Panelists were given the opportunity to combine and add additional items As a result, top six items from both groups were not found similar, secondary panelists centralized around employment skills and post-secondary panelists focused on content areas. Implications include a need for content-based curriculum for post-secondary graduates, utilization of true-Delphi technique for future curriculum development research and further examination of students that complete secondary and post-secondary programs in biofuels/sustainable agriculture.« less

  3. Stability of some Cactaceae proteins based on fluorescence, circular dichroism, and differential scanning calorimetry measurements.

    PubMed

    Gorinstein, S; Zemser, M; Vargas-Albores, F; Ochoa, J L; Paredes-Lopez, O; Scheler, C; Aksu, S; Salnikow, J

    1999-02-01

    Characterization of three cactus proteins (native and denatured) from Machaerocereus gummosus (Pitahaya agria), Lophocereu schottii (Garambullo), and Cholla opuntia (Cholla), was based on electrophoretic, fluorescence, CD (circular dichroism), DSC (differential scanning calorimetry), and FT-IR (Fourier transform infrared) measurements. The obtained results of intrinsic fluorescence, DSC, and CD were dissimilar for the three species of cactus, providing evidence of differences in secondary and tertiary structures. Cactus proteins may be situated in the following order corresponding to their relative stability: Machaerocereus gummosus (Pitahaya agria) > Cholla opuntia (Cholla) > Lophocereu schottii (Garambullo). Thermodynamic properties of proteins and their changes upon denaturation (temperature of denaturation, enthalphy, and the number of ruptured hydrogen bonds) were correlated with the secondary structure of proteins and disappearance of alpha-helix.

  4. A high-throughput approach to profile RNA structure.

    PubMed

    Delli Ponti, Riccardo; Marti, Stefanie; Armaos, Alexandros; Tartaglia, Gian Gaetano

    2017-03-17

    Here we introduce the Computational Recognition of Secondary Structure (CROSS) method to calculate the structural profile of an RNA sequence (single- or double-stranded state) at single-nucleotide resolution and without sequence length restrictions. We trained CROSS using data from high-throughput experiments such as Selective 2΄-Hydroxyl Acylation analyzed by Primer Extension (SHAPE; Mouse and HIV transcriptomes) and Parallel Analysis of RNA Structure (PARS; Human and Yeast transcriptomes) as well as high-quality NMR/X-ray structures (PDB database). The algorithm uses primary structure information alone to predict experimental structural profiles with >80% accuracy, showing high performances on large RNAs such as Xist (17 900 nucleotides; Area Under the ROC Curve AUC of 0.75 on dimethyl sulfate (DMS) experiments). We integrated CROSS in thermodynamics-based methods to predict secondary structure and observed an increase in their predictive power by up to 30%. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  5. Unfolding/Refolding Study on Collagen from Sea Cucumber Based on 2D Fourier Transform Infrared Spectroscopy.

    PubMed

    Qin, Lei; Bi, Jing-Ran; Li, Dong-Mei; Dong, Meng; Zhao, Zi-Yuan; Dong, Xiu-Ping; Zhou, Da-Yong; Zhu, Bei-Wei

    2016-11-16

    We aimed to explore the differences of thermal behaviors between insoluble collagen fibrils (ICFs) and pepsin-solubilized collagens (PSCs) from sea cucumber Stichopus japonicus . The unfolding/refolding sequences of secondary structures of ICFs and PSCs during the heating and cooling cycle (5 → 70 → 5 °C) were identified by Fourier transform infrared spectrometry combined with curve-fitting and 2D correlation techniques. ICFs showed a higher proportion of α-helical structures and higher thermostability than PSCs, and thus had more-stable triple helical structures. The sequences of changes affecting the secondary structures during heating were essentially the same between ICFs and PSCs. In all cases, α-helix structure was the most important conformation and it disappeared to form a β-sheet structure. In the cooling cycle, ICFs showed a partially refolding ability, and the proportion of β-sheet structure rose before the increasing proportion of α-helix structure. PSCs did not obviously refold during the cooling stage.

  6. Impact of target mRNA structure on siRNA silencing efficiency: A large-scale study.

    PubMed

    Gredell, Joseph A; Berger, Angela K; Walton, S Patrick

    2008-07-01

    The selection of active siRNAs is generally based on identifying siRNAs with certain sequence and structural properties. However, the efficiency of RNA interference has also been shown to depend on the structure of the target mRNA, primarily through studies using exogenous transcripts with well-defined secondary structures in the vicinity of the target sequence. While these studies provide a means for examining the impact of target sequence and structure independently, the predicted secondary structures for these transcripts are often not reflective of structures that form in full-length, native mRNAs where interactions can occur between relatively remote segments of the mRNAs. Here, using a combination of experimental results and analysis of a large dataset, we demonstrate that the accessibility of certain local target structures on the mRNA is an important determinant in the gene silencing ability of siRNAs. siRNAs targeting the enhanced green fluorescent protein were chosen using a minimal siRNA selection algorithm followed by classification based on the predicted minimum free energy structures of the target transcripts. Transfection into HeLa and HepG2 cells revealed that siRNAs targeting regions of the mRNA predicted to have unpaired 5'- and 3'-ends resulted in greater gene silencing than regions predicted to have other types of secondary structure. These results were confirmed by analysis of gene silencing data from previously published siRNAs, which showed that mRNA target regions unpaired at either the 5'-end or 3'-end were silenced, on average, approximately 10% more strongly than target regions unpaired in the center or primarily paired throughout. We found this effect to be independent of the structure of the siRNA guide strand. Taken together, these results suggest minimal requirements for nucleation of hybridization between the siRNA guide strand and mRNA and that both mRNA and guide strand structure should be considered when choosing candidate siRNAs. (c) 2008 Wiley Periodicals, Inc.

  7. Impact of target mRNA structure on siRNA silencing efficiency: a large-scale study

    PubMed Central

    Gredell, Joseph A.; Berger, Angela K.; Walton, S. Patrick

    2009-01-01

    The selection of active siRNAs is generally based on identifying siRNAs with certain sequence and structural properties. However, the efficiency of RNA interference has also been shown to depend on the structure of the target mRNA, primarily through studies using exogenous transcripts with well-defined secondary structures in the vicinity of the target sequence. While these studies provide a means for examining the impact of target sequence and structure independently, the predicted secondary structures for these transcripts are often not reflective of structures that form in full-length, native mRNAs where interactions can occur between relatively remote segments of the mRNAs. Here, using a combination of experimental results and analysis of a large dataset, we demonstrate that the accessibility of certain local target structures on the mRNA is an important determinant in the gene silencing ability of siRNAs. siRNAs targeting the enhanced green fluorescent protein were chosen using a minimal siRNA selection algorithm followed by classification based on the predicted minimum free energy structures of the target transcripts. Transfection into HeLa and HepG2 cells revealed that siRNAs targeting regions of the mRNA predicted to have unpaired 5’- and 3’-ends resulted in greater gene silencing than regions predicted to have other types of secondary structure. These results were confirmed by analysis of gene silencing data from previously published siRNAs, which showed that mRNA target regions unpaired at either the 5’-end or 3’-end were silenced, on average, ~10% more strongly than target regions unpaired in the center or primarily paired throughout. We found this effect to be independent of the structure of the siRNA guide strand. Taken together, these results suggest minimal requirements for nucleation of hybridization between the siRNA guide strand and mRNA and that both mRNA and guide strand structure should be considered when choosing candidate siRNAs. PMID:18306428

  8. Predicting RNA 3D structure using a coarse-grain helix-centered model

    PubMed Central

    Kerpedjiev, Peter; Höner zu Siederdissen, Christian; Hofacker, Ivo L.

    2015-01-01

    A 3D model of RNA structure can provide information about its function and regulation that is not possible with just the sequence or secondary structure. Current models suffer from low accuracy and long running times and either neglect or presume knowledge of the long-range interactions which stabilize the tertiary structure. Our coarse-grained, helix-based, tertiary structure model operates with only a few degrees of freedom compared with all-atom models while preserving the ability to sample tertiary structures given a secondary structure. It strikes a balance between the precision of an all-atom tertiary structure model and the simplicity and effectiveness of a secondary structure representation. It provides a simplified tool for exploring global arrangements of helices and loops within RNA structures. We provide an example of a novel energy function relying only on the positions of stems and loops. We show that coupling our model to this energy function produces predictions as good as or better than the current state of the art tools. We propose that given the wide range of conformational space that needs to be explored, a coarse-grain approach can explore more conformations in less iterations than an all-atom model coupled to a fine-grain energy function. Finally, we emphasize the overarching theme of providing an ensemble of predicted structures, something which our tool excels at, rather than providing a handful of the lowest energy structures. PMID:25904133

  9. Tree decomposition based fast search of RNA structures including pseudoknots in genomes.

    PubMed

    Song, Yinglei; Liu, Chunmei; Malmberg, Russell; Pan, Fangfang; Cai, Liming

    2005-01-01

    Searching genomes for RNA secondary structure with computational methods has become an important approach to the annotation of non-coding RNAs. However, due to the lack of efficient algorithms for accurate RNA structure-sequence alignment, computer programs capable of fast and effectively searching genomes for RNA secondary structures have not been available. In this paper, a novel RNA structure profiling model is introduced based on the notion of a conformational graph to specify the consensus structure of an RNA family. Tree decomposition yields a small tree width t for such conformation graphs (e.g., t = 2 for stem loops and only a slight increase for pseudo-knots). Within this modelling framework, the optimal alignment of a sequence to the structure model corresponds to finding a maximum valued isomorphic subgraph and consequently can be accomplished through dynamic programming on the tree decomposition of the conformational graph in time O(k(t)N(2)), where k is a small parameter; and N is the size of the projiled RNA structure. Experiments show that the application of the alignment algorithm to search in genomes yields the same search accuracy as methods based on a Covariance model with a significant reduction in computation time. In particular; very accurate searches of tmRNAs in bacteria genomes and of telomerase RNAs in yeast genomes can be accomplished in days, as opposed to months required by other methods. The tree decomposition based searching tool is free upon request and can be downloaded at our site h t t p ://w.uga.edu/RNA-informatics/software/index.php.

  10. Monitoring of Batch Industrial Crystallization with Growth, Nucleation, and Agglomeration. Part 2: Structure Design for State Estimation with Secondary Measurements

    PubMed Central

    2017-01-01

    This work investigates the design of alternative monitoring tools based on state estimators for industrial crystallization systems with nucleation, growth, and agglomeration kinetics. The estimation problem is regarded as a structure design problem where the estimation model and the set of innovated states have to be chosen; the estimator is driven by the available measurements of secondary variables. On the basis of Robust Exponential estimability arguments, it is found that the concentration is distinguishable with temperature and solid fraction measurements while the crystal size distribution (CSD) is not. Accordingly, a state estimator structure is selected such that (i) the concentration (and other distinguishable states) are innovated by means of the secondary measurements processed with the geometric estimator (GE), and (ii) the CSD is estimated by means of a rigorous model in open loop mode. The proposed estimator has been tested through simulations showing good performance in the case of mismatch in the initial conditions, parametric plant-model mismatch, and noisy measurements. PMID:28890604

  11. Monitoring of Batch Industrial Crystallization with Growth, Nucleation, and Agglomeration. Part 2: Structure Design for State Estimation with Secondary Measurements.

    PubMed

    Porru, Marcella; Özkan, Leyla

    2017-08-30

    This work investigates the design of alternative monitoring tools based on state estimators for industrial crystallization systems with nucleation, growth, and agglomeration kinetics. The estimation problem is regarded as a structure design problem where the estimation model and the set of innovated states have to be chosen; the estimator is driven by the available measurements of secondary variables. On the basis of Robust Exponential estimability arguments, it is found that the concentration is distinguishable with temperature and solid fraction measurements while the crystal size distribution (CSD) is not. Accordingly, a state estimator structure is selected such that (i) the concentration (and other distinguishable states) are innovated by means of the secondary measurements processed with the geometric estimator (GE), and (ii) the CSD is estimated by means of a rigorous model in open loop mode. The proposed estimator has been tested through simulations showing good performance in the case of mismatch in the initial conditions, parametric plant-model mismatch, and noisy measurements.

  12. Contribution of long-range interactions to the secondary structure of an unfolded globin.

    PubMed

    Fedyukina, Daria V; Rajagopalan, Senapathy; Sekhar, Ashok; Fulmer, Eric C; Eun, Ye-Jin; Cavagnero, Silvia

    2010-09-08

    This work explores the effect of long-range tertiary contacts on the distribution of residual secondary structure in the unfolded state of an alpha-helical protein. N-terminal fragments of increasing length, in conjunction with multidimensional nuclear magnetic resonance, were employed. A protein representative of the ubiquitous globin fold was chosen as the model system. We found that, while most of the detectable alpha-helical population in the unfolded ensemble does not depend on the presence of the C-terminal region (corresponding to the native G and H helices), specific N-to-C long-range contacts between the H and A-B-C regions enhance the helical secondary structure content of the N terminus (A-B-C regions). The simple approach introduced here, based on the evaluation of N-terminal polypeptide fragments of increasing length, is of general applicability to identify the influence of long-range interactions in unfolded proteins. Copyright 2010 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  13. A search for H/ACA snoRNAs in yeast using MFE secondary structure prediction.

    PubMed

    Edvardsson, Sverker; Gardner, Paul P; Poole, Anthony M; Hendy, Michael D; Penny, David; Moulton, Vincent

    2003-05-01

    Noncoding RNA genes produce functional RNA molecules rather than coding for proteins. One such family is the H/ACA snoRNAs. Unlike the related C/D snoRNAs these have resisted automated detection to date. We develop an algorithm to screen the yeast genome for novel H/ACA snoRNAs. To achieve this, we introduce some new methods for facilitating the search for noncoding RNAs in genomic sequences which are based on properties of predicted minimum free-energy (MFE) secondary structures. The algorithm has been implemented and can be generalized to enable screening of other eukaryote genomes. We find that use of primary sequence alone is insufficient for identifying novel H/ACA snoRNAs. Only the use of secondary structure filters reduces the number of candidates to a manageable size. From genomic context, we identify three strong H/ACA snoRNA candidates. These together with a further 47 candidates obtained by our analysis are being experimentally screened.

  14. Molecular Characterization and Antimicrobial Activity of an Endolichenic Fungus, Aspergillus sp. Isolated from Parmelia caperata of Similipal Biosphere Reserve, India.

    PubMed

    Padhi, Srichandan; Das, Devaranjan; Panja, Suraj; Tayung, Kumananda

    2017-06-01

    Endolichenic fungi are microbes that inhabit healthy inner lichen tissues without any disease symptoms. They have been reported to produce new and interesting bioactive metabolites. In the present study, an endolichenic fungus frequently isolated from surface-sterilized lichen thallus of Parmelia caperata has been described. The fungus was identified as Aspergillus tubingensis based on morphological traits and ITS rDNA sequence. Crude metabolites extracted from the culture broth exhibited considerable antimicrobial activity against a panel of clinically significant human pathogens. The fungus showed optimum antimicrobial activity in PDB medium in day 7 of incubation period. PDB medium amended with 1 % NaCl and at alkaline pH was found to be optimal for antimicrobial metabolites production. Enhanced activity was observed when the fungus was exposed briefly to a heat shock of 60 °C during incubation. The metabolites showed optimum λ-max at 214 nm with an absorbance value of 1.589. Molecular characterization of the isolate was carried out by ITS phylogeny and ITS2 secondary structure analyses. The phylogenetic trees based on both ITS rDNA and ITS2 sequences showed the isolate within the clade A. tubingensis. Considering the ubiquity and ambiguity in identifying Aspergillus species of different lifestyles, a method to differentiate pathogenic and endophytic Aspergillus at species level was developed using ITS2 secondary structure analysis. The results showed common folding pattern in the secondary structures with a helix and a 5' dangling end found to be highly conserved. Certain features in the secondary structure like multi-bulges and a symmetric interior loop were observed to be unique which distinguish our isolate from other A. tubingensis.

  15. A review of medical terminology standards and structured reporting.

    PubMed

    Awaysheh, Abdullah; Wilcke, Jeffrey; Elvinger, François; Rees, Loren; Fan, Weiguo; Zimmerman, Kurt

    2018-01-01

    Much effort has been invested in standardizing medical terminology for representation of medical knowledge, storage in electronic medical records, retrieval, reuse for evidence-based decision making, and for efficient messaging between users. We only focus on those efforts related to the representation of clinical medical knowledge required for capturing diagnoses and findings from a wide range of general to specialty clinical perspectives (e.g., internists to pathologists). Standardized medical terminology and the usage of structured reporting have been shown to improve the usage of medical information in secondary activities, such as research, public health, and case studies. The impact of standardization and structured reporting is not limited to secondary activities; standardization has been shown to have a direct impact on patient healthcare.

  16. The dynamics of interacting salt structures and associated fluid flow in the western Norwegian-Danish Basin

    NASA Astrophysics Data System (ADS)

    Olsen, Mikkel S.; Clausen, Ole R.; Andresen, Katrine J.; Korstgård, John A.

    2015-04-01

    Minor secondary structures observed along the flanks of major salt structures in the Norwegian-Danish Basin appear to be generated mainly during the early stages of halokinesis. Seismic anomalies in the cover sediments at the flanks of the major salt structures and in relation to one of the secondary structures show several circular patterns. The circular patterns are generally interpreted as faults related to collapsing salt, indicating a subtle and dynamic cannibalization relationship between the secondary structure and the main diapir. High-amplitude reflections interpreted as either entrapped gas along the circular faults or diagenetic changes induced by the fluids originating from the salt-sediment interface generally enhances the seismic appearance of the circular faults, but potentially also disturb the seismic imaging of the faults. Other secondary salt structures, with a similar geometry, do not show sign of collapse, apparently due to a greater distance from the main salt structures and therefore not within the reach of being cannibalized by these. The observations furthermore suggest a trend showing a more advanced development of the main salt structures when the secondary structures are cannibalized. The lateral distribution of the main salt structures thus appears to be controlled not only by the initial thickness of the Zechstein salt, and possible underlying structures, but also by subtle variations in the location and evolution of secondary structures. The secondary structures have a major impact on the drainage of the deep Mesozoic succession as indicated by the fluid flow pattern also observed in the study, which emphasizes that a detailed mapping of salt structures including secondary structures at the flanks is of major importance during evaluation of petroleum systems in areas dominated by halokinesis.

  17. Ion transport and structural dynamics in homologous ammonium and phosphonium-based room temperature ionic liquids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Griffin, Philip J., E-mail: pgrif@seas.upenn.edu; Holt, Adam P.; Tsunashima, Katsuhiko

    2015-02-28

    Charge transport and structural dynamics in a homologous pair of ammonium and phosphonium based room temperature ionic liquids (ILs) have been characterized over a wide temperature range using broadband dielectric spectroscopy and quasi-elastic light scattering spectroscopy. We have found that the ionic conductivity of the phosphonium based IL is significantly enhanced relative to the ammonium homolog, and this increase is primarily a result of a lower glass transition temperature and higher ion mobility. Additionally, these ILs exhibit pronounced secondary relaxations which are strongly influenced by the atomic identity of the cation charge center. While the secondary relaxation in the phosphoniummore » IL has the expected Arrhenius temperature dependence characteristic of local beta relaxations, the corresponding relaxation process in the ammonium IL was found to exhibit a mildly non-Arrhenius temperature dependence in the measured temperature range—indicative of molecular cooperativity. These differences in both local and long-range molecular dynamics are a direct reflection of the subtly different inter-ionic interactions and mesoscale structures found in these homologous ILs.« less

  18. Ion transport and structural dynamics in homologous ammonium and phosphonium-based room temperature ionic liquids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Griffin, Phillip J.; Holt, Adam P.; Tsunashima, Katsuhiko

    2015-02-01

    Charge transport and structural dynamics in a homologous pair of ammonium and phosphonium based room temperature ionic liquids (ILs) have been characterized over a wide temperature range using broadband dielectric spectroscopy and quasi-elastic light scattering spectroscopy. We have found that the ionic conductivity of the phosphonium based IL is significantly enhanced relative to the ammonium homolog, and this increase is primarily a result of a lower glass transition temperature and higher ion mobility. Additionally, these ILs exhibit pronounced secondary relaxations which are strongly influenced by the atomic identity of the cation charge center. While the secondary relaxation in the phosphoniummore » IL has the expected Arrhenius temperature dependence characteristic of local beta relaxations, the corresponding relaxation process in the ammonium IL was found to exhibit a mildly non-Arrhenius temperature dependence in the measured temperature range-indicative of molecular cooperativity. These differences in both local and long-range molecular dynamics are a direct reflection of the subtly different inter-ionic interactions and mesoscale structures found in these homologous ILs.« less

  19. Attenuated Total Reflection Fourier Transform Infrared (ATR FT-IR) Spectroscopy as an Analytical Method to Investigate the Secondary Structure of a Model Protein Embedded in Solid Lipid Matrices.

    PubMed

    Zeeshan, Farrukh; Tabbassum, Misbah; Jorgensen, Lene; Medlicott, Natalie J

    2018-02-01

    Protein drugs may encounter conformational perturbations during the formulation processing of lipid-based solid dosage forms. In aqueous protein solutions, attenuated total reflection Fourier transform infrared (ATR FT-IR) spectroscopy can investigate these conformational changes following the subtraction of spectral interference of solvent with protein amide I bands. However, in solid dosage forms, the possible spectral contribution of lipid carriers to protein amide I band may be an obstacle to determine conformational alterations. The objective of this study was to develop an ATR FT-IR spectroscopic method for the analysis of protein secondary structure embedded in solid lipid matrices. Bovine serum albumin (BSA) was chosen as a model protein, while Precirol AT05 (glycerol palmitostearate, melting point 58 ℃) was employed as the model lipid matrix. Bovine serum albumin was incorporated into lipid using physical mixing, melting and mixing, or wet granulation mixing methods. Attenuated total reflection FT-IR spectroscopy and size exclusion chromatography (SEC) were performed for the analysis of BSA secondary structure and its dissolution in aqueous media, respectively. The results showed significant interference of Precirol ATO5 with BSA amide I band which was subtracted up to 90% w/w lipid content to analyze BSA secondary structure. In addition, ATR FT-IR spectroscopy also detected thermally denatured BSA solid alone and in the presence of lipid matrix indicating its suitability for the detection of denatured protein solids in lipid matrices. Despite being in the solid state, conformational changes occurred to BSA upon incorporation into solid lipid matrices. However, the extent of these conformational alterations was found to be dependent on the mixing method employed as indicated by area overlap calculations. For instance, the melting and mixing method imparted negligible effect on BSA secondary structure, whereas the wet granulation mixing method promoted more changes. Size exclusion chromatography analysis depicted the complete dissolution of BSA in the aqueous media employed in the wet granulation method. In conclusion, an ATR FT-IR spectroscopic method was successfully developed to investigate BSA secondary structure in solid lipid matrices following the subtraction of lipid spectral interference. The ATR FT-IR spectroscopy could further be applied to investigate the secondary structure perturbations of therapeutic proteins during their formulation development.

  20. Predicting backbone Cα angles and dihedrals from protein sequences by stacked sparse auto-encoder deep neural network.

    PubMed

    Lyons, James; Dehzangi, Abdollah; Heffernan, Rhys; Sharma, Alok; Paliwal, Kuldip; Sattar, Abdul; Zhou, Yaoqi; Yang, Yuedong

    2014-10-30

    Because a nearly constant distance between two neighbouring Cα atoms, local backbone structure of proteins can be represented accurately by the angle between C(αi-1)-C(αi)-C(αi+1) (θ) and a dihedral angle rotated about the C(αi)-C(αi+1) bond (τ). θ and τ angles, as the representative of structural properties of three to four amino-acid residues, offer a description of backbone conformations that is complementary to φ and ψ angles (single residue) and secondary structures (>3 residues). Here, we report the first machine-learning technique for sequence-based prediction of θ and τ angles. Predicted angles based on an independent test have a mean absolute error of 9° for θ and 34° for τ with a distribution on the θ-τ plane close to that of native values. The average root-mean-square distance of 10-residue fragment structures constructed from predicted θ and τ angles is only 1.9Å from their corresponding native structures. Predicted θ and τ angles are expected to be complementary to predicted ϕ and ψ angles and secondary structures for using in model validation and template-based as well as template-free structure prediction. The deep neural network learning technique is available as an on-line server called Structural Property prediction with Integrated DEep neuRal network (SPIDER) at http://sparks-lab.org. Copyright © 2014 Wiley Periodicals, Inc.

  1. Synthesis of robalzotan, ebalzotan, and rotigotine precursors via the stereoselective multienzymatic cascade reduction of α,β-unsaturated aldehydes.

    PubMed

    Brenna, Elisabetta; Gatti, Francesco G; Malpezzi, Luciana; Monti, Daniela; Parmeggiani, Fabio; Sacchetti, Alessandro

    2013-05-17

    A stereoselective synthesis of bicyclic primary or secondary amines, based on tetralin or chroman structural moieties, is reported. These amines are precursors of important active pharmaceutical ingredients such as rotigotine (Neupro), robalzotan, and ebalzotan. The key step is based on a multienzymatic reduction of an α,β-unsaturated aldehyde or ketone to give the saturated primary or secondary alcohol, in a high yield and with a high ee. The catalytic system consists of the combination of an ene-reductase (ER; i.e., OYE2 or OYE3 belonging to the Old Yellow Enzyme family) with an alcohol dehydrogenase (ADH), applying the in situ substrate feeding product removal technology. By this system the formation of the allylic alcohol side product and the racemization of the chirally unstable α-substituted aldehyde intermediate are minimized. The primary alcohols were elaborated via a Curtius rearrangement. The combination of OYE2 with a Prelog or an anti-Prelog ADH allowed the preparation of the secondary alcohols with ee > 99% and de > 87%. The absolute configuration of the primary amines was unambiguously assigned by comparison with authentic samples. The stereochemistry of secondary alcohols was assigned by X-ray crystal structure and NMR analysis of Mosher esters.

  2. SETTER: web server for RNA structure comparison

    PubMed Central

    Čech, Petr; Svozil, Daniel; Hoksza, David

    2012-01-01

    The recent discoveries of regulatory non-coding RNAs changed our view of RNA as a simple information transfer molecule. Understanding the architecture and function of active RNA molecules requires methods for comparing and analyzing their 3D structures. While structural alignment of short RNAs is achievable in a reasonable amount of time, large structures represent much bigger challenge. Here, we present the SETTER web server for the RNA structure pairwise comparison utilizing the SETTER (SEcondary sTructure-based TERtiary Structure Similarity Algorithm) algorithm. The SETTER method divides an RNA structure into the set of non-overlapping structural elements called generalized secondary structure units (GSSUs). The SETTER algorithm scales as O(n2) with the size of a GSSUs and as O(n) with the number of GSSUs in the structure. This scaling gives SETTER its high speed as the average size of the GSSU remains constant irrespective of the size of the structure. However, the favorable speed of the algorithm does not compromise its accuracy. The SETTER web server together with the stand-alone implementation of the SETTER algorithm are freely accessible at http://siret.cz/setter. PMID:22693209

  3. Simulation of unsteady state performance of a secondary air system by the 1D-3D-Structure coupled method

    NASA Astrophysics Data System (ADS)

    Wu, Hong; Li, Peng; Li, Yulong

    2016-02-01

    This paper describes the calculation method for unsteady state conditions in the secondary air systems in gas turbines. The 1D-3D-Structure coupled method was applied. A 1D code was used to model the standard components that have typical geometric characteristics. Their flow and heat transfer were described by empirical correlations based on experimental data or CFD calculations. A 3D code was used to model the non-standard components that cannot be described by typical geometric languages, while a finite element analysis was carried out to compute the structural deformation and heat conduction at certain important positions. These codes were coupled through their interfaces. Thus, the changes in heat transfer and structure and their interactions caused by exterior disturbances can be reflected. The results of the coupling method in an unsteady state showed an apparent deviation from the existing data, while the results in the steady state were highly consistent with the existing data. The difference in the results in the unsteady state was caused primarily by structural deformation that cannot be predicted by the 1D method. Thus, in order to obtain the unsteady state performance of a secondary air system more accurately and efficiently, the 1D-3D-Structure coupled method should be used.

  4. Phylogenetic Reconstruction of the Calosphaeriales and Togniniales Using Five Genes and Predicted RNA Secondary Structures of ITS, and Flabellascus tenuirostris gen. et sp. nov.

    PubMed Central

    Réblová, Martina; Jaklitsch, Walter M.; Réblová, Kamila; Štěpánek, Václav

    2015-01-01

    The Calosphaeriales is revisited with new collection data, living cultures, morphological studies of ascoma centrum, secondary structures of the internal transcribed spacer (ITS) rDNA and phylogeny based on novel DNA sequences of five nuclear ribosomal and protein-coding loci. Morphological features, molecular evidence and information from predicted RNA secondary structures of ITS converged upon robust phylogenies of the Calosphaeriales and Togniniales. The current concept of the Calosphaeriales includes the Calosphaeriaceae and Pleurostomataceae encompassing five monophyletic genera, Calosphaeria, Flabellascus gen. nov., Jattaea, Pleurostoma and Togniniella, strongly supported by Bayesian and Maximum Likelihood methods. The structural elements of ITS1 form characteristic patterns that are phylogenetically conserved, corroborate observations based on morphology and have a high predictive value at the generic level. Three major clades containing 44 species of Phaeoacremonium were recovered in the closely related Togniniales based on ITS, actin and β-tubulin sequences. They are newly characterized by sexual and RNA structural characters and ecology. This approach is a first step towards understanding of the molecular systematics of Phaeoacremonium and possibly its new classification. In the Calosphaeriales, Jattaea aphanospora sp. nov. and J. ribicola sp. nov. are introduced, Calosphaeria taediosa is combined in Jattaea and epitypified. The sexual morph of Phaeoacremonium cinereum was encountered for the first time on decaying wood and obtained in vitro. In order to achieve a single nomenclature, the genera of asexual morphs linked with the Calosphaeriales are transferred to synonymy of their sexual morphs following the principle of priority, i.e. Calosphaeriophora to Calosphaeria, Phaeocrella to Togniniella and Pleurostomophora to Pleurostoma. Three new combinations are proposed, i.e. Pleurostoma ochraceum comb. nov., P. repens comb. nov. and P. richardsiae comb. nov. The morphology-based key is provided to facilitate identification of genera accepted in the Calosphaeriales. PMID:26699541

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Man, Viet Hoang; Pan, Feng; Sagui, Celeste, E-mail: sagui@ncsu.edu

    We explore the use of a fast laser melting simulation approach combined with atomistic molecular dynamics simulations in order to determine the melting and healing responses of B-DNA and Z-DNA dodecamers with the same d(5′-CGCGCGCGCGCG-3′){sub 2} sequence. The frequency of the laser pulse is specifically tuned to disrupt Watson-Crick hydrogen bonds, thus inducing melting of the DNA duplexes. Subsequently, the structures relax and partially refold, depending on the field strength. In addition to the inherent interest of the nonequilibrium melting process, we propose that fast melting by an infrared laser pulse could be used as a technique for a fastmore » comparison of relative stabilities of same-sequence oligonucleotides with different secondary structures with full atomistic detail of the structures and solvent. This could be particularly useful for nonstandard secondary structures involving non-canonical base pairs, mismatches, etc.« less

  6. Role of DNA secondary structures in fragile site breakage along human chromosome 10

    PubMed Central

    Dillon, Laura W.; Pierce, Levi C. T.; Ng, Maggie C. Y.; Wang, Yuh-Hwa

    2013-01-01

    The formation of alternative DNA secondary structures can result in DNA breakage leading to cancer and other diseases. Chromosomal fragile sites, which are regions of the genome that exhibit chromosomal breakage under conditions of mild replication stress, are predicted to form stable DNA secondary structures. DNA breakage at fragile sites is associated with regions that are deleted, amplified or rearranged in cancer. Despite the correlation, unbiased examination of the ability to form secondary structures has not been evaluated in fragile sites. Here, using the Mfold program, we predict potential DNA secondary structure formation on the human chromosome 10 sequence, and utilize this analysis to compare fragile and non-fragile DNA. We found that aphidicolin (APH)-induced common fragile sites contain more sequence segments with potential high secondary structure-forming ability, and these segments clustered more densely than those in non-fragile DNA. Additionally, using a threshold of secondary structure-forming ability, we refined legitimate fragile sites within the cytogenetically defined boundaries, and identified potential fragile regions within non-fragile DNA. In vitro detection of alternative DNA structure formation and a DNA breakage cell assay were used to validate the computational predictions. Many of the regions identified by our analysis coincide with genes mutated in various diseases and regions of copy number alteration in cancer. This study supports the role of DNA secondary structures in common fragile site instability, provides a systematic method for their identification and suggests a mechanism by which DNA secondary structures can lead to human disease. PMID:23297364

  7. Sum Frequency Generation Vibrational Spectroscopy Studies on ModelPeptide Adsorption at the Hydrophobic Solid-Water and HydrophilicSolid-Water Interfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    York, Roger L.

    2007-01-01

    Sum frequency generation (SFG) vibrational spectroscopy has been used to study the interfacial structure of several polypeptides and amino acids adsorbed to hydrophobic and hydrophilic surfaces under a variety of experimental conditions. Peptide sequence, peptide chain length, peptide hydrophobicity, peptide side-chain type, surface hydrophobicity, and solution ionic strength all affect an adsorbed peptide's interfacial structure. Herein, it is demonstrated that with the choice of simple, model peptides and amino acids, surface specific SFG vibrational spectroscopy can be a powerful tool to elucidate the interfacial structure of these adsorbates. Herein, four experiments are described. In one, a series of isosequential amphiphilicmore » peptides are synthesized and studied when adsorbed to both hydrophobic and hydrophilic surfaces. On hydrophobic surfaces of deuterated polystyrene, it was determined that the hydrophobic part of the peptide is ordered at the solid-liquid interface, while the hydrophilic part of the peptide appears to have a random orientation at this interface. On a hydrophilic surface of silica, it was determined that an ordered peptide was only observed if a peptide had stable secondary structure in solution. In another experiment, the interfacial structure of a model amphiphilic peptide was studied as a function of the ionic strength of the solution, a parameter that could change the peptide's secondary structure in solution. It was determined that on a hydrophobic surface, the peptide's interfacial structure was independent of its structure in solution. This was in contrast to the adsorbed structure on a hydrophilic surface, where the peptide's interfacial structure showed a strong dependence on its solution secondary structure. In a third experiment, the SFG spectra of lysine and proline amino acids on both hydrophobic and hydrophilic surfaces were obtained by using a different experimental geometry that increases the SFG signal. Upon comparison of these spectra to the SFG spectra of interfacial polylysine and polyproline it was determined that the interfacial structure of a peptide is strongly dependent on its chain length. Lastly, SFG spectroscopy has been extended to the Amide I vibrational mode of a peptide (which is sensitive to peptide secondary structure) by building a new optical parametric amplifier based on lithium thioindate. Evidence is presented that suggests that the interfacial secondary structure of a peptide can be perturbed by a surface.« less

  8. Rapid and reliable protein structure determination via chemical shift threading.

    PubMed

    Hafsa, Noor E; Berjanskii, Mark V; Arndt, David; Wishart, David S

    2018-01-01

    Protein structure determination using nuclear magnetic resonance (NMR) spectroscopy can be both time-consuming and labor intensive. Here we demonstrate how chemical shift threading can permit rapid, robust, and accurate protein structure determination using only chemical shift data. Threading is a relatively old bioinformatics technique that uses a combination of sequence information and predicted (or experimentally acquired) low-resolution structural data to generate high-resolution 3D protein structures. The key motivations behind using NMR chemical shifts for protein threading lie in the fact that they are easy to measure, they are available prior to 3D structure determination, and they contain vital structural information. The method we have developed uses not only sequence and chemical shift similarity but also chemical shift-derived secondary structure, shift-derived super-secondary structure, and shift-derived accessible surface area to generate a high quality protein structure regardless of the sequence similarity (or lack thereof) to a known structure already in the PDB. The method (called E-Thrifty) was found to be very fast (often < 10 min/structure) and to significantly outperform other shift-based or threading-based structure determination methods (in terms of top template model accuracy)-with an average TM-score performance of 0.68 (vs. 0.50-0.62 for other methods). Coupled with recent developments in chemical shift refinement, these results suggest that protein structure determination, using only NMR chemical shifts, is becoming increasingly practical and reliable. E-Thrifty is available as a web server at http://ethrifty.ca .

  9. Incorporating modeling and simulations in undergraduate biophysical chemistry course to promote understanding of structure-dynamics-function relationships in proteins.

    PubMed

    Hati, Sanchita; Bhattacharyya, Sudeep

    2016-01-01

    A project-based biophysical chemistry laboratory course, which is offered to the biochemistry and molecular biology majors in their senior year, is described. In this course, the classroom study of the structure-function of biomolecules is integrated with the discovery-guided laboratory study of these molecules using computer modeling and simulations. In particular, modern computational tools are employed to elucidate the relationship between structure, dynamics, and function in proteins. Computer-based laboratory protocols that we introduced in three modules allow students to visualize the secondary, super-secondary, and tertiary structures of proteins, analyze non-covalent interactions in protein-ligand complexes, develop three-dimensional structural models (homology model) for new protein sequences and evaluate their structural qualities, and study proteins' intrinsic dynamics to understand their functions. In the fourth module, students are assigned to an authentic research problem, where they apply their laboratory skills (acquired in modules 1-3) to answer conceptual biophysical questions. Through this process, students gain in-depth understanding of protein dynamics-the missing link between structure and function. Additionally, the requirement of term papers sharpens students' writing and communication skills. Finally, these projects result in new findings that are communicated in peer-reviewed journals. © 2016 The International Union of Biochemistry and Molecular Biology.

  10. nextPARS: parallel probing of RNA structures in Illumina

    PubMed Central

    Saus, Ester; Willis, Jesse R.; Pryszcz, Leszek P.; Hafez, Ahmed; Llorens, Carlos; Himmelbauer, Heinz

    2018-01-01

    RNA molecules play important roles in virtually every cellular process. These functions are often mediated through the adoption of specific structures that enable RNAs to interact with other molecules. Thus, determining the secondary structures of RNAs is central to understanding their function and evolution. In recent years several sequencing-based approaches have been developed that allow probing structural features of thousands of RNA molecules present in a sample. Here, we describe nextPARS, a novel Illumina-based implementation of in vitro parallel probing of RNA structures. Our approach achieves comparable accuracy to previous implementations, while enabling higher throughput and sample multiplexing. PMID:29358234

  11. Modeling of reduced effective secondary electron emission yield from a velvet surface

    DOE PAGES

    Swanson, Charles; Kaganovich, Igor D.

    2016-12-05

    Complex structures on a material surface can significantly reduce total secondary electron emission from that surface. A velvet is a surface that consists of an array of vertically standing whiskers. The reduction occurs due to the capture of low-energy, true secondary electrons emitted at the bottom of the structure and on the sides of the velvet whiskers. We performed numerical simulations and developed an approximate analytical model that calculates the net secondary electron emission yield from a velvet surface as a function of the velvet whisker length and packing density, and the angle of incidence of primary electrons. We foundmore » that to suppress secondary electrons, the following condition on dimensionless parameters must be met: (π/2) DΑ tan θ >> 1, where theta is the angle of incidence of the primary electron from the normal, D is the fraction of surface area taken up by the velvet whisker bases, and A is the aspect ratio, A = h/r, the ratio of height to radius of the velvet whiskers. We find that velvets available today can reduce the secondary electron yield by 90% from the value of a flat surface. As a result, the values of optimal velvet whisker packing density that maximally suppresses the secondary electron emission yield are determined as a function of velvet aspect ratio and the electron angle of incidence.« less

  12. [Spatial structural characteristics of natural Populus davidiana - Betula platyphylla secondary forest].

    PubMed

    Shao, Fang-Li; Yu, Xin-Xiao; Song, Si-Ming; Zhao, Yang

    2011-11-01

    This paper analyzed the spatial structural characteristics of natural Populus davidiana - Betula platyphylla secondary forest in a 4 hm2 plot of Mulan Paddock, based on the diameter distribution and the spatial structure parameters mingling degree, neighborhood comparison, and angle index. In the forest, the diameter distribution of the stands presented as an inverse 'J' curve, the average mingling degree was 0.4, with the individuals at weak and zero mingling degree reached 51.6%, and the average mingling degree of P. davidiana and B. platyphylla was 0.25 and 0.39, respectively. The neighborhood comparison based on the diameter at breast height (DBH) and tree height was almost the same, suggesting that the P. davidiana and B. platyphylla were in the transition state from subdominant to middle. The horizontal distribution pattern had a close relation to the minimum measured DBH, being clustered when the DBH was > or = 1 cm and < 6 cm, and random when the DBH was > or = 6 cm.

  13. Characterising RNA secondary structure space using information entropy

    PubMed Central

    2013-01-01

    Comparative methods for RNA secondary structure prediction use evolutionary information from RNA alignments to increase prediction accuracy. The model is often described in terms of stochastic context-free grammars (SCFGs), which generate a probability distribution over secondary structures. It is, however, unclear how this probability distribution changes as a function of the input alignment. As prediction programs typically only return a single secondary structure, better characterisation of the underlying probability space of RNA secondary structures is of great interest. In this work, we show how to efficiently compute the information entropy of the probability distribution over RNA secondary structures produced for RNA alignments by a phylo-SCFG, and implement it for the PPfold model. We also discuss interpretations and applications of this quantity, including how it can clarify reasons for low prediction reliability scores. PPfold and its source code are available from http://birc.au.dk/software/ppfold/. PMID:23368905

  14. Critical Features of Fragment Libraries for Protein Structure Prediction

    PubMed Central

    dos Santos, Karina Baptista

    2017-01-01

    The use of fragment libraries is a popular approach among protein structure prediction methods and has proven to substantially improve the quality of predicted structures. However, some vital aspects of a fragment library that influence the accuracy of modeling a native structure remain to be determined. This study investigates some of these features. Particularly, we analyze the effect of using secondary structure prediction guiding fragments selection, different fragments sizes and the effect of structural clustering of fragments within libraries. To have a clearer view of how these factors affect protein structure prediction, we isolated the process of model building by fragment assembly from some common limitations associated with prediction methods, e.g., imprecise energy functions and optimization algorithms, by employing an exact structure-based objective function under a greedy algorithm. Our results indicate that shorter fragments reproduce the native structure more accurately than the longer. Libraries composed of multiple fragment lengths generate even better structures, where longer fragments show to be more useful at the beginning of the simulations. The use of many different fragment sizes shows little improvement when compared to predictions carried out with libraries that comprise only three different fragment sizes. Models obtained from libraries built using only sequence similarity are, on average, better than those built with a secondary structure prediction bias. However, we found that the use of secondary structure prediction allows greater reduction of the search space, which is invaluable for prediction methods. The results of this study can be critical guidelines for the use of fragment libraries in protein structure prediction. PMID:28085928

  15. Critical Features of Fragment Libraries for Protein Structure Prediction.

    PubMed

    Trevizani, Raphael; Custódio, Fábio Lima; Dos Santos, Karina Baptista; Dardenne, Laurent Emmanuel

    2017-01-01

    The use of fragment libraries is a popular approach among protein structure prediction methods and has proven to substantially improve the quality of predicted structures. However, some vital aspects of a fragment library that influence the accuracy of modeling a native structure remain to be determined. This study investigates some of these features. Particularly, we analyze the effect of using secondary structure prediction guiding fragments selection, different fragments sizes and the effect of structural clustering of fragments within libraries. To have a clearer view of how these factors affect protein structure prediction, we isolated the process of model building by fragment assembly from some common limitations associated with prediction methods, e.g., imprecise energy functions and optimization algorithms, by employing an exact structure-based objective function under a greedy algorithm. Our results indicate that shorter fragments reproduce the native structure more accurately than the longer. Libraries composed of multiple fragment lengths generate even better structures, where longer fragments show to be more useful at the beginning of the simulations. The use of many different fragment sizes shows little improvement when compared to predictions carried out with libraries that comprise only three different fragment sizes. Models obtained from libraries built using only sequence similarity are, on average, better than those built with a secondary structure prediction bias. However, we found that the use of secondary structure prediction allows greater reduction of the search space, which is invaluable for prediction methods. The results of this study can be critical guidelines for the use of fragment libraries in protein structure prediction.

  16. Visualizing the global secondary structure of a viral RNA genome with cryo-electron microscopy

    PubMed Central

    Garmann, Rees F.; Gopal, Ajaykumar; Athavale, Shreyas S.; Knobler, Charles M.; Gelbart, William M.; Harvey, Stephen C.

    2015-01-01

    The lifecycle, and therefore the virulence, of single-stranded (ss)-RNA viruses is regulated not only by their particular protein gene products, but also by the secondary and tertiary structure of their genomes. The secondary structure of the entire genomic RNA of satellite tobacco mosaic virus (STMV) was recently determined by selective 2′-hydroxyl acylation analyzed by primer extension (SHAPE). The SHAPE analysis suggested a single highly extended secondary structure with much less branching than occurs in the ensemble of structures predicted by purely thermodynamic algorithms. Here we examine the solution-equilibrated STMV genome by direct visualization with cryo-electron microscopy (cryo-EM), using an RNA of similar length transcribed from the yeast genome as a control. The cryo-EM data reveal an ensemble of branching patterns that are collectively consistent with the SHAPE-derived secondary structure model. Thus, our results both elucidate the statistical nature of the secondary structure of large ss-RNAs and give visual support for modern RNA structure determination methods. Additionally, this work introduces cryo-EM as a means to distinguish between competing secondary structure models if the models differ significantly in terms of the number and/or length of branches. Furthermore, with the latest advances in cryo-EM technology, we suggest the possibility of developing methods that incorporate restraints from cryo-EM into the next generation of algorithms for the determination of RNA secondary and tertiary structures. PMID:25752599

  17. Secondary structural entropy in RNA switch (Riboswitch) identification.

    PubMed

    Manzourolajdad, Amirhossein; Arnold, Jonathan

    2015-04-28

    RNA regulatory elements play a significant role in gene regulation. Riboswitches, a widespread group of regulatory RNAs, are vital components of many bacterial genomes. These regulatory elements generally function by forming a ligand-induced alternative fold that controls access to ribosome binding sites or other regulatory sites in RNA. Riboswitch-mediated mechanisms are ubiquitous across bacterial genomes. A typical class of riboswitch has its own unique structural and biological complexity, making de novo riboswitch identification a formidable task. Traditionally, riboswitches have been identified through comparative genomics based on sequence and structural homology. The limitations of structural-homology-based approaches, coupled with the assumption that there is a great diversity of undiscovered riboswitches, suggests the need for alternative methods for riboswitch identification, possibly based on features intrinsic to their structure. As of yet, no such reliable method has been proposed. We used structural entropy of riboswitch sequences as a measure of their secondary structural dynamics. Entropy values of a diverse set of riboswitches were compared to that of their mutants, their dinucleotide shuffles, and their reverse complement sequences under different stochastic context-free grammar folding models. Significance of our results was evaluated by comparison to other approaches, such as the base-pairing entropy and energy landscapes dynamics. Classifiers based on structural entropy optimized via sequence and structural features were devised as riboswitch identifiers and tested on Bacillus subtilis, Escherichia coli, and Synechococcus elongatus as an exploration of structural entropy based approaches. The unusually long untranslated region of the cotH in Bacillus subtilis, as well as upstream regions of certain genes, such as the sucC genes were associated with significant structural entropy values in genome-wide examinations. Various tests show that there is in fact a relationship between higher structural entropy and the potential for the RNA sequence to have alternative structures, within the limitations of our methodology. This relationship, though modest, is consistent across various tests. Understanding the behavior of structural entropy as a fairly new feature for RNA conformational dynamics, however, may require extensive exploratory investigation both across RNA sequences and folding models.

  18. Compliance of secondary production and eco-exergy as indicators of benthic macroinvertebrates assemblages' response to canopy cover conditions in Neotropical headwater streams.

    PubMed

    Linares, Marden Seabra; Callisto, Marcos; Marques, João Carlos

    2018-02-01

    Riparian vegetation cover influences benthic assemblages structure and functioning in headwater streams, as it regulates light availability and autochthonous primary production in these ecosystems.Secondary production, diversity, and exergy-based indicators were applied in capturing how riparian cover influences the structure and functioning of benthic macroinvertebrate assemblages in tropical headwater streams. Four hypotheses were tested: (1) open canopy will determine the occurrence of higher diversity in benthic macroinvertebrate assemblages; (2) streams with open canopy will exhibit more complex benthic macroinvertebrate communities (in terms of information embedded in the organisms' biomass); (3) in streams with open canopy benthic macroinvertebrate assemblages will be more efficient in using the available resources to build structure, which will be reflected by higher eco-exergy values; (4) benthic assemblages in streams with open canopy will exhibit more secondary productivity. We selected eight non-impacted headwater streams, four shaded and four with open canopy, all located in the Neotropical savannah (Cerrado) of southeastern Brazil. Open canopy streams consistently exhibited significantly higher eco-exergy and instant secondary production values, exemplifying that these streams may support more complex and productive benthic macroinvertebrate assemblages. Nevertheless, diversity indices and specific eco-exergy were not significantly different in shaded and open canopy streams. Since all the studied streams were selected for being considered as non-impacted, this suggests that the potential represented by more available food resources was not used to build a more complex dissipative structure. These results illustrate the role and importance of the canopy cover characteristics on the structure and functioning of benthic macroinvertebrate assemblages in tropical headwater streams, while autochthonous production appears to play a crucial role as food source for benthic macroinvertebrates. This study also highlights the possible application of thermodynamic based indicators as tools to guide environmental managers in developing and implementing policies in the neotropical savannah. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Structurally coloured secondary particles composed of black and white colloidal particles.

    PubMed

    Takeoka, Yukikazu; Yoshioka, Shinya; Teshima, Midori; Takano, Atsushi; Harun-Ur-Rashid, Mohammad; Seki, Takahiro

    2013-01-01

    This study investigated the colourful secondary particles formed by controlling the aggregation states of colloidal silica particles and the enhancement of the structural colouration of the secondary particles caused by adding black particles. We obtained glossy, partially structurally coloured secondary particles in the absence of NaCl, but matte, whitish secondary particles were obtained in the presence of NaCl. When a small amount of carbon black was incorporated into both types of secondary particles, the incoherent multiple scattering of light from the amorphous region was considerably reduced. However, the peak intensities in the reflection spectra, caused by Bragg reflection and by coherent single wavelength scattering, were only slightly decreased. Consequently, a brighter structural colour of these secondary particles was observed with the naked eye. Furthermore, when magnetite was added as a black particle, the coloured secondary particles could be moved and collected by applying an external magnetic field.

  20. Structurally Coloured Secondary Particles Composed of Black and White Colloidal Particles

    PubMed Central

    Takeoka, Yukikazu; Yoshioka, Shinya; Teshima, Midori; Takano, Atsushi; Harun-Ur-Rashid, Mohammad; Seki, Takahiro

    2013-01-01

    This study investigated the colourful secondary particles formed by controlling the aggregation states of colloidal silica particles and the enhancement of the structural colouration of the secondary particles caused by adding black particles. We obtained glossy, partially structurally coloured secondary particles in the absence of NaCl, but matte, whitish secondary particles were obtained in the presence of NaCl. When a small amount of carbon black was incorporated into both types of secondary particles, the incoherent multiple scattering of light from the amorphous region was considerably reduced. However, the peak intensities in the reflection spectra, caused by Bragg reflection and by coherent single wavelength scattering, were only slightly decreased. Consequently, a brighter structural colour of these secondary particles was observed with the naked eye. Furthermore, when magnetite was added as a black particle, the coloured secondary particles could be moved and collected by applying an external magnetic field. PMID:23917891

  1. Recognition and pseudonymisation of medical records for secondary use.

    PubMed

    Heurix, Johannes; Fenz, Stefan; Rella, Antonio; Neubauer, Thomas

    2016-03-01

    Health records rank among the most sensitive personal information existing today. An unwanted disclosure to unauthorised parties usually results in significant negative consequences for an individual. Therefore, health records must be adequately protected in order to ensure the individual's privacy. However, health records are also valuable resources for clinical studies and research activities. In order to make the records available for privacy-preserving secondary use, thorough de-personalisation is a crucial prerequisite to prevent re-identification. This paper introduces MEDSEC, a system which automatically converts paper-based health records into de-personalised and pseudonymised documents which can be accessed by secondary users without compromising the patients' privacy. The system converts the paper-based records into a standardised structure that facilitates automated processing and the search for useful information.

  2. Microstructure and phase composition characterization in a Co{sub 38}Ni{sub 33}Al{sub 29} ferromagnetic shape memory alloy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, J.B.

    2016-08-15

    Transmission electron microscopy was performed to investigate the microstructures of a secondary phase and its surrounding matrix in a Co{sub 38}Ni{sub 33}Al{sub 29} ferromagnetic shape memory alloy. The secondary phase shows a γ′ L1{sub 2} structure exhibiting a dendritic morphology with enclosed B2 austenite regions while the matrix shows the L1{sub 0} martensitic structure. A secondary phase-austenite-martensite sandwich structure with residual austenite ranging from several hundred nanometers to several micrometers wide is observed at the secondary phase-martensite interface due to the depletion of Co and enrichment of Al in the chemical gradient zone and the effect of the strong martensiticmore » start temperature dependency of the element concentrations. The crystallographic orientation relationship of the secondary phase and the B2 austenite fits the Kurdjumov-Sachs relationship. - Highlights: •The secondary phase has a γ′ L1{sub 2} structure exhibiting a dendritic morphology. •A secondary phase-austenite-martensite sandwich structure is observed. •The structural sandwich structure is due to elemental composition variation. •The secondary phase and the B2 austenite fit the Kurdjumov-Sachs relationship.« less

  3. VMD-SS: A graphical user interface plug-in to calculate the protein secondary structure in VMD program.

    PubMed

    Yahyavi, Masoumeh; Falsafi-Zadeh, Sajad; Karimi, Zahra; Kalatarian, Giti; Galehdari, Hamid

    2014-01-01

    The investigation on the types of secondary structure (SS) of a protein is important. The evolution of secondary structures during molecular dynamics simulations is a useful parameter to analyze protein structures. Therefore, it is of interest to describe VMD-SS (a software program) for the identification of secondary structure elements and its trajectories during simulation for known structures available at the Protein Data Bank (PDB). The program helps to calculate (1) percentage SS, (2) SS occurrence in each residue, (3) percentage SS during simulation, and (4) percentage residues in all SS types during simulation. The VMD-SS plug-in was designed using TCL script and stride to calculate secondary structure features. The database is available for free at http://science.scu.ac.ir/HomePage.aspx?TabID=13755.

  4. Conservation of mRNA secondary structures may filter out mutations in Escherichia coli evolution

    PubMed Central

    Chursov, Andrey; Frishman, Dmitrij; Shneider, Alexander

    2013-01-01

    Recent reports indicate that mutations in viral genomes tend to preserve RNA secondary structure, and those mutations that disrupt secondary structural elements may reduce gene expression levels, thereby serving as a functional knockout. In this article, we explore the conservation of secondary structures of mRNA coding regions, a previously unknown factor in bacterial evolution, by comparing the structural consequences of mutations in essential and nonessential Escherichia coli genes accumulated over 40 000 generations in the course of the ‘long-term evolution experiment’. We monitored the extent to which mutations influence minimum free energy (MFE) values, assuming that a substantial change in MFE is indicative of structural perturbation. Our principal finding is that purifying selection tends to eliminate those mutations in essential genes that lead to greater changes of MFE values and, therefore, may be more disruptive for the corresponding mRNA secondary structures. This effect implies that synonymous mutations disrupting mRNA secondary structures may directly affect the fitness of the organism. These results demonstrate that the need to maintain intact mRNA structures imposes additional evolutionary constraints on bacterial genomes, which go beyond preservation of structure and function of the encoded proteins. PMID:23783573

  5. Vocational Students Experiences with Assessment in Workplace Learning

    ERIC Educational Resources Information Center

    Sandal, Ann Karin; Smith, Kari; Wangensteen, Ragne

    2014-01-01

    Vocational education, as part of the Norwegian upper secondary education, includes both school-based learning and workplace learning. While school-based learning is characterized by formal structures and guided by aims in the curricula, workplace learning is often informal, incidental and directed by the daily work-tasks. Assessment in workplace…

  6. Primary Versus Secondary Diagnosis of Generalized Anxiety Disorder in Youth: Is the Distinction an Important One?

    PubMed

    Ollendick, Thomas H; Jarrett, Matthew A; White, Bradley A; White, Susan W; Grills, Amie E

    2016-08-01

    Examine whether children with a primary diagnosis of generalized anxiety disorder (GAD) differ from children with a secondary diagnosis of GAD on clinician, parent, teacher, and youth-report measures. Based on consensus diagnoses, 64 youth referred to a general outpatient assessment clinic were categorized as having either a primary or secondary diagnosis of GAD. A semi-structured diagnostic interview was used to guide diagnostic decisions and assign primary versus secondary diagnostic status. We predicted that youth with a primary GAD diagnosis would present with greater anxiety symptomatology and symptom impairment on a variety of anxiety-related measures than youth with a secondary GAD diagnosis. Contrary to our hypotheses, no differences were found between those with primary versus secondary GAD diagnoses on measures of symptom severity and clinical impairment, comorbid diagnoses, or youth and teacher-report measures. Our findings have potential implications for the current practice of requiring primary anxiety diagnostic status as an inclusion criterion in clinical research and treatment outcome studies. Assuming our findings are confirmed in larger samples and with other anxiety disorders, future clinical trials and basic psychopathology research might not exclude youth based on absence of a particular anxiety disorder as the primary disorder but rather include individuals for whom that anxiety disorder is secondary as well.

  7. Designing a Structured and Interactive Learning Environment Based on GIS for Secondary Geography Education

    ERIC Educational Resources Information Center

    Liu, Suxia; Zhu, Xuan

    2008-01-01

    Geographic information systems (GIS) are computer-based tools for geographic data analysis and spatial visualization. They have become one of the information and communications technologies for education at all levels. This article reviews the current status of GIS in schools, analyzes the requirements of a GIS-based learning environment from…

  8. QUASAR--scoring and ranking of sequence-structure alignments.

    PubMed

    Birzele, Fabian; Gewehr, Jan E; Zimmer, Ralf

    2005-12-15

    Sequence-structure alignments are a common means for protein structure prediction in the fields of fold recognition and homology modeling, and there is a broad variety of programs that provide such alignments based on sequence similarity, secondary structure or contact potentials. Nevertheless, finding the best sequence-structure alignment in a pool of alignments remains a difficult problem. QUASAR (quality of sequence-structure alignments ranking) provides a unifying framework for scoring sequence-structure alignments that aids finding well-performing combinations of well-known and custom-made scoring schemes. Those scoring functions can be benchmarked against widely accepted quality scores like MaxSub, TMScore, Touch and APDB, thus enabling users to test their own alignment scores against 'standard-of-truth' structure-based scores. Furthermore, individual score combinations can be optimized with respect to benchmark sets based on known structural relationships using QUASAR's in-built optimization routines.

  9. Astronomy textbook images: do they really help students?

    NASA Astrophysics Data System (ADS)

    Testa, Italo; Leccia, Silvio; Puddu, Emanuella

    2014-05-01

    In this paper we present a study on the difficulties secondary school students experience in interpreting textbook images of elementary astronomical phenomena, namely, the changing of the seasons, Sun and lunar eclipses and Moon phases. Six images from a commonly used textbook in Italian secondary schools were selected. Interviews of 45 min about the astronomical concepts related to the images were carried out with eighteen students attending the last year of secondary school (aged 17-18). Students’ responses were analyzed through a semiotic framework based on the different types of visual representation structures. We found that the wide range of difficulties shown by students come from naïve or alternative ideas due to incorrect or inadequate geometric models of the addressed phenomena. As a primary implication of this study, we suggest that teachers should pay attention to specific iconic features of the discussed images, e.g., the compositional structure and the presence of real/symbolic elements.

  10. Comparison of NASTRAN analysis with ground vibration results of UH-60A NASA/AEFA test configuration

    NASA Technical Reports Server (NTRS)

    Idosor, Florentino; Seible, Frieder

    1990-01-01

    Preceding program flight tests, a ground vibration test and modal test analysis of a UH-60A Black Hawk helicopter was conducted by Sikorsky Aircraft to complement the UH-60A test plan and NASA/ARMY Modern Technology Rotor Airloads Program. The 'NASA/AEFA' shake test configuration was tested for modal frequencies and shapes and compared with its NASTRAN finite element model counterpart to give correlative results. Based upon previous findings, significant differences in modal data existed and were attributed to assumptions regarding the influence of secondary structure contributions in the preliminary NASTRAN modeling. An analysis of an updated finite element model including several secondary structural additions has confirmed that the inclusion of specific secondary components produces a significant effect on modal frequency and free-response shapes and improves correlations at lower frequencies with shake test data.

  11. A generalized analysis of hydrophobic and loop clusters within globular protein sequences

    PubMed Central

    Eudes, Richard; Le Tuan, Khanh; Delettré, Jean; Mornon, Jean-Paul; Callebaut, Isabelle

    2007-01-01

    Background Hydrophobic Cluster Analysis (HCA) is an efficient way to compare highly divergent sequences through the implicit secondary structure information directly derived from hydrophobic clusters. However, its efficiency and application are currently limited by the need of user expertise. In order to help the analysis of HCA plots, we report here the structural preferences of hydrophobic cluster species, which are frequently encountered in globular domains of proteins. These species are characterized only by their hydrophobic/non-hydrophobic dichotomy. This analysis has been extended to loop-forming clusters, using an appropriate loop alphabet. Results The structural behavior of hydrophobic cluster species, which are typical of protein globular domains, was investigated within banks of experimental structures, considered at different levels of sequence redundancy. The 294 more frequent hydrophobic cluster species were analyzed with regard to their association with the different secondary structures (frequencies of association with secondary structures and secondary structure propensities). Hydrophobic cluster species are predominantly associated with regular secondary structures, and a large part (60 %) reveals preferences for α-helices or β-strands. Moreover, the analysis of the hydrophobic cluster amino acid composition generally allows for finer prediction of the regular secondary structure associated with the considered cluster within a cluster species. We also investigated the behavior of loop forming clusters, using a "PGDNS" alphabet. These loop clusters do not overlap with hydrophobic clusters and are highly associated with coils. Finally, the structural information contained in the hydrophobic structural words, as deduced from experimental structures, was compared to the PSI-PRED predictions, revealing that β-strands and especially α-helices are generally over-predicted within the limits of typical β and α hydrophobic clusters. Conclusion The dictionary of hydrophobic clusters described here can help the HCA user to interpret and compare the HCA plots of globular protein sequences, as well as provides an original fundamental insight into the structural bricks of protein folds. Moreover, the novel loop cluster analysis brings additional information for secondary structure prediction on the whole sequence through a generalized cluster analysis (GCA), and not only on regular secondary structures. Such information lays the foundations for developing a new and original tool for secondary structure prediction. PMID:17210072

  12. An efficient method for the prediction of deleterious multiple-point mutations in the secondary structure of RNAs using suboptimal folding solutions

    PubMed Central

    Churkin, Alexander; Barash, Danny

    2008-01-01

    Background RNAmute is an interactive Java application which, given an RNA sequence, calculates the secondary structure of all single point mutations and organizes them into categories according to their similarity to the predicted structure of the wild type. The secondary structure predictions are performed using the Vienna RNA package. A more efficient implementation of RNAmute is needed, however, to extend from the case of single point mutations to the general case of multiple point mutations, which may often be desired for computational predictions alongside mutagenesis experiments. But analyzing multiple point mutations, a process that requires traversing all possible mutations, becomes highly expensive since the running time is O(nm) for a sequence of length n with m-point mutations. Using Vienna's RNAsubopt, we present a method that selects only those mutations, based on stability considerations, which are likely to be conformational rearranging. The approach is best examined using the dot plot representation for RNA secondary structure. Results Using RNAsubopt, the suboptimal solutions for a given wild-type sequence are calculated once. Then, specific mutations are selected that are most likely to cause a conformational rearrangement. For an RNA sequence of about 100 nts and 3-point mutations (n = 100, m = 3), for example, the proposed method reduces the running time from several hours or even days to several minutes, thus enabling the practical application of RNAmute to the analysis of multiple-point mutations. Conclusion A highly efficient addition to RNAmute that is as user friendly as the original application but that facilitates the practical analysis of multiple-point mutations is presented. Such an extension can now be exploited prior to site-directed mutagenesis experiments by virologists, for example, who investigate the change of function in an RNA virus via mutations that disrupt important motifs in its secondary structure. A complete explanation of the application, called MultiRNAmute, is available at [1]. PMID:18445289

  13. Identification of GATC- and CCGG- recognizing Type II REases and their putative specificity-determining positions using Scan2S—a novel motif scan algorithm with optional secondary structure constraints

    PubMed Central

    Niv, Masha Y.; Skrabanek, Lucy; Roberts, Richard J.; Scheraga, Harold A.; Weinstein, Harel

    2008-01-01

    Restriction endonucleases (REases) are DNA-cleaving enzymes that have become indispensable tools in molecular biology. Type II REases are highly divergent in sequence despite their common structural core, function and, in some cases, common specificities towards DNA sequences. This makes it difficult to identify and classify them functionally based on sequence, and has hampered the efforts of specificity-engineering. Here, we define novel REase sequence motifs, which extend beyond the PD-(D/E)XK hallmark, and incorporate secondary structure information. The automated search using these motifs is carried out with a newly developed fast regular expression matching algorithm that accommodates long patterns with optional secondary structure constraints. Using this new tool, named Scan2S, motifs derived from REases with specificity towards GATC- and CGGG-containing DNA sequences successfully identify REases of the same specificity. Notably, some of these sequences are not identified by standard sequence detection tools. The new motifs highlight potential specificity-determining positions that do not fully overlap for the GATC- and the CCGG-recognizing REases and are candidates for specificity re-engineering. PMID:17972284

  14. Identification of GATC- and CCGG-recognizing Type II REases and their putative specificity-determining positions using Scan2S--a novel motif scan algorithm with optional secondary structure constraints.

    PubMed

    Niv, Masha Y; Skrabanek, Lucy; Roberts, Richard J; Scheraga, Harold A; Weinstein, Harel

    2008-05-01

    Restriction endonucleases (REases) are DNA-cleaving enzymes that have become indispensable tools in molecular biology. Type II REases are highly divergent in sequence despite their common structural core, function and, in some cases, common specificities towards DNA sequences. This makes it difficult to identify and classify them functionally based on sequence, and has hampered the efforts of specificity-engineering. Here, we define novel REase sequence motifs, which extend beyond the PD-(D/E)XK hallmark, and incorporate secondary structure information. The automated search using these motifs is carried out with a newly developed fast regular expression matching algorithm that accommodates long patterns with optional secondary structure constraints. Using this new tool, named Scan2S, motifs derived from REases with specificity towards GATC- and CGGG-containing DNA sequences successfully identify REases of the same specificity. Notably, some of these sequences are not identified by standard sequence detection tools. The new motifs highlight potential specificity-determining positions that do not fully overlap for the GATC- and the CCGG-recognizing REases and are candidates for specificity re-engineering.

  15. Secondary flow structures in large rivers

    NASA Astrophysics Data System (ADS)

    Chauvet, H.; Devauchelle, O.; Metivier, F.; Limare, A.; Lajeunesse, E.

    2012-04-01

    Measuring the velocity field in large rivers remains a challenge, even with recent measurement techniques such as Acoustic Doppler Current Profiler (ADCP). Indeed, due to the diverging angle between its ultrasonic beams, an ADCP cannot detect small-scale flow structures. However, when the measurements are limited to a single location for a sufficient period of time, averaging can reveal large, stationary flow structures. Here we present velocity measurements in a straight reach of the Seine river in Paris, France, where the cross-section is close to rectangular. The transverse modulation of the streamwise velocity indicates secondary flow cells, which seem to occupy the entire width of the river. This observation is reminiscent of the longitudinal vortices observed in laboratory experiments (e.g. Blanckaert et al., Advances in Water Resources, 2010, 33, 1062-1074). Although the physical origin of these secondary structures remains unclear, their measured velocity is sufficient to significantly impact the distribution of streamwise momentum. We propose a model for the transverse profile of the depth-averaged velocity based on a crude representation of the longitudinal vortices, with a single free parameter. Preliminary results are in good agreement with field measurements. This model also provides an estimate for the bank shear stress, which controls bank erosion.

  16. First-principles surface interaction studies of aluminum-copper and aluminum-copper-magnesium secondary phases in aluminum alloys

    NASA Astrophysics Data System (ADS)

    da Silva, Thiago H.; Nelson, Eric B.; Williamson, Izaak; Efaw, Corey M.; Sapper, Erik; Hurley, Michael F.; Li, Lan

    2018-05-01

    First-principles density functional theory-based calculations were performed to study θ-phase Al2Cu, S-phase Al2CuMg surface stability, as well as their interactions with water molecules and chloride (Cl-) ions. These secondary phases are commonly found in aluminum-based alloys and are initiation points for localized corrosion. Density functional theory (DFT)-based simulations provide insight into the origins of localized (pitting) corrosion processes of aluminum-based alloys. For both phases studied, Cl- ions cause atomic distortions on the surface layers. The nature of the distortions could be a factor to weaken the interlayer bonds in the Al2Cu and Al2CuMg secondary phases, facilitating the corrosion process. Electronic structure calculations revealed not only electron charge transfer from Cl- ions to alloy surface but also electron sharing, suggesting ionic and covalent bonding features, respectively. The S-phase Al2CuMg structure has a more active surface than the θ-phase Al2Cu. We also found a higher tendency of formation of new species, such as Al3+, Al(OH)2+, HCl, AlCl2+, Al(OH)Cl+, and Cl2 on the S-phase Al2CuMg surface. Surface chemical reactions and resultant species present contribute to establishment of local surface chemistry that influences the corrosion behavior of aluminum alloys.

  17. [Establishment of prescription research technology system in Chinese medicine secondary exploitation based on "component structure" theory].

    PubMed

    Cheng, Xu-Dong; Feng, Liang; Gu, Jun-Fei; Zhang, Ming-Hua; Jia, Xiao-Bin

    2014-11-01

    Chinese medicine prescriptions are the wisdom outcomes of traditional Chinese medicine (TCM) clinical treatment determinations which based on differentiation of symptoms and signs. Chinese medicine prescriptions are also the basis of secondary exploitation of TCM. The study on prescription helps to understand the material basis of its efficacy, pharmacological mechanism, which is an important guarantee for the modernization of traditional Chinese medicine. Currently, there is not yet dissertation n the method and technology system of basic research on the prescription of Chinese medicine. This paper focuses on how to build an effective system of prescription research technology. Based on "component structure" theory, a technology system contained four-step method that "prescription analysis, the material basis screening, the material basis of analysis and optimization and verify" was proposed. The technology system analyzes the material basis of the three levels such as Chinese medicine pieces, constituents and the compounds which could respect the overall efficacy of Chinese medicine. Ideas of prescription optimization, remodeling are introduced into the system. The technology system is the combination of the existing research and associates with new techniques and methods, which used for explore the research thought suitable for material basis research and prescription remodeling. The system provides a reference for the secondary development of traditional Chinese medicine, and industrial upgrading.

  18. Order within disorder: Aggrecan chondroitin sulphate-attachment region provides new structural insights into protein sequences classified as disordered

    PubMed Central

    Jowitt, Thomas A; Murdoch, Alan D; Baldock, Clair; Berry, Richard; Day, Joanna M; Hardingham, Timothy E

    2010-01-01

    Structural investigation of proteins containing large stretches of sequences without predicted secondary structure is the focus of much increased attention. Here, we have produced an unglycosylated 30 kDa peptide from the chondroitin sulphate (CS)-attachment region of human aggrecan (CS-peptide), which was predicted to be intrinsically disordered and compared its structure with the adjacent aggrecan G3 domain. Biophysical analyses, including analytical ultracentrifugation, light scattering, and circular dichroism showed that the CS-peptide had an elongated and stiffened conformation in contrast to the globular G3 domain. The results suggested that it contained significant secondary structure, which was sensitive to urea, and we propose that the CS-peptide forms an elongated wormlike molecule based on a dynamic range of energetically equivalent secondary structures stabilized by hydrogen bonds. The dimensions of the structure predicted from small-angle X-ray scattering analysis were compatible with EM images of fully glycosylated aggrecan and a partly glycosylated aggrecan CS2-G3 construct. The semiordered structure identified in CS-peptide was not predicted by common structural algorithms and identified a potentially distinct class of semiordered structure within sequences currently identified as disordered. Sequence comparisons suggested some evidence for comparable structures in proteins encoded by other genes (PRG4, MUC5B, and CBP). The function of these semiordered sequences may serve to spatially position attached folded modules and/or to present polypeptides for modification, such as glycosylation, and to provide templates for the multiple pleiotropic interactions proposed for disordered proteins. Proteins 2010. © 2010 Wiley-Liss, Inc. PMID:20806220

  19. Structural characterization of the α-mating factor prepro-peptide for secretion of recombinant proteins in Pichia pastoris.

    PubMed

    Chahal, Sabreen; Wei, Peter; Moua, Pachai; Park, Sung Pil James; Kwon, Janet; Patel, Arth; Vu, Anthony T; Catolico, Jason A; Tsai, Yu Fang Tina; Shaheen, Nadia; Chu, Tiffany T; Tam, Vivian; Khan, Zill-E-Huma; Joo, Hyun Henry; Xue, Liang; Lin-Cereghino, Joan; Tsai, Jerry W; Lin-Cereghino, Geoff P

    2017-01-20

    The methylotrophic yeast Pichia pastoris has been used extensively for expressing recombinant proteins because it combines the ease of genetic manipulation, the ability to provide complex posttranslational modifications and the capacity for efficient protein secretion. The most successful and commonly used secretion signal leader in Pichia pastoris has been the alpha mating factor (MATα) prepro secretion signal. However, limitations exist as some proteins cannot be secreted efficiently, leading to strategies to enhance secretion efficiency by modifying the secretion signal leader. Based on a Jpred secondary structure prediction and knob-socket modeling of tertiary structure, numerous deletions and duplications of the MATα prepro leader were engineered to evaluate the correlation between predicted secondary structure and the secretion level of the reporters horseradish peroxidase (HRP) and Candida antarctica lipase B. In addition, circular dichroism analyses were completed for the wild type and several mutant pro-peptides to evaluate actual differences in secondary structure. The results lead to a new model of MATα pro-peptide signal leader, which suggests that the N and C-termini of MATα pro-peptide need to be presented in a specific orientation for proper interaction with the cellular secretion machinery and for efficient protein secretion. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Nucleotide sequence and proposed secondary structure of Columnea latent viroid: a natural mosaic of viroid sequences.

    PubMed Central

    Hammond, R; Smith, D R; Diener, T O

    1989-01-01

    The Columnea latent viroid (CLV) occurs latently in certain Columnea erythrophae plants grown commercially. In potato and tomato, CLV causes potato spindle tuber viroid (PSTV)-like symptoms. Its nucleotide sequence and proposed secondary structure reveal that CLV consists of a single-stranded circular RNA of 370 nucleotides which can assume a rod-like structure with extensive base-pairing characteristic of all known viroids. The electrophoretic mobility of circular CLV under nondenaturing conditions suggests a potential tertiary structure. CLV contains extensive sequence homologies to the PSTV group of viroids but contains a central conserved region identical to that of hop stunt viroid (HSV). CLV also shares some biological properties with each of the two types of viroids. Most probably, CLV is the result of intracellular RNA recombination between an HSV-type and one or more PSTV-type viroids replicating in the same plant. Images PMID:2602114

  1. Precise structural analysis of α-helical polypeptide by quantum-chemical calculation related to reciprocal side-chain combination of two L-phenylalanine residues

    NASA Astrophysics Data System (ADS)

    Niimura, Subaru; Kurosu, Hiromichi; Shoji, Akira

    2010-04-01

    To clarify the positive role of side-chain conformation in the stability of protein secondary structure (main-chain conformation), we successfully calculated the optimization structure of a series of well-defined α-helical octadecapeptides composed of two L-phenylalanine (Phe) and 16 L-alanine (Ala) residues, based on the molecular orbital calculation with density functional theory (DFT/B3LYP/6-31G(d)). From the total energy calculation and the precise secondary structural analysis, we found that the conformational stability of the α-helix is closely related to the reciprocal side-chain combinations (such as positional relation and side-chain conformation) of two Phe residues in this system. Furthermore, we demonstrated that the 1H, 13C, 15N and 17O isotropic chemical shifts of each Phe residue depend on the respective side-chain conformations of the Phe residue.

  2. Evaporation-based method for preparing gelatin foams with aligned tubular pore structures.

    PubMed

    Frazier, Shane D; Srubar, Wil V

    2016-05-01

    Gelatin-based foams with aligned tubular pore structures were prepared via liquid-to-gas vaporization of tightly bound water in dehydrated gelatin hydrogels. This study elucidates the mechanism of the foaming process by investigating the secondary (i.e., helical) structure, molecular interactions, and water content of gelatin films before and after foaming using X-ray diffraction, Fourier transform infrared (FTIR) spectroscopy, differential scanning calorimetry and thermogravimetric analysis (TGA), respectively. Experimental data from gelatin samples prepared at various gelatin-to-water concentrations (5-30 wt.%) substantiate that resulting foam structures are similar in pore diameter (approximately 350 μm), shape, and density (0.05-0.22 g/cm(3)) to those fabricated using conventional methods (e.g., freeze-drying). Helical structures were identified in the films but were not evident in the foamed samples after vaporization (~150 °C), suggesting that the primary foaming mechanism is governed by the vaporization of water that is tightly bound in secondary structures (i.e., helices, β-turns, β-sheets) that are present in dehydrated gelatin films. FTIR and TGA data show that the foaming process leads to more disorder and reduced hydrogen bonding to hydroxyl groups in gelatin and that no thermal degradation of gelatin occurs before or after foaming. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Rapid analysis of protein backbone resonance assignments using cryogenic probes, a distributed Linux-based computing architecture, and an integrated set of spectral analysis tools.

    PubMed

    Monleón, Daniel; Colson, Kimberly; Moseley, Hunter N B; Anklin, Clemens; Oswald, Robert; Szyperski, Thomas; Montelione, Gaetano T

    2002-01-01

    Rapid data collection, spectral referencing, processing by time domain deconvolution, peak picking and editing, and assignment of NMR spectra are necessary components of any efficient integrated system for protein NMR structure analysis. We have developed a set of software tools designated AutoProc, AutoPeak, and AutoAssign, which function together with the data processing and peak-picking programs NMRPipe and Sparky, to provide an integrated software system for rapid analysis of protein backbone resonance assignments. In this paper we demonstrate that these tools, together with high-sensitivity triple resonance NMR cryoprobes for data collection and a Linux-based computer cluster architecture, can be combined to provide nearly complete backbone resonance assignments and secondary structures (based on chemical shift data) for a 59-residue protein in less than 30 hours of data collection and processing time. In this optimum case of a small protein providing excellent spectra, extensive backbone resonance assignments could also be obtained using less than 6 hours of data collection and processing time. These results demonstrate the feasibility of high throughput triple resonance NMR for determining resonance assignments and secondary structures of small proteins, and the potential for applying NMR in large scale structural proteomics projects.

  4. [Comparative analysis of clustered regularly interspaced short palindromic repeats (CRISPRs) loci in the genomes of halophilic archaea].

    PubMed

    Zhang, Fan; Zhang, Bing; Xiang, Hua; Hu, Songnian

    2009-11-01

    Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) is a widespread system that provides acquired resistance against phages in bacteria and archaea. Here we aim to genome-widely analyze the CRISPR in extreme halophilic archaea, of which the whole genome sequences are available at present time. We used bioinformatics methods including alignment, conservation analysis, GC content and RNA structure prediction to analyze the CRISPR structures of 7 haloarchaeal genomes. We identified the CRISPR structures in 5 halophilic archaea and revealed a conserved palindromic motif in the flanking regions of these CRISPR structures. In addition, we found that the repeat sequences of large CRISPR structures in halophilic archaea were greatly conserved, and two types of predicted RNA secondary structures derived from the repeat sequences were likely determined by the fourth base of the repeat sequence. Our results support the proposal that the leader sequence may function as recognition site by having palindromic structures in flanking regions, and the stem-loop secondary structure formed by repeat sequences may function in mediating the interaction between foreign genetic elements and CAS-encoded proteins.

  5. Genetic diversity based on 28S rDNA sequences among populations of Culex quinquefasciatus collected at different locations in Tamil Nadu, India.

    PubMed

    Sakthivelkumar, S; Ramaraj, P; Veeramani, V; Janarthanan, S

    2015-09-01

    The basis of the present study was to distinguish the existence of any genetic variability among populations of Culex quinquefasciatus which would be a valuable tool in the management of mosquito control programmes. In the present study, population of Cx. quinquefasciatus collected at different locations in Tamil Nadu were analyzed for their genetic variation based on 28S rDNA D2 region nucleotide sequences. A high degree of genetic polymorphism was detected in the sequences of D2 region of 28S rDNA on the predicted secondary structures in spite of high nucleotide sequence similarity. The findings based on secondary structure using rDNA sequences suggested the existence of a complex genotypic diversity of Cx. quinquefasciatus population collected at different locations of Tamil Nadu, India. This complexity in genetic diversity in a single mosquito population collected at different locations is considered an important issue towards their influence and nature of vector potential of these mosquitoes.

  6. An experimental study of secondary vortex structure in mixing layers

    NASA Technical Reports Server (NTRS)

    Bell, J. H.; Mehta, Rabindra D.

    1990-01-01

    This report covers the first eight months of an experimental research project on the secondary vortex structure in plane mixing layers. The aim of the project is to obtain quantitative data on the behavior of the secondary structure in a turbulent mixing layer at reasonable reynolds numbers (Re(sub delta(sub w)) approx. 50,000). In particular, we hope to resolve the questions of how the scale of the secondary vortex structure changes with the scale of the mixing layer, and whether the structures are fixed in space, or whether they 'meander' in the spanwise direction.

  7. Evaluation of sequence alignments and oligonucleotide probes with respect to three-dimensional structure of ribosomal RNA using ARB software package

    PubMed Central

    Kumar, Yadhu; Westram, Ralf; Kipfer, Peter; Meier, Harald; Ludwig, Wolfgang

    2006-01-01

    Background Availability of high-resolution RNA crystal structures for the 30S and 50S ribosomal subunits and the subsequent validation of comparative secondary structure models have prompted the biologists to use three-dimensional structure of ribosomal RNA (rRNA) for evaluating sequence alignments of rRNA genes. Furthermore, the secondary and tertiary structural features of rRNA are highly useful and successfully employed in designing rRNA targeted oligonucleotide probes intended for in situ hybridization experiments. RNA3D, a program to combine sequence alignment information with three-dimensional structure of rRNA was developed. Integration into ARB software package, which is used extensively by the scientific community for phylogenetic analysis and molecular probe designing, has substantially extended the functionality of ARB software suite with 3D environment. Results Three-dimensional structure of rRNA is visualized in OpenGL 3D environment with the abilities to change the display and overlay information onto the molecule, dynamically. Phylogenetic information derived from the multiple sequence alignments can be overlaid onto the molecule structure in a real time. Superimposition of both statistical and non-statistical sequence associated information onto the rRNA 3D structure can be done using customizable color scheme, which is also applied to a textual sequence alignment for reference. Oligonucleotide probes designed by ARB probe design tools can be mapped onto the 3D structure along with the probe accessibility models for evaluation with respect to secondary and tertiary structural conformations of rRNA. Conclusion Visualization of three-dimensional structure of rRNA in an intuitive display provides the biologists with the greater possibilities to carry out structure based phylogenetic analysis. Coupled with secondary structure models of rRNA, RNA3D program aids in validating the sequence alignments of rRNA genes and evaluating probe target sites. Superimposition of the information derived from the multiple sequence alignment onto the molecule dynamically allows the researchers to observe any sequence inherited characteristics (phylogenetic information) in real-time environment. The extended ARB software package is made freely available for the scientific community via . PMID:16672074

  8. Convergence of an iterative procedure for large-scale static analysis of structural components

    NASA Technical Reports Server (NTRS)

    Austin, F.; Ojalvo, I. U.

    1976-01-01

    The paper proves convergence of an iterative procedure for calculating the deflections of built-up component structures which can be represented as consisting of a dominant, relatively stiff primary structure and a less stiff secondary structure, which may be composed of one or more substructures that are not connected to one another but are all connected to the primary structure. The iteration consists in estimating the deformation of the primary structure in the absence of the secondary structure on the assumption that all mechanical loads are applied directly to the primary structure. The j-th iterate primary structure deflections at the interface are imposed on the secondary structure, and the boundary loads required to produce these deflections are computed. The cycle is completed by applying the interface reaction to the primary structure and computing its updated deflections. It is shown that the mathematical condition for convergence of this procedure is that the maximum eigenvalue of the equation relating primary-structure deflection to imposed secondary-structure deflection be less than unity, which is shown to correspond with the physical requirement that the secondary structure be more flexible at the interface boundary.

  9. Probing the transition state for nucleic acid hybridization using phi-value analysis.

    PubMed

    Kim, Jandi; Shin, Jong-Shik

    2010-04-27

    Genetic regulation by noncoding RNA elements such as microRNA and small interfering RNA (siRNA) involves hybridization of a short single-stranded RNA with a complementary segment in a target mRNA. The physical basis of the hybridization process between the structured nucleic acids is not well understood primarily because of the lack of information about the transition-state structure. Here we use transition-state theory, inspired by phi-value analysis in protein folding studies, to provide quantitative analysis of the relationship between changes in the secondary structure stability and the activation free energy. Time course monitoring of the hybridization reaction was performed under pseudo-steady-state conditions using a single fluorophore. The phi-value analysis indicates that the native secondary structure remains intact in the transition state. The nativelike transition state was confirmed via examination of the salt dependence of the hybridization kinetics, indicating that the number of sodium ions associated with the transition state was not substantially affected by changes in the native secondary structure. These results propose that hybridization between structured nucleic acids undergoes a transition state leading to formation of a nucleation complex and then is followed by sequential displacement of preexisting base pairings involving successive small energy barriers. The proposed mechanism might provide new insight into physical processes during small RNA-mediated gene silencing, which is essential to selection of a target mRNA segment for siRNA design.

  10. RNA design using simulated SHAPE data.

    PubMed

    Lotfi, Mohadeseh; Zare-Mirakabad, Fatemeh; Montaseri, Soheila

    2018-05-03

    It has long been established that in addition to being involved in protein translation, RNA plays essential roles in numerous other cellular processes, including gene regulation and DNA replication. Such roles are known to be dictated by higher-order structures of RNA molecules. It is therefore of prime importance to find an RNA sequence that can fold to acquire a particular function that is desirable for use in pharmaceuticals and basic research. The challenge of finding an RNA sequence for a given structure is known as the RNA design problem. Although there are several algorithms to solve this problem, they mainly consider hard constraints, such as minimum free energy, to evaluate the predicted sequences. Recently, SHAPE data has emerged as a new soft constraint for RNA secondary structure prediction. To take advantage of this new experimental constraint, we report here a new method for accurate design of RNA sequences based on their secondary structures using SHAPE data as pseudo-free energy. We then compare our algorithm with four others: INFO-RNA, ERD, MODENA and RNAifold 2.0. Our algorithm precisely predicts 26 out of 29 new sequences for the structures extracted from the Rfam dataset, while the other four algorithms predict no more than 22 out of 29. The proposed algorithm is comparable to the above algorithms on RNA-SSD datasets, where they can predict up to 33 appropriate sequences for RNA secondary structures out of 34.

  11. The Visit-Data Warehouse: Enabling Novel Secondary Use of Health Information Exchange Data

    PubMed Central

    Fleischman, William; Lowry, Tina; Shapiro, Jason

    2014-01-01

    Introduction/Objectives: Health Information Exchange (HIE) efforts face challenges with data quality and performance, and this becomes especially problematic when data is leveraged for uses beyond primary clinical use. We describe a secondary data infrastructure focusing on patient-encounter, nonclinical data that was built on top of a functioning HIE platform to support novel secondary data uses and prevent potentially negative impacts these uses might have otherwise had on HIE system performance. Background: HIE efforts have generally formed for the primary clinical use of individual clinical providers searching for data on individual patients under their care, but many secondary uses have been proposed and are being piloted to support care management, quality improvement, and public health. Description of the HIE and Base Infrastructure: This infrastructure review describes a module built into the Healthix HIE. Healthix, based in the New York metropolitan region, comprises 107 participating organizations with 29,946 acute-care beds in 383 facilities, and includes more than 9.2 million unique patients. The primary infrastructure is based on the InterSystems proprietary Caché data model distributed across servers in multiple locations, and uses a master patient index to link individual patients’ records across multiple sites. We built a parallel platform, the “visit data warehouse,” of patient encounter data (demographics, date, time, and type of visit) using a relational database model to allow accessibility using standard database tools and flexibility for developing secondary data use cases. These four secondary use cases include the following: (1) tracking encounter-based metrics in a newly established geriatric emergency department (ED), (2) creating a dashboard to provide a visual display as well as a tabular output of near-real-time de-identified encounter data from the data warehouse, (3) tracking frequent ED users as part of a regional-approach to case management intervention, and (4) improving an existing quality improvement program that analyzes patients with return visits to EDs within 72 hours of discharge. Results/Lessons Learned: Setting up a separate, near-real-time, encounters-based relational database to complement an HIE built on a hierarchical database is feasible, and may be necessary to support many secondary uses of HIE data. As of November 2014, the visit-data warehouse (VDW) built by Healthix is undergoing technical validation testing and updates on an hourly basis. We had to address data integrity issues with both nonstandard and missing HL7 messages because of varied HL7 implementation across the HIE. Also, given our HIEs federated structure, some sites expressed concerns regarding data centralization for the VDW. An established and stable HIE governance structure was critical in overcoming this initial reluctance. Conclusions: As secondary use of HIE data becomes more prevalent, it may be increasingly necessary to build separate infrastructure to support secondary use without compromising performance. More research is needed to determine optimal ways of building such infrastructure and validating its use for secondary purposes. PMID:25848595

  12. Metastable ripple phase of fully hydrated dipalmitoylphosphatidylcholine as studied by small angle x-ray scattering

    PubMed Central

    Yao, Haruhiko; Matuoka, Sinzi; Tenchov, Boris; Hatta, Ichiro

    1991-01-01

    Fully hydrated dipalmitoylphosphatidylcholine (DPPC) undergoes liquid crystalline to metastable Pβ, phase transition in cooling. A small angle x-ray scattering study has been performed for obtaining further evidence about the structure of this phase. From a high-resolution observation of x-ray diffraction profiles, a distinct multipeak pattern has become obvious. Among them the (01) reflection in the secondary ripple structure is identified clearly. There are peaks assigned straightforwardly to (10) and (20) reflections in the primary ripple structure and peaks assigned to (10) and (20) reflections in the secondary ripple structure. Therefore the multipeak pattern is due to superposition of the reflections cause by the primary and secondary ripple structures. The lattice parameters are estimated as follows: for the primary ripple structure a = 7.09 nm, b = 13.64 nm, and γ = 95°, and for the secondary ripple structure a = 8.2 nm, b = 26.6 nm, and γ = 90°. The lattice parameters thus obtained for the secondary ripple structure are not conclusive, however. The hydrocarbon chains in the primary ripple structure have been reported as being tilted against the bilayer plane and, on the other hand, the hydrocarbon chains in the secondary ripple structure are likely to be perpendicular to the bilayer plane. This fact seems to be related to a sequential mechanism of phase transitions. On heating from the Lβ, phase where the hydrocarbon chains are tilted the primary ripple structure having tilted hydrocarbon chains takes place and on cooling from the Lα phase where the hydrocarbon chains are not tilted the secondary ripple structure with untilted chains tends to be stabilized. It appears that the truly metastable ripple phase is expressed by the second ripple structure although in the course of the actual cooling transition both the secondary and primary ripple structures form and coexist. PMID:19431787

  13. Stem-Loop RNA Hairpins in Giant Viruses: Invading rRNA-Like Repeats and a Template Free RNA

    PubMed Central

    Seligmann, Hervé; Raoult, Didier

    2018-01-01

    We examine the hypothesis that de novo template-free RNAs still form spontaneously, as they did at the origins of life, invade modern genomes, contribute new genetic material. Previously, analyses of RNA secondary structures suggested that some RNAs resembling ancestral (t)RNAs formed recently de novo, other parasitic sequences cluster with rRNAs. Here positive control analyses of additional RNA secondary structures confirm ancestral and de novo statuses of RNA grouped according to secondary structure. Viroids with branched stems resemble de novo RNAs, rod-shaped viroids resemble rRNA secondary structures, independently of GC contents. 5′ UTR leading regions of West Nile and Dengue flavivirid viruses resemble de novo and rRNA structures, respectively. An RNA homologous with Megavirus, Dengue and West Nile genomes, copperhead snake microsatellites and levant cotton repeats, not templated by Mimivirus' genome, persists throughout Mimivirus' infection. Its secondary structure clusters with candidate de novo RNAs. The saltatory phyletic distribution and secondary structure of Mimivirus' peculiar RNA suggest occasional template-free polymerization of this sequence, rather than noncanonical transcriptions (swinger polymerization, posttranscriptional editing). PMID:29449833

  14. Long non-coding RNA discovery across the genus anopheles reveals conserved secondary structures within and beyond the Gambiae complex.

    PubMed

    Jenkins, Adam M; Waterhouse, Robert M; Muskavitch, Marc A T

    2015-04-23

    Long non-coding RNAs (lncRNAs) have been defined as mRNA-like transcripts longer than 200 nucleotides that lack significant protein-coding potential, and many of them constitute scaffolds for ribonucleoprotein complexes with critical roles in epigenetic regulation. Various lncRNAs have been implicated in the modulation of chromatin structure, transcriptional and post-transcriptional gene regulation, and regulation of genomic stability in mammals, Caenorhabditis elegans, and Drosophila melanogaster. The purpose of this study is to identify the lncRNA landscape in the malaria vector An. gambiae and assess the evolutionary conservation of lncRNAs and their secondary structures across the Anopheles genus. Using deep RNA sequencing of multiple Anopheles gambiae life stages, we have identified 2,949 lncRNAs and more than 300 previously unannotated putative protein-coding genes. The lncRNAs exhibit differential expression profiles across life stages and adult genders. We find that across the genus Anopheles, lncRNAs display much lower sequence conservation than protein-coding genes. Additionally, we find that lncRNA secondary structure is highly conserved within the Gambiae complex, but diverges rapidly across the rest of the genus Anopheles. This study offers one of the first lncRNA secondary structure analyses in vector insects. Our description of lncRNAs in An. gambiae offers the most comprehensive genome-wide insights to date into lncRNAs in this vector mosquito, and defines a set of potential targets for the development of vector-based interventions that may further curb the human malaria burden in disease-endemic countries.

  15. Diversity of Secondary Structure in Catalytic Peptides with β-Turn-Biased Sequences

    PubMed Central

    2016-01-01

    X-ray crystallography has been applied to the structural analysis of a series of tetrapeptides that were previously assessed for catalytic activity in an atroposelective bromination reaction. Common to the series is a central Pro-Xaa sequence, where Pro is either l- or d-proline, which was chosen to favor nucleation of canonical β-turn secondary structures. Crystallographic analysis of 35 different peptide sequences revealed a range of conformational states. The observed differences appear not only in cases where the Pro-Xaa loop-region is altered, but also when seemingly subtle alterations to the flanking residues are introduced. In many instances, distinct conformers of the same sequence were observed, either as symmetry-independent molecules within the same unit cell or as polymorphs. Computational studies using DFT provided additional insight into the analysis of solid-state structural features. Select X-ray crystal structures were compared to the corresponding solution structures derived from measured proton chemical shifts, 3J-values, and 1H–1H-NOESY contacts. These findings imply that the conformational space available to simple peptide-based catalysts is more diverse than precedent might suggest. The direct observation of multiple ground state conformations for peptides of this family, as well as the dynamic processes associated with conformational equilibria, underscore not only the challenge of designing peptide-based catalysts, but also the difficulty in predicting their accessible transition states. These findings implicate the advantages of low-barrier interconversions between conformations of peptide-based catalysts for multistep, enantioselective reactions. PMID:28029251

  16. FRAMEWORK FOR STRUCTURAL ONLINE HEALTH MONITORING OF AGING AND DEGRADATION OF SECONDARY PIPING SYSTEMS DUE TO SOME ASPECTS OF EROSION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gribok, Andrei V.; Agarwal, Vivek

    This paper describes the current state of research related to critical aspects of erosion and selected aspects of degradation of secondary components in nuclear power plants (NPPs). The paper also proposes a framework for online health monitoring of aging and degradation of secondary components. The framework consists of an integrated multi-sensor modality system, which can be used to monitor different piping configurations under different degradation conditions. The report analyses the currently known degradation mechanisms and available predictive models. Based on this analysis, the structural health monitoring framework is proposed. The Light Water Reactor Sustainability Program began to evaluate technologies thatmore » could be used to perform online monitoring of piping and other secondary system structural components in commercial NPPs. These online monitoring systems have the potential to identify when a more detailed inspection is needed using real time measurements, rather than at a pre-determined inspection interval. This transition to condition-based, risk-informed automated maintenance will contribute to a significant reduction of operations and maintenance costs that account for the majority of nuclear power generation costs. Furthermore, of the operations and maintenance costs in U.S. plants, approximately 80% are labor costs. To address the issue of rising operating costs and economic viability, in 2017, companies that operate the national nuclear energy fleet started the Delivering the Nuclear Promise Initiative, which is a 3 year program aimed at maintaining operational focus, increasing value, and improving efficiency. There is unanimous agreement between industry experts and academic researchers that identifying and prioritizing inspection locations in secondary piping systems (for example, in raw water piping or diesel piping) would eliminate many excessive in-service inspections. The proposed structural health monitoring framework takes aim at answering this challenge by combining long range guided wave technologies with other monitoring techniques, which can significantly increase the inspection length and pinpoint the locations that degraded the most. More widely, the report suggests research efforts aimed at developing, validating, and deploying online corrosion monitoring techniques for complex geometries, which are pervasive in NPPs.« less

  17. Secondary ligand-directed assembly of Co(II) coordination polymers based on a pyridine carboxylate ligand

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cao, Ke-Li; Zhang, Yi-Ping; Cai, Yi-Ni

    2014-07-01

    To investigate the influence of hydrogen bonds and secondary ligands on the structures and properties of the resulting frameworks, five new Co(II) compounds have been synthesized by the reactions of Co(II) salts and 3,5-bis(pyridin-4-ylmethoxy)benzoic acid (HL) with four rationally selected dicarboxylic acid ligands. Without secondary ligand, we got one compound [CoL{sub 2}(H{sub 2}O){sub 2}]{sub n}·2nH{sub 2}O (1), which possesses a 1D chain structure. In the presence of ancillary ligands, namely, 1,3-adamantanedicarboxylic acid (H{sub 2}adbc), terephthalic acid (H{sub 2}tpa), thiophene-2,5-dicarboxylic acid (H{sub 2}tdc) and 1,4-benzenedithioacetic acid (H{sub 2}bdtc), four 3D structures [Co{sub 2}L{sub 2}(adbc)]{sub n}·nH{sub 2}O (2), [Co{sub 2}L{sub 2}(tpa)]{sub n}more » (3), [Co{sub 2}L{sub 2}(tdc)]{sub n} (4), [Co{sub 2}L{sub 2}(bdtc)(H{sub 2}O)]{sub n} (5) were obtained, respectively. It can be observed from the architectures of 1–5 that hydrogen bonds and secondary ligands both have great effects on the spatial connective fashions, resulting in the formation of various dimensional compounds. The XRPD, TGA data of title polymers and the magnetic properties for 2 and 5 have also been investigated. - Graphical abstract: The structural differences show that the ancillary ligands have great effects on the spatial connective fashions, resulting in the formation of various dimensional compounds. - Highlights: • Five new Co(II) coordination polymers have been synthesized by solvothermal reactions based on 3,5-bis(pyridin-4-ylmethoxy)benzoic acid (HL). • The long-flexible ligand (HL) is a good candidate to produce interpenetrating architectures. • The secondary dicarboxylic acid ligands play important roles in the spatial connective fashions and the formation of various dimensional compounds. • The magnetism studies show that both 2 and 5 exhibit antiferromagnetic interactions.« less

  18. Innovation and effectiveness: changing the scope of school nurses in New Zealand secondary schools.

    PubMed

    Kool, Bridget; Thomas, David; Moore, Dennis; Anderson, Angelika; Bennetts, Phillipa; Earp, Karlynne; Dawson, Dianne; Treadwell, Nicky

    2008-04-01

    To describe the changing role of school nurses in eight New Zealand (NZ) secondary schools from low socio-economic areas with high Pacific Island and Māori rolls. An evaluation of a pilot addressing under-achievement in low-decile schools in Auckland, NZ (2002-05). Annual semi-structured school nurse interviews and analysis of routinely collected school health service data were undertaken. Two patterns of school nurse operation were identified: an embracing pattern, where nurses embraced the concept of providing school-based health services; and a Band-Aid pattern, where only the basics for student health care were provided by school nurses. School nurses with an embracing pattern of practice provided more effective school-based health services. School health services are better served by nurses with structured postgraduate education that fosters the development of a nurse-practitioner role. Co-ordination of school nurses either at a regional or national level is required.

  19. Hepatitis Delta Antigen Requires a Flexible Quasi-Double-Stranded RNA Structure To Bind and Condense Hepatitis Delta Virus RNA in a Ribonucleoprotein Complex

    PubMed Central

    Griffin, Brittany L.; Chasovskikh, Sergey; Dritschilo, Anatoly

    2014-01-01

    ABSTRACT The circular genome and antigenome RNAs of hepatitis delta virus (HDV) form characteristic unbranched, quasi-double-stranded RNA secondary structures in which short double-stranded helical segments are interspersed with internal loops and bulges. The ribonucleoprotein complexes (RNPs) formed by these RNAs with the virus-encoded protein hepatitis delta antigen (HDAg) perform essential roles in the viral life cycle, including viral replication and virion formation. Little is understood about the formation and structure of these complexes and how they function in these key processes. Here, the specific RNA features required for HDAg binding and the topology of the complexes formed were investigated. Selective 2′OH acylation analyzed by primer extension (SHAPE) applied to free and HDAg-bound HDV RNAs indicated that the characteristic secondary structure of the RNA is preserved when bound to HDAg. Notably, the analysis indicated that predicted unpaired positions in the RNA remained dynamic in the RNP. Analysis of the in vitro binding activity of RNAs in which internal loops and bulges were mutated and of synthetically designed RNAs demonstrated that the distinctive secondary structure, not the primary RNA sequence, is the major determinant of HDAg RNA binding specificity. Atomic force microscopy analysis of RNPs formed in vitro revealed complexes in which the HDV RNA is substantially condensed by bending or wrapping. Our results support a model in which the internal loops and bulges in HDV RNA contribute flexibility to the quasi-double-stranded structure that allows RNA bending and condensing by HDAg. IMPORTANCE RNA-protein complexes (RNPs) formed by the hepatitis delta virus RNAs and protein, HDAg, perform critical roles in virus replication. Neither the structures of these RNPs nor the RNA features required to form them have been characterized. HDV RNA is unusual in that it forms an unbranched quasi-double-stranded structure in which short base-paired segments are interspersed with internal loops and bulges. We analyzed the role of the HDV RNA sequence and secondary structure in the formation of a minimal RNP and visualized the structure of this RNP using atomic force microscopy. Our results indicate that HDAg does not recognize the primary sequence of the RNA; rather, the principle contribution of unpaired bases in HDV RNA to HDAg binding is to allow flexibility in the unbranched quasi-double-stranded RNA structure. Visualization of RNPs by atomic force microscopy indicated that the RNA is significantly bent or condensed in the complex. PMID:24741096

  20. Study on the Effect of Secondary Banded Structure on the Fatigue Property of Non-Quenched and Tempered Micro Alloyed Steel

    NASA Astrophysics Data System (ADS)

    Yajie, Cheng; Qingliang, Liao; Yue, Zhang

    Due to composition segregation and cooling speed, streamline or banded structure were often obtained in the thermal forming parts along the direction of parts forming. Generally speaking, banded structure doesn't decrease the longitudinal mechanical properties, so the secondary banded structure can't get enough attention. The effect of secondary banded structure on the fatigue properties of micro alloyed DG20Mn and 35CrMo steel was investigated using the axial tensile fatigue test of stress ratio of 0.1. The result shows that secondary banded structure was obtained in the center of the steel parts, because of the composition segregation and the lower cooling rate in center part of steel. Secondary banded structure has no significant effect on axial tensile properties of both DG20Mn and 35CrMo, but decreases the axial tensile fatigue performance of DG20Mn steel. This study suggests that under the high cyclic tensile stress, multi-source damage cracks in steel initiated by large strain of pearlite of secondary banded structure, which is larger than damage strain, is the major factor of the decrease of fatigue life of steel.

  1. SCPRED: accurate prediction of protein structural class for sequences of twilight-zone similarity with predicting sequences.

    PubMed

    Kurgan, Lukasz; Cios, Krzysztof; Chen, Ke

    2008-05-01

    Protein structure prediction methods provide accurate results when a homologous protein is predicted, while poorer predictions are obtained in the absence of homologous templates. However, some protein chains that share twilight-zone pairwise identity can form similar folds and thus determining structural similarity without the sequence similarity would be desirable for the structure prediction. The folding type of a protein or its domain is defined as the structural class. Current structural class prediction methods that predict the four structural classes defined in SCOP provide up to 63% accuracy for the datasets in which sequence identity of any pair of sequences belongs to the twilight-zone. We propose SCPRED method that improves prediction accuracy for sequences that share twilight-zone pairwise similarity with sequences used for the prediction. SCPRED uses a support vector machine classifier that takes several custom-designed features as its input to predict the structural classes. Based on extensive design that considers over 2300 index-, composition- and physicochemical properties-based features along with features based on the predicted secondary structure and content, the classifier's input includes 8 features based on information extracted from the secondary structure predicted with PSI-PRED and one feature computed from the sequence. Tests performed with datasets of 1673 protein chains, in which any pair of sequences shares twilight-zone similarity, show that SCPRED obtains 80.3% accuracy when predicting the four SCOP-defined structural classes, which is superior when compared with over a dozen recent competing methods that are based on support vector machine, logistic regression, and ensemble of classifiers predictors. The SCPRED can accurately find similar structures for sequences that share low identity with sequence used for the prediction. The high predictive accuracy achieved by SCPRED is attributed to the design of the features, which are capable of separating the structural classes in spite of their low dimensionality. We also demonstrate that the SCPRED's predictions can be successfully used as a post-processing filter to improve performance of modern fold classification methods.

  2. SCPRED: Accurate prediction of protein structural class for sequences of twilight-zone similarity with predicting sequences

    PubMed Central

    Kurgan, Lukasz; Cios, Krzysztof; Chen, Ke

    2008-01-01

    Background Protein structure prediction methods provide accurate results when a homologous protein is predicted, while poorer predictions are obtained in the absence of homologous templates. However, some protein chains that share twilight-zone pairwise identity can form similar folds and thus determining structural similarity without the sequence similarity would be desirable for the structure prediction. The folding type of a protein or its domain is defined as the structural class. Current structural class prediction methods that predict the four structural classes defined in SCOP provide up to 63% accuracy for the datasets in which sequence identity of any pair of sequences belongs to the twilight-zone. We propose SCPRED method that improves prediction accuracy for sequences that share twilight-zone pairwise similarity with sequences used for the prediction. Results SCPRED uses a support vector machine classifier that takes several custom-designed features as its input to predict the structural classes. Based on extensive design that considers over 2300 index-, composition- and physicochemical properties-based features along with features based on the predicted secondary structure and content, the classifier's input includes 8 features based on information extracted from the secondary structure predicted with PSI-PRED and one feature computed from the sequence. Tests performed with datasets of 1673 protein chains, in which any pair of sequences shares twilight-zone similarity, show that SCPRED obtains 80.3% accuracy when predicting the four SCOP-defined structural classes, which is superior when compared with over a dozen recent competing methods that are based on support vector machine, logistic regression, and ensemble of classifiers predictors. Conclusion The SCPRED can accurately find similar structures for sequences that share low identity with sequence used for the prediction. The high predictive accuracy achieved by SCPRED is attributed to the design of the features, which are capable of separating the structural classes in spite of their low dimensionality. We also demonstrate that the SCPRED's predictions can be successfully used as a post-processing filter to improve performance of modern fold classification methods. PMID:18452616

  3. Riboswitches: emerging themes in RNA structure and function.

    PubMed

    Montange, Rebecca K; Batey, Robert T

    2008-01-01

    Riboswitches are RNAs capable of binding cellular metabolites using a diverse array of secondary and tertiary structures to modulate gene expression. The recent determination of the three-dimensional structures of parts of six different riboswitches illuminates common features that allow riboswitches to be grouped into one of two types. Type I riboswitches, as exemplified by the purine riboswitch, are characterized by a single, localized binding pocket supported by a largely pre-established global fold. This arrangement limits ligand-induced conformational changes in the RNA to a small region. In contrast, Type II riboswitches, such as the thiamine pyrophosphate riboswitch, contain binding pockets split into at least two spatially distinct sites. As a result, binding induces both local changes to the binding pocket and global architecture. Similar organizational themes are found in other noncoding RNAs, making it possible to begin to build a hierarchical classification of RNA structure based on the spatial organization of their active sites and associated secondary structural elements.

  4. Competency-Based Preservice Construction Trades Curriculum, Phase II. Final Report.

    ERIC Educational Resources Information Center

    Nelms, Howard F.

    A two-phase curriculum project was undertaken in Illinois to develop, test, and implement a two-year competency-based model for the education of secondary school building construction teachers in the area of residential structures. During the first contract period, skill and knowledge competencies were identified and validated for thirteen units…

  5. Whose Model Student? Learner-Centered Discourse and the Post-Secondary Privatization Agenda

    ERIC Educational Resources Information Center

    Hoben, John

    2016-01-01

    Using discourse analysis, the author identifies contradictions in privatization discourse in order to highlight how state-based educational reform has used a normative language of student interests to fundamentally redefine the nature of the university's mission and its faculty based governance structures. The author proposes a counter-discourse…

  6. HBNG: Graph theory based visualization of hydrogen bond networks in protein structures.

    PubMed

    Tiwari, Abhishek; Tiwari, Vivek

    2007-07-09

    HBNG is a graph theory based tool for visualization of hydrogen bond network in 2D. Digraphs generated by HBNG facilitate visualization of cooperativity and anticooperativity chains and rings in protein structures. HBNG takes hydrogen bonds list files (output from HBAT, HBEXPLORE, HBPLUS and STRIDE) as input and generates a DOT language script and constructs digraphs using freeware AT and T Graphviz tool. HBNG is useful in the enumeration of favorable topologies of hydrogen bond networks in protein structures and determining the effect of cooperativity and anticooperativity on protein stability and folding. HBNG can be applied to protein structure comparison and in the identification of secondary structural regions in protein structures. Program is available from the authors for non-commercial purposes.

  7. RNA 3D Modules in Genome-Wide Predictions of RNA 2D Structure

    PubMed Central

    Theis, Corinna; Zirbel, Craig L.; zu Siederdissen, Christian Höner; Anthon, Christian; Hofacker, Ivo L.; Nielsen, Henrik; Gorodkin, Jan

    2015-01-01

    Recent experimental and computational progress has revealed a large potential for RNA structure in the genome. This has been driven by computational strategies that exploit multiple genomes of related organisms to identify common sequences and secondary structures. However, these computational approaches have two main challenges: they are computationally expensive and they have a relatively high false discovery rate (FDR). Simultaneously, RNA 3D structure analysis has revealed modules composed of non-canonical base pairs which occur in non-homologous positions, apparently by independent evolution. These modules can, for example, occur inside structural elements which in RNA 2D predictions appear as internal loops. Hence one question is if the use of such RNA 3D information can improve the prediction accuracy of RNA secondary structure at a genome-wide level. Here, we use RNAz in combination with 3D module prediction tools and apply them on a 13-way vertebrate sequence-based alignment. We find that RNA 3D modules predicted by metaRNAmodules and JAR3D are significantly enriched in the screened windows compared to their shuffled counterparts. The initially estimated FDR of 47.0% is lowered to below 25% when certain 3D module predictions are present in the window of the 2D prediction. We discuss the implications and prospects for further development of computational strategies for detection of RNA 2D structure in genomic sequence. PMID:26509713

  8. DNA Secondary Structure at Chromosomal Fragile Sites in Human Disease

    PubMed Central

    Thys, Ryan G; Lehman, Christine E; Pierce, Levi C. T; Wang, Yuh-Hwa

    2015-01-01

    DNA has the ability to form a variety of secondary structures that can interfere with normal cellular processes, and many of these structures have been associated with neurological diseases and cancer. Secondary structure-forming sequences are often found at chromosomal fragile sites, which are hotspots for sister chromatid exchange, chromosomal translocations, and deletions. Structures formed at fragile sites can lead to instability by disrupting normal cellular processes such as DNA replication and transcription. The instability caused by disruption of replication and transcription can lead to DNA breakage, resulting in gene rearrangements and deletions that cause disease. In this review, we discuss the role of DNA secondary structure at fragile sites in human disease. PMID:25937814

  9. EC-QCL mid-IR transmission spectroscopy for monitoring dynamic changes of protein secondary structure in aqueous solution on the example of β-aggregation in alcohol-denaturated α-chymotrypsin.

    PubMed

    Alcaráz, Mirta R; Schwaighofer, Andreas; Goicoechea, Héctor; Lendl, Bernhard

    2016-06-01

    In this work, a novel EC-QCL-based setup for mid-IR transmission measurements in the amide I region is introduced for monitoring dynamic changes in secondary structure of proteins. For this purpose, α-chymotrypsin (aCT) acts as a model protein, which gradually forms intermolecular β-sheet aggregates after adopting a non-native α-helical structure induced by exposure to 50 % TFE. In order to showcase the versatility of the presented setup, the effects of varying pH values and protein concentration on the rate of β-aggregation were studied. The influence of the pH value on the initial reaction rate was studied in the range of pH 5.8-8.2. Results indicate an increased aggregation rate at elevated pH values. Furthermore, the widely accessible concentration range of the laser-based IR transmission setup was utilized to investigate β-aggregation across a concentration range of 5-60 mg mL(-1). For concentrations lower than 20 mg mL(-1), the aggregation rate appears to be independent of concentration. At higher values, the reaction rate increases linearly with protein concentration. Extended MCR-ALS was employed to obtain pure spectral and concentration profiles of the temporal transition between α-helices and intermolecular β-sheets. Comparison of the global solutions obtained by the modelled data with results acquired by the laser-based IR transmission setup at different conditions shows excellent agreement. This demonstrates the potential and versatility of the EC-QCL-based IR transmission setup to monitor dynamic changes of protein secondary structure in aqueous solution at varying conditions and across a wide concentration range. Graphical abstract EC-QCL IR spectroscopy for monitoring protein conformation change.

  10. Transmembrane Polyproline Helix.

    PubMed

    Kubyshkin, Vladimir; Grage, Stephan L; Bürck, Jochen; Ulrich, Anne S; Budisa, Nediljko

    2018-05-03

    The third most abundant polypeptide conformation in nature, the polyproline-II helix, is a polar, extended secondary structure with a local organization stabilized by intercarbonyl interactions within the peptide chain. Here we design a hydrophobic polyproline-II helical peptide based on an oligomeric octahydroindole-2-carboxylic acid scaffold and demonstrate its transmembrane alignment in model lipid bilayers by means of solid-state 19 F NMR. As result, we provide a first example of a purely artificial transmembrane peptide with a structural organization that is not based on hydrogen-bonding.

  11. SFESA: a web server for pairwise alignment refinement by secondary structure shifts.

    PubMed

    Tong, Jing; Pei, Jimin; Grishin, Nick V

    2015-09-03

    Protein sequence alignment is essential for a variety of tasks such as homology modeling and active site prediction. Alignment errors remain the main cause of low-quality structure models. A bioinformatics tool to refine alignments is needed to make protein alignments more accurate. We developed the SFESA web server to refine pairwise protein sequence alignments. Compared to the previous version of SFESA, which required a set of 3D coordinates for a protein, the new server will search a sequence database for the closest homolog with an available 3D structure to be used as a template. For each alignment block defined by secondary structure elements in the template, SFESA evaluates alignment variants generated by local shifts and selects the best-scoring alignment variant. A scoring function that combines the sequence score of profile-profile comparison and the structure score of template-derived contact energy is used for evaluation of alignments. PROMALS pairwise alignments refined by SFESA are more accurate than those produced by current advanced alignment methods such as HHpred and CNFpred. In addition, SFESA also improves alignments generated by other software. SFESA is a web-based tool for alignment refinement, designed for researchers to compute, refine, and evaluate pairwise alignments with a combined sequence and structure scoring of alignment blocks. To our knowledge, the SFESA web server is the only tool that refines alignments by evaluating local shifts of secondary structure elements. The SFESA web server is available at http://prodata.swmed.edu/sfesa.

  12. Data-directed RNA secondary structure prediction using probabilistic modeling

    PubMed Central

    Deng, Fei; Ledda, Mirko; Vaziri, Sana; Aviran, Sharon

    2016-01-01

    Structure dictates the function of many RNAs, but secondary RNA structure analysis is either labor intensive and costly or relies on computational predictions that are often inaccurate. These limitations are alleviated by integration of structure probing data into prediction algorithms. However, existing algorithms are optimized for a specific type of probing data. Recently, new chemistries combined with advances in sequencing have facilitated structure probing at unprecedented scale and sensitivity. These novel technologies and anticipated wealth of data highlight a need for algorithms that readily accommodate more complex and diverse input sources. We implemented and investigated a recently outlined probabilistic framework for RNA secondary structure prediction and extended it to accommodate further refinement of structural information. This framework utilizes direct likelihood-based calculations of pseudo-energy terms per considered structural context and can readily accommodate diverse data types and complex data dependencies. We use real data in conjunction with simulations to evaluate performances of several implementations and to show that proper integration of structural contexts can lead to improvements. Our tests also reveal discrepancies between real data and simulations, which we show can be alleviated by refined modeling. We then propose statistical preprocessing approaches to standardize data interpretation and integration into such a generic framework. We further systematically quantify the information content of data subsets, demonstrating that high reactivities are major drivers of SHAPE-directed predictions and that better understanding of less informative reactivities is key to further improvements. Finally, we provide evidence for the adaptive capability of our framework using mock probe simulations. PMID:27251549

  13. Indel PDB: a database of structural insertions and deletions derived from sequence alignments of closely related proteins.

    PubMed

    Hsing, Michael; Cherkasov, Artem

    2008-06-25

    Insertions and deletions (indels) represent a common type of sequence variations, which are less studied and pose many important biological questions. Recent research has shown that the presence of sizable indels in protein sequences may be indicative of protein essentiality and their role in protein interaction networks. Examples of utilization of indels for structure-based drug design have also been recently demonstrated. Nonetheless many structural and functional characteristics of indels remain less researched or unknown. We have created a web-based resource, Indel PDB, representing a structural database of insertions/deletions identified from the sequence alignments of highly similar proteins found in the Protein Data Bank (PDB). Indel PDB utilized large amounts of available structural information to characterize 1-, 2- and 3-dimensional features of indel sites. Indel PDB contains 117,266 non-redundant indel sites extracted from 11,294 indel-containing proteins. Unlike loop databases, Indel PDB features more indel sequences with secondary structures including alpha-helices and beta-sheets in addition to loops. The insertion fragments have been characterized by their sequences, lengths, locations, secondary structure composition, solvent accessibility, protein domain association and three dimensional structures. By utilizing the data available in Indel PDB, we have studied and presented here several sequence and structural features of indels. We anticipate that Indel PDB will not only enable future functional studies of indels, but will also assist protein modeling efforts and identification of indel-directed drug binding sites.

  14. Examining the dimensional structure models of secondary traumatic stress based on DSM-5 symptoms.

    PubMed

    Mordeno, Imelu G; Go, Geraldine P; Yangson-Serondo, April

    2017-02-01

    Latent factor structure of Secondary Traumatic Stress (STS) has been examined using Diagnostic Statistic Manual-IV (DSM-IV)'s Posttraumatic Stress Disorder (PTSD) nomenclature. With the advent of Diagnostic Statistic Manual-5 (DSM-5), there is an impending need to reexamine STS using DSM-5 symptoms in light of the most updated PTSD models in the literature. The study investigated and determined the best fitted PTSD models using DSM-5 PTSD criteria symptoms. Confirmatory factor analysis (CFA) was conducted to examine model fit using the Secondary Traumatic Stress Scale in 241 registered and practicing Filipino nurses (166 females and 75 males) who worked in the Philippines and gave direct nursing services to patients. Based on multiple fit indices, the results showed the 7-factor hybrid model, comprising of intrusion, avoidance, negative affect, anhedonia, externalizing behavior, anxious arousal, and dysphoric arousal factors has excellent fit to STS. This model asserts that: (1) hyperarousal criterion needs to be divided into anxious and dysphoric arousal factors; (2) symptoms characterizing negative and positive affect need to be separated to two separate factors, and; (3) a new factor would categorize externalized, self-initiated impulse and control-deficit behaviors. Comparison of nested and non-nested models showed Hybrid model to have superior fit over other models. The specificity of the symptom structure of STS based on DSM-5 PTSD criteria suggests having more specific interventions addressing the more elaborate symptom-groupings that would alleviate the condition of nurses exposed to STS on a daily basis. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. The Effects of Using the Transition Planning Inventory and a Structured IEP Process as a Transition Planning Intervention on IEP Meeting Outcomes

    ERIC Educational Resources Information Center

    Rehfeldt, Jason D.; Clark, Gary M.; Lee, Steven W.

    2012-01-01

    This study examined two areas. First, the authors looked at whether secondary individualized education program (IEP) teams who used the "Transition Planning Inventory" (TPI) in conjunction with a structured IEP meeting that based discussions and decisions on TPI data as a planning intervention generated significantly more…

  16. Recent Development in Spectroscopic and Chemical Characterization of Cellulose

    DTIC Science & Technology

    2005-01-01

    specific to the reducing end groups of the polysaccharides , confirmed the parallel alignment of molecular chains within the microfibrils in native...they include primary, secondary, and tertiary structures. And indeed, crystallographic studies of the monosaccharides and of related structures...Two approaches were adopted for this purpose. The first was based on examining the Raman spectra of polysaccharide polymers and oligomers that

  17. Simulation Study on Fit Indexes in CFA Based on Data with Slightly Distorted Simple Structure

    ERIC Educational Resources Information Center

    Beauducel, Andre; Wittmann, Werner W.

    2005-01-01

    Fit indexes were compared with respect to a specific type of model misspecification. Simple structure was violated with some secondary loadings that were present in the true models that were not specified in the estimated models. The c2 test, Comparative Fit Index, Goodness-of-Fit Index, Incremental Fit Index, Nonnormed Fit Index, root mean…

  18. Low pressure-induced secondary structure transitions of regenerated silk fibroin in its wet film studied by time-resolved infrared spectroscopy.

    PubMed

    He, Zhipeng; Liu, Zhao; Zhou, Xiaofeng; Huang, He

    2018-06-01

    The secondary structure transitions of regenerated silk fibroin (RSF) under different external perturbations have been studied extensively, except for pressure. In this work, time-resolved infrared spectroscopy with the attenuated total reflectance (ATR) accessory was employed to follow the secondary structure transitions of RSF in its wet film under low pressure. It has been found that pressure alone is favorable only to the formation of β-sheet structure. Under constant pressure there is an optimum amount of D 2 O in the wet film (D 2 O : film = 2:1) so as to provide the optimal condition for the reorganization of the secondary structure and to have the largest formation of β-sheet structure. Under constant amount of D 2 O and constant pressure, the secondary structure transitions of RSF in its wet film can be divided into three stages along with time. In the first stage, random coil, α-helix, and β-turn were quickly transformed into β-sheet. In the second stage, random coil and β-turn were relatively slowly transformed into β-sheet and α-helix, and the content of α-helix was recovered to the value prior to the application of pressure. In the third and final stage, no measurable changes can be found for each secondary structure. This study may be helpful to understand the secondary structure changes of silk fibroin in silkworm's glands under hydrostatic pressure. © 2018 Wiley Periodicals, Inc.

  19. Super Secondary Structure Consisting of a Polyproline II Helix and a β-Turn in Leucine Rich Repeats in Bacterial Type III Secretion System Effectors.

    PubMed

    Batkhishig, Dashdavaa; Bilguun, Khurelbaatar; Enkhbayar, Purevjav; Miyashita, Hiroki; Kretsinger, Robert H; Matsushima, Norio

    2018-06-01

    Leucine rich repeats (LRRs) are present in over 100,000 proteins from viruses to eukaryotes. The LRRs are 20-30 residues long and occur in tandem. LRRs form parallel stacks of short β-strands and then assume a super helical arrangement called a solenoid structure. Individual LRRs are separated into highly conserved segment (HCS) with the consensus of LxxLxLxxNxL and variable segment (VS). Eight classes have been recognized. Bacterial LRRs are short and characterized by two prolines in the VS; the consensus is xxLPxLPxx with Nine residues (N-subtype) and xxLPxxLPxx with Ten residues (T-subtype). Bacterial LRRs are contained in type III secretion system effectors such as YopM, IpaH3/9.8, SspH1/2, and SlrP from bacteria. Some LRRs in decorin, fribromodulin, TLR8/9, and FLRT2/3 from vertebrate also contain the motifs. In order to understand structural features of bacterial LRRs, we performed both secondary structures assignments using four programs-DSSP-PPII, PROSS, SEGNO, and XTLSSTR-and HELFIT analyses (calculating helix axis, pitch, radius, residues per turn, and handedness), based on the atomic coordinates of their crystal structures. The N-subtype VS adopts a left handed polyproline II helix (PPII) with four, five or six residues and a type I β-turn at the C-terminal side. Thus, the N-subtype is characterized by a super secondary structure consisting of a PPII and a β-turn. In contrast, the T-subtype VS prefers two separate PPIIs with two or three and two residues. The HELFIT analysis indicates that the type I β-turn is a right handed helix. The HELFIT analysis determines three unit vectors of the helix axes of PPII (P), β-turn (B), and LRR domain (A). Three structural parameters using these three helix axes are suggested to characterize the super secondary structure and the LRR domain.

  20. Generation of human secondary cardiospheres as a potent cell processing strategy for cell-based cardiac repair.

    PubMed

    Cho, Hyun-Jai; Lee, Ho-Jae; Chung, Yeon-Ju; Kim, Ju-Young; Cho, Hyun-Ju; Yang, Han-Mo; Kwon, Yoo-Wook; Lee, Hae-Young; Oh, Byung-Hee; Park, Young-Bae; Kim, Hyo-Soo

    2013-01-01

    Cell therapy is a promising approach for repairing damaged heart. However, there are large rooms to be improved in therapeutic efficacy. We cultured a small quantity (5-10 mg) of heart biopsy tissues from 16 patients who received heart transplantation. We produced primary and secondary cardiospheres (CSs) using repeated three-dimensional culture strategy and characterized the cells. Approximately 5000 secondary CSs were acquired after 45 days. Genetic analysis confirmed that the progenitor cells in the secondary CSs originated from the innate heart, but not from extra-cardiac organs. The expressions of Oct4 and Nanog were significantly induced in secondary CSs compared with adherent cells derived from primary CSs. Those expressions in secondary CSs were higher in a cytokine-deprived medium than in a cytokine-supplemented one, suggesting that formation of the three-dimensional structure was important to enhance stemness whereas supplementation with various cytokines was not essential. Signal blocking experiments showed that the ERK and VEGF pathways are indispensable for sphere formation. To optimize cell processing, we compared four different methods of generating spheres. Method based on the hanging-drop or AggreWell™ was superior to that based on the poly-d-lysine-coated dish or Petri dish with respect to homogeneity of the product, cellular potency and overall simplicity of the process. When transplanted into the ischemic myocardium of immunocompromised mice, human secondary CSs differentiated into cardiomyocytes and endothelial cells. These results demonstrate that generation of secondary CSs from a small quantity of adult human cardiac tissue is a feasible and effective cell processing strategy to improve the therapeutic efficacy of cell therapy. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. StruLocPred: structure-based protein subcellular localisation prediction using multi-class support vector machine.

    PubMed

    Zhou, Wengang; Dickerson, Julie A

    2012-01-01

    Knowledge of protein subcellular locations can help decipher a protein's biological function. This work proposes new features: sequence-based: Hybrid Amino Acid Pair (HAAP) and two structure-based: Secondary Structural Element Composition (SSEC) and solvent accessibility state frequency. A multi-class Support Vector Machine is developed to predict the locations. Testing on two established data sets yields better prediction accuracies than the best available systems. Comparisons with existing methods show comparable results to ESLPred2. When StruLocPred is applied to the entire Arabidopsis proteome, over 77% of proteins with known locations match the prediction results. An implementation of this system is at http://wgzhou.ece. iastate.edu/StruLocPred/.

  2. Predicting disulfide connectivity from protein sequence using multiple sequence feature vectors and secondary structure.

    PubMed

    Song, Jiangning; Yuan, Zheng; Tan, Hao; Huber, Thomas; Burrage, Kevin

    2007-12-01

    Disulfide bonds are primary covalent crosslinks between two cysteine residues in proteins that play critical roles in stabilizing the protein structures and are commonly found in extracy-toplasmatic or secreted proteins. In protein folding prediction, the localization of disulfide bonds can greatly reduce the search in conformational space. Therefore, there is a great need to develop computational methods capable of accurately predicting disulfide connectivity patterns in proteins that could have potentially important applications. We have developed a novel method to predict disulfide connectivity patterns from protein primary sequence, using a support vector regression (SVR) approach based on multiple sequence feature vectors and predicted secondary structure by the PSIPRED program. The results indicate that our method could achieve a prediction accuracy of 74.4% and 77.9%, respectively, when averaged on proteins with two to five disulfide bridges using 4-fold cross-validation, measured on the protein and cysteine pair on a well-defined non-homologous dataset. We assessed the effects of different sequence encoding schemes on the prediction performance of disulfide connectivity. It has been shown that the sequence encoding scheme based on multiple sequence feature vectors coupled with predicted secondary structure can significantly improve the prediction accuracy, thus enabling our method to outperform most of other currently available predictors. Our work provides a complementary approach to the current algorithms that should be useful in computationally assigning disulfide connectivity patterns and helps in the annotation of protein sequences generated by large-scale whole-genome projects. The prediction web server and Supplementary Material are accessible at http://foo.maths.uq.edu.au/~huber/disulfide

  3. Secure Secondary Use of Clinical Data with Cloud-based NLP Services. Towards a Highly Scalable Research Infrastructure.

    PubMed

    Christoph, J; Griebel, L; Leb, I; Engel, I; Köpcke, F; Toddenroth, D; Prokosch, H-U; Laufer, J; Marquardt, K; Sedlmayr, M

    2015-01-01

    The secondary use of clinical data provides large opportunities for clinical and translational research as well as quality assurance projects. For such purposes, it is necessary to provide a flexible and scalable infrastructure that is compliant with privacy requirements. The major goals of the cloud4health project are to define such an architecture, to implement a technical prototype that fulfills these requirements and to evaluate it with three use cases. The architecture provides components for multiple data provider sites such as hospitals to extract free text as well as structured data from local sources and de-identify such data for further anonymous or pseudonymous processing. Free text documentation is analyzed and transformed into structured information by text-mining services, which are provided within a cloud-computing environment. Thus, newly gained annotations can be integrated along with the already available structured data items and the resulting data sets can be uploaded to a central study portal for further analysis. Based on the architecture design, a prototype has been implemented and is under evaluation in three clinical use cases. Data from several hundred patients provided by a University Hospital and a private hospital chain have already been processed. Cloud4health has shown how existing components for secondary use of structured data can be complemented with text-mining in a privacy compliant manner. The cloud-computing paradigm allows a flexible and dynamically adaptable service provision that facilitates the adoption of services by data providers without own investments in respective hardware resources and software tools.

  4. The Ramachandran Number: An Order Parameter for Protein Geometry

    DOE PAGES

    Mannige, Ranjan V.; Kundu, Joyjit; Whitelam, Stephen; ...

    2016-08-04

    Three-dimensional protein structures usually contain regions of local order, called secondary structure, such as α-helices and β-sheets. Secondary structure is characterized by the local rotational state of the protein backbone, quantified by two dihedral angles called Øand Ψ. Particular types of secondary structure can generally be described by a single (diffuse) location on a two-dimensional plot drawn in the space of the angles Ø andΨ, called a Ramachandran plot. By contrast, a recently-discovered nanomaterial made from peptoids, structural isomers of peptides, displays a secondary-structure motif corresponding to two regions on the Ramachandran plot [Mannige et al., Nature 526, 415 (2015)].more » In order to describe such 'higher-order' secondary structure in a compact way we introduce here a means of describing regions on the Ramachandran plot in terms of a single Ramachandran number, R, which is a structurally meaningful combination of Ø andΨ. We show that the potential applications of R are numerous: it can be used to describe the geometric content of protein structures, and can be used to draw diagrams that reveal, at a glance, the frequency of occurrence of regular secondary structures and disordered regions in large protein datasets. We propose that R might be used as an order parameter for protein geometry for a wide range of applications.« less

  5. Novel Approach to Classify Plants Based on Metabolite-Content Similarity.

    PubMed

    Liu, Kang; Abdullah, Azian Azamimi; Huang, Ming; Nishioka, Takaaki; Altaf-Ul-Amin, Md; Kanaya, Shigehiko

    2017-01-01

    Secondary metabolites are bioactive substances with diverse chemical structures. Depending on the ecological environment within which they are living, higher plants use different combinations of secondary metabolites for adaptation (e.g., defense against attacks by herbivores or pathogenic microbes). This suggests that the similarity in metabolite content is applicable to assess phylogenic similarity of higher plants. However, such a chemical taxonomic approach has limitations of incomplete metabolomics data. We propose an approach for successfully classifying 216 plants based on their known incomplete metabolite content. Structurally similar metabolites have been clustered using the network clustering algorithm DPClus. Plants have been represented as binary vectors, implying relations with structurally similar metabolite groups, and classified using Ward's method of hierarchical clustering. Despite incomplete data, the resulting plant clusters are consistent with the known evolutional relations of plants. This finding reveals the significance of metabolite content as a taxonomic marker. We also discuss the predictive power of metabolite content in exploring nutritional and medicinal properties in plants. As a byproduct of our analysis, we could predict some currently unknown species-metabolite relations.

  6. Novel Approach to Classify Plants Based on Metabolite-Content Similarity

    PubMed Central

    Abdullah, Azian Azamimi; Huang, Ming; Nishioka, Takaaki

    2017-01-01

    Secondary metabolites are bioactive substances with diverse chemical structures. Depending on the ecological environment within which they are living, higher plants use different combinations of secondary metabolites for adaptation (e.g., defense against attacks by herbivores or pathogenic microbes). This suggests that the similarity in metabolite content is applicable to assess phylogenic similarity of higher plants. However, such a chemical taxonomic approach has limitations of incomplete metabolomics data. We propose an approach for successfully classifying 216 plants based on their known incomplete metabolite content. Structurally similar metabolites have been clustered using the network clustering algorithm DPClus. Plants have been represented as binary vectors, implying relations with structurally similar metabolite groups, and classified using Ward's method of hierarchical clustering. Despite incomplete data, the resulting plant clusters are consistent with the known evolutional relations of plants. This finding reveals the significance of metabolite content as a taxonomic marker. We also discuss the predictive power of metabolite content in exploring nutritional and medicinal properties in plants. As a byproduct of our analysis, we could predict some currently unknown species-metabolite relations. PMID:28164123

  7. Soft actuators and soft actuating devices

    DOEpatents

    Yang, Dian; Whitesides, George M.

    2017-10-17

    A soft buckling linear actuator is described, including: a plurality of substantially parallel bucklable, elastic structural components each having its longest dimension along a first axis; and a plurality of secondary structural components each disposed between and bridging two adjacent bucklable, elastic structural components; wherein every two adjacent bucklable, elastic structural components and the secondary structural components in-between define a layer comprising a plurality of cells each capable of being connected with a fluid inflation or deflation source; the secondary structural components from two adjacent layers are not aligned along a second axis perpendicular to the first axis; and the secondary structural components are configured not to buckle, the bucklable, elastic structural components are configured to buckle along the second axis to generate a linear force, upon the inflation or deflation of the cells. Methods of actuation using the same are also described.

  8. Effect of centrifugal forces on formation of secondary flow structures in a 180-degree curved artery model under pulsatile inflow conditions

    NASA Astrophysics Data System (ADS)

    Callahan, Shannon; Sajjad, Roshan; Bulusu, Kartik V.; Plesniak, Michael W.

    2013-11-01

    An experimental investigation of secondary flow structures within a 180-degree bent tube model of a curved artery was performed using phase-averaged, two-component, two-dimensional, particle image velocimetry (2C-2D PIV) under pulsatile inflow conditions. Pulsatile waveforms ranging from simple sinusoidal to physiological inflows were supplied. We developed a novel continuous wavelet transform algorithm (PIVlet 1.2) and applied it to vorticity fields for coherent secondary flow structure detection. Regime maps of secondary flow structures revealed new, deceleration-phase-dependent flow morphologies. The temporal instances where streamwise centrifugal forces dominated were associated with large-scale coherent structures, such as deformed Dean-, Lyne- and Wall-type (D-L-W) vortical structures. Magnitudes of streamwise and cross-stream centrifugal forces tend to balance during deceleration phases. Deceleration events were also associated with spatial reorganization and asymmetry in large-scale D-L-W secondary flow structures. Hence, the interaction between streamwise and cross-stream centrifugal forces that affects secondary flow morphologies is explained using a ``residual force'' parameter i.e., the difference in magnitudes of these forces. Supported by the NSF Grant No. CBET- 0828903 and GW Center for Biomimetics and Bioinspired Engineering.

  9. Parallel protein secondary structure prediction based on neural networks.

    PubMed

    Zhong, Wei; Altun, Gulsah; Tian, Xinmin; Harrison, Robert; Tai, Phang C; Pan, Yi

    2004-01-01

    Protein secondary structure prediction has a fundamental influence on today's bioinformatics research. In this work, binary and tertiary classifiers of protein secondary structure prediction are implemented on Denoeux belief neural network (DBNN) architecture. Hydrophobicity matrix, orthogonal matrix, BLOSUM62 and PSSM (position specific scoring matrix) are experimented separately as the encoding schemes for DBNN. The experimental results contribute to the design of new encoding schemes. New binary classifier for Helix versus not Helix ( approximately H) for DBNN produces prediction accuracy of 87% when PSSM is used for the input profile. The performance of DBNN binary classifier is comparable to other best prediction methods. The good test results for binary classifiers open a new approach for protein structure prediction with neural networks. Due to the time consuming task of training the neural networks, Pthread and OpenMP are employed to parallelize DBNN in the hyperthreading enabled Intel architecture. Speedup for 16 Pthreads is 4.9 and speedup for 16 OpenMP threads is 4 in the 4 processors shared memory architecture. Both speedup performance of OpenMP and Pthread is superior to that of other research. With the new parallel training algorithm, thousands of amino acids can be processed in reasonable amount of time. Our research also shows that hyperthreading technology for Intel architecture is efficient for parallel biological algorithms.

  10. Tropical forest heterogeneity from TanDEM-X InSAR and lidar observations in Indonesia

    NASA Astrophysics Data System (ADS)

    De Grandi, Elsa Carla; Mitchard, Edward

    2016-10-01

    Fires exacerbated during El Niño Southern Oscillation are a serious threat in Indonesia leading to the destruction and degradation of tropical forests and emissions of CO2 in the atmosphere. Forest structural changes which occurred due to the 1997-1998 El Niño Southern Oscillation in the Sungai Wain Protection Forest (East Kalimantan, Indonesia), a previously intact forest reserve have led to the development of a range of landcover from secondary forest to areas dominated by grassland. These structural differences can be appreciated over large areas by remote sensing instruments such as TanDEM-X and LiDAR that provide information that are sensitive to vegetation vertical and horizontal structure. One-point statistics of TanDEM-X coherence (mean and CV) and LiDAR CHM (mean, CV) and derived metrics such as vegetation volume and canopy cover were tested for the discrimination between 4 landcover classes. Jeffries-Matusita (JM) separability was high between forest classes (primary or secondary forest) and non-forest (grassland) while, primary and secondary forest were not separable. The study tests the potential and the importance of potential of TanDEM-X coherence and LiDAR observations to characterize structural heterogeneity based on one-point statistics in tropical forest but requires improved characterization using two-point statistical measures.

  11. Influence of pressure driven secondary flows on the behavior of turbofan forced mixers

    NASA Technical Reports Server (NTRS)

    Anderson, B.; Povinelli, L.; Gerstenmaier, W.

    1980-01-01

    A finite difference procedure was developed to analyze the three dimensional subsonic turbulent flows in turbofan forced mixer nozzles. The method is based on a decomposition of the velocity field into primary and secondary flow components which are determined by solution of the equations governing primary momentum, secondary vorticity, thermal energy, and continuity. Experimentally, a strong secondary flow pattern was identified which is associated with the radial inflow and outflow characteristics of the core and fan streams and forms a very strong vortex system aligned with the radial interface between the core and fan regions. A procedure was developed to generate a similar generic secondary flow pattern in terms of two constants representing the average radial outflow or inflow in the core and fan streams as a percentage of the local streamwise velocity. This description of the initial secondary flow gave excellent agreement with experimental data. By identifying the nature of large scale secondary flow structure and associating it with characteristic mixer nozzle behavior, it is felt that the cause and effect relationship between lobe design and nozzle performance can be understood.

  12. Finding the target sites of RNA-binding proteins

    PubMed Central

    Li, Xiao; Kazan, Hilal; Lipshitz, Howard D; Morris, Quaid D

    2014-01-01

    RNA–protein interactions differ from DNA–protein interactions because of the central role of RNA secondary structure. Some RNA-binding domains (RBDs) recognize their target sites mainly by their shape and geometry and others are sequence-specific but are sensitive to secondary structure context. A number of small- and large-scale experimental approaches have been developed to measure RNAs associated in vitro and in vivo with RNA-binding proteins (RBPs). Generalizing outside of the experimental conditions tested by these assays requires computational motif finding. Often RBP motif finding is done by adapting DNA motif finding methods; but modeling secondary structure context leads to better recovery of RBP-binding preferences. Genome-wide assessment of mRNA secondary structure has recently become possible, but these data must be combined with computational predictions of secondary structure before they add value in predicting in vivo binding. There are two main approaches to incorporating structural information into motif models: supplementing primary sequence motif models with preferred secondary structure contexts (e.g., MEMERIS and RNAcontext) and directly modeling secondary structure recognized by the RBP using stochastic context-free grammars (e.g., CMfinder and RNApromo). The former better reconstruct known binding preferences for sequence-specific RBPs but are not suitable for modeling RBPs that recognize shape and geometry of RNAs. Future work in RBP motif finding should incorporate interactions between multiple RBDs and multiple RBPs in binding to RNA. WIREs RNA 2014, 5:111–130. doi: 10.1002/wrna.1201 PMID:24217996

  13. Class, Control, and Contestation in Educational Organisations. ESA 841, Theory and Practice in Educational Administration.

    ERIC Educational Resources Information Center

    Watkins, Peter

    The introductory essay in this volume presents a case study of class-based organizational control and contestation in secondary schools in Victoria (Australia) in the 1970s, based on a critical perspective derived from the Frankfurt school, a perspective that undertakes to reveal the power structures, class hierarchy, and legitimating ideologies…

  14. Structural diversity of domain superfamilies in the CATH database.

    PubMed

    Reeves, Gabrielle A; Dallman, Timothy J; Redfern, Oliver C; Akpor, Adrian; Orengo, Christine A

    2006-07-14

    The CATH database of domain structures has been used to explore the structural variation of homologous domains in 294 well populated domain structure superfamilies, each containing at least three sequence diverse relatives. Our analyses confirm some previously detected trends relating sequence divergence to structural variation but for a much larger dataset and in some superfamilies the new data reveal exceptional structural variation. Use of a new algorithm (2DSEC) to analyse variability in secondary structure compositions across a superfamily sheds new light on how structures evolve. 2DSEC detects inserted secondary structures that embellish the core of conserved secondary structures found throughout the superfamily. Analysis showed that for 56% of highly populated superfamilies (>9 sequence diverse relatives), there are twofold or more increases in the numbers of secondary structures in some relatives. In some families fivefold increases occur, sometimes modifying the fold of the domain. Manual inspection of secondary structure insertions or embellishments in 48 particularly variable superfamilies revealed that although these insertions were usually discontiguous in the sequence they were often co-located in 3D resulting in a larger structural motif that often modified the geometry of the active site or the surface conformation promoting diverse domain partnerships and protein interactions. These observations, supported by automatic analysis of all well populated CATH families, suggest that accretion of small secondary structure insertions may provide a simple mechanism for evolving new functions in diverse relatives. Some layered domain architectures (e.g. mainly-beta and alpha-beta sandwiches) that recur highly in the genomes more frequently exploit these types of embellishments to modify function. In these architectures, aggregation occurs most often at the edges, top or bottom of the beta-sheets. Information on structural variability across domain superfamilies has been made available through the CATH Dictionary of Homologous Structures (DHS).

  15. Self-Efficacy, School Resources, Job Stressors and Burnout among Spanish Primary and Secondary School Teachers: A Structural Equation Approach

    ERIC Educational Resources Information Center

    Betoret, Fernando Domenech

    2009-01-01

    This study examines the relationship between school resources, teacher self-efficacy, potential multi-level stressors and teacher burnout using structural equation modelling. The causal structure for primary and secondary school teachers was also examined. The sample was composed of 724 primary and secondary Spanish school teachers. The changes…

  16. Low-Altitude Satellite Measurements of Pulsating Auroral Electrons

    NASA Technical Reports Server (NTRS)

    Samara, M.; Michell, R. G.; Redmon, R. J.

    2015-01-01

    We present observations from the Defense Meteorological Satellite Program and Reimei satellites, where common-volume high-resolution ground-based auroral imaging data are available. These satellite overpasses of ground-based all-sky imagers reveal the specific features of the electron populations responsible for different types of pulsating aurora modulations. The energies causing the pulsating aurora mostly range from 3 keV to 20 keV but can at times extend up to 30 keV. The secondary, low-energy electrons (<1 keV) are diminished from the precipitating distribution when there are strong temporal variations in auroral intensity. There are often persistent spatial structures present inside regions of pulsating aurora, and in these regions there are secondary electrons in the precipitating populations. The reduction of secondary electrons is consistent with the strongly temporally varying pulsating aurora being associated with field-aligned currents and hence parallel potential drops of up to 1 kV.

  17. Virus-induced gene silencing offers a functional genomics platform for studying plant cell wall formation.

    PubMed

    Zhu, Xiaohong; Pattathil, Sivakumar; Mazumder, Koushik; Brehm, Amanda; Hahn, Michael G; Dinesh-Kumar, S P; Joshi, Chandrashekhar P

    2010-09-01

    Virus-induced gene silencing (VIGS) is a powerful genetic tool for rapid assessment of plant gene functions in the post-genomic era. Here, we successfully implemented a Tobacco Rattle Virus (TRV)-based VIGS system to study functions of genes involved in either primary or secondary cell wall formation in Nicotiana benthamiana plants. A 3-week post-VIGS time frame is sufficient to observe phenotypic alterations in the anatomical structure of stems and chemical composition of the primary and secondary cell walls. We used cell wall glycan-directed monoclonal antibodies to demonstrate that alteration of cell wall polymer synthesis during the secondary growth phase of VIGS plants has profound effects on the extractability of components from woody stem cell walls. Therefore, TRV-based VIGS together with cell wall component profiling methods provide a high-throughput gene discovery platform for studying plant cell wall formation from a bioenergy perspective.

  18. STITCHER: Dynamic assembly of likely amyloid and prion β-structures from secondary structure predictions

    PubMed Central

    Bryan, Allen W; O’Donnell, Charles W; Menke, Matthew; Cowen, Lenore J; Lindquist, Susan; Berger, Bonnie

    2012-01-01

    The supersecondary structure of amyloids and prions, proteins of intense clinical and biological interest, are difficult to determine by standard experimental or computational means. In addition, significant conformational heterogeneity is known or suspected to exist in many amyloid fibrils. Previous work has demonstrated that probability-based prediction of discrete β-strand pairs can offer insight into these structures. Here, we devise a system of energetic rules that can be used to dynamically assemble these discrete β-strand pairs into complete amyloid β-structures. The STITCHER algorithm progressively ‘stitches’ strand-pairs into full β-sheets based on a novel free-energy model, incorporating experimentally observed amino-acid side-chain stacking contributions, entropic estimates, and steric restrictions for amyloidal parallel β-sheet construction. A dynamic program computes the top 50 structures and returns both the highest scoring structure and a consensus structure taken by polling this list for common discrete elements. Putative structural heterogeneity can be inferred from sequence regions that compose poorly. Predictions show agreement with experimental models of Alzheimer’s amyloid beta peptide and the Podospora anserina Het-s prion. Predictions of the HET-s homolog HET-S also reflect experimental observations of poor amyloid formation. We put forward predicted structures for the yeast prion Sup35, suggesting N-terminal structural stability enabled by tyrosine ladders, and C-terminal heterogeneity. Predictions for the Rnq1 prion and alpha-synuclein are also given, identifying a similar mix of homogenous and heterogeneous secondary structure elements. STITCHER provides novel insight into the energetic basis of amyloid structure, provides accurate structure predictions, and can help guide future experimental studies. Proteins 2012. © 2011 Wiley Periodicals, Inc. PMID:22095906

  19. STITCHER: Dynamic assembly of likely amyloid and prion β-structures from secondary structure predictions.

    PubMed

    Bryan, Allen W; O'Donnell, Charles W; Menke, Matthew; Cowen, Lenore J; Lindquist, Susan; Berger, Bonnie

    2012-02-01

    The supersecondary structure of amyloids and prions, proteins of intense clinical and biological interest, are difficult to determine by standard experimental or computational means. In addition, significant conformational heterogeneity is known or suspected to exist in many amyloid fibrils. Previous work has demonstrated that probability-based prediction of discrete β-strand pairs can offer insight into these structures. Here, we devise a system of energetic rules that can be used to dynamically assemble these discrete β-strand pairs into complete amyloid β-structures. The STITCHER algorithm progressively 'stitches' strand-pairs into full β-sheets based on a novel free-energy model, incorporating experimentally observed amino-acid side-chain stacking contributions, entropic estimates, and steric restrictions for amyloidal parallel β-sheet construction. A dynamic program computes the top 50 structures and returns both the highest scoring structure and a consensus structure taken by polling this list for common discrete elements. Putative structural heterogeneity can be inferred from sequence regions that compose poorly. Predictions show agreement with experimental models of Alzheimer's amyloid beta peptide and the Podospora anserina Het-s prion. Predictions of the HET-s homolog HET-S also reflect experimental observations of poor amyloid formation. We put forward predicted structures for the yeast prion Sup35, suggesting N-terminal structural stability enabled by tyrosine ladders, and C-terminal heterogeneity. Predictions for the Rnq1 prion and alpha-synuclein are also given, identifying a similar mix of homogenous and heterogeneous secondary structure elements. STITCHER provides novel insight into the energetic basis of amyloid structure, provides accurate structure predictions, and can help guide future experimental studies. Copyright © 2011 Wiley Periodicals, Inc.

  20. Computational prediction and biochemical characterization of novel RNA aptamers to Rift Valley fever virus nucleocapsid protein.

    PubMed

    Ellenbecker, Mary; St Goddard, Jeremy; Sundet, Alec; Lanchy, Jean-Marc; Raiford, Douglas; Lodmell, J Stephen

    2015-10-01

    Rift Valley fever virus (RVFV) is a potent human and livestock pathogen endemic to sub-Saharan Africa and the Arabian Peninsula that has potential to spread to other parts of the world. Although there is no proven effective and safe treatment for RVFV infections, a potential therapeutic target is the virally encoded nucleocapsid protein (N). During the course of infection, N binds to viral RNA, and perturbation of this interaction can inhibit viral replication. To gain insight into how N recognizes viral RNA specifically, we designed an algorithm that uses a distance matrix and multidimensional scaling to compare the predicted secondary structures of known N-binding RNAs, or aptamers, that were isolated and characterized in previous in vitro evolution experiment. These aptamers did not exhibit overt sequence or predicted structure similarity, so we employed bioinformatic methods to propose novel aptamers based on analysis and clustering of secondary structures. We screened and scored the predicted secondary structures of novel randomly generated RNA sequences in silico and selected several of these putative N-binding RNAs whose secondary structures were similar to those of known N-binding RNAs. We found that overall the in silico generated RNA sequences bound well to N in vitro. Furthermore, introduction of these RNAs into cells prior to infection with RVFV inhibited viral replication in cell culture. This proof of concept study demonstrates how the predictive power of bioinformatics and the empirical power of biochemistry can be jointly harnessed to discover, synthesize, and test new RNA sequences that bind tightly to RVFV N protein. The approach would be easily generalizable to other applications. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. CNNH_PSS: protein 8-class secondary structure prediction by convolutional neural network with highway.

    PubMed

    Zhou, Jiyun; Wang, Hongpeng; Zhao, Zhishan; Xu, Ruifeng; Lu, Qin

    2018-05-08

    Protein secondary structure is the three dimensional form of local segments of proteins and its prediction is an important problem in protein tertiary structure prediction. Developing computational approaches for protein secondary structure prediction is becoming increasingly urgent. We present a novel deep learning based model, referred to as CNNH_PSS, by using multi-scale CNN with highway. In CNNH_PSS, any two neighbor convolutional layers have a highway to deliver information from current layer to the output of the next one to keep local contexts. As lower layers extract local context while higher layers extract long-range interdependencies, the highways between neighbor layers allow CNNH_PSS to have ability to extract both local contexts and long-range interdependencies. We evaluate CNNH_PSS on two commonly used datasets: CB6133 and CB513. CNNH_PSS outperforms the multi-scale CNN without highway by at least 0.010 Q8 accuracy and also performs better than CNF, DeepCNF and SSpro8, which cannot extract long-range interdependencies, by at least 0.020 Q8 accuracy, demonstrating that both local contexts and long-range interdependencies are indeed useful for prediction. Furthermore, CNNH_PSS also performs better than GSM and DCRNN which need extra complex model to extract long-range interdependencies. It demonstrates that CNNH_PSS not only cost less computer resource, but also achieves better predicting performance. CNNH_PSS have ability to extracts both local contexts and long-range interdependencies by combing multi-scale CNN and highway network. The evaluations on common datasets and comparisons with state-of-the-art methods indicate that CNNH_PSS is an useful and efficient tool for protein secondary structure prediction.

  2. Improved cryoEM-Guided Iterative Molecular Dynamics–Rosetta Protein Structure Refinement Protocol for High Precision Protein Structure Prediction

    PubMed Central

    2016-01-01

    Many excellent methods exist that incorporate cryo-electron microscopy (cryoEM) data to constrain computational protein structure prediction and refinement. Previously, it was shown that iteration of two such orthogonal sampling and scoring methods – Rosetta and molecular dynamics (MD) simulations – facilitated exploration of conformational space in principle. Here, we go beyond a proof-of-concept study and address significant remaining limitations of the iterative MD–Rosetta protein structure refinement protocol. Specifically, all parts of the iterative refinement protocol are now guided by medium-resolution cryoEM density maps, and previous knowledge about the native structure of the protein is no longer necessary. Models are identified solely based on score or simulation time. All four benchmark proteins showed substantial improvement through three rounds of the iterative refinement protocol. The best-scoring final models of two proteins had sub-Ångstrom RMSD to the native structure over residues in secondary structure elements. Molecular dynamics was most efficient in refining secondary structure elements and was thus highly complementary to the Rosetta refinement which is most powerful in refining side chains and loop regions. PMID:25883538

  3. Nanostructure and molecular mechanics of spider dragline silk protein assemblies

    PubMed Central

    Keten, Sinan; Buehler, Markus J.

    2010-01-01

    Spider silk is a self-assembling biopolymer that outperforms most known materials in terms of its mechanical performance, despite its underlying weak chemical bonding based on H-bonds. While experimental studies have shown that the molecular structure of silk proteins has a direct influence on the stiffness, toughness and failure strength of silk, no molecular-level analysis of the nanostructure and associated mechanical properties of silk assemblies have been reported. Here, we report atomic-level structures of MaSp1 and MaSp2 proteins from the Nephila clavipes spider dragline silk sequence, obtained using replica exchange molecular dynamics, and subject these structures to mechanical loading for a detailed nanomechanical analysis. The structural analysis reveals that poly-alanine regions in silk predominantly form distinct and orderly beta-sheet crystal domains, while disorderly regions are formed by glycine-rich repeats that consist of 31-helix type structures and beta-turns. Our structural predictions are validated against experimental data based on dihedral angle pair calculations presented in Ramachandran plots, alpha-carbon atomic distances, as well as secondary structure content. Mechanical shearing simulations on selected structures illustrate that the nanoscale behaviour of silk protein assemblies is controlled by the distinctly different secondary structure content and hydrogen bonding in the crystalline and semi-amorphous regions. Both structural and mechanical characterization results show excellent agreement with available experimental evidence. Our findings set the stage for extensive atomistic investigations of silk, which may contribute towards an improved understanding of the source of the strength and toughness of this biological superfibre. PMID:20519206

  4. Nanostructure and molecular mechanics of spider dragline silk protein assemblies.

    PubMed

    Keten, Sinan; Buehler, Markus J

    2010-12-06

    Spider silk is a self-assembling biopolymer that outperforms most known materials in terms of its mechanical performance, despite its underlying weak chemical bonding based on H-bonds. While experimental studies have shown that the molecular structure of silk proteins has a direct influence on the stiffness, toughness and failure strength of silk, no molecular-level analysis of the nanostructure and associated mechanical properties of silk assemblies have been reported. Here, we report atomic-level structures of MaSp1 and MaSp2 proteins from the Nephila clavipes spider dragline silk sequence, obtained using replica exchange molecular dynamics, and subject these structures to mechanical loading for a detailed nanomechanical analysis. The structural analysis reveals that poly-alanine regions in silk predominantly form distinct and orderly beta-sheet crystal domains, while disorderly regions are formed by glycine-rich repeats that consist of 3₁-helix type structures and beta-turns. Our structural predictions are validated against experimental data based on dihedral angle pair calculations presented in Ramachandran plots, alpha-carbon atomic distances, as well as secondary structure content. Mechanical shearing simulations on selected structures illustrate that the nanoscale behaviour of silk protein assemblies is controlled by the distinctly different secondary structure content and hydrogen bonding in the crystalline and semi-amorphous regions. Both structural and mechanical characterization results show excellent agreement with available experimental evidence. Our findings set the stage for extensive atomistic investigations of silk, which may contribute towards an improved understanding of the source of the strength and toughness of this biological superfibre.

  5. The architecture of PrPSc: Threading secondary structure elements into the 4-rung ß-solenoid scaffold

    USDA-ARS?s Scientific Manuscript database

    Aims: We propose to exploit the wealth of theoretical and experimental constraints to develop a structure of the infectious prion (hamster PrP27-30). Recent cryo-EM based evidence has determined that PrPSc is a 4-rung ß-solenoid (Vázquez-Fernández et al. 2016, PLoS Pathog. 12(9): e1005835). This ev...

  6. Structured Reflection Breaks Embedded in an Online Course--Effects on Learning Experience, Time on Task and Performance

    ERIC Educational Resources Information Center

    Verpoorten, Dominique; Westera, Wim

    2016-01-01

    The purpose of this article is to gain an insight into the effects of practicing short, frequent, and structured reflection breaks interspersed with the learning material in a computer-based course. To that end, the study sets up a standardized control trial with two groups of secondary school pupils. The study shows that while performance is not…

  7. Eukaryotic major facilitator superfamily transporter modeling based on the prokaryotic GlpT crystal structure.

    PubMed

    Lemieux, M Joanne

    2007-01-01

    The major facilitator superfamily (MFS) of transporters represents the largest family of secondary active transporters and has a diverse range of substrates. With structural information for four MFS transporters, we can see a strong structural commonality suggesting, as predicted, a common architecture for MFS transporters. The rate for crystal structure determination of MFS transporters is slow, making modeling of both prokaryotic and eukaryotic transporters more enticing. In this review, models of eukaryotic transporters Glut1, G6PT, OCT1, OCT2 and Pho84, based on the crystal structures of the prokaryotic GlpT, based on the crystal structure of LacY are discussed. The techniques used to generate the different models are compared. In addition, the validity of these models and the strategy of using prokaryotic crystal structures to model eukaryotic proteins are discussed. For comparison, E. coli GlpT was modeled based on the E. coli LacY structure and compared to the crystal structure of GlpT demonstrating that experimental evidence is essential for accurate modeling of membrane proteins.

  8. Pairwise amino acid secondary structural propensities

    NASA Astrophysics Data System (ADS)

    Chemmama, Ilan E.; Chapagain, Prem P.; Gerstman, Bernard S.

    2015-04-01

    We investigate the propensities for amino acids to form a specific secondary structure when they are paired with other amino acids. Our investigations use molecular dynamics (MD) computer simulations, and we compare the results to those from the Protein Data Bank (PDB). Proper comparison requires weighting of the MD results in a manner consistent with the relative frequency of appearance in the PDB of each possible pair of amino acids. We find that the propensity for an amino acid to assume a secondary structure varies dramatically depending on the amino acid that is before or after it in the primary sequence. This cooperative effect means that when selecting amino acids to facilitate the formation of a secondary structure in peptide engineering experiments, the adjacent amino acids must be considered. We also examine the preference for a secondary structure in bacterial proteins and compare the results to those of human proteins.

  9. Functional and Aesthetic Outcome Enhancement of Head and Neck Reconstruction through Secondary Procedures

    PubMed Central

    Hofer, Stefan O.P.; Payne, Caroline E.

    2010-01-01

    The foundation of head and neck reconstruction is based on two pillars: the restoration of function and the restoration of aesthetics. The objective of this article is to provide insight into how to prevent undesirable functional and aesthetic outcome after the initial procedure and also to provide solutions for enhancement of functional and aesthetic outcome with secondary procedures. Functional and aesthetic outcome enhancement is discussed in relation to the individual structures within the oral cavity, for the mandible, and for facial reconstruction. Normal prerequisites for all individual structures are described, and key points for restoration of these functional and aesthetic issues are proposed. In addition, further suggestions to improve suboptimal results after initial reconstructive surgery are presented. Understanding the function and aesthetics of the area to be reconstructed will allow appropriate planning and management of the initial reconstruction. Secondary enhancement should be attainable by minor procedures rather than a requirement to redo the initial reconstruction. PMID:22550452

  10. Evaluation of passive and active vibration control mechanisms in a microgravity environment

    NASA Technical Reports Server (NTRS)

    Ellison, J.; Ahmadi, G.; Grodsinsky, C.

    1993-01-01

    The behavior of equipment and their light secondary attachments in large space structures under orbital excitation is studied. The equipment is modeled as a shear beam and its secondary attachment is treated as a single-degree-of-freedom lumped mass system. Peak responses of the equipment and its secondary system for a variety of vibration control mechanisms are evaluated. A novel active friction control mechanism, by varying the normal force, is suggested. The device uses a magnetic field control to minimize the stick condition, thereby reducing the overall structural response. The results show that the use of the passive vibration control devices could reduce the peak equipment responses to a certain extent. However, major reduction of vibration levels could be achieved only by the use of active devices. Using active control of the interface normal force, the peak responses of the equipment and its attachment are reduced by a factor of 10 over the fixed-base equipment response.

  11. Structural alterations in rat liver proteins due to streptozotocin-induced diabetes and the recovery effect of selenium: Fourier transform infrared microspectroscopy and neural network study

    NASA Astrophysics Data System (ADS)

    Bozkurt, Ozlem; Haman Bayari, Sevgi; Severcan, Mete; Krafft, Christoph; Popp, Jürgen; Severcan, Feride

    2012-07-01

    The relation between protein structural alterations and tissue dysfunction is a major concern as protein fibrillation and/or aggregation due to structural alterations has been reported in many disease states. In the current study, Fourier transform infrared microspectroscopic imaging has been used to investigate diabetes-induced changes on protein secondary structure and macromolecular content in streptozotocin-induced diabetic rat liver. Protein secondary structural alterations were predicted using neural network approach utilizing the amide I region. Moreover, the role of selenium in the recovery of diabetes-induced alterations on macromolecular content and protein secondary structure was also studied. The results revealed that diabetes induced a decrease in lipid to protein and glycogen to protein ratios in diabetic livers. Significant alterations in protein secondary structure were observed with a decrease in α-helical and an increase in β-sheet content. Both doses of selenium restored diabetes-induced changes in lipid to protein and glycogen to protein ratios. However, low-dose selenium supplementation was not sufficient to recover the effects of diabetes on protein secondary structure, while a higher dose of selenium fully restored diabetes-induced alterations in protein structure.

  12. Adsorption of fibrinogen on a biomedical-grade stainless steel 316LVM surface: a PM-IRRAS study of the adsorption thermodynamics, kinetics and secondary structure changes.

    PubMed

    Desroches, Marie-Josee; Omanovic, Sasha

    2008-05-14

    Polarization-modulation infrared reflection-absorption spectroscopy (PM-IRRAS) was employed to investigate the interaction of serum protein fibrinogen with a biomedical-grade 316LVM stainless steel surface, in terms of the adsorption thermodynamics, kinetics and secondary structure changes of the protein. Apparent Gibbs energy of adsorption values indicated a highly spontaneous and strong adsorption of fibrinogen onto the surface. The kinetics of fibrinogen adsorption were successfully modeled using a pseudo first-order kinetic model. Deconvolution of the amide I bands indicated that the adsorption of fibrinogen on 316LVM results in significant changes in the protein's secondary structure that occur predominantly within the first minute of adsorption. Among the investigated structures, the alpha-helix structure undergoes the smallest changes, while the beta-sheet and beta-turns structures undergo significant changes. It was shown that lateral interactions between the adsorbed molecules do not play a role in controlling the secondary structure changes. An increase in temperature induced changes in the secondary structure of the protein, characterized by a loss of the alpha-helical content and its transformation into the beta-turns structure.

  13. Spectroscopic study of 3-Hydroxyflavone - protein interaction in lipidic bi-layers immobilized on silver nanoparticles

    NASA Astrophysics Data System (ADS)

    Voicescu, Mariana; Ionescu, Sorana; Nistor, Cristina L.

    2017-01-01

    The interaction of 3-Hydroxyflavone with serum proteins (BSA and HSA) in lecithin lipidic bi-layers (PC) immobilized on silver nanoparticles (SNPs), was studied by fluorescence and Raman spectroscopy. BSA secondary structure was quantified with a deconvolution algorithm, showing a decrease in α-helix structure when lipids were added to the solution. The effect of temperature on the rate of the excited-state intra-molecular proton transfer and on the dual fluorescence emission of 3-HF in the HSA/PC/SNPs systems was discussed. Evaluation of the antioxidant activity of 3-HF in HSA/PC/SNPs systems was also studied. The antioxidant activity of 3-HF decreased in the presence of SNPs. The results are discussed with relevance to the secondary structure of proteins and of the 3-HF based nano-systems to a topical formulation useful in the oxidative stress process.

  14. Structural basis for expanding the application of bioligand in metal bioremediation: A review.

    PubMed

    Sharma, Virbala; Pant, Deepak

    2018-03-01

    Bioligands (BL) present in plant and microbes are primarily responsible for their use in metal decontamination. Both primary (proteins and amino acid) and secondary (proliferated) response in the form of BL is possible in plants and microbes toward metal bioremediation. Structure of these BL have specific requirement for preferential binding towards a particular metal in biomass. The aim of this review is to explore various templates from BL (as metal host) for the metal detoxification/decontamination and associated bioremediation. Mechanistic explanation for bioremediation may involve the various processes like: (i) electron transfer; (ii) translocation; and (iii) coordination number variation. HSAB (hard and soft acid and base) concept can act as guiding principle for many such processes. It is possible to investigate various structural homolog of BL (similar to secondary response in living stage) for the possible improvement in bioremediation process. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Capturing non-local interactions by long short-term memory bidirectional recurrent neural networks for improving prediction of protein secondary structure, backbone angles, contact numbers and solvent accessibility.

    PubMed

    Heffernan, Rhys; Yang, Yuedong; Paliwal, Kuldip; Zhou, Yaoqi

    2017-09-15

    The accuracy of predicting protein local and global structural properties such as secondary structure and solvent accessible surface area has been stagnant for many years because of the challenge of accounting for non-local interactions between amino acid residues that are close in three-dimensional structural space but far from each other in their sequence positions. All existing machine-learning techniques relied on a sliding window of 10-20 amino acid residues to capture some 'short to intermediate' non-local interactions. Here, we employed Long Short-Term Memory (LSTM) Bidirectional Recurrent Neural Networks (BRNNs) which are capable of capturing long range interactions without using a window. We showed that the application of LSTM-BRNN to the prediction of protein structural properties makes the most significant improvement for residues with the most long-range contacts (|i-j| >19) over a previous window-based, deep-learning method SPIDER2. Capturing long-range interactions allows the accuracy of three-state secondary structure prediction to reach 84% and the correlation coefficient between predicted and actual solvent accessible surface areas to reach 0.80, plus a reduction of 5%, 10%, 5% and 10% in the mean absolute error for backbone ϕ , ψ , θ and τ angles, respectively, from SPIDER2. More significantly, 27% of 182724 40-residue models directly constructed from predicted C α atom-based θ and τ have similar structures to their corresponding native structures (6Å RMSD or less), which is 3% better than models built by ϕ and ψ angles. We expect the method to be useful for assisting protein structure and function prediction. The method is available as a SPIDER3 server and standalone package at http://sparks-lab.org . yaoqi.zhou@griffith.edu.au or yuedong.yang@griffith.edu.au. Supplementary data are available at Bioinformatics online. © The Author (2017). Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  16. Computer Simulation of Fracture in Aerogels

    NASA Technical Reports Server (NTRS)

    Good, Brian S.

    2006-01-01

    Aerogels are of interest to the aerospace community primarily for their thermal properties, notably their low thermal conductivities. While the gels are typically fragile, recent advances in the application of conformal polymer layers to these gels has made them potentially useful as lightweight structural materials as well. In this work, we investigate the strength and fracture behavior of silica aerogels using a molecular statics-based computer simulation technique. The gels' structure is simulated via a Diffusion Limited Cluster Aggregation (DLCA) algorithm, which produces fractal structures representing experimentally observed aggregates of so-called secondary particles, themselves composed of amorphous silica primary particles an order of magnitude smaller. We have performed multi-length-scale simulations of fracture in silica aerogels, in which the interaction b e e n two secondary particles is assumed to be described by a Morse pair potential parameterized such that the potential range is much smaller than the secondary particle size. These Morse parameters are obtained by atomistic simulation of models of the experimentally-observed amorphous silica "bridges," with the fracture behavior of these bridges modeled via molecular statics using a Morse/Coulomb potential for silica. We consider the energetics of the fracture, and compare qualitative features of low-and high-density gel fracture.

  17. Internal and external relationships of the Cnidaria: implications of primary and predicted secondary structure of the 5'-end of the 23S-like rDNA.

    PubMed Central

    Odorico, D M; Miller, D J

    1997-01-01

    Since both internal (class-level) and external relationships of the Cnidaria remain unclear on the basis of analyses of 18S and (partial) 16S rDNA sequence data, we examined the informativeness of the 5'-end of the 23S-like rDNA. Here we describe analyses of both primary and predicted secondary structure data for this region from the ctenophore Bolinopsis sp., the placozoan Trichoplax adhaerens, the sponge Hymeniacidon heliophila, and representatives of all four cnidarian classes. Primary sequence analyses clearly resolved the Cnidaria from other lower Metazoa, supported sister group relationships between the Scyphozoa and Cubozoa and between the Ctenophora and the Placozoa, and confirmed the basal status of the Anthozoa within the Cnidaria. Additionally, in the ctenophore, placozoan and sponge, non-canonical base pairing is required to maintain the secondary structure of the B12 region, whereas amongst the Cnidaria this is not the case. Although the phylogenetic significance of this molecular character is unclear, our analyses do not support the close relationship between Cnidaria and Placozoa suggested by previous studies. PMID:9061962

  18. New method for characterizing paper coating structures using argon ion beam milling and field emission scanning electron microscopy.

    PubMed

    Dahlström, C; Allem, R; Uesaka, T

    2011-02-01

    We have developed a new method for characterizing microstructures of paper coating using argon ion beam milling technique and field emission scanning electron microscopy. The combination of these two techniques produces extremely high-quality images with very few artefacts, which are particularly suited for quantitative analyses of coating structures. A new evaluation method has been developed by using marker-controlled watershed segmentation technique of the secondary electron images. The high-quality secondary electron images with well-defined pores makes it possible to use this semi-automatic segmentation method. One advantage of using secondary electron images instead of backscattered electron images is being able to avoid possible overestimation of the porosity because of the signal depth. A comparison was made between the new method and the conventional method using greyscale histogram thresholding of backscattered electron images. The results showed that the conventional method overestimated the pore area by 20% and detected around 5% more pores than the new method. As examples of the application of the new method, we have investigated the distributions of coating binders, and the relationship between local coating porosity and base sheet structures. The technique revealed, for the first time with direct evidence, the long-suspected coating non-uniformity, i.e. binder migration, and the correlation between coating porosity versus base sheet mass density, in a straightforward way. © 2010 The Authors Journal compilation © 2010 The Royal Microscopical Society.

  19. Secondary flow structures in a 180∘ elastic curved vessel with torsion under steady and pulsatile inflow conditions

    NASA Astrophysics Data System (ADS)

    Najjari, Mohammad Reza; Plesniak, Michael W.

    2017-11-01

    Secondary flow vortical structures were investigated in an elastic 180° curved pipe with and without torsion under steady and pulsatile flow using particle image velocimetry (PIV). The elastic thin-walled curved pipes were constructed using Sylgard 184, and inserted into a bath of refractive index matched fluid to perform PIV. A vortex identification method was employed to identify various vortical structures in the flow. The secondary flow structures in the planar compliant model with dilatation of 0.61%-3.23% under pulsatile flow rate were compared with the rigid vessel model results, and it was found that local vessel compliance has a negligible effect on secondary flow morphology. The secondary flow structures were found to be more sensitive to out of plane curvature (torsion) than to vessel compliance. Torsion distorts the symmetry of secondary flow and results in more complex vortical structures in both steady and pulsatile flows. In high Re number steady flow with torsion, a single dominant vortical structure can be detected at the middle of the 90° cross section. In pulsatile flow with torsion, the split-Dean and Lyne-type vortices with same rotation direction originating from opposite sides of the cross section tend to merge together. supported by GW Center for Biomimetics and Bioinspired Engineering.

  20. Imaging of the Posterior Skull Base.

    PubMed

    Job, Joici; Branstetter, Barton F

    2017-01-01

    The posterior skull base can be involved by a variety of pathologic processes. They can be broadly classified as: traumatic, neoplastic, vascular, and inflammatory. Pathology in the posterior skull base usually involves the lower cranial nerves, either as a source of pathology or a secondary source of symptoms. This review will categorize pathology arising in the posterior skull base and describe how it affects the skull base itself and surrounding structures. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. The Globular State of the Single-Stranded RNA: Effect of the Secondary Structure Rearrangements

    PubMed Central

    Grigoryan, Zareh A.; Karapetian, Armen T.

    2015-01-01

    The mutual influence of the slow rearrangements of secondary structure and fast collapse of the long single-stranded RNA (ssRNA) in approximation of coarse-grained model is studied with analytic calculations. It is assumed that the characteristic time of the secondary structure rearrangement is much longer than that for the formation of the tertiary structure. A nonequilibrium phase transition of the 2nd order has been observed. PMID:26345143

  2. Determination of secondary flow morphologies by wavelet analysis in a curved artery model with physiological inflow

    NASA Astrophysics Data System (ADS)

    Bulusu, Kartik V.; Hussain, Shadman; Plesniak, Michael W.

    2014-11-01

    Secondary flow vortical patterns in arterial curvatures have the potential to affect several cardiovascular phenomena, e.g., progression of atherosclerosis by altering wall shear stresses, carotid atheromatous disease, thoracic aortic aneurysms and Marfan's syndrome. Temporal characteristics of secondary flow structures vis-à-vis physiological (pulsatile) inflow waveform were explored by continuous wavelet transform (CWT) analysis of phase-locked, two-component, two-dimensional particle image velocimeter data. Measurements were made in a 180° curved artery test section upstream of the curvature and at the 90° cross-sectional plane. Streamwise, upstream flow rate measurements were analyzed using a one-dimensional antisymmetric wavelet. Cross-stream measurements at the 90° location of the curved artery revealed interesting multi-scale, multi-strength coherent secondary flow structures. An automated process for coherent structure detection and vortical feature quantification was applied to large ensembles of PIV data. Metrics such as the number of secondary flow structures, their sizes and strengths were generated at every discrete time instance of the physiological inflow waveform. An autonomous data post-processing method incorporating two-dimensional CWT for coherent structure detection was implemented. Loss of coherence in secondary flow structures during the systolic deceleration phase is observed in accordance with previous research. The algorithmic approach presented herein further elucidated the sensitivity and dependence of morphological changes in secondary flow structures on quasiperiodicity and magnitude of temporal gradients in physiological inflow conditions.

  3. Base pair probability estimates improve the prediction accuracy of RNA non-canonical base pairs

    PubMed Central

    2017-01-01

    Prediction of RNA tertiary structure from sequence is an important problem, but generating accurate structure models for even short sequences remains difficult. Predictions of RNA tertiary structure tend to be least accurate in loop regions, where non-canonical pairs are important for determining the details of structure. Non-canonical pairs can be predicted using a knowledge-based model of structure that scores nucleotide cyclic motifs, or NCMs. In this work, a partition function algorithm is introduced that allows the estimation of base pairing probabilities for both canonical and non-canonical interactions. Pairs that are predicted to be probable are more likely to be found in the true structure than pairs of lower probability. Pair probability estimates can be further improved by predicting the structure conserved across multiple homologous sequences using the TurboFold algorithm. These pairing probabilities, used in concert with prior knowledge of the canonical secondary structure, allow accurate inference of non-canonical pairs, an important step towards accurate prediction of the full tertiary structure. Software to predict non-canonical base pairs and pairing probabilities is now provided as part of the RNAstructure software package. PMID:29107980

  4. Optically active polyurethane@indium tin oxide nanocomposite: Preparation, characterization and study of infrared emissivity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Yong; Zhou, Yuming, E-mail: ymzhou@seu.edu.cn; Ge, Jianhua

    Highlights: ► Silane coupling agent of KH550 was used to connect the ITO and polyurethanes. ► Infrared emissivity values of the hybrids were compared and analyzed. ► Interfacial synergistic action and orderly secondary structure were the key factors. -- Abstract: Optically active polyurethane@indium tin oxide and racemic polyurethane@indium tin oxide nanocomposites (LPU@ITO and RPU@ITO) were prepared by grafting the organics onto the surfaces of modified ITO nanoparticles. LPU@ITO and RPU@ITO composites based on the chiral and racemic tyrosine were characterized by FT-IR, UV–vis spectroscopy, X-ray diffraction (XRD), SEM, TEM, and thermogravimetric analysis (TGA), and the infrared emissivity values (8–14 μm)more » were investigated in addition. The results indicated that the polyurethanes had been successfully grafted onto the surfaces of ITO without destroying the crystalline structure. Both composites possessed the lower infrared emissivity values than the bare ITO nanoparticles, which indicated that the interfacial interaction had great effect on the infrared emissivity. Furthermore, LPU@ITO based on the optically active polyurethane had the virtue of regular secondary structure and more interfacial synergistic actions between organics and inorganics, thus it exhibited lower infrared emissivity value than RPU@ITO based on the racemic polyurethane.« less

  5. Unique phylogenetic position of Diplomonadida based on the complete small subunit ribosomal RNA sequence of Giardia ardeae, G. muris, G. duodenalis and Hexamita sp.

    PubMed

    van Keulen, H; Gutell, R R; Gates, M A; Campbell, S R; Erlandsen, S L; Jarroll, E L; Kulda, J; Meyer, E A

    1993-01-01

    Complete small-subunit rRNA (SSU-rRNA) coding region sequences were determined for two species of the intestinal parasite Giardia: G. ardeae and G. muris, both belonging to the order Diplomonadida, and a free-living member of this order, Hexamita sp. These sequences were compared to published SSU-rDNA sequences from a third member of the genus Giardia, G. duodenalis (often called G. intestinalis or G. lamblia) and various representative organisms from other taxa. Of the three Giardia sequences analyzed, the SSU-rRNA from G. muris is the smallest (1432 bases as compared to 1435 and 1453 for G. ardeae and G. duodenalis, respectively) and has the lowest G+C content (58.9%). The Hexamita SSU-rRNA is the largest in this group, containing 1550 bases. Because the sizes of the SSU-rRNA are prokaryotic rather than typically eukaryotic, the secondary structures of the SSU-rRNAs were constructed. These structures show a number of typically eukaryotic signature sequences. Sequence alignments based on constraints imposed by secondary structure were used for construction of a phylogenetic tree for these four taxa. The results show that of the four diplomonads represented, the Giardia species form a distinct group. The other diplomonad Hexamita and the microsporidium Vairimorpha necatrix appear to be distinct from Giardia.

  6. Hot spot of structural ambivalence in prion protein revealed by secondary structure principal component analysis.

    PubMed

    Yamamoto, Norifumi

    2014-08-21

    The conformational conversion of proteins into an aggregation-prone form is a common feature of various neurodegenerative disorders including Alzheimer's, Huntington's, Parkinson's, and prion diseases. In the early stage of prion diseases, secondary structure conversion in prion protein (PrP) causing β-sheet expansion facilitates the formation of a pathogenic isoform with a high content of β-sheets and strong aggregation tendency to form amyloid fibrils. Herein, we propose a straightforward method to extract essential information regarding the secondary structure conversion of proteins from molecular simulations, named secondary structure principal component analysis (SSPCA). The definite existence of a PrP isoform with an increased β-sheet structure was confirmed in a free-energy landscape constructed by mapping protein structural data into a reduced space according to the principal components determined by the SSPCA. We suggest a "spot" of structural ambivalence in PrP-the C-terminal part of helix 2-that lacks a strong intrinsic secondary structure, thus promoting a partial α-helix-to-β-sheet conversion. This result is important to understand how the pathogenic conformational conversion of PrP is initiated in prion diseases. The SSPCA has great potential to solve various challenges in studying highly flexible molecular systems, such as intrinsically disordered proteins, structurally ambivalent peptides, and chameleon sequences.

  7. Computational analysis of conserved RNA secondary structure in transcriptomes and genomes.

    PubMed

    Eddy, Sean R

    2014-01-01

    Transcriptomics experiments and computational predictions both enable systematic discovery of new functional RNAs. However, many putative noncoding transcripts arise instead from artifacts and biological noise, and current computational prediction methods have high false positive rates. I discuss prospects for improving computational methods for analyzing and identifying functional RNAs, with a focus on detecting signatures of conserved RNA secondary structure. An interesting new front is the application of chemical and enzymatic experiments that probe RNA structure on a transcriptome-wide scale. I review several proposed approaches for incorporating structure probing data into the computational prediction of RNA secondary structure. Using probabilistic inference formalisms, I show how all these approaches can be unified in a well-principled framework, which in turn allows RNA probing data to be easily integrated into a wide range of analyses that depend on RNA secondary structure inference. Such analyses include homology search and genome-wide detection of new structural RNAs.

  8. Synthesis and antibacterial activity of Schiff bases and amines derived from alkyl 2-(2-formyl-4-nitrophenoxy)alkanoates.

    PubMed

    Goszczyńska, Agata; Kwiecień, Halina; Fijałkowski, Karol

    A series of novel Schiff bases and secondary amines were obtained in good yields, as a result of the reductive amination of alkyl 2-(2-formyl-4-nitrophenoxy)alkanoates with both aniline and 4-methoxyaniline under established mild reaction conditions. Sodium triacetoxyborohydride as well as hydrogen in the presence of palladium on carbon were used as efficient reducing agents of the Schiff bases, in both direct and stepwise reductive amination processes. The Schiff bases, amines, and amine hydrochlorides were designed as potential antibacterial agents, and structure-activity relationship could be established following in vitro assays against Gram-positive and Gram-negative bacteria. The minimal inhibitory concentration and zone of inhibition were also determined. In these tests, some of Schiff bases and secondary amine hydrochlorides showed moderate-to-good activity against Gram-positive bacteria, including S. aureus , M. luteus , and S. mutans .

  9. Advanced glycation end products induce differential structural modifications and fibrillation of albumin

    NASA Astrophysics Data System (ADS)

    Awasthi, Saurabh; Sankaranarayanan, Kamatchi; Saraswathi, N. T.

    2016-06-01

    Glycation induced amyloid fibrillation is fundamental to the development of many neurodegenerative and cardiovascular complications. Excessive non-enzymatic glycation in conditions such as hyperglycaemia results in the increased accumulation of advanced glycation end products (AGEs). AGEs are highly reactive pro-oxidants, which can lead to the activation of inflammatory pathways and development of oxidative stress. Recently, the effect of non-enzymatic glycation on protein structure has been the major research area, but the role of specific AGEs in such structural alteration and induction of fibrillation remains undefined. In this study, we determined the specific AGEs mediated structural modifications in albumin mainly considering carboxymethyllysine (CML), carboxyethyllysine (CEL), and argpyrimidine (Arg-P) which are the major AGEs formed in the body. We studied the secondary structural changes based on circular dichroism (CD) and spectroscopic analysis. The AGEs induced fibrillation was determined by Congo red binding and examination of scanning and transmission electron micrographs. The amyloidogenic regions in the sequence of BSA were determined using FoldAmyloid. It was observed that CEL modification of BSA leads to the development of fibrillar structures, which was evident from both secondary structure changes and TEM analysis.

  10. Consistent global structures of complex RNA states through multidimensional chemical mapping

    PubMed Central

    Cheng, Clarence Yu; Chou, Fang-Chieh; Kladwang, Wipapat; Tian, Siqi; Cordero, Pablo; Das, Rhiju

    2015-01-01

    Accelerating discoveries of non-coding RNA (ncRNA) in myriad biological processes pose major challenges to structural and functional analysis. Despite progress in secondary structure modeling, high-throughput methods have generally failed to determine ncRNA tertiary structures, even at the 1-nm resolution that enables visualization of how helices and functional motifs are positioned in three dimensions. We report that integrating a new method called MOHCA-seq (Multiplexed •OH Cleavage Analysis with paired-end sequencing) with mutate-and-map secondary structure inference guides Rosetta 3D modeling to consistent 1-nm accuracy for intricately folded ncRNAs with lengths up to 188 nucleotides, including a blind RNA-puzzle challenge, the lariat-capping ribozyme. This multidimensional chemical mapping (MCM) pipeline resolves unexpected tertiary proximities for cyclic-di-GMP, glycine, and adenosylcobalamin riboswitch aptamers without their ligands and a loose structure for the recently discovered human HoxA9D internal ribosome entry site regulon. MCM offers a sequencing-based route to uncovering ncRNA 3D structure, applicable to functionally important but potentially heterogeneous states. DOI: http://dx.doi.org/10.7554/eLife.07600.001 PMID:26035425

  11. Secondary Moments due to Prestressing with Different Bond at the Ultimate Limit State

    NASA Astrophysics Data System (ADS)

    Halvoník, Jaroslav; Pažma, Peter; Vida, Radoslav

    2018-03-01

    Secondary effects of prestressing develop in statically indeterminate structures (e.g., continuous beams) due to the restraint of deformations imposed by hyperstatic restraints. These effects may significantly influence internal forces and stresses in prestressed structures. Secondary effects are influenced by the redundancy of a structural system, which raises the question of whether they will remain constant after a change in the structural system, e.g., due to the development of plastic hinge(s) in a critical cross-section(s) or after the development of a kinematic mechanism, or if they will disappear when the structure changes into a sequence of simply supported beams. The paper deals with an investigation of the behavior of continuous post-tensioned beams subjected to an ultimate load with significant secondary effects from prestressing. A total of 6 two-span beams prestressed by tendons with different bonds were tested in a laboratory with a load that changed their structural system into a kinematic mechanism. The internal forces and secondary effects of the prestressing were controlled through measurements of the reactions in all the supports. The results revealed that the secondary effects remained as a permanent part of the action on the experimental beams, even after the development of the kinematic mechanism. The results obtained confirmed that secondary effects should be included in all combinations of actions for verifications of ultimate limit states (ULS).

  12. PDBsum: Structural summaries of PDB entries.

    PubMed

    Laskowski, Roman A; Jabłońska, Jagoda; Pravda, Lukáš; Vařeková, Radka Svobodová; Thornton, Janet M

    2018-01-01

    PDBsum is a web server providing structural information on the entries in the Protein Data Bank (PDB). The analyses are primarily image-based and include protein secondary structure, protein-ligand and protein-DNA interactions, PROCHECK analyses of structural quality, and many others. The 3D structures can be viewed interactively in RasMol, PyMOL, and a JavaScript viewer called 3Dmol.js. Users can upload their own PDB files and obtain a set of password-protected PDBsum analyses for each. The server is freely accessible to all at: http://www.ebi.ac.uk/pdbsum. © 2017 The Protein Society.

  13. Diagnosis of Upper Quadrant Lymphedema Secondary to Cancer: Clinical Practice Guideline From the Oncology Section of the American Physical Therapy Association

    PubMed Central

    Levenhagen, Kimberly; Davies, Claire; Perdomo, Marisa; Ryans, Kathryn

    2017-01-01

    Abstract The Oncology Section of the American Physical Therapy Association (APTA) developed a clinical practice guideline to aid the clinician in diagnosing secondary upper quadrant cancer-related lymphedema. Following a systematic review of published studies and a structured appraisal process, recommendations were written to guide the physical therapist and other health care clinicians in the diagnostic process. Overall clinical practice recommendations were formulated based on the evidence for each diagnostic method and were assigned a grade based on the strength of the evidence for different patient presentations and clinical utility. In an effort to maximize clinical applicability, recommendations were based on the characteristics as to the location and stage of a patient's upper quadrant lymphedema. PMID:28838217

  14. [Changes in the secondary and tertiary structure of serum albumin in interactions with ligands of various structures].

    PubMed

    Trinus, F P; Braver-Chernobul'skaia, B S; Luĭk, A I; Boldeskul, A E; Velichko, A N

    1984-01-01

    High affinity interactions between blood serum albumin and five substances of various chemical structure, exhibiting distinct physiological activity, were accompanied by alterations in the protein tertiary structure, while the albumin secondary structure was involved in conformational transformation after less effective affinity binding.

  15. Sequential protein unfolding through a carbon nanotube pore

    NASA Astrophysics Data System (ADS)

    Xu, Zhonghe; Zhang, Shuang; Weber, Jeffrey K.; Luan, Binquan; Zhou, Ruhong; Li, Jingyuan

    2016-06-01

    An assortment of biological processes, like protein degradation and the transport of proteins across membranes, depend on protein unfolding events mediated by nanopore interfaces. In this work, we exploit fully atomistic simulations of an artificial, CNT-based nanopore to investigate the nature of ubiquitin unfolding. With one end of the protein subjected to an external force, we observe non-canonical unfolding behaviour as ubiquitin is pulled through the pore opening. Secondary structural elements are sequentially detached from the protein and threaded into the nanotube, interestingly, the remaining part maintains native-like characteristics. The constraints of the nanopore interface thus facilitate the formation of stable ``unfoldon'' motifs above the nanotube aperture that can exist in the absence of specific native contacts with the other secondary structure. Destruction of these unfoldons gives rise to distinct force peaks in our simulations, providing us with a sensitive probe for studying the kinetics of serial unfolding events. Our detailed analysis of nanopore-mediated protein unfolding events not only provides insight into how related processes might proceed in the cell, but also serves to deepen our understanding of structural arrangements which form the basis for protein conformational stability.An assortment of biological processes, like protein degradation and the transport of proteins across membranes, depend on protein unfolding events mediated by nanopore interfaces. In this work, we exploit fully atomistic simulations of an artificial, CNT-based nanopore to investigate the nature of ubiquitin unfolding. With one end of the protein subjected to an external force, we observe non-canonical unfolding behaviour as ubiquitin is pulled through the pore opening. Secondary structural elements are sequentially detached from the protein and threaded into the nanotube, interestingly, the remaining part maintains native-like characteristics. The constraints of the nanopore interface thus facilitate the formation of stable ``unfoldon'' motifs above the nanotube aperture that can exist in the absence of specific native contacts with the other secondary structure. Destruction of these unfoldons gives rise to distinct force peaks in our simulations, providing us with a sensitive probe for studying the kinetics of serial unfolding events. Our detailed analysis of nanopore-mediated protein unfolding events not only provides insight into how related processes might proceed in the cell, but also serves to deepen our understanding of structural arrangements which form the basis for protein conformational stability. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr00410e

  16. URS DataBase: universe of RNA structures and their motifs.

    PubMed

    Baulin, Eugene; Yacovlev, Victor; Khachko, Denis; Spirin, Sergei; Roytberg, Mikhail

    2016-01-01

    The Universe of RNA Structures DataBase (URSDB) stores information obtained from all RNA-containing PDB entries (2935 entries in October 2015). The content of the database is updated regularly. The database consists of 51 tables containing indexed data on various elements of the RNA structures. The database provides a web interface allowing user to select a subset of structures with desired features and to obtain various statistical data for a selected subset of structures or for all structures. In particular, one can easily obtain statistics on geometric parameters of base pairs, on structural motifs (stems, loops, etc.) or on different types of pseudoknots. The user can also view and get information on an individual structure or its selected parts, e.g. RNA-protein hydrogen bonds. URSDB employs a new original definition of loops in RNA structures. That definition fits both pseudoknot-free and pseudoknotted secondary structures and coincides with the classical definition in case of pseudoknot-free structures. To our knowledge, URSDB is the first database supporting searches based on topological classification of pseudoknots and on extended loop classification.Database URL: http://server3.lpm.org.ru/urs/. © The Author(s) 2016. Published by Oxford University Press.

  17. URS DataBase: universe of RNA structures and their motifs

    PubMed Central

    Baulin, Eugene; Yacovlev, Victor; Khachko, Denis; Spirin, Sergei; Roytberg, Mikhail

    2016-01-01

    The Universe of RNA Structures DataBase (URSDB) stores information obtained from all RNA-containing PDB entries (2935 entries in October 2015). The content of the database is updated regularly. The database consists of 51 tables containing indexed data on various elements of the RNA structures. The database provides a web interface allowing user to select a subset of structures with desired features and to obtain various statistical data for a selected subset of structures or for all structures. In particular, one can easily obtain statistics on geometric parameters of base pairs, on structural motifs (stems, loops, etc.) or on different types of pseudoknots. The user can also view and get information on an individual structure or its selected parts, e.g. RNA–protein hydrogen bonds. URSDB employs a new original definition of loops in RNA structures. That definition fits both pseudoknot-free and pseudoknotted secondary structures and coincides with the classical definition in case of pseudoknot-free structures. To our knowledge, URSDB is the first database supporting searches based on topological classification of pseudoknots and on extended loop classification. Database URL: http://server3.lpm.org.ru/urs/ PMID:27242032

  18. Residue-residue contacts: application to analysis of secondary structure interactions.

    PubMed

    Potapov, Vladimir; Edelman, Marvin; Sobolev, Vladimir

    2013-01-01

    Protein structures and their complexes are formed and stabilized by interactions, both inside and outside of the protein. Analysis of such interactions helps in understanding different levels of structures (secondary, super-secondary, and oligomeric states). It can also assist molecular biologists in understanding structural consequences of modifying proteins and/or ligands. In this chapter, our definition of atom-atom and residue-residue contacts is described and applied to analysis of protein-protein interactions in dimeric β-sandwich proteins.

  19. Structured Peer Mentoring: Enhancing Lifelong Learning in Pakistani Universities

    ERIC Educational Resources Information Center

    Naseem, Nosheen Rachel

    2012-01-01

    Higher Education in developing countries is frequently restricted to students from privileged backgrounds, especially those from private secondary education. In Pakistan, access to Higher Education, while competitive, is more broadly based, with state universities particularly recruiting students from diverse backgrounds. Just as Widening…

  20. High sensitivity and high resolution element 3D analysis by a combined SIMS–SPM instrument

    PubMed Central

    Wirtz, Tom

    2015-01-01

    Summary Using the recently developed SIMS–SPM prototype, secondary ion mass spectrometry (SIMS) data was combined with topographical data from the scanning probe microscopy (SPM) module for five test structures in order to obtain accurate chemical 3D maps: a polystyrene/polyvinylpyrrolidone (PS/PVP) polymer blend, a nickel-based super-alloy, a titanium carbonitride-based cermet, a reticle test structure and Mg(OH)2 nanoclusters incorporated inside a polymer matrix. The examples illustrate the potential of this combined approach to track and eliminate artefacts related to inhomogeneities of the sputter rates (caused by samples containing various materials, different phases or having a non-flat surface) and inhomogeneities of the secondary ion extraction efficiencies due to local field distortions (caused by topography with high aspect ratios). In this respect, this paper presents the measured relative sputter rates between PVP and PS as well as in between the different phases of the TiCN cermet. PMID:26171285

  1. Optimal packaging of FIV genomic RNA depends upon a conserved long-range interaction and a palindromic sequence within gag.

    PubMed

    Rizvi, Tahir A; Kenyon, Julia C; Ali, Jahabar; Aktar, Suriya J; Phillip, Pretty S; Ghazawi, Akela; Mustafa, Farah; Lever, Andrew M L

    2010-10-15

    The feline immunodeficiency virus (FIV) is a lentivirus that is related to human immunodeficiency virus (HIV), causing a similar pathology in cats. It is a potential small animal model for AIDS and the FIV-based vectors are also being pursued for human gene therapy. Previous studies have mapped the FIV packaging signal (ψ) to two or more discontinuous regions within the 5' 511 nt of the genomic RNA and structural analyses have determined its secondary structure. The 5' and 3' sequences within ψ region interact through extensive long-range interactions (LRIs), including a conserved heptanucleotide interaction between R/U5 and gag. Other secondary structural elements identified include a conserved 150 nt stem-loop (SL2) and a small palindromic stem-loop within gag open reading frame that might act as a viral dimerization initiation site. We have performed extensive mutational analysis of these sequences and structures and ascertained their importance in FIV packaging using a trans-complementation assay. Disrupting the conserved heptanucleotide LRI to prevent base pairing between R/U5 and gag reduced packaging by 2.8-5.5 fold. Restoration of pairing using an alternative, non-wild type (wt) LRI sequence restored RNA packaging and propagation to wt levels, suggesting that it is the structure of the LRI, rather than its sequence, that is important for FIV packaging. Disrupting the palindrome within gag reduced packaging by 1.5-3-fold, but substitution with a different palindromic sequence did not restore packaging completely, suggesting that the sequence of this region as well as its palindromic nature is important. Mutation of individual regions of SL2 did not have a pronounced effect on FIV packaging, suggesting that either it is the structure of SL2 as a whole that is necessary for optimal packaging, or that there is redundancy within this structure. The mutational analysis presented here has further validated the previously predicted RNA secondary structure of FIV ψ. Copyright © 2010 Elsevier Ltd. All rights reserved.

  2. Polarization-dependent two-photon absorption for the determination of protein secondary structure: A theoretical study

    NASA Astrophysics Data System (ADS)

    Wanapun, Duangporn; Wampler, Ronald D.; Begue, Nathan J.; Simpson, Garth J.

    2008-03-01

    A new method for sensitive determination of protein secondary structure via multi-photon absorption is considered theoretically. Perturbation theory is developed to describe the polarization-dependent two-photon absorption (TPA) of α-helix and β-sheet protein secondary structures. The exciton coupling interactions responsible for relatively weak electronic circular dichroism in one-photon absorption are predicted to give rise to large changes in the TPA cross-section (>200%) for circular versus linear incident polarizations, defined as CLD. The CLD effect in TPA is electric dipole-allowed, which explains the much greater sensitivity. These predictions suggest TPA should be a viable means of sensitively probing protein secondary structure.

  3. Solution structure of dimeric Mnt repressor (1-76).

    PubMed

    Burgering, M J; Boelens, R; Gilbert, D E; Breg, J N; Knight, K L; Sauer, R T; Kaptein, R

    1994-12-20

    Wild-type Mnt repressor of Salmonella bacteriophage P22 is a tetrameric protein of 82 residues per monomer. A C-terminal deletion mutant of the repressor denoted Mnt (1-76) is a dimer in solution. The structure of this dimer has been determined using NMR. The NMR assignments of the majority of the 1H, 15N, and 13C resonances were obtained using 2D and triple-resonance 3D techniques. Elements of secondary structure were identified on the basis of characteristic sequential and medium range NOEs. For the structure determination more than 1000 NOEs per monomer were obtained, and structures were generated using distance geometry and restrained simulated annealing calculations. The discrimination of intra- vs intermonomer NOEs was based upon the observation of intersubunit NOEs in [15N,13C] double half-filtered NOESY experiments. The N-terminal part of Mnt (residues 1-44), which shows a 40% sequence homology with the Arc repressor, has a similar secondary and tertiary structure. Mnt (1-76) continues with a loop region of irregular structure, a third alpha-helix, and a random coil C-terminal peptide. Analysis of the secondary structure NOEs, the exchange rates, and the backbone chemical shifts suggests that the carboxy-terminal third helix is less stable than the remainder of the protein, but the observation of intersubunit NOEs for this part of the protein enables the positioning of this helix. The rsmd's between the backbone atoms of the N-terminal part of the Mnt repressor (residues 5-43, 5'-43') and the Arc repressor is 1.58 A, and between this region and the corresponding part of the MetJ repressor 1.43 A.

  4. [Rescue helicopters in secondary missions].

    PubMed

    Gorgass, B; Frey, G

    1977-11-03

    During the last five years, we have had to fly 560 primary and 1150 secondary missions with the rescue helicopter of the Ulm Rescue Centre. This relationship of approximately 1 : 2 is distinctly different from the numbers obtained in other helicopter bases. The geographical location and structure of the hospitals within range of the Ulm rescue helicopter account for the large proportion of urgent secondary missions. The evaluation of these secondary missions concurs with the ADAC statistics and shows that the quick transport of the emergency doctor to the scene of the emergency, is only one component in the functions of the rescue helicopter. During primary and secondary missions, the ability to transport emergency patients to the nearest qualified hospital by helicopter, which is a mobile intensive care unit, is of equal importance. In the future, rescue helicopters will have to take these requirements into account by providing the necessary equipment and more especially, by providing sufficient space to carry out emergency diagnostic and therapeutic treatment.

  5. Probing Xist RNA Structure in Cells Using Targeted Structure-Seq

    PubMed Central

    Rutenberg-Schoenberg, Michael; Simon, Matthew D.

    2015-01-01

    The long non-coding RNA (lncRNA) Xist is a master regulator of X-chromosome inactivation in mammalian cells. Models for how Xist and other lncRNAs function depend on thermodynamically stable secondary and higher-order structures that RNAs can form in the context of a cell. Probing accessible RNA bases can provide data to build models of RNA conformation that provide insight into RNA function, molecular evolution, and modularity. To study the structure of Xist in cells, we built upon recent advances in RNA secondary structure mapping and modeling to develop Targeted Structure-Seq, which combines chemical probing of RNA structure in cells with target-specific massively parallel sequencing. By enriching for signals from the RNA of interest, Targeted Structure-Seq achieves high coverage of the target RNA with relatively few sequencing reads, thus providing a targeted and scalable approach to analyze RNA conformation in cells. We use this approach to probe the full-length Xist lncRNA to develop new models for functional elements within Xist, including the repeat A element in the 5’-end of Xist. This analysis also identified new structural elements in Xist that are evolutionarily conserved, including a new element proximal to the C repeats that is important for Xist function. PMID:26646615

  6. DNA secondary structures: stability and function of G-quadruplex structures

    PubMed Central

    Bochman, Matthew L.; Paeschke, Katrin; Zakian, Virginia A.

    2013-01-01

    In addition to the canonical double helix, DNA can fold into various other inter- and intramolecular secondary structures. Although many such structures were long thought to be in vitro artefacts, bioinformatics demonstrates that DNA sequences capable of forming these structures are conserved throughout evolution, suggesting the existence of non-B-form DNA in vivo. In addition, genes whose products promote formation or resolution of these structures are found in diverse organisms, and a growing body of work suggests that the resolution of DNA secondary structures is critical for genome integrity. This Review focuses on emerging evidence relating to the characteristics of G-quadruplex structures and the possible influence of such structures on genomic stability and cellular processes, such as transcription. PMID:23032257

  7. Seismic performance assessment of base-isolated safety-related nuclear structures

    USGS Publications Warehouse

    Huang, Y.-N.; Whittaker, A.S.; Luco, N.

    2010-01-01

    Seismic or base isolation is a proven technology for reducing the effects of earthquake shaking on buildings, bridges and infrastructure. The benefit of base isolation has been presented in terms of reduced accelerations and drifts on superstructure components but never quantified in terms of either a percentage reduction in seismic loss (or percentage increase in safety) or the probability of an unacceptable performance. Herein, we quantify the benefits of base isolation in terms of increased safety (or smaller loss) by comparing the safety of a sample conventional and base-isolated nuclear power plant (NPP) located in the Eastern U.S. Scenario- and time-based assessments are performed using a new methodology. Three base isolation systems are considered, namely, (1) Friction Pendulum??? bearings, (2) lead-rubber bearings and (3) low-damping rubber bearings together with linear viscous dampers. Unacceptable performance is defined by the failure of key secondary systems because these systems represent much of the investment in a new build power plant and ensure the safe operation of the plant. For the scenario-based assessments, the probability of unacceptable performance is computed for an earthquake with a magnitude of 5.3 at a distance 7.5 km from the plant. For the time-based assessments, the annual frequency of unacceptable performance is computed considering all potential earthquakes that may occur. For both assessments, the implementation of base isolation reduces the probability of unacceptable performance by approximately four orders of magnitude for the same NPP superstructure and secondary systems. The increase in NPP construction cost associated with the installation of seismic isolators can be offset by substantially reducing the required seismic strength of secondary components and systems and potentially eliminating the need to seismically qualify many secondary components and systems. ?? 2010 John Wiley & Sons, Ltd.

  8. Bioinformatics approaches for structural and functional analysis of proteins in secondary metabolism in Withania somnifera.

    PubMed

    Sanchita; Singh, Swati; Sharma, Ashok

    2014-11-01

    Withania somnifera (Ashwagandha) is an affluent storehouse of large number of pharmacologically active secondary metabolites known as withanolides. These secondary metabolites are produced by withanolide biosynthetic pathway. Very less information is available on structural and functional aspects of enzymes involved in withanolides biosynthetic pathways of Withiana somnifera. We therefore performed a bioinformatics analysis to look at functional and structural properties of these important enzymes. The pathway enzymes taken for this study were 3-Hydroxy-3-methylglutaryl coenzyme A reductase, 1-Deoxy-D-xylulose-5-phosphate synthase, 1-Deoxy-D-xylulose-5-phosphate reductase, farnesyl pyrophosphate synthase, squalene synthase, squalene epoxidase, and cycloartenol synthase. The prediction of secondary structure was performed for basic structural information. Three-dimensional structures for these enzymes were predicted. The physico-chemical properties such as pI, AI, GRAVY and instability index were also studied. The current information will provide a platform to know the structural attributes responsible for the function of these protein until experimental structures become available.

  9. DSSPcont: continuous secondary structure assignments for proteins

    PubMed Central

    Carter, Phil; Andersen, Claus A. F.; Rost, Burkhard

    2003-01-01

    The DSSP program automatically assigns the secondary structure for each residue from the three-dimensional co-ordinates of a protein structure to one of eight states. However, discrete assignments are incomplete in that they cannot capture the continuum of thermal fluctuations. Therefore, DSSPcont (http://cubic.bioc.columbia.edu/services/DSSPcont) introduces a continuous assignment of secondary structure that replaces ‘static’ by ‘dynamic’ states. Technically, the continuum results from calculating weighted averages over 10 discrete DSSP assignments with different hydrogen bond thresholds. A DSSPcont assignment for a particular residue is a percentage likelihood of eight secondary structure states, derived from a weighted average of the ten DSSP assignments. The continuous assignments have two important features: (i) they reflect the structural variations due to thermal fluctuations as detected by NMR spectroscopy; and (ii) they reproduce the structural variation between many NMR models from one single model. Therefore, functionally important variation can be extracted from a single X-ray structure using the continuous assignment procedure. PMID:12824310

  10. Evidence for the role of double-helical structures in the maturation of simian virus-40 messenger RNA.

    PubMed Central

    Chiu, N H; Bruszewski, W B; Salzman, N P

    1980-01-01

    Simian Virus-40 infected BSC-1 cells were pretreated with glucosamine and briefly pulsed with [3H]-uridine. The labeling can be halted instantaneously by the addition of cold uridine and glucosamine. Under these pulse-chase conditions, the inhibitory effects of the intercalating agent proflavine on the processing of prelabeled nuclear RNA precursors were examined in vivo. Proflavine inhibits the cleavage of viral nuclear RNA precursors. However, turnover of the mature viral mRNAs in the cytoplasm is not inhibited. The effect of proflavine on processing is not a secondary consequence of its inhibition of protein synthesis. The data suggest that base-paired secondary structures in the primary transcripts are important processing signals in the generation of viral mRNA molecules. Images PMID:6243778

  11. How an inquiry-based classroom lesson intervenes in science efficacy, career-orientation and self-determination

    NASA Astrophysics Data System (ADS)

    Schmid, S.; Bogner, F. X.

    2017-11-01

    Three subscales of the 'Science Motivation Questionnaire II' (SMQII; motivational components: career motivation, self-efficacy and self-determination), with 4 items each, were applied to a sample of 209 secondary school students to monitor the impact of a 3-hour structured inquiry lesson. Four testing points (before, immediately after, 6 and 12 weeks after) were applied. The modified SMQII was factor-analyzed at each testing cycle and the structure confirmed. Only self-determination was shown to be influenced by an inquiry course, while self-efficacy and career motivation did not. Only self-efficacy and career motivation were intercorrelated and also correlated with science subject grades and subsequent achievement. Implications for using the modified SMQII subscales for research and teaching in secondary school are discussed.

  12. Understanding the General Packing Rearrangements Required for Successful Template Based Modeling of Protein Structure from a CASP Experiment

    PubMed Central

    Day, Ryan; Joo, Hyun; Chavan, Archana; Lennox, Kristin P.; Chen, Ann; Dahl, David B.; Vannucci, Marina; Tsai, Jerry W.

    2012-01-01

    As an alternative to the common template based protein structure prediction methods based on main-chain position, a novel side-chain centric approach has been developed. Together with a Bayesian loop modeling procedure and a combination scoring function, the Stone Soup algorithm was applied to the CASP9 set of template based modeling targets. Although the method did not generate as large of perturbations to the template structures as necessary, the analysis of the results gives unique insights into the differences in packing between the target structures and their templates. Considerable variation in packing is found between target and template structures even when the structures are close, and this variation is found due to 2 and 3 body packing interactions. Outside the inherent restrictions in packing representation of the PDB, the first steps in correctly defining those regions of variable packing have been mapped primarily to local interactions, as the packing at the secondary and tertiary structure are largely conserved. Of the scoring functions used, a loop scoring function based on water structure exhibited some promise for discrimination. These results present a clear structural path for further development of a side-chain centered approach to template based modeling. PMID:23266765

  13. Understanding the general packing rearrangements required for successful template based modeling of protein structure from a CASP experiment.

    PubMed

    Day, Ryan; Joo, Hyun; Chavan, Archana C; Lennox, Kristin P; Chen, Y Ann; Dahl, David B; Vannucci, Marina; Tsai, Jerry W

    2013-02-01

    As an alternative to the common template based protein structure prediction methods based on main-chain position, a novel side-chain centric approach has been developed. Together with a Bayesian loop modeling procedure and a combination scoring function, the Stone Soup algorithm was applied to the CASP9 set of template based modeling targets. Although the method did not generate as large of perturbations to the template structures as necessary, the analysis of the results gives unique insights into the differences in packing between the target structures and their templates. Considerable variation in packing is found between target and template structures even when the structures are close, and this variation is found due to 2 and 3 body packing interactions. Outside the inherent restrictions in packing representation of the PDB, the first steps in correctly defining those regions of variable packing have been mapped primarily to local interactions, as the packing at the secondary and tertiary structure are largely conserved. Of the scoring functions used, a loop scoring function based on water structure exhibited some promise for discrimination. These results present a clear structural path for further development of a side-chain centered approach to template based modeling. Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. Predicting beta-turns in proteins using support vector machines with fractional polynomials

    PubMed Central

    2013-01-01

    Background β-turns are secondary structure type that have essential role in molecular recognition, protein folding, and stability. They are found to be the most common type of non-repetitive structures since 25% of amino acids in protein structures are situated on them. Their prediction is considered to be one of the crucial problems in bioinformatics and molecular biology, which can provide valuable insights and inputs for the fold recognition and drug design. Results We propose an approach that combines support vector machines (SVMs) and logistic regression (LR) in a hybrid prediction method, which we call (H-SVM-LR) to predict β-turns in proteins. Fractional polynomials are used for LR modeling. We utilize position specific scoring matrices (PSSMs) and predicted secondary structure (PSS) as features. Our simulation studies show that H-SVM-LR achieves Qtotal of 82.87%, 82.84%, and 82.32% on the BT426, BT547, and BT823 datasets respectively. These values are the highest among other β-turns prediction methods that are based on PSSMs and secondary structure information. H-SVM-LR also achieves favorable performance in predicting β-turns as measured by the Matthew's correlation coefficient (MCC) on these datasets. Furthermore, H-SVM-LR shows good performance when considering shape strings as additional features. Conclusions In this paper, we present a comprehensive approach for β-turns prediction. Experiments show that our proposed approach achieves better performance compared to other competing prediction methods. PMID:24565438

  15. Predicting beta-turns in proteins using support vector machines with fractional polynomials.

    PubMed

    Elbashir, Murtada; Wang, Jianxin; Wu, Fang-Xiang; Wang, Lusheng

    2013-11-07

    β-turns are secondary structure type that have essential role in molecular recognition, protein folding, and stability. They are found to be the most common type of non-repetitive structures since 25% of amino acids in protein structures are situated on them. Their prediction is considered to be one of the crucial problems in bioinformatics and molecular biology, which can provide valuable insights and inputs for the fold recognition and drug design. We propose an approach that combines support vector machines (SVMs) and logistic regression (LR) in a hybrid prediction method, which we call (H-SVM-LR) to predict β-turns in proteins. Fractional polynomials are used for LR modeling. We utilize position specific scoring matrices (PSSMs) and predicted secondary structure (PSS) as features. Our simulation studies show that H-SVM-LR achieves Qtotal of 82.87%, 82.84%, and 82.32% on the BT426, BT547, and BT823 datasets respectively. These values are the highest among other β-turns prediction methods that are based on PSSMs and secondary structure information. H-SVM-LR also achieves favorable performance in predicting β-turns as measured by the Matthew's correlation coefficient (MCC) on these datasets. Furthermore, H-SVM-LR shows good performance when considering shape strings as additional features. In this paper, we present a comprehensive approach for β-turns prediction. Experiments show that our proposed approach achieves better performance compared to other competing prediction methods.

  16. Rational Design and Tuning of Functional RNA Switch to Control an Allosteric Intermolecular Interaction.

    PubMed

    Endoh, Tamaki; Sugimoto, Naoki

    2015-08-04

    Conformational transitions of biomolecules in response to specific stimuli control many biological processes. In natural functional RNA switches, often called riboswitches, a particular RNA structure that has a suppressive or facilitative effect on gene expression transitions to an alternative structure with the opposite effect upon binding of a specific metabolite to the aptamer region. Stability of RNA secondary structure (-ΔG°) can be predicted based on thermodynamic parameters and is easily tuned by changes in nucleobases. We envisioned that tuning of a functional RNA switch that causes an allosteric interaction between an RNA and a peptide would be possible based on a predicted switching energy (ΔΔG°) that corresponds to the energy difference between the RNA secondary structure before (-ΔG°before) and after (-ΔG°after) the RNA conformational transition. We first selected functional RNA switches responsive to neomycin with predicted ΔΔG° values ranging from 5.6 to 12.2 kcal mol(-1). We then demonstrated a simple strategy to rationally convert the functional RNA switch to switches responsive to natural metabolites thiamine pyrophosphate, S-adenosyl methionine, and adenine based on the predicted ΔΔG° values. The ΔΔG° values of the designed RNA switches proportionally correlated with interaction energy (ΔG°interaction) between the RNA and peptide, and we were able to tune the sensitivity of the RNA switches for the trigger molecule. The strategy demonstrated here will be generally applicable for construction of functional RNA switches and biosensors in which mechanisms are based on conformational transition of nucleic acids.

  17. Secondary flow vortical structures in a 180∘ elastic curved vessel with torsion under steady and pulsatile inflow conditions

    NASA Astrophysics Data System (ADS)

    Najjari, Mohammad Reza; Plesniak, Michael W.

    2018-01-01

    Secondary flow structures in a 180∘ curved pipe model of an artery are studied using particle image velocimetry. Both steady and pulsatile inflow conditions are investigated. In planar curved pipes with steady flow, multiple (two, four, six) vortices are detected. For pulsatile flow, various pairs of vortices, i.e., Dean, deformed-Dean, Lyne-type, and split-Dean, are present in the cross section of the pipe at 90∘ into the bend. The effects of nonplanar curvature (torsion) and vessel dilatation on these vortical structures are studied. Torsion distorts the symmetric secondary flows (which exist in planar curvatures) and can result in formation of more complex vortical structures. For example, the split-Dean and Lyne-type vortices with same rotation direction originating from opposite sides of the cross section tend to merge together in pulsatile flow. The vortical structures in elastic vessels with dilatation (0.61%-3.23%) are also investigated and the results are compared with rigid model results. It was found that the secondary flow structures in rigid and elastic models are similar, and hence the local compliance of the vessel does not affect the morphology of secondary flow structures.

  18. RNAmutants: a web server to explore the mutational landscape of RNA secondary structures

    PubMed Central

    Waldispühl, Jerome; Devadas, Srinivas; Berger, Bonnie; Clote, Peter

    2009-01-01

    The history and mechanism of molecular evolution in DNA have been greatly elucidated by contributions from genetics, probability theory and bioinformatics—indeed, mathematical developments such as Kimura's neutral theory, Kingman's coalescent theory and efficient software such as BLAST, ClustalW, Phylip, etc., provide the foundation for modern population genetics. In contrast to DNA, the function of most noncoding RNA depends on tertiary structure, experimentally known to be largely determined by secondary structure, for which dynamic programming can efficiently compute the minimum free energy secondary structure. For this reason, understanding the effect of pointwise mutations in RNA secondary structure could reveal fundamental properties of structural RNA molecules and improve our understanding of molecular evolution of RNA. The web server RNAmutants provides several efficient tools to compute the ensemble of low-energy secondary structures for all k-mutants of a given RNA sequence, where k is bounded by a user-specified upper bound. As we have previously shown, these tools can be used to predict putative deleterious mutations and to analyze regulatory sequences from the hepatitis C and human immunodeficiency genomes. Web server is available at http://bioinformatics.bc.edu/clotelab/RNAmutants/, and downloadable binaries at http://rnamutants.csail.mit.edu/. PMID:19531740

  19. Improved Model for Predicting the Free Energy Contribution of Dinucleotide Bulges to RNA Duplex Stability.

    PubMed

    Tomcho, Jeremy C; Tillman, Magdalena R; Znosko, Brent M

    2015-09-01

    Predicting the secondary structure of RNA is an intermediate in predicting RNA three-dimensional structure. Commonly, determining RNA secondary structure from sequence uses free energy minimization and nearest neighbor parameters. Current algorithms utilize a sequence-independent model to predict free energy contributions of dinucleotide bulges. To determine if a sequence-dependent model would be more accurate, short RNA duplexes containing dinucleotide bulges with different sequences and nearest neighbor combinations were optically melted to derive thermodynamic parameters. These data suggested energy contributions of dinucleotide bulges were sequence-dependent, and a sequence-dependent model was derived. This model assigns free energy penalties based on the identity of nucleotides in the bulge (3.06 kcal/mol for two purines, 2.93 kcal/mol for two pyrimidines, 2.71 kcal/mol for 5'-purine-pyrimidine-3', and 2.41 kcal/mol for 5'-pyrimidine-purine-3'). The predictive model also includes a 0.45 kcal/mol penalty for an A-U pair adjacent to the bulge and a -0.28 kcal/mol bonus for a G-U pair adjacent to the bulge. The new sequence-dependent model results in predicted values within, on average, 0.17 kcal/mol of experimental values, a significant improvement over the sequence-independent model. This model and new experimental values can be incorporated into algorithms that predict RNA stability and secondary structure from sequence.

  20. Analysis of secondary structural elements in human microRNA hairpin precursors.

    PubMed

    Liu, Biao; Childs-Disney, Jessica L; Znosko, Brent M; Wang, Dan; Fallahi, Mohammad; Gallo, Steven M; Disney, Matthew D

    2016-03-01

    MicroRNAs (miRNAs) regulate gene expression by targeting complementary mRNAs for destruction or translational repression. Aberrant expression of miRNAs has been associated with various diseases including cancer, thus making them interesting therapeutic targets. The composite of secondary structural elements that comprise miRNAs could aid the design of small molecules that modulate their function. We analyzed the secondary structural elements, or motifs, present in all human miRNA hairpin precursors and compared them to highly expressed human RNAs with known structures and other RNAs from various organisms. Amongst human miRNAs, there are 3808 are unique motifs, many residing in processing sites. Further, we identified motifs in miRNAs that are not present in other highly expressed human RNAs, desirable targets for small molecules. MiRNA motifs were incorporated into a searchable database that is freely available. We also analyzed the most frequently occurring bulges and internal loops for each RNA class and found that the smallest loops possible prevail. However, the distribution of loops and the preferred closing base pairs were unique to each class. Collectively, we have completed a broad survey of motifs found in human miRNA precursors, highly expressed human RNAs, and RNAs from other organisms. Interestingly, unique motifs were identified in human miRNA processing sites, binding to which could inhibit miRNA maturation and hence function.

  1. The separation between the 5'-3' ends in long RNA molecules is short and nearly constant.

    PubMed

    Leija-Martínez, Nehemías; Casas-Flores, Sergio; Cadena-Nava, Rubén D; Roca, Joan A; Mendez-Cabañas, José A; Gomez, Eduardo; Ruiz-Garcia, Jaime

    2014-12-16

    RNA molecules play different roles in coding, decoding and gene expression regulation. Such roles are often associated to the RNA secondary or tertiary structures. The folding dynamics lead to multiple secondary structures of long RNA molecules, since an RNA molecule might fold into multiple distinct native states. Despite an ensemble of different structures, it has been theoretically proposed that the separation between the 5' and 3' ends of long single-stranded RNA molecules (ssRNA) remains constant, independent of their base content and length. Here, we present the first experimental measurements of the end-to-end separation in long ssRNA molecules. To determine this separation, we use single molecule Fluorescence Resonance Energy Transfer of fluorescently end-labeled ssRNA molecules ranging from 500 to 5500 nucleotides in length, obtained from two viruses and a fungus. We found that the end-to-end separation is indeed short, within 5-9 nm. It is remarkable that the separation of the ends of all RNA molecules studied remains small and similar, despite the origin, length and differences in their secondary structure. This implies that the ssRNA molecules are 'effectively circularized' something that might be a general feature of RNAs, and could result in fine-tuning for translation and gene expression regulation. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  2. Isotropic and Anisotropic Growth of Metal-Organic Framework (MOF) on MOF: Logical Inference on MOF Structure Based on Growth Behavior and Morphological Feature.

    PubMed

    Choi, Sora; Kim, Taeho; Ji, Hoyeon; Lee, Hee Jung; Oh, Moonhyun

    2016-11-02

    The growth of one metal-organic framework (MOF) on another MOF for constructing a heterocompositional hybrid MOF is an interesting research topic because of the curiosity regarding the occurrence of this phenomenon and the value of hybrid MOFs as multifunctional materials or routes for fine-tuning MOF properties. In particular, the anisotropic growth of MOF on MOF is fascinating for the development of MOFs possessing atypical shapes and heterostructures or abnormal properties. Herein, we clarify the understanding of growth behavior of a secondary MOF on an initial MOF template, such as isotropic or anisotropic ways associated with their cell parameters. The isotropic growth of MIL-68-Br on the MIL-68 template results in the formation of core-shell-type MIL-68@MIL-68-Br. However, the unique anisotropic growth of a secondary MOF (MOF-NDC) on the MIL-68 template results in semitubular particles, and structural features of this unknown secondary MOF are successfully speculated for the first time on the basis of its unique growth behavior and morphological characteristics. Finally, the validation of this structural speculation is verified by the powder X-ray diffraction and the selected area electron diffraction studies. The results suggests that the growth behavior and morphological features of MOFs should be considered to be important factors for understanding the MOFs' structures.

  3. Design of Aminopolymer Structure to Enhance Performance and Stability of CO2 Sorbents: Poly(propylenimine) vs Poly(ethylenimine).

    PubMed

    Pang, Simon H; Lee, Li-Chen; Sakwa-Novak, Miles A; Lively, Ryan P; Jones, Christopher W

    2017-03-15

    Studies on aminopolymer/oxide composite materials for direct CO 2 capture from air have often focused on the prototypical poly(ethylenimine) (PEI) as the aminopolymer. However, it is known that PEI will oxidatively degrade at elevated temperatures. This degradation has been ascribed to the presence of secondary amines, which, when oxidized, lose their CO 2 capture capacity. Here, we demonstrate the use of small molecule poly(propylenimine) (PPI) in linear and dendritic architectures supported in silica as adsorbent materials for direct CO 2 capture from air. Regardless of amine loading or aminopolymer architecture, the PPI-based sorbents are found to be more efficient for CO 2 capture than PEI-based sorbents. Moreover, PPI is found to be more resistant to oxidative degradation than PEI, even while containing secondary amines, as supported by FTIR, NMR, and ESI-MS studies. These results suggest that PPI-based CO 2 sorbents may allow for longer sorbent working lifetimes due to an increased tolerance to sorbent regeneration conditions and suggest that the presence of secondary amines may not mean that all aminopolymers will oxidatively degrade.

  4. Native aggregation as a cause of origin of temporary cellular structures needed for all forms of cellular activity, signaling and transformations.

    PubMed

    Matveev, Vladimir V

    2010-06-09

    According to the hypothesis explored in this paper, native aggregation is genetically controlled (programmed) reversible aggregation that occurs when interacting proteins form new temporary structures through highly specific interactions. It is assumed that Anfinsen's dogma may be extended to protein aggregation: composition and amino acid sequence determine not only the secondary and tertiary structure of single protein, but also the structure of protein aggregates (associates). Cell function is considered as a transition between two states (two states model), the resting state and state of activity (this applies to the cell as a whole and to its individual structures). In the resting state, the key proteins are found in the following inactive forms: natively unfolded and globular. When the cell is activated, secondary structures appear in natively unfolded proteins (including unfolded regions in other proteins), and globular proteins begin to melt and their secondary structures become available for interaction with the secondary structures of other proteins. These temporary secondary structures provide a means for highly specific interactions between proteins. As a result, native aggregation creates temporary structures necessary for cell activity."One of the principal objects of theoretical research in any department of knowledge is to find the point of view from which the subject appears in its greatest simplicity."Josiah Willard Gibbs (1839-1903).

  5. PSS-3D1D: an improved 3D1D profile method of protein fold recognition for the annotation of twilight zone sequences.

    PubMed

    Ganesan, K; Parthasarathy, S

    2011-12-01

    Annotation of any newly determined protein sequence depends on the pairwise sequence identity with known sequences. However, for the twilight zone sequences which have only 15-25% identity, the pair-wise comparison methods are inadequate and the annotation becomes a challenging task. Such sequences can be annotated by using methods that recognize their fold. Bowie et al. described a 3D1D profile method in which the amino acid sequences that fold into a known 3D structure are identified by their compatibility to that known 3D structure. We have improved the above method by using the predicted secondary structure information and employ it for fold recognition from the twilight zone sequences. In our Protein Secondary Structure 3D1D (PSS-3D1D) method, a score (w) for the predicted secondary structure of the query sequence is included in finding the compatibility of the query sequence to the known fold 3D structures. In the benchmarks, the PSS-3D1D method shows a maximum of 21% improvement in predicting correctly the α + β class of folds from the sequences with twilight zone level of identity, when compared with the 3D1D profile method. Hence, the PSS-3D1D method could offer more clues than the 3D1D method for the annotation of twilight zone sequences. The web based PSS-3D1D method is freely available in the PredictFold server at http://bioinfo.bdu.ac.in/servers/ .

  6. Structural landscape of base pairs containing post-transcriptional modifications in RNA

    PubMed Central

    Seelam, Preethi P.; Sharma, Purshotam

    2017-01-01

    Base pairs involving post-transcriptionally modified nucleobases are believed to play important roles in a wide variety of functional RNAs. Here we present our attempts toward understanding the structural and functional role of naturally occurring modified base pairs using a combination of X-ray crystal structure database analysis, sequence analysis, and advanced quantum chemical methods. Our bioinformatics analysis reveals that despite their presence in all major secondary structural elements, modified base pairs are most prevalent in tRNA crystal structures and most commonly involve guanine or uridine modifications. Further, analysis of tRNA sequences reveals additional examples of modified base pairs at structurally conserved tRNA regions and highlights the conservation patterns of these base pairs in three domains of life. Comparison of structures and binding energies of modified base pairs with their unmodified counterparts, using quantum chemical methods, allowed us to classify the base modifications in terms of the nature of their electronic structure effects on base-pairing. Analysis of specific structural contexts of modified base pairs in RNA crystal structures revealed several interesting scenarios, including those at the tRNA:rRNA interface, antibiotic-binding sites on the ribosome, and the three-way junctions within tRNA. These scenarios, when analyzed in the context of available experimental data, allowed us to correlate the occurrence and strength of modified base pairs with their specific functional roles. Overall, our study highlights the structural importance of modified base pairs in RNA and points toward the need for greater appreciation of the role of modified bases and their interactions, in the context of many biological processes involving RNA. PMID:28341704

  7. Pedagogical Approaches for Technology-Integrated Science Teaching

    ERIC Educational Resources Information Center

    Hennessy, Sara; Wishart, Jocelyn; Whitelock, Denise; Deaney, Rosemary; Brawn, Richard; la Velle, Linda; McFarlane, Angela; Ruthven, Kenneth; Winterbottom, Mark

    2007-01-01

    The two separate projects described have examined how teachers exploit computer-based technologies in supporting learning of science at secondary level. This paper examines how pedagogical approaches associated with these technological tools are adapted to both the cognitive and structuring resources available in the classroom setting. Four…

  8. Protecting Teens: Beyond Race, Income and Family Structure.

    ERIC Educational Resources Information Center

    Blum, Robert W.; Beuhring, Trisha; Rinehart, Peggy Mann

    This monograph discusses how to protect adolescents by addressing health behaviors. Data come from the Add Health Survey, a comprehensive school-based study of adolescents' health-related behaviors. Secondary students answered surveys about their lives, health, friendships, self-esteem, and expectations for the future. School administrators…

  9. Ab initio study of novel carbon nanofoam structure as an anode material for Li secondary battery

    NASA Astrophysics Data System (ADS)

    Park, Hanjin; Park, Sora; Kang, Seoung-Hun; Kwon, Young-Kyun

    2014-03-01

    Using ab inito density functional theory, we investigate the adsorption and diffusion properties of Li atoms on a new carbon nanostructure, which may be used as an anode of Li secondary battery. We focus on a special carbon nanofoam structure consisting of Schwarzite structures with negative Gaussian curvature as core parts, which are interconnected through (4,4) CNT segments. Considering the symmetry of the nanofoam structure, we find various Li adsorption sites exhibiting relatively large binding energies (>= 2 . 00 eV). Based on these adsorption sites, we identify several diffusion paths on the outside or inside surface of the nanofoam structure and examine the diffusion barriers along the paths. Our results show that Li atom can diffuse almost freely due to its low energy barriers on both outside and inside surfaces. Finally, we also evaluate the energy gain tendency and the volume expansion as well as the average binding energy while adding Li atoms to estimate the Li-capacity and recyclability of the system, which are important characterisitics for anode materials. We conclude that the carbon nanofoam structure would be better as an anode material than graphite in Li capacity and volume expansion.

  10. Prediction of cis/trans isomerization in proteins using PSI-BLAST profiles and secondary structure information.

    PubMed

    Song, Jiangning; Burrage, Kevin; Yuan, Zheng; Huber, Thomas

    2006-03-09

    The majority of peptide bonds in proteins are found to occur in the trans conformation. However, for proline residues, a considerable fraction of Prolyl peptide bonds adopt the cis form. Proline cis/trans isomerization is known to play a critical role in protein folding, splicing, cell signaling and transmembrane active transport. Accurate prediction of proline cis/trans isomerization in proteins would have many important applications towards the understanding of protein structure and function. In this paper, we propose a new approach to predict the proline cis/trans isomerization in proteins using support vector machine (SVM). The preliminary results indicated that using Radial Basis Function (RBF) kernels could lead to better prediction performance than that of polynomial and linear kernel functions. We used single sequence information of different local window sizes, amino acid compositions of different local sequences, multiple sequence alignment obtained from PSI-BLAST and the secondary structure information predicted by PSIPRED. We explored these different sequence encoding schemes in order to investigate their effects on the prediction performance. The training and testing of this approach was performed on a newly enlarged dataset of 2424 non-homologous proteins determined by X-Ray diffraction method using 5-fold cross-validation. Selecting the window size 11 provided the best performance for determining the proline cis/trans isomerization based on the single amino acid sequence. It was found that using multiple sequence alignments in the form of PSI-BLAST profiles could significantly improve the prediction performance, the prediction accuracy increased from 62.8% with single sequence to 69.8% and Matthews Correlation Coefficient (MCC) improved from 0.26 with single local sequence to 0.40. Furthermore, if coupled with the predicted secondary structure information by PSIPRED, our method yielded a prediction accuracy of 71.5% and MCC of 0.43, 9% and 0.17 higher than the accuracy achieved based on the singe sequence information, respectively. A new method has been developed to predict the proline cis/trans isomerization in proteins based on support vector machine, which used the single amino acid sequence with different local window sizes, the amino acid compositions of local sequence flanking centered proline residues, the position-specific scoring matrices (PSSMs) extracted by PSI-BLAST and the predicted secondary structures generated by PSIPRED. The successful application of SVM approach in this study reinforced that SVM is a powerful tool in predicting proline cis/trans isomerization in proteins and biological sequence analysis.

  11. Computational identification of structural factors affecting the mutagenic potential of aromatic amines: study design and experimental validation.

    PubMed

    Slavov, Svetoslav H; Stoyanova-Slavova, Iva; Mattes, William; Beger, Richard D; Brüschweiler, Beat J

    2018-07-01

    A grid-based, alignment-independent 3D-SDAR (three-dimensional spectral data-activity relationship) approach based on simulated 13 C and 15 N NMR chemical shifts augmented with through-space interatomic distances was used to model the mutagenicity of 554 primary and 419 secondary aromatic amines. A robust modeling strategy supported by extensive validation including randomized training/hold-out test set pairs, validation sets, "blind" external test sets as well as experimental validation was applied to avoid over-parameterization and build Organization for Economic Cooperation and Development (OECD 2004) compliant models. Based on an experimental validation set of 23 chemicals tested in a two-strain Salmonella typhimurium Ames assay, 3D-SDAR was able to achieve performance comparable to 5-strain (Ames) predictions by Lhasa Limited's Derek and Sarah Nexus for the same set. Furthermore, mapping of the most frequently occurring bins on the primary and secondary aromatic amine structures allowed the identification of molecular features that were associated either positively or negatively with mutagenicity. Prominent structural features found to enhance the mutagenic potential included: nitrobenzene moieties, conjugated π-systems, nitrothiophene groups, and aromatic hydroxylamine moieties. 3D-SDAR was also able to capture "true" negative contributions that are particularly difficult to detect through alternative methods. These include sulphonamide, acetamide, and other functional groups, which not only lack contributions to the overall mutagenic potential, but are known to actively lower it, if present in the chemical structures of what otherwise would be potential mutagens.

  12. Ab initio RNA folding by discrete molecular dynamics: From structure prediction to folding mechanisms

    PubMed Central

    Ding, Feng; Sharma, Shantanu; Chalasani, Poornima; Demidov, Vadim V.; Broude, Natalia E.; Dokholyan, Nikolay V.

    2008-01-01

    RNA molecules with novel functions have revived interest in the accurate prediction of RNA three-dimensional (3D) structure and folding dynamics. However, existing methods are inefficient in automated 3D structure prediction. Here, we report a robust computational approach for rapid folding of RNA molecules. We develop a simplified RNA model for discrete molecular dynamics (DMD) simulations, incorporating base-pairing and base-stacking interactions. We demonstrate correct folding of 150 structurally diverse RNA sequences. The majority of DMD-predicted 3D structures have <4 Å deviations from experimental structures. The secondary structures corresponding to the predicted 3D structures consist of 94% native base-pair interactions. Folding thermodynamics and kinetics of tRNAPhe, pseudoknots, and mRNA fragments in DMD simulations are in agreement with previous experimental findings. Folding of RNA molecules features transient, non-native conformations, suggesting non-hierarchical RNA folding. Our method allows rapid conformational sampling of RNA folding, with computational time increasing linearly with RNA length. We envision this approach as a promising tool for RNA structural and functional analyses. PMID:18456842

  13. 'Management is a black art'--professional ideologies with respect to temporomandibular disorders.

    PubMed

    Durham, J; Exley, C; Wassell, R; Steele, J G

    2007-06-09

    To gain a deeper understanding of the range of influences on the full range of dental professionals who provide treatment for temporomandibular disorders (TMD). Qualitative semi-structured interviews. Primary and secondary care in the North and South of the United Kingdom. A criterion-based purposive sample was taken of dental practitioners, comprising primary and secondary care practitioners. In-depth interviews were conducted and data collection and analysis occurred concurrently until data saturation was achieved. DATA AND DISCUSSION: There was a reported lack of adequate remuneration for provision of treatment for TMD within primary care. This alongside the primary care practitioners' reported uncertainty in diagnosis of TMD appeared to lead to a propensity for referral to secondary care. Practitioners recognised a poor and scanty evidence base on which to base their care, and this allowed for idiosyncratic practice. Often the outcome measure for treatment was a subjective questioning of the patient focussing mainly on relief of pain. There is a need for better quality evidence on which to base TMD treatment, more continuing professional development and improvement in contracting arrangements to enable primary practitioners to feel confident in managing TMD.

  14. Lessons from an evolving rRNA: 16S and 23S rRNA structures from a comparative perspective

    NASA Technical Reports Server (NTRS)

    Gutell, R. R.; Larsen, N.; Woese, C. R.

    1994-01-01

    The 16S and 23S rRNA higher-order structures inferred from comparative analysis are now quite refined. The models presented here differ from their immediate predecessors only in minor detail. Thus, it is safe to assert that all of the standard secondary-structure elements in (prokaryotic) rRNAs have been identified, with approximately 90% of the individual base pairs in each molecule having independent comparative support, and that at least some of the tertiary interactions have been revealed. It is interesting to compare the rRNAs in this respect with tRNA, whose higher-order structure is known in detail from its crystal structure (36) (Table 2). It can be seen that rRNAs have as great a fraction of their sequence in established secondary-structure elements as does tRNA. However, the fact that the former show a much lower fraction of identified tertiary interactions and a greater fraction of unpaired nucleotides than the latter implies that many of the rRNA tertiary interactions remain to be located. (Alternatively, the ribosome might involve protein-rRNA rather than intramolecular rRNA interactions to stabilize three-dimensional structure.) Experimental studies on rRNA are consistent to a first approximation with the structures proposed here, confirming the basic assumption of comparative analysis, i.e., that bases whose compositions strictly covary are physically interacting. In the exhaustive study of Moazed et al. (45) on protection of the bases in the small-subunit rRNA against chemical modification, the vast majority of bases inferred to pair by covariation are found to be protected from chemical modification, both in isolated small-subunit rRNA and in the 30S subunit. The majority of the tertiary interactions are reflected in the chemical protection data as well (45). On the other hand, many of the bases not shown as paired in Fig. 1 are accessible to chemical attack (45). However, in this case a sizeable fraction of them are also protected against chemical modification (in the isolated rRNA), which suggests that considerable higher-order structure remains to be found (although all of it may not involve base-base interactions and so may not be detectable by comparative analysis). The agreement between the higher-order structure of the small-subunit rRNA and protection against chemical modification is not perfect, however; some bases shown to covary canonically are accessible to chemical modification (45).(ABSTRACT TRUNCATED AT 400 WORDS).

  15. NMRe: a web server for NMR protein structure refinement with high-quality structure validation scores.

    PubMed

    Ryu, Hyojung; Lim, GyuTae; Sung, Bong Hyun; Lee, Jinhyuk

    2016-02-15

    Protein structure refinement is a necessary step for the study of protein function. In particular, some nuclear magnetic resonance (NMR) structures are of lower quality than X-ray crystallographic structures. Here, we present NMRe, a web-based server for NMR structure refinement. The previously developed knowledge-based energy function STAP (Statistical Torsion Angle Potential) was used for NMRe refinement. With STAP, NMRe provides two refinement protocols using two types of distance restraints. If a user provides NOE (Nuclear Overhauser Effect) data, the refinement is performed with the NOE distance restraints as a conventional NMR structure refinement. Additionally, NMRe generates NOE-like distance restraints based on the inter-hydrogen distances derived from the input structure. The efficiency of NMRe refinement was validated on 20 NMR structures. Most of the quality assessment scores of the refined NMR structures were better than those of the original structures. The refinement results are provided as a three-dimensional structure view, a secondary structure scheme, and numerical and graphical structure validation scores. NMRe is available at http://psb.kobic.re.kr/nmre/. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  16. Opinions of Turkish Language and Literature Teachers on the Curriculum of Turkish Literature Course Based on the Constructivist Learning Theory

    ERIC Educational Resources Information Center

    Epcacan, Cahit

    2013-01-01

    The main objective of this study is to collect the opinions of Turkish Language and Literature teachers at secondary schools about the Curriculum of the Turkish Literature Course based on the constructivist learning theory. To this end, the descriptive method was employed to collect teacher opinions. Structured interview was used as a data…

  17. The predicted secondary structures of class I fructose-bisphosphate aldolases.

    PubMed Central

    Sawyer, L; Fothergill-Gilmore, L A; Freemont, P S

    1988-01-01

    The results of several secondary-structure prediction programs were combined to produce an estimate of the regions of alpha-helix, beta-sheet and reverse turns for fructose-bisphosphate aldolases from human and rat muscle and liver, from Trypanosoma brucei and from Drosophila melanogaster. All the aldolase sequences gave essentially the same pattern of secondary-structure predictions despite having sequences up to 50% different. One exception to this pattern was an additional strongly predicted helix in the rat liver and Drosophila enzymes. Regions of relatively high sequence variation generally were predicted as reverse turns, and probably occur as surface loops. Most of the positions corresponding to exon boundaries are located between regions predicted to have secondary-structural elements consistent with a compact structure. The predominantly alternating alpha/beta structure predicted is consistent with the alpha/beta-barrel structure indicated by preliminary high-resolution X-ray diffraction studies on rabbit muscle aldolase [Sygusch, Beaudry & Allaire (1986) Biophys. J. 49, 287a]. Images Fig. 1. (cont.) Fig. 1. PMID:3128269

  18. Evaluating the effect of disturbed ensemble distributions on SCFG based statistical sampling of RNA secondary structures.

    PubMed

    Scheid, Anika; Nebel, Markus E

    2012-07-09

    Over the past years, statistical and Bayesian approaches have become increasingly appreciated to address the long-standing problem of computational RNA structure prediction. Recently, a novel probabilistic method for the prediction of RNA secondary structures from a single sequence has been studied which is based on generating statistically representative and reproducible samples of the entire ensemble of feasible structures for a particular input sequence. This method samples the possible foldings from a distribution implied by a sophisticated (traditional or length-dependent) stochastic context-free grammar (SCFG) that mirrors the standard thermodynamic model applied in modern physics-based prediction algorithms. Specifically, that grammar represents an exact probabilistic counterpart to the energy model underlying the Sfold software, which employs a sampling extension of the partition function (PF) approach to produce statistically representative subsets of the Boltzmann-weighted ensemble. Although both sampling approaches have the same worst-case time and space complexities, it has been indicated that they differ in performance (both with respect to prediction accuracy and quality of generated samples), where neither of these two competing approaches generally outperforms the other. In this work, we will consider the SCFG based approach in order to perform an analysis on how the quality of generated sample sets and the corresponding prediction accuracy changes when different degrees of disturbances are incorporated into the needed sampling probabilities. This is motivated by the fact that if the results prove to be resistant to large errors on the distinct sampling probabilities (compared to the exact ones), then it will be an indication that these probabilities do not need to be computed exactly, but it may be sufficient and more efficient to approximate them. Thus, it might then be possible to decrease the worst-case time requirements of such an SCFG based sampling method without significant accuracy losses. If, on the other hand, the quality of sampled structures can be observed to strongly react to slight disturbances, there is little hope for improving the complexity by heuristic procedures. We hence provide a reliable test for the hypothesis that a heuristic method could be implemented to improve the time scaling of RNA secondary structure prediction in the worst-case - without sacrificing much of the accuracy of the results. Our experiments indicate that absolute errors generally lead to the generation of useless sample sets, whereas relative errors seem to have only small negative impact on both the predictive accuracy and the overall quality of resulting structure samples. Based on these observations, we present some useful ideas for developing a time-reduced sampling method guaranteeing an acceptable predictive accuracy. We also discuss some inherent drawbacks that arise in the context of approximation. The key results of this paper are crucial for the design of an efficient and competitive heuristic prediction method based on the increasingly accepted and attractive statistical sampling approach. This has indeed been indicated by the construction of prototype algorithms.

  19. Evaluating the effect of disturbed ensemble distributions on SCFG based statistical sampling of RNA secondary structures

    PubMed Central

    2012-01-01

    Background Over the past years, statistical and Bayesian approaches have become increasingly appreciated to address the long-standing problem of computational RNA structure prediction. Recently, a novel probabilistic method for the prediction of RNA secondary structures from a single sequence has been studied which is based on generating statistically representative and reproducible samples of the entire ensemble of feasible structures for a particular input sequence. This method samples the possible foldings from a distribution implied by a sophisticated (traditional or length-dependent) stochastic context-free grammar (SCFG) that mirrors the standard thermodynamic model applied in modern physics-based prediction algorithms. Specifically, that grammar represents an exact probabilistic counterpart to the energy model underlying the Sfold software, which employs a sampling extension of the partition function (PF) approach to produce statistically representative subsets of the Boltzmann-weighted ensemble. Although both sampling approaches have the same worst-case time and space complexities, it has been indicated that they differ in performance (both with respect to prediction accuracy and quality of generated samples), where neither of these two competing approaches generally outperforms the other. Results In this work, we will consider the SCFG based approach in order to perform an analysis on how the quality of generated sample sets and the corresponding prediction accuracy changes when different degrees of disturbances are incorporated into the needed sampling probabilities. This is motivated by the fact that if the results prove to be resistant to large errors on the distinct sampling probabilities (compared to the exact ones), then it will be an indication that these probabilities do not need to be computed exactly, but it may be sufficient and more efficient to approximate them. Thus, it might then be possible to decrease the worst-case time requirements of such an SCFG based sampling method without significant accuracy losses. If, on the other hand, the quality of sampled structures can be observed to strongly react to slight disturbances, there is little hope for improving the complexity by heuristic procedures. We hence provide a reliable test for the hypothesis that a heuristic method could be implemented to improve the time scaling of RNA secondary structure prediction in the worst-case – without sacrificing much of the accuracy of the results. Conclusions Our experiments indicate that absolute errors generally lead to the generation of useless sample sets, whereas relative errors seem to have only small negative impact on both the predictive accuracy and the overall quality of resulting structure samples. Based on these observations, we present some useful ideas for developing a time-reduced sampling method guaranteeing an acceptable predictive accuracy. We also discuss some inherent drawbacks that arise in the context of approximation. The key results of this paper are crucial for the design of an efficient and competitive heuristic prediction method based on the increasingly accepted and attractive statistical sampling approach. This has indeed been indicated by the construction of prototype algorithms. PMID:22776037

  20. Structures and Free Energy Landscapes of the A53T Mutant-Type α-Synuclein Protein and Impact of A53T Mutation on the Structures of the Wild-Type α-Synuclein Protein with Dynamics

    PubMed Central

    2013-01-01

    The A53T genetic missense mutation of the wild-type α-synuclein (αS) protein was initially identified in Greek and Italian families with familial Parkinson’s disease. Detailed understanding of the structures and the changes induced in the wild-type αS structure by the A53T mutation, as well as establishing the direct relationships between the rapid conformational changes and free energy landscapes of these intrinsically disordered fibrillogenic proteins, helps to enhance our fundamental knowledge and to gain insights into the pathogenic mechanism of Parkinson’s disease. We employed extensive parallel tempering molecular dynamics simulations along with thermodynamic calculations to determine the secondary and tertiary structural properties as well as the conformational free energy surfaces of the wild-type and A53T mutant-type αS proteins in an aqueous solution medium using both implicit and explicit water models. The confined aqueous volume effect in the simulations of disordered proteins using an explicit model for water is addressed for a model disordered protein. We also assessed the stabilities of the residual secondary structure component interconversions in αS based on free energy calculations at the atomic level with dynamics using our recently developed theoretical strategy. To the best of our knowledge, this study presents the first detailed comparison of the structural properties linked directly to the conformational free energy landscapes of the monomeric wild-type and A53T mutant-type α-synuclein proteins in an aqueous solution environment. Results demonstrate that the β-sheet structure is significantly more altered than the helical structure upon A53T mutation of the monomeric wild-type αS protein in aqueous solution. The β-sheet content close to the mutation site in the N-terminal region is more abundant while the non-amyloid-β component (NAC) and C-terminal regions show a decrease in β-sheet abundance upon A53T mutation. Obtained results utilizing our new theoretical strategy show that the residual secondary structure conversion stabilities resulting in α-helix formation are not significantly affected by the mutation. Interestingly, the residual secondary structure conversion stabilities show that secondary structure conversions resulting in β-sheet formation are influenced by the A53T mutation and the most stable residual transition yielding β-sheet occurs directly from the coil structure. Long-range interactions detected between the NAC region and the N- or C-terminal regions of the wild-type αS disappear upon A53T mutation. The A53T mutant-type αS structures are thermodynamically more stable than those of the wild-type αS protein structures in aqueous solution. Overall, the higher propensity of the A53T mutant-type αS protein to aggregate in comparison to the wild-type αS protein is related to the increased β-sheet formation and lack of strong intramolecular long-range interactions in the N-terminal region in comparison to its wild-type form. The specific residual secondary structure component stabilities reported herein provide information helpful for designing and synthesizing small organic molecules that can block the β-sheet forming residues, which are reactive toward aggregation. PMID:23607785

  1. Structures and free energy landscapes of the A53T mutant-type α-synuclein protein and impact of A53T mutation on the structures of the wild-type α-synuclein protein with dynamics.

    PubMed

    Coskuner, Orkid; Wise-Scira, Olivia

    2013-07-17

    The A53T genetic missense mutation of the wild-type α-synuclein (αS) protein was initially identified in Greek and Italian families with familial Parkinson's disease. Detailed understanding of the structures and the changes induced in the wild-type αS structure by the A53T mutation, as well as establishing the direct relationships between the rapid conformational changes and free energy landscapes of these intrinsically disordered fibrillogenic proteins, helps to enhance our fundamental knowledge and to gain insights into the pathogenic mechanism of Parkinson's disease. We employed extensive parallel tempering molecular dynamics simulations along with thermodynamic calculations to determine the secondary and tertiary structural properties as well as the conformational free energy surfaces of the wild-type and A53T mutant-type αS proteins in an aqueous solution medium using both implicit and explicit water models. The confined aqueous volume effect in the simulations of disordered proteins using an explicit model for water is addressed for a model disordered protein. We also assessed the stabilities of the residual secondary structure component interconversions in αS based on free energy calculations at the atomic level with dynamics using our recently developed theoretical strategy. To the best of our knowledge, this study presents the first detailed comparison of the structural properties linked directly to the conformational free energy landscapes of the monomeric wild-type and A53T mutant-type α-synuclein proteins in an aqueous solution environment. Results demonstrate that the β-sheet structure is significantly more altered than the helical structure upon A53T mutation of the monomeric wild-type αS protein in aqueous solution. The β-sheet content close to the mutation site in the N-terminal region is more abundant while the non-amyloid-β component (NAC) and C-terminal regions show a decrease in β-sheet abundance upon A53T mutation. Obtained results utilizing our new theoretical strategy show that the residual secondary structure conversion stabilities resulting in α-helix formation are not significantly affected by the mutation. Interestingly, the residual secondary structure conversion stabilities show that secondary structure conversions resulting in β-sheet formation are influenced by the A53T mutation and the most stable residual transition yielding β-sheet occurs directly from the coil structure. Long-range interactions detected between the NAC region and the N- or C-terminal regions of the wild-type αS disappear upon A53T mutation. The A53T mutant-type αS structures are thermodynamically more stable than those of the wild-type αS protein structures in aqueous solution. Overall, the higher propensity of the A53T mutant-type αS protein to aggregate in comparison to the wild-type αS protein is related to the increased β-sheet formation and lack of strong intramolecular long-range interactions in the N-terminal region in comparison to its wild-type form. The specific residual secondary structure component stabilities reported herein provide information helpful for designing and synthesizing small organic molecules that can block the β-sheet forming residues, which are reactive toward aggregation.

  2. Biologically active secondary metabolites from fungi. 12.(1) oidiolactones A-F, labdane diterpene derivatives isolated from oidiodendron truncata

    PubMed

    John; Krohn; Florke; Aust; Draeger; Schulz

    1999-09-01

    Two known (1 and 2) and four new (3-6) diterpenes named oidiolactones A-F, respectively, and the antibiotic cladosporin were isolated from the fungus Oidiodendron truncata. The structure determination was mainly based on 1D and 2D NMR spectroscopy. The structures of compound 4, displaying an equilibrium between open-chain and cyclized form, and of cladosporin were confirmed by X-ray analysis.

  3. Cellulose, Chitosan and Keratin Composite Materials: Facile and Recyclable Synthesis, Conformation and Properties.

    PubMed

    Tran, Chieu D; Mututuvari, Tamutsiwa M

    2016-03-07

    A method was developed in which cellulose (CEL) and/or chitosan (CS) were added to keratin (KER) to enable [CEL/CS+KER] composites formed to have better mechanical strength and wider utilization. Butylmethylimmidazolium chloride ([BMIm + Cl - ]), an ionic liquid, was used as the sole solvent, and because the majority of [BMIm + Cl - ] used (at least 88%) was recovered, the method is green and recyclable. FTIR, XRD, 13 C CP-MAS NMR and SEM results confirm that KER, CS and CEL remain chemically intact and distributed homogeneously in the composites. We successfully demonstrate that the widely used method based on the deconvolution of the FTIR bands of amide bonds to determine secondary structure of proteins is relatively subjective as the conformation obtained is strongly dependent on the choice of parameters selected for curve fitting. A new method, based on the partial least squares regression analysis (PLSR) of the amide bands, was developed, and proven to be objective and can provide more accurate information. Results obtained with this method agree well with those by XRD, namely they indicate that although KER retains its second structure when incorporated into the [CEL+CS] composites, it has relatively lower α -helix, higher β -turn and random form compared to that of the KER in native wool. It seems that during dissolution by [BMIm + Cl - ], the inter- and intramolecular forces in KER were broken thereby destroying its secondary structure. During regeneration, these interactions were reestablished to reform partially the secondary structure. However, in the presence of either CEL or CS, the chains seem to prefer the extended form thereby hindering reformation of the α -helix. Consequently, the KER in these matrices may adopt structures with lower content of α -helix and higher β -sheet. As anticipated, results of tensile strength and TGA confirm that adding CEL or CS into KER substantially increase the mechanical strength and thermal stability of the [CS/CEL+KER] composites.

  4. Diagnosis of Upper-Quadrant Lymphedema Secondary to Cancer: Clinical Practice Guideline From the Oncology Section of APTA

    PubMed Central

    Levenhagen, Kimberly; Davies, Claire; Perdomo, Marisa; Ryans, Kathryn

    2017-01-01

    Introduction: The Oncology Section of APTA developed a clinical practice guideline to aid the clinician in diagnosing secondary upper-quadrant cancer-related lymphedema. Methods: Following a systematic review of published studies and a structured appraisal process, recommendations were written to guide the physical therapist and other health care clinicians in their diagnostic process. Overall, clinical practice recommendations were formulated on the basis of the evidence for each diagnostic method and were assigned a grade based on the strength of the evidence for different patient presentations and clinical utility. Recommendations: In an effort to make these clinically applicable, recommendations were based on the characteristics as to the location and stage of a patient's upper-quadrant lymphedema. PMID:28748128

  5. Structural model of the amyloid fibril formed by beta(2)-microglobulin #21-31 fragment based on vibrational spectroscopy.

    PubMed

    Hiramatsu, Hirotsugu; Goto, Yuji; Naiki, Hironobu; Kitagawa, Teizo

    2005-06-08

    A structural model of amyloid fibril formed by the #21-31 fragment of beta2-microglobulin is proposed from microscope IR measurements on specifically 13C-labeled peptide fibrils and Raman spectra of the dispersed fibril solution. The 13C-shifted amide frequency indicated the secondary structure of the labeled residues. The IR spectra have demonstrated that the region between F22 and V27 forms the core part with the extended beta-sheet structure. Raman spectra indicated the formation of a dimer with a disulfide bridge between C25 residues.

  6. ACEE composite structures technology

    NASA Technical Reports Server (NTRS)

    Klotzsche, M. (Compiler)

    1984-01-01

    The NASA Aircraft Energy Efficiency (ACEE) Composite Primary Aircraft Structures Program has made significant progress in the development of technology for advanced composites in commercial aircraft. Commercial airframe manufacturers have demonstrated technology readiness and cost effectiveness of advanced composites for secondary and medium primary components and have initiated a concerted program to develop the data base required for efficient application to safety-of-flight wing and fuselage structures. Oral presentations were compiled into five papers. Topics addressed include: damage tolerance and failsafe testing of composite vertical stabilizer; optimization of composite multi-row bolted joints; large wing joint demonstation components; and joints and cutouts in fuselage structure.

  7. Imaging Cell Wall Architecture in Single Zinnia elegans Tracheary Elements1[OA

    PubMed Central

    Lacayo, Catherine I.; Malkin, Alexander J.; Holman, Hoi-Ying N.; Chen, Liang; Ding, Shi-You; Hwang, Mona S.; Thelen, Michael P.

    2010-01-01

    The chemical and structural organization of the plant cell wall was examined in Zinnia elegans tracheary elements (TEs), which specialize by developing prominent secondary wall thickenings underlying the primary wall during xylogenesis in vitro. Three imaging platforms were used in conjunction with chemical extraction of wall components to investigate the composition and structure of single Zinnia TEs. Using fluorescence microscopy with a green fluorescent protein-tagged Clostridium thermocellum family 3 carbohydrate-binding module specific for crystalline cellulose, we found that cellulose accessibility and binding in TEs increased significantly following an acidified chlorite treatment. Examination of chemical composition by synchrotron radiation-based Fourier-transform infrared spectromicroscopy indicated a loss of lignin and a modest loss of other polysaccharides in treated TEs. Atomic force microscopy was used to extensively characterize the topography of cell wall surfaces in TEs, revealing an outer granular matrix covering the underlying meshwork of cellulose fibrils. The internal organization of TEs was determined using secondary wall fragments generated by sonication. Atomic force microscopy revealed that the resulting rings, spirals, and reticulate structures were composed of fibrils arranged in parallel. Based on these combined results, we generated an architectural model of Zinnia TEs composed of three layers: an outermost granular layer, a middle primary wall composed of a meshwork of cellulose fibrils, and inner secondary wall thickenings containing parallel cellulose fibrils. In addition to insights in plant biology, studies using Zinnia TEs could prove especially productive in assessing cell wall responses to enzymatic and microbial degradation, thus aiding current efforts in lignocellulosic biofuel production. PMID:20592039

  8. Testing Mediation Using Multiple Regression and Structural Equation Modeling Analyses in Secondary Data

    ERIC Educational Resources Information Center

    Li, Spencer D.

    2011-01-01

    Mediation analysis in child and adolescent development research is possible using large secondary data sets. This article provides an overview of two statistical methods commonly used to test mediated effects in secondary analysis: multiple regression and structural equation modeling (SEM). Two empirical studies are presented to illustrate the…

  9. Adverse Event extraction from Structured Product Labels using the Event-based Text-mining of Health Electronic Records (ETHER)system.

    PubMed

    Pandey, Abhishek; Kreimeyer, Kory; Foster, Matthew; Botsis, Taxiarchis; Dang, Oanh; Ly, Thomas; Wang, Wei; Forshee, Richard

    2018-01-01

    Structured Product Labels follow an XML-based document markup standard approved by the Health Level Seven organization and adopted by the US Food and Drug Administration as a mechanism for exchanging medical products information. Their current organization makes their secondary use rather challenging. We used the Side Effect Resource database and DailyMed to generate a comparison dataset of 1159 Structured Product Labels. We processed the Adverse Reaction section of these Structured Product Labels with the Event-based Text-mining of Health Electronic Records system and evaluated its ability to extract and encode Adverse Event terms to Medical Dictionary for Regulatory Activities Preferred Terms. A small sample of 100 labels was then selected for further analysis. Of the 100 labels, Event-based Text-mining of Health Electronic Records achieved a precision and recall of 81 percent and 92 percent, respectively. This study demonstrated Event-based Text-mining of Health Electronic Record's ability to extract and encode Adverse Event terms from Structured Product Labels which may potentially support multiple pharmacoepidemiological tasks.

  10. Simulations Using Random-Generated DNA and RNA Sequences

    ERIC Educational Resources Information Center

    Bryce, C. F. A.

    1977-01-01

    Using a very simple computer program written in BASIC, a very large number of random-generated DNA or RNA sequences are obtained. Students use these sequences to predict complementary sequences and translational products, evaluate base compositions, determine frequencies of particular triplet codons, and suggest possible secondary structures.…

  11. Challenges of Integrating Mobile Technology into Mathematics Instruction in Secondary Schools: An Indonesian Context

    ERIC Educational Resources Information Center

    Abidin, Zaenal; Mathrani, Anuradha; Hunter, Roberta; Parsons, David

    2017-01-01

    Implementing mobile learning in curriculum-based educational settings faces challenges related to perceived ethical and learning issues. This study investigated the affordances of mobile technologies to support mathematics instruction by teachers. An exploratory study employing questionnaires and semi-structured interviews revealed that, while…

  12. Dilemmas Concerning the Employment of University Graduates in China

    ERIC Educational Resources Information Center

    Ren, Shuang; Zhu, Ying; Warner, Malcolm

    2017-01-01

    This article draws on a "within-subject" design of employment of university graduates in China over two different periods, namely 2008 and 2014. This research was conducted based on semi-structured interviews and secondary data analysis with four groups of key stakeholders including universities, government agencies, labor-market…

  13. An Exploration of Teachers' Agency and Social Relationships within Dyslexia-Support Provision in an English Secondary School

    ERIC Educational Resources Information Center

    Ross, Helen

    2017-01-01

    This article explores teachers' experiences of dyslexia and classroom interventions via lesson observations and semi-structured interviews. These experiences were analysed through a Bourdieusien lens, based on Jenkins's "levels of interaction", to delineate power relationships inherent in classroom interactions, teachers' interactions…

  14. Using the Fast Fourier Transform to Accelerate the Computational Search for RNA Conformational Switches

    PubMed Central

    Senter, Evan; Sheikh, Saad; Dotu, Ivan; Ponty, Yann; Clote, Peter

    2012-01-01

    Using complex roots of unity and the Fast Fourier Transform, we design a new thermodynamics-based algorithm, FFTbor, that computes the Boltzmann probability that secondary structures differ by base pairs from an arbitrary initial structure of a given RNA sequence. The algorithm, which runs in quartic time and quadratic space , is used to determine the correlation between kinetic folding speed and the ruggedness of the energy landscape, and to predict the location of riboswitch expression platform candidates. A web server is available at http://bioinformatics.bc.edu/clotelab/FFTbor/. PMID:23284639

  15. Patient-centered knowledge sharing in healthcare organizations: Identifying the external barriers.

    PubMed

    Zhou, Lihong

    2017-12-01

    This paper reports on a research study, which aims to identify, qualify, and theorize the external barriers that prevent and hinder the exercises and activities of patient-centered knowledge sharing (KS) in healthcare organizations. The project adopted a qualitative secondary analysis approach as the overarching methodology to guide the analysis of data collected in a previously completed research study. Specifically, 46 semi-structured interview data were included and analyzed using a thematic analysis approach. The secondary analysis showed that healthcare KS is strongly influenced and hindered by five external barriers: social belief and preference, cultural values, healthcare education structure, political decisions, and economic environment and constraints. Moreover, the research findings suggest that these external barriers cannot be overlooked in KS implementation and operation in healthcare organizations and should be carefully assessed beginning in the early stages of KS design and strategic planning. Based on the secondary analysis, this paper proposes a conceptual model, which will contribute to the development of hypotheses in the future for building a generalized knowledge. The case study used is Chinese healthcare, but the KS problems studied can be shared across international borders.

  16. A secondary copulatory structure in a female insect: a clasp for a nuptial meal?

    NASA Astrophysics Data System (ADS)

    Gwynne, Darryl T.

    2002-03-01

    Secondary copulatory structures are well-known in male dragonflies and spiders. Here I report a secondary copulatory organ in female ground weta, Hemiandrus pallitarsis (Ensifera, Orthoptera - crickets and allies). The organ, located on the underside of the abdomen, appears to secure the male's genitalia during the transfer of a spermatophylax nuptial meal to this location, an area quite separate from the female's primary copulatory structures, where the sperm ampulla is attached.

  17. Computational modeling of membrane proteins

    PubMed Central

    Leman, Julia Koehler; Ulmschneider, Martin B.; Gray, Jeffrey J.

    2014-01-01

    The determination of membrane protein (MP) structures has always trailed that of soluble proteins due to difficulties in their overexpression, reconstitution into membrane mimetics, and subsequent structure determination. The percentage of MP structures in the protein databank (PDB) has been at a constant 1-2% for the last decade. In contrast, over half of all drugs target MPs, only highlighting how little we understand about drug-specific effects in the human body. To reduce this gap, researchers have attempted to predict structural features of MPs even before the first structure was experimentally elucidated. In this review, we present current computational methods to predict MP structure, starting with secondary structure prediction, prediction of trans-membrane spans, and topology. Even though these methods generate reliable predictions, challenges such as predicting kinks or precise beginnings and ends of secondary structure elements are still waiting to be addressed. We describe recent developments in the prediction of 3D structures of both α-helical MPs as well as β-barrels using comparative modeling techniques, de novo methods, and molecular dynamics (MD) simulations. The increase of MP structures has (1) facilitated comparative modeling due to availability of more and better templates, and (2) improved the statistics for knowledge-based scoring functions. Moreover, de novo methods have benefitted from the use of correlated mutations as restraints. Finally, we outline current advances that will likely shape the field in the forthcoming decade. PMID:25355688

  18. Influence of secondary structure on in-source decay of protein in matrix-assisted laser desorption/ionization mass spectrometry.

    PubMed

    Takayama, Mitsuo; Osaka, Issey; Sakakura, Motoshi

    2012-01-01

    The susceptibility of the N-Cα bond of the peptide backbone to specific cleavage by in-source decay (ISD) in matrix-assisted laser desorption/ionization mass spectrometry (MALDI MS) was studied from the standpoint of the secondary structure of three proteins. A naphthalene derivative, 5-amino-1-naphtol (5,1-ANL), was used as the matrix. The resulting c'-ions, which originate from the cleavage at N-Cα bonds in flexible secondary structures such as turn and bend, and are free from intra-molecular hydrogen-bonded α-helix structure, gave relatively intense peaks. Furthermore, ISD spectra of the proteins showed that the N-Cα bonds of specific amino acid residues, namely Gly-Xxx, Xxx-Asp, and Xxx-Asn, were more susceptible to MALDI-ISD than other amino acid residues. This is in agreement with the observation that Gly, Asp and Asn residues usually located in turns, rather than α-helix. The results obtained indicate that protein molecules embedded into the matrix crystal in the MALDI experiments maintain their secondary structures as determined by X-ray crystallography, and that MALDI-ISD has the capability for providing information concerning the secondary structure of protein.

  19. Structural assessment of a Space Station solar dynamic heat receiver thermal energy storage canister

    NASA Technical Reports Server (NTRS)

    Tong, M. T.; Kerslake, T. W.; Thompson, R. L.

    1988-01-01

    This paper assesses the structural performance of a Space Station thermal energy storage (TES) canister subject to orbital solar flux variation and engine cold start-up operating conditions. The impact of working fluid temperature and salt-void distribution on the canister structure are assessed. Both analytical and experimental studies were conducted to determine the temperature distribution of the canister. Subsequent finite-element structural analyses of the canister were performed using both analytically and experimentally obtained temperatures. The Arrhenius creep law was incorporated into the procedure, using secondary creep data for the canister material, Haynes-188 alloy. The predicted cyclic creep strain accumulations at the hot spot were used to assess the structural performance of the canister. In addition, the structural performance of the canister based on the analytically-determined temperature was compared with that based on the experimentally-measured temperature data.

  20. Structural assessment of a space station solar dynamic heat receiver thermal energy storage canister

    NASA Technical Reports Server (NTRS)

    Thompson, R. L.; Kerslake, T. W.; Tong, M. T.

    1988-01-01

    The structural performance of a space station thermal energy storage (TES) canister subject to orbital solar flux variation and engine cold start up operating conditions was assessed. The impact of working fluid temperature and salt-void distribution on the canister structure are assessed. Both analytical and experimental studies were conducted to determine the temperature distribution of the canister. Subsequent finite element structural analyses of the canister were performed using both analytically and experimentally obtained temperatures. The Arrhenius creep law was incorporated into the procedure, using secondary creep data for the canister material, Haynes 188 alloy. The predicted cyclic creep strain accumulations at the hot spot were used to assess the structural performance of the canister. In addition, the structural performance of the canister based on the analytically determined temperature was compared with that based on the experimentally measured temperature data.

  1. nRC: non-coding RNA Classifier based on structural features.

    PubMed

    Fiannaca, Antonino; La Rosa, Massimo; La Paglia, Laura; Rizzo, Riccardo; Urso, Alfonso

    2017-01-01

    Non-coding RNA (ncRNA) are small non-coding sequences involved in gene expression regulation of many biological processes and diseases. The recent discovery of a large set of different ncRNAs with biologically relevant roles has opened the way to develop methods able to discriminate between the different ncRNA classes. Moreover, the lack of knowledge about the complete mechanisms in regulative processes, together with the development of high-throughput technologies, has required the help of bioinformatics tools in addressing biologists and clinicians with a deeper comprehension of the functional roles of ncRNAs. In this work, we introduce a new ncRNA classification tool, nRC (non-coding RNA Classifier). Our approach is based on features extraction from the ncRNA secondary structure together with a supervised classification algorithm implementing a deep learning architecture based on convolutional neural networks. We tested our approach for the classification of 13 different ncRNA classes. We obtained classification scores, using the most common statistical measures. In particular, we reach an accuracy and sensitivity score of about 74%. The proposed method outperforms other similar classification methods based on secondary structure features and machine learning algorithms, including the RNAcon tool that, to date, is the reference classifier. nRC tool is freely available as a docker image at https://hub.docker.com/r/tblab/nrc/. The source code of nRC tool is also available at https://github.com/IcarPA-TBlab/nrc.

  2. Secondary flow structures in the presence of Type-IV stent fractures through a bent tube model for curved arteries: Effect of circulation thresholding

    NASA Astrophysics Data System (ADS)

    Hussain, Shadman; Bulusu, Kartik V.; Plesniak, Michael W.

    2013-11-01

    A common treatment for atherosclerosis is the opening of narrowed arteries resulting from obstructive lesions by angioplasty and stent implantation to restore unrestricted blood flow. ``Type-IV'' stent fractures involve complete transverse, linear fracture of stent struts, along with displacement of the stent fragments. Experimental data pertaining to secondary flows in the presence of stents that underwent ``Type-IV'' fractures in a bent artery model under physiological inflow conditions were obtained through a two-component, two-dimensional (2C-2D) PIV technique. Concomitant stent-induced flow perturbations result in secondary flow structures with complex, multi-scale morphologies and varying size-strength characteristics. Ultimately, these flow structures may have a role to play in restenosis and progression of atherosclerotic plaque. Vortex circulation thresholds were established with the goal of resolving and tracking iso-circulation secondary flow vortical structures and their morphological changes. This allowed for a parametric evaluation and quantitative representation of secondary flow structures undergoing deformation and spatial reorganization. Supported by NSF Grant No. CBET- 0828903 and GW Center for Biomimetics and Bioinspired Engineering.

  3. Atomistic model of the spider silk nanostructure

    NASA Astrophysics Data System (ADS)

    Keten, Sinan; Buehler, Markus J.

    2010-04-01

    Spider silk is an ultrastrong and extensible self-assembling biopolymer that outperforms the mechanical characteristics of many synthetic materials including steel. Here we report atomic-level structures that represent aggregates of MaSp1 proteins from the N. Clavipes silk sequence based on a bottom-up computational approach using replica exchange molecular dynamics. We discover that poly-alanine regions predominantly form distinct and orderly beta-sheet crystal domains while disorderly structures are formed by poly-glycine repeats, resembling 31-helices. These could be the molecular source of the large semicrystalline fraction observed in silks, and also form the basis of the so-called "prestretched" molecular configuration. Our structures are validated against experimental data based on dihedral angle pair calculations presented in Ramachandran plots, alpha-carbon atomic distances, as well as secondary structure content.

  4. Increasing Elasticity through Changes in the Secondary Structure of Gelatin by Gelation in a Microsized Lipid Space.

    PubMed

    Sakai, Atsushi; Murayama, Yoshihiro; Fujiwara, Kei; Fujisawa, Takahiro; Sasaki, Saori; Kidoaki, Satoru; Yanagisawa, Miho

    2018-04-25

    Even though microgels are used in a wide variety of applications, determining their mechanical properties has been elusive because of the difficulties in analysis. In this study, we investigated the surface elasticity of a spherical microgel of gelatin prepared inside a lipid droplet by using micropipet aspiration. We found that gelation inside a microdroplet covered with lipid membranes increased Young's modulus E toward a plateau value E * along with a decrease in gel size. In the case of 5.0 wt % gelatin gelled inside a microsized lipid space, the E * for small microgels with R ≤ 50 μm was 10-fold higher (35-39 kPa) than that for the bulk gel (∼3 kPa). Structural analysis using circular dichroism spectroscopy and a fluorescence indicator for ordered beta sheets demonstrated that the smaller microgels contained more beta sheets in the structure than the bulk gel. Our finding indicates that the confinement size of gelling polymers becomes a factor in the variation of elasticity of protein-based microgels via secondary structure changes.

  5. Increasing Elasticity through Changes in the Secondary Structure of Gelatin by Gelation in a Microsized Lipid Space

    PubMed Central

    2018-01-01

    Even though microgels are used in a wide variety of applications, determining their mechanical properties has been elusive because of the difficulties in analysis. In this study, we investigated the surface elasticity of a spherical microgel of gelatin prepared inside a lipid droplet by using micropipet aspiration. We found that gelation inside a microdroplet covered with lipid membranes increased Young’s modulus E toward a plateau value E* along with a decrease in gel size. In the case of 5.0 wt % gelatin gelled inside a microsized lipid space, the E* for small microgels with R ≤ 50 μm was 10-fold higher (35–39 kPa) than that for the bulk gel (∼3 kPa). Structural analysis using circular dichroism spectroscopy and a fluorescence indicator for ordered beta sheets demonstrated that the smaller microgels contained more beta sheets in the structure than the bulk gel. Our finding indicates that the confinement size of gelling polymers becomes a factor in the variation of elasticity of protein-based microgels via secondary structure changes. PMID:29721530

  6. First-principles investigation of the structural characteristics of LiMO2 cathode materials for lithium secondary batteries

    NASA Astrophysics Data System (ADS)

    Kim, Yongseon

    2015-11-01

    The structural features related to the defects of LiMO2 (M = Ni, Co, Mn) cathode materials for lithium secondary batteries were investigated by a simulation of phase diagrams based on first-principle calculations. Crystal models with various types of point defects were designed and dealt with as independent phases, which enabled an examination of the thermodynamic stability of the defects. A perfect phase without defects appeared to be the most stable for LiCoO2, whereas the formation of Li vacancies, O vacancies, and antisites between Li and Ni was thermodynamically unavoidable for LiNiO2. The introduction of both Co and Mn in LiNiO2 was effective in reducing the formation of point defects, but increasing the relative amount of Mn was undesirable because the antisite defect remained stable with Mn doping. The simulation showed good agreement with the experimental data and previous reports. Therefore, the method and the results of this study are expected to be useful for examining the synthesis, structure and related properties of layer-structured cathode materials.

  7. Predicted secondary structure similarity in the absence of primary amino acid sequence homology: hepatitis B virus open reading frames.

    PubMed Central

    Schaeffer, E; Sninsky, J J

    1984-01-01

    Proteins that are related evolutionarily may have diverged at the level of primary amino acid sequence while maintaining similar secondary structures. Computer analysis has been used to compare the open reading frames of the hepatitis B virus to those of the woodchuck hepatitis virus at the level of amino acid sequence, and to predict the relative hydrophilic character and the secondary structure of putative polypeptides. Similarity is seen at the levels of relative hydrophilicity and secondary structure, in the absence of sequence homology. These data reinforce the proposal that these open reading frames encode viral proteins. Computer analysis of this type can be more generally used to establish structural similarities between proteins that do not share obvious sequence homology as well as to assess whether an open reading frame is fortuitous or codes for a protein. PMID:6585835

  8. Accurate secondary structure prediction and fold recognition for circular dichroism spectroscopy

    PubMed Central

    Micsonai, András; Wien, Frank; Kernya, Linda; Lee, Young-Ho; Goto, Yuji; Réfrégiers, Matthieu; Kardos, József

    2015-01-01

    Circular dichroism (CD) spectroscopy is a widely used technique for the study of protein structure. Numerous algorithms have been developed for the estimation of the secondary structure composition from the CD spectra. These methods often fail to provide acceptable results on α/β-mixed or β-structure–rich proteins. The problem arises from the spectral diversity of β-structures, which has hitherto been considered as an intrinsic limitation of the technique. The predictions are less reliable for proteins of unusual β-structures such as membrane proteins, protein aggregates, and amyloid fibrils. Here, we show that the parallel/antiparallel orientation and the twisting of the β-sheets account for the observed spectral diversity. We have developed a method called β-structure selection (BeStSel) for the secondary structure estimation that takes into account the twist of β-structures. This method can reliably distinguish parallel and antiparallel β-sheets and accurately estimates the secondary structure for a broad range of proteins. Moreover, the secondary structure components applied by the method are characteristic to the protein fold, and thus the fold can be predicted to the level of topology in the CATH classification from a single CD spectrum. By constructing a web server, we offer a general tool for a quick and reliable structure analysis using conventional CD or synchrotron radiation CD (SRCD) spectroscopy for the protein science research community. The method is especially useful when X-ray or NMR techniques fail. Using BeStSel on data collected by SRCD spectroscopy, we investigated the structure of amyloid fibrils of various disease-related proteins and peptides. PMID:26038575

  9. Rheological and secondary structural characterization of rice flour-zein composites for noodles slit from gluten-free sheeted dough.

    PubMed

    Jeong, Sungmin; Kim, Hee Won; Lee, Suyong

    2017-04-15

    Rice flour-zein composites in a hydrated viscoelastic state were utilized to compensate for the role of wheat gluten in gluten-free sheeted dough. The use of zein above its glass transition temperature was able to form a viscoelastic protein network of non-wheat dough with rice flour. The mixing stability and development time of the rice dough were positively increased with increasing levels of zein. The protein secondary structural analysis by FTIR spectroscopy demonstrated that the rice doughs with high levels of zein showed significant increases in β-sheet structures whose intensity was almost doubled by the use of 10% zein. The use of zein at more than 5% (w/w) successfully produced gluten-free dough sheets that could be slit into thin and long noodle strands. In addition, the composites were effective in improving the rheological characteristics of gluten-free noodle strands by increasing their maximum force to extension, compared to wheat-based noodles. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Conformationally selective multidimensional chemical shift ranges in proteins from a PACSY database purged using intrinsic quality criteria

    PubMed Central

    Hong, Mei

    2016-01-01

    We have determined refined multidimensional chemical shift ranges for intra-residue correlations (13C–13C, 15N–13C, etc.) in proteins, which can be used to gain type-assignment and/or secondary-structure information from experimental NMR spectra. The chemical-shift ranges are the result of a statistical analysis of the PACSY database of >3000 proteins with 3D structures (1,200,207 13C chemical shifts and >3 million chemical shifts in total); these data were originally derived from the Biological Magnetic Resonance Data Bank. Using relatively simple non-parametric statistics to find peak maxima in the distributions of helix, sheet, coil and turn chemical shifts, and without the use of limited “hand-picked” data sets, we show that ~94 % of the 13C NMR data and almost all 15N data are quite accurately referenced and assigned, with smaller standard deviations (0.2 and 0.8 ppm, respectively) than recognized previously. On the other hand, approximately 6 % of the 13C chemical shift data in the PACSY database are shown to be clearly misreferenced, mostly by ca. −2.4 ppm. The removal of the misreferenced data and other outliers by this purging by intrinsic quality criteria (PIQC) allows for reliable identification of secondary maxima in the two-dimensional chemical-shift distributions already pre-separated by secondary structure. We demonstrate that some of these correspond to specific regions in the Ramachandran plot, including left-handed helix dihedral angles, reflect unusual hydrogen bonding, or are due to the influence of a following proline residue. With appropriate smoothing, significantly more tightly defined chemical shift ranges are obtained for each amino acid type in the different secondary structures. These chemical shift ranges, which may be defined at any statistical threshold, can be used for amino-acid type assignment and secondary-structure analysis of chemical shifts from intra-residue cross peaks by inspection or by using a provided command-line Python script (PLUQin), which should be useful in protein structure determination. The refined chemical shift distributions are utilized in a simple quality test (SQAT) that should be applied to new protein NMR data before deposition in a databank, and they could benefit many other chemical-shift based tools. PMID:26787537

  11. Determination of Secondary School Students' Cognitive Structure, and Misconception in Ecological Concepts through Word Association Test

    ERIC Educational Resources Information Center

    Yücel, Elif Özata; Özkan, Mulis

    2015-01-01

    In this study, we determined cognitive structures and misconceptions about basic ecological concepts by using "word association" tests on secondary school students, age between 12-14 years. Eighty-nine students participated in this study. Before WAT was generated, basic ecological concepts that take place in the secondary science…

  12. The Influence of Repeated Teaching and Reflection on Preservice Teachers' Views of Inquiry and Nature of Science

    NASA Astrophysics Data System (ADS)

    Lotter, Christine; Singer, Jonathan; Godley, Jenice

    2009-12-01

    This study describes the influence of a secondary science methods program on secondary science preservice teachers’ views and enactment of nature of science and inquiry-based instructional practices. Built into the structure of this program were three cycles of practice teaching and reflection in which the preservice teachers focused on key pedagogical ideas in classroom settings with middle and high school students. The nine secondary preservice teachers improved both their understanding and enactment of inquiry and nature of science throughout the program period. This study provides evidence of the importance of incorporating multiple low-stakes practicum experiences that are closely tied to methods course goals that are highly scaffolded through both methods instructor and cooperating teacher support and tied to analytic self-reflection.

  13. IMG-ABC: A Knowledge Base To Fuel Discovery of Biosynthetic Gene Clusters and Novel Secondary Metabolites.

    PubMed

    Hadjithomas, Michalis; Chen, I-Min Amy; Chu, Ken; Ratner, Anna; Palaniappan, Krishna; Szeto, Ernest; Huang, Jinghua; Reddy, T B K; Cimermančič, Peter; Fischbach, Michael A; Ivanova, Natalia N; Markowitz, Victor M; Kyrpides, Nikos C; Pati, Amrita

    2015-07-14

    In the discovery of secondary metabolites, analysis of sequence data is a promising exploration path that remains largely underutilized due to the lack of computational platforms that enable such a systematic approach on a large scale. In this work, we present IMG-ABC (https://img.jgi.doe.gov/abc), an atlas of biosynthetic gene clusters within the Integrated Microbial Genomes (IMG) system, which is aimed at harnessing the power of "big" genomic data for discovering small molecules. IMG-ABC relies on IMG's comprehensive integrated structural and functional genomic data for the analysis of biosynthetic gene clusters (BCs) and associated secondary metabolites (SMs). SMs and BCs serve as the two main classes of objects in IMG-ABC, each with a rich collection of attributes. A unique feature of IMG-ABC is the incorporation of both experimentally validated and computationally predicted BCs in genomes as well as metagenomes, thus identifying BCs in uncultured populations and rare taxa. We demonstrate the strength of IMG-ABC's focused integrated analysis tools in enabling the exploration of microbial secondary metabolism on a global scale, through the discovery of phenazine-producing clusters for the first time in Alphaproteobacteria. IMG-ABC strives to fill the long-existent void of resources for computational exploration of the secondary metabolism universe; its underlying scalable framework enables traversal of uncovered phylogenetic and chemical structure space, serving as a doorway to a new era in the discovery of novel molecules. IMG-ABC is the largest publicly available database of predicted and experimental biosynthetic gene clusters and the secondary metabolites they produce. The system also includes powerful search and analysis tools that are integrated with IMG's extensive genomic/metagenomic data and analysis tool kits. As new research on biosynthetic gene clusters and secondary metabolites is published and more genomes are sequenced, IMG-ABC will continue to expand, with the goal of becoming an essential component of any bioinformatic exploration of the secondary metabolism world. Copyright © 2015 Hadjithomas et al.

  14. Characterization and visualization of RNA secondary structure Boltzmann ensemble via information theory.

    PubMed

    Lin, Luan; McKerrow, Wilson H; Richards, Bryce; Phonsom, Chukiat; Lawrence, Charles E

    2018-03-05

    The nearest neighbor model and associated dynamic programming algorithms allow for the efficient estimation of the RNA secondary structure Boltzmann ensemble. However because a given RNA secondary structure only contains a fraction of the possible helices that could form from a given sequence, the Boltzmann ensemble is multimodal. Several methods exist for clustering structures and finding those modes. However less focus is given to exploring the underlying reasons for this multimodality: the presence of conflicting basepairs. Information theory, or more specifically mutual information, provides a method to identify those basepairs that are key to the secondary structure. To this end we find most informative basepairs and visualize the effect of these basepairs on the secondary structure. Knowing whether a most informative basepair is present tells us not only the status of the particular pair but also provides a large amount of information about which other pairs are present or not present. We find that a few basepairs account for a large amount of the structural uncertainty. The identification of these pairs indicates small changes to sequence or stability that will have a large effect on structure. We provide a novel algorithm that uses mutual information to identify the key basepairs that lead to a multimodal Boltzmann distribution. We then visualize the effect of these pairs on the overall Boltzmann ensemble.

  15. Secondary electron imaging of monolayer materials inside a transmission electron microscope

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cretu, Ovidiu, E-mail: cretu.ovidiu@nims.go.jp; Lin, Yung-Chang; Suenaga, Kazutomo

    2015-08-10

    A scanning transmission electron microscope equipped with a backscattered and secondary electron detector is shown capable to image graphene and hexagonal boron nitride monolayers. Secondary electron contrasts of the two lightest monolayer materials are clearly distinguished from the vacuum level. A signal difference between these two materials is attributed to electronic structure differences, which will influence the escape probabilities of the secondary electrons. Our results show that the secondary electron signal can be used to distinguish between the electronic structures of materials with atomic layer sensitivity, enhancing its applicability as a complementary signal in the analytical microscope.

  16. Relative stability of major types of beta-turns as a function of amino acid composition: a study based on Ab initio energetic and natural abundance data.

    PubMed

    Perczel, András; Jákli, Imre; McAllister, Michael A; Csizmadia, Imre G

    2003-06-06

    Folding properties of small globular proteins are determined by their amino acid sequence (primary structure). This holds both for local (secondary structure) and for global conformational features of linear polypeptides and proteins composed from natural amino acid derivatives. It thus provides the rational basis of structure prediction algorithms. The shortest secondary structure element, the beta-turn, most typically adopts either a type I or a type II form, depending on the amino acid composition. Herein we investigate the sequence-dependent folding stability of both major types of beta-turns using simple dipeptide models (-Xxx-Yyy-). Gas-phase ab initio properties of 16 carefully selected and suitably protected dipeptide models (for example Val-Ser, Ala-Gly, Ser-Ser) were studied. For each backbone fold most probable side-chain conformers were considered. Fully optimized 321G RHF molecular structures were employed in medium level [B3LYP/6-311++G(d,p)//RHF/3-21G] energy calculations to estimate relative populations of the different backbone conformers. Our results show that the preference for beta-turn forms as calculated by quantum mechanics and observed in Xray determined proteins correlates significantly.

  17. Effects of proline cis-trans isomerization on TB domain secondary structure.

    PubMed Central

    Yuan, X.; Werner, J. M.; Knott, V.; Handford, P. A.; Campbell, I. D.; Downing, K.

    1998-01-01

    The transforming growth factor beta (TGF-beta) binding protein-like (TB) domain is found principally in proteins localized to extracellular matrix fibrils, including human fibrillin-1, the defective protein in the Marfan syndrome. Analysis of the nuclear magnetic resonance (NMR) data for the sixth TB module from human fibrillin-1 has revealed the existence of two stable conformers that differ in the isomerization states of two proline residues. Unusually, the two isoforms do not readily interconvert and are stable on the time scale of milliseconds. We have computed independent structures of the major and minor conformers of TB6 to assess how the domain fold adjusts to incorporate alternatively cis- or trans-prolines. Based on previous observations, it has been suggested that multiple conformers can only be accommodated in flexible regions of protein structure. In contrast, P22, which exists in trans in the major form and cis in the minor form of TB6, is in a rigid region of the domain, which is confirmed by backbone dynamics measurements. Overall, the structures of the major and minor conformers are similar. However, the secondary structure topologies of the two forms differ as a direct consequence of the changes in proline conformation. PMID:9792099

  18. Hydrophobic cluster analysis of G protein-coupled receptors: a powerful tool to derive structural and functional information from 2D-representation of protein sequences.

    PubMed

    Lentes, K U; Mathieu, E; Bischoff, R; Rasmussen, U B; Pavirani, A

    1993-01-01

    Current methods for comparative analyses of protein sequences are 1D-alignments of amino acid sequences based on the maximization of amino acid identity (homology) and the prediction of secondary structure elements. This method has a major drawback once the amino acid identity drops below 20-25%, since maximization of a homology score does not take into account any structural information. A new technique called Hydrophobic Cluster Analysis (HCA) has been developed by Lemesle-Varloot et al. (Biochimie 72, 555-574), 1990). This consists of comparing several sequences simultaneously and combining homology detection with secondary structure analysis. HCA is primarily based on the detection and comparison of structural segments constituting the hydrophobic core of globular protein domains, with or without transmembrane domains. We have applied HCA to the analysis of different families of G-protein coupled receptors, such as catecholamine receptors as well as peptide hormone receptors. Utilizing HCA the thrombin receptor, a new and as yet unique member of the family of G-protein coupled receptors, can be clearly classified as being closely related to the family of neuropeptide receptors rather than to the catecholamine receptors for which the shape of the hydrophobic clusters and the length of their third cytoplasmic loop are very different. Furthermore, the potential of HCA to predict relationships between new putative and already characterized members of this family of receptors will be presented.

  19. Covariant Evolutionary Event Analysis for Base Interaction Prediction Using a Relational Database Management System for RNA.

    PubMed

    Xu, Weijia; Ozer, Stuart; Gutell, Robin R

    2009-01-01

    With an increasingly large amount of sequences properly aligned, comparative sequence analysis can accurately identify not only common structures formed by standard base pairing but also new types of structural elements and constraints. However, traditional methods are too computationally expensive to perform well on large scale alignment and less effective with the sequences from diversified phylogenetic classifications. We propose a new approach that utilizes coevolutional rates among pairs of nucleotide positions using phylogenetic and evolutionary relationships of the organisms of aligned sequences. With a novel data schema to manage relevant information within a relational database, our method, implemented with a Microsoft SQL Server 2005, showed 90% sensitivity in identifying base pair interactions among 16S ribosomal RNA sequences from Bacteria, at a scale 40 times bigger and 50% better sensitivity than a previous study. The results also indicated covariation signals for a few sets of cross-strand base stacking pairs in secondary structure helices, and other subtle constraints in the RNA structure.

  20. Covariant Evolutionary Event Analysis for Base Interaction Prediction Using a Relational Database Management System for RNA

    PubMed Central

    Xu, Weijia; Ozer, Stuart; Gutell, Robin R.

    2010-01-01

    With an increasingly large amount of sequences properly aligned, comparative sequence analysis can accurately identify not only common structures formed by standard base pairing but also new types of structural elements and constraints. However, traditional methods are too computationally expensive to perform well on large scale alignment and less effective with the sequences from diversified phylogenetic classifications. We propose a new approach that utilizes coevolutional rates among pairs of nucleotide positions using phylogenetic and evolutionary relationships of the organisms of aligned sequences. With a novel data schema to manage relevant information within a relational database, our method, implemented with a Microsoft SQL Server 2005, showed 90% sensitivity in identifying base pair interactions among 16S ribosomal RNA sequences from Bacteria, at a scale 40 times bigger and 50% better sensitivity than a previous study. The results also indicated covariation signals for a few sets of cross-strand base stacking pairs in secondary structure helices, and other subtle constraints in the RNA structure. PMID:20502534

  1. Helicity of short E-R/K peptides.

    PubMed

    Sommese, Ruth F; Sivaramakrishnan, Sivaraj; Baldwin, Robert L; Spudich, James A

    2010-10-01

    Understanding the secondary structure of peptides is important in protein folding, enzyme function, and peptide-based drug design. Previous studies of synthetic Ala-based peptides (>12 a.a.) have demonstrated the role for charged side chain interactions involving Glu/Lys or Glu/Arg spaced three (i, i + 3) or four (i, i + 4) residues apart. The secondary structure of short peptides (<9 a.a.), however, has not been investigated. In this study, the effect of repetitive Glu/Lys or Glu/Arg side chain interactions, giving rise to E-R/K helices, on the helicity of short peptides was examined using circular dichroism. Short E-R/K-based peptides show significant helix content. Peptides containing one or more E-R interactions display greater helicity than those with similar E-K interactions. Significant helicity is achieved in Arg-based E-R/K peptides eight, six, and five amino acids long. In these short peptides, each additional i + 3 and i + 4 salt bridge has substantial contribution to fractional helix content. The E-R/K peptides exhibit a strongly linear melt curve indicative of noncooperative folding. The significant helicity of these short peptides with predictable dependence on number, position, and type of side chain interactions makes them an important consideration in peptide design.

  2. High School Curriculum Structure: Effects on Coursetaking and Achievement in Mathematics for High School Graduates. An Examination of Data from the National Education Longitudinal Study of 1988. Working Paper Series.

    ERIC Educational Resources Information Center

    Lee, Valerie E.; Burkam, David T.; Chow-Hoy, Todd; Smerdon, Becky A.; Goverdt, Douglas

    This study investigates how the structure of the high school curriculum influences how far graduates get in the secondary mathematics course pipeline, and their level of achievement in that subject by the end of high school. The study draws on data from the High School Effectiveness Supplement (HSES) of NELS:88, a broad-based longitudinal study of…

  3. FTIR study of secondary structure of bovine serum albumin and ovalbumin

    NASA Astrophysics Data System (ADS)

    Abrosimova, K. V.; Shulenina, O. V.; Paston, S. V.

    2016-11-01

    Proteins structure is the critical factor for their functioning. Fourier transform infrared spectroscopy provides a possibility to obtain information about secondary structure of proteins in different states and also in a whole biological samples. Infrared spectra of egg white from the untreated and hard-boiled hen's egg, and also of chicken ovalbumin and bovine serum albumin in lyophilic form and in aqueous solution were studied. Lyophilization of investigated globular proteins is accompanied by the decrease of a-helix structures and the increase in amount of intermolecular β-sheets. Analysis of infrared spectrum of egg white allowed to make an estimation of OVA secondary structure and to observe α-to-β structural transformation as a result of the heat denaturation.

  4. A structured viroid RNA serves as a substrate for dicer-like cleavage to produce biologically active small RNAs but is resistant to RNA-induced silencing complex-mediated degradation.

    PubMed

    Itaya, Asuka; Zhong, Xuehua; Bundschuh, Ralf; Qi, Yijun; Wang, Ying; Takeda, Ryuta; Harris, Ann R; Molina, Carlos; Nelson, Richard S; Ding, Biao

    2007-03-01

    RNA silencing is a potent means of antiviral defense in plants and animals. A hallmark of this defense response is the production of 21- to 24-nucleotide viral small RNAs via mechanisms that remain to be fully understood. Many viruses encode suppressors of RNA silencing, and some viral RNAs function directly as silencing suppressors as counterdefense. The occurrence of viroid-specific small RNAs in infected plants suggests that viroids can trigger RNA silencing in a host, raising the question of how these noncoding and unencapsidated RNAs survive cellular RNA-silencing systems. We address this question by characterizing the production of small RNAs of Potato spindle tuber viroid (srPSTVds) and investigating how PSTVd responds to RNA silencing. Our molecular and biochemical studies provide evidence that srPSTVds were derived mostly from the secondary structure of viroid RNAs. Replication of PSTVd was resistant to RNA silencing, although the srPSTVds were biologically active in guiding RNA-induced silencing complex (RISC)-mediated cleavage, as shown with a sensor system. Further analyses showed that without possessing or triggering silencing suppressor activities, the PSTVd secondary structure played a critical role in resistance to RISC-mediated cleavage. These findings support the hypothesis that some infectious RNAs may have evolved specific secondary structures as an effective means to evade RNA silencing in addition to encoding silencing suppressor activities. Our results should have important implications in further studies on RNA-based mechanisms of host-pathogen interactions and the biological constraints that shape the evolution of infectious RNA structures.

  5. Successive range expansion promotes diversity and accelerates evolution in spatially structured microbial populations.

    PubMed

    Goldschmidt, Felix; Regoes, Roland R; Johnson, David R

    2017-09-01

    Successive range expansions occur within all domains of life, where one population expands first (primary expansion) and one or more secondary populations then follow (secondary expansion). In general, genetic drift reduces diversity during range expansion. However, it is not clear whether the same effect applies during successive range expansion, mainly because the secondary population must expand into space occupied by the primary population. Here we used an experimental microbial model system to show that, in contrast to primary range expansion, successive range expansion promotes local population diversity. Because of mechanical constraints imposed by the presence of the primary population, the secondary population forms fractal-like dendritic structures. This divides the advancing secondary population into many small sub-populations and promotes intermixing between the primary and secondary populations. We further developed a mathematical model to simulate the formation of dendritic structures in the secondary population during succession. By introducing mutations in the primary or dendritic secondary populations, we found that mutations are more likely to accumulate in the dendritic secondary populations. Our results thus show that successive range expansion can promote intermixing over the short term and increase genetic diversity over the long term. Our results therefore have potentially important implications for predicting the ecological processes and evolutionary trajectories of microbial communities.

  6. A simple system for the identification of fluorescent dyes capable of reporting differences in secondary structure and hydrophobicity among amyloidogenic protein oligomers

    NASA Astrophysics Data System (ADS)

    Yates, Emma

    2012-02-01

    Thioflavin T and Congo Red are fluorescent dyes that are commonly used to identify the presence of amyloid structures, ordered protein aggregates. Despite the ubiquity of their use, little is known about their mechanism of interaction with amyloid fibrils, or whether other dyes, whose photophysics indicate that they may be more responsive to differences in macromolecular secondary structure and hydrophobicity, would be better suited to the identification of pathologically relevant oligomeric species in amyloid diseases. In order to systematically address this question, we have designed a strategy that discretely introduces differences in secondary structure and hydrophobicity amidst otherwise identical polyamino acids. This strategy will enable us to quantify and compare the affinities of Thioflavin T, Congo Red, and other, incompletely explored, fluorescent dyes for different secondary structural elements and hydrophobic motifs. With this information, we will identify dyes that give the most robust and quantitative information about structural differences among the complex population of oligomeric species present along an aggregation pathway between soluble monomers and amyloid fibrils, and correlate the resulting structural information with differential oligomeric toxicity.

  7. Effects of temperature and SDS on the structure of beta-glycosidase from the thermophilic archaeon Sulfolobus solfataricus.

    PubMed Central

    D'auria, S; Barone, R; Rossi, M; Nucci, R; Barone, G; Fessas, D; Bertoli, E; Tanfani, F

    1997-01-01

    The effects of temperature and SDS on the three-dimensional organization and secondary structure of beta-glycosidase from the thermophilic archaeon Sulfolobus solfataricus were investigated by CD, IR spectroscopy and differential scanning calorimetry. CD spectra in the near UV region showed that the detergent caused a remarkable change in the protein tertiary structure, and far-UV CD analysis revealed only a slight effect on secondary structure. Infrared spectroscopy showed that low concentrations of the detergent (up to 0.02%) induced slight changes in the enzyme secondary structure, whereas high concentrations caused the alpha-helix content to increase at high temperatures and prevented protein aggregation. PMID:9169619

  8. FPGA accelerator for protein secondary structure prediction based on the GOR algorithm

    PubMed Central

    2011-01-01

    Background Protein is an important molecule that performs a wide range of functions in biological systems. Recently, the protein folding attracts much more attention since the function of protein can be generally derived from its molecular structure. The GOR algorithm is one of the most successful computational methods and has been widely used as an efficient analysis tool to predict secondary structure from protein sequence. However, the execution time is still intolerable with the steep growth in protein database. Recently, FPGA chips have emerged as one promising application accelerator to accelerate bioinformatics algorithms by exploiting fine-grained custom design. Results In this paper, we propose a complete fine-grained parallel hardware implementation on FPGA to accelerate the GOR-IV package for 2D protein structure prediction. To improve computing efficiency, we partition the parameter table into small segments and access them in parallel. We aggressively exploit data reuse schemes to minimize the need for loading data from external memory. The whole computation structure is carefully pipelined to overlap the sequence loading, computing and back-writing operations as much as possible. We implemented a complete GOR desktop system based on an FPGA chip XC5VLX330. Conclusions The experimental results show a speedup factor of more than 430x over the original GOR-IV version and 110x speedup over the optimized version with multi-thread SIMD implementation running on a PC platform with AMD Phenom 9650 Quad CPU for 2D protein structure prediction. However, the power consumption is only about 30% of that of current general-propose CPUs. PMID:21342582

  9. Improvement of wireless power transmission efficiency of implantable subcutaneous devices by closed magnetic circuit mechanism.

    PubMed

    Jo, Sung-Eun; Joung, Sanghoon; Suh, Jun-Kyo Francis; Kim, Yong-Jun

    2012-09-01

    Induction coils were fabricated based on flexible printed circuit board for inductive transcutaneous power transmission. The coil had closed magnetic circuit (CMC) structure consisting of inner and outer magnetic core. The power transmission efficiency of the fabricated device was measured in the air and in vivo condition. It was confirmed that the CMC coil had higher transmission efficiency than typical air-core coil. The power transmission efficiency during a misalignment between primary coil and implanted secondary coil was also evaluated. The decrease of mutual inductance between the two coils caused by the misalignment led to a low efficiency of the inductive link. Therefore, it is important to properly align the primary coil and implanted secondary coil for effective power transmission. To align the coils, a feedback coil was proposed. This was integrated on the backside of the primary coil and enabled the detection of a misalignment of the primary and secondary coils. As a result of using the feedback coil, the primary and secondary coils could be aligned without knowledge of the position of the implanted secondary coil.

  10. Information in general medical practices: the information processing model.

    PubMed

    Crowe, Sarah; Tully, Mary P; Cantrill, Judith A

    2010-04-01

    The need for effective communication and handling of secondary care information in general practices is paramount. To explore practice processes on receiving secondary care correspondence in a way that integrates the information needs and perceptions of practice staff both clinical and administrative. Qualitative study using semi-structured interviews with a wide range of practice staff (n = 36) in nine practices in the Northwest of England. Analysis was based on the framework approach using N-Vivo software and involved transcription, familiarization, coding, charting, mapping and interpretation. The 'information processing model' was developed to describe the six stages involved in practice processing of secondary care information. These included the amendment or updating of practice records whilst simultaneously or separately actioning secondary care recommendations, using either a 'one-step' or 'two-step' approach, respectively. Many factors were found to influence each stage and impact on the continuum of patient care. The primary purpose of processing secondary care information is to support patient care; this study raises the profile of information flow and usage within practices as an issue requiring further consideration.

  11. Binding of Amphipathic Cell Penetrating Peptide p28 to Wild Type and Mutated p53 as studied by Raman, Atomic Force and Surface Plasmon Resonance spectroscopies.

    PubMed

    Signorelli, Sara; Santini, Simona; Yamada, Tohru; Bizzarri, Anna Rita; Beattie, Craig W; Cannistraro, Salvatore

    2017-04-01

    Mutations within the DNA binding domain (DBD) of the tumor suppressor p53 are found in >50% of human cancers and may significantly modify p53 secondary structure impairing its function. p28, an amphipathic cell-penetrating peptide, binds to the DBD through hydrophobic interaction and induces a posttranslational increase in wildtype and mutant p53 restoring functionality. We use mutation analyses to explore which elements of secondary structure may be critical to p28 binding. Molecular modeling, Raman spectroscopy, Atomic Force Spectroscopy (AFS) and Surface Plasmon Resonance (SPR) were used to identify which secondary structure of site-directed and naturally occurring mutant DBDs are potentially altered by discrete changes in hydrophobicity and the molecular interaction with p28. We show that specific point mutations that alter hydrophobicity within non-mutable and mutable regions of the p53 DBD alter specific secondary structures. The affinity of p28 was positively correlated with the β-sheet content of a mutant DBD, and reduced by an increase in unstructured or random coil that resulted from a loss in hydrophobicity and redistribution of surface charge. These results help refine our knowledge of how mutations within p53-DBD alter secondary structure and provide insight on how potential structural alterations in p28 or similar molecules improve their ability to restore p53 function. Raman spectroscopy, AFS, SPR and computational modeling are useful approaches to characterize how mutations within the p53DBD potentially affect secondary structure and identify those structural elements prone to influence the binding affinity of agents designed to increase the functionality of p53. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. The Role of Migration and Single Motherhood in Upper Secondary Education in Mexico

    ERIC Educational Resources Information Center

    Creighton, Mathew J.; Park, Hyunjoon; Teruel, Graciela M.

    2009-01-01

    We investigated the link between migration, family structure, and the risk of dropping out of upper secondary school in Mexico. Using two waves of the Mexican Family Life Survey, which includes 1,080 upper secondary students, we longitudinally modeled the role of family structure in the subsequent risk of dropping out, focusing on the role of…

  13. Structure-Based Design of Inhibitors of Protein–Protein Interactions: Mimicking Peptide Binding Epitopes

    PubMed Central

    Pelay-Gimeno, Marta; Glas, Adrian; Koch, Oliver; Grossmann, Tom N

    2015-01-01

    Protein–protein interactions (PPIs) are involved at all levels of cellular organization, thus making the development of PPI inhibitors extremely valuable. The identification of selective inhibitors is challenging because of the shallow and extended nature of PPI interfaces. Inhibitors can be obtained by mimicking peptide binding epitopes in their bioactive conformation. For this purpose, several strategies have been evolved to enable a projection of side chain functionalities in analogy to peptide secondary structures, thereby yielding molecules that are generally referred to as peptidomimetics. Herein, we introduce a new classification of peptidomimetics (classes A–D) that enables a clear assignment of available approaches. Based on this classification, the Review summarizes strategies that have been applied for the structure-based design of PPI inhibitors through stabilizing or mimicking turns, β-sheets, and helices. PMID:26119925

  14. Statistical mechanical approach to secondary processes and structural relaxation in glasses and glass formers: a leading model to describe the onset of Johari-Goldstein processes and their relationship with fully cooperative processes.

    PubMed

    Crisanti, A; Leuzzi, L; Paoluzzi, M

    2011-09-01

    The interrelation of dynamic processes active on separated time-scales in glasses and viscous liquids is investigated using a model displaying two time-scale bifurcations both between fast and secondary relaxation and between secondary and structural relaxation. The study of the dynamics allows for predictions on the system relaxation above the temperature of dynamic arrest in the mean-field approximation, that are compared with the outcomes of the equations of motion directly derived within the Mode Coupling Theory (MCT) for under-cooled viscous liquids. By varying the external thermodynamic parameters, a wide range of phenomenology can be represented, from a very clear separation of structural and secondary peak in the susceptibility loss to excess wing structures.

  15. Analysing Teachers' Operations When Teaching Students: What Constitutes Scientific Theories?

    ERIC Educational Resources Information Center

    Holmqvist, Mona O.; Olander, Clas

    2017-01-01

    The aim of the study is to analyse teachers' efforts to develop secondary school students' knowledge and argumentation skills of what constitutes scientific theories. The analysis is based on Leontiev's three-level structure of activity (activity, action, and operation), as these levels correspond to the questions why, what, and how content is…

  16. A Study of Syntactic Processing in Aphasia II: Neurological Aspects

    ERIC Educational Resources Information Center

    Caplan, David; Waters, Gloria; Kennedy, David; Alpert, Nathanial; Makris, Nikos; DeDe, Gayle; Michaud, Jennifer; Reddy, Amanda

    2007-01-01

    This paper presents the results of a study of the effects of left hemisphere strokes on syntactically-based comprehension in aphasic patients. We studied 42 patients with aphasia secondary to left hemisphere strokes and 25 control subjects for the ability to assign and interpret three syntactic structures (passives, object extracted relative…

  17. Language Aptitude and Grammatical Difficulty: An EFL Classroom-Based Study

    ERIC Educational Resources Information Center

    Yalçin, Sebnem; Spada, Nina

    2016-01-01

    This study investigates the relationship between foreign language aptitude and the learning of two English structures defined as easy or difficult to learn. Using a quasiexperimental design, 66 secondary-level learners of English as a foreign language from three intact classes were provided with four hours of instruction on the "passive"…

  18. Perceptions of Hong Kong Physical Education Teachers on the Inclusion of Students with Disabilities

    ERIC Educational Resources Information Center

    Qi, Jing; Wang, Lijuan; Ha, Amy

    2017-01-01

    Based on Lev Vygotsky's social constructivism theory, this study examined the perceptions of Hong Kong physical education (PE) teachers regarding the inclusion of students with disabilities in general PE programmes. Eight secondary PE teachers (female = 5, male = 3) were recruited for individual semi-structured interviews. Data gathered from the…

  19. Assessing Argumentative Representation with Bayesian Network Models in Debatable Social Issues

    ERIC Educational Resources Information Center

    Zhang, Zhidong; Lu, Jingyan

    2014-01-01

    This study seeks to obtain argumentation models, which represent argumentative processes and an assessment structure in secondary school debatable issues in the social sciences. The argumentation model was developed based on mixed methods, a combination of both theory-driven and data-driven methods. The coding system provided a combing point by…

  20. Competition and the Performance of English Secondary Schools: Further Evidence

    ERIC Educational Resources Information Center

    Levacic, Rosalind

    2004-01-01

    Both advocates of competition as a means to better school performance and economics-based research on this issue assume a direct relationship between a more competitive market structure (in terms of the number and concentration of schools in a local market) and better school performance. This is an application to schools of the…

  1. Classroom Environments and Student Empowerment: An Analysis of Elementary and Secondary Teacher Beliefs

    ERIC Educational Resources Information Center

    Nichols, Joe D.; Zhang, Guanglan

    2011-01-01

    This project explored a classroom model of motivation in which the source of student motivation is based on internal mechanisms or structures and classroom student/instructor interactions. It also extended earlier research in which beliefs of veteran, entry level, and preservice teachers have been explored. For this project, 117 elementary…

  2. SHAPE Selection (SHAPES) enrich for RNA structure signal in SHAPE sequencing-based probing data

    PubMed Central

    Poulsen, Line Dahl; Kielpinski, Lukasz Jan; Salama, Sofie R.; Krogh, Anders; Vinther, Jeppe

    2015-01-01

    Selective 2′ Hydroxyl Acylation analyzed by Primer Extension (SHAPE) is an accurate method for probing of RNA secondary structure. In existing SHAPE methods, the SHAPE probing signal is normalized to a no-reagent control to correct for the background caused by premature termination of the reverse transcriptase. Here, we introduce a SHAPE Selection (SHAPES) reagent, N-propanone isatoic anhydride (NPIA), which retains the ability of SHAPE reagents to accurately probe RNA structure, but also allows covalent coupling between the SHAPES reagent and a biotin molecule. We demonstrate that SHAPES-based selection of cDNA–RNA hybrids on streptavidin beads effectively removes the large majority of background signal present in SHAPE probing data and that sequencing-based SHAPES data contain the same amount of RNA structure data as regular sequencing-based SHAPE data obtained through normalization to a no-reagent control. Moreover, the selection efficiently enriches for probed RNAs, suggesting that the SHAPES strategy will be useful for applications with high-background and low-probing signal such as in vivo RNA structure probing. PMID:25805860

  3. Principals' Administrative Styles and Students' Academic Performance in Taraba State Secondary Schools, Nigeria

    ERIC Educational Resources Information Center

    Bello, Suleiman; Ibi, Mustapha Baba; Bukar, Ibrahim Bulama

    2016-01-01

    The study determined the relationship between principals' administrative styles and students' academic performance in Taraba State secondary schools, Nigeria. The objectives of the study were to determine the relationships between initiative structure of leadership styles, consideration structure of leadership styles, participatory structure of…

  4. Effect of Monomer Structure on Curing Behavior, CO2 Solubility, and Gas Permeability of Ionic Liquid-Based Epoxy-Amine Resins and Ion-Gels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McDanel, WM; Cowan, MG; Barton, JA

    2015-04-29

    New imidazolium- and pyrrolidinium-based bis(epoxide)-functionalized ionic liquid (IL) monorners were synthesized: and reacted with multifunctional amine monomers to produce cross-linked, epoxy-amine poly(ionic liquid) (PIL) resins and PIL/IL ion-gel membranes. The length and chemical nature (i.e., alkyl versus ether) between the irrildazolium group and epokitie groups were studied to determine their effects on CO2 affinity. The CO2 uptake (millimoles per gram) of the epoxy amine resins (between 0.1 and 1 mmol/g) was found to depend predominately on the epoxide-to-amine ratio and the bis(epoxide) IL molecular weight. The effect of using a primary versus a secondary amine-containing multifunctional monoiner was also assessedmore » for the resin-synthesis. Secondary amines can increase CO2 permeability but also increase the iime required for biS(epoxide) coriversion. When either the epoxide or athine monomer structure is changed, the CO2 solubility and permeability of the resulting PIL resins and ion-sel membranes can be tuned.« less

  5. [Analysis of the primary and secondary structure of the mitochondrial serine transfer RNA in seven species of Lutzomyia].

    PubMed

    Vivero, Rafael José; Contreras-Gutiérrez, Maria Angélica; Bejarano, Eduar Elías

    2007-09-01

    Lutzomyia sand flies are involved in the transmission of the parasite Leishmania spp. in America. The taxonomy of these vectors is traditionally based on morphological features of the adult stage, particularly the paired structures of the head and genitalia. Although these characters are useful to distinguish most species of Lutzomyia, morphological identification may be complicated by the similarities within subgenera and species group. To evaluate the utility of mitochondrial serine transfer RNA tRNA Ser for taxonomic identification of Lutzomyia. Seven sand fly species, each representing one of the 27 taxonomic subdivisions in genus Lutzomyia, were analyzed including L. trinidadensis (Oswaldoi group), L. (Psychodopygus) panamensis, L.(Micropygomyia) cayennensis cayennensis, L. dubitans (Migonei group), L. (Lutzomyia) gomezi, L. rangeliana (ungrouped) and L. evansi (Verrucarum group). The mitochondrial tRNA Ser gene, flanked by the cytochrome b and NAD dehydrogenase subunit one genes, was extracted, amplified and sequenced from each specimen. Secondary structure of the tRNA Ser was predicted by comparisons with previously described homologous structures from other dipteran species. The tRNA Ser gene ranged in size from 66 base pairs in L. gomezi to 69 base pairs in L. trinidadensis. Fourteen polymorphic sites, including four insertion-deletion events, were observed in the aligned 70 nucleotide positions. The majority of the substitutions were located in the dihydrouridine, ribothymidine-pseudouridine-cytosine and variable loops, as well as in the basal extreme of the anticodon arm. Changes of primary sequence of the tRNASer provided useful molecular characters for taxonomic identification of the sand fly species under consideration.

  6. Detection and Alignment of 3D Domain Swapping Proteins Using Angle-Distance Image-Based Secondary Structural Matching Techniques

    PubMed Central

    Wang, Hsin-Wei; Hsu, Yen-Chu; Hwang, Jenn-Kang; Lyu, Ping-Chiang; Pai, Tun-Wen; Tang, Chuan Yi

    2010-01-01

    This work presents a novel detection method for three-dimensional domain swapping (DS), a mechanism for forming protein quaternary structures that can be visualized as if monomers had “opened” their “closed” structures and exchanged the opened portion to form intertwined oligomers. Since the first report of DS in the mid 1990s, an increasing number of identified cases has led to the postulation that DS might occur in a protein with an unconstrained terminus under appropriate conditions. DS may play important roles in the molecular evolution and functional regulation of proteins and the formation of depositions in Alzheimer's and prion diseases. Moreover, it is promising for designing auto-assembling biomaterials. Despite the increasing interest in DS, related bioinformatics methods are rarely available. Owing to a dramatic conformational difference between the monomeric/closed and oligomeric/open forms, conventional structural comparison methods are inadequate for detecting DS. Hence, there is also a lack of comprehensive datasets for studying DS. Based on angle-distance (A-D) image transformations of secondary structural elements (SSEs), specific patterns within A-D images can be recognized and classified for structural similarities. In this work, a matching algorithm to extract corresponding SSE pairs from A-D images and a novel DS score have been designed and demonstrated to be applicable to the detection of DS relationships. The Matthews correlation coefficient (MCC) and sensitivity of the proposed DS-detecting method were higher than 0.81 even when the sequence identities of the proteins examined were lower than 10%. On average, the alignment percentage and root-mean-square distance (RMSD) computed by the proposed method were 90% and 1.8Å for a set of 1,211 DS-related pairs of proteins. The performances of structural alignments remain high and stable for DS-related homologs with less than 10% sequence identities. In addition, the quality of its hinge loop determination is comparable to that of manual inspection. This method has been implemented as a web-based tool, which requires two protein structures as the input and then the type and/or existence of DS relationships between the input structures are determined according to the A-D image-based structural alignments and the DS score. The proposed method is expected to trigger large-scale studies of this interesting structural phenomenon and facilitate related applications. PMID:20976204

  7. Secondary Structure Prediction of Protein Constructs Using Random Incremental Truncation and Vacuum-Ultraviolet CD Spectroscopy

    PubMed Central

    Pukáncsik, Mária; Orbán, Ágnes; Nagy, Kinga; Matsuo, Koichi; Gekko, Kunihiko; Maurin, Damien; Hart, Darren; Kézsmárki, István; Vertessy, Beata G.

    2016-01-01

    A novel uracil-DNA degrading protein factor (termed UDE) was identified in Drosophila melanogaster with no significant structural and functional homology to other uracil-DNA binding or processing factors. Determination of the 3D structure of UDE is excepted to provide key information on the description of the molecular mechanism of action of UDE catalysis, as well as in general uracil-recognition and nuclease action. Towards this long-term aim, the random library ESPRIT technology was applied to the novel protein UDE to overcome problems in identifying soluble expressing constructs given the absence of precise information on domain content and arrangement. Nine constructs of UDE were chosen to decipher structural and functional relationships. Vacuum ultraviolet circular dichroism (VUVCD) spectroscopy was performed to define the secondary structure content and location within UDE and its truncated variants. The quantitative analysis demonstrated exclusive α-helical content for the full-length protein, which is preserved in the truncated constructs. Arrangement of α-helical bundles within the truncated protein segments suggested new domain boundaries which differ from the conserved motifs determined by sequence-based alignment of UDE homologues. Here we demonstrate that the combination of ESPRIT and VUVCD spectroscopy provides a new structural description of UDE and confirms that the truncated constructs are useful for further detailed functional studies. PMID:27273007

  8. RNAiFold: a web server for RNA inverse folding and molecular design.

    PubMed

    Garcia-Martin, Juan Antonio; Clote, Peter; Dotu, Ivan

    2013-07-01

    Synthetic biology and nanotechnology are poised to make revolutionary contributions to the 21st century. In this article, we describe a new web server to support in silico RNA molecular design. Given an input target RNA secondary structure, together with optional constraints, such as requiring GC-content to lie within a certain range, requiring the number of strong (GC), weak (AU) and wobble (GU) base pairs to lie in a certain range, the RNAiFold web server determines one or more RNA sequences, whose minimum free-energy secondary structure is the target structure. RNAiFold provides access to two servers: RNA-CPdesign, which applies constraint programming, and RNA-LNSdesign, which applies the large neighborhood search heuristic; hence, it is suitable for larger input structures. Both servers can also solve the RNA inverse hybridization problem, i.e. given a representation of the desired hybridization structure, RNAiFold returns two sequences, whose minimum free-energy hybridization is the input target structure. The web server is publicly accessible at http://bioinformatics.bc.edu/clotelab/RNAiFold, which provides access to two specialized servers: RNA-CPdesign and RNA-LNSdesign. Source code for the underlying algorithms, implemented in COMET and supported on linux, can be downloaded at the server website.

  9. GalaxyGPCRloop: Template-Based and Ab Initio Structure Sampling of the Extracellular Loops of G-Protein-Coupled Receptors.

    PubMed

    Won, Jonghun; Lee, Gyu Rie; Park, Hahnbeom; Seok, Chaok

    2018-06-07

    The second extracellular loops (ECL2s) of G-protein-coupled receptors (GPCRs) are often involved in GPCR functions, and their structures have important implications in drug discovery. However, structure prediction of ECL2 is difficult because of its long length and the structural diversity among different GPCRs. In this study, a new ECL2 conformational sampling method involving both template-based and ab initio sampling was developed. Inspired by the observation of similar ECL2 structures of closely related GPCRs, a template-based sampling method employing loop structure templates selected from the structure database was developed. A new metric for evaluating similarity of the target loop to templates was introduced for template selection. An ab initio loop sampling method was also developed to treat cases without highly similar templates. The ab initio method is based on the previously developed fragment assembly and loop closure method. A new sampling component that takes advantage of secondary structure prediction was added. In addition, a conserved disulfide bridge restraining ECL2 conformation was predicted and analytically incorporated into sampling, reducing the effective dimension of the conformational search space. The sampling method was combined with an existing energy function for comparison with previously reported loop structure prediction methods, and the benchmark test demonstrated outstanding performance.

  10. DNA secondary structure of the released strand stimulates WRN helicase action on forked duplexes without coordinate action of WRN exonuclease

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahn, Byungchan, E-mail: bbccahn@mail.ulsan.ac.kr; Bohr, Vilhelm A.

    2011-08-12

    Highlights: {yields} In this study, we investigated the effect of a DNA secondary structure on the two WRN activities. {yields} We found that a DNA secondary structure of the displaced strand during unwinding stimulates WRN helicase without coordinate action of WRN exonuclease. {yields} These results imply that WRN helicase and exonuclease activities can act independently. -- Abstract: Werner syndrome (WS) is an autosomal recessive premature aging disorder characterized by aging-related phenotypes and genomic instability. WS is caused by mutations in a gene encoding a nuclear protein, Werner syndrome protein (WRN), a member of the RecQ helicase family, that interestingly possessesmore » both helicase and exonuclease activities. Previous studies have shown that the two activities act in concert on a single substrate. We investigated the effect of a DNA secondary structure on the two WRN activities and found that a DNA secondary structure of the displaced strand during unwinding stimulates WRN helicase without coordinate action of WRN exonuclease. These results imply that WRN helicase and exonuclease activities can act independently, and we propose that the uncoordinated action may be relevant to the in vivo activity of WRN.« less

  11. Secondary structure model of the RNA recognized by the reverse transcriptase from the R2 retrotransposable element.

    PubMed Central

    Mathews, D H; Banerjee, A R; Luan, D D; Eickbush, T H; Turner, D H

    1997-01-01

    RNA transcripts corresponding to the 250-nt 3' untranslated region of the R2 non-LTR retrotransposable element are recognized by the R2 reverse transcriptase and are sufficient to serve as templates in the target DNA-primed reverse transcription (TPRT) reaction. The R2 protein encoded by the Bombyx mori R2 can recognize this region from both the B. mori and Drosophila melanogaster R2 elements even though these regions show little nucleotide sequence identity. A model for the RNA secondary structure of the 3' untranslated region of the D. melanogaster R2 retrotransposon was developed by sequence comparison of 10 species aided by free energy minimization. Chemical modification experiments are consistent with this prediction. A secondary structure model for the 3' untranslated region of R2 RNA from the R2 element from B. mori was obtained by a combination of chemical modification data and free energy minimization. These two secondary structure models, found independently, share several common sites. This study shows the utility of combining free energy minimization, sequence comparison, and chemical modification to model an RNA secondary structure. PMID:8990394

  12. Secondary structural analyses of ITS1 in Paramecium.

    PubMed

    Hoshina, Ryo

    2010-01-01

    The nuclear ribosomal RNA gene operon is interrupted by internal transcribed spacer (ITS) 1 and ITS2. Although the secondary structure of ITS2 has been widely investigated, less is known about ITS1 and its structure. In this study, the secondary structure of ITS1 sequences for Paramecium and other ciliates was predicted. Each Paramecium ITS1 forms an open loop with three helices, A through C. Helix B was highly conserved among Paramecium, and similar helices were found in other ciliates. A phylogenetic analysis using the ITS1 sequences showed high-resolution, implying that ITS1 is a good tool for species-level analyses.

  13. Chemical and bioactive diversities of the genus Chaetomium secondary metabolites.

    PubMed

    Zhang, Q; Li, H-Q; Zong, S-C; Gao, J-M; Zhang, A-L

    2012-02-01

    The genus Chaetomium fungi are considered to be a rich source of novel and bioactive secondary metabolites of great importance. Up till now, a variety of more than 200 secondary metabolites belonging to diverse structural types of chaetoglobosins, epipolythiodioxopiperazines, azaphilones, xanthones, anthraquinones, chromones, depsidones, terpenoids, and steroids have been discovered. Most of these fungal metabolites exhibited antitumor, cytotoxic, antimalarial, enzyme inhibitory, antibiotic, and other activities. This review covers the extraction, structure elucidation, structural diversity, and biological activities of natural products isolated from about 30 fungi associated with marine- and terrestrial- origins, and highlights some bioactive compounds as well as their mechanisms of action and structure-activity relationships.

  14. GeneBee-net: Internet-based server for analyzing biopolymers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brodsky, L.I.; Ivanov, V.V.; Nikolaev, V.K.

    This work describes a network server for searching databanks of biopolymer structures and performing other biocomputing procedures; it is available via direct Internet connection. Basic server procedures are dedicated to homology (similarity) search of sequence and 3D structure of proteins. The homologies found could be used to build multiple alignments, predict protein and RNA secondary structure, and construct phylogenetic trees. In addition to traditional methods of sequence similarity search, the authors propose {open_quotes}non-matrix{close_quotes} (correlational) search. An analogous approach is used to identify regions of similar tertiary structure of proteins. Algorithm concepts and usage examples are presented for new methods. Servicemore » logic is based upon interaction of a client program and server procedures. The client program allows the compilation of queries and the processing of results of an analysis.« less

  15. The new VLT-DSM M2 unit: construction and electromechanical testing

    NASA Astrophysics Data System (ADS)

    Gallieni, Daniele; Biasi, Roberto

    2013-12-01

    We present the design, construction and validation of the new M2 unit of the VLT Deformable Secondary Mirror. In the framework of the Adaptive Optics Facility program, ADS and Microgate designed a new secondary unit which replaces the current Dornier one. The M2 is composed by the mechanical structure, a new hexapod positioner and the Deformable Secondary Mirror unit.The DSM is based on the well proven contactless, voice coil motor technology that has been already successfully implemented in the MMT, LBT and Magellan adaptive secondaries, and is considered a promising technical choice for the E-ELT M4 and the GMT ASM. The VLT adaptive unit has been fully integrated and, before starting the optical calibration, has completed the electromechanical characterization, focused on the dynamic performance. With respect to the previous units we introduced several improvements, both in hardware and control architecture that allowed achieving a significant enhancement of the system dynamics and reduction of power consumption.

  16. Occlusal changes secondary to temporomandibular joint conditions: a critical review and implications for clinical practice

    PubMed Central

    CALDAS, Waleska; CONTI, Ana Cláudia de Castro Ferreira; JANSON, Guilherme; Paulo César Rodrigues, CONTI

    2016-01-01

    ABSTRACT The relationship between Temporomandibular Disorders (TMD) and malocclusion is an extremely critical issue in dentistry. Contrary to the old concept that malocclusion causes TMD, occlusal changes, especially those observed as sudden, may be secondary and reflect joint or muscle disorders due to the obvious connection between these structures and the dental occlusion. Objectives The aim of this article is to present the most commonly occlusal changes secondary to TMD. Methods The clinical presentation of these conditions is discussed. Details regarding diagnosis, treatment, and follow-up of patients presenting TMD prior or during treatment are also presented. Conclusions All plans for irreversible therapy should be preceded by a meticulous analysis of TMD signs and symptoms in such a way that patients are not submitted to irreversible treatment, based on an untrue occlusal relationship, secondary to articular and/or muscular disorders. When present, TMD symptoms must always be controlled to reestablish a “normal” occlusion and allow proper treatment strategy. PMID:27556214

  17. Free energy determinants of secondary structure formation: III. beta-turns and their role in protein folding.

    PubMed

    Yang, A S; Hitz, B; Honig, B

    1996-06-21

    The stability of beta-turns is calculated as a function of sequence and turn type with a Monte Carlo sampling technique. The conformational energy of four internal hydrogen-bonded turn types, I, I', II and II', is obtained by evaluating their gas phase energy with the CHARMM force field and accounting for solvation effects with the Finite Difference Poisson-Boltzmann (FDPB) method. All four turn types are found to be less stable than the coil state, independent of the sequence in the turn. The free-energy penalties associated with turn formation vary between 1.6 kcal/mol and 7.7 kcal/mol, depending on the sequence and turn type. Differences in turn stability arise mainly from intraresidue interactions within the two central residues of the turn. For each combination of the two central residues, except for -Gly-Gly-, the most stable beta-turn type is always found to occur most commonly in native proteins. The fact that a model based on local interactions accounts for the observed preference of specific sequences suggests that long-range tertiary interactions tend to play a secondary role in determining turn conformation. In contrast, for beta-hairpins, long-range interactions appear to dominate. Specifically, due to the right-handed twist of beta-strands, type I' turns for -Gly-Gly- are found to occur with high frequency, even when local energetics would dictate otherwise. The fact that any combination of two residues is found able to adopt a relatively low-energy turn structure explains why the amino acid sequence in turns is highly variable. The calculated free-energy cost of turn formation, when combined with related numbers obtained for alpha-helices and beta-sheets, suggests a model for the initiation of protein folding based on metastable fragments of secondary structure.

  18. Parallel computation of genome-scale RNA secondary structure to detect structural constraints on human genome.

    PubMed

    Kawaguchi, Risa; Kiryu, Hisanori

    2016-05-06

    RNA secondary structure around splice sites is known to assist normal splicing by promoting spliceosome recognition. However, analyzing the structural properties of entire intronic regions or pre-mRNA sequences has been difficult hitherto, owing to serious experimental and computational limitations, such as low read coverage and numerical problems. Our novel software, "ParasoR", is designed to run on a computer cluster and enables the exact computation of various structural features of long RNA sequences under the constraint of maximal base-pairing distance. ParasoR divides dynamic programming (DP) matrices into smaller pieces, such that each piece can be computed by a separate computer node without losing the connectivity information between the pieces. ParasoR directly computes the ratios of DP variables to avoid the reduction of numerical precision caused by the cancellation of a large number of Boltzmann factors. The structural preferences of mRNAs computed by ParasoR shows a high concordance with those determined by high-throughput sequencing analyses. Using ParasoR, we investigated the global structural preferences of transcribed regions in the human genome. A genome-wide folding simulation indicated that transcribed regions are significantly more structural than intergenic regions after removing repeat sequences and k-mer frequency bias. In particular, we observed a highly significant preference for base pairing over entire intronic regions as compared to their antisense sequences, as well as to intergenic regions. A comparison between pre-mRNAs and mRNAs showed that coding regions become more accessible after splicing, indicating constraints for translational efficiency. Such changes are correlated with gene expression levels, as well as GC content, and are enriched among genes associated with cytoskeleton and kinase functions. We have shown that ParasoR is very useful for analyzing the structural properties of long RNA sequences such as mRNAs, pre-mRNAs, and long non-coding RNAs whose lengths can be more than a million bases in the human genome. In our analyses, transcribed regions including introns are indicated to be subject to various types of structural constraints that cannot be explained from simple sequence composition biases. ParasoR is freely available at https://github.com/carushi/ParasoR .

  19. Formation Of Nano Layered Lamellar Structure In a Processed γ-TiAl Based Alloy

    NASA Astrophysics Data System (ADS)

    Heshmati-Manesh, S.; Shakoorian, H.; Armaki, H. Ghassemi; Ahmadabadi, M. Nili

    2009-06-01

    In this research, microstructures of an intermetallic alloy based on γ-TiAl has been investigated by optical and transmission electron microscopy. Samples of Ti-47Al-2Cr alloy were subjected to either a cyclic heat treatment or thermomechanical treatment with the aim of microstructural refinement. In both cases it was found that very fine lamellar structure with an interlamellar spacing in the nano scale is formed. Upon cyclic heat treatment, nano layers of α2 and γ ordered intermetallic phases were either formed during rapid cooling cycle in competition with massive structure formation, or formed as secondary lamellar structure during final stages of cyclic heat treatment. Also, TEM observations in hot forged specimens with initial lamellar structure revealed that micro twins form during the deformation within lamellar structure with twinning plates parallel to lamellar interfaces. Concurrent dynamic recrystallisation results in a nano layered structure with an interlamellar spacing of less than 100 nm.

  20. Helical self-organization and hierarchical self-assembly of an oligoheterocyclic pyridine-pyridazine strand into extended supramolecular fibers.

    PubMed

    Cuccia, Louis A; Ruiz, Eliseo; Lehn, Jean-Marie; Homo, Jean-Claude; Schmutz, Marc

    2002-08-02

    The synthesis and characterization of an alternating pyridine-pyridazine strand comprising thirteen heterocycles are described. Spontaneous folding into a helical secondary structure is based on a general molecular self-organization process enforced by the conformational information encoded within the primary structure of the molecular strand itself. Conformational control based on heterocyclic "helicity codons" illustrates a strategy for designing folding properties into synthetic oligomers (foldamers). Strong intermolecular interactions of the highly ordered lock-washer subunits of compound 3 results in hierarchical supramolecular self-assembly into protofibrils and fibrils. Compound 3 also forms mechanically stable two-dimensional Langmuir-Blodgett and cast thin films.

Top